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ABSTRACT 

 
 

Complexity in Climatic Controls on Plant Species Distribution: Satellite Data Reveal Unique 
Climate for Giant Sequoia in the California Sierra Nevada 

 
by 
 

Eric Kindseth Waller 
 

Doctor of Philosophy in Environmental Science, Policy, and Management 
 

University of California, Berkeley 
 

Professor Dennis D. Baldocchi, Chair 
 

 
A better understanding of the environmental controls on current plant species distribution is 
essential if the impacts of such diverse challenges as invasive species, changing fire regimes, and 
global climate change are to be predicted and important diversity conserved. Climate, soil, 
hydrology, various biotic factors (e.g., competition, disease, dispersal), fire, history, and chance 
can all play a role, but disentangling these factors is a daunting task. Increasingly sophisticated 
statistical models relying on existing distributions and mapped climatic variables, among others, 
have been developed to try to answer these questions. Any failure to explain pattern with existing 
mapped climatic variables is often taken as a referendum on climate as a whole, rather than on 
the limitations of the particular maps or models. Every location has a unique and constantly 
changing climate (challenging our definition of climate), so that any distribution could be 
explained by some aspect of climate. This is not a rationale for doing so – such models would 
certainly be overly fit to the given conditions and not generalizable. It is an argument for a more 
complete evaluation of possible climatic controls and the interaction of climate with other 
important variables (e.g., soil). A lack of adequate maps for various climate and climate-derived 
variables plays a large role in the failure of modelers to sufficiently address climatic complexity. 
In particular, site water balance, radiation, humidity, wind, and temporal variability in all of 
these factors may be poorly understood factors in controlling distributions. Weakness in the 
mapping of these variables is well recognized in the water balance modeling field, but is less 
emphasized in the species distribution modeling field, despite the fact that variables that affect 
the water balance are also likely to play a major role in species distribution. In this dissertation, I 
1) improve the mapping of cloud cover from satellite imagery, in order to generate accurate 
monthly cloud frequency variables; 2) use these cloud frequency variables to demonstrate the 
possible importance of cloud cover, a previously overlooked climate variable, to the distribution 
of a particularly charismatic plant species, giant sequoia; and 3) further investigate the climate 
associated with the frequent cloud cover in the vicinity of giant sequoia, to identify other climatic 
factors that may also be important to the tree’s distribution. 
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Chapter 1 of this dissertation reviews some of the major flaws in species distribution modeling 
(with existing climate data) and addresses concerns that climate may therefore not be predictive 
of, or even relevant to, species distributions. Despite problems with climate-based models, 
climate and climate-derived variables still have substantial merit for explaining species 
distribution patterns. Additional generation of relevant climate variables and improvements in 
other climate and climate-derived variables are still needed to demonstrate this more effectively. 
Satellite data have a long history of being used for vegetation mapping and even species 
distribution mapping. They have great potential for being used for additional climatic 
information, and for improved mapping of other climate and climate-derived variables. 
 
Improving the characterization of cloud cover frequency with satellite data is one way in which 
the mapping of important climate and climate-derived variables (e.g., water balance) can be 
improved. An important input to water balance models, solar radiation maps could be vastly 
improved with a better mapping of spatial and temporal patterns in cloud cover. Chapter 2 of this 
dissertation describes the generation of custom daily cloud cover maps from Advanced Very 
High Resolution Radiometer (AVHRR) satellite data from 1981-1999 at ~5 km resolution and 
Moderate Resolution Imagine Spectroradiomter (MODIS) satellite reflectance data at ~500 meter 
resolution for much of the western U.S., from 2000 to 2012. Intensive comparisons of reflectance 
spectra from a variety of cloud and snow-covered scenes from the southwestern United States 
allowed the generation of new rules for the classification of clouds and snow in both the AVHRR 
and MODIS data. The resulting products avoid many of the problems that plague other cloud 
mapping efforts, such as the tendency for snow cover and bright desert soils to be mapped as 
cloud. This consistency in classification across cover types is critically important for any 
distribution modeling of a plant species that might be dependent on cloud cover.  
 
In Chapter 3, monthly cloud frequencies derived from the daily classifications were used directly 
in species distribution models for giant sequoia (Sequoiadendron giganteum (Lindley) Buchholz) 
and were found to be the strongest predictors of giant sequoia distribution. A high frequency of 
cloud cover, especially in the spring, differentiated the climate of the west slope of the southern 
Sierra Nevada, where giant sequoia are prolific, from central and northern parts of the range, 
where the tree is rare and generally absent. Other mapped cloud products, contaminated by 
confusion with high elevation snow, would likely not have found this important result. The result 
illustrates the importance of accuracy in mapping as well as the importance of previously 
overlooked aspects of climate for species distribution modeling. But it also raises new questions 
about why the clouds form where they do and whether they might be associated with other 
aspects of climate important to giant sequoia distribution. What are the exact climatic 
mechanisms governing the distribution? Detailed aspects of the local climate warranted more 
investigation. 
 
