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Abstract

Synthesizing multiple data sources to understand the population and community ecology of
California trees

by
Melissa Viola Eitzel Solera
Doctor of Philosophy in Environmental Science, Policy, and Management
University of California, Berkeley

Professor Perry de Valpine, Chair

In this work, I answer timely questions regarding tree growth, tree survival, and commu-
nity change in California tree species, using a variety of sophisticated statistical and remote
sensing tools.

In Chapter 1, I address tree growth for a single tree species with a thorough explanation
of hierarchical state-space models for forest inventory data. Understanding tree growth as a
function of tree size is important for a multitude of ecological and management applications.
Determining what limits growth is of central interest, and forest inventory permanent plots
are an abundant source of long-term information but are highly complex. Observation error
and multiple sources of shared variation (spatial plot effects, temporal repeated measures,
and a mosaic of sampling intervals) make these data challenging to use for growth estima-
tion. I account for these complexities and incorporate potential limiting factors (tree size,
competition, and resource supply) into a hierarchical state-space model. I estimate the di-
ameter growth of white fir (Abies concolor) in the Sierra Nevada of California from forest
inventory data, showing that estimating such a model is feasible in a Bayesian framework
using readily available modeling tools. In this forest, white fir growth depends strongly on
tree size, total plot basal area, and unexplained variation between individual trees. Plot-level
resource supply variables (representing light, water, and nutrient availability) do not have
a strong impact on inventory-size trees. This approach can be applied to other networks of
permanent forest plots, leading to greater ecological insights on tree growth.

In Chapter 2, I expand my state-space modeling to examine survival in seven tree species,
as well as investigating the results of modeling them in aggregate (at the community level)
and comparing with the individual species models. Declining tree survival is a complex,
well-recognized problem, but studies have been largely limited to relatively rare old-growth
forests or low-diversity systems, and to models which are species-aggregated or cannot eas-
ily accommodate yearly climate variables. I estimate survival models for a relatively di-
verse second-growth forest in the Sierra Nevada of California using a hierarchical state-space



framework. 1 account for a mosaic of measurement intervals and random plot variation,
and I directly include yearly stand development variables alongside climate variables and
topographic proxies for nutrient limitation. My model captures the expected dependence
of survival on tree size. At the community level, stand development variables account for
decreasing survival trends, but species-specific models reveal a diversity of factors influencing
survival. Species time trends in survival do not always conform to existing theories of Sierran
forest dynamics, and size relationships with survival differ for each species. Within species,
low survival is concentrated in susceptible subsets of the population and single estimates
of annual survival rates do not reflect this heterogeneity in survival. Ultimately only full
population dynamics integrating these results with models of recruitment can address the
potential for community shifts over time.

In Chapter 3, I combine statistical modeling with remote sensing techniques to investi-
gate whether topographic variables influence changes in woody cover. In the North Coast
of California, changes in fire management have resulted in conversion of oak woodland into
coniferous forest, but the controls on this slow transition are unknown. Historical aerial im-
agery, in combination with Object-Based Image Analysis (OBIA), allows us to classify land
cover types from the 1940s and compare these maps with recent cover. Few studies have
used these maps to model drivers of cover change, partly due to two statistical challenges:
1) appropriately accounting for spatial autocorrelation (ideally without throwing away data)
and 2) appropriately modeling percent cover which is bounded between 0 and 100 and not
normally distributed. I study the change in woody cover in California’s North Coast using
historical (1948) and recent (2009) high-spatial-resolution imagery. I classify the imagery
using eCognition Developer and aggregate the resulting maps to the scale of a Digital Ele-
vation Model (DEM) in order to understand topographic drivers of woody cover change. I
use Generalized Additive Models (GAMs) with a quasi-binomial probability distribution to
account for spatial autocorrelation and the boundedness of the percent woody cover variable.
I explore the relative roles of elevation, topographic slope, aspect (Northness/Eastness), to-
pographic wetness index, profile curvature, historical percent woody cover, and geographical
coordinates in influencing current percent woody cover. I estimate these models for scales
of 20, 30, 40, 50, 60, 70, 80, 90, and 100 m, reflecting both tree neighborhood scales and
stand scales. I find that historical woody cover has a consistent positive effect on current
woody cover, and that the spatial term in the model is significant even after controlling for
historical cover. Specific topographic variables emerge as important for different sites at dif-
ferent scales, but no overall pattern emerges across sites or scales for any of the topographic
variables I tested. This GAM framework for modeling historical data is flexible and could
be used with more variables, more flexible relationships with predictor variables, and larger
scales. Modeling drivers of woody cover change from historical ecology data sources can be
a valuable way to plan restoration and enhance ecological insight into landscape change.

I conclude that these techniques are promising but a framework is needed for sensitivity
analysis, as modeling results can depend strongly on variable selection and model structure.
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Overture

In organizing my dissertation, I have chosen a musical metaphor. This is an apt metaphor
because, like many classical musical works, dissertations are long, complex, and have recur-
ring themes. In this case, there are three movements (the three chapters), with intermissions
in between, the themes are introduced in an overture, and the piece ends with a new idea in
a coda. Some of the themes that emerge throughout this work include:

1. The importance of individual variation and population heterogeneity in forest trees in
demographic relationships (Ellner and Rees 2006, Clark et al. 2010, Knape et al. 2011).

2. The uniqueness of drivers of community change and tree population demography for
different species or sites.

3. The potential for using existing data sources (e.g. forest inventories, historical aerial
imagery) to answer questions about long-term changes in ecosystems.

4. The methodological complexities of combining analytical tools to make best use of
these complex and idiosyncratic long-term datasets.

5. The increasing importance of global change studies (Menzel et al. 2014) and the corre-
sponding need for these kinds of ecoinformatic tools to synthesize existing and emerging
datasets (Michener and Jones 2012) to inform policy and management.

In my dissertation, I focus on how these themes play out in California woodland and forest
ecosystems. I begin with sophisticated statistical models which can appropriately account
for individual-based measurements (as in forest inventories), asking in Chapter 1 how such
models can address growth limitation in a common species in fire-excluded systems in the
Sierra Nevada. In Chapter 2, I then broaden this modeling strategy to address urgent
concerns about trends in tree survival for a second-growth forest, and ask whether results
differ between individual-species models and aggregated-species models. Finally, in Chapter
3, I investigate the fusion of high-spatial-resolution imagery remote sensing technologies
with historical aerial imagery and statistical modeling to address questions concerning the
topographic drivers of ecosystem conversion from oak woodland to coniferous forest in the
North Coast.



Chapter 1

Estimating Tree Growth Models from
Complex Forest Monitoring Data

Understanding the limitations on tree growth is important in many ecological and manage-
ment applications. Not only is tree growth a basic demographic process that profoundly
influences tree population dynamics (Harcombe 1987, Metcalf et al. 2009a), but it is also
one of the primary means of evaluating forest management goals (Chojnacky 2001). Tree
growth rates partly determine tree mortality (Das et al. 2007), and individual-based forest
simulators require growth data to parameterize their models (e.g. SORTIE, Pacala et al.
1996). Cambial growth underlies estimates of carbon sequestration (Mohan et al. 2007,
Berner et al. 2011) and tree growth as a function of size is an important element in den-
drochronological analysis (Bunn 2008). A tree’s growth is metabolically limited by its size
(Macfarlane and Kobe 2006, Coomes et al. 2011) and competition is a fundamentally limit-
ing factor in closed-canopy conditions (Lines et al. 2010, Kunstler et al. 2011). In addition,
the supply of energy, water, and nutrients (typically measured by proxies such as insolation,
water deficit, and soil type) can strongly limit tree growth and can mask density dependence
(He and Duncan 2000). Permanent forest plot data are an ideal way to learn about growth
limitation. Typically these data include tagged trees whose diameter at breast height (DBH,
breast height = 1.37 m) is measured at regular intervals. Changes in DBH are often used
to measure tree growth (e.g. US Forest Service Forest Inventory and Analysis network! and
Smithsonian Center for Tropical Forest Science network?).

Unfortunately, long-term monitoring data are typically highly complex, including obser-
vation error, missing data and uneven time intervals, spatial nesting and autocorrelation, and
repeated measures on the same individuals. Most typical statistical models cannot account
for all of these issues. More sophisticated hierarchical models can incorporate these shared
sources of variation as well as the error inherent in the observations (e.g. Royle and Do-
razio 2008, Cressie et al. 2009, Ponciano et al. 2009, Clark et al. 2010). Hierarchical models

Thttp: //www.fia.fs.fed.us/
http://www.ctfs.si.edu/
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can accommodate nested random effects to account for correlations between measurements
from the same site, the same plot within site, or the same individual, as well as incorporating
crossed random effects for different years. In addition, one can explicitly model measurement
error by treating the unmeasured, true sizes as ‘latent states’ that are statistically related
to measured sizes. Freely available software (e.g. lme4 in R, Bates and Maechler 2010;
OpenBUGS, Lunn et al. 2009) and multiple textbooks on hierarchical modeling (Clark 2007,
Royle and Dorazio 2008, Kery 2010, Kery and Schaub 2012) place this set of tools in the
hands of managers and ecologists, allowing them to make better use of complex long-term
datasets.

Previous work using hierarchical models with forest inventories has addressed many spa-
tial and temporal particulars of these data, as well as inevitable observation error. Spatial
autocorrelation is a chief issue in permanent plot data, and has been accounted for using
correlated spatial random effects in Banerjee and Finley (2007) and Finley (2011). One
temporal issue in inventory data is the difficulty of inferring annual growth rates from tree
diameter censuses taken at longer and sometimes uneven time intervals. Gregoire et al.
(1995) used a continuous-time temporal autocorrelation between measurements to account
for these uneven intervals, but comment that their measure of elapsed time as a distance
measure may not be meaningful. This temporal mosaic of sampling intervals is common in
permanent plot networks as it can be difficult to maintain regular measurement intervals.
Even if regular intervals are maintained in any particular network, mismatched time intervals
are inevitable when analyses include data from different plot networks. Diameter censuses
are easy to execute and typically can include many trees, but are prone to errors due to
improper diameter tape placement and bark loss. Therefore, unrealistic negative growth
increments are common and many ad hoc methods are used to account for this issue (e.g.
by adding an arbitrary amount to all growth increments, which biases estimates towards
larger annual growth rates). A way of realistically accounting for observation error is needed
(Clark et al. 2007). Previous studies have balanced the strengths and weaknesses of diameter
censuses by estimating hierarchical models combining diameter measurements on all trees
in some years with tree ring data on some trees in all years in order to infer annual growth
(Clark et al. 2007, 2010). Some of these studies include tree size and limiting factors such
as canopy cover and climate variables (Clark et al. 2010, 2011, 2012). Other studies have
incorporated random effects for spatial nesting with measures of competition and methods
of accounting for uneven time intervals (Weiskittel et al. 2007). But none of these existing
models have demonstrated how to infer annual growth from a mosaic of sampling intervals
by explicitly estimating the unmeasured sizes as well as modeling the repeated measures on
individual trees as a random effect.

In this study I developed a hierarchical model to infer annual growth rates from a mosaic
of sampling intervals while incorporating multiple sources of unexplained variation. This
state-space model (de Valpine 2003) includes: growth as a function of tree size, resource
supply, and competition; random effects to account for year-to-year variation, repeated mea-
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sures on trees, and spatial nesting; and explicit modeling of unmeasured tree sizes and the
associated observation error. The model incorporates the conceptual sophistication of many
previous models in such a way that these effects can be estimated simultaneously and com-
pared. While previous studies do include limiting factors, I include interactions between tree
size and both fixed and random variables to more completely incorporate size dependence
in every aspect of growth, explaining which of these has the biggest impact. In addition,
my model handles time by including random year effects as well as latent states. This ap-
proach results in crossed random effects between time and spatial nesting factors, which are
technically challenging to estimate. Due to the combination of these crossed and nested
random effects, unequal time intervals, and observation error, standard statistical analysis
software packages will not suffice and I use Markov chain Monte Carlo (MCMC) to estimate
parameters in OpenBUGS. I then compare the relative magnitudes of each estimated source
of variation and of the effects of different explanatory variables. This case study illustrates
the utility of these tools for forest monitoring data, and suggests how these methods can be
extended to other such datasets.

1.1 Methods

Study Site

Blodgett Forest Research Station (BFRS) is located in the central western slopes of the
Sierra Nevada (38°52" N; 120°40" W). The research station’s 1,780 hectares (ha) are divided
into compartments (8-80 ha each) containing plots (0.04 ha each) measured periodically to
monitor forest composition and structure. (See Appendix A for number of trees, plots, and
compartments in this study as well as sampling intervals.) The data I use in this study comes
from the reserve compartments, which have seen no management other than fire suppression
in the last 100 years. As such, the reserve compartments at Blodgett are representative of
much of the western slopes of the Sierra Nevada, which have seen a similar management
history and experience similar abiotic conditions.

BFRS currently consists of mature second-growth mixed conifer forest. Trees have not
yet reached their maximum size, and diameter growth appears to be an approximately linear
function of diameter. Due to fire exclusion in the reserve compartments, later-successional
shade-tolerant coniferous species are most common. White fir (Abies concolor) is one of
these dominant species and is becoming more dominant over time throughout the Sierra
Nevada (Ansley and Battles 1998, Collins et al. 2011). Due to the fact that the forest is still
recovering from a clearcut in the early 1900s (Battles et al. 2008), tree diameter is a good
representation of tree canopy position. The explanatory variables I include in my model
are the following: tree size (DBH) in cm, plot basal area in m?/ha, insolation in Wh/m?,
topographic slope in %, elevation in m, annual water deficit in mm (see Table 1.1), and
categorical soil type (as a proxy for soil nutrients). I detail both the measurement methods
and the auditing of these data in Appendix B.
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Covariate Name Mean Std.Dev  Min Max Units  Level
Insolation 628688.10 36106.87 499531.88 692878.06 Wh/m? Plot
Slope 15.19 10.09 1.00 43.00 % Plot
Elevation 1315.73  35.48 1272.54  1450.85 m Plot
Basal Area 62.02 26.17 0.90 135.48  m?/ha Plot/Year
Annual Water Deficit -174.87 66.63 -311.93 -66.67 mm Year

Tree Size (DBH) 30.75 20.56 0.25 131.32  cm Tree/Year

Table 1.1: Explanatory variables; soil is categorical and is not shown here, but most soil
types originate from granites, and Cohasset is more developed than the Holland soil family
— see Appendix B for details on soils and other explanatory variables.

Statistical Model and Estimation

Given the importance of annual growth in assessing tree performance, and that the data
have a mosaic of sampling intervals for different trees, I choose an annual time step for this
model. The statistical model for tree growth in each year is hierarchical at several levels.
In all the following formulae, subscript ¢ is for compartment, j is for plot, and % is for
tree. Superscript m indexes the explanatory variables in Table 1.1. First, I represent the
observation process by modeling observations of tree diameter in cm, y;;x(t), as a function
of latent (unknown) tree size x;;x(¢) in cm with normally distributed observation error with
variance o3y Yijk(t) ~ N (@ijk(t), 0By ). Next, the process model representing annual tree
growth is:

Tijr(t + 1) ~ N(aiji(t) + Bijr(t)in(t)
IR OE P HOEN O (L.1)

I assume that size in the next year is a linear function of several other explanatory
variables, which are denoted zi"jl(t) and have parameters for slope 7" and interaction with size
k™. The modeling framework does allow for more complex functional forms (e.g. Weiskittel
et al. 2007) as needed, but the data do not warrant this complexity. The z™ are centered and
scaled based on these variables as measured in the BFRS inventory. The scale of the latent
states x is established using the measured inventory sizes y (see Appendix C for details on

standardization). The 2™ are measured at plot and/or year level: insolation, topographic

. . . . tsl
slope, elevation, and soil category are all measured at plot level, i.e. 275, 27, 28 and
a group of five indicator variables representing a tree’s soil type (zgv , zg , zg B zg M and z;‘ly)7

basal area is measured at plot and year level, zf’f(t), and annual water deficit is measured
at year level, 29¢/(¢) (Table 1.1). I assume that size in the next year z;;;(t + 1) is a linear
function of size in the previous year, x;;(t), with soil type-dependent slope and intercept
(e.g., for Jocal soil type: slope a; = B;jx(t) + x/ and intercept by = a;;x(t) +77). In Results,
I report the average growth increment b and average effect of size on growth increment a — 1,
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which are weighted averages over soil types and for average values of explanatory variables.
Residual error, with variance o2, accounts for additional unexplained variation in growth.

At the next hierarchical level, I model the collective random effects on intercept aj(t)
and slope Bi;x(t) with respect to size z as a combination of random effects for tree (g},
and qg.k), plot (pf; and pfj), compartment (¢ and ), and year (w®(t) and w?(t)). The
intercept effects reflect differences in overall growth increment while the slope effects reflect
differences in growth as a function of size. The random effect intercept for a specific tree
is determined by the random tree, compartment, plot, and year effects as follows: aj;(t) =
iy, + 8 + pg; +w?(t); and the slope is similar: ;.(t) = q,gk +¢ —i—piﬁj +w?(t). The random
effects for tree, compartment, plot, and year follow normal distributions, and in Results, I
display the standard deviations for each of these random effects (e.g. o, for the standard
deviation of compartment intercept effects). At each level of nesting, random effects are
assumed to be independent (see Appendix C for more details on model specification).

I estimated the parameters, random effects, and latent states in a Bayesian framework
using MCMC sampling techniques in OpenBUGS (Lunn et al. 2009). While the MCMC
needed some adjustments to produce useful results, ultimately I was able to estimate the
full, complex model with all explanatory variables and sources of variation. I used R (R
Development Core Team 2009) to format the data and generate initial values for random
effects. 1 could not use completely arbitrary initial values generated by BUGS because I
encountered difficulties with slow mixing due to the complexity of the model. Instead I
used spline-interpolated sizes (Wood 2006) in a linear mixed effects model (lmer: Bates
and Maechler 2010) to generate plausible starting values for random effects and latent sizes.
Initial values for intercept and slope parameters for explanatory variables were set to zero.

I used uninformative priors, with the exception of observation error standard deviation.
When I included very small values in my prior distributions for this parameter, MCMC chains
mixed poorly. As I expect at least a small amount of observation error, I chose an inverse
gamma or a uniform prior with a nonzero minimum, based on the minimum rounding error
inherent in the diameter tape. In Results, I report estimates from the uniform prior model
for all parameters other than observation error (for which I report results for both priors). I
assessed convergence both visually and using Gelman-Rubin diagnostics in the coda package
(Plummer et al. 2010). See Appendix D for details on priors, initial values, trace plots, and
convergence tests. Finally, while I do not demonstrate a formal model selection procedure
here, I do estimate several simpler models to check the robustness of my estimates to removal
of other model components and to different choices for observation error priors (Appendix

Q).
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1.2 Results

The mean for growth increment b was 0.463 (with a 95% credible interval of 0.339, 0.600)
cm per year, and for change in growth increment with size a — 1 was 0.013 (0.006, 0.020) per
year. I thus confirm that size has a significant effect on growth and should be included in the
model. For all explanatory variable parameters on the same standardized, unitless scale, I
list means and 95% credible intervals in Appendix E. The credible intervals of parameters for
insolation, elevation, and annual water deficit overlap zero. On the other hand, basal area’s
effect on growth increment % and its interaction with size x** do not significantly overlap
zero. The effect of topographic slope on growth increment 7/*'°P¢ is borderline significant as
well, though its interaction with tree size x!'P¢ is not (Figure 1.1). Note that some of the
parameters such as the effect of annual water deficit (y%/ and x%/) are poorly determined
(have a flatter posterior and consequently a broader credible interval). Though several of
the soil type effects also overlap each other, some are distinct from each other and from their
average, and all of their intercepts are significantly different from zero. Of the soil types,
Cohasset has the highest slope k¢ and the second highest intercept 4¢, consistent with the
typically high productivity of these soils. (See Appendix E for parameter estimates.) The
estimates for these significant variables (basal area, topographic slope, and soil effects) are
robust to the removal of the others (insolation and elevation), and vice versa (e.g. removal
of topographic slope does not render insolation significant). In contrast, when annual deficit
is removed, the magnitude of random year effects increases (see Appendix G for comparisons
between the full model and several simplified models).

The way these explanatory variables interact with size is more apparent when growth
increment as a function of size is shown for low and high values of the explanatory variables
(Figure 1.2). These results on the original size scale allow biological interpretation (see
Appendix C for algebra underlying the rescaling of covariates after estimation). The slope
of all lines is significantly greater than zero, indicating that size is significant for all values of
the other explanatory variables. Several of the effects of the high and low values of specific
covariates make sense: for higher water deficits, growth is lower, and growth is higher overall
in Cohasset soils. However, variables other than basal area show high overlap between high
and low values and thus do not substantially affect tree growth. (Soils overlap considerably
as well.) Observation error standard deviation oppgy is estimated at 0.149 cm (0.082, 0.218)
with a uniform prior and 0.111 cm (0.073, 0.175) with an inverse gamma prior. Residual
standard deviation o, is estimated at 0.387 cm (0.358, 0.414). Because standard deviations
can never be less than zero, determination of significance is not simple. However for my
results a practical choice was to calculate a ratio of the lower credible bound to the width of
the credible interval to represent the posterior’s separation from zero. The posteriors which
were visually distinct from zero had ratios ranging from 0.22 to 3.76, while those which
were not separated from zero had ratios on the order of 10* or 103. I consider those in the
first group to be significant and those in the second group not to be significant (see Table
E.2 in Appendix E for these ratios). Based on this reasoning, among the intercept random
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Effects on overall growth increment
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Figure 1.1: Parameter posterior densities for relationships between growth increment with
size and other explanatory variables (topographic slope 7*°P¢ and x!*"P¢ elevation ~'¢
and kY, insolation 7™*° and "%, annual water deficit v/ and x%7 basal area 7** and
k"), all of which are for the standardized versions of these variables. In addition to these
continuous explanatory variables, the effects due to different categorical soil types (v, v¥,
VB AHM NI and kC, k1, kHB KM k7)) are shown in black. The gray line indicates the
average growth increment (upper figure, b) and effect of tree size on growth increment (lower
figure, a — 1). (Upper) Effects of continuous explanatory variables and soil types on the
overall growth increment (b and ~s). (Lower) Effects of explanatory variables on the slope
of future size with respect to current size (@ — 1 and xs).



CHAPTER 1. TREE GROWTH FROM FOREST INVENTORIES 9

0.0
1

Basal Area Topographic Slope Insolation
o p o o
| — 356 - @ — 1 % p ® | — 5.6e+05 p
T 28 - 3B 7 — 7e+05 ’
Sq m/na N . 24 wh/m* 7
o P
c 2| o o -7
=< = Tl z
I - - - /’—
M o | o_|~# o |77
O r—T—T—T1 T 711 S T T T T T T © T T T T T T 1
@ 0 20 60 100 0 20 60 100 0 20 60 100
3
&
- Elevation Annual Water Deficit Soil Types
T o, o o
o] — 1245 o — 207 ® | —— Cohassett
e 1387 ] -56 ‘. -| = Holland
[0) . -
o 2 ) ’ o_| = Holland-Bighill
e« N | =— Holland-Musicl
';C: — — Jocal /
o o
S - " /
o /
— — —
)
|

(I) 20 60 100 0 2|O I 6|O I 100 0 20 60 100
Size (DBH) at time t (cm)

Figure 1.2: Explanatory variable effects on growth increment as a function of size, rescaled to
cm. All plots show that growth increases with tree size in the previous year. Solid lines are
the means from posteriors of parameter estimates; dashed lines are 95 % credible intervals.
For all explanatory variables other than soil type, black shows growth increment for a low
value of the explanatory variable (-2 standard deviations) and dark gray for a high value
(+2 standard deviations). Credible intervals for soil type overlap a great deal and are not
shown for clarity.

effect standard deviations, the year, tree and plot effects are significant (04w, a4, and oqp,
Figure 1.3). Of the slope random effect standard deviations, only plot (og,) is significant
(see Appendix E and Figure 1.3). Though several of the sources of unexplained variation
have a significant effect on the overall growth increment, the variation they introduce is
substantially less than the variation introduced by overall residual variation. Several of the
random effect standard deviations are not well determined: year and compartment intercept
effects have particularly broad, flat posteriors. Finally, I also examined explicitly-estimated
latent tree sizes x;;(t) for nine trees in the inventory. Some trees’ unmeasured sizes are
better constrained by the data than others (small trees in particular are poorly estimated,
with wide credible bands); but for several larger trees the annual growth between censuses
has narrow credible bands and reasonable values (Figure F.1, Appendix F).
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Random effects: growth intercept
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Figure 1.3: Random effect standard deviation posteriors. (Upper) The intercept standard
deviations (compartment o,., year o,., tree 0,4, and plot o,,) on the cm scale, with
the average growth increment b from Figure 1.1 shown for scale in grey. Observation error
standard deviation opgy and residual error standard deviation o, are shown on the same plot
for comparison. Only for observation error, I show posteriors for both the inverse gamma
(dashed) and uniform (solid) prior models. (Lower) The slope standard deviations (og..,
O8ws 0p4q, and 0g,); again, the growth increment slope a — 1 from Figure 1.1 is shown for
scale in grey.

1.3 Discussion

This study demonstrates the feasibility of estimating a hierarchical model from forest in-
ventory data with the full richness of both categorical and continuous explanatory variables,
many sources of variation, and observation error. I have successfully estimated annual growth



CHAPTER 1. TREE GROWTH FROM FOREST INVENTORIES 11

from a mosaic of sampling intervals. Backward model selection strategies require one to start
with the most complex model available, and I have shown that this most complex model can
be estimated. Forest inventory datasets with this kind of sampling structure and with in-
dividually marked trees are becoming more common, so this modeling approach could be
applied to many other forest dynamics problems.

Tree Size, Basal Area, and Resource Supply

These models confirm that dependency of tree growth on size and competition intensity
cannot be ignored when modeling growth, e.g. in other applications such as population
dynamics or dendrochronology. The estimated annual average growth increment of 0.463 cm
per year at average conditions on these plots is high but reasonable, as BFRS is a productive
site and its second-growth forests are still increasing in biomass. I chose a linear model
for diameter growth for this study, but the modeling framework easily accommodates other
functional forms for dependency on size and competition. (See Cao (2000), Nord-Larsen
(2006), Weiskittel et al. (2007), Cao and Strub (2008), who have incorporated complex
functional forms with uneven inventory time intervals.) In particular, one could explore
nonlinear functions that allow tree growth to slow as trees reach very large sizes (as in Clark
et al. 2007, 2010, 2011, 2012), although forests at BFRS are young enough not to show this
behavior.

Basal area’s dominance among the remaining explanatory variables has two possible ex-
planations. First, competition is a likely limiting factor in forests like BFRS. As in many
Sierra Nevada forests, fire suppression has allowed shade-tolerant species to dominate younger
cohorts and regeneration. Tree density is high and recruitment to the canopy is only possible
in distinct canopy gaps. Second, although elevation and insolation appear not to be impor-
tant at plot level, these variables occur in a narrow range at BFRS relative to the species’
fundamental niche (Lutz et al. 2010). Variation in these variables at BFRS is small relative
to the US Forest Service’s permanent plot data in a similar latitude range (see Appendix
H for details of comparison to Forest Inventory and Analysis data), and other studies show
larger responses when larger ranges of covariates are available (Clark et al. 2012). The fact
that annual water deficit did not have a strong effect on growth is surprising given the doc-
umented relationship between growth and climate for white fir trees in northern California
(Yeh and Wensel 2000). One explanation for this result is that water deficits at BFRS tend
to be lower than comparable forests in the region (see Appendix H). Also recall that when
water deficit is removed from the model, the intercept year standard deviation increases (see
Appendix G). So although the effect of annual water deficit cannot be precisely estimated,
its magnitude may be biologically important. Finally, this dataset does not include many
trees smaller than 11.4 cm DBH, and these smallest individuals may be more strongly in-
fluenced by resource supply than larger, more established individuals, and also at a spatial
scale below plot level.
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Sources of Variation

The behavior of the model implies that observation error standard deviation may not be
independently estimable in this kind of model. Priors allowing the standard deviation to
approach zero, including uniform and half-t priors (Gelman 2006, Knape et al. 2008), result
in bad mixing as the system struggles to move away from a scenario in which observations
perfectly match latent states. This behavior could be due to the MCMC samplers in Open-
BUGS; different software may not have this problem. Some observation error in this system
is expected, however, and including it should improve other estimates. I chose a minimal
lower bound on the observation error standard deviation, based on the rounding error in the
measurement tape (0.073 cm; see Appendix D for details of this calculation). My estimates
are larger than this minimum, but still much smaller than the 1 cm (0.8 %) reported by
Clark et al. in a study combining tree cores with DBH measurements (2007) and the 2.7 %
reported by Gonzalez et al. (2010) for repeated DBH measurements made in similar forests
(though this latter study included outliers and obvious errors, which I have removed from
the inventory; see Appendix B). Models like these for similar datasets should check to con-
firm that observation error can be estimated and may likewise consider an informative prior
to ensure a minimum amount of observation error. Analysts may also try different MCMC
samplers, which may be less sensitive to this behavior.

Even after accounting for basal area, the significant plot random effect standard devi-
ations essentially give each plot its own size relationship with growth. Plots at BFRS are
approximately 2-3 neighborhoods in size (Canham et al. 2006, Das et al. 2011), so neigh-
borhood effects could be acting below the plot level. Density dependence in closed canopy
forests can be complex, so an effect due to plot in addition to an overall basal area mea-
surement at the plot level is reasonable. The importance of slope random effects in addition
to intercept random effects implies that models may need to include variation in more than
just the overall growth intercept. The broad, flat posteriors of some random effect standard
deviations may be the result of a small sample size to estimate them; in particular, the broad
posterior for the year effect variance is not surprising as some years do not have data and
the annual increment cannot always be precisely estimated.

The nontrivial tree intercept standard deviation, even when size is included in the model,
implies that some trees have a growth advantage over their entire lifetime in the inventory.
This slightly different average growth of different trees is ecologically important: for example,
in population models, individual quality (Ellner and Rees 2006) can have important impacts
on population growth. Unfortunately it is impossible with these data to determine whether
this individual quality reflects genetic superiority, a favorable microsite when the tree first
established, or some other neighborhood factor. The significance of this individual variation
highlights the importance of studying forests at the individual tree level (Clark et al. 2012).
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1.4 Future Work and Implications for Practice

I have demonstrated the use of a complex hierarchical model including explanatory variables
and multiple random effects on long-term forest inventory data. Though this model accounts
for uneven time intervals effectively, it does not include the sophistication of explicitly includ-
ing underlying spatial autocorrelation (Banerjee and Finley 2007, Finley 2011). In addition,
though I have included a variety of explanatory variables, there is a constellation of possible
variables that could have been included. Ultimately, one would want to use both knowledge
of the system and a model selection procedure to determine what functional form to use
and which explanatory variables and random effects to keep in the model, which I do not
demonstrate here.

The results of these models can be directly used to parameterize population models (e.g.
integral projection population models, Metcalf et al. 2009a, Ghosh et al. 2012) or forest
simulators (e.g. SORTIE). Comparative studies using rich long-term datasets can illuminate
patterns in ecological processes over large geographical areas. These studies may test basic
ecological theories such as resource limitation and niche theory, or applied questions about
management practices (e.g. how the effectiveness of fuel hazard reduction treatments could
be affected by climate change). Data on individually tagged trees, rather than plot-level data,
are becoming the norm, and long-term monitoring data are maturing. Forest permanent
plots are common in Long Term Ecological Research sites (over a third of the International
Long Term Ecological Research sites are listed as “forest”).? Since 1999 when the US Forest
Service Forest Inventory and Analysis program moved to annualized inventory, their program
includes remeasurement of tagged trees, and numerous other long-term datasets are available
from a variety of sources (e.g. the Smithsonian Center for Tropical Forest Studies).

As policymakers, managers, and ecologists alike call for adaptive management strategies,*
including long-term monitoring as a key component in assessing ecosystem interventions,
sophisticated modeling is needed to appropriately analyze these data so that inference can
feed back into management planning and therefore complete the adaptive management cycle.
Monitoring data are often rich in covariates and highly complex in sources of variation, and
uneven time intervals are a common problem. This study, including the appendices which
detail the modeling process and the supplements which include the code and data to run the
model,® should help more ecologists and managers to try these types of sophisticated models
and open up new ways of using inventory data from across the world.

