
Provably Efficient Algorithms for Numerical Tensor Algebra

by

Edgar Solomonik

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science
and the Designated Emphasis

in

Computational Science and Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor James Demmel, Chair
Professor Katherine Yelick

Professor Martin Head-Gordon

Fall 2014

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3686016

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

UMI Number: 3686016

Provably Efficient Algorithms for Numerical Tensor Algebra

Copyright 2014
by

Edgar Solomonik

1

Abstract

Provably Efficient Algorithms for Numerical Tensor Algebra

by

Edgar Solomonik

Doctor of Philosophy in Computer Science
and the Designated Emphasis

in

Computational Science and Engineering

University of California, Berkeley

Professor James Demmel, Chair

This thesis targets the design of parallelizable algorithms and communication-efficient parallel
schedules for numerical linear algebra as well as computations with higher-order tensors. Commu-
nication is a growing bottleneck in the execution of most algorithms on parallel computers, which
manifests itself as data movement both through the network connecting different processors and
through the memory hierarchy of each processor as well as synchronization between processors.
We provide a rigorous theoretical model of communication and derive lower bounds as well as
algorithms in this model. Our analysis concerns two broad areas of linear algebra and of tensor
contractions. We demonstrate the practical quality of the new theoretically-improved algorithms
by presenting results which show that our implementations outperform standard libraries and tra-
ditional algorithms.

We model the costs associated with local computation, interprocessor communication and syn-
chronization, as well as memory to cache data transfers of a parallel schedule based on the most
expensive execution path in the schedule. We introduce a new technique for deriving lower bounds
on tradeoffs between these costs and apply them to algorithms in both dense and sparse linear al-
gebra as well as graph algorithms. These lower bounds are attained by what we refer to as 2.5D
algorithms, which we give for matrix multiplication, Gaussian elimination, QR factorization, the
symmetric eigenvalue problem, and the Floyd-Warshall all-pairs shortest-paths algorithm. 2.5D
algorithms achieve lower interprocessor bandwidth cost by exploiting auxiliary memory. Algo-
rithms employing this technique are well known for matrix multiplication, and have been derived
in the BSP model for LU and QR factorization, as well as the Floyd-Warshall algorithm. We
introduce alternate versions of LU and QR algorithms which have measurable performance im-
provements over their BSP counterparts, and we give the first evaluations of their performance.
We also explore network-topology-aware mapping on torus networks for matrix multiplication

2

and LU, showing how 2.5D algorithms can efficiently exploit collective communication, as well
as introducing an adaptation of Cannon’s matrix multiplication algorithm that is better suited for
torus networks with dimension larger than two. For the symmetric eigenvalue problem, we give
the first 2.5D algorithms, additionally solving challenges with memory-bandwidth efficiency that
arise for this problem. We also give a new memory-bandwidth efficient algorithm for Krylov sub-
space methods (repeated multiplication of a vector by a sparse-matrix), which is motivated by the
application of our lower bound techniques to this problem.

The latter half of the thesis contains algorithms for higher-order tensors, in particular tensor
contractions. The motivating application for this work is the family of coupled-cluster methods,
which solve the many-body Schrödinger equation to provide a chemically-accurate model of the
electronic structure of molecules and chemical reactions where electron correlation plays a sig-
nificant role. The numerical computation of these methods is dominated in cost by contraction
of antisymmetric tensors. We introduce Cyclops Tensor Framework, which provides an auto-
mated mechanism for network-topology-aware decomposition and redistribution of tensor data.
It leverages 2.5D matrix multiplication to perform tensor contractions communication-efficiently.
The framework is capable of exploiting symmetry and antisymmetry in tensors and utilizes a dis-
tributed packed-symmetric storage format. Finally, we consider a theoretically novel technique for
exploiting tensor symmetry to lower the number of multiplications necessary to perform a contrac-
tion via computing some redundant terms that allow preservation of symmetry and then cancelling
them out with low-order cost. We analyze the numerical stability and communication efficiency
of this technique and give adaptations to antisymmetric and Hermitian matrices. This technique
has promising potential for accelerating coupled-cluster methods both in terms of computation
and communication cost, and additionally provides a potential improvement for BLAS routines on
complex matrices.

i

Contents

Contents i

1 Introduction 1

2 Theoretical Performance Model 8
2.1 Scheduling Cost Model . 9
2.2 Performance Models for Communication Collectives 16

3 Communication Lower Bound Techniques 24
3.1 Previous Work . 26
3.2 Volumetric Inequalities . 27
3.3 Lower Bounds on Lattice Hypergraph Cuts . 29
3.4 Lower Bounds on Cost Tradeoffs Based on Dependency Path Expansion 35

4 Matrix Multiplication 42
4.1 Previous Work . 43
4.2 Communication Lower Bounds . 47
4.3 2.5D Matrix Multiplication . 49
4.4 Rectangular Matrix Multiplication . 53
4.5 Split-Dimensional Cannon’s Algorithm . 56

5 Solving Dense Linear Systems of Equations 64
5.1 Lower Bounds for Triangular Solve and Cholesky 65
5.2 Parallel Algorithms for the Triangular Solve . 71
5.3 2.5D LU without Pivoting . 71
5.4 2.5D LU with Pivoting . 73
5.5 2.5D Cholesky-QR . 76
5.6 2.5D LU Performance Results . 80

6 QR Factorization 84
6.1 Previous Work . 86
6.2 New 2D QR Algorithms . 92
6.3 Performance . 101

ii

6.4 2.5D QR Factorization . 104

7 Computing the Eigenvalues of a Symmetric Matrix 111
7.1 Previous Work . 113
7.2 Direct Symmetric-to-Banded Reduction . 114
7.3 Successive Symmetric Band Reduction . 118

8 Sparse Iterative Methods 123
8.1 Definition and Dependency Graphs of Krylov Basis Computations 124
8.2 Communication Lower Bounds for Krylov Basis Computation 125
8.3 Previous Work on Krylov Basis Algorithms . 129
8.4 A Communication-Efficient Schedule for Krylov Basis Computation 131

9 Finding the Shortest Paths in Graphs 137
9.1 Previous Work . 138
9.2 Lower Bounds . 140
9.3 Divide-and-Conquer APSP . 142
9.4 Parallelization of DC-APSP . 142
9.5 Experiments . 146
9.6 Discussion of Alternatives . 148
9.7 Conclusions . 149
9.8 Appendix . 149

10 Distributed-Memory Tensor Contractions 155
10.1 Previous work . 156
10.2 Algorithms for Tensor Blocking and Redistribution 159
10.3 Algorithms for Tensor Contraction . 165
10.4 Application Performance . 171
10.5 Future Work . 176

11 Contracting Symmetric Tensors Using Fewer Multiplications 177
11.1 Symmetric Tensor Contractions . 179
11.2 Algorithms . 181
11.3 Analysis . 194
11.4 Antisymmetric and Hermitian Adaptations . 213
11.5 Applications . 230
11.6 Conclusions . 233

12 Future Work 234

Bibliography 236

iii

Acknowledgments

I’d like to firstly acknowledge the guidance and feedback I received from my adviser, Jim Demmel,
which has had a great influence on this work. I’ve learned a lot from Jim, in particular with respect
to rigorous theoretical analysis of algorithms. Additionally, on a number of occasions Jim has
corrected critical oversights in my analysis and often these corrections created pathways for further
development of the research work. I would also like to thank my committee members Kathy Yelick
and Martin Head-Gordon, who have had a direct positive influence on this work and from whom I
have also learned a lot.

I’d like to also especially acknowledge Grey Ballard, Nicholas Knight, and Devin Matthews
all of whom contributed to research in multiple chapters of this thesis. Grey, Nick, and Devin were
always open for research discussions from which I have gained a lot of knowledge, particularly on
numerical linear algebra from Grey, on numerical methods from Nick, and on electronic structure
algorithms from Devin. Additionally, I would like to thank Jeff Hammond and Erin Carson both
for contributions to the work and numerous interesting research discussions. I would also like to
thank a number of other collaborators who have contributed to this work: Abhinav Bhatele, Aydin
Buluc, Laura Grigori, Mathias Jacquelin, Hong Diep Nguyen, and John F. Stanton. Further, I
would like to thank Erik Draeger, Michael Driscoll, Todd Gamblin, Evangelos Georganas, Penporn
Koanantakool, Richard Lin, Benjamin Lipshitz, Satish Rao, Oded Schwartz, Harsha Simhadri,
Brian Van Straalen, and Sam Williams with whom I also worked and had many useful discussions
throughout my time in Berkeley. Also, I’d like to thank Andrew Waterman for help and useful
discussions on a number of topics and especially his insight on computer architecture. I look
forward to and hope to do more collaborative work with everyone mentioned above.

I also thank my family and friends for positivity and support in my research endeavours and
beyond. Lastly, I want to thank Krell Institute for the Department of Energy Computational Science
Graduate Fellowship, the support of which I have enjoyed over the past four years and which has
opened many doors for me.

1

Chapter 1

Introduction

A pervasive architectural evolutionary trend is the growth of parallelism and associated relative
growth of the cost of communication of data and synchronization among processors with respect
to the cost of execution of local operations on the data. This changing nature of architecture makes
the design of efficient numerical applications a moving target. Numerical linear algebra provides
a layer of abstraction, which is leveraged by optimized matrix libraries. Tensors raise the level of
abstraction and allow expression of more complex numerical methods on top of optimized library
primitives. Further, symmetries in the structure of data are expressible via the tensor represen-
tation and can be used to lower the algorithmic cost of tensor operations. This thesis analyzes
new algorithms for numerical linear algebra computations as well as symmetric tensor computa-
tions, deriving communication-optimal schedules and benchmarking implementations of them on
distributed-memory supercomputers.

Tensors, most commonly vectors and matrices, are the predominant data abstractions in numer-
ical methods and computations. Non-numerical algorithms, such as shortest-paths computations
on graphs may also be formulated via algebras over other semirings as matrix (or, for hypergraphs,
tensor) operations. Frequently, the most computationally-expensive operations in numerical meth-
ods are expressible as algebraic operations on tensors. Such a high-level representation of data and
its operation allows for an interface between the numerical method developer and the algorithms
which perform the tensor algebra. This abstraction attracts the development of efficient algorithms
and computational frameworks for tensor algebra.

Chapter 2 formally defines the theoretical execution and cost model, which takes into account
not only the number of operations performed by any processor, but also the amount of data trans-
ferred between processors (interprocessor/horizontal communication), the amount of data trans-
ferred between main memory and cache (vertical communication), and the number of interpro-
cessor synchronizations. The model is based on asynchronous messages whose progress must be
guaranteed by synchronizations of groups of processors. This algorithmic model has similarities
to the BSP model [162] and the LogP model [40], in fact we show that the algorithms from both
BSP and LogP may be efficiently simulated in our model (under some assumptions on the rela-
tive value of costs in the LogP model). We also specifically consider collective communication,
which is a key communication primitive in matrix and tensor parallel algorithm designs. We derive

CHAPTER 1. INTRODUCTION 2

a LogP performance model for the communication costs of communication collectives tuned for
multidimensional torus networks [57] and compare them to topology-oblivious (binomial) collec-
tives [57, 129, 155] at the end of Chapter 2. Figure 1.1 [143] motivates our network-topology-
aware collective communication analysis by showing that the performance of a multicast varies
dramatically depending on whether it exploits the topology of the underlying interconnect net-
work. The bandwidth of a 1 MB multicast drops by a factor of as much as 30x as the number of
processors grows from 2 to 4096 on a Cray XE6 (Hopper), but grows by a factor of 4.3x on the In-
trepid Blue Gene/P (BG/P). This contrast demonstrates the advantage of topology-aware collective
communication over topology-oblivious binomial collectives.

 128

 256

 512

 1024

 2048

 4096

 8192

8 64 512 4096

B
an

dw
id

th
 (M

B
/s

ec
)

#nodes

1 MB multicast on BG/P, Cray XT5, and Cray XE6

BG/P
XE6
XT5

Figure 1.1: BG/P uses topology aware multicasts to utilize a high fraction of node bandwidth.

We express the parallelization or schedule of an algorithm as given by the sequence of com-
munication, synchronization, or computation tasks performed on each processor and we measure
the execution time as the most expensive sequence of dependent tasks, which may not necessarily
all be done on one processor. This new critical path execution cost model (detailed in Chapter 2.1)
allows us to effectively analyze the parallelization potential of algorithms by considering their
dependency structure. Chapter 3 introduces techniques for dependency graph analysis that will
allow us to lower bound the communication and synchronization costs which are achievable by
any possible schedule for an algorithm, based on the dependency structure of the algorithm. The
process of determining lower bounds (limits on best achievable costs), will allow us to evaluate the
parallelization potential of algorithms and to certify whether a given schedule is optimal in its com-
munication and synchronization costs. Figure 1.2 demonstrates the development flow which lower
bound analysis enables. While Figure 1.2 considers budget constrained algorithm and schedule
development, we will usually seek the algorithm with the lowest cost. So, we will seek to lower
bound the communication costs of all algorithms, for which we define schedules. In a number of
cases, we will present new or modified algorithms, which are able to attain a lower communication
cost than existing alternatives, which is something that lower bounds on the existing algorithm
allow us to prove. Chapter 3 will introduce techniques for deriving lower bounds on communi-
cation costs based on min-cut characterizations of hypergraphs, as well as techniques for deriving

CHAPTER 1. INTRODUCTION 3

Figure 1.2: How do lower bounds facilitate the design of parallel algorithms?

tradeoff lower bounds between synchronization cost and computation as well as communication
costs. This general lower bound infrastructure will allow us to derive useful lower bounds for dense
matrix and tensor computations, graph algorithms, and sparse linear algebra algorithms. The in-
frastructure builds on previous lower bound techniques based on pebbling games [90], geometric
inequalities [12, 159, 156] (most notably the Loomis-Whitney inequality [111]), as well as graph
expansion [11]. Specifically, we will use our lower bound techniques to prove novel lower bounds
on tradeoffs between communication and synchronization for Cholesky factorization in Chapter 5
and for Krylov subspace methods in Chapter 8.

In Chapter 4, we start specific derivation and analysis of algorithms with dense matrix multipli-
cation, which will be a building block for the analysis of many of the later algorithms. Our analysis
will be limited to classical (non-Strassen-like [152]) matrix multiplication algorithms (we will also
not use Strassen-like algorithms in our analysis of other dense linear algebra problems). We derive
a lower bound with tight constants on the bandwidth cost of matrix multiplication, and give paral-
lel algorithms that attain the lower bounds for any amount of available memory. Previously, such
‘3D’ algorithms that use extra memory have been analyzed by [1, 2, 23, 43, 93, 113], and “2.5D
algorithms” (ones that use a tunable amount of extra memory) have been given by [113]. We also
study the effects of topology-aware mapping strategies for matrix multiplication which arrange the
interprocessor data transfers so as to use all available network links may be saturated in a torus
network topology. Combining topology-awareness with asymptotic reduction in communication
cost, our 2.5D matrix multiplication algorithm achieves up to a 12X speed-up over the standard
‘2D’ algorithm on a BlueGene/P supercomputer. We study how this network utilization is achiev-
able using pipelined collective communication [57] and also present an adaptation of Cannon’s
algorithm, which can explicitly utilize all torus links without the use of pipelining, achieving a
1.5X speed-up over regular Cannon’s algorithm.

Chapter 5 considers the problem of solving dense linear systems of equations via dense LU or

CHAPTER 1. INTRODUCTION 4

Cholesky factorization and a triangular solve. The triangular solve and Gaussian elimination al-
gorithms have a more intertwined dependency structure then matrix multiplication, and our lower
bound analysis shows that their parallelization requires higher synchronization cost. We refer to
existing and give our own versions of schedules that achieve these costs. We specifically study the
potential of asymptotically reducing communication cost by utilizing additional available memory
in “2.5D LU and Cholesky algorithms”, which is not exploited by current ‘2D’ parallel numerical
linear algebra libraries. Such approaches have been previously been explored for LU by Irony
and Toledo [87] (who minimized communication volume rather than critical path communication
cost) and by Tiskin [158] for BSP. We present a more practical approach and study different piv-
oting algorithms for 2.5D LU factorization (partial pivoting necessitates a high synchronization
cost); in contrast to Tiskin [158] who uses pairwise pivoting [149], we employ tournament pivot-
ing [69]. The applications of our lower bounds demonstrates the optimality of the communication
and synchronization cost of these parallelizations, answering an open question posted by [158].
Our method of utilizing auxiliary memory for these algorithms enables improved strong scaling
(faster time to solution of problems using more processors), which we highlight in Figure 1.3.

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

LU with tournament pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU
ScaLAPACK PDGETRF

Figure 1.3: Performance of 2.5D LU (communication-avoiding algorithm) with respect to 2D LU
(standard approach) on BlueGene/P supercomputer.

We take the step from LU to QR factorization in Chapter 6, where we try to attain the same
communication costs in parallel algorithms for QR factorization as we did for LU factorization.
One challenge posed in formulating a 2.5D QR factorization algorithm is the desire to use aggre-
gated trailing matrix updates to achieve good bandwidth efficiency, but to avoid using Householder
QR, which requires high synchronization cost. Previous work in BSP by Tiskin [158] relied on
Givens rotations. We give a technique for reconstructing the Householder vectors from an implicit
form given by block Givens rotations (TSQR [47]). This technique is based on a similar idea of
Yamamato [169]. Our approach involves forming a panel of the orthogonal matrix and computing
an LU factorization of this orthogonal matrix added to a diagonal sign matrix. We also improve the
alternative approach, by showing how the implicit form may be applied to the trailing matrix more

CHAPTER 1. INTRODUCTION 5

communication-efficiently. We study the performance of our algorithms on a distributed memory
supercomputer. We end the chapter by providing a parallel QR algorithm that can efficiently ex-
ploit extra available memory and yields the standard Householder representation of the orthogonal
matrix. Our approach is simpler and has practical advantages with respect to [158]. Our approach
of doing two-level aggregation, which may be combined with TSQR via our Householder recon-
struction technique, achieved a 1.4X speed-up on a Cray XE6 supercomputer.

QR factorization itself serves as a building block for algorithms for the symmetric eigenvalue
problem, which we study in Chapter 7. We focus on approaches that reduce the symmetric ma-
trix to a tridiagonal matrix by an orthogonal transformation (so the tridiagonal matrix retains the
eigenvalues of the full symmetric matrix). Finding communication-efficient algorithms for this
tridiagonalization problem is more difficult as aggregating the trailing matrix update to achieve low
memory-bandwidth cost necessitates reducing the symmetric matrix to successively thinner inter-
mediate band widths [13, 6]. We give an 2.5D symmetric eigensolve algorithm that uses a minimal
number of such successive reduction stages to achieve optimal memory bandwidth and interpro-
cessor communication cost for any given cache size. We also give an alternative 2.5D successive
band-reduction approach, which uses only one intermediate matrix band width and achieves mini-
mal interprocessor communication cost but not necessarily optimal memory-bandwidth cost.

We transition from dense to sparse numerical linear algebra in Chapter 8. We specifically con-
sider Krylov subspace computations, which rely on repeated multiplication of a vector by a sparse
matrix (a ubiquitous kernel in sparse-matrix methods). The memory-bandwidth cost of multi-
plication of a sparse-matrix by a vector is often high, due to the necessity to read in the whole
matrix from main memory into cache and the fact that no data reuse is achieved for each matrix
entry. Further, the interprocessor synchronization cost incurred for each sparse-matrix vector mul-
tiplication may be a bottleneck. There are well known methods (s-step methods) which achieve
better cache reuse and perform fewer synchronizations for Krylov subspace methods via perform-
ing blocking across multiple sparse-matrix-by-vector multiplications [90, 109, 49, 154]. However,
the interprocessor communication cost (amount of data transferred) requirements of these methods
is higher for most sparse matrices, albeit by a low order term when the problem size per proces-
sor is large enough. By application of our lower bound methods, we demonstrate that there is a
tradeoff between synchronization cost and interprocessor communication cost, which is attained
by s-step methods. This lower bound motivates a new algorithm, which does not attempt to lower
synchronization cost, avoiding the tradeoff and keeping interprocessor communication low, but
still succeeds in lowering the memory-bandwidth cost. This algorithm promises the most potential
benefit, when executing problems that do not fit wholly into cache, but are also not many times
larger than the cache. One such scenario occurs in the context of heterogeneous architectures,
which have a local workspace that is smaller than the host-processors memory capacity and cannot
fit the whole problem at once. In this scenario, the theoretical memory-bandwidth improvements
achieved by the algorithm would translate to lowering the amount of communication between the
host-processor and accelerator.

Chapter 9 explores problems outside the domain of numerical linear algebra, namely shortest-
paths algorithms for graphs. In fact, many shortest-paths algorithms have similar structure to
numerical linear algebra algorithms and can be formulated as matrix computations over the tropical

CHAPTER 1. INTRODUCTION 6

semiring [117]. We show that our lower bound technique applies to the Bellman-Ford single-source
shortest paths algorithm [20, 62], which is similar in structure to Krylov subspace computations.
Further, the lower bounds apply to the Floyd-Warshall all-pairs shortest-paths algorithm [59, 167],
which is analogous to Gaussian elimination. We study communication-efficient algorithms and
their performance for Floyd-Warshall in detail. We demonstrate that using data replication in the
parallelization of Floyd-Warshall improves performance by a factor of up to 2X for large problems
and up to 6.2X for small problems on a Cray XE6 supercomputer.

The last two major chapters consider algorithms for tensors, extending algorithmic ideas from
matrix computations to higher-order tensors. We focus on tensor contractions, with the primary
motivation of accelerating applications in quantum chemistry, most notably coupled cluster [165,
17, 39], which employs tensors of order 4, 6, and 8. Chapter 10 studies the problem of mapping
and redistributing the data of a tensor on a distributed-memory parallel computer and introduces
Cyclops Tensor Framework, a library which solves this problem in a general fashion. The frame-
work uses distributed packed symmetric data layouts to store symmetric tensors and is capable
of migrating the data between many decompositions, including mappings onto different proces-
sor grids and mappings where data is replicated. The framework performs tensor contractions by
selecting the best choice of parallel schedule and data mapping based on a performance model,
redistributing the data, then executing the schedule. The contractions done by the framework are
capable of exploiting symmetry that is preserved in the contraction equation and leverages matrix
multiplication to achieve high performance locally. We demonstrate the scalability of Cyclops
Tensor Framework on the BlueGene/Q and Cray XC30 architectures, where we benchmark two
methods for coupled-cluster: CCSD and CCSDT [165, 17, 39]. We highlight the weak scaling flop
rate results (largest water problem with cc-pVDZ basis set on each number of processors) achieved
by the framework in Figure 1.4 (see Chapter 10 for details). The performance of the framework is
generally faster than NWChem [31], the most widely-used distributed memory application solving
the same problem, which automates contraction equation derivation via the Tensor Contraction
Engine [79, 19, 64] and parallelization via Global Arrays [120].

 50

 100

 150

 200

 250

 300

 350

32 64 128 256 512 1024 2048

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

Figure 1.4: CCSD and CCSDT weak scaling with on Edison (Cray XC30).

CHAPTER 1. INTRODUCTION 7

The framework presented in Chapter 10 follows previous approaches in exploiting only tensor
symmetries that are preserved in the contraction to lower computation cost. Chapter 11 demon-
strates that it is possible to exploit symmetry more effectively in cases where the contraction
‘breaks’ the symmetry. For instance, in symmetric-matrix-by-vector multiplication, the entries
of the symmetric matrix are multiplied by different vector entries, so typically n2 multiplications
are done if the matrix dimension is n. Our method is capable of performing symmetric-matrix-
by-vector multiplication with n2/2 scalar multiplications to leading order, but a larger number of
additions. We give a general form of the approach, which can handle arbitrary order symmetric
contractions, and lowers the number of multiplications by a factor of up to ω! when ω is the number
of different tensor indices involved in the contraction. This method is similar to Gauss’s trick for
complex number multiplication, Strassen’s matrix multiplication algorithm [152], and the simul-
taneous matrix multiplication algorithm described by Victor Pan [123], as it computes redundant
terms and then subtracts them out, lowering the number of multiplications but increasing the rela-
tive number of additions. We show how the method can be adapted to handle antisymmetric and
Hermitian tensors. The applications of the approach range from lowering the leading order number
of total operations needed for some complex BLAS routines by a factor of 4/3 to achieving higher
speed-ups (we give examples with 2X, 4X, and 9X speed-ups) for coupled-cluster contractions,
where the algorithm is applied in a nested fashion over multiple antisymmetric index groups of
partially-antisymmetric tensors.

8

Chapter 2

Theoretical Performance Model

We model a parallel machine as a homogeneous network of p processors, each with a local main
memory of size M and a cache of size M̂ , which communicate via asynchronous point-to-point
messages and collective (though not necessarily global) synchronizations (collective communica-
tion algorithms are derived on top of the point-to-point messaging model). This model has four
basic architectural parameters,

• α = network latency, time for a synchronization between two or more processors,

• β = time to inject a word of data into (or extract it from) the network,

• γ = time to perform a floating point operation on local data,

• ν = time to perform a transfer of a word of data between cache and main memory.

which are associated with four algorithmic costs,

• S = number of synchronizations (network latency cost),

• W = number of words of data moved (interprocessor bandwidth cost / communication cost),

• F = number of local floating point operations performed (computational cost),

• Ŵ = number of words of data moved between main memory and cache (memory bandwidth
cost).

Each of these quantities is in our scheduling model accumulated along some path of dependent
tasks in the schedule. The longest path weighted by the given cost of each task in the schedule is

Parts of this chapter are based on joint work with Erin Carson and Nicholas Knight [145] and Abhinav
Bhatele [143].

In this chapter and later we denote a discrete integer interval {1, . . . , n} by [1, n] and let discrete and contiguous
intervals be disambiguated by context.

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 9

the critical path cost. The sequence of execution tasks done locally by any processor corresponds
to one such path in the schedule, so our costs are at least as large as those incurred by any single
processor during the execution of the schedule. The parallel execution time of the schedule is
closely proportional to these four quantities, namely,

max(α · S, β ·W, γ · F, ν · Ŵ) ≤ execution time ≤ α · S + β ·W + γ · F + ν · Ŵ .

We do not consider overlap between communication and computation and so are able to measure
the four quantities separately and add them, yielding the above upper bound on execution time,
which is at most 4X the lower bound. We detail our scheduling model and show how these costs
may be formally derived in Section 2.1. We demonstrate that if an algorithm has a certain LogP
cost, it can be done with similar cost in our scheduling model, assuming that the latency param-
eters in LogP are not very different. Similarly, we demonstrate that our scheduling model can
simulate BSP algorithms. These reductions imply that lower bounds for communication costs of
dependency graphs in our model hold as lower bounds on communication cost of any BSP/LogP
parallelization and that all algorithms in BSP and LogP are valid algorithms in our model with
similar upper bounds on costs.

In Section 2.2, we additionally derive more detailed performance models for collective com-
munication, which employ the LogP messaging model. These collective communication models
will be instrumental for predicting and modelling the performance of parallel algorithms for dense
linear algebra and tensor computations. Techniques from efficient collective algorithms will also
later find their place in the design of communication-efficient numerical algorithms in Chapter 4
on matrix multiplication and Chapter 6 on QR factorization.

We analyze on binomial collectives, which are usually used in a network-oblivious manner,
and rectangular collectives, which are specially-designed for torus network architectures. We con-
trast the scalability between these two types of collectives on current computer architectures and
measure the precision of our performance models. We then give use our performance models to
predict relative performance of the collectives on a future supercomputer architecture based on
projected parameters. Our results suggest that on future architectures topology-aware collectives
will be many times (>10X) faster.

The rest of this chapter is organized as follows,

• Section 2.1 gives our main scheduling and cost model,

• Section 2.2 derives our performance model of communication collectives.

2.1 Scheduling Cost Model
The dependency graph of an algorithm is a directed acyclic graph (DAG), G = (V,E). The
vertices V = I ∪ Z ∪ O correspond to either input values I (the vertices with indegree zero), or
the results of (distinct) operations, in which case they are either temporary (or intermediate) values
Z, or outputs O (including all vertices with outdegree zero). This dependency graph corresponds

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 10

to an execution of an algorithm for a specific problem and is a static representation that is not
parameterized by the values assigned to the vertices I . There is an edge (u, v) ∈ E ⊂ V ×
(Z ∪O) if v is computed from u (so a k-ary operation resulting in v would correspond to a vertex
with indegree k). These edges represent data dependencies, and impose limits on the parallelism
available within the computation. For instance, if the dependency graph G = (V,E) is a line
graph with V = {v1, . . . , vn} and E = {(v1, v2), . . . , (vn−1, vn)}, the computation is entirely
sequential, and a lower bound on the execution time is the time it takes a single processor to
compute F = n − 1 operations. Using graph expansion and hypergraph analysis, we will derive
lower bounds on the computation and communication cost of any execution of dependency graphs
with certain properties. In the following subsections, we develop a formal model of a parallel
schedule in detail and show that our construction generalizes the BSP and the LogP models.

2.1.1 Parallel Execution Model
A parallelization of an algorithm corresponds to a coloring of its dependency graph G = (V,E),
i.e., a partition of the vertices into p disjoint sets C1, . . . , Cp where V =

⋃p
i=1Ciand processor i

computes Ci ∩ (Z ∪O). We require that in any parallel execution among p processors, at least two
processors compute at least b|Z∪O|/pc elements; this assumption is necessary to avoid the case of
a single processor computing the whole problem sequentially (without parallel communication).
We will later make further problem-specific restrictions that require that no processor computes
more than some (problem-dependent) constant fraction of Z ∪O. Any vertex v of color i (v ∈ Ci)
must be communicated to a different processor j if there is an edge from v to a vertex in Cj , though
there need not necessarily be a message going directly between processor i and j, as the data can
move through intermediate processors. We define each processor’s communicated set as

Ti = {u : (u,w) ∈ [(Ci × (V \ Ci)) ∪ ((V \ Ci)× Ci)] ∩ E} .

We note that each Ti is a vertex separator in G between Ci \ Ti and V \ (Ci ∪ Ti).
We define a (parallel) schedule of an algorithm with dependency graph G = (V,E) as a DAG

Ḡ = (V̄ , Ē), which consists of a set of p edge-disjoint paths, Π, where the vertices in each π ∈ Π
correspond to the tasks executed by a certain processor. The edges along each processor’s path
carry the state of the cache and main memory of that processor. In our notation, functions that
have domain V̄ will have hats and functions that have domain Ē will have tildes. Each vertex
v̄ ∈ V̄ corresponds to a unique type within the following types of tasks:

v̄ ∈ V̄comp the computation of f̂(v̄) ⊂ V ,

v̄ ∈ V̄sync a synchronization point,

v̄ ∈ V̄send the sending of a message ŝ(v̄) ⊂ V

v̄ ∈ V̄recv the reception of a message r̂(v̄) ⊂ V

v̄ ∈ V̄trsf the transfer of a set of data ĥ(v̄) ⊂ V between cache and main memory

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 11

Figure 2.1: Depiction of a sample 4-processor execution schedule in our model for an all-reduction,
which computes a =

∑
i ai and b =

∑
i bi. Vertices for transfer of data between memory and cache

would also be needed between each send or receive task and a computation task.

We assign a unique color (processor number) i using function c̃ to the edges along each path π, so
that for every edge ē ∈ (π × π) ∩ Ē, c̃(ē) = i. Each vertex ū ∈ V̄comp ∪ V̄send ∪ V̄recv should be
adjacent to at most one incoming edge ēi and at most one outgoing edge ēo. We assign ū the same
color ĉ(ū) = c̃(ēi) = c̃(ēo) as the processor which executes it (the single path that goes through
it). Each vertex v̄ ∈ V̄sync corresponds to a synchronization of k ∈ [2, p] processors and should
have k incoming as well as k outgoing edges. With every edge ē ∈ Ē, we associate the data kept
by processor c̃(ē) in memory as m̃(ē) ⊂ V , the data a processor keeps in cache between tasks
as h̃(ē) ⊂ V , the data kept in the send buffer as a collection of sets s̃(ē) = {W1,W2, . . .} where
each Wi ⊂ V denotes the contents of a sent point-to-point message posted at some node ū with
ŝ(ū) = Wi, and the data kept in the receive buffer as a collection of sets r̃(ē) = {W ′

1,W
′
2, . . .}

where eachW ′
i ⊂ V denotes the contents of a point-to-point message received at some node v̄ with

r̂(v̄) = W ′
i . The schedule has p indegree-zero vertices, corresponding to startup tasks Ī ⊂ V̄comp,

i.e., ‘no-op’ computations which we assume have no cost. The single outgoing edge of each startup
task is assigned a disjoint part of the input data, so that

⋃
ē∈(Ī×V̄)∩Ē m̃(ē) = I . We assume that the

cache starts out empty, so h̃(ē) = ∅ for any ē ∈ (Ī × V̄) ∩ Ē.
In our model, each message is point-to-point in the sense that it has a single originating and

destination processor. However, multiple messages may be transferred via the same synchroniza-
tion vertex. We say the schedule Ḡ is point-to-point if each synchronization vertex has no more
than two paths going through it. Each message is sent asynchronously, but a synchronization is
required before the communicated data may change control. We illustrate an example schedule,
which demonstrates the messaging behavior within our model in Figure 2.1. Transfers (reads and
writes) between memory must be done to move data into cache prior to computation tasks, and to

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 12

read computed data from cache to memory prior to interprocessor communication.
We enforce the validity of the schedule via the following constraints. For every task v̄ executed

by processor i, with incoming edge ēin and outgoing edge ēout,

• if v̄ ∈ V̄comp \ Ī (for all computation tasks),

1. (∀f ∈ f̂(v̄))(∀(g, f) ∈ E), g ∈ f̂(v̄) or g ∈ h̃(ēin) (meaning the dependencies must be
in cache at the start of the computation or computed during the computation task),

2. h̃(ēout) ⊂ f̂(v̄) ∪ h̃(ēin) (meaning the cache can carry newly computed data), and

3. m̃(ēout) = m̃(ēin) and h̃(ēout) = h̃(ēin) (meaning the contents of the memory and cache
stay the same);

• if v̄ ∈ V̄send (for all tasks which send messages),

1. ∃w̄ ∈ V̄recv with ŝ(v̄) = r̂(w̄) and a path from v̄ to w̄ in Ḡ (meaning the task that sends
the message is connected by a path to the task that receives the message),

2. ŝ(v̄) ⊂ m̃(ēin) and s̃(ēout) = s̃(ēin) ∪ {ŝ(v̄)} (meaning what is sent must be a subset of
the memory at the start of the task and in the send buffer after the task),

3. m̃(ēout) ⊂ m̃(ēin) (meaning what is contained in the memory after the send task must
be a subset of what was in memory at its start), and

4. h̃(ēout) = h̃(ēin) (meaning the contents of the cache stay the same);

• if v̄ ∈ V̄recv (for all tasks that receive messages),

1. r̂(v̄) ∈ r̃(ēin) and r̃(ēout) = r̃(ēin) \ {r̂(v̄)} (meaning the receive buffer at the start of
the task contained the data received by the task and does not contain it thereafter),

2. m̃(ēout) ⊂ m̃(ēin) ∪ r̂(v̄) (meaning the memory contents after the task may contain the
data received by the task), and

3. h̃(ēout) = h̃(ēin) (meaning the contents of the cache stay the same); and,

• if v̄ ∈ V̄trsf (for all tasks which transfer data between cache and memory),

1. ĥ(v̄) ⊂ m̃(ēin)∪ h̃(ēin) (meaning the transferred data is either inside the incoming main
memory or inside the cache),

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 13

2. m̃(ēout) ⊂ m̃(ēin) ∪ ĥ(v̄) (meaning the outgoing main memory contents may gain any
elements from the transfer buffer),

3. h̃(ēout) ⊂ h̃(ēin) ∪ ĥ(v̄) (meaning the cache may gain any elements from the transfer
buffer).

For all synchronization tasks ū ∈ V̄sync messages may pass from send to receive buffers under the
following rules,

1. if processor i posted a send v̄i ∈ V̄send and processor j posted the matching receive v̄j ∈ V̄recv,
i.e., ŝ(v̄i) = r̂(v̄j), and if there exist paths πi = {v̄i, . . . , w̄i, ū} and πj = {ū, w̄j, . . . , v̄j} in
Ḡ, they may exchange the message during task ū by moving the data ŝ(v̄i) from s̃((w̄i, ū))
to r̃((ū, w̄j)),

2.
⋃

(v̄,ū)∈Ē

s̃((v̄, ū)) \
⋃

(ū,w̄)∈Ē

s̃((ū, w̄)) =
⋃

(ū,w̄)∈Ē

r̃((ū, w̄)) \
⋃

(v̄,ū)∈Ē

r̃((v̄, ū)) (meaning that if the data on

one processor’s path is exchanged in a synchronization node, it should be removed from the
send buffer after the task),

3. c̃((v̄, ū)) = c̃((ū, w̄)) ⇒ m̃((v̄, ū)) = m̃((ū, w̄)) and h̃((v̄, ū)) = h̃((ū, w̄)) (meaning that
the memory and cache contents on each processor are unmodified during a synchronization
task).

For all edges ē ∈ Ē, the cache contents must not exceed the cache size, |h̃(ē)| ≤ M̂ , and the
contents of the memory must not exceed the main memory size |m(ē)| ≤M .

The runtime of the schedule,
T (Ḡ) = max

π∈Π

∑
v̄∈π

t̂(v̄),

is maximum total weight of any path in the schedule, where each vertex is weighted according to
its task’s cost,

t̂(v̄) =

γ · |f̂(v̄)| v̄ ∈ V̄comp

α v̄ ∈ V̄sync

(ν + β) · |ŝ(v̄)| v̄ ∈ V̄send

(ν + β) · |r̂(v̄)| v̄ ∈ V̄recv

ν · |ĥ(v̄)| v̄ ∈ V̄trsf

.

The runtime T (Ḡ) is by construction at least the cost incurred by any individual processor, since
each processor’s workload is a path through the schedule. We force all sent and received data to
incur a cost of ν+β per element of the message transferred from memory to the send buffer or from
the receive buffer to memory. Since all data from the receive buffer arrives from remote processors
and all data from the sent buffer is forwarded to remote processors, at least β network cost is
incurred by the sending and receiving processor per word of data in the message. Whether this
data also needs to go through the memory hierarchy depends on the particular network card and

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 14

memory architecture, but in general we can expect that β � ν, i.e., interprocessor communication
is more expensive than memory traffic. Therefore, the ν+β cost does not significantly overestimate
the β cost, and allows us to make the simplifying assumption that Ŵ ≥ W . So, from here-on we
specifically consider Ŵ only when Ŵ > W . Also, note that our construction allows us to ignore
idle time, since a processor can only be idle at a message node if there exists a costlier path to that
node.

2.1.2 Relation to Existing Models
Our theoretical model is closest to, and can efficiently simulate, the LogP model [40], which differs
from our model most notably with its three hardware parameters,

• L = interprocessor latency cost incurred on network,

• o = messaging overhead incurred by sending and receiving processes,

• g = inverse bandwidth (per byte cost) of a message.

Both models are asynchronous and measure the cost of an algorithm along the longest execution
path in a given schedule, so a close relationship is expected. Since our model only has a single
latency parameter α, while the LogP model considers overhead o, injection rate g, and interpro-
cessor latency L, we will consider the special case where L = o, i.e., the sequential overhead of
sending a message is equivalent to the network latency of message delivery.

Theorem 2.1.1. If there exists a LogP algorithm for computation G with cost L · S + g ·W , there
exists a point-to-point parallel schedule Ḡ with synchronization cost O(α · S) and bandwidth cost
O(β ·W).

Proof. Consider the given LogP algorithm for G, which encodes a timeline of LogP actions for
each processor. We now construct an equivalent schedule Ḡ = (V̄ , Ē). Consider the kth (LogP)
action of the ith processor, which is either a local computation, a sent message, or a received
message. For each computation, add a sequence of computation vertices to V̄comp ⊂ V̄ and memory
transfer vertices (the cost of which was not bounded by the LogP schedule and so is also not
bounded in Ḡ) as necessary to move dependencies between cache and main memory. If the kth
action of the ith processor is a send of dataset U which is received as the lth action of processor j,
add nodes v̄1, s̄, and v̄2 to V̄ where

• v̄1 ⊂ V̄send, ŝ(v̄1) = U , ĉ(v1) = i, and v̄1 succeeds the (k − 1)th action of processor i and
precedes s̄,

• s̄ ⊂ V̄sync and s̄ has an incoming edge from v̄1 as well as from the (l−1)th action of processor
j, and outgoing edges to v̄2 and the (k + 1)th action of processor i,

• v̄2 ⊂ V̄recv, r̂(v̄2) = U , and v̄2 is of color j with an incoming edge from s̄.

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 15

Since each synchronization node has two paths through it, Ḡ is a point-to-point schedule. A
runtime bound on the LogP algorithm provides us with a bound on the cost of any path in Ḡ,
since any path in the LogP algorithm exists in Ḡ and vice versa. Every adjacent pair of actions on
this path will be done consecutively on a single processor or the path will follow some message of
size M̄ . In the former case, the cost of the LogP message on the path is o + g · M̄ , while the cost
of this portion of the path in Ḡ is α + β · M̄ . In the latter case, the cost of the LogP message is
o · 2 + L+ g · M̄ , while a path in Ḡ which goes from the sending to the receiving node will incur
cost α + β · 2M̄ . Since we limit our analysis to L = o, this means each LogP interprocessor path
message cost of O(L + g · M̄) and cost incurred by a single processor for sending or receiving a
message, O(o + g · M̄), translates to a cost of O(α + β · M̄) in the constructed schedule. Since
we know that for any path in the LogP schedule, the bandwidth cost is bounded by O(β ·W), and
since Ḡ has the same paths, the bandwidth cost of any path in Ḡ is also bounded byO(β ·W) Since
the cost of the LogP schedule is bounded by S, the longest path will be of length S and latency
cost O(α · S), giving a total cost bound of O(α · S + β ·W).

Our theoretical model is also a generalization of the BSP model [162], which allows global syn-
chronization in unit synchronization cost, with each such synchronization defining a BSP timestep.
At every timestep/synchronization, processors may communicate arbitrary datasets between each
other, which is referred to as an h-relation, where h is the largest amount of data sent or received
by any processor at the synchronization point.

We show a reduction from any BSP algorithm to an algorithm in our model by adding a global
synchronization vertex for every BSP timestep, which follows the local computations and sends
posted at each timestep and precedes the receives of these sends at the beginning of the next BSP
timestep.

Theorem 2.1.2. Given a BSP algorithm for computation G with S synchronizations and W words
communicated, there exists a parallel schedule Ḡwith synchronization costO(α·S) and bandwidth
cost O(β ·W).

Proof. We construct Ḡ = (V̄ , Ē) from the BSP schedule by adding a single synchronization vertex
to V̄sync for each (BSP) timestep and connecting all processors’ execution paths to this vertex. So,
for the jth of the S timesteps, we define a global synchronization vertex s̄j , as well as sequences of
vertices F̄1j, . . . , F̄pj in V̄comp corresponding to the local computations and memory transfers done
by each processor during that BSP timestep (BSP only bounds the computation cost, so we have
no bound on memory transfers). For the kth message sent by processor i during timestep j, we add
a vertex w̄ijk to V̄send and for the lth message received by processor i, we add a vertex r̄ijl to V̄recv.
The execution path of processor i will then take the form

πi = {. . . , F̄ij, w̄ij1, w̄ij2, . . . , s̄j, r̄ij1, r̄ij2, . . . , F̄i,j+1, . . .}.

For every BSP timestep, which executes an h-relation with cost β ·h in BSP, the cost of Ḡ includes
not only all paths which correspond to the data sent and received by some processor, but also paths
which correspond to the data sent on one processor (no greater than h) and received on another

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 16

root
2D 4X4 Torus Spanning tree 1 Spanning tree 2

Spanning tree 3 Spanning tree 4 All 4 trees combined

Figure 2.2: The four disjoint spanning trees used by a rectangular algorithm on a 4x4 processor
grid

processor (also no greater than h), for a total cost of at most 2h. The total communication cost of Ḡ
constructed in this way will therefore be at least α ·S+β ·W but no more than α ·S+β ·2W , where
W , the total bandwidth cost of the BSP algorithm, is the sum of h over all S BSP timesteps.

2.2 Performance Models for Communication Collectives
Generic multicast (broadcast of a message to a set of processors) and reduction (e.g. summation of
a set of contributions from each processor into one set) algorithms typically propagate a message
down a spanning tree (e.g. binary or binomial) of nodes. To improve bandwidth and network
utilization, large messages are pipelined down multiple spanning trees. Each tree spans the full list
of nodes but in a different order [15, 94, 114]. However, if any of the tree edges pass through the
same physical links, network contention creates a bottleneck in bandwidth utilization.

A topology aware rectangular multicast on a torus network topology can utilize all the links on
the network without any contention. On a mesh of dimension d, rectangular protocols form d edge-
disjoint spanning trees (each having a different ‘color’). On a torus of dimension d, rectangular
protocols form 2d colors/spanning trees. For each tree, the root sends unique packets down one
of 2d combinations of dimension and network direction. On a ring of processors, the two edge-
disjoint spanning trees are simply the two directions of the bidirectional network. On a 2D torus
of processors, four edge-disjoint spanning trees are formed by routing in different dimensional
order (x → y, y → x) and in different directions (−x → −y, −y → −x). These four trees
are displayed in Figure 2.2. For higher dimensional meshes, rectangular algorithms form d edge-
disjoint dimensional orders by performing d − 1 circular shifts on some initial ordering (D1 →
D2 → . . . Dd, D2 → D3 → . . . Dd → D1, etc.).

These topology aware multicasts are valid only if the partition is a cuboid, meaning the nodes
and network allocated themselves constitute a mesh or atorus. This condition requires not only that
the machine scheduler allocates cuboid partitions but also that algorithms and applications perform

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 17

multicasts on cuboid partitions. We evaluate the utility of topology aware collectives by designing
and implementing algorithms that can exploit these collectives. We also derive new performance
models to shed light on the scaling characteristics of these collectives and our new algorithms.

Rectangular multicasts and reductions can reduce communication time in dense linear algebra
operations significantly on current supercomputers. We model the performance of rectangular
collectives in order to evaluate their scaling behavior.

2.2.1 Basic Assumptions and Terminology
We base our assumptions to reflect current architectures and an idealized messaging implementa-
tion.

1. We assume the LogP performance model for messaging.

2. We assume m, the message size, is big and gear our analysis towards understanding band-
width cost of collectives. Bandwidth cost is more relevant for dense linear algebra. Latency
costs are heavily dependent on network architecture and implementation.

3. We restrict our analysis to multicasts and reductions on k-ary d-cube networks (so the torus
has d dimensions and each one of the torus edges has k processors).

4. We assume the networks are bidirectional tori (there is one link in each of two directions for
each adjacent pair of nodes and wrap-around links) for brevity. However, our models can be
modified to meshes (without wrap-around links).

5. We assume that a DMA device and wormhole routing are used for messaging.

We build a model from the following parameters:
L (seconds) is the physical network latency cost as defined by the LogP model.
o (seconds) is the overhead of sending and receiving a message as defined by the LogP model.
d (integer) is the number of dimensions of the k-ary d-cube network.
g (seconds/bytes) is the reciprocal of the bandwidth achieved by a single message. We as-

sume a single message achieves at best the unidirectional bandwidth of a single link.
P (integer) is the number of processors.
m (bytes) is the message size in bytes.
γ (operations/second) is the flop rate of a node.
β (bytes/second) is the memory bandwidth of a node.

2.2.2 Rectangular Multicast Model
Rectangular multicasts function by pipelining packets of a message down multiple edge-disjoint
spanning trees. Each spanning tree traverses the network in a different dimensional order. As
shown in figure 2.2, all sends are near-neighbor and no contention occurs.

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 18

A rendezvous send is the protocol of choice for large message sizes on modern networks.
Rendezvous messaging establishes a handshake by sending a small eager send to exchange buffer
information. Once the handshake is established, the receiver pulls the data with a one-sided get
operation. The latency cost of an eager send under the LogP model is 2o + L. A one-sided
get requires an extra hop to start the transaction but does not incur overhead on the sender side.
Therefore, the latency cost of a get is o + 2L. The cost of sending a rendezvous message of size
mr incurs both the eager send and get latency costs,

tr = mr · g + 3o+ 3L (2.2.1)

A naive version of a rectangular multicast would synchronously send a mr = m
2d

sized message
down both directions of each dimension. Such a protocol would achieve single link bandwidth
at best. A more aggressive rectangular protocol can overlap the sends in each of the 2d direc-
tions/dimensions. This rectangular protocol overlaps the network latency (L) and bandwidth (g)
costs of each direction. However, the sequential overhead suffered by the sender grows in propor-
tion to the number of trees. Therefore, the start-up cost of a rectangular multicast (the time it takes
the root to send off the entire message) is

ts = (m/2d) · g + (2d− 1) · o+ (3o+ 3L)

= (m/2d) · g + 2(d+ 1) · o+ 3L (2.2.2)

The multicast does not complete until all nodes receive the entire message. So the multicast
finishes when the last packet travels all the way to the farthest node of its spanning tree. The last
packet leaves the root at time ts (Eq. 2.2.2). To get to the farthest node of any dimensional tree
takes d · P 1/d hops. A rendezvous transaction handshake (Eager Send) must be established with
the next node at each hop, so the cost per hop is 2o+L. Over all hops, the overhead of the path of
the packet is

tp = d · P 1/d · (2o+ L) (2.2.3)

Combining ts (Eq. 2.2.2) and tp (Eq. 2.2.3) gives us an estimate of the time it takes to complete a
multicast

trect = ts + tp

=
m

2d
· g + 2(d+ 1) · o+ 3L+ d · P 1/d · (2o+ L) (2.2.4)

To review, our model of the cost of a multicast (Eq. 2.2.4) is composed of

1. The bandwidth term, (m/2d) ·g – the time it takes to send the full message out from the root.

2. The start-up overhead, 2(d + 1) · o + 3L – the overhead of setting up the multicasts in all
dimensions.

3. The per hop overhead, d · P 1/d · (2o+L) – the time it takes for a packet to get from the root
to the farthest destination node.

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 19

2.2.3 Rectangular Reduction Model
Reductions behave similarly to multicasts. A multicast tree can be inverted to produce a valid
reduction tree. However, at every node of this tree, it is now necessary to apply some operator
(do computational work) on the incoming data. We assume that the reduction operator is the same
single flop operation applied to each element of the same index (e.g. sum-reduction). We assume
that the elements are double-precision values. The packet size (size of pipelined chunks) must be
larger than the value size (size of values on which to apply the reduction operator) to pipeline the
reduction. We will assume in this analysis that the value size is 8 bytes.

We adopt the reduction model from the multicast model. However, we need to account for the
extra computation and access to memory involved in the application of the reduction operator. The
amount of computational work done in each spanning tree node differs depending on whether the
node is a leaf or an internal node of the spanning tree. However, summing over all trees, each
node receives at most m bytes of data and sends at most m bytes. Therefore, the total amount of
computational work on a node is simply the reduction operator applied once on two arrays of size
m bytes.

Applying the operator on 2 arrays of m bytes, requires reading 2m bytes, writing m bytes,
and performing m/8 flops (8 bytes per double-precision value). The bandwidth and computational
costs are effectively overlapped on modern processors. Given a DMA device, the computation can
also be overlapped with the network bandwidth. So, we adjust the start-up time ts (Eq. 2.2.2) to

tsr = max

(
m

8γ
,
3m

β
,
(m

2d
· g
))

+ 2(d+ 1) · o+ 3L (2.2.5)

The per hop cost tp (Eq. 2.2.3) should be the same for a reduction as a multicast. We build a
reduction model by combining tp and the new start-up cost tsr (Eq. 2.2.5),

tred = tsr + tp

= max

(
m

8γ
,
3m

β
,
(m

2d
· g
))

+ 2(d+ 1) · o+ 3L

+ d · P 1/d · (2o+ L) (2.2.6)

2.2.4 Binomial Tree Multicast Model
Binomial tree multicasts are commonly used as generic algorithms for multicasts and reduc-
tions [57, 129, 155]. Binomial collectives models have been written for the LogGP model [4]
and for the Hockney model [80] in [155]. Here, we construct a slightly modified binomial tree
multicast model under the LogP model. Our model reflects the DCMF binomial multicast imple-
mentation on BG/P [57].

A binomial tree multicast has log2(P) stages. In each stage, the multicast root sends the mes-
sage to a node in a distinct sub-partition. Each sub-partition recursively applies the algorithm on
a smaller subtree. A message can be pipelined into these stages to exploit multiple links simul-
taneously. We assume that there is no network contention in the tree. Modeling contention is
non-trivial and out of the scope of this thesis.

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 20

 200

 400

 600

 800

 1000

1 8 64 512 4096 32768 262144

B
an

dw
id

th
 (M

B
/s

ec
)

msg size (KB)

DCMF Broadcast on a ring of 8 nodes of BG/P

trect model
DCMF rectangle dput

tbnm model
DCMF binomial

(a) 1D multicast

 0

 500

 1000

 1500

 2000

1 8 64 512 4096 32768 262144

B
an

dw
id

th
 (M

B
/s

ec
)

msg size (KB)

DCMF Broadcast on 64 (8x8) nodes of BG/P

trect model
DCMF rectangle dput

tbnm model
DCMF binomial

(b) 2D multicast

Figure 2.3: Multicast on an 8-node and a n8-by-8 node toroidal grid of processors

The binomial tree is unbalanced. The first established sub-tree is the deepest. Therefore, the
overhead of the first packet traversing the deepest sub-tree dominates the overhead of the root
establishing handshakes with each of the sub-trees. So the cost of a binomial tree multicast is

tbnm = log2(P) · ((m/2d) · g + 2o+ L) (2.2.7)

2.2.5 Validation of Multicast Model
Our rectangular collectives models are based purely on architectural parameters. We can validate
the quality of our assumptions and analysis by comparing our performance prediction with an
actual implementation of rectangular algorithms on a Blue Gene/P machine. We implemented our
benchmarks using DCMF [103]. We restrict our analysis to multicasts and not reductions, due to
DCMF reduction performance being lower than expected (see [143] for details). Subtracting the
performance of DCMF Get (cost: o + L = 1.2µs) from DCMF Put (cost: o + 2L = 2.0µs) as
reported in [103], we get L = .8µs, o = .4µs. The inverted achievable link bandwidth is known
to be g = 1/375 s/MB.

We validate performance for rectangular algorithms of tori of different dimension. This analy-
sis is important since it justifies the portability of the model among k-ary d-cubes of different di-
mension d. In particular, algorithms that perform subset multicasts (e.g. line multicasts/reductions
in dense linear algebra), operate on lower dimensional partitions. We benchmark collectives on
processor partitions of dimension d ∈ {1, 2, 3}. Lower dimensional toroidal partitions are gener-
ated by extracting sub-partitions of a BG/P 3D torus partition.

Figure 2.3(a) details the performance of rectangular and binomial DCMF Broadcast on a ring of
8 BG/P nodes. Our performance model (trect) matches the performance of the rectangular DCMF
algorithms (DCMF rectangle dput) closely. Our binomial performance model (tbnm) overestimates

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 21

 0

 500

 1000

 1500

 2000

 2500

 3000

1 8 64 512 4096 32768 262144

B
an

dw
id

th
 (M

B
/s

ec
)

msg size (KB)

DCMF Broadcast on 512 (8x8x8) nodes of BG/P

trect model
Faraj et al data

DCMF rectangle dput
tbnm model

DCMF binomial

Figure 2.4: Multicast on a 8-by-8-by-8 node toroidal grid of processors

the actual achieved bandwidth (DCMF binomial) by a factor of about 1.4X, which is probably due
to network contention that is ignored by our model.

The (predicted and observed) bandwidth of the binomial multicast peaks at exactly half of link
bandwidth. On eight nodes, a binomial algorithm must form three trees and has two available
links (directions). Our model does not consider contention and assumes the three trees share all
available node bandwidth. Since two links are available, the model predicts a peak of two thirds
of the link bandwidth. However, two of the trees get mapped to the same physical link of the root,
creating contention over the link. As a result, the binomial protocol achieves only half of the link
bandwidth.

On a 2D toroidal sub-partition, the available bandwidth as well as the overheads increase.
Figure 2.3(b) shows that our model (trect) matches the performance of the rectangular, one-sided
DCMF protocol (DCMF rectangle dput) fairly well. The observed data seems to take a dip in
performance growth for messages larger than 128 KB. This may be due to the buffer exceeding the
size of the L1 cache, which is 64 KB. The binomial model (tbnm) overestimates performance again
due to contention.

On a 3D partition (Figure 2.4), a similar overhead is even more pronounced than on a 2D par-
tition. However, we see that the performance data from Faraj et al. [57] achieves higher bandwidth
than the best data we were able to collect (DCMF rectangle dput). Perhaps the difference is due
to our usage of DCMF or the use of a lower level interface with less overhead by Faraj et al. [57].
We also found that the performance of multicasts varied substantially depending on the buffer-size
of the receive FIFO buffer. We sampled data over a few different buffer-sizes and selected the best
performing data-points. Perhaps the data in [57] was collected with more intensive control for such
parameters.

Comparisons between the idealized rectangular performance and actual observed data show
that implementation overhead grows as a function of dimension. Higher dimensional rectangular
algorithms stress the DMA implementation by utilizing multiple links. The hardware and software
have to manage communication through multiple links simultaneously.

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 22

Total flop rate (γ) 1018 flop/s

Total memory 32 PB

Node count (P) 262,144

Node interconnect bandwidth (g) .06 s/GB

Latency overhead (o) 250 ns

Network latency (L) 250 ns

Topology 3D Torus

Size of dimensions 64× 64× 64

Table 2.2.1: Predicted architecture characteristics of an Exaflop/s machine

The binomial multicast performance suffers severely from network contention. It is particularly
difficult to build a general contention model since it is dependent on the semantics of spanning tree
construction. Rectangular algorithms have no contention when implemented on a torus network.
This feature improves their scalability with comparison to binomial and other tree-based generic
algorithms.

2.2.6 Predicted Performance of Communication Collectives at Exascale
The performance of binomial and tree-based collectives deteriorates with increased partition size
due to increased tree depth and contention. In particular, contention and branch factor of trees
bounds the peak achievable bandwidth. The only cost of rectangular collectives that grows with
partition size is the increased depth of spanning trees. To examine the scaling of collectives, we
model performance of raw collectives and dense linear algebra algorithms on a potential exascale
architecture.

2.2.7 Exascale Architecture
Table 2.2.1 details the parameters we use for an exascale machine. These parameters are derived
from a report written at a recent exascale workshop [160].

We assume the exascale machine is a 3D torus. Our analysis and conclusions would not change
significantly for a torus of slightly higher dimension. However, rectangular collectives are not
applicable to a switched network. In particular, the Dragonfly network architecture [98] seems to
be a suitable exascale switched network topology.

CHAPTER 2. THEORETICAL PERFORMANCE MODEL 23

 0

 20

 40

 60

 80

 100

 120

 140

1 8 64 512 4096 32768 262144

B
an

dw
id

th
 (G

B
/s

ec
)

msg size (MB)

Exascale broadcast performance

trect 3D
trect 2D
trect 1D
tbnm 3D
tbnm 2D
tbnm 1D

Figure 2.5: Performance of rectangular and binomial multicasts on a potential exascale torus archi-
tecture. Lines signifying performance of binomial collectives overlap, since our binomial collective
model is independent of network architecture.

2.2.8 Performance of Collectives at Exascale
We model the performance of collectives on 1D, 2D, and 3D sub-partitions of the exascale ma-
chine. Figure 2.5 details the performance of rectangular and binomial multicasts for these parti-
tions. The peak bandwidth of binomial multicast stays the same for each partition since the number
of trees increases proportionally to the number of available links. In practice, this peak bandwidth
would actually deteriorate on larger partitions due to increased network contention.

Figure 2.5 also demonstrates that to achieve peak bandwidth, large messages are required (1
GB for a 3D partition). We assume that intra-node concurrency is utilized hierarchically. A single
process per node performs all inter-node communication.

24

Chapter 3

Communication Lower Bound Techniques

Our lower bound techniques build on methods first introduced by Hong and Kung [90] for
sequential algorithms and also extended to the parallel case by Irony et al. [88]. Our lower bounds
are extensions to those obtained by Ballard et al. [12]. We discuss and introduce more related lower
bounds work in detail in Section 3.1. Like [88] and [12], we will employ volumetric inequalities
to derive communication lower bounds. Section 3.2 states the Loomis-Whitney lower bound, a
generalization of it given by Tiskin [156], and introduces a specialization (tighter version of the
bound) of the latter to normally-ordered sets.

This specialized inequality will allow us to establish a lower bound on the minimum cut size of
any hypergraph lattice in Section 3.3. These hypergraph lattices will be characterizations of depen-
dency structures that are present in many of the algorithms we discuss in later chapters. Obtaining
a lower bound on the cut of hypergraph lattices will then allow us to obtain a lower bound on
the communication cost necessary to execute a computation with such a lattice dependency struc-
ture. In Section 3.3, we introduce and study (m, r)-lattice hypergraphs where the set of vertices
has dimension m and is connected by a set of hyperedges of dimension r. For the linear algebra
applications we consider, it will be the case that r = m − 1, however, in Chapter 11, we will use
bounds on lattice hypergraph cuts for arbitrary r < m.

Knowing the expansion and minimum cut parameters of certain dependency graphs, we will
show how these expansion parameters yield lower bounds on tradeoffs between synchronization
cost S, interprocessor bandwidth cost W and computation cost F in Section 3.4. Most of the
applications of our lower bounds apply to computations which have Ω(nd) vertices, with a d-
dimensional lattice dependency structure (where d = m and r = d − 1 for the corresponding
(m, r)-lattice hypergraph as defined in Section 3.3), and take the form

F · Sd−1 = Ω
(
nd
)
, W · Sd−2 = Ω

(
nd−1

)
.

These bounds indicate that a growing amount of local computation, communication, and synchro-
nization must be done to solve a larger global problem. Thus, the bounds are important because

This chapter is based on joint work with Erin Carson and Nicholas Knight [145].

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 25

they highlight a scalability bottleneck dependent only on local processor/network speed and inde-
pendent of the number of processors involved in the computation. The lower bounds are motivated
by tradeoffs between computation and synchronization costs demonstrated by Papadimitriou and
Ullman [124] and are are a generalization of the result.

The tradeoff infrastructure presented in this chapter will allow us to prove the following bounds
in later chapters:

1. for solving a dense n-by-n triangular system by substitution (TRSV),

FTR · STR = Ω
(
n2
)
,

which is attainable as discussed in Section 5.2,

2. for Cholesky of a dense symmetric n-by-n matrix,

FCh · S2
Ch = Ω

(
n3
)
, WCh · SCh = Ω

(
n2
)
,

which are also attainable as shown in Section 5.3, although they are provably not attainable
by conventional algorithms such as LU with partial pivoting, and

3. for computing an s-step Krylov subspace basis with a (2m + 1)d-point stencil (defined in
Section 8.1),

FKr · SdKr = Ω
(
md · sd+1

)
, WKr · Sd−1

Kr = Ω
(
md · sd

)
,

which are again attainable (Section 8.3).

The Cholesky lower bounds which we derive in Chapter 5 suggest the communication optimal-
ity of the parallel algorithms for LU factorization given by [113] and [146]. The parallel schedules
for LU and QR in these papers are parameterized and exhibit a trade-off between synchronization
and communication bandwidth cost. We come close to answering an open question posed by [158],
showing that it is not possible to achieve an optimal bandwidth cost without an associated increase
in synchronization cost for Cholesky (the question was posed for LU factorization and we assume
that no recomputation is performed).

The rest of the chapter is organized as follows,

• Section 3.1 discusses previous and related work on communication lower bounds,

• Section 3.2 states the Loomis-Whitney inequality as well as a generalization of it then gives
a new specialization to normally-ordered sets,

• Section 3.3 gives a definition of lattice hypergraphs and proves a lower bound on their mini-
mum cut,

• Section 3.4 uses characterizations of the path-expansion of dependency graphs to derive
lowers bounds on tradeoffs between costs.

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 26

3.1 Previous Work
Theoretical lower bounds on communication volume and synchronization are often parameter-
ized by the size of the cache, M̂ , in the sequential setting, or the size of the main memory M ,
in the parallel setting. Most previous work has considered the total sequential or parallel com-
munication volume Q, which corresponds to the amount of data movement across the network
(by all processors), or through the memory hierarchy. Hong and Kung [90] introduced sequential
communication volume lower bounds for computations including n-by-n matrix multiplication,
QMM = Ω(n3/

√
M̂), the n-point FFT, QFFT = Ω(n log(n)/ log(M̂)), and the d-dimensional di-

amond DAG (a Cartesian product of line graphs of length n), Qdmd = Ω(nd/M̂1/(d−1)). Irony
et al. [88] extended this approach to distributed-memory matrix multiplication on p processors,
obtaining the bound WMM = Ω(n3/(p

√
M)). Aggarwal et al. [2] proved a version of the memory-

independent lower bound WMM = Ω(n3/p2/3), and Ballard et al. [9] explored the relationship
between these memory-dependent and memory-independent lower bounds. Ballard et al. [12] ex-
tended the results for matrix multiplication to Gaussian elimination of n-by-n matrices and many
other matrix algorithms with similar structure, finding

WCh = Ω

(
n3

p
√

min(M,n2/p2/3)

)
.

Bender et al. [21] extended the sequential communication lower bounds introduced in [90]
to sparse matrix vector multiplication. This lower bound is relevant to our analysis of Krylov
subspace methods, which essentially perform repeated sparse matrix vector multiplications. How-
ever, [21] used a sequential memory hierarchy model and established bounds in terms of memory
size and track (cacheline) size, while we focus on interprocessor communication.

Papadimitriou and Ullman [124] demonstrated tradeoffs for the 2-dimensional diamond DAG
(a slight variant of that considered in [90]). They proved that the amount of computational work
Fdmd along some execution path (in their terminology, execution time) is related to the communi-
cation volume Qdmd and synchronization cost Sdmd as

Fdmd ·Qdmd = Ω
(
n3
)

and Fdmd · Sdmd = Ω
(
n2
)
.

These tradeoffs imply that in order to decrease the amount of computation done along the critical
path of execution, more communication and synchronization must be performed. For instance, if
an algorithm has an ‘execution time’ cost of Fdmd = Ω(nb), it requires Sdmd = Ω(n/b) synchro-
nizations and a communication volume of Qdmd = Ω(n2/b). The lower bound on Fdmd · Sdmd

is a special case of the d-dimensional bubble latency lower bound tradeoff we derive in the next
section, with d = 2. These diamond DAG tradeoffs were also demonstrated by Tiskin [156].

Bampis et al. [14] considered finding the optimal schedule (and number of processors) for
computing d-dimensional grid graphs, similar in structure to those we consider in Section 3.3.
Their work was motivated by [124] and took into account dependency graph structure and com-
munication, modeling the cost of sending a word between processors as equal to the cost of a

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 27

computation. Tradeoffs in parallel schedules have also been studied in the context of data locality
on mesh network topologies by [24].

We will introduce lower bounds that relate synchronization to computation and data movement
along sequences of dependent execution tasks. Our work is most similar to the approach in [124];
however, we attain bounds on W (the parallel communication volume along some dependency
path), rather than Q (the total communication volume). While bounds on Q translate to bounds on
the energy necessary to perform the computation, bounds on W translate to bounds on execution
time. Our theory also obtains tradeoff lower bounds for a more general set of dependency graphs
which allows us to develop lower bounds for a wider set of computations.

3.2 Volumetric Inequalities
A key step in the lower bound proofs in [88] and [12] was the use of an inequality introduced by
[111]. We state this inequality in Theorem 3.2.1.

Theorem 3.2.1 (Loomis-Whitney Inequality). Let V be a finite, nonempty set of d-tuples (i1, . . . , id) ∈
[1, n]d;

|V | ≤
(d∏

j=1

|πj(V)|
)1/(d−1)

,

where, for j ∈ [1, d], πj : [1, n]d → [1, n]d−1 is the projection

πj(i1, . . . , id) = (i1, . . . , ij−1, ij+1, . . . , id).

We use a generalized discrete version of the inequality, which was given by [156] and is a
special case of the theory in [37]. We state this generalized inequality in Theorem 3.2.2.

Theorem 3.2.2 (Generalized Discrete Loomis-Whitney Inequality). Let V be a finite, nonempty
set of m-tuples (i1, . . . , im) ∈ [1, n]m. Consider

(
m
r

)
projections

πs1,...,sr(i1, . . . im) = (is1 , . . . , isr)

∀(s1, . . . , sr) such that 1 ≤ s1 < . . . < sr ≤ m,

|V | ≤
(∏

1≤s1<...<sr≤m

|πs1,...,sr(V)|
)1/(m−1

r−1)
.

We derive a version of the Loomis-Whitney inequality for sets of normally-ordered (i.e., in-
creasing) tuples, in order to obtain a tighter bound for our scenario. We state the inequality in
Theorem 3.2.3 and prove its correctness.

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 28

Theorem 3.2.3. Let V be a finite, nonempty set of normally-ordered m-tuples (i1, . . . , im) ∈
[1, n]m, i1 < . . . < im. Consider

(
m
r

)
projections

πs1,...,sr(i1, . . . im) = (is1 , . . . , isr)

∀(s1, . . . , sr) such that 1 ≤ s1 < . . . < sr ≤ m. Define the union of these projections of V as

Π̄ =
⋃

1≤s1<...<sr≤m

πs1,...,sr(V).

Now the size of V may be bound as a function of the number of projections in Π̄,

|V | ≤
(
r! · |Π̄|

)m/r
/m!.

Proof. For any V , consider the projected sets πs1,...,sr(V) for 1 ≤ s1 < . . . < sr ≤ m. We now
construct set V̄ , with V ⊂ V̄ and obtain an upper bound on the size of V̄ , yielding an upper bound
on the size of V . We consider the union of all the projections Π̄ and expand this set to construct
a larger set Π̂, where for any r-tuple permutation p, if w ∈ Π̄, p(w) ∈ Π̂, and Π̄ ⊂ Π̂. Since Π̄
consisted only of r-tuples whose indices are normally-ordered (since they are ordered projections
of normally-ordered d-tuples),

|Π̂| = r! · |Π̄|.
We now construct the set V̂ of all (not necessarily normally-ordered) tuples whose projections

are in Π̂, that is

V̂ = {(w1, . . . , wm) ∈ [1, n]m : such that ∀ {q1, . . . , qr} ⊂ {w1, . . . , wm}, (q1, . . . , qr) ∈ Π̂}.

We note that the original m-tuple set is a subset of the new one, V ⊂ V̂ , since

∀ {q1, . . . , qr} ∈ πs1,...,sr(V) ⊂ Π̂, ∃{v1, . . . , vm} ∈ V such that {q1, . . . , qr} ⊂ {v1, . . . , vm}.

Further, V̂ includes all m-tuples such that all arbitrarily ordered r-sized subsets of these tuples
is in Π̂. Since subsets of all possible orderings are considered, the ordering of the m-tuple does
not matter, so V̂ should contain all orderings of each tuple, and is therefore a symmetric subset of
[1, n]m.

Now by application of the Loomis-Whitney inequality (Theorem 3.2.1), we know that the size
of V̂ is

|V̂ | ≤ |Π̂|(
m
r)/(

m−1
r−1).

We now let V̄ be the set of all normally-ordered tuples inside V̂ . We have that V ⊂ V̄ since, V ⊂ V̂
and V is normally-ordered. Since there are m! symmetrically equivalent tuples to each normally-
ordered tuples inside V̂ , |V̄ | = |V̂ |/m!. Combining this bound with the bound on Loomis-Whitney
bound on W , we obtain

|V | ≤ |V̄ | ≤ |V̂ |/m! ≤ |Π̂|(
m
r)/(

m−1
r−1)/m!

=
(
r! · |Π̄|

)(mr)/(m−1
r−1)

/m! =
(
r! · |Π̄|

)m/r
/m!

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 29

3.3 Lower Bounds on Lattice Hypergraph Cuts
A hypergraph H = (V,E), is defined by a set of vertices V and a set of hyperedges E, where each
hyperedge ei ∈ E is a subset of V , ei ⊆ V . We say two vertices in a hypergraph v1, v2 ∈ V are
connected if there exists a path between v1 and v2, namely if there exist a sequence of hyperedges
P = {e1, . . . , ek} such that v1 ∈ e1, v2 ∈ ek, and ei ∩ ei+1 6= ∅ for all i ∈ [1, k − 1]. We say
a hyperedge e ∈ E is internal to some V ′ ⊂ V if e ⊂ V ′. If no e ∈ E is adjacent to (i.e.,
contains) a v ∈ V ′ ⊂ V , then we say V ′ is disconnected from the rest of H . A 1

q
- 1
x
-balanced

hyperedge cut of a hypergraph is a subset of E whose removal from H partitions V = V1 ∪ V2

with b|V |/qc ≤ min(|V1|, |V2|) ≤ b|V |/xc such that all remaining (uncut) hyperedges are internal
to one of the two parts.

For any q ≥ x ≥ 2, a 1
q
- 1
x
-balanced vertex separator of vertex set V̂ ⊂ V in a hypergraph

H = (V,E) (if V̂ is unspecified then V̂ = V) is a set of vertices Q ⊂ V , whose removal from
V and from the hyperedges E in which the vertices appear splits the vertices V in H into two
disconnected parts V \Q = V1∪V2. Further, the subsets of these vertices inside V̂ must be balanced,
meaning that for V̂1 = V̂ ∩ V1 and V̂2 = V̂ ∩ V2, b|V̂ |/qc − |Q| ≤ min(|V̂1|, |V̂2|) ≤ b|V̂ |/xc. The
smaller partition may be empty if the separator Q contains at least b|V̂ |/qc vertices.

3.3.1 Lattice Hypergraphs
For any m > r > 0, we define a (m, r)-lattice hypergraph H = (V,E) of breadth n, with
|V | =

(
n
m

)
vertices and |E| =

(
n
r

)
hyperedges. Each vertex is represented as vi1,...,im = (i1, . . . , im)

for {i1, . . . , im} ∈ [1, n]m with i1 < · · · < im. Each hyperedge connects all vertices which share
r indices, that is ej1,...,jr for {j1, . . . , jr} ∈ [1, n]r with j1 < · · · < jr includes all vertices vi1,...,im
for which {j1, . . . , jr} ⊂ {i1, . . . , im}. Each vertex appears in

(
m
r

)
hyperedges and therefore each

hyperedge contains
(
n
m

)(
m
r

)(
n
r

)−1
=
(
n−r
m−r

)
vertices.

Theorem 3.3.1. For 1 ≤ r < m� n and 2 ≤ x ≤ q � n, the minimum 1
q
- 1
x
-balanced hyperedge

cut of a (m, r)-lattice hypergraph H = (V,E) of breadth n is of size εq(H) = Ω(nr/qr/m).

Proof. Consider any 1
q
- 1
x
-balanced hyperedge cut Q ⊂ E. Since all hyperedges which contain at

least one vertex in both V1 and V2 must be part of the cut Q, all vertices are either disconnected
by the cut or remain in hyperedges which are all internal to either V1 or V2. Let U1 ⊂ V1 be the
vertices contained in a hyperedge internal to V1 and let U2 ⊂ V2 be the vertices contained in a
hyperedge internal to V2. Since both V1 and V2 contain at least b|V |/qc vertices, either b|V |/(2q)c
vertices must be in internal hyperedges within both V1 as well as V2, that is,

case (i): |U1| ≥ b|V |/(2q)c and |U2| ≥ b|V |/(2q)c,

or there must be b|V |/(2q)c vertices that are disconnected by the cut,

case (ii): |(V1 \ U1) ∪ (V2 \ U2)| ≥ b|V |/(2q)c.

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 30

First we note that when r ≤ bm/2c, every hyperedge intersects with every other hyperedge at
some vertex since for any two r-tuples (hyperedges), the union of their entries has no more than
m entries and so must correspond to at least one vertex. Since we assume q < n, case (i) implies
that U1 and U2 each have an internal hyperedge. This is not possible for r ≤ bm/2c, since any
pair of hyperedges intersects at some vertex. We note that this precludes case (i) for r = 1, m = 2
(the most basic version of the (m, r)-lattice hypergraph) and furthermore it precludes any scenario
with r = 1.

In case (i), for r ≥ 2 and r > m/2 (the other cases were ruled out in the previous paragraph),
we start by assuming without loss of generality that |U1| ≤ |U2|, therefore |U1| ≤ b|V |/xc ≤
b|V |/2c. We consider the hyperedges W1 internal to U1. Each vertex may appear in at most

(
m
r

)
hyperedges and each hyperedge has

(
n−r
m−r

)
vertices, so the number of hyperedges is at most

|W1| ≤
(
m
r

)
|U1|(

n−r
m−r

) ≤ (mr)(nm)
2
(
n−r
m−r

) =
1

2

(
n

r

)
. (3.3.1)

Since both U1 and U2 have at least b|V |/(2q)c vertices and each hyperedge has
(
n−r
m−r

)
vertices, the

number of hyperedges is at least

|W1| ≥
|U1|(
n−r
m−r

) ≥ ⌊(nm)
2q

⌋
·
(
n− r
m− r

)−1

≥

⌊ (
n
r

)
2q
(
m
r

)⌋ . (3.3.2)

We define a fiber fk1,...,km−1 for each {k1, . . . , km−1} ∈ [1, n]m−1 with k1 < · · · < km−1 as the
set of vertices in the hypergraph H which satisfy {k1, . . . , km−1} ⊂ {j1, . . . , jm}. We note that
each fiber is internal to at least one hyperedge (which is defined by r ≤ m− 1 indices). We define
a hyperplane xk1,...,kr−1 for each {k1, . . . , kr−1} ∈ [1, n]r−1 with k1 < · · · < kr−1 as the set of all
hyperedges ej1,...,jr which satisfy {k1, . . . , kr−1} ⊂ {j1, . . . , jr}. Thus, each of the |X| =

(
n
r−1

)
hyperplanes contains n − (r − 1) hyperedges, and each hyperedge is in r hyperplanes. Note that
each hyperplane shares a unique hyperedge with (r − 1)(n− (r − 1)) other hyperplanes.

We now obtain a bound on the number of hyperplanes to which the hyperedgesW1 are adjacent.
The number of fibers internal to each hyperedge is

(
n−r

m−r−1

)
(all ways to choose the other m−r−1

indices of the m − 1 indices in the fiber, r of which come from the hyperedge). We denote the
fibers internal to W1 as F1, and determine the number of hyperplanes adjacent to these fibers. The
total number of fibers in the set W1 is then |F1| =

(
n−r

m−r−1

)
|W1|. We now apply the generalized

modified Loomis-Whitney inequality (Theorem 3.2.3) for
(
m−1
r−1

)
projections of a set of (m − 1)-

tuples (fibers) onto (r − 1)-tuples (hyperplanes),

πs1,...,sr−1(ei1,...,im−1) = (is1 , . . . , isr−1),

for 0 < s1 < s2 < . . . < sr−1 < m corresponding to each of
(
m−1
r−1

)
hyperplanes adjacent to each

fiber. The inequality (Theorem 3.2.3) yields the following lower bound on the product of the size
of the projections with respect to the union of the projections Z1 = ∪jπj(F1), that is,

|F1| ≤
(

(r − 1)! · |Z1|
)(m−1)/(r−1)

/(m− 1)!.

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 31

The cardinality of the union of the projections, |Z1| is the number of unique hyperplanes adjacent
to F1, which we seek to lower bound, so we reverse the above inequality,

|Z1| ≥ ((m− 1)! · |F1|)(r−1)/(m−1) /(r − 1)! ≡ L(|F1|). (3.3.3)

We now argue that when |W1| (and therefore |F1|) is at its maximum, |F1| = w ≡ 1
2

(
n−r

m−r−1

)(
n
r

)
from equation 3.3.1 and the fact that |F1| =

(
n−r

m−r−1

)
|W1|, the right side of the inequality equa-

tion 3.3.3 becomes L(w) ≥ 1
2(r−1)/(m−1)

(
n
r−1

)
(with the assumption that n� m, r) since

L(w) = ((m− 1)! · w)(r−1)/(m−1) /(r − 1)!

=

(
(m− 1)! · 1

2

(
n− r

m− r − 1

)(
n

r

))(r−1)/(m−1)

/(r − 1)!

≥
(

1

2
n!/(n− (m− 1))!

)(r−1)/(m−1)

/(r − 1)!

=
1

2(r−1)/(m−1)
(n!/(n− (m− 1))!)(r−1)/(m−1) /(r − 1)!

we now note that k = n!/(n− (m− 1))! is a product of m− 1 terms the largest m− r of are the
product n!/(n − (m − r))!. This implies that we can lower bound k(r−1)/(m−1) as the product of
the lowest r − 1 terms, k(r−1)/(m−1) ≥ (n− (m− r))!/(n− (m− 1))!. This implies

L(w) =
1

2(r−1)/(m−1)
k(r−1)/(m−1)/(r − 1)!

≥ 1

2(r−1)/(m−1)
[(n− (m− r))!/(n− (m− 1))!]/(r − 1)!