Chapter 4 investigates the climate associated with the frequent cloud formation over the western 
slopes of the southern Sierra Nevada: the “sequoia belt”. This region is climatically distinct in a 
number of ways, all of which could be factors in influencing the distribution of giant sequoia and 
other species. Satellite and micrometeorological flux tower data reveal characteristics of the 
sequoia belt that were not evident with surface climate measurements and maps derived from 
them. Results have implications for species distributions everywhere, but especially in rugged 
mountains, where climates are complex and poorly mapped. 
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Chapter 5 summarizes some of the main conclusions from the work and suggests directions for 
related future research. 
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Chapter 1. Introduction 
 
Complexity of Climate Controls on Plant Species Distributions 
 

This dissertation involves the use of a variety of sources, including satellite and 
meteorological tower data, to reveal overlooked climatic controls on the distribution of a notable 
plant species, highlighting the need for greater exploration of climatic dimensionality in order to 
understand why plants grow where they do. Giant sequoia (Sequoiadendron giganteum (Lindley) 
Buchholz) of the California Sierra Nevada, with a very well mapped yet previously puzzling 
distribution (Hartesveldt et al, 1975; Harvey et al, 1980), exemplifies the lack of knowledge 
about climatic control, even for the most charismatic of species. Giant sequoia is found to have a 
unique and unusually cloudy climate. Cloud frequency and other important aspects of this 
distinct climate would not be included in typical distribution models used to project plant 
response to climate change. There are certainly a variety of biotic and abiotic controls on the 
current distribution of plant species, not to mention historical factors and chance, but essential 
aspects of current climate are neglected both by relatively simplistic statistical analyses relating 
species distributions to conventional climate variables like temperature and precipitation and by 
those who justifiably critique such models but then downplay climate’s role in plant species 
distribution. 
 

This introductory chapter addresses some recent issues in the field of plant species 
distribution modeling (SDM) and sets the stage for improved treatment of climate variables. It is 
well established that plants respond to a complex integration of environmental factors (Walter, 
1973; Chapin III et al, 1987; Woodward, 1987; Givnish, 2002; Wright et al, 2004). It is logical 
that species distributions, too, would have a complex relationship with climate and the overall 
environment. Extensive measurement of plant physiological response to environmental variation 
is still needed to improve our understanding of controls on distribution and to project response to 
future climate change. Assessment with respect to complex environmental variables that 
integrate a variety of factors, such as those related to the water balance (Thornthwaite and 
Mather, 1957), should be especially beneficial in the understanding of controls on plant species 
performance and distribution (Austin, 2002). Water balance variables such as evapotranspiration 
(ET) and deficit have been shown to be strongly predictive of broad patterns of vegetation 
(Stephenson, 1990) and species (Gavin and Hu, 2006) distributions. But there is still much to be 
improved in the mapping of relevant components of these important integrating variables in 
order to move from statistical correlations to accurate forecasting of species and ecosystem 
response. Accurate characterization of the contribution of soil (depth, texture, etc.) is likely the 
most relevant and the most challenging (Lathrop Jr et al, 1995; Schenk and Jackson, 2002; 
Schenk and Jackson, 2005; Ichii et al, 2009) – it may be problematic for some time. In the 
meantime, improved mapping of other important components of the water balance such as solar 
radiation, humidity, and wind is a more manageable goal.  
 

The improved accuracy and resolution of cloud cover classification from satellite 
imagery described in Chapter 2 of this dissertation should help to improve spatial modeling of 
solar radiation. It could also help with the modeling of spatial patterns of humidity, due to the 
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obvious correlation between cloud cover and humidity (Walcek, 1994; Tompkins, 2003), or at 
least guide the siting for increased measurement of surface humidity. The same may even be 
argued for the improved modeling of wind, as there appears to be some negative correlation 
between wind and cloud cover, at least in some areas (Singer and Smith, 1953). Each of these 
variables is an important input to complex ET models (Monteith, 1965) and ET is a critical 
element of the water balance. Until improvements are made to the handling of soil, also 
necessary for accurate ET estimation, these variables – solar radiation, humidity, and wind - are 
worth exploring individually for their utility in modeling species distribution.  
 