3http://www.ilternet.edu/
4http:/ /www.fs.usda.gov/detail /planningrule/home?cid=stelprdb5359471
5 Available at Ecological Archives: http://www.esapubs.org/archive/appl/A023/067/
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Intermission 1

Tree growth and survival are tightly linked (Das et al. 2007, Metcalf et al. 2009b). I now
move from a thorough exploration of tree growth using a sophisticated statistical method for
complex data to the application of the method to an important ecological question: trends
in and drivers of forest tree mortality. I make use of the methods in Chapter 1 for fitting
hierarchical state-space models using Bayesian MCMC in OpenBUGS, with the knowledge
of where these methods can go wrong (e.g. ensuring that a prior is non-informative when
the variable is transformed through a nonlinear function), and also investigate a method
for model selection where more traditional methods are questionable (Millar 2009). I also
broaden the question from a single species as a proof-of-concept to a study of survival and
mortality in multiple species at the same site with different life histories, seeking to under-
stand potential drivers of tree survival and mortality. I investigate the potential for time
trends both at the individual-species level and at the species-aggregated (community) level.
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Chapter 2

Can’t see the trees for the forest:
complex factors influence survival in a
temperate second-growth forest

Concern about forest decline is high given extensive forest insect outbreaks, rising levels of
pollution, and recent increases in global temperature and greater variability in precipitation
(Likens and Franklin 2009, FAO 2010, Zeppel et al. 2013). This concern is motivated by the
important suite of ecosystem services provided by forest trees as foundation species (Elli-
son et al. 2005). A number of studies and reviews have highlighted regional (van Mantgem
et al. 2009, Peng et al. 2011, Luo and Chen 2013) and global (Allen et al. 2010, Wang et al.
2012) decreases in tree survival, particularly in large trees (Dolanc et al. 2013), and some
of these studies implicate climate change. In the arid West of the United States, studies
of declining tree survival focus on old-growth forests, where endogenous changes in forest
structure and species composition are minimal and assumed not to influence demographic
trends (van Mantgem and Stephenson 2007, van Mantgem et al. 2009; but see Lutz et al.
2014). While old-growth forests are particularly important because they hold great ecolog-
ical and social significance, they represent only 36% of the global forest (FAO 2010) and
are particularly rare in temperate regions. For example, only 6% of forests in the United
States are classified as primary (FAO 2010). Thus most forests are simultaneously developing
following a significant disturbance as well as potentially responding to perturbations in the
global environment. Under these circumstances, it is essential to disentangle the impact of
non-stationary environmental changes (e.g. climate change) from demographic trends due
to stand development (Luo and Chen 2013). To date, the few studies that have incorporated
stand dynamics into mortality assessments for second-growth forests have focused on boreal
forests following wildfire (Thorpe and Daniels 2012, Luo and Chen 2013). To better under-
stand temperate tree survival in the face of increasing threats, I investigate a productive,
second-growth mixed conifer forest in California.

To further understand the complex factors influencing tree survival in more diverse sys-
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tems, I also investigate both species-aggregated models and species-specific models. Studies
of forest decline typically aggregate species together (van Mantgem and Stephenson 2007,
van Mantgem et al. 2009) or fit models for systems with one (Hurst et al. 2011, Uzoh and
Mori 2012) or only a few individual species (Thorpe and Daniels 2012, Luo and Chen 2013).
Decline of forest trees at the community level (e.g. species-aggregated) is important for
evaluating the risk to fundamental forest ecosystem services, and many carbon sequestra-
tion estimates are indiscriminate of species. However, species-specific models of tree survival
reveal ecological principles at play, highlight dangers to particular species of cultural and
commercial interest, and improve parameterization of individual-based forest simulators and
gap models (Bigler and Bugmann 2004, Larocque et al. 2011). Trends in survival at a coarser,
community-level scale could mask trends at a finer, species-specific scale — but trends at both
scales could be ecologically, culturally, and economically important.

Finally, intraspecific heterogeneity in survival may be important. Survival processes are
spatially complex (Das et al. 2011), and small trees (Igor et al. 2009) or trees in crowded
stands (Das et al. 2007) may have a reduced chance of survival relative to their larger
counterparts in less crowded stands. The concept of a single annual survival probability
becomes less meaningful for a heterogeneous population: a high ‘mean’ annual survival may
miss susceptible subsets of the population with substantially lower survival. The importance
of susceptible individuals can be important in applications of survival models, e.g. population
models where individual quality can have a strong impact on population-level results (Ellner
and Rees 2006). As Clark et al. (2012) point out, survival happens at the scale of individuals,
but our concerns address the species and landscape scale. In this study I pay special attention
to the drivers of mortality for susceptible subsets of the population.

Specifically, I ask the following questions regarding tree survival in a temperate second-
growth forest: 1) Is there evidence for a secular trend in survival even when accounting for the
confounding trend in stand development, and does climate change account for such a trend?
2) How strongly do species-specific results differ from species-aggregated results, and how
much do species differ from each other in their responses to explanatory variables? 3) Within
a species, how heterogeneous is survival and what are the drivers of that heterogeneity?

Forest inventory data can be used to address these questions. These data can introduce
their own complexities: for example, census intervals are often greater than one year and
are also variable, causing uncertainty in identifying when a tree died during the interval
(Nord-Larsen 2006). This leads to a fundamental difficulty in modeling survival due to
annual variables (Thorpe and Daniels 2012, Luo and Chen 2013), including climate or stand
development. Hierarchical state-space models address these challenges by explicitly modeling
the latent unmeasured survival status of the tree in each year (Clark et al. 2012). If the
uneven census intervals provide some information in most years, this model structure may
be able to borrow across data-poor years in order to investigate the possibility of time trends
in survival while incorporating yearly changes in stand characteristics.
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This chapter examines the annual survival probabilities for seven tree species in a second-
growth temperate forest in the Sierra Nevada of California. Recovering from a clearcut in
the early 1900s, this forest in the arid west of the United States is relatively healthy and
has yet to be seriously impacted by obvious causes of mortality (e.g. extensive bark beetle
outbreaks, Stark et al. 2013). Under a century of consistent fire suppression, canopy species
and recruitment are dominated by shade-tolerant species, with shade-intolerant species re-
maining as a minor element in the stands (Ansley and Battles 1998, Collins et al. 2011). A
state-space model can incorporate stand structure, tree size, climate, and resource availabil-
ity proxies, as well as spatial heterogeneity among plots. This model is able to appropriately
represent the complexity of forest tree survival and address my proposed questions.

2.1 Methods

Study Site, Species, and Variables

Data for this study come from Blodgett Forest Research Station (BFRS), located on the
western slope of the Sierra Nevada at 38°52" N; 120°40° W. BFRS is a second-growth,
mixed conifer, closed canopy forest in a Mediterranean climate. Data for this study are from
“reserve” (control) compartments ranging in size from 11 to 45 ha. Since widespread logging
100 years ago, no management other than fire exclusion has been applied. This is a common
management history for much of Sierran forests. All compartments contain 0.04 ha plots,
and each plot is surveyed periodically but not always in the same year, creating a mosaic of
measurement intervals ranging from 3-14 years. Altogether, inventories account for the time
period from 1976 — 2010. Crews measure the diameter at breast height (DBH, breast height
= 1.37 m) of living trees greater than 11.4 cm DBH and record information on standing dead
trees. Smaller trees (greater than 0.254 cm DBH) are tracked in subplots.

This study includes all of the native canopy tree species. Black oak (Quercus kelloggii)
and tanoak (Notholithocarpus densiflorus) are both fire-adapted hardwoods capable of vig-
orous vegetative resprouting, though black oak is extremely shade-intolerant while tanoak
is considered shade tolerant (Niinemets and Valladares 2006). Ponderosa pine (Pinus pon-
derosa) and sugar pine (Pinus lambertiana) also rely on disturbance: ponderosa pine is
capable of surviving low-intensity fires due to thicker bark, and sugar pine recruits well
in forest gaps (Burns and Honkala 1990). As the fire regime has shifted from frequent,
low-intensity fires set by native peoples to fire suppression, these species have become less
abundant at BFRS. White fir (Abies concolor) and incense-cedar (Calocedrus decurrens),
on the other hand, are shade-tolerant and have become the main canopy constituents at
BFRS (Niinemets and Valladares 2006). Douglas-fir (Pseudotsuga menziesii) has interme-
diate shade-tolerance and also benefits from more frequent fire (Burns and Honkala 1990),
but still remains an important component at BFRS. By stem count, the most abundant
species are incense-cedar, Douglas-fir, white fir, and ponderosa pine. These species together
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comprise 88.9% of the stems in the control plots. Less abundant are sugar pine, black oak,
and tanoak; these species account for another 9.5% of stems (Appendix I).

In order to assess the relative impact of different biotic and abiotic factors on tree survival,
these models include variables representing competition, tree size, climate, and topographic
proxies for nutrient, light, and water availability.

The models include two biotic variables: tree size (DBH in c¢m) and plot basal area
(m?/ha). Plot basal area is calculated using the cross-sectional area of trees in the plot
at breast height, divided by the area of the plot. The second-growth forest at BFRS has
undergone heavy density-dependent mortality (Battles et al. 2008), with plot basal area
increasing over time through the inventory period (Appendix I). When a tree was identified
as dead in a census, no size was recorded in the database. There are several ways to estimate a
missing size, but model results proved not to be sensitive to the different methods; ultimately
a simple linear model based on tree diameter and census interval was adquate to estimate a
final size (see Appendix J). Each tree’s size and plot’s basal area were interpolated over time
using smoothing splines (Wood 2006). See Olson and Helms (1996) for more information on
inventory procedures.

The abiotic variables represent climate and topography. The model includes three to-
pographic variables (measured at the plot level) as proxies for resource availability (i.e.
light, nutrients, and water): insolation, topographic slope, and elevation. Annual insolation
(Wh/m?) is calculated from a 1/3 arc second digital elevation model from the USGS Seamless
Map Database (USGS 2011), using the solar radiation calculator in ArcGIS 9.3 (ESRI 2011).
Topographic slope (in %) is measured in the field using a clinometer, and elevation (m) is
measured from a topographic map to the nearest 3.05 m. The model also includes annual
climatic water deficit, as well as year (to account for a time trend in survival). Annual water
deficit is calculated in mm from weather records at BFRS, using AET 1.0 (Gavin 2007) and
a modified Thornthwaite method; note that deficit is a negative number and more negative
numbers indicate more stressful conditions. Deficit incorporates precipitation and tempera-
ture variables and has been correlated with tree survival in Sierran forests (van Mantgem and
Stephenson 2007). Because trees are measured in summer, the climatic water deficit from
the previous year reflects the drought stress from the previous summer and is most likely to
affect tree survival in the current year (McDowell et al. 2008). Water deficit at BFRS has a
slight but non-significant increase (more negative: -1.06 mm/year, p=0.29).

There are many possible climate variables, as well as many possible stand development
variables and individual tree variables (Monserud and Sterba 1999). To make modeling
tractable, I have chosen representative variables to account for the range of factors which
have been shown to relate to tree survival: tree size reflects canopy position at BFRS (Eitzel
et al. 2013), plot basal area is a good representation of crowding (Lines et al. 2010), and many
studies in Mediterranean forests use annual climatic water deficit to represent climate effects
(van Mantgem and Stephenson 2007, Thorne et al. 2012). See Table 1.1 and Appendix I for
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summary statistics on and plots of these explanatory variables and Appendix B for details
and more information on data auditing.

State-Space Model

The state-space formulation explicitly models the unknown yearly status of individual trees;
because tree status is a discrete state, this model falls in the category of hidden Markov
models. This model structure represents ignorance of when the tree died between invento-
ries. In this sense, this approach is similar to a mark-recapture model as seen in wildlife
applications (Gimenez et al. 2007), but with perfect detection. As the plots are not mapped,
spatial heterogeneity in the forest is modeled using a random plot effect.

The alive/dead status z;;(t + 1) for tree ¢ in plot j is represented by a Bernoulli random
variable (1 is ‘alive’), conditional on status at time ¢, in the following way: z;(t + 1) ~
Bern(¢i;(t)zi;(t)) where ¢;;(t) is the probability of survival from year ¢ to year ¢t + 1. Multi-
plying by the status at the previous time ensures that dead trees stay dead. The full model
for the biotic and abiotic factors influencing survival probability is

logit(¢;(t)) = Bo, + Z Brag(t)
k

BUJ = b+p]

(2.1)

where b is an overall mean survival for an average tree, and p; is a random effect for plot j with
p; ~ N(0, 012,). k indexes one of the explanatory variables: insolation (:v;'."”l), topographic
slope (2} ™), and elevation (25'*") are all measured at plot level; plot basal area (z*(t)) is
measured at plot and year level; tree size (/%" (t)) is measured at the tree and year level;
and annual water deficit is measured at year level (29¢/(t—1)). The 3" are coefficients for each
of these explanatory variables. In order to test for an unexplained linear time trend (often
referred to as a ‘secular trend’), ¢, the model also includes the measurement year z‘ = t.
To allow a more flexible survival relationship with size, both a linear (3”%#) and quadratic
(BPBH?) term for tree diameter are included. See Appendix K for full model formulae and
a diagram representing the relationship of model components to each other. I validated a
simple version of this model (with only an intercept, b) against mortality (m = 1 — survival)
calculations (Sheil et al. 1995, Appendix L).

slope

I have standardized (centered and scaled) the explanatory variables; centering improves
mixing and clarifies interpretation, while scaling allows the relative impact of variables within
a species to be assessed. When comparing between species, I have returned the parameter
estimates to their original scale but left them centered. See Appendix K for algebra regarding
standardizing and rescaling these parameter estimates.

To fit the state-space models in a Bayesian framework, I used Markov chain Monte Carlo
(MCMC) estimation techniques in OpenBUGS (Lunn et al. 2009), run through R2WinBUGS
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(Sturtz et al. 2005) in R (R Development Core Team 2009), and “coda” (Plummer et al. 2010)
to calculate credible intervals. I chose uninformative priors: the random effect standard
deviation ¢, was uniform from zero to 100, and the priors for the 3*s were normal with
precision 107, For survival of an average tree expit(b), care in parameterization of priors
was required (‘expit’ is the inverse logit). Due to the nonlinearity of the logit, a prior which
is flat on the scale of the linear predictors (e.g. b) is U-shaped on the probability scale
(expit(b)). Because tree survival is high, the estimated mean survival can be quite close to
one, where the nonlinearity has the strongest effect (Van Dongen 2006). Therefore, as in
Buoro et al. (2012), I used a uniform distribution from zero to one for expit(b) rather than
a normal distribution for b.

Model Selection

Due to the lengthy run times for each model and the number of candidate variables, it
was not feasible to fit all possible models, requiring a stepwise approach. Backward step-
wise selection from full models was also not feasible due to poor mixing and computational
limitations. Therefore, I took a forward stepwise selection approach to navigating possible
models. Although forward selection has limitations in some situations, it has been shown to
have similar predictive accuracy to other model selection strategies (Murtaugh 2009).

Choosing a criterion to rank candidate variables to add to the model in my selection
process is not straightforward in a Bayesian framework, and the common choice of the
Deviance Information Criterion (DIC) is controversial for models like these with many latent
states and random effects (Celeux et al. 2006, Millar 2009, Kery and Schaub 2012, Appendix
M). Therefore I referred directly to posterior densities for a criterion to use in selecting the
variable *: at each step, I add the variable whose 3* posterior is most separated from zero.
I represent ‘separation from zero’ using a tail probability analogous to a two-tailed p-value.
This metric is justified because it will be similar to a p-value, which, when comparing single
variable additions, will be ranked in the same order as AIC differences (Murtaugh 2014,
Appendix M). Tail probability ties are broken by choosing the variable with the larger mean
effect size.

I proceeded using this tail probability criterion by fitting separate models with each
individual variable by itself, choosing the variable with the smallest tail probability, and
then fitting another round of models with that variable and each of the others. To determine
when to stop adding variables, I used a traditional 5% threshold, but typically also went one
step beyond that and checked one additional variable (and the result usually agreed with the
16% threshold more typical of AIC reasoning in these cases, de Valpine 2014). I emphasize
that I am not engaged in significance testing, especially conditioned on model selection, but
rather that I am approximating the AIC ordering from Bayesian posteriors for single-variable
additions. I also compared the results with DIC for the models where DIC should be least
problematic, and found that the final model in that case did have the lowest DIC among
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all the models T calculated as part of the forward selection (Appendix M). To select the
plot random effect standard deviation, I used slightly different criteria and model selection
strategies (Appendix N).

I fitted models for incense-cedar, Douglas-fir, white fir, ponderosa pine, sugar pine, black
oak, and tanoak, as well as for all species aggregated together. I referred to intermediate
models in the model selection procedure to investigate confounding between secular trends
and stand development (Question 1). I used the results of the model selection procedure to
compare between species-aggregated results and individual-species results, and to compare
among individual-species results (Question 2). In order to address heterogeneity within each
species (Question 3), I transformed models back to the probability scale to examine the range
of survival probabilities for trees under different conditions. I also compared a simple model
with only the survival probability for an average tree expit(b) to the more complex models
created during model selection (which include random plot effects and other variables). (See
Appendix L.) However, differences between expit(b) in a simple state-space model and the
same parameter in the complex models may be partly attributable to the nonlinearity of
the logit and Jensen’s inequality. I therefore weight comparisons from within the complex
models more heavily in my discussion than comparisons between simple models and complex
models.

2.2 Results

Question 1: Secular Time Trends and Stand Development

For the species-aggregated result, including plot basal area in the model renders the time
trend non-significant: the posterior heavily overlaps zero (Figure 2.1a), and the model selec-
tion procedure does not select this variable once plot basal area is included. Ponderosa pine
does not initially show a time trend, but when tree size and topographic slope are included
in the model, the time trend emerges and is selected for the best model for this species
(Figure 2.1b). Adding basal area to the best model for ponderosa pine renders the trend not
significant, possibly due to collinearity. In the case of incense-cedar, the time trend becomes
less significant with the addition of size and then barely not significant when basal area is
added (i.e. using the AIC-like threshold, the time trend would be retained, Figure 2.1c). For
sugar pine (Figure 2.1d), the time trend is significant when initially added during the model
selection procedure, and remains separated from zero when tree size and plot basal area are
included in later models.
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Figure 2.1: Parameter posteriors for the time trend in different models for all species ag-
gregated together (a), ponderosa pine (b), incense-cedar (c), and sugar pine (d). Solid lines
indicate models with only a time trend, while dashed lines represent models with tree size
(including the quadratic term if selected for that species) along with the time trend, and dot-
ted lines indicate models with size, basal area, and the time trend. For ponderosa pine, the
topographic slope is also included in the latter two models as it was consistently important
in the model selection.
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Question 2: Species-Aggregated Results Versus Species-Specific
Results, and Differences Between Species-Specific Results

For the most part, species-aggregated results do not mirror species-specific results (Table
2.1). The only variable which is consistent between species-aggregated models and individual-
species models is the increasing linear size effect. Species-aggregated models do pick up on the
importance of the quadratic size effect and the effect of plot basal area, but these effects are
not consistent across all individual-species models. The species-aggregated models entirely
miss the importance of other variables to individual species (e.g. elevation for tanoak).
In some cases, species-aggregated parameter estimates appear to be an average of species-

’ ‘ ﬁDBH ‘ BDBHQ ‘ 5ba ‘ 5insol Belev leope ﬁt ‘ Bdef ‘
| AllSpecies | 1+ [ 4 | { | | | || |
Incense-cedar T [}
White Fir T 1 i)
Douglas-fir T
Ponderosa Pine T (X i) 4
Sugar Pine T fr
Black Oak M (2
Tanoak T I I

Table 2.1: Summary of model selection results for each parameter and species. An arrow
indicates the sign of the coefficient 8 for variable k ({} - positive coefficient; | - negative
coefficient).

specific results (Figure 2.2a and 2.2c), but even here the species-aggregated result misses
important details, e.g. incense-cedar’s plot basal area effect is very different from the species-
aggregated results (Figure 2.2b). All species individually show increased survival for larger
trees, and none of them shows an effect of annual water deficit (Table 2.1, Figure 2.2). For
all other variables, however, each species has a different response (Table 2.1, Figure 2.3,
Appendix O). For several variables, only one species responds (i.e. insolation, elevation,
plot basal area), and for other variables, species have opposite responses (i.e. quadratic size,
topographic slope, secular time trend).

Question 3: Heterogeneity Within a Species

A single annual survival probability does not represent the heterogeneous effects of tree size
and other variables on survival (Figure 2.3). For example, in ponderosa pine, the single
estimate of survival probability expit(b) (98.4% from a model without plot and explanatory
variables; 99.3% for the final model; see Table 1.2 in Appendix L) does not reflect the range
of survival shown in Figure 2.3: from 65.4% for small trees (1.52 cm DBH) on shallow slopes
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Figure 2.2: Rescaled parameter posteriors from similar models for all species. These models
include a random plot effect, size (linear and quadratic), and basal area. For tanoak, basal
area and size posteriors are from separate models (tanoak’s expit(b) in Figure 2.2a is from
the basal area model). Posteriors have been rescaled in order to compare estimates between
species. (a) Survival of an average tree in an average plot (expit(b)) for each species. (b)-(d)
Estimates of the effects of basal area (b), linear size term (c), and quadratic size term (d).
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Figure 2.3: Size relationships with survival probability for four species: white fir (a), incense-
cedar (b), ponderosa pine (c), tanoak (d). Black and dark gray lines show the effects of
additional variables for each species. Black lines are two standard deviations below the
mean value of the covariate, and dark gray are two standard deviations above. Dashed lines
indicate 95% credible intervals due to uncertainty in other parameters. Data are shown as
light gray tick-marks with live trees at the top of the plot and dead trees at the bottom. The
parameter estimates in these figures are from ‘full models’ including all the forward-selected
variables, as indicated in Table 2.1 (see Appendix O for other species and variables).
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t0 99.8% for medium-sized trees (71.09 cm DBH) on steep slopes. Other species show similar
heterogeneity due to size and other variables (Figure 2.3, Appendix O).

2.3 Discussion

The answers to my questions point to a complex story, demonstrating the need for a rich
set of species-specific models which incorporate stand development variables and tree size as
well as climate variables, time trends, and topographic variables. Species differences emerge
from these complex models, as well as intraspecific heterogeneity and temporal changes in
survival.

Species Differences in Survival

Even in a second-growth forest, there is a diversity of responses to different factors controlling
survival (Figures 2.2 and 2.3). Some of these patterns are surprising while others are not.

Of all my explanatory variables, tree size has the most consistent impact on survival, as
in Hurst et al. (2011), but each species has a different relationship with size (Lines et al.
2010). Unsurprisingly, all species, both individually and aggregated, show higher survival
for larger trees, but only some species show a decline in the largest individuals (black oak
and ponderosa pine, Table 2.1 and Figure 2.2), as seen in other studies in the region (Dolanc
et al. 2013). Tanoak’s negative response to elevation is consistent with its current observed
range limits: at BFRS, tanoak is at the high-elevation limit of its range (Burns and Honkala
1990).

Species’ responses to plot basal area, on the other hand, show some surprising relation-
ships. Plot basal area is increasing at BFRS (Appendix I), and reflects increasing competition
for light, which in theory should affect all of the canopy species. Taking shade intoler-
ance as an indication of competitive sensitivity, based on Niinemets and Valladares (2006),
I expect the following ranking from least shade-tolerant (competitively weakest) to most
shade-tolerant (competitively strongest): black oak, ponderosa pine, sugar pine, Douglas-fir,
incense-cedar, tanoak, and white fir. Directly comparing basal area effects for all species
(in a model with size and basal area, regardless of the best model, Figure 2.2b), black oak
does show a relatively larger negative effect, Douglas-fir an intermediate effect, and white
fir the smallest negative effect, as in Niinemets and Valladares (2006). Surprisingly, how-
ever, incense-cedar shows the largest negative effect, while tanoak is unusually intolerant of
greater basal area and ponderosa pine and sugar pine are unusually tolerant relative to the
other species. Note that the strong impact of basal area on incense-cedar would not have
been apparent if I had limited myself to species-aggregated models, highlighting the impor-
tance of the species-specific models. Looking only at the best models, only incense-cedar
selects the basal area effect. 1 have no explanation for this, though I note that the basal area
effect for Douglas-fir would have been selected using AIC-like reasoning (de Valpine 2014).
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From the two species’ best models, incense-cedar is more negatively affected than Douglas-fir
(Appendix M), reversed from what Niinemets and Valladares (2006) would predict.

Heterogeneity and Susceptible Subsets

At BFRS, mortality rates for an average tree (the complement of annual survival probability,
or 1 —¢ = 1— (expit(h))) from simple models (1.21% — 2.3%; see Tables L.1 and L.2
in Appendix L) are similar to reports of background mortality rates in many forests (e.g.
Canadian boreal forests: 1.4% per yr from Bond-Lamberty et al. 2014, 1-5% per yr from Luo
and Chen 2013, 1.9-4.9% per yr from Peng et al. 2011; Russian deciduous forests: 1-3% per
yr from Igor et al. 2009; New Zealand Nothofagus forests: 1.8-2.2% per yr from Hurst et al.
2011).

However, the answers to my questions demonstrate the need for a rich set of species-
specific models which incorporate a diversity of factors. For each species, trees under various
conditions are more likely to die than others, e.g. those in low-survival plots, of small size
(Igor et al. 2009), in high basal area environments (Das et al. 2007), or at the edge of their
range (e.g. tanoak at high elevation). The concept of a single annual survival probability
becomes less meaningful for a heterogeneous population: a ‘mean’ annual survival probability
may not represent these subsets of the population, whose differences in survival are exposed
in a more complex model. The complex model including explanatory variables and plot
effects is also valuable not only in providing information about the direction and magnitude
of those components, but also in providing for better prediction and improving estimates of
secular trends.

Even accounting for susceptibility via size or plot basal area does not accommodate all the
heterogeneity in some species. Even after including these variables, incense-cedar, Douglas-
fir, and ponderosa pine still have plot random effects which are important (Appendix N). In
particular, for incense-cedar, which has the strongest plot basal area effect, the species’ plot
random effect has the largest standard deviation, potentially indicating spatial dynamics
below the plot level, perhaps at the level of a neighborhood (Das et al. 2008).

I have modeled the population-level factors affecting tree survival through individual-
based measurements. Individual heterogeneity strongly affects survival processes as lower-
quality individuals are removed early on (Vaupel and Yashin 1985), so simple cohort analysis
may be misleading (Appendix L). Though I do not model an individual tree quality random
effect (Knape et al. 2011), I do include a tree-level variable (size) in my model (Clark et al.
2010). In addition, I have incorporated new individuals throughout the inventory period, so
if the quality of the new recruits is well distributed, I may avoid this problem to some degree.
Regardless of the source of individual variation, the importance of susceptible individuals may
need to be accounted for in further applications of these results, e.g. structured population
models, where individual quality can have a strong impact on population-level results (Ellner
and Rees 2006).
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Time Trends and Climate Effects

The secular time trend for the species-aggregated models is elusive, while for some individual
species the trend is robust (Figure 2.1). My species-aggregated models are most similar to
the existing models of survival for this ecosystem (van Mantgem and Stephenson 2007). This
failure to ultimately find a time trend at the community level implies that incorporating stand
development in a second-growth forest accounts for decreasing survival at the community
level (Thorpe and Daniels 2012).

Where a secular time trend was selected for individual species, however, it does not always
agree with existing thinking about the roles of these species in forest community dynamics.
In these forests, a century of fire exclusion has resulted in increasing abundances of shade-
tolerant fir and cedar at the expense of shade-intolerant pines, which require large canopy
gaps such as those created by flare-ups during mixed-severity fires in order to regenerate
successfully (York et al. 2013). Stands are increasingly characterized by larger numbers of
small diameter trees (primarily white fir, Douglas-fir, and incense-cedar), increased canopy
cover, and decreased gap size and gap abundance (Minnich et al. 1995). These structural
qualities provide a positive feedback for increasing fir survival and decreasing pine survival.
The models do indicate that ponderosa pine’s survival is decreasing, but sugar pine shows
an increase in survival. This unexpected result is particularly intriguing given that white
pine blister rust (Cronartium ribicola) has been found in the Sierra Nevada.

Though there is no sign of an annual water deficit effect at this site (unlike van Mantgem
and Stephenson 2007), in some ways this is unsurprising, as BFRS’s weather records do not
yet show a strong climate trend (Appendix I), and drought stress can take long time periods
to play out (Bond-Lamberty et al. 2014).

2.4 Conclusions

I have shown that survival processes in second-growth temperate forests of the arid West
are complex. Heterogeneity appears at every level, as species-specific stories differ from each
other and from species-aggregated stories, and susceptible subsets emerge within species.
Decreases in survival do occur for some species, but are not as widespread as other studies
in old-growth Sierran forests or Canadian boreal forests indicate, and there is no evidence
in these models of annual water deficit as a factor in tree survival at BFRS. The best way
to assess the true biological significance of species differences in survival would be a full
population model for each species (Zuidema et al. 2010). These models do not estimate
recruitment rates (Suarez and Kitzberger 2008), and without modeling recruitment and
growth as well, I cannot conclude anything at the population level based on these estimates
of survival. Ultimately full population dynamics will determine how changes in survival
will affect long-term community dynamics. Finally, this study is observational rather than
experimental. As with many ecoinformatics studies, my results are clues pointing to possible
relationships which could be more systematically examined.
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Intermission 2

I now broaden my view from individual-based measurements to mapping tree communi-
ties using remote sensing. Rather than aggregating individual measurements of trees up to
the species and then the community level, I start from a top-down approach of using high-
spatial-resolution remotely sensed imagery to investigate topographic drivers of cover change.
Mapping and statistical analysis are complementary methods, and I demonstrate their syn-
thesis in Chapter 3. Here again, the theme of long-term data with challenging characteristics
emerges, now with historical aerial imagery. In this study of woodland-to-forest transition
in the North Coast, the story shifts from the heterogeneity between species to heterogeneity
between sites. Finally, I explicitly focus on spatial scale in an effort to understand whether
woodland-to-forest transitions are driven by topographic proxies for moisture more at the
tree neighborhood level or the stand level. Though the ecosystem is different, the questions
regarding the use of long-term data to guide current management are similar.
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Chapter 3

Examining Topographic Drivers of
Woody Cover Change in a
Woodland-Forest Transition Zone
Using Historical Aerial Imagery and

Generalized Additive Models

In California, the shift from management by native peoples using frequent, low-intensity fire
to a policy of fire exclusion has led to increases in coniferous forests at the expense of oak
woodlands as shade-tolerant conifers recruit under oak canopies and eventually replace them
(Cocking et al. 2012). Oak woodlands are widely valued for their many amenities (Standiford
and Scott 2001), cultural values (Starrs 2001), support of rural livelihoods and lifestyles
(Huntsinger et al. 2010), and ecological functions (Roche et al. 2012, Huntsinger and Oveido
2014), and already face many threats (e.g. the spread of introduced pathogen Phytophthera
ramorum, Meentemeyer et al. 2011; climate change and reduced habitat suitability, Kueppers
et al. 2005, mortality from introduced insects such as gold-spotted oak borer, Coleman et al.
2014; conversion to agriculture or residential land use, Huntsinger et al. 2010). Therefore,
understanding the extent of encroachment by conifers into woodlands is an urgent issue.
Unlike many of these other threats, conversion from oak woodland to coniferous forest is a
slow process: conifer replacement of oaks can take 60-100 years (Cocking et al. 2014). Long-
term information, in particular for sites with transitional woodland-forest areas, is essential
in evaluating the extent of this problem.

One potential source of long-term data on forest cover is historical aerial imagery. This
kind of imagery, typically dating back to the 1930s and 1940s, is available throughout North
America (Morgan and Gergel 2013). Though the imagery can be difficult to find and often
requires orthorectification and georegistration, classification of high-spatial-resolution black-
and-white images has become more common with the commercial availability of Object-
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Based Image Analysis (OBIA) software. OBIA allows analysts to use textural and contextual
information in classifying single-band images, and the use of OBIA with historical aerial
photos has expanded in the last 10 years (Laliberte et al. 2004, Marignani et al. 2008,
Pringle et al. 2009, Allard et al. 2012, Martha et al. 2012). Generally speaking, most of the
OBIA change detection literature is focused on innovations in mapping techniques and their
application to many different systems (Desclée et al. 2006, Stow et al. 2008, Conchedda et al.
2008, de Chant and Kelly 2009, Dronova et al. 2011).