=
1

2(r−1)/(m−1)

(
n− (m− r)

r − 1

)
.

Applying Pascal’s rule repeatedly we lower bound the binomial coefficient as,(
n− (m− r)

r − 1

)
=

(
n

r − 1

)
−
(
n− 1

r − 2

)
−
(
n− 2

r − 2

)
− . . .−

(
n− (m− r)

r − 2

)
≥ (1− (m− r)(r − 1)/n) ·

(
n

r − 1

)
Plugging this back into L(w) we obtain,

L(w) ≥ 1

2(r−1)/(m−1)

[(
1− (m− r)(r − 1)

n

)(
n

r − 1

)]
.

Now applying our assumption that n� m, r, we approximate the inequality

L(w) ≥ 1

2(r−1)/(m−1)

(
n

r − 1

)
.

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 32

Now, the number of hyperedges R1 contained inside the hyperplanes Z1 is at least

|R1| ≥
(n− (r − 1))|Z1|

r
,

since each hyperplane contains n− (r − 1) hyperedges and each hyperedge can appear in at most
r hyperplanes. Noting that each hyperedge is adjacent to every other hyperedge within any of its
hyperplanes, we can conclude that Z1 contains either hyperedges that are in W1 or hyperedges that
are cut (it cannot contain hyperedges that are internal to V2). Therefore, we can lower bound the
number of hyperedges in the cut as

|Q| ≥ |R1| − |W1| ≥
(n− (r − 1))|Z1|

r
− |W1|

≡ T1 − T2.

We would like to show that T1/T2 > 1 and drop T2 = |W1|. To do so, we first recall our |F1|-
dependent bound of |Z1| in equation 3.3.3 and simplify its form (to what the generalized Loomis-
Whitney inequality would yield, which is weaker),

|Z1| ≥

(
(m− 1)! · |F1|

)(r−1)/(m−1)

/(r − 1)!

≥ |F1|(r−1)/(m−1).

Since T1 = n−(r−1)
r
|Z1| has a fractional (less than one) power of |F1| while T2 = |W1|, the ratio

of T1/T2 is minimized when |W1| is maximized, namely when |W1| = 1
2

(
n
r

)
. In this case, we have

shown that |Z1| ≥ L(w) ≥ 1
2(r−1)/(m−1)

(
n−r

m−r−1

)(
n
r−1

)
(with the assumption that n � m, r), so we

see that the ratio is at least

T1/T2 =
(n− (r − 1))|Z1|

r
· 1

|W1|

≥
(n− (r − 1)) 1

2(r−1)/(m−1)

(
n
r−1

)
r

· 1
1
2

(
n
r

)
=

(
n
r

)
2(r−1)/(m−1)

· 2(
n
r

)
= 21−(r−1)/(m−1) > 1.

This ratio is greater than one by a small factor. Our approximation on L(w) which used n� m, r
implies that the ratio is greater than one in the limit when n � m, r and both m and r are small
constants (in the applications of our algorithms m never exceeds 4). This lower bound on the ratio
implies that

|Q| ≥ T1 − T2 ≥
(

1− 1

21−(r−1)/(m−1)

)
T1

=

(
1− 1

21−(r−1)/(m−1)

)
(n− (r − 1))|Z1|

r
.

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 33

Remembering that we have |Z1| ≥ |F1|(r−1)/(m−1) and that |F1| =
(

n−r
m−r−1

)
|W1| ≥

(
n−r

m−r−1

)⌊ (nr)
2q(mr)

⌋
from equation 3.3.2, we obtain

|Q| ≥
(

1− 1

21−(r−1)/(m−1)

)
(n− (r − 1))|Z1|

r

≥
(

1− 1

21−(r−1)/(m−1)

)(n− (r − 1))

[(
n−r

m−r−1

) ⌊ (nr)
2q(mr)

⌋](r−1)/(m−1)

r

= Ω

(
n ·
[
nm−r−1 · n

r

q

](r−1)/(m−1)
)

= Ω(nr/q(r−1)/(m−1)),

which is greater (and so better) than the desired bound |Q| = Ω(nr/qr/m) since r/m > (r −
1)/(m− 1).

In case (ii), we know that b|V |/(2q)c = b
(
n
m

)
/(2q)c vertices Ū ⊂ V are disconnected by the

cut (before the cut, every vertex was adjacent to d hyperedges). We define
(
m
r

)
projections,

πs1,...,sr(ei1,...,im) = (is1 , . . . , isr),

for 0 < s1 < s2 < . . . < sr ≤ m corresponding to each of
(
m
r

)
hyperedges adjacent to vi1,...,im . In

particular the set of hyperedges adjacent to Ū is

Π̄ =
⋃

1≤s1<...<sr≤m

πs1,...,sr(Ū).

We apply the generalized Loomis-Whitney inequality (Theorem 3.2.3) to obtain a lower bound on
the the size of the projections |Π̄|,

|Ū | ≤
(
r! · |Π̄|

)m/r
/m!

|Π̄| ≥ (m! · |Ū |)r/m/r!

Plugging in the lower bound on |Ū | corresponding to case (ii) and discarding asymptotically small
factors, we obtain the desired lower bound on the minimum number of hyperedges that must be
cut,

εq(H) ≥
(
m! ·

⌊(
n

m

)
/(2q)

⌋)r/m
/r!

= Ω
(
nr/qr/m

)
.

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 34

3.3.2 Parent Hypergraphs
In order to apply our lower bounds to applications, we consider how a given hypergraph can be
transformed without increasing the size of the minimum hyperedge cut. We employ the idea that it
is possible to merge sets of hyperedges which define connected components without increasing the
size of any cut. Additionally, we employ the fact that discarding vertices in a hypergraph cannot
increase the size of the minimum hyperedge cut that is balanced. Given a hypergraph H = (V,E),
we can define a parent hypergraph Ĥ = (V̂ , Ê), where V̂ ⊂ V , and each hyperedge in Ê is
associated with an element of R, a collection of sub-hypergraphs of H induced by a partition of E.
In particular, each hyperedge e ∈ Ê is associated with a unique sub-hypergraph (W,Y) ∈ R that
corresponds to the subset of hyperedges Y ⊂ E of the original graph that are adjacent to W ⊂ V ,
such that e ⊂ W and the sub-hypergraph (W,Y) is connected. We derive parent hypergraphs for
directed graphs by treating the directed edges as if they were undirected, which means we use the
notion of weak connectivity in directed graphs. This is consistent with our definitions of vertex
separators, which do not allow edges in any direction between the two disconnected parts V1 and
V2, meaning E ∩ (V1 × V2) = ∅.

We obtain lower bounds on the vertex separator size of a directed or undirected graph by con-
structing a parent hypergraph in which every vertex is adjacent to a constant number of hyperedges.
The following theorem states this result for vertex separators of (undirected) hypergraphs, which
immediately generalizes the case of undirected and directed graphs.

Theorem 3.3.2. Given a hypergraph H = (V,E), consider any parent hypergraph Ĥ = (V̂ , Ê)
defined by a collection of sub-hypergraphs R as defined above. If the degree of each vertex in Ĥ
is at most k, the minimum 1

q
- 1
x
-balanced hyperedge cut of Ĥ , where q ≥ x ≥ 4, is no larger than

k times the minimum size of a 1
q
- 1
x
-balanced vertex separator of V̂ in hypergraph H .

Proof. Consider any 1
q
- 1
x
-balanced vertex separator S ⊂ V of V̂ inside H , for q ≥ x ≥ 2, that

yields two disjoint vertex sets V̂1 and V̂2. We construct a hyperedge cut X̂ of Ĥ consisting of all
hyperedges corresponding to parts (elements of R) in which a vertex in the separator S appears.
X̂ is a cut of Ĥ since for any path consisting of hyperedges P = {y1, y2, . . .} in Ĥ corresponding
to parts {r1, r2, . . .}, there exists a path in H consisting of hyperedges Q = {e11, e12, . . .} ∪
{e21, e22, . . .} ∪ · · · , where for each i, {ei1, ei2, . . .} ⊂ ri. Therefore, since S disconnects every
path through H between V̂1 and V̂2, the cut X̂ must disconnect all such paths also. Assuming
without loss of generality that |V̂1| ≤ |V̂2|, we let the vertex parts defined by the cut X̂ of Ĥ be
V̂1 ∪ S and V̂2, since X̂ disconnects all hyperedges connected to S, so S can be included in either
part. Making this choice, we ensure that the size of the smaller part

|V̂1 ∪ S| = |V̂1|+ |S| ≥ b|V̂ |/qc − |S|+ |S| ≥ b|V̂ |/qc,

which ensures the balance of the partition created by the cut X̂ . We can assert that |V̂1∪S| ≤ |V̂2|,
since we have assumed x ≥ 4, which implies that |V̂1| ≤ b|V̂ |/4c and |S| ≤ b|V̂ |/4c. The bound
on separator size, |S| ≤ b|V̂ |/4c, holds because any quarter of the vertices would lead to a valid
vertex separator of any H by choosing S to be any subset of b|V̂ |/4c vertices and V̂1 = ∅. In this

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 35

case, removing the hyperedges in Q leaves S ∪ V̂1 = S disconnected. Further, since the maximum
degree of any vertex in Ĥ is k and each hyperedge in H appears in at most one part in R, which
corresponds to a unique hyperedge in Ĥ , the cut X̂ of Ĥ is of size at most k · |S|.

3.4 Lower Bounds on Cost Tradeoffs Based on Dependency
Path Expansion

In this section, we introduce the concept of dependency bubbles and their expansion. Bubbles
represent sets of interdependent computations, and their expansion allows us to analyze the cost
of computation and communication for any parallelization and communication schedule. We will
show that if a dependency graph has a path along which bubbles expand as some function of the
length of the path, any parallelization of this dependency graph must sacrifice synchronization or,
alternatively, incur higher computational and data volume costs, which scale with the total size and
cross-section size (minimum cut size) of the bubbles, respectively.

3.4.1 Bubble Expansion
Given a directed graph G = (V,E), we say that for any pair of vertices v1, vn ∈ V , vn depends
on v1 if and only if there is a path P ⊂ V connecting v1 to vn, i.e., P = {v1, . . . , vn} such
that {(v1,v2), . . . ,(vn−1, vn)} ⊂ E. We denote a sequence of (not necessarily adjacent) vertices
{w1, . . . , wn} a dependency path, if for i ∈ [1, n− 1], wi+1 depends on wi. Any consecutive
subsequence of a dependency path is again a dependency path, called simply a subpath, which
context will disambiguate from its usual definition.

The (dependency) bubble around a dependency path P connecting v1 to vn is a subgraph
ζ(G,P) = (Vζ , Eζ) where Vζ ⊂ V , each vertex u ∈ Vζ lies on a dependency path {v1, . . . , u, . . . , vn}
in G, and Eζ = (Vζ × Vζ) ∩E. If G is a dependency graph, this bubble corresponds to all vertices
which must be computed between the start and end of the path. Equivalently, the bubble may be
defined as the union of all paths between v1 and vn.

3.4.2 Lower Bounds Based on Bubble Expansion
For any q ≥ x ≥ 2, a 1

q
- 1
x
-balanced vertex separator of V̂ ⊂ V in a directed graphG = (V,E) (if

V̂ is unspecified then V̂ = V) is a set of vertices Q ⊂ V , which splits the vertices V in G into two
disconnected partitions, V \Q = V1∪V2 so that E ⊂ (V1×V1)∪ (V2×V2)∪ (Q×V)∪ (V ×Q).
Further, the subsets of these vertices inside V̂ must be balanced, meaning that for V̂1 = V̂ ∩ V1

and V̂2 = V̂ ∩ V2, b|V̂ |/qc − |Q| ≤ min(|V̂1|, |V̂2|) ≤ b|V̂ |/xc. We denote the minimum size |Q|
of a 1

q
- 1
x
-balanced vertex separator Q of G as χq,x(G). The lower bound, b|V̂ |/qc − |Q|, can be

zero, e.g., when |Q| = b|V̂ |/xc, but cannot be negative, since any Q′ ⊂ V̂ of size b|V̂ |/qc is a
1
q
- 1
x
-balanced vertex separator with V1 = V̂1 = ∅, so χq,x(G) ≤ b|V̂ |/qc. For most graphs we

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 36

Figure 3.1: Illustration of the construction in the proof of Theorem 3.4.1 in the case of a diamond
DAG (e.g., [124]), depicting a dependency path, and communication and computation chains about
that path, for a 2-processor parallelization.

will consider, χq,x(G) < b|V̂ |/qc. If ζ(G,P) is the bubble around dependency path P , we say
χq,x(ζ(G,P)) is its cross-section expansion.

We now introduce the notion of a (ε, σ)-path-expander graph, which is the key characteri-
zation of dependency graphs to which our analysis is applicable. In inexact terms, such a graph
needs to have a dependency path such that any bubble around a subpath R of this path is of size
|ζ(G,R)| = Θ(σ(|R|)) and has cross-section size χq,x(ζ(G,R)) = Ω(ε(|R|)) for some q, x.
Now we define this notion more precisely. We call a directed graph G a (ε, σ)-path-expander
if there exists a dependency path P in G, where ζ(G,P) = G, and positive real constants
k, cε, cσ, ĉσ, q, x � |P|, where k ∈ Z, cε, cσ > 1, x ≥ 2, and q = max(xĉ2

σcσ + 1, ĉσ · σ(k)),
such that

• every subpathR ⊂ P of length |R| ≥ k has bubble ζ(G,R) = (Vζ , Eζ)

1. with size |Vζ | = Θ(σ(|R|) and further σ(|R|)/ĉσ ≤ |Vζ | ≤ ĉσ · σ(|R|),

2. with cross-section expansion χq,x(ζ(G,R)) = Ω(ε(|R|)),

• where the given real-valued functions ε, σ are

1. positive and convex,

2. increasing with ε(b+ 1) ≤ cεε(b) and σ(b+ 1) ≤ cσσ(b) for all real numbers b ≥ k.

Theorem 3.4.1 (General Bubble Lower Bounds). Suppose a dependency graph G is a (ε, σ)-path-
expander about dependency pathP . Then, for any schedule ofG corresponding to a parallelization
(of G) in which no processor computes more than 1

x
of the vertices of ζ(G,P), there exists an

integer b ∈ [k, |P|] such that the computation (F), bandwidth (W), and latency (S) costs incurred
are

F = Ω (σ(b) · |P|/b) , W = Ω (ε(b) · |P|/b) , S = Ω (|P|/b) .

Proof. We consider any possible parallelization, which implies a coloring of the vertices of G =
(V,E), V =

⋃p
i=1Ci, and show that any schedule Ḡ = (V̄ , Ē), as defined in Section 2.1, incurs

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 37

the desired computation, bandwidth, and latency costs. Our proof technique works by defining a
chain of bubbles within G in a way that allows us to accumulate the costs along the chain.

The tradeoff between work and synchronization, F = Ω(σ(b) · |P|/b) and S = Ω(|P|/b), can
be derived by considering a computation chain: a sequence of monochrome bubbles along P , each
corresponding to a set of computations performed sequentially by some processor (see computation
chain in Figure 3.1). However, to obtain the bandwidth lower bound, we must instead show that
there exists a sequence of bubbles in which some processor computes a constant fraction of each
bubble; we then sum the bandwidth costs incurred by each bubble in the sequence. We show a
communication chain (a sequence of multicolored bubbles) for a diamond DAG in Figure 3.1.

By hypothesis, there exists k � |P| such that every subpathR ⊂ P of length |R| ≥ k induces
a bubble ζ(G,R) = (Vζ , Eζ) of size

σ(|R|)/ĉσ ≤ |Vζ | ≤ ĉσ · σ(|R|),

for all |R| ≥ k.
We define the bubbles via the following procedure, which partitions the dependency path P

into subpaths by iteratively removing leading subpaths. In this manner, assume we have defined
subpathsRj for j ∈ [1, i− 1]. Let the tail (remaining trailing subpath) of the original dependency
path be

Ti = P \
i−1⋃
j=1

Rj =
{
t1, . . . , t|Ti|

}
.

Our procedure defines the next leading subpath of length r, Ri = {t1, . . . , tr}, k ≤ r ≤ |Ti|, with
bubble ζ(G,Ri) = (Vi, Ei). Suppose processor l computes t1. The procedure picks the shortest
leading subpath of Ti of length r ≥ k which satisfies the following two conditions, and terminates
if no such path can be defined.

Condition 1: The subset of the bubble that processor l computes, Cl ∩ Vi, is of size

|Cl ∩ Vi| ≥ b|Vi|/qc.

Condition 2: The subset of the bubble that processor l does not compute, Vi \ Cl, is of size

|Vi \ Cl| ≥ |Vi| − b|Vi|/xc.

Let c be the number of subpaths the procedure outputs and T = P \
⋃c
j=1Rj = {t1, . . . , t|T |}

be the tail remaining at the end of the procedure. We consider the two cases: |T | ≥ |P|/2 and∑
j |Rj| > |P|/2, at least one of which must hold. We show that in either case, the theorem is true

for some value of b.
Case (i): If |T | ≥ |P|/2 (the tail is long), we show that Condition 1 must be satisfied for

any leading subpath of T . Our proof works by induction on the length of the leading subpath
k ≤ r ≤ |T |, with the subpath given by Kr = {t1, . . . , tr}. We define the bubble about Kr as

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 38

ζ(G,Kr) = (Vr, Er). When r = k, Condition 1 is satisfied because |Vr|/q ≤ ĉσ · σ(k)/q ≤ 1 and
processor l computes at least one element, t1.

For r > k, we have

|Vr| ≤ ĉσ · σ(r) ≤ ĉσcσ · σ(r − 1) ≤ (q − 1)

xĉσ
· σ(r − 1).

Further, by induction, Condition 1 was satisfied for Kr−1 which implies Condition 2 was not sat-
isfied for Kr−1 (otherwise the procedure would have terminated with a subpath of length r − 1).
Now, using bounds on bubble growth, we show that since Condition 2 was not satisfied for Kr−1,
Condition 1 has to be satisfied for the subsequent bubble, Kr,

|Cl ∩ Vr| ≥ |Cl ∩ Vr−1| ≥ |Vr−1| − (|Vr−1| − b|Vr−1|/xc) = b|Vr−1|/xc;

applying the lower bound on bubble size |Vr−1| ≥ σ(r − 1)/ĉσ,

|Cl ∩ Vr| ≥ bσ(r − 1)/(xĉσ)c;

and applying the bound |Vr| ≤ σ(r−1)·(q−1)/(ĉσx), which implies σ(r−1) ≥ |Vr|·(xĉσ)/(q−1),
we obtain

|Cl ∩ Vr| ≥ b(|Vr| · (xĉσ)/(q − 1))/(xĉσ)c = b|Vr|/(q − 1)c ≥ b|Vr|/qc,

so Condition 1 holds for Kr for r ∈ [k, |T |]. Due to Condition 1, processor l must compute F ≥⌊
|Vζ(G,T)|/q

⌋
= Ω(σ(|T |)) vertices. Since, by assumption, no processor can compute more than 1

x

of the vertices of ζ(G,P), we claim there exists a subpath Q of P , T ⊂ Q ⊂ P , where processor
l computes

⌊
|Vζ(G,Q)|/q

⌋
vertices (Condition 1) and does not compute |Vζ(G,Q)| −

⌊
|Vζ(G,Q)|/x

⌋
vertices (Condition 2). The subpath Q may always be found to satisfy these two conditions si-
multaneously, since we can growQ backward from T until Condition 2 is satisfied, i.e., processor
l does not compute at least |Vζ(G,Q)| −

⌊
|Vζ(G,Q)|/x

⌋
vertices, which must occur since we have

assumed that no processor computes more than b|V |/xc =
⌊
|Vζ(G,P)|/x

⌋
vertices. Further, we will

not violate the first condition that |Cl ∩ Vζ(G,Q)| ≥ b|Vζ(G,Q)|/qc, which holds for Q = T , due to
bounds on growth of |Vζ(G,Q)|. The proof of this assertion is the same as the inductive proof above
which showed that Condition 1 holds on Kr, since the bubble growth bounds are invariant to the
orientation of the path we are growing. So, the size of processor l’s communicated set is at least
the size of a 1

q
- 1
x
-balanced vertex separator of ζ(G,Q), namely χq,x(ζ(G,Q)) = Ω(ε(|Q|)), since

the communicated set

R =
[
u : (u,w) ∈

((
Vζ(G,Q) ∩ Cl

)
×
(
Vζ(G,Q) \ Cl

))
∪
((
Vζ(G,Q) \ Cl

)
×
(
Vζ(G,Q) ∩ Cl

))
∩ E

]
separates two partitions, one of size at least

|(Vζ(G,Q) ∩ Cl) \R| ≥ b|Vζ(G,Q)|/qc − |R|

due to Condition 1 and at most

|Vζ(G,Q) ∩ Cl| ≤ b|Vζ(G,Q)|/xc

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 39

due to Condition 2 on Q, as well as another partition of size at least

|(Vζ(G,Q) \Cl) \R| ≥ |Vζ(G,Q)|− b|Vζ(G,Q)|/xc− |R| ≥ b|Vζ(G,Q)|/xc− |R| ≥ b|Vζ(G,Q)|/qc− |R|

due to Condition 2 on Q and the fact that q ≥ x ≥ 2. Applying the assumed lower bound
on the 1

q
- 1
x
-balanced vertex separator of ζ(G,Q), we obtain a lower bound on the size of the

communicated set R, which is also a lower bound on interprocessor communication cost, W =
Ω(ε(|Q|)) = Ω(ε(|T |)) Since these costs are incurred along a path in the schedule consisting of
the work and communication done only by processor l, the bounds hold for b = |T |; note that
Ω(|P|/|T |) = Ω(1), because (since in this case the tail is long) |T | ≥ |P|/2.

Case (ii):
∑

j |Rj| > |P|/2 (the tail is short), the procedure generates subpaths with a total
size proportional to the size of P . For each i ∈ [1, c], consider

• the task ū ∈ V̄ during which processor l computed the first vertex t1 on the path Ri, i.e.,
t1 ∈ f̂(ū),

• the task v̄ ∈ V̄ during which processor l computed its last vertex within the ith bubble, so
f̂(v̄) ∩ Vi ∩ Cl 6= ∅, and

• the task w̄ ∈ V̄ during which the last vertex on the subpath Ri, tr, was computed, i.e.,
tr ⊂ f̂(w̄).

Since tr depends on all other vertices in Vi, there will be an execution path πi = {ū, . . . , v̄, . . . w̄} ⊂
V̄ in the schedule Ḡ. Since f̂(ū) contains the first vertex of Ri, all communication necessary to
satisfy the dependencies of processor l (dependencies of Vi∩Cl) within bubble Vi must be incurred
along πi. This communicated set is given by

T̂il = {u : (u,w) ∈ [((Vi ∩ Cl)× (Vi \ Cl)) ∪ ((Vi \ Cl)× (Vi ∩ Cl))] ∩ E} ,

which is a separator of ζ(G,Ri) and is 1
q
- 1
x
-balanced by the same argument as given above in case

(i) for |Vζ(G,Q)|, since in both cases Conditions 1 and 2 both hold. Any separator of ζ(G,Ri) must
create two partitions, one of size at least

|(Vζ(G,Ri) ∩ Cl) \ Til| ≥ b|Vζ(G,Ri)|/qc − |Til|

due to Condition 1 and at most

|Vζ(G,Ri) ∩ Cl| ≤ b|Vζ(G,Ri)|/xc

due to Condition 2 onRi as well as another partition of size at least

|(Vζ(G,Ri) \ Cl) \ Til| ≥ |Vζ(G,Ri)| − b|Vζ(G,Ri)|/xc − |Til|
≥ b|Vζ(G,Ri)|/xc − |Til| ≥ b|Vζ(G,Ri)|/qc − |Til|

due to Condition 2 onRi and the fact that q ≥ x ≥ 2.

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 40

We use the lower bound on the minimum separator of a bubble to obtain a lower bound on the
size of the communicated set for processor l in the ith bubble,

|T̂il| ≥ χq,x(G,Ri) = Ω (ε(|Ri|)) ,

where we are able to bound the cross-section expansion of ζ(G,Ri), since |Ri| ≥ k. There exists
a dependency path between the last element of Ri and the first of Ri+1 since they are subpaths
of P , so every bubble ζ(G,Ri) must be computed entirely before any members of ζ(G,Ri+1)
are computed. Therefore, there is an execution path πcritical in the schedule Ḡ which contains
πi ⊂ πcritical as a subpath for every i ∈ [1, c]. The execution cost of Ḡ is bounded below by the cost
of πcritical,

T (Ḡ) ≥
∑

v̄∈πcritical

t̂(v̄) = α · S + β ·W + γ · F,

which we can bound below component-wise,

F =
∑

v̄∈πcritical∩V̄comp

|f̂(v̄)| ≥
c∑
i=1

1

q
|ζ(G,Ri)| = Ω

(
c∑
i=1

σ(|Ri|)

)
,

W =
∑

v̄∈πcritical∩V̄send

|ŝ(v̄)| +
∑

v̄∈πcritical∩V̄recv

|r̂(v̄)| ≥
c∑
i=1

χq,x(ζ(G,Ri))

= Ω

(
c∑
i=1

ε(|Ri|)

)
.

Further, since each bubble contains vertices computed by multiple processors, between the first
and last vertex on the subpath forming each bubble, each πi must go through at least one synchro-
nization vertex, therefore, we also have a lower bound on latency cost,

S ≥
∑

v̄∈πcritical∩V̄sync

1 ≥ c.

Because |Ri| ≥ k, σ as well as ε are assumed convex, and the sum of all the lengths of the subpaths
is bounded,

∑
i |Ri| ≤ |P|, the above lower bounds for F and W are minimized when all values

|Ri| are equal1. Thus, we can replace |Ri| for each i by b = b
∑

j |Rj|/cc = Θ(|P|/c) (since the
tail is short), simplifying the bounds to obtain the conclusion.

Corollary 3.4.2 (d-dimensional bubble lower bounds). Suppose there exists a dependency path P
in a dependency graph G and integer constants 2 ≤ d� k � |P| such that every subpathR ⊂ P
of length |R| ≥ k has bubble ζ(G,R) = (Vζ , Eζ) with cross-section expansion χq,x(ζ(G,R)) =
Ω(|R|d−1/q(d−1)/d) for all real numbers k ≤ q � |P|, and has bubble size |Vζ | = Θ(|R|d).

1This mathematical relation can be demonstrated by a basic application of convexity.

CHAPTER 3. COMMUNICATION LOWER BOUND TECHNIQUES 41

Then, the computation (F), bandwidth (W), and latency (S) costs incurred by any schedule of
G corresponding to a parallelization (of G) in which no processor computes more than 1

x
of the

vertices of ζ(G,P) (for 2 ≤ x� |P|) must be at least

F = Ω
(
bd−1 · |P|

)
, W = Ω

(
bd−2 · |P|

)
, S = Ω (|P|/b) .

for some b ∈ [k, |P|], which implies the costs need to obey the following tradeoffs:

F · Sd−1 = Ω
(
|P|d

)
, W · Sd−2 = Ω

(
|P|d−1

)
.

Proof. This is an application of Theorem 3.4.1 since ζ(G,P) is a (ε, σ)-path-expander graph with
ε(b) = bd−1 and σ(b) = bd. The particular constants defining the path-expander graph being k
and x as given, as well as cσ = (k+1)d

kd
, cε = (k+1)d−1

kd−1 , and since |Vζ | = Θ(|R|d) = Θ(σ(|R|))
there exists a constant ĉσ such that σ(|R|)/ĉσ ≤ |Vζ | ≤ ĉσ · σ(|R|). These constants all make up
q, which is O(xĉ2

σk
d) = O(1), so we can disregard the factor of q(d−1)/d inside ε and obtain the

desired lower bounds,

F = Ω
(
bd−1 · |P|

)
, W = Ω

(
bd−2 · |P|

)
, S = Ω (|P|/b) .

These equations can be manipulated algebraically to obtain the conclusion.

42

Chapter 4

Matrix Multiplication

Matrix multiplication is a model dense linear algebra problem and a key primitive in all other
dense linear algebra algorithms that the later chapters will analyze. We review a number of matrix
multiplication algorithms in Section 4.1. Some of the important for us will be Cannon’s algo-
rithm [32], the SUMMA algorithm [163, 1], and 3D matrix multiplication algorithms [43, 1, 2, 23,
93]. We do not consider Strassen-like matrix multiplication algorithms. Lower bounds on com-
munication complexity of matrix multiplication were previously studied by Hong and Kung [90]
and Irony et al. [88], as well as by [12]. We give a lower bound derivation, which provides a good
constant factor for the scenarios we will consider in Section 4.2.

We will then in Section 4.3 give an algorithm for 2.5D matrix multiplication that is a memory-
efficient adaptation of 3D matrix multiplication, similar to the algorithm by McColl and Tiskin [113].
Both of these algorithms attain the communication lower bound for any amount of available local
memory. We also study the performance of an implementation of the 2.5D matrix multiplication
algorithm in Section 4.3. On the BlueGene/P architecture, the implementation achieves up to a
12X speed-up over a standard 2D SUMMA implementation. This speed-up is in part due to the
ability of the 2.5D implementation to map to the 3D network topology of the architecture, and
utilize the network-optimized communication collectives. Our analysis and benchmarking of 2.5D
matrix multiplication will consider only square matrices, however, in Section 4.4, we will refer to
related work to obtain bounds on cost of rectangular matrix multiplication, as these will be needed
in future dense linear algebra chapters (in particular for 2.5D QR in Chapter 6).

Cannon’s algorithm does not employ communication collectives, so it cannot utilize rectan-
gular collectives. However, Cannon’s algorithm sends a low number of messages with respect
to a pipelined algorithm like SUMMA. We design a generalization of Cannon’s algorithm, Split-
Dimensional Cannon’s algorithm (SD-Cannon), that explicitly sends data in all dimensions of the
network at once with fewer messages than SUMMA. This algorithm does not need topology-aware
collectives and retains all the positive features of the classical Cannon’s algorithm. However, like
Cannon’s algorithm, SD-Cannon is difficult to generalize to non-square processor grids. We get

Parts of this chapter were results of joint work with Grey Ballard.

CHAPTER 4. MATRIX MULTIPLICATION 43

around this challenge by using a virtualization framework, Charm++ [95]. Our performance re-
sults on BlueGene/P (Intrepid, located at Argonne National Lab) demonstrate that SD-Cannon
outperforms Cannon’s algorithm (up to 1.5X on BlueGene/P) and can match the performance of
SUMMA with rectangular collectives. The virtualized version of Cannon’s algorithm does not
incur a high overhead but our Charm++ implementation is unable to saturate all networks links at
once.

The rest of the chapter is structured as follows,

• Section 4.1 overview the needed relevant work on the communication cost of matrix multi-
plication,

• Section 4.2 derives a lower bound on the communication cost of sequential matrix multipli-
cation with tight constants,

• Section 4.3 gives the 2.5D matrix multiplication algorithm and analyzes its performance
relative to algorithms used in numerical libraries,

• Section 4.4 references extensions of the 2.5D matrix multiplication algorithm to rectangular
matrices,

• Section 4.5 introduces and benchmarks an adaptation of Cannon’s algorithm that can achieve
higher utilization efficiency on torus networks.

4.1 Previous Work
In this section, we detail the motivating work for our algorithms. First, we recall linear algebra
communication lower bounds that are parameterized by memory size. We also detail the main
motivating algorithm for this work, 3D matrix multiplication, which uses maximal extra memory
and performs less communication. The communication complexity of this algorithm serves as a
matching upper-bound for our memory-independent lower bound.

4.1.1 Communication Lower Bounds for Linear Algebra
Recently, a generalized communication lower bound for linear algebra has been shown to apply
for a large class of matrix-multiplication-like problems [12]. The lower bound applies to either
sequential or parallel distributed memory, and either dense or sparse algorithms. Under some
assumptions on load balance, the general lower bound states that for a fast memory of size M̂ (e.g.
cache size or size of memory space local to processor) the communication bandwidth cost (W)
and memory latency cost (Ŝ) must be at least

Ŵ = Ω

(
#arithmetic operations√

M̂

)
, Ŝ = Ω

(
#arithmetic operations

M̂3/2

)

CHAPTER 4. MATRIX MULTIPLICATION 44

words and messages, respectively. In particular, these lower bounds apply to matrix multiplication,
TRSM, as well as LU, Cholesky, and QR factorizations of dense matrices. On a parallel machine
with p processors and a local processor memory of size M , this yields the following lower bounds
for communication costs of matrix multiplication of two dense n-by-n matrices as well as LU
factorization of a dense n-by-n matrix:

W = Ω

(
n3/p√
M

)
, S = Ω

(
n3/p

M3/2

)
. (4.1.1)

These lower bounds are valid for n2

p
. M . n2

p2/3
and suggest that algorithms can reduce their

communication cost by utilizing more memory. IfM < n2

p
, the input matrices won’t fit in memory.

As explained in [12], conventional algorithms, for example those in ScaLAPACK [28], mostly do
not attain both these lower bounds, so it is of interest to find new algorithms that do.

4.1.2 SUMMA Algorithm

Algorithm 4.1.1 [C] = SUMMA(A, B, C, n, m, k, Π2D)
Require: m× k matrix A, k × n matrix B distributed so that Π2D[i, j] owns m√

p
× k√

p
sub-matrix

A[i, j] and k√
p
× n√

p
sub-matrix B[i, j], for each i, j ∈ [0,

√
p− 1]

1:
2: % In parallel with all processors
3: for all i, j ∈ [0,

√
p− 1] do

4: for t = 1 to t =
√
p do Multicast A[i, t] along rows of Π2D

5: Multicast B[t, j] along columns of Π2D

6: C[i, j] := C[i, j] + A[i, t] ·B[t, j]

Ensure: square m × n matrix C = A · B distributed so that Π2D[i, j] owns m√
p
× n√

p
block sub-

matrix C[i, j], for each i, j ∈ [0,
√
p− 1]

The SUMMA algorithm [1, 163] (Algorithm 4.1.1), utilizes row and column multicasts to
performs parallel matrix multiplication. The algorithm is formulated on a 2D grid, with each
process owning a block of the matrices A, B, and C. At each step, the algorithm performs an outer
product of parts of A and B. While SUMMA can be done with k rank-one outer products, latency
can be reduced by performing

√
p rank-(k/

√
p) outer-products. The latter case yields an algorithm

where at each step every process in a given column of the processor grid multicasts its block of A
to all processors in its row. Similarly, a row of processors multicasts B along columns.

4.1.3 Cannon’s Algorithm
Cannon’s algorithm is a parallel matrix multiplication algorithm that uses shifts blocks among
columns and rows of a processor grid. The algorithm starts by staggering the blocks of A and

CHAPTER 4. MATRIX MULTIPLICATION 45

A

B

Stagger left
A[i,j] := A[i,j+i]

Shift right
A[i,j] := A[i,j-1]Starting position

1 2 3 4

1

2

3

4

1

2

3

4

2

1

4

3

1

2

3

4

2

3

1

4

1

2

3

4

4

3

2

1

1

2

3

4

1

4

3

2

Stagger up
B[i,j] := B[i+j,j]

Shift down
B[i,j] := B[i-1,j]

Shift right
A[i,j] := A[i,j-1]

Shift right
A[i,j] := A[i,j-1]

Shift down
B[i,j] := B[i-1,j]

Shift down
B[i,j] := B[i-1,j]

Figure 4.1: Cannon’s algorithm, stagger and shift. A and B blocks of the same color must be
multiplied together. Notice that the colors (blocks that need to be multiplied) align after each shift.

Algorithm 4.1.2 [C] = Cannon(A, B, C, n, m, k, p, Π2D)
Require: m× k matrix A, k × n matrix B distributed so that Π2D[i, j] owns m√

p
× k√

p
sub-matrix

A[i, j] and k√
p
× n√

p
sub-matrix B[i, j], for each i, j ∈ [0,

√
p− 1]

1: % In parallel with all processors
2: for all i, j ∈ [0,

√
p− 1] do

3: for t = 1 to
√
p− 1 do

4: if t ≤ i then
5: % stagger A
6: A[i, j]← A[i, ((j + 1) mod

√
p)]

7: if t ≤ j then
8: % stagger B
9: B[i, j]← B[((i+ 1) mod

√
p), j]

10: C[i, j] := A[i, j] ·B[i, j]
11: for t = 1 to

√
p− 1 do

12: % shift A rightwards
13: A[i, j]← A[i, ((j − 1) mod

√
p)]

14: % shift B downwards
15: B[i, j]← B[((i− 1) mod

√
p), j]

16: C[i, j] := C[i, j] + A[i, j] ·B[i, j]

Ensure: square m × n matrix C = A · B distributed so that Π2D[i, j] owns m√
p
× n√

p
block sub-

matrix C[i, j], for each i, j ∈ [0,
√
p− 1]

CHAPTER 4. MATRIX MULTIPLICATION 46

B leftwards and upwards, respectively. Then the A and B blocks are shifted rightwards and
downwards, respectively. We describe Cannon’s algorithm on a

√
p-by-

√
p grid (Π2D) (Algo-

rithm 4.1.2). The procedure is demonstrated in Figure 4.1, where each color corresponds to an
outer product. One of the outer products (the yellow blocks) is numbered, and we see that af-
ter each shift, different blocks are multiplied, and overall all sixteen distinct block multiplies are
performed for that outer product (this also holds for the other 3 outer products).

Once we embed the dD grid onto a 2D grid, we can run Cannon’s algorithm with the matrix
distribution according to the ordered 2D processor grid. However, in this embedded network,
Cannon’s algorithm will only utilize 1/d of the links, since two messages are sent at a time by each
processor and there are 2d links per node.

4.1.4 3D Matrix Multiplication
Given unlimited memory, we can still get a communication lower bound, by enforcing the starting
data layout to contain only one copy of the data, spread in a load balanced fashion. Now, assuming
load-balance, any data replication has a bandwidth cost that can be no smaller than the memory
utilized,

W = Ω(M). (4.1.2)

This lower-bound is proven and analyzed in more detail in [9]. Therefore, settingM = O(n2/p2/3),
minimizes the two communication lower bounds (Eq. 4.1.1 and Eq. 4.1.2),

W3D(n, p) = Ω

(
n2

p2/3

)
, S3D(n, p) = Ω (1) .

This lower bound is also proven in [2, 87]. We call these lower bounds 3D, because they lower
bound the amount of data processors can communicate, if given a 3D block of computation to
perform. To achieve this lower bound it is natural to formulate algorithms in a 3D processor
topology. These lower bounds are achieved by the 3D matrix multiplication algorithm [43, 1, 2,
23, 93]. Algorithm 4.1.4 is a description of the 3D MM algorithm on a cubic grid of processors Π.

The 3D matrix multiplication algorithm performs only two broadcasts and one reduction per
processor, all of size O(n2/p2/3) words. Given efficiently pipelined collectives, this algorithm
moves WMM

3D (n, p) = O
(

n2

p2/3

)
words. The latency cost of one reduction under our model is

SMM
3D (p) = O (log p) . This cost is optimal when we consider that information from a block row or

block column can only be propagated to one processor with Ω(log p) messages.

4.1.5 2.5D Asymptotic Communication Lower Bounds
The general communication lower bounds are valid for a range of M in which 2D and 3D algo-
rithms hit the extremes. 2.5D algorithms are parameterized to be able to achieve the communica-
tion lower bounds for any valid M . Let c ∈ {1, 2, . . . , bp1/3c} be the number of replicated copies

CHAPTER 4. MATRIX MULTIPLICATION 47

Algorithm 4.1.3 [C] = 3D-MM(A,B,Π[1 : p1/3, 1 : p1/3, 1 : p1/3],n,p)
Require: On cubic processor grid Π, n-by-n matrix A is spread over Π[:, 1, :], n-by-n matrix BT

is spread over Π[1, :, :]
1: Replicate A[i, k] on each Π[i, j, k], for j ∈ [1, p1/3]
2: Replicate B[k, j] on each Π[i, j, k], for i ∈ [1, p1/3]
3: % Perform local block multiplies on every processor:
4: Ck[i, j] := A[i, k] ·B[k, j] on Π[i, j, k], for each i, j, k
5: % Compute C via a sum reduction:
6: C[i, j] :=

∑p1/3

k=1 Ck[i, j]
Ensure: n-by-n matrix C = A ·B spread over Π[:, :, 1]

of the input matrix. So, each processor has local memory size M = Ω (cn2/p). The general lower
bounds on communication are

W2.5D(n, p, c) = Ω

(
n2

√
cp

)
, S2.5D(n, p, c) = Ω

(
p1/2

c3/2

)
.

The lower bound in Section 6 of [12] is valid while 1 ≤ c ≤ p1/3. In the special cases of c = 1 and
c = p1/3 we get,

W2.5D(n, p, 1) = W2D(n, p), S2.5D(n, p, 1) = S2D(n, p)

W2.5D(n, p, p1/3) = W3D(n, p), S2.5D(n, p, p1/3) = S3D(n, p)

Using c < 1 copies of the matrices is impossible without loss of data, and using c > p1/3 copies of
the matrices cannot be useful since the unlimited memory case is still bound by the 3D communi-
cation lower bounds.

4.1.6 Memory-Efficient Matrix Multiplication Under the BSP Model
McColl and Tiskin [113] presented a memory efficient variation on the 3D matrix multiplication
algorithm under a BSP model. They partition the 3D computation graph to pipeline the work and
therefore use memory to reduce communication in a tunable fashion. This algorithm achieves the
bandwidth lower bound (Equation 4.1.1). This work is closest to the 2.5D matrix multiplication
algorithm we give, although we additionally provide a performance evaluation.

4.2 Communication Lower Bounds
We prove the following theorem which yields a lower bound on the communication cost of matrix
multiplication. This lower bound result is not new from an asymptotic stand-point, but constitutes
an improvement of the constant factor on the lower bound with respect to the best bound we are
aware of. In particular, the first term in the bound is a factor of 16 higher than the lower bound
given by [12], although our derivation technique closely resembles the one used in [12].

CHAPTER 4. MATRIX MULTIPLICATION 48

Theorem 4.2.1. Any matrix multiplication algorithm of m-by-k matrix A with k-by-n matrix B
into m-by-n matrix C with a fast memory (cache) of size M̂ assuming no operands start in cache
and all outputs are written to memory has communication cost, i.e. the number of words moved
between cache and memory,

W̄ (n,m, k, M̂) ≥ max

[
2mnk√
M̂

,mk + kn+mn

]
.

Proof. The term mk + kn + mn arises from the need to read the inputs into cache and write the
output from cache to main memory.

Consider the mnk scalar multiplications done by any schedule which executes the matrix mul-
tiplication algorithm. If the schedule computes a contribution to C more than once, we only count
the the contribution which gets written to the output in memory, and ignore any other redun-
dantly computed and discarded computation. Subdivide them into f chunks of size M̂3/2 for
f = dmnk/M̂3/2e, with the last ’remainder’ chunk being of size less than M̂3/2 (we assume that
M̂3/2 does not divide evenly intomnk, somnk/M̂3/2−bmnk/M̂3/2c > 0, the other case is strictly
simpler). We can label each scalar multiplication Ail · Blj with a tuple (i, j, l). We then define
three projections π1(i, j, l) = (j, l), π2(i, j, l) = (i, l), and π3(i, j, l) = (i, j), which define the two
operands needed by the (i, j, l) multiplication and the entry of the outputC to which the multiplica-
tion contributes. Given any set S of tuples of size three, and projecting them onto a set of tuples of
size two using the three projections πm, gives us sets Pm = {p : ∃s ∈ S, p ∈ πm(s)},∀m ∈ [1, 3].
By the Loomis-Whitney inequality [111] (very commonly used in such lower bound proofs), we
obtain that (|P1| · |P2| · |P3|)1/2 ≥ |S|, which implies that

∑
m |Pm| ≥ 3|S|2/3. This means that for

each chunk i ∈ [1, f], which contains ti ≤ M̂3/2 multiplications, at least 3t
2/3
i total operands of A

and B plus contributions to C are necessary.
Now, let xi be the number of operands present in cache prior to execution of chunk i (by

assumption x1 = 0). The number of operands (elements of A and B) present in cache at the end
of execution of chunk i should be equal to the number of operands available for chunk i+ 1, xi+1.
Let the number of contributions to C (outputs), which remain in cache (are not written to memory)
at the end of chunk i, be yi (by assumption yf = 0), the rest of the outputs produced by chunk i
must be written to memory. In total, the amount of reads from memory and writes to memory done
during the execution of chunk i with ti multiplications is then at least wi ≥ 3t

2/3
i − xi − yi,∀i ∈

[1, f]. Now, since the operands and outputs which are kept in cache at the end of chunk i must
fit in cache, we know that for i ∈ [1, f − 1], xi+1 + yi ≤ M̂ . Substituting this in, we obtain
wi ≥ 3t

2/3
i − M̂ − xi + xi+1,∀i ∈ [1, f − 1]. Summing over all chunks yields a lower bound on

CHAPTER 4. MATRIX MULTIPLICATION 49

the total communication cost:

W̄ (n,m, k, M̂) ≥
f∑
i=1

wi ≥ 3t
2/3
f − xf +

f−1∑
i=1

(3t
2/3
i − M̂ − xi + xi+1)

= −(f − 1)M̂ + 3t
2/3
f +

f−1∑
i=1

3t
2/3
i

= −(f − 1)M̂ + 3(mnk − (f − 1)M̂3/2)2/3 +

f−1∑
i=1

3M̂

= 2(f − 1)M̂ + 3(mnk − (f − 1)M̂3/2)2/3

= 2M̂ · bmnk/M̂3/2c+ 3(mnk − bmnk/M̂3/2c · M̂3/2)2/3

= 2mnk/M̂1/2 − 2M̂ · (mnk/M̂3/2 − bmnk/M̂3/2c) + 3M̂ · (mnk/M̂3/2 − bmnk/M̂3/2c)2/3

≥ 2mnk/M̂1/2 + 2M̂ ·
[
(mnk/M̂3/2 − bmnk/M̂3/2c)2/3 − (mnk/M̂3/2 − bmnk/M̂3/2c)

]
≥ 2mnk/M̂1/2

Therefore, we have

W̄ (n,m, k, M̂) ≥ max

[
2mnk√
M̂

,mk + kn+mn

]
.

4.3 2.5D Matrix Multiplication
Consider the 2.5D processor grid of dimensions

√
p/c-by-

√
p/c-by-c (indexed as Π[i, j, k]) Using

this processor grid for matrix multiplication, Algorithm 4.3 achieves the 2.5D bandwidth lower
bound and gets within a factor of O(log(p)) of the 2.5D latency lower bound. Algorithm 4.3
generalizes the 2D SUMMA algorithm (set c = 1). At a high level, our 2.5D algorithm does an
outer product of sub-matrices of A and B on each layer, then combines the results. 2.5D Cannon’s
algorithm can be done by adjusting the initial shift to be different for each set of copies of matrices
A and B [147].

Our 2.5D algorithm also generalizes the 3D algorithm (Algorithm 4.1.4). The two algorithms
differ only in the initial layout of matrices. However, after the initial replication step, the subse-
quent broadcasts and computation are equivalent. Further, the 2.5D algorithm has the nice property
that C ends up spread over the same processor layer that both A and B started on. The algorithm
moves WMM

2.5D(n, p, c) = O
(

n2
√
cp

)
words. If this 2.5D algorithm uses 2.5D SUMMA, the latency

cost is S2.5D(n, p, c) = O
(√

p/c3 log(p)
)

messages. The extra log(p) factor in the latency cost

CHAPTER 4. MATRIX MULTIPLICATION 50

Algorithm 4.3.1 [C] = 2.5D-MM(A,B,Π[1 : (p/c)1/2, 1 : (p/c)1/2, 1 : c],n,m,l,c,p)

Require: On a
√
p/c-by-

√
p/c-by-c processor grid Π, m-by-n matrix A and n-by-l matrix B, are

each spread over Π[:, :, 1]
1: Replicate A and B on each Π[:, :, k], for k ∈ [1, c]
2: % Perform an outer product on each processor layer Π[:, :, k] in parallel:
3: for k = 1 to k = c do
4: [Ck] = 2D-MM(A[:, (k − 1) · n/c : k · n/c],
5: B[(k − 1) · n/c : k · n/c, :],
6: Π[:, :, k], n/c, m, l)
7: % Compute C via a sum reduction:
8: C :=

∑c
k=1 Ck

Ensure: square m-by-l matrix C = A ·B spread over Π[:, :, 1]

can be eliminated by performing part of Cannon’s algorithm rather than part of SUMMA on each
layer [147]. Ignoring log(p) factors, this cost is optimal according to the general communication
lower bound. The derivations of these costs are in Appendix A in [147].

If the latency cost is dominated by the intra-layer communication (Θ(
√
p/c3) messages), rather

than the Θ(log(c)) cost of the initial broadcast and final reduction the 2.5D matrix multiplication
algorithm can achieve perfect strong scaling in certain regimes. Suppose we want to multiply n×n
matrices, and the maximum memory available per processor is Mmax. Then we need to use at least
pmin = Θ(n2/Mmax) processors to store one copy of the matrices. The 2D algorithm uses only one
copy of the matrix and has a bandwidth cost of

WMM
2D (n, pmin) = WMM

2.5D(n, pmin, 1) = O(n2/
√
pmin)

words and latency cost of

SMM
2D (n, pmin) = SMM

2.5D(n, pmin, 1) = O(
√
pmin)

messages. If we use p = c·pmin processors, the total available memory is p·Mmax = c·pmin ·Mmax,
so we can afford to have c copies of the matrices. The 2.5D algorithm can store a matrix copy on
each of c layers of the p processors. The 2.5D algorithm would have a bandwidth cost of

WMM
2.5D(n, p, c) = O(n2/

√
cp) = O(n2/(c

√
pmin)) = O(WMM

2.5D(n, pmin, 1)/c)

words, and a latency cost of

SMM
2.5D(n, p, c) = O(

√
p/c3) = O(

√
pmin/c) = O(SMM

2.5D(n, pmin, 1)/c)

messages. This strong scaling is perfect because all three costs (flops, bandwidth and latency) fall
by a factor of c (up to a factor of c = p1/3, and ignoring the log(c) latency term).

CHAPTER 4. MATRIX MULTIPLICATION 51

4.3.1 Performance benchmarking configuration
We implemented 2.5D matrix multiplication MPI [71] for inter-processor communication. We
perform most of the sequential work using BLAS routines: DGEMM for matrix multiplication,
DGETRF, DTRSM, DGEMM, for LU. We found it was fastest to use provided multi-threaded
BLAS libraries rather than our own threading. All the results presented in this chapteruse threaded
ESSL routines.

We benchmarked our implementations on a Blue Gene/P (BG/P) machine located at Argonne
National Laboratory (Intrepid). We chose BG/P as our target platform because it uses few cores per
node (four 850 MHz PowerPC processors) and relies heavily on its interconnect (a bidirectional 3D
torus with 375 MB/sec of achievable bandwidth per link). On this platform, reducing inter-node
communication is vital for performance.

BG/P also provides topology-aware partitions, which 2.5D algorithms are able to exploit. For
node counts larger than 16, BG/P allocates 3D cuboid partitions. Since 2.5D algorithms have
a parameterized 3D virtual topology, a careful choice of c allows them to map precisely to the
allocated partitions (provided enough memory).

Topology-aware mapping can be very beneficial since all communication is constrained to one
of three dimensions of the 2.5D virtual topology. Therefore, network contention is minimized or
completely eliminated. Topology-aware mapping also allows 2.5D algorithms to utilize optimized
line multicast and line reduction collectives provided by the DCMF communication layer [57,
103].

We study the strong scaling performance of 2.5D algorithms on a 2048 node partition (Fig-
ures 4.2(a), 5.5(a)). The 2048 node partition is arranged in a 8-by-8-by-32 torus. In order to form
square layers, our implementation uses 4 processes per node (1 process per core) and folds these
processes into the X dimension. Now, each XZ virtual plane is 32-by-32. We strongly scale 2.5D
algorithms from 256 nodes c = Y = 1 to 2048 nodes c = Y = 8. For ScaLAPACK we use smp or
dual mode and form a square grid.

We also compare performance of 2.5D and 2D algorithms on 16,384 nodes (65,536 cores) of
BG/P (Figures 4.2(b), 5.5(b)). The 16,384 node partition is a 16-by-32-by-32 torus. We run both
2D and 2.5D algorithms in SMP mode. For 2.5D algorithms, we use c = 16 YZ processor layers.

We perform our analysis on a square grid and analyze only square matrices. Oddly shaped
matrices of processor grids can be overcome through the use of virtualization. Each processor can
be made responsible for the work of a block of processors of another virtual processor grid. So it
is possible to decompose any problem onto a nicely shaped (e.g. cubic) virtual processor grid and
then map it onto a smaller processor mesh.

4.3.2 2.5D matrix multiplication performance
Figure 4.2(a) demonstrates that 2.5D matrix multiplication achieves better strong scaling than its
2D counter-part. However, both run at high efficiency (over 50%) for this problem size, so the
benefit is minimal. The performance of the more general ScaLAPACK implementation lags behind
the performance of our code by a factor of 2-5X.

CHAPTER 4. MATRIX MULTIPLICATION 52

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

Matrix multiplication strong scaling on BG/P (n=65,536)

2.5D SUMMA
2D SUMMA

ScaLAPACK

(a) MM strong scaling

 0

 20

 40

 60

 80

 100

8192 32768 131072

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

n

2.5D MM on 16,384 nodes of BG/P

2D SUMMA
2.5D SUMMA

(b) Matrix multiplication on 16,384 nodes

Figure 4.2: Performance of 2.5D MM on BG/P

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 8 64

P
ar

al
le

l e
ffi

ci
en

cy

z dimension of partition

MM strong scaling at exascale (xy plane to full xyz torus)

2.5D with rectangular (c=z)
2.5D with binomial (c=z)

2D with binomial

Figure 4.3: Matrix multiplication predicted performance on an exascale architecture. The results
show strong scaling from full memory on the first plane (z = 1) of the machine to the full machine
(z = 64).

Figure 4.2(b) shows that 2.5D matrix multiplication outperforms 2D matrix multiplication sig-
nificantly for small matrices on large partitions. The network latency and bandwidth costs are
reduced, allowing small problems to execute much faster (up to 12X faster for the smallest prob-
lem size).

4.3.3 Predicted Performance at Exascale
We model performance of matrix multiply with rectangular and binomial collectives at exascale.
Our 2D and 2.5D MM algorithms own a single block of each matrix and always communicate
in messages that contain the whole block. For the problem we study, this message size should
be entirely bandwidth bound for both 1D rectangular and binomial protocols. So we model the

CHAPTER 4. MATRIX MULTIPLICATION 53

multicast and reduction in the 2.5D algorithm using the maximum bandwidth achieved by these
protocols in Figure 2.5. We assume the shifts (sends) in the algorithm achieve the single link peak
bandwidth.

Figure 4.3 demonstrates the strong scaling of 2.5D MM with rectangular and binomial collec-
tive protocols and 2D MM with a binomial protocol. We scale from a single plane of the 3D torus
(z = 1) to the entire machine (z = 64). We use the largest matrix size that fits in memory on a
single plane (n = 222). We calculate the computational time (tf) based on the peak flop rate. We
express parallel efficiency in terms of tf and the communication time tc,

efficiency =
tf

tf + tc

Evidently, matrix multiplication is dominated by computation at this scale. The 2.5D algo-
rithm and rectangular collectives only make a difference when we are using most of the machine.
This result is consistent with the performance of MM on BG/P, where significant speed-ups were
achieved only for smaller problem sizes.

4.4 Rectangular Matrix Multiplication
Algorithms for dense factorizations including ones we consider in this thesis primarily employ on
non-square (rectangular) matrix multiplications. Most frequently two of the three matrices (the
two operands and the result) are rectangular while one is square with the dominant cost coming
from operations where the square matrix is larger than the rectangular matrices.

4.4.1 Previous Work on Matrix Multiplication
We first reference the communication costs of multiplication of rectangular matrices on a sequen-
tial computer. Here the only communication cost we consider is data movement between the
memory and the cache (Q). This cost is dominated either by a term corresponding to reading and
multiplying all needed pairs of blocks in cache, or by a term corresponding to reading in all the
data of the largest matrix into cache.

Lemma 4.4.1. The cost of matrix multiplication C = A · B where A is m-by-n and B is n-by-k,
on a sequential computer with cache size M̂ is

TMM(m,n, k, M̂) = O

(
γ ·mnk + ν ·

[
mnk√
M̂

+mn+ nk +mk

])
Proof. We use the Rec-Mult algorithm with memory bandwidth cost proved in [63, Theorem 1].

In the case of parallel computers, we additionally consider interprocessor traffic and synchro-
nization cost necessary to compute rectangular matrix multiplication. Due to the low depth of the

CHAPTER 4. MATRIX MULTIPLICATION 54

matrix multiplication dependency graph, efficient parallelization with low synchronization cost is
possible (unlike in the case of dense matrix factorizations, which have polynomial depth).

Lemma 4.4.2. The cost of matrix multiplication C = A · B where A is m-by-n and B is n-by-k
on a parallel computer with p processors each with local memory M > (mn + nk + mk)/p and
cache size M̂ is

TMM(m,n, k, p, M̂) = O

(
γ · mnk

p
+ β ·

[
mn+ nk +mk

p
+

mnk

p ·
√
M

+

(
mnk

p

)2/3
]

+ ν · mnk

p ·
√
M̂

+ α ·
[

mnk

p ·M3/2
log

(
pm2

nk

)
+ log(p)

])
.

Proof. We use the CARMA algorithm for parallel matrix multiplication [46]. Throughout this
proof we assume (without loss of generality) that m ≤ n ≤ k. We also ignore constants and
lower order terms but omit asymptotic notation. Because the computation is load balanced, the
computational cost is mnk/p.

We next show that the claimed interprocessor bandwidth cost upper bounds the cost for each of
the three cases given in [46, Table I]. If p < k/n, then the cost mn is bounded above by mk/p, a
term which appears in the expression above. If k/n ≤ p ≤ nk/m2, then m2 ≤ nk/p and the cost√
m2nk/p is bounded above by nk/p, which also appears above. Finally, if p > nk/m2, the cost

is mnk/(p
√
M) + (mnk/p)2/3, which itself appears in the expression above.

The memory bandwidth cost is not considered in [46], so we derive the cost of the CARMA
algorithm here. Recall that the total memory bandwidth cost includes the interprocessor bandwidth
terms in the expression above. If p < k/n, then the single local matrix multiplication on each
processor is of dimension m× n× (k/p). By Lemma 4.4.1, the memory bandwidth cost is upper
bounded by mnk/(p

√
M̂) + nk/p (note that the largest matrix is the second input), and both

terms appear above. If k/n ≤ p ≤ nk/m2, then the single local matrix multiplication on each
processor is of dimension m×

√
nk/p×

√
nk/p. By Lemma 4.4.1, the memory bandwidth cost

is again upper bounded by mnk/(p
√
M̂) + nk/p. If p > nk/m2, then there are two possible

scenarios depending on the size of the local memory M . If M ≥ (mnk/p)2/3, then the single
local matrix multiplication on each processor is square and of dimension (mnk/p)1/3. By Lemma
4.4.1, the memory bandwidth cost is upper bounded by mnk/(p

√
M̂) + (mnk/p)2/3. If M <

(mnk/p)2/3, then each processor performs mnk/(pM3/2) local matrix multiplications, each of
square dimension

√
M . By Lemma 4.4.1, the total memory bandwidth cost of these multiplications

is (mnk/[pM3/2]) · (M3/2/
√
M̂ +M) = mnk/(p

√
M̂) +mnk/(p

√
M), which is dominated by

the first term.
The claimed latency cost includes the latency costs of each of the three cases analyzed in [46]

and is therefore an upper bound.

CHAPTER 4. MATRIX MULTIPLICATION 55

4.4.2 Streaming Matrix Multiplication
In the cost analysis of the symmetric eigensolver algorithm, it will be necessary to consider the
multiplication of a replicated matrix by a panel, so we first derive Lemma 4.4.3 which quantifies
the communication cost of this primitive. In particular, we introduce a streaming matrix multipli-
cation algorithm, where a single large (square or nearly-square) matrix is replicated over a number
of sets of processors (on each set the matrix is in a 2D layout) and is multiplied by a smaller rectan-
gular matrix (producing another rectangular matrix of about the same size). The advantage of this
primitive over the previous matrix multiplication algorithms we discussed is the fact that it does
not require a term corresponding to the data movement required to replicate the large matrix.

This 2.5D algorithm and some of the further ones used in this thesis will be parameterized by δ
(same as α in [158]) in contrast to 2.5D algorithms [146], which were parameterized by c. The two
parameterizations are closely related pδ =

√
cp and c = p2δ−1. The parameters have corresponding

ranges δ ∈ [1/2, 2/3] and c ∈ [1, p1/3]. While c is reflective of the number of copies of the matrix
that are needed, the exponent δ yields the right factor for recursion with subsets of processors,
which will be particularly useful in our successive band reduction algorithm (Algorithm 7.3.1).

Lemma 4.4.3. Consider a matrix A of dimensions m-by-k where m, k = O(n), that is replicated
over c = p2δ−1 groups of p/c = p2(1−δ) processors for δ ∈ [1/2, 2/3] and c ∈ [1, p1/3]. The cost of
multiplying A by a matrix B of dimension k-by-b where b� n is

Trepmm(n, b, p, δ) = O

(
γ · n

2b

p
+ β · nb

pδ
+ α · log(p)

)
,

when the cache size is M̂ > n2/p2(1−δ) and the copies of A start inside cache, otherwise the cost
is

T repmm(n, b, p, δ) = O

(
γ · n

2b

p
+ β · nb

pδ
+ ν ·

[
n2

p2(1−δ) +
n2b

p
√
M̂

]
+ α · log(p)

)
.

Proof. Assume that B starts in a 1D layout on a group of pδ processors and that each of p2δ−1

copies of A is distributed on a 2D p1−δ-by-p1−δ processor grid. We scatter B so that a column of
p1−δ processors on each of the p2δ−1 2D processor grids owns a k-by-b/p1−δ vertical slice of B in
a 1D layout. This redistribution/scatter costs no more than

O

(
β · nb

pδ
+ α · log(p)

)
.

Now, we replicate each slice Bi across all processor columns in the ith 2D processor grid, multiply
locally byA then reduce the result to one row of p1−δ processors on the ith processor grid, obtaining
Ci = A ·Bi. The costs of the broadcast and reduction are

O

(
β · nb

p2(1−δ) + α · log(p)

)
= O

(
β · nb

pδ
+ α · log(p)

)
.

CHAPTER 4. MATRIX MULTIPLICATION 56

The cost of the local matrix multiplication is no more than

O

(
γ · n

2b

p
+ ν ·

[
n2

p2(1−δ) +
n2b

p
√
M̂

])

by Lemma 4.4.1. However, if the entire matrix A starts in cache, which implies that M̂ >
n2/p2(1−δ), it suffices to read only the entries of Bi from memory into cache and write the en-
tries of Ci out to memory. In this case, the memory bandwidth cost is

O

(
ν · nb

p2(1−δ)

)
,

which is dominated by the interprocessor communication term since ν � β. The result C = A ·B
can be gathered onto the same processors onto which W started, by first transposing the Ci panel
on the 2D processor grid, so that the processor column which ownsBi now ownsCi, then gathering
to the pδ processors which ownedBi. This gather is a direct inverse of the scatter ifA done initially
and has the same asymptotic communication cost. The transpose has low order cost with respect
to broadcasting Bi and reducing Ci.

4.5 Split-Dimensional Cannon’s Algorithm

4.5.1 Algorithm
The following algorithm is designed for a l-ary d-cube bidirectional torus network (a d dimensional
network of p = ld processors). The algorithm requires that the torus network is of even dimension
(d = 2i for i ∈ {1, 2, . . .}). Virtualization will be used to extend our approach to odd-dimensional

Matrix Layout on Torus Networks

A matrix is a 2D array of data. To spread this data in a load balanced fashion, we must embed the
2D array in the higher-dimensional torus network. Any l-ary d-cube ΠdD, where d is a multiple
of 2, can be embedded onto a square 2D grid. Each of two dimensions in this square grid is of
length ld/2 and is formed by folding a different d/2 of the d dimensions. For simplicity we fold the
odd d/2 dimensions into one of the square grid dimensions and the d/2 even dimensions into the
other square grid dimension. The algorithms below will assume the initial matrix layout follows
this ordering. In actuality, the ordering is irrelevant since a l-ary d-cube network is invariant to di-
mensional permutations. We define a dimensional embedding for a processor with a d-dimensional
index Id ∈ {0, 1, . . . , l − 1}d, to a two dimensional index (i, j) as

GdD→2D[Id] =

d/2−1∑
i=0

liId[2i],

d/2−1∑
i=0

liId[2i+ 1]

 .

We denote the processor with grid index Id as ΠdD[Id].

CHAPTER 4. MATRIX MULTIPLICATION 57

SD-Cannon on a 3-ary 6-cube

dim 1

dim 2

dim 3

Each circle corresponds to a shift along a dimension

Each color corresponds to an outer product

Figure 4.4: Snapshot of network usage in SD-Cannon. A and B use a disjoint set of 3 network
dimensions in the same fashion, so it suffices to pay attention to 3.

Split-Dimensional Cannon’s Algorithm

We can formulate another version of Cannon’s algorithm by using more dimensional shifts. A
shift can be performed with a single message sent over a single link from each processor to the
next. Since the shifts will be done along dimensions of the l-ary d-cube network, 2d links will
be available. Algorithm 4.5.1 performs this dimensional shift. Split-dimensional (SD) Cannon’s
algorithm will use exclusively this shift for communication. In fact, all shifts operate on a static
message size. Therefore, communication cost can be calculated by counting shifts. The algorithm
achieves complete utilization on any l-ary d-cube network during the shift stage. We specify the
algorithm for a bidirectional network as those are much more common. However, the algorithms
can be trivially simplified to the unidirectional case.

Algorithm 4.5.1 Shift< dim,dir >(l, M , p, ΠdD, Id)
Require: ΠdD[Id] owns sub-matrix M .

1: Sd ← Id

2: if dir = +1 then
3: Sd[dim] = (Sd[dim] + 1) mod l

4: if dir = −1 then
5: Sd[dim] = (Sd[dim]− 1) mod l

6: Send M to ΠdD[Sd].
7: % ΠdD[Id] sends to ΠdD[Sd]

Algorithm 4.5.2 describes how the stagger step is done inside the SD-Cannon algorithm. A
different shift is done on each sub-panel of A and B concurrently. These calls should be done
asynchronously and ideally can fully overlap. One interpretation of this stagger algorithm is that
sub-panels of each matrix are being staggered recursively along d/2 disjoint dimensional orders.

Algorithm 4.5.3 is a recursive routine that loops over each dimension performing shifts on
sub-panels of A and B. The order of the shifts is permuted for each sub-panel. Each sub-panel is
multiplied via a recursive application of Cannon’s algorithm over a given dimensional ordering.

CHAPTER 4. MATRIX MULTIPLICATION 58

Algorithm 4.5.2 SD-Stagger(A, B, nb, mb, kb, l, p, ΠdD,Id)
Require: ΠdD[Id] owns mb × kb sub-matrix A and kb × nb sub-matrix B.

1: Split A = [A0, A1, . . . , Ad] where each Ah is mb × kb/d.
2: Split BT = [BT

0 , B
T
1 , . . . , B

T
d] where each Bh is kb/d× nb.

3: % At each level, apply index shift
4: for level ∈ [0, d/2− 1] do
5: % To stagger must shift up to l − 1 times
6: for t = 1 to l − 1 do
7: % Shift the ordering
8: for all dh ∈ [0, d/2− 1] do
9: h← (dh + level) mod (d/2)

10: if t ≤ Id[2h+ 1] then
11: Shift< (2 ∗ h),+1 >(l, Ah, p, ΠdD, Id)
12: if t ≤ l − Id[2h+ 1] then
13: Shift< (2 ∗ h),−1 >(l, Ah+d/2, p, ΠdD, Id)

14: if t ≤ Id[2h] then
15: Shift< (2 ∗ h+ 1),+1 >(l, Bh, p, ΠdD, Id)
16: if t ≤ l − Id[2h] then
17: Shift< (2 ∗ h+ 1),−1 >(l, Bh+d/2, p, ΠdD, Id)

Algorithm 4.5.3 SD-Contract< level >(A, B, C, nb, mb, kb, l, p, ΠdD, Id)
Require: ΠdD[Id] owns mb × kb sub-matrix A and kb × nb sub-matrix B.

1: Split A = [A0, A1, . . . , Ad] where each Ah is mb × kb/d.
2: Split BT = [BT

0 , B
T
1 , . . . , B

T
d] where each Bh is kb/d× nb.

3: % Shift and contract l times
4: for t = 0 to l − 1 do
5: if level = d/2− 1 then
6: C ← C + A ·B
7: else
8: SD-Contract< level + 1 >(A, B, C, n√

p
, m√

p
, k√

p
, l, p, ΠdD, Id)

9: for all dh ∈ [0, d/2− 1] do
10: % Shift the ordering
11: h← (dh + level) mod (d/2)
12: Shift< (2 ∗ h),+1 >(l, Ah, p, ΠdD, Id)
13: Shift< (2 ∗ h+ 1),+1 >(l, Bh, p, ΠdD, Id)
14: Shift< (2 ∗ h),−1 >(l, Ah+d/2, p, ΠdD, Id)
15: Shift< (2 ∗ h+ 1),−1 >(l, Bh+d/2, p, ΠdD, Id)

CHAPTER 4. MATRIX MULTIPLICATION 59

Algorithm 4.5.4 SD-Cannon(A, B, C, n, m, k, l, p, ΠdD, GdD→2D)
Require: m × k matrix A, k × n matrix B distributed so that ΠdD[I] owns m√

p
× k√

p
sub-matrix

A[GdD→2D[I]] and k√
p
× n√

p
sub-matrix B[GdD→2D[I]]

1: % In parallel with all processors
2: for all Id ∈ {0, 1, . . . , l − 1}d do (i, j)← GdD→2D[Id]
3: SD-Stagger(A[i, j], B[i, j], n√

p
, m√

p
, k√

p
, l, p, ΠdD, Id)

4: SD-Contract< 0 >(A[i, j], B[i, j], C[i, j], n√
p
, m√

p
, k√

p
, l, p, ΠdD, Id)

Ensure: squarem×nmatrix C = A·B distributed so that ΠdD[I] owns m√
p
× n√

p
block sub-matrix

C[GdD→2D[I]]

Figure 4.4 demonstrates how different network dimensions of a 3-ary 6-cube are used by SD-
Cannon. A and B get shifted along 3 of 6 dimensions, so Figure 4.4 records usage along 3 dimen-
sions (corresponding to one of A or B). Each outer product (corresponding to a color) is shifted
(each shift corresponds to a circle) along a different dimension at any given step.

Note that the local multiplication call is the same as in Cannon’s algorithm. The granularity of
the sequential work does not decrease in the SD-Cannon algorithm but only changes its ordering.
This is a virtue of splitting into outer-products that accumulate to the same buffer.

The control flow of SD-Cannon is described in Algorithm 4.5.4. The algorithm can be elegantly
expressed with one-sided communication since the sends should be asynchronous (puts). Our MPI
SD-Cannon code uses one-sided put operations and is compact (a few hundred lines of C).

4.5.2 Analysis
We analyze the communication costs of Cannon’s algorithm, SUMMA, and SD-Cannon. We con-
sider bandwidth cost, as the total volume of data sent by each process, and latency cost, as the
number of messages sent by each process. As before, we assume a l-ary d-cube bidirectional torus
network.

Bandwidth Cost

We can analyze the bandwidth cost of these algorithms by the embedding of the algorithm onto the
physical l-ary d-cube network. The bandwidth cost of the algorithm is proportional to the number
of shifts along the critical path.

In traditional Cannon’s algorithm we shift 2
√
p blocks along the critical path (

√
p times for

stagger and
√
p times for contraction) of size mk/p and nk/p. Given the ordering of the embed-

ding, we can always find a link which has to communicate mk/
√
p values and a link that has to

CHAPTER 4. MATRIX MULTIPLICATION 60

communicate nk/
√
p values.1 Therefore the bandwidth cost is

WCannon = O

(
max(m,n) · k

√
p

)
.

In the bidirectional, split-dimensional algorithm, all shifts in the communication inner loops (in
Algorithm 4.5.2 and Algorithm 4.5.3) can be done simultaneously (so long as the network router
can achieve full injection bandwidth). So the communication cost is simply proportional to the
number of inner loops, which, for staggering (Algorithm 4.5.2) is NT = l · d/2. For the recursive
contraction step (Algorithm 4.5.3), the number of these shift stages is

NS =

d/2∑
i=1

li ≤ 2
√
p.

If the network is bidirectional, at each shift stage we send asynchronous messages of sizes mk/(d ·
p) and kn/(d · p) values. Ignoring the lower-order stagger term in SD-Cannon we have a cost of

WSD-Cannon = O

(
max(m,n) · k

d · √p

)
.

So the bandwidth cost of SD-Cannon, WSD-Cannon, is d times lower than that of Cannon’s algorithm,
WCannon. In SUMMA, throughout the algorithm A of size mk and B of size kn are multicast along
two different directions. An optimal multicast algorithm would utilize d links for the multicasts of
A and B respectively. So, the bandwidth cost of SUMMA is

WSUMMA = O

(
max(m,n) · k

d · √p

)
,

which is asymptotically the same as the bandwidth cost of SD-Cannon.

Latency Cost

The latency overhead incurred by these algorithms will differ depending on the topology and col-
lective algorithms for SUMMA. The SD-Cannon algorithm sends more messages than Cannon’s
algorithm, but into different links, so it incurs more sequential and DMA overhead, but no extra
network latency overhead. However, both Cannon’s algorithm and SD-Cannon will have a lower
latency cost than SUMMA on a typical network. In each step of SUMMA, multicasts are done
along each dimension of the processor grid. So, on a torus network, a message must travel l · d/2
hops at each step, rather than 1 hop as in SD-Cannon. The Blue Gene/P machine provides ef-
ficient multicast collectives that work at a fine granularity and incur little latency overhead [57].

1This analysis does not consider the wrap around pass. Some messages might have to go multiple hops, but this
problem is relieved by interleaving the ordering of the processor grid.

CHAPTER 4. MATRIX MULTIPLICATION 61

However, on a machine without this type of topology-aware collectives, SD-Cannon would have a
strong advantage, as messages would need to travel fewer hops.

If we count latency as the number of hops a message must travel on the network and assume
processes can send multiple messages at once, we can derive definite latency costs. For Cannon’s
algorithm, which does O(

√
p) near neighbor sends, the latency cost is unambiguously

SCannon = O (
√
p) .

For SD-Cannon, if we assume messages can be sent simultaneously into each dimension, the
latency cost is

SSD-Cannon = O (
√
p) .

However, the on-node messaging overhead goes up by a factor of O(d). For SUMMA, there are
again

√
p steps, but at each step a multicast happens among

√
p processes. On a torus network, the

most distant processor would be l · d/2 hops away, giving a hop-messaging cost of

SSUMMA = O (l · d · √p) .

This latency overhead is higher than Cannon and SD-Cannon, though this cost reflects the num-
ber of hops travelled not the number of synchronizations. However, generally it is reasonable to
state that a multicast incurs a larger latency overhead than near-neighbor sends, so our qualitative
conclusion is valid.

4.5.3 Results
We implemented version of SD-Cannon in MPI [71] and Charm++ [95]. Both versions work on
matrices of any shape and size, but we only benchmark square matrices. Both versions assume
the virtual decomposition is a k-ary n-cube. In MPI, the process grid is a k-ary n-cube, while
in Charm++ we get a k-ary n-cube of chare objects. We use Charm++ to explicitly map the
objects onto any unbalanced process grid we define at run time. While we explicitly define the
mapping function to fold the chare array onto a smaller processor grid, the Charm++ run-time
system manages how the sequential work and messaging get scheduled.

The MPI version uses MPI put operations for communication and barriers for synchronization.
The Charm++ version uses the underlying run-time system for messaging between chares, and is
dynamically scheduled (no explicit synchronization).

We benchmarked our implementations on a Blue Gene/P (BG/P) [86] machine located at Ar-
gonne National Laboratory (Intrepid). We chose BG/P as our target platform because it uses few
cores per node (four 850 MHz PowerPC processors) and relies heavily on its interconnect (a bidi-
rectional 3D torus with 375 MB/sec of achievable bandwidth per link).

Since the BG/P network only has three dimensions, the benefit of SD-Cannon is limited to
trying to exploit the backwards links and the third dimensional links. The MPI version of our
code is limited to even-dimensional tori, so it could only exploit 4 of 6 links. We study relative
performance of the MPI version of SD-Cannon on an 8-by-8 torus partition of BG/P. 2

2The partitions allocated by the BG/P scheduler are only toroidal if they have 512 or more nodes. So, we allocated
a 512 node partition and worked on the bottom 64 node slice.

CHAPTER 4. MATRIX MULTIPLICATION 62

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1024 2048 4096 8192 16384

Fr
ac

tio
n

of
 th

eo
re

tic
al

 p
ea

k

matrix dimension

Performance on 8x8 torus partition of BG/P

SUMMA
MPI SD-Cannon

Charm++ SD-Cannon
MPI Cannon

Charm++ Cannon

(a) Matrix multiplication on a 2D torus partition

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

4096 8192 16384 32768 65536

Fr
ac

tio
n

of
 th

eo
re

tic
al

 p
ea

k

matrix dimension

Performance on 8x8x8 torus partition of BG/P

SUMMA
Charm++ Cannon VN

Charm++ SD-Cannon VN
Charm++ Cannon SMP

Charm++ SD-Cannon SMP

(b) Matrix multiplication on a 3D torus partition

Figure 4.5: Performance of SD-Cannon on BG/P

Figure 4.5(a) details the performance of MPI versions of SUMMA, Cannon’s algorithm, and
SD-Cannon on an 8x8 node 2D torus partition. SD-Cannon improves upon Cannon’s algorithm
as it can utilize the backwards as well as the forwards links simultaneously. The one-dimensional
rectangular multicasts used by SUMMA achieve the same effect. We see that the performance of
SD-Cannon is higher than Cannon’s algorithm (up to 1.5x) and slightly worse than SUMMA. The
performance difference between SUMMA and SD-Cannon is due to the extra cost of the initial
stagger, which SUMMA does not need. The Charm++ versions were executed with 1 chare per
node. In this case, we see that Charm++ has a small overhead and we see a small benefit from
bidirectionality.

Figure 4.5(b) shows the performance on a 3D 512 node partition. Since this partition is odd-
dimensional, we cannot efficiently map the MPI version of Cannon or SD-Cannon. We execute the
Charm++ codes in two modes, one with 1 process per node and 8 chares per process (SMP), and
one with 4 processes per node and 2 chares per process (VN). Using multiple processes per node
improves the performance of the Charm++ codes, because it is more efficient to perform a separate
multiplication on each core, rather than execute each multiplication in sequence across all cores.
While the VN-mode version performs almost as well as SUMMA, neither version benefits from
multidimensional shifts. Our Charm++ implementations use two-sided communication, while the
MPI version uses one-sided. It is likely that a Charm++ implementation with one-sided sends
would successfully exploit all of the links.

4.5.4 Conclusions
SD-Cannon is an improvement on top of Cannon’s algorithm. While Cannon’s algorithm has some
nice properties, SUMMA has seen more wide-spread adoption. In this chapter, we demonstrate
how SD-Cannon can get closer to the performance of the SUMMA algorithm, and how virtual-
ization can be used to map SD-Cannon and Cannon’s algorithm efficiently. On the Blue Gene

CHAPTER 4. MATRIX MULTIPLICATION 63

hardware it still does not make sense to use SD-Cannon over SUMMA, but SD-Cannon has ad-
vantages that could prove to be faster than SUMMA on other hardware. In particular, on networks
without optimized collectives or with higher latency cost, the near-neighbor sends performed by
Cannon’s algorithm and SD-Cannon are preferable to SUMMA’s multicasts.

More generally, our work demonstrates how algorithmic design can couple with topology-
aware mapping and virtualization. These techniques are already important on modern supercom-
puters with 3D interconnects as demonstrated by our performance results. As the scale and di-
mensionality of high performance networks grow, topology-aware mapping and communication-
avoidance are becoming pivotal to scalable algorithm design.

64

Chapter 5

Solving Dense Linear Systems of Equations

We now consider dense linear algebra algorithms with more complicated dependency structures
than matrix multiplication, namely triangular solve and Gaussian elimination. We do not consider
the use of Strassen-like matrix multiplication algorithms within Gaussian elimination. While the
depth (longest path) in the dependency graph of computations for matrix multiplication is log-
arithmic (due to the sums) in matrix dimension, the longest dependency path in the triangular
solve and Gaussian elimination algorithms is proportional to the matrix dimension. Its known that
such dependency structure limits the amount of available parallelism and necessitates synchroniza-
tion. Our lower bounds generalize this tradeoff by quantifying tradeoffs between computation cost,
communication cost, and synchronization cost.