In Chapter 3, monthly cloud frequency variables derived from the custom cloud cover 
classification developed in Chapter 2 are shown to be the strongest predictors of giant sequoia 
distribution from a large set of climate variables. This would not have been demonstrated 
without the critical improvements in resolution and accuracy of the custom cloud frequency 
products. Some portion of cloud cover’s apparent importance with respect to giant sequoia 
distribution may relate to its better mapping compared to other climate variables, but it is clear 
that the west slope of the southern Sierra Nevada, where giant sequoia is very common, is very 
cloudy, especially in spring, in comparison to the northern Sierra Nevada, where giant sequoia is 
quite rare, if not absent.  
 

Further investigation of the climate of the main giant sequoia “belt” on the west slope of 
the southern Sierra Nevada using satellite data, mapped data sets, and meteorological towers in 
Chapter 4 revealed many other related and unusual climatic features of the region. The cloud 
product helped expose these climatic characteristics that may have otherwise escaped notice, 
revealing that cloud cover may just be one part of an overall climate environment amenable to 
giant sequoia dominance. Determining the precise controls would require further investigation, 
including improvements in the mapping of other variables. In any case, the results demonstrate 
that the relationship between climate and plants is complex, that accuracy and resolution are 
important in identifying climatic controls, and that there are essential aspects of climate not 
included in standard species distribution models. 
 
Background 
 

It has long been recognized that climate plays a large role in the distribution of plant 
species (von Humboldt and Bonpland, 1807). Temperature and precipitation are obvious aspects 
of the climate that likely influence species distributions. But determining the exact manner in 
which temperature and precipitation affect distribution is not so easy. Simply circumscribing the 
minimum and maximum levels of each with respect to a species’ distribution would vastly 
overestimate actual distributions. This is due to the many other constraining factors, as well as 
the fact that the interaction of temperature and precipitation probably matters more than 
individual values of either. These are just some of the reasons that a simple treatment of 
temperature and precipitation will not be sufficient to describe the distribution of plant species. 
Nevertheless, improvements in computing power and digital data (e.g., species locations and 
climatic maps), as well as concerns about climate change, have led to a proliferation of simple 
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(mostly temperature- and precipitation-based) models relating species locations to environmental 
variables that are assumed to capture the “niche” (Hutchinson, 1959) of species. 1 
 

These “niche” requirements are often applied under modeled future climates to project 
the future distribution of a given species. Models used for projecting into the future are often 
based only on temperature and precipitation, because these are the only variables that are 
projected into the future (and usually at only coarse spatial and temporal resolution). The 
generally more restricted extents of predicted future distributions are usually quite alarming. 
Problems with this type of approach have been identified (Davis et al, 1998; Austin, 2002; 
Austin, 2007; Pearson and Dawson, 2003; Guisan and Thuiller, 2005; Guisan et al, 2006; Randin 
et al, 2006; Austin and Van Niel, 2011), and include admonitions to use meaningful climatic 
variables that are thought to strongly relate to the distribution of the species. Supposedly more 
biologically meaningful climatic variables of common resort (e.g., BIOCLIM) include those 
related to combinations of temperature and precipitation, such as average temperature of the 
wettest quarter (3 months) and driest quarter.  
 

This type of attempt at capturing the interaction of precipitation and temperature is still 
far from capturing the complexity of the overall environment governing the distribution of plant 
species. Variable selection in SDM is a challenge (Araujo and Guisan, 2006; Austin and Van 
Niel, 2011; Barve et al, 2011) and likely related to a lack of well-mapped environmental 
variables with a more mechanistic relationship with plant distribution (Gavin and Hu, 2005). A 
more sophisticated and plant-relevant treatment of the interaction between precipitation and 
temperature might involve the use of water balance data (Stephenson, 1990; Gavin and Hu, 
2006; Franklin et al, 2013). But there remains the question of whether more sophisticated 
variables related to the water balance are mapped well enough to be of robust utility. As 
mentioned, accurate water balance modeling requires good maps of soil characteristics and a 
good understanding of the way in which soil influences the interaction of environmental 
variables. 
 