The goal, however, is not just to map the change but to understand the drivers of the
mapped change, an interdisciplinary project involving both modeling and historical ecology
highlighted by Gimmi and Bugmann (2013). Among studies using OBIA to classify historical
aerial imagery, only a few model the drivers of change (Platt and Schoennagel 2009, Cserhalmi
et al. 2011, Levick and Rogers 2011, Garbarino et al. 2013, Newman et al. 2014a,b). These
studies encounter two fundamental issues with the data: 1) spatial autocorrelation and 2)
percent of any given cover type is bounded between 0 and 100 — not normally distributed.
The relative advantages and disadvantages inherent in different methods of accounting for
spatial autocorrelation in statistical models have been much debated recently (Miller et al.
2007, Dormann et al. 2007, Betts et al. 2009, Dormann 2009, Beale et al. 2010, Hawkins 2012,
Kuhn and Dormann 2012). In addition, the issue of transforming or otherwise appropriately
working with proportion data has been highlighted for a long time, with recent developments

favoring binomial or beta distributions with logit link functions (Warton and Hui 2011,
Schmid et al. 2013).

Studies modeling historical change have used various simplifications and other strategies
to account for these problems. Levick and Rogers (2011) broke up the response variable into
categories and used a Canonical Correspondence Analysis in order to model the bounded
variable (percent of a certain class) without dealing with its non-normal distribution. Platt
and Schoennagel (2009) broke up predictor variables into categories to capture flexible rela-
tionships using ANOVAs, but this strategy ignores the inherently ranked nature of categories
created from continuous variables. And while Cserhalmi et al. (2011) mention regressions
without addressing autocorrelation, Newman et al. (2014a,b) resample their data to avoid
it, using only a fraction of the area they have classified. These statistical challenges (auto-
correlation and non-normality of proportion data) can be better addressed using appropriate
statistical models without simplification or data reduction in order to investigate drivers of
cover change.

In Humboldt County, California, Douglas-fir (Pseudotsuga menziesii) is encroaching into
oak woodlands composed primarily of California black oak (Quercus kellogii) and Oregon
white oak (Quercus garryana). Both oak species, and Oregon white oak in particular, are
drought-tolerant and able to out-compete Douglas-fir in hotter, drier locations (Burns and
Honkala 1990, Niinemets and Valladares 2006); therefore one expects moisture availability
to strongly control the progress of encroachment. Historical soil moisture measurements are
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not available, however, so topographic proxies can represent moisture controls on woodland-
to-forest conversion. Topographic variables (including slope, aspect, elevation, curvature,
radiation, and topographic wetness index) have long been used to predict vegetation char-
acteristics (Franklin 1995, Deng et al. 2007, Jenkins and Coops 2011), and are unlikely to
have changed in the last 60 years.

Though Douglas-fir forest is replacing oak woodland (Cocking et al. 2012), and is likely
to do so more effectively in moist areas, identifying species from historical imagery proves
difficult and mapping is restricted to a more general assessment of changes in woody versus
herbaceous cover (Eitzel et al. 2014). Change in woody cover in these transitional sites,
however, is largely due to conversion from woodland to forest, with some systematic increase
in woody cover for all species and forest types (Schriver and Sherriff 2014). If encroachment
and woodland-to-forest conversion has occurred since the 1940s, woody cover is expected to
increase in wetter parts of the site. Models demonstrating little effect of moisture-related
topographic variables would imply that woody cover increase is consistent across the site
and that encroachment is not the most important process in woody cover change.

One final important complicating factor remains: the spatial scale of the process may not
match the spatial scale of the data. Different ecological processes may act at different spatial
scales and different hierarchical organization levels (e.g. individual tree, neighborhood, stand,
site, landscape), and these hierarchical levels may not match spatial scales; additionally,
thresholds may appear where emergent properties arise (Bissonette 1997). The data one has
available are often at an arbitrary resolution that is more constrained by data acquisition
than the process of interest (Deng et al. 2007). Recent calls for forest management to address
multiple scales use simulation as a way to study changing forest responses at different scales
(Seidl et al. 2013). Empirical studies on scaling relationships for vegetation patterns so far
have only correlated topographic variables with vegetation indices at a range of spatial scales
rather than testing multiple variables at once while incorporating spatial autocorrelation
(Deng et al. 2007).

For the process of interest, conifer encroachment, it would be ideal to explore the poten-
tial for detecting increased woody cover characteristic of woodland-to-forest transition at a
variety of scales, from the tree neighborhood to the stand level. Das et al. (2011) calculated
a tree’s neighborhood, “an area big enough to allow at least two of the largest trees to in-
teract,” (p. 1204) based on allometric equations for tree species in the nearby Sierra Nevada
mixed-conifer forest. They found that a 9-m radius was a reasonable area to “capture local
processes affecting trees both large and small” (p. 1204). As Douglas-fir is a major com-
ponent in the densest parts of these woodland-to-forest transitional ecosystems, as well as
a component in Sierran forests (Burns and Honkala 1990), I use 18 m as a minimum linear
distance to include neighborhood dynamics. Oak species are likely to have larger and more
variable crown diameters as well as wider spacing (Burns and Honkala 1990), so scales up to
40 or 50 m may be more appropriate as neighborhoods for the unencroached areas of these
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Figure 3.1: Diagram of scaling effects. Dashed lines show confidence intervals, solid dots are
significant, while hollow dots are not significant. Some variables may be important for both
scales, while others are important for neither; and still others might indicate a threshold
where the variable is important at the stand scale but not the neighborhood scale.

systems. A single stand in these systems is likely to have a scale 50-100 m across (Lenya
Quinn-Davidson, personal communication).

The process of woodland-to-forest conversion is happening at the neighborhood scale
where individual Douglas-fir trees are out-competing individual oak trees, while overall tree
response to moisture in terms of growth following the removal of fire is happening at the
stand scale. Are there differences in the effects of moisture between neighborhood scales
(20-50 m) and stand scales (50-100 m)? Are there stronger responses at the finer scales
(where neighborhood dynamics actually play out) or at stand scale? Is there a threshold
above or below which topographic variables representing moisture become more important
in predicting woody cover (Figure 3.1), indicating an emergent property at neighborhood or
stand scale? Do stand-scale and larger topographic variables miss enough variability not to
show any effect at all?

In this study, I use high-spatial-resolution images to map 1948 (historical) and 2009 (re-
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cent) woody cover at four woodland-forest transitional sites in Humboldt County. I model
recent cover as a function of topographic variables and historical cover, addressing the statis-
tical challenges outlined above by 1) choosing an appropriate statistical distribution (quasi-
binomial) and link function (logit) to model non-normal data, 2) making use of a Generalized
Additive Model (GAM) with a smoothing term on the spatial coordinates and an adequate
number of spline knots to account for spatial autocorrelation, and 3) including the historical
woody cover in an appropriately transformed way. I then answer the following questions: 1)
Does woody cover increase more at wetter sites? 2) Do topographic variables representing
greater moisture availability demonstrate significant and positive relationships with recent
woody cover, after controlling for historical woody cover? 3) Are these relationships stronger
at the neighborhood (20-40 m) scale or at the stand (50-100m) scale and is a threshold effect
apparent between the two scales?

3.1 Methods

Study Areas

The North Coast of California contains a variety of ecosystem types, including redwood for-
est, coastal sage scrub, oak woodland, and prairie. The climate is Mediterranean, with cool,
wet winters and hot, dry summers. Oak woodland at these sites in Humboldt County is char-
acterized by California black oak and Oregon white oak with an understory predominantly
composed of grasses and forbs. The transition between woodland (defined as more than
30 percent cover with 150-300 trees/ha, Agee 1993) and closed canopy forest (greater than
300 trees/ha, Agee 1993) occurs when evergreen species, typically Douglas-fir, encroach into
woodland over time, forming a dense, shaded forest with little to no herbaceous understory.

These sites were selected to reflect different latitudes throughout northern Humboldt
County, as well as several coast-to-interior locations for oak woodlands (Figure 3.2. They
have considerable Douglas-fir encroachment, but also contain portions of intact oak woodland
with minimal or no conifer in the canopy. Though parts of these sites have been harvested,
areas were carefully selected within them that have no history of tree harvest since the
1940s. When drawing polygons for analysis, I avoided locations with skid trails or evidence
of clearcuts. The areas defined by these polygons also have no known fires since the 40s
(Schriver and Sherriff 2014). Therefore loss of woody cover can be assumed to result from
disease or insect damage, and gain in woody cover from growth of established individuals and
recruitment of some species into gaps. I further adjusted the polygons to remove artifacts
such as marks on the historical images. Of the four sites, laqua Buttes (IB), Bald Hills (BH),
Willow Creek (WC), and Blake Mountain (BM), Iaqua Buttes and Bald Hills are privately
owned, while Blake Mountain and Willow Creek are found within Six Rivers National Forest
(managed by the US Forest Service). Because I have selected areas where no trees have been
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Figure 3.2: Geographical context. The four sites (Iaqua Buttes — IB; Bald Hills — BH; Blake
Mountain — BM; Willow Creek — WC) are located in upper Humboldt County in California,
USA.

cut and no known fires have occurred, land ownership is not expected to affect encroachment
and increase in woody cover.

The majority of these sites are south-facing and locally relatively dry, because they were
selected to include oak woodlands and oaks are drought tolerant (Niinemets and Valladares
2006). For Taqua Buttes, Bald Hills, and Blake Mountain, conifers are present at lower
elevations in moist valleys and tend to encroach upwards (Lenya Quinn-Davidson, personal
communication). At Willow Creek, the conifers are encroaching from above the oaks, coming
over a ridgeline. laqua Buttes and Bald Hills are closer to the coast and experience frequent
foggy conditions, while Willow Creek and Blake Mountain are further inland with hotter,
drier conditions overall. Given that Douglas-fir encroachment is driving the majority of
woody cover increases in this system, cover is expected to increase more at laqua Buttes and
Bald Hills, and topographic variables representing greater moisture are expected to have a
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positive impact. Elevation is also expected to be important as it represents the location of
the coniferous forest at each site: low elevations for laqua Buttes, Bald Hills, and Blake
Mountain, and high elevations for Willow Creek.

Imagery and Data Sources

Historical images were flown for the USDA Forest Service in 1948. The black and white
(panchromatic) image frames were scanned by Humboldt County’s California Geological
Survey at 800 dots per inch, which after orthorectification resulted in one meter by one
meter square pixels. For the analysis, I use frames CDF2-17-007 (Taqua Buttes), CDF2-
15-093 (Blake Mountain), CDF2-15-153 (Willow Creek), and CDF2-19-196 (Bald Hills).
For image pre-processing, I also used neighboring frames in each flightline, though these
additional images were not included in this analysis. Metadata was available for these flights
at the UC Santa Barbara Map Library.!

Recent images are from the 2009 survey of the US Department of Agriculture’s National
Agricultural Imagery Program (NAIP), as downloaded and tiled by Cal-Atlas.? NAIP is
high-spatial-resolution (1-m x 1-m pixels) and has four bands: red (~ 635 nm), green (~ 560
nm), blue (~ 460 nm), and near infra-red (~ 860 nm). NAIP imagery is already orthorectified
and projected to UTM Zone 10N.

The digital elevation model (DEM) is from USGS’ National Elevation Dataset, as down-
loaded and tiled by Cal-Atlas.®. I projected the DEM to UTM zone 10N coordinates, and
used it both for orthorectification and for calculating topographic predictor variables. The
topographic variables in the statistical models are: 1) elevation from the DEM in meters,
2) topographic slope in degrees (maximum change in elevation between a cell and any of its
neighboring cells), 3) profile curvature (curvature in the direction of steepest descent/ascent),
4) ‘northness,” the cosine of aspect (measured from north, with ‘1’ indicating north and ‘-1’
indicating south, 5) ‘eastness,” the sine of aspect (‘1” indicating east and ‘-1’ indicating west)
as used in Levick and Rogers (2011) and 6) topographic wetness index (sometimes referred
to as topographic moisture index or compound topographic index). Topographic wetness
index is defined as In(a/tan(B)). « is the catchment area collecting to that pixel (offset
by one in order to avoid taking the log of zero), calculated from a watershed delineation
tool and divided by the cell width; £ is the slope in degrees. Topographic wetness index
has been shown to explain variation in vegetation metrics (Jenkins and Coops 2011, Wang
et al. 2013). Raster operations and calculations were conducted in ArcGIS 10.2 (ESRI 2013).
Topographic predictor variables were standardized (centered and scaled by their respective
standard deviations) within each site-scale combination in order to compare their relative
impact on woody cover percentage. Based on the hypothesis that greater moisture enables

thttp://mil.library.ucsb.edu/apcatalog/report /report.php?filed_by=CDF2
Zhttp:/ /www.atlas.ca.gov/download.html#/casil /imageryBaseMapsLandCover /imagery /naip
3http://www.atlas.ca.gov/download.html# /casil /elevation
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conifer encroachment and woodland-to-forest transition, I predict that northness will have
a positive effect on woody cover, eastness will have a small but positive effect (as after-
noon sun on west-facing slopes is more drying than morning sun on eastern slopes, Deng
et al. 2009), topographic moisture index will have a positive effect, steeper slopes will have
a negative effect, and positive curvature (defined in ArcGIS as convex upward) will have a
negative effect on current cover. I predict that historical cover will have a positive effect,
and elevation will have a positive effect for laqua Buttes, Blake Mountain, and Bald Hills,
and a negative effect for Willow Creek (see “site description” section). I predict that these
relationships should be stronger at the neighborhood scales (20-40 m), as the topographic
predictor variables lose their representation of the range and variability of moisture condi-
tions as they are aggregated to larger cell sizes. Finally, I expect these relationships to be
more apparent at the wetter sites (Iaqua Buttes and Bald Hills), as it has been shown that in
drier years topography matters less for vegetation (Dorman et al. 2013); I extend this logic
to drier/wetter locations.

Pre-processing of Imagery

I used Leica Photogrammetry Suite (Intergraph 2012) to orthorectify and georegister the
imagery using the 2009 NAIP imagery as a horizontal reference and the 10-m DEM as a
vertical reference. I collected 50-150 ground control points for each site and used cubic
convolution resampling for the orthorectification. I used ArcGIS to mask and mosaic the
historical images to each site’s polygon. I used package “glcm” (Zvoleff 2014) in R (R
Development Core Team 2009) to calculate six different per-pixel gray-level co-occurrence
matrix (GLCM) textures with a 7x7 moving window (Haralick et al. 1973). I calculated
mean, variance, contrast, dissimilarity, entropy, and second moment. I chose a 7x7 window
because it produced a visually smoother result, which was better for later segmentation and
classification. For the 2009 NAIP imagery, I calculated a per-pixel Normalized Difference
Vegetation Index (NDVI) layer using ArcGIS’s Raster Calculator to use in segmentation.

Segmentation and Classification

I then used eCognition Developer 8 (Trimble 2013) to segment and classify each image for
each site and year (total of eight images). I used a simple classification scheme at two scales.
Because I am interested in the transition from open woodland to closed-canopy forest, I first
classified land cover as ‘forest’ (characterized by dominance of woody species) or ‘prairie’
(characterized by open grassland area with very little tree canopy cover), and masked out
‘prairie’ according to the 2009 forest-prairie edge. There is little recruitment of woody species
in the middle of the prairie, and any advancement of woody cover into the prairie at the forest
edge between 1948 and 2009 is captured by using the 2009 image as the mask. Following this
classification, within the ‘forest’ type, I classify areas as ‘woody’ (oak, Douglas-fir, shrubs,
or other trees) and ‘herbaceous’ (open clearings). I proceed with analysis of ‘woody’ versus
‘herbaceous’ only within the 2009 ‘forest’ area.
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For the 2009 NAIP imagery, I used all four bands (RGB and IR) and per-pixel NDVI, and
for historical imagery I used the image itself and the six GLCM texture measures. I first used
multiresolution segmentation with a large scale parameter to mask forest and prairie from
each other, and then multi-threshold segmentation on various bands to classify within those
areas (Gértner et al. 2014). Using ArcGIS’ ‘classify’ tool for raster symbology, I examined
the histogram of values for the band in question for breakpoints in order to choose thresholds.
Different bands were helpful for segmenting and classifying different images. For 2009 NAIP
images, NDVI as well as mean values of different bands (e.g. green, infra-red), or overall
image brightness were often helpful (and for one site, Bald Hills, per-pixel texture variables
calculated for the red band in addition to the image bands and NDVI were needed in order
to discriminate between classes); for historical imagery the image brightness value worked
well, in addition to contrast, homogeneity, dissimilarity and second moment.

Accuracy Assessment

Ultimately I conduct further analysis of woody cover change on only the forest region, due to
the difficulty of classifying woody vs. herbaceous cover in the prairie area for the historical
imagery. [ also restrict the analysis to areas with no more than 5 m of offset in registra-
tion between the recent and historical images. This resulted in areas of 52 hectares (laqua
Buttes), 63 hectares (Willow Creek), 71 hectares (Bald Hills), and 77 hectares (Blake Moun-
tain). Within these regions, I assessed classification accuracy for each image by selecting 100
random points using ArcGIS’s random point generating utility and visually assessing the
class at that point. Because herbaceous cover was much less common in the forest, I used
a proportionally stratified sampling strategy but ensured that at least 10 points of classified
herbaceous cover were assessed for accuracy. Like most historical image classification stud-
ies, I lacked alternative imagery to validate the historical imagery, nor did I have alternative
imagery to validate the recent high-resolution imagery, and thus made a determination by
eye of actual class with which to compare the assigned class (Platt and Schoennagel 2009,
Cserhalmi et al. 2011, Levick and Rogers 2011). In a few cases random points fell into pixels
that were obviously mixed between herbaceous and woody cover; these were thrown out due
to the impossibility of assigning a class to the point (6 cases out of 800 points). Field data to
validate the historical imagery was impossible to obtain, and obtaining field data to validate
the recent imagery was not feasible as part of this project. I considered accuracy assessment
based on objects, but because multi-threshold segmentation results in few very large objects
(unlike multi-resolution segmentation which results in fairly similarly-sized objects due to
the constraint of the scale parameter), there were not appropriate objects to sample from
and I determined that a point-based accuracy assessment was best (Miillerova et al. 2013). I
report standard accuracies and kappa values to enable comparison with other studies (Jensen
2005, Miillerova et al. 2013).
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Statistical Models

Spatial autocorrelation is incorporated in the models using a smoothing function of geograph-
ical coordinates (UTM Northing and Easting) in a Generalized Additive Model (GAM) in
the R package “‘mgcv” (Mixed GAM Computation Vehicle; Wood 2006). For each site, I
aggregated the data at the raster level to cell sizes of 20, 30, 40, 50, 60, 70, 80, 90 and 100 m
and fit models for each cell size (total of 40 models). Note that I aggregate the topographic
variables at those scales from the 10-m DEM using the ‘average’ method (rather than me-
dian) because it has been shown to have the most predictable statistical properties (Gotway
et al. 2002). The GAM is ideal for these data for two reasons: 1) a Markovian random field
(MRF) basis is available for the smoothing function, which is designed for use with polygons
with potentially irregular sizes (which some of the cells have after applying the forest-only
analysis mask); and 2) mgcv has extensions for non-normal response variables. The quasi-
binomial family is a good choice, as it allows for overdispersion, which is appropriate here.
The response variable is then framed as a number of 1-m by 1-m cells within the 10-m by
10-m cell of the DEM which are classified as ‘woody cover’ as binomial successes, and those
classified as ‘herbaceous cover’ as binomial failures.

Though Dormann et al. (2007) reject the GAM as an adequate way to represent spatial
autocorrelation, they use the default knot basis dimension (k) of 10, which is likely not to
account for spatial autocorrelation in a dataset with small distances between points. Wood
provides a function in mgcv called “gam.check” which gives a p-value for a test of whether k
is large enough, and when tested with the dataset, gam.check indicated that a much higher
k was needed. Therefore, k was set at n/10 (where n is the number of records), the GAM
was fit with a smooth term for Northing and Easting, and the Moran test (package “spdep,”
Bivand 2013) was used to test for global autocorrelation in the model residuals. For those
sites and scales which indicated significant autocorrelation, the model was run again with
2n/10. 1 also tried a beta distribution as suggested by Schmid et al. (2013), but even at
higher k values the Moran test indicated significant autocorrelation for most cell sizes. A
thin plate regression spline basis, which is more typical of geographic modeling with GAMs
as they are rotationally invariant, produced no appreciable changes to parameter estimates
as compared with the MRF basis (see Figure P.1, Appendix P).

I fit models of recent woody cover as a function of topographic variables (elevation,
slope, profile curvature, topographic wetness index, and aspect), historical woody cover, and
smooth functions of Northing and Easting. Note that I logit-transformed historical woody
cover before standardizing it to ensure that its scale would correspond to the scale of the
response variable after applying the link function. I use a quasi-binomial “distribution” for
the proportion of image pixels y; within a DEM pixel ¢ which are classified as woody cover in
the 2009 NAIP image, with a link function logit(Ely;]) = n; and Var|y;] = ¢Ey;], where ¢ is
the dispersion parameter. The covariates z are linear predictors with regression coefficients
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f() is a smooth function using the MRF basis. I fit models at all scales for all four sites inde-
pendently, and corrected for multiple comparisons using the ‘false discovery rate’ method in
the R function “p.adjust” (which uses the method of Benjamini and Yekutieli 2001). Figure
3.3 graphically illustrates the workflow associated with the processing and classification of
the imagery, gridding at the scale of the DEM, scaling up, and fitting GAMs.

3.2 Results

Returning to my questions, I find that 1) woody cover does increase more for wetter sites
(Iaqua Buttes and Bald Hills); 2) across sites and scales, historical woody cover is consistently
significant and has a positive effect on recent woody cover, but results for each topographic
variable haphazardly agree or disagree with my hypotheses; and 3) there is no consistent
pattern between sites or scales for each topographic variable.

Preprocessing and Classification

Root mean square error (RMSE) for orthorectification in pixels was 8.24 for laqua Buttes,
4.16 for Bald Hills, 7.54 for Willow Creek, and 7.93 for Blake Mountain; recall that a pixel
in this case is 1 m square. Though Jensen (2005) suggests that RMSE should be less than
half a pixel, these RMSE values are within the limits of best practices according to the San
Francisco Estuary Institute’s historical ecology group which frequently orthorectifies histor-
ical imagery where topography makes exact registration difficult (Micha Solomon, personal
communication). I show laqua Buttes’ imagery and classifications as an example in Figure
3.4; see Appendix Q Figures Q.1 through Q.3 for the other three sites’ imagery and classifi-
cations. Note my avoidance of the skid trails at the southern end of the image when drawing
the polygon for Taqua Buttes. Accuracy for laqua Buttes in 1948 was 92% (with a kappa

statistic of 0.78); for the 2009 image, accuracy was 98% (kappa = 0.89). For Bald Hills,
the 1948 image had a classification accuracy of 96% (kappa = 0.86); for the 2009 image,
classification accuracy was 98% (kappa = 0.89). For Blake Mountain, the 1948 image had
a classification accuracy of 94% (kappa = 0.74); for the 2009 image, classification accuracy
was 99% (kappa = 0.95). For Willow Creek, the 1948 image had a classification accuracy
of 99% (kappa = 0.94); for the 2009 image, classification accuracy was 99% (kappa = 0.94).
See Appendix S Tables S.1 and S.2 for complete error matrices for each image. These ac-
curacies and kappa values are similar to other OBIA-based classifications of historical and
recent imagery (Marignani et al. 2008, van Lier et al. 2009, Cserhalmi et al. 2011, Allard
et al. 2012, Martha et al. 2012).
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Figure 3.3: Workflow. The digital elevation model (DEM) and the 2009 National Agricul-
tural Imagery Program (NAIP) image are used to orthorectify the historical image. The
DEM is also used to create topographic variables: slope, profile curvature, aspect (north-
ness/eastness), and topographic wetness index (TWI). The historical image and recent NAIP
image are then each individually classified using OBIA techniques in eCognition (with the
help of additional per-pixel layers, e.g. Normalized Difference Vegetation Index and texture
variables; see text for details). The accuracy is assessed, and then each classified image is
gridded based on the DEM’s cell size of 10 m; then aggregated up to 100 m grid cells. At each
scale and for each site, Generalized Additive Models are fit to explore the relationship be-
tween recent cover and previous cover, geographical coordinates, and topographic variables.
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Figure 3.4: Example imagery and classification for the laqua Buttes site.
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Basic Site Differences

In keeping with moisture limitation on Douglas-fir encroachment and woodland-forest con-
version, for the two wetter sites, woody cover increased the most: laqua Buttes increased
21.3 percentage points and Bald Hills it increased by 11.3 percentage points. Meanwhile,
woody cover at Willow Creek increased by 1.88 percentage points, and at Blake Mountain it
decreased by 1.71 percentage points. Willow Creek is nearly all woody cover even in 1948,
and therefore can only increase slightly. Blake Mountain has a large amount of woody cover
in 1948 and is a very dry site, with canyon live oak (Quercus chrysolepis) dominating rocky
slopes (Lenya Quinn-Davidson, personal communication), so some losses in woody cover over
time are possible as Douglas-fir encroachment and overall vegetation growth may be limited
by moisture.

For all models from 20 m to 100 m, the Moran test indicated no additional spatial autocor-
relation in the residuals, after increasing the number of spline knots when needed. Dispersion
as represented in the quasi-binomial’s scale parameter was always estimated much greater
than one, indicating that the quasi-binomial was a good choice for the data’s distribution
and a binomial without dispersion would not have been adequate. The scale parameter typ-
ically increased as the cell size went down, implying that the overdispersion becomes more
extreme for smaller cells. The spatial term (the smooth function of Northing/Fasting) was
significant for three quarters of the site-scale combinations. See Appendix T Table T.1 for
model diagnostics and results.

Sites and Topographic Variables

Figure 3.5 summarizes the changes in parameter estimates over different scales for each
covariate. Across sites and scales, historical woody cover is consistently significant and has
a positive effect on recent woody cover. For the topographic variables, no consistent pattern
between sites or scales emerges. See below for results of significant variables for each site.
Note that variables were standardized within each scale-site combination, and therefore the
parameter estimates are not strictly speaking comparable across scales or sites; however, the
relationships in Figure 3.5 do not change when using the non-standardized variables (see
Appendix R Figure R.1 for a version of Figure 3.5 with parameter estimates not scaled by
their standard deviations).

At Taqua Buttes, the effect of profile curvature becomes positive for stand scales (80-100
m), opposite of what was expected. Topographic wetness index is positive for a neighborhood
scale (40 m), and eastness is positive for stand scales (70 and 80 m), as predicted. Elevation
at neighborhood scale is opposite of what was expected at neighborhood scale (negative
effect), but positive at one of the stand scales (90 m); similarly, northness is positive for one
stand scale (70 m) and negative for one neighborhood scale (40 m) and two stand scales (90
and 100 m).
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Figure 3.5: Results of scaling from 20 m grid cells to 100 m grid cells. Each color represents
one site, with solid lines associated with parameter estimates and dashed lines showing 95%
confidence intervals; parameter estimates which are significant at p <0.05 have solid circles
and those that are not have open circles. Parameters are for standardized variables so the
magnitude of the effects can be directly compared.
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For Bald Hills, topographic slope is negative at both neighborhood and stand scales (30,
60, and 100 m), as expected. Northness is positive at the neighborhood scale (20 m), as
expected. Profile curvature is positive at a stand scale (30 m), opposite from my predictions.
Elevation is positive at neighborhood scale (30 m) and negative for two stand scales (70 and
100 m).

At Blake Mountain, topographic slope was positive at stand scale (60 through 90 m),
inconsistent with my hypothesis. No other variables had significant effects but historical
woody cover, which was positive at all scales as predicted.

At Willow Creek, elevation is positive at the stand scale (80 m), contrary to my hy-
pothesis, while topographic wetness index is positive at the neighborhood scale (20 m), as
predicted. Eastness is negative at stand scale (50 and 60 m), opposite of my hypothesis.

3.3 Discussion

I have tackled a number of technical problems in order to address the question of what to-
pographic drivers influence woody cover and at what scales these influences are important.
Generally, despite a messy dataset with many potential sources of error (including misreg-
istration, classification error, and error associated with statistical models), as expected, the
importance of controlling for historical woody cover is clear (Figure 3.5g). Otherwise, site-
and scale-specific stories dominate the parameter estimates of the topographic variables,
though there is limited evidence for the positive effect of topographic wetness index at the
neighborhood scale for two sites. This result implies either that woody cover change is not
driven by encroachment in moist areas, or that other factors control the transition from a
more open woodland to a closed-canopy forest, e.g. other topographic variables, soil charac-
teristics, or land-use history such as grazing.

Flexibility and Constraints of the Modeling Approach

The modeling approach that I demonstrate is flexible in many ways. If the extent of the
available imagery is large enough and sufficient computer power is available, the GAM can be
used at larger scales (e.g. Levick and Rogers 2011). One reason no clear relationship between
woody cover and topographic variables emerged over scales or sites could be the assumption
of the linear model for those variables; a GAM could also allow smooth functions of the
other variables as well as the spatial coordinates. Smooth functions could capture nonlinear
relationships in a more informative way than breaking the explanatory variables up into
categories as Platt and Schoennagel (2009) did.

Another possible reason that no consistent pattern across sites emerged is that at some
sites (Willow Creek, Blake Mountain) there was little total change in woody cover, i.e. not
enough variation in the response variable for the predictors to show a relationship (indeed,
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Blake Mountain shows very few significant variables at any scale). In addition, eCognition
segmentation and classification strategies are still rapidly evolving: methods and rule sets
for selecting segmentation parameters are under development (Dragut et al. 2010, Martha
et al. 2012, Dragut et al. 2014) but there is not yet consensus on best practices. Better
classifications (which then better capture the process of interest) may be possible as these
tools develop further. It is also difficult to scale up this analysis to more sites or larger areas.
Like other studies e.g. Platt and Schoennagel (2009), I found that different strategies for
classification were needed for each image and generalization was difficult: texture variables
were important for the historical images and for Bald Hills, while NDVI was most helpful
for the recent images, and different combinations of multi-threshold segmentation and multi-
resolution segmentation were most productive for different images (see Methods).

Topography, Disturbance, and Future Work

No systematic relationship between topographic variables and scale emerged between sites.
This result contrasts with Platt and Schoennagel (2009) who demonstrate some evidence for
relationships between woody cover change and topographic variables across their study area;
however, they do not include geographical coordinates or sites in their model. Similarly,
Levick and Rogers (2011) show some evidence that increasing topographic slope corresponds
to decreased woody cover across their study area at their 10 ha and 100 ha scales, though
these scales are far larger than the scales of my analysis. Newman et al. (2014b) show some
impacts of slope across their study area, but the change in woody cover in their system is
due to deforestation so slope has a strong impact on human access to forests.

I note that my two snapshots of the pattern of woody cover do not allow me to consider
disturbances which have happened and then resolved during the time range 1948 through
2009. T am unable to discern whether slower woody cover change relates to poor growing
conditions (e.g. thin, dry soils on steeper slopes, Dietrich et al. 1995) or small disturbances
which occur and are recovered from quickly (e.g. shallow landslides, Dietrich et al. 2001).
More frequent photos comprising a timeseries would help to discriminate between these two
options, but would require flight metadata and additional analyst time for processing and
classification. Even with more frequent photos, the disturbances could be small enough not
to be visible in the images (Dietrich et al. 2001).