In Section 5.1, we derive lower bounds for the triangular dense matrix solve with a single
vector, which are the same as previously known diamond DAG tradeoffs [124, 156], but hold for
a class of different possible algorithms for the triangular solve. We then by analogous technique
derive tradeoffs for Cholesky factorization, which state that for the factorization of any n-by-n
symmetric matrix, the computation cost F and the synchronization cost S must be

FCh · S2
Ch = Ω(n3).

This lower bound means that in order to lower computation cost F (called ’time’ in Papadimitriou
and Ullman [124]), a larger number of synchronizations S must be done. Our bounds also yield an
additional tradeoff between communication cost W and synchronization cost S, which is

WCh · SCh = Ω(n2).

This lower bound implies that in order to decrease the communication cost of the algorithm W
(per-processor cost along most expensive execution path), the number of synchronizations S must
go up.

In Section 5.2, we give a triangular solve algorithm that is optimal according to our communi-
cation lower bounds. Our algorithm is a wave-front algorithm and is similar to the TRSV algorithm

The lower bounds in this chapter are based on joint work with Erin Carson and Nicholas Knight [145].

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 65

given by Heath [78]. The wave-front approach provides a theoretically lower synchronization cost
to the TRSV algorithm with respect to approaches which employ collective communication.

We extend the idea of using auxiliary memory as done in 2.5D matrix multiplication in Chap-
ter 4 to Cholesky and LU factorization in Section 5.3. The 2.5D LU algorithm can lower the com-
munication cost by a factor of up to p1/6 with respect to the standard 2D approach, but requires
more synchronization. In fact, the 2.5D algorithm attains the lower bound tradeoff on interpro-
cessor communication and synchronization cost, for a range of these costs. In Section 5.4 we
show how 2.5D LU can be combined with tournament pivoting [70]. This provides an alternative
approach to Tiskin’s LU with pairwise pivoting [158], which achieves the same asymptotic com-
munication cost to 2.5D LU. Tournament pivoting has been shown to be somewhat more stable than
pairwise pivoting in practice [70] although it has worse theoretical stability upper bounds [45, 149]
Our approach is also more adaptable to tall and skinny (rectangular matrices) than the panel em-
bedding used by [158].

We detail how the 2.5D approach may be adapted to handle symmetric matrices in Cholesky in
Section 5.5. We also give an algorithm of the same cost for the triangular solve with many vectors
(TRSM). These algorithms combined allow QR to be done with 2.5D cost via the Cholesky-QR
algorithm.

In Section 5.6, we provide implementation results of 2.5D LU factorization on a BlueGene/P
supercomputer. We analyze the performance of the algorithm with two different types of collec-
tive communication methods, binomial trees and rectangular (torus topology) trees. We also give
projected results with the two types of collectives on a hypothetical exascale supercomputer.

The rest of the chapter is organized as follows

• Section 5.1 gives lower bounds on tradeoffs between computation, communication, and syn-
chronization for TRSV and Cholesky,

• Section 5.2 details a triangular solve algorithm that attains the lower bounds,

• Section 5.3 introduces a 2.5D LU algorithm that attains the communication lower bounds,

• Section 5.4 describes an algorithm for 2.5D LU with tournament pivoting,

• Section 5.5 adapts 2.5D LU to perform 2.5D Cholesky and 2.5D TRSM

• Section 5.6 presents measured and projected performance results for 2.5D LU with and with-
out pivoting.

5.1 Lower Bounds for Triangular Solve and Cholesky
We now apply the dependency expansion analysis Section 3.4 to obtain lower bounds on the costs
associated with a few specific dense numerical linear algebra algorithms. Our analysis proceeds
by obtaining lower bounds on the minimum-cut size of a parent lattice hypergraph corresponding
to the computation. By employing parent hypergraphs, we express all possible reduction tree

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 66

summation orders. In particular, let T = (R,E) be a tree in a dependency graph which sums a
set of vertices S ⊂ R, into vertex ŝ ∈ R via intermediate partial sums R \ (S ∪ {ŝ}). Since T
must be connected, we can define a hyperedge in a parent hypergraph H = (S ∪ {ŝ}, {S ∪ {ŝ}}),
corresponding to this reduction tree, whose vertices contain all summands of H and the output
and which has a single hyperedge containing all these vertices. We will then use Theorem 3.3.2
to assert that the smallest vertex separator of T is no smaller than the hyperedge cut of H , the
minimum size of which for a single reduction tree is simply one as there is only one hyperedge in
H . This lower bound will then apply to any reduction tree (any set of intermediate partial sums),
since it considers only the summands and the output.

5.1.1 Lower Bounds for the Triangular Solve
First, we consider a parameterized family of dependency graphs GTR associated with an algorithm
for the triangular solve (TRSV) operation. In TRSV, we are interested in computing a vector
x of length n, given a dense nonsingular lower-triangular matrix L and a vector y, satisfying
L · x = y, i.e.,

∑i
j=1 Lij · xj = yi, for i ∈ [1, n]. A sequential TRSV implementation is given in

Algorithm 5.1.1. For analysis, we introduced the intermediate matrix Z (which need not be formed

Algorithm 5.1.1 [x]← TRSV(L, y, n)

1: for i = 1 to n do
2: for j = 1 to i− 1 do
3: Zij = Lij · xj
4: xi ←

(
yi −

∑i−1
j=1 Zij

)
/Lii

explicitly in practice), and corresponding intermediate ‘update’ vertices {Zij : i ∈ [1, n], j ∈
[1, n], j < i}. We see that the computation of Zij for i = [2, n] and some j < i is a dependency of
xi, which is itself a dependency of the computation of Zki for all k > i.

For fixed n, alternative orders exist for the summation on line 4, leading to multiple dependency
graphsGTR = (V ′TR, E

′
TR). However, the set of vertices, V ′TR, defined by any dependency graph for

this algorithm, must contain a vertex for each entry of Z and each entry of x (the variability comes
from the partial sums computed within the summation). Further, any order of this summation must
eventually combine all partial sums; therefore, the vertices corresponding to the computation of
each xi, i.e., Zij for all j ∈ [1, i− 1], must all be weakly connected by some reduction tree. We
will define a (2, 1)-lattice hypergraph (with indices in reverse order with respect to the definition
in Section 3.3) of breadth n, HTR = (VTR, ETR), which is a parent hypergraph for any possible
GTR, as we demonstrate below. This hypergraph contains the following vertices and hyperedges,

VTR = {Zij : i ∈ [2, n], j ∈ [1, i− 1]}
ETR = {ei : i ∈ [1, n]}, where ei = {Zij : j ∈ [1, i− 1]} ∪ {Zki : k ∈ [i+ 1, n]} .

We note that the vertices VTR must be present in any GTR, however, the vertices corresponding to
x, y, and any intermediate partial summations done in reduction trees are omitted inHTR. To show

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 67

Figure 5.1: Depiction of the hypergraph HTR(5) along with the inputs and outputs; each line of a
different color corresponds to a hyperedge.

that the HTR is a parent hypergraph of any GTR, we need to demonstrate that each hyperedge
in HTR corresponds to a unique part (sub-hypergraph) of any GTR. The hyperedges ETR can
be enumerated with respect to either vector x or y; the ith hyperedge ei ∈ ETR includes all
intermediate values on which xi depends (Zij for j ∈ [1, i− 1]), or which depend on xi (Zki for
k ∈ [i+ 1, n]). Therefore, each hyperedge ei consists of vertices which are part of a connected
component in any GTR that corresponds to a unique set of edges: those in the reduction tree
needed to form xi from each Zij and those between xi and each Zki. This hypergraph is depicted
in Figure 5.1.

Lemma 5.1.1. Any 1
q
- 1
x
-balanced vertex separator ofZ (VTR) in any dependency graphGTR which

subdivides the n(n − 1)/2 vertices VTR for any real numbers 4 ≤ x ≤ q � n must have size at
least

χq,x(GTR) = Ω (n/
√
q) .

Proof. Any GTR has the parent hypergraph HTR, which we defined above. The maximum vertex
degree of the parent hypergraph HTR of GTR is 2, so by application of Theorem 3.3.2, the mini-
mum vertex separator of GTR is at least half the size of the minimum hyperedge cut of HTR. By
Theorem 3.3.1, any 1

q
- 1
x
-balanced hyperedge cut of a (2, 1)-lattice hypergraph of breadth n with

2 ≤ x ≤ q � n is of size Ω(n/
√
q). Therefore, any vertex separator must be of size at least

χq,x(GTR) = Ω(n/
√
q).

Theorem 5.1.2. Any parallelization of any dependency graph GTR where some processor com-
putes no more than 1

x
of the elements in Z and at least 1

q
elements in Z, (for any 4 ≤ x ≤ q � n)

must incur a communication cost of

WTR = Ω (n/
√
q) .

Proof. Consider any dependency graph GTR for Algorithm 5.1.1. Every vertex in G that has an
outgoing edge to a vertex computed by a different processor (different color) must be communi-
cated. Since some processor computes no more than 1

x
of the elements in Z and at least 1

q
elements

in Z, the communicated set can be bounded below by the size of a 1
q
- 1
x
-balanced vertex separa-

tor of Z within GTR. By application of Lemma 5.1.1, the size of any such separator is at least
Ω(n/

√
q).

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 68

Theorem 5.1.3. Any parallelization of any dependency graph GTR where some processor com-
putes no more than 1

x
of the elements in Z and at least 1

q
elements in Z for 4 ≤ x ≤ q � n, incurs

the following computation (F), bandwidth (W), and latency (S) costs, for some b ∈ [1, n],

FTR = Ω (n · b) , WTR = Ω (n) , STR = Ω (n/b) ,

and furthermore, FTR · STR = Ω (n2).

Proof. Consider any dependency graph GTR = (V ′TR, E
′
TR) for Algorithm 5.1.1. We note that

the computation of xi ⊂ V ′TR for i ∈ [1, n] requires the computation of Zjk for j, k ∈ [1, i] with
k < j. Furthermore, no element Zlm for l,m ∈ [i+ 1, n] with l > m may be computed until
xi is computed. Consider any subpath R ⊂ P of the dependency path P = {x1, . . . , xn}. We
recall that the bubble ζ(GTR,R) = (Vζ , Eζ) around R is the set of all computations that depend
on an element of R or influence an element of R. For any R = {xi, . . . , xj}, the bubble includes
vertices corresponding to a subtriangle of Z, namely, Zkl ∈ Vζ for k, l ∈ [i, j] with l < k.
Therefore, ζ(GTR,R) is isomorphic to some GTRSV(|R|), which implies that |Vζ | = Θ(|R|2)
and by Lemma 5.1.1, we have a lower bound on its vertex separator size, χq,x(ζ(GTR,R)) =
Ω(|R|/√q). Since the bubbles for TRSV are 2-dimensional we apply Corollary 3.4.2 with d = 2
to obtain the conclusion, for some b ∈ [1, n].

5.1.2 Cholesky Factorization
In this section, we show that the Cholesky factorization algorithm has 3-dimensional bubble-
growth and dependency graphs which satisfy the path expansion properties necessary for the ap-
plication of Corollary 3.4.2 with d = 3. We consider factorization of a symmetric positive definite
matrix via Cholesky factorization. We show that these factorizations of n-by-n matrices form an
intermediate 3D tensor Z such that Zijk ∈ Z for i > j > k ∈ [1, n], and Zijk depends on each Zlmn
for l > m > n ∈ [1, j − 1]. We note that fast matrix multiplication techniques such as Strassen’s
algorithm [152], compute a different intermediate and are outside the space of this analysis.

The Cholesky factorization of a symmetric positive definite matrix A, A = L · LT , results in
a lower triangular matrix L. A simple sequential algorithm for Cholesky factorization is given
in Algorithm 5.1.2. We introduced an intermediate tensor Z, whose elements must be computed

Algorithm 5.1.2 [L]← Cholesky(A, n)

1: for j ← 1 to n do
2: Ljj =

√
Ajj −

∑j−1
k=1 Ljk · Ljk

3: for i← j + 1 to n do
4: for k = 1 to j − 1 do
5: Zijk = Lik · Ljk
6: Lij = (Aij −

∑j−1
k=1 Zijk)/Ljj

during any execution of the Cholesky algorithm, although Z itself need not be stored explicitly

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 69

in an actual implementation. We note that the Floyd-Warshall [59, 167] all-pairs shortest-paths
graph algorithm has the same dependency structure as Cholesky for undirected graphs (and Gaus-
sian Elimination for directed graphs), so our lower bounds may be easily extended to this case.
See Chapter 9 for more details on this extension. However, alternative algorithms, in particular
the ‘augmented’ path-doubling algorithm [157], are capable of solving the all-pairs shortest-paths
problem with the same asymptotic communication and computation costs as matrix multiplica-
tion. While regular path-doubling exploits the fact that all shortest paths are made up of a series
of shortest-paths of up to a given length, the technique in [157] employs the idea that all shortest
paths are made of a series of shortest paths of exactly a certain length k and a small shortest path
of length less than k, where the length is the number of edges in the path. Tiskin’s approach is not
immediately extensible to numerical Gaussian elimination due to its exploitation of the structure
of shortest paths.

We note that the summations in lines 2 and 6 of Algorithm 5.1.2 can be computed via any
summation order (and will be computed in different orders in different parallel algorithms). This
implies that the summed vertices are connected in any dependency graph GCh = (V ′Ch, E

′
Ch), but

the connectivity structure may be different. Further, we know that Z and L must correspond to
vertices in VCh in any GCh. We define a (3, 2)-lattice hypergraph (with indices in reverse order
with respect to the definition in Section 3.3) HCh = (VCh, ECh), which is a parent hypergraph of
GCh for the algorithm which allows us to obtain a lower bound for any possible summation order,
as

VCh ={Zijk : i, j, k ∈ [1, n], i > j > k},
ECh ={eij : i, j ∈ [1, n] with i > j} where

eij ={Zijk : k ∈ [1, j − 1]}
∪ {Zikj : k ∈ [j + 1, i− 1]}
∪ {Zkij : k ∈ [i+ 1, n]}.

We note that the vertices VCh must be present in any GCh, however, the vertices corresponding to
L and any intermediate partial summations done in reduction trees are omitted in HCh. To show
that the HCh is a parent hypergraph of any GCh, we need to demonstrate that each hyperedge
in HCh corresponds to a unique part (sub-hypergraph) of any GCh. The hyperedges ECh can be
enumerated with respect to L. Hyperedge eij ∈ ECh includes all intermediate values on which Lij
depends (Zijk for k ∈ [1, i− 1]), or which depend on Lij (Zikj for k ∈ [j + 1, i− 1] and Zkij for
k ∈ [i+ 1, n]). Therefore, each hyperedge eij consists of vertices which are part of a connected
component in anyGCh that corresponds to a unique set of edges: those in the reduction tree needed
to form Lij from each Zijk and those between Lij and each Zikj as well as Zkij .

We also define hyperplanes xi for i ∈ [1, n], where

xi = ei,1 ∪ ei,2 ∪ · · · ∪ ei,i−1 ∪ ei+1,i ∪ ei+2,i ∪ · · · ∪ en,i.

Figure 5.2 shows hyperplane x12 and hyperedge e12,6 on HCh(16). These hyperplanes correspond
to those in the proof of Theorem 3.3.1.

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 70

Figure 5.2: A hyperplane (red) and a hyperedge (blue) in HCh(16).

Lemma 5.1.4. Any 1
q
- 1
x
-balanced vertex separator S of Z within dependency graph GCh for any

real numbers 4 ≤ x ≤ q � n must have size at least

χq(GCh) = Ω
(
n2/q2/3

)
.

Proof. The maximum vertex degree of the parent hypergraph HCh of GCh is 3, so by application
of Theorem 3.3.2, the minimum size of a 1

q
- 1
x
-balanced vertex separator of GCh is at least one third

that of a 1
q
- 1
x
-balanced hyperedge cut of HCh. By Theorem 3.3.1 with m = 3 and r = 2, any

1
q
- 1
x
-balanced hyperedge cut with 4 ≤ x ≤ q � n of HCh is of size Ω(n2/q2/3). Therefore, any

vertex separator of GCh must be of size at least χq,x(GCh) = Ω(n2/q2/3).

Theorem 5.1.5. Any parallelization of any dependency graph GCh, where some processor com-
putes no more than 1

x
of the elements in Z (VCh) and at least 1

q
elements in Z, for any 4 ≤ x ≤

q � n, must incur a communication of

WCh = Ω
(
n2/q2/3

)
.

Proof. For any GCh, every vertex that has an outgoing edge to a vertex computed by a different
processor (different color) must be communicated (is in the communicated set). Since some pro-
cessor computes no more than 1

x
of the elements in Z (VCh) and at least 1

q
elements in Z, for any

4 ≤ x ≤ q � n, communicated set can be bounded below by the size of a 1
q
- 1
x
-balanced vertex

separator of Z in GCh. By Lemma 5.1.4, the size of any such separator is Ω(n2/q2/3).

Theorem 5.1.6. Any parallelization of any dependency graph GCh in which some processor com-
putes no more than 1

x
of the elements in Z (VCh) and at least 1

q
elements in Z, for any 4 ≤ x ≤

q � n, incurs the following computation (F), bandwidth (W), and latency (S) costs, for some
b ∈ [1, n],

FCh = Ω
(
n · b2

)
, WCh = Ω (n · b) , SCh = Ω (n/b) ,

and furthermore, FCh · S2
Ch = Ω (n3) , WCh · SCh = Ω (n2) .

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 71

Proof. Consider any dependency graph GCh = (V ′Ch, E
′
Ch). We note that the computation of

Lii ∈ V ′Ch for i ∈ [1, n] requires the computation of Zlmk ∈ VCh ⊂ V ′Ch for l,m, k ∈ [1, i] with
l > m > k. Furthermore, no element Zsrt ∈ VCh ⊂ V ′Ch for s, r, t ∈ [i+ 1, n] with s > r > t can
be computed until Lii is computed. Consider any subpath R ⊂ P of the dependency path P =
{L11, . . . , Lnn}. Evidently, ifR = {Lii, . . . , Lj+1,j+1}, the bubble ζ(GCh,R) = (Vζ , Eζ) includes
vertices corresponding to a subcube of Z, namely Zklm ∈ Vζ for k, l,m ∈ [i, j] with k > l > m.
Therefore, ζ(GCh,R) is isomorphic to some GCh(|R|), which implies that |Vζ | = Θ(|R|3) and by
Lemma 5.1.4, we have χq,x(ζ(GCh,R)) = Θ(|R|2/q2/3). Since we have 3-dimensional bubbles
with 2-dimensional cross-sections, we apply Corollary 3.4.2 with d = 3 to obtain the conclusion,
for some b ∈ [1, n].

We conjecture that the lower bounds demonstrated for Cholesky in this section, also extend
to LU, LDLT , and QR factorizations, as well as algorithms for computation of the eigenvalue
decomposition of a symmetric matrix and the singular value decomposition.

5.2 Parallel Algorithms for the Triangular Solve
The lower bounds presented above for triangular solve, are attained by the communication-efficient
blocked schedule suggested in [124]. We give an algorithm specifically for the triangular solve
problem, Algorithm 5.2.1, which uses this blocking schedule with blocking factor b to compute
the triangular solve. Our algorithm is similar to the wavefront algorithm given by [78].

The parallel Algorithm 5.2.1 can be executed using p = n/b processors. Let processor pl for
l ∈ [1, n/b] initially own Lij , yj for i ∈ [1, n], j ∈ [(l − 1)b+ 1, lb]. Processor pl performs parallel
loop iteration l at each step of Algorithm 5.2.1. Since it owns the necessary panel of L and vector
part xj , no communication is required outside the vector send/receive calls listed in the code. So
at each iteration of the outer loop at least one processor performs O(b2) work, and 2b (each sent
vector is of length b) data is sent, requiring 2 messages. Therefore, this algorithm achieves the
following costs over the n/b iterations,

FTR = O(nb), WTR = O(n), STR = O(n/b),

which attains our communication lower bounds in Theorems 5.1.2 and 5.1.3, for any b ∈ [1, n].
Parallel TRSV algorithms in current numerical libraries such as Elemental [131] and ScaLA-
PACK [28] employ algorithms that attain our lower bound, up to anO(log(p)) factor on the latency
cost, due to their use of collectives for communication rather than the point-to-point communica-
tion in our wavefront TRSV algorithm.

5.3 2.5D LU without Pivoting
2D parallelization of LU typically factorizes a vertical and a top panel of the matrix and updates
the remainder (the Schur complement). The dominant cost in such a parallel LU algorithm is the

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 72

Algorithm 5.2.1 [x]← TRSV(L, y, n)
1: x = y
2: for k = 1 to n/b do
3: % Each processor pl executes a unique iteration of the following loop
4: for l = max(1, 2k − n/b) to k do
5: if l > 1 then Receive vector x[(2k − l − 1)b+ 1 : (2k − l)b] from processor pl−1

6: for i = (2k − l − 1)b+ 1 to (2k − l)b do
7: for j = (l − 1)b+ 1 to min(i− 1, lb) do
8: xi ← (xi − Lij · xj)
9: if k = l then

10: xi = xi/Lii

11: if l < n/b then Send vector x[(2k − l − 1)b+ 1 : (2k − l)b] to processor pl+1

12: % Each processor pl executes a unique iteration of the following loop
13: for l = max(1, 2k + 1− n/b) to k do
14: if l > 1 then Receive vector x[(2k − l)b+ 1 : (2k − l + 1)b] from processor pl−1

15: for i = (2k − l)b+ 1 to (2k − l + 1)b do
16: for j = (l − 1)b+ 1 to lb do
17: xi ← (xi − Lij · xj)
18: if l < n/b then Send vector x[(2k − l)b+ 1 : (2k − l + 1)b] to processor pl+1

update to the Schur complement. Our 2.5D algorithm exploits this by accumulating this update
over processor layers. However, in order to factorize each panel we must reduce the contributions
to the Schur complement. We note that only the panel we need to factorize next on needs to be
reduced and the remainder can be further accumulated. Even so, to do the reductions efficiently, a
block-cyclic layout is required. This layout allows more processors to participate in the reductions
and pushes the bandwidth cost down to the lower bound.

The LU latency lower bound (Theorem 5.1.6) dictates that the block size of the LU algorithm
must be O(n/

√
pc) to achieve the 2.5D bandwidth lower bound. Further, with this block size,

Ω(
√
pc) messages must be sent. To achieve this latency the matrix should be laid out in a block-

cyclic layout with block-size O(n/
√
pc). Algorithm 5.3 (work-flow diagram in Figure 5.3) is a

communication optimal LU factorization algorithm for the entire range of c ∈ {1, 2, . . . , bp1/3c}.
With block-size O(n/

√
pc), Algorithm 5.3 has a bandwidth cost of W LU

2.5D = O
(

n2
√
cp

)
words

and a latency cost of SMM
2.5D = O

(√
cp log(p)

)
messages. Therefore, it is asymptotically communi-

cation optimal for any choice of c (modulo a log(p) factor for latency). Further, it is also always
asymptotically computationally optimal (the redundant work is a low order cost). These costs are
derived in Appendix B in [147].

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 73

Algorithm 5.3.1 [L,U] = 2D-LU(A,Λ,n,p)
Require: n-by-n matrix A, spread over a

√
p-by-

√
p grid Λ so that Λ[i, j] owns a square block

A[i, j] of dimension n/
√
p

1: for t = 1 to t =
√
p do

2: Factorize sequentially [L[t, t],U [t, t]] = LU(A[t, t])
3: Replicate U [t, t] on column Λ[:, t]
4: Compute L[t+ 1 : √p] := A[t+ 1 : √p, t]/U [t, t]
5: Replicate L[t, t] on row Λ[t, :]
6: Compute U [t+ 1 : √p, t] := A[t+ 1 :√p, t]/U [t, t]
7: Replicate L[t+ 1 : √p, t] on columns of Λ[:, :]
8: Replicate U [t, t+ 1 : √p] on rows of Λ[:, :]
9: Compute A[t+ 1 : √p, t+ 1 : √p] := A[t+ 1 : √p, t+ 1 : √p]

−L[t+ 1 :√p, t] · U [t, t+ 1 : √p]
Ensure: triangular n-by-n matrices L, U such that A = L ·U distributed so that L[i, j] and U [i, j]

reside on Λ[i, j] for i ≥ j and j ≥ i, respectively

Algorithm 5.3.2 [X] = 2D-TRSM(B,U ,Λ,n,p)
Require: n-by-n matrix B, spread over a square grid Λ. n-by-n upper-triangular matrix U spread

over a square grid Λ.
1: X := B
2: % The following loop iterations are pipelined
3: for t = 1 to t = n do
4: Replicate U [t, t] on column Λ[:, t]
5: Compute X[:, t] := X[:, t]/U [t, t]
6: Replicate X[:, t] on columns of Λ[:, :]
7: Replicate U [t, t+ 1 : n] on rows of Λ[:, :]
8: Compute X[:, t+ 1 : n] := X[:, t+ 1 : n]−X[:, t] · U [t, t+ 1 : n]

Ensure: n-by-n matrix X , such that X · U = B and X is spread over Λ in place of B

5.4 2.5D LU with Pivoting
Regular partial pivoting is not latency optimal because it requires Ω(n) messages if the matrix is
in a 2D blocked layout. Ω(n) messages are required by partial pivoting since a pivot needs to
be determined for each matrix column which requires communication unless the entire column
is owned by one processor. However, tournament pivoting [70], is a new LU pivoting strategy
that can satisfy the general communication lower bound. We will show how partial as well as
tournament pivoting can be incorporated into our 2.5D LU algorithm.

Tournament pivoting simultaneously determines b pivots by forming a tree of factorizations as
follows,

1. Factorize each 2b-by-b block [A[2k−1, 1], A[2k, 1]]T = P T
k LkUk for k ∈ [1, n

2b
] using partial

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 74

Algorithm 5.3.3 [L,U] = 2.5D-LU(A,Π,n,p,c)
Require: n-by-nmatrixA distributed so that for each l,m, (n/c)-by-(n/c) blockA[l,m] is spread

over Π[:, :, 1].
1: Replicate A on each Π[:, :, k], for k ∈ [1, c]
2: for t = 1 to c do
3: % Perform in parallel with some layers:
4: for k = 1 to c− t do
5: % Factorize top left block:
6: [L[t, t], U [t, t]] = 2D-LU(A[t, t], Π[:, :, k], n/c, p/c)
7: % Update left (L) and top (U) panels of A:
8: [L[t+ k, t]T] = 2D-TRSM(U [t, t]T , A[t+ k, t]T , Π[:, :, k], n/c, p/c)
9: [U [t, t+ k]] = 2D-TRSM(L[t, t], A[t, t+ k], Π[:, :, k], n/c, p/c)

10: % All-gather panels among processor layers:
11: Π[:, :, k] broadcasts L[t+ k, t] and U [t, t+ k] to Π[:, :, k′] for all k′

12: % Perform outer products on whole Schur complement with each processor layer:
13: for k = 1 to c do
14: Partition [T1, T2, . . . Tk]← L[t+ 1 : c, t]
15: Partition [W T

1 ,W
T
2 , . . .W

T
k]T ← U [t, t+ 1 : c]

16: [S ′k] = 2D-MM(Tk, W T
k , Π[:, :, k], n/c, (c− t) · n/c, (c− t) · n/c)

17: % Adjust Schur complement:
18: S[t+ 1 : c, t+ 1 : c, k] = S[t+ 1 : c, t+ 1 : c, k] + S ′k
19: % Compute next panels via reductions:
20: A[t+ 1 : c, t+ 1]← A[t+ 1 : c, t+ 1]−

∑c
k′=1 S[t+ 1 : c, t+ 1, k′]

21: A[t+ 1, t+ 2 : c]← A[t+ 1, t+ 2 : c]−
∑c

k′=1 S[t+ 1, t+ 2 : c, k′]
Ensure: triangular n-by-n matrices L, U such that A = L · U and for each l,m, (n/c)-by-(n/c)

blocks L[l,m], U [l,m] are spread over Π[:, :, 1].

pivoting.

2. Write Bk = Pk[A[2k − 1, 1], A[2k, 1]]T , and Bk = [B′k, B
′′
k]T . Each B′k represents the ’best

rows’ of each sub-panel of A.

3. Now recursively perform steps 1-3 on [B′1, B
′
2, ..., B

′
n/(2b)]

T until the number of total best
pivot rows is b.

For a more detailed and precise description of the algorithm and stability analysis see [70, 69].
To incorporate pivoting into our LU algorithm, the following modifications are required

1. Previously, we did the side panel Tall-Skinny LU (TSLU) via a redundant top block 2D LU-
factorization and 2D TRSMs on lower blocks. To do pivoting, the TSLU factorization needs
to be done as a whole rather than in blocks. We can still have each processor layer compute
a different ’2D TRSM block’ but we need to interleave this computation with the top block

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 75

2. Perform TRSMs to compute
a panel of L and a panel of U.

1. Factorize A₀₀
redundantly on each layer.

L₀₀

U₀₀

U₀₃

U₀₂

U₀₁

L₂₀
L₃₀

L₁₀

3. Broadcast blocks so all
layers own the panels
of L and U.

(A)

(B)

4.Broadcast different
subpanels within each
layer.

5.Multiply subpanels
on each layer.

6.Reduce (sum) the
next panels.*

U

L

7. Broadcast the panels and
continue factorizing the Schur's
complement...

* All layers always need to contribute to reduction
even if iteration done with subset of layers.

(C)
(D)

U₀₀

U₀₀

L₀₀

L₀₀

U₀₀

L₀₀

Figure 5.3: 2.5D LU algorithm work-flow

LU factorization and communicate between layers to determine each set of pivots as follows
(Algorithm 5.4 gives the full TSLU algorithm),

a) For every small column, we perform pivoting over all layers to determine the best rows.
This can be done with partial pivoting on each column or tournament pivoting on blocks
of columns.

b) We pivot the rows within the panel on each layer. Interlayer communication is required,
since the best rows are spread over the layers (each layer updates a subset of the rows).

c) Each ij processor layer redundantly performs small TRSMs and the Schur complement
updates in the top 2D LU block.

d) Each ij processor layer performs TRSMs and updates on its unique subset of rows of
the panel.

2. After the TSLU, we need to pivot rows in the rest of the matrix. We do this redundantly
on each layer, since each layer will have to contribute to the update of the entire Schur
complement.

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 76

3. We still reduce the side panel (the one we do TSLU on) at the beginning of each step but we
must postpone the reduction of the top panel until pivoting is complete.

Algorithm 5.4.1 [P,L, U] = 2.5D-pivoted-TSLU(A,Π,n,m,p,c)
Require: n-by-m matrix A spread over each square processor layer Π[:, :, k] for k ∈ [1, c], with

some block size b.
1: % Perform in parallel with processor layers:
2: for k = 1 to c do
3: Let Ak[:, :]← A[k · n/c : (k + 1) · n/c, :]
4: % Perform with partial or Tournament pivoting
5: pipelined
6: for t = 1 to m do
7: Factorize Ak[:, t] = Pk · Lk · U [t, t] along processor columns
8: Write R[k] = (P T

k Ak)[1, t]
9: Factorize R = PR · LR · UR across processor layers

10: Pivot source row of (P T
RR)[1] into A[t, :] and P [:, t]

11: Compute Ak[:, t] := Ak[:, t]/A[t, t]
12: Assign U [t, t+ 1 : m]← A[t, t+ 1 : m]
13: Replicate columns Ak[:, t] on columns of Π[:, :, k]
14: Replicate U [t, t+ 1 : m] on rows of Π[:, :, k]
15: Compute Ak[:, t+ 1 : m] := Ak[:, t+ 1 : m]− Ak[:, t] · U [t, t+ 1 : m]

16: Write block of L, L[k · n/c : (k + 1) · n/c, :]← Ak[:, :]
Ensure: n-by-n permutation matrix P and triangular matrices L, U such thatA = P ·L ·U , where

L and U are stored in place of A.

Algorithm 5.4 shows how each panel ofA is pivoted and factorized. This algorithm pivots each
column, however, these columns can also be treated as block-columns with tournament pivoting.
Figure 5.4 demonstrates the workflow of the new TSLU with tournament pivoting. Algorithm 5.4
details the entire pivoted 2.5D LU algorithm.

Asymptotically, 2.5D LU with tournament pivoting has almost the same communication and
computational cost as the original algorithm. Both the flops and bandwidth costs gain an extra
asymptotic log(p) factor (which can be remedied by using a smaller block size and sacrificing
some latency). Also, the bandwidth cost derivation requires a probabilistic argument about the
locations of the pivot rows, however, the argument should hold up very well in practice. For the
full cost derivations of this algorithm see Appendix C in [147].

5.5 2.5D Cholesky-QR
The dependency structure of 2.5D LU is shared by many other dense factorizations and dense
numerical linear algebra algorithms. In this section, we formulate algorithms for 2.5D Cholesky

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 77

Algorithm 5.4.2 [P,L, U] = 2.5D-pivoted-LU(A,Π,n,p,c)
Require: n-by-nmatrixA distributed so that for each l,m, (n/c)-by-(n/c) blockA[l,m] is spread

over Π[:, :, 1].
1: Replicate A on each Π[:, :, k], for k ∈ [1, c]
2: for t = 1 to c do
3: % Perform in parallel with each layer:
4: for k = 1 to c do
5: % Factorize top right panel:
6: [Pt, L[t : c, t], U [t, t]]
7: = 2.5D-pivoted-TSLU(A[t : c, t], Π[:, :, 1 : (c− t)], n− tn/c, n/c, p, c)
8: Update P with Pt
9: % Pivot remainder of matrix redundantly

10: Swap any rows as required by Pt to (A, S)[t, :]
11: % All-reduce the top panel Schur complement
12: A[t, t+ 1 : c]← A[t, t+ 1 : c]−

∑c
k′=1 S[t, t+ 1 : c, k′]

13: [U [t, t+ k]] = 2D-TRSM(L[t, t], A[t, t+ k], Π[:, :, k], n/c, p/c)
14: Partition [T1, T2, . . . Tk]← L[t+ 1 : c, t]
15: Partition [W T

1 ,W
T
2 , . . .W

T
k]T ← U [t, t+ 1 : c]

16: [S ′k] = 2D-MM(Tk, W T
k , Π[:, :, k], n/c, (c− t) · n/c, (c− t) · n/c)

17: % Adjust Schur complement:
18: S[t+ 1 : c, t+ 1 : c, k] = S[t+ 1 : c, t+ 1 : c, k] + S ′k
19: % Compute next Schur complement panel via reductions:
20: A[t+ 1 : c, t+ 1]← A[t+ 1 : c, t+ 1]−

∑c
k′=1 S[t+ 1 : c, t+ 1, k′]

Ensure: n-by-n permutation matrix P and and triangular n-by-n matrices L, U such that A =
P · L · U and for each l,m, (n/c)-by-(n/c) blocks L[l,m], U [l,m] are spread over Π[:, :, 1].

factorization, 2.5D triangular solve and 2.5D Cholesky-QR factorization. The structure of the
algorithms follows that of non-pivoted 2.5D LU. Further, all the communication costs of these
algorithms are asymptotically equivalent to the costs of non-pivoted 2.5D LU.

5.5.1 2.5D Cholesky
The Cholesky factorization factorizes a symmetric positive-definite matrix A into matrix product
L · LT , where L is a lower-triangular matrix. Cholesky is typically done without pivoting, since
given a symmetric-positive definite matrix, the non-pivoted Cholesky algorithm is stable. There-
fore, the structure of Cholesky is very similar to non-pivoted LU. The main difference is the sym-
metry of A, which presents the algorithmic challenge of only storing the unique (lower-triangular)
part of A, and avoiding extra computation.

Algorithm 5.5.1 details a 2D algorithm for Cholesky. This algorithm differs from 2D LU
(Algorithm 5.3), in that, every iteration, it replicates (broadcasts) panels of LT rather than U among

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 78

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

3. Pivot rows in first big block column
on each layer.

2. Reduce to find best pivot rows.

L
U

L
U

L U

L
U

L
₂₀

L
₃₀

L
₄₀

U
pdate

Update

Update

Update

Update

U
pdate

U
pdate

L₀₀
U₀₀

U₀₁

U₀₂

U₀₃

8. Perform TRSMs
 to compute panel of U

L₃₀

L₁₀
L₂₀

1. Factorize each block
in the first column with pivoting.

4. Apply TRSMs to
compute first column of L
and the first block of a row of U.

5. Update corresponding
interior blocks S=A-L *U₀₁.

6. Recurse to compute the rest
of the first big block column of L.

9. Update the rest
of the matrix as
before and recurse
on next block panel...

7. Pivot rows in the rest
of the matrix on each
layer.

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

L₁₀

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀ L₀₀
U₀₀

L₀₀
U₀₀

L₀₀
U₀₀

k0

PA₀

Figure 5.4: 2.5D LU with pivoting panel factorization (step A in Figure 5.3).

rows. However, we do not actually want to store all of LT . Instead, we notice that the panel LT

we need to perform the update, is the same panel as the panel of L we broadcast among columns.
So processors on the diagonal of each processor layer have the panel of LT they need after the
broadcast of the L panel. These diagonal processors should then be used to broadcast the LT panel
within their processor columns.

The above diagonal broadcast technique should also be used in the 2.5D Cholesky algorithm
(Algorithm 5.5.1). The structure of 2.5D Cholesky is very similar to non-pivoted 2.5D LU. The
upper U panel 2D-TRSM update is no longer necessary. So, this 2.5D Cholesky algorithm per-
forms even less communication that 2.5D LU. Therefore, the same asymptotic costs hold. Since
the general lower bound and our latency lower bound also apply to Cholesky, this 2.5D algorithm
is communication-optimal.

We note that our 2D and 2.5D Cholesky algorithm have load imbalance due to the symmetry
of A. However, this load imbalance should be minimized via the use of a block-cyclic layout for

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 79

Algorithm 5.5.1 [L] = 2D-Cholesky(A,Λ,n,p)
Require: n-by-n symmetric matrix A, spread over a square grid Λ

1: % The following loop iterations are pipelined
2: for t = 1 to t = n do
3: Replicate A[t, t] on column Λ[:, t]
4: Compute L[t+ 1 : n, t] := A[t+ 1 : n, t]/A[t, t]
5: Replicate L[t+ 1 : n, t] on columns of Λ[:, :]
6: Replicate LT [t, t+ 1 : n] on rows of Λ[:, :]
7: Compute A[t+ 1 : n, t+ 1 : n] := A[t+ 1 : n, t+ 1 : n]− L[t+ 1 : n, t] · LT [t, t+ 1 : n]

Ensure: triangular n-by-n matrices L, such that A = L · LT and L is spread over Λ in place of A

both 2D and 2.5D Cholesky. Reducing the block-size in this layout would improve the balance of
the load, at the cost of increasing latency. The same trade-off also exists in LU factorization, but is
more pronounced in Cholesky, due to the symmetry of the matrix.

5.5.2 2.5D Triangular Solve
Triangular solve (TRSM) is used to compute a matrix X , such that X · U = B, where U is upper-
triangular and B is a dense matrix. This problem has dependencies across the columns of X , but
no dependencies across the rows of X . LU and Cholesky have dependencies across both columns
and rows. Therefore, efficient parallelization of TRSM is in fact simpler than LU or Cholesky.

Algorithm 5.3 is a 2D algorithm for the triangular solve. Algorithm 5.5.2 gives the correspond-
ing 2.5D version of TRSM. Since there is no dependency across rows, the 2.5D TRSM algorithm
can immediately start to compute the left panel of X . Once this update is completed, the rest of
the matrix must be updated, and we can move on to computation on the right part of the matrix.

5.5.3 2.5D Cholesky-QR
The QR factorization of a given matrix A can be computed via a combination of matrix multipli-
cation, Cholesky and a triangular solve. This algorithm is called the Cholesky-QR factorization.
The algorithm proceeds in 3 steps:

1. Compute symmetric B = AT · A with matrix multiplication

2. Compute the Cholesky factorization of B, to get B = R ·RT

3. Perform a triangular solve to get Q ·R = A

These 3 steps give us a A = Q ·R factorization. We know that this algorithm is bandwidth-optimal
since it has the same cost and lower bound as LU factorization [12].

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 80

Algorithm 5.5.2 [L] = 2.5D-Cholesky(A,Π,n,p,c)
Require: n-by-n symmetric matrix A distributed so that for each l,m, such that l ≤ m (n/c)-by-

(n/c) block A[l,m] is spread over Π[:, :, 1]. Replicate A on each Π[:, :, k], for k ∈ [1, c]
1: for t = 1 to c do
2: % Perform in parallel with some layers:
3: for k = 1 to c− t do
4: % Factorize top left block:
5: [L[t, t]] = 2D-Cholesky(A[t, t], Π[:, :, k], n/c, p/c)
6: % Update left (L) panel of A:
7: [L[t+ k, t]T] = 2D-TRSM(L[t, t], A[t+ k, t]T , Π[:, :, k], n/c, p/c)
8: % All-gather panels among processor layers:
9: Π[:, :, k] broadcasts L[t+ k, t] to Π[:, :, k′] for all k′

10: for k = 1 to c do
11: Partition [W1,W2, . . .Wc]← L[t+ 1 : c, t]
12: % Perform a distributed transpose on each panel Wk

13: Π[i, j, k] sends its part of Wk to Π[j, i, k].
14: % Perform outer products on the triangular Schur complement:
15: [S ′k] = 2D-MM(Wk, W T

k , Π[:, :, k], n/c, (c− t) · n/c, (c− t) · n/c)
16: % Adjust triangular Schur complement:
17: S[t+ 1 : c, t+ 1 : c, k] = S[t+ 1 : c, t+ 1 : c, k] + S ′k
18: % Compute next panel via reduction:
19: A[t+ 1 : c, t+ 1]← A[t+ 1 : c, t+ 1]−

∑c
k′=1 S[t+ 1 : c, t+ 1, k′]

Ensure: triangular n-by-n matrices L, U such that A = L · U and for each l,m, (n/c)-by-(n/c)
blocks L[l,m], are spread over Π[:, :, 1].

5.6 2.5D LU Performance Results
We use the same supercomputer and configurations for 2.5D LU as we did for 2.5D MM, which
we described in Section 4.3.1.

5.6.1 Performance of 2.5D LU without Pivoting
We implemented a version of 2.5D LU without pivoting. While this algorithm is not stable for
general dense matrices, it provides a good upper-bound on the performance of 2.5D LU with
pivoting. The performance of non-pivoted 2.5D LU is also indicative of how well a 2.5D Cholesky
and 2.5D TRSM implementation might perform.

Our 2.5D LU implementation has a structure closer to that of Algorithm 5.4 rather than Algo-
rithm 5.3. Processor layers perform all updates at once rather than 2D TRSMs on sub-blocks. This
implementation made heavy use of subset broadcasts (multicasts). All communication is done in
the form of broadcasts or reductions along axis of the 3D virtual topology. This design allowed

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 81

Algorithm 5.5.3 [X] = 2.5D-TRSM(B,U ,Π,n,p,c)
Require: n-by-nmatrixB distributed so that for each l,m, (n/c)-by-(n/c) blockB[l,m] is spread

over Π[:, :, 1]. n-by-n upper-triangular matrix U distributed so that for each l,m, such that
m ≥ l, (n/c)-by-(n/c) block U [l,m] is spread over Π[:, :, 1].

1: Replicate B and U on each Π[:, :, k], for k ∈ [1, c]
2: for t = 1 to c do
3: % Perform in parallel with some layers:
4: for k = 1 to c− t do
5: % Solve a panel of X:
6: [X[t+ k, t]] = 2D-TRSM(B[t+ k, t], U [t, t] Π[:, :, k], n/c, p/c)
7: % All-gather panels among processor layers:
8: Π[:, :, k] broadcasts X[t+ k, t] to Π[:, :, k′] for all k′

9: % Perform outer products on whole Schur complement with each processor layer:
10: for k = 1 to c do
11: Partition [T1, T2, . . . Tc]← X[:, t]
12: Partition [W T

1 ,W
T
2 , . . .W

T
c]T ← U [t, t+ 1 : c]

13: [S ′k] = 2D-MM(Tk, W T
k , Π[:, :, k], n/c, n, (c− t) · n/c)

14: % Adjust Schur complement:
15: S[:, t+ 1 : c, k] = S[:, t+ 1 : c, k] + S ′k
16: % Compute next panels via reductions:
17: B[:, t+ 1]← B[:, t+ 1]−

∑c
k′=1 S[:, t+ 1, k′]

Ensure: n-by-n matrix X , such that X ·U = B and for each l,m, (n/c)-by-(n/c) blocks X[l,m]
are spread over Π[:, :, 1].

our code to utilize efficient line broadcasts on the BG/P supercomputer.
Figure 5.5(a) shows that 2.5D LU achieves more efficient strong scaling than 2D LU. 2D LU

maps well to the 2D processor grid on 256 nodes. However, the efficiency of 2D LU suffers when
we use more nodes, since the network partition becomes 3D. On 3D partitions, the broadcasts
within 2D LU are done via topology-oblivious binomial trees and suffer from contention. For
this problem configuration, 2.5D LU achieves a two-fold speed-up over the 2D algorithm on 2048
nodes.

Figure 5.5(b) demonstrates that 2.5D LU is also efficient and beneficial at a larger scale. Fig-
ure 5.5(b) also demonstrates the effect of topology-aware collectives on all the algorithms. When
using topology-aware rectangular (RCT) collectives, 2.5D algorithms gain a significant amount
of efficiency. 2D algorithms do not map to the BG/P architecture so they can only use binomial
(BNM) collectives. However, we see that 2.5D algorithms with binomial collectives still outper-
form 2D algorithms by a significant factor.

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 82

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D LU on BG/P (n=65,536)

2.5D LU (no pvt)
2D LU (no pvt)

2.5D LU (tnmt pvt)
2D LU (tnmt pvt)

ScaLAPACK PDGETRF

(a) LU strong scaling

 0

 10

 20

 30

 40

 50

 60

 70

 80

MM LU LU+PVT

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

Binomial vs rectangular collectives on BG/P (n=131,072, p=16,384)

2D BNM
2.5D BNM
2.5D RCT

(b) Performance on 16,384 nodes

Figure 5.5: Performance of 2.5D LU on BG/P

5.6.2 Performance of 2.5D LU with Tournament Pivoting
2.5D LU performs pivoting in two stages. First, pivoting is performed only in the big-block panel.
Then the rest of the matrix is pivoted according to a larger, accumulated pivot matrix. We found it
most efficient to perform the sub-panel pivoting via a broadcast and a reduction, which minimize
latency. For the rest of the matrix, we performed scatter and gather operations to pivot, which
minimize bandwidth. We found that this optimization can also be used to improve the performance
of 2D LU and used it accordingly.

Figure 5.5(a) shows that 2.5D LU with tournament pivoting strongly scales with higher ef-
ficiency than its 2D counter-part. It also outperforms the ScaLAPACK PDGETRF implementa-
tion. Though, we note that ScaLAPACK uses partial pivoting rather than tournament pivoting and
therefore computes a different answer. Our peak efficiency is much lower than the peak efficiency
achieved by LINPACK on this machine, but LINPACK is heavily optimized and targeted for very
large matrices than those we tested.

Figure 5.5(b) details the efficiency of pivoted 2.5D LU with binomial and rectangular col-
lectives. Again, we observe that part of the improvement is due to the algorithmic decrease in
communication cost, and part is due to the topology-aware mapping (collectives).

The absolute efficiency achieved by our 2.5D LU with tournament pivoting algorithm is better
than ScaLAPACK and can be improved even further. Our implementation does not exploit overlap
between communication and computation and does not use prioritized scheduling. We observed
that, especially at larger scales, processors spent most of their time idle (waiting to synchronize).
Communication time, on the other hand, was heavily reduced in our implementation and was no
longer the major bottleneck. While overlap can be combined with 2.5D algorithms, we noted that
for small matrices, computation was a small fraction of the total time, so overlap could not have
been used to completely hide communication. Further, we achieved speed-ups of over 2X for all
algorithms, which cannot be done with just overlap.

CHAPTER 5. SOLVING DENSE LINEAR SYSTEMS OF EQUATIONS 83

 0

 0.2

 0.4

 0.6

 0.8

 1

1 8 64

P
ar

al
le

l e
ffi

ci
en

cy

z dimension of partition

LU strong scaling at exascale (xy plane to full xyz torus)

2.5D with rectangular (c=z)
2.5D with binomial (c=z)

2D LU with binomial

Figure 5.6: LU factorization predicted performance on an exascale architecture. The results show
strong scaling from full memory on the first plane (z = 1) of the machine to the full machine
(z = 64).

5.6.3 Predicted Performance at Exascale
LU factorization requires more careful modeling, since the block-cyclic layout makes the message
sizes variable throughout the algorithm. Further, the 2.5D LU algorithm performs collectives on
messages of different sizes and to different partitions depending on the stage of the algorithm. The
LU communication costs are itemized in Appendix B of [147]. We scale these communication
costs based on the message size and partition size they operate on using Eq. 2.2.4 (rectangular
collectives) and Eq. 2.2.7 (binomial collectives).

Our LU exascale study uses the same problem size and measures the efficiency in the same
way as the MM study (previous section). Figure 5.6 details the scaling from a plane to the full
machine for a matrix size of n = 222. We model only LU without pivoting. We see that using the
2.5D LU algorithm increases performance significantly even without rectangular collectives. 2.5D
LU with rectangular collectives achieves very good parallel scalability with comparison to the 2D
algorithm. When using all available nodes (z = 64), 2.5D LU with rectangular collectives reduces
communication time by 95% and achieves a speed-up of 4.5x over 2D LU.

84

Chapter 6

QR Factorization

The standard algorithm for QR decomposition, which is implemented in LAPACK [5], ScaLA-
PACK [28], and Elemental [131] is known as Householder-QR (given below as Algorithm 6.1.1).
For tall and skinny matrices, the algorithm works column-by-column, computing a Householder
vector and applying the corresponding transformation for each column in the matrix. When the
matrix is distributed across a parallel machine, this requires one parallel reduction per column. The
TSQR algorithm (given below as Algorithm 6.1.2), on the other hand, performs only one reduction
during the entire factorization of a tall and skinny matrix. Therefore, TSQR requires asymptoti-
cally less inter-processor synchronization than Householder-QR on parallel machines (TSQR also
achieves asymptotically higher cache reuse on sequential machines).

Computing the QR decomposition of a tall and skinny matrix is an important kernel in many
contexts, including standalone least squares problems, eigenvalue and singular value computations,
and Krylov subspace and other iterative methods. In addition, the tall and skinny factorization is a
standard building block in the computation of the QR decomposition of general (not necessarily tall
and skinny) matrices. In particular, most algorithms work by factoring a tall and skinny panel of
the matrix, applying the orthogonal factor to the trailing matrix, and then continuing on to the next
panel. Although Householder-QR is bottlenecked by communication in the panel factorization,
it can apply the orthogonal factor as an aggregated Householder transformation efficiently, using
matrix multiplication [139].

The Communication-Avoiding QR (CAQR) [47] algorithm uses TSQR to factor each panel of
a general matrix. One difficulty faced by CAQR is that TSQR computes an orthogonal factor that is
implicitly represented in a different format than that of Householder-QR. While Householder-QR
represents the orthogonal factor as a set of Householder vectors (one per column), TSQR com-
putes a tree of smaller sets of Householder vectors (though with the same total number of nonzero
parameters). In CAQR, this difference in representation implies that the trailing matrix update
is done using the implicit tree representation rather than matrix multiplication as possible with
Householder-QR. From a software engineering perspective, this means writing and tuning more

This chapter is based on joint work with Grey Ballard, Matthias Jacquelin, Laura Grigori, and Hong Diep
Nguyen [8] as well as Nicholas Knight.

CHAPTER 6. QR FACTORIZATION 85

complicated code. Furthermore, from a performance perspective, the trailing matrix update within
CAQR is less communication efficient than the update within Householder-QR by a logarithmic
factor in the number of processors.

Building on a method introduced by Yamamoto [169], we show that the standard Householder
vector representation may be recovered from the implicit TSQR representation for roughly the
same cost as the TSQR itself. The key idea is that the Householder vectors that represent an
orthonormal matrix can be computed via LU decomposition (without pivoting) of the orthonormal
matrix subtracted from a diagonal sign matrix. We prove that this reconstruction is as numerically
stable as Householder-QR (independent of the matrix condition number), and validate this proof
with experimental results.

This reconstruction method allows us to get the best of the TSQR algorithm (avoiding synchro-
nization) as well as the best of the Householder-QR algorithm (efficient trailing matrix updates
via matrix multiplication). By obtaining Householder vectors from the TSQR representation, we
can logically decouple the block size of the trailing matrix updates from the number of columns in
each TSQR and use two levels of aggregation of Householder vectors. This abstraction makes it
possible to optimize panel factorization and the trailing matrix updates independently. Our result-
ing aggregated parallel implementation outperforms ScaLAPACK, Elemental, and a binary-tree
CAQR implementation on the Hopper Cray XE6 platform at NERSC by factors of up to 1.4X.
While we do not experimentally study sequential performance, we expect our algorithm will also
be beneficial in this setting, due to the cache efficiency gained by using TSQR.

Two other contributions of the chapter include improvements to the Householder QR and
CAQR algorithms for square matrices. We employ the two-level aggregation technique within
Householder QR to alleviate a memory bandwidth bottleneck (see Section 6.2.3), and we use a
more efficient trailing matrix update within CAQR that improves both the computation and com-
munication costs of that algorithm (see Section 6.2.4). Both optimizations lead to significant per-
formance improvement (up to 1.4X for Householder QR due to aggregation and up to 4X with
respect to binary tree CAQR due to scatter-apply algorithm) for the two algorithms.

Lastly, we give an algorithm for 2.5D QR factorization, which attains the same asymptotic cost
as the 2.5D LU factorization algorithm in Chapter 5. The algorithm is left-looking unlike the 2.5D
LU algorithm, due to the fact that the QR update cannot be accumulated in the same away as a
Schur complement update in LU. We use this 2.5D QR as well as the 2D QR with reconstruction
algorithms as building blocks in the next chapter on the symmetric eigenvalue problem.

The rest of the chapter is organized as follows,

• Section 6.1 identifies and reviews previous work needed for our parallel algorithms,

• Section 6.2 gives the 2D QR algorithm with Householder reconstruction and shows how the
update may be aggregated,

• Section 6.3 benchmarks the scalability of our new aggregated 2D QR algorithm, comparing
to existing implementations,

CHAPTER 6. QR FACTORIZATION 86

• Section 6.4 presents a 2.5D algorithm that does a factor of up to p1/6 less communication
than the 2D version.

6.1 Previous Work
We distinguish between two types of QR factorization algorithms. We call an algorithm that dis-
tributes entire rows of the matrix to processors a 1D algorithm. Such algorithms are often used
for tall and skinny matrices. Algorithms that distribute the matrix across a 2D grid of pr × pc
processors are known as 2D algorithms. Many right-looking 2D algorithms for QR decomposition
of nearly square matrices divide the matrix into column panels and work panel-by-panel, factoring
the panel with a 1D algorithm and then updating the trailing matrix. We consider two such ex-
isting algorithms in this section: 2D-Householder-QR (using Householder-QR) and CAQR (using
TSQR).

6.1.1 Householder-QR
We first present Householder-QR in Algorithm 6.1.1, following [67] so that each Householder
vector has a unit diagonal entry. We use LAPACK [5] notation for the scalar quantities. However,
we depart from the LAPACK code in that there is no check for a zero norm of a subcolumn. We
present Algorithm 6.1.1 in Matlab-style notation as a sequential algorithm. The algorithm works
column-by-column, computing a Householder vector and then updating the trailing matrix to the
right. The Householder vectors are stored in an m× b lower triangular matrix Y . Note that we do
not include τ as part of the output because it can be recomputed from Y .

Algorithm 6.1.1 [Y,R] = Householder-QR(A)
Require: A is m× b

1: for i = 1 to b do
2: % Compute the Householder vector
3: α = A(i, i), β = ‖A(i:m, i)‖2
4: if α > 0 then
5: β = −β
6: A(i, i) = β, τ(i) = β−α

β

7: A(i+1:m, i) = 1
α−β ·A(i+1:m, i)

8: % Apply the Householder transformation to the trailing matrix
9: z = τ(i) · [A(i, i+1:b) +A(i+1:m, i)T ·A(i+1:m, i+1:b)]

10: A(i+1:m, i+1:b) = A(i+1:m, i+1:b)−A(i+1:m, i) · z
Ensure: A =

(∏n
i=1(I − τiyiyTi)

)
R

Ensure: R overwrites the upper triangle and Y (the Householder vectors) has implicit unit diagonal and
overwrites the strict lower triangle of A; τ is an array of length b with τi = 2/(yTi yi)

While the algorithm works for general m and n, it is most commonly used when m � n,
such as a panel factorization within a square QR decomposition. In LAPACK terms, this algorithm

CHAPTER 6. QR FACTORIZATION 87

corresponds to geqr2 and is used as a subroutine in geqrf. In this case, we also compute an
upper triangular matrix T so that

Q =
n∏
i=1

(I − τiyiyTi) = I − Y TY T ,

which allows the application of QT to the trailing matrix to be done efficiently using matrix multi-
plication. Computing T is done in LAPACK with larft but can also be computed from Y TY by
solving the equation Y TY = T−1 + T−T for T−1 (since Y TY is symmetric and T−1 is triangular,
the off-diagonal entries are equivalent and the diagonal entries differ by a factor of 2) [132].

1D Algorithm

We will make use of Householder-QR as a sequential algorithm, but there are parallelizations of
the algorithm in libraries such as ScaLAPACK [28] and Elemental [131] against which we will
compare our new approach. Assuming a 1D distribution across p processors, the parallelization
of Householder-QR (Algorithm 6.1.1) requires communication at lines 3 and 9, both of which can
be performed using an all-reduction. Because these steps occur for each column in the matrix,
the total latency cost of the algorithm is 2b log p. This synchronization cost is a potential parallel
scaling bottleneck, since it grows with the number of columns of the matrix and does not decrease
with the number of processors. The algorithm also performs 2mb2/p flops and communicates
(b2/2) log p words.

2D Algorithm

In the context of a 2D algorithm, in order to perform an update with the computed Householder vec-
tors, we must also compute the T matrix from Y in parallel. The leading order cost of computing
T−1 from Y TY ismb2/p flops plus the cost of reducing a symmetric b×bmatrix, α·log p+β ·b2/2;
note that the communication costs are lower order terms compared to computing Y . We present the
costs of parallel Householder-QR in the first row of Table 6.2.1, combining the costs of Algorithm
6.1.1 with those of computing T .

We refer to the 2D algorithm that uses Householder-QR as the panel factorization as 2D-
Householder-QR. In ScaLAPACK terms, this algorithm corresponds to pxgeqrf. The overall
cost of 2D-Householder-QR, which includes panel factorizations and trailing matrix updates, is
given to leading order by

γ ·
(

6mnb− 3n2b

2pr
+
n2b

2pc
+

2mn2 − 2n3/3

p

)
+

β ·
(
nb log pr +

2mn− n2

pr
+
n2

pc

)
+

α ·
(

2n log pr +
2n

b
log pc

)
.

CHAPTER 6. QR FACTORIZATION 88

If we pick pr = pc =
√
p (assuming m ≈ n) and b = n/(

√
p log p) then we obtain the leading

order costs
γ · (2mn2 − 2n3/3)/p+ β · (mn+ n2)/

√
p+ α · n log p.

Note that these costs match those of [47, 28], with exceptions coming from the use of more efficient
collectives. The choice of b is made to preserve the leading constants of the parallel computational
cost. We present the costs of 2D-Householder-QR in the first row of Table 6.2.2.

6.1.2 Communication-Avoiding QR
In this section we present parallel Tall-Skinny QR (TSQR) [47, Algorithm 1] and Communication-
Avoiding QR (CAQR) [47, Algorithm 2], which are algorithms for computing a QR decomposition
that are more communication efficient than Householder-QR, particularly for tall and skinny ma-
trices.

1D Algorithm (TSQR)

We present a simplified version of TSQR in Algorithm 6.1.2: we assume the number of processors
is a power of two and use a binary reduction tree (TSQR can be performed with any tree). Note also
that we present a reduction algorithm rather than an all-reduction (i.e., the final R resides on only
one processor at the end of the algorithm). TSQR assumes the tall-skinny matrix A is distributed
in block row layout so that each processor owns a (m/p) × n submatrix. After each processor
computes a local QR factorization of its submatrix (line 1), the algorithm works by reducing the
p remaining n × n triangles to one final upper triangular R = QTA (lines 2–8). The Q that
triangularizes A is stored implicitly as a tree of sets of Householder vectors, given by {Yi,k}. In
particular, {Yi,k} is the set of Householder vectors computed by processor i at the kth level of the
tree. The ith leaf of tree, Yi,0 is the set of Householder vectors which processor i computes by
doing a local QR on its part of the initial matrix A.

In the case of a binary tree, every internal node of the tree consists of a QR factorization of
two stacked b × b triangles (line 6). This sparsity structure can be exploited, saving a constant
factor of computation compared to a QR factorization of a dense 2b × b matrix. In fact, as of
version 3.4, LAPACK has subroutines for exploiting this and similar sparsity structures (tpqrt).
Furthermore, the Householder vectors generated during the QR factorization of stacked triangles
have similar sparsity; the structure of the Yi,k for k > 0 is an identity matrix stacked on top of a
triangle.

The costs and analysis of TSQR are given in [47, 48]:

γ ·
(

2mb2

p
+

2b3

3
log p

)
+ β ·

(
b2

2
log p

)
+ α · log p.

We tabulate these costs in the second row of Table 6.2.1. We note that the TSQR inner tree factor-
izations require an extra computational cost O(b3 log p) and a bandwidth cost of O(b2 log p). Also
note that in the context of a 2D algorithm, using TSQR as the panel factorization implies that there
is no b× b T matrix to compute; the update of the trailing matrix is performed differently.

CHAPTER 6. QR FACTORIZATION 89

Algorithm 6.1.2 [{Yi,k}, R] = TSQR(A)

Require: Number of processors is p and i is the processor index
Require: A is m× b matrix distributed in block row layout; Ai is processor i’s block

1: [Yi,0, R̄i] = Householder-QR(Ai)
2: for k = 1 to dlog pe do
3: if i ≡ 0 mod 2k and i+ 2k−1 < p then
4: j = i+ 2k−1

5: Receive R̄j from processor j

6: [Yi,k, R̄i] = Householder-QR
([

R̄i
R̄j

])
7: else if i ≡ 2k−1 mod 2k then
8: Send R̄i to processor i− 2k−1

9: if i = 0 then
10: R = R̄0

Ensure: A = QR with Q implicitly represented by {Yi,k}
Ensure: R is stored by processor 0 and Yi,k is stored by processor i

2D Algorithm (CAQR)

The 2D algorithm that uses TSQR for panel factorizations is known as CAQR. In order to update
the trailing matrix within CAQR, the implicit orthogonal factor computed from TSQR needs to be
applied as a tree in the same order as it was computed. See [47, Algorithm 2] for a description
of this process, or see [7, Algorithm 4] for pseudocode that matches the binary tree in Algorithm
6.1.2. We refer to this application of implicit QT as Apply-TSQR-QT . The algorithm has the same
tree dependency flow structure as TSQR but requires a bidirectional exchange between paired
nodes in the tree. We note that in internal nodes of the tree it is possible to exploit the additional
sparsity structure of Yi,k (an identity matrix stacked on top of a triangular matrix), which our
implementation does via the use of the LAPACK v3.4+ routine tpmqrt.

Further, since A is m× n and intermediate values of rows of A are communicated, the trailing
matrix update costs more than TSQR when n > b. In the context of CAQR on a square matrix,
Apply-TSQR-QT is performed on a trailing matrix with n ≈ m columns. The extra work in the
application of the inner leaves of the tree is proportional to O(n2b log(p)/

√
p) and bandwidth cost

proportional to O(n2 log(p)/
√
p). Since the cost of Apply-TSQR-QT is almost leading order in

CAQR, it is desirable in practice to optimize the update routine. However, the tree dependency
structure complicates this manual developer or compiler optimization task.

The overall cost of CAQR is given to leading order by

γ ·
(

6mnb− 3n2b

2pr
+

(
4nb2

3
+

3n2b

2pc

)
log pr +

6mn2 − 2n3

3p

)
+

β ·
((

nb

2
+
n2

pc

)
log pr +

2mn− n2

pr

)
+ α ·

(
3n

b
log pr +

4n

b
log pc

)
.

CHAPTER 6. QR FACTORIZATION 90

See [47] for a discussion of these costs and [48] for detailed analysis. Note that the bandwidth
cost is slightly lower here due to the use of more efficient broadcasts. If we pick pr = pc =

√
p

(assuming m ≈ n) and b = n√
p log2 p

then we obtain the leading order costs

γ ·
(

2mn2 − 2n3/3

p

)
+ β ·

(
2mn+ n2 log p

√
p

)
+ α ·

(
7

2

√
p log3 p

)
.

Again, we choose b to preserve the leading constants of the computational cost. Note that b needs
to be chosen smaller here than in Section 6.1.1 due to the costs associated with Apply-TSQR-QT .

It is possible to reduce the costs of Apply-TSQR-QT further using ideas from efficient recur-
sive doubling/halving collectives; see Section 6.2.4 for more details. Another important practical
optimization for CAQR is pipelining the trailing matrix updates [52], though we do not consider
this idea here as it cannot be applied with the Householder reconstruction approach.

Constructing Explicit Q from TSQR

Algorithm 6.1.3 [B] = Apply-TSQR-QT ({Yi,k}, A)

Require: Number of processors is p and i is the processor index
Require: A is m× n matrix distributed in block row layout; Ai is processor i’s block
Require: {Yi,k} is the implicit tree TSQR representation of b Householder vectors of length m.

1: Bi = Apply-Householder-QT (Yi,0, Ai)
2: Let B̄i be the first b rows of Bi

3: for k = 1 to dlog pe do
4: if i ≡ 0 mod 2k and i+ 2k−1 < p then
5: j = i+ 2k−1

6: Receive B̄j from processor j

7:

[
B̄i

B̄j

]
= Apply-Householder-QT

(
Yi,k,

[
B̄i

B̄j

])
8: Send B̄j back to processor j
9: else if i ≡ 2k−1 mod 2k then

10: Send B̄i to processor i− 2k−1

11: Receive updated rows B̄i from processor i− 2k−1

12: Set the first b rows of Bi to B̄i

Ensure: B = QTAwith processor i owning blockBi, whereQ is the orthogonal matrix implicitly
represented by {Yi,k}

In many use cases of QR decomposition, an explicit orthogonal factor is not necessary; rather,
we need only the ability to apply the matrix (or its transpose) to another matrix, as done in the
previous section. For our purposes (see Section 6.2), we will need to form the explicit m × b or-
thonormal matrix from the implicit tree representation.1 Though it is not necessary within CAQR,

1In LAPACK terms, constructing (i.e., generating) the orthogonal factor when it is stored as a set of Householder
vectors is done with orgqr.

CHAPTER 6. QR FACTORIZATION 91

we describe it here because it is a known algorithm (see [82, Figure 4]) and the structure of the
algorithm is very similar to TSQR.

Algorithm 6.1.4 presents the method for constructing the m × b matrix Q by applying the
(implicit) square orthogonal factor to the first b columns of the m ×m identity matrix. Note that
while we present Algorithm 6.1.4 assuming a binary tree, any tree shape is possible, as long as
the implicit Q is computed using the same tree shape as TSQR. While the nodes of the tree are
computed from leaves to root, they will be applied in reverse order from root to leaves. Note that
in order to minimize the computational cost, the sparsity of the identity matrix at the root node and
the sparsity structure of {Yi,k} at the inner tree nodes is exploited.

Since the communicated matrices Q̄j are triangular just as R̄j was triangular in the TSQR
algorithm, Construct-TSQR-Q incurs the exact same computational and communication costs as
TSQR. So, we can reconstruct the unique part of the Q matrix from the implicit form given by
TSQR for the same cost as the TSQR itself.

Algorithm 6.1.4 Q = Construct-TSQR-Q({Yi,k})
Require: Number of processors is p and i is the processor index
Require: {Yi,k} is computed by Algorithm 6.1.2 so that Yi,k is stored by processor i

1: if i = 0 then
2: Q̄0 = Ib

3: for k = dlog pe down to 1 do
4: if i ≡ 0 mod 2k and i+ 2k−1 < p then
5: j = i+ 2k−1

6:

[
Q̄i
Q̄j

]
= Apply-Householder-Q

(
Yi,k,

[
Q̄i
0

])
7: Send Q̄j to processor j
8: else if i ≡ 2k−1 mod 2k then
9: Receive Q̄i from processor i− 2k−1

10: Qi = Apply-Q-to-Triangle
(
Yi,0,

[
Q̄i
0

])
Ensure: Q is orthonormal m× b matrix distributed in block row layout; Qi is processor i’s block

6.1.3 Yamamoto’s Basis-Kernel Representation
The main goal of this work is to combine Householder-QR with CAQR; Yamamoto [169] proposes
a scheme to achieve this. As described in Section 6.1.1, 2D-Householder-QR suffers from a com-
munication bottleneck in the panel factorization. TSQR alleviates that bottleneck but requires a
more complicated (and slightly less efficient) trailing matrix update. Motivated in part to improve
the performance and programmability of a hybrid CPU/GPU implementation, Yamamoto suggests
computing a representation of the orthogonal factor that triangularizes the panel that mimics the
representation in Householder-QR.

As described by Sun and Bischof [153], there are many so-called “basis-kernel” representations
of an orthogonal matrix. For example, the Householder-QR algorithm computes a lower triangular

CHAPTER 6. QR FACTORIZATION 92

matrix Y such that A = (I − Y TY T
1)R, so that

Q = I − Y TY T = I −
[
Y1

Y2

]
T
[
Y T

1 Y T
2

]
. (6.1.1)

Here, Y is called the “basis” and T is called the “kernel” in this representation of the square
orthogonal factor Q. However, there are many such basis-kernel representations if we do not
restrict Y and T to be lower and upper triangular matrices, respectively.

Yamamoto [169] chooses a basis-kernel representation that is easy to compute. For an m × b

matrix A, let A =

[
Q1

Q2

]
R where Q1 and R are b× b. Then define the basis-kernel representation

Q = I − Ỹ T̃ Ỹ T = I −
[
Q1−I
Q2

] [
I−Q1

]−T [
(Q1−I)T QT2

]
, (6.1.2)

where I − Q1 is assumed to be nonsingular. It can be easily verified that QTQ = I and QTA =[
R
0

]
; in fact, this is the representation suggested and validated by [27, Theorem 3]. Note that both

the basis and kernel matrices Ỹ and T̃ are dense.
The main advantage of basis-kernel representations is that they can be used to apply the or-

thogonal factor (or its transpose) very efficiently using matrix multiplication. In particular, the
computational complexity of applying QT using any basis-kernel is the same to leading order, as-
suming Y has the same dimensions as A and m � b. Thus, it is not necessary to reconstruct the
Householder vectors; from a computational perspective, finding any basis-kernel representation of
the orthogonal factor computed by TSQR will do. Note also that in order to apply QT with the
representation in Equation equation 6.1.2, we need to apply the inverse of I − Q1, so we need to
perform an LU decomposition of the b × b matrix and then apply the inverses of the triangular
factors using triangular solves.

The assumption that I −Q1 is nonsingular can be dropped by replacing I with a diagonal sign
matrix S chosen so that S −Q1 is nonsingular [168]; in this case the representation becomes

QS = I − Ỹ T̃ Ỹ T = I −
[
Q1−S
Q2

]
S
[
S−Q1

]−T [
(Q1−S)T QT2

]
. (6.1.3)

Yamamoto’s approach is very closely related to TSQR-HR (Algorithm 6.2.2), presented in
Section 6.2. We compare the methods in Section 6.2.1.

6.2 New 2D QR Algorithms
We first present our main contribution, a parallel algorithm that performs TSQR and then recon-
structs the Householder vector representation from the TSQR representation of the orthogonal
factor. We then show that this reconstruction algorithm may be used as a building block for more
efficient 2D QR algorithms. In particular, the algorithm is able to combine two existing approaches

CHAPTER 6. QR FACTORIZATION 93

Flops Words Messages
Householder-QR 3mb2

p
− 2b3

3p
b2

2
log p 2b log p

TSQR 2mb2

p
+ 2b3

3
log p b2

2
log p log p

TSQR-HR 5mb2

p
+ 4b3

3
log p b2 log p 4 log p

Table 6.2.1: Costs of QR factorization of tall-skinny m × b matrix distributed over p processors
in 1D fashion. We assume these algorithms are used as panel factorizations in the context of a 2D
algorithm applied to an m× n matrix. Thus, costs of Householder-QR and TSQR-HR include the
costs of computing T .

for 2D QR factorizations, leveraging the efficiency of TSQR in panel factorizations and the effi-
ciency of Householder-QR in trailing matrix updates. While Householder reconstruction adds
some extra cost to the panel factorization, we show that its use in the 2D algorithm reduces overall
communication compared to both 2D-Householder-QR and CAQR.

6.2.1 TSQR with Householder Reconstruction
The basic steps of our 1D algorithm include performing TSQR, constructing the explicit tall-skinny
Q factor, and then computing the Householder vectors corresponding to Q. The key idea of our
reconstruction algorithm is that performing Householder-QR on an orthonormal matrix Q is the
same as performing an LU decomposition onQ−S, where S is a diagonal sign matrix correspond-
ing to the sign choices made inside the Householder-QR algorithm. Informally, ignoring signs, if
Q = I−Y TY T

1 with Y a matrix of Householder vectors, then Y ·(−TY T
1) is an LU decomposition

of Q− I since Y is unit lower triangular and TY T
1 is upper triangular.

In this section we present Modified-LU as Algorithm 6.2.1, which can be applied to any or-
thonormal matrix (not necessarily one obtained from TSQR). Ignoring lines 1, 3, and 4, it is exactly
LU decomposition without pivoting. Note that with the choice of S, no pivoting is required since
the effective diagonal entry will be at least 1 in absolute value and all other entries in the column
are bounded by 1 (the matrix is orthonormal).2

Parallelizing this algorithm is straightforward. Since m ≥ b and no pivoting is required, the
Modified-LU algorithm can be applied on one processor to the top b×b block. The rest of the lower
triangular factor is updated with a triangular solve involving the upper triangular factor. After the
upper triangular factor has been broadcast to all processors, the triangular solve is performed in
parallel. Thus, the cost of Algorithm 6.2.1 is given by

γ ·
(
mb2

p
+

2b3

3

)
+ β · b2 + α · 2 log p.

Given the algorithms of the previous sections, we now present the full approach for computing
the QR decomposition of a tall-skinny matrix using TSQR and Householder reconstruction. That

2We use the convention sgn(0) = 1.

CHAPTER 6. QR FACTORIZATION 94

Algorithm 6.2.1 [L,U, S] = Modified-LU(Q)
Require: Q is m× b orthonormal matrix

1: S = 0
2: for i = 1 to b do
3: S(i, i) = − sgn(Q(i, i))
4: Q(i, i) = Q(i, i)− S(i, i)
5: % Scale ith column of L by diagonal element
6: Q(i+1:m, i) = 1

Q(i,i) ·Q(i+1:m, i)
7: % Perform Schur complement update
8: Q(i+1:m, i+1:b) = Q(i+1:m, i+1:b)−Q(i+1:m, i)·Q(i, i+1:b)

Ensure: U overwrites the upper triangle and L has implicit unit diagonal and overwrites the strict lower
triangle of Q; S is diagonal so that Q− S = LU

is, in this section we present an algorithm such that the format of the output of the algorithm
is identical to that of Householder-QR. However, we argue that the communication costs of this
approach are much less than those of performing Householder-QR.

The method, given as Algorithm 6.2.2, is to perform TSQR (line 1), construct the tall-skinny Q
factor explicitly (line 2), and then compute the Householder vectors that represent that orthogonal
factor using Modified-LU (line 3). The R factor is computed in line 1 and the Householder vectors
(the columns of Y) are computed in line 3. An added benefit of the approach is that the trian-
gular T matrix, which allows for block application of the Householder vectors, can be computed
very cheaply. That is, a triangular solve involving the upper triangular factor from Modified-LU
computes the T so that A = (I − Y TY T

1)R. To compute T directly from Y (as is necessary if
Householder-QR is used) requires O(nb2) flops; here the triangular solve involves O(b3) flops.
Our approach for computing T is given in line 4, and line 5 ensures sign agreement between the
columns of the (implicitly stored) orthogonal factor and rows of R.

Algorithm 6.2.2 [Y, T,R] = TSQR-HR(A)
Require: A is m× b matrix distributed in block row layout

1: [{Yi,k}, R̃] = TSQR(A)
2: Q = Construct-TSQR-Q({Yi,k})
3: [Y, U, S] = Modified-LU(Q)
4: T = −USY −T1

5: R = SR̃
Ensure: A = (I − Y TY T

1)R, where Y is m× b and unit lower triangular, Y1 is top b× b block of Y , and
T and R are b× b and upper triangular

On p processors, Algorithm 6.2.2 incurs the following costs (ignoring lower order terms):

1. Compute [{Yi,k}, R′] = TSQR(A)

The computational costs of this step come from lines 1 and 6 in Algorithm 6.1.2. Line 1 cor-
responds to a QR factorization of a (m/p)× b matrix, with a flop count of 2(m/p)b2−2b3/3

CHAPTER 6. QR FACTORIZATION 95

(each processor performs this step simultaneously). Line 6 corresponds to a QR factorization
of a b × b triangle stacked on top of a b × b triangle. Exploiting the sparsity structure, the
flop count is 2b3/3; this occurs at every internal node of the binary tree, so the total cost in
parallel is (2b3/3) log p.

The communication costs of Algorithm 6.1.2 occur in lines 5 and 8. Since every Ri,k is a
b × b upper triangular matrix, the cost of a single message is α + β · (b2/2). This occurs at
every internal node in the tree, so the total communication cost in parallel is a factor log p
larger.

Thus, the cost of this step is

γ ·
(

2mb2

p
+

2b3

3
log p

)
+ β ·

(
b2

2
log p

)
+ α · log p.

2. Q = Construct-TSQR-Q({Yi,k})
The computational costs of this step come from lines 6 and 10 in Algorithm 6.1.4. Note that
for k > 0, Yi,k is a 2b × b matrix: the identity matrix stacked on top of an upper triangular
matrix. Furthermore, Qi,k is an upper triangular matrix. Exploiting the structure of Yi,k and
Qi,k, the cost of line 6 is 2b3/3, which occurs at every internal node of the tree. Each Yi,0 is
a (m/p)× b lower triangular matrix of Householder vectors, so the cost of applying them to
an upper triangular matrix in line 10 is 2(m/p)b2 − 2b3/3. Note that the computational cost
of these two lines is the same as those of the previous step in Algorithm 6.1.2.

The communication pattern of Algorithm 6.1.4 is identical to Algorithm 6.1.2, so the com-
munication cost is also the same as that of the previous step.

Thus, the cost of constructing Q is

γ ·
(

2mb2

p
+

2b3

3
log p

)
+ β ·

(
b2

2
log p

)
+ α · log p.

3. [Y, U, S] = Modified-LU(Q)

Ignoring lines 3–4 in Algorithm 6.2.1, Modified-LU is the same as LU without pivoting.
In parallel, the algorithm consists of a b × b (modified) LU factorization of the top block
followed by parallel triangular solves to compute the rest of the lower triangular factor.
The flop count of the b × b LU factorization is 2b3/3, and the cost of each processor’s
triangular solve is (m/p)b2. The communication cost of parallel Modified-LU is only that of
a broadcast of the upper triangular b× b U factor (for which we use a bidirectional-exchange
algorithm): β · (b2) + α · (2 log p).

Thus, the cost of this step is

γ ·
(
mb2

p
+

2b3

3

)
+ β · b2 + α · 2 log p

CHAPTER 6. QR FACTORIZATION 96

4. T = −USY −T1 and R = SR′

The last two steps consist of computing T and scaling the final R appropriately. Since S is
a sign matrix, computing US and SR′ requires no floating point operations and can be done
locally on one processor. Thus, the only computational cost is performing a b× b triangular
solve involving Y T

1 . If we ignore the triangular structure of the output, the flop count of this
operation is b3. However, since this operation occurs on the same processor that computes
the topm/p×b block of Y and U , it can be overlapped with the previous step (Modified-LU).
After the top processor performs the b × b LU factorization and broadcasts the U factor, it
computes onlym/p−b rows of Y (all other processors updatem/p rows). Thus, performing
an extra b× b triangular solve on the top processor adds no computational cost to the critical
path of the algorithm.

Thus, TSQR-HR(A) where A is m-by-b incurs the following costs (ignoring lower order
terms):

γ ·
(

5mb2

p
+

4b3

3
log p

)
+ β ·

(
b2 log p

)
+ α · (4 log p) . (6.2.1)

Note that the LU factorization required in Yamamoto’s approach (see Section 6.1.3) is equiva-
lent to performing Modified-LU(−Q1). In Algorithm 6.2.2, the Modified-LU algorithm is applied
to an m × b matrix rather than to only the top b × b block; since no pivoting is required, the only
difference is the update of the bottom m− b rows with a triangular solve. Thus it is not hard to see
that, ignoring signs, the Householder basis-kernel representation in Equation equation 6.1.1 can
be obtained from the representation given in Equation equation 6.1.2 with two triangular solves: if
the LU factorization gives I − Q1 = LU , then Y = Ỹ U−1 and T = UL−T . Indeed, performing
these two operations and handling the signs correctly gives Algorithm 6.2.2.