The fact that climate and climate-based derivatives (e.g., the water balance) are likely 
influencing many species distributions and climate-based distribution models appear to perform 
well does not mean that most climate-based models have robust predictive ability under 
changing conditions. Many SDM approaches with climate data are sufficient to make good maps 
of species distributions but a good map does not ensure good prediction. Several researchers 
(Bahn and McGill, 2007; Beale et al, 2008; Chapman, 2010) have shown that common 
approaches to SDM may simply be taking advantage of autocorrelation or spatial structure of the 
climate variables to yield apparently good results (see below). The apparent confirmation of 
good results on test data in most studies is due to the associated lack of independence of testing 
data (Hampe, 2004; Hijmans, 2012). The application of such models under projected future 
climates can be misleading. But this weakness should not be grist for those who would dismiss 
the importance of climate. The fact that many climate-based models have obvious problems does 
not mean that climate and climate-based derivatives do not influence many species distributions. 
 

1 The use of “niche” is admittedly a stretch, and not even very clear, given the difficulty for modelers in determining 
whether they are modeling the “fundamental” niche or the “realized” niche (Araujo and Guisan, 2006). That it is 
always closer to the latter, even when claims are made otherwise, seems obvious. 
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Addressing a Critique of Species Distribution Modeling 
 

While the impact of autocorrelation on ecological studies has long been recognized 
(Legendre, 1993), only recently did researchers call attention to the fact that much SDM relied 
on the spatial structure of climate variables for models that made good maps but were not 
necessarily useful for extrapolating to different conditions, such as those associated with future 
climates. Bahn and McGill (2007) somewhat surprisingly found that simple spatial models (i.e., 
interpolation) performed better than environmental variables at modeling the distribution of 
various bird species. Ignoring the fact that spatial models would not be able to explain spatially-
outlying populations that climate-based distribution models are often able to explain (Currie, 
2007), their results raised some flags. 
 

Other recent studies (Beale et al, 2008; Chapman, 2010) used null models to demonstrate 
that species distribution models (for birds and plants, respectively) using climatic variables often 
perform little better than chance. In the former case, artificial species distributions with the same 
prevalence and spatial structure as real distributions form null model distributions. In the latter 
case, artificial climate gradients with the same values and spatial structure of real climate 
variables were used for null distribution models. In each case, the fact that “real” models did not 
tend to perform significantly (or any) better than null models is used as evidence that many 
models purportedly relating species distributions to climate variables are misleading.  
 

Beale et al.’s work, in particular, stirred a strong reaction and prompted a series of 
rebuttal attempts (Araujo et al, 2009; Aspinall et al, 2009; Peterson et al, 2009) because most 
ecologists have the strong sense that climate influences species distributions. These rebuttals 
were not necessarily wrong, but they did not refute Beale et al., as they were easily parried 
(Beale et al, 2009). This is because the approaches and arguments of the distribution modeling 
critics are fairly sound, if slightly misleading. Beale et al. (as well as the others) employed 
typical, and bad, practices of SDM to demonstrate its problems. But the fact that models that use 
certain coarse-scale climate variables are bad (and they can be, as shown by Beale et al.) does 
not exclude climate as a control on distributions. These researchers included the caveats that they 
are just using the coarse-scale climate variables that other studies have commonly used. But 
these are at spatial resolutions of 10 and 50 km! And they are very careful with their wording 
that “evidence for climatic limitation… may have been overstated” (Chapman, 2010) or 
“distributions of most birds in our study are not strongly associated with climate variables 
currently available” (Beale et al, 2008) – italics added. These authors are not definitively 
arguing that climate is unimportant. They are criticizing modeling approaches and indicating that 
climate has not been proven to matter at macro-scales, but these nuances could be overlooked by 
those looking to dismiss climate.  
 

These critiques of climate-based models, while valid, have not adequately emphasized 
the issue that commonly used predictor variables simply don’t cover the complexity of climate-
driven control. Araujo et al. (Araujo et al, 2009) tried to get at this issue with their rebuttal, but 
their climate variables alone were likely not good enough to make the case for climate-driven 
control. Rather, those who would emphasize non-climatic factors such as dispersal, geographic 
variation in adaptation, and other biotic factors (Hampe, 2004) are bolstered. There is nothing 
inherently wrong with considering these other possibilities, but alternative modeling approaches 
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– for example, partitioning biotic, abiotic, and movement factors - the “BAM” framework 
(Soberon and Nakamura, 2009), endorsed by Beale et al. (2014), could underestimate the 
importance of climate, especially with a failure to focus on the right climate and climate-based 
variables. This is similar to notions of hierarchical controls on species distributions, with 
different factors allegedly operating at different scales, and climate ostensibly only operating at 
relatively large scales (Pearson and Dawson, 2003). Lennon (Lennon, 2000) even argues that the 
supposedly high autocorrelation of climate variables (particularly “temperature-related climatic 
factors” of actual and potential evapotranspiration) contributes to their misleading importance in 
distribution models. He argues that more “spatially discontinuous factors” (i.e., not climate) are 
given too little import. 
 