Conifer encroachment and subsequent woodland-to-forest transition is widespread through-
out the North Coast of California (Cocking et al. 2012) and is maintained by continuing fire
exclusion and forest practice rules that prevent the removal of encroaching conifers (Vala-
chovic et al. 2014). T was unable to discern tree species in these images (Eitzel et al. 2014)
and therefore the result that woody cover is increasing at three of the sites are only sug-
gestive of the encroachment of Douglas-fir into oak woodland. In addition, some areas of
these sites show an increase in woody cover where there are no known Douglas-fir (Schriver
and Sherriff 2014), so some of the woody cover increase is due to growth of adult oak trees
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as well as recruitment of Douglas-fir seedlings and saplings. Increasing woody cover is both
a consequence of fire exclusion and a cause of extreme fire severity when fires do occur,
causing the potential conversion of forested landscapes into shrublands (Collins and Roller
2013). If the forest practice rules are changed, landowners may wish to know where stands
had been more open, and historical aerial imagery may be useful for planning restoration
through conifer removal (Whipple et al. 2011, Grossinger 2012). Oaks respond well to conifer
removal (Devine and Harrington 2006, 2013). Though this study using historical and recent
high-spatial-resolution imagery produced inconclusive results regarding woody cover change
and underlying encroachment processes, this simply highlights the importance of field work
to document the problem and complement the historical imagery. In future remote sensing
studies on this problem, higher spectral resolution may allow analysts to map species, but
the process inherently involves a mixed conifer-oak class and field work will still be necessary
to validate any such models.

Note that there was no apparent difference between privately (laqua Buttes and Bald
Hills) and publicly (Blake Mountain and Willow Creek) owned sites but unknown site-specific
factors may have more to do with this lack of pattern than more recent land ownership. For
example, I have no knowledge of the grazing history at any of these sites. Private lands as
well as public lands in this area of California have historically been subjected to a variety
of land uses, including grazing as well as timber harvest, and grazing (or its removal) can
have as large an impact on a system as fire (Yana Valachovic, personal communication).
Other studies have shown that both topography and grazing history affect woody cover
development following alteration of an existing disturbance regime (Garbarino et al. 2013),
so future work should involve information on historical land uses at each site. Generally
speaking, the uniqueness of the sites’ responses to these variables implies that drivers of
woody cover change are very site specific, and it is likely that additional variables are needed
to explain spatial variation at each scale. The topographic variables I explored do not
consistently explain the changes in woody cover. In future work, I could explore other
variables representing grazing history, soil characteristics, moisture, and solar radiation (for
example, annual insolation or a different transformation of aspect). I could also consider a
single multiscale model which explicitly includes underlying processes and observation error
from misclassification and misregistration (e.g. a state-space model, Eitzel et al. 2013).
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Codal

In this work, I have applied sophisticated statistical modeling and remote sensing techniques
to ubiquitous and complex pre-existing data. I was able to distill from them new insights
on drivers of tree growth and survival, sources of individual and intra-specific heterogeneity,
and decadal changes in tree communities in both the North Coast and the Sierra Nevada of
California. The application of sophisticated analysis techniques to learn about management-
relevant ecology is only the first step, however. There are many calls for ecology to connect
with policy (Schlesinger 2010), with practitioners (Palmer 2008), and with the public (Shirk
et al. 2012), and ecologists increasingly feel the urgency of environmental degradation (Vi-
tousek 1997, Robbins and Moore 2013). Many pressing ecological concerns involve many
different geographical areas, organizational units, and communities. There is a need for
organizations which can span boundaries to address urgent concerns (e.g. fire management
Kocher et al. 2012, Moritz et al. 2014).

In order for ecological research to be truly useful and available to these stakeholders, the
work becomes necessarily interdisciplinary. In Chapter 3 the interplay between community
ecology and policy is clear: due to fire exclusion policies, Douglas-fir encroaches into wood-
land due to shade-tolerance and superior competition in closed canopy configurations, but
the process is also maintained by the California Board of Forestry’s forest practice rules re-
striction on cutting of conifers, which prevents restoration to woodland via conifer removal.
To address environmental management challenges, ecological studies and restoration plans
must be infused with social science (Eitzel et al. 2011), as social goals and constraints can
be just as important as ecological goals and constraints (Hallett et al. 2013). The insights
in the previous chapters have the potential to be useful for managers, regulators, policy-
makers, planners, and land-owners, but further interdisciplinary work remains to be done
to guide management. Fortunately interdisciplinary training is also increasing, and the next
generation of scientists and practitioners have many opportunities to learn how to do inter-
disciplinary research (Oberg 2011, Andrade et al. 2014).

4Plummer, M., N. Best, K. Cowles, and K. Vines, 2010. coda: Output analysis and diagnostics for
MCMC. URL http://cran.r-project.org/package=coda.



49

References

Agee, J. K. 1993. Fire ecology of Pacific Northwest forests. Island Press, Washington, DC.

Allard, M., R. a. Fournier, M. Grenier, J. Lefebvre, and J.-F. Giroux. 2012. Forty Years
of Change in the Bulrush Marshes of the St. Lawrence Estuary and The Impact of the
Greater Snow Goose. Wetlands 32:1175-1188.

Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier,
T. Kitzberger, A. Rigling, D. D. Breshears, E. T. Hogg, P. Gonzalez, R. Fensham, Z. Zhang,
J. Castro, N. Demidova, J.-H. Lim, G. Allard, S. W. Running, A. Semerci, and N. Cobb.
2010. A global overview of drought and heat-induced tree mortality reveals emerging
climate change risks for forests. Forest Ecology and Management 259:660-684.

Andrade, K., C. Corbin, S. Diver, M. V. Eitzel, J. Williamson, J. Brashares, and
L. Fortmann. 2014. Finding your way in the interdisciplinary forest: notes
on educating future conservation practitioners. Biodiversity and Conservation URL
http://link.springer.com/article/10.1007/s10531-014-0818-z.

Ansley, J., and J. J. Battles. 1998. Forest composition, structure, and change in an old-
growth mixed conifer forest in the northern Sierra Nevada. Journal of the Torrey Botanical
Society 125:297-308.

Banerjee, S., and A. Finley. 2007. Bayesian multi-resolution modeling for spatially replicated
data sets with application to forest biomass data. Journal of Statistical Planning and
Inference 137:3193-3205.

Bates, D., and M. Maechler, 2010. Ime4: Linear mixed-effects models using S4 classes. URL
http://cran.r-project.org/package=1lme4.

Battles, J. J., T. Robards, A. Das, K. Waring, J. K. Gilless, G. Biging, and F. Schurr. 2008.
Climate change impacts on forest growth and tree mortality: a data-driven modeling study
in the mixed-conifer forest of the Sierra Nevada, California. Climatic Change 87:5193—
S213.

Beale, C. M., J. J. Lennon, J. M. Yearsley, M. J. Brewer, and D. a. Elston. 2010. Regression
analysis of spatial data. Ecology letters 13:246-64.



REFERENCES 50

Benjamini, Y., and D. Yekutieli. 2001. The control of the false discovery rate in multiple
testing under dependency. Annals of Statistics 29:1165-1188.

Berner, L. T., P. S. A. Beck, A. G. Bunn, A. H. Lloyd, and S. J. Goetz. 2011. High-latitude
tree growth and satellite vegetation indices: Correlations and trends in Russia and Canada
(1982 - 2008). Journal of Geophysical Research 116:1-13.

Betts, M. G., L. M. Ganio, M. M. P. Huso, N. a. Som, F. Huettmann, J. Bowman, and B. a.
Wintle. 2009. Comment on “Methods to account for spatial autocorrelation in the analysis
of species distributional data: a review”. Ecography 32:374-378.

Bigler, C., and H. Bugmann. 2004. Assessing the performance of theoretical and empiri-
cal tree mortality models using tree-ring series of Norway spruce. Ecological Modelling
174:225-239.

Bissonette, A., 1997. Scale-Sensitive Ecological Properties: Historical Context, Current
Meaning. Chapter 1, pages 3—31 in Wildlife and landscape ecology : effects of pattern and
scale.

Bivand, R. S. 2013. Applied Spatial Data Analysis with R. Springer.
Bolker, B., 2012. emdbook: Ecological Models and Data in R, R package version 1.3.2.

Bond-Lamberty, B., A. V. Rocha, K. Calvin, B. Holmes, C. Wang, and M. L.. Goulden. 2014.
Disturbance legacies and climate jointly drive tree growth and mortality in an intensively
studied boreal forest. Global change biology 20:216-27.

Bunn, A. 2008. A dendrochronology program library in R (dplR). Dendrochronologia
26:115-124.

Buoro, M., E. Prévost, and O. Gimenez. 2012. Digging through model complexity: using
hierarchical models to uncover evolutionary processes in the wild. Journal of evolutionary
biology 25:2077-90.

Burns, R. M., and B. H. Honkala. 1990. Silvics of North America: 1. Conifers; 2.
Hardwoods. U.S. Department of Agriculture, Forest Service, Washington, DC. URL
http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm.

Canham, C. D., M. J. Papaik, M. Uriarte, W. H. McWilliams, J. C. Jenkins, and M. J.
Twery. 2006. Neighborhood analyses of canopy tree competition along environmental
gradients in New England forests. Ecological Applications 16:540-54.

Cao, Q., and M. Strub. 2008. Evaluation of Four Methods to Estimate Parameters of an
Annual Tree Survival and Diameter Growth Model. Forest Science 54:617-624.

Cao, Q. V. 2000. Prediction of Annual Diameter Growth and Survival for Individual Trees
from Periodic Measurements. Forest Science 46:127-131.



REFERENCES 51

Celeux, G., F. Forbes, C. P. Robert, and D. M. Titterington. 2006. Deviance information
criteria for missing data models. Bayesian Analysis 1:651-673.

Chojnacky, D. C.,; 2001. On FIA Variables For Ecological Use. Pages 102-105 in G. A.
Reams, R. E. McRoberts, and P. C. Van Deusen, editors. Proceedings of the second annual
Forest Inventory and Analysis symposium, 2000 October 17-18; Salt Lake City, UT. U.S.
Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC.

Clark, J. S. 2007. Models for ecological data: An introduction. Princeton University Press,
Princeton, N.J.

Clark, J. S., D. Bell, C. Chu, B. Courbaud, M. Dietze, M. Hersh, J. HilleRisLambers,
I. Ibanez, S. LaDeau, S. McMahon, J. Metcalf, J. Mohan, E. Moran, L. Pangle, S. Pearson,
C. Salk, Z. Shen, D. Valle, and P. Wyckoff. 2010. High-dimensional coexistence based on
individual variation: a synthesis of evidence. Ecological Monographs 80:569-608.

Clark, J. S., D. M. Bell, M. H. Hersh, and L. Nichols. 2011. Climate change vulnerability
of forest biodiversity: Climate and competition tracking of demographic rates. Global
Change Biology 17:1834-1849.

Clark, J. S., D. M. Bell, M. Kwit, A. Stine, B. Vierra, and K. Zhu. 2012. Individual-
scale inference to anticipate climate-change vulnerability of biodiversity. Philosophical
Transactions of the Royal Society of London. Series B, Biological Sciences 367:236-46.

Clark, J. S., M. Wolosin, M. Dietze, 1. Ibanez, S. LaDeau, M. Welsh, and B. Kloeppel. 2007.
Tree growth inference and prediction from diameter censuses and ring widths. Ecological
Applications 17:1942-53.

Cocking, M. I., J. M. Varner, and R. L. Sherriff. 2012. California black oak responses to fire
severity and native conifer encroachment in the Klamath Mountains. Forest Ecology and
Management 270:25-34.

Cocking, M. J.; J. M. Varner, and E. A. Engber, 2014. Conifer Culprits: An Analysis of
Conifer Encroachment in California Oak Woodlands. Page (in press) in Proceedings of the
7th Oak Symposium: Managing Oak Woodlands in a Dynamic World. General Technical
Report - Pacific Southwest Research Station, USDA Forest Service, Visalia, CA.

Coleman, T. W.,; Y. Chen, A. D. Graves, S. M. Hishinuma, N. E. Grulke, M. L. Flint, S. J.
Seybold, T. O. M. W. Coleman, Y. Chen, A. D. Graves, S. M. Hishinuma, N. E. Grulke,
M. L. Flint, and S. J. Seybold. 2014. Developing Monitoring Techniques for the Invasive
Goldspotted Oak Borer (Coleoptera: Buprestidae) in California 43:729-743.

Collins, B., R. Everett, and S. Stephens. 2011. Impacts of fire exclusion and recent managed
fire on forest structure in old growth Sierra Nevada mixed-conifer forests. Ecosphere
2:Article: 51.



REFERENCES 52

Collins, B. M., and G. B. Roller. 2013. Early forest dynamics in stand-replacing fire patches
in the northern Sierra Nevada, California, USA. Landscape Ecology 28:1801-1813.

Conchedda, G., L. Durieux, and P. Mayaux. 2008. An object-based method for mapping and
change analysis in mangrove ecosystems. ISPRS Journal of Photogrammetry and Remote
Sensing 63:578-589.

Coomes, D. A.; E. R. Lines, and R. B. Allen. 2011. Moving on from Metabolic Scaling
Theory: Hierarchical models of tree growth and asymmetric competition for light. Journal
of Ecology 99:748-756.

Cressie, N., C. A. Calder, J. S. Clark, J. M. Ver Hoef, and C. K. Wikle. 2009. Accounting for
uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical
modeling. Ecological Applications 19:553-570.

Cserhalmi, D.; J. Nagy, D. Kristéf, and D. Neidert. 2011. Changes in a Wetland Ecosystem:
A Vegetation Reconstruction Study Based on Historical Panchromatic Aerial Photographs
and Succession Patterns. Folia Geobotanica 46:351-371.

Csilléry, K., M. Seignobosc, V. Lafond, G. Kunstler, and B. Courbaud. 2013. Estimating
long-term tree mortality rate time series by combining data from periodic inventories
and harvest reports in a Bayesian state-space model. Forest Ecology and Management
292:64-74.

Das, A., J. Battles, N. L. Stephenson, and P. J. van Mantgem. 2011. The contribution
of competition to tree mortality in old-growth coniferous forests. Forest Ecology and
Management 261:1203-1213.

Das, A., J. Battles, P. J. van Mantgem, and N. L. Stephenson. 2008. Spatial elements of
mortality risk in old-growth forests. Ecology 89:1744-56.

Das, A. J., J. J. Battles, N. L. Stephenson, and P. J. van Mantgem. 2007. The relationship
between tree growth patterns and likelihood of mortality: A study of two tree species in
the Sierra Nevada. Canadian Journal of Forest Research 37:580-597.

de Chant, T., and M. Kelly. 2009. Individual Object Change Detection for Monitoring the
Impact of a Forest Pathogen on a Hardwood Forest. Photogrammetric Engineering &
Remote Sensing 75:1005-1013.

de Valpine, P. 2003. Better inferences from population-dynamics experiments using Monte
Carlo state-space likelihood methods. Ecology 84:3064-3077.

de Valpine, P. 2009. Shared challenges and common ground for Bayesian and classical
analysis of hierarchical models. Ecological Applications 19:584-588.

de Valpine, P. 2014. The common sense of P values. Ecology 95:617-21.



REFERENCES 53

Deng, Y., X. Chen, E. Chuvieco, T. Warner, and J. P. Wilson. 2007. Multi-scale linkages be-
tween topographic attributes and vegetation indices in a mountainous landscape. Remote
Sensing of Environment 111:122-134.

Deng, Y., M. F. Goodchild, and X. Chen. 2009. Using NDVI to define thermal south in
several mountainous landscapes of California. Computers & Geosciences 35:327-336.

Desclée, B., P. Bogaert, and P. Defourny. 2006. Forest change detection by statistical
object-based method. Remote Sensing of Environment 102:1-11.

Devine, W. D., and C. A. Harrington. 2006. Changes in Oregon white oak (Quercus garryana
Dougl. ex Hook.) following release from overtopping conifers. Trees 20:747-756.

Devine, W. D., and C. A. Harrington. 2013. Restoration release of overtopped Oregon white
oak increases 10-year growth and acorn production. Forest Ecology and Management
291:87-95.

Dietrich, W. E., D. Bellugi, and R. Real de Asua, 2001. Validation of the Shallow Landslide
Model , SHALSTAB | for Forest Management. Pages 195-227 in Land Use and Watersheds:
Human Influence on Hydrology and Geomorphology in Urban and Forest Areas Water
Science and Application Volume 2, volume 2. American Geophysical Union.

Dietrich, W. E., R. Reiss, M.-1. Hsu, and D. R. Montgomery. 1995. A process-based model
for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological
Processes 9:383-400.

Dolanc, C. R., J. H. Thorne, and H. D. Safford. 2013. Widespread shifts in the demographic
structure of subalpine forests in the Sierra Nevada, California, 1934 to 2007. Global
Ecology and Biogeography 22:264-276.

Dorman, M., T. Svoray, and A. Perevolotsky. 2013. Homogenization in forest performance
across an environmental gradient — The interplay between rainfall and topographic aspect.
Forest Ecology and Management 310:256-266.

Dormann, C. F. 2009. Response to Comment on “Methods to account for spatial autocorre-
lation in the analysis of species distributional data: a review”. Ecography 32:379-381.

Dormann, C. F., J. M. McPherson, M. B. Araijo, R. Bivand, J. Bolliger, G. Carl, R. G.
Davies, A. Hirzel, W. Jetz, W. D. Kissling, I. Kiihn, R. Ohlemiiller, P. R. Peres-Neto,
B. Reineking, B. Schroder, F. M. Schurr, and R. Wilson. 2007. Methods to account for
spatial autocorrelation in the analysis of species distributional data: a review. Ecography
30:609-628.

Dragut, L., O. Csillik, C. Eisank, and D. Tiede. 2014. Automated parameterisation for
multi-scale image segmentation on multiple layers. ISPRS Journal of Photogrammetry
and Remote Sensing 88:119-127.



REFERENCES 54

Dragut, L., D. Tiede, and S. R. Levick. 2010. ESP : a tool to estimate scale parameter
for multiresolution image segmentation of remotely sensed data. International Journal of
Geographical Information Science 24:859-871.

Dronova, 1., P. Gong, and L. Wang. 2011. Object-based analysis and change detection of
major wetland cover types and their classification uncertainty during the low water period
at Poyang Lake, China. Remote Sensing of Environment 115:3220-3236.

Eitzel, M., M. Kelly, and L. Quinn-Davidson, 2014. Lessons Learned in Historical Mapping
of Conifer and Oak in the North Coast. Page (in press) in Proceedings of the 7th Oak
Symposium: Managing Oak Woodlands in a Dynamic World. General Technical Report -
Pacific Southwest Research Station, USDA Forest Service, Visalia, CA.

Eitzel, M. V., J. Battles, R. York, J. Knape, and P. de Valpine. 2013. Estimating tree growth
from complex forest monitoring data. Ecological Applications 23:1288-1296.

Eitzel, M. V., S. Diver, H. Sardinas, L. M. Hallett, J. J. Olson, A. Romero, G. D. L. T.
Oliveira, A. T. Schuknecht, R. Tidmore, and K. N. Suding. 2011. Insights from a Cross-
Disciplinary Seminar: 10 Pivotal Papers for Ecological Restoration. Restoration Ecology
20:147-152.

Ellison, A. M., M. S. Bank, B. D. Clinton, E. A. Colburn, K. Elliott, C. R. Ford, D. R. Foster,
B. D. Kloeppel, J. D. Knoepp, G. M. Lovett, J. Mohan, D. A. Orwig, N. L. Rodenhouse,
W. V. Sobczak, K. A. Stinson, J. K. Stone, C. M. Swan, J. Thompson, B. V. Holle, and
J. R. Webster. 2005. Loss of foundation species: Consequences for the structure and
dynamics of forested ecosystems. Frontiers in Ecology and the Environment 3:479-486.

Ellner, S. P., and M. Rees. 2006. Integral projection models for species with complex
demography. American Naturalist 167:410-428.

ESRI, 2011. ArcGIS. URL http://www.esri.com/.
ESRI, 2013. ArcGIS. URL http://www.esri.com/.
FAO, 2010. Global Forest Resources Assessment 2010. Technical report, FAO, Rome.

Finley, A. O. 2011. A hierarchical model for quantifying forest variables over large het-
erogeneous landscapes with uncertain forest areas. Journal of the American Statistical
Association 106:31-48.

Finley, A. O., S. Banerjee, and D. W. MacFarlane. 2011. A Hierarchical Model for Quantify-
ing Forest Variables Over Large Heterogeneous Landscapes With Uncertain Forest Areas.
Journal of the American Statistical Association 106:31-48.

Franklin, J. 1995. Predictive vegetation mapping: geographic modelling of biospatial patterns
in relation to environmental gradients. Progress in Physical Geography 19:474-499.



REFERENCES %)

Frazer, G., C. Canham, and K. Lertzman, 1999. Gap Light Analyzer (GLA): Imaging
software to extract canopy structure and gap light transmission indices from true-colour
fisheye photographs, user’s manual and program documentation.

Garbarino, M., E. Lingua, P. J. Weisberg, A. Bottero, F. Meloni, and R. Motta. 2013.
Land-use history and topographic gradients as driving factors of subalpine Larix decidua
forests. Landscape Ecology 28:805-817.

Gartner, P., M. Forster, A. Kurban, and B. Kleinschmit. 2014. Object based change detec-
tion of Central Asian Tugai vegetation with very high spatial resolution satellite imagery.
International Journal of Applied Earth Observation and Geoinformation 31:110-121.

Gavin, D., 2007. AET. URL http://geography.uoregon.edu/gavin/software.html.

Gelman, A. 2006. Prior distributions for variance parameters in hierarchical models (Com-
ment on Article by Browne and Draper). Bayesian Analysis 1:515-534.

Ghosh, S.,; A. E. Gelfand, and J. S. Clark. 2012. Inference for Size Demography From Point
Pattern Data Using Integral Projection Models. Journal of Agricultural, Biological, and
Environmental Statistics 17:641-677.

Gimenez, O., V. Rossi, R. Choquet, C. Dehais, B. Doris, H. Varella, J.-P. Vila, and R. Pradel.
2007. State-space modelling of data on marked individuals. Ecological Modelling 206:431—
438.

Gimmi, U., and H. Bugmann. 2013. Preface: integrating historical ecology and ecological
modeling. Landscape Ecology 28:785-787.

Gonzalez, P.; G. Asner, J. Battles, M. Lefsky, K. Waring, and M. Palace. 2010. Forest car-
bon densities and uncertainties from Lidar, QuickBird, and field inventories in California.
Remote Sensing of the Environment 114:1561-1575.

Gotway, C. A., L. J. Young, L. J. Young, and C. A. Gotway. 2002. Combining Incompatible
Spatial Data. Journal of the American Statistical Association 97:632-648.

Gregoire, T. G., O. Schabenberger, and J. P. Barrettt. 1995. Linear modelling of irregu-
larly spaced, unbalanced, longitudinal data from permanent-plot measurements. Canadian
Journal of Forest Research 25:137-156.

Grossinger, R. 2012. Napa Valley Historical Ecology Atlas: Exploring a Hidden Landscape
of Transformation and Resilience. Univ of California Press.

Hallett, L. M., S. Diver, M. V. Eitzel, J. J. Olson, B. S. Ramage, H. Sardinas, Z. Statman-
Weil, and K. N. Suding. 2013. Do We Practice What We Preach? Goal Setting for
Ecological Restoration. Restoration Ecology 21:312-319.



REFERENCES 56

Haralick, R., K. Shanmugam, and I. Dinstein. 1973. Textural Features for Image Classifica-
tion. IEEE Transactions on Systems, Man and Cybernetics. 3:610-620.

Harcombe, P. 1987. Tree life tables. Bioscience 37:557-568.

Hawkins, B. A. 2012. Eight (and a half) deadly sins of spatial analysis. Journal of Biogeog-
raphy 39:1-9.

He, F. L., and R. P. Duncan. 2000. Density-dependent effects on tree survival in an old-
growth Douglas fir forest. Journal of Ecology 88:676-688.

Huntsinger, L., M. Johnson, M. Stafford, and J. Fried. 2010. Hardwood Rangeland Landown-
ers in California from 1985 to 2004: Production, Ecosystem Services, and Permanence.
Rangeland Ecology & Management 63:324-334.

Huntsinger, L., and J. L. Oveido. 2014. Ecosystem Services are Social — ecological Services
in a Traditional Pastoral System: the Case of California’s Mediterranean Rangelands.
Ecology And Society 19:8.

Hurst, J. M., R. B. Allen, D. A. Coomes, and R. P. Duncan. 2011. Size-specific tree mortality
varies with neighbourhood crowding and disturbance in a Montane Nothofagus forest. PloS
one 6:€26670.

Igor, D., D. Alexander, and N. Vasiliy. 2009. Tree mortality in a mixed deciduous forest in
Northwestern Russia over 22 years. Annals of Forest Science 66(411):1-11.

Intergraph, 2012. ERDAS Imagine 2013.

Jenkins, R. B., and N. C. Coops. 2011. Landscape Controls on Structural Variation in

Eucalypt Vegetation Communities: Woronora Plateau, Australia. Australian Geographer
42:1-17.

Jensen, J. R. 2005. Introductory Digital Image Processing: A Remote Sensing Perspective.
3rd edition. Pearson Prentice Hall, Upper Saddle River, NJ.

Kery, M. 2010. Introduction to WinBUGS for ecologists: Bayesian approach to regression,
ANOVA, mixed models and related analyses. Elsevier, Amsterdam; Boston.

Kery, M., and M. Schaub. 2012. Bayesian Population Analysis Using WinBUGS: A Hierar-
chical Perspective. Academic Press, Waltham, MA.

Knape, J., N. Jonzén, M. Skold, J. Kikkawa, and H. McCallum. 2011. Individual hetero-
geneity and senescence in silvereyes on Heron Island. Ecology 92:813-20.

Knape, J., M. Skold, N. Jonzén, M. Akesson, S. Bensch, B. Hansson, and D. Hasselquist.
2008. An analysis of hatching success in the great reed warbler Acrocephalus arundinaceus.
Oikos 117:430-438.



REFERENCES o7

Kocher, S. D., E. Toman, S. F. Trainor, V. Wright, J. S. Briggs, C. P. Goebel, M. Montblanc,
A. Oxarart, D. L. Pepin, T. A. Steelman, A. Thode, and T. A. Waldrop. 2012. How Can
We Span the Boundaries between Wildland Fire Science and Management in the United
States? Journal of Forestry 110:421-428.

Kueppers, L. M., M. a. Snyder, L. C. Sloan, E. S. Zavaleta, and B. Fulfrost. 2005. Modeled
regional climate change and California endemic oak ranges. Proceedings of the National
Academy of Sciences of the United States of America 102:16281-6.

Kuhn, I., and C. F. Dormann. 2012. Less than eight (and a half) misconceptions of spatial
analysis. Journal of Biogeography 39:995-1003.

Kunstler, G., C. H. Albert, B. Courbaud, S. Lavergne, W. Thuiller, G. Vieilledent, N. E.
Zimmermann, and D. A. Coomes. 2011. Effects of competition on tree radial-growth vary
in importance but not in intensity along climatic gradients. Journal of Ecology 99:300—
312.

Laliberte, A. S., A. Rango, K. M. Havstad, J. F. Paris, R. F. Beck, R. McNeely, and A. L.
Gonzalez. 2004. Object-oriented image analysis for mapping shrub encroachment from
1937 to 2003 in southern New Mexico. Remote Sensing of Environment 93:198-210.

Larocque, G. R., L. Archambault, and C. Delisle. 2011. Development of the gap model
ZELIG-CFS to predict the dynamics of North American mixed forest types with complex
structures. Ecological Modelling 222:2570-2583.

Levick, S. R., and K. H. Rogers. 2011. Context-dependent vegetation dynamics in an African
savanna. Landscape Ecology 26:515-528.

Likens, G. E., and J. F. Franklin. 2009. Ecosystem Thinking in the Northern Forest - and
Beyond. BioScience 59:511-513.

Lines, E. R., D. A. Coomes, and D. W. Purves. 2010. Influences of forest structure, climate
and species composition on tree mortality across the eastern US. Plos One 5:Article:
el3212.

Lunn, D., D. Spiegelhalter, A. Thomas, and N. Best. 2009. The BUGS project: Evolution,
critique and future directions. Statistics in Medicine 28:3049-3067.

Luo, Y., and H. Y. H. Chen. 2013. Observations from old forests underestimate climate
change effects on tree mortality. Nature Communications 4:1655.

Lutz, J. A., A. J. Larson, T. J. Furniss, D. C. Donato, J. A. Freund, M. E. Swanson,
K. J. Bible, J. Chen, and J. F. Franklin. 2014. Spatially nonrandom tree mortality
and ingrowth maintain equilibrium pattern in an old-growth Pseudotsuga-Tsuga forest.
Ecology 95:2047-2054.



REFERENCES 58

Lutz, J. A., J. W. van Wagtendonk, and J. F. Franklin. 2010. Climatic water deficit, tree
species ranges, and climate change in Yosemite National Park. Journal of Biogeography
37:936-950.

Macfarlane, D. W., and R. K. Kobe. 2006. Selecting models for capturing tree-size effects
on growth-resource relationships. Canadian Journal of Forest Research 36:1695-1704.

Marignani, M., D. Rocchini, D. Torri, A. Chiarucci, and S. Maccherini. 2008. Planning
restoration in a cultural landscape in Italy using an object-based approach and historical
analysis. Landscape and Urban Planning 84:28-37.

Martha, T. R., N. Kerle, C. J. van Westen, V. Jetten, and K. Vinod Kumar. 2012. Object-
oriented analysis of multi-temporal panchromatic images for creation of historical landslide
inventories. ISPRS Journal of Photogrammetry and Remote Sensing 67:105-119.

McDowell, N.;, W. T. Pockman, C. D. Allen, D. D. Breshears, N. Cobb, T. Kolb, J. Plaut,
J. Sperry, A. West, D. G. Williams, and E. a. Yepez. 2008. Mechanisms of plant sur-

vival and mortality during drought: why do some plants survive while others succumb to
drought? The New phytologist 178:719-39.

Meentemeyer, R. K., N. J. Cunniffe, A. R. Cook, J. a. N. Filipe, R. D. Hunter, D. M.
Rizzo, and C. a. Gilligan. 2011. Epidemiological modeling of invasion in heterogeneous
landscapes: spread of sudden oak death in California (1990-2030). Ecosphere 2:art17.

Menzel, A., M. Matiu, and T. H. Sparks. 2014. Twenty years of successful papers in Global
Change Biology. Global change biology 20:3587-90.

Metcalf, C., C. Horvitz, S. Tuljapurkar, and D. Clark. 2009a. A time to grow and a time
to die: a new way to analyze the dynamics of size, light, age, and death of tropical trees.
Ecology 90:2766-2778.

Metcalf, C. J. E., S. M. McMahon, and J. S. Clark. 2009b. Overcoming data sparseness
and parametric constraints in modeling of tree mortality: a new nonparametric Bayesian
model. Canadian Journal of Forest Research 39:1677-1687.

Michener, W. K., and M. B. Jones. 2012. Ecoinformatics: supporting ecology as a data-
intensive science. Trends in ecology & evolution 27:85-93.

Millar, R. B. 2009. Comparison of hierarchical Bayesian models for overdispersed count data
using DIC and Bayes’ factors. Biometrics 65:962-9.

Miller, J., J. Franklin, and R. Aspinall. 2007. Incorporating spatial dependence in predictive
vegetation models. Ecological Modelling 202:225-242.

Minnich, R. A.; M. G. Barbour, J. H. Burk, and R. F. Fernau. 1995. Sixty Years of Change
in Californian Conifer Forests of the San Bernardino Mountains. Conservation Biology &
Philosophy 9:902-914.



REFERENCES 29

Mohan, J. E., J. S. Clark, and W. H. Schlesinger. 2007. Long-term CO2 enrichment of a forest
ecosystem: implications for forest regeneration and succession. Ecological Applications
17:1198-212.

Monserud, R. a., and H. Sterba. 1999. Modeling individual tree mortality for Austrian forest
species. Forest Ecology and Management 113:109-123.

Morgan, J. L., and S. E. Gergel. 2013. Automated analysis of aerial photographs and
potential for historic forest mapping. Canadian Journal of Forest Research 43:699-710.

Moritz, M. a., E. Batllori, R. a. Bradstock, a. M. Gill, J. Handmer, P. F. Hessburg,
J. Leonard, S. McCaffrey, D. C. Odion, T. Schoennagel, and A. D. Syphard. 2014. Learning
to coexist with wildfire. Nature 515:58-66.

Miillerova, J., J. Pergl, and P. Pysek. 2013. Remote sensing as a tool for monitoring
plant invasions: Testing the effects of data resolution and image classification approach
on the detection of a model plant species Heracleum mantegazzianum (giant hogweed).
International Journal of Applied Earth Observation and Geoinformation 25:55-65.