While Yamamoto’s approach avoids performing the triangular solve on Q2, it still involves
performing both TSQR and Construct-TSQR-Q. Avoiding the triangular solve saves 20% of the
arithmetic of the panel factorization with Householder reconstruction, though we found in our
performance experiments that the triangular solve accounts for only about 10% of the running
time (mostly due to the broadcast of the triangular factor).

The main advantages of TSQR-HR over Yamamoto’s algorithm are that the storage of the basis-
kernel representation is more compact (since Y is unit lower triangular and T is upper triangular)
and that this basis-kernel representation is backward-compatible with (Sca)LAPACK and other
libraries using the compact WY representation [139], offering greater performance portability.

6.2.2 CAQR-HR
We refer to the 2D algorithm that uses TSQR-HR for panel factorizations as CAQR-HR. Because
Householder-QR and TSQR-HR generate the same representation as output of the panel factoriza-
tion, the trailing matrix update can be performed in exactly the same way. Thus, the only difference
between 2D-Householder-QR and CAQR-HR, presented in Algorithm 6.2.3, is the subroutine call
for the panel factorization (line 3).

CHAPTER 6. QR FACTORIZATION 97

Algorithm 6.2.3 [Y, T,R] = CAQR-HR(A)
Require: A is m × n and distributed block-cyclically on p = pr · pc processors with block size b, so that

each b× b block Aij is owned by processor Π(i, j) = (i mod pr) + pr · (j mod pc)
1: for i = 0 to n/b− 1 do
2: % Compute TSQR and reconstruct Householder representation using column of pr processors
3:

[
Yi:m/b−1,i, Ti, Rii

]
= Hh-Recon-TSQR(Ai:m/b−1,i)

4: % Update trailing matrix using all p processors
5: Π(i, i) broadcasts Ti to all other processors
6: for r ∈ [i,m/b− 1], c ∈ [i+ 1, n/b− 1] do in parallel
7: Π(r, i) broadcasts Yri across proc. row Π(r, :)
8: Π(r, c) computes W̃rc = Y T

ri ·Arc
9: Allreduce Wc=

∑
r W̃rc along proc. column Π(:, c)

10: Π(r, c) computes Arc = Arc − Yri · T Ti ·Wc

11: Set Ric = Aic
Ensure: A =

(∏n
i=1(I − Y:,iTiY

T
:,i)
)
R

Flops Words Messages
2D-Householder-QR 2mn2−2n3/3

p
2mn+n2/2√

p
n log p

CAQR 2mn2−2n3/3
p

2mn+n2 log p√
p

7
2

√
p log3 p

CAQR-HR 2mn2−2n3/3
p

2mn+n2/2√
p

6
√
p log2 p

Scatter-Apply CAQR 2mn2−2n3/3
p

2mn+n2/2√
p

7
√
p log2 p

Table 6.2.2: Costs of QR factorization ofm×nmatrix distributed over p processors in 2D fashion.
Here we assume a square processor grid (pr = pc). We also choose block sizes for each algorithm
independently to ensure the leading order terms for flops are identical.

Algorithm 6.2.3 with block size b, and matrix m-by-n matrix A, with m ≥ n and m,n ≡
0 (mod b) distributed on a 2D pr-by-pc processor grid incurs the following costs over all n/b
iterations.,

1. Compute
[
Yi:m/b−1,i, Ti, Rii

]
= Hh-Recon-TSQR

(
Ai:m/b−1,i

)
Equation equation 6.2.1 gives the cost of a single panel TSQR factorization with House-
holder reconstruction. We can sum over all iterations to obtain the cost of this step in the 2D
QR algorithm (line 3 in Algorithm 6.2.3),

n/b−1∑
i=0

(
γ ·
(

5(m− ib)b2

pr
+

4b3

3
log pr

)
+ β ·

(
b2 log pr

)
+ α · (4 log pr)

)
=

γ ·
(

5mnb

pr
− 5n2b

2pr
+

4nb2

3
log pr

)
+ β · (nb log pr) + α ·

(
4n log pr

b

)

CHAPTER 6. QR FACTORIZATION 98

2. Π(i, i) broadcasts Ti to all other processors

The matrix Ti is b-by-b and triangular, so we use a bidirectional exchange broadcast. Since
there are a total of n/b iterations, the total communication cost for this step of Algorithm 6.2.3
is

β · (nb) + α ·
(

2n

b
log p

)
3. Π(r, i) broadcasts Yri to all processors in its row, Π(r, :)

At this step, each processor which took part in the TSQR and Householder reconstruction
sends its local chunk of the panel of Householder vectors to the rest of the processors. At
iteration i of Algorithm 6.2.3, each processor owns at most dm/b−i

pr
e blocks Yri. Since all the

broadcasts happen along processor rows, we assume they can be done simultaneously on the
network. The communication along the critical path is then given by

n/b−1∑
i=0

(
β ·
(

2(m/b− i) · b2

pr

)
+ α · 2 log pc

)
= β ·

(
2mn− n2

pr

)
+ α ·

(
2n

b
log pc

)

4. Π(r, c) computes W̃rc = Y T
ri · Arc

Each block W̃rc is computed on processor Π(r, c), using Arc, which it owns, and Yri, which
it just received from processor Π(r, i). At iteration i, processor j may own up to dm/b−i

pr
e ·

dn/b−i
pc
e blocks W̃rc, Π(r, c) = j. Each, block-by-block multiply incurs 2b3 flops, therefore,

this step incurs a total computational cost of

γ ·

n/b−1∑
i=0

2(m/b− i)(n/b− i)b3

p

 = γ ·
(
mn2 − n3/3

p

)

5. Allreduce Wc =
∑

r W̃rc so that processor column Π(:, c) owns Wc

At iteration i of Algorithm 6.2.3, each processor j may own up to dm/b−i
pr
e · dn/b−i

pc
e blocks

Wrc. The local part of the reduction can be done during the computation of Wrc on line 8 of
Algorithm 6.2.3. Therefore, no process should contribute more than dn/b−i

pc
e b-by-b blocks

Wrc to the reduction. Using a bidirectional exchange all-reduction algorithm and summing
over the iterations, we can obtain the cost of this step throughout the entire execution of the
2D algorithm:

n/b−1∑
i=0

(
β ·
(

2(n/b− i) · b2

pc

)
+ α · 2 log pr

)
= β ·

(
n2

pc

)
+ α ·

(
2n

b
log pr

)

CHAPTER 6. QR FACTORIZATION 99

6. Π(r, c) computes Arc = Arc − Yri · Ti ·Wc

Since in our case, m ≥ n, it is faster to first multiply Ti by Wc rather than Yri by Ti. Any
processor j may update up to dm/b−i

pr
e ·dn/b−i

pc
e blocks of Arc using dm/b−i

pr
e blocks of Yri and

dn/b−i
pc
e blocks of Wc. When multiplying Ti by Wc, we can exploit the triangular structure

of T , to lower the flop count by a factor of two. Summed over all iterations, these two
multiplications incur a computational cost of

γ ·

n/b−1∑
i=0

2(m/b− i)(n/b− i)b3

p
+

(n/b− i)b3

pc

 = γ ·
(
mn2 − n3/3

p
+
n2b

2pc

)

The overall costs of CAQR-HR are given to leading order by

γ ·
(

10mnb− 5n2b

2pr
+

4nb2

3
log pr +

n2b

2pc
+

2mn2 − 2n3/3

p

)
+

β ·
(
nb log pr +

2mn− n2

pr
+
n2

pc

)
+ α ·

(
8n

b
log pr +

4n

b
log pc

)
.

If we pick pr = pc =
√
p (assuming m ≈ n) and b = n√

p log p
then we obtain the leading order costs

γ ·
(

2mn2 − 2n3/3

p

)
+ β ·

(
2mn+ n2/2
√
p

)
+ α ·

(
6
√
p log2 p

)
,

shown in the third row of Table 6.2.2.
Comparing the leading order costs of CAQR-HR with the existing approaches, we note again

the O(n log p) latency cost incurred by the 2D-Householder-QR algorithm. CAQR and CAQR-
HR eliminate this synchronization bottleneck and reduce the latency cost to be independent of the
number of columns of the matrix. Further, both the bandwidth and latency costs of CAQR-HR are
factors of O(log p) lower than CAQR (when m ≈ n). As previously discussed, CAQR includes
an extra leading order bandwidth cost term (β · n2 log p/

√
p), as well as a computational cost term

(γ · (n2b/pc) log pr) that requires the choice of a smaller block size and leads to an increase in the
latency cost.

6.2.3 Two-Level Aggregation
The Householder-QR algorithm attains an efficient trailing matrix update by aggregating House-
holder vectors into panels (the compact-WY representation). Further, it is straightforward to com-
bine aggregated sets (panels) of Householder vectors into a larger aggregated form. While it is
possible to aggregate any basis-kernel representation in this way [153, Corollary 2.8], the House-
holder form allows for maintaining trapezoidal structure of the basis and triangular structure of

CHAPTER 6. QR FACTORIZATION 100

the kernel (note that Yamamoto’s representation would yield a block-trapezoidal basis and block-
triangular kernel). We will refer to the aggregation of sets of Householder vectors as two-level
aggregation.

Given the Householder vector reconstruction technique, two-level aggregation makes it possi-
ble to decouple the block sizes used for the trailing matrix update from the width of each TSQR.
Adding the second blocking parameter to achieve two-level aggregation is a simple algorithmic
optimization to our 2D algorithm, and does not change the leading order interprocessor com-
munication costs. This two-level algorithm is given in full in the technical report [7]; it calls
Algorithm 6.2.3 recursively on large panels of the matrix and then performs an aggregated update
on the trailing matrix. While this algorithm does not lower the interprocessor communication, it
lowers the local memory-bandwidth cost associated with reading the trailing matrix from memory.
This two-level aggregation is analogous to the two-level blocking technique employed in [146] for
LU factorization, albeit only on a 2D grid of processors. We also implemented a 2D Householder
algorithm with two-level aggregation, which employs ScaLAPACK to factor each thin panel. We
refer to this algorithm as Two-Level 2D Householder. We note that ScaLAPACK could be easily
modified to use this algorithm with the addition of a second algorithmic blocking factor. Both of
our two-level algorithms obtained a significant performance improvement over their single-level
aggregated counterparts.

6.2.4 Scatter-Apply CAQR
We also found an alternative method for improving the CAQR trailing matrix update that does not
reconstruct the Householder form. A major drawback with performing the update via a binary tree
algorithm is heavy load imbalance. This problem may be resolved by exploiting the fact that each
column of the trailing matrix may be updated independently and subdividing the columns among
more processors to balance out the work. This can be done with ideal load balance using a butterfly
communication network instead of a binary tree.

Doing the CAQR trailing matrix update via a butterfly network requires storing the implicit
representation of the Householder vectors redundantly. We compute the Householder vectors re-
dundantly by doing the TSQR via a butterfly network as done in [81]. Algorithm 6.2.4 shows
how the trailing matrix update can be efficiently computed using a butterfly communication net-
work, which effectively performs recursive halving on the columns of the trailing matrix, then
recombines the computed updates via an inverse butterfly network (recursive doubling). We call
this algorithm Scatter-Apply TSQR-QT to emphasize that its structure is analogous to performing
a broadcast via a scatter-allgather algorithm, which generalizes recursive halving and doubling
and lowers the asymptotic bandwidth cost of a large message broadcast over a simple binary tree
broadcast by a factor of O(log p). Within the context of a 2D QR implementation, Algorithm 6.2.4
would be used for each processor column.

Algorithm 6.2.4 reduces the bandwidth and computational costs of the trailing matrix update
by a factor of O(log p), since these costs are now dominated by the first level of the butterfly.
The leading order costs of a CAQR algorithm which uses Scatter-Apply TSQR-QT for the trailing

CHAPTER 6. QR FACTORIZATION 101

matrix update are

γ ·
(

2mn2 − 2n3/3

p

)
+ β ·

(
2mn+ 2n2

√
p

)
+ α ·

(
7
√
p log2 p

)
.

We extended Algorithm 6.2.4 to a non-power-of-two number of processes via an additional level
of the butterfly, which cuts to the nearest power-of-two, though there are alternatives which could
be cheaper. An interesting remaining question is whether pipelined CAQR with flat trees, such as
the algorithms presented in [52] can yield the same improvement in costs as Algorithm 6.2.4.

Algorithm 6.2.4 [B] = Scatter-Apply TSQR-QT ({Yi,k}, A)

Require: No. of processors p is a power of 2 and i is the processor index
Require: A is m × n matrix distributed in block row layout; Ai is processor i’s block; and {Yi,k} is the

implicit representation of b Householder vectors computed via a butterfly TSQR
1: Bi = Apply-Householder-QT (Yi,0, Ai)
2: Let B̄i be the first b rows of Bi
3: for k = 1 to log p do
4: j = 2kb i

2k
c+ (i+ 2k−1 mod 2k)

5: Let B̄i = [B̄i1, B̄i2] where each block is b-by-n/2k

6: if i < j then
7: Swap B̄i2 with B̄j1 from processor j

8:

[
B̄i
B̄k
j1

]
= Apply-Householder-QT

(
Yi,k,

[
B̄i1
B̄j1

])
9: else

10: Swap B̄j2 with B̄i1 from processor j

11:

[
B̄i
B̄k
i2

]
= Apply-Householder-QT

(
Yi,k,

[
B̄i2
B̄j2

])
12: for k = log p down to 1 do
13: j = 2kb i

2k
c+ (i+ 2k−1 mod 2k)

14: if i < j then
15: Swap B̄k

j1 with B̄j from processor j
16: B̄i = [B̄i, B̄j]
17: else
18: Swap B̄i with B̄k

i1 from processor j
19: B̄i = [B̄k

i1, B̄
k
i2]

20: Set the first b rows of Bi to B̄i
Ensure: B = QTA where Q is the orthogonal matrix implicitly represented by {Yi,k}

6.3 Performance
Having established the stability of our algorithm, we now analyze its experimental performance.
We demonstrate that for tall and skinny matrices TSQR-HR achieves better parallel scalability than

CHAPTER 6. QR FACTORIZATION 102

library implementations (ScaLAPACK and Elemental) of Householder-QR. Further, we show that
for square matrices Two-Level CAQR-HR outperforms our implementation of CAQR, and library
implementations of 2D-Householder-QR.

6.3.1 Architecture
The experimental platform is “Hopper,” which is a Cray XE6 supercomputer, built from dual-
socket 12-core “Magny-Cours” Opteron compute nodes. We used the Cray LibSci BLAS routines.
This machine is located at the NERSC supercomputing facility. Each node can be viewed as a four-
chip compute configuration due to NUMA domains. Each of these four chips have six super-scalar,
out-of-order cores running at 2.1 GHz with private 64 KB L1 and 512 KB L2 caches. Nodes are
connected through Cray’s “Gemini” network, which has a 3D torus topology. Each Gemini chip,
which is shared by two Hopper nodes, is capable of 9.8 GB/s bandwidth.

6.3.2 Parallel Scalability
In this section, we give performance results based on our C++/MPI/LAPACK implementations
of TSQR, TSQR-HR, Two-Level CAQR-HR, CAQR, Scatter-Apply CAQR, and Two-Level 2D
Householder, as well as two library implementations of 1D Householder-QR and 2D-Householder-
QR, Elemental (version 0.80) and ScaLAPACK (native LibSci installation on Hopper, October
2013). Our implementations aim to do minimal communication and arithmetic, and do not employ
low-level tuning or overlap between communication and computation. All the benchmarks use one
MPI process per core, despite the fact that is favorable on Hopper to use one process per socket
and six threads per process. This decision was made because we observed that some of the many
LAPACK routines used throughout our codes (geqrf, ormqr, tpqrt, tmpqrt, etc.) were not
threaded.

First, we study the performance of QR factorization of tall-skinny matrices using a 1D proces-
sor grid. Figure 6.1(a) gives the strong scaling performance for a matrix of size 122,880-by-32.
We also tested a range of reasonable panel sizes that are not detailed here and observed similar per-
formance trends. We observe from Figure 6.1(a) that TSQR-HR takes roughly twice the execution
time of TSQR, which is in line with our theoretical cost analysis. Figure 6.1(a) also gives the time
to solution of Elemental and ScaLAPACK, which both use the Householder-QR algorithm, albeit
with different matrix blocking and collectives. We see that TSQR obtains a performance benefit
over Householder-QR due to the lower synchronization cost and TSQR-HR preserves the scaling
behavior and remains competitive with Householder-QR.

We collected these results by taking the best observed time over a few runs including ones
where a subset of the nodes in the scheduled partition was used. We note that ScaLAPACK perfor-
mance was highly variable and benefited significantly from using only a fraction of the partition.
For instance, on 768 nodes the best ScaLAPACK observed performance was 3.4 ms for this prob-
lem size when using half of a 1536 node partition, but over 7 ms when using a 768 node partition.
This variability could be justified by the hypothesis that using a subset of a partition on Hopper
yields better locality on the network, which alleviates the latency bottleneck of the Householder-

CHAPTER 6. QR FACTORIZATION 103

 0

 5

 10

 15

 20

144 288 576 1152 2304 4608 9216

Te
ra

flo
ps

#cores

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

Two-Level CAQR-HR
Two-Level Householder

CAQR-HR
Elemental QR

ScaLAPACK QR
Scatter-Apply CAQR

Binary-Tree CAQR

(a) Tall-skinny QR performance on Cray XE6

 0

 5

 10

 15

 20

144 288 576 1152 2304 4608 9216

Te
ra

flo
ps

#cores

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

Two-Level CAQR-HR
Two-Level Householder

CAQR-HR
Elemental QR

ScaLAPACK QR
Scatter-Apply CAQR

Binary-Tree CAQR

(b) Square QR performance on Cray XE6

QR algorithm. This claim is supported by the fact that the performance variability of algorithms
employing TSQR was smaller and much less benefit was yielded from these algorithms being
executed on a subset of a partition.

Second, we study the parallel scaling of QR factorization on square matrices. In Figure 6.1(b),
we compare our implementation of CAQR with a binary tree update (no pipelining or other op-
timizations), Scatter-Apply CAQR, CAQR-HR, and Two-Level CAQR-HR, with Elemental and
ScaLAPACK, which use 2D-Householder-QR, as well as Two-Level 2D Householder. We tuned
the block sizes of all the codes (the Two-Level CAQR-HR required tuning two block sizes), though
fewer data points were collected for larger scale runs, due to timing and allocation constraints.

Comparing the performance of Two-Level CAQR-HR and CAQR-HR in Figure 6.1(b), we
observe that significant benefit is obtained from aggregating the trailing matrix update. Similarly,
we note that two-level aggregation of the 2D Householder algorithm yields a similar performance
improvement (compare ScaLAPACK with Two-Level 2D Householder). On the other hand, the
binary-tree CAQR performance is relatively poor due to the overhead of the implicit tree trailing
update. This overhead is significantly alleviated by the Scatter-Apply TSQR-QT algorithm for
the trailing matrix update, though the Scatter-Apply CAQR is still slower than algorithms which
perform the trailing matrix update using the Householder form.

Overall, these results suggest that latency cost is not a significant overhead on this platform,
though as explained in the performance analysis of the 1D algorithms, heavy latency cost con-
tributes to performance variability. Further, other architectures such as cloud and grid environ-
ments typically have higher latency payloads. We also expect that the relative cost of messaging
latency will grow in future architectures and larger scales of parallelism as the topological distance
between computing elements grows. Lastly, we note that for Elemental, ScaLAPACK, and all
of our QR implementations, it was often better to utilize a rectangular processor grid with more
rows than columns. Having more processes in each column of the processor grid accelerates the
computation of each tall-skinny panel.

CHAPTER 6. QR FACTORIZATION 104

6.4 2.5D QR Factorization
Having found a method to perform TSQR and then reconstruct the Householder vector representa-
tion paves the way for the design of a synchronization and interprocessor communication efficient
2.5D QR algorithm. In designing this algorithm, we have to consider potential memory-bandwidth
overheads. So, we start by restating the communication costs of sequential QR and TSQR with
memory-bandwidth factors that are dependent on the cache size M̂ .

We will use both parallel and sequential versions of the Communication-Avoiding QR (CAQR)
algorithm, which is based on an improved algorithm for computing QR factorizations of tall and
skinny matrices known as Tall-Skinny QR (TSQR). The TSQR and CAQR algorithms are ana-
lyzed in terms of communication cost in [47], although the idea of doing a QR reduction tree
with Givens rotations goes back to [68], a blocked flat tree approach (optimal sequentially) was
presented in [72], and a parallel block reduction tree approach was given earlier in [42] (more
relevant references given in [47]). Lower bounds for the communication costs of QR factorization
are proven under some assumptions in [12].

6.4.1 Sequential QR Factorization
We first consider sequential QR factorization and its memory bandwidth cost for a given cache
size. The cost of this sequential algorithm is analogous to that of sequential matrix multiplication,
except in this case only one matrix needs to be read from memory to cache.

Lemma 6.4.1. Given m×n dense matrix A with m ≥ n, the cost of a sequential QR factorization
of A is

TQR(m,n, M̂) = O

(
γ ·mn2 + ν ·

[
mn2√
M̂

+mn

])
.

Proof. We use the sequential CAQR algorithm (and its analysis) given by Demmel et al. [47].

6.4.2 Parallel QR Factorization for Tall-and-Skinny Matrices
An important use-case of parallel QR is the factorization of tall-and-skinny matrices. Tall-and-
skinny QR factorizations are needed both in applications which employ orthogonalization of sub-
spaces, as well as within dense linear algebra algorithms such as the symmetric eigensolvers and
square-matrix QR algorithms, in both of which QR is done on matrix subpanels. We now consider
the memory-bandwidth cost involved in the TSQR algorithm (given in Section 6.1).

CHAPTER 6. QR FACTORIZATION 105

Lemma 6.4.2. Given a m× n matrix A with m/p ≥ n, on any architecture 1 processor and with
M > mn

p
+ n2 memory and cache size M̂ a QR factorization of A may be performed with the cost

TQR(m,n, p, M̂) = O

(
γ ·
[
mn2

p
+ n3 log(p)

]
+ β · n2 log(p)

+ ν ·

[
mn2/p+ n3 log(p)√

M̂
+
mn

p

]
+ α · log(p)

)
.

Proof. We use the parallel TSQR algorithm presented in [47]. The analysis for all but the memory
bandwidth cost is provided in [47].

In order to determine the memory bandwidth cost, we assume use of the sequential CAQR
algorithm of for all local QR decompositions and appeal to Lemma 6.4.1. Along the critical path of
the algorithm, the local computations consist of one QR decomposition of an (m/p)×nmatrix and
log(p) QR decompositions of (2n)×n matrices (we ignore the sparsity structure of these matrices
here). Thus, the total memory bandwidth cost is (m/p)n2/

√
M̂+(m/p)n+(n3/

√
M̂+n2) log(p),

which simplifies to the expression above.

6.4.3 Parallel QR Factorization for Square Matrices
Having established the memory-bandwidth cost of an algorithm for factorizing tall-and-skinny ma-
trices, we now consider another special case, namely when the matrices are square. The following
algorithm, due to Alexander Tiskin [158] achieves an optimal communication cost according to
the lower bounds in [12], and is also optimal (modulo a log(p) factor) in synchronization assuming
that the tradeoffs proven for Cholesky in [145] also apply to QR.

Lemma 6.4.3. Let 1
2
≤ δ ≤ 2

3
. Given a n× n matrix A on any architecture p processors and with

M > n2

p2(1−δ)
memory and cache size M̂ a QR factorization of A may be performed with the cost

TQR(n, p, M̂ , δ) = O

(
γ · n3/p+ β · n

2

pδ
+ ν · n3

p
√
M̂

+ α · pδ log(p)

)
.

Proof. Tiskin’s pseudo-panel QR algorithm [158] should achieve this cost for square matrices.
The memory-bandwidth complexity was not analyzed in Tiskin’s paper, however, since at each
level of recursion the algorithm performs a trailing matrix update where the trailing matrix is not
significantly larger than the matrices with which it is updated, there is no reason the memory
bandwidth complexity should be higher than the interprocessor communication cost, aside from a
factor corresponding to reading the inputs to the computation into cache, in particular the overall
memory bandwidth cost Ŵ should be the following function of the bandwidth cost W and cache
size M̂ ,

Ŵ = O

(
W +

n3

p
√
M̂

)
.

CHAPTER 6. QR FACTORIZATION 106

Tiskin’s algorithm was formulated under a BSP model, which counts global synchronizations (BSP
timesteps), but each BSP timestep may incur a higher synchronization cost in our model, if a
processor receives or sends many messages. We argue that the synchronization cost of Tiskin’s
algorithm incurs an extra factor of Θ(log(p)) under our model. In factorizing the panel during
the base case, each processor performs two QR factorizations and updates on a small local subset
of the matrix, so near-neighbor synchronizations should suffice. However, when performing the
trailing matrix update at the base case, two n-by-n banded matrices with bandwidth k = n/pδ are
multiplied by partitioning the nk2 multiplications into cubic blocks of size nk2/p. The dimension
of each such block is then Θ((nk2/p)1/3), and since the number of non-trivial multiplications is
Θ(k) in each of three directions from any point in the 3D graph of multiplications, the number
of processors which must receive the same inputs or contribute to the same outputs (whose cubic
blocks overlap in one of the directions) yields the group of processors which must synchronize at
each step of recursion,

p̂ = Θ
(
k/[nk2/p]1/3

)
= Θ

([
pk

n

]1/3
)

= Θ(p1−δ).

Each group of p̂ processors can synchronize with O(log(p̂)) = O(log(p)) synchronizations, and
the base case is reached O(pδ) times, so the latency cost is Θ(pδ log(p)).

6.4.4 Parallel QR Factorization for Rectangular Matrices
We now give a 2.5D QR algorithm, which achieves the desired costs for rectangular matrices Its
cost generalize those of the TSQR algorithm and Tiskin’s QR algorithm for square matrices [158].
This algorithm uses Householder transformations rather than Givens rotations as done in [158],
and does not require embedding in a slanted matrix panel as needed in [158].

Lemma 6.4.4. Let 1
2
< δ ≤ 2

3
. Given a m × n matrix A (with 1 ≤ m/n ≤ p/ log(p)) on any

architecture with p processors, M >
(
n(m/n)1−δ

p1−δ

)2

memory, and cache size M̂ a QR factorization
of A may be performed with the cost

TQR(m,n, p, M̂ , δ) = O

(
γ ·mn2/p+ β · m

δn2−δ

pδ
+ ν · mn

2

p
√
M̂

+ α · (np/m)δ log(p)

)
.

Proof. This cost may be achieved by an algorithm similar to the one given by Elmroth and Gus-
tavson [55] that calls a recursive QR on a subset of the matrix columns with a subset of the pro-
cessors and performs the trailing matrix update using 2.5D matrix multiplication. We present this
approach in Algorithm 6.4.1 providing some of the details in the below cost analysis.

We quantify the costs of 2.5D-QR below. During the computations of the ith for loop iteration,

• the size of Y is m-by-in/k

• the size of T is in/k-by-in/k

CHAPTER 6. QR FACTORIZATION 107

Algorithm 6.4.1 [Y, T,R]← 2.5D-QR(A,Π, k, ζ)

Require: Let k > 1 and ζ ∈ [1
2
, 1). Let Π be a set of p processors, define Π̂ ⊂ Π be a group of

p/kζ processors. Let A be a m-by-n matrix, and Ai for i ∈ {0, . . . k−1} be a m-by-n/k panel
of A.

1: if m/p > n then
2: Perform recursive tall-skinny matrix QR algorithm on A.
3: Let Y = {} and T = {}
4: for i = 0 to k − 1 do
5: Compute Ai = (I − Y TY T)TAi
6: [Yi, Ti, Ri]← 2.5D-QR(Ai, Π̂, k)
7: Compute T̄i = T (Y TYi)Ti

8: Let T =

[
T T̄i
0 Ti

]
and Y =

[
Y 0
... Yi

]

• the size of Yi is m-by-n/k

• the size of Ti is n/k-by-n/k

• the size of T̄i is in/k-by-n/k

We calculate the costs of each recursive level of 2.5D-QR using these matrix sizes,

• in the base-case, the cost of TSQR is given by Lemma 6.4.2

O
(
γ ·mn2/p+ β · n2 log(p) + ν · (n3 log(p) +mn2/p)/

√
M̂ + α · log(p)

)
.

• line 5 requires three multiplications which should be done right-to-left for a total cost of
(using Theorem 4.4.2)

O

(
γ · imn

2

k2p
+ β ·

(
imn

kp
+

imn2

k2p ·
√
M

+

(
imn2

k2p

)2/3
)

+ ν ·

(
imn2

k2p ·
√
M̂

)
+ α ·

(
imn2

k2p ·M3/2

))
,

we obtain the cost of this line over all iterations by summing over the k iterations

O

(
γ · mn

2

p
+ β ·

(
kmn

p
+

mn2

p ·
√
M

+ k1/3

(
mn2

p

)2/3
)

+ ν ·

(
mn2

p ·
√
M̂

)
+ α ·

(
mn2

p ·M3/2

))
.

CHAPTER 6. QR FACTORIZATION 108

If we keep Y replicated throughout the k iterations we do not incur the factor of k1/3 on
the third interprocessor bandwidth term, instead achieving the cost of doing a single n-by-m
times m-by-n parallel matrix multiplication. However, if the matrix does not fit in cache
M̂ < mn/p2(1−δ), we still incur a memory bandwidth cost with this extra factor, yielding an
overall cost of

O

(
γ · mn

2

p
+ β ·

(
kmn

p
+

mn2

p ·
√
M

+

(
mn2

p

)2/3
)

+ ν ·

(
mn2

p ·
√
M̂

+ k1/3

(
mn2

p

)2/3
)

+ α ·
(

mn2

p ·M3/2

))
,

if the whole computation fits in cache, namely M̂ > mn/p2(1−δ) we can keep Y in cache
throughout multiple iterations, yielding the cost

O

(
γ · mn

2

p
+ β ·

(
kmn

p
+

mn2

p ·
√
M

+

(
mn2

p

)2/3
)

+ ν ·

(
mn2

p ·
√
M̂

)
+ α ·

(
mn2

p ·M3/2

))
.

Keeping Y replicated in this fashion is valuable if we want to pick k = pζ−1/2 rather than a
constant.

• line 7 requires three matrix multiplication of the same or smaller cost as the rightmost mul-
tiplication of line 5, so the asymptotic cost is the same.

Therefore, the complete cost recurrence for the algorithm is

T2.5D−QR(p,m, n, k, ζ) =k · T2.5D−QR(p/kζ ,m, n/k, k)

+O

(
γ · mn

2

p
+ β ·

[
kmn

p
+

mn2

p ·
√
M

+

(
mn2

p

)2/3]

+ ν ·
[

mn2

p ·
√
M̂

+ k1/3

(
mn2

p

)2/3]
+ α ·

(
mn2

p ·M3/2

))

with the base case

T2.5D−QR(p,m,m/p, k, ζ) = O

(
γ ·m3/p3 + β ·m2 log(p)/p2

+ ν ·m3 log(p)/(p3 ·
√
M̂) + α · log(p)

)

CHAPTER 6. QR FACTORIZATION 109

If M > mn/
(

n
p1−δqδ−1

)2

, we now select ζ = (1 − δ)/δ, which implies that δ = 1/(1 + ζ). In

order to avoid a log(p) factor on the bandwidth cost which arises when δ = 1
2

and ζ = 1 as the cost
β mn2

p·
√
M

stays the same at each recursive level, we restrict δ ∈ (1/2, 2/3], which means ζ < 1 and
implies that the cost of the aforementioned term decreases geometrically with each recursive level.
Further, we pick k to be a constant, e.g. 4. For a m-by-n with q0 = m/n matrix starting with p0

processors the recursion continues until reaching the base case problems of configuration

T2.5D−QR(pδ0q
1−δ
0 ,m,m/(pδ0q

1−δ
0), k, ζ)

There are log((p/q)δ) levels andO((p/q)δ) subproblems on the last level. The term β·k1/3
(
mn2

p

)2/3

is amplified at each recursive level by a factor of

k ·
(

1/k2

1/kζ

)2/3

= k1+2/3(ζ−2) = k(1/3)(2ζ−1) = k(1/3)(2(1−δ)/δ−1) = k2/3δ−1.

Therefore, at the last level the term is amplified to

β · klog((p/q)δ)(2/3δ−1) ·
(
mn2

p

)2/3

= β · (p/q)2/3−δ ·
(
mn2

p

)2/3

= β · mn

pδq1−δ .

At the base case, we note that the base case term β ·m2 log(p)/p2 is greater than mn
pδq1−δ

by a factor
of log(p) when q = p (in which case there would be only one level of recursion). However, we
have restricted q ≤ p/ log(p), and we now show that this is sufficient for the base-case term to
become low order. We have that the recursive term is amplified to at least

mn

pδq1−δ ≥
mn

pδ(p/ log(p))1−δ =
mn

p
log(p)1−δ

=
m2

pq
log(p)1−δ ≥ m2

p2
log(p)2−δ,

since log(p)2−δ > log(p) the recursive term always dominates the base-case term, so we can omit

the log(p) factor from the interprocessor bandwidth cost. Therefore, given M >
(

n
p1−δqδ−1

)2

for
δ ∈ (1/2, 2/3] the overall cost is

T2.5D−QR(m,n, p, M̂ , δ) = O

(
γ ·mn2/p+ β · mn

pδq1−δ + ν · mn2

p ·
√
M̂

+ α · (p/q)δ log(p)

)
,

= O

(
γ ·mn2/p+ β · m

δn2−δ

pδ
+ ν · mn2

p ·
√
M̂

+ α ·
(np
m

)δ
log(p)

)
,

CHAPTER 6. QR FACTORIZATION 110

alternatively, we can rewrite this for mn/p < M < (n/p1−δqδ−1)2 as,

T2.5D−QR(m,n, p, M̂ , δ) = O

(
γ ·mn2/p+ β ·

(
mn2

p ·
√
M

)
+ ν · mn2

p ·
√
M̂

+ α · p
√
M

m
log(p)

)
.

111

Chapter 7

Computing the Eigenvalues of a Symmetric
Matrix

We study algorithms for computation of the eigenvalue decomposition of a real symmetric ma-
trix A = QDQT where Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. The
most efficient general approaches for solving this problem reduceA via orthogonal transformations
to a tridiagonal matrix with the same eigenvalues, then employ a tridiagonal eigensolver algorithm
to compute the eigenvalues of the tridiagonal matrix. The eigenvectors may be constructed by
applying the orthogonal transformations backwards. We focus on computing the eigenvalues of
the symmetric matrix and do not give algorithms for performing the orthogonal transformations
needed to compute the eigenvectors. However, we note when our new algorithms require more
work to perform the back-transformations needed to compute the eigenvectors.

A key motivation for distributed-memory parallelization of symmetric eigenvalue algorithms is
their utility for electronic structure calculations. The most common numerical schemes employed
in these methods are Hartree Fock (HF) [76, 60], which is also known as the Self-Consistent Field
(SCF) iterative procedure. At each iteration of SCF, it is necessary to compute the eigendecom-
position of dense symmetric matrix. Not only do HF and post-HF methods (e.g. Møller-Plesset
perturbation theory [118] and the coupled-cluster method [166]) employ symmetric eigensolvers,
but the commonly-used cheaper alternative, Density Functional Theory (DFT) [100, 83] also usu-
ally requires a symmetric eigensolve at each iteration, which is leading order in cost (although a
number of alternative DFT adaptations which avoid solving the full eigenproblem exist [61]). Effi-
cient parallelization of these methods requires fast parallel calculation of the symmetric eigenvalue
decomposition of matrices that are often not very large, so that strong scaling (solving problems
faster with more processors) is a key demand.

The computation of the eigenvalues of the tridiagonal matrix can be done in O(n2) work for
a matrix with dimension n via QR or bisection [127] or the MRRR algorithm if eigenvectors are
also desired [51]. The cost of the eigenvalue computation is therefore typically dominated by

This chapter is based on joint work with Grey Ballard and Nicholas Knight.

CHAPTER 7. COMPUTING THE EIGENVALUES OF A SYMMETRIC MATRIX 112

the reduction from dense to tridiagonal form. It has been further noted that in order to do the
full to tridiagonal reduction with good memory-bandwidth efficiency (in either the sequential or
parallel case), the matrix should first be reduced to banded form [6, 12]. Once in banded form,
the matrix can be reduced efficiently to tridiagonal form via a technique known as successive band
reduction [13]. We review this recent work in Section 7.1.

Our work aims to extend algorithms for the symmetric eigensolver to achieve the same com-
munication costs as 2.5D LU and 2.5D QR. We give an algorithm that lowers the interprocessor
bandwidth cost in this manner by a factor of up to p1/6 in Section 7.2. The algorithm reduces the
band width of the symmetric matrix (we will refer to the width of the band in a banded matrix as
“band width" to disambiguate from communication bandwidth cost) to a small band in a single
step, which requires minimal interprocessor communication asymptotically. The resulting band
width of the banded matrix is small enough for the banded to tridiagonal step to be done locally on
one processor or via a parallel successive band reduction technique such as those given by [6, 13].
However, when the locally-owned chunk of the full dense matrix does not fit into cache, the algo-
rithm presented in Section 7.2 incurs a higher memory-bandwidth cost than standard (previously
known) approaches.

The 2.5D successive band reduction algorithm in Section 7.3 alleviates the memory-bandwidth
overhead of the algorithm in Section 7.2. The 2.5D successive band reduction algorithm lowers the
band size of the matrix from n (full) successively by a parameterized factor. To achieve the full 3D
p1/6 reduction in both the interprocessor communication and memory-bandwidth communication
costs with a small cache size, a factor of log(n) band reduction stages are required by the 2.5D
successive band reduction algorithm. However, the algorithm can take fewer steps to achieve
a smaller communication cost reduction (which may be optimal due to memory constraints), as
well as when the cache size is enough to store a matrix with a large-enough band width. The
2.5D successive band reduction algorithm is in effect a generalization of both the successive band
reduction approaches [6, 13] that does less communication as well as a generalization of the 2.5D
one-step full-to-banded reduction algorithm (Section 7.2) that is more cache-efficient.

The rest of this section is organized as follows

• Section 7.1 reviews relevant previous work on algorithms for the symmetric eigenvalue prob-
lem,

• Section 7.2 gives a 2.5D algorithm for reduction from a fully dense matrix to a banded matrix
in optimal interprocessor bandwidth cost,

• Section 7.3 presents a 2.5D successive band reduction algorithm, which reduces a matrix to
banded form with optimal interprocessor communication and memory-bandwidth costs, but
requires more computation to obtain the eigenvectors.

CHAPTER 7. COMPUTING THE EIGENVALUES OF A SYMMETRIC MATRIX 113

7.1 Previous Work
Algorithms for blocked computation of the eigenvalue decomposition of a symmetric matrix via
a tridiagonal matrix were studied by [53, 54, 91]. These algorithms reduce the symmetric ma-
trix to tridiagonal (or banded) form via a series of n/b blocked Householder transformations of b
Householder vectors,

A = Q1 · · ·QkDQ
T
k · · ·QT

1 ,

where each Qi = (I − Y1TiY
T
i). A key property employed by these algorithms is that each two-

sided trailing matrix update of blocked Householder transformations may be done as a rank-2b
symmetric update on the symmetric matrix Ā,

QT ĀQ =(I − Y T TY T)Ā(I − Y TY T)

=Ā− Y T TY T Ā− ĀY TY T + Y T TY T ĀY TY T

=Ā− Y T T (Y T Ā)− (ĀY)TY T +
1

2
Y T T (Y T ĀY TY T) +

1

2
(Y T TY T ĀY)TY T

=Ā+ Y T T
(

1

2
Y T ĀY TY T − Y T Ā

)
+

(
1

2
Y T TY T ĀY − ĀY

)
TY T

=Ā+ UV T + V UT ,

where U ≡ Y T T and V ≡ 1
2
Y T TY T ĀY − ĀY = 1

2
UY TW −W where W = AY . This form

of the update is cheaper to compute than the explicit two-sided update and is easy to aggregate
by appending additional vectors (to aggregate the Householder form itself requires computing a
larger T matrix). Since the trailing matrix update does not have to be applied immediately, but
only to the columns which are factorized, this two-sided updated can also be aggregated and used
in a left-looking algorithm. For instance, if Ā is an updated version of A meaning Ā = A +
Ū V̄ T + V̄ ŪT , we could delay the computation of the update to A (not form Ā) and instead employ
A + Ū V̄ T + V̄ ŪT in explicit form in place of Ā during the eigensolver computation. So, when
computing Vi, which requires multiplication of a tall-and-skinny matrix by Ā, we could instead
multiply by A + Ū V̄ T + V̄ ŪT where Ū and V̄ are the aggregated transformations corresponding
to the concatenation of all Uj and Vj for j ∈ [1, i− 1]. Early approaches used such left-looking
aggregation with b = 1, reducing the symmetric matrix directly to tridiagonal form [53].

However, there are disadvantages to reducing the symmetric matrix directly to tridiagonal form,
since it requires that a vector be multiplied by the trailing matrix for each computation of Vi of
which there are n − 1. This requires O(n) synchronizations and also considerable vertical data
movement (memory-bandwidth cost) if the trailing matrix does not fit into cache as then it needs
to be read in for each matrix column (update). These disadvantages motivated approaches where
the matrix is not reduced directly to tridiagonal form, but rather to banded form, which allows
for b > 1 Householder vectors to be computed via QR at each step without needing to touch the
trailing matrix from within the QR. After such a reduction to banded form, it is then necessary to
reduce the banded matrix to tridiagonal form, which is often cheaper because the trailing matrix
is banded and therefore smaller in memory footprint than the trailing matrix in the full-to-banded

CHAPTER 7. COMPUTING THE EIGENVALUES OF A SYMMETRIC MATRIX 114

reduction step. This multi-stage reduction approach was introduced by Bischof et al. [26, 25] with
the aim of achieving BLAS 3 reuse. ELPA [6] implements this approach in the parallel setting
with the primary motivation of reducing memory-bandwidth cost. ELPA also employs the parallel
banded-to-tridiagonal algorithm introduced by Lang [106]. Lang’s algorithms reduces the banded
matrix to tridiagonal form directly, but it is also possible to perform more stages of reduction,
reducing the matrix to more intermediate bandwidths. Performing more stages of successive band
reduction can improve the synchronization cost of the overall approach, from O(n) as needed by
Lang’s approach, to O(

√
p) as shown by [13].

Our work leverages the ideas of update aggregation, left-looking algorithms, and multi-stage
band reduction in order to achieve a 2.5D symmetric eigenvalue computation algorithm with com-
munication costs not asymptotically greater (modulo O(log(p)) factors) than those of 2.5D QR
(Section 6.4.4).

7.2 Direct Symmetric-to-Banded Reduction
Algorithm 7.2.1 (2.5D Symmetric Eigensolver) reduces a symmetric n-by-n matrix A directly
to band width b using replication of data and aggregation aiming to achieve an interprocessor
communication cost of

W = O(n2/
√
cp) = O(n2/pδ),

when the amount of available memory on each processor is

M = Θ(cn2/p) = O(n2/p2(1−δ)).

As in Section 6.4, we will employ the parameter δ ∈ [1/2, 2/3] rather than c ∈ [1, p1/3], as it is
more convenient in the forthcoming analysis. The algorithm replicates the matrixA and aggregates
as well as replicates the updates U (0) and V (0) over c = p2δ−1 groups of p/c = p2(1−δ) processors
each. The algorithm is left looking, and so updates the next matrix panel (line 6) immediately
prior to performing the QR of the panel. Each group of p2(1−δ) processors in Algorithm 7.2.1
should be arranged in a p1−δ-by-p1−δ processor grid, but we avoid discussing the details of how
the multiplications are scheduled until the cost analysis. Throughout Algorithm 7.2.1 we also use
the convention that for any m ≥ n ≥ 1, m-by-n matrix X1 is lower triangular and (m − n)-by-k
matrix X2 is lower triangular, we write their concatenation in short form as

[X1, X2] ≡

[
X1 0
... X2

]
.

Further given trapezoidalX = [X0, X1] whereX0 ism-by-l and dense andX1 is as beforem-by-n
and lower triangular, we similarly abbreviate

[X,X2] ≡

[
X 0
... X2

]
.

CHAPTER 7. COMPUTING THE EIGENVALUES OF A SYMMETRIC MATRIX 115

Algorithm 7.2.1 [U, V,B]← 2.5D-SE(A,U (0), V (0),Π, b)

Require: Let Π be a set of p processors, define Π̂ ⊂ Π be a group of pδ processors. Let A be
a n-by-n symmetric matrix. Let U (0) and V (0) be n-by-m matrices that are trapezoidal (zero
in top right upper b-by-b triangle). Let A, U (0), and V (0) be replicated over p2δ−1 subsets of
p2(1−δ) processors.

1: if n ≤ b then
2: Compute B = A− U (0)V (0)T + V (0)U (0)T

3: Return [{}, {}, B]

4: Subdivide A =

[
A11 AT21

A21 A22

]
where A11 is b-by-b

5: Subdivide U (0) =

[
U

(0)
1

U
(0)
2

]
and V (0) =

[
V

(0)
1

V
(0)

2

]
where U (0)

1 and V (0)
1 are b-by-m

6: Compute
[
Ā11

Ā21

]
=

[
A11

A21

]
+ U (0)V

(0)
1

T
+ V (0)U

(0)
1

T

7: % Compute QR using TSQR algorithm (see Lemma 6.4.2)
8: [Y, T,R]← TSQR(Ā21, Π̂)

9: Compute W = (A22 + U (0)V (0)T + V (0)U (0)T)Y
10: Compute U1 = Y T T

11: Compute V1 = 1
2
U1Y

TW −W
12: Replicate U1 and V1 over p2δ−1 subsets of p2(1−δ) processors
13: % Recursively reduce the trailing matrix to banded form
14: [U2, V2, B2] = 2.5D-SE(A22, [U

(0)
2 , U1], [V

(0)
2 , V1],Π, b)

15: B =

Ā11 RT 0
R B2 . . .

0
... . . .

 , U = [U1, U2], V = [V1, V2]

Ensure: B is a banded n-by-n matrix with band width b, U and V are lower-triangular (n − b)-
by-(n− b) matrices, and B = A+ [U (0), U] · [V (0), V]T + [V (0), V] · [U (0), U]T

Algorithm 7.2.1 computes the update correctly since

V =
1

2
UY TW −W =

1

2
Y T TY TAY − AY

is the aggregated update derived in Section 7.1. The correctness follows in general by the ensured
condition on the result of the tail recursion, which performs the update and factorization of the
trailing matrix. In the base case, the matrix dimension is less than or equal to the desired matrix
band width, which means it suffices to perform the aggregated update and return the result, which
would appear in the lower right subblock of the full banded matrix. We state and prove the costs
of Algorithm 7.2.1 (for the full symmetric eigenvalue problem, with the band width of B picked
in the proof) in Theorem 7.2.1.

CHAPTER 7. COMPUTING THE EIGENVALUES OF A SYMMETRIC MATRIX 116

Theorem 7.2.1. On a parallel homogeneous machine with p processors, each with local memory
M > 3n2/p2(1−δ), for δ ∈ [1/2, 2/3], and any cache size 1 � M̂ ≤ M , Algorithm 7.2.1 can be
used to compute the eigenvalues of any n-by-n matrix A with time complexity

T 2.5D−SE(n, p, δ, M̂) = O

(
γ · n

3

p
+ β · n

2

pδ
+ ν ·

[
n2

p2−3δ
log(p) +

n3

p
√
M̂

]
+ α · pδ log2(p)

)
.

Further, when M̂ > 3n2/p2(1−δ) (all intermediates fit into cache), the algorithm can be executed
in time

T2.5D−SE(n, p, δ, M̂) = O

(
γ · n3/p+ β · n

2

pδ
+ ν · n3

p
√
M̂

+ α · pδ log2(p)

)
.

Proof. We consider the costs within each recursive step of Algorithm 7.2.1. We note that the
dimensions of A, U (0) and V (0) will always be less than the dimension of the original matrix n and
analyze the cost of each recursive step with n being the dimension of the original matrix (rather
than the smaller dimension of the trailing matrix).

• The update to the trailing matrix update done on line 6 of Algorithm 7.2.1 requires two mul-
tiplications of an O(n)-by-O(n) matrix by a O(n)-by-b matrix. Since the matrices U (0) and
V (0) are replicated over p2δ−1 groups of p2(1−δ) processors, by application of Lemma 4.4.3
the cost of this step is, if U (0) and V (0) start in cache,

O

(
γ · n

2b

p
+ β · nb

pδ
+ α · log(p)

)
,

and in general (for any cache size),

O

(
γ · n

2b

p
+ β · nb

pδ
+ ν ·

[
n2

p2(1−δ) +
n2b

p
√
M̂

]
+ α · log(p)

)
.

• The cost of a O(n)-by-b TSQR done on line 8 using pδ processors is given by Lemma 6.4.2

O

(
γ ·
[
nb2/pδ + b3 log(p)

]
+ β · b2 log(p) + ν ·

[
b3 log(p) + nb2/pδ√

M̂
+
nb

p

]
+ α · log(p)

)
.

• Computing line 9, W = (A22 + U (0)V (0)T + V (0)U (0)T)Y , right-to-left requires 5 matrix
multiplications, namely

1. K1 = U (0)TY where U (0)T is O(n)-by-O(n) and Y is O(n)-by-b,

2. V (0)K1 where V (0) is O(n)-by-O(n) and K1 is O(n)-by-b,

CHAPTER 7. COMPUTING THE EIGENVALUES OF A SYMMETRIC MATRIX 117

3. K2 = V (0)TY where V (0)T is O(n)-by-O(n) and Y is O(n)-by-b,

4. U (0)K1 where U (0) is O(n)-by-O(n) and K1 is O(n)-by-b,

5. K3 = A22Y where A22 is O(n)-by-O(n) and Y is O(n)-by-b,

where the result is then W = K1 + K2 + K3. The additions are low order with respect to
the multiplications and each matrix multiplication is between an O(n)-by-O(n) matrix and
an O(n)-by-O(b) matrix. These can be done most efficiently by keeping A, U (0), and V (0)

in place and replicated (and if possible, in cache) and moving only Y and the intermediate.
Since the three matrices A, U (0), and V (0) all start replicated, we can apply Lemma 4.4.3
to obtain that when M̂ > 3n2/p2(1−δ) (and all three replicated matrices fit into cache), the
overall cost of line 9 is

O

(
γ · n

2b

p
+ β · nb

pδ
+ α · log(p)

)
,

and in the second scenario, when the cache is small (M̂ < 3n2/p2(1−δ)), the matrices A, U (0)

and V (0) need to be moved in and out of cache for each matrix multiplication, leading to the
cost

O

(
γ · n

2b

p
+ β · nb

pδ
+ ν ·

[
n2

p2(1−δ) +
n2b

p
√
M̂

]
+ α · log(p)

)
.

• Forming U and V is strictly less expensive than forming W , since these computations in-
volve only O(n)-by-b matrices. So the costs of these tasks contribute no additional cost
asymptotically.

• Replicating U and V over p2δ−1 subsets of p2(1−δ) processors costs

O
(
β ·
[
nb/p2(1−δ) + α · log(p)

])
.

The cost over all n/b recursive levels when all replicated matrices fit into cache (when M̂ >
3n2/p2(1−δ)) is

O

(
γ · n

3

p
+ β ·

[
nb log(p) +

n2

pδ

]
+ α · (n/b) log(p)

)
.

We want to maximize bwithout raising the communication bandwidth cost in order to lower latency
cost. We can pick b = n/(pδ log(p)) and obtain the desired costs,

O

(
γ · n

3

p
+ β · n

2

pδ
+ α · pδ log2(p)

)
.

In the second scenario (when M̂ < 3n2/p2(1−δ), the cost of the algorithm has a higher memory-
bandwidth factor

O

(
γ · n

3

p
+ β ·

[
nb log(p) +

n2

pδ

]
+ ν ·

[
n3/b

p2(1−δ) +
n3

p
√
M̂

]
+ α · (n/b) log(p)

)
.

CHAPTER 7. COMPUTING THE EIGENVALUES OF A SYMMETRIC MATRIX 118

Again picking b = n/(pδ log(p)) we obtain the cost

O

(
γ · n

3

p
+ β · n

2

pδ
+ ν ·

[
n2

p2−3δ
log(p) +

n3

p
√
M̂

]
+ α · pδ log2(p)

)
.

Computing the eigenvalues of the resulting banded matrix can be done with low-order cost by col-
lecting the matrix on one processor and reducing to tridiagonal form (then computing the eigen-
values of the tridiagonal matrix) sequentially. The reduction from band width b = n/(pδ log(p))
to tridiagonal can be done with low-order cost, although in practice using a parallel successive
band reduction algorithm [13] with pδ processors is likely preferrable and also attains the desired
costs.

When the matrix does not fit in cache, Algorithm 7.2.1 has a tradeoff between interprocessor
communication cost and memory bandwidth cost. For the the first term in the memory bandwidth
cost of the second scenario, n2

p2−3δ log(p), to be O(ν · n2/pδ), we need δ = 1/2, which is only true
in the 2D case. So, if the cache is small, as we increase delta, the interprocessor bandwidth cost
decreases while the memory-bandwidth cost increases. We note that in the 3D case, when δ = 2/3,
the memory-bandwidth cost term n3/b

p2(1−δ)
log(p) is O(ν · n2/pδ) only when the intermediate band

width is b = Ω(n). This motivates the use of of a successive band reduction approach that reduces
the band width by a constant factor at each level, which we present in the next section.

7.3 Successive Symmetric Band Reduction
Algorithm 7.3.1 (2.5D Successive Band Reduction) describes the QR factorizations and applica-
tions necessary to reduce a symmetric banded matrix A from band width b to band width bterm

via bulge chasing. The algorithm uses multiple stages of band reduction, reducing the band width
from b to b/k at each stage. At each stage, the algorithm eliminates nk/b trapezoidal panels each
of which gets chased O(n/b) times down the band. The number of stages is dependent on the
parameter k, which we later pick to be a constant. As we conjecture at the end of the proof, it
ought to be possible to extend the algorithm to efficiently handle k being proportional to p1−ζ ,
where ζ = (1 − δ)/δ, so ζ ∈ [1

2
, 1], which means that in the 3D case ζ = 1 and k would still

have to be a constant, but in the 2D case we could pick k =
√
p. Reducing the number of band

reduction stages, which shrinks as k grows with log(b)/ log(k), is particularly important if we also
desire to compute the eigenvectors, since the cost of the back-transformations scales linearly with
the number of band-reduction stages (each one costs O(n3) computational work). We leave this
extension and the consideration of eigenvector construction for future work and focus on attaining
the desired communication costs for computation of only the eigenvalues of the symmetric matrix.
We also restrict δ > 1/2 (ζ < 1) in order to efficiently employ the 2.5D QR algorithm from Sec-
tion 6.4.4. In the case of δ = 1/2, the regular 2D algorithm used by ELPA and ScaLAPACK attains
the desired communication costs and when combined with a synchronization-efficient successive
band reduction technique also attains the desired latency cost [13].

CHAPTER 7. COMPUTING THE EIGENVALUES OF A SYMMETRIC MATRIX 119

Algorithm 7.3.1 [B]← 2.5D-SBR(A,Π, k, ζ, bterm)

Require: Let k ≥ 2 and ζ ∈ [1
2
, 1). Let A be a banded symmetric matrix of dimension n with

band width b ≤ n. Assume n mod b ≡ 0 and b mod k ≡ 0. Let Π be a set of p̄ processors,
define Π̂j ⊂ Π be the jth group of p̂ ≡ p̄ · (b/n) processors for j ∈ [1, n/b].

1: Set B = A
2: if b ≤ bterm then Return B.
3: Initialize Û = ∅ and V̂ = ∅
4: Let B[(j − 1)b + 1 : jb , (j − 1)b + 1 : jb] be replicated in Π̂j over (bp̄/n)2δ−1 subsets of

(bp̄/n)2(1−δ) processors.
5: % Iterate over panels of B
6: for i = 1 : kn/b do
7: % Π̂j applies jth chase of bulge i as soon as Π̂j−1 executes the (j − 1)th chase
8: for j = 1 : b(n− ib/k − 1)/bc do
9: % Define offsets for bulge block

10: Let oblg = (j + i/k)b
11: if j = 1 then oqr = b/k
12: else oqr = b

13: % Define index ranges needed for bulge chase
14: nrow = min(n− oblg, 2b− b/k)
15: ncol = min(n− oblg + oqr − b/k, 3b− b/k)
16: Iqr.rs = {oblg + 1 : oblg + nrow}
17: Iqr.cs = {oblg − oqr + 1 : oblg − oqr + b/k}
18: Iup.rs = {oqr − b/k + 1 : oqr − b/k + nrow}
19: Iup.cs = {oblg − oqr + b/k + 1 : oblg − oqr + b/k + ncol}
20: % Perform a rectangular 2.5D QR (Algorithm 6.4.1)
21: [Y, T,R]← 2.5D-QR(B[Iqr.rs, Iqr.cs])

22: B[Iqr.rs, Iqr.cs] =

[
R
0

]
, B[Iqr.cs, Iqr.rs] =

[
R
0

]T
23: Compute U = Y T T

24: Compute W = −B[Iup.cs, Iqr.rs]Y , set V = −W
25: Compute V [Iup.rs, :] = V [Iup.rs, :] + 1

2
UY TW [Iup.rs, :]

26: Compute B[Iqr.rs, Iup.cs] = B[Iqr.rs, Iup.cs] + UV T

27: Compute B[Iup.cs, Iqr.rs] = B[Iup.cs, Iqr.rs] + V UT

28: % Perform tail-recursion call to reduce matrix from band width b/k to bterm using a fraction
of the processors

29: Let Π̄ ⊂ Π be a group of p̄/kζ processors
30: [B]← 2.5D-SBR(B, Π̄, k, ζ, bterm)
Ensure: B is a banded matrix with band width less than bterm and the same eigenvalues as A

CHAPTER 7. COMPUTING THE EIGENVALUES OF A SYMMETRIC MATRIX 120

Theorem 7.3.1. On a parallel homogeneous machine with p processors, each with local memory
M > 3n2/p2(1−δ), for δ ∈ (1/2, 2/3], and any cache size 1 � M̂ ≤ M , Algorithm 7.3.1 can be
used to compute the eigenvalues of any n× n symmetric matrix A with time complexity

T2.5D−SBR(n, p, δ, M̂) = O

(
γ · n3/p+ β · n

2

pδ
log(p) + ν · n3

p
√
M̂

+ α · pδ log2(p)

)
.

Proof. Since by assumption M > n2/p2(1−δ) and each recursive step reduces the number of pro-
cessors by a factor of kζ and the matrix band width by a factor of k, at every recursive level l it
will always be the case that M > b2/p̂2(1−δ) since

b2

p̂2(1−δ) =
b2

(p̄b/n)2(1−δ) =
(n/kl)2

[(p/klζ)(n/kl)/n]2(1−δ)

=
n2

[kl/(1−δ)k−lδ/(1−δ)k−lp]
2(1−δ) =

n2

p2(1−δ) .

The cost of each inner loop iteration (loop on line 8 can be derived from the costs of the matrix
multiplications and QR done inside it. Each iteration of the inner loop ((i, j) iteration starting on
line 8 in Algorithm 7.3.1) incurs the following costs (in the following analysis we ignore the fact
that the matrices may be smaller in the last iteration of the loop over j)

• The multiplication needed to form U = Y T T on line 23 is of a (2b− b/k)-by-b/k matrix Y
and a b/k-by-b/k matrix T . The cost of this step is strictly less than that of the multiplication
on line 24 where Y is multiplied by a (3b− b/k)-by-(2b− b/k) matrix.

• The multiplication needed to form W = B[Iup.cs, Iqr.rs]Y on line 24 is of a (3b − b/k)-by-
(b− b/k) matrix B[Iup.cs, Iqr.rs] and a (b− b/k)-by-b/k matrix Y . By Lemma 4.4.2 the cost
of this multiplication is

O

(
γ · b

3

kp̂
+ β ·

[
b2

p̂
+

b3

kp̂
√
M

+
b2

k2/3p̂2/3

]
+ ν · b3

kp̂
√
M̂

+ α ·
[

b3

kp̂ ·M3/2
+ log(p)

])
.

Since M > b2/p̂2(1−δ), this cost may be upper-bounded as

O

(
γ · b

3

kp̂
+ β · b

2

p̂δ
+ ν · b3

kp̂
√
M̂

+ α ·
[
p̂2−3δ

k
+ log(p̂)

])
.

• The multiplications needed to compute 1
2
UY TW [Iup.rs, :] (line 25) can be done right to left

by first forming Z = Y TW [Iup.rs, :] then UZ. Forming Z requires a multiplication of a
b/k-by-(b − b/k) matrix Y T and a (b − b/k)-by-b/k matrix W [Iup.rs, :] into a b/k-by-b/k
matrix Z. The cost of this multiplication is strictly cheaper than the one needed to compute
W . The second multiplication needed is U · Z and is again low-order since U is b-by-b/k
and Z is b/k-by-b/k.

CHAPTER 7. COMPUTING THE EIGENVALUES OF A SYMMETRIC MATRIX 121

• The trailing matrix updates on line 26 and on line 27 require two multiplications UV T and
V UT whose operands are (3b−b/k)-by-b/k and b/k-by-(b−b/k) matrices into a (3b−b/k)-
by-(b− b/k) matrix (or transposes of these). Lemma 4.4.2 again applies here and yields an
asymptotically equivalent cost to the computation of W .

• The cost of the 2.5D-QR of the (b− b/k)-by-b/k matrix B[Iqr.rs, Iqr.cs] performed on line 21
with p̂ processors is by Lemma 6.4.4 for δ ∈ (1/2, 2/3],

O

(
γ · b

3

k2p̂
+ β · b2

k2−δp̂δ
+ ν · b3

k2p̂ ·
√
M̂

+ α · p̂δ log(p̂)

)
.

The overall cost for each iteration of Algorithm 7.3.1 is the sum of the two different costs above,
which with low order terms discarded is

O

(
γ · b

3

kp̂
+ β · b

2

p̂δ
+ ν · b3

kp̂
√
M̂

+ α · p̂δ log(p̂)

)
.

For a given outer loop (line 6) iteration i, each j loop iteration (line 8) is done concurrently by
a different processor group. Therefore, along the critical path O(kn/b) inner loop iterations are
executed. Combining this with the tail recursion of 2.5D-SBR with a matrix B of band width b/k
and using p̄/kζ processors (line 30), the total cost of Algorithm 7.3.1 is

T 2.5D−SBR (n, p̄, δ, M̂ , b, k) = T2.5D−SBR(n, p̄/kζ , δ, M̂ , b/k, k)

+O

(
γ · nb

2

p̂
+ β · knb

p̂δ
+ ν · nb2

p̂
√
M̂

+ α · knp̂
δ

b
log(p̂)

)
,

plugging in p̂ = p̄b/n we obtain

T 2.5D−SBR (n, p̄, δ, M̂ , b, k) = T2.5D−SBR(n, p̄/kζ , δ, M̂ , b/k, k)

+O

(
γ · n

2b

p̄
+ β · k

1−δn1+δb1−δ

p̄δ
+ ν · n2b

p̄
√
M̂

+ α · kn
1−δp̄δ

b1−δ log(p̄)

)
,

after l levels of recursion starting from a n-by-n matrix with p processors and b = n/kl, each
subproblem has the cost

T 2.5D−SBR(n, p/klζ , δ, M̂ , n/kl, k) = T2.5D−SBR(n, p/k(l+1)ζ , δ, M̂ , n/kl+1, k)

+O

(
γ · n3

kl(1−ζ)p
+ β · n

2kl(δ−1)+lζδ+(1−δ)

pδ
+ ν · n3

kl(1−ζ)p
√
M̂

+ α · k1−δpδ

kl(δ−1)+lζδ
log(p)

)
.

Firstly, since δ > 1/2 and so ζ = (1 − δ)/δ < 1, the floating point cost decreases geometrically
at each level, and therefore is dominated by the top level. Now ζ = (1 − δ)/δ implies that

CHAPTER 7. COMPUTING THE EIGENVALUES OF A SYMMETRIC MATRIX 122

δ(1 + ζ) = 1 and further that kl(δ−1)+lζδ = 1. Therefore, the bandwidth and latency cost at every
one of O(log(p)) recursive levels stay the same and pick up a log(p) factor due to the number of
recursive levels,

T 2.5D−SBR(n, p, δ, M̂ , n, k) = O

(
γ · n

3

p
+ β · k

1−δn2

pδ
log(p) + ν · n3

p
√
M̂

+ α · k1−δpδ log2(p)

)
.

We can now attain the desired costs by picking k to be a constant (e.g. 2),

T 2.5D−SBR(n, p, δ, M̂ , n, 2) = O

(
γ · n

3

p
+ β · n

2

pδ
log(p) + ν · n3

p
√
M̂

+ α · pδ log2(p)

)
.

The cost given in the statement theorem has two fewer parameters,

T2.5D−SBR(n, p, δ, M̂) = T2.5D−SBR(n, p, δ, M̂ , n, 2).

We conjecture that it is possible to extend the algorithm in a way that achieves good asymp-
totic communication costs when k is not a constant when δ < 2/3. One approach to achieving
this would be to integrate the left-looking aggregation idea used in Algorithm 7.2.1 into Algo-
rithm 7.3.1. The updates to each bulge should be aggregated up to the band width b of the matrix
A as U (0) and V (0) in Algorithm 7.2.1 and applied only thereafter (or once a panel must be fac-
torized). This optimization would reduce the communication costs associated with the inner loop
multiplications that involve b-by-b matrices, as these matrices could be kept replicated between
different inner loop iterations. When δ = 1/2, it should then be possible to pick k =

√
p and

reduce Algorithm 7.3.1 into Algorithm 7.2.1 with b = n/
√
p. However, the analysis of this algo-

rithm would be somewhat more complicated since the bulge chased by processor group j on the
i+ 1th iteration of the outer loop is shifted by b/k from the bulge on the ith iteration, so a portion
of the replicated matrix within each processor group would need to be shifted between processor
groups.

123

Chapter 8

Sparse Iterative Methods

We now consider sparse numerical linear algebra computations, which are typically dominated
by repeated sparse matrix-vector multiplications. Krylov subspace methods are a large class of
iterative methods which, given a sparse matrix A and a vector x(0), employ such repeated sparse
matrix-vector products to construct a an s-step Krylov (subspace) basis, {x(0), Ax(0), . . . , Asx(0)}.
This construction is interleaved with operations which use the Krylov basis to iteratively solve
eigenvalue-type problems or systems of equations. In this chapter, we do not consider more gen-
eral bases such as polynomial in A given by three-term recurrences While these methods achieve
good asymptotic scalability with respect to problem size by preserving sparsity, the amount of
data reuse which these algorithms can exploit is limited (especially when only a single vector is
being multiplied repeatedly) with respect to the dense linear algebra algorithms. One technique
that remedies this lack of data-reuse is performing blocking across sparse matrix-vector products
rather than doing each one in sequence [90, 109, 49, 154]. While this technique reduces synchro-
nization and memory-bandwidth cost [116], it usually requires extra interprocessor communication
costs [49]. In this chapter, we introduce the dependency graphs of Krylov basis computations and
apply our lower bound techniques to derive tradeoffs between synchronization cost and the costs
of computation and interprocessor communication.

In particular, we employ the path-expansion-based tradeoff lower bounds derived in Chapter 3
to demonstrate that an s-step Krylov basis computation with a (2m + 1)d point stencil must incur
the following computation F , communication W , and synchronization S costs:

FKr · SdKr = Ω
(
m2d · sd+1

)
, WKr · Sd−1

Kr = Ω
(
md · sd

)
.

These lower bounds are not dependent on the number of processors or the global problem size,
but only on the path expansion properties of the dependency graph. They signify that in order to
reduce synchronization cost below s, a certain amount of work and communication needs to be
done along the critical path. The communication tradeoff occurs only for meshes of dimension
two or higher (d ≥ 2). We rigorously derive these bounds in Section 8.2.

This chapter is based on joint work with Erin Carson and Nicholas Knight [145].

CHAPTER 8. SPARSE ITERATIVE METHODS 124

These lower bounds are attained in the parallel (strong scaling) limit by known algorithms,
which we recall in Section 8.3. These algorithms can reduce synchronization cost, but at the
overhead of extra interprocessor communication cost. An additional advantage of these known al-
gorithms in the case when only Asx(0) is needed rather than the entire Krylov basis (as is often the
case in multigrid smoothers and preconditioners) is that they yield an improvement in memory-
bandwidth efficiency when the mesh entries assigned to each processor does not fit into cache.
We demonstrate in Section 8.4 that memory-bandwidth efficiency may be improved in an alterna-
tive manner that does not reduce synchronization cost, and does not incur an associated overhead
in interprocessor communication cost. However, the new algorithm incurs extra interprocessor
communication cost when the cache size is small. The algorithm has promising potential for the
scenario when the portion of the data owned by each processor is too large to fit completely in
cache, but only by some constant factor. In this case, the new algorithm can achieve asymptoti-
cally better cache reuse at the cost of a constant factor overhead in interprocessor communication
cost. This scenario is common for current hybrid supercomputer architectures, which use accel-
erators with a smaller local memory than that of the host CPU processor. If the mesh (vector x)
does not fit into the local memory of the accelerator, it may be sensible to use the technique in
Section 8.4 to lower the amount of data transfered between the accelerator and the CPU (i.e. over
the PCI connection).

The rest of this chapter is organized as follows

• Section 8.1 formally defines the Krylov subspace computations we consider and constructs
their dependency graphs,

• Section 8.2 derives lower bounds on tradeoffs between computation, communication, and
synchronization cost in Krylov subspace methods

• Section 8.3 reviews known algorithms which avoid synchronization and attain the stated
lower bounds,

• Section 8.4 presents a new algorithm that aims to achieve low interprocessor communication
efficiency as well as low memory-bandwidth cost.

8.1 Definition and Dependency Graphs of Krylov Basis
Computations

We consider the s-step Krylov basis computation

x(l) = A · x(l−1),

for l ∈ [1, s], x(0) given as input, andA is a sparse matrix corresponding to a (2m+1)d-point stencil
(with m ≥ 1), i.e., a d-dimensional n-by-· · · -by-n mesh T , where each entry in A represents an
interaction between vertices vi1,...,id , wj1,...,jd ∈ T , such that for k ∈ [1, d], ik, jk ∈ [1, n], |jk−ik| ≤

CHAPTER 8. SPARSE ITERATIVE METHODS 125

m. Thus, matrix A and vectors x(l), l ∈ [0, s], have dimension nd, and A has Θ(md) nonzeros
per row/column. Our interprocessor communication and synchronization bounds will apply both
when the entries of A are implicit and when they are explicit, but the memory bandwidth analysis
for the algorithms will assume that A is implicit. We also assume that s ≤ n/m (the lower
bound could also be applied to subsets of the computation with s′ = bn/mc). We note that
the dependency structure of this computation is analogous to direct force evaluations in particle
simulations and the Bellman-Ford shortest-paths algorithm, which may be expressed as sparse
matrix-vector multiplication, but on a different algebraic semiring.

We let GKr = (VKr, EKr) be the dependency graph of the s-step Krylov basis computation
defined above. We index the vertices VKr 3 vi1,...,id,l with d+ 1 coordinates, each corresponding to
the computation of an intermediate vector element x(l)

k for l ∈ [1, s] and k =
∑d

j=1(ij−1)nj−1 +1,
supposing the lexicographical ordering of [1, n]d. For each edge (vi1,...,id , wj1,...,jd) in T and each
l ∈ [1, s], there is an edge (vi1,...,id,l−1, wj1,...,jd,l) in EKr. By representing the computation of each
x

(l)
k as a single vertex, we have precluded the parallelization of themd scalar multiplications needed

to compute each such vertex (instead we simply have edges corresponding to these dependencies).
Accordingly, the computation costs we give subsequently will be scaled by md for each vertex
computed.

8.2 Communication Lower Bounds for Krylov Basis
Computation

We now extract a subset of GKr, and lower bound the execution cost of a load-balanced computa-
tion of this subset. Consider the following dependency path P ,

P = {v1,...,1,1, . . . , v1,...,1,s} .

The bubble ζ(GKr,P) = ĜKr = (V̂Kr, ÊKr) includes

V̂Kr =
{
vi1,...,id,id+1

: 1 ≤ id+1 ≤ s,

and ∀j ∈ [1, d], ij ≤ max(1,m ·min(id+1, s− id+1))
}
.

as well as all edges between these vertices ÊKr = (V̂Kr × V̂Kr) ∩ EKr. In the following theorem
we lower bound the communication and synchronization costs required to compute this subset of
the computation. The lower bound is independent of n (independent of the global problem size),
since we are only considering a subset. This lower bound is effectively a limit on the available
parallelism.

Theorem 8.2.1. Any execution of an s-step Krylov basis computation for a (2m+1)d-point stencil
for m ≥ 1 on a d-dimensional mesh with d� s, where some processor computes at most 1

x
of V̂Kr

and at least 1
q

of V̂Kr, for some 4 ≤ x ≤ q � s, requires the following computational, bandwidth,
and latency costs for some b ∈ [1, s],

FKr = Ω
(
m2d · bd · s

)
,WKr = Ω

(
md · bd−1 · s

)
, SKr = Ω (s/b) .

CHAPTER 8. SPARSE ITERATIVE METHODS 126

Figure 8.1: Depiction of the bubble (blue parallelogram) along a dependency path (top red path)
within a Krylov basis computation on a 1-dimensional mesh. Each vertex corresponds to a block
as defined in the proof of Theorem 8.2.1. Edges within the bubble are colored according to the
hypergraph edge to which they correspond in the constructed hypergraph, H ′.

and furthermore,

FKr · SdKr = Ω
(
m2d · sd+1

)
, WKr · Sd−1

Kr = Ω
(
md · sd

)
.

Proof. In the following analysis, we will discard factors of d, as we assume d� s (e.g., d is a con-
stant), which is reasonable for most problems of interest (d ∈ [2, 4]), but some assumptions in this
analysis may need to be revisited if lower bounds for Krylov computations on high-dimensional
meshes are desired.

Consider the dependency path P , which defines ĜKr, and any subpath R of P , where |R| =
r ≥ 3,

P = {v1,...,1,1, . . . , v1,...,1,s}
P ⊃ R = {v1,...,1,h+1, . . . , v1,...,1,h+r} .

The bubble ζ(ĜKr,R) = (Vζ , Eζ) includes

Vζ =
{
vi1,...,id,id+1

: h+ 1 ≤ id+1 ≤ h+ r,

and ∀j ∈ [1, d], ij ≤ max(1,m ·min(id+1 − h− 1, h+ r − id+1))
}
.

For each (u1, . . . , ud+1) ∈ [0, r − 3]d+1 (starting at 0 to simplify later transformations, and ending
at r − 3 as we exclude the two end-points of the path, since they are single vertices rather than
blocks), we define the following block of the vertices inside GKr

Bu1,...,ud+1
=
{
vi1,...,id+1

∈ VKr :

∀j ∈ [1, d], ij ∈ {dm/2euj + 1, . . . , dm/2e(uj + 1)}
id+1 = ud+1 + h+ 2

}
.

Thus, each block should contain dm/2ed vertices on the same level, ud+1. We note that because
the breadth of each block is dm/2e and the interaction distance (stencil radius) is m, every vertex
in Bu1,...,ud+1

depends on every vertex in By1,...,yd,ud+1−1 such that ∀i ∈ [1, d], |yi − ui| ≤ 1.

CHAPTER 8. SPARSE ITERATIVE METHODS 127

We now construct a DAG G′Kr = (V ′Kr, E
′
Kr) corresponding to the connectivity of (a subset of)

the blocks within the given bubble ζ(GKr,R), enumerating them on a lattice graph of dimension
d+ 1 and breadth g = b(r − 2)/(d+ 1)c. For each (ν1, . . . , νd+1) ∈ [0, g − 1]d+1 with ν1 ≤ ν2 ≤
. . . νd+1, we have a vertex in the lattice wν1,...,νd+1

∈ V ′Kr, which corresponds to block Bu1,...,ud+1
⊂

VKr, where for i ∈ [1, d], ui = νi+1 − νi and ud+1 =
∑d+1

j=1 νj . We first show that this mapping of
lattice vertices to blocks is unique, by considering any pair of two different vertices in the lattice:
wν1,...,νd+1

, wν′1,...,ν′d+1
∈ V ′Kr. If they map to the same block Bu1,...,ud+1

, they must have the same
ud+1, which implies that

∑d+1
j=1 νj =

∑d+1
j=1 ν

′
j . Consider the highest index j in which they differ,

max{j : νj − ν ′j 6= 0}, and assume without loss of generality that νj > ν ′j . Now if j = 1,
this is the only differing index, so the sum of the indices cannot be the same. Otherwise, since
uj−1 = νj − νj−1 = ν ′j − ν ′j−1, we must also have νj−1 > ν ′j−1, which further implies that for any
k ≤ j, νk > ν ′k, which implies that

∑d+1
j=1 νj >

∑d+1
j=1 ν

′
j , and is a contradiction. Therefore, the

mapping of lattice vertices to blocks is unique.
We now argue that the blocks corresponding to the lattice vertices of G′Kr have all their vertices

inside the bubble ζ(GKr,R). The first lattice vertex w0,...,0 = B0,...,0, since for i ∈ [1, d], ui =

νi+1 − νi = 0 and ud+1 =
∑d+1

j=1 νj = 0. So the first lattice vertex (block B0,...,0) contains the
following vertices of VKr,

B0,...,0 =
{
vi1,...,id+1

∈ VKr : ∀j ∈ [1, d], ij ∈ {1, . . . , dm/2e}, id+1 = h+ 2
}
,

all of these vertices are dependent on the first vertex in the path, v1,1,...,1,h+1.
Further, the last lattice vertex wg,...,g corresponds to B0,...,0,ud+1

with ud+1 ∈ [r − 2− d, r − 2],
since for i ∈ [1, d], ui = νi+1 − νi = 0 and

ud+1 =
d+1∑
j=1

νj = (d+ 1)g = (d+ 1)b(r − 2)/(d+ 1)c ∈ [r − 2− d, r − 2].

The set of vertices of VKr in this last in this last block are

B0,...,0,ud+1
=
{
vi1,...,id+1

∈ VKr : ∀j ∈ [1, d], ij ∈ {1, . . . , dm/2e}, id+1 = ud+1 + h+ 2
}
.

Since ud+1 +h+ 1 ≤ h+ r− 1, all of these vertices appear at least one level (value of index ud+1)
before the last vertex on the path R, which is v1,...,1,h+r. Further, since this last block contains
values at most m/2 away from the origin of the mesh ({i1, . . . , id} = {1, . . . , 1}), the last vertex
on the pathR, v1,...,1,h+r depends on all vertices in the last lattice vertex (block).

Each vertex wν1,...,νd+1
is connected to vertices wν1,...,νj+1,...,νd+1

for j ∈ [1, d+ 1] (so long as
either j = d + 1 and νd+1 ≤ g or j ≤ d and νj+1 > νj) by edges in E ′Kr, since if wν1,...,νd+1

corresponds toBu1,...,ud+1
then wν1,...,νj+1,...,νd+1

corresponds toBu1,...,uj−1+1,uj−1,...,ud,ud+1+1, which
is dependent on the former block. Therefore, for any lattice vertexwν1,...,νd+1

, there is a dependency
path in the lattice from the first lattice vertex w0,...,0 to wν1,...,νd+1

and a dependency path from
wν1,...,νd+1

to the last lattice vertex wg,...,g. Since the first lattice vertex is dependent on the origin
of the pathR and the last lattice vertex is a dependency of the last vertex on this path, this implies

CHAPTER 8. SPARSE ITERATIVE METHODS 128

that all lattice vertices (blocks) are part of the bubble ζ(GKr,R). We give a depiction of the lattice
of blocks in the bubble with d = 1 in Figure 8.1.

We transform G′Kr into a (d+ 1, d)-lattice hypergraph H ′ = (VH , EH) of breadth g, so that
for 4 ≤ x ≤ q � s, a 1

q
- 1
x
-balanced vertex separator of G′Kr is proportional to a 1

q
- 1
x
-balanced

hyperedge cut of H ′. We define VH = {wi1,...,id+1
∈ V ′Kr : i1 < i2 < · · · < id+1} (note that V ′Kr

included diagonals, but VH does not), and the hyperedges EH correspond to a unique member of a
disjoint partition of the edges in G′Kr. In particular, we define sets of hyperedges ei1,...,id ∈ EH for
i1, . . . , id ∈ [1, g] with i1 < · · · < id, to contain all wj1,...,jd+1

which satisfy j1 < · · · < jd+1 and
{i1, . . . , id} ⊂ {j1, . . . , jd+1}. Each of these hyperedges, ei1,...,id corresponds to vertices along an
edge-disjoint path within G′Kr,

yi1,...,id ⊂
i1−1⋃
k=1

(wk,i1,...,id , wk+1,i1,...,id)

∪
i2−1⋃
k=i1

(wi1,k,i2...,id , wi1,k+1,i2,...,id) ∪ · · ·

∪
g−1⋃
k=id

(wi1,...,id,k, wi1,...,id,k+1),

where each pair of vertices in the union corresponds to a unique edge in G′Kr. Because these
hyperedges correspond to disjoint subsets of E ′Kr, any 1

q
- 1
x
-balanced vertex separator of G′Kr can

be transformed into a 1
q
- 1
x
-balanced hyperedge cut of size no greater than d+ 1 times than the size

of some 1
q
- 1
x
-balanced vertex separator by application of Theorem 3.3.2, since the degree of any

vertex in H ′ is at most d+ 1 and since H ′ is a parent hypergraph of G′Kr.
Since the hypergraph H ′ is a (d+ 1, d)-lattice hypergraph of breadth g = b(|R| − 2)/(d +

1)c, by Theorem 3.3.1, its 1
q
- 1
x
-balanced hyperedge cut for 4 ≤ x ≤ q � s has size εq(H ′) =

Ω(gd/qd/(d+1)). Furthermore, since the 1
q
- 1
x
-balanced vertex separator of ζ(G′Kr,R) is at least

1
d+1

εq(H
′),

χq,x(ζ(G′Kr,R)) = Ω

(
gd

(d+ 1)qd/(d+1)

)
= Ω(|R|d),

where the last bound follows since we have d, x, q � s.
This lower bound on edge cut size in the block graph G′Kr allows us to obtain a lower bound on

the size of any 1
q
- 1
x
-balanced vertex separator of ĜKr that is larger by a factor of Ω(md). Consider

any 1
q
- 1
x
-balanced vertex separator of ĜKr that separates the vertices into three disjoint subsets, the

separator Q and the parts V1 and V2. If two vertices u, v ∈ V̂Kr are in two different parts (are of
different color), u ∈ V1 and v ∈ V2, and are in the same block, and all vertices in the d adjacent
blocks must have all their vertices entirely in Q, since all vertices in adjacent blocks in G′Kr are
adjacent to u and v in ĜKr. Therefore, the number of blocks which contain vertices of different
colors is less than |Q|/md and therefore small with respect to |V ′Kr|/q. Therefore, Q should yield

CHAPTER 8. SPARSE ITERATIVE METHODS 129

Ω(|V ′Kr|/q) blocks which contain vertices that are either in the separator or in V1, and similarly for
V2. Now, since two blocksB1 ⊂ (V1∪Q) andB2 ⊂ (V2∪Q) which contain non-separator vertices
of different color may not be adjacent, there must exist a separator block B3 ⊂ Q for any path
on the lattice between B1 and B2. Therefore, Q also induces a separator of G′Kr of size no larger
than |Q| · dm/2ed. So, we obtain the following lower bound on the size of a 1

q
- 1
x
-balanced vertex

separator of ĜKr: χq,x(ζ(ĜKr,R)) = Ω(md · χq,x(ζ(G′Kr,R))) = Ω(md|R|d).
Now, the bubble size is |Vζ | = Ω(md|R|d+1) and the total length of our main dependency

path in ĜKr is |P| = s. By Definition 4.1, ĜKr is a (ε, σ)-path-expander with ε(b) = mdbd and
σ(b) = mdbd+1. Therefore, by application of Theorem 3.4.1 with k = 3, we obtain the following
lower bounds (scaling by md the computation cost for each vertex), for some integer b ∈ [3, s],

FKr = Ω
(
m2d · bd · s

)
,WKr = Ω

(
md · bd−1 · s

)
, SKr = Ω (s/b) .

8.3 Previous Work on Krylov Basis Algorithms
Having established lower bounds for Krylov basis computations (defined in Section 8.1) in Sec-
tion 8.2, we now check their attainability. We first recall the costs of a known technique which at-
tains these bounds. In the case that the matrix A is implicitly represented, we propose an alternate
idea which improves memory-bandwidth efficiency while keeping interprocessor-bandwidth com-
munication cost low, albeit at the price of increasing network latency cost. We limit our analysis
to the case when only the last vector, x(s) is needed, although potentially the algorithms discussed
could be extended to the case where a Gram matrix, [x(0), . . . , x(s)]T · [x(0), . . . , x(s)] is needed via
recomputation of the Krylov vectors [33, 116].

A parallel communication-avoiding algorithm for computing a Krylov basis, termed ‘PA1’, is
presented in [49]. The idea of doing this type of blocking (or tiling) for stencil methods is much
older; see, e.g., [90, 109]. Computing an s-step Krylov basis with a (2m + 1)d-point stencil with
block size b ∈ [1, s] can be accomplished by ds/be invocations of PA1 with basis size parameter
b. For each invocation of PA1, every processor imports a volume of the mesh of size (n/p1/d +
bm)d and computes b sparse-matrix vector-multiplications on these mesh points without further
communication, updating a smaller set at each level so as to keep all the dependencies local. Over
s/b invocations of PA1, the computation cost, which includes md updates to the locally stored and
imported vertices, is given by

FPA1 = O
(
s ·md · (n/p1/d + b ·m)d

)
.

The communication cost of each PA1 invocation is proportional to the import volume, (n/p1/d +
bm)d, minus the part of the mesh that is initially owned locally, which is of size nd/p, so

WPA1 = O
(
(s/b) ·

(
(n/p1/d + b ·m)d − nd/p

))
.

CHAPTER 8. SPARSE ITERATIVE METHODS 130

Since at every invocation only one round of communication is done, the synchronization cost is

SPA1 = O(s/b),

so long as n/p1/d ≥ bm, which means the ghost (import) zones do not extend past the mesh points
owned by the nearest-neighbor processors in the processor grid (although the algorithm can be
extended to import data from processors further away with a proportionally higher synchronization
cost). When the problem assigned to each processor is large enough, i.e., n/p1/d � bm, the costs
for PA1 are

FPA1 = O
(
md · s · nd/p

)
, WPA1 = O

(
m · s · nd−1/p(d−1)/d

)
, SPA1 = O (s/b) .

However, in the strong scaling limit, n/p1/d = Θ(bm), the costs become dominated by

FPA1 = O
(
m2d · bd · s

)
, WPA1 = O

(
md · bd−1 · s

)
, SPA1 = O (s/b) ,

limiting the scalability of the algorithm. These costs of PA1 asymptotically match the lower bounds
and lower bound tradeoffs we proved in Theorem 8.2.1, demonstrating that the algorithm is optimal
in this scaling limit. We also remark that, strictly speaking, Theorem 8.2.1 does not apply to PA1
because PA1 performs redundant computation, which changes the dependency graph (albeit it is
only a constant factor more work when n/p1/d = Ω(bm)). However, we claim that PA1 can be
extended to avoid redundant computation altogether, avoiding the overlap between blocks using
a similar strategy to [154], with at most constant factor increases in bandwidth and latency, thus
showing that the lower bounds and tradeoffs can be attained without recomputation.

In addition to (interprocessor) latency savings, another advantage of executing PA1 with b > 1
is improved memory-bandwidth efficiency. For instance, assuming the matrix A is implicit and so
only the vector entries (mesh points rather than edges) need to be stored in cache, when b = 1 (this
standard case is referred to as ‘PA0’ in [49]), and when the local mesh chunk size nd/p > M̂ (as
well as n1/d/p� bm),

ŴPA0 = O(s · nd/p)

data is moved between main memory and cache throughout execution. This memory bandwidth
cost corresponds to O(md) cache reuse per local mesh point and can be much greater than the
interprocessor communication cost when m is small relative to n/p1/d. However, when PA1 is
executed with b > 1, an extra factor of b in cache reuse may be achieved, by computing up to bmd

updates to each mesh point loaded into cache, yielding a memory-bandwidth cost of

ŴPA1 = O

(
s · nd

b · p

)
,

for b ≤ M̂1/d. This may be accomplished via a second level of blocking, similar to PA1, except
with blocks sized to fit in cache, to minimize the number of transfers between cache and memory.
This two-level approach has been studied in [116] in a shared-memory context; see also [154] for
a related blocking approach. Analysis in [49] for the cases d ∈ [1, 3] show that cache-blocking can

CHAPTER 8. SPARSE ITERATIVE METHODS 131

reduce memory bandwidth by O(M̂1/d), attaining the lower bounds in [90], when n is sufficiently
large.

Noting that the memory-bandwidth cost of this computation can exceed the interprocessor-
bandwidth cost, we see that PA1 with larger b has lower synchronization cost SPA1 = O(s/b),
but higher interprocessor-bandwidth cost WPA1 = O(msnd−1/p(d−1)/d) (when d ≥ 2), and also
features a lower memory-bandwidth cost ŴPA1 = O(snd/(pb)). It is then natural to ask whether
there is a tradeoff (in a lower bound sense) between interprocessor and memory-bandwidth costs
in the computation, or if a different schedule exists, which achieves a low memory-bandwidth cost
without incurring the extra interprocessor-bandwidth cost from which PA1 suffers (when d ≥ 2).
If such a schedule with low or optimal interprocessor communication cost and memory bandwidth
cost existed, our lower bounds necessitate that it would have Ω(s) synchronizations. Indeed, such
a schedule exists and we introduce it in the following section.

8.4 A Communication-Efficient Schedule for Krylov Basis
Computation

Figure 8.2: Depiction of Algorithm 8.4.1 with b = 4, r = 4, and p = 2 to perform a Krylov basis
computation with n = 10, m = 2, d = 1, and s = 8. All the blue (dashed outline) blocks for each
of two levels (the first is labeled for l = 1 to l = 4) are computed prior to all the red (solid outline)
blocks, with the two subblocks composing each blue and red block being computed in parallel by
the two processors.

Algorithm 8.4.1 is a schedule for GKr = (VKr, EKr), which computes the vertices VKr for the
computation of x(s) from the input x(0) while satisfying the dependencies EKr. The algorithm
assumes the entries of A are implicit and so do not need to be stored in memory or cache. Algo-
rithm 8.4.1 also has three execution-related parameters:

• b, which is analogous to the parameter b for PA1 in the previous section, as it is the blocking
parameter on the (d + 1)th dimension (non-mesh dimension) of the iteration space which
ranges from 1 to s;

• r, which defines the side length of the mesh chunk each processor works on at a given time;

CHAPTER 8. SPARSE ITERATIVE METHODS 132

Figure 8.3: Work assignment and order of Algorithm 8.4.1 labelled according to (executing proces-
sor number, execution step number, block name corresponding to Algorithm 8.4.1) for execution
in Figure 8.2.

• p, which is the number of processors as before.

Like PA1 with b > 1, Algorithm 8.4.1 defines (d + 1)-dimensional blocks that enable improved
cache reuse when a second level of blocking is imposed. The key difference is that in Algo-
rithm 8.4.1 the blocking is done on the global problem, rather than the local chunk of the work.
Each of these global blocks is executed in parallel, with synchronizations done between each d-
dimensional slice of the block. Improved memory-bandwidth cost is achieved by Algorithm 8.4.1
by ensuring that each processor executes subslices which, along with their dependencies, are small
enough to be stored in cache between synchronizations.

Figure 8.2 demonstrates the schedule assignment of Algorithm 8.4.1 for computing a Krylov
basis of length s = 8 for a 1D mesh problem with n = 10 mesh points and stencil width m = 2,
using b = 4 and r = 4. The figure also depicts the dummy computations introduced to simplify
Algorithm 8.4.1, the number of which is proportional to snd−1mb and thus negligible relative to
the overall work, O(snd), when n � mb . The figure also shows why Algorithm 8.4.1 contains
two alternating loops from l = 1 to b, as this allows the blocks computed by each processor at the
last iteration of the first loop over l to satisfy the dependencies of the block needed by the same
processor for the first iteration of the second loop over l, and so forth in an alternating manner.
Figure 8.2 demonstrates at what step the two processors compute each block.

Algorithm 8.4.1 satisfies the dependenciesEKr, since the pieces of the work executed in parallel
within the same block in the first loop nest (for-loop on line 7 of Algorithm 8.4.1), Bu1,...,ud,l,
correspond to chunks of a single matrix-vector multiplication with no interdependencies for each
l. Further, each Bu1,...,ud,l depends only on Bs1,...,sd,l−1 for each (sj ∈ {uj − 1, uj}), due to the fact
that the blocks are shifted back by (l − 1) ·m in all dimensions at inner loop iteration l (and each
vertex depends only on vertices at most m away from its index in the block at the previous level)
and the fact that every such block Bs1,...,sd,l−1 was computed previously due to the lexicographical
order on the iteration index tuples (u1, . . . , ud). The second loop nest (for-loop on line 18 of
Algorithm 8.4.1) reverses the order of the first loop nest, with blocks shifted forward by m with

CHAPTER 8. SPARSE ITERATIVE METHODS 133

each increment of l, and starting at the opposite end of the mesh, so that each Bu1,...,ud,l depends
only on the vertices from Bs1,...,sd,l−1 for all (sj ∈ {uj, uj +1}). The point of this reversal is to line
up the data each processor owns when computing the block for l = b with the data each processor
needs when computing the block for l = 1 for the next loop over l.

In particular, we argue that every block Bu1,...,ud,0
q1,...,qd

and B̂û1,...,ûd,0
q1,...,qd

accessed by processor pq1,...,qd
resides in the local memory of the processor. For the first loop nest (line 7) with w = 1, this block
is the input block defined on line 5 of Algorithm 8.4.1. For each first inner loop iteration (l = 1)
of the second loop nest (line 18), the global block defined in the loop iteration,

B̂û1,...,ûd,0 =
{
vi1,...,id,(w−1)2b+b ∈ VKr : ij ∈ [b · (z − ûj)− (b− 1) ·m+ 1,

b · (z − ûj + 1)− (b− 1) ·m
}
,

is the same block as the one computed in the first loop nest at the last inner loop iteration (l = b)
with (u1, . . . , ud) = (z − û1 + 1, . . . , z − ûd + 1), namely

Bu1,...,ud,b =
{
vi1,...,id,(w−1)2b+b ∈ VKr : ij ∈ [b · (uj − 1)− (b− 1) ·m+ 1

b · uj − (b− 1) ·m]
}
,

since ui = z − ûi + 1 for all i ∈ [1, d]. In both cases, the blocks are subdivided among processors
in the exact same fashion, so we have demonstrated that all blocks Bu1,...,ud,l

q1,...,qd
and B̂û1,...,ûd,l

q1,...,qd
for

l ∈ [0, b− 1] are in memory of processor q1, . . . , qd each time they are requested as a dependency.
Now Bu1,...,ud,l

q1,...,qd
depends on all rd entries of Bû1,...,ûd,l−1

q1,...,qd
for all (qj), and similarly for B̂, since

each block is shifted by m (the interaction range). Further, there are a total of at most (2m +
r)d entries that each block depends on. Therefore, at most (2m + r)d − rd entries need to be
communicated from remote processors at each step and these processors are the nearest neighbors
of the recipient, namely ps1,...sd for each (sj ∈ {qj−1, qj}), for the first loop, over (u1, . . . , ud), and
for each (sj ∈ {qj, qj+1}), for the second loop, over (û1, . . . , ûd). So the interprocessor bandwidth
cost for each inner loop given a particular iteration (u1, . . . , ud) or (û1, . . . , ûd) of Algorithm 8.4.1
is (assuming r > m),

W u
ObKs ≤

b∑
l=1

[
(2m+ r)d − rd

]
= O(b ·m · rd−1).

Over s/(2b) (assumed an integer) iterations of the outer loop and

zd ≈ (n+m · (b− 1))d

rd · p
= O

(
nd

rd · p

)
iterations of loops over (u1, . . . , ud) and (û1, . . . , ûd), assuming that m · b � n (b will be picked

CHAPTER 8. SPARSE ITERATIVE METHODS 134

to be no more than M̂1/d), the total interprocessor bandwidth communication cost is then

WObKs(n,m, s, d, b, r, p) = O

(
s

2b
· nd

rd · p
·W u

ObKs

)
= O

(
s

2b
· nd

rd · p
· b ·m · rd−1

)
= O

(
s · nd ·m
r · p

)
.

If we pick r = n/p1/d, this cost matches the cost of PA0 (equivalently PA1 with b = 1); however,
we will pick r so as to allow the local mesh chunks to fit into cache, r = Θ(M̂1/d), which will
result in a greater interprocessor bandwidth cost. On the other hand, the quantity b does not appear
in this interprocessor bandwidth cost, unlike that of PA1.

To achieve a good memory-bandwidth cost, the parameter r should be picked so that the slices
Bu1,...,ud,l
q1,...,qd

(of size rd) computed by each process, as well as their dependencies (of size at most
(2m + r)d), fit into the cache of size M̂ , i.e., M̂ ≥ (2m + r)d. Assuming that m � M̂1/d, this
implies that we can pick r = Θ(M̂1/d). If this is done, the memory-bandwidth cost of Algo-
rithm 8.4.1 is not much greater than the interprocessor bandwidth cost for large enough b, since the
dependencies from the previous block on a given processor may be kept in cache prior to execution
of the next block. However, for each loop iteration over (u1, . . . , ud) and (û1, . . . , ûd), the blocks
Bu1,...,ud,0
q1,...,qd

and B̂û1,...,ûd,0
q1,...,qd

must be read from main memory to cache; the memory-bandwidth cost
for any any one such iteration is

Ŵ u
ObKs ≤ rd +W u

ObKs.

The total memory bandwidth cost of the algorithm over zd ≈ (n+m·(b−1))d

rd·p iterations is, therefore,

ŴObKs(n,m, s, d, b, r, p) = O

(
s

2b
· nd

rd · p
· Ŵ u

ObKs

)
+WObKs

= O

(
s · nd

b · p

)
+WObKs

= O

(
s · nd

b · p
+
s · nd ·m
r · p

)

= O

(
s · nd

b · p
+
s · nd ·m
M̂1/d · p

)
.

Therefore, if we pick b = Ω(M̂1/d/m), the memory bandwidth cost will be asymptotically the
same as the interprocessor bandwidth cost. Since, as stated above, the interprocessor bandwidth
cost is optimal when M̂1/d = Ω(n/p1/d), the memory bandwidth will be optimal too. Assuming
that M̂ ≤ (n + 2m)d, in which case the local mesh chunk and its dependencies do not fit into

CHAPTER 8. SPARSE ITERATIVE METHODS 135

cache, the memory bandwidth cost of the new algorithm, ŴObKs, will be a factor of Θ(1/b) less
than the memory-bandwidth cost of doing each matrix-vector multiplication in sequence, using
ŴPA0. Further, the new algorithm avoids the increased interprocessor-bandwidth cost of PA1 with
b > 1 (when d ≥ 2). We can potentially select b up to M̂1/d and achieve a factor of up to
Θ(1

M̂1/d) reduction in memory bandwidth cost. We see that this algorithm has a sweet spot in
terms of performance when M̂ < nd/p but not M̂ � nd/p, so that the local mesh chunk does
not fit into cache (so the memory-bandwidth efficiency of PA0 deteriorates), but simultaneously
the cache size is big enough so that the blocking done by Algorithm 8.4.1 does not significantly
increase the interprocessor-communication cost (and also the memory-bandwidth cost). The total
communication volume of the new algorithm is proportional to the surface area of all the mesh
blocks multiplied by s · m and therefore grows when the blocks, whose size cannot exceed the
cache size, are small.

The synchronization cost of this algorithm is

SObKs = O(s · nd/(p · M̂)),

since it requires a synchronization for every loop iteration from l = 1 to b (over s/(2b) invocations),
and because the number of outer loop iterations is O(nd/(p · M̂)). This synchronization cost is
larger than the s/b synchronizations needed by PA1, especially when the cache size (M̂) is small
with respect to nd/p.

CHAPTER 8. SPARSE ITERATIVE METHODS 136

Algorithm 8.4.1 Outer-blocked-Krylov-schedule(VKr, x
(0), n,m, d, s, b, r, p)

Require: Restrict VKr to the set of computations needed to compute x(s) from x(0); assume p1/d

and s/2b are integers and m ≤ 1
2
r · p1/d; assume elements of the input mesh x(0) may be

referenced as xi1,...,id .
1: Let b = r · p1/d and z = dn+m·(b−1)

b
e.

2: Augment VKr with dummy computations vi1,...,id,l for all (i1, . . . , id) 6∈ [1, n]d, the result of
which is zero.

3: Arrange processors into d-dimensional grid as pq1,...,qd for each qj ∈ [1, p1/d].
4: Let Bu1,...,ud,0 =

{
xi1,...,id ∈ x(0) : ij ∈ [1, b · uj]

}
for each (u1, . . . , ud) ∈ [1, z]d.

5: Let sub-block Bu1,...,ud,0
q1,...,qd

=
{
xi1,...,id ∈ Bu1,...,ud,0 : ij ∈ [(qj − 1) · r + 1, qj · r]

}
start in the

memory of processor pq1,...,qd .
6: for w = 1 to s/2b do
7: for (u1, . . . , ud) = (1, . . . , 1) to (z, . . . , z) do in lexicographical ordering
8: for l = 1 to b do
9: Let Bu1,...,ud,l =

{
vi1,...,id,(w−1)2b+l ∈ VKr :

10: ij ∈ [b · (uj − 1)− (l − 1) ·m+ 1, b · uj − (l − 1) ·m]
}

.
11:
12: Define sub-blocks Bu1,...,ud,l

q1,...,qd
=
{
vi1,...,id,l ∈ Bu1,...,ud,l :

13: ij ∈ [(qj − 1) · r + 1, qj · r]
}

for each (qj ∈ [1, p1/d]).
14: Compute Bu1,...,ud,l

q1,...,qd
with processor pq1,...qd ,

15: fetching dependencies from Bu1,...,ud,l−1
s1,...,sd

for each (sj ∈ {qj − 1, qj}).

16: % Store sub-block from last loop iteration for use in next loop
17: Store sub-block Bu1,...,ud,b

q1,...,qd
in memory as B̂û1,...,ûd,0

q1,...,qd
with ui = z − ûi + 1 .

18: for (û1, . . . , ûd) = (1, . . . , 1) to (z, . . . , z) do in lexicographical ordering
19: for l = 1 to b do
20: Let B̂û1,...,ûd,l =

{
vi1,...,id,(w−1)2b+b+l ∈ VKr :

21: ij ∈ [b · (z − ûj) + (l − b+ 1) ·m+ 1, b · (z − ûj + 1) + (l − b+ 1) ·m]
}

.
22:
23: Define sub-blocks B̂û1,...,ûd,l

q1,...,qd
=
{
vi1,...,id,l ∈ B̂û1,...,ûd,l :

24: ij ∈ [(qj − 1) · r + 1, qj · r]
}

for each (qj ∈ [1, p1/d]).
25: Compute B̂û1,...,ûd,l

q1,...,qd
with processor pq1,...qd

26: fetching dependencies from B̂û1,...,ûd,l−1
s1,...,sd

for each (sj ∈ {qj, qj + 1}).

27: % Store sub-block from last loop iteration for use in next loop or the output x(s)

28: Store sub-block B̂û1,...,ûd,b
q1,...,qd

in memory as Bu1,...,ud,0
q1,...,qd

with ui = z − ûi + 1.

Ensure: x(s) has been computed and saved into memory via computation of all of VKr.

137

Chapter 9

Finding the Shortest Paths in Graphs

The idea of 2.5D algorithms, which previous chapters detailed for dense linear algebra, may
also be extended to algorithms for finding all-pairs shortest paths in a graph. The all-pairs shortest
paths (APSP) is a fundamental graph problem with many applications in urban planning and sim-
ulation [107], datacenter network design [41], metric nearness problem [29], and traffic routing.
APSP is also used as a subroutine in other graph algorithms, such as Ullman and Yannakakis’s
breadth-first search algorithm [161], which is suitable for high diameter graphs.

Given a directed graph G = (V,E) with n vertices V = {v1, v2, ..., vn} and m edges E =
{e1, e2, ..., em}, the distance version of the algorithm computes the length of the shortest path from
vi to vj for all (vi, vj) pairs. The full version also returns the actual paths in the form of a pre-
decessor matrix. Henceforth, we will call the distance-only version “all-pairs shortest distances”
(APSD) to avoid confusion.

The classical dynamic programming algorithm for APSP is due to Floyd [59] and Warshall [167].
Serial blocked versions of the Floyd-Warshall algorithm have been formulated [125] to increase
data locality. The algorithm can also be recast into semiring algebra over vectors and matrices. This
vectorized algorithm (attributed to Kleene) is rich in matrix multiplications over the (min,+) semir-
ing [117]. Several theoretical improvements have been made, resulting in subcubic algorithms for
the APSD problem [34]. However, in practice, these algorithms are typically not competitive with
simpler cubic algorithms.

Variants of the Floyd-Warshall algorithm are most suitable for dense graphs. Johnson’s algo-
rithm [92], which is based on repeated application of Dijkstra’s single-source shortest path algo-
rithm (SSSP), is theoretically faster than the Floyd-Warshall variants on sufficiently sparse graphs.
However, the data dependency structure of this algorithm (and Dijkstra’s algorithm in general)
make scalable parallelization difficult (computing Dijkstra for different sources from each proces-
sor would require replicating the graph). SSSP algorithms based on ∆-stepping [115] scale better
in practice but their performance is input dependent and scales with O(m+ d · L · log n), where d
is the maximum vertex degree and L is the maximum shortest path weight from the source. Con-

This chapter is based on joint work with Aydin Buluc [144].

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 138

sequently, it is likely that a Floyd-Warshall based approach would be competitive even for sparse
graphs, as realized on graphical processing units [30].

Given the Θ(n2) output of the algorithm, large instances can not be solved on a single node due
to memory limitations. Further, a distributed memory approach is favorable over a sequential out-
of-core method, because of the high computational complexity of the problem, which motivates
using parallel computing to lower the time to solution. In this chapter, we are concerned with
obtaining high performance in a practical implementation by reducing communication cost and
increasing data locality through optimized matrix multiplication over semirings.

The major contribution of this chapter is the implementation of a 2.5D algorithm for the all-
pairs shortest path problem. This implementation leverages a divide-and-conquer formulation of
the Floyd-Warshall algorithm (Section 9.3). Our communication-efficient parallelization of this
algorithm is described in Section 9.4. The parallel algorithm we give is similar to the algorithm
given by Tiskin [157]. We give the first implementation of this method, and show that with respect
to a standard (2D) parallelization of APSP, the 2.5D algorithm can attain 2X speed-ups for large
problems and up to 6.2X speed-ups for small graphs on a Cray XE6 supercomputer (Section 9.5).

The rest of the chapter is organized as follows

• Section 9.1 reviews previous work on parallel algorithms for the all-pairs shortest paths
problem,

• Section 9.2 derives communication lower bounds for the Floyd-Warshall algorithm based on
the techniques presented in Chapter 3,

• Section 9.3 gives the divide-and-conquer version of the Floyd-Warshall algorithm,

• Section 9.4 describes our parallelization of the divide-and-conquer algorithm and analyzes
the communication costs,

• Section 9.5 presents the performance results of our implementation on a distributed-memory
supercomputer,

• Section 9.6 discusses the performance of alternative approaches to the all-pairs shortest path
graph problem,

• Section 9.7 overviews conclusions of our analysis,

• Section 9.8 gives pseudocodes for some of the algorithms.

9.1 Previous Work
Jenq and Sahni [89] were the first to give a 2D distributed memory algorithm for the APSP prob-
lem, based on the original Floyd-Warshall schedule. Since the algorithm does not employ block-
ing, it has to perform n global synchronizations, resulting in a latency lower bound of Ω(n). This

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 139

SUMMA-like algorithm [1, 163] is improved further by Kumar and Singh [104] by using pipelin-
ing to avoid global synchronizations. Although they reduced the synchronization costs, both of
these algorithms have low data reuse: each processor performs n unblocked rank-1 updates on its
local submatrix in sequence. Obtaining high-performance in practice requires increasing temporal
locality and is achieved by the blocked divide-and-conquer algorithms we consider in this work.

The main idea behind the divide-and-conquer (DC) algorithm is based on a proof by Aho
et al. [3] that shows that costs of semiring matrix multiplication and APSP are asymptotically
equivalent in the random access machine (RAM) model of computation. Actual algorithms based
on this proof are given by various researchers, with minor differences. Our decision to use the DC
algorithm as our starting point is inspired by its demonstrated better cache reuse on CPUs [125],
and its impressive performance attained on the many-core graphical processor units [30].

Previously known communication bounds [11, 90, 88] for ‘classical’ (triple-nested loop) ma-
trix multiplication also apply to our algorithm, because Aho et al.’s proof shows how to get the
semiring matrix product for free, given an algorithm to compute the APSP. These lower bounds,
however, are not necessarily tight because the converse of their proof (to compute APSP given
matrix multiplication) relies on the cost of matrix multiplication being Ω(n2), which is true for its
RAM complexity but not true for its bandwidth and latency costs. In Section 9.2, we show that a
tighter bound exists for latency, one similar to the latency lower bound of Cholesky decomposition
(Chapter 5).

Seidel [140] showed a way to use fast matrix multiplication algorithms, such as Strassen’s
algorithm, for the solution of the APSP problem by embedding the (min,+) semiring into a ring.
However, his method only works for undirected and unweighted graphs. We cannot, therefore,
utilize the recently discovered communication-optimal Strassen based algorithms [11, 10] directly
for the general problem.

Habbal et al. [73] gave a parallel APSP algorithm for the Connection Machine CM-2 that pro-
ceeds in three stages. Given a decomposition of the graph, the first step constructs SSSP trees from
all the ‘cutset’ (separator) vertices, the second step runs the classical Floyd-Warshall algorithm for
each partition independently, and the last step combines these results using ‘minisummation’ oper-
ations that is essentially semiring matrix multiplication. The algorithm’s performance depends on
the size of separators for balanced partitions. Without good sublinear (say, O(

√
n)) separators, the

algorithm degenerates into Johnson’s algorithm. Almost all graphs, including those from social
networks, lack good separators [110]. Note that the number of partitions are independent (and
generally much less) from the number of active processors. The algorithm sends Θ(n) messages
and moves Θ(n2) words for the 5-point stencil (2-D grid).

A recent distributed algorithm by Holzer and Wattenhofer [85] runs in O(n) communication
rounds. Their concept of communication rounds is similar to our latency concept with the distinc-
tion that in each communication round, every node can send a message of size at most O(log(n))
to each one of its neighbors. Our cost model clearly differentiates between bandwidth and latency
costs without putting a restriction on message sizes. Their algorithm performs breadth-first search
from every vertex with carefully chosen starting times. The distributed computing model used in
their work, however, is incompatible with ours.

Brickell et al. [29] came up with a linear programming formulation for the APSP problem, by

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 140

exploiting its equivalence to the decrease-only version of the metric nearness problem (DOMN).
Their algorithm runs in O(n3) time using a Fibonacci heap, and the dual problem can be used to
obtain the actual paths. Unfortunately, heaps are inherently sequential data structures that limit
parallelism. Since the equivalence between APSP and DOMN goes both ways, our algorithm
provides a highly parallel solution to the DOMN problem as well.

A considerable amount of effort has been devoted into precomputing transit nodes that are
later used for as shortcuts when calculating shortest paths. The PHAST algorithm [44], which
is based on contraction hierarchies [65], exploits this idea to significantly improve SSSP perfor-
mance on road graphs with non-negative edge weights. The impressive performance achieved on
the SSSP problem makes APSP calculation on large road networks feasible by repeatedly apply-
ing the PHAST algorithm. These algorithms based on precomputed transit nodes, however, do not
dominate the classical algorithms such as Dijkstra and ∆-stepping for general types of inputs. Pre-
computation yields an unacceptable number of shortcuts for social networks, making the method
inapplicable for networks that do not have good separators. This is analogous to the fill that occurs
during sparse Gaussian elimination [136], because both algorithms rely on some sort of vertex
elimination.

Due to their similar triple nested structure and data access patterns, APSP, matrix multiplica-
tion, and LU decomposition problems are sometimes classified together. The Gaussian elimination
paradigm of Chowdhury and Ramachandran [36] provides a cache-oblivious framework for these
problems, similar to Toledo’s recursive blocked LU factorization [159]. Our APSP work is orthog-
onal to that of Chowdhury and Ramachandran in the sense we provide distributed memory algo-
rithms that minimize internode communication (both latency and bandwidth), while their method
focuses on cache-obliviousness and multithreaded (shared memory) implementation.

A communication-avoiding parallelization of the recursive all-pairs shortest-paths algorithm
was given by Tiskin under the BSP theoretical model [157]. Our algorithm is similar, though we
pay closer attention to data layout, lower-bound the communication, and study the performance of
a high-performance implementation.

Our main motivating work will be 2.5D formulations of matrix multiplication and LU factor-
ization for dense linear algebra (Chapter 5). These algorithms are an adaptation and generalization
of 3D matrix multiplication [43, 1, 2, 23, 93]. The main idea is to store redundant intermediate
data, in order to reduce communication bandwidth. Bandwidth is reduced by a factor of

√
c at

the cost of a memory usage overhead of a factor of c. The technique is particularly useful for the
strong scaling regime, where one can solve problems faster by storing more intermediates spread
over more processors.

9.2 Lower Bounds
Algorithm 9.2.1 is the Floyd-Warshall algorithm for symmetric graphs. We note that its structure
is quite similar to the Cholesky algorithm (Algorithm 5.1.2 in Chapter 5). In fact, we note that
each Pij in Algorithm 9.2.1 depends on Zijk for k ∈ [1, i− 1] and is a dependency of Zikj for
k ∈ [j + 1, i− 1] as well as Zkij for k ∈ [i+ 1, n]. This dependency structure is the same as

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 141

that of Algorithm 5.1.2. While in the Cholesky algorithm the summations could be computed in
any order, in the Floyd-Warshall algorithm the minimum computed on line 9.2.1, can be computed
in any order. Each reduction tree for computing such a min corresponds to a reduction tree for
computing a sum in the Cholesky algorithm. Therefore, any dependency graphGFW for computing
Algorithm 9.2.1 is isomorphic to some GCh the dependency graph for computing Cholesky as
defined in Chapter 5.

Algorithm 9.2.1 [P]← Floyd-Warshall(A)

Require: A ∈ Sn×n is a symmetric n-by-n adjacency matrix of undirected graph G.
1: Initialize P = A
2: for j ← 1 to n do
3: for i← j + 1 to n do
4: for k = 1 to j − 1 do
5: Zijk = Pik + Pjk

6: Pij = min
(
Pij,mink∈[1,j−1] Zijk

)
Ensure: P ∈ Sn×n is an n-by-n path distance matrix derived from adjacency matrix of graph G.

The following communication lower bounds then follow as direct extensions from the Cholesky
case.

Theorem 9.2.1. Any parallelization of Algorithm 9.2.1 where some processor computes no more
than 1

x
of the elements in Z and at least 1

q
elements in Z, for any 4 ≤ x ≤ q � n, must incur a

communication of
WFW = Ω

(
n2/q2/3

)
.

Proof. This theorem holds since every parallelization of Algorithm 9.2.1 corresponds to a depen-
dency graph that is isomorphic to some GCh, and by application of Theorem 5.1.5 the lower bound
on communication holds.

Theorem 9.2.2. Any parallelization of Algorithm 9.2.1 in which some processor computes no
more than 1

x
of the elements in Z and at least 1

q
elements in Z, for any 4 ≤ x ≤ q � n, incurs the

following computation (F), bandwidth (W), and latency (S) costs, for some b ∈ [1, n],

FFW = Ω
(
n · b2

)
, WFW = Ω (n · b) , SFW = Ω (n/b) ,

and furthermore, FFW · S2
FW = Ω (n3) , WFW · SFW = Ω (n2) .

Proof. This theorem holds since every parallelization of Algorithm 9.2.1 corresponds to a depen-
dency graph that is isomorphic to someGCh, and by application of Theorem 5.1.6 the lower bounds
on tradeoffs hold.

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 142

A11 A12

A21 A22

Adjacency matrix Distance matrix

V1 V2

V1

V2

Figure 9.1: DC-APSP algorithm, with initial adjacency distance denoted in white, partially com-
plete path distances in yellow, and final path distances in red

9.3 Divide-and-Conquer APSP
The all-pairs shortest-paths problem corresponds to finding the matrix closure on the tropical
(min,+) semiring [117]. A semiring is denoted by (S,⊕,⊗, 0, 1), where ⊕ and ⊗ are binary
operations defined on the set S with identity elements 0 and 1, respectively [58]. In the case of the
tropical semiring, ⊕ is min, ⊗ is +, the additive identity is +∞, and the multiplicative identity is
0. Compared to the classical matrix multiplication over the ring of real numbers, in our semiring-
matrix-matrix multiplication (also called the distance product [171]), each multiply operation is
replaced with an addition (to calculate the length of a larger path from smaller paths or edges) and
each add operation is replaced with a minimum operation (to get the minimum in the presence of
multiple paths).

Algorithm 9.3.1 gives the high-level structure of the divide-and-conquer all-pairs-shortest-path
algorithm (DC-APSP). The workflow of the DC-APSP algorithm is also pictured in Figure 9.1.
The correctness of this algorithm has been proved by many researchers [3, 30, 125] using various
methods. Edge weights can be arbitrary, including negative numbers, but we assume that the graph
is free of negative cycles. The tropical semiring does not have additive inverses, hence fast matrix
multiplication algorithms like those by Strassen [152] and Coppersmith-Winograd [38] are not
applicable for this problem.

For simplicity, we formulate our algorithms and give results only for adjacency matrices of
power-of-two dimension. Extending the algorithms and analysis to general adjacency matrices is
straightforward.

Each semiring-matrix-matrix multiplication performs O(n3) additions and O(n2) minimum
(min) operations. If we count each addition and min operation as O(1) flops, the total computation
cost of DC-APSP, F , is given by a recurrence

F (n) = 2 · F (n/2) +O(n3) = O(n3).

Thus the number of operations is the same as that required for matrix multiplication.

9.4 Parallelization of DC-APSP
In this section, we introduce techniques for parallelization of the divide-and-conquer all-pairs-
shortest-path algorithm (DC-APSP). Our first approach uses a 2D block-cyclic parallelization. We

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 143

Algorithm 9.3.1 A=DC-APSP(A, n)

Require: A ∈ Sn×n is a graph adjacency matrix of a n-node graph G
1: if n = 1 then
2: return.

Partition A =

[
A11 A12

A21 A22

]
, where all Aij are n/2-by-n/2

3: % Partition the vertices V = (V1, V2)
4: A11 ← DC-APSP(A11, n/2)
5: % Find all-pairs shortest paths between vertices in V1

6: A12 ← A11 · A12

7: % Propagate paths from V1 to V2

8: A21 = A21 · A11

9: % Propagate paths from V2 to V1

10: A22 = min(A22, A21 · A12)
11: % Update paths to V2 via paths from V2 to V1 and back to V2

12: A22 ← DC-APSP(A22, n/2)
13: % Find all-pairs shortest paths between vertices in V2

14: A21 = A22 · A21

15: % Find shortest paths from V2 to V1

16: A12 = A12 · A22

17: % Find shortest paths from V1 to V2

18: A11 = min(A11, A12 · A21)
19: % Find all-pairs shortest paths for vertices in V1

Ensure: A ∈ Sn×n is the APSP distance matrix of G

demonstrate that a careful choice of block-size can minimize both latency and bandwidth costs
simultaneously. Our second approach utilizes a 2.5D decomposition [143, 146]. Our cost analysis
shows that the 2.5D algorithm reduces the bandwidth cost and improves strong scalability.

9.4.1 2D Divide-and-Conquer APSP
We start by deriving a parallel DC-APSP algorithm that operates on a square 2D processor grid
and consider cyclic and blocked variants.

2D Semiring-Matrix-Matrix-Multiply

Algorithm 9.4.1 describes an algorithm for performing Semiring-Matrix-Matrix-Multiply (SMMM)
on a 2D processor grid denoted by Λ. Since the data dependency structure of SMMM is identical
to traditional matrix multiply, we employ the popular SUMMA algorithm [163]. The algorithm is
formulated in terms of distributed rank-1 updates. These updates are associative and commutative
so they can be pipelined or blocked. To achieve optimal communication performance, the matrices
should be laid out in a blocked fashion, and each row and column of processors should broadcast

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 144

Algorithm 9.4.1 C ← 2D-SMMM(A,B,C,Λ[1 : √p, 1 :√p], n, p)

Require: process Λ[i, j] owns Aij, Bij, Cij ∈ S
n√
p
× n√

p

1: % execute loop iterations in parallel
2: for i, j ← 1 to

√
p do

3: for k ← 1 to
√
p do

4: Broadcast Aik to processor columns Λ[i, :]
5: Broadcast Bkj to processor rows Λ[:, j]
6: Cij ← min(Cij, Aik ·Bkj)

Ensure: process Λ[i, j] owns Cij ∈ S
n√
p
× n√

p

its block-row and block-column in turn. Given p processors, each processor would then receive
O(
√
p) messages of size O(n2/p), giving a bandwidth cost of O(n2/

√
p). We note that any dif-

ferent classical distributed matrix multiplication algorithm (e.g. Cannon’s algorithm [32]) can be
used here in place of SUMMA.

2D Blocked Divide-and-Conquer APSP

Algorithm 9.8.1 (psuedocode given in the Appendix) displays a parallel 2D blocked version of
the DC-APSP algorithm. In this algorithm, each SMMM is computed on the quadrant of the
processor grid on which the result belongs. The operands, A and B, must be sent to the processor
grid quadrant on which C is distributed. At each recursive step, the algorithm recurses into one
quadrant of the processor grid. Similar to SMMM, this is also an owner computes algorithm in the
sense that the processor that owns the submatrix to be updated does the computation itself after
receiving required inputs from other processors.

This blocked algorithm has a clear flaw, in that at most a quarter of the processors are active
at any point in the algorithm. We will alleviate this load-imbalance by introducing a block-cyclic
version of the algorithm.

2D Block-Cyclic Divide-and-Conquer APSP

Algorithm 9.8.2 (given in the Appendix) details the full 2D block-cyclic DC-APSP algorithm.
This block-cyclic algorithm operates by performing cyclic-steps until a given block-size, then pro-
ceeding with blocked-steps by calling the blocked algorithm as a subroutine. At each cyclic-step,
each processor operates on sub-blocks of its local block, while at each blocked-step a sub-grid
of processors operate on their full matrix blocks. In other words, a cyclic-step reduces the local
working sets, while a blocked-step reduces the number of active processors. These two steps are
demonstrated in sequence in Figure 9.2 with 16 processors.

We note that no redistribution of data is required to use a block-cyclic layout. Traditionally,
(e.g. in ScaLAPACK [28]) using a block-cyclic layout requires that each processor own a block-
cyclic portion of the starting matrix. However, the APSP problem is invariant to permutation
(permuting the numbering of the node labels does not change the answer). We exploit permutation

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 145

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

P11 P12

P21 P22

Cyclic step Blocked step

n

n

n/2

n/2

n/4

n/4

Figure 9.2: Our block-cyclic 2D APSP algorithm performs cyclic-steps until a given block-size,
then performs blocked-steps as shown in this diagram.

invariance by assigning each process the same sub-block of the adjacency and distance matrices,
no matter how many blocked or cyclic steps are taken.

As derived in Appendix A in [144], if the block size is picked as b = O(n/ log(p)) (execute
O(log log(p)) cyclic recursive steps), the bandwidth and latency costs are

Wbc-2D(n, p) = O(n2/
√
p),

Sbc-2D(p) = O(
√
p log2(p)).

These costs are optimal (modulo the polylog latency term) when the memory size isM = O(n2/p).
The costs are measured along the critical path of the algorithm, showing that both the computation
and communication are load balanced throughout execution.

9.4.2 2.5D DC-APSP
In order to construct a communication-optimal DC-APSP algorithm, we utilize 2.5D-SMMM.
Transforming 2D SUMMA (Algorithm 9.4.1) to a 2.5D algorithm can be done by performing
a different subset of updates on each one of c processor layers. Algorithm 9.8.5 (given in the
Appendix) details 2.5D SUMMA, modified to perform SMMM. The three dimensional processor
grids used in 2.5D algorithms are denoted by Π.

Given a replication factor c ∈ [1, p1/3], each
√
p/c-by-

√
p/c processor layer performs n/c

outer products. Since each length n outer product vector is subdivided into
√
p/c chunks, the

bandwidth cost is O(n2/
√
cp) words. These outer products can be blocked into bundles of up to

n/
√
p/c to lower the latency cost to O(

√
p/c3) messages.

Algorithm 9.8.4 (pseudo-code given in the Appendix) displays the blocked version of the 2.5D
DC-APSP algorithm. The blocked algorithm executes multiplies and recurses on octants of the
processor grid (rather than quadrants in the 2D version). The algorithm recurses until c = 1, which
must occur while p ≥ 1, since c ≤ p1/3. The algorithm then calls the 2D block-cyclic algorithm
on the remaining 2D sub-partition.

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 146

The 2.5D blocked algorithm suffers from load-imbalance. In fact, the top half of the processor
grid does no work. We can fix this by constructing a block-cyclic version of the algorithm, which
performs cyclic steps with the entire 3D processor grid, until the block-size is small enough to
switch to the blocked version. The 2.5D block-cyclic algorithm looks exactly like Algorithm 9.8.2,
except each call to 2D SMMM is replaced with 2.5D SMMM. This algorithm is given in full
in [144].

As derived in Appendix B in [144], if the 2.5D block size is picked as b1 = O(n/c) (execute
O(log(c)) 2.5D cyclic recursive steps), the bandwidth and latency costs are

Wbc-2.5D(n, p) = O(n2/
√
cp),

Sbc-2.5D(p) = O(
√
cp log2(p)).

These costs are optimal for any memory size (modulo the polylog latency term).

9.5 Experiments
In this section, we show that the distributed APSP algorithms do not just lower the theoretical com-
munication cost, but actually improve performance on large supercomputers. We implement the
2D and 2.5D variants of DC-APSP recursively, as described in the previous section. For fairness,
both variants have the same amount of optimizations applied and use the same kernel. We were not
able to find any publicly available distributed memory implementations of APSP for comparison.

9.5.1 Implementation
The dominant sequential computational work of the DC-APSP algorithm is the Semiring-Matrix-
Matrix-Multiplies (SMMM) called at every step of recursion. Our implementation of SMMM
uses two-level cache-blocking, register blocking, explicit SIMD intrinsics, and loop unrolling. We
implement threading by assigning L1-cache blocks of C to different threads.

Our 2.5D DC-APSP implementation generalizes the following algorithms: 2D cyclic, 2D
blocked, 2D block-cyclic, 2.5D blocked, 2.5D cyclic, and 2.5D block-cyclic. Block sizes b1 and
b2 control how many 2.5D and 2D cyclic and blocked steps are taken. These block-sizes are set at
run-time and require no modification to the algorithm input or distribution.

We compiled our codes with the GNU C/C++ compilers (v4.6) with the -O3 flag. We use
Cray’s MPI implementation, which is based on MPICH2. We run 4 MPI processes per node, and
use 6-way intra-node threading with the GNU OpenMP library. The input is an adjacency matrix
with entries representing edge-weights in double-precision floating-point numbers.

9.5.2 Performance
Our experimental platform is ‘Hopper’, which is a Cray XE6 supercomputer, the architecture of
which we described in Section 6.3.

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 147

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 4 16 64 256 1024

G
Fl

op
s

Number of compute nodes (p)

Strong scaling of DC-APSP on Hopper

2.5D n=32,768
2D n=32,768
2.5D n=8,192

2D n=8,192

(a) DC-APSP strong scaling

 5

 10

 15

 20

 25

 30

 35

 40

1 4 16 64 256 1024

G
Fl

op
s/

no
de

Number of compute nodes (p)

Weak scaling of DC-APSP on Hopper

2D (c=1), n/sqrt(p)=4,096
2.5D (c=4), n/sqrt(p)=2,048

2D (c=1), n/sqrt(p)=2,048

(b) DC-APSP weak scaling

Figure 9.3: Scaling of 2D and 2.5D block-cyclic DC-APSP on Hopper (Cray XE6)

c=1

 0

 200

 400

 600

 800

 1000

 1200

1 4 16 64 25
6

10
24 1 4 16 64 25
6

10
24

G
Fl

op
s

Number of compute nodes

n=4096

n=8192

c=16
c=4

(a) 2.5D DC-APSP small matrix performance

 100

 200

 300

 400

 500

 600

 700

1 2 4 8 16 32 64 128 256

G
Fl

op
s

block size (b)

Performance of 2D DC-APSP on 256 nodes of Hopper (n=8,192)

2D DC-APSP

(b) Performance of DC-APSP with respect to block
size

Figure 9.4: Performance of DC-APSP on Small Matrices

Our threaded Semiring-Matrix-Matrix-Multiply achieves up to 13.6 GF on 6-cores of Hopper
(we count each min and plus as a flop), which is roughly 25% of theoretical floating-point peak.
This is a fairly good fraction in the absence of an equivalent fused multiply-add operation for our
semiring. Our implementation of DC-APSP uses this subroutine to perform APSP at 17% of peak
computational performance on 1 node (24 cores, 4 processes, 6 threads per process).

Figure 9.3(a) demonstrates the strong scaling performance of 2D and 2.5D APSP. Strong scal-
ing performance is collected by keeping the adjacency matrix size constant and computing APSP
with more processors. The 2.5D performance is given as the best performing variant for any repli-
cation factor c (in almost all cases, c = 4). Strong scaling a problem to a higher core-count lowers
the memory usage per processor, allowing increased replication (increased c). Performing 2.5D
style replication improves efficiency significantly, especially at large scale. On 24,576 cores of

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 148

Hopper, the 2.5D algorithm improves on the performance of the 2D APSP algorithm by a factor of
1.8x for n = 8, 192 and 2.0x for n = 32, 768.

Figure 9.3(b) shows the weak scaling performance of the 2D and 2.5D DC-APSP algorithms.
To collect weak scaling data, we keep the problem size per processor (n/

√
p) constant and grow the

number of processors. Since the memory usage per processor does not decrease with the number
of processors during weak scaling, the replication factor cannot increase. No data-point is given
for the 2.5D algorithm with c = 4 on four nodes, since this run involved 16 processors, and we
need c ≤ p1/3 We compare data with n/

√
p = 2048, 4096 for 2D (c = 1) and with n/

√
p = 2048

for 2.5D (c = 4). The 2.5D DC-APSP algorithm performs almost as well as the 2D algorithm with
a larger problem size and significantly better than the 2D algorithm with the same problem size.

The overall weak-scaling efficiency is good all the way up to the 24,576 cores (1024 nodes),
where the code achieves an impressive aggregate performance over 12 Teraflops (Figure 9.3(b)). At
this scale, our 2.5D implementation solves the all-pairs shortest-paths problem for 65,536 vertices
in roughly 2 minutes. With respect to 1-node performance, strong scaling allows us to solve a
problem with 8,192 vertices over 30x faster on 1024 compute nodes (Figure 9.4(a)). Weak scaling
gives us a performance rate up to 380x higher on 1024 compute nodes than on one node.

Figure 9.4(a) shows the performance of 2.5D DC-APSP on small matrices. The bars are stacked
so the c = 4 case shows the added performance over the c = 1 case, while the c = 16 case shows
the added performance over the c = 4 case. A replication factor of c = 16 results in a speed-up of
6.2x for the smallest matrix size n = 4, 096. Overall, we see that 2.5D algorithm hits the scalability
limit much later than the 2D counterpart. Tuning over the block sizes (Figure 9.4(b)), we also see
the benefit of the block-cyclic layout for the 2D algorithm. The best performance over all block
sizes is significantly higher than either the cyclic (b = 1) or blocked (b = n/

√
p) performance.

We found that the use of cyclicity in the 2.5D algorithm supplanted the need for cyclic steps in the
nested call to the 2D algorithm. The 2.5D blocked algorithm can call the 2D blocked algorithm
directly without a noticeable performance loss.

9.6 Discussion of Alternatives
We solved the APSP problem using a distributed memory algorithm that minimizes communication
and maximizes temporal locality reuse through BLAS-3 subroutines. There are at least two other
alternatives to solving this problem. One alternative is to use a sparse APSP algorithm and the
other one is to leverage an accelerator architecture such as GPU.

If the graph is big enough so that it requires distribution to multiple processors, the performance
of sparse APSP algorithms become heavily dependent on the structure of the graph; and rather
poor in general. For the case that the graph is small enough so that it can be fully replicated along
different processors, one can parallelize Johnson’s algorithm in an embarrassingly parallel way.
We experimented with this case, where each core runs many to all shortest paths. Specifically, we
wanted to know how sparse the graph needs to get in order to make this fully replicated approach
a strong alternative. The break-even points for density depend both on the graph size (the number
of vertices) and the number of cores. For example, using 384 cores, solving the APSP problem

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 149

on a 16,384 vertex, 5% dense graph, is slightly faster using our approach (18.6 vs. 22.6 seconds)
than using the replicated Johnson’s algorithm. Keeping the number of vertices intact and further
densifying the graph favors our algorithm while sparsifying it favors Johnson’s algorithm. Larger
cores counts also favor Johnson’s algorithm; but its major disadvantage is its inability to run any
larger problems due to graph replication.

On the architecture front, we benchmarked a highly optimized CUDA implementation [30] on
a single Fermi (NVIDIA X2090) GPU. This GPU implementation also runs the dense recursive
algorithm described in this chapter. On a graph with 8,192 vertices, our distributed memory CPU
based implementation running on 4 nodes achieved 80% of the performance of the Fermi (which
takes 9.9 seconds to solve APSP on this graph). This result shows the suitability of the GPU
architecture to the APSP problem, and provides us a great avenue to explore as future work. As
more supercomputers become equipped with GPU accelerators, we plan to reimplement our 2.5D
algorithm in a way that it can take advantage of the GPUs as coprocessors on each node. The effect
of communication avoidance will become more pronounced as local compute phases get faster due
to GPU acceleration.

9.7 Conclusions
The divide-and-conquer APSP algorithm is well suited for parallelization in a distributed memory
environment. The algorithm resembles well-studied linear algebra algorithms (e.g. matrix multi-
ply, LU factorization). We exploit this resemblance to transfer implementation and optimization
techniques from the linear algebra domain to the graph-theoretic APSP problem. In particular, we
use a block-cyclic layout to load-balance the computation and data movement, while simultane-
ously minimizing message latency overhead. Further, we formulate a 2.5D DC-APSP algorithm,
which lowers the bandwidth cost and improves parallel scalability. Our implementations of these
algorithms achieve good scalability at very high concurrency and confirm the practicality of our
analysis. Our algorithm provides a highly parallel solution to the decrease-only version of the
metric nearness problem problem as well, which is equivalent to APSP.

Our techniques for avoiding communication allow for a scalable implementation of the divide-
and-conquer APSP algorithm. The benefit of such optimizations grows with machine size and level
of concurrency. The performance of our implementation can be further improved upon by exploit-
ing locality via topology-aware mapping. The current Hopper job scheduler does not allocate
contiguous partitions but other supercomputers (e.g. IBM BlueGene) allocate toroidal partitions,
well-suited for mapping of 2D and 2.5D algorithms [143].

9.8 Appendix

Detailed Pseudocodes

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 150

Algorithm 9.8.1 A← BLOCKED-DC-APSP(A,Λ[1 : √p, 1 : √p], n, p)

Require: process Λ[i, j] owns a block of the adjacency matrix, Aij ∈ S
n√
p
× n√

p

1: if p = 1 then
2: A = DC-APSP(A, n)

3: % Partition the vertices V = (V1, V2) by partitioning the processor grid

Partition Λ =

[
Λ11 Λ12

Λ21 Λ22

]
, where all Λij are

√
p/2-by-

√
p/2

4: % execute following loop iterations in parallel
5: for i, j ← 1 to

√
p/2 do

6: % Find all-pairs shortest paths between vertices in V1

7: Aij ← BLOCKED-DC-APSP(Aij,Λ11, n/2, p/4)
8: % Propagate paths from V1 to V2

9: Λ11[i, j] sends Aij to Λ12[i, j].
10: Ai,j+√p/2 ← 2D-SMMM(Aij, Ai,j+√p/2, Ai,j+√p/2,Λ12, n/2, p/4)
11: % Propagate paths from V2 to V1

12: Λ11[i, j] sends Aij to Λ21[i, j].
13: Ai+√p/2,j ← 2D-SMMM(Ai+√p/2,j, Aij, Ai+√p/2,j,Λ21, n/2, p/4)
14: % Update paths to V2 via paths from V2 to V1 and back to V2

15: Λ12[i, j] sends Ai,j+√p/2 to Λ22[i, j].
16: Λ21[i, j] sends Ai+√p/2,j to Λ22[i, j].
17: Ai+√p/2,j+√p/2 ← 2D-SMMM(Ai+√p/2,j, Ai,j+√p/2, Ai+√p/2,j+√p/2,Λ22, n/2, p/4)
18: % Find all-pairs shortest paths between vertices in V2

19: Ai+√p/2,j+√p/2 ← BLOCKED-DC-APSP(Ai+√p/2,j+√p/2,Λ22, n/2, p/4)
20: % Find shortest paths paths from V2 to V1

21: Λ22[i, j] sends Ai+√p/2,j+√p/2 to Λ21[i, j].
22: Ai+√p/2,j ← 2D-SMMM(Ai+√p/2,j+√p/2, Ai+√p/2,j, Ai+√p/2,j,Λ21, n/2, p/4)
23: % Find shortest paths paths from V1 to V2

24: Λ22[i, j] sends Ai+√p/2,j+√p/2 to Λ12[i, j].
25: Ai,j+√p/2 ← 2D-SMMM(Ai,j+√p/2, Ai+√p/2,j+√p/2, Ai,j+√p/2,Λ12, n/2, p/4)
26: % Find all-pairs shortest paths for vertices in V1

27: Λ12[i, j] sends Ai,j+√p/2 to Λ11[i, j].
28: Λ21[i, j] sends Ai+√p/2,j to Λ11[i, j].
29: Aij ← 2D-SMMM(Ai,j+√p/2, Ai+√p/2,j, Aij,Λ22, n/2, p/4)

Ensure: process Λ[i, j] owns a block of the APSP distance matrix, Aij ∈ S
n√
p
× n√

p

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 151

Algorithm 9.8.2 A← BLOCK-CYCLIC-DC-APSP(A,Λ[1 : √p, 1 : √p], n, p, b)

Require: process Λ[i, j] owns a block of the adjacency matrix, Aij ∈ S
n√
p
× n√

p

1: if n ≤ b then
2: A← BLOCKED-DC-APSP(A,Λ, n, p)
3: % Switch to blocked algorithm once the matrix is small
4: % execute following loop iterations in parallel
5: for i, j ← 1 to

√
p do

6: Al ← Aij
7: % Al denotes the local matrix owned by Λ[i, j]

8: Partition Al =

[
Al11 Al12

Al21 Al22

]
, where all Alkl are n/2-by-n/2

9: % Partition the vertices V = (V1, V2)
10: Al11 ← BLOCK-CYLIC-DC-APSP(Al11,Λ, n/2, p, b)
11: % Find all-pairs shortest paths between vertices in V1

12: Al12 ← 2D-SMMM(Al11, A
l
12, A

l
12,Λ, n/2, p)

13: % Propagate paths from V1 to V2

14: Al21 ← 2D-SMMM(Al21, A
l
11, A

l
21,Λ, n/2, p)

15: % Propagate paths from V2 to V1

16: Al22 ← 2D-SMMM(Al21, A
l
12, A

l
22,Λ, n/2, p)

17: % Update paths among vertices in V2 which go through V1

18: Al22 ← BLOCK-CYLIC-DC-APSP(Al22,Λ, n/2, p, b)
19: % Find all-pairs shortest paths between vertices in V2

20: Al21 ← 2D-SMMM(Al22, A
l
21, A

l
21,Λ, n/2, p)

21: % Find shortest paths from V2 to V1

22: Al12 ← 2D-SMMM(Al12, A
l
22, A

l
12,Λ, n/2, p)

23: % Find shortest paths from V1 to V2

24: Al11 ← 2D-SMMM(Al12, A
l
21, A

l
11,Λ, n/2, p)

25: % Find all-pairs shortest paths for vertices in V1

Ensure: process Λ[i, j] owns a block of the APSP distance matrix, Aij ∈ S
n√
p
× n√

p

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 152

Algorithm 9.8.3 C ← 2.5D-SMMM(A,B,C,Π[1 :
√
p/c, 1 :

√
p/c, 1 : c], n, p, c)

Require: process Π[i, j, 1] owns Aij, Bij, Cij ∈ S
n√
p/c
× n√

p/c

1: % execute following loop iterations in parallel
2: for m← 1 to c do
3: % execute following loop iterations in parallel
4: for i, j ← 1 to

√
p do

5: Πij1 sends Aij to process Πi,j,j/c

6: Πij1 sends Bij to process Πi,j,i/c

7: if m = 1 then
8: Cijm = Cij
9: else

10: Cijm[:, :] =∞
11: for k ← 1 to

√
p/c3 do

12: Broadcast A
i,m
√
p/c3+k

to processor columns Π[i, :,m]

13: Broadcast B
m
√
p/c3+k,j

to processor rows Π[:, j,m]

14: Cijm ← min(Cij, Ai,m
√
p/c3+k

·B
m
√
p/c3+k,j

)

15: Reduce to first processor layer, Cij =
∑c

m=1 Cijm

Ensure: process Π[i, j, 1] owns Cij ∈ S
n√
p/c
× n√

p/c

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 153

Algorithm 9.8.4 A← 2.5D-BLOCKED-DC-APSP(A,Π[1 :
√
p/c, 1 :

√
p/c, 1 : c], n, p, c, b)

Require: process Π[i, j, 1] owns a block of the adjacency matrix, Aij ∈ S
n√
p/c
× n√

p/c

1: if c = 1 then
2: A = BLOCK-CYCLIC-DC-APSP(A, n, p, c, b)

3: % Partition the vertices V = (V1, V2) by partitioning the processor grid
Partition Π into 8 cubic block Πabc, for a, b, c ∈ {1, 2}, where all Πabc are

√
p/c/2-by-√

p/c/2-by-c/2
4: % execute following loop iterations in parallel
5: for k ← 1 to c/2 do
6: % execute following loop iterations in parallel
7: for i, j ← 1 to

√
p/2 do

8: % Find all-pairs shortest paths between vertices in V1

9: Aij ← 2.5D-BLOCKED-DC-APSP(Aij,Π111, n/2, p/8)
10: % Propagate paths from V1 to V2

11: Π111[i, j] sends Aij to Π121[i, j].
12: A

i,j+
√
p/c/2

← 2.5D-SMMM(Aij, Ai,j+
√
p/c/2

, A
i,j+
√
p/c/2

,Π121, n/2, p/8, c/2)

13: % Propagate paths from V2 to V1

14: Π111[i, j] sends Aij to Π211[i, j].
15: Ai+√p/2,j ← 2.5D-SMMM(Ai+√p/2,j, Aij, Ai+√p/2,j,Π211, n/2, p/8, c/2)
16: % Update paths to V2 via paths from V2 to V1 and back to V2

17: Π121[i, j] sends Ai,j+√p/2 to Π221[i, j].
18: Π211[i, j] sends Ai+√p/2,j to Π221[i, j].
19: Ai+√p/2,j+√p/2 ← 2.5D-SMMM(Ai+√p/2,j, Ai,j+√p/2, Ai+√p/2,j+√p/2,Π221, n/2, p/8, c/2)
20: % Find all-pairs shortest paths between vertices in V2

21: Ai+√p/2,j+√p/2 ← 2.5D-BLOCKED-DC-APSP(Ai+√p/2,j+√p/2,Π221, n/2, p/8, c/2)
22: % Find shortest paths paths from V2 to V1

23: Π221[i, j] sends Ai+√p/2,j+√p/2 to Π211[i, j].
24: Ai+√p/2,j ← 2.5D-SMMM(Ai+√p/2,j+√p/2, Ai+√p/2,j, Ai+√p/2,j,Π211, n/2, p/8, c/2)
25: % Find all-pairs shortest paths for vertices in V1

26: Π121[i, j] sends Ai,j+√p/2 to Π111[i, j].
27: Π211[i, j] sends Ai+√p/2,j to Π111[i, j].
28: Aij ← 2.5D-SMMM(Ai,j+√p/2, Ai+√p/2,j, Aij,Π111, n/2, p/8, c/2)

Ensure: process Π[i, j, 1] owns a block of the APSP distance matrix, Aij ∈ S
n√
p/c
× n√

p/c

CHAPTER 9. FINDING THE SHORTEST PATHS IN GRAPHS 154

Algorithm 9.8.5 [C] = 2.5D-SMMM(A, B, C, Π, n, p, c)
Require: n-by-n matrices A, B, C, spread over

√
p/c-by-

√
p/c processor grid Π[:, :, 1].

1: % Do with each processor in parallel
2: for all i, j ∈ [1,

√
p/c], k ∈ [1, c] do

3: Replicate A[i, j], B[i, j] on all layers Π[i, j, :]
4: if k > 1 then Initialize C[:, :, k] =∞
5: % perform loop iterations in a pipelined fashion
6: for t = (k − 1) · n/c to t = k · n/c do Replicate A[:, t] on columns of Λ[:, :]
7: Replicate B[t, :] on rows of Λ[:, :]
8: % Perform Semiring-Matrix-Matrix-Multiply
9: C[:, :, k] := min(C[:, :], A[:, t] +B[t, :])

C[:, :, 1] := min(C[:, :, :])
10: % min-reduce C across layers
Ensure: n-by-n matrix C = min(C,A ·B), spread over

√
p/c-by-

√
p/c processor grid Π[:, :, 1].

155

Chapter 10

Distributed-Memory Tensor Contractions

In this chapter, we will consider numerical applications in quantum chemistry. Among the most
common methods of quantum chemistry are many-body (QMB) methods, which attempt to explic-
itly solve the Schrödinger equation using a variety of models. The explicit treatment of electrons in
molecules leads to a steep computational cost, which is nonetheless often of polynomial complex-
ity, but with the benefit of systematic improvement achieved through appropriate elaborations of
the models. The coupled-cluster (CC) family of methods [165, 17, 39] is currently the most popu-
lar QMB method in chemistry due to its high accuracy, polynomial time and space complexity, and
systematic improvability. Coupled-cluster excels in the description of molecular systems due to its
ability to accurately describe electron correlation – the dynamic effect of each electron on the oth-
ers. In simpler (and hence cheaper) methods, electron correlation is either neglected in favor of an
averaged interaction (as in self-consistent field theory [135, 130]) or approximated by an assumed
functional form as in DFT [128], while correlation is treated explicitly in CC methods for pairs
of electrons (CCSD), triples (CCSDT), and so on in a systematically improvable way. Addition-
ally CC is rigorously size-extensive [17] and easily extensible to excited states [150], derivatives
[138, 151], and properties [119].

This chapter focuses on the fundamental kernels of coupled-cluster calculations – tensor con-
tractions – and documents a completely new set of parallel algorithms implemented as a distributed-
memory tensor contraction library, the Cyclops Tensor Framework (CTF) 1. CTF has enabled
coupled-cluster with excitations of up to three electrons (CCSDT) to scale on state-of-the-art ar-
chitectures while achieving a high degree of efficiency in computation, communication and stor-
age. On a Cray XC30 supercomputer, CTF outperforms NWChem [31], the most commonly used
distributed-memory coupled-cluster software, solving problems many times faster by virtue of
better strong scaling, as well as achieving higher performance for large problems (weak scaling).
We also demonstrate that the framework can maintain a high-fraction of the peak performance on
thousands of nodes of both a Cray XC30 and a BlueGene/Q architecture.

This chapter is based on joint work with Devin Matthews, Jeff Hammond, and John F. Stanton [148].
1Cyclops Tensor Framework is publicly available under a BSD license: https://github.com/

solomonik/ctf

https://github.com/solomonik/ctf
https://github.com/solomonik/ctf

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 156

Any tensor contraction can be performed via a series of index reorderings and matrix mul-
tiplications. Parallel matrix multiplication is a well-studied problem and existing algorithms are
capable of achieving high efficiency for the problem on a variety of scales/architectures, as we
demonstrate in Chapter 4. In the field of dense linear algebra, optimized numerical libraries have
achieved success and popularity by exploiting the efficiency of primitives such as matrix multi-
plication to provide fast routines for matrix operations specified via a high-level interface. CTF
raises the level of abstraction to provide contraction routines which employ library-optimized ma-
trix multiplication calls to maintain efficiency and portability. In addition to contractions, CTF
provides optimized distributed data transposes which can reorder tensor indices and extract sub-
tensors. This capability allows CTF to dynamically make data-decomposition decisions, which
maintain load-balance and communication efficiency throughout the execution of any given ten-
sor contraction. Other libraries, such as NWChem, use dynamic load-balancing to deal with the
irregular structure of symmetric tensor contractions. The high-dimensional blocking used in CTF
permits the capability to exploit tensor symmetry to lower computational and/or memory costs of
contractions whenever possible.

We demonstrate the generality of this framework in the Aquarius quantum chemistry program 2

via a concise interface that closely corresponds to Einstein notation, capable of performing arbi-
trary dimensional contractions on symmetric tensors. This interface is a domain specific language
well-suited to theoretical chemists. To demonstrate correctness and performance we have imple-
mented coupled-cluster methods with single, double, and triple excitations (CCSDT) using this
infrastructure.

The rest of the chapter is organized as follows

• Section 10.1 reviews previous work on coupled-cluster frameworks and tensor contractions,

• Section 10.2 presents the tensor blocking and redistribution algorithms used inside CTF,

• Section 10.3 explains how CTF performs tensor contractions and arranges the data via fold-
ing and mapping techniques,

• Section 10.4 gives performance results for CCSD and CCSDT codes implemented on top of
CTF,

• Section 10.5 discusses future directions for work on distributed-memory tensor frameworks.

10.1 Previous work
In this section, we provide an overview of existing applications and known algorithms for dis-
tributed memory CC and tensor contractions. We also discuss parallel numerical linear algebra
algorithms which will serve as motivation and building blocks for the design of Cyclops Tensor
Framework.

2A pre-alpha version of Aquarius is publicly available under the New BSD license: https://github.com/
devinamatthews/aquarius

https://github.com/devinamatthews/aquarius
https://github.com/devinamatthews/aquarius

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 157

10.1.1 NWChem and TCE
NWChem [31] is a computational chemistry software package developed for massively parallel
systems. NWChem includes an implementation of CC that uses tensor contractions, which are of
interest in our analysis. We will detail the parallelization scheme used inside NWChem and use it
as a basis of comparison for the Cyclops Tensor Framework design.

NWChem uses the Tensor Contraction Engine (TCE) [79, 19, 64], to automatically generate
sequences of tensor contractions based on a diagrammatic representation of CC schemes. TCE
attempts to form the most efficient sequence of contractions while minimizing memory usage of
intermediates (computed tensors that are neither inputs nor outputs). We note that TCE or a sim-
ilar framework can function with any distributed library which actually executes the contractions.
Thus, TCE can be combined with Cyclops Tensor Framework since they are largely orthogonal
components. However, the tuning decisions done by such a contraction-generation layer should be
coupled with performance and memory usage models of the underlying contraction framework.

To parallelize and execute each individual contraction, NWChem employs the Global Arrays
(GA) framework [120]. Global Arrays is a partitioned global-address space model (PGAS) [170]
that allows processors to access data (via explicit function calls, e.g., Put, Get and Accumulate) that
may be laid out physically on a different processor. Data movement within GA is performed via
one-sided communication, thereby avoiding synchronization among communicating nodes, while
accessing distributed data on-demand. NWChem performs different block tensor sub-contractions
on all processors using GA as the underlying communication layer to satisfy dependencies and ob-
tain the correct blocks. NWChem uses dynamic load balancing among the processors because the
work associated with block-sparse representation of symmetric tensors within GA is not intrinsi-
cally balanced. Further, since GA does not explicitly manage contractions and data redistribution,
the communication pattern resulting from one-sided accesses is often irregular. The dynamic load-
balancer attempts to alleviate this problem, but assigns work without regard to locality or network
topology. Cyclops Tensor Framework eliminates the scalability bottlenecks of load imbalance and
irregular communication, by using a regular decomposition which employs a structured communi-
cation pattern especially well-suited for torus network architectures.

10.1.2 ACES III and SIAL
The ACES III package uses the SIAL framework [112, 50] for distributed memory tensor contrac-
tions in coupled-cluster theory. Like the NWChem TCE, SIAL uses tiling to extract parallelism
from each tensor contraction. However, SIAL has a different runtime approach that does not re-
quire one-sided communication, but rather uses intermittent polling (between tile contractions) to
respond to communication requests, which allows SIAL to be implemented using MPI two-sided
communication.

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 158

10.1.3 MRCC
MRCC [96] is unique in its ability to perform arbitrary-order calculations for a variety of CC
and related methods. Parallelism is enabled to a limited extent by either using a multi-threaded
BLAS library or by parallel MPI features of the program. However, the scaling performance is
severely limited due to highly unordered access of the data and excessive inter-node communi-
cation. MRCC is currently the only tenable solution for performing any type of CC calculation
which takes into account quadruple and higher excitations. MRCC uses a string-based approach to
tensor contractions which originated in the development of Full CI codes [99, 122]. In this method,
the tensors are stored using a fully-packed representation, but must be partially unpacked in order
for tensor contractions to be performed. The indices of the tensors are then represented by index
“strings” that are pre-generated and then looped over to form the final product. The innermost loop
contains a small matrix-vector multiply operation (the dimensions of this operation are necessarily
small, and become relatively smaller with increasing level of excitation as this loop involves only
a small number of the total indices). The performance of MRCC is hindered by its reliance on the
matrix-vector multiply operation, which is memory-bandwidth bound. Other libraries, including
NWChem and our approach, achieve better cache locality by leveraging matrix multiplication.

10.1.4 QChem
The QChem [141] quantum chemistry package employs libtensor [56], a general tensor contraction
library for shared-memory architectures. The libtensor framework exploits spatial and permuta-
tional symmetry of tensors, and performs tensor blocking to achieve parallelization. However,
libtensor does not yet provide support for distributed memory tensor contractions and redistribu-
tions, as done by CTF. The libtensor module in QChem also contains a tensor contraction Domain
Specific Language (DSL) somewhat similar to our own. One of the main differences between the
two DSLs is that in libtensor, the index symmetry of the output tensor is implicitly described by
the symmetry of the inputs and any explicit antisymmetrization operations to be performed. In our
DSL (the tensor contraction interface to CTF and Aquarius), it is the other way around in that the
antisymmetrization operators are implicitly specified by the symmetry of the inputs and output.
We feel that the latter approach gives a more convenient and compact representation of the desired
operation, as well as a more robust one in that antisymmetrization operators must be specified for
each contraction, while the output tensor structure must be specified only once. In addition, the
use of repeated and common indices in the tensor index labels and operator overloading in our
approach is more general and flexible than providing functions for each type of common tensor
operation as in libtensor.

10.1.5 Other Tensor Contraction Libraries
There are other tensor contraction libraries, which are not part of standard chemistry packages pre-
viously mentioned in this thesis. One concurrently-developed distributed memory tensor library
effort is given by Rajbahandri et al [134], and shares many similarities with our work. This library

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 159

employs similar matrix multiplication primitives (SUMMA and 2.5D algorithms) for distributed
tensor contractions and mapping of data onto torus networks. A few of the important differences
between our work and this framework are the overdecomposition and redistribution mechanisms
which we provide. Recent studies have also demonstrated the efficacy of scheduling many different
contractions simultaneously within coupled-cluster [105], an approach that is particularly useful
for higher order coupled-cluster methods. Our work focuses on parallel algorithms for the exe-
cution of a single tensor contraction, leaving it for future work to integrate this single-contraction
parallelization with a second layer of multi-contraction parallelism.

There have also been efforts for efficient implementation of tensor contractions for coupled-
cluster which do not focus on distributed memory parallelism. Hanrath and Engels-Putzka [74]
give a sequential framework which performs tensor transpositions to efficiently exploit threaded
matrix multiplication primitives within tensor contractions. Parkhill and Head-Gordon [126] as
well as Kats and Manby [97] give sequential implementations of sparse tensor contraction libraries,
targeted at coupled-cluster methods which exploit spatial locality to evaluate a sparse set of inter-
actions. Support for parallel sparse tensor contractions is not within the scope of this thesis, but
is being pursued as an important direction of future work since many of the parallel algorithmic
ideas discussed in this thesis extend to sparse tensors.

10.2 Algorithms for Tensor Blocking and Redistribution
CTF decomposes tensors into blocks which are cyclic sub-portions of the global tensor and assigns
them to processors in a regular fashion. The partitioning is contraction-specific and tensor data is
transferred between different distributions when necessary. Further, it is necessary to allow the
user to modify, enter, and read the tensor data in a general fashion. In this section, we explain how
the cyclic blocking scheme works and give data redistribution algorithms which are designed to
shuffle the data around efficiently.

10.2.1 Cyclic Tensor Blocking
A blocked distribution implies each processor owns a contiguous piece of the original tensor. In a
cyclic distribution, a cyclic phase defines the periodicity of the set of indices whose elements are
owned by a single processor. For example, if a vector is distributed cyclically among 4 processors,
each processor owns every fourth element of the vector. For a tensor of dimension d, we can define
a set of cyclic phases (p1, . . . , pd), such that processor Pi1,...,id owns all tensor elements whose
index (j1, . . . , jd) satisfies

jk ≡ ik mod pk

for all k ∈ {1, . . . , d} and where pk gives the length of the processor grid in the k − th dimen-
sion. A block-cyclic distribution generalizes blocked and cyclic distributions, by distributing con-
tiguous blocks of any size b cyclically among processors. Cyclic decompositions are commonly
used in parallel numerical linear algebra algorithms and frameworks such as ScaLAPACK (block-
cyclic) [28] and Elemental (cyclic) [131]. Our method extends this decomposition to tensors.

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 160

Figure 10.1: The load-imbalance incurred or padding necessary for blocked, block-cyclic, and
cyclic layouts.

Cyclops Tensor Framework employs a cyclic distribution in order to preserve packed symmet-
ric full structure in sub-tensors, minimize padding, and generate a completely regular decomposi-
tion, susceptible to classical linear algebra optimizations. Each processor owns a cyclic sub-tensor,
where the choice of cyclic phases in each dimension has the same phase for all symmetric indices.
By maintaining the same cyclic phase in each dimension, the algorithm ensures that each of the
sub-tensors owned by any processor has the same fill structure as the whole tensor. For instance,
CTF might decompose the integral tensor V which represents two-electron interactions via two ba-
sis functions and is therefore anti-symmetric in two index pairs, into 36 blocks V̂w1w2w3w4 , where
w1, w2 ∈ {0, 1} and w3, w4 ∈ {0, 1, 2} so that

V ab
ij ∈ V̂w1w2w3w4 : V ab

ij ∈ V, a ≡ w1 mod 2, b ≡ w2 mod 2, a < b

i ≡ w3 mod 3, j ≡ w4 mod 3, i < j.

Each sub-tensor V̂w1w2w3w4 has the same structure as the unique part of V (V ab
ij for a < b, i < j),

though some blocks have extra elements (e.g. V̂0101 is larger than V̂1101 since V aa
ij = 0, which

implies that the latter block does not contain entries that are on the diagonal of the first two indices).
However, it is important to clarify that while structure is preserved, cyclicity does not preserve
symmetry. If we drop the conditions a < b and i < j from the definition of the V̂w1w2w3w4 block,
only the blocks V̂w1w1w3w3 will have the same symmetry as V (the same would be true if the blocks
were selected contiguously rather than cyclically).

The cyclic blocks differ in fill, but padding along the diagonals of symmetric indices allows all
the blocks to be defined in the same shape. Figure 10.1 demonstrates the padding required to store
a lower-triangular matrix in a 4-by-4 cyclic layout. For comparison, we also show the amount of
padding one would need to preserve identical block structure in block-cyclic and contiguously-
blocked layouts. The cyclic layout is the only one able to preserve the fill structure and does not
require a significant amount of padding. Preserving a regular layout, regardless of symmetry, also
necessitates padding to make the tensor edge lengths divisible by the processor grid edge lengths.
In a cyclic layout, the amount of padding required due to symmetry and divisibility grows with

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 161

the number of processors, presenting a potential limit to strong scaling (e.g. if the number of
processors is equal to the number of tensor elements, cyclic and blocked layouts are the same and
no structure is preserved). However, the relative padding overhead decreases as we increase the
tensor size, so we expect the cyclic layout to at least maintain good weak scalability.

10.2.2 Overdecomposition
Our cyclic decomposition allows us to preserve symmetric fill structure so long as we satisfy the
requirement that all symmetric tensor indices are decomposed with the same cyclic phase. This
requirement presents a significant challenge to the naive method of assigning a single block to each
processor, since for a n-dimensional symmetric index group, preserving symmetric fill structure
would require the number of processors to have an integer nth root to have the same cyclic phase
in each dimension. This restriction could be overcome by using a subset of the processors to do
the computation, but this would sacrifice efficiency and generality. Our solution is to add a layer of
abstraction between the decomposition and the machine by assigning multiple sub-tensors to each
processor.