Murtaugh, P. 2009. Performance of several variable-selection methods applied to real eco-
logical data. Ecology letters 12:1061-8.

Murtaugh, P. 2014. In defense of P values. Ecology 95:611-7.

Newman, M. E., K. P. McLaren, and B. S. Wilson. 2014a. Assessing deforestation and
fragmentation in a tropical moist forest over 68 years; the impact of roads and legal

protection in the Cockpit Country, Jamaica. Forest Ecology and Management 315:138—
152.

Newman, M. E., K. P. McLaren, and B. S. Wilson. 2014b. Long-term socio-economic and
spatial pattern drivers of land cover change in a Caribbean tropical moist forest, the
Cockpit Country, Jamaica. Agriculture, Ecosystems & Environment 186:185-200.

Niinemets, U., and F. Valladares. 2006. Tolerance to shade, drought, and waterlogging of
temperate northern hemisphere trees and shrubs. Ecological Monographs 76:521-547.

Nord-Larsen, T. 2006. Modeling Individual-Tree Growth from Data with Highly Irregular
Measurement Intervals. Forest Science 52:198-208.

Oberg, G. 2011. Interdisciplinary environmental studies: A primer. 1st edition. Wiley-
Blackwell, West Sussex, UK.

Olson, C. M., and J. A. Helms, 1996. Forest Growth and Stand Structure at Blodgett Forest
Research Station 1933-95, Sierra Nevada Ecosystem Project: Final report to Congress,
vol. III, Assessments and scientific basis for management options. Technical report,
University of California, Centers for Water and Wildland Resources, Davis, CA. URL
http://pubs.usgs.gov/dds/dds-43/VOL_III/VIII_C16.PDF.



REFERENCES 60

Pacala, S., C. Canham, J. Saponara, J. Silander, R. Kobe, and E. Ribbens. 1996. Forest
models defined by field measurements: Estimation, error analysis and dynamics. Ecological
Monographs 66:1-43.

Palmer, M. a. 2008. Reforming Watershed Restoration: Science in Need of Application and
Applications in Need of Science. Estuaries and Coasts 32:1-17.

Peng, C., Z. Ma, X. Lei, Q. Zhu, H. Chen, W. Wang, S. Liu, W. Li, X. Fang, and X. Zhou.
2011. A drought-induced pervasive increase in tree mortality across Canada’s boreal
forests. Nature Climate Change 1:467-471.

Platt, R., and T. Schoennagel. 2009. An object-oriented approach to assessing changes
in tree cover in the Colorado Front Range 1938-1999. Forest Ecology and Management
258:1342-1349.

Plummer, M. 2008. Penalized loss functions for Bayesian model comparison. Biostatistics
(Oxford, England) 9:523-39.

Plummer, M., N. Best, K. Cowles, and K. Vines, 2010. coda: Output analysis and diagnostics
for MCMC. URL http://cran.r-project.org/package=coda.

Ponciano, J. M., M. L. Taper, B. Dennis, and S. R. Lele. 2009. Hierarchical models in
ecology: Confidence intervals, hypothesis testing, and model selection using data cloning.
Ecology 90:356-362.

Pringle, R. M., M. Syfert, J. K. Webb, and R. Shine. 2009. Quantifying historical changes in
habitat availability for endangered species: use of pixel- and object-based remote sensing.
Journal of Applied Ecology 46:544-553.

PRISM Climate Group. 2011. Climate Grids URL
http://www.prism.oregonstate.edu/products/.

R Development Core Team, 2009. R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria.

Robbins, P., and S. a. Moore. 2013. Ecological anxiety disorder: diagnosing the politics of
the Anthropocene. Cultural Geographies 20:3-19.

Roche, L. M., K. J. Rice, and K. W. Tate. 2012. Oak conservation maintains native
grass stands in an oak woodland-annual grassland system. Biodiversity and Conserva-
tion 21:2555-2568.

Royle, J. A., and R. M. Dorazio. 2008. Hierarchical modeling and inference in ecology:
The analysis of data from populations, metapopulations and communities. 1st edition.
Academic, Amsterdam; Boston.



REFERENCES 61

Schlesinger, W. H. 2010. Translational Ecology. Science 329:609.

Schmid, M., F. Wickler, K. O. Maloney, R. Mitchell, N. Fenske, and A. Mayr. 2013. Boosted
beta regression. PloS one 8:e61623.

Schriver, M., and R. Sherriff, 2014. Tree Establishment in Oregon White Oak and California
Black Oak Woodlands in Northwestern California. Page (in press) in Proceedings of the
7th Oak Symposium: Managing Oak Woodlands in a Dynamic World. General Technical
Report - Pacific Southwest Research Station, USDA Forest Service, Visalia, CA.

Seidl, R., C. S. Eastaugh, K. Kramer, M. Maroschek, C. Reyer, J. Socha, G. Vacchiano,
T. Zlatanov, and H. Hasenauer. 2013. Scaling issues in forest ecosystem management and
how to address them with models. European Journal of Forest Research 132:653-666.

Sheil, D., D. F. Burslem, and D. Alder. 1995. The interpretation and misinterpretation of
mortality rate measures. Journal of Ecology 83:331-333.

Sheil, D., and R. M. May. 1996. Mortality and Recruitment Rate Evaluations in Heteroge-
neous Tropical Forests. The Journal of Ecology 84:91-100.

Shirk, J. L., H. L. Ballard, C. C. Wilderman, T. Phillips, A. Wiggins, and R. Jordan. 2012.
Public Participation in Scientific Research : a Framework for Deliberate Design. Ecology
and Society 17:art29.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde. 2002. Bayesian measures
of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 64:583-639.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde. 2014. The deviance
information criterion: 12 years on. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 76:485-493.

Standiford, R. B., and T. Scott. 2001. Value of oak woodlands and open space on private
property values in southern california. Investigacién agraria. Sistemas y recursos forestales
10:137-152.

Stark, D. T., D. L. Wood, A. J. Storer, and S. L. Stephens. 2013. Prescribed fire and
mechanical thinning effects on bark beetle caused tree mortality in a mid-elevation Sierran
mixed-conifer forest. Forest Ecology and Management 306:61-67.

Starrs, P. F., 2001. Perspectives on cultural values of California oaks. Pages 21-30 in K. L.
Standiford, R. B.; McCreary, D.; Purcell, editor. Proceedings of the fifth symposium on
oak woodlands: oaks in California’s changing landscape. General Technical Report - Pacific
Southwest Research Station, USDA Forest Service PSW-GTR-184, San Diego, CA.



REFERENCES 62

Stow, D., Y. Hamada, L. Coulter, and Z. Anguelova. 2008. Monitoring shrubland habitat
changes through object-based change identification with airborne multispectral imagery.
Remote Sensing of Environment 112:1051-1061.

Sturtz, S., U. Ligges, and A. Gelman. 2005. R2ZWinBUGS: A Package for Running WinBUGS
from R. Journal of Statistical Software 12:1-16.

Suarez, M. L., and T. Kitzberger. 2008. Recruitment patterns following a severe drought:
long-term compositional shifts in Patagonian forests. Canadian Journal of Forest Research
38:3002-3010.

Thorne, J., R. Boynton, L. Flint, A. Flint, and T.-N. Le, 2012. Development
and Application of Downscaled Hydroclimatic Predictor Variables for Use in Cli-
mate Vulnerability and Assessment Studies. Technical report, University of Califor-
nia, Davis. URL http://uc-ciee.org/downloads/Development and Application of
Downscaled Hydroclimatic Predictor Variables.pdf.

Thorpe, H. C., and L. D. Daniels. 2012. Long-term trends in tree mortality rates in the
Alberta foothills are driven by stand development. Canadian Journal of Forest Research
42:1687-1696.

Trimble, 2013. eCognition Developer.

USDA Forest Service. 2011. Forest Inventory and Analysis National Program URL
http://www.fia.fs.fed.us/tools-data/.

USGS, 2011. Seamless Data Warehouse. URL http://seamless.usgs.gov/.

Uzoh, F. C.; and S. R. Mori. 2012. Applying survival analysis to managed even-aged stands
of ponderosa pine for assessment of tree mortality in the western United States. Forest
Ecology and Management 285:101-122.

Valachovic, Y., R. Standiford, and L. Quinn-Davidson, 2014. Can the California Forest
Practice Rules Adapt to Address Conifer Encroachment? Page (in press) in Proceedings
of the 7th Oak Symposium: Managing Oak Woodlands in a Dynamic World. General
Technical Report - Pacific Southwest Research Station, USDA Forest Service, Visalia,
CA.

Van Dongen, S. 2006. Prior specification in Bayesian statistics: three cautionary tales.
Journal of theoretical biology 242:90-100.

van Lier, O. R., R. a. Fournier, R. L. Bradley, and N. Thiffault. 2009. A multi-resolution
satellite imagery approach for large area mapping of ericaceous shrubs in Northern Quebec,
Canada. International Journal of Applied Earth Observation and Geoinformation 11:334—

343.



REFERENCES 63

van Mantgem, P. J., and N. L. Stephenson. 2007. Apparent climatically induced increase of
tree mortality rates in a temperate forest. Ecology Letters 10:909-916.

van Mantgem, P. J., N. L. Stephenson, J. C. Byrne, L. D. Daniels, J. F. Franklin, P. Z.
Fulé¢, M. E. Harmon, A. J. Larson, J. M. Smith, A. H. Taylor, and T. T. Veblen. 2009.

Widespread increase of tree mortality rates in the western United States. Science 323:521—
4.

Vaupel, J. W., and A. . Yashin. 1985. Heterogeneity’s Ruses: Some Surprising Effects of
Selection on Population Dynamics. The American Statistician 39:176-185.

Vitousek, P. M. 1997. Human Domination of Earth’s Ecosystems. Science 277:494-499.

Wang, W., C. Peng, D. D. Kneeshaw, and G. R. Larocque. 2012. Drought-induced tree mor-
tality: ecological consequences, causes, and modeling. Environmental Reviews 20:109-
121.

Wang, Y., X. Hou, M. Wang, L. Wu, L. Ying, and Y. Feng. 2013. Topographic controls
on vegetation index in a hilly landscape: a case study in the Jiaodong Peninsula, eastern
China. Environmental Earth Sciences 70:625-634.

Warton, D. 1., and F. K. C. Hui. 2011. The arcsine is asinine: the analysis of proportions in
ecology. Ecology 92:3-10.

Weiskittel, A. R., S. M. Garber, G. P. Johnson, D. A. Maguire, and R. A. Monserud. 2007.
Annualized diameter and height growth equations for Pacific Northwest plantation-grown

Douglas-fir, western hemlock, and red alder. Forest Ecology and Management 250:266—
278.

Whipple, A. A., R. M. Grossinger, and F. W. Davis. 2011. Shifting Baselines in a California
Oak Savanna: Nineteenth Century Data to Inform Restoration Scenarios. Restoration
Ecology 19:88-101.

Willmott, C., C. Rowe, and Y. Mintz. 1985. Climatology of the terrestrial seasonal water
cycle. Journal of Climatology 5:589-606.

Wood, S. N. 2006. Generalized Additive Models: An Introduction with R. Chapman &
Hall/CRC, Boca Raton, FL.

Yang, Y., and S. Huang. 2013. A Generalized Mixed Logistic Model for Predicting Individual
Tree Survival Probability with Unequal Measurement Intervals. Forest Science 59:177—
187.

Yeh, H.-Y., and L. C. Wensel. 2000. The relationship between tree diameter growth and
climate for coniferous species in northern California. Canadian Journal of Forest Research
30:1463-1471.



REFERENCES 64

York, R., J. Battles, R. Wenk, and S. Saah. 2013. A gap-based approach for regenerating
pine species and reducing surface fuels in multi-aged mixed conifer stands in the Sierra
Nevada, California. Forestry 85:203-213.

York, R. A., J. J. Battles, A. K. Eschtruth, and F. G. Schurr. 2011. Giant Sequoia (Se-
quoiadendron giganteum) Regeneration in Experimental Canopy Gaps. Restoration Ecol-
ogy 19:14-23.

York, R. A., J. J. Battles, and R. C. Heald. 2003. Edge effects in mixed conifer group selection
openings: tree height response to resource gradients. Forest Ecology and Management
179:107-121.

Zeppel, M. J., W. R. Anderegg, and H. D. Adams. 2013. Forest mortality due to drought:
latest insights, evidence and unresolved questions on physiological pathways and conse-
quences of tree death. New Phytologist 197:372-374.

Zuidema, P. A.] E. Jongejans, P. D. Chien, H. J. During, and F. Schieving. 2010. Integral
Projection Models for trees: a new parameterization method and a validation of model
output. Journal of Ecology 98:345-355.

Zuur, A. F., E. N. Teno, N. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed effects
models and extensions in ecology with R. Statistics for Biology and Health, Springer New
York, New York, NY.

Zvoleff, A.; 2014. glem: Calculate textures from grey-level co-occurrence matrices (GLCMs)
in R. URL http://cran.r-project.org/package=glcm.



65

Appendix A

Number of Trees and Plots in Each
Compartment, and Number and
Length of Time Intervals

Compartment Plots Trees

210 4 31
211 2 21
220 20 123
221 1 60
292 27 176
310 5 22
390 7 58
510 9 104
600 7 18
630 4 68
650 3 8
651 1 1
652 1 1
Total: 91 691

Table A.1: Number of plots and trees in each compartment



APPENDIX A. TREES, PLOTS, AND TIME INTERVALS (CHAPTER 1)

Interval YearSpan Count
1984-1987 3 48
1977-1981 4 2
1976-1981 5 9
1979-1984 5 60
1980-1985 5 52
1993-1998 5 60
1998-2003 5 54
2004-2009 5 19
1976-1982 6 67
1978-1985 7 36
1994-2001 7 65
1985-1993 8 o6
1995-2004 9 122
1985-1995 10 21
1994-2004 10 262
1994-2005 11 8
1982-1994 12 74
1983-1995 12 1
1981-1994 13 75
1980-1994 14 56

Table A.2: Number and length of time intervals
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Appendix B

Measurement Methods and Auditing
of Explanatory Variables

This appendix details measurement methods for both tree diameter and the other covariates,
as well as how these data were audited for outliers or checked against other measurements
for accuracy.

B.1 Biotic Factors: Tree Size (Diameter) and
Competition (Basal Area)

Much of BFRS was logged and then burned to reduce surface fuels between 1900 and 1913
before the land was given to the University of California, Berkeley. A network of inventory
plots (0.04 ha) have been periodically sampled since 1976. All trees 11.4 cm DBH and larger
in the plot are tagged and measured with a diameter tape to the nearest 0.1 inch (0.254 cm).
Smaller trees (minimum size = 0.254 cm DBH) are tracked in subplots.

Different plots were measured in different years, giving rise to 20 different combinations
of start and end years for intervals (see Appendix A). This has resulted in measurements for
some trees having years in common and others not. There are three intervals (four censuses)
available for most trees. Altogether, the records span 34 years from 1976 to 2010. See Olson
and Helms (1996) for more detail on the sampling design.

I audited the data by identifying trees showing potential errors (negative growth, out-
liers, and inconsistent species identification or survival status). Records with obvious mis-
takes were corrected (e.g. erroneous species identification) and in some cases, discarded.
Outliers above and below three standard deviations were checked against growth chronolo-
gies developed from annual tree rings from BFRS (Battles, unpublished data). I discarded
records whose growth exceeded the maximum observed from the chronologies using a moving
ten-year window (approximately 1 cm/year increase in DBH). Applying this upper bound
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effectively removed all trees showing a presumably spurious increase in DBH of more than
10% during the interval. I therefore applied a -10% lower bound to match.

A total of 200 out of 5762 records (these numbers include all species) were corrected,
and 76 records were removed as outliers for white fir. Other than removing these records, I
kept trees showing negative growth in the dataset to avoid biased parameter estimates and
because I explicitly modeled observation error.

I calculated total basal area directly from the inventory data for all species for each
plot. T did not have individual tree locations and was therefore unable to use neighborhood
techniques (Canham et al. 2006) or spatially correlated random effects (Banerjee and Finley
2007, Finley 2011), but this aggregation of basal area by plot and year is a reasonable way
to represent the effect of competition on each plot (Lines et al. 2010).

B.2 Abiotic Factors: Insolation, Annual Water
Deficit, Topographic Slope, Elevation, and Soil
Type

I represented light availability using yearly insolation values calculated using ArcGIS 9.3
(solar radiation calculator, ESRI (2011)) from a 1/3 arc second digital elevation model from
the USGS Seamless Map Database (USGS 2011). These insolation values were checked
for consistency against values calculated from a local model using the Gap Light Analyzer
(Frazer et al. 1999), parameterized using measurements from a LiCor 2000 Pyranometer (as
in York et al. 2003, 2011). Both absolute and relative (solstice/equinox ratios) measurements
were consistent.

Moisture availability was represented using annual water deficit, which incorporates both
water supply (precipitation) and evaporative potential (temperature) (Willmott et al. 1985).
I used data on monthly precipitation and temperature from the Blodgett weather station
and day length (calculated from latitude) to estimate annual water deficit from 1963-2010.
From these data, I used AET 1.0 (Gavin 2007) to calculate the annual climatic water deficit
using the modified Thornthwaite method.

Elevation was measured from a topographic map to the nearest 10 feet (3.05 m). Slope
was measured to the nearest % in the field using a clinometer, averaging uphill and down-
hill measurements. The only categorical covariate included was soil type, which reflects
potential nutrient availability. Five soil types are found at Blodgett and all are reflected in
the reserve compartments. (Cohasset: Andesite parent rock with high development; Jocal:
metasedimentary parent rock; Holland & Holland-Musick: granodiorite parent with inter-
mediate development, Holland-Bighill: granodiorite with little development.) Cohasset soils
are typically more productive than the other types.
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Soil type, insolation, elevation, and topographical slope were measured at the plot level,
I assume that these do not change significantly from year to year. Annual water deficit was
calculated for every year, and basal area was calculated for each plot in each year.

For the analysis, all continuous explanatory variables, including tree DBH (size), were
centered (mean subtracted) and scaled (divided by standard deviation) before estimation.
This standardization was important to improve mixing of the models. For tree sizes, the
mean and standard deviation for standardizing were calculated from all measured sizes used
in the analysis, and the additional unmeasured (latent) sizes in the model were then defined
on this scale. Resulting parameter estimates related to size (DBH) were unscaled (multiplied
by standard deviation of size measurements) to provide better interpretability (see Appendix
C for algebra on standardizing and unscaling).
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Appendix C

Additional Details on Statistical
Model and Standardization of
Explanatory Variables

This appendix includes a more detailed version of the model specification, including explicitly
stating normal distributions for random effects, as well as the algebra for how the variables
were centered and scaled, and then later unscaled (but left centered) in the results.

C.1 Full Model Description

Recall that subscript 7 is for compartment, j is for plot, and k is for tree; superscript m
indicates one of several explanatory variables. The process model relating size at (¢t + 1) to
the other variables is:

xijk(t‘Fl)NN(azjk()"’B@]k i%k +Z’y —i—ZKJ Z %k ),UE) (C.1)

Zij 1s size, while zf;(t) are the other explanatory variables. These are measured at plot
and/or year level: insolation, topographic slope, elevation, and soil category are all measured

tsl - i .

at plot level, i.e. z’;“”l 2, zfjl-e”, and a group of five indicator variables representing a
¢’ H _HB _HM Jy . :

tree’s soil type (z Ziis Zijs Zig s Zij o, and zij) ; basal area is measured at plot and year level,

2P4(t); and annual water deficit is measured at year level, 2%/ (¢). The variables 2™, z, and

y are centered and scaled as detailed in the next section.

[ assume that size in the next year is a linear function of the z}%(t) and have parameters
for slope v and interaction with size ™. I also assume that size in the next year z;;(t + 1)
is a linear function of size in the previous year, x;;(t), with soil type-dependent slope and
intercept (e.g., for Cohasset: slope ac = Bix(t) + k© and intercept be = ayji(t) + 7). 1
report the average growth increment b and average effect of size on growth increment a — 1,
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which are weighted averages over soil types and for average values of explanatory variables.
Residual error, with variance o2, accounts for additional unexplained variation in growth.

At the next hierarchical level, I model the collective random effects on intercept aj(t)
and the random effects on size slope 3;;1(t) as a combination of random effects for tree (g},
and qg.k), plot (pf; and pfj), compartment (¢ and ), and year (w®(t) and w?(t)). The
intercept effects reflect differences in overall growth increment while the slope effects reflect
differences in growth as a function of size. The random effect intercept and slope for a specific
tree is determined by the random tree, plot, compartment and year effects as follows:

Qigi(t) = @ + ¢+ 0% + () Byn(t) = ay, + ¢ + P+ wP(2) (C.2)

The random effects for years, compartments, plots, and individuals follow normal distri-
butions,

w(t) ~N(0,02 ), ¢ ~N(0,0%.), p% N/\/'(O,aip), @ ~N(O,a§7q),

) o, w )Y a,e

WH(t) ~ N(0,03,), &~ N(0,03.), P~ N(0,0%.), gy ~ N (0,0%,) (D)

respectively. At each level of nesting, random effects are assumed to be independent.
z;jx(t) is not measured perfectly (a latent state), and so y;;x(t) is the size actually mea-
sured with some observation error:

Yijk(t) ~ N (24 (t), oDpw) (C.4)

C.2 Standardizing and Unscaling of Explanatory
Variables

One can combine equations C.1 and C.4 in a more algebraic form:

Yijk(t + 1) = agjie + Bijrurin(t) + Z Yz (t) + Z K25 (0@ (t) + €res + €obs (C.5)

recall that €,.s and €,s are normally distributed with mean zero and variance o2 and
£
035y, respectively)
One can expand this using equation C.2:
Vit +1) = g8 + ¢ + p% + we(t) + (quk +c +p+ wﬁ(t)) Zin(t) o

+ Z ’ymZZL(t) + Z "imZZL(t)xijk:(t) + €Eres T+ €obs
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In reality, I am estimating those slopes, intercepts, random effects, and random effect
standard deviations for standardized covariates. For true latent size x and measured size
y, I have standardized by subtracting the mean and dividing by the standard deviation for
the measured sizes y (i, and o,). I have done the same for the covariates 2 (with o m
and p,m). When I unscale (but leave the variables centered) for interpretation, each of the
continuous covariates will need to be unscaled by its respective standard deviation.

This is how I have scaled the original variables:

() = Tty () = vk gy zg ) pam (C.7)

Ty Oy () o,m

The equation I have estimated the parameters for is in the primed variables:

y;jk<t + 1) = qi]k + Ca/ +pa/ + de( ) + <q1]k + C +p1] + wﬁl( )) xl]k(t)

2O+ DR Orilt) + et i 9

Therefore, I wish to know the relationship between these primed parameters and equa-
tions in unscaled variables. When I unscale the covariates, I only wish to multiply by the
standard deviation to restore the units of each covariate. I leave the variables centered, such
that interpretation of the parameter estimates refers to the covariates at their mean values.
Thus, I want an equation in the following double-primed variables:

x;/]k(t) = Tk (t) — iy ?/;;k(t) = Yiji(t) — Hy Z;?(t)” = ZZL(t) — Hzm (C.9)

First I write the equation whose parameters I estimated (equation C.8) in terms of the
unprimed original variables:

/ / / oo (B — 11,
yz]k(t-i-l) Hy :q”k +Ca/+pa/+w (t)—|— (qgk —|—c.6 +pi6j —|—w5/(t)) ]kg iy

T SRIUETINS e ST U

+ €res + €obs
O,m

Substituting z”, y” and z™” into the primed equation, I have:

—1 1"
y”kcf?) %ijik +0a'+P“'+w (t) + <qz]k + 4+ w(t )> nat
m // m
E: i ik () Z Lk (£) ) Zigy (t) (t) e (C.11)

Now, multiply through by o,:
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Yt 1) = oy (a5 + \ N w' () + oy (g + '+ o)+ (1)) 220
m/l

t) 27" (t C.12
+O_yz m/ l] + Z m/ ’ij‘() ()—i—o'ye;es—i—o'ye;bs ( )

zm

After canceling o, explanatory variable slope and intercept parameters scaled as follows:
aijk”(t) _ Uyaijk/(t) ﬁijk”(t) — 6zjk/(t) ,.)/m/l _ Jz_gin,ym/ K,m” _ %Lm/_im/ (C13)
Observation error and residual error epsilons scale like intercepts:

" _ / 7 _
€res = OyCres Cobs = Oyt obs (014)

Random effects scale as follows (slope effects re unscaled, intercept effects are multiplied
by size standard deviation o,):

watﬂzawat/, M=o, pt =0 S =0 )
é ) " Y B ( /) ! 5// yB;L pz]ﬁ " ypz/] ql]kﬂ 2 y%zgk (015)
w (t) =w (t) ) p’Lj - pl] ) qz]k = qz]k

o 2 2 2 2
; I assume that standard deviations for random effects (i.e. 07, 03 ,, 04, 03 4, 02 05,

T ps O'z,p, equation C.3) scale in the same manner as the random effects themselves, which
I confirmed through simulations (not shown).
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Appendix D

Details on Model Estimation and the
Evaluation of Model Results

This appendix gives details on model estimation and the evaluation of model results, includ-
ing specification of priors and selection of initial values for chains, results of Gelman-Rubin
convergence assessments; comparisons of posteriors and priors; and tradeoffs between obser-
vation and residual standard deviations.

D.1 Prior Specification

All but one of the priors used in estimation of the model were uninformative. Uninformative
priors for means were a normal distribution with a high standard deviation (low precision:
1.0e-6) and for standard deviations, uniform priors over the range [0,100]. The first latent
size of each tree was given a non-informative (normal, low precision) prior.

For the observation error, I observed very poor mixing for priors which allowed small
values (including zero), as the system struggled to move away from the scenario in which the
latent states exactly matched the observations. The resulting observation error posteriors
were sensitive to the degree to which the priors excluded small values (Figure D.1).

Because some observation error is certainly present in my system, both due to the pre-
cision of the diameter tape and due to bark loss and human error, I chose two different
reasonably flat, otherwise uninformative priors with a nonzero lower limit. I chose this lower
limit based on the rounding error inherent in the diameter tape, which I considered to be a
minimum. Reasoning that the 0.1 inch increment labeled on the tape leads to true observa-
tions that are 0.05 inches in either direction being uniformly attributed to the mark on the
tape in the center of that interval, and assuming x is the truth, while y is the measurement,
I have:
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Yy=x+u

u ~ uniform(—a/2,a/2) (D.1)

(Where a = 0.1) I am essentially taking the case where the only error is due to rounding
on the tape to mean that ey, ~ uniform(—a/2,a/2). To establish the correct standard
deviation associated with this model for observation error (to then use as a lower bound in
a prior for this node in the larger model), I turn to the definition of the uniform distribution
from —a/2 to a/2:

f(u):{l/a’ for —a/2 <wu<a/2 (D.2)

0, otherwise

And the definition of variance as the second central moment:

Viu] = f_% u? f(u)du

a
2

Vi = «'1 _ (D.3)
2 732
Viu] = 53 —, 2
Viu =%

So, the standard deviation is a/v/12. Plugging in a = 0.1 and converting from inches to
my standardized scale, I have the lower limit for the standard deviation set at 0.0036. For
my two candidate priors, I therefore use a uniform distribution from [0.0036, 100] on the
observation error standard deviation and a gamma prior with shape and rate (.01,0.0001) on
the observation error precision. These parameters for the gamma on precision gave rise to a
threshold in the standard deviation at approximately the right location. The gamma prior
on the precision results in an inverse gamma prior on the standard deviation.

I also tried a uniform prior on observation error standard deviation from [0,100] on a
simplified model with several covariates left out (elevation, insolation, and annual deficit),
which has the effect of allowing values as low as zero (and which mixes slightly better
due to the simpler covariate structure). Finally, I tried a gamma with shape and rate
(0.0001,0.0001), which has the effect of excluding values below 0.005 on the standardized
scale (Figure D.1).
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Observation Standard Deviation:
Several different priors
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Figure D.1: Four different models with different observation error opgy priors. The blue,
black, and green lines are priors (dashed) and posteriors (solid) for the full model described
in Appendix C; the red lines are for a reduced model which does not include annual water
deficit, elevation, or insolation, but is otherwise similar to the other models. The green and
black posteriors correspond to gamma priors, and the red and blue to uniform priors. The
priors (dashed lines) have been multiplied by powers of ten in order to be visible on the
same scale as the posteriors; they are not all multiplied by the same factor in order to be
visible alongside each other as well. Note that the green gamma prior results in a much more
quickly increasing allowance of small values, hence the position of the green posterior closer
to zero than the black posterior. Similarly, note that the red posterior (corresponding to the
prior which does not exclude zero) is very close to zero, while the blue posterior is very close
to the diameter tape-based lower limit established above, which is shown in a dashed black
vertical line. The model and estimation procedure biases the observation error as close to
zero as it is allowed to be.
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Though these appendices do not include chains for all the models, the general behavior
was that mixing was better the higher the threshold of exclusion (the more small values
excluded). The lower the threshold, the worse the mixing. So mixing was best with the
inverse gamma with equal shape and rate, and worst for the uniform prior allowing zero
values.

This can be interpreted to mean that the observation error cannot truly be estimated
with my model, data, and MCMC sampler (OpenBUGS); but for the results in Chapter 1 I
chose the uniform prior with the cutoff at 0.0036 because it is reasonable to assume at least
some observation error is reasonable and will improve other estimates.

D.2 Estimation

OpenBUGS was run through R using R2WinBUGS (Sturtz et al. 2005) long enough to
achieve sufficient mixing. The results in chapter 1 are from a five day run on a Dell Studio
XPS with an Intel Core i7 CPU, 2.93 GHz (4 cores) and 12 GB of RAM, running 64-bit
Windows Vista Ultimate. In order to use R2ZWinBUGS, I had to use the 32-bit version of R.
See online supplement for model code, data, and initial values and Figure D.2 for trace plots
of MCMC chains. With the included supplements,! it is possible to reproduce my parameter
estimates, though the MCMC may need to be run for several weeks depending on computer

speeds. 95% credible intervals were calculated using the “coda” package (Plummer et al.
2010).

D.3 Initial Values

Due to slow mixing, randomly generated initial values from BUGS tended to produce chains
that would not converge. Thus, initial values were primarily generated from interpolating
the sizes of trees using smoothing splines between inventories (Wood 2006) and fitting linear
mixed effects models for random effects using R package “1me4” (Bates and Maechler 2010).
For the two chains used to test convergence, initial values were generated by adding a small
amount of randomly generated variation to the original initial values (normal in the case of
the slopes and intercepts, uniform in the case of the variances).

D.4 Assessment of Convergence: Gelman-Rubin
Statistics and Trace Plots

Assessing the mixing and convergence of chains is central to MCMC. If a chain is not mixing
and has not converged, then the results are not interpretable. Gelman-Rubin diagnostics

! Available at Ecological Archives: http://www.esapubs.org/archive/appl/A023/067/
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require running multiple chains and comparing them to assess convergence through a plot or
single diagnostic value. These functions are built into OpenBUGS; I do not show the plots
here but do display the convergence statistics, which should be close to 1 (Table D.1). T also
give examples in Figure D.2 of some of my trace plots which show the actual values in the
chains. In this case, the analyst is looking for a lack of pattern in the trace: no trends and
a trace that looks like noise. Based on the Gelman-Rubin diagnostics and my trace plots, I
conclude that mixing is adequate.