Cyclops Tensor Framework has the capability to overdecompose the tensor into a number of
blocks that is a multiple of the number of processors. We can represent a d-dimensional torus
processor grid as a d-tuple (p1, . . . pd), where pd ∈ {1, . . .}. In CTF, each n-dimensional tensor
has n mappings (m1, . . . ,mn), where each mapping mk consists of a processor grid dimension
of an integer overdecomposition factor vk ∈ {1, 2, . . .} and a processor grid dimension index
qk ∈ {0, . . . , d}, so that mk = (vk, qk). We use the zeroth processor grid index to denote a
completely virtual grid mapping, by letting p0 = 1. This means that processor Pi1,...,id owns all
tensor elements whose index (j1, . . . , jn) satisfies

jk ≡ ik mod (vk · qk)

for all k ∈ {1, . . . , n}. This overdecomposition capability allows tensors of order n to be mapped
onto processor grids of order d ≤ n, since any mappingmk = (vk, 0) does not correspond to an ac-
tual processor grid dimension but only a local blocking. We also support mappings of tensors onto
processor grids of dimension d > n either by replicating the tensor along some of the processor
grid dimensions, or by folding multiple processor grid dimensions into a single larger dimension.

CTF attempts to use the least amount of overdecomposition, since larger blocks typically
achieve higher matrix multiplication efficiency. The overdecomposition factor is then set to be
equal to the least common multiple (lcm) of the physical dimensions to which indices in the sym-
metric group are mapped. For instance if a tensor has a 3-index symmetry with the first two indices
mapped along processor grid dimensions p1 and p2, we will have the three indices mapped as

m1 = (lcm(p1, p2)/p1, 1)

m2 = (lcm(p1, p2)/p2, 2)

m3 = (lcm(p1, p2), 0).

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 162

We note that the overall phase of these mappings is the same, so the symmetric fill structure of
the index group is preserved within each sub-tensor block. Further, we see that overdecomposition
allows a tensor to be distributed among any number of processors (in this case 6), whereas a
naive decomposition would have required a processor count of {1, 8, 27, . . .}, and would have very
limited capability for topology-aware mapping.

We do not use a dynamically scheduled overdecomposition approach such as that of the Charm++
runtime system [95]. Instead, our overdecomposition is set so that the dimensions of the cyclic de-
composition are a multiple of the physical torus dimensions (by the factors v as above) and generate
a regular mapping. For dense tensors, our approach maintains perfect load-balance and achieves
high communication and task granularity by managing each overdecomposed sub-grid of blocks
explicitly within each processor. However, we are exploring the utility of dynamic scheduling in
allowing CTF to efficiently support sparse tensors.

10.2.3 Redistribution of Data
As we have seen with overdecomposition, the symmetries of a tensor place requirements on the
cyclic decomposition of the tensor. Further parallel decomposition requirements arise when the
tensor participates in a summation or contraction with other tensors, in order to properly match
up the index mappings among the tensors. Therefore, it is often necessary to change the mapping
of the tensor data between each contraction. In general, we want to efficiently transform the data
between any two given index to processor grid mappings.

Further, redistribution of data is necessary if the framework user wants to read or write parts of
the tensor. We enable a user to read/write to any set of global indices from any processor in a bulk
synchronous sparse read/write call. Additionally, CTF allows the user to extract any sub-block
from a tensor and define it as a new CTF tensor. CTF has three redistribution kernels of varying
generality and efficiency, all of which are used in the execution of coupled-cluster calculations. The
functionality of each kernel is summarized as follows (the kernels are listed in order of decreasing
generality and increasing execution speed)

• sparse redistribution – write or read a sparse set of data to or from a dense mapped CTF
tensor

• dense redistribution – shuffles the data of a dense tensor from one CTF mapping to any other
CTF mapping

• block redistribution – shuffling the assignment of the tensor blocks to processors without
changing the ordering of data within tensor blocks

Of these three kernels, the second is the most complex, the most optimized, and is used the most
intensively during CCSD/CCSDT calculations. The third kernel serves as a faster version of dense
redistribution. The sparse redistribution kernel currently serves for input and output of tensor data,
but in the future could also be used internally to execute sparse tensor contractions. We detail the
architecture of each kernel below.

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 163

Sparse Redistribution

There are multiple reasons for CTF to support sparse data redistribution, including data input and
output, verification of the dense redistribution kernel, and support for sparse tensor storage. Our
algorithm for reading and writing sparse data operates on a set of key-value pairs to read/write. The
key is the global data index in the tensor. For a tensor of dimension d and edge lengths (l1, . . . , ld),
the value at the position described by the tuple (i1, . . . , id), 0 ≤ ik < lk : ∀k ∈ [1, d] is given by

iglobal =
d∑

k=1

(
ik

k−1∏
m=1

lm

)
.

The sparse algorithm is as follows:

1. sort the keys by global index

2. place the local key/value pairs into bins based on the indices’ block in the final distribution

3. collect the bins for each block into bins for each destination processor

4. exchange keys among processors via all-to-all communication

5. combine the received keys for each block and sort them by key (the data is in global order
within a block, but not across multiple blocks)

6. iterate over the local data of the target tensor, computing the key of each piece of data and
performing a read or write if the next sparse key is the same

7. if the operation is a read, send the requested values back to the processors which requested
them

This sparse read/write algorithm can be employed by a kernel which goes between two mappings
of a tensor by iterating over local data and turning it into sparse format (key-value pairs), then
calling a sparse write on a zero tensor in the new mapping. Further, by extracting only the values
present in the sparse block of a tensor and changing the offsets of the keys, we allow general
sub-block to sub-block redistribution.

This redistribution kernel is very general and fairly straightforward to implement and thread,
however, it clearly does redundant work and communication for a redistribution between two map-
pings due to the formation, sorting, and communication of the keys. If the amount of data stored
locally on each processor is n, this algorithm requires O(n log n) local work and memory traffic
for the sort. The next kernel we detail is specialized to perform this task in a more efficient manner.

Dense Redistribution

Between contractions, it is often the case that a CTF tensor must migrate from one mapping to
another. These mappings can be defined on processor grids of different dimension and can have

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 164

different overall cyclic phases along each dimension. This change implies that the padding of
the data also changes, and it becomes necessary to move only the non-padded data. So, we must
iterate over the local data, ignoring the padding, and send each piece of data to its new destination
processor, then recover the data on the destination processor and write it back to the new local
blocks in the proper order.

Our dense redistribution kernel utilizes the global ordering of the tensor to avoid forming or
communicating keys with the index of data values. The kernel places the values into the send
buffers in global order, performs the all-to-all then retrieves them from the received buffers using
the knowledge that the data is in global order and thereby computing which processor sent each
value. The same code with swapped parameters is used to compute the destination processor from
the sender side, as well as to compute the sender processor from the destination side. The kernel
is threaded by partitioning the tensor data among threads according to global order. We ensure a
load-balanced decomposition of work between threads, by partitioning the global tensor in equal
chunks according to its symmetric-packed layout, and having each thread work on the local part of
this global partition, which is now balanced because the layout is cyclic. Another important opti-
mization to the kernel, which significantly lowered the integer-arithmetic cost, was precomputing
the destination blocks along each dimension of the tensor. For instance, to redistribute an n-by-n
matrix A from a pr-by-pc grid to another distribution, we precompute two destination vectors v
and w of size n/pr and n/pc, respectively, on each processor, which allow us to quickly determine
the destination of local matrix element Aij via look ups to vi and wj .

The code necessary to implement this kernel is complex because it requires iterating over local
tensor blocks data in global order, which requires striding over blocks, making the index arithmetic
complex and the access pattern non-local. However, overall the algorithm performs much less
integer arithmetic than the sparse redistribution kernel, performing O(n) work and requiring O(n)
memory reads (although with potentially with less locality than sorting), if the local data size is n.
Further, the all-to-all communication required for this kernel does not need to communicate keys
along with the data like in the sparse redistribution kernel. In practice, we found the execution time
to be roughly 10X faster than the sparse kernel. Nevertheless, these dense redistributions consume
a noticeable fraction of the execution time of CTF during most CC calculations we have tested.

Block Redistribution

Often, it is necessary to perform a redistribution that interchanges the mapping assignments of
tensor dimensions. For instance, if we would like to symmetrize a tensor, we need to add the
tensor to itself with two indices transposed. We also perform a similar addition to ‘desymmetrize’
a tensor by defining a nonsymmetric tensor object and adding the original tensor object, which is in
packed storage to the unpacked nonsymmetric tensor object (although the data is still symmetric,
but now redundantly stored). In a distributed memory layout, this requires a distribution if either of
the two indices are mapped onto a processor grid dimension. If the tensor was in a mapping where
the two indices had the same cyclic phase (it had to if the indices were symmetric), it suffices to
redistribute the blocks of the tensor. With this use-case in mind, we wrote a specialized kernel that
goes from any pair of mappings with the same overall cyclic phases and therefore the same blocks.

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 165

We implemented this type of block redistribution by placing asynchronous receive calls for
each block on each processor, sending all the blocks from each processor, and waiting for all
the exchanges to finish. Since blocks are stored contiguously they are already serialized, so this
kernel requires no local computational work and has a low memory-bandwidth cost. However,
this kernel still incurs the network communication cost of an all-to-all data exchange. This block
redistribution kernel is used whenever possible in place of the dense redistribution kernel.

10.3 Algorithms for Tensor Contraction
In the previous section we’ve established the mechanics of how CTF manages tensor data re-
distribution among mappings. This section will focus on detailing the algorithms CTF uses to
select mappings for contractions and to perform the tensor contraction computation. We start by
discussing what happens to tensor symmetries during a contraction and how symmetry may be
exploited. Then we detail how the intra-node contraction is performed and how the inter-node
communication is staged. Lastly, we detail how full contraction mappings are automatically se-
lected based on performance models of redistribution and distributed contraction.

10.3.1 Tensor Folding
Any nonsymmetric tensor contraction ofA ∈ RIa1×...×Ial andB ∈ RIb1×...×Ibm intoC ∈ RIc1×...×Icn

is an assignment of indices to each dimension of the three tensors, such that every index is assigned
to two dimensions in different tensors. The total number of indices involved in the contraction is
therefore t = (l+m+n)/2. We can define the assignment of these indices to the three tensors, by
three index sets, {i1, . . . , il}, {j1, . . . , jm}, {k1, . . . , kn} ⊂ {1, . . . , t} which correspond to three
projections of some index (tuple) r = {r1, . . . , rt}:

pA(r) = {ri1 , . . . , ril}, pB(r) = {rj1 , . . . , rjm}, pC(r) = {rk1 , . . . , rkn}.

We can define the full index space via these projections as {I1, . . . , It}, where

pA({I1, . . . , It}) = {Ia1 , . . . , Ial} pB({I1, . . . , It}) = {Ib1 , . . . , Ibm}
pC({I1, . . . , It}) = {Ic1 , . . . , Icn}.

These projection mappings (indices) also completely define the element-wise contraction over this
complete index space {I1, . . . , It},

∀r ∈ {1, . . . , I1} × . . .× {1, . . . , It} : CpC(r) = CpC(r) + ApA(r) ·BpB(r).

For example, matrix multiplication (C = C +A ·B) may be defined by mappings pA(r1, r2, r3) =
(r1, r3), pB(r1, r2, r3) = (r3, r2) and pC(r1, r2, r3) = (r1, r2). These projections are provided to
the framework via the domain specific language in Section 3.1. The code is in fact somewhat more
general than the definition of contractions we analyze here, as it allows the same index to appear
in all three tensors (weigh operation) as well as only one of three tensors (reduction).

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 166

Nonsymmetric tensor contractions reduce to matrix multiplication via index folding. Index
folding corresponds to transforming sets of indices into larger compound indices, and may ne-
cessitate transposition of indices. We define a folding of index set s = {i1, . . . , in} into a single
compound index q as a one-to-one map

f : {1, . . . , I1} × . . .× {1, . . . , In} →
{

1, . . . ,
n∏
i=1

Ii

}
,

for instance with s = {i, j, k}, we have f(s) = i+ I1 · (j − 1) + I1 · I2 · (k− 1). Given a two-way
partition function (π1(s), π2(s)), and two index set foldings f and g, we define a matrix folding
m(s) = (f(π1(s)), g(π2(s))) as a folding of a tensor’s indices into two disjoint compound indices.
Therefore, Ā = m(A) with elements Ām(s) = As.

Any contraction can be folded into matrix multiplication in the following manner, by defining
mappings fAB, fBC , and fAC and matrix foldings:

mA(iA) = (fAC(iAC), fAB(iAB)),

mB(iB) = (fAB(iAB), fBC(iBC)),

mC(iC) = (fAC(iAC), fBC(iBC)),

where iX = pX(iE) for all X ∈ {A,B,C} and iXY = pX(iE)∩ pY (iE) for all X, Y ∈ {A,B,C}.
Now the contraction may be computed as a matrix multiplication of Ā = mA(A) with B̄ = mB(B)
into C̄ = mC(C)

C̄ij = C̄ij +
∑
k

Āik · B̄kj

Tensors can also have symmetry, we denote antisymmetric (skew-symmetric) index groups within
a fully symmetric order n tensor T as

T[i1,...,ij ,...,ik,...,in] = −T[i1,...,ik,...,ij ,...,in]

for any j, k ∈ [1, n] (the value is zero when j = k and is not stored). We also employ this
notation for partially-antisymmetric tensors that have multiple index groups in which the indices
are symmetric, e.g. for a partially-antisymmetric order n+m tensor W ,

W[i1,...,in],[j1,...jm] = −W[in,i2,...,in−1,i1],[j1,...,jm]

= −W[i1,...,in],[jm,j2,...,jm−1,j1] = W[in,i2,...,in−1,i1],[jm,j2,...,jm−1,j1],

where we can also permute any other pairs of indices (rather than the first with the last) within the
two antisymmetric index groups with the same effect on the sign of the value. For the purpose of
this analysis, we will only treat antisymmetric tensors; for symmetric tensors the non-zero diag-
onals require more special consideration. We denote a packed (folded) antisymmetric compound

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 167

index as an onto map from a packed set of indices to a interval of size binomial in the tensor edge
length

f̂(i1, . . . , in) : {1, . . . , I}n →
{

1, . . . ,

(
I

n

)}
.

So given a simple contraction of antisymmetric tensors, such as

C[i1...,ik−s],[ik−s+1...,im] =
∑
j1...,js

A[i1...,ik−s],[j1...,js] ·B[j1...,js],[ik−s+1...,im],

we can compute it in packed antisymmetric layout via matrix foldings:

mC({i1, . . . , im}) = (f̂(i1, . . . , ik−s), ĝ(ik−s+1, . . . , im)),

mA({i1, . . . , ik−s, j1, . . . , js}) = (f̂(i1, . . . , ik−s), ĥ(j1, . . . , js)),

mB({j1, . . . , js, ik−s+1, im}) = (ĥ(j1, . . . , js), ĝ(ik−s+1, . . . , im)).

So that, for Ā = mA(A), we can rewrite the unfolded contraction and apply the foldings B̄ =
mB(B) and C̄ = mC(C),

∀{i1 . . . , ik−s} ∈ {1, . . . , I}k−s, {ik−s+1 . . . , im} ∈ {1, . . . , I}m−k+s,

{j1 . . . , js} ∈ {1, . . . , I}s :

C̄mC({i1,...,im}) = C̄mC({i1,...,im}) + ĀmA({i1,...,ik−s,j1,...,js}) · B̄mB({j1,...,js,ik−s+1,im})

which yields the following folded form of the contraction

∀i ∈
{

1, . . . ,

(
I

k − s

)}
, j ∈

{
1, . . . ,

(
I

m− k + s

)}
: C̄ij = s!

(Is)∑
k=1

Āik · B̄kj.

The above contraction is an example where all symmetries or antisymmetries are preserved. Any
preserved symmetries must be symmetries of each tensor within the whole contraction term. We
can consider a tensor Z corresponding to the uncontracted set of scalar multiplications whose
entries are 3-tuples associated with scalar multiplications and the entry of the output to which the
multiplicaiton is accumulated. For instance for a contraction expressed as

Ci1,...,is,is+t+1,...is+t+v =
∑

is+1,...is+v

Ai1,...,is+v ·Bis+1,...,is+t+v

the entries of Z are defined as

Zi1,...,is+t+v = (Ai1,...,is+v , Bis+1,...,is+t+v , Ci1,...,is,is+t+1,...is+t+v).

If Z is symmetric (or antisymmetric) in a pair of indices, we say this symmetry (or antisymmetry)
is preserved in the contraction. Broken symmetries are symmetries which exist in one of A, B,

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 168

or C, but not in Z (symmetries can exist in C and not in Z if the contraction is symmetrized or
antisymmetrized). For example, we can consider the contraction

C[ij]kl =
∑
pq

A[ij][pq] ·Bpk[ql],

the tensor Z would in this case be

Z[ij]klpq = (A[ij][pq], Bpk[ql], C[ij]kl]).

The symmetry [ij] is preserved but the symmetries [pq] and [ql] are broken, since the three values
in the 3-tuple Z[ij]klpq are unchanged (or change sign if antisymmetric) when i is permuted with j,
but the value of B changes when p is permuted with q, and the value of A as well C change when
q is permuted with l. For each preserved symmetry in a contraction we can achieve a reduction in
floating point operations via folding. For broken symmetries we currently only exploit preservation
of storage, although Chapter 11 introduces a method for lowering the computation cost in the
case of broken symmetries via computing an alternative set of intermediate quantities. Within the
framework the broken symmetries are unpacked and the contraction computed as

C̄f̂(i,j),k,l =
∑
p,q

Āf̂(i,j),p,q ·Bp,k,q,l

or the broken symmetries can remain folded, in which case multiple permutations are required,

C̄f̂(i,j),k,l =
∑
p<q

[
Āf̂(i,j),ĝ(p,q) · B̄p,k,ĥ(q,l) − Āf̂(i,j),ĝ(p,q) · B̄p,k,ĥ(l,q)

]
−

∑
q<p

[
Āf̂(i,j),ĝ(q,p) · B̄p,k,ĥ(q,l) − Āf̂(i,j),ĝ(q,p) · B̄p,k,ĥ(l,q)

]
Our framework makes dynamic decisions to unpack broken symmetries in tensors or to perform
the packed contraction permutations, based on the amount of memory available. Unpacking each
pair of indices is done via a tensor summation which requires either a local transpose of data of a
global transpose with inter-processor communication, which can usually be done via a block-wise
redistribution which was detailed in Section 10.2.3. It may be possible to efficiently reduce or
avoid the desymmetrization and symmetrization calls necessary to deal with broken symmetries
and we are currently exploring possible new algorithms that can achieve this. However, currently
unpacking leads to highest efficiency due to the ability to fold the unpacked indices into the matrix
multiplication call.

10.3.2 On-Node Contraction of Tensors
To prepare a folded form for the on-node contractions, we perform non-symmetric transposes of
each tensor block. In particular, we want to separate out all indices which take part in a broken

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 169

symmetric group within the contraction and linearize the rest of the indices. If a symmetry group
is not broken, we can simply fold the symmetric indices into one bigger dimension linearizing
the packed layout. We perform an ordering transposition on the local tensor data to make dimen-
sions which can be folded, as fastest increasing and the broken symmetric dimensions as slowest
increasing within the tensors. To do a sequential contraction, we can then iterate over the bro-
ken symmetric indices (or unpack the symmetry) and call matrix multiplication over the linearized
indices. For instance, the contraction from above,

C[ij]kl =
∑
pq

A[ij][pq] ·Bpk[ql]

would be done as a single matrix multiplication for each block, if the [pq] and [ql] symmetries are
unpacked. However, if all the broken symmetries are kept folded, the non-symmetric transpose
would make fastest increasing the folded index corresponding to f̂(i, j), as well as the k index, so
that the sequential kernel could iterate over p, q, l and call a vector outer-product operation over
f̂(i, j), k for each p, q, l. The underlying call is generally a matrix multiplication, though in this
case it reduces to an outer-product of two vectors, and in other cases could reduce to a vector
or scalar operation. No matter what the mapping of the tensor is, the non-symmetric transpose
required to fold the tensor blocks can be done locally within each block and requires no network
communication. Therefore, while the non-symmetric permutations present an overhead to the
sequential performance, their cost decreased comparatively as we perform strong or weak scaling.

10.3.3 Distributed Contraction of Tensors
In CTF, tensors are distributed in cyclic layouts over a virtual torus topology. The distributed
algorithm for tensor contractions used by CTF is a combination of replication, as done in 3D
and 2.5D algorithms [146] and a nested SUMMA [1, 163] algorithm (detailed in Chapter 4). If
the dimensions of two tensors with the same contraction index are mapped onto different torus
dimensions, a SUMMA algorithm is done on the plane defined by the two torus dimensions. For
each pair of indices mapped in this way, a nested level of SUMMA is done. The indices must be
mapped with the same cyclic phase so that the blocks match, adding an extra mapping restriction
which necessitates overdecomposition.

We employ three versions of SUMMA, each one communicates a different pair of the the three
tensors and keeps one tensor in place. The operand tensors are broadcast before each subcontrac-
tion, while the output tensor is reduced after each subcontraction. So, in one version of SUMMA
(the outer-product version) two broadcasts are done (one of each operand tensor block) and in the
other two of the three versions of SUMMA one reduction is done (instead of one of the broadcasts)
to accumulate partial sums to blocks of the output. If the processor dimensions onto which the pair
of indices corresponding to a SUMMA call are mapped are of different lengths, the indices must
be overdecomposed to the same cyclic phase, and our SUMMA implementation does as many
communication steps as the cyclic phase of the indices.

Blocking the computation on 3D grids (replicating over one dimension) allows for algorithms
which achieve better communication efficiency in the strong scaling limit. Strong scaling efficiency

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 170

is necessary for higher order CC methods which require many different small contractions to be
computed rapidly. When a small contraction is computed on a large number of processors there is
typically much more memory is available than the amount necessary to store the tensor operands
and output. The additional memory can be exploited via replication of tensor data and reduction of
overall communication volume. We always replicate the smallest one of the three tensors involved
in the contraction to minimize the amount of memory and communication overhead of replication.

10.3.4 Topology-Aware Network Mapping
Each contraction can place unique restrictions on the mapping of the tensors. In particular, our
decomposition needs all symmetric tensor dimensions to be mapped with the same cyclic phase.
Further, we must satisfy special considerations for each contraction, that can be defined in terms
of indices (we will call them paired tensor dimensions) which are shared by a pair of tensors in the
contraction. These considerations are

1. dimensions which are paired must be mapped with the same phase

2. for the paired tensor dimensions which are mapped to different dimensions of the processor
grid (are mismatched)

a) the mappings of two pairs of mismatched dimensions cannot share dimensions of the
processor grid

b) the subspace formed by the mappings of the mismatched paired dimensions must span
all input data

The physical network topology is a d-dimensional toroidal partition specified by the d-tuple
(p1, . . . , pd). CTF considers all foldings of physical topology that preserve the global ordering
of the processors (e.g. p2 may be folded with p3 but not only with p4). If the physical network
topology is not specified as a torus, CTF factorizes the number of processes up to 8 factors and
treats the physical topology as an 8-dimensional processor grid and attempts to map to all lower-
dimensional foldings of it. When there are more tensor indices than processor grid dimensions,
additional grid dimensions of length 1 are added.

For any given topology, CTF attempts to map all three possible pairs of tensors so that their
indices are mismatched on the processor grid and they are communicated in the contraction kernel.
The mapping of two tensors automatically defines the mapping of the third, though the overde-
composition factor must be adjusted to satisfy all symmetries and matching indices among tensors.
CTF also considers partial replication of tensors among the processor grid dimensions. Figure 10.2
shows an example of an overdecomposed mapping with a properly matched cyclic phase along all
tensor dimensions.

The search through mappings is done entirely in parallel among processors, then the best map-
ping is selected across all processors. The mapping logic is done without reading or moving any of
the tensor data and is generally composed of integer logic that executes in an insignificant amount
of time with respect to the contraction. We construct a ’ghost’ mapping for each valid topology

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 171

Figure 10.2: Overdecomposition as used in CTF to perform contractions. This diagram demon-
strates a mapping for a contraction of the form c[kl]i =

∑
j a[jkl] ·b[ij]. In this case, we have a 4-by-2

processor grid, and a 4-by-4-by-4 set of blocks.

and each ordering of tensors. The distributed contraction algorithm is constructed on each ghost
mapping, and its communication and memory overheads are evaluated. If the ghost mapping is
suboptimal it is thrown out without ever dictating data movement. Once a mapping is decided
upon, the tensors are redistributed. Currently, our performance cost models predominantly con-
sider communication, with controls on the amount of overdecomposition and memory usage. We
are seeking to extend this cost model and to add infrastructure for training the parameters of our
performance models.

10.4 Application Performance
The implementation of CTF employs MPI [71] for interprocessor communication, BLAS for ma-
trix multiplication and summation, as well as OpenMP for threading. All other functionalities
in CTF were developed from scratch and have no other dependencies. We used vendor provided
optimized on-node parallel BLAS implementations (IBM ESSL and Cray LibSci) on all architec-
tures for benchmarking. While the interface is C++, much of the internals of CTF are in C-style
with C++ library support. Outside of special network topology considerations on BlueGene/Q,
CTF does not employ any optimizations which are specific to an architecture or an instruction set.
Performance profiling is done by hand and with TAU [142].

10.4.1 Architectures
Cyclops Tensor Framework targets massively parallel architectures and is designed to take ad-
vantage of network topologies and communication infrastructure that scale to millions of nodes.
Parallel scalability on commodity clusters should benefit significantly from the load balanced char-
acteristics of the workload, while high-end supercomputers will additionally benefit from reduced
inter-processor communication which typically becomes a bottleneck only at very high degrees of

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 172

parallelism. We collected performance results on two state-of-the-art supercomputer architectures,
IBM Blue Gene/Q and Cray XC30. We also tested sequential and multi-threaded performance on
a Xeon desktop.

The sequential and non-parallel multi-threaded performance of CTF is compared to NWChem
and MRCC. The platform is a commodity dual-socket quad-core Xeon E5620 system. On this
machine, we used the sequential and threaded routines of the Intel Math Kernel Library. This plat-
form, as well as the problem sizes tested reflect a typical situation for workloads on a workstation
or small cluster, which is where the sequential performance of these codes is most important. Three
problem sizes are timed, spanning a variety of ratios of the number of virtual orbitals to occupied
orbitals.

The second experimental platform is ‘Edison’, a Cray XC30 supercomputer with two 12-core
Intel “Ivy Bridge" processors at 2.4GHz per node (19.2 Gflops per core and 460.8 Gflops per node).
Edison has a Cray Aries high-speed interconnect with Dragonfly topology (0.25µs to 3.7µs MPI
latency, 8 GB/sec MPI bandwidth). Each node has 64 GB of DDR3 1600 MHz memory (four 8
GB DIMMs per socket) and two shared 30 MB L3 caches (one per Ivy Bridge). Each core has its
own L1 and L2 caches, of size 64 KB and 256 KB.

The final platform we consider is the IBM Blue Gene/Q (BG/Q) architecture. We use the
installations at Argonne and Lawrence Livermore National Laboratories. On both installations,
IBM ESSL was used for BLAS routines. BG/Q has a number of novel features, including a 5D
torus interconnect and 16-core SMP processor with 4-way hardware multi-threading, transactional
memory and L2-mediated atomic operations [75], all of which serve to enable high performance
of the widely portable MPI/OpenMP programming model. The BG/Q cores run at 1.6 GHz and
the QPX vector unit supports 4-way fused multiply-add for a single-node theoretical peak of 204.8
GF/s. The BG/Q torus interconnect provides 2 GB/s of theoretical peak bandwidth per link in
each direction, with simultaneous communication along all 10 links achieving 35.4 GB/s for 1 MB
messages [35].

10.4.2 Results
We present the performance of a CCSD and CCSDT implementation contained within Aquar-
ius and executed using Cyclops Tensor Framework. For each contraction, written in one line of
Aquarius code, CTF finds a topology-aware mapping of the tensors to the computer network and
performs the necessary set of contractions on the packed structured tensors.

Sequential CCSD Performance

The results of the sequential and multi-threaded comparison are summarized in Table 10.4.1. The
time per CCSD iteration is lowest for NWChem in all cases, and similarly highest for MRCC. The
excessive iteration times for MRCC when the nv

no
ratio becomes small reflect the fact that MRCC

is largely memory-bound, as contractions are performed only with matrix-vector products. The
multi-threaded speedup of CTF is significantly better than NWChem, most likely due to the lack
of multi-threading of tensor transposition and other non-contraction operations in NWChem.

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 173

Table 10.4.1: Sequential and non-parallel multi-threaded performance comparison of CTF,
NWChem, and MRCC. Entries are average time for one CCSD iteration, for the given number
of virtual (nv) and occupied (no) orbitals.

nv = 110 nv = 94 nv = 71
no = 5 no = 11 no = 23

NWChem 1 thread 6.80 sec 16.8 sec 49.1 sec
CTF 1 thread 23.6 sec 32.5 sec 59.8 sec
MRCC 1 thread 31.0 sec 66.2 sec 224. sec
NWChem 8 threads 5.21 sec 8.60 sec 18.1 sec
CTF 8 threads 9.12 sec 9.37 sec 18.5 sec
MRCC 8 threads 67.3 sec 64.3 sec 86.6 sec

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSD on Edison

NWChem w20
w15
w10
w8

Aquarius-CTF w20
w15
w10
w8

(a) CCSD

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSDT on Edison

NWChem w3
w2

Aquarius-CTF w4
w3
w2

(b) CCSDT

Figure 10.3: CCSD and CCSDT strong scaling of water clusters with cc-pVDZ basis set on Edison
(Cray XC30).

Strong Scaling

On the Cray XC30 machine, we compared the performance of our CCSD implementation with
that of NWChem. We benchmarked the two codes for a series of water systems – wn, where n is
the number of water monomers in the system. Water clusters give a flexible benchmark while also
representing an interesting chemical system for their role in describing bulk water properties. In
Figure 10.3(a), we compare the scaling of CCSD using CTF with the scaling of NWChem. Our
version of NWChem 6.3 used MPI-3 and was executed using one MPI process per core. The tile
size was 40 for CCSD and 20 for CCSDT. The CCSD performance achieved by CTF becomes
significantly higher than NWChem when the number of processors used for the calculation is
increased. CTF can both solve problems in shorter time than NWChem (strong scale) and solve
larger problems faster (weak scale). Figure 10.3(b) gives the CCSDT strong scaling comparison.
CCSDT for system sizes above 3 molecules did not work successfully with our NWChem build,

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 174

but a large performance advantage for CTF is evident for the smaller systems.

 10

 20

 30

 40

 50

 60

512 1024 2048 4096 8192 16384

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

(a) IBM BlueGene/Q (Mira)

 50

 100

 150

 200

 250

 300

 350

32 64 128 256 512 1024 2048

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

(b) Cray XC30 (Edison)

Figure 10.4: CCSD and CCSDT weak scaling on water clusters with cc-pVDZ basis set.

Weak Scaling

The parallel weak scaling efficiency of our CCSD and CCSDT implementation on Blue Gene/Q is
displayed in Figure 10.4(a) and on Cray XC30 is displayed in Figure 10.4(b). This weak scaling
data was collected by doing the largest CCSD and CCSDT run that would fit in memory on each
node count and normalizing the efficiency by the number of floating point operations performed by
CTF. Going from 512 to 16384 nodes (256K cores), the efficiency actually often increases, since
larger problems can be solved, which increases the ratio of computation over communication. For
CCSD, CTF maintains 30 GF/node on BG/Q, which is about one sixth of peak. On Edison, CCSD
surpasses 200 GF/node, which is over 50% of peak. The application was run with 4 MPI processes
per node and 16 threads per process on BG/Q and with 4 MPI processes per node and 6 threads
per process on Edison.

Table 10.4.2 lists profiling data for a CCSD iteration of CTF on 1024 nodes (16K cores) of
BG/Q and 256 nodes (6K cores) of Edison on 25 water molecules with a basis set size of 600
virtual orbitals. This problem took 228 seconds on 1024 nodes of BG/Q and 167 seconds on
256 nodes of Edison. The table reports the percentage of execution time of a CCSD iteration
spent in the main kernels in CTF. The table also lists the architectural bounds for each kernel,
demonstrating the components of the hardware being utilized by each computation. The time
inside matrix multiplication reflects the time spent working on tensor contractions sequentially on
each processor, while broadcasts represent the time spent communicating data for replication and
the nested SUMMA algorithm. The prefix sum, data packing, and all-to-all-v operations are all
part of tensor redistribution, which is a noticeable overall overhead. Tensor folding corresponds to
local transposition of each tensor block.

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 175

Table 10.4.2: A performance breakdown of important kernels for a CCSD iteration done by CTF
on a system with no = 125 occupied orbitals and nv = 600 virtual orbitals on 256 nodes of Edison
(XC30) and 1024 nodes of Mira (BG/Q). Complexity is in terms of p processors and M memory
per processor.

kernel BG/Q XC30 complexity architectural bounds
matrix mult. 49% 35% O(n4

vn
2
o/p) flops/mem bandwidth

broadcasts 24% 37% O(n4
vn

2
o/p
√
M) multicast bandwidth

prefix sum 10% 4% O(p) allreduce bandwidth
data packing 4% 3% O(n2

vn
2
o/p) integer ops

all-to-all-v 3% 10% O(n2
vn

2
o/p) bisection bandwidth

tensor folding 6% 5% O(n2
vn

2
o/p) memory bandwidth

other 4% 6%

Table 10.4.3: A performance breakdown of important kernels for a CCSDT iteration done by CTF
on a system with 8 water molecules (no = 40 occupied orbitals) and a cc-pVDZ basis set (nv = 192
virtual orbitals) on 256 nodes of Edison (XC30) and 1024 nodes of Mira (BG/Q). Complexity is in
terms of p processors and M memory per processor.

kernel BG/Q XC30 complexity architectural bounds
matrix mult. 20% 16% O(n5

vn
3
o/p) flops/mem bandwidth

broadcasts 16% 11% O(n5
vn

3
o/p
√
M) multicast bandwidth

prefix sum 5% 3% O(p) allreduce bandwidth
data packing 9% 9% O(n3

vn
3
o/p) integer ops

all-to-all-v 19% 20% O(n3
vn

3
o/p) bisection bandwidth

tensor folding 26% 39% O(n3
vn

3
o/p) memory bandwidth

other 5% 2%

Table 10.4.2 yields the somewhat misleading initial observation that nearly half the execution is
spent in matrix multiplication on BG/Q, 14% more than the fraction spent in matrix multiplication
on Edison. In fact, we observe this difference for two reasons, because the BG/Q run uses four
times the number of processors causing there to be more redundant computation on padding in the
decomposition, and because the matrix multiplication library being employed on BG/Q achieves
a significantly lower fraction of peak than on Edison for the invoked problem sizes. Overall, the
computational efficiency of our CCSD implementation is more favorable on Edison than on BG/Q.

For CCSDT, Aquarius and CTF maintain a lower percentage of peak than for CCSD, but
achieves good parallel scalability. The lower fraction of peak is expected due to the CCSDT
increased relative cost and frequency of transpositions and summations with respect to CCSD. In
particular CCSD performs O(n3/2) computation with O(n) data while CCSDT performs O(n4/3)
computation with O(n) data. The third-order excitation tensor T3 present only in CCSDT has 6
dimensions and its manipulation (packing, unpacking, transposing, and folding) becomes an over-
head. We observe this trend in the CCSDT performance profile on Table 10.4.3, where tensor

CHAPTER 10. DISTRIBUTED-MEMORY TENSOR CONTRACTIONS 176

transposition and redistribution take up a larger fraction of the total time than in the CCSD compu-
tation considered in Table 10.4.2. The 8-water CCSDT problem in Table 10.4.3 took 15 minutes
on 1024 nodes of BG/Q and 21 minutes on 256 nodes of Edison. The strong scalability achievable
for this problem is significantly better on Edison, increasing the number of nodes by four, BG/Q
performs such a CCSDT iteration (using 4096 nodes) in 9 minutes while Edison computes it (using
1024 nodes) in 6 minutes.

10.5 Future Work
CTF provides an efficient distributed-memory approach to dense tensor contractions. The infras-
tructure presented in the chaptermay be extended conceptually and is being improved in practice
by more robust performance modelling and mapping logic. Another promising direction is the
addition of inter-contraction parallelism, allowing for smaller contractions to be scheduled con-
currently. CTF already supports working on subsets of nodes and moving data between multiple
instances of the framework, providing the necessary infrastructure for a higher level scheduling
environment.

From a broader applications standpoint the addition of sparsity support to CTF is a particularly
attractive future direction. Working support for distributed memory tensor objects would allow for
the expression of a wide set of numerical schemes based on sparse matrices. Further tensors with
banded sparsity structure can be decomposed cyclically so as to preserve band structure in the same
way CTF preserves symmetry. Tensors with arbitrary sparsity can also be decomposed cyclically,
though the decomposition may need to perform load balancing in the mapping and execution logic.

Cyclops Tensor Framework will also be integrated with a higher-level tensor expression ma-
nipulation framework as well as CC code generation methods. We have shown a working imple-
mentation of CCSD and CCSDT on top of CTF, but aim to implement more complex methods.
In particular, we are targeting the CCSDTQ method, which employs tensors of dimension up to
8 and gets the highest accuracy of any desirable CC method (excitations past quadruples have a
negligible contribution).

177

Chapter 11

Contracting Symmetric Tensors Using
Fewer Multiplications

How many scalar multiplications are necessary to multiply a n-by-n symmetric matrix by a vector?
Commonly, n2 scalar multiplications are performed, since the symmetrically equivalent entries of
the matrix are multiplied by different vector entries. This chapter considers a method for such
symmetric-matrix-by-vector multiplication that performs only n2/2 scalar multiplications to lead-
ing order, but at the overhead of extra addition operations. In fact, we give an algorithm for any
fully-symmetrized contraction of n-dimensional symmetric tensors of order s+v and v+ t (in this
chapter we refer to tensor dimension as the size of the range of each tensor index and the order as
the number of its indices), yielding a result of order s + t (with a total of ω = s + v + t indices)
that uses

(
n+ω−1

ω

)
≈ nω/ω! multiplications to leading order instead of the usual nω/(s! · t! · v!).

This cost corresponds to exploiting symmetry in all ω indices involved in the contraction, while in
the standard method, only the symmetry in index groups which are preserved (three groups of s,
v, and t indices) in the contraction equation is exploited. Our alternative algorithm forms different
intermediate quantities, which have fully-symmetric structure, by accumulating some redundant
terms, which are then cancelled out via low-order computations.

The technique we introduce is reminiscent of Gauss’s trick, which reduces the number of scalar
multiplications from 4 to 3 for complex multiplication, but requires more additions. It is also sim-
ilar to fast matrix multiplication algorithms such as Strassen’s [152] and more closely to simulta-
neous matrix multiplication A ·B, C ·D discussed by Victor Pan [123]. What all of these methods
have in common is the use of algebraic reorganizations of the stated problem which form inter-
mediate quantities with a preferable computational structure. The symmetric tensor contraction
algorithms presented in this chapter similarly forms intermediate tensors which include mathemat-
ically redundant subterms in order to maintain symmetric structure in the overall computation.

The symmetric tensor contraction algorithm we derive lowers the number of multiplications
necessary significantly, but requires more additions per multiplication and more data movement
per computation performed. The algorithm is therefore most beneficial when each scalar mul-
tiplication costs more than an addition, which is the case when each tensor entry is a complex
number or a matrix/tensor. This tensor contraction algorithm also has several special cases rele-

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 178

vant for numerical matrix computations, including some of the Basic Linear Algebra Subroutines
(BLAS) [108]. In particular, symv, symm, syr2, and syr2k can be done with half the multipli-
cations. Furthermore, in complex arithmetic, the Hermitian matrix BLAS routines hemm, her2k
and LAPACK routines such as hetrd can be done in 3/4 of the arithmetic operations overall.
However, these reformulated algorithms are unable to make use of matrix multiplication subrou-
tines, although in certain cases, the new algorithms can achieve lower communication costs then
the standard methods. Also, since the algorithms require multiple additions for each multiplica-
tion, they are may not be able to fully exploit fused multiply-add units. Further, while numerically
stable, the reformulated algorithms may incur somewhat larger numerical error for certain inputs
and have slightly weaker error bounds.

The fast symmetric tensor contraction algorithm also generalizes to the antisymmetric case
(when the value of the tensor changes sign with interchange of its indices), which yields applica-
tions for tensor computations in quantum chemistry, especially coupled-cluster [16, 77], which is
where the largest potential speedups of our approach can be found. Computation of the commuta-
tor of symmetric matrices or anticommutator of antisymmetric matrices (Lie and Jordan rings over
respective symmetric matrix groups [164]), can be done using a factor of 6X fewer multiplications
and 1.5X fewer total operations than the standard method. Frequently in coupled-cluster and other
physical tensor computations, the operand tensors are only partially symmetric, in which case the
new algorithm can be nested over each symmetric subset of indices with each scalar multiplica-
tion at the lowest level becoming a multiplication of matrices or some other contraction over the
nonsymmetric subset of indices. In such partially symmetric cases, if the contraction over nonsym-
metric indices (e.g. matrix multiplication) is more expensive than addition (e.g. matrix addition),
the fast algorithm’s reduction in the number of multiplications immediately yields the same reduc-
tion in the leading order operation count of the overall operation. We show that for three typical
coupled-cluster contractions taken from methods of three different orders, our algorithm achieves
2X, 4X, and 9X improvements in arithmetic and communication cost with respect to the traditional
approach.

The rest of the chapter is organized as follows:

• Section 11.1 introduces our notation and the symmetric tensor contraction problem,

• Section 11.2 details the standard and new algorithm for symmetric tensor contractions and
gives special cases of the latter for vectors and matrices,

• Section 11.3 proves the correctness and stability of the fast tensor contraction algorithm and
derives its computation and communication costs,

• Section 11.4 illustrates how the algorithm can be adapted to antisymmetric and Hermitian
tensors

• Section 11.5 uses the antisymmetric adaptation to show how a few sample coupled-cluster
contractions can be significantly accelerated,

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 179

• Section 11.6 presents some conclusions and future work on the topic of fast symmetric tensor
contraction algorithms.

11.1 Symmetric Tensor Contractions
Our notation in this chapter follows that of Chapter 10 (which is partially in line with Kolda and
Bader [101]), but with some additional constructs. We denote a d-tuple (tensor indices) as i〈d〉 =
(i1, . . . id), with i〈d〉j〈f〉 = (i1, . . . id, j1, . . . jf). We refer to the first g < d elements of i〈d〉 as
i〈g〉. We employ one-sized tuples i1 = i〈1〉, i〈d〉jm = (i1, . . . id, jm), as well as zero-sized tuples
j〈0〉 = ∅, i〈d〉j〈0〉 = i〈d〉. Given an order d tensor A, we will refer to its elements using the
notation Ai〈d〉 = Ai1,...id . We refer to an index permutation π ∈ Πd as any bijection f between the
set S = [1, d] and itself, so π(i〈d〉) = j〈d〉 if for all k ∈ [1, d], jf(k) = ik. Each tensor index tuple,
i〈d〉, has d! reorderings, to which we refer to as

Π(i〈d〉) = {j〈d〉 : ∃π ∈ Πd, π(i〈d〉) = j〈d〉}.

We define the disjoint partition set χpq(k〈r〉) as the set of all tuples of size p and q, which are
disjoint subsets of k〈r〉 and preserve the ordering of elements in k〈r〉, in other words if ki and kj
appear in the same tuple (partition) and i < j, then ki must appear before kj . We can define the set
χpq(k〈r〉) inductively,

• base case for r < p+ q:
χpq(k〈r〉) = ∅,

for r = 0 and for p = q = 0:
χpq(k〈r〉) = {(∅, ∅)}.

• inductive case for χpq(k〈r〉):

– if p > 0 and q > 0, χpq(k〈r〉) ={(i〈r1〉kr, j〈r2〉) : ∃(i〈r1〉, j〈r2〉) ∈ χp−1
q (k〈r − 1〉)}

∪ {(i〈r1〉, j〈r2〉kr) : ∃(i〈r1〉, j〈r2〉) ∈ χpq−1(k〈r − 1〉)}
∪ {(i〈r1〉, j〈r2〉) : ∃(i〈r1〉, j〈r2〉) ∈ χpq(k〈r − 1〉)}

– if p = 0, χ0
q(k〈r〉) ={(∅, j〈q − 1〉kr) : ∃(∅, j〈q − 1〉) ∈ χ0

q−1(k〈r − 1〉)}
∪ {(∅, j〈q〉) : ∃(∅, j〈q〉) ∈ χ0

q(k〈r − 1〉)}

– if q = 0, χp0(k〈r〉) ={(i〈p− 1〉kr, ∅) : ∃(i〈p− 1〉, ∅) ∈ χp−1
0 (k〈r − 1〉)}

∪ {(i〈p〉, ∅) : ∃(i〈p〉, ∅) ∈ χp0(k〈r − 1〉)}

We denote all possible ordered subsets as χd(k〈d+ f〉) = {i〈d〉|∃(i〈d〉, j〈f〉) ∈ χdf (k〈d+ f〉)}.
When it is implicitly clear what partition is needed, we omit the superscript and subscript from χ
completely, for example i〈d〉 ∈ χ(k〈d+ f〉) is equivalent to i〈d〉 ∈ χd(k〈d+ f〉) and (i〈d〉, j〈f〉) ∈
χ(k〈d+ f〉) is equivalent to (i〈d〉, j〈f〉) ∈ χdf (k〈d+ f〉).

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 180

We note that for any d, f ≥ 0, the union of all concatenations of all possible permutations of
the ordered subsets produced by χdf is equal to all possible permutations of the partitioned subset,

Π(k〈d+ f〉) = {i′〈d〉j′〈f〉 : ∃(i〈d〉, j〈f〉) ∈ χ(k〈d+ f〉), i′〈d〉 ∈ Π(i〈d〉), j′〈f〉 ∈ Π(j〈f〉)}.

Definition: For any s, t, v ≥ 0, we define a symmetrized contraction between tensors, C =
A � B, where A is of order s + v with elements in Abelian group (RA,+), B is of order t + v
with elements in Abelian group (RB,+), into C is of order s + t with elements in Abelian group
(RC ,+) (all with dimension/edge-length n), via a distributive (not necessarily associative) operator
“ · ” ∈ RA ×RB → RC , as

C = A�B ≡ ∀i〈s+ t〉, Ci〈s+t〉 =
1

(s+ t)!
·

∑
j〈s〉l〈t〉∈Π(i〈s+t〉)

(∑
k〈v〉

Aj〈s〉k〈v〉 ·Bl〈t〉k〈v〉

)
.

(11.1.1)

In the case of v = 0, the sum over k〈v〉 disappears (one multiplication is done instead of a
sum of them). Until Section 11.5, we will mostly focus on the case where R = RA = RB = RC ,
so all the tensor elements are in some (possibly nonassociative) ring [137] (R,+, ·). We will
also concentrate our analysis and proofs on cases where at least two of s, t, v are nonzero, since
otherwise one of the tensors is a scalar and the problem is trivial. The algorithms we present reduce
to an equivalent form and have the same cost for the cases when only one of s, t, v is nonzero. The
resulting tensor C computed via equation 11.1.1 is symmetric. For multiplication of a matrix A
with a vector b (s = 1, t = 0, v = 1), equation 11.1.1 becomes c = A · b. For the rank-two vector
outer product of vectors a and b (s = 1, t = 1, v = 0), it becomes C = 1

2
(a · bT + b · aT) and for

the matrix multiplication of A and B (s = 1, t = 1, v = 1), it becomes C = 1
2
(A ·BT +B · AT).

Definition: When A and B are symmetric, we call a symmetrized contraction between A and
B, a fully-symmetric contraction. For such a contraction it is no longer necessary to compute
all possible orderings of the indices j〈s〉, l〈t〉, since they all yield the same A and B values re-
spectively. So, in this case we can rewrite equation 11.1.1 to sum only over the ordered partitions
χst(i〈s+ t〉) and scale by a smaller prefactor,

C = A�B = ∀i〈s+ t〉, Ci〈s+t〉 =
1(
s+t
s

) · ∑
(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

(∑
k〈v〉

Aj〈s〉k〈v〉 ·Bl〈t〉k〈v〉

)
.

(11.1.2)

Equation 11.1.2 yields an equivalent result C as equation 11.1.1, when A and B are symmetric,
since

∀j′〈s〉l′〈t〉 ∈ Π(i〈s+ t〉), ∃(j〈s〉, l〈t〉) ∈ χ(i〈s+ t〉) and ∃πs ∈ Πs, πt ∈ Πt,

such that πs(j〈s〉)πt(l〈t〉) = j′〈s〉l′〈t〉.

Further, ∀k〈v〉, Aj〈s〉k〈v〉 ·Bl〈t〉k〈v〉 = Aj′〈s〉k〈v〉 ·Bl′〈t〉k〈v〉 when

∃πs ∈ Πs, πt ∈ Πt, such that πs(j〈s〉)πt(l〈t〉) = j′〈s〉l′〈t〉.

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 181

We denote ω = s + t + v and assume n � ω. We note that the symmetrized contraction
operator � is commutative so long as the underlying scalar product is commutative, meaning that
A � B = B � A. However, � is not associative, and in order to nest � over different symmetric
sets of indices or a single index, we do not require “·" to be associative. We will return to and
elaborate on this when we consider partially-symmetric tensors in Section 11.5. As an example
of a symmetric contraction, in the case when s = t = v = 1 and scalar multiplication, “·", is
commutative, A and B are symmetric n-by-n matrices and C = 1

2
(A · B + B · A), in which “·"

means the usual matrix product. We consider more examples of this problem and algorithms for
them in Section 11.2.4.

We will revisit these definitions and adapt them to the case of antisymmetric tensors and Hermi-
tian tensors, defining antisymmetrized contractions, and Hermitian contractions in Section 11.4.

11.2 Algorithms
We now discuss algorithms for evaluating equation 11.1.2. The first algorithm exploits the sym-
metry which is preserved in the contraction, as is commonly done. The main contribution of the
chapteris the second ‘fast’ symmetric tensor contraction algorithm, which manages to additionally
exploit permutational symmetry, which is not preserved in equation 11.1.2.

11.2.1 Nonsymmetric Tensor Contraction Algorithm
We first consider the cost of contracting nonsymmetric tensors A and B with all dimensions equal
to n, where A is of order s + v with elements in Abelian group (RA,+), B is of order t + v
with elements in Abelian group (RB,+), into C is of order s + t with elements in Abelian group
(RC ,+).

Algorithm Υ(s,t,v): For some permutation of the indices of A and B any contraction with a
distributive operator “ · ” : RA ×RB → RC can be written as

∀i〈s+ t〉, Ci〈s〉j〈t〉 =
∑
k〈v〉

Ai〈s〉k〈v〉 ·Bk〈v〉j〈t〉.

This contraction may be computed by a single matrix multiplication with matrices of dimensions
ns-by-nv and nv-by-nt. We call this nonsymmetric tensor contraction algorithm Υ(s,t,v).

For any pair of operators % = (·,+), we associate the computational cost µ% with the dis-
tributive operator of the elements of A and B “·" (usually multiplication), and we the associate
computational cost νC% with the Abelian group operator of the elements of C “+" (usually ad-
dition). We count the cost of Υ(s,t,v) as equal to the cost of multiplying matrices of dimensions
ns-by-nv and nv-by-nt into a matrix with dimensions ns-by-nt, which is

FΥ(n, s, t, v, %) = nω · (νC% + µ%),

where ω = s + t + v. Although, in practice, transposing the tensor indices from any given layout
into a distribution which allows direct application of matrix multiplication is non-trivial.

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 182

Theorem 11.2.1. The communication cost of Υ(s,t,v)(A,B), given a sequential machine with a
cache of size M̂ , i.e. the number of words moved between cache and memory, under the assumption
that no operands start in cache and all outputs are written to memory and that all elements have
unit element size has the following bounds,

2nω√
M̂

+ ns+t + ns+v + nt+v ≥ ŴΨ(n, s, t, v, M̂) ≥ max

[
2nω√
M̂
, ns+t + ns+v + nt+v

]
.

Proof. The upper bound on the cost may be attained by the classical algorithm that computes

matrix multiplication block-by-block with blocks of each matrix of dimension
√
M̂/3.

The lower bound is asymptotically the same as the classical result by Hong and Kung [90],
but includes constant factors rather than just an asymptotic bound. A lower bound with a constant
factor was also given by [12], but with a smaller constant prefactor. Our proof of the lower bound
with this constant factor is in Section 4.2.

11.2.2 Standard Symmetric Contraction Algorithm
The nonsymmetric algorithm may be used to compute equation 11.1.2, with only an additional step
of symmetrization of the result of the multiplication betweenA andB. However, the nonsymmetric
algorithm ignores symmetry in A and B, some of which may easily be exploited.

Algorithm Ψ
(s,t,v)
� : Typically, such symmetric contractions are done by forming the partially-

symmetric intermediate tensor,

C̄j〈s〉l〈t〉 =
∑
k〈v〉

Aj〈s〉k〈v〉 ·Bl〈t〉k〈v〉. (11.2.1)

C̄ is symmetric in the index groups j〈s〉 and l〈t〉. C may subsequently be obtained from C̄ by
symmetrization of the j〈s〉 and l〈t〉 index groups,

Ci〈s+t〉 =
1(
s+t
s

) ∑
(j〈s〉,l〈t〉)⊂χ(i〈s+t〉)

C̄j〈s〉l〈t〉. (11.2.2)

We denote this ’standard’ algorithm as C = Ψ
(s,t,v)
� (A,B).

The formation of the intermediate tensor C̄ may be reduced to a single matrix multiplication via
index folding. In particular, each of the three index groups l〈t〉, j〈s〉, and k〈v〉 may be linearized
(folded) into a single larger index of sizes

(
n+t−1

t

)
,
(
n+s−1

s

)
, and

(
n+v−1

v

)
, respectively, and the

resulting matrices, Ā and B̄ can be multiplied nonsymmetrically. For example when s = t = v =
1, no folding is necessary and the matrices A and B are simply multiplied to obtain C̄ = A · B,
then each entry of C is obtained via symmetrization: Cij = 1

2
· (C̄ij + C̄ji).

Contracting over a folded k〈v〉 index group requires a scaling by a factor of v! for all contribu-
tions to the output, except those on a diagonal e.g. with k1 = k2. Therefore, each of

(
n+s−1

s

)(
n+t−1

t

)

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 183

entries of C̄ requires
(
n+v−1

v

)
scalar multiplications, for a total of(

n+ s− 1

s

)(
n+ t− 1

t

)(
n+ v − 1

v

)
= ns+t+v/(s!t!v!) +O(ns+t+v−1)

multiplications and the same number of additions. We do not count the cost of scaling by 1

(s+ts)
, be-

cause the scaling is not necessary in all applications and could differ in cost from the multiplication
of entries of A and B depending on the operator. Symmetrization of C̄ requires(

s+ t

s

)(
n+ s+ t− 1

s+ t

)
= ns+t/(s!t!) +O(ns+t−1)

additions. Assuming s, t, v ≥ 1, the cost of symmetrization of the result is low-order, and the cost
is dominated by forming the intermediate tensor, C̄.

Exploiting preserved symmetry (performing Ψ
(s,t,v)
� (A,B)) has been common practice in quan-

tum chemistry tensor contraction implementations for decades, for instance it is explicitly dis-
cussed in [77], although the technique was probably employed in earlier coupled-cluster and
Møller-Plesset perturbation-theory codes. The consideration and exploitation of such preserved
symmetry has also been automated for arbitrary-order tensors by the Tensor Contraction Engine
(TCE) [79] and Cyclops Tensor Framework (discussed in Chapter 10).

For any pair of operators % = (·,+), we associate the computational cost µ% with the dis-
tributive operator of the elements of A and B “·" (usually multiplication), and we the associate
computational cost νC% with the Abelian group operator of the elements of C “+" (usually addi-
tion). The computational cost of the algorithm Ψ

(s,t,v)
� (A,B) is then

FΨ(n, s, t, v, %) =
nω

s!t!v!
· (ν% + µ%) +

ns+t

s!t!
· ν% +O(nω−1 · (ν% + µ%)).

Theorem 11.2.2. The communication cost of Ψ
(s,t,v)
� (A,B), given a sequential machine with a

cache of size M̂ , i.e. the number of words moved between cache and memory, under the assumption
that no operands start in cache and all outputs are written to memory and that all elements have
unit element size has the following bounds,

2nω

s!t!v!
√
M̂

+
ns+t

s!t!
+
ns+v

s!v!
+
nt+v

t!v!
≥ ŴΨ(n, s, t, v, M̂)

≥ max

[
min

(
s!v!

(s+ v)!
,

t!v!

(t+ v)!
,

s!t!

(s+ t)!

)3/2

· 2nω

s!t!v!
√
M̂
,
ns+t

(s+ t)!
+

ns+v

(s+ v)!
+

nt+v

(t+ v)!

]
.

Proof. The bounds for the standard algorithm are similar to the naive algorithm, since both are
usually dominated by a matrix multiplication, although the standard algorithm requires smaller
matrices.

The upper bound on the cost may be attained by performing the multiplication via the classi-
cal algorithm that computes matrix multiplication block-by-block with blocks of each matrix of

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 184

dimension
√
M̂/3 and accumulating all partial summations directly to their symmetrized destina-

tion in the packed represenation of the tensor C.
The lower bound is asymptotically the same as the classical result by Hong and Kung [90], but

includes constant factors and is decreased due to the additional symmetry of A, B, and C. A lower
bound with a constant factor was also given by [12], but with a smaller constant prefactor.

In the standard algorithm for symmetric tensor contractions, C = Ψ
(s,t,v)
� (A,B) where C is of

order s + t, A of order s + v, and B of order t + v. The algorithm treats the tensors as matrices
with dimensions

(
n+s−1

s

)
,
(
n+t−1

t

)
, and

(
n+v−1

v

)
, but these reduced matrix forms have fewer unique

entries than nonsymmetric matrices of the same dimension due to symmetry. The lower bound for
reading in the inputs from memory to cache and writing the output from cache to memory is

ŴΨ(n, s, t, v, M̂) ≥ ns+t

(s+ t)!
+

ns+v

(s+ v)!
+

nt+v

(t+ v)!
,

which is lower than the corresponding lower bound for nonsymmetric matrix multiplication.
When these tensors all fit into cache, the above lower bound is attainable since the unique

entries of A, B can all be read into cache then contracted and symmetrized into C on the fly. This
cost is a factor of (s + t)!/(s!t!) smaller than the IO complexity of reading in a nonsymmetric
(folded) Ā of dimensions ns/s! and nt/t!, and similarly for the costs associated with B̄ and C̄.
When the tensors do not fit in cache, the symmetry is more difficult to exploit in a general fashion
so our algorithm (upper bound) does not attempt to. However, it is at least possible to lower the
communication cost by exploiting symmetry in one tensor if the other two tensors are vectors. For
instance in multiplying a symmetric-matrix by a vector, we could pick out blocks from the lower
triangle of the matrix, and multiply them by the two sets of vector entries, which the block and
its symmetric reflection are multiplied by, contributing to two sets of vector entries in the output.
However, this does not generalize easily to the s, t, v ≥ 1 case, where reading in extra subsets of
B and C counteracts with the cache reuse achieved by reading in a larger subset of B and C.

We do not attempt to prove that schedules cannot achieve extra reuse when s, t, v ≥ 1, and
instead simply prove a looser lower bound that yields a similar fractional symmetric prefactor for
any s, t, v,

ŴΨ(n, s, t, v, M̂) ≥ max

(
s!v!

(s+ v)!
,

t!v!

(t+ v)!
,

s!t!

(s+ t)!

)3/2

· 2ns+t+v

s!t!v!
√
M̂
.

So, whether this lower bound is attainable for s, t, v ≥ 1 or whether a tighter bound may be proven
remains an open question.

We obtain this lower bound by reducing from schedules for the standard symmetric tensor
contraction algorithm to schedules for nonsymmetric matrix multiplication (with an appropriate
prefactor). In particular, for r = max

(
(s+v)!
s!v!

, (t+v)!
t!v!

, (s+t)!
s!t!

)
, we show that any schedule for the

standard symmetric contraction algorithm with cost Ŵ (n, s, t, v, M̂) yields a schedule for matrix
multiplication of arbitrary nonsymmetric matrices Â and B̂ which uses r · M̂ cache memory and

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 185

attains the cost ¯̂
W (ns/s!, nt/t!, nv/v!, r·M̂) ≤ r·Ŵ (n, s, t, v, M̂), where W̄ is the communication

cost of nonsymmetric multiplication, for which we have a lower bound via Theorem 4.2.1.
Consider any schedule for the standard symmetric contraction algorithm, which computes C̄ =

Ā ·B̄, where Ā and B̄ are matrices corresponding to folded forms ofA andB respectively, and C̄ is
subsequently accumulated (symmetrized) to form C. Such a schedule may employ multiplications
of entries of the operands Aij ∈ Ā, which are equivalent to some other Akl ∈ Ā, Aij = Akl,
due to being symmetric in A (the folding ignores some symmetries), and the same for B. We
represent the schedule as an interleaved sequence S of ‘read’, ‘write’, ‘compute’, ‘copy’, and
‘discard’ operations. We define cache storage set Ml to be the elements stored in cache after the
ith operation in the sequence S and let M0 = ∅, since we assume the cache is empty at the start.
The size of the cache storage set ∀l ∈ [1, |S|], should not exceed the cache capacity |Ml| ≤ M̂ .
Any operations in sequence sl ∈ S must be one the following,

• read of an element ofA from memory into cache, sl = (a, read), where a ∈ A and a /∈Ml−1,
but subsequently a ∈Ml,

• read of an element ofB from memory into cache, sl = (b, read), where b ∈ B and b /∈Ml−1,
but subsequently b ∈Ml,

• computation of the form c̄ = a · b (corresponding to multiplication Āik · B̄kj into the entry
C̄ij), sl = (c̄, a, b, compute), where a ∈ A, b ∈ B, and a, b ∈ Ml−1, while c̄ /∈ Ml−1, but
subsequently, c̄ ∈Ml (multiple partial sums of C̄ij may not be in cache concurrently),

• computation of the form c̄ = c̄ + a · b (corresponding to multiplication Āik · B̄kj and its
accumulation into the entry C̄ij), sl = (c̄, a, b, compute), where a ∈ A, b ∈ B, and a, b, c̄ ∈
Ml−1,

• computation of the form c = c + c̄ (corresponding to symmetrization of C̄ into C) sl =
(c, c̄, compute), where c, c̄ ∈Ml−1 and subsequently c̄ /∈Ml,

• copy of the form c = c̄ (corresponding to symmetrization of C̄ into C or a simple set when
symmetrization of C̄ is not necessary, namely when C̄ is a vector) sl = (c, c̄, copy), where
c̄ ∈Ml−1 and subsequently c ∈Ml and c̄ /∈Ml,

• discard of values of A from cache, sl = (a, discard), where a ∈ A and a ∈ Ml−1, but
subsequently a /∈Ml,

• discard of values of B from cache, sl = (b, discard), where b ∈ B and b ∈ Ml−1, but
subsequently b /∈Ml,

• write/accumulate from cache to memory, sl = (c,write), where c ∈ C and c ∈ Ml−1 but
subsequently c /∈Ml.

Each of the
(
n+s−1

s

)(
n+t−1

t

)(
n+v−1

v

)
multiplications necessary for the standard algorithm must cor-

respond to a ‘compute’ operation in the schedule. Each of
(
n+s−1

s

)(
n+t−1

t

)(
n+v−1

v

)
+
(
n+s−1

s

)(
n+t−1

t

)

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 186

additions must correspond to a ‘compute’ operation or an accumulate (‘write’) operation in the
schedule. All computed entries of C (results of compute operations), must also be written or ac-
cumulated to the output, and output entries may not be overwritten. The ‘copy’ operations are free
as they do not correspond to any computation, but are simply a relabeling. We note that while the
standard symmetric contraction algorithm must implicitly compute the multiplications necessary
to form the C̄ intermediate, under our model this schedule forces accumulation to memory of the
intermediates and multiplications directly to the output C itself (since the entries of C̄ must be
eventually accumulated there anyway). We measure the communication cost of the schedule as the
number of ‘read’ and ‘write’ operations in S, therefore accumulating directly to C is always more
sensible than accumulating to some other intermediate. The formulation of this schedule is strict
in the sense that it precludes recomputation of contributions to C as well as any other operations
that don’t contribute directly to algorithmic progress.

We now define a new schedule Ŝ from S, with cache store M̂l after operation sl ∈ Ŝ, which
computes matrix multiplication of two arbitrary (nonsymmetric) matrices Ĉ = Â · B̂, where the
dimensions of Â are

(
n+s−1

s

)
by
(
n+v−1

v

)
and the dimensions of B̂ are

(
n+v−1

v

)
by
(
n+t−1

t

)
. The

new schedule Ŝ mimics S by reading and discarding all symmetrically equivalent entries in A and
B, while computing and writing multiplications which contribute to an entry of C̄ to the same
destination in Ĉ. We say that a pair of entries in Āij, Ākl ∈ A are symmetrically equivalent if
they are folded from entries Āij = Ai〈s+v〉, Ākl = Aj〈s+v〉 and there exists a permutation π such
that i〈s+ v〉 = π(j〈s+ v〉). There are sets of size up to (s + v)! of symmetrically equivalent
entries A, but only (s + v)!/(s!v!) in Ā, since the folded matrix Ā does not include entries that
are symmetrically equivalent in permutation within j〈s〉 and within l〈v〉 for any entry Aj〈s〉l〈v〉.
Similarly, for B, the folded matrix B̄ contains sets of size up to (t + v)!/(t!v!) of entries which
are symmetrically equivalent due to the symmetry in B. Formally, for the ith operation sl for
l = [1, |S|], we append the following operations to Ŝ (or ignore it if its not one of the below):

• if sl = (a, read), where a ∈ A, we add up to (s + v)!/(s!v!) read operations of all entries
of Â to Ŝ which have the same indices as those which are symmetrically equivalent to a in
the matrix Ā (there may be fewer than (s+ v)!/(s!v!) if the entry is on some diagonal in A),
thus for all ‘compute’ operations for which a can be an operand in S, we have loaded the
corresponding entries in Â,

• if sl = (b, read), where b ∈ B, we add up to (t + v)!/(t!v!) read operations of all entries
of B̂ to Ŝ which have the same indices as those which are symmetrically equivalent to b in
the matrix B̄, thus for all ‘compute’ operations for which b can be an operand in S, we have
loaded the corresponding entries in B̂,

• if sl = (c̄, a, b, compute) of the form c̄ = a · b or of the form c̄ = c̄ + a · b and corresponds
to multiplication Āik · B̄kj , we add a compute operation ĉ = ĉ + Âik · B̂kj to Ŝ where ĉ is a
partial sum to be accumulated into Ĉij , if there is already an existing ĉ partial sum of Ĉij is
in M̂l−1 and add operation ĉ = Âik · B̂kj to Ŝ if no partial sum of Ĉij was in M̂l−1,

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 187

• if sl = (a, discard), where a ∈ A, we add up to (s + v)!/(s!v!) discard operations of all
entries of Â to Ŝ which have the same indices as those which are symmetrically equivalent
to a in the matrix Ā,

• if sl = (b, discard), where b ∈ B, we add up to (t+v)!/(t!v!) discard operations of all entries
of B̂ to Ŝ which have the same indices as those which are symmetrically equivalent to b in
the matrix B̄,

• if sl = (c,write), where c ∈ C, we add up to (s + t)!/(s!t!) write or accumulate operations
all contributions to Ĉ inMl−1 which have the same indices as those which are symmetrically
equivalent to the entry to which c contributes in Ĉ (which discards these partial sums from
Ml).

The resulting schedule Ŝ computes the correct answer Ĉ, as it performs the
(
n+s−1

s

)(
n+v−1

v

)(
n+t−1

t

)
multiplications needed, as those must also be done to compute C̄ by the standard symmetric con-
traction algorithm schedule. Further, it always has the needed operands to compute the multiplica-
tions, since whenever an entry a ∈ Ā or b ∈ B̄ resides in S, all entries to which are symmetrically
equivalent to a or b via the symmetry of A and B (for which a or b may act as operands in place of)
are loaded from Â or B̂ by Ŝ and kept in memory until a or b is discarded by S. While the standard
symmetric contraction schedule accumulates the partial sums of C̄ to partial sums of C, prior to
writing them to memory, the schedule Ŝ accumulates all the partial sums of Ĉ to memory when-
ever a partial sum of C with a symmetrically equivalent entry is written by S. All contributions
to Ĉ, will be written or accumulated to memory (accumulated if another contribution has already
been written to this entry), since they correspond to a partial sum of C̄ of the same index, which
must be accumulated or copied into an entry of C, which must subsequently be written, and for
each operation that writes an entry of C to memory, Ŝ writes to memory all entries of Ĉ, that have
the same index as any partial sum that could have been accumulated into this partial sum of C.

Further, the cache size necessary to compute Ŝ is no more than r·M̂ = max
(

(s+v)!
s!v!

, (t+v)!
t!v!

, (s+t)!
s!t!

)
·

M̂ , since for each entry of A present in cache at any given point in S, at most (s + v)!/(s!v!) en-
tries of Â are present in Ŝ, as up to this number of symmetrically equivalent entries are read and
discarded, whenever the corresponding of A is read or discarded. A similar argument for entries
of B̂ yields the factor of (t+v)!

t!v!
. For partial sums of ĉ ∈ Ĉ, we notice that whenever some partial

sum is in Ŝ there must either by a partial sum of c̄ ∈ C̄ with the same index as ĉ or a partial sum
of c ∈ C to which c̄ was copied or accumulated into and which corresponds to an entry in C to
which ĉ is symmetrized into. Since there at most (s+ t)!/(s!t!) entries (and partial sums of unique
index) in C̄ that are symmetrized into the same entry of C and these are accumulated to memory
(and therefore discarded), whenever the entry of C is accumulated, there can be no more than
(s+ t)!/(s!t!) different partial sums present in Ŝ for each partial sum present in S. The number of
reads and writes in Ŝ is by a similar argument no greater than a factor of r of those in S. Therefore,
we’ve created a valid schedule for matrix multiplication of arbitrary matrices with cost no more
than ¯̂

W (ns/s!, nt/t!, nv/v!, r · M̂) ≤ r · ŴΨ(n, s, t, v, M̂). Now, since, we have a lower bound for

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 188

nonsymmetric matrix multiplication, we can use Theorem 4.2.1 to assert that,

ŴΨ(n, s, t, v, M̂) ≥ 1

r
· ¯̂
W (ns/s!, nt/t!, nv/v!, r · M̂)

≥ 1

r
· 2ns+t+v

s!t!v!
√
r · M̂

=
1

r3/2
· 2ns+t+v

s!t!v!
√
M̂

= min

(
s!v!

(s+ v)!
,

t!v!

(t+ v)!
,

s!t!

(s+ t)!

)3/2

· 2ns+t+v

s!t!v!
√
M̂
.

Combining the above lower bound, with the trivial lower bound from reading the inputs and out-
puts, we obtain the desired,

Ŵ (n, s, t, v, M̂) ≥ max

[
min

(
s!v!

(s+ v)!
,

t!v!

(t+ v)!
,

s!t!

(s+ t)!

)3/2
2ns+t+v

s!t!v!
√
M̂
,

ns+t

(s+ t)!
+

ns+v

(s+ v)!
+

nt+v

(t+ v)!

]
.

We note that a similar reduction may be used to show that the multiplication of nonsymmetric
matrices whose entries may overlap (e.g. A ·A) has cost no less than

√
2

4
of ¯̂
W (n,m, k, M̂) (where

it is assumed the entries A and B are disjoint/independent).

11.2.3 The Fast Symmetric Contraction Algorithm
Our main result is an algorithm that performs any such contraction using only nω/ω! multiplica-
tions to leading order, which is a factor of (s+t+v)!

s!t!v!
fewer than the standard method. However, the

algorithm performs more additions per multiplication than the standard method.
Algorithm Φ

(s,t,v)
� : The new algorithm is based on the idea of computing a fully symmetric in-

termediate tensor Ẑ of order ω, with elements corresponding to the result of a scalar multiplication.
Due to its symmetry this tensor has

(
n+ω−1

ω

)
unique entries, which are ∀i〈ω〉,

Ẑi〈ω〉 =

(∑
j〈s+v〉∈χ(i〈ω〉)

Aj〈s+v〉

)
·
(∑
l〈t+v〉∈χ(i〈ω〉)

Bl〈t+v〉

)
. (11.2.3)

This tensor need not, and should not be stored explicitly due to the associated memory overhead.
Instead, each unique multiplication corresponding to one of the unique entries of Ẑ, should be
accumulated to

(
ω
s+t

)
entries of its ‘contracted form’, an order s + t fully symmetric tensor Z,

whose elements ∀i〈s+ t〉 are

Zi〈s+t〉 =
∑
k〈v〉

Ẑi〈s+t〉k〈v〉. (11.2.4)

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 189

The tensor Z contains all the terms needed for the outputC, but also some extra terms. Fortunately,
all of these extra terms may be computed with low-order cost. We form two other fully symmetric
tensors of order s + t: V and W , which contain all of these unwanted terms and are subsequently
used to cancel them out. To form the tensor V efficiently, we compute contracted forms of A and
B, A(p) and B(q), ∀p, q ∈ [1, v]. The elementwise equations for these tensors are

∀p ∈ [1, v], ∀i〈s+ v − p〉, A(p)
i〈s+v−p〉 =

∑
k〈p〉

Ai〈s+v−p〉k〈p〉,

∀q ∈ [1, v], ∀i〈t+ v − q〉, B(q)
i〈t+v−q〉 =

∑
k〈q〉

Bi〈t+v−q〉k〈q〉.

Now, we define the elements of V in terms of the above intermediates (also with A(0) = A and
B(0) = B), ∀i〈s+ t〉,

Vi〈s+t〉 =
v−1∑
r=0

(
v

r

)
·

v−r∑
p=max(0,v−t−r)

(
v − r
p

)
·

v−p−r∑
q=max(0,v−s−r)

(
v − p− r

q

)
· nv−p−q−r·

∑
k〈r〉

[∑
j〈s+v−p−r〉∈χ(i〈s+t〉)

(
A

(p)
j〈s+v−p−r〉k〈r〉

)]
·
[∑
l〈t+v−q−r〉∈χ(i〈s+t〉)

(
B

(q)
l〈t+v−q−r〉k〈r〉

)]
.

(11.2.5)

The tensor W employs a different set of intermediates U (r), ∀r ∈ [1,min(s, t)], which are of order
s + t − r. These intermediates have r indices, which are shared between A and B and are not
contracted over. The equations for forming the elements of these tensors are

∀r ∈ [1,min(s, t)], ∀i〈s+ t− 2r〉,

U
(r)
m〈r〉i〈s+t−2r〉 =

∑
(j〈s−r〉,l〈t−r〉)∈χ(i〈s+t−2r〉)

(∑
k〈v〉

Am〈r〉j〈s−r〉k〈v〉 ·Bm〈r〉l〈t−r〉k〈v〉

)
, (11.2.6)

Each U (r) tensor is symmetric in the m〈r〉 index group and separately in the i〈s+ t− 2r〉 index
group. Using these tensors, we can now form our last intermediate, W , ∀i〈s+ t〉,

Wi〈s+t〉 =

min(s,t)∑
r=1

(∑
(m〈r〉,h〈s+t−2r〉)∈χ(i〈s+t〉)

U
(r)
m〈r〉h〈s+t−2r〉

)
(11.2.7)

As shown in the proof of correctness in Section 11.3.1, the V and W tensors contain all the terms
which separate Z from the C we seek to compute (equation 11.1.2). So, we form the final output of
the algorithm Ĉ (shown in Section 11.3.1 to be algebraically equivalent to C) via the summation,
∀i〈s+ t〉,

Ĉi〈s+t〉 =
1(
s+t
s

) · (Zi〈s+t〉 − Vi〈s+t〉 −Wi〈s+t〉

)
. (11.2.8)

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 190

We designate this algorithm as a function Ĉ = Φ
(s,t,v)
� (A,B). The memory footprint necessary for

this algorithm is to leading order the same as that of the standard algorithm (Ĉ = Ψ
(s,t,v)
� (A,B)),

both are dominated by the space necessary to store the input and output tensors. Intermediates,
such as C̄ in the standard algorithm, and Z, V , and W in the fast algorithm, may be accumulated
directly to the output (C and Ĉ, respectively), and therefore require no extra storage. Similarly, for
each element of U (r), it is possible to compute all elements ofW to which it contributes and discard
it. However, a low-order amount of extra storage may be required for A(p) and B(q) since elements
of W depend on different combinations of entries of these two intermediates. However, in practice
implementations of the standard algorithm frequently compute C̄ explicitly for simplicity, and it
seems unlikely that the storage necessary for A(p), B(q) would be problematic. Further, the only
time Ω(n) combinations of A(p) and B(q) need to be multiplied together is when p, q ≥ 1, in which
case it should be possible to recompute one of the two redundantly on the fly, without raising the
leading order cost, if a constant amount of auxiliary storage is really a requirement.

The next section gives some basic but important special cases of this algorithm for s, t, v ∈
{0, 1}. Following these examples, we return to analysis of the general form, proving correctness
in Section 11.3.1, numerical stability in Section 11.3.2, and analyzing the computational and com-
munication costs in Section 11.3.3.

11.2.4 Examples (Special Cases)
To give an intuitive interpretation of the general algorithm, as well as to cover some basic appli-
cations, we now give a few special cases of it. We consider multiplication of symmetric matrix
with a vector (s = 1, v = 1, t = 0), the symmetric rank-2 outer product (s = 1, v = 0, t = 1),
and the symmetrized multiplication of symmetric matrices, which is known as Jordan ring matrix
multiplication (s = v = t = 1). As before we will consider all vector/matrix/tensor entries to be
elements of a possibly nonassociative ring over the set R with operations % = (+, ·) the costs of
which are ν%, µ% respectively.

Multiplication of a Symmetric Matrix by a Vector

Consider two vectors of n elements b and c as well as an n-by-n symmetric matrix A. We seek to
compute

∀i, ci =
∑
k

Aik · bk,

which is just equation 11.1.2 with s = 1, v = 1, t = 0. The cost of the traditional algorithm
(equation 11.2.1), Ψ

(1,0,1)
� (A, b) which simply treats A as nonsymmetric is FΨ

symv(%, n) = µ% · n2 +

ν% · n2. Our new algorithm for this problem, Φ
(1,0,1)
� (A, b) computes c as follows,

∀i, j, Ẑij = Aij · (bi + bj),

∀i, Zi =
∑
k

Ẑik, A
(1)
i =

∑
k

Aik, Vi = A
(1)
i · bi, ci = Zi − Vi.

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 191

Since (bi + bj) and subsequently Ẑij are symmetric in i, j, Zi can be computed in n2/2 multiplica-
tions to leading order, for a total cost of

FΦ
symv(%, n) = µ% ·

(
1

2
n2 +

3

2
n

)
+ ν% ·

(
5

2
n2 +

3

2
n

)
.

Now, if we consider multiplication of A by K vectors (equivalently by an n-by-K matrix), the cost
of computing A(1) is amortized over the K matrix-vector multiplications, yielding the overall cost,

FΦ
symm(%, n,K) = µ% ·

(
1

2
Kn2 +

3

2
Kn

)
+ ν% ·

(
3

2
Kn2 + n2 +

3

2
Kn

)
.

The fast algorithm for the symm problem is useful whenever FΦ
symm(%, n,K) < K · FΨ

symv(%, n),
which is the case whenever µ% > ν% and n,K � 1. That condition is true for the cases where
the scalars are complex, where µ% ≥ 3 · ν% (assuming multiplication of two real numbers costs at
least as much as addition). There are two use-cases for the complex-problem, one where the A
is complex and symmetric, e.g. the Discrete Fourier Transform (DFT) matrix, for which case the
described algorithm applies without modification (outside of the real addition and multiplications
becoming complex additions and multiplications), and the second, more common case where A
is a Hermitian matrix. The latter case corresponds to the BLAS routine hemm, and our algorithm
may be adapted to handle it as described in Section 11.4.3. In both cases, the fast algorithm yields
at least a 4/3 reduction in cost.

The fast algorithm is also easily adaptable to the case when A is a sparse symmetric matrix
with nnz non-zeros. Instead of the usual nnz multiplications and nnz additions, the fast algorithm
requires 1

2
nnz multiplications and 5

2
nnz additions to leading order (or 3

2
nnz leading order additions

when computation of A(1) may be amortized).
However, we note that for certain choices of A and b the fast algorithm incurs more error (see

Section 11.3.4).

Symmetrized Vector Outer Product

We now consider a rank-2 outer product of vectors a and b of length n to form an n-by-n symmetric
matrix C, computing ∀i, j,

Cij =
1

2
(ai · bj + aj · bi).

Solving this problem corresponds to equation 11.1.2 with s = 1, v = 0, and t = 1. For floating
point real numbers this corresponds to BLAS routine syr2. The standard method Ψ

(1,1,0)
� com-

putes the unique part of C using n2 scalar multiplications and n2 scalar additions, so FΨ
syr2(%, n) =

FΨ
symv(%, n). Our new algorithm for this problem, Φ

(1,1,0)
� (a, b) computes C as follows,

∀i, j, Zij = Ẑij = (ai+aj)·(bi+bj), U
(1)
i = ai·bi, Wij = U

(1)
i +U

(1)
j , Cij =

1

2
(Zij−Wij).

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 192

The number of multiplications needed for the new algorithm is the same as in the previous case of
a symmetric matrix multiplied by a vector, since Ẑ is again symmetric and be computed via the(
n+1

2

)
multiplications necessary to form its unique elements. However, the number of additions is

slightly less than the symv case,

FΦ
syr2(%, n) = µ% ·

(
1

2
n2 +

3

2
n

)
+ ν% · (2n2 + 2n).

Now we consider the case of a rank-2K outer product where instead of vectors a and b, we have
n-by-K matrices A and B, which corresponds to the BLAS routine syr2K. In this case, we can
compute W with low-order cost, yielding a reduction in the number of additions needed. The
resulting new algorithm has the same leading order cost as symm,

FΦ
syr2K = (%, n,K) = µ% ·

(
1

2
Kn2 +

3

2
Kn

)
+ ν% ·

(
3

2
Kn2 + n2 +

5

2
Kn+ n

)
.

Furthermore, to leading order, FΦ
syr2K has the same relation to FΨ

syr2K as FΦ
symm had to FΨ

symm.
This algorithm may be adapted to the case of the Hermitian outer product a · b∗ + a · b∗, where

∗ denotes the Hermitian adjoint (conjugate) of the vector. The adaptation of the fast algorithm to
this operation, which also corresponds to BLAS routine her2, is described in a general fashion
in Section 11.4.3 and performs the same number of multiplication and addition operations (of
complex numbers) as FΦ

syr2. The extension to her2K has the same number of complex operations
as FΦ

syr2K and is therefore 4/3 cheaper in leading order cost than the standard algorithm for her2K.
So, since we now know how to compute hemm and her2K in 3/4 of the operations to leading
order, we can compute the reduction to tridiagonal form for the Hermitian eigensolve (LAPACK
routine hetrd), which can be formulated so that the cost is dominated by these two subroutines,
in 3/4 of the usual number of operations to leading order.

Jordan Ring Matrix Multiplication

As a last example, we consider the case of 11.1.2 where s = t = v = 1, where all terms of the
Φ

(1,1,1)
� (A,B) take part. Given symmetric matrices A,B of dimension n, we compute, ∀i, j,

Cij =
1

2
·
∑
k

(
Aik ·Bjk + Ajk ·Bik

)
.

This problem is again a special case of equation 11.1.2, this time with s, v, t = 1. The traditional
algorithm (equation 11.2.1), Ψ

(1,1,1)
� (A,B) simply multiplies A and B as nonsymmetric matrices

and symmetrizes the product, for a total cost of

FΨ
syrmm(%, n) = µ% · n3 + ν% · n3 +O((µ% + ν%) · n2).

Φ
(1,1,1)
� (A,B) computes C by doing only n3/6 leading order multiplications required to compute

the third order symmetric tensor Ẑ, ∀i, j, k,

Ẑijk = (Aij + Aik + Ajk) · (Bij +Bik +Bjk).

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 193

Subsequently, the rest of the work can be done in a low-order number of multiplications as follows,
∀i, j,

Zij =
∑
k

Zijk, A
(1)
i =

∑
k

Aik, B
(1)
i =

∑
k

Bik,

Vij = n · Aij ·Bij +
(
A

(1)
i + A

(1)
j

)
·Bij + Aij ·

(
B

(1)
i +B

(1)
j

)
,

Ul =
∑
k

Alk ·Blk, Wij = Ui + Uj, Cij =
1

2
(Zij − Vij −Wij).

Due to the symmetry in computation of Zij , and the fact that all other terms are low-order, the cost
of this reformulation is

FΦ
syrmm(%, n) = µ% ·

1

6
n3 + ν% ·

7

6
n3 +O((µ% + ν%) · n2),

so this form requires a factor of 6 fewer multiplications and a factor of 3/2 fewer total opera-
tions than FΨ

syrmm to leading order. However, we note that for certain choices of A and B the fast
algorithm incurs more error (see Section 11.3.4).

A special case of Jordan ring matrix multiplication is squaring a symmetric matrix (B = A
and a prefactor of 1/2). For this case, a typical approach might only exploit the symmetry of the
output (only computing the unique

(
n+1

2

)
entries of the output), performing of n3/2 multiplications

and additions to leading order, while the fast algorithm, A2 = Φ
(1,1,1)
� (A,A), would need n3/6

multiplications and 5n3/6 additions to leading order (since the 2n3/6 additions for B may now be
avoided). While the total number of operations is the same, a factor of three fewer multiplications
are needed by the fast algorithm.

11.2.5 Nesting Algorithms

The three general algorithms defined in this section, Υ(s,t,v), Ψ
(s,t,v)
� , and Φ

(s,t,v)
� all perform con-

tractions where multiplication is any distributive (not necessarily associative) operator “ · ” :
RA × RB → RC . Further the three algorithms themselves are distributive operators mapping
from the set of s + v-order tensors (RA) and the set of v + t-order tensors (RB) onto the set of
s + t-order tensors (RC). The only requirements of RA, RB, and RC is that they are an Abelian
group over addition (+), which the set of tensors of any given order satisfies. Therefore, we may
nest the application of any of the three algorithms by applying it to tensors of tensors and letting
“·" be another tensor contraction.

Further, we may define any tensor of order larger than one as a nest of multiple tensors of
lower order, for instance we may refer to a matrix as a vector of vectors. However, such nested
forms lose the notion of symmetry if we break up an index group, for instance by referring to
a symmetric matrix as a vector of vectors. However, the nested form makes a lot of sense for
partially-symmetric tensors, e.g. a fourth order tensor with two disjoint symmetric groups of two
indices, may be referred to as a symmetric matrix of symmetric matrices, a representation which
reflects the full symmetry of the fourth order tensor.

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 194

We write the nested application of algorithms as concatenated calls to the nested algorithms,
with the leftmost being at the root level of recursion and the rightmost algorithm executing the
actual scalar multiplications needed to compute the contraction. For instance we might nest the
symmetric tensor contraction algorithm as

C = Ψ
(s1,t1,v1)
� Ψ

(s2,t2,v2)
� Υ(s3,t3,v3)(A,B),

and similarly the fast symmetric tensor contraction algorithm as

C = Φ
(s1,t1,v1)
� Φ

(s2,t2,v2)
� Υ(s3,t3,v3)(A,B).

These expressions signify that the nested algorithm would contract A of order
∑3

i=1 si + vi and
symmetric in two sets of indices of size s1 +v1 and s2 +v2, B of order

∑3
i=1 ti+vi and symmetric

in two sets of indices of size t1 + v1 and t2 + v2, and C of order
∑3

i=1 si + ti, symmetrized among
index groups s1 + t1 and s2 + t2. Any partially-symmetric contraction can be decomposed in such
a nested fashion, although in some cases symmetric groups of indices need to be split up among
nested levels and effectively ignored. Such nested forms will be especially useful for the coupled-
cluster contractions discussed in Section 11.5. Further, the fact that we can nest Φ

(s,t,v)
� on top

of Υ(s′,t′,v′), will allow the application of the fast algorithm, Φ
(s,t,v)
� to scenarios where addition is

much cheaper than multiplications, such as when s′, t′, v′ ≥ 1 for Υ(s′,t′,v′).

11.3 Analysis
We now return to analyzing the new algorithm, Φ(A,B) in its general form. We give a proof of
correctness, numerical stability, and quantify the cost of the algorithm in terms of the number of
operations and the amount of communication necessary.

11.3.1 Proof of Correctness
Theorem 11.3.1. If, given A and B, Ĉ = Φ

(s,t,v)
� (A,B) is computed in exact arithmetic then it is

equivalent to C = Ĉ where C = A�B is given by equation 11.1.2.

Proof. To show algebraic equivalence of the formulation in equations 11.2.3–11.2.8 to equa-
tion 11.1.2 we show that V and W (equations 11.2.5 and 11.2.7) cancel the extra terms included
in Z (equation 11.2.4), leaving exactly the terms needed by equation 11.1.2. There are a total of
nv ·

(
s+t+v
s+v

)
·
(
s+t+v
t+v

)
products Aj〈s+v〉 · Bl〈t+v〉 appearing in the expansion of equation 11.2.4. We

partition these subterms constituting Z according to which k〈v〉 indices (based on subscript m of
km rather than the value that km takes on) show up in the j〈s+ v〉 indices of the A operand and
the l〈t+ v〉 indices of the B operand:

• x〈a〉 ∈ χ(k〈v〉), the a ≤ v sized subset of k〈v〉 chosen by j〈s+ v〉 ∈ χ(i〈s+ t〉k〈v〉) to
appear in the A operand,

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 195

• y〈b〉 ∈ χ(k〈v〉), the b ≤ v sized subset of k〈v〉 chosen by l〈t+ v〉 ∈ χ(i〈s+ t〉k〈v〉) to
appear in the B operand.

Now we consider all possible cases of overlap of the indices appearing in x〈a〉 and y〈b〉,

• let d〈r〉 ∈ χ(k〈v〉), for r ≤ min(a, b) ≤ v be the subset of k〈v〉 that appears both in x〈a〉
and y〈b〉,

• let e〈p〉 ∈ χ(k〈v〉), for p ≤ a− r be the subset of k〈v〉 that appears exclusively in x〈a〉 (and
not in y〈b〉),

• let f〈q〉 ∈ χ(k〈v〉), for q ≤ b− r ≤ v− p− r be the subset of k〈v〉 that appears exclusively
in y〈b〉 (and not in x〈a〉),

• let g〈v − q − p− r〉 ∈ χ(k〈v〉) be the remaining subset of k〈v〉, which appear in neither
x〈a〉 nor y〈b〉.

We now partition Z according to the above partitions of k〈v〉, ∀i〈s+ t〉,

Zi〈s+t〉 =
∑
k〈v〉

v∑
r=0

∑
(d〈r〉,u〈v−r〉)∈χ(k〈v〉)

v−r∑
p=max(0,v−t−r)

∑
(e〈p〉,w〈v−r−p〉)∈χ(u〈v−r〉)

v−r−p∑
q=max(0,v−s−r)∑

(f〈q〉,g〈v−r−p−q〉)∈χ(w〈v−r−p〉)

[[∑
j〈s+v−p−r〉∈χ(i〈s+t〉)

Aj〈s+v−p−r〉d〈r〉e〈p〉

]

·
[∑
l〈t+v−q−r〉∈χ(i〈s+t〉)

Bl〈t+v−q−r〉d〈r〉f〈q〉

]]
.

We note the fact that the index variables in k〈v〉 are indistinguishable (i.e. they are dummy integra-
tion variables), which implies that for a given r, p, q no matter how the k〈v〉 is partitioned amongst
d〈r〉, e〈p〉, f〈q〉, and g〈v − r − p− q〉, the result is the same. This allows us to replace k〈v〉 and
its partitions with new sets of variables and multiply by prefactors corresponding to the number of
selections possible for each partition, ∀i〈s+t〉,

Zi〈s+t〉 =
v∑
r=0

(
v

r

) ∑
d〈r〉

v−r∑
p=max(0,v−t−r)

(
v − r
p

) ∑
e〈p〉

v−r−p∑
q=max(0,v−s−r)

(
v − r − p

q

) ∑
f〈q〉

∑
g〈v−r−p−q〉[∑

j〈s+v−p−r〉∈χ(i〈s+t〉)

Aj〈s+v−p−r〉d〈r〉e〈p〉

]
·
[∑
l〈t+v−q−r〉∈χ(i〈s+t〉)

Bl〈t+v−q−r〉d〈r〉f〈q〉

]
.

Since B is independent of e〈p〉 and A is independent of f〈q〉, we can use distributivity to bring
these summations inside the parentheses. Further, since both A and B are independent of the

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 196

indices g〈v − r − p− q〉, we can replace this summation with a prefactor of nv−r−p−q (the size of
the range of g〈v − r − p− q〉), ∀i〈s+t〉,

Zi〈s+t〉 =
v∑
r=0

(
v

r

) v−r∑
p=max(0,v−t−r)

(
v − r
p

) v−r−p∑
q=max(0,v−s−r)

(
v − r − p

q

)
nv−r−p−q

∑
d〈r〉

[
[∑
j〈s+v−p−r〉∈χ(i〈s+t〉)

(∑
e〈p〉

Aj〈s+v−p−r〉d〈r〉e〈p〉

)]
·
[∑
l〈t+v−q−r〉∈χ(i〈s+t〉)

(∑
f〈q〉

Bl〈t+v−q−r〉d〈r〉f〈q〉

)]]
.

Renaming the index sets and isolating r = v, p = 0, q = 0, allows us to extract the V term
(equation 11.2.5), ∀i〈s+ t〉,

Zi〈s+t〉 =
v−1∑
r=0

(
v

r

)
·

v−r∑
p=max(0,v−t−r)

(
v − r
p

)
·

v−p−r∑
q=max(0,v−s−r)

(
v − p− r

q

)
· nv−p−q−r

∑
k〈r〉

[
[∑
j〈s+v−p−r〉∈χ(i〈s+t〉)

(∑
m〈p〉

Aj〈s+v−p−r〉m〈p〉k〈r〉

)]
·
[∑
l〈t+v−q−r〉∈χ(i〈s+t〉)

(∑
m〈q〉

Bl〈t+v−q−r〉m〈q〉k〈r〉

)]]

+
∑
k〈v〉

 ∑
j〈s〉∈χ(i〈s+t〉)

Aj〈s〉k〈v〉

 ·
 ∑
l〈t〉∈χ(i〈s+t〉)

Bl〈t〉k〈v〉

 ,

Zi〈s+t〉 = Vi〈s+t〉 +
∑
k〈v〉

 ∑
j〈s〉∈χ(i〈s+t〉)

Aj〈s〉k〈v〉

 ·
 ∑
l〈t〉∈χ(i〈s+t〉)

Bl〈t〉k〈v〉

We have now isolated the subterms where both A and B are contracted over the desired full set
of k〈v〉 indices into the latter term in the equation above. However, this latter term still contains
subterms where the same outer (or noncontracted) indices appear in both A and B, which we want
to discard, since equation 11.1.2 contains only disjoint partitions of the i〈s+ t〉 index set among A
and B. We obtain W (equation 11.2.7) via enumerating all such remaining unneeded terms by the
number of outer indices r ∈ [1,min(s, t)] which appear in both operands A and B, then summing
over the disjoint partitions of the remaining s − t − 2r indices into s − r indices which appear
exclusively in term A and t− r indices which appear exclusively in term B. This leaves r indices
which appear in neither A nor B, which is the reason that the term V can be computed in low order

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 197

via U (equation 11.2.6). So now, ∀i〈s+ t〉, we have,

Zi〈s+t〉 = Vi〈s+t〉 +
∑

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

∑
k〈v〉

Aj〈s〉k〈v〉 ·Bl〈t〉k〈v〉

+

min(s,t)∑
r=1

[∑
(m〈r〉,h〈s+t−2r〉)∈χ(i〈s+t〉)

[∑
(j〈s−r〉,l〈t−r〉)∈χ(h〈s+t−2r〉)

(∑
k〈v〉

Am〈r〉j〈s−r〉k〈v〉 ·Bm〈r〉l〈t−r〉k〈v〉

)]]

= Vi〈s+t〉 +

(
s+ t

s

)
· Ci〈s+t〉 +Wi〈s+t〉

Plugging the result into equation 11.2.8, we see that C = Ĉ.

11.3.2 Numerical Stability Analysis
We derive error bounds in terms of γn = nε

1−nε , where ε is the machine precision. We assume
the error made in scalar additions, subtractions, and multiplications to be bounded equivalently
|fl (a · b)−a · b| ≤ |a · b| · ε and |fl (a± b)− (a± b)| ≤ |a± b| · ε. The forward error bound for the
standard symmetric contraction algorithm (equations 11.1.2) arises directly from matrix multipli-
cation where nv/v! + O(nv−1) scalar intermediates contribute to each entry of the output, with an
extra factor of

(
s+t
s

)
incurred from the symmetrization of the partially-symmetric intermediate C̄

(the result of the matrix multiplication). We use the ||X||max norm, which is the largest magnitude
element in X , and therefore the bound for C̄ grows by the same factor as the error, yielding the
overall error bound,

||fl
(

Ψ
(s,t,v)
� (A,B)

)
−C||max ≤ γm ·m · ||A||max · ||B||max where m =

nv

v!

(
s+ t

s

)
+O(nv−1).

To bound the error of the fast algorithm, we start with a lemma, which simplifies the error
analysis of multiple intermediate tensors.

Lemma 11.3.2. Consider a computation of a scalar from l-by-m matrix A and k-by-g matrix B of
the form,

c =
m∑
g=1

(l∑
i=1

Aig

)
·
(k∑

j=1

Bjg

)
,

where ||A||max ≤ α and ||B||max ≤ β. The floating point error of c is bound by

|fl (c)− c| ≤ γm+l+k ·m · l · k · α · β +O(ε2).

Proof. The magnitude of the exact value ag =
∑l

i=1 Aig is at most l · α, so the floating point error
incurred is bounded by γl · l · α. Similarly, for bg =

∑k
j=1Bjg the floating point error is at most

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 198

γk · k · β. Therefore, we can obtain a bound on the floating point error for c via

|fl (c)− c| =

∣∣∣∣∣fl
(

m∑
g=1

(ag + δAg · l · α) · (bg + δBg · k · β)

)
− c

∣∣∣∣∣ ,
where |δAg | ≤ γl and |δBg | ≤ γk,

|fl (c)− c| ≤ γm ·m · (l · α) · (k · β) +m · (γl · l · α) · (k · β) +m · (l · α) · (γk · k · β) +O(ε2)

≤ γm+l+k ·m · l · k · α · β +O(ε2)

The following theorem bounds the forward error of the computation done by the fast symmetric
tensor contraction algorithm. The bound for the fast algorithm is higher than for the standard
algorithm, due to errors accumulated in the computation of the intermediate terms. In the theorem
and derivation we employ the convention that

(
n
n′

)
= 0 for any n′ > n.

Theorem 11.3.3. The fl
(

Φ
(s,t,v)
� (A,B)

)
tensor computed via equations 11.2.3–11.2.8 in floating

point arithmetic satisfies the following error bound with respect to C = A� B the exact solution
to equation 11.1.2,

∣∣∣fl (Ĉi〈s+t〉)− Ci〈s+t〉∣∣∣ ≤ (γ3m · z̄ + γv̂·m · v̂ · v̄ + γŵ·m · ŵ) ·m · ||A||max · ||B||max

where z̄ =
(
ω
t

)
·
(
ω
s

)
, v̂ =

(
s+t
s

)
, v̄ =

(
s+t
s+v

)
+
(
s+t
t+v

)
, ŵ = 2s+t ·

(
s+t
s

)
, andm =

(
n+v−1

v

)
+O(nv−1).

Proof. We bound the error of the algorithm using the following variables to denote the maximum
magnitude values in A and B, α = ||A||max and β = ||B||max. We first bound the error incurred
by any entry of Z (equation 11.2.4), where each left operand of each scalar multiplication requires
kZ =

(
ω
t

)
additions of A entries and each right operand requires lZ =

(
ω
s

)
of B entries. Each entry

of Z is a sum of mZ =
(
n+v−1

v

)
such multiplications, which allows us to apply Lemma 11.3.2 to

obtain a bound the error on entries of Z as, ∀i〈s+ t〉,∣∣fl (Zi〈s+t〉)− Zi〈s+t〉∣∣ ≤ γmZ+lZ+kZ ·mZ · lZ · kZ · α · β +O(ε2).

We set z̄ = kZ · lZ =
(
ω
t

)
·
(
ω
s

)
and m = mZ . We further simplify the expression via kZ + lZ +m ≤

3m, which assumes m ≥ kZ and m ≥ lZ , since it is expected that n� ω, obtaining ∀i〈s+ t〉,∣∣fl (Zi〈s+t〉)− Zi〈s+t〉∣∣ ≤ γ3m · z̄ ·m · α · β +O(ε2).

We now bound the error contribution of V by first considering the error for a given p, q, r. For
each scalar multiplication, the left operand is a sum of kV =

(
s+t

s+v−p−r

)(
n+p−1

p

)
entries of A (where

we’ve included the sum necessary to compute the needed entry of A(p)), and the right operand is a

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 199

sum of lV =
(

s+t
t+v−q−r

)(
n+q−1

q

)
entries of B (where we’ve included the sum necessary to compute

the needed entry of B(q)). The contribution of the particular choice of p, q, r to a given entry of V
is a sum of mV =

(
n+r−1

r

)
such multiplications. Therefore, we can apply Lemma 11.3.2 to bound

the error of such a contribution cp,q,r as

|fl (cp,q,r)− cp,q,r| ≤ γmV +kV +lV ·mV · kV · lV · α · β +O(ε2).

We now note that since r ≤ v−1,mV cannot exceedO(nv−1). Similarly, kV = O(nv−1) whenever
p < v and lV = O(nv−1) whenever q < v. Since p + q + r ≤ v, we are left with only two
possible contributions which contribute to the leading order error, O(γnv · nv · α · β), namely
cv,0,0 and c0,v,0. For cv,0,0, (for which it must be the case that v ≤ s), kV =

(
s+t
s

)(
n+v−1

v

)
, while

lV =
(
s+t
t+v

)
, and mV = 1. For c0,v,0, (for which it must be the case that v ≤ t), kV =

(
s+t
s+v

)
, while

lV =
(
s+t
s

)(
n+v−1

v

)
, and mV = 1. We can therefore, bound the total error on any entry of V as,

∀i〈s+ t〉, ∣∣fl (Vi〈s+t〉)− Vi〈s+t〉∣∣ ≤ γv̂·m · v̂ · v̄ ·m · α · β +O(γv̂·m/n ·m · α · β),

where v̂ =
(
s+t
s

)
, v̄ =

(
s+t
s+v

)
+
(
s+t
t+v

)
, and as before m =

(
n+v−1

v

)
.

Finally, we bound the error of the entries of W . We start with an error bound on the entries of
U (r) which is ∀r ∈ [1,min(s, t)], ∀i〈s+ t− 2r〉,∣∣∣fl (U (r)

m〈r〉i〈s+t−2r〉

)
− U (r)

m〈r〉i〈s+t−2r〉

∣∣∣ ≤ γû·m · û ·m · α · β,

where û =
(
s+t−2r
s−r

)
and m =

(
n+v−1

v

)
. We bound the error on elements of W in terms of the error

of U (r), ∣∣fl (Wi〈s+t〉
)
−Wi〈s+t〉

∣∣ ≤γŵ·m · ŵ ·m · α · β
where ŵ =

∑min(s,t)
r=1

(
s+t
r

)(
s+t−r
r

)(
s+t−2r
s−r

)
and m =

(
n+v−1

v

)
. Applying the identity

(
g
h

)(
g−h
k

)
=(

g
k

)(
g−k
h

)
repeatedly to ŵ, we simplify the expression to

ŵ =

min(s,t)∑
r=1

(
s+ t

s

)(
s

r

)(
t

r

)
≤ 2s+t ·

(
s+ t

s

)
,

because
∑min(s,t)

r=1

(
s
r

)
·
(
t
r

)
counts the number of subsets of s+ t objects with equal numbers taken

from the s and from the t, which is fewer than the total number of subsets 2s+t.
We can now combine the error bounds from Z, V , and W (substituting α = ||A||max and

β = ||B||max back in and approximating
(
n+v−1

v

)
= nv/v! +O(nv−1)) to obtain an error bound on

Ĉ = fl
(

Φ
(s,t,v)
� (A,B)

)
,∣∣∣fl (Ĉi〈s+t〉)− Ci〈s+t〉∣∣∣ ≤ (γ3m · z̄ + γv̂·m · v̂ · v̄ + γŵ·m · ŵ) ·m · ||A||max · ||B||max

where z̄ =
(
ω
t

)
·
(
ω
s

)
, v̂ =

(
s+t
s

)
, v̄ =

(
s+t
s+v

)
+
(
s+t
t+v

)
, ŵ = 2s+t ·

(
s+t
s

)
, andm =

(
n+v−1

v

)
+O(nv−1).

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 200

Overall, these stability bounds show that the fast algorithm is numerically stable, as they are
only larger than the standard algorithm by factors related to s, t, v, which are small constants. This
observation is verified by our numerical tests, although for certain specially-picked tensors, the fast
algorithm does incur more error than the standard algorithm (see Section 11.3.4).

11.3.3 Execution Cost Analysis
We begin by quantifying the number of arithmetic operations necessary for the new algorithm.

Theorem 11.3.4. The floating point cost of algorithm Ĉ = Φ
(s,t,v)
� (A,B) is, in the case of v > 0,

in terms of the cost of multiplication of elements of A and B, µ%, and in terms of the cost of
additions of elements of A, νA% , the cost of additions of elements of B, νB% , and the cost of additions
of elements of C, νC% ,

FΦ(n, s, t, v, %) =
nω

ω!
·
[
µ% +

(
ω

t

)
· νA% +

(
ω

s

)
· νB% +

(
ω

v

)
· νC%

]
+

ns+v

(s+ v)!
· νA% +

nt+v

(t+ v)!
· νB% +

ns+t

(s+ t)!
· νC% +O(nω−1 · (µ% + νA% + νB% + νC%)).

and in the case of v = 0 and s, t > 0,

FΦ(n, s, t, v, %) ≤n
ω

ω!
·
[
µ% +

(
ω

t

)
· νA% +

(
ω

s

)
· νB% +

(
ω

v

)
· νC%

]
+

1

2

(
2(s+ t)

s+ t

)
ns+t

(s+ t)!
· νC% +O(nω−1 · (µ% + νA% + νB% + νC%)).

Proof.
The number of multiplications necessary to compute Z via equation 11.2.4 is nω/ω! to leading

order. Naively, nv multiplications are necessary for each of ns+t elements of Z, for a total of nω.
However, we can exploit the fact that the tensor of multiplications in equation 11.2.3 is the same
no matter in which of w! orders the indices i〈ω〉 appear. In particular, we can show that the tensor
Ẑ of order ω is fully symmetric and therefore has only

(
n+ω−1

ω

)
unique entries. Since A and B are

both fully symmetric, we can show that each operand stays the same under permutation of any pair
of indices ip and iq in the i〈ω〉 index group. The terms in the summation forming each operand
(we consider A but the same holds for B) fall into three cases:

• Both indices ip and iq in the pair appear in the term, in which case the term stays the same
since the tensor is symmetric.

• One of two indices appear in some term, without loss of generality let ip appear and not
iq, after permutation we can write this term as Aj〈s+v−1〉ip where j〈s+ v − 1〉 ∈ i〈ω〉 and
j〈s+ v − 1〉 does not include ip or iq. Now, we can assert there is another term in the
summation of the form Aj〈s+v−1〉iq , since χ(i〈ω〉) yields all possible ordered subsets of i〈ω〉,
which must include an ordered index set containing the distinct indices j〈s+ v − 1〉iq.

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 201

• If neither of the two iq and ip indices appear, the term stays the same trivially.

The number of multiplications necessary to compute each one of V and U is O(nω−1) and
therefore low-order. Each multiplication in Ẑ requires the addition of

(
ω
s+v

)
=
(
ω
t

)
elements of

A and
(
ω
t+v

)
=
(
ω
s

)
elements of B. These summations may in some cases be amortized by reuse

of partial sums to compute different elements of Ẑ, which is an optimization we ignore. Further
each element unique multiplication (element of Ẑ) is accumulated to

(
ω
s+t

)
=
(
ω
v

)
elements of Z.

The accumulation of the
(
v+ω−1
ω

)
entries of Ẑ, whose

(
ω
v

)
permutations, of the form Ẑi〈s+t〉k〈v〉

are added into Zi〈s+t〉 need to be multiplied by a scalar factor of r, where r is the number of
possible unique order permutations of the index set k〈v〉. When k〈v〉 contains l ≤ v different
values with multiplicities m1,m2, . . .ml, where

∑l
i=1mi = v, the scalar r =

(
v

m1,m2,...ml

)
is

a multinomial, which means that r = v!/
∏l

i=1mi!. This scalar factor is needed since for all
unique k′〈v〉, the entries Ẑi〈s+t〉k′〈v〉 where k〈v〉 = π(k′〈v〉) for some permutation π are part of
the sum (equation 11.2.4) which contribute to Zi〈s+t〉, and all of these entries are the same due
to the symmetry of Ẑ. One way to compute only the unique entries of Ẑ and accumulate these
accordingly to Z is to only compute those in normal order, i.e. Ẑi〈ω〉 for all i〈ω〉 = (i1, i2, . . . iω)
such that i1 ≤ i2 ≤ . . . iω We demonstrate this in Algorithm 11.3.1.

Algorithm 11.3.1 Z ← Normal-ordered-Z-computation(A,B, n)
1:
2: % f or all i〈s+ t〉 in normal order...
3: for i1 = 1 to n do
4: for i2 = i1 to n do
5:

. . .
6: for is+t = is+t−1 to n do
7: Zi〈s+t〉 := 0

8:
9: % f or all i〈ω〉 in normal order...

10: for i1 = 1 to n do
11: for i2 = i1 to n do
12:

. . .
13: for iω = iω−1 to n do
14: aop =

∑
j〈s+v〉∈χ(i〈ω〉) Aj〈s+v〉

15: bop =
∑

l〈t+v〉∈χ(i〈ω〉) Bl〈t+v〉

16: Ẑi〈ω〉 = aop · bop

17: for all (j〈s+ t〉, k〈v〉) ∈ χ(i〈ω〉) do
18: Let r = v!/

∏l
i=1mi! where k〈v〉 contains l ≤ v sets of identical entries of size

mi for i = [1, l]
19: Zj〈s+t〉 := Zj〈s+t〉 + r · Ẑi〈ω〉

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 202

Using Algorithm 11.3.1 (which does not exploit amortized summations), the cost of the addi-
tions needed to compute Z is no more than

nω

ω!
·
[(
ω

t

)
· νA% +

(
ω

s

)
· νB% +

(
ω

v

)
· νC%

]
.

The additions necessary to compute V , U , and W then accumulate then to C are low order with
respect to those associated with Z, whenever s, t, v > 0. However, when v = 0, V does not need to
be computed, but the number of additions necessary to compute W is not low order. When v = 0,
U (r) is of order s+ t− r (and so is its computation cost), which is less than the order of the overall
computationO(ns+t), however, when it is accumulated intoW , which is of order s+ t, the number
of additions necessary per element of W is

(
s+t
r

)
·
(
s+t−r
r

)
, which is the number of permutations in

the sum in equation 11.2.7. Over all r the number of additions necessary to compute W from each
U (r) is(

n+ s+ t− 1

s+ t

)
·

min(s,t)∑
r=1

(
s+ t

r

)
·
(
s+ t− r

r

)
≤
(
n+ s+ t− 1

s+ t

)
·

min(s,t)∑
r=1

(
s+ t

r

)2

≤ 1

2

(
n+ s+ t− 1

s+ t

)(
2(s+ t)

s+ t

)
,

where the upper bound is not particularly tight, especially when s and t are different. All of the
above additions for W incur a cost of νC% . When s = 0 or t = 0, we do not need to compute W ,
but the number of additions needed to compute A(1) (in the case of t = 0) and B(1) (in the case
of s = 0) is not lower order. To leading the costs of these additions are νA% · ns+v/(s + v)! and
νB% · nt+v/(t + v)! in the two respective cases. All these costs are included in the equation for FΦ

in the theorem.

We proceed to quantify the communication cost of the algorithm by specifying a lower and
upper bound on the cost of a communication-optimal schedule.

Theorem 11.3.5. The minimum communication cost of Φ
(s,t,v)
� (A,B) given a cache of size M̂ is

max

(⌊(
n+ ω − 1

ω

)
/(2M̂)ω/max(s+v,v+t,s+t)

⌋
· M̂,

ns+t

(s+ t)!
+

ns+v

(s+ v)!
+

nt+v

(t+ v)!

)

≤ ŴΦ(n, s, t, v, M̂) ≤
nω ·

[(
ω
s

)
+
(
ω
t

)
+
(
ω
v

)]1/max(s+v,v+t,s+t)

ω! · M̂−1+ω/max(s+v,v+t,s+t)
+O(ns+t + ns+v + nt+v + nω−1),

assuming that all elements of A, B, and C are of unit size.

Proof.
Upper bound: An upper bound on the communication cost of the algorithm may be obtained

by providing a suitable execution schedule. Consider the following schedule, parameterized by b,
which will be picked so that b� n, and where we assume b divides into n (otherwise the algorithm

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 203

can be executed for a problem of size n+(n mod b) padded with zeros, with no greater asymptotic
cost since b � n). We define a tensor Ã whose elements are blocks of A of order s + v and with
dimension b. Each dimension of the tensor Ã itself is n/b. Its elements are defined as follows
∀I〈s+ v〉 ∈ [0, n/b− 1]s+v,

ÃI〈s+v〉 = {Ai〈s+v〉 | ∀ i〈s+ v〉 = (b · I〈s+ v〉+ î〈s+ v〉), î〈s+ v〉 ∈ [1, b]s+v}

Similarly, we define blocked versions ofB and Ẑ (where Ẑ is as before the tensor of multiplications
needed to compute Z) as

∀I〈t+ v〉 ∈ [0, n/b− 1]t+v,

B̃I〈t+v〉 ={Bi〈t+v〉 | ∀ i〈t+ v〉 = (b · I〈t+ v〉+ î〈t+ v〉),̂i〈t+ v〉 ∈ [1, b]t+v},
∀I〈ω〉 ∈ [0, n/b− 1]ω,

Z̃I〈ω〉 ={Ẑi〈ω〉 | ∀ i〈ω〉 = (b · I〈ω〉+ î〈ω〉), î〈ω〉 ∈ [1, b]ω}.

We can now reference the elements of the tensors A, B, and Ẑ by the block to which they belong
along with the offset inside the block, as ∀i〈ω〉 ∈ [1, n]ω, ∃I〈ω〉 ∈ [0, n/b− 1]ω, î〈ω〉 ∈ [1, b]ω,
such that i〈ω〉 = b · I〈ω〉+ î〈ω〉, so

Ẑi〈ω〉 = Ẑb·I〈ω〉+î〈ω〉 = Z̃
I〈ω〉
î〈ω〉 .

Now, we express the multiplications necessary to compute Ẑ according to the blocks of A and B
whose input they require starting with equation 11.2.3, ∀i〈ω〉 = b · I〈ω〉+ î〈ω〉,

Ẑi〈ω〉 =

(∑
j〈s+v〉∈χ(i〈ω〉)

Aj〈s+v〉

)
·
(∑
l〈t+v〉∈χ(i〈ω〉)

Bl〈t+v〉

)

= Z̃
I〈ω〉
î〈ω〉 =

(∑
(b·J〈s+v〉+ĵ〈s+v〉)∈χ(b·I〈ω〉+î〈ω〉)

Ã
J〈s+v〉
ĵ〈s+v〉

)
·
(∑

(b·L〈t+v〉+l̂〈t+v〉)∈χ(b·I〈ω〉+î〈ω〉)

B̃
L〈t+v〉
l̂〈t+v〉

)
,

(11.3.1)

where in the partitioning (b·J〈s+ v〉+ ĵ〈s+ v〉) ∈ χ(b·I〈ω〉+ î〈ω〉), each value in J〈s+ v〉 takes
on a value of I〈ω〉 of the same index (position in the tuple) as the position of the value of î〈s+ v〉
which is taken on by ĵ〈s+ v〉. The same applies to (b·L〈t+ v〉+ l̂〈t+ v〉) ∈ χ(b·I〈ω〉+ î〈ω〉). So
for a given block (given value of I〈ω〉), the number of blocks of A and B which contain elements
that are necessary to compute Z̃I〈ω〉

î〈ω〉 for all î〈ω〉, is equal to the number of unique values J〈s+ v〉
and L〈s+ v〉 can take on. Since the partition function acts independently on these block indices
(J〈s+ v〉 and L〈s+ v〉 are subsets of I〈ω〉) and the inner-block indices (ĵ〈s+ v〉 and l̂〈s+ v〉
are subsets of î〈ω〉), the values which J〈s+ v〉 can take on are given by the set χs+v(I〈ω〉), while
the values which L〈t+ v〉 can take on are given by the set χt+v(I〈ω〉). These sets have sizes

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 204(
ω
s+v

)
=
(
ω
t

)
and

(
ω
t+v

)
=
(
ω
s

)
, respectively. Therefore, to compute all elements of a block ẐI〈ω〉

for any I〈ω〉, the size of the inputs needed (the number of reads from memory needed) is

Ŵin =

(
ω

t

)
· bs+v +

(
ω

s

)
· bt+v,

since the size of each block of A (element of Ã) is bs+v while the size of each block of B (element
of B̃) is bt+v.

Z and subsequently C is computed from Ẑ via equation 11.2.4. We transform equation 11.2.4
(with Z replaced by Q for notational convenience) into a blocked version by expressing it in terms
of the elements of Z̃ and Q̃, where the block-tensor Q̃ is defined as

∀I〈s+ t〉 ∈ [0, n/b− 1]s+t,

Q̃I〈s+t〉 = {Qi〈s+t〉 | ∀ i〈s+ t〉 = (b · I〈s+ t〉+ î〈s+ t〉), î〈s+ t〉 ∈ [1, b]s+t}.

Equation 11.2.4 becomes ∀i〈s+ t〉 = b · I〈s+ t〉+ î〈s+ t〉,

Qi〈s+t〉 =
∑
k〈v〉

Ẑi〈s+t〉k〈v〉

= Q̃
I〈s+t〉
î〈s+t〉 =

∑
b·K〈v〉+k̂〈v〉

Ẑ
I〈s+t〉K〈v〉
î〈s+t〉k̂〈v〉 . (11.3.2)

We now show that by exploiting symmetry in Ẑ only a fraction of the blocks (elements of Z̃) ac-
tually need to be computed, with each one being accumulated into

(
ω
v

)
blocks of Q (elements of

Q̃) corresponding to the blocks Q̃I〈s+t〉 given by the partitions (I〈s+ t〉, K〈v〉) ∈ χ(J〈ω〉). The
symmetry of Ẑ was formally demonstrated in the proof of Theorem 11.3.4. It follows that the
elements of block Z̃I〈ω〉 are the same (but differently ordered) as those of Z̃J〈ω〉 whenever I〈ω〉
and J〈ω〉 are equivalent after some permutation of the block indices J〈ω〉 = π(I〈ω〉). This is
true since for any element of the first block, Z̃I〈ω〉

î〈ω〉 = Ẑb·I〈ω〉+î〈ω〉, there is an equivalent element

Z̃
J〈ω〉
π(̂i〈ω〉) = Z̃

π(I〈ω〉)
π(̂i〈ω〉) = Ẑπ(b·I〈ω〉+î〈ω〉), due to the fact that Ẑ is symmetric (symmetry means that

for any permutation of indices π′, Ẑi〈ω〉 = Ẑπ′(i〈ω〉)). Now, since Q = Z is symmetric, it simi-
larly follows that the elements of each block Q̃I〈s+t〉 are the same as of any block Q̃J〈s+t〉 when
I〈s+ t〉 and J〈s+ t〉 are equivalent after permutation. Therefore, it suffices to compute only
blocks Q̃I〈s+t〉 where I〈s+ t〉 is in normal order (I1 ≤ I2 ≤ . . . Is+t). Further, these blocks of
Q can be computed from only the blocks of Z̃J〈ω〉 for which J〈ω〉 is in normal order. In particu-
lar, whenever our schedule computes each normal-ordered block, Z̃J〈ω〉, it accumulates the block
to all normal-ordered blocks of Q to which certain permutations of the indices J〈ω〉 contributes.
These permutations correspond to partitions of the index set J〈ω〉 into I〈s+ t〉 and K〈v〉, which
are given by the set χs+tv (J〈ω〉), the size of which is

(
ω
v

)
. So, for each block of Ẑ the schedule

computes, it accumulates to memory (which we allow to be done with a unit memory transfer cost)

Ŵout =

(
ω

v

)
· bs+t,

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 205

elements of Q, since each block of Q is of size bs+t.

Algorithm 11.3.2 Q̃← symmetric-schedule(Ã, B̃, s, t, v)

1: for all I〈s+ t〉 ∈ [0, n/b− 1]ω, such that I1 ≤ I2 ≤ . . . Is+t do
2: Initialize block Q̃I〈s+t〉 to zero
3: for all J〈ω〉 ∈ [0, n/b− 1]ω, such that J1 ≤ J2 ≤ . . . Jω do
4: Load into cache all blocks ÃI〈s+v〉 for all I〈s+ v〉 ∈ χ(J〈ω〉)
5: Load into cache all blocks B̃I〈t+v〉 for all I〈t+ v〉 ∈ χ(J〈ω〉)
6: Compute all elements in block Z̃J〈ω〉 via equation 11.3.1
7: for all (I〈s+ t〉, K〈v〉) ∈ χ(J〈ω〉) do
8: Reorder the elements of Z̃J〈ω〉 to obtain the block Z̃I〈s+t〉K〈v〉

9: Let r be the number of unique possible orderings of the set of values in K〈v〉
10: for all î〈s+ t〉 ∈ [1, b]s+t do
11: Accumulate Q̃I〈s+t〉

î〈s+t〉 := Q̃
I〈s+t〉
î〈s+t〉 + r ·

∑
k̂〈v〉 Z̃

I〈s+t〉K〈v〉
î〈s+t〉k̂〈v〉

We formulate the above description into Algorithm 11.3.2. We argue that at termination the
normal-ordered blocks of Q (elements of Q̃) which Algorithm 11.3.2 computes are equivalent to
equation 11.3.2. Each element, Q̃I〈s+t〉

î〈s+t〉 is a sum of nv elements of Ẑ, which belong to elements of

(n/b)v blocks, Z̃I〈s+t〉K〈v〉, for the (n/b)v values that K〈v〉 can take on. We can observe that the
contributions to Q̃I〈s+t〉

î〈s+t〉 of Z̃I〈s+t〉K〈v〉 and Z̃I〈s+t〉K′〈v〉 for any permutationally equivalent K ′〈v〉 =

π(K〈v〉) are the same due to the symmetry in Ẑ, since∑
k̂〈v〉

Z̃
I〈s+t〉K′〈v〉
î〈s+t〉k̂〈v〉 =

∑
k̂〈v〉

Ẑb·I〈s+t〉K′〈v〉+î〈s+t〉k̂〈v〉

=
∑
k̂〈v〉

Ẑ(b·I〈s+t〉+î〈s+t〉)(K′〈v〉+k̂〈v〉)

=
∑
π(k̂〈v〉)

Ẑ(b·I〈s+t〉+î〈s+t〉)π(K′〈v〉+k̂〈v〉)

=
∑
l̂〈v〉

Ẑ(b·I〈s+t〉+î〈s+t〉)(K〈v〉+l̂〈v〉)

=
∑
l̂〈v〉

Z̃
I〈s+t〉K〈v〉
î〈s+t〉l̂〈v〉

This equivalence justifies the multiplication by a factor of r in Algorithm 11.3.2 which is the
number of unique possible orderings of K〈v〉, since by the argument above the contributions of all
these blocks for each element of Q is the same. This factor is different depending on how many
values in the index set K〈v〉 are the same (diagonals need to be multiplied by different factors, as
is also done in the standard algorithm, Ψ

(s,t,v)
� (A,B), when v > 1). When K〈v〉 contains l ≤ v

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 206

different values with multiplicities m1,m2, . . .ml,
∑l

i=1mi = v, r is a multinomial, which means
that r = v!/

∏l
i=1 mi!.

We can then argue that all (n/b)v blocks which contribute to each element of Q in equa-
tion 11.3.2 are accounted for, since for each index to Z̃ in equation 11.3.2, I〈s+ t〉K〈v〉, we
know that

• I〈s+ t〉 will be in normal-order since we only compute blocks of Q whose indices are in
normal order,

• there exists a block Z̃I〈s+t〉K′〈v〉 where K ′〈v〉 = π(K〈v〉) for some permutation π such that
K ′〈v〉 is in normal order and whose contribution is the same as that of Z̃I〈s+t〉K〈v〉 due to the
symmetry argument given above, and there are r such blocks which share the same normal
order after permutation (distinct possible orderings of K〈v〉),

• there exists a block Z̃J〈ω〉 where J〈ω〉 is in normal order and permutationally equivalent to
I〈s+ t〉K ′〈v〉 (∃π, such that π(I〈s+ t〉K ′〈v〉) = J〈ω〉),

• Algorithm 11.3.2 computes block Z̃J〈ω〉 since it computes all blocks of Ẑ with a normal-
ordered index,

• Algorithm 11.3.2 adds the correct elements of the block Z̃J〈ω〉 to all elements in Q̃I〈s+t〉

since (I〈s+ t〉, K ′〈v〉) ∈ χ(J〈ω〉) with the desired prefactor of r accounting for all distinct
possible orderings of K ′〈v〉.

We can quantify the communication cost of Algorithm 11.3.2 by multiplying the number of
blocks of Ẑ it computes by the size of the inputs Ŵin needed to compute the block and adding this
to the size of the outputs Ŵout to which the result of the block is accumulated. Only the blocks
of Ẑ which have normal-ordered indices are computed, and the total number of such blocks is(
n/b+ω−1

ω

)
. Assuming accumulation to memory and reads from memory have unit cost and that the

inputs and outputs all fit into cache, we then obtain the following expression for the communication
cost of Algorithm 11.3.2,

ŴZ(n, s, t, v, b) =

(
n/b+ ω − 1

ω

)
(Ŵin + Ŵout)

=
nω

ω! · bω

[(
ω

t

)
· bs+v +

(
ω

s

)
· bt+v +

(
ω

v

)
· bs+t

]
+O(nω−1)

The amount of cache used by the algorithm throughout the computation of each block of Ẑ is

Ŵin + Ŵout =

(
ω

t

)
· bs+v +

(
ω

s

)
· bt+v +

(
ω

v

)
· bs+t,

which we need to be less than the size of the cache M̂ . Therefore, we pick b to be

b =

(
M̂/

[(
ω

s

)
+

(
ω

t

)
+

(
ω

v

)])1/max(s+v,v+t,s+t)

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 207

Substituting this b into ŴZ(n, s, t, v, b), we obtain the following upper bound on the communica-
tion cost of Algorithm 11.3.2

ŴZ(n, s, t, v, M̂) ≤
nω ·

[(
ω
s

)
+
(
ω
t

)
+
(
ω
v

)]1/max(s+v,v+t,s+t)

ω! · M̂ω/(max(s+v,v+t,s+t))
· M̂ +O(nω−1)

=
nω ·

[(
ω
s

)
+
(
ω
t

)
+
(
ω
v

)]1/max(s+v,v+t,s+t)

ω! · M̂−1+ω/max(s+v,v+t,s+t)
+O(nω−1)

We now consider the communication costs associated with computing the other intermediates,
A(r), B(r), V , U (r), and W . As we noted in the proof of Theorem 11.3.4 the number of operations
required to compute these is O(nω−1) whenever s, v, t > 0, so the communication cost in this case
is also bound by O(nω−1). When v = 0, computing W is no longer a low-order cost, but we can
bound it by O(ns+t) (since this is a bound on the number of operations needed to compute W),
which also bounds the cost of writing the results into the output C. In the cases when either s = 0
or t = 0, the computation of B(1) and A(1), respectively, become leading order terms. We can,
however, also bound these costs by the size of the inputs O(ns+v +nt+v). Combining these bounds
with the bound for Algorithm 11.3.2, which computes Z = Q, yields the following upper bound
on the communication cost of the fast tensor contraction algorithm:

ŴΦ(n, s, t, v, M̂) =
nω ·

[(
ω
s

)
+
(
ω
t

)
+
(
ω
v

)]1/max(s+v,v+t,s+t)

ω! · M̂−1+ω/max(s+v,v+t,s+t)
+O(ns+t + ns+v + nt+v + nω−1).

Lower bound: Now we prove the communication lower bound on algorithm Φ
(s,t,v)
� (A,B). We

apply the lower bound technique from [37], which relies on the Hölder inequality [84] and its
generalization [22]. Similar lower-bound-motivated generalizations of these inequalities were also
provided by Tiskin [156]. Specifically, we employ Theorem 6.6 from Section 6.3 of [37], which
applies to programs which are loop nests where in the innermost loop arrays are accessed based on
subsets of the loop indices. Algorithm 11.3.1 is exactly this type of program, with ω nested loops
and with

(
ω
t

)
accesses to the A array,

(
ω
s

)
accesses to the B array, and

(
ω
v

)
accesses to the Z array

in the innermost loop. Each of these
(
ω
t

)
+
(
ω
s

)
+
(
ω
v

)
accesses is a projection or homomorphism in

the language of [37], which is a mapping from the index set i〈ω〉 to a subset thereof. We enumerate
these homomorphisms for accesses to A by enumerating the set χs+v(i〈ω〉), with φAj (i〈ω〉) being
the jth member of the set for j ∈ [1,

(
ω
t

)
]. We similarly enumerate the access to B by enumerating

the set χt+v(i〈ω〉), with φBj (i〈ω〉) being the jth member of the set for j ∈ [1,
(
ω
s

)
]. Lastly, we

enumerate the accesses (accumulates) to Z by enumerating the set χs+t(i〈ω〉), with φBj (i〈ω〉) being
the jth member of the set for j ∈ [1,

(
ω
v

)
]. Now, we ignore two of the three of these sets of

projections (ignoring some dependencies still allows us to obtain a valid lower bound in this case),
namely we pick r = min(s, v, t), then if r = t we take the projections from A, otherwise if r = s
we take the projections from B, and if r < s, t, so r = v, we take the projections from Z. We end
up with projections φj(i〈ω〉), which enumerate the set χω−r(i〈ω〉) for j ∈ [1,

(
ω
r

)
].

We would like to use the implication of Theorem 3.2 of [37], which states that if the projections
φj for j ∈ [1,

(
ω
r

)
] satisfy a certain constraint for parameters sj ∈ [0, 1], then given any set of index

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 208

tuples (loop iterations) E = {i〈ω〉 ∈ [1, n]ω},

|E| ≤
(ωr)∏
j=1

|φj(E)|sj (11.3.3)

So, the exponents sj bound the amount of iterations which may be computed with a given set
of inputs or outputs based on the projection of the iteration set onto the inputs or outputs. The
constraint which binds the choice of sj is significantly simplified from Theorem 3.2 of [37] by
Theorem 6.6 of [37], which applies for our program. In our case, the constraint is (taking the form
from the proof of the theorem),

∀k ∈ [1, ω],

(ωr)∑
j=1

sj ·∆jk ≥ 1, (11.3.4)

where ∆ is an
(
ω
r

)
-by-ω matrix, with ∆jk = 1 if ik ∈ φj(i〈ω〉) and ∆jk = 0 otherwise. In our case,

∆ has ω − r ones per row, since each φj takes a distinct subset of ω − r indices. Further, since
each index appears in the same number of subsets (elements of the set χω−r(i〈ω〉)), the number of
ones per column in ∆ is balanced and therefore equal to the number of ones per row multiplied by
the number of rows and divided by the number of columns,

(ωr)∑
j=1

∆jk = (ω − r) ·
(
ω

r

)
/ω =

(
ω − 1

r − 1

)
.

So, we can satisfy the constraint in equation 11.3.4 by selecting sj = 1/
(
ω−1
r−1

)
for all j ∈ [1,

(
ω
r

)
].

Now, for any schedule (ordering) of the
(
n+ω−1

ω

)
iterations of Algorithm 11.3.1, we subdivide

the iterations into subsets Ei for i ∈ [1, f] where f = d
(
n+ω−1

ω

)
/(2M̂)ω/(ω−r)e and the first f − 1

sets are of size (2M̂)ω/(ω−r) while the last remainder subset of size

|Ef | =
(
n+ ω − 1

ω

)
− (2M̂)ω/(ω−r) ·

⌊(
n+ ω − 1

ω

)
/(2M̂)ω/(ω−r)

⌋
≤ (2M̂)ω/(ω−r),

which may be zero. Now, for each Ei we have the bound from equation 11.3.3,

|Ei| ≤
(ωr)∏
j=1

|φj(Ei)|sj

≤
(ωr)∏
j=1

|φj(Ei)|1/(
ω−1
r−1).

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 209

If we are considering projections onto Z (when r = v < s, t), then the size of each φj(Ei)

would be bound by the cache size M̂ (partial sums kept in cache at the end of segment) added
to the number of writes/accumulates done to memory Ŵi during segment i for i < f , since we
assume no recomputation, meaning all partial sums computed in the last chunk have to be written
to memory during the last chunk. However, if we are considering projections onto A or B, the size
of each φj(Ei) would be bound by the cache size M̂ (operands from the previous segment) added
to the number of reads from memory Ŵi done during chunk i for all i > 1 and exclusively Ŵi

for i = 1, since we assume the cache begins empty. We note that in these latter cases (operand
projections), we can consider the schedule ordering in reverse so that the remainder chunk be the
last chunk in reverse order (first chunk actually executed), the bounds on φj(Ei) become the same
as in the case when we are considering projections of the partial sums to Z. So, without loss of
generality, we assume the bounds φj(Ei) ≤ M̂ + Ŵi for all i < f and φj(Ef) ≤ Ŵf . We now
seek to obtain a lower bound on communication cost by obtaining a lower bound on

∑f
i=1 Ŵi. We

ignore the remainder chunk and obtain a bound for each i ∈ [1, f − 1],

|Ei| ≤
(ωr)∏
j=1

|φj(Ei)|1/(
ω−1
r−1),

(2M̂)ω/(ω−r) ≤ (M̂ + Ŵi)
(ωr)/(

ω−1
r−1)

= (M̂ + Ŵi)
ω/(ω−r)

2M̂ ≤ M̂ + Ŵi,

Ŵi ≥ M̂

We can then obtain a lower bound on the communication cost for Algorithm 11.3.1, by summing
over the f − 1 iterations of full chunks,

ŴΦ(n, s, t, v, M̂) ≥ (f − 1) · M̂ =

⌊(
n+ ω − 1

ω

)
/(2M̂)ω/(ω−r)

⌋
· M̂

=

⌊(
n+ ω − 1

ω

)
/(2M̂)ω/max(s+v,v+t,s+t)

⌋
· M̂.

We augment this lower bound, by combining it with a lower bound that is based purely on the size
of A and B, each of whose entries must be read into cache at least once and C, whose entries must
be written to memory at least once, obtaining,

ŴΦ(n, s, t, v, M̂) ≥ max

(⌊(
n+ ω − 1

ω

)
/(2M̂)ω/max(s+v,v+t,s+t)

⌋
· M̂,

ns+t

(s+ t)!
+

ns+v

(s+ v)!
+

nt+v

(t+ v)!

)
.

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 210

We observe that communication cost of the fast algorithm achieves asymptotically less reuse
than the standard algorithm when s, t, v > 0 and s, t, v are unequal, because in these cases the
exponent on M̂ corresponding to the cache reuse obtained for each element by the fast algorithm
is −1 + ω/max(s+ v, t+ v, s+ t) < 1/2 (the standard algorithm gets M̂1/2 reuse in these case).
In the cases when one of s, t, v is zero, reading in one of the input tensors or writing the out-
put tensor becomes the asymptotically dominant cost for both algorithms. When s = t = v > 0,
Ψ

(s,t,v)
� (A,B) achieves the same asymptotic reuse factor of M̂1/2 and performs less communication

by a constant factor due to performing a factor of ω!/(s!t!v!) less operations, albeit the benefit in
communication does not achieve this full constant factor reduction (there is an ω! in the denomina-
tor, but additional, smaller constant factors in the numerator) since it requires more communication
per computation. However, in many of the key applications of the algorithm, where each scalar
multiplication done by the fast algorithm is an asymptotically more expensive operation than each
scalar addition (e.g. a matrix multiplication), the reduction in the number of multiplications in-
duces a reduction in communication cost by the same factor, since the underlying scalar operation
(e.g. matrix multiplication) may achieve a factor of M̂1/2 reuse itself. The communication cost
analysis done in this section does not correctly capture the cost in such cases, since it assumes
scalars are of unit size that is much smaller than the cache size.

The extension of these communication results to the parallel case is straight-forward since
the computation of each scalar multiplication in the algorithm may be done in parallel, as with
matrix multiplication. We state a memory-independent parallel communication lower bound in
Theorem 11.3.6, whose proof demonstrates that the dependency graph of Φ(s,t,v) (computed as Al-
gorithm 11.3.1) is structurally an (ω,max(s+ v, v + t, s+ t))-lattice hypergraph by the definition
in Chapter 3.

Theorem 11.3.6. The minimum communication cost of a load-balanced parallelization of the fast
algorithm Φ

(s,t,v)
� (A,B) on a homogeneous machine with p processors each with local memory M

is

WΦ(n, s, t, v, p) = Ω

(
nmax(s+v,v+t,s+t)

pmax(s+v,v+t,s+t)/ω

)
.

Proof. Consider any dependency graph GΦ = (VΦ, EΦ) that computes Algorithm 11.3.1. It must
compute all multiplications Ẑi〈ω〉 for all ordered i〈ω〉. Each Ẑi〈ω〉 is a dependent on all Aj〈s+v〉
where j〈s+ v〉 ∈ i〈ω〉 and on all Bl〈t+v〉 where l〈t+ v〉 ∈ i〈ω〉, and contributes to the sum
forming (is a dependency of) Zj〈s+t〉 (Cj〈s+t〉) for all j〈s+ t〉 ∈ i〈ω〉. We can therefore define
a parent (ω,max(s+ v, v + t, s+ t))-lattice hypergraph of breadth n (as defined in Section 3.3)
HΦ = (V H

Φ , EH
Φ) where the vertices contain all entries Ẑi〈ω〉 ∈ V H

Φ with i1 < · · · < iω. Each
hyperedge ej〈max(s+v,v+t,s+t)〉 ∈ EH

Φ corresponds to the highest order projection (if s + v largest
then A, otherwise if v + t largest then B, and otherwise if s + t is largest then C) and con-
tains ej〈max(s+v,v+t,s+t)〉 = {Ẑi〈ω〉 ∈ V H

Φ : j〈max(s+ v, v + t, s+ t)〉 ⊂ i〈ω〉}. These hyper-
edges are edge disjoint connected partitions, since each corresponds either to all dependents of
an operand tensor entry or to all dependencies of an output entry Zj〈s+t〉, which must be com-
bined via some reduction tree (the intermediate sums in the reduction tree are ignored in a par-

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 211

ent hypergraph as in Chapter 5). Since we assume the computation is load balanced and V H
Φ

contains Θ(nω) vertices, some processor must compute no more than b|V H
Φ |/4c vertices and at

least b|V H
Φ |/pc. By Theorem 3.3.1, the minimum 1

p
-1

4
-balanced hyperedge cut of HΦ is of size

εp(HΦ) = Ω(nmax(s+v,v+t,s+t)/pmax(s+v,v+t,s+t)/ω). Further by Theorem 3.3.2, since HΦ is a parent
hypergraph of any dependency graph GΦ and has degree at most

(
ω

max(s+v,v+t,s+t)

)
the minimum

1
p
-1

4
-balanced vertex separator of any GΦ is of size at least

χp,4(GΦ)(n, s, t, v) = Ω(nmax(s+v,v+t,s+t)/pmax(s+v,v+t,s+t)/ω).

Since any communicated set is a 1
p
-1

4
-balanced vertex separator of GΦ (by definition in Sec-

tion 2.1.1), the lower bound on separator size is also a lower bound on communication cost for
any load-balanced execution of Φ(s,t,v),

WΦ(n, s, t, v, p) = Ω

(
nmax(s+v,v+t,s+t)

pmax(s+v,v+t,s+t)/ω

)
.

11.3.4 Numerical Tests

(a) Multiplication of a symmetric matrix by a vector (b) Symmetrized multiplication of symmetric matrices

Figure 11.1: Numerical stability tests stressing the potential error arising from the intermediates
formed by the fast algorithm.

We identify two scenarios in which the fast symmetric tensor contraction algorithm incurs
higher numerical floating point error than the standard algorithm. In the first case, we test the
algorithms for multiplying a symmetric matrix by a vector (Section 11.2.4). We tested two cases,
an A matrix with values in the range [−.5, .5] and a random A matrix with values in the range

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 212

[0, 1]. In both cases, we pick entries of vector b to be in the range [−.5, .5]. We quantify the relative
difference between the standard and the fast symmetric algorithm and the analytically obtained
exact solution. In particular we compute

||fl (c)− c||2
||A||2 · ||b||2

,

where fl (c) is the answer numerically computed by Ψ(A, b) and Φ(A, b). In the first case, the
error was roughly proportional to that of running two versions of the standard algorithm with sums
performed in different order, suggesting that the symmetric algorithm does not incur a noticeable
amount of extra error. However, in the latter case (A strictly positive), the error for the symmetric
algorithm is larger and growing with matrix dimension. This error arises from the fact that entries
of the V intermediate are dependent on partial sums of A (Vi = (

∑
j Aij) · bi), which are large

due to the fact that A is positive. Since, V is designed to cancel terms in Z, an error is incurred
due to cancellation, as the magnitude of the result is small with respect to the magnitude of V .
Figure 11.1(a) displays an adaptation of this test, with A picked to be positive, but non-random, in
particularAij = (2i+ j − 2 mod n) · .3+ .001 and b picked to be alternating, in particular bi = .1
for i ∈ {2, 4, . . .} and bi = −.1 for i ∈ {1, 3, . . .}. These non-random values were picked to obtain
an exact result as a basis of comparison, as in this case, c = A · b, has entries ci = −.015 · n for all
i.

The second scenario in which the fast symmetric algorithm incurs more error is specially de-
signed to make the magnitude of theU intermediate large with respect to the answer. Figure 11.1(b)
demonstrates this scenario for the Jordan ring matrix multiplication algorithm (Section 11.2.4). We
first observed a difference in relative error between the two algorithms for random matrices when
B = A (the difference was negligible when A and B are picked randomly independently). In
order to compare with respect to an exact solution, we set A = B = Q = (I − 2uuT), where
Q is a Householder transformation computed from a random vector. Since Q is symmetric and
orthogonal A ·B+B ·A = Q ·Q+Q ·Q = 2I . Thus we again compare the numerically computed
solution to the analytically obtained exact solution, calculating the relative error as

||fl (C)− C||2
||C||2

.

We see that the fast algorithm, Φ
(1,1,1)
� (A,A) incurs somewhat more error than the standard algo-

rithm, Ψ
(1,1,1)
� (A,A), because of the cancellation error incurred due to the U intermediate being

large. This intermediate is large because Ul =
∑

k Alk ·Blk is a sum of squares when B = A.
These numerical tests demonstrate that the fast algorithm has different numerical properties

from the standard algorithm and can incur more error when the cancelled terms are large. However,
these tests were artificially picked to maximize the error, and typically the difference of the error
between the two algorithms is negligible. Further, the error incurred by the fast algorithm is not
especially large in absolute magnitude even in these specially picked cases. Overall, these tests
lead us to conclude that the fast algorithm should be used with some caution and awareness of its
numerical characteristics, but is likely fit for deployment in a general numerical library.

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 213

11.4 Antisymmetric and Hermitian Adaptations
We now consider the case when the operands and/or the output are antisymmetric. The value of
an antisymmetric tensor element changes sign if a pair of its indices are permuted e.g. Ai...j...k... =
−Ai...k...j.... This implies that given a tuple of indices i〈d〉 and a reordered set of the same indices
j〈d〉 the value of Ai〈d〉 = (−1)δ(i〈d〉,j〈d〉)Aj〈d〉, where δ(i〈d〉, j〈d〉) is the number of pairwise per-
mutations of indices necessary to transform j〈d〉 back into i〈d〉. In other words if the number of
permutations is odd, there is a change of sign and if the number of permutations is even, the sign
stays the same and the elements are equivalent. It does not matter whether δ corresponds to the
fewest number of pairwise permutations necessary to transform i〈d〉 into j〈d〉 or to the length of
any sequence of pairwise permutations, which transforms between the two indices, since only the
parity matters.

We will need to perform summations over index partitions where terms have different signs
depending on the particular partitioning of the index set. We will write such antisymmetric sum-
mations as ∑̂

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

f(j〈s〉, l〈t〉) ≡
∑

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

(−1)δ(j〈s〉l〈t〉,i〈s+t〉)f(j〈s〉, l〈t〉),

where δ(j〈s〉l〈t〉, i〈s+ t〉) is the number of pairwise index permutations needed to transform
j〈s〉l〈t〉 into i〈s+ t〉 (based on index label not index value), and f(j〈s〉, l〈t〉) is an arbitrary func-
tion. We will define the summation over index subsets accordingly,∑̂

j〈s〉∈χ(i〈s+t〉)

f(j〈s〉) ≡
∑̂

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

f(j〈s〉).

We will first consider contractions that are symmetrized and so contracted via equation 11.1.1
but involve antisymmetric operands. For certain values of s, t, v, such contractions yield a zero
result. We will then introduce an antisymmetrized version of equation 11.1.1 and consider con-
tractions of both symmetric and antisymmetric tensors, again for certain s, t, v the contractions
yield a zero result. Depending on the values of s, t, v and choices of which operands are sym-
metric/antisymmetric, as well as where the contraction is symmetrized and antisymmetrized, the
contractions discussed will either

• have a zero result,

• have a nonzero result and be computable via the standard symmetric contraction algorithm
but not the fast algorithm,

• have a nonzero result and be computable via either the standard or the fast symmetric con-
traction algorithm.

We will then move on to the Hermitian tensors, which may be represented as a pair of tensors:
one real symmetric tensor and one pure imaginary antisymmetric tensor. We will also introduce

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 214

Hermitian contractions which are the analogue of symmetrized and antisymmetrized contractions.
It will be possible to compute Hermitian contractions for all values of s, t, v via both the standard
and fast symmetric contraction algorithms. The Hermitian algorithms will be primarily performed
via the use of symmetrized and antisymmetrized contractions of symmetric and antisymmetric
tensors. Table 11.4.1 summarizes the results of this section in terms of whether each antisymmet-
ric/symmetric contraction is zero, computable by standard algorithm, computable fast algorithm,
and whether it to what term (real or imaginary or none) it contributions in the case of Hermitian
contractions.

Table 11.4.1: Status of different cases of (s, t, v) for symmetrized (�) and antisymmetrized (⊗)
contractions for symmetric (SY) and antisymmetric (AS) operands. The ‘Hermitian’ column lists
whether the particular contraction contributes to the real or imaginary or no term of the output
tensor in a Hermitian contraction. Zero entries mean the contraction always evaluates to zero.
Presence of Ψ or Φ means that Ψ or Φ may be used as the contraction algorithm.

Hermitian s > 1 t > 1 v > 1

SY� SY real Ψ,Φ Ψ,Φ Ψ,Φ
SY� AS none Ψ 0 0
AS� SY none 0 Ψ 0
AS� AS real 0 0 Ψ,Φ
SY⊗ SY none 0 0 Ψ
SY⊗ AS imaginary 0 Ψ,Φ 0
AS⊗ SY imaginary Ψ,Φ 0 0
AS⊗ AS none Ψ Ψ Ψ

11.4.1 Symmetrized Contractions of Antisymmetric Tensors
In this section, we consider all valid cases of contraction between antisymmetric or symmetric
operands that are symmetrized into a symmetric output tensor. Our main application, the coupled-
cluster method, does not perform symmetrized contractions. However, one important use-case
covered by this section is squaring an antisymmetric matrix, which results in a symmetric matrix.
Different cases are valid for different values for s, t, v and the fast algorithm works for a subset of
the valid contractions.

Symmetrized Contraction of an Antisymmetric Tensor with a Symmetric Tensor

We first consider the case with (s, t, v) = (1, t, 1) where A is an antisymmetric matrix and B is a
symmetric tensor of order t+1. The standard algorithm Ψ

(1,t,1)
� works for (s, t, v) = (1, t, 1) for any

matrix A, because Aj〈1〉k〈1〉 is trivially symmetric under all permutations of the single index j〈1〉
and of the single index k〈1〉. The fast algorithm Φ

(1,t,1)
� (A,B) does not handle the antisymmetry of

a matrixA since when t > 0, the algorithm Φ
(1,t,1)
� (A,B) would be symmetrizing an antisymmetric

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 215

matrix A, which gives the needed entries within Z the incorrect relative signs. When t = 0, there
is no symmetrization done, and this case is equivalent to the antisymmetrized contraction of an
antisymmetric tensor with a symmetric tensor, which we discuss in Section 11.4.2.

If we consider contraction of an antisymmetric tensor A of order s + v > 2 with a symmetric
tensor B, then either s > 1 or v > 1. When s > 1, an antisymmetric pair of indices in A is
symmetrized to compute C, which yields the trivial result C = 0. Otherwise, when v > 1, a pair
of antisymmetric indices in A is contracted with a pair of symmetric indices in B, again yielding a
trivial result, C = 0.

Symmetrized Contraction of Antisymmetric Tensors

We first consider the contraction of two antisymmetric tensors A and B via equation 11.1.2 into
a vector or a symmetric matrix. This type of contraction is invalid if a pair of indices from A
or B also appears in C, since this would force two indices in C to be antisymmetric. Therefore,
we consider only the cases when s, t ≤ 1, namely when C is a vector or a symmetric matrix.
The case when only one of s, t is equal to 1 (the output is a vector) is most relevant to quantum-
chemistry theory, while the case when s = t = 1 (the output is a symmetric matrix) is not common
in quantum-chemistry theory. However, a good motivation for the latter case is that when s =
t = v = 1, so A is an antisymmetric matrix, and when B = A, this contraction corresponds
to squaring an antisymmetric matrix, the result of which, C = 1

2
(A · AT + AT · A) = −A2, is

symmetric (as in the case of the symmetric matrix square discussed at the end of Section 11.2.4, a
factor of 3 fewer multiplications is needed for the fast algorithm, but the same number of additions
and multiplications in total).

The standard algorithm, Ψ
(s,t,v)
� (A,B) works effectively without modification, by folding A

and B into matrices with dimensions k and
(
n
v

)
, where k ∈ {1, n} depending on whether s = 1

or s = 0 for A and depending on whether t = 1 or t = 0 for B. If s = t = 1, the result C̄ is
symmetrized as before, ∀i, j, Cij = C̄ij + C̄ji.

We adapt the fast algorithm Φ
(s,t,v)
� (A,B) to handle symmetrized contraction of antisymmetric

tensors with s, t ≤ 1 and arbitrary v as follows, ∀i〈ω〉,

Ẑi〈ω〉 =

(∑̂
j〈s+v〉∈χ(i〈ω〉)

Aj〈s+v〉

)
·
(∑̂
l〈t+v〉∈χ(i〈ω〉)

Bl〈t+v〉

)
. (11.4.1)

The summation over Ẑ (analogous to equation 11.2.4) is performed with
∑̂

in place of
∑

and is
multiplied by a sign prefactor,

Zi〈s+t〉 = (−1)st+sv+tv
∑
k〈v〉

(∑̂
j〈s+v〉∈χ(i〈s+t〉k〈v〉)

Aj〈s+v〉

)
·
(∑̂
l〈t+v〉∈χ(i〈s+t〉k〈v〉)

Bl〈t+v〉

)
. (11.4.2)

Looking at the definition of V (equation 11.2.5), we note that s ≥ p or r ≥ v − s − t (otherwise
the sum over q has null range), and further that if s, t ≤ 1, then p, q ≤ 1. So, in this case we need

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 216

to compute only A(1) and B(1) (A(0) = A and B(0) = B),

∀i〈s+ v − 1〉, A(1)
i〈s+v−1〉 =

∑
k

Ai〈s+v−1〉,k,

∀i〈t+ v − 1〉, B(1)
i〈t+v−1〉 =

∑
k

Bi〈t+v−1〉,k.

Now, we can compute V as, ∀i〈s+ t〉,

Vi〈s+t〉 =
v−1∑

r=max(0,v−s−t)

(
v

r

)
·

v−r∑
p=max(0,v−t−r)

(
v − r
p

)
·

v−p−r∑
q=max(0,v−s−r)

(
v − p− r

q

)
· nv−p−q−r·

(−1)st+(p+q)v+pq
∑
k〈r〉

(∑̂
j〈s+v−p−r〉∈χ(i〈s+t〉)

A
(p)
j〈s+v−p−r〉k〈r〉

)
·
(∑̂
l〈t+v−q−r〉∈χ(i〈s+t〉)

B
(q)
l〈t+v−q−r〉k〈r〉

)
.

(11.4.3)

The tensor W will only exist when s = t = 1, in which case we can compute,

∀m, U (1)
m =

(∑
k〈v〉

Am,k〈v〉 ·Bm,k〈v〉

)
,

∀i〈2〉, Wi〈2〉 = −
∑

m∈χ(i〈2〉)

U (1)
m .

The result C is just the sum of these intermediates again as in equation 11.2.8.
We now prove that the above method is correct following the proof of correctness for the purely

symmetric fast algorithm (Theorem 11.3.1) except this time propagating signs from the inner terms.
We partition the index set k〈v〉 as described in that proof to obtain the following partition of Z,
taking the sign of each operand from equation 11.4.2, ∀i〈s+ t〉,

Zi〈s+t〉 =(−1)st+sv+tv
∑
k〈v〉

v∑
r=0

∑
(d〈r〉,u〈v−r〉)∈χ(k〈v〉)

v−r∑
p=max(0,v−t−r)

∑
(e〈p〉,w〈v−r−p〉)∈χ(u〈v−r〉)

v−r−p∑
q=max(0,v−s−r)

∑
(f〈q〉,g〈v−r−p−q〉)∈χ(w〈v−r−p〉)

[
(∑

(j〈s+v−p−r〉,h〈t−v+p+r〉)∈χ(i〈s+t〉)

(−1)δ(j〈s+v−p−r〉d〈r〉e〈p〉w〈t〉, i〈s+t〉k〈v〉)Aj〈s+v−p−r〉d〈r〉e〈p〉

)

·
(∑

(l〈t+v−q−r〉,h′〈s−v+q+r〉)∈χ(i〈s+t〉)

(−1)δ(l〈t+v−q−r〉d〈r〉f〈q〉v〈s〉, i〈s+t〉k〈v〉)Bl〈t+v−q−r〉d〈r〉f〈q〉

)]
,

where w〈t〉 are the t indices of i〈s+ t〉k〈v〉 not appearing in the A operand, namely the ordered
index set f〈q〉g〈v − r − p− q〉h〈t− v + p+ r〉, and v〈s〉 are the s indices not appearing in the B

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 217

operand, namely the ordered index set e〈p〉g〈v − r − p− q〉h′〈s− v + q + r〉. Noting that s, t ≤
1, which implies that the ordering of the (size at most one) index set does not matter, we can set

w〈t〉 = f〈q〉g〈v − r − p− q〉h〈t− v + p+ r〉

and v〈s〉 = e〈p〉g〈v − r − p− q〉h′〈s− v + q + r〉. Now we manipulate the sign permutation
factor on A by rotating the index set h〈t− v + p+ r〉 (of size at most one), v permutations to the
left, yielding,

(−1)δ(j〈s+v−p−r〉d〈r〉e〈p〉f〈q〉g〈v−r−p−q〉h〈t−v+p+r〉, i〈s+t〉k〈v〉)

=(−1)(t−v+p+r)v(−1)δ(j〈s+v−p−r〉h〈t−v+p+r〉d〈r〉e〈p〉f〈q〉g〈v−r−p−q〉, i〈s+t〉k〈v〉)

=(−1)(t−v+p+r)v(−1)δ(j〈s+v−p−r〉h〈t−v+p+r〉, i〈s+t〉)(−1)δ(d〈r〉e〈p〉f〈q〉g〈v−r−p−q〉, k〈v〉).

Performing the same manipulation on the sign factor of B, yields,

(−1)δ(l〈t+v−q−r〉d〈r〉f〈q〉e〈p〉g〈v−r−p−q〉h
′〈s−v+q+r〉, i〈s+t〉k〈v〉)

=(−1)(s−v+q+r)v(−1)δ(l〈t+v−q−r〉h
′〈s−v+q+r〉d〈r〉f〈q〉e〈p〉g〈v−r−p−q〉, i〈s+t〉k〈v〉)

=(−1)(s−v+q+r)v(−1)δ(l〈t+v−q−r〉h
′〈s−v+q+r〉, i〈s+t〉)(−1)δ(d〈r〉f〈q〉e〈p〉g〈v−r−p−q〉, k〈v〉).

The order of f〈p〉 and e〈p〉may be swapped with a prefactor of (−1)pq, so that the last terms in the
above sign factors for A and B become the same, yielding, ∀i〈s+ t〉,

Zi〈s+t〉 = (−1)st+sv+tv

∑
k〈v〉

v∑
r=0

∑
(d〈r〉,u〈v−r〉)∈χ(k〈v〉)

v−r∑
p=max(0,v−t−r)

∑
(e〈p〉,w〈v−r−p〉)∈χ(u〈v−r〉)

v−r−p∑
q=max(0,v−s−r)∑

(f〈q〉,g〈v−r−p−q〉)∈χ(w〈v−r−p〉)

(−1)(t−v+p+r)v(−1)(s−v+q+r)v(−1)pq(−1)2δ(d〈r〉e〈p〉f〈q〉g〈v−r−p−q〉, k〈v〉)

[
(∑

(j〈s+v−p−r〉,h〈t−v+p+r〉)∈χ(i〈s+t〉)

(−1)δ(j〈s+v−p−r〉h〈t−v+p+r〉, i〈s+t〉)Aj〈s+v−p−r〉d〈r〉e〈p〉

)

·
(∑

(l〈t+v−q−r〉,h′〈s−v+q+r〉)∈χ(i〈s+t〉)

(−1)δ(l〈t+v−q−r〉h
′〈s−v+q+r〉, i〈s+t〉)Bl〈t+v−q−r〉d〈r〉f〈q〉

)]
,

Now, we absorb the factors of (−1)δ(j〈s+v−p−r〉h〈t−v+p+r〉, i〈s+t〉) and (−1)δ(l〈t+v−q−r〉h
′〈s−v+q+r〉, i〈s+t〉)

to transform the summations from
∑

to
∑̂

, as well as combine the four exponents of −1 which

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 218

were factored out of the innermost summation,

Zi〈s+t〉 = (−1)st+sv+tv

∑
k〈v〉

v∑
r=0

∑
(d〈r〉,u〈v−r〉)∈χ(k〈v〉)

v−r∑
p=max(0,v−t−r)

∑
(e〈p〉,w〈v−r−p〉)∈χ(u〈v−r〉)

v−r−p∑
q=max(0,v−s−r)

∑
(f〈q〉,g〈v−r−p−q〉)∈χ(w〈v−r−p〉)

(−1)(s+t−2v+p+q+2r)v+pq

[
(∑̂

(j〈s+v−p−r〉,h〈t−v+p+r〉)∈χ(i〈s+t〉)

Aj〈s+v−p−r〉d〈r〉e〈p〉

)

·
(∑̂

(l〈t+v−q−r〉,h′〈s−v+q+r〉)∈χ(i〈s+t〉)

Bl〈t+v−q−r〉d〈r〉f〈q〉

)]
.

Now we combine the factors of (−1)st+sv+tv and (−1)(s+t−2v+p+q+2r)v+pq, obtaining

Zi〈s+t〉 =
∑
k〈v〉

v∑
r=0

∑
(d〈r〉,u〈v−r〉)∈χ(k〈v〉)

v−r∑
p=max(0,v−t−r)

∑
(e〈p〉,w〈v−r−p〉)∈χ(u〈v−r〉)

v−r−p∑
q=max(0,v−s−r)∑

(f〈q〉,g〈v−r−p−q〉)∈χ(w〈v−r−p〉)

(−1)st+(p+q)v+pq

[
(∑̂
j〈s+v−p−r〉∈χ(i〈s+t〉)

Aj〈s+v−p−r〉d〈r〉e〈p〉

)
·
(∑̂
l〈t+v−q−r〉∈χ(i〈s+t〉)

Bl〈t+v−q−r〉d〈r〉f〈q〉

)]
.

By the same argument as in the symmetric correctness proof (Theorem 11.3.1), we assert that for a
particular choice of p, q, r the k〈v〉 indices are indistinguishable, which allows us to replace sums
with scalar prefactors. We again also isolate the r = v term, yielding

Zi〈s+t〉 =
v−1∑

r=max(0,v−s−t)

(
v

r

)
·

v−r∑
p=max(0,v−t−r)

(
v − r
p

)
·

v−p−r∑
q=max(0,v−s−r)

(
v − p− r

q

)
· nv−p−q−r·

(−1)st+(p+q)v+pq
∑
k〈r〉

(∑̂
j〈s+v−p−r〉∈χ(i〈s+t〉)

A
(p)
j〈s+v−p−r〉k〈r〉

)
·
(∑̂
l〈t+v−q−r〉∈χ(i〈s+t〉)

B
(q)
l〈t+v−q−r〉k〈r〉

)

+ (−1)st
∑
k〈v〉

 ∑̂
j〈s〉∈χ(i〈s+t〉)

Aj〈s〉k〈v〉

 ·
 ∑̂
l〈t〉∈χ(i〈s+t〉)

Bl〈t〉k〈v〉

 .