Name PointEstimate UpperCrediblelnterval
res.sd 1.00129 1.00611
obs.sd 1.00028 1.00156
i.overall 1.0049 1.02105
s.size 1.0005 1.00072
i.year.sd 1.00633 1.03022
i.tree.sd 1.00004 1.00006
i.plot.sd 1.00015 1.0008
i.comp.sd 1.00396 1.00886
s.year.sd 1.00259 1.01073
s.tree.sd 1.0281 1.07996
s.plot.sd 1 1.00005
s.comp.sd 1.00029 1.00149
s.slope 0.999966 0.999998
s.ba 1.00008 1.00059
soil.mean 1.00418 1.00423
s.anndef 1.0018 1.00714
int.size.ba 1.00001 1.00012
int.insol.anndef 1.0036 1.00934
s.elev 0.99999 1.00006
s.insol 1.00046 1.00238
int.size.insol 1.00073 1.00326
int.size.slope 0.999984 1.00002
int.size.elev 0.999958 0.999959
int.size.anndef  1.02702 1.11724
int.size.soil 1.00132 1.0006
deviance 1.00029 1.00164

Table D.1: Gelman-Rubin statistics for tracked nodes. Names of variables are internal to the
model. “s” refers to a main effect 4" for a covariate 2™, or to a slope random effect standard
deviation os; “int.size” refers to interactions k™ between size x and covariates 2™, and “i”
refers to an intercept random effect o, or to the overall mean for Cohasset soils, “i.overall”
(79). See supplement for model code, where these names are used.
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Figure D.2:
parameters.
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Trace plots showing the “white noise” behavior indicative of good mixing for six
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D.5 Comparison of Posteriors and Priors: Bayesian
Learning Figures

One way to assess the information in the data and the relative influence of the priors is
to compare posterior distributions for parameters with their prior distributions and initial
values. All but one of my priors (observation error) are uninformative, and the posteriors
and priors for that estimate are shown in Figure D.1. All the other posteriors are clearly
distinguished from their priors. Initial values, especially for the standard deviations, are
typically clearly outside the main support of the posterior (the range of values where the
posterior is concentrated), indicating that sensitivity to initial values was minimal within
this range. The posteriors for both chains tend to overlap. When the initial values are
very different from the posteriors, the two chain posteriors are indistinguishable due to their
overlap.

Figure D.3 shows residual error and observation error standard deviations, Figures D.4
and D.5 show random effect standard deviations, and Figures D.6 and D.7 show covariate
main effects and interactions with size.

D.6 Tradeoff Between Observation and Residual
Standard Deviation

Observation standard deviation and residual standard deviation, while mathematically iden-
tifiable, can be weakly identifiable in practice, depending on the prior used for the observation
error. For more informative priors (with a higher threshold, excluding a wider range of small
values), these two nodes in the model do trade off in the MCMC. Figure D.8 shows MCMC
samples from the two variables exhibiting this tradeoff, that when one node becomes larger,
the other becomes smaller (they are slightly inversely related), but this effect is most pro-
nounced in the model with the gamma prior with equal shape and rate. This correlation
between observation and residual error is not extreme, however: the tradeoff is never so large
that one node goes to zero when the other node is large, not even in the model where this
tradeoff is most pronounced.



APPENDIX D. MODEL ESTIMATION AND EVALUATION (CHAPTER 1) 81

Bayesian learning plot for observation error
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Figure D.3: Bayesian learning figures for observation error opgy and residual error o.. Priors
in the observation error figure have been multiplied by 100 for visibility. The details of the
priors for observation error are difficult to discern (See Figure D.1 for a closer look), but the
initial values can clearly be quite large and the model will still converge to values close to
zero. The red and black are two different chains; posteriors are shown with corresponding
initial values as vertical lines in matching colors. Priors are shown in magenta (uniform), or
blue (gamma). All posteriors are given on the standardized unitless scale. The two chain
posteriors are indistinguishable due to their overlap on both figures, even with the different
priors on observation error.
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Plot Intercept Random Effect
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Figure D.4: Bayesian learning figures for plot and compartment intercept random effect
standard deviations (o,, and o,,.). The red and black are two different chains; posteriors
are shown with corresponding initial values as vertical lines in matching colors. Uniform
prior is shown in magenta. All posteriors are given on the standardized unitless scale. The
two chain posteriors are indistinguishable due to their overlap for the plot intercept standard
deviation.
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Tree Intercept Random Effect
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Figure D.5: Bayesian learning figures for tree and year intercept random effect standard
deviations (0,4 and 04.,4,). The red and black are two different chains; posteriors are shown
with corresponding initial values as vertical lines in matching colors. Uniform prior is shown
in magenta. All posteriors are given on the standardized unitless scale. The two chain
posteriors are indistinguishable due to their overlap for the tree intercept standard deviation.
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Insolation main effect
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Figure D.6: Bayesian learning figures for insolation main effect ~

and size interaction
ksl The red and black are two different chains; posteriors are shown with corresponding
initial values as vertical lines in matching colors. Normal prior is shown in green. All

posteriors are given on the standardized unitless scale.
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Basal Area Main Effect
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Figure D.7: Bayesian learning figures for basal area main effect v** and interaction with size
k%®. The red and black are two different chains; posteriors are shown with corresponding
initial values as vertical lines in matching colors. Normal prior is shown in green. All

posteriors are given on the standardized unitless scale.
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Figure D.8: Scatterplots of MCMC samples for residual standard deviation o. and observa-
tion standard deviation opgy for four different models with different observation error priors.
Contour lines are 95% credible contours (Bolker 2012). Cyan is the model with a gamma
prior with unequal shape and rate; red is the model with a uniform prior with a nonzero lower
bound (clearly visible!); blue is the model with a gamma prior with equal shape and rate;
and green is the simplified model (missing annual water deficit, insolation, and elevation)
with a uniform prior including zero. Clearly the tradeoff between residual and observation
error is affected by the prior chosen for observation error, and how close it is allowed to get
to zero.
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Analysts should watch for these kinds of tradeoffs in their models as well. In this case,
the tradeoff relationship means that when observation error standard deviation is estimated
with different priors, residual standard deviation is affected, though not extremely so: the
biggest differences in mean estimates for residual standard deviation in the four models is
0.001 on the standardized scale, or about 0.02 cm (Figure D.9), and the significance of the
parameter does not change (it is still well separated from zero). In fact, it is a mark of the
robustness of the residual standard deviation estimate. Despite this tradeoff relationship
with observation error, the residual error estimate does not change substantially when the
observation error standard deviation does. None of the other parameters in the model are
affected by observation error’s prior.
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Figure D.9: Posterior estimates for residual standard deviation o, for four different observa-
tion error posteriors. Cyan is the model with a gamma prior with unequal shape and rate;
green is the model with a uniform prior with a nonzero lower bound; black is the model with
a gamma prior with equal shape and rate; and red is the simplified model (missing annual
water deficit, insolation, and elevation) with a uniform prior including zero. Vertical lines
are means for each posterior.
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Fixed continuous
covariate effects

Parameter Intercept Mean Slope Mean
Insolation -0.001 (-0.003, 0.001) 0.001 (-0.001, 0.003)
Elevation 0 (-0.003, 0.003) -0.001 (-0.003, 0.002)
Annual water deficit 0.002 (-0.008, 0.012) 0.001 (-0.005, 0.007)
Topographic slope -0.002* (-0.005, 0) 0.001 (-0.001, 0.002)
Basal area -0.009* (-0.012, -0.007) -0.002 (-0.004, 0.001)
Average size 0.023* (0.016, 0.029) 0.01* (0, 0.02)
Fixed soil effects
Cohasset 0.031* (0.02, 0.041) 0.013* (0.006, 0.02)
Holland 0.02* (0.013, 0.027) 0.008 (-0.003, 0.019)
Holland-Bighill 0.024* (0.017, 0.032) 0.012* (0.002, 0.022)
Holland-Musick 0.015* (0.004, 0.027) 0.005 (-0.008, 0.018)
Jocal 0.037* (0.02, 0.055) 0.006 (-0.028, 0.037)
Random effects
Parameter Intercept Mean Slope Mean
Year 0.012* (0.004, 0.021) 0.006 (0, 0.013)
Compartment 0.006 (0, 0.013) 0.002 (0, 0.005)
Plot 0.006* (0.005, 0.008) 0.005* (0.003, 0.006)
Tree 0.007* (0.006, 0.008) 0.001 (0, 0.003)

Table E.1: Parameter point estimates (means) and 95% credible intervals. Asterisks indicate
parameters which are significantly separated from zero. For random effects, which can never
overlap zero, I use ratios of the lower credible bound to the width of the credible interval
to represent a posterior’s separation from zero, shown in table E.2. For parameters which
could overlap zero in theory (e.g. soil and other fixed effects), I consider parameters which
either do not overlap zero at all or have a credible bound exactly at zero to be significant.
All values given are on the standardized, unitless scale. Soil effects are marked significant
if they individually do not overlap zero; some which are not marked significant may also be
significantly different from each other; pairwise comparisons are not shown here. Note that
here a mean is reported for each soil, which matches Figure 1.1, but in the code to estimate
the model Cohasset was used as a reference and estimated differences from Cohasset for the
other four soils.
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Intercept SD  Slope SD

Year 0.2275* 0.0002
Compartment 0.0008 0.0001
Plot 1.5175* 1.1700*
Tree 3.7637* 0.0036

Table E.2: Ratios of lower credible bound to credible band width for random effect standard
deviation parameter estimates, used to determine significance of these parameters (significant
parameters marked with asterisks). Because they cannot overlap zero, this metric can be
used to capture a posterior’s separation from zero. Several parameters have posteriors (and
MCMC chains) that are clearly attracted to zero, while others are clearly stable away from
zero. This ratio captures this behavior, with the significant parameters having both a high
lower credible bound and a narrower credible interval.
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Figure F.1: The latent states x of nine trees sampled from the model are shown below
with 95% credible intervals to show that the estimates give positive growth with no other
constraints, and that the credible bands tighten up in the neighborhood of measured data
points (as in Clark et al. 2007). Note that for smaller trees, the credible bands are wider
and point estimates do show the potential for negative growth; the estimation procedure is
less precise for slower growth. For white fir, there are 60 trees out of 691 that are 3 cm or
smaller at the beginning of the inventory, so this is fewer than 10% of the trees in the model.
The remaining trees show reasonable point estimates for annual growth increments. These
results are from the model with a gamma prior on observation error with equal shape and

rate, which gives the largest estimates for observation error.
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Appendix G

Examples of Simpler Models

To test the robustness of the parameter estimates for basal area and topographic slope, I
estimated simpler models omitting other covariates. I tried various combinations of omitting
significant or not significant covariates, and checked the two observation error priors which
give the most different observation error estimates to see if these different priors affected
other parameter estimates. When a covariate was included, both the main effect and the
interaction was included, and likewise when it was removed from the model. The models I
used are shown in Table G.1, which indicates which variables were included or omitted. See
Table G.2 for point estimates (means) of parameters in different models; see Figures G.1
through G.5 for posteriors for selected cases.

>

’ModelNumber\TD\B \TS\SE\WD\E\I\ OEP‘

Model 1 X | X | X | X ]| X | X|X|UPNZ
Model 2 X | X | X | X UPZ
Model 3 X | X | X | X GP

Model 4 X | X X X | UPZ
Model 5 X | X | X | X ] X UPZ
Model 6* X | X | X | X ] X UPZ

Table G.1: Which variables are omitted or included in simpler models. TD = tree diameter;
BA = basal area; TS = topographic slope; SE = soil effects; WD = annual water deficit; E
= elevation, I = Insolation; OEP = Observation Error Prior: UPNZ (uniform prior, no zero
allowed - the prior used in Chapter 1), UPZ (uniform prior, zero allowed), GP (gamma prior
with equal shape and rate). *Model 6 differs from Model 5 in that Model 6 has had its year
random effects removed.

Note that all models contain tree diameter, basal area, and soil effects, and are omit-
ted from figure legends below. In general, parameter estimates are quite robust. Comparing
models 2 and 3 (same covariates, different prior for observation error) shows that the changes
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’ Parameter ‘ Model 1 ‘ Model 2 ‘ Model 3 ‘ Model 4 ‘ Model 5 ‘ Model 6 ‘
Plot Intercept Effect 0.006 0.006 0.006 0.006 0.006 0.006
Plot Slope Effect 0.005 0.005 0.005 0.005 0.005 0.005
Tree Intercept Effect 0.007 0.007 0.007 0.007 0.007 0.006
Tree Slope Effect 0.001 0.001 0.001 0.001 0.001 0.001
Comp. Intercept Effect 0.006 0.006 0.007 0.008 0.006 0.006
Comp. Slope Effect 0.002 0.002 0.002 0.002 0.002 0.002
Year Intercept Effect 0.012 0.108 0.104 0.1 0.012 X
Year Slope Effect 0.006 0.006 0.005 0.005 0.006 X
Cohasset Main Effect 0.031 0.029 0.034 0.029 0.031 0.033
Cohasset-Size Int. 1.013 1.013 1.013 1.013 1.013 1.013
Basal Area Main Effect | -0.009 -0.01 -0.01 -0.009 -0.009 -0.008
Basal Area-Size Int. -0.002 -0.002 -0.002 -0.002 -0.002 -0.002
Insolation Main Effect -0.001 X X 0 X X
Insolation-Size Int. 0.001 X X 0 X X
Top. Slope Main Effect | -0.002 -0.002 -0.002 X -0.002 -0.002
Top. Slope-Size Int. 0.001 0 0 X 0 0
Water Def. Main Effect 0.002 X X X 0.003 0.001
Water Def.-Size Int. 0.001 X X X -0.001 0.001
Elevation Main Effect 0 X X X X X
Elevation-Size Int. -0.001 X X X X X
Obs. Error 0.005 0.003 0.013 0.002 0.003 0.004
Residual Error 0.019 0.019 0.018 0.019 0.019 0.024

Table G.2: Parameter point estimates (means) for model parameters from different models.
“X” indicates that variable is not in the model. Most estimates are stable across models; see
Figures G.1 through G.5 for posteriors for some nodes which shift considerably when other
variables are removed from the model.

in priors for observation error do not affect other parameter estimates (Figures G.2, G.3, and
G.4). While some parameters show some shifts when others are removed, the significance of
the estimates is not changed, and the shifts are typically quite small (don’t change the point
estimate much). For example, when comparing model 2 (with topographic slope included
and insolation excluded) and model 4 (insolation included and topographic slope excluded)
with model 1 which includes them both (Figures G.4 and G.5), topographic slope remains
significant when insolation is removed and insolation remains not significant when topo-
graphic slope is removed; it did not take up the variation unaccounted for by the removal of
topographic slope.

The only exception was the tradeoff between annual water deficit and intercept year
effects: when annual deficit was removed from the model (Models 2, 3, and 4 as compared
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with 1 and 5), the year intercept value was consistently an order of magnitude higher. So
even though the annual deficit does not appear significant (overlaps zero), it clearly has
explanatory power (Figure G.2). Model 6 omitted the year random effects, and annual
deficit still did not become significant though its estimate was shifted slightly and improved
in precision (the posteriors were less broad; compare with Model 5 (Figure G.1). All other
estimates are unaffected by the removal of other covariates in these simplified models.

All results in these figures are on the standardized unitless scale.
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Figure G.1: Removing year random effects o, ,, and o3, tightens up the estimates for annual
water deficit and shifts them slightly; however, annual deficit does not take up significant
explanatory power (still overlaps zero). (Upper) Main effect for annual water deficit 9¢/.
(Lower) Interaction between size and annual water deficit %/,

TS = topographic slope; WD = annual water deficit; E = elevation, I = Insolation; Obser-
vation Error Prior: UPNZ (uniform prior, no zero allowed — the prior used in Chapter 1),
UPZ (uniform prior, zero allowed), GP (gamma prior with equal shape and rate).
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Year Intercept Random Effect Standard Deviation
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Figure G.2: (Upper) The models which lack annual water deficit all have a higher estimate
for the year intercept random effect standard deviation o, ,,. Though annual water deficit’s
parameters overlapped zero significantly, at least the main effect 7¢/ does seem to have some
explanatory power, because the random effect is taking up some variation from it. The year
random effect is still significantly separated from zero when annual deficit is in the model,
implying that there is other year-to-year variation that annual deficit does not account for.
(Lower) An example of a parameter which is unchanged regardless of other covariates are
included or not: the tree size main effect for Cohasset soil x°.

TS = topographic slope; WD = annual water deficit; E = elevation, I = Insolation; Obser-
vation Error Prior: UPNZ (uniform prior, no zero allowed — the prior used in Chapter 1),
UPZ (uniform prior, zero allowed), GP (gamma prior with equal shape and rate).
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Figure G.3: For basal area, the removal of other covariates does not change the parameter
estimates much. (Upper) The main effect of basal area on tree growth 7 is affected only
slightly by the removal of various other covariates. Differences in means for different models
are no larger than 0.0008 (on the standardized scale). (Lower) There is very little difference
in basal area’s interaction with size x*® parameter for models with different covariates in-

cluded.

TS = topographic slope; WD = annual water deficit; E = elevation, I = Insolation; Obser-
vation Error Prior: UPNZ (uniform prior, no zero allowed — the prior used in Chapter 1),
UPZ (uniform prior, zero allowed), GP (gamma prior with equal shape and rate).
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Main effect of topographic slope on growth
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Figure G.4: For topographic slope, removal of other parameters does not change parameter
estimates much. (Upper) The estimate of the main effect for topographic slope 7'*/P¢ is quite
robust both to priors used for observation error and to removal of annual deficit, insolation,
and elevation. (Lower) The same is true for the interaction of topographic slope with size
I{tslope'

TS = topographic slope; WD = annual water deficit; E = elevation, I = Insolation; Obser-
vation Error Prior: UPNZ (uniform prior, no zero allowed — the prior used in Chapter 1),
UPZ (uniform prior, zero allowed), GP (gamma prior with equal shape and rate).
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Main effect of insolation on growth
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Figure G.5: The estimate for insolation parameters is robust to removing other covariates
(topographic slope, elevation, annual water deficit); it does not become more significant (less
overlap of zero) when it is in the model and topographic slope is not: it doesn’t take on
explanatory power. (Upper) Main effect of insolation on growth +*; (Lower) Interaction
of growth with size .

TS = topographic slope; WD = annual water deficit; E = elevation, I = Insolation; Obser-
vation Error Prior: UPNZ (uniform prior, no zero allowed — the prior used in Chapter 1),
UPZ (uniform prior, zero allowed), GP (gamma prior with equal shape and rate).
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Appendix H

Comparison of Conditions at Blodgett
Forest Research Station (BFRS) with
Forest Inventory and Analysis (FIA)
Data

Comparing slope, elevation, and insolation at BFRS with ranges derived from Forest Inven-
tory and Analysis (FIA) plots from 37.87718 to 39.97781 in latitude (USDA Forest Service
2011) and restricted to “California mixed conifer” vegetation type, one can see that BFRS
represents a small fraction of elevation (only approximately 8 %) and insolation (only ap-
proximately 6 %) conditions for white fir and represents a somewhat larger fraction (approx-
imately 52% of the variation from the FIA plots) of topographic slope conditions, but still
not by any means a representative set of conditions for the mixed conifer forest type in this
latitudinal range in CA.

Annual water deficit values for the years of the inventories represent 82 % of the variation
seen since 1985 from PRISM data (PRISM Climate Group 2011), and Blodgett is typically
wetter than other sites. For example, annual water deficits averaged 176 mm at BFRS
between 1976-2009, and a study by van Mantgem and Stephenson (2007) reported deficits at
BFRS between 200 and 250 mm. Thus water supply may not be as strong a limiting factor
for the trees in this study. In addition, as Clark et al. (2011) showed, tree fecundity (rather
than growth or survival) was the most sensitive demographic parameter to climate.

Different basal area conditions, on the other hand, are well represented at BFRS, with
the ranges of values comparable to those in the FIA plots.
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Appendix 1

Abundances of All Species in
Inventory and Plot Basal Area and
Water Deficit Analysis

Code Species Name Common Name Trees Plots Years Records
All - All Species 3319 109 34 9000
IC Calocedrus decurrens incense-cedar 1378 98 34 3733
WF Abies concolor white fir 846 93 34 2224
DF Pseudotsuga menziesii Douglas-fir 395 69 34 1110
PP Pinus ponderosa ponderosa pine 332 75 34 955
TO  Notholithocarpus densiflorus tanoak 110 15 25 284
BO Quercus kelloggii black oak 104 29 34 292
SP Pinus lambertiana sugar pine 101 39 34 271
YW Taxus brevifolia Pacific yew 18 2 24 42
CH Chrysolepis spp. chinquapin 16 5 29 43
DW Cornus nuttallii Pacific dogwood 9 3 11 18
AL Alnus spp. alder 7 3 24 21
MD Arbutus menziesii Pacific madrone 3 2 25 7

Table I.1: Species abundances, number of records, and number of deaths. This table includes
information on the subcanopy species as well as the canopy species included in the paper.
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Plot Basal Area vs Year
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Figure I.1: Plot basal area for each plot at each time. Trend line is for a linear mixed model
with plot as a random effect and year as a fixed effect.

1.1 Plot Basal Area and Annual Water Deficit
Analysis

To test for a trend in plot basal area, I fit a linear mixed model with a fixed effect for time
and a random effect for plot (using “lme” in package “nlme”; Figure I.1). The time trend was
significant: 0.567 m?/ha/year, p = 1.85¢-18.

To get a sense of the variation due to year as compared to the variation due to plot, I
also fit a model with a random effect for year and a random effect for plot (using “Imer” in
package “lmed”, Bates and Maechler 2010). Plot variation is much higher than year variation
for plot basal area: the standard deviation of year in this model was 7.9, and for plot was
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Annual Climatic Water Deficit vs Year

o
o _|
-
—~ 1]
S
S
N
5 o
[®)
= 0 _|
()N
Q |
| .
0]
=
@
= o
o &
© |
£
O
= O
S © _
c 9
c
<
o
o _|
v

I I I I I I I I
1975 1980 1985 1990 1995 2000 2005 2010

Year

Figure 1.2: Annual climatic water deficit by year. Trend line is for a linear model with year
as predictor.

24.7. This helps to explain how an effect can be estimated for plot basal area, a random
effect for plot, and a time trend, all in the same model: there is enough variation in each
component to provide information about each of these effects.

The trend for annual climatic water deficit is small and not significant: -1.06 mm/year,
p=0.29(Figure 1.2). More negative deficits indicate a more stressful environment.
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Appendix J

Estimating Missing Sizes

When the field crews encounter a dead tree, they have no way of knowing when it died in
the intervening time since the last survey, and the size is recorded in the database as zero.
Because tree size is interpolated to create a yearly individual-level variable for the survival
models, sizes are needed for all trees in all years. When a tree is measured more than twice,
the size at potential times of death can be interpolated from those other sizes, but when the
tree is measured once and then dies, only one size is available to be interpolated. Therefore,
I need a way to estimate that missing size in order to interpolate.

I tried three strategies to address these missing sizes: 1) exclude the trees; 2) use a naive
linear model for the trees which do have multiple sizes to estimate the growth as a function of
size, averaging over census intervals, and predict the missing size; and 3) use the results from
another state-space model for growth, which is designed to estimate missing sizes (Eitzel
et al. 2013). Strategy three was explored only for white fir.

Note that the ideal solution is to jointly estimate the missing size and the missing survival
status in each year, but such a joint estimation is beyond the scope of this project. In the
case of modeling growth, where size at the previous time predicts size at the next time (Eitzel
et al. 2013), interpolating or estimating missing sizes as a separate step would be much more
statistically questionable than it is here. In this case, the size is a predictor of mortality,
not both a predictor and response variable. Thus the estimation and interpolation introduce
minimal error into the models.

Method 1 had disastrous consequences. Excluding these trees biases results (because only
dead trees, and no live trees, were eliminated). Eliminating many dead trees left the annual
mortality rates unrealistically low (less than a percent per year, when correct estimates range
between 1.21 and 2.3 % (see Table L.1). Spurious climate trends emerged for many species
and the species-specific stories described in Chapter 2 disappeared.

Methods 2 and 3 produced similar final sizes. Examination of posterior sensitivity showed
that the methods did not change most parameter estimates at all; the only parameters which
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were affected were, predictably, the linear and quadratic size factors. However, no choice
for a missing size estimation method changed whether these two parameters were selected
during the model selection procedure. Because the two methods gave similar results, and
estimating a state-space model for missing sizes for each species is also beyond the scope of
Chapter 2, I elected to use Method 2 for the models in this paper.
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Appendix K

Model Details and Algebra For
Standardization and Rescaling
Parameter Estimates (Survival

Model)

K.1 Model Details

Existing work on hierarchical models for tree mortality in second growth systems typically
adopts an annual compounding framework to account for uneven census intervals (Hurst
et al. 2011, Peng et al. 2011, Thorpe and Daniels 2012, Luo and Chen 2013, but see Yang
and Huang 2013). This formulation makes incorporating yearly variables difficult. One
solution has been to use a single average value for the predictor for a given census interval,
but tree mortality responses may track yearly variation in variables and thus mortality trends
may not be detected if the representative variable cannot be modeled at the yearly level.
Hierarchical state-space models (Metcalf et al. 20095, Clark et al. 2012, Csilléry et al. 2013)
address these challenges by explicitly modeling the latent unmeasured survival status of the
tree in each year; then a yearly climate variable as well as yearly stand development variables
can be directly included.

The fullest model is specified as follows:

2ij(t + 1) ~ Bern(¢;(t)zi;(t))
logit(¢i;(t)) = Bo, + Y _ Bl (t)
k

BOj = b+p]
by ~ N(anﬁ)

(K.1)

where z;;(t+1) is the alive/dead status in year ¢+1 (0 is dead) and ¢;;(t) is the probability
of survival for tree 7 in plot 7 from year ¢ to year ¢t + 1. Multiplying by the status at the
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previous time ensures that dead trees stay dead. [, is an intercept, with a mean intercept b
and an intercept random effect due to plot p;, which are normally distributed with variance

2. k indexes one of the explanatory variables. Insolation (}**'), topographic slope (x;l"p ),

J
and elevation (25'*) are all measured at plot level; plot basal area (2*(t)) is measured at

plot and year level; tree size (z2P(t)) is measured at the tree and yéar level; and annual
water deficit is measured at year level (z%/(t — 1)). In order to test for a time trend I also
include the measurement year = = ¢t among the linear predictors in some models. The S*
are coefficients for each of these explanatory variables. To allow a more flexible mortality
relationship with size, both a linear (8°P") and quadratic (3P57°) term for tree diameter

are included.

A note on estimation: in order to ensure that the prior for mean survival b is flat on the
probability scale, it must be specified in the following way in BUGS:

> i.overall<-logit(li.overall)
> li.overall~dunif (0, 1)

Where i.overall is b, and 1i.overall is the inverse logit (“expit”) of b. See Buoro et al.
2012 for more details on ensuring flat priors on the probability scale. I adopt their method
only for the intercept b and not for the 5*s because doing so resulted in very slow mixing
and did not appreciably change parameter estimates.

See Figure K.1 for a graphical representation of the model.
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Hyperparameter

Plot-Level Variables

zj(t+1)

=//7 Year-Level Variabies

. ~

Xdef(t -1 ) Xdef(t)

(V)
(t-1) Q ) (t+1)

Plot/Year—Level Variables
XAt- 1 = = 3= = = { XPA) F = = 3 = = 3Ot 1)

Figure K.1: Diagram of the state-space model. Data are indicated in rectangles, with pa-
rameters and latent states to be estimated indicated in ellipses. Colored arrows indicate
multiplication of data (rectangle) by a parameter (typically 3, labeled circles) to be summed
in the linear predictors for z. The black arrows indicate the process portion of the model
wherein the current survival status is conditional on the previous survival status: if a tree is
dead at time (¢ — 1), it remains dead at time ¢. This diagram is for tree i in plot j; imagine
another such diagram for every tree in the inventory. Each linear predictor coefficient [ is
only labeled once, but every arrow of the same color also indicates that parameter. Note
that are depicted as z;;(t — 1) and z;;(t + 1) as known states — observations — and z;;(t) as
an unknown latent state to be estimated. Dashed black lines indicate variables which have
been interpolated.
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K.2 Standardizing Explanatory Variables

Original variables are standardized by centering (subtracting the mean of the explanatory
variable p,+) and scaling (dividing by the standard deviation of the explanatory variable
Ok ):
zk(t)—
gk (t) = Tt (K.2)

Ozk

The estimated model is in terms of these standardized variables:

. / /
logit(6i5(t)') = fo, + Y B*aly(2) (K.3)
k
Rewriting this in terms of the original variables:
k t) — Mgk
logit(¢i; (1)) = Bo,’ w2 (8) = ar
ogit(¢i;(t)") = Bo,’ + ;5 - (K.4)

To keep the variables centered but return them to the scale of the original variables, this
equation should be written in terms of a centered variable:

2 (8)" = 2*(t) — e (K.5)

Rewriting the model equation with respect to the double-primed variables:

k "
logit(y(t)") = Bo,” + 5’“”ﬂ (K.6)
k

Ok

One can see that the intercept fo,” = fo," = fo, (and b and p; along with it); but that
the coefficient for 2%(¢) must be divided by o:

B = B [, (K.7)

BPBH* would need to be divided by 02 -

The quadratic term for size,
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Appendix L

Simple Mortality Calculations (m) to
Validate Simple State-Space Models

A state-space model will ultimately be needed to incorporate the mosaic of measurement
intervals, random effects, and explanatory variables. To validate the state space model, I
also calculate a simple average annual mortality after Sheil et al. (1995). I compare this
calculation with a simple version of the state-space model which uses a slightly different but
equivalent model structure and a different inferential framework to estimate the same overall
mortality parameter. Any subtle differences are due to the different estimation methods.
Sheil et al. (1995) calculate an annual mortality rate in the following way: Ny = No(1 —m)?,
where N; is the current number of stems, IVy is the initial number of stems, m is the mortality
per year, and ¢ is the measurement interval. Solving for m: m = 1 — (N;/Np)"/".

This calculation is a kind of cohort analysis, assuming that no individuals have been
added to N; which were not in Ny. In these data, however, with every new census new indi-
viduals are included and therefore every unique measurement interval constitutes a different
measurement cohort. In order to obtain a single estimate of m for each species, I maximize a
binomial likelihood with Ny, Ny, and ¢ for each cohort (defined as all trees sharing an inven-
tory interval, aggregating over plots) as data and a single m for all intervals as the binomial
probability parameter. Tables L.1 and L.2 summarize the results of these m calculations.
I obtain 95% confidence intervals using a profile likelihood; the details of the calculation,
including code, are given in this Appendix. Calculations of m assume a constant mortality
rate and have no easy way to include year-level variables (including time trends and climate
and stand development variables). Note that the mortality rates from maximum likelihood
m estimations agree with the Bayesian estimates for the simple state-space model (Table
L.2). Therefore, any differences between the estimates of m and the survival rates in the
more complex models are likely due to the hierarchical structure (plot effects) and covariates,
not to the Bayesian vs. frequentist estimation methods (de Valpine 2009).
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L.1 Simple Visualization of m for Each Time Interval
for Each Species

Figures L.1 and L.2 show m calculated for every interval in the inventory, pooled across
plots sharing the same interval. The darker the line, the larger number of individuals used
to calculate m.

All species Incense—cedar
o o
N N
- <o - <
E - E ~ -
R R O -
8 o |7 D — g o | e
- o — - o —
o _ — o _
S I I I I I I I I S I I I I I I I I
1975 1985 1995 2005 1975 1985 1995 2005
1
- - 34 -
White Fir — 7 Douglas—fir
= 100

1.0 20
10 2

log10(m)
I

log10(m)
I

0.0
I
0.0
I

0
-1.0

1975 1985 1995 2005 1975 1985 1995 2005

Figure L.1: m for each interval in the inventory. Plots sharing the same interval are combined.
Shown on the log scale for clarity. Grayscale indicates how many trees are used for the
calculation; darker indicates more individuals.
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Figure L.2: m for each interval in the inventory. Plots sharing the same interval are combined.
Shown on the log scale for clarity. Grayscale indicates how many trees are used for the

calculation; darker indicates more individuals.