The first of these two terms is just V , and plugging this in we obtain

Zi〈s+t〉 = Vi〈s+t〉 + (−1)st
∑
k〈v〉

 ∑̂
j〈s〉∈χ(i〈s+t〉)

Aj〈s〉k〈v〉

 ·
 ∑̂
l〈t〉∈χ(i〈s+t〉)

Bl〈t〉k〈v〉

 .

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 219

Again following the correctness proof for the symmetric case (Theorem 11.3.1), we subdivide the
latter term into subterms where j〈s〉 and l〈t〉 are disjoint and when they have overlap. Since in this
case s, t ≤ 1, we only need to consider the r = 1 case (which only exists when s = t = 1 since
r = min(s, t), which we signify by multiplying the term by st),

∀i〈s+ t〉, Zi〈s+t〉 = Vi〈s+t〉

+ (−1)st
∑

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

(∑
k〈v〉

(−1)δ(j〈s〉l〈t〉, i〈s+t〉)Aj〈s〉k〈v〉 · (−1)δ(l〈t〉j〈s〉, i〈s+t〉)Bl〈t〉k〈v〉

)

+ st · (−1)st

[∑
(m,h)∈χ(i〈2〉)

(∑
k〈v〉

(−1)δ(mh, i〈2〉)Amk〈v〉 · (−1)δ(mh, i〈2〉)Bmk〈v〉

)]

Absorbing the permutation factors into the antisymmetric tensors’ indices we obtain ∀i〈s+ t〉,

Zi〈s+t〉 = Vi〈s+t〉 +
∑

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

(∑
k〈v〉

Aj〈s〉k〈v〉 ·Bl〈t〉k〈v〉

)

− st ·

[∑
m∈χ(i〈2〉)

(∑
k〈v〉

Amk〈v〉 ·Bmk〈v〉

)]

= Vi〈s+t〉 +

(
s+ t

s

)
· Ci〈s+t〉 +Wi〈s+t〉,

which concludes the correctness proof.
We now argue that the cost of this algorithm, Φ

(s,t,v)
� (A,B) for antisymmetric A and B is no

greater than the cost of Φ
(s,t,v)
� (A′, B′) for symmetric A′ and B′ with the same dimensions. Since

the sign factors do not affect the number of operations, it suffices to show that Ẑ is antisymmetric,
and can therefore be computed in nω/ω! operations to leading order. Since A and B are both fully
antisymmetric, we can show that each operand of Ẑ in equation 11.4.1 is antisymmetric under
permutation of any pair of indices ip and iq in the i〈ω〉 index group, which implies that entries of Ẑ
are symmetric under any permutations of ip and iq since the signs from the operands cancel. The
terms in the summation forming each operand (we consider A but the same holds for B) fall into
two cases (note that the third case, in Section 11.3.3 no longer occurs since we assume s, t ≤ 1).

In the first case, both indices ip and iq will appear in the term, in which case the term is
antisymmetric since the tensor is antisymmetric.

In the second case, if t = 1, only one of two indices may appear in some term, without loss of
generality let ip appear and not iq, the indices of the term are some permutation of j〈s+ v − 1〉ip
where j〈s+ v − 1〉 ∈ i〈ω〉 and j〈s+ v − 1〉 does not include ip or iq. Now, we can assert
there is another term in the summation whose indices are some permutation of j〈s+ v − 1〉iq,
since χ(i〈ω〉) yields all possible ordered subsets of i〈ω〉, which must include an ordered index
set containing the distinct indices j〈s+ v − 1〉iq. We now argue that the signs of these two

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 220

terms are different. Let the ordered indices of the first term (which include ip) be l〈s+ v〉 and
the ordered indices of the second term be m〈s+ v〉. Recalling that t = 1 (so ω = s + v +

1), the signs of these terms assigned to them by the sum (
∑̂

) are decided by the parities of
δ(l〈s+ v〉i〈p〉, i〈s+ v + 1〉) = (−1)s+v−p and δ(m〈s+ v〉i〈q〉, i〈s+ v + 1〉) = (−1)s+v−q,
so the signs are the same if p, q are both even or both odd. Now since A is antisymmetric, and
assuming without loss of generality that p > q, we can permute its indices to write the value
of the term as Al〈s+v〉 = (−1)s+v−q−1Aj〈s+v−1〉iq (since j〈s+ v − 1〉 does not contain ip) and
Am〈s+v〉 = (−1)s+v−pAj〈s+v−1〉ip (since q < p and so j〈s+ v − 1〉 contains all indices ik in i〈ω〉
with k > p). Therefore, if we permute ip with iq the two values of the terms take on an opposite
sign only if p and q are both even or both odd. Therefore, in all cases, either the value or the
sign assigned by the summation (

∑̂
) to the terms is different or the values of the terms (based

on which order the indices appear in the operand) take on opposite signs when ip is permuted
with iq, and since the pairing is unique, the overall operand is antisymmetric. As an example, for
s = v = t = 1, the antisymmetric left operand is (Aij −Aik +Ajk), if we permute i with j, Aik is
swapped with Ajk which have had different signs assigned to them by the summation. However, if
we swap i with k, Aij takes on the opposite sign, Akj = −Ajk, and Ajk takes on the opposite sign
Aji = −Aij .

11.4.2 Antisymmetrized Contractions of Antisymmetric Tensors
Definition: We define an antisymmetrized contraction between tensors A and B by analogue to
equation 11.1.1,

C = A⊗B ≡ ∀i〈s+ t〉, Ci〈s+t〉 =
1

(s+ t)!
·

∑̂
j〈s〉l〈t〉∈Π(i〈s+t〉)

(∑
k〈v〉

Aj〈s〉k〈v〉 ·Bl〈t〉k〈v〉

)
.

(11.4.4)

The result of an antisymmetrized contraction is an antisymmetric tensor C.

Antisymmetrized Contraction of Symmetric Tensors

We first consider the case where A and B are both symmetric. The standard algorithm can do
such contractions for s = t = 1 and arbitrary v, since the intermediate is a nonsymmetric matrix,
which can be symmetrized. Equation 11.1.1 evaluates to C = 0 for either s > 1 or t > 1
since a symmetry would be ‘preserved’ between a symmetric tensor and antisymmetric tensor, so
adding the permutations in Π(i〈s+ t〉) would cancel each other out. The fast algorithm Ψ

(s,t,v)
�

cannot handle the s = t = 1 case of the antisymmetrized product of two symmetric tensors, since
the tensor Z is symmetric and contains the wrong relative signs of the needed (antisymmetrized)
entries.

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 221

Antisymmetrized Contraction of Antisymmetric Tensors

The case when both operands A and B are antisymmetric and the result is antisymmetrized is
well-defined for any s, t, v ≥ 1. Equation 11.1.2 takes the following form for this case

Ci〈s+t〉 =
1(
s+t
s

) · ∑̂
(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

(∑
k〈v〉

Aj〈s〉k〈v〉 ·Bl〈t〉k〈v〉

)
. (11.4.5)

Algorithm Ψ
(s,t,v)
⊗ : The standard algorithm works essentially without modification from the

symmetric case, for this antisymmetric case. A partially antisymmetric intermediate C̄ is formed
with dimensions

(
n
s

)
by
(
n
t

)
via a matrix multiplication that sums over a dimension of length

(
n
v

)
.

The result is then antisymmetrized, ∀i〈s+ t〉

Ci〈s+t〉 =
1(
s+t
s

) · ∑̂
(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

C̄j〈s〉l〈t〉.

We call this standard algorithm for antisymmetrized contractions

C = A⊗B = Ψ
(s,t,v)
⊗ (A,B).

This antisymmetric case is in a sense even simpler than the symmetric case, since the diagonals
are zero and can be ignored, while in the symmetric case they have to be handled with care (scaled
by different factors).

The fast algorithm, Ψ
(s,t,v)
� (A,B) cannot be adapted to handling such contractions, because

when s = t = 1, if we try to antisymmetrize the operands of Ẑ (equation 11.2.3 with uses of
∑

replaced by
∑̂

), the resulting matrix would be symmetric, and we want to compute an antisym-
metrized rather than a symmetrized product. Further, when either s or t is at least two, at least
one of the operands is no longer antisymmetric, since it will contain terms in the sum that have
some pair of indices i, j appear in the tensor (and therefore be antisymmetric), and terms where
both i and j are not present, which are effectively symmetric in this pair of indices. Therefore, the
resulting Z would be neither symmetric nor antisymmetric.

However, such antisymmetric contractions with s, t, v ≥ 1 do not occur in coupled-cluster the-
ory or any other quantum chemistry applications we are aware of. This curious fact can be shown
diagrammatically or noted as a consequence of raised and lowered index notation (discussed in
detail in Section 11.5.1), as only indices of a single orientation may be antisymmetric, while only
indices of different orientation may be contracted together. So, all contractions which arise in
our quantum chemistry applications have one of s = 0 or t = 0 or v = 0. Those antisymmet-
ric contractions where two of s, t, v are at least two (and the other zero) are also incompatible
with the fast symmetric contraction algorithm, for the same reason as discussed above. However,
while a few such cases are present in the high-order CCSDTQ [102] method, the predominant
number of tensor contraction cases in coupled-cluster theory have s, t, v be some permutation
of (0, 1, k) for some k ≥ 1. In these cases, one of the A, B, and C tensors is a vector and

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 222

the other two tensors are of order k and k + 1. These cases may be executed using the fast al-
gorithm as we detail in the next two sections. We first consider the cases where A and B are
antisymmetric tensors of order k and k + 1 and C is a vector or a symmetric matrix (so when
(s, t, v) ∈ {(0, 1, k), (1, 0, k), (1, 1, k)}), then consider the case where C and either A or B are
antisymmetric tensors of order k and k + 1, while one of the operands is a vector or a symmetric
matrix (so when (s, t, v) ∈ {(k, 0, 1), (0, k, 1), (1, k, 0), (k, 1, 0)}). The fast tensor contraction al-
gorithm works for all of these cases, since none of the antisymmetric tensors has fewer than ω − 1
indices allowing Ẑ to be formed with appropriate symmetry or antisymmetry.

Antisymmetrized Contraction of an Antisymmetric Tensor with a Symmetric Matrix or a
Vector

In the previous section, we considered a contraction of two antisymmetric operands into a vector
or a symmetric matrix. In this section, we consider the contraction of a single antisymmetric
operand with another operand that is either a symmetric matrix or a vector into an output that is an
antisymmetric tensor. We consider only the case where A is antisymmetric and B is a symmetric
matrix or vector, as the fact that the multiplication operator is commutative permutes the roles of
the operands (switchA andB) in any contraction whereA is a symmetric matrix or vector andB is
antisymmetric. We limit the consideration to symmetric matrices B rather than symmetric tensors
of higher order, since if B has order three or more, it must either share two indices with C or share
two indices with A. In the first case, the contraction evaluates to zero since C is antisymmetric in
these indices while B is symmetric in these indices. In the latter case, the contraction evaluates to
zero, since all entries of the output must sum over a pair of indices which are antisymmetric in A
and symmetric in B, e.g.∑

ij

Aij ·Bij =
∑
ji

Aji ·Bji =
∑
ij

−Aij ·Bji = −
∑
ij

Aij ·Bij = 0.

So, throughout this section we consider only t, v ≤ 1.
Equation 11.1.2 for the contraction of antisymmetric A with vector or symmetric matrix B

takes the same antisymmetrized form ∀i〈s+ t〉

Ci〈s+t〉 =
1(
s+t
s

) · ∑̂
(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

(∑
k〈v〉

Aj〈s〉k〈v〉 ·Bl〈t〉k〈v〉

)
.

The standard algorithm Ψ
(s,t,v)
⊗ (A,B) forms a partially antisymmetric intermediate C̄, which has

s antisymmetric indices inherited from A and t ≤ 1 non-symmetric indices from B, then antisym-
metrizes the result. The cost of the standard algorithm is to leading order the same as before.

Algorithm Φ
(s,t,v)
⊗ : The fast algorithm Φ

(s,t,v)
� (A,B) may be adapted to handle this case by

forming an antisymmetric Ẑ tensor, which is a point-wise product of an antisymmetric tensor of
operands of A and a symmetric tensor of operands of B. We call this adapted algorithm C =

A ⊗ B = Φ
(s,t,v)
⊗ (A,B) and define it for arbitrary s and t, v ≤ 1, but assert that it also works for

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 223

arbitrary t and s, v ≤ 1, by symmetry of operands. The equation is

Ẑi〈ω〉 =

(∑̂
j〈s+v〉∈χ(i〈ω〉)

Aj〈s+v〉

)
·
(∑
l〈t+v〉∈χ(i〈ω〉)

Bl〈t+v〉

)
. (11.4.6)

The summation over Ẑ (analogous to equation 11.2.4) is performed with
∑̂

in place of
∑

and is
multiplied by a sign prefactor,

Zi〈s+t〉 = (−1)tv
∑
k〈v〉

(∑̂
j〈s+v〉∈χ(i〈s+t〉k〈v〉)

Aj〈s+v〉

)
·
(∑
l〈t+v〉∈χ(i〈s+t〉k〈v〉)

Bl〈t+v〉

)
. (11.4.7)

In defining V (equation 11.2.5), we note that we have restricted the case to v ≤ 1, which consider-
ably simplifies the expression. If v = 0, V does not need to be computed at all (is zero), and when
v = 1 we compute A(1) and B(1),

∀i〈s+ v − 1〉, A(1)
i〈s+v−1〉 =

∑
k

Ai〈s+v−1〉,k,

∀i〈t+ v − 1〉, B(1)
i〈t+v−1〉 =

∑
k

Bi〈t+v−1〉,k.

Now, if v = 1, we can compute V as (multiplying by v to signify it is nonzero only if v = 1),
∀i〈s+ t〉,

Vi〈s+t〉 = v · (−1)p−1

1∑
p=max(0,v−t)

1−p∑
q=max(0,v−s)

nv−p−q ·

[
(∑̂
j〈s+1−p〉∈χ(i〈s+t〉)

A
(p)
j〈s+1−p〉

)
·
(∑
l〈t+1−q〉∈χ(i〈s+t〉)

B
(q)
l〈t+1−q〉

)]
.

The tensor W is also simplified, since we consider only t ≤ 1, and W exists only when s, t > 0.
So it suffices to consider only t = 1 (we multiply by t for this reason) and compute, ∀i〈s− 1〉,

U
(1)
mi〈s−1〉 =

∑
k〈v〉

Ami〈s−1〉k〈v〉 ·Bmk〈v〉,

Wi〈s+1〉 = t ·
∑̂

(m,h〈s−1〉)∈χ(g〈s〉)

∑̂
(g〈s〉,l)∈χ(i〈s+1〉)

U
(1)
mh〈s−1〉.

The result C is just the sum of these intermediates again as in equation 11.2.8.
We now prove that the above method is correct following the proof of correctness for the

purely symmetric fast algorithm (Theorem 11.3.1) except this time propagating signs from the A

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 224

antisymmetric summation. We partition the index set k〈v〉 as described in that proof to obtain the
following partition of Z, taking the sign of each operand from equation 11.4.7, ∀i〈s+ t〉,

Zi〈s+t〉 =(−1)tv
∑
k〈v〉

v∑
r=0

∑
(d〈r〉,u〈v−r〉)∈χ(k〈v〉)

v−r∑
p=max(0,v−t−r)

∑
(e〈p〉,w〈v−r−p〉)∈χ(u〈v−r〉)

v−r−p∑
q=max(0,v−s−r)

∑
(f〈q〉,g〈v−r−p−q〉)∈χ(w〈v−r−p〉)

[
(∑

(j〈s+v−p−r〉,h〈t−v+p+r〉)∈χ(i〈s+t〉)

(−1)δ(j〈s+v−p−r〉d〈r〉e〈p〉w〈t〉, i〈s+t〉k〈v〉)Aj〈s+v−p−r〉d〈r〉e〈p〉

)

·
(∑
l〈t+v−q−r〉∈χ(i〈s+t〉)

Bl〈t+v−q−r〉d〈r〉f〈q〉

)]
,

where w〈t〉 are the t indices of i〈s+ t〉k〈v〉 not appearing in theA operand, namely the ordered in-
dex set f〈q〉g〈v − r − p− q〉h〈t− v − p− r〉. Noting that t ≤ 1, which implies that the ordering
of the (size at most one) index set does not matter, we can set

w〈t〉 = f〈q〉g〈v − r − p− q〉h〈t− v + p+ r〉.

Now we manipulate the sign permutation factor on A by rotating the index set h〈t− v + p+ r〉
(of size at most one), v permutations to the left, yielding,

(−1)δ(j〈s+v−p−r〉d〈r〉e〈p〉f〈q〉g〈v−r−p−q〉h〈t−v+p+r〉, i〈s+t〉k〈v〉)

=(−1)(t−v+p+r)v(−1)δ(j〈s+v−p−r〉h〈t−v+p+r〉, i〈s+t〉)(−1)δ(d〈r〉e〈p〉f〈q〉g〈v−r−p−q〉, k〈v〉).

Plugging this in and factoring out (−1)(t−v+p+r)v(−1)δ(d〈r〉e〈p〉f〈q〉g〈v−r−p−q〉,k〈v〉) we obtain ∀i〈s+ t〉,

Zi〈s+t〉 =(−1)tv
∑
k〈v〉

v∑
r=0

∑
(d〈r〉,u〈v−r〉)∈χ(k〈v〉)

v−r∑
p=max(0,v−t−r)

∑
(e〈p〉,w〈v−r−p〉)∈χ(u〈v−r〉)

v−r−p∑
q=max(0,v−s−r)∑

(f〈q〉,g〈v−r−p−q〉)∈χ(w〈v−r−p〉)

(−1)(t−v+p+r)v(−1)δ(d〈r〉e〈p〉f〈q〉g〈v−r−p−q〉,k〈v〉)

[
(∑

(j〈s+v−p−r〉,h〈t−v+p+r〉)∈χ(i〈s+t〉)

(−1)δ(j〈s+v−p−r〉h〈t−v+p+r〉, i〈s+t〉)Aj〈s+v−p−r〉d〈r〉e〈p〉

)

·
(∑
l〈t+v−q−r〉∈χ(i〈s+t〉)

Bl〈t+v−q−r〉d〈r〉f〈q〉

)]

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 225

Now, we absorb the factors of (−1)δ(j〈s+v−p−r〉h〈t−v+p+r〉, i〈s+t〉) and to transform the summation
over A operands from

∑
to
∑̂

,

=(−1)tv
∑
k〈v〉

v∑
r=0

∑
(d〈r〉,u〈v−r〉)∈χ(k〈v〉)

v−r∑
p=max(0,v−t−r)

∑
(e〈p〉,w〈v−r−p〉)∈χ(u〈v−r〉)

v−r−p∑
q=max(0,v−s−r)∑

(f〈q〉,g〈v−r−p−q〉)∈χ(w〈v−r−p〉)

(−1)(t−v+p+r)v(−1)δ(d〈r〉e〈p〉f〈q〉g〈v−r−p−q〉, k〈v〉)

[
(∑̂
j〈s+v−p−r〉∈χ(i〈s+t〉)

Aj〈s+v−p−r〉d〈r〉e〈p〉

)
·
(∑
l〈t+v−q−r〉∈χ(i〈s+t〉)

Bl〈t+v−q−r〉d〈r〉f〈q〉

)]
.

We now separate the r = v term, which is the only term when v = 0, and the r = 0 term which is
auxiliary only when v = 1, as we signify by multiplying the term by v, yielding ∀i〈s+ t〉,

Zi〈s+t〉 = (−1)tv
∑
k〈v〉

(−1)tv

[(∑̂
j〈s〉∈χ(i〈s+t〉)

Aj〈s〉k〈v〉

)
·
(∑
l〈t〉∈χ(i〈s+t〉)

Bl〈t〉k〈v〉

)]

+ v · (−1)t
∑
k

1∑
p=max(0,1−t)

∑
(e〈p〉,w〈v−p〉)∈χ(k)

1−p∑
q=max(0,1−s)∑

f〈q〉∈χ(w〈v−p〉)

(−1)t−1+p

[(∑̂
j〈s+v−p〉∈χ(i〈s+t〉)

Aj〈s+v−p〉e〈p〉

)
·
(∑
l〈t+v−q〉∈χ(i〈s+t〉)

Bl〈t+v−q〉f〈q〉

)]

By the same argument as in the symmetric correctness proof (Theorem 11.3.1), we assert that for a
particular choice of p, q, r the k〈v〉 indices are indistinguishable, which allows us to replace sums
with scalar prefactors. We again also isolate the r = v term, yielding

Zi〈s+t〉 =
∑
k〈v〉

(∑̂
j〈s〉∈χ(i〈s+t〉)

Aj〈s〉k〈v〉

)
·
(∑
l〈t〉∈χ(i〈s+t〉)

Bl〈t〉k〈v〉

)

+ v · (−1)p+1

1∑
p=max(0,1−t)

1−p∑
q=max(0,1−s)

nv−p−q·(∑̂
j〈s+v−p〉∈χ(i〈s+t〉)

A
(p)
j〈s+v−p〉

)
·
(∑
l〈t+v−q〉∈χ(i〈s+t〉)

B
(q)
l〈t+v−q〉

)

=
∑
k〈v〉

(∑̂
j〈s〉∈χ(i〈s+t〉)

Aj〈s〉k〈v〉

)
·
(∑
l〈t〉∈χ(i〈s+t〉)

Bl〈t〉k〈v〉

)
+ Vi〈s+t〉.

Now, we’ve isolated V and proceed to separate C from W in the first term, where C again corre-
sponds to the cases when j〈s〉 is disjoint from l〈t〉 and W captures all cases of overlap between

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 226

the two. Since, t ≤ 1, they can overlap only in one index and only when t = 1, we label this
index m and multiply the term by a factor of t to signify that it disappears for t = 0. We also need
to carefully handle the missing index (labeled l) that does not appear in neither operand in the W
term, as it affects the sign,

Zi〈s+t〉 = Vi〈s+t〉 +
∑
k〈v〉

∑
(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

(−1)δ(j〈s〉l〈t〉, i〈s+t〉)Aj〈s〉k〈v〉 ·Bl〈t〉k〈v〉

+ t ·
∑
k〈v〉

∑
(m,h〈s−1〉)∈χ(g〈s〉)

∑
(g〈s〉,l)∈χ(i〈s+t〉)

(−1)δ(mh〈s−1〉l, i〈s+1〉)Amh〈s−1〉k〈v〉 ·Bmh〈s−1〉k〈v〉

=Vi〈s+t〉 + Ci〈s+t〉 + t ·
∑
k〈v〉

∑
(m,h〈s−1〉)∈χ(g〈s〉)

∑
(g〈s〉,l)∈χ(i〈s+t〉)

[

(−1)δ(mh〈s−1〉, g〈s〉)(−1)δ(g〈s〉l, i〈s+1〉)Amh〈s−1〉k〈v〉 ·Bmh〈s−1〉k〈v〉

]

=Vi〈s+t〉 + Ci〈s+t〉 + t ·
∑̂

(m,h〈s−1〉)∈χ(g〈s〉)

∑̂
(g〈s〉,l)∈χ(i〈s+1〉)

U
(1)
mh〈s−1〉,

=Vi〈s+t〉 +

(
s+ t

s

)
· Ci〈s+t〉 +Wi〈s+t〉

Since
(
s+t
s

)
C = Z − V − W , this demonstrates correctness of this antisymmetric adaptation

Φ
(s,t,v)
⊗ (A,B). The algorithm has the same leading order costs as in the case of symmetric tensors,

since it computes the same intermediates only with different signs and since the intermediates
have the same number of non-zeros. The antisymmetry of Z holds by applying the antisymmetric
argument from Section 11.4.1 to the A operand and the symmetric argument from Section 11.3.3
to the B operand, as the point-wise product of an antisymmetric and a symmetric tensor preserves
the sign and is therefore antisymmetric.

11.4.3 Hermitian Adaptation
We define a complex tensor of order d as A = Re(A) + i · Im(A), where Re(A) (real part)
and Im(A) (complex part) are tensors with elements in Abelian group (RA,+). Given another
complex tensor B = Re(B) + i · Im(B) with elements in (RB,+), Abelian group (RC ,+), and a
distributive operator, “ · ” ∈ RA × RB → RC , the imaginary unit i =

√
−1 defines the operator

(which following convention we overload) “ · ” ∈ (RA × RA) × (RB × RB) → (RC × RC),
specifically for any a = a1 + i · a2 ∈ (RA × RA), b = b1 + i · b2 ∈ (RB × RB), a · b yields
c ∈ (RC ×RC), where

c = c1 + i · c2 = a · b = (a1 · b1 − a2 · b2) + i · (a1 · b2 + a2 · b1).

We denote the conjugate of an element of any complex tensor, Ai〈v〉 = Re(A)i〈v〉 + i · Im(A)i〈v〉,
as A∗i〈v〉 = Re(A)i〈v〉 − i · Im(A)i〈v〉.

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 227

An order d complex tensor is Hermitian if Re(A) is a symmetric tensor and Im(A) is an
antisymmetric tensor. This implies that for any odd permutation i〈d〉 = π(j〈d〉) (so with odd
δ(i〈d〉, j〈d〉)), Hi〈d〉 = H∗j〈d〉, and for any even permutation i〈d〉 = π′(k〈d〉) (so with even
δ(i〈d〉, j〈d〉)), Hi〈d〉 = Hk〈d〉.

We say a complex tensor H̄ is partially-Hermitian, if Re(H̄) and Im(H̄) are partially-symmetric
and partially-antisymmetric, respectively, in the same index sets. We combine the symmetrized
and antisymmetrized summation notation over tuple partitions to yield a notation for a sum which
yields a Hermitian tensor result H when applied to any non-Hermitian order d tensor H̄ ,

Hi〈d〉 =
∗∑

j〈d〉∈Π(i〈d〉)

H̄i〈d〉 ≡
∑

j〈d〉∈Π(i〈d〉)

Re(H̄)j〈d〉 +
∑̂

j〈d〉∈Π(i〈d〉)
Im(H̄)j〈d〉

We also define a sum which yields a Hermitian tensor H when applied to a partially-Hermitian
tensor order s+ t H̄ (Hermitian in index groups j〈s〉 and l〈t〉),

Hi〈s+t〉 =
∗∑

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

H̄j〈s〉l〈t〉 ≡
∑

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

Re(H̄)j〈s〉l〈t〉 +
∑̂

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

Im(H̄)j〈s〉l〈t〉.

Definition: Using the above summation notation, we now define a Hermitian contraction by
analogue of equation 11.1.1 and of equation 11.4.4. For complex tensors A and B,

C = A×B ≡ ∀i〈s+ t〉, Ci〈s+t〉 =
1

(s+ t)!
·

∗∑
j〈s〉l〈t〉∈Π(i〈s+t〉)

(∑
k〈v〉

Aj〈s〉k〈v〉 ·Bl〈t〉k〈v〉

)
.

(11.4.8)

The resulting complex tensor C is Hermitian.

Hermitian Contractions with Zero Terms

When A and B are Hermitian and when v > 1, the result of the Hermitian contraction has

Im(C) = Re(A)⊗ Im(B) + Im(A)⊗ Re(B) = 0

since ∀i〈s+ t〉,

Im(C)i〈s+t〉 =
1

(s+ t)!
·

∑̂
j〈s〉,l〈t〉∈Π(i〈s+t〉)

(∑
k〈v〉

Re(A)j〈s〉k〈v〉 · Im(B)l〈t〉k〈v〉

+
∑
k〈v〉

Im(A)j〈s〉k〈v〉 · Re(B)l〈t〉k〈v〉

)
,

so each element is a sum over a v > 1 set of indices of two products of a symmetric and an anti-
symmetric operands. Each of the two products is anti-symmetric in the k〈v〉 index set, so summing

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 228

over this set yields a zero result. Therefore, when v > 1, it suffices to compute Re(C), which may
be done by computing

Re(C) = Re(A)� Re(B)− Im(A)� Im(B).

The latter term, Im(A) � Im(B) is only nonzero when s, t ≤ 1. This is because � is the
symmetrized contraction, and if s, t ≥ 1, at least one anti-symmetric index pair is preserved in
Im(A) � Im(B), which means the term goes to zero once fully symmetrized via equation 11.4.8.
For the cases of v > 1, it is possible to use the standard algorithm Ψ

(s,t,v)
� (Re(A),Re(B)) −

Ψ
(s,t,v)
� (Im(A), Im(B)) or to use the fast algorithm Φ

(s,t,v)
� (Re(A),Re(B))−Φ

(s,t,v)
� (Im(A), Im(B)),

in both cases not computing the imaginary part contraction if either s, t > 1. It does not make sense
to construct an explicit version of Ψ

(s,t,v)
× and Φ

(s,t,v)
× for the case with v > 1, since the imaginary

and real parts act disjointly of each other.
When v ≤ 1 and both s, t > 1, we again have Im(C) = 0, since

∑̂
j〈s〉,l〈t〉∈Π(i〈s+t〉) leads

to a sum over a product of a symmetric pair of indices with an antisymmetric pair of indices in
both contributions to Im(C), which are then both zero. When t ≤ 1 and s > 1 as well as when
s ≤ 1 and t > 1, one of the two terms contributing to Im(C) is zero and the other needs to be
computed, in both cases Im(A) � Im(B) = 0. For instance, when t, v ≤ 1 and s > 1, we have
Re(A) ⊗ Im(B) = 0, but need to compute Im(A) ⊗ Re(B) (an antisymmetrized product of an
antisymmetric tensor with a vector or matrix). In all cases, we can employ both the standard and
the fast algorithm to compute the two needed contractions, the first being fully symmetric,

Re(C) = Re(A)� Re(B) = Ψ
(s,t,v)
� (Re(A),Re(B)) = Φ

(s,t,v)
� (Re(A),Re(B)),

and the second being a contraction of an antisymmetric tensor and a symmetric matrix or vector
when t ≤ 1,

Im(C) = Im(A)⊗ Re(B) = Ψ
(s,t,v)
⊗ (Im(A),Re(B)) = Φ

(s,t,v)
⊗ (Im(A),Re(B)),

or when s ≤ 1,

Im(C) = Re(A)⊗ Im(B) = Ψ
(s,t,v)
⊗ (Re(A), Im(B)) = Φ

(s,t,v)
⊗ (Re(A), Im(B)),

which can both be done via the fast algorithm adaptation algorithm in Section 11.4.2.

Hermitian Contractions without Zero Terms

As we demonstrated in the previous subsection, pieces of the Hermitian contraction contributing
to both the imaginary and real parts evaluate to zero in all cases except when all s, t, v ≤ 1. We
now focus in on these cases.

Definition: When A and B are Hermitian, equation 11.4.8 can for s, t, v ∈ {0, 1} be computed
via the analogue of equation 11.1.2 and equation 11.4.5, which we call a Hermitian contraction,

C = A×B ≡ ∀i〈s+ t〉, Ci〈s+t〉 =
1(
s+t
s

) · ∗∑
(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

(∑
k〈v〉

Aj〈s〉k〈v〉 ·Bl〈t〉k〈v〉

)
.

(11.4.9)

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 229

For s, t, v ∈ {0, 1} we expect each of the two contributions to both the real and imaginary parts
of C to be nonzero. We could compute C = A × B by four applications of either the standard or
the fast algorithm,

C =A×B
=Ψ

(s,t,v)
� (Re(A), Re(B))−Ψ

(s,t,v)
� (Im(A), Im(B))

+ i

(
Ψ

(s,t,v)
⊗ (Re(A), Im(B)) + Ψ

(s,t,v)
⊗ (Im(A), Re(B))

)
=Φ

(s,t,v)
� (Re(A), Re(B))− Φ

(s,t,v)
� (Im(A), Im(B))

+ i

(
Φ

(s,t,v)
⊗ (Re(A), Im(B)) + Φ

(s,t,v)
⊗ (Im(A), Re(B))

)
.

We can also explicitly define complex algorithms Ψ
(s,t,v)
× and Φ

(s,t,v)
× for these cases. However,

we would gain nothing out of Ψ
(s,t,v)
× , since it does an addition for each multiplication, and since

each complex multiplication costs six real multiplications and each complex addition costs two
real additions, the cost would go up by a factor of four, which is the same as the cost as two in-
vocations of both Ψ

(s,t,v)
� and Ψ

(s,t,v)
⊗ on reals as done above. However, an explicit fast algorithm,

Φ
(s,t,v)
× would be expected to yield an improvement due to the fact that it performs more additions

than multiplications, and complex additions are a third of the cost of complex multiplications. We
could achieve much of this savings by amortizing the cost of computing the operands to Ẑ (equa-
tion 11.2.3) as well as the operands to other intermediates, since each operand will appear in one
call to Φ

(s,t,v)
� and another call to Φ

(s,t,v)
⊗ . For instance the left operand to Ẑ, Φ

(s,t,v)
� (Re(A), Re(B))

is the same as in Φ
(s,t,v)
⊗ (Re(A), Im(B)). Further, we also want to amortize the cost of the accu-

mulation of Ẑ to Z by adding together the real and imaginary parts of Ẑ a priori, for instance
we can immediately subtract the Ẑ computed by Φ

(s,t,v)
� (Im(A), Im(B)) from that computed by

Φ
(s,t,v)
� (Re(A), Re(B)).

In the case when s = t = v = 1, the computation of Z dominates, and the number of additions
needed to leading order to compute all four Ẑ are: n3/3 for operands formed from Re(A), n3/3
for operands formed from Im(A), and 2n/3 more from Z similarly, for a total of 4n3/3 additions
to compute the operands. To compute Z from Ẑ, we could add together the resulting Ẑ for the
imaginary and real parts with total cost n3/3 then accumulate the results with cost 2n3/3, for a
total of 4n3/3 + n3/3 + 2n3/3 = 7n3/3, which is twice as few adds as the naive applications of
Φ

(1,1,1)
� and Φ

(1,1,1)
⊗ (4X times the number of additions in FΦ

syrmm from Section 11.2.4).
The other cases we need to consider are s, t, v ∈ {(1, 0, 1), (0, 1, 1), (1, 1, 0)}, the latter two

of which (matrix times vector multiplication and vector times matrix) are effectively identical by
symmetry of operands. The (s, t, v) = (1, 0, 1) case for a symmetric matrix, Φ

(1,0,1)
� was given in

Section 11.2.4. We give the Hermitian matrix case Φ(1,0,1) below (the problem is defined the same

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 230

way),

∀i, j, Ẑij = Aij · (b∗i + bj),

∀i, Zi =
∑
k

Ẑik, A
(1)
i =

∑
k

Aik, Vi = A
(1)
i · b∗i , ci = Zi − Vi.

The algorithm’s correctness is evident by inspection, and it suffices to argue that Ẑ is Hermitian.
We have ∀i, j,

Ẑ∗ij = A∗ij · (b∗i + bj)
∗ = Aji · (bi + b∗j) = Ẑji.

The costs for this case are therefore the same as in Section 11.2.4, but with a different µ% and µ%.
The last case we need to consider is s, t, v = (1, 1, 0), namely the Hermitian rank-2 outer

product. Where for two complex vectors a and b, we want to compute

Cij =
1

2
(ai · b∗j + a∗j · bi).

By analogy to Section 11.2.4 Φ1,1,0
× is

∀i, j, Zij = Ẑij = (ai+a∗j) · (bi+b∗j), U
(1)
i = ai ·bi, Wij = U

(1)
i +(U

(1)
j)∗, Cij =

1

2
(Zij−Wij).

Correctness comes from the fact that

Wij = U
(1)
i + (U

(1)
j)∗ = ai · bi + (aj · bj)∗ = ai · bi + a∗j · b∗j ,

which is exactly the part of Ẑ that differentiates it from C. Ẑ is Hermitian due to the fact that ∀i, j,

Ẑ∗ij = [(ai + a∗j) · (bi + b∗j)]
∗ = (a∗i + aj) · (b∗i + bj) = Ẑji.

Therefore, the costs are the same as in Section 11.2.4, except with different µ% and ν%. As noted in
that section, the fast that the multiplications cost more in the Hermitian case, allows the routines
hemm, her2K, and hetrd to be done via Φ

(1,1,0)
× , Φ

(1,0,1)
× , and Φ

(0,1,1)
× with 3/4 of the operations

of the standard methods.

11.5 Applications
In this section, we consider tensor contractions which arise in quantum chemistry calculations. In
this context, the tensors are most often antisymmetric (skew-symmetric), because they represent
interactions of electrons, which like all fermions follow the Pauli exclusion principle, meaning the
(electronic) wave-function is antisymmetric with respect to particle interchange.

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 231

11.5.1 Coupled-Cluster Contractions
We now consider some antisymmetric coupled-cluster [16] contractions. We employ some nota-
tion which is standard in this field to express the contractions in familiar form for quantum chemist
readers. For instance, we will use raised index notation, which is used for book-keeping of index
symmetry and meaning in physics calculations. Some rules we will follow include contracting
raised indices of one tensor with lowered indices in another, and expressing antisymmetric in-
dex groups amongst indices belonging within the sets {a, b, c, d} (occupied orbitals) or {i, j, k, l}
(virtual orbitals) and all indices in the group appearing as lowered or raised within the tensor. Addi-
tionally, we will consider different spin-cases, with spin-α indices labeled normally as {a, b, c, d},
{i, j, k, l,m}, and spin-β indices labeled with bars as {ā, b̄, c̄, d̄}, {̄i, j̄, k̄, l̄, m̄}. Indices with dif-
ferent spin are not antisymmetric unlike indices of the same spin and type.

We start with a contraction from the CCSD method, where the fourth order tensor T2 (with
elements referred to as e.g. T abij for the pure spin-α case) is contracted with a fourth-order two-
electron integral tensor V into an fourth-order intermediate Z (this is a contraction of leading order
cost within CCSD),

Zak̄
ic̄ =

∑
bj

T abij · V
jk̄
bc̄ ,

where the T2 ‘amplitude’ tensor is antisymmetric in a, b and i, j (the fact that this symmetry is
present and no other symmetries are present in the contraction could actually be inferred directly
from the notation rules we described). We will use nested contraction algorithms as described in
Section 11.2.5 to express algorithms for this problem. For simplicity, we will ignore the antisym-
metry i, j and exploit only a, b (although both partial symmetries could be exploited recursively as
done in the next contractions). This tensor represents two-electron excitations, and we will refer
to it as T2. The antisymmetry in T2 is not preserved in the contraction, so the cost of the standard
algorithm nested with a nonsymmetric contraction,

Ψ
(0,1,1)
⊗ Υ(2,1,1)(T2, V) = Υ(2,2,2)(T2, V)

would be 2n6 operations. We can apply the algorithm Φ
(0,1,1)
⊗ (A,B) to reduce this operation count

by a factor of two, by defining vectors v̄ and z̄, the elements of which are order 3 tensors, and
antisymmetric matrix T̄2, each element of which is itself an antisymmetric matrix. We can then
assign

∀a, b, i, j, (T̄ ab)ij = T abij ,

as well as
∀j, c̄, b, k, (v̄b)

jk̄
c̄ = V jk̄

bc̄ ,

and similarly for z̄. Now we can apply Φ
(0,1,1)
⊗ (v̄, T̄2) with s = 0, v = 1, t = 1, where each

element-wise multiplication is a contraction over the remaining four indices, which we refer to as
the nested contraction

Φ
(0,1,1)
⊗ Υ(2,1,1)(T2, V).

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 232

Since the number of element-wise multiplications is decreased by a factor of ω = 2 and the addi-
tions of elements of z̄, v̄, and T̄2 cost n3, n3, and

(
n+1

2

)
, respectively, while the element-wise appli-

cation of “·" costs O(n4), the overall operation count for the contraction via Φ
(0,1,1)
⊗ Υ(2,1,1)(T2, V)

is n6 rather than 2n6.
In the higher-order CCSDT [121] method, another amplitude tensor of order 6 is computed,

which we call T3. We refer to the elements of T3 as T abcijk (in the pure spin-α case). The T3

tensor is antisymmetric in two index groups of up to three indices (depending on spin), namely
the a, b, c indices and i, j, k indices. One contraction between T2 and a fourth-order intermediate
W contributing to T3, which appears both in the CCSDT method, and its perturbatively performed
subset CCSD(T) [133] (it is leading order in the latter method) is

T abc̄ijk̄ =
∑

(a,b)∈χ(a,b)

∑
(i,j)∈χ(i,j)

∑
l̄

T ac̄il̄ ·W
l̄b
jk̄.

The T3 output tensor is antisymmetric in i, j and in a, b in this contraction. Since these symmetries
are not preserved in the contraction, it would cost 2n7 operations if computed via the standard
algorithm,

T3 = Ψ
(1,1,0)
⊗ Ψ

(1,1,0)
⊗ Υ(1,1,1)(T2,W).

Instead, we can use two nested levels of the fast algorithm as

T3 = Φ
(1,1,0)
⊗ Φ

(1,1,0)
⊗ Υ(1,1,1)(T2,W),

which performs the contraction as follows,

((T ab)ij)
c̄
k̄ =

∑
l̄

((T a)i)
c̄
l̄ · ((V

b)j)
l̄
k̄.

The fast symmetric contraction algorithm is applied over the a, b indices with s = 1, t = 1, v = 0,
then over the i, j indices with s = 1, t = 1, v = 0, then (for each scalar multiplication in the
fast algorithm) over the nonsymmetric c̄, k̄, l̄ indices. This amounts to performing a nonsymmetric
matrix multiplication at the bottom level, and the factor of two reduction in multiplications in each
of the two levels of the fast symmetric algorithm, results in a 4X reduction in overall operation
count needed for the contraction.

Lastly, we analyze a contraction from the CCSDTQ [102] method, which additionally appears
in the CCSDT(Q) [18] perturbatively performed subset of CCSDTQ, and is in the leading order
in the CCSDT(Q). The contraction we analyze is similar in form to the CCSDT one above, ex-
cept it contributes to the T4 amplitude tensor which is computed in CCSDTQ and is a result of a
contraction between T2 and a sixth order intermediate X ,

T abcd̄ijkl̄ =
∑

(a,(b,c))∈χ(a,b,c)

∑
(i,(j,k))∈χ(i,j,k)

∑
m̄

T ad̄im̄ ·Xm̄bc
jkl̄ .

In this contraction, there are again two antisymmetric groups, but this time of size 3, a, b, c and
i, j, k. Further, the antisymmetries between b and c and between j and k are preserved since X and

CHAPTER 11. CONTRACTING SYMMETRIC TENSORS USING FEWER
MULTIPLICATIONS 233

T are antisymmetric in these index groups. Therefore, the standard contraction algorithm,

T4 = Ψ
(2,1,0)
⊗ Ψ

(1,2,0)
⊗ Υ(1,1,1)(T2, X),

would save a factor of four from symmetry, yielding n9/2 operations to leading order. As done
for the CCSDT contraction, we can again use two nested levels of the fast symmetric algorithm
and perform a nonsymmetric matrix multiplication at the third, bottom level. We can express this
nesting as

T4 = Φ
(2,1,0)
⊗ Φ

(1,2,0)
⊗ Υ(1,1,1)(T2, X),

where the fast algorithm effectively computes

((T abc)ijk)
d̄
l̄ =

∑
m̄

((T a)i)
d̄
m̄ · ((Xbc)jk)

m̄
l̄ .

The fast algorithm is applied with s = 1, t = 2, v = 0 over the a, b, c indices, each scalar multi-
plication therein becoming another symmetric contraction with s = 1, t = 2, v = 0 over the i, j, k
indices and each scalar multiplication at this second level being a nonsymmetric contraction over
d̄, m̄, l̄. Since the number of scalar multiplications is reduced by a factor of (s + v + t)! = 3! = 6
at each level, the overall cost is reduced by 36 (n9/18 operations), which is 9X faster than the
standard method.

11.6 Conclusions
We conclude that the new fast symmetric tensor contraction algorithm is of interest for consider-
ation in proving the performance of the complex BLAS and LAPACK routines, but more impor-
tantly has significant potential for accelerating coupled-cluster methods and possibly other quan-
tum chemistry computations. The cost quantification, numerical error analysis, and adaptation to
antisymmetric and Hermitian cases demonstrate that the technique is robust. While we imple-
mented test cases of the fast symmetric algorithm and its adaptations on top of Cyclops Tensor
Framework (see Chapter 10), we have not tested the performance of the algorithm, which needs
to be evaluated in a variety of contexts (for instance both as a sequential optimization to complex
BLAS routines as well as nested use inside coupled-cluster contractions). We also leave it as fu-
ture work to consider the best ways of applying the new algorithm to the full set of coupled-cluster
equations for various methods, as well as implementation thereof.

234

Chapter 12

Future Work

In this last chapter we discuss future directions for the work presented in all previous chapters;
some of these directions were already mentioned in the conclusion sections of those chapters.
Generally, we have used asymptotic analysis of communication costs in a number of sections and
did not consider overlap between communication and computation, which are natural directions
for improvement of the work. While we carefully modelled collective communication on torus
networks, extensions of the models to other network topologies remain future work.

Our communication lower bound techniques should extend in a general way to iterative meth-
ods (Krylov subspace methods or semiring-based graph algorithms) on more general classes of
graphs than those we considered in Chapter 7. In particular, we expect that algorithms on graphs
with hierarchical community structure [66] should yield exponential dependency bubble expan-
sion. Further, while we demonstrated the applicability of the lower bounds to Gaussian elimi-
nation, we did not explicitly derive the lower bounds for algorithms for QR and the symmetric
eigenvalue problem. We gave algorithms that achieved costs, which match those of Gaussian elim-
ination, and as these problems are generally harder, we expect that the lower bounds should apply
to these two problems and other dense matrix factorizations. The difficulty in extending the bounds
to QR lays in the variety of approaches to QR factorization (Givens rotations and Householder as
well as blocked versions of these), which all yield different algorithmic dependency graphs. With
some assumptions such as forward progress, which were made in [12] to obtain bandwidth lower
bounds for QR, we conjecture that the concept of parent hypergraphs and path-expanders given in
Chapter 3 are extensible to these algorithms.

The adaptation and evaluation of the 2.5D symmetric eigensolver algorithms to algorithms for
the singular value decomposition problem also remains future work. Further, for QR factorization,
we did not give an implementation of the proposed 2.5D algorithm, so this remains an interest-
ing direction for future work. Similarly for the symmetric eigenvalue problem, we did not give
an implementation of the 2.5D successive band reduction algorithm (Algorithm 7.3.1), which is
expected to be useful due to its good theoretical memory bandwidth and interprocessor bandwidth
communication efficiency. However, since the algorithms requires more reduction stages, and
therefore more work, realizing a practical benefit may be challenging on current architectures (on
future architectures we expect communication to be even more expensive relative to computation).

CHAPTER 12. FUTURE WORK 235

Eigenvector computation by back transformation was also not considered in this thesis and remains
an important direction for future work on the symmetric eigenvalue decomposition problem.

We also did not give any implementation of Algorithm 8.4.1 for computation of Krylov sub-
space methods. In principle, this algorithm should be quite beneficial for certain problem sizes
(when the whole problem does not fit into the caches of all processors, but is also not too much
larger than the sum of these cache sizes). Another remaining question is whether the memory-
bandwidth efficient algorithm can be adapted and employed in methods that depend on the entire
Krylov basis rather than just the last vector.

While we implemented and benchmarked the recursive all-pairs shortest-paths algorithm in
Chapter 9, we did so for dense graphs, while sparse graphs are the more important problem
(although the path matrix is still dense for a connected path graph). However, even for dense
graphs, there remain interesting direction for future work in the analysis and implementation of
the path-doubling algorithm presented by Tiskin [157]. This algorithm is more synchronization
efficient than the recursive Floyd-Warshall-based algorithm we analyzed. Tiskin’s adaptation of
path-doubling also does no extra computation asymptotically and seems to be promising from a
practical perspective. A theoretical question is whether this path-doubling technique can also speed
up shortest-path computations on sparse graphs.

Much future work also remains in the tensor work described in Chapters 10 and 11. For Cy-
clops Tensor Framework, some of the most important future directions are support for sparse ten-
sors, improvement of performance models and performance prediction, as well as implementation
of other coupled-cluster and benchmarking of methods such as CCSDTQ. The framework also
does not support the fast symmetric contraction algorithms, which are presented in Chapter 11,
for which no high performance implementations exist (although we tested prototypes of the algo-
rithm for correctness). The development of applications on top of the fast symmetric contraction
algorithm (particularly coupled-cluster methods) also remains a promising piece of future work.

236

Bibliography

[1] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A three-dimensional
approach to parallel matrix multiplication. IBM J. Res. Dev., 39:575–582, September 1995.

[2] A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of PRAMs. Theo-
retical Computer Science, 71(1):3 – 28, 1990.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley Longman, Boston, MA, USA, 1974.

[4] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: incorporating
long messages into the LogP model – one step closer towards a realistic model for parallel
computation. In Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’95, pages 95–105, New York, NY, USA, 1995. ACM.

[5] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, USA, 1992.

[6] T. Auckenthaler, H.-J. Bungartz, T. Huckle, L. Krämer, B. Lang, and P. Willems. Develop-
ing algorithms and software for the parallel solution of the symmetric eigenvalue problem.
Journal of Computational Science, 2(3):272 – 278, 2011. Social Computational Systems.

[7] G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H. D. Nguyen, and E. Solomonik. Recon-
structing Householder vectors from tall-skinny QR. Technical report, EECS Department,
University of California, Berkeley, 2013.

[8] G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H. D. Nguyen, and E. Solomonik. Re-
constructing Householder vectors from tall-skinny QR. In Proceedings of the 2014 IEEE
28th International Parallel and Distributed Processing Symposium, IPDPS ’14, pages 1159–
1170, Washington, DC, USA, 2014. IEEE Computer Society.

[9] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. Brief announcement: Strong
scaling of matrix multiplication algorithms and memory-independent communication lower
bounds. In Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’12, pages 77–79, New York, NY, USA, 2012. ACM.

BIBLIOGRAPHY 237

[10] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. Communication-optimal
parallel algorithm for Strassen’s matrix multiplication. In Proceedings of the 24th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, pages 193–204,
New York, NY, USA, 2012. ACM.

[11] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Graph expansion and communication
costs of fast matrix multiplication: regular submission. In Proceedings of the 23rd ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages 1–12, New
York, NY, USA, 2011. ACM.

[12] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication in linear
algebra. SIAM J. Mat. Anal. Appl., 32(3), 2011.

[13] G. Ballard, J. Demmel, and N. Knight. Communication avoiding successive band reduction.
SIGPLAN Not., 47(8):35–44, Feb. 2012.

[14] E. Bampis, C. Delorme, and J.-C. König. Optimal schedules for d-D grid graphs with
communication delays. In C. Puech and R. Reischuk, editors, STACS 96, volume 1046 of
Lecture Notes in Computer Science, pages 655–666. Springer Berlin Heidelberg, 1996.

[15] M. Barnett, D. G. Payne, R. A. van de Geijn, and J. Watts. Broadcasting on meshes with
worm-hole routing. Technical report, Austin, TX, USA, 1993.

[16] R. J. Bartlett. Many-body perturbation theory and coupled cluster theory for electron corre-
lation in molecules. 32(1):359–401, 1981.

[17] R. J. Bartlett and M. Musiał. Coupled-cluster theory in quantum chemistry. 79(1):291–352,
2007.

[18] R. J. Bartlett, J. Watts, S. Kucharski, and J. Noga. Non-iterative fifth-order triple and
quadruple excitation energy corrections in correlated methods. Chemical Physics Letters,
165(6):513–522, 1990.

[19] G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao,
R. Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam, Q. Lu, M. Nooijen,
R. Pitzer, J. Ramanujam, P. Sadayappan, and A. Sibiryakov. Synthesis of high-performance
parallel programs for a class of ab initio quantum chemistry models. Proceedings of the
IEEE, 93(2):276 –292, Feb. 2005.

[20] R. Bellman. On a routing problem. Technical report, DTIC Document, 1956.

[21] M. A. Bender, G. S. Brodal, R. Fagerberg, R. Jacob, and E. Vicari. Optimal sparse matrix
dense vector multiplication in the I/O-model. Theory of Computing Systems, 47(4):934–962,
2010.

BIBLIOGRAPHY 238

[22] J. Bennett, A. Carbery, M. Christ, and T. Tao. The Brascamp–Lieb inequalities: finiteness,
structure and extremals. Geometric and Functional Analysis, 17(5):1343–1415, 2008.

[23] J. Berntsen. Communication efficient matrix multiplication on hypercubes. Parallel Com-
puting, 12(3):335–342, 1989.

[24] G. Bilardi and F. P. Preparata. Processor–time tradeoffs under bounded-speed message prop-
agation: Part II, lower bounds. Theory of Computing Systems, 32(5):531–559, 1999.

[25] C. Bischof, B. Lang, and X. Sun. Algorithm 807: The SBR Toolbox – Software Successive
Band Reduction. ACM Trans. Math. Soft., 26(4):602–616, Dec 2000.

[26] C. Bischof, B. Lang, and X. Sun. A Framework for Symmetric Band Reduction. ACM
Trans. Math. Soft., 26(4):581–601, Dec 2000.

[27] C. H. Bischof and X. Sun. On orthogonal block elimination. Technical Report MCS-P450-
0794, Argonne National Laboratory, Argonne, IL, 1994.

[28] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK User’s Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997.

[29] J. Brickell, I. S. Dhillon, S. Sra, and J. A. Tropp. The metric nearness problem. SIAM J.
Matrix Anal. Appl., 30:375–396, 2008.

[30] A. Buluç, J. R. Gilbert, and C. Budak. Solving path problems on the GPU. Parallel Com-
puting, 36(5-6):241 – 253, 2010.

[31] E. J. Bylaska et. al. NWChem, a computational chemistry package for parallel computers,
version 6.1.1, 2012.

[32] L. E. Cannon. A cellular computer to implement the Kalman filter algorithm. PhD thesis,
Bozeman, MT, USA, 1969.

[33] E. Carson, N. Knight, and J. Demmel. Avoiding communication in nonsymmetric Lanczos-
based Krylov subspace methods. SIAM Journal on Scientific Computing, 35(5):S42–S61,
2013.

[34] T. M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. SIAM Journal
on Computing, 39(5):2075–2089, 2010.

[35] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara, S. Kumar, V. Sala-
pura, D. L. Satterfield, B. Steinmacher-Burow, and J. J. Parker. The IBM Blue Gene/Q
interconnection network and message unit. In Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, SC ’11, pages
26:1–26:10, New York, NY, USA, 2011. ACM.

BIBLIOGRAPHY 239

[36] R. A. Chowdhury and V. Ramachandran. The cache-oblivious Gaussian elimination
paradigm: theoretical framework, parallelization and experimental evaluation. In Proceed-
ings of the Nineteenth Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’07, pages 71–80, New York, NY, USA, 2007. ACM.

[37] M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick. Communication lower
bounds and optimal algorithms for programs that reference arrays–part 1. arXiv preprint
arXiv:1308.0068, 2013.

[38] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In
STOC ’87: Proceedings of the Nineteenth Annual ACM Conference on Theory of Comput-
ing, pages 1–6, New York, NY, USA, 1987. ACM Press.

[39] T. D. Crawford and H. F. Schaefer. An introduction to coupled cluster theory for computa-
tional chemists. volume 14, chapter 2, pages 33–136. VCH Publishers, New York, 2000.

[40] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: towards a realistic model of parallel computation. In Proceedings of
the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP ’93, pages 1–12, New York, NY, USA, 1993. ACM.

[41] A. R. Curtis, T. Carpenter, M. Elsheikh, A. López-Ortiz, and S. Keshav. REWIRE: an
optimization-based framework for data center network design. In INFOCOM, 2012.

[42] R. D. da Cunha, D. Becker, and J. C. Patterson. New parallel (rank-revealing) QR factoriza-
tion algorithms. In Euro-Par 2002 Parallel Processing, pages 677–686. Springer, 2002.

[43] E. Dekel, D. Nassimi, and S. Sahni. Parallel matrix and graph algorithms. SIAM Journal on
Computing, 10(4):657–675, 1981.

[44] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck. Phast: Hardware-accelerated
shortest path trees. Parallel and Distributed Processing Symposium, International, 0:921–
931, 2011.

[45] J. Demmel. Trading off parallelism and numerical stability. In M. Moonen, G. Golub, and
B. De Moor, editors, Linear Algebra for Large Scale and Real-Time Applications, volume
232 of NATO ASI Series, pages 49–68. Springer Netherlands, 1993.

[46] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and O. Spillinger.
Communication-optimal parallel recursive rectangular matrix multiplication. In IEEE In-
ternational Symposium on Parallel Distributed Processing (IPDPS), 2013.

[47] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communication-optimal parallel and
sequential QR and LU factorizations. SIAM Journal on Scientific Computing, 34(1):A206–
A239, 2012.

BIBLIOGRAPHY 240

[48] J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou. Communication-optimal parallel
and sequential QR and LU factorizations. Technical Report UCB/EECS-2008-89, EECS
Department, University of California, Berkeley, Aug 2008.

[49] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding communication in
sparse matrix computations. In Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on, pages 1–12. IEEE, 2008.

[50] E. Deumens, V. F. Lotrich, A. Perera, M. J. Ponton, B. A. Sanders, and R. J. Bartlett. Soft-
ware design of ACES III with the super instruction architecture. Wiley Interdisciplinary
Reviews: Computational Molecular Science, 1(6):895–901, 2011.

[51] I. S. Dhillon, B. N. Parlett, and C. Vömel. The design and implementation of the MRRR
algorithm. ACM Trans. Math. Softw., 32(4):533–560, Dec. 2006.

[52] J. Dongarra, M. Faverge, T. Hérault, M. Jacquelin, J. Langou, and Y. Robert. Hierarchical
QR factorization algorithms for multi-core clusters. Parallel Computing, 39(4-5):212–232,
Apr. 2013.

[53] J. J. Dongarra, D. C. Sorensen, and S. J. Hammarling. Block reduction of matrices to con-
densed forms for eigenvalue computations. Journal of Computational and Applied Mathe-
matics, 27(1):215–227, 1989.

[54] J. J. Dongarra and R. A. van de Geijn. Reduction to condensed form for the eigenvalue
problem on distributed memory architectures. Parallel Computing, 18(9):973 – 982, 1992.

[55] E. Elmroth and F. Gustavson. New serial and parallel recursive QR; factorization algorithms
for SMP systems. In B. Kågström, J. Dongarra, E. Elmroth, and J. Wasniewski, editors,
Applied Parallel Computing Large Scale Scientific and Industrial Problems, volume 1541
of Lecture Notes in Computer Science, pages 120–128. Springer Berlin / Heidelberg, 1998.
10.1007/BFb0095328.

[56] E. Epifanovsky, M. Wormit, T. Kuś, A. Landau, D. Zuev, K. Khistyaev, P. Manohar, I. Kali-
man, A. Dreuw, and A. I. Krylov. New implementation of high-level correlated methods
using a general block-tensor library for high-performance electronic structure calculations.
Journal of Computational Chemistry, 2013.

[57] A. Faraj, S. Kumar, B. Smith, A. Mamidala, and J. Gunnels. MPI collective communications
on the Blue Gene/P supercomputer: Algorithms and optimizations. In High Performance
Interconnects, 2009. HOTI 2009. 17th IEEE Symposium on, 2009.

[58] J. G. Fletcher. A more general algorithm for computing closed semiring costs between
vertices of a directed graph. Communications of the ACM, 23(6):350–351, 1980.

[59] R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5:345–, June 1962.

BIBLIOGRAPHY 241

[60] V. Fock. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems.
Zeitschrift für Physik, 61(1-2):126–148, 1930.

[61] C. Fonseca Guerra, J. G. Snijders, G. te Velde, and E. J. Baerends. Towards an order-N DFT
method. Theoretical Chemistry Accounts, 99(6):391–403, 1998.

[62] L. R. Ford. Network flow theory. 1956.

[63] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.
In Proceedings of the 40th Annual Symposium on Foundations of Computer Science, FOCS
’99, page 285, Washington, DC, USA, 1999. IEEE Computer Society.

[64] X. Gao, S. Krishnamoorthy, S. Sahoo, C.-C. Lam, G. Baumgartner, J. Ramanujam, and
P. Sadayappan. Efficient search-space pruning for integrated fusion and tiling transforma-
tions. In Languages and Compilers for Parallel Computing, volume 4339 of Lecture Notes
in Computer Science, pages 215–229. Springer Berlin / Heidelberg, 2006.

[65] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies: faster and
simpler hierarchical routing in road networks. In Proceedings of the 7th International Con-
ference on Experimental Algorithms, WEA’08, pages 319–333, Berlin, Heidelberg, 2008.
Springer-Verlag.

[66] M. Girvan and M. E. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12):7821–7826, 2002.

[67] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathemat-
ical Sciences. Johns Hopkins University Press, 2012.

[68] G. H. Golub, R. J. Plemmons, and A. Sameh. Parallel block schemes for large-scale least-
squares computations. High-Speed Computing: Scientific Application and Algorithm De-
sign, pages 171–179, 1986.

[69] L. Grigori, J. W. Demmel, and H. Xiang. Communication avoiding Gaussian Elimination.
pages 29:1–29:12, 2008.

[70] L. Grigori, J. W. Demmel, and H. Xiang. CALU: A communication optimal LU factor-
ization algorithm. SIAM Journal on Matrix Analysis and Applications, 32(4):1317–1350,
2011.

[71] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable parallel programming with the
message-passing interface. MIT Press, Cambridge, MA, USA, 1994.

[72] B. C. Gunter and R. A. Van De Geijn. Parallel out-of-core computation and updating of the
qr factorization. ACM Trans. Math. Softw., 31(1):60–78, Mar. 2005.

BIBLIOGRAPHY 242

[73] M. B. Habbal, H. N. Koutsopoulos, and S. R. Lerman. A decomposition algorithm for the
all-pairs shortest path problem on massively parallel computer architectures. Transportation
Science, 28(4):292–308, 1994.

[74] M. Hanrath and A. Engels-Putzka. An efficient matrix-matrix multiplication based antisym-
metric tensor contraction engine for general order coupled cluster. The Journal of Chemical
Physics, 133(6), 2010.

[75] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam, P. Coteus,
P. Heidelberger, M. Blumrich, R. Wisniewski, A. Gara, G.-T. Chiu, P. Boyle, N. Chist, and
C. Kim. The IBM Blue Gene/Q compute chip. Micro, IEEE, 32(2):48 –60, March-April
2012.

[76] D. R. Hartree. The wave mechanics of an atom with a non-coulomb central field. Part I.
Theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society,
24:89–110, 1 1928.

[77] M. Head-Gordon, J. A. Pople, and M. J. Frisch. MP2 energy evaluation by direct methods.
Chemical Physics Letters, 153(6):503 – 506, 1988.

[78] M. Heath and C. Romine. Parallel solution of triangular systems on distributed-memory
multiprocessors. SIAM Journal on Scientific and Statistical Computing, 9(3):558–588,
1988.

[79] S. Hirata. Tensor Contraction Engine: Abstraction and automated parallel implementation
of configuration-interaction, coupled-cluster, and many-body perturbation theories. The
Journal of Physical Chemistry A, 107(46):9887–9897, 2003.

[80] R. W. Hockney. The communication challenge for MPP: Intel Paragon and Meiko CS-2.
Parallel Computing, 20(3):389 – 398, 1994.

[81] M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD thesis, EECS
Department, University of California, Berkeley, Apr 2010.

[82] M. Hoemmen. A communication-avoiding, hybrid-parallel, rank-revealing orthogonaliza-
tion method. In Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE Interna-
tional, pages 966–977, 2011.

[83] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871, Nov
1964.

[84] O. Hölder. Über einen Mittelwertsatz. Nachrichten von der König. Gesellschaft der Wis-
senschaften und der Georg-Augusts-Universität zu Göttigen, pages 38–47, 1889.

[85] S. Holzer and R. Wattenhofer. Optimal distributed all pairs shortest paths and applications.
In Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing, pages
355–364. ACM, 2012.

BIBLIOGRAPHY 243

[86] IBM Journal of Research and Development. Overview of the IBM Blue Gene/P project.
IBM J. Res. Dev., 52:199–220, January 2008.

[87] D. Irony and S. Toledo. Trading replication for communication in parallel distributed-
memory dense solvers. Parallel Processing Letters, 71:3–28, 2002.

[88] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-memory
matrix multiplication. Journal of Parallel and Distributed Computing, 64(9):1017 – 1026,
2004.

[89] J. Jenq and S. Sahni. All pairs shortest paths on a hypercube multiprocessor. In ICPP ’87:
Proc. of the Intl. Conf. on Parallel Processing, pages 713–716, 1987.

[90] H. Jia-Wei and H. T. Kung. I/O complexity: The red-blue pebble game. In Proceedings of
the thirteenth Annual ACM Symposium on Theory of Computing, STOC ’81, pages 326–333,
New York, NY, USA, 1981. ACM.

[91] T. Joffrain, T. M. Low, E. S. Quintana-Ortí, R. v. d. Geijn, and F. G. V. Zee. Accumulating
Householder transformations, revisited. ACM Trans. Math. Softw., 32(2):169–179, June
2006.

[92] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the
ACM, 24(1):1–13, 1977.

[93] S. L. Johnsson. Minimizing the communication time for matrix multiplication on multipro-
cessors. Parallel Comput., 19:1235–1257, November 1993.

[94] S. L. Johnsson and C.-T. Ho. Optimum broadcasting and personalized communication in
hypercubes. IEEE Trans. Comput., 38:1249–1268, September 1989.

[95] L. V. Kale and S. Krishnan. CHARM++: A portable concurrent object oriented system based
on C++. In Proceedings of the Eighth Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, OOPSLA ’93, pages 91–108, New York, NY, USA,
1993. ACM.

[96] M. Kállay and P. R. Surján. Higher excitations in coupled-cluster theory. The Journal of
Chemical Physics, 115(7):2945, 2001.

[97] D. Kats and F. R. Manby. Sparse tensor framework for implementation of general local
correlation methods. The Journal of Chemical Physics, 138(14):–, 2013.

[98] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven, highly-scalable dragonfly
topology. In Proceedings of the 35th Annual International Symposium on Computer Archi-
tecture, ISCA ’08, pages 77–88, Washington, DC, USA, 2008. IEEE Computer Society.

[99] P. Knowles and N. Handy. A new determinant-based full configuration interaction method.
Chemical Physics Letters, 111(4-5):315 – 321, 1984.

BIBLIOGRAPHY 244

[100] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation
effects. Phys. Rev., 140:A1133–A1138, Nov 1965.

[101] T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455–
500, 2009.

[102] S. A. Kucharski and R. J. Bartlett. Coupled-cluster methods that include connected quadru-
ple excitations, T4: CCSDTQ-1 and Q (CCSDT). Chemical Physics Letters, 158(6):550–
555, 1989.

[103] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E. Giampapa, B. Michael,
A. Faraj, J. Parker, J. Ratterman, B. Smith, and C. J. Archer. The deep computing messaging
framework: generalized scalable message passing on the Blue Gene/P supercomputer. In
Proceedings of the 22nd Annual International Conference on Supercomputing, ICS ’08,
pages 94–103, New York, NY, USA, 2008. ACM.

[104] V. Kumar and V. Singh. Scalability of parallel algorithms for the all-pairs shortest-path
problem. J. Parallel Distrib. Comput., 13:124–138, 1991.

[105] P.-W. Lai, K. Stock, S. Rajbhandari, S. Krishnamoorthy, and P. Sadayappan. A framework
for load balancing of tensor contraction expressions via dynamic task partitioning. In Pro-
ceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’13, pages 13:1–13:10, New York, NY, USA, 2013. ACM.

[106] B. Lang. A parallel algorithm for reducing symmetric banded matrices to tridiagonal form.
SIAM Journal on Scientific Computing, 14(6):1320–1338, 1993.

[107] R. C. Larson and A. R. Odoni. Urban Operations Research. Prentice-Hall, Englewood
Cliffs, NJ, USA, 1981.

[108] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra Subpro-
grams for Fortran usage. ACM Transactions on Mathematical Software (TOMS), 5(3):308–
323, 1979.

[109] C. E. Leiserson, S. Rao, and S. Toledo. Efficient out-of-core algorithms for linear relax-
ation using blocking covers. In Foundations of Computer Science, 1993. Proceedings., 34th
Annual Symposium on, pages 704–713. IEEE, 1993.

[110] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. Numer.
Analysis, 16:346–358, 1979.

[111] L. Loomis and H. Whitney. An inequality related to the isoperimetric inequality. 1949.

[112] V. Lotrich, N. Flocke, M. Ponton, B. A. Sanders, E. Deumens, R. J. Bartlett, and A. Perera.
An infrastructure for scalable and portable parallel programs for computational chemistry.
In Proceedings of the 23rd International Conference on Supercomputing, ICS ’09, pages
523–524, New York, NY, USA, 2009. ACM.

BIBLIOGRAPHY 245

[113] W. F. McColl and A. Tiskin. Memory-efficient matrix multiplication in the BSP model.
Algorithmica, 24:287–297, 1999.

[114] P. McKinley, Y.-J. Tsai, and D. Robinson. Collective communication in wormhole-routed
massively parallel computers. Computer, 28(12):39 –50, Dec. 1995.

[115] U. Meyer and P. Sanders. ∆-stepping: a parallelizable shortest path algorithm. J. Algo-
rithms, 49(1):114–152, 2003.

[116] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. Minimizing communication in
sparse matrix solvers. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, page 36. ACM, 2009.

[117] M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of
Automata, Languages and Combinatorics, 7(3):321–350, 2002.

[118] C. Møller and M. S. Plesset. Note on an approximation treatment for many-electron systems.
Physical Review, 46(7):618, 1934.

[119] H. J. Monkhorst. Calculation of properties with the coupled-cluster method. International
Journal of Quantum Chemistry, 12(S11):421âĂŞ432, 1977.

[120] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: A nonuniform memory ac-
cess programming model for high-performance computers. The Journal of Supercomputing,
10:169–189, 1996.

[121] J. Noga and R. J. Bartlett. The full CCSDT model for molecular electronic structure. The
Journal of chemical physics, 86(12):7041–7050, 1987.

[122] J. Olsen, B. O. Roos, P. Jørgensen, and H. J. A. Jensen. Determinant based configuration
interaction algorithms for complete and restricted configuration interaction spaces. The
Journal of Chemical Physics, 89(4):2185–2192, 1988.

[123] V. Pan. How to Multiply Matrices Faster. Springer-Verlag New York, Inc., New York, NY,
USA, 1984.

[124] C. Papadimitriou and J. Ullman. A communication-time tradeoff. SIAM Journal on Com-
puting, 16(4):639–646, 1987.

[125] J.-S. Park, M. Penner, and V. K. Prasanna. Optimizing graph algorithms for improved cache
performance. IEEE Transactions on Parallel and Distributed Systems, 15(9):769–782, 2004.

[126] J. A. Parkhill and M. Head-Gordon. A sparse framework for the derivation and implemen-
tation of fermion algebra. Molecular Physics, 108(3-4):513–522, 2010.

[127] B. N. Parlett. The symmetric eigenvalue problem. SIAM, 1980.

BIBLIOGRAPHY 246

[128] R. G. Parr and Y. Weitao. Density-functional theory of atoms and molecules. Oxford Uni-
versity Press ; Clarendon Press, New York; Oxford, 1989.

[129] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and J. J. Dongarra.
Performance analysis of MPI collective operations. Cluster Computing, 10:127–143, June
2007.

[130] J. A. Pople and R. K. Nesbet. Self-consistent orbitals for radicals. Journal of Chemical
Physics, 22(3):571, 1954.

[131] J. Poulson, B. Maker, J. R. Hammond, N. A. Romero, and R. van de Geijn. Elemental: A
new framework for distributed memory dense matrix computations. ACM Transactions on
Mathematical Software. in press.

[132] C. Puglisi. Modification of the Householder method based on compact WY representation.
SIAM Journal on Scientific and Statistical Computing, 13(3):723–726, 1992.

[133] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon. A fifth-order perturbation
comparison of electron correlation theories. 157:479–483, May 1989.

[134] S. Rajbhandari, A. Nikam, P.-W. Lai, K. Stock, S. Krishnamoorthy, and P. Sadayappan.
Framework for distributed contractions of tensors with symmetry. Preprint, Ohio State
University, 2013.

[135] C. C. J. Roothaan. New developments in molecular orbital theory. Reviews of Modern
Physics, 23(2):69 – 89, 1951.

[136] D. J. Rose and R. E. Tarjan. Algorithmic aspects of vertex elimination. In Proceedings of
Seventh Annual ACM Symposium on Theory of Computing, STOC ’75, pages 245–254, New
York, NY, USA, 1975. ACM.

[137] R. D. Schafer. An introduction to nonassociative algebras, volume 22. Courier Dover
Publications, 1966.

[138] A. C. Scheiner, G. E. Scuseria, J. E. Rice, T. J. Lee, and H. F. Schaefer. Analytic evalua-
tion of energy gradients for the single and double excitation coupled cluster (CCSD) wave
function: Theory and application. Journal of Chemical Physics, 87(9):5361, 1987.

[139] R. Schreiber and C. Van Loan. A storage-efficient WY representation for products of House-
holder transformations. SIAM Journal on Scientific and Statistical Computing, 10(1):53–57,
1989.

[140] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal
of Computer and System Sciences, 51(3):400–403, 1995.

BIBLIOGRAPHY 247

[141] Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert,
L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. D. Jr, R. C. Lochan, T. Wang,
G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. V. Voorhis, S. H. Chien, A. Sodt,
R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin,
J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi,
T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin,
P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov,
P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E.
Subotnik, H. L. W. Iii, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil,
A. Warshel, W. J. Hehre, H. F. S. Iii, J. Kong, A. I. Krylov, P. M. W. Gill, and M. Head-
Gordon. Advances in methods and algorithms in a modern quantum chemistry program
package. Physical Chemistry Chemical Physics, 8(27):3172–3191, 2006.

[142] S. S. Shende and A. D. Malony. The TAU parallel performance system. International
Journal of High Performance Computing Applications, 20(2):287–311, Summer 2006.

[143] E. Solomonik, A. Bhatele, and J. Demmel. Improving communication performance in dense
linear algebra via topology aware collectives. In Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, SC ’11, pages
77:1–77:11, New York, NY, USA, 2011. ACM.

[144] E. Solomonik, A. Buluc, and J. Demmel. Minimizing communication in all-pairs shorest-
paths. In IEEE International Symposium on Parallel Distributed Processing (IPDPS), 2013.

[145] E. Solomonik, E. Carson, N. Knight, and J. Demmel. Tradeoffs Between Synchronization,
Communication, and Computation in Parallel Linear Algebra Computations, pages 307–
318. SPAA ’14. ACM, New York, NY, USA, 2014.

[146] E. Solomonik and J. Demmel. Communication-optimal 2.5D matrix multiplication and LU
factorization algorithms. In Springer Lecture Notes in Computer Science, Proceedings of
Euro-Par, Bordeaux, France, Aug 2011.

[147] E. Solomonik and J. Demmel. Communication-optimal parallel 2.5D matrix multiplication
and LU factorization algorithms. Technical Report UCB/EECS-2011-10, EECS Depart-
ment, University of California, Berkeley, Feb 2011.

[148] E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Demmel. A massively
parallel tensor contraction framework for coupled-cluster computations. Journal of Parallel
and Distributed Computing, 2014.

[149] D. Sorensen. Analysis of pairwise pivoting in Gaussian elimination. Computers, IEEE
Transactions on, C-34(3):274 –278, March 1985.

[150] J. F. Stanton and R. J. Bartlett. The equation of motion coupled-cluster method. a systematic
biorthogonal approach to molecular excitation energies, transition probabilities, and excited
state properties. Journal of Chemical Physics, 98(9):7029, 1993.

BIBLIOGRAPHY 248

[151] J. F. Stanton and J. Gauss. Analytic second derivatives in high-order many-body perturbation
and coupled-cluster theories: computational considerations and applications. International
Reviews in Physical Chemistry, 19(1):61–95, 2000.

[152] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–356,
1969.

[153] X. Sun and C. Bischof. A basis-kernel representation of orthogonal matrices. SIAM Journal
on Matrix Analysis and Applications, 16(4):1184–1196, 1995.

[154] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson. The Pochoir
stencil compiler. In Proceedings of the Twenty-Third Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, pages 117–128. ACM, 2011.

[155] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective communication op-
erations in MPICH. International Journal of High Performance Computing Applications,
19(1):49–66, Spring 2005.

[156] A. Tiskin. The Design and Analysis of Bulk-Synchronous Parallel Algorithms. PhD thesis,
University of Oxford, 1998.

[157] A. Tiskin. All-pairs shortest paths computation in the BSP model. In F. Orejas, P. Spirakis,
and J. van Leeuwen, editors, Automata, Languages and Programming, volume 2076 of
Lecture Notes in Computer Science, pages 178–189. Springer Berlin / Heidelberg, 2001.

[158] A. Tiskin. Communication-efficient parallel generic pairwise elimination. Future Genera-
tion Computer Systems, 23(2):179 – 188, 2007.

[159] S. Toledo. Locality of reference in LU decomposition with partial pivoting. SIAM Journal
of Matrix Analysis and Applications, 18(4):1065–1081, 1997.

[160] J. Torrellas. Architectures for extreme-scale computing, Nov. 2009.

[161] J. D. Ullman and M. Yannakakis. High probability parallel transitive-closure algorithms.
SIAM Journal of Computing, 20:100–125, February 1991.

[162] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

[163] R. A. Van De Geijn and J. Watts. SUMMA: Scalable Universal Matrix Multiplication Al-
gorithm. Concurrency: Practice and Experience, 9(4):255–274, 1997.

[164] V. S. Varadarajan. Lie groups, Lie algebras, and their representations, volume 102. Prentice-
Hall Englewood Cliffs, NJ, 1974.

BIBLIOGRAPHY 249

[165] J. Čížek. On the correlation problem in atomic and molecular systems. calculation of wave-
function components in ursell-type expansion using quantum-field theoretical methods. The
Journal of Chemical Physics, 45(11):4256–4266, 1966.

[166] J. Čížek and J. Paldus. Correlation problems in atomic and molecular systems III. red-
erivation of the coupled-pair many-electron theory using the traditional quantum chemical
methods. International Journal of Quantum Chemistry, 5(4):359–379, 1971.

[167] S. Warshall. A theorem on boolean matrices. J. ACM, 9:11–12, January 1962.

[168] Y. Yamamoto, 2012. Personal communication.

[169] Y. Yamamoto. Aggregation of the compact WY representations generated by the TSQR
algorithm, 2012. Conference talk presented at SIAM Applied Linear Algebra.

[170] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L. Graham, P. Har-
grove, P. Hilfinger, P. Husbands, et al. Productivity and performance using partitioned global
address space languages. In Proceedings of the 2007 International Workshop on Parallel
Symbolic Computation, pages 24–32. ACM, 2007.

[171] U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
Journal of the ACM, 49(3):289–317, May 2002.

	Contents
	Introduction
	Theoretical Performance Model
	Scheduling Cost Model
	Performance Models for Communication Collectives

	Communication Lower Bound Techniques
	Previous Work
	Volumetric Inequalities
	Lower Bounds on Lattice Hypergraph Cuts
	Lower Bounds on Cost Tradeoffs Based on Dependency Path Expansion

	Matrix Multiplication
	Previous Work
	Communication Lower Bounds
	2.5D Matrix Multiplication
	Rectangular Matrix Multiplication
	Split-Dimensional Cannon's Algorithm

	Solving Dense Linear Systems of Equations
	Lower Bounds for Triangular Solve and Cholesky
	Parallel Algorithms for the Triangular Solve
	2.5D LU without Pivoting
	2.5D LU with Pivoting
	2.5D Cholesky-QR
	2.5D LU Performance Results

	QR Factorization
	Previous Work
	New 2D QR Algorithms
	Performance
	2.5D QR Factorization

	Computing the Eigenvalues of a Symmetric Matrix
	Previous Work
	Direct Symmetric-to-Banded Reduction
	Successive Symmetric Band Reduction

	Sparse Iterative Methods
	Definition and Dependency Graphs of Krylov Basis Computations
	Communication Lower Bounds for Krylov Basis Computation
	Previous Work on Krylov Basis Algorithms
	A Communication-Efficient Schedule for Krylov Basis Computation

	Finding the Shortest Paths in Graphs
	Previous Work
	Lower Bounds
	Divide-and-Conquer APSP
	Parallelization of DC-APSP
	Experiments
	Discussion of Alternatives
	Conclusions
	Appendix

	Distributed-Memory Tensor Contractions
	Previous work
	Algorithms for Tensor Blocking and Redistribution
	Algorithms for Tensor Contraction
	Application Performance
	Future Work

	Contracting Symmetric Tensors Using Fewer Multiplications
	Symmetric Tensor Contractions
	Algorithms
	Analysis
	Antisymmetric and Hermitian Adaptations
	Applications
	Conclusions

	Future Work
	Bibliography