L.2 Maximum Likelihood Calculations and Code for
Obtaining Single m Estimates by Species

For each interval, Nj is the initial number of stems, N; is the final number of stems, and ¢
is the number of years in that measurement interval. The annual probability of death, m,
can be estimated based on the reduction in stems over these time periods. The likelihood is
L(Ny, Ny, tm) = Bin(Ny, No, Ps), with the number of successes, or survived trees, Ny, out of
the number of trials, or number of initial trees, Ny, given a survival probability determined
by the number of years a tree has successfully survived: P, = (1 —m)*. In the simple case,
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with one interval, P, is just N1/Ny. This is the same as Sheil et al. (1995)’s equation, which
was derived based on discretized differential equations. Maximizing the likelihood of all the
intervals together:

> log(L(No,, Ny, tilm)) = Y " log (Bin(Ny,, No,, P.,))

P,

k3

: (L.1)
(1 —m)"

This calculation will correctly weight plots with many or few trees, and those with no
deaths or complete mortality. Here is the R code for the likelihood function:

> mylogLik<-function(m, dat) {

+ Psurv<-(1-m) “dat$t
+ sum(dbinom(dat$Nfin, dat$Nini, Psurv, log=TRUE))
+ }

And here is the code to maximize the likelihood using optim and get the profile likelihood
for confidence intervals:

> get.profCI.m<-function(datf){

+ res<-optimize (mylogLik,c(0,1),datf,maximum=TRUE)
+ mgrid<-seq(0, .1, length.out=1000)

+ proflik<-numeric()

+ for(i in 1:length(mgrid))

+ proflik[i]<-mylogLik(mgrid[i],datf)

+ liklim<-res$objective-qchisq(p=.95,df=1)

+ ms<-mgrid[which(proflik>=1iklim)]

+ return(c(m=res$maximum,LCI=min(ms), UCI=max(ms)))
+
>

}

Table L.1 summarizes the results for m for all species with any deaths in the inventory.
Table L.2 compares m calculations with the same result from my simple state-space model,
for each species from Chapter 2 (including all species aggregated). The annual mortality
probability, 1 — expit(b), for the simple state-space model is shown alongside m, estimated
using Bayesian MCMC with credible intervals from highest posterior density calculations
(Plummer et al. 2010). These two calculations should and do agree closely for each species.

The following tables also show the results for annual mortality probability for a model
with a plot effect and no explanatory variables. The right-hand side of table L.2 shows
mortality for high-mortality (low survival, 1 — (expit(b — 0,))), mean mortality (1- expit(b)),
and low-mortality (high survival, 1 — (expit(b + 0,))) plots. Note that because random plot
effects for sugar pine, black oak, and tanoak are poorly determined, the annual mortality
estimates show a great deal of overlap between mean and high /low mortality plots. They also
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have lower credible bounds of zero. See Appendix N for posterior densities of plot standard
deviations for all species.

The large differences in high- and low-mortality plots highlight the potential difficulties
in using a single number to represent a species’ survival. Sheil and May (1996) indicate that
annual mortality probabilities like m will be influenced by temporal variation in mortality
processes and census interval lengths. This observation highlights the need to use a state-
space model to handle the mosaic of census intervals. In addition, these simple models mask
the lower survival rates of susceptible subsets of the population, as concluded in Chapter
2. Sheil and May (1996) additionally point out that “different species demonstrate varying
vulnerabilities when exposed to different environmental phenomena or conditions” and the
more heterogeneous the population, the worse the effects on m.

Table 1.2 also includes the mortality rate associated with an average tree 100 * (1 —
expit(b)) in the final model for each species. Note that due to Jensen’s Inequality, and the
extreme nonlinearity of the logit near 0 and 1, I expect the intercept expit(b) will be pushed
closer and closer to 1 and the corresponding mortality closer to 0 as I add complexity to the
model. Therefore the rising survival of the ‘average’ tree partly has to do with the model’s
complexity and partly to do with the nonlinearity of the logit /expit. The model’s complexity,
however, reflects the complexity in the real system.
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Species Deaths Trees (m)

All 833 3319 1.79
(1.62, 1.95)

IC 356 1378 1.81
(1.56, 2.08)

WF 231 846 2.14
(1.78, 2.54)

DF 78 395 1.39
(1.01, 1.87)

PP 90 332 1.62
(1.19, 2.12)

TO 17 110 1.28
(0.61, 2.32)

BO 20 104 1.21
(0.61, 2.1)

SP 31 101 2.3
(1.34, 3.61)

YW 3 18 1.27
(0.15, 4.44)

CH 6 16 2.75

(0.69, 7)

AL 1 7 0.64

(0.01, 4.23)

Table L.1: m results for all species.
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Maximum Bayesian State-Space Models
Likelihood
Species Simple m expit(b) only With Plot Effect Final
Model
Low Mean High
All Species | 1.79 1.79 0.7 1.5 3.12 1.07
(1.62,1.95) | (1.66, 1.9) (0.53,0.87) (1.27,1.75) (2.56, 3.77) | (0.83, 1.32)
Incense- 1.81 1.82 0.52 1.44 3.92 1.06
cedar
(1.56,2.08) | (1.64,2.01) | (0.29,0.73) (1.06,1.84) (2.78,5.16) | (0.71, 1.44)
White Fir 2.14 2.14 0.67 1.69 4.11 2.13
(1.78,2.54) | (1.87, 2.41) (0.41,0.96) (1.26,2.15) (3, 5.43) (1.51, 2.73)
Douglas-fir | 1.39 1.41 0.63 1.13 2.1 0.99
(1.01,1.87) | (1.12,1.73) | (0.24,1.09) (0.72,1.55) (1.39,2.93) | (0.62, 1.39)
Ponderosa | 1.62 1.63 0.55 1.43 3.7 0.72
Pine
(1.19,2.12) | (1.31,1.98) | (0.22,0.91) (0.91,1.94) (2.15,5.56) | (0.38, 1.08)
Tanoak 1.28 1.37 0.49 2 12.26 0.9
(0.61, 2.32) | (0.79, 2) (0, 1.32) (0.05,4.09) (0.67, (0.23, 1.65)
76.17)
Black Oak | 1.21 1.25 0.15 1.17 14.15 0.46
(0.61,2.1) | (0.75, 1.8) (0,0.46)  (0.09,2.49) (0.97, (0.02, 1.2)
50.92)
Sugar Pine | 2.3 2.37 1.09 2.2 4.96 1.53
(1.34,3.61) | (1.58,3.18) | (0.11,2.11) (1.09,3.31) (1.89,9.5) | (0.55,2.51)

Table L.2: Comparison of m calculations, 1 — expit(b) calculations from the simple state-
space model, mortality in high, mean, and low-mortality plots from the state-space model
with plot effects, and 1 —expit(b) from the final model as selected for each species. Note that
the m values and simple state-space model values agree closely and that the final model’s
1 — expit(b) is typically smaller than either the mean plot or simple models.
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Appendix M

Explanation of Posterior Tail

Probability and Parameter Estimates
for All Models for All Species

This appendix gives details on the model selection strategy, including how the posterior tail
probability is calculated, and summarizes the parameter estimates for all models tested for
each species. Code is included for calculating the posterior tail probability, which is based
on HPDinterval (Plummer et al. 2010).

M.1 Explanation of the Posterior Tail Probability

Controversy has developed around model selection for Bayesian estimation methods (Celeux
et al. 2006 and discussants), and in particular for hierarchical models and the deviance infor-
mation criterion (DIC) (Celeux et al. 2006, Millar 2009). The DIC was derived “heuristically”
for models without random effects (Spiegelhalter et al. 2002), based on asymptotic (large
sample) results, specifically for a normal posterior. The caveats discussed by Plummer (2008)
for spatial disease models also apply to my time-series models, which contain a large number
of latent unmeasured states as well as random effects. The lack of a clear choice among
possible random-effects versions of DIC (Celeux et al. 2006) has added to concerns about
its behavior in real applications (Millar 2009, Kery and Schaub 2012). Spiegelhalter et al.
(2014) remark that they were always aware of the limitations of the DIC and are surprised
it has held up this well.

As described in Chapter 2, the posterior tail probability is a preferable way to rank po-
tential variable additions and to determine when to stop adding variables. The posterior tail
probability indicates how strong the support of the posterior is away from zero, complemen-
tary to the 95% credible interval which indicates how broad the posterior is in parameter
space, i.e. many parameter values are highly supported. Figure M.1 shows a basic example,
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and in Tables M.1 through M.8 I give the posterior mean, posterior tail probability, and 95
% credible interval for each parameter in each model for each species.

The posterior tail probability, practically speaking, is calculated using a version of
“HPDinterval” (modified from “coda,” Plummer et al. 2010) to check a grid of possible
credible interval probabilities (including 95), and choosing the credible interval probability
with one bound as close to zero as possible (see code at the end of this section). For example,
the posterior tail probability for a parameter might be 0.20. This means that zero is at the
edge of the 80 % most supported values (highest values of the posterior).

In this Bayesian context, a posterior tail probability of 0.001 would indicate that the
credible interval with one bound at 0 is a 99.9% credible interval, containing the 99.9%
most highly supported parameter values in the posterior. The reader may evaluate whether
the posterior tail probability is high enough to warrant that variable’s selection; compare a
parameter with a posterior tail probability of 0.066 with a parameter with a posterior tail
probability of 0.535. The latter parameter has only 46.5 % of the posterior within a credible
interval with one bound at zero; one would say that zero has substantial support. The former
parameter, while it has not met the 5 % threshold, may be judged to be important based on
context (e.g. has a higher posterior tail probability in most other models).

This metric is justified for the case of comparing single variable additions to a model, as
opposed to model selection with non-nested models. When comparing models differing by
a single variable, the AIC difference and the p-value associated with a likelihood ratio test
are monotonically related (Murtaugh 2014). For a Bayesian analysis where the likelihood
dominates the prior (see Appendix K for details on flat priors for my models), the posterior
tail area for a parameter that is away from zero will be very similar to the analogous p-value
because of large-sample likelihood theory. Therefore, at each variable selection step, I select
the variable with the highest posterior weight of differing from zero. Since this will be similar
to the p-value, which varies monotonically with the AIC, the results should be similar to
AIC model selection.

To examine whether the AIC-motivated approach would have differed from a DIC ap-
proach, I compared DIC values for models from the species with the fewest random effects:
tanoak, which did not include plot effects. These models are closest to the case that the
DIC was derived for. For the tanoak models, although not every comparison among specific
variables would have had the same result, the final model did have the lowest DIC among
all the models I calculated as part of the forward selection. Tables M.1 through M.8 list
parameter estimates (posterior means), tail probabilities, and 95 % credible intervals for all
models used in the forward selection strategy for each species.
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A) Definitely Separated from Zero
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Figure M.1: Demonstration of posterior tail probability, 95% credible interval, and posterior
mean. A) A case where the posterior is clearly separated from zero, with a posterior tail
probability close to 0. B) A case with the same mean, but a wider posterior; the posterior
tail probability is lower, but the 95 % credible interval helps to see just how much broader
the posterior is and how uncertain the parameter estimate is. C) In this case, the posterior
is close to zero; only the 78.3 % most probable values fall between 0 and 2.4.
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M.2 Code to Obtain Posterior Tail Probability

> #workhorse piece of HPDinterval, coded separately so I can use apply
> evaluate.interval<-function(gapl,valsi){
+ nsamp1<-length(vals1)
templ<-nsampl-gapl
initi<-1:templ
#starting point for each interval to evaluate
inds1<- which.min(valsl[initl + gapl,drop=FALSE]
- valsl[initl,drop=FALSE])
#how long is the interval & pick smallest one
ansl <- c(valsl[inds1],valsi[indsl + gapl])
#return the endpoints of that interval
return(ans1)
}
# a version of HPDinterval which can handle a vector of
# probabilities, prob; obj is the vector of posterior samples
HPDintervalMVE <- function(obj, prob){
nprob<-length(prob) # number of probabilities to do the calc for
vals <- sort(obj) # sort chain to get ecdf
nsamp <- length(vals) # number of samples in chain
gap <-round(nsamp * prob)
# length of credible interval in samples
gap [gap==nsamp] <-nsamp-1
# must have more than one gap to calculate
gapl[gap==0]<-1 # cannot do the calc with a gap of 0
gap<-as.array(gap)
# for apply
# get the interval based on the gap
ans<-apply(gap,1,evaluate. interval,vals)
ans<-as.data.frame(t(ans)) #make it a dataframe
names (ans)<-c("lower", "upper") #rename columns
ans$prob<-prob #add probability for convenience
return(ans)
}
# function that calls HPDingervalMVE
# nodechain is the chain for the node of interest, a
# numeric variable containing all the posterior samples
get.credible.level<-function(nodechain){
lgrid<-seq(0,1,length.out=10000)
#hard-code in how fine a grid to use of probs
CIs<-HPDintervalMVE(as.numeric (nodechain),lgrid)
#get the data frame of intervals
CIs$min<-apply(abs(CIs[,c("lower", "upper")]),1,min)

+ 4+ + + +VVVYV+++ 4+ ++++++++F++++F+FVVYVEESFAFA+ A+ + o+
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#find the upper or lower bound closest to zero
res<-mean(CIs$prob[CIs$min==min(CIs$min)])

#pull out the prob corresponding to the closest to zero
#bound closest to zero

return(1l-res)

V o+ + + + + o+

=

.3 Model Results for All Species, Variables, and
Models

Tables M.1 through M.8 summarize model results for explanatory variables for each species.
Variables included are: Mean survival, expit(b); Plot standard deviation, o, ; Linear size,

DBH. (Quadratic size, SPBH*; Plot Basal Area, 8% Insolation, 57 Elevation, 39¢;
Topographic Slope, £%°P¢; time trend, 3%; annual climatic water deficit, 39¢/. All variables
are standardized (see Appendix K); therefore these parameters correspond to centered and
scaled covariates. This means they can be directly compared across models and between
variables, but not between species. Parameters which have tail probability less than 0.05%
(alternatively, 95% credible interval does not overlap zero) are highlighted in bold text. For
each variable and model, the table lists the posterior mean, the posterior tail probability (in
parentheses), and the 95% credible interval (in parentheses: “lower, upper”).
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Table M.1: Survival model parameter estimates for all
species aggregated.

6.Z‘pit(b) ap ﬁDBH ﬁDBHz leope /Belev ﬁinsol 5def /Bba Bt
0.99 0.82 0.72

(0) (0.213) | (0)

(0.98, (0, (0.53,

0.99) 1.07) 0.86)

0.99 0.94 0.86 -0.15

(0) (0) (0) (0)

(0.99, (0.76, (0.75, | (-0.2,-

0.99) 1.12) 0.97) 0.1)

0.98 0.7 0.12

(0) (0.219) (0)

(0.98, (0, (0.07,

0.99) 0.93) 0.17)

0.98 0.73 0.16

(0) (0.012) (0.085)

(0.98, (0.58, (-0.01,

0.99) 0.95) 0.34)

0.98 0.72 -0.03

(0) (0.209) (0.75)

(0.98, (0, (-0.19,

0.99) 0.91) 0.12)

0.98 0.68 0.13

(0) (0.309) (0.077)

(0.98, (0, (-0.02,

0.99) 0.89) 0.29)

0.99 0.63 -0.46

(0) (0.202) (0.13)

(0.98, (0, (-1.01,

0.99) 0.92) 0.11)

0.99 0.77 -0.38
(0.286) | (0) (0)

(0.98, (0.61, (-0.59,

0.99) 0.94) -0.18)

0.99 0.78 -0.13
(0) (0) (0.035)
(0.98, (0.62, (-0.25,
0.99) 0.95) -0.01)
0.99 0.93 0.86 -0.15 0.13

(0) 0 (0) (0) (0.216)

(0.99, (0.76, (0.74, | (-0.19, | (-0.07,

0.99) 1.12) 0.96) -0.1) 0.34)

0.99 0.87 0.84 -0.14 -0.05

(0) (0.344) | (0.375) | (0) (0.986)

(0.98, (0, (0.64, (-0.19, (-0.27,

0.99) 1.11) 0.98) -0.09) 0.14)

0.99 0.72 0.81 -0.14 0.13

(0) (0.238) | (0) (0) (0.145)

(0.98, (0, (0.57, | (-0.19, (-0.06,

0.99) 1.08) 0.97) -0.08) 0.35)

124
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ezpit(b) op ﬁDBH IBDBHZ leope ﬂelev ﬂinsol ﬂdef 6ba Bt
0.99 0.77 0.81 -0.14 -0.26
(0.001) | (0.232) | (0) (0) (0.76)
(0.98, (0, (0.59, | (-0.19, (-0.93,
0.99) 1.11) 0.97) -0.08) 0.39)
0.99 0.97 0.85 -0.14 -0.41
(0) (0.001) | (0) (0) (0.001)
(0.99, (0.79, (0.74, | (-0.19, (-0.66,
0.99) 1.17) 0.96) -0.09) -0.16)
0.99 0.97 0.86 -0.14 -0.16
(0) (0.001) | (0) (0) (0.01)
(0.99, (0.79, (0.74, | (-0.19, (-0.29,
0.99) 1.16) 0.97) | -0.09) -0.04)
0.99 0.9 0.83 -0.14 0.08 -0.39
(0) (0.385) | (0) (0) (0.494) (0)
(0.99, (0, (0.62, | (-0.19, | (-0.13, (-0.61,
0.99) 1.14) 0.98) | -0.09) | 0.28) -0.17)
0.99 0.97 0.85 -0.14 0.02 -04
(0) (0) (0) (0) (0.901) (0)
(0.99, (0.79, (0.73, | (-0.18, (-0.19, (-0.65,
0.99) 1.17) 0.95) -0.08) 0.26) -0.19)
0.99 0.97 0.85 -0.14 0.11 -0.41
(0) (0) (0) (0) (0.27) (0.002)
(0.99, (0.78, (0.73, | (-0.19, (-0.1, (-0.66,
0.99) 1.17) 0.95) -0.09) 0.29) -0.16)
0.99 0.97 0.85 -0.14 -0.14 -0.4
(0) (0) (0.25) (0) (0.947) | (0.004)
(0.99, (0.79, (0.75, (-0.19, (-0.68, | (-0.63,
0.99) 1.19) 0.97) -0.09) 0.37) -0.14)
0.99 0.92 0.84 -0.14 -0.4 0
(0) (0.023) | (0) (0) (0.003) | (0.892)
(0.99, (0, (0.69, | (-0.19, (-0.67, | (-0.17,
0.99) 1.15) 1) -0.09) -0.09) | 0.18)
Table M.2: Survival model parameter estimates for incense-
cedar.
ea:pit(b) ap BDBH ﬁDBHz leope /Belev /Binsol ﬂdsf /Bbu ﬁt
1 1.35 0.69
(0) (0.338) | (0)
(0.99, (0,1.9) | (0.3,
1) 1.02)
1 1.44 0.7 0.04
(0) (0.006) | (0.002) | (0.938)
(0.99, (0.96, (0.32, | (-0.13,
1) 2.08) 1.04) 0.23)
1 1.32 0.26
(0.4) (0) (0.155)
(0.99, (0.89, (0.08,
1) 1.79) 0.46)
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ezpit(b) ap ﬁDBH IBDBHZ leope ﬂelev ﬂinsol ﬂdef 6ba Bt
1 1.25 0.41
(0) (0.001) (0.08)
(0.99, (0.85, (-0.01,
1) 1.75) 0.87)
1 1.1 -0.15
(0) (0.295) (0.532)
(0.99, (0, (-0.52,
1) 1.68) 0.17)
1 1.26 0.05
(0) (0.002) (0.876)
(0.99, (0.83, (-0.35,
1) 1.79) 0.5)
1 1.65 2.21
(0) (0.01) (0.4)
(1, 1) (1.15, (1.65,
2.37) 2.85)
1 1.82 -2.65
04) | (0) (0)
(1,1) (1.28, (-3.28,
2.43) -2.01)
1 1.9 -1.28
(0) (0.001) (0)
(1,1) (1.34, (-1.62,
2.51) -0.97)
1 1.44 0.71 0.03 0.46
(0) (0.012) | (0.001) | (0.912) | (0.112)
(0.99, (0.96, (0.34, | (-0.13, | (-0.07,
1) 2.15) 1.11) 0.21) 1.03)
1 1.31 0.65 0.05 -0.19
(0) (0.321) | (0.007) | (0.977) (0.685)
(0.99, (0, (0.18, | (-0.13, (-0.66,
1) 1.93) 1.03) 0.25) 0.18)
1 1.18 0.63 0.05 -0.01
(0) (0.236) | (0.011) | (0.873) (0.941)
(0.99, (0,1.9) | (0.12, | (-0.13, (-0.41,
1) 1.07) 0.27) 0.4)
1 1.94 0.86 0.02 2.38
(0) (0) (0) (0.788) (0)
(1, 1) (1.37, (0.46, | (-0.15, (1.81,
2.53) 1.21) 0.24) 3.05)
1 2.26 0.86 0.06 -3.11
(0) (0.001) | (0) (0.643) (0)
(1, 1) (1.57, (0.51, | (-0.13, (-3.9, -
2.96) 1.22) | 0.27) 2.31)
1 2.26 0.88 0.04 -1.45
(0) 0 (0) (0.846) (0)
(1, 1) (1.65, (0.54, | (-0.13, (-1.8, -
2.98) 1.23) 0.25) 1.13)
1 2.3 0.84 0.06 0.05 -3.12
(0) (0) (0) (0.963) | (0.902) (0)
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ezpit(b) ap ﬁDBH IBDBHZ leope ﬂelev ﬂinsol ﬂdef 6ba Bt
I, 1) (1.61, (0.49, | (-0.14, | (-0.62, (-3.88,
3.05) 1.21) 0.27) 0.75) -2.37)
1 2.3 0.84 0.05 0.02 -3.13
(0) (0) (0) (0.814) (0.874) (0)
(1,1) (1.58, (0.49, | (-0.13, (-0.58, (-3.95,
3.05) 1.18) 0.27) 0.58) -2.33)
1 2.24 0.84 0.05 -0.08 -3.04
(0) (0.278) | (0.005) | (0.854) (0.92) (0.001)
(1, 1) (1.53, (0.4, (-0.15, (-0.81, (-4.11,
3.23) 1.3) 0.27) 0.6) -2.19)
1 2.04 0.9 0.07 1.92 -2.25
(0) (0.001) | (0) (0.854) (0.01) | (0.002)
(1, 1) (1.41, (0.55, | (-0.13, (0.98, | (-2.88,
2.7) 1.3) 0.31) 2.91) -1.54)
1 2.06 0.86 0.06 -1.75 -0.77
(0) 0 (0) (0.7) (0) (0.001)
(1,1) (1.48, (0.51, | (-0.13, (-2.75, | (-1.26,
2.71) 1.22) 0.26) -0.75) | -0.25)
1 1.92 0.8 0.07 0.26 -1.54 -0.8
(0) (0.24) (0.025) | (0.764) | (0.502) (0) (0.003)
(1, 1) (0, (0.11, | (-0.12, | (-0.39, (-2.8,- | (-1.35,
2.68) 1.25) 0.31) 0.98) 0.61) -0.16)
1 2.09 0.86 0.05 -0.09 -1.72 -0.78
(0) (0) (0) (0.786) (0.717) (0) (0.001)
(1, 1) (1.49, (0.5, (-0.13, (-0.7, (-2.63, | (-1.3,-
2.78) 1.23) 0.25) 0.47) -0.72) | 0.32)
1 2.08 0.85 0.06 -0.01 -1.78 -0.75
(0) (0) (0) (0.583) (0.807) (0) (0.001)
(1, 1) (1.47, (0.5, (-0.13, (-0.55, (-2.7,- | (-1.2, -
2.73) 1.19) 0.27) 0.54) 0.91) 0.3)
2.06 0.88 0.06 0.73 -1.89 -0.46
(0) (0) (0.803) (0.36) (0) (0.271)
(1.45, (0.51, | (-0.13, (-1.37, | (-3, - | (-1.23,
2.75) 1.26) | 0.27) 2.63) 0.84) | 0.26)
0.99 1.28 1.02 -0.09 0.21 -0.19 -0.41 -0.23
(0) (0) (0) (0.017) | (0.224) (0.826) | (0.105) | (0.116)
(0.99, (0.97, (0.81, | (-0.16, | (-0.14, (-1.23, | (-0.9, (-0.53,
1) 1.62) 1.24) | -0.02) | 0.55) 0.81) 0.07) 0.05)
0.99 1.28 1.02 -0.1 0.01 -0.14 -0.48 -0.2
(0) (0) (0) (0.018) (0.967) (0.957) | (0.037) | (0.164)
(0.99, (0.92, (0.81, | (-0.16, (-0.32, (-1.2, (-0.94, | (-0.47,
1) 1.59) 1.23) | -0.02) 0.34) 0.79) -0.02) | 0.08)
0.99 1.26 1.01 -0.09 0.15 -0.03 -0.51 -0.17
(0) (0) (0) (0.023) (0.367) | (0.672) | (0.021) | (0.208)
(0.99, (0.94, (0.78, | (-0.16, (017, | (-1.12, | (-0.94, | (-0.42,
1) 1.6) 1.22) -0.01) 0.47) 0.88) -0.06) | 0.11)
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Table M.3: Survival model parameter estimates for white fir.

e:rpit(b) op BDBH ﬁDBHz leope ﬁelev /Binsol IBdef ﬁba Bt
0.98 0.94 0.61

(0) (0) (0)

(0.98, (0.67, (0.42,

0.99) 1.22) 0.81)

0.98 0.95 0.57 0.29

(0) (0) (0) (0.008)

(0.97, (0.69, (0.35, | (0.08,

0.99) 1.23) 0.79) 0.52)

0.98 0.84 0.39

(0) (0.209) (0)

(0.97, (0, (0.2,

0.98) 1.17) 0.58)

0.98 0.93 0

(0) (0.003) (0.862)

(0.98, (0.66, (-0.28,

0.99) 1.24) 0.27)

0.98 0.94 -0.06

(0) (0) (0.684)

(0.98, (0.68, (-0.32,

0.99) 1.21) 0.17)

0.98 0.91 0.18

(0) (0) (0.162)

(0.98, (0.64, (-0.1,

0.99) 1.18) 0.43)

0.98 0.93 0.15

(0) (0.001) (0.565)

(0.98, (0.67, (-0.52,

0.99) 1.22) 0.82)

0.98 0.94 -0.17

(0) (0.001) (0.318)

(0.98, (0.68, (-0.49,

0.99) 1.24) 0.14)

0.98 0.91 0.05
(0) (0.004) (0.706)
(0.98, (0.65, (-0.19,
0.99) 1.21) 0.29)
0.98 0.95 0.57 0.3 -0.08

(0) (0) (0) (0.005) | (0.513)

(0.97, (0.7, (0.36, | (0.08, | (-0.37,

0.99) 1.24) 0.8) 0.54) 0.17)

0.98 0.95 0.56 0.3 -0.04

(0) (0.002) | (0) (0.003) (0.86)

(0.97, (0.68, (0.35, | (0.08, (-0.29,

0.99) 1.28) 0.8) 0.52) 0.21)

0.98 0.58 0.55 0.28 0.26

(0) (0.343) | (0) (0.007) (0.035)

(0.97, (0, (0.34, | (0.06, (0.02,

0.98) 1.12) 0.77) 0.51) 0.49)
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ezpit(b) op ﬁDBH IBDBHZ leope ﬂelev ﬂinsol ﬂdef 6ba Bt
0.98 0.86 0.56 0.29 0.21
(0) (0.368) | (0) (0.006) (0.469)
(0.97, (0,1.2) | (0.35, | (0.08, (-0.48,
0.99) 0.8) 0.53) 0.87)
0.98 0.97 0.56 0.31 0.22
(0) (0) (0) (0.006) (0.177)
(0.98, (0.7, (0.34, | (0.08, (-0.53,
0.99) 1.25) 0.77) 0.53) 0.1)
0.98 0.95 0.57 0.29 0.04
(0) (0) (0) (0.008) (0.999)
(0.97, (0.67, (0.35, | (0.07, (-0.22,
0.99) 1.22) 0.8) 0.53) 0.28)
0.98 0.93 0.58 0.31 -0.01 0.24
(0) (0) (0) (0.004) | (0.92) (0.091)
(0.97, (0.68, (0.36, | (0.09, | (-0.28, (-0.01,
0.99) 1.22) 0.8) 0.52) | 0.27) 0.51)
0.98 0.64 0.55 0.29 -0.09 0.28
(0) (0.287) | (0) (0.008) (0.55) (0.026)
(0.97, (0, (0.34, | (0.07, (-0.37, | (0.04,
0.99) 1.15) 0.77) 0.54) 0.12) 0.54)
0.98 0.93 0.58 0.31 0.27 0.34
(0) (0) (0) (0.002) (0.061) | (0.269)
(0.97, (0.68, (0.37, | (0.09, (-0.02, | (-0.43,
0.99) 1.21) 0.81) 0.55) 0.55) 0.97)
0.98 0.82 0.56 0.32 0.25 -0.22
(0) (0.227) | (0) (0.003) (0.055) (0.185)
(0.97, (0, (0.34, | (0.1, (0, (-0.54,
0.99) 1.18) 0.79) 0.56) 0.52) 0.1)
0.98 0.9 0.59 0.29 0.27 0.08
(0) (0.002) | (0) (0.007) (0.049) (0.539)
(0.97, (0.62, (0.37, | (0.06, (0, (-0.16,
0.99) 1.2) 0.82) | 0.53) 0.52) 0.35)
Table M.4: Survival model parameter estimates for Douglas-
fir.
ea:pit(b) ap BDBH ﬁDBHz leope /Belev /Binsol ﬂdsf /Bbu ﬁt
0.99 0.62 0.83
(0) (0.005) | (0)
(0.99, (0.13, (0.48,
0.99) 1.04) 1.15)
0.99 0.65 0.85 -0.04
(0) (0.001) | (0) (0.375)
(0.99, (0.26, (0.52, | (-0.22,
0.99) 1.06) 1.17) | 0.17)
0.99 0.37 0.09
(0) (0.333) (0.376)
(0.98, (0, (-0.05,
0.99) 0.91) 0.26)
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ezpit(b) ap ﬁDBH IBDBHZ leope ﬂelev ﬂinsol ﬂdef 6ba Bt
0.99 0.53 0.29

(0) (0.037) (0.105)

(0.99, (0, (-0.06,

0.99) 0.97) 0.64)

0.99 0.68 0.13

(0) (0.001) (0.489)

(0.98, (0.26, (-0.22,

0.99) 1.08) 0.47)

0.99 0.51 -0.39

(0) (0.376) (0.043)

(0.99, (0, (-0.77,

0.99) 0.95) -0.01)

0.99 0.68 0.32

(0) (0.003) (0.434)

(0.99, (0.27, (-1.12,

1) 1.15) 1.55)

0.99 0.74 -0.42

(0) (0) (0.121)

(0.99, (0.35, (-0.98,

0.99) 1.16) 0.06)

0.99 0.67 -0.23
(0) (0.012) (0.239)
(0.98, (0.15, (-0.59,
0.99) 1.2) 0.15)
0.99 0.56 0.84 0.04 0.29

(0) (0.002) | (0) (0.456) | (0.107)

(0.99, (0.09, (0.51, | (-0.21, | (-0.06,

0.99) 0.95) 1.15) 0.17) 0.65)

0.99 0.61 0.84 0.04 0.11

(0) (0.084) | (0) (0.453) (0.49)

(0.99, (0, (0.54, | (-0.2, (-0.23,

0.99) 1.02) 1.19) 0.16) 0.44)

0.99 0.59 0.83 0.04 -0.33

(0) (0.014) | (0.001) | (0.373) (0.091)

(0.99, (0.1, (0.52, | (-0.2, (-0.74,

1) 1.06) 1.18) 0.16) 0.03)

0.99 0.66 0.87 -0.04 0.59

(0) (0.001) | (0) (0.441) (0.211)

(0.99, (0.24, (0.53, | (-0.21, (-0.84,

1) 1.08) 1.21) 0.16) 1.75)

0.99 0.74 0.86 -0.04 -0.53

(0) (0.023) | (0.001) | (0.389) (0.064)

(0.99, (0, (0.53, | (-0.21, (-1.08,

1) 1.16) 1.2) 0.17) 0.07)

0.99 0.65 0.86 -0.03 -0.32
(0) (0.298) | (0) (0.448) (0.104)
(0.99, (0, (0.54, | (-0.21, (-0.71,
1) 1.11) 1.19) | 0.19) 0.06)
0.99 0.71 0.87 -0.04 0.22 -0.48

(0) (0.016) | (0) (0.369) | (0.256) (0.139)
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ezpit(b) ap ﬁDBH IBDBHZ leope Belev ﬁinsol ﬂdef 6ba Bt
(0.99, (0.18, (0.53, | (-0.21, | (-0.16, CI11,
1) 1.28) 1.21) 0.17) 0.62) 0.09)
0.99 0.8 0.87 -0.04 0.24 -0.63
(0) (0.003) | (0) (0.363) (0.28) (0.029)
(0.99, (0.39, (0.55, | (-0.21, (-0.17, (-1.17,
1) 1.28) 1.21) 0.17) 0.67) -0.05)
0.99 0.76 0.86 -0.04 -0.3 -0.52
(0) (0.002) | (0) (0.403) (0.167) (0.082)
(0.99, (0.25, (0.53, | (-0.22, (-0.74, (-1.11,
1) 1.29) 1.19) 0.18) 0.11) 0.06)
0.99 0.73 0.9 -0.03 0.85 -0.56
(0) (0.009) | (0) (0.429) (0.127) | (0.027)
(0.99, (0.21, (0.56, | (-0.19, (-0.62, | (-1.1,-
1) 1.33) 1.21) 0.18) 1.97) 0.03)
0.99 0.74 0.88 -0.03 -0.44 -0.27
(0) (0.105) | (0) (0.472) (0.115) | (0.17)
(0.99, (0, (0.56, | (-0.21, (-0.96, | (-0.67,
1) 1.16) 1.21) | 0.2) 0.08) 0.12)
0.99 0.66 0.88 -0.03 0.26 0.86 -0.45
(0) (0.007) | (0.001) | (0.439) | (0.19) (0.143) | (0.109)
(0.99, (0.13, (0.53, | (-0.2, (-0.09, (-0.79, | (-0.97,
1) 1.16) 1.22) | 0.21) 0.67) 1.9) 0.12)
0.99 0.76 0.9 -0.04 0.21 0.82 -0.63
(0) (0.002) | (0) (0.425) (0.285) (0.129) | (0.029)
(0.99, (0.31, (0.54, | (-0.22, (-0.13, (-0.47, | (-1.18,
1) 1.25) 1.25) 0.19) 0.59) 1.87) -0.08)
0.99 0.73 0.86 -0.05 -0.24 0.74 -0.56
(0) (0.003) | (0) (0.405) (0.233) | (0.177) | (0.047)
(0.99, (0.2, (0.54, | (-0.22, (-0.71, | (-0.6, (-1.14,
1) 1.25) 1.21) 0.15) 0.18) 1.82) -0.01)
0.99 0.74 0.88 -0.04 0.61 0.52 -0.09
(0) (0.011) | (0) (0.472) (0.333) | (0.071) | (0.624)
(0.99, (0.22, (0.55, | (-0.21, (-0.69, | (-1.11, | (-0.56,
1) 1.32) 1.21) 0.16) 1.95) 0.02) 0.38)
Table M.5: Survival model parameter estimates for pon-
derosa pine.
empit(b) ap ﬂDBH IBDBHZ leope Belev Binsol ﬂdef Bba 5t
0.99 1.05 0.86
(0) (0.001) | (0)
(0.98, (0.56, (0.58,
0.99) 1.57) 1.14)
0.99 0.93 0.84 -0.43
(0) (0.331) | (0.286) | (0)
(0.99, (0, (0.57, (-0.61,
1) 1.44) 1.1) -0.23)
0.99 0.86 -0.25
(0) (0.004) (0.004)
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ezpit(b) ap ﬁDBH IBDBHZ leope ﬂelev ﬂinsol ﬂdef 6ba Bt
(0.98, (0.34, (-0.41,

0.99) 1.35) -0.1)

0.99 0.89 0.29

(0) (0.001) (0.07)

(0.98, (0.37, (-0.04,

0.99) 1.41) 0.6)

0.99 1.01 -0.01

(0) (0) (0.999)

(0.98, (0.57, (-0.35,

0.99) 1.51) 0.36)

0.99 0.99 0.14

(0) 0 (0.423)

(0.98, (0.54, (-0.24,

0.99) 1.49) 0.5)

0.99 1.02 0.28

(0) (0) (0.56)

(0.98, (0.56, (-1.22,

1) 1.51) 1.63)

0.99 1.05 -0.27

(0) (0.001) (0.287)

(0.98, (0.58, (-0.75,

0.99) 1.56) 0.18)

0.99 1 -0.26
(0) (0) (0.161)
(0.98, (0.56, (-0.61,
0.99) 1.48) 0.09)
0.99 0.87 0.85 -0.43 0.37

(0) (0.003) | (0) (0) (0.01)

(0.99, (0.32, (0.58, | (-0.62, | (0.08,

1) 1.43) 1.1) -0.24) | 0.67)

0.99 1.07 0.86 -0.43 0.03

(0) (0.001) | (0) (0) (0.835)

(0.99, (0.6, (0.61, | (-0.62, (-0.34,

1) 1.61) 1.1) -0.24) 0.38)

0.99 1.01 0.86 -0.43 0.26

(0) (0.001) | (0) (0) (0.213)

(0.99, (0.51, (0.6, (-0.61, (-0.12,

1) 1.56) 1.11) -0.24) 0.69)

1 1.1 0.9 -0.44 0.29

(0) (0.085) | (0) (0) (0.459)

(0.99, (0, (0.63, | (-0.63, (-2.01,

1) 1.69) 1.24) -0.23) 2.29)

0.99 1.07 0.92 -0.45 -0.65

(0) (0.199) | (0) (0) (0.008)

(0.99, (0, (0.62, | (-0.64, (-1.21,

1) 1.68) 1.21) -0.25) -0.12)

0.99 1.23 0.94 -0.43 -0.5
0) 0) (0) (0) (0.01)
(0.99, (0.67, (0.67, | (-0.62, (-0.91,
1) 1.79) 1.24) -0.24) -0.12)
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ezpit(b) ap ﬁDBH IBDBHZ leope ﬂelev ﬂinsol ﬂdef 6ba Bt
0.99 0.92 0.85 -0.43 0.37 0
(0) (0.001) | (0) (0) (0.034) | (0.968)
(0.99, (0.4, (0.59, | (-0.62, | (0.05, | (-0.33,
1) 1.47) 1.1) -0.25) | 0.72) 0.33)
0.99 0.67 0.83 -0.42 0.35 0.24
(0) (0.247) | (0) (0) (0.02) (0.112)
(0.99, (0, (0.59, | (-0.6,- | (0.05, (-0.08,
1) 1.28) 1.11) 0.24) 0.65) 0.56)
1 0.85 0.89 -0.43 0.4 0.57
(0) (0.327) | (0) (0) (0.007) (0.267)
(0.99, (0, (0.62, | (-0.63, | (0.11, (-2.39,
1) 1.46) 1.19) | -0.2) 0.71) 2.32)
0.99 1.07 0.93 -0.45 0.26 -0.51
(0) (0) (0) (0) (0.168) (0.04)
(0.99, (0.51, (0.66, | (-0.63, | (-0.13, (-1.09,
1) 1.7) 1.19) -0.25) | 0.65) -0.03)
0.99 1.06 0.94 -0.42 0.43 -0.5
(0) (0.001) | (0) (0) (0.019) (0.015)
(0.99, (0.51, (0.68, | (-0.6,- | (0.08, (-0.9, -
1) 1.66) 1.2) 0.24) 0.81) 0.09)
0.99 1.12 0.94 -0.43 0.41 -0.02 -0.52
(0) (0.001) | (0) (0) (0.039) | (0.904) (0.007)
(0.99, (0.6, (0.66, | (-0.62, | (0.03, | (-0.38, (-0.94,
1) 1.73) 1.2) -0.23) | 0.79) 0.41) -0.12)
0.99 1.07 0.95 -0.42 0.4 0.24 -0.5
(0) (0.001) | (0) (0) (0.024) (0.219) (0.015)
(0.99, (0.57, (0.67, | (-0.6,- | (0.06, (-0.13, (-0.9, -
1) 1.64) 1.21) 0.24) 0.75) 0.65) 0.12)
0.99 1.06 0.94 -0.43 0.43 0.05 -0.4
(0) (0.016) | (0) (0) (0.012) (0.876) (0.052)
(0.99, (0.42, (0.65, | (-0.62, | (0.1, (-1.85, (-0.83,
1) 1.78) 1.21) -0.23) | 0.77) 1.62) 0.01)
0.99 1.11 0.96 -0.44 0.36 -0.29 -0.4
(0) (0) (0) (0) (0.077) (0.346) | (0.077)
(0.99, (0.57, (0.68, | (-0.61, | (-0.05, (-0.85, | (-0.86,
1) 1.69) 1.24) | -0.24) | 0.75) 0.19) 0.04)
Table M.6: Survival model parameter estimates for sugar
pine.
€.Z‘pit(b) ap ﬁDBH BDBHZ leope /Beleu ﬁinsol 5def /Bba Bt
0.98 1 0.75
(0) (0.05) | (0.002)
(0.97, (0, (0.22,
0.99) 1.98) 1.3)
0.98 1.07 0.8 -0.07
(0) (0.022) | (0.002) | (0.999)
(0.97, (0.04, (0.25, | (-0.54,
1) 2.16) 1.41) 0.39)
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ezpit(b) ap ﬁDBH IBDBHZ leope ﬂelev ﬂinsol ﬂdef 6ba Bt
0.97 1.02 0.15

(0) (0.033) (0.637)

(0.96, (0.01, (-0.21,

0.99) 2.02) 0.56)

0.98 0.92 0.17

(0) (0.01) (0.649)

(0.97, (0.04, (-0.41,

0.99) 1.82) 0.78)

0.98 0.83 0.11

(0) (0.018) (0.613)

(0.97, (0.03, (-0.41,

0.99) 1.73) 0.62)

0.98 0.88 0.13

(0) (0.007) (0.612)

(0.97, (0.05, (-0.46,

0.99) 1.73) 0.69)

0.98 0.83 -0.19

(0) (0.005) (0.992)

(0.97, (0.05, (-1.2,

0.99) 1.66) 0.88)

0.98 0.88 0.12

(0) (0.056) (0.725)

(0.97, (0.02, (-0.57,

0.99) 1.76) 0.87)

0.98 0.85 0.81
(0) (0.014) (0.015)
(0.97, (0.04, (0.15,
0.99) 1.6) 1.5)
0.98 1.1 0.84 -0.1 0.31

(0) (0.011) | (0.001) | (0.511) | (0.338)

(0.97, (0.03, (0.28, | (-0.55, | (-0.4,

1) 2.35) 1.44) 0.39) 1)

0.98 0.92 0.81 -0.09 0.27

(0) (0.48) (0.001) | (0.662) (0.257)

(0.97, (0, (0.29, | (-0.54, (-0.28,

0.99) 2.12) 1.4) 0.36) 0.83)

0.98 1.17 0.82 -0.07 0.12

(0) (0.14) (0.003) | (0.684) (0.75)

(0.97, (0, (0.29, | (-0.51, (-0.53,

1) 2.33) 1.45) 0.42) 0.76)

0.99 1.09 0.81 -0.06 -0.21

(0) (0.021) | (0.004) | (0.688) (0.776)

(0.97, (0.04, (0.25, | (-0.53, (-1.36,

1) 2.22) 1.44) 0.39) 0.93)

0.98 1.15 0.85 -0.08 -0.2

(0) (0.007) | (0.003) | (0.784) (0.559)

(0.97, (0.07, (0.25, | (-0.55, (-1.05,

1) 2.26) 1.48) | 0.4) 0.6)

0.99 0.84 0.7 -0.13 0.71
(0) (0.012) | (0.003) | (0.464) (0.043)
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ezpit(b) ap ﬁDBH IBDBHZ leope Belev ﬁinsol ﬂdef 6ba Bt
(0.98, (0.03, (0.17, | (-0.59, (0.02,
1) 1.8) 1.23) 0.3) 1.42)
0.99 1.02 0.78 0.15 0.2 0.67
(0) (0.014) | (0.002) | (0.49) (0.554) (0.065)
(0.98, (0.05, (0.24, | (-0.63, | (-0.48, (-0.06,
1) 2.04) 1.37) 0.31) 0.86) 1.35)
0.99 0.83 0.76 0.13 0.27 0.69
(0) (0.049) | (0.002) | (0.497) (0.29) (0.049)
(0.97, (0.01, (0.25, | (-0.56, (-0.3, (0,
1) 1.86) 1.32) 0.37) 0.81) 1.37)
0.99 1.02 0.72 0.13 0.11 0.7
(0) (0.008) | (0.004) | (0.566) (0.672) (0.047)
(0.98, (0.08, (0.17, | (-0.57, (-0.53, (0.02,
1) 2.01) 1.24) 0.33) 0.83) 1.46)
0.99 0.98 0.72 0.12 -0.64 0.86
(0) (0.246) | (0.006) | (0.51) (0.558) (0.022)
(0.98, (0, (0.22, | (-0.6, (-2.31, (0.07,
1) 1.99) 1.27) | 0.33) 1.02) 1.62)
0.99 1.02 0.83 0.19 -0.53 0.88
(0) (0.343) | (0.002) | (0.407) (0.369) | (0.026)
(0.98, (0, (0.26, | (-0.64, (-1.54, | (0.1,
1) 2.07) 1.45) | 0.34) 0.36) 1.7)
Table M.7: Survival model parameter estimates for black
oak.
e:ppit(b) ap BDBH BDBHZ 5slope Belev Binsol ,Bdef 6ba Bt
0.99 2.97 0.65
(0) (0.003) | (0.105)
(0.97, (1.09, (-0.17,
1) 5.52) 1.44)
1 3.08 1.58 -0.86
(0) (0.201) | (0.017) | (0.005)
(0.99, (0, (0.16, | (-1.65,
1) 5.98) 2.82) -0.22)
0.99 2.72 -0.29
(0) (0.005) (0.205)
(0.98, (0.65, (-0.72,
1) 5.24) 0.08)
0.99 2.22 1.06
(0) (0.025) (0.999)
(0.98, (0.02, (-0.17,
1) 4.35) 2.39)
0.99 2.88 -0.23
(0) (0.002) (0.81)
(0.97, (0.93, (-1.58,
1) 5.6) 1.26)
0.99 2.79 0.49
(0) (0.007) (0.477)
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ezpit(b) ap ﬁDBH IBDBHZ leope ﬂelev ﬂinsol ﬂdef 6ba Bt
(0.97, (0.64, (-0.95,

1) 5.66) 1.98)

0.99 2.6 -0.04

(0) (0.002) (0.832)

(0.98, (0.76, (-1.9,

1) 4.97) 1.71)

0.99 2.79 -0.4

(0) (0.004) (0.533)

(0.97, (0.81, (-1.64,

1) 5.4) 0.94)

0.99 2.55 0.03
(0) (0.005) (0.922)
(0.98, (0.75, (-0.84,
1) 4.85) 0.84)
1 3.1 1.76 -0.81 1.52

(0) (0.002) | (0) (0.002) | (0.397)

(0.99, (0.87, (0.57, | (-1.46, | (-0.17,

1) 5.91) 2.94) -0.26) | 3.38)

0.99 3.96 1.78 -0.93 -0.39

(0) (0.004) | (0.002) | (0.001) (0.646)

(0.98, (1.3, (0.56, | (-1.63, (-2.17,

1) 7.59) 3.05) -0.28) 1.37)

1 3.73 1.76 -0.94 0.82

(0) (0.002) | (0) (0.002) (0.381)

(0.99, (1.26, (0.64, | (-1.65, (-1.13,

1) 7.19) 2.96) -0.35) 2.83)

1 3.47 1.67 -0.91 -0.14

(0) (0.2) (0.005) | (0.004) (0.901)

(0.99, (0, (0.4, (-1.79, (-2.18,

1) 6.59) 3.21) -0.18) 1.52)

1 3.52 1.87 -0.96 -0.96

(0) (0.002) | (0.001) | (0.002) (0.206)

(0.99, (1.21, (0.66, | (-1.7,- (-2.46,

1) 6.48) 3.33) 0.3) 0.61)

1 3.6 1.8 -0.95 -0.1
(0) (0.002) | (0.001) | (0.001) (0.855)
(0.99, (1.27, (0.6, (-1.67, (-1.05,
1) 6.64) 3.09) -0.26) 0.88)
1 4.37 2.01 -0.94 2 -1.11

(0) (0.006) | (0.001) | (0) (0.132) | (0.55)

(0.98, (0.96, (0.67, | (-1.72, | (-0.63, | (-4.74,

1) 10.17) | 3.28) | -0.3) 5.07) 1.8)

1 3.27 1.9 -0.92 1.61 1.03

(0) (0.002) | (0) (0.001) | (0.068) (0.305)

(0.99, (0.9, (0.76, | (-1.63, | (-0.13, (-0.43,

1) 6.5) 3.28) -0.26) | 3.55) 2.98)

1 2.4 1.64 -0.78 1.5 0.02

(0) (0.293) | (0.001) | (0.001) | (0.064) (0.677)

(0.99, (0, (0.41, | (-1.48, | (-0.08, (-1.98,

1) 5.43) 3.05) -0.22) | 3.28) 1.56)
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Ip

5DBH

BDBHZ

leope

Belev

ﬁinsol

ﬂdef

6ba

Bt

3.55
(0.006)
(17
6.96)

1.99
(0.001)
(0.76,
3.39)

-0.9
(0.001)
(-1.66,
-0.27)

1.51
(0.114)
(-0.32,
3.41)

-0.67
0.422)
-2.2,
1.03)

—~—

3.44
(0.004)
(0.94,
6.46)

1.92
(0)

(0.7,
3.19)

-0.92
(0.001)
(-1.61,
-0.27)

1.61
(0.089)
(-0.24,
3.55)

0.3
(0.628)
(-1.25,
0.59)

Table M.8: Survival model parameter estimates for tanoak.

expit(b)

Ip

BDBH

5DBH‘

leope

ﬁelev

Binsol

ﬁdsf

/Bba

ﬁt

0.09
(0)
(0.98,
0.99)

0.45
(0.059)
(-0.02,
0.94)

0.38
(0.127)
(-0.08,
0.88)

-0.58
(0.284)
(-1.53,
0.33)

-0.64

(0.033)
(-1.2, -
0.07)

-0.34
(0.547)
(-1.13,
0.36)

-0.28
0.566)
-1.36,
0.69)

—~—

-0.22
(0.609)
(-1.02,
0.58)
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ezpit(b) ap ﬁDBH IBDBHZ leope ﬂelev ﬂinsol ﬂdef 6ba Bt
0.98 0.35 -0.54

(0) (0.135) (0.079)

(0.98, (-0.09, (-1.14,

0.99) 0.81) 0.08)

0.98 0.37 0.07 -0.62

(0) (0.136) | (0.88) (0.097)

(0.97, (-0.11, | (-0.36, (-1.43,

0.99) 0.88) 0.52) 0.1)

0.99 -0.39 -0.59

(0) (0.384) | (0.061)

(0.98, (-1.18, | (-1.17,

1) 0.37) 0.02)

0.98 -0.61 -0.18

(0) (0.047) | (0.999)

(0.98, (-1.17, | (-0.89,

0.99) -0.01) | 0.46)

0.99 -0.64 -0.19

(0) (0.034) (0.914)

(0.98, (-1.16, (-1.75,

1) -0.02) 1.27)

0.98 -0.63 -0.04

(0) (0.043) (0.901)

(0.97, (-1.21, (-1.12,

0.99) -0.04) 0.96)

0.98 -0.63 -0.05
(0) (0.042) (0.882)
(0.97, (-1.22, (-0.86,
0.99) -0.05) 0.78)
0.99 0.61 -0.89 -0.54

(0) (0.015) (0.032) | (0.099)

(0.98, (0.1, (-1.77, | (-1.17,

1) 1.08) -0.07) | 0.15)

0.99 0.35 -0.52 -0.18

(0) (0.14) (0.098) | (0.918)

(0.98, (-0.1, (-1.15, | (-0.86,

0.99) 0.8) 0.07) 0.45)

0.99 0.33 -0.55 -0.09

(0) (0.16) (0.075) (0.872)

(0.98, (-0.11, (-1.17, (-1.66,

1) 0.79) 0.07) 1.31)

0.99 0.4 -0.6 0.32

(0) (0.119) (0.071) (0.754)

(0.98, (-0.08, (-1.24, (-0.88,

0.99) 0.91) 0.06) 1.62)

0.99 0.38 -0.58 0.18
(0) (0.146) (0.072) (0.641)
(0.98, (-0.09, (-1.2, (-0.72,
0.99) 0.88) 0.05) 1.06)
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Appendix N

Plot Standard Deviation Model
Selection and Posteriors (Survival
Model)

This appendix contains a description of the model selection strategy for random plot effects
in the survival models, and shows posteriors for plot standard deviation o, for all species
aggregated, incense-cedar, white fir, Douglas-fir, ponderosa pine, sugar pine, black oak, and
tanoak.

N.1 Selection Strategy for Random Effects

The plot random effect standard deviation cannot overlap zero and one therefore cannot use
a 95% credible interval overlap criterion. Instead, one can consider the shape and location
of the posterior, interpreting it as not meaningful when zero has substantial support. In
addition, random effects cannot be treated equivalently to fixed effects in the selection strat-
egy because they are variance components. The forward-selection strategy is not optimal for
selecting random effects because one prefers to test the random effects with a “beyond opti-
mal” model which includes all possible fixed effects (Zuur et al. 2009), which is not feasible
here. Therefore I use the following procedure to select random plot effects:

1) Fit models with only plot effects. This model should demonstrate which random
effects should definitely not be selected, because if there are no other variables and the plot
standard deviation posterior has high support at zero, there is little evidence in the data that
any variation is accounted for with this effect. Therefore, if plot effect standard deviations
have support at zero, I do not include plot effects in future models for fixed effect selection.

2) Otherwise, include plot effects which could potentially be significant and proceed with
fixed effect model selection as described in Chapter 2.
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3) After selecting fixed effects, check the plot random effect standard deviation again in
the final models to confirm that it has remained distinct and separated from zero.

N.2 Results of Selection for Survival Models

Figure N.1 shows posteriors from the model with random plot effects and no explanatory
variables (from step 1). Tanoak is the only species in the models which clearly has little
support for a plot random effect, so I do not include it in further model selection. All other
species have plot random effect posteriors which are separated from zero and therefore plot
effects are included for those species throughout the model selection process.

For these species, after selecting fixed effects, I check the plot random effect standard
deviation again to see if the variation initially attributed to plot has now been attributed to
fixed effects (from step 3, Figure N.2). For all species aggregated, incense-cedar, Douglas-fir,
and ponderosa pine, the plot standard deviation posteriors are still clearly separated from
zero. Sugar pine’s plot random effect has become more ambiguous. Black oak and white
fir now have bimodal plot standard deviation posteriors (the MCMC consistently alternates
between two possible values). For black oak, ‘pairs’ plots in R of the MCMC chains show
that the plot random effect is compensating for the size effect — when the plot random effect
node is close to zero, then the size parameters SP2# and 6DBH2 also have smaller (close to
zero) values. However, the more favored mode (with the higher density) is the one with a
nonzero plot effect and strong size dependence. For white fir, no tradeoffs are obvious in
the ‘pairs’ plot and it is possible that the plot random effect may not be important for this
species.

Note that variation in incense-cedar is higher than all species aggregated, Douglas-fir,
and ponderosa pine. One possible reason for incense-cedar’s higher variation could be that
it is the most abundant species at BFRS. It is found on almost the same number of plots
as white fir, which is next most abundant, and yet has greater plot variation. It may be
that much of the recruitment and gap dynamics are occurring within this most abundant
species. Note also that spatial influences on mortality can be more elegantly handled in
mapped plots, where the hierarchical model can directly incorporate spatial autocorrelation
(Finley et al. 2011).
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Plot Standard Deviation Posteriors for Simplest (plot-only) Mod
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Figure N.1: Plot standard deviation posteriors for plot-only models. Means are shown as a
vertical dashed line.
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Plot Standard Deviation Posteriors After Variable Selection
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Figure N.2: Plot standard deviation posteriors for models with model-selected fixed effects.
Means are shown as a vertical dashed line.
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Appendix O

Additional Figures for Significant
Variables on Probability Scale for
Survival Models

Figures O.1 through O.7 show additional probability/size relationships for species-variable
combinations which were not included in Figure 2.3 but were selected by the model selection
procedure. Two borderline cases are also shown here: Douglas-fir with plot basal area,
and incense-cedar and the secular time trend. Note that black oak only selected linear and
quadratic size and therefore no other variable is shown in Figure O.3.
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All Species, Basal Area
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Figure O.1: All species aggregated, plot basal area probability plots.
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Incense—-cedar, Time Trend
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Figure O.2: Incense-cedar, secular time trend probability plots.
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Black Oak
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Figure O.3: Black oak, diameter probability plots.
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Sugar Pine, Time Trend
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Figure O.4: Sugar pine, secular time trend probability plots.
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Figure O.5: Douglas-fir, plot basal area probability plots.
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Figure O.6: Tanoak, topographic slope probability plots.
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Ponderosa Pine, Time Trend
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Figure O.7: Ponderosa Pine, secular time trend probability plots.
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Appendix P

Exploring Different Smoothing
Functions

Figure P.1 shows, for laqua Buttes, the comparison between two different generalized additive
model smoothing function bases, thin plate regression splines and Markovian random fields,
as well as a slightly different method of calculating the polygon centroid to incorporate
geographical location into the statistical model. Solid lines are associated with parameter
estimates and dashed lines show 95% confidence intervals; parameter estimates which are
significant at p < 0.05 have solid circles and those that are not have open circles. The Y-axis
is a standardized regression parameter estimate (5, and the X-axis is the cell size in meters.
There are no appreciable differences between these methods. Similarly, the two methods
of locating a polygon centroid (to extract the geographical coordinates for the statistical
model), “inside” vs. “centroid” do not produce appreciably different results.
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Figure P.1: Thin plate regression spline and Markovian random field bases give similar results
for Taqua Buttes. Also shown: different choice of centroid location (“inside” vs. “centroid”)
for geographical coordinates, which also gives similar results.
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Appendix Q

Imagery and Classifications for Other
Sites
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Figure Q.1: Imagery and classification for the Bald Hills (BH) site.
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Figure Q.2: Imagery and classification for the Blake Mountain (BM) site.
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Figure Q.3: Imagery and classification for the Willow Creek (WC) site.
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Appendix R

Scaling Relationships with
Non-Standardized Variables
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Figure R.1: Results of scaling from 20 m grid cells to 100 m grid cells. Each color represents
one site, with solid lines associated with parameter estimates and dashed lines showing 95%
confidence intervals; parameter estimates which are significant at p <0.05 have solid circles
and those that are not have open circles. Parameters are for non-standardized variables so
the magnitude of the effects can be directly compared between sites and scales; the results
are generally unchanged from the standardized case, therefore comparisons in Figure 3.5 are
legitimate.
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Appendix S

Error Matrices for Image
Classifications

Tables S.1 and S.2 show error matrices for each classified image and site (IB — laqua Buttes,
BH — Bald Hills, BM — Blake Mountain, WC — Willow Creek). The tables include the number
of samples correctly classified, as well as omission and commission errors (as Producer’s and
User’s accuracies). Accuracy for Taqua Buttes in 1948 was 92% (with a kappa statistic of
0.78); for the 2009 image, accuracy was 98% (kappa = 0.89). For Bald Hills, the 1948
image had a classification accuracy of 96% (kappa = 0.86); for the 2009 image, classification
accuracy was 98% (kappa = 0.89). For Blake Mountain, the 1948 image had a classification
accuracy of 94% (kappa = 0.74); for the 2009 image, classification accuracy was 99% (kappa
= 0.95). For Willow Creek, the 1948 image had a classification accuracy of 99% (kappa =
0.94); for the 2009 image, classification accuracy was 99% (kappa = 0.94). In six cases out
of 800, a sample fell into a clearly mixed class between woody and herbaceous cover and was
thrown out.
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Assessed Classes

Assigned
Classes

Woody Herbaceous User Acc.
IB Woody 71 4 94.7%
Herbaceous 4 20 83.3%
Prod. Acc  94.7% 83.3% 91.9%
Woody Herbaceous User Acc.
BH Woody 79 3 96.3%
Herbaceous 1 16 94.1%
Prod. Acc  98.8% 84.2% 96.0%
Woody Herbaceous User Acc.
BM Woody 83 6 93.3%
Herbaceous 0 10 100.0%
Prod. Acc  100.0% 62.5% 93.9%
Woody Herbaceous User Acc.
WC Woody 90 0 100.0%
Herbaceous 1 9 90.0%
Prod. Acc  98.9% 100.0% 99.0%

Table S.1: Error matrices for each classified 1948 image

Assessed Classes

Assigned
Classes

Woody Herbaceous User Acc.
IB Woody 88 1 98.9%
Herbaceous 1 9 90.0%
Prod. Acc.  98.9% 90.0% 98.0%
Woody Herbaceous User Acc.
BH Woody 88 1 98.9%
Herbaceous 1 9 90.0%
Prod. Acc.  98.9% 90.0% 98.0%
Woody Herbaceous User Acc.
BM Woody 88 1 98.9%
Herbaceous 0 10 100.0%
Prod. Acc. 100.0% 90.9% 99.0%
Woody Herbaceous User Acc.
WwC Woody 90 0 100.0%
Herbaceous 1 9 90.0%
Prod. Acc. 98.9% 100.0% 99.0%

Table S.2: Error matrices for each classified 2009 image
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Appendix T

Model Diagnostics for All Sites and
Scales

Table T.1 gives the model diagnostics for each site and scale. The values of the basis dimen-
sion k used for the smoothing spline are all greater than the default of 10. The Moran test
for autocorrelation (in which significant p-values indicate the presence of autocorrelation)
shows no autocorrelation for any site or scale. All models were run with large enough k to
allow the smoother to be flexible enough to account for spatial autocorrelation. The esti-
mated dispersion parameters for the quasibinomial are all much greater than one (binomial
distribution with no dispersion would have a dispersion parameter of one), indicating that
the quasibinomial was necessary. The spatial smoothing term is usually significant, but not
always. Finally, the table gives the run time for each model.



APPENDIX T. MODEL DIAGNOSTICS (CHAPTER 3) 162
Site| Grid cell | N Basis di- | Moran Estimated Spatial Run time
size mension | Test dispersion term (seconds)
k p.value p.value
100 130 13 0.77 4.89 2.22E-008 0.10
90 154 15 1.00 6.44 6.77E-010 0.13
80 187 19 0.99 2.22 2.23E-015 0.15
70 246 25 1.00 22.31 9.01E-002 0.25
BH | 60 323 32 0.98 6.16 2.81E-013 0.74
50 452 45 0.70 152.78 1.00E4000 | 1.82
40 664 66 0.99 4.54 1.26E-065 3.94
30 1154 | 115 1.00 4.13 1.98E-096 73.36
20 2453 | 245 1.00 21.10 3.76E-010 695.18
100 137 14 0.85 3.37 3.10E-019 0.10
90 162 32 1.00 3.47 1.12E-012 0.24
80 201 40 0.99 3.19 9.48E-030 0.13
70 250 50 0.90 3.75 3.87E-025 0.20
BM| 60 332 66 1.00 4.34 2.15E-038 0.41
50 473 94 1.00 4.61 8.60E-057 0.99
40 722 144 1.00 4.22 3.71E-120 3.32
30 1215 244 1.00 4.97 3.43E-226 16.15
20 2678 | 268 0.97 9.29 9.42E-266 148.29
100 99 10 0.76 7.11 2.06E-001 0.08
90 117 12 0.84 4.76 3.84E-005 0.06
80 145 14 0.93 5.88 7.12E-009 0.08
70 184 18 0.95 5.26 2.57E-009 0.11
IB | 60 242 24 0.98 6.99 4.89E-013 0.14
50 333 33 0.99 7.87 2.98E-014 0.56
40 490 49 1.00 7.71 6.63E-034 1.48
30 842 84 0.97 9.05 2.35E-042 5.00
20 1800 180 1.00 11.74 2.31E-071 45.50
100 106 11 0.98 1.38 1.19E-007 0.09
90 127 13 0.98 2.20 3.44E-005 0.10
80 151 15 0.99 1.40 7.85E-022 0.07
70 198 20 0.97 7.01 1.48E-001 0.14
WC| 60 263 26 1.00 2.59 3.13E-021 0.36
50 361 36 0.94 1.87 1.38E-028 4.57
40 553 55 1.00 14.67 1.42E-002 2.36
30 967 97 1.00 159.28 1.00E4-000 | 46.26
20 2064 | 206 1.00 9.78 6.93E-010 111.86

Table T.1: Model diagnostics for each site and scale (IB — Iaqua Buttes, BH — Bald Hills,
BM - Blake Mountain, WC — Willow Creek).