In fact, climate and its water balance (e.g., evapotranspiration) derivatives are quite 
variable spatially. Climate, to the extent that such a (fixed) thing exists, is unique everywhere 
(especially considering wind, radiation, and humidity patterns) and these notions of scales of 
climate relevance are simple conceptualizations. Climate doesn’t just consist of the occasional 
microclimate within a macroclimate. Since every location has a unique climate in some respect, 
climate could be used to explain every distribution. This does not mean that climate variables 
should be used to explain every distribution - such models would almost certainly be overfit (i.e., 
strong fit to the particulars of the given data, with poor performance on independent data). But 
it’s an argument for a more thorough evaluation of climate before dismissing or downplaying 
climate’s relevance. 
 

Climate-based distribution models capture the realized niche of plants as defined by their 
climate space. Yet climate is generally operating in tandem with soil, topography, hydrology, 
disturbance, and biotic factors (at least) to shape this realized niche. Models attributing all of this 
to climatic control will likely be overfit and unable to track changes in climate that are not 
matched by concomitant changes in other variables. Hence the argument is made for using water 
balance variables; these (ideally) integrate soil, topography, and hydrology with climate. While 
disturbance and biotic factors (e.g., competition) are often invoked as reasons that climate-based 
distribution models are overfit and would fail under changing conditions, one could argue that 
these relationships may be largely governed by the water balance as well.  Ultimately, the chosen 
climatic variables or climate-based derivatives may not need to be mechanistic for distribution 
models to be useful, but the more closely correlated they are with variables that truly matter, the 
better (i.e., useful for future projection). Soil, topography, and hydrology would likely be the 
main covariates of climate that could affect this correlation and future projections. 
 
Satellite Data and Plant Species Distribution Modeling 
 

Satellite data have the potential to improve many of the challenging aspects of 
distribution modeling. They have been used extensively for vegetation mapping and can provide 
maps at the species level in some circumstances. Climate and other ancillary data are often 
incorporated into the mapping to improve discrimination. Switching the roles, satellite data can 
help to improve species distribution models based on climatic and topographic data (Kerr and 
Ostrovsky, 2003; Bradley and Fleishman, 2008; Buermann et al, 2008). For example, satellite-
derived indices of vegetation such as the Normalized Difference Vegetation Index (NDVI; 
(Tucker, 1979)) can help to identify areas of vegetation. Furthermore, vegetation indices can be 
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paired with satellite-derived land surface temperature (LST) data, often in combination with 
meteorological data, to characterize surface ET and the productivity of vegetation (Mu et al, 
2007; Mu et al, 2011). Time series of these values can also be used to determine the phenology 
or seasonality of vegetation that can be helpful for species identification. But these approaches 
serve to improve plant species distribution mapping more than they necessarily improve 
understanding of the underlying controls on the distribution – in fact, they could serve as a 
crutch to make a good map and reduce a more “mechanistic” understanding. They do not provide 
a model that could conceivably be projected into the future.  
 

However, the same information could be tapped for improved understanding. Spatial and 
temporal patterns of vegetation, NDVI, and ET could be used to facilitate the development of 
better models of their control – making sure to avoid the circularity that could be introduced 
from land-cover characteristics influencing models of land-cover. Vegetation productivity and 
phenology could be used as indirect indicators of climatic patterns and annual meteorological 
conditions. Alternatively, soil and hydrological characteristics such as rooting depth could be 
considered the effective residual in a model relating plant productivity, as measured from 
satellite, and climate (Ichii et al, 2009). These results could be used to improve simple water 
balance models which have already been shown to predict broad patterns in plant functional type 
(Stephenson, 1990) and species (Gavin and Hu, 2006). It is likely that the models could explain 
fine-scale patterns in species distribution with improved resolution in mapping and improved 
inputs provided by a sophisticated analysis of satellite data.  
 

Atmospheric properties characterized by satellite are another potential source of 
improvement in mapping. In addition to LST, a better characterization of atmospheric properties 
(e.g., temperature and humidity) relevant to plants may now be possible with satellite data. 
Clouds are an obvious atmospheric property that can be mapped - satellite data have been used to 
generate standardized cloud climatologies for the world, but only at a coarse resolution (e.g., 
International Satellite Cloud Climatology Program (Schiffer and Rossow, 1983)). The coarse 
resolution of these products has likely discouraged their use in plant SDM. More recently, 
relatively fine-scale (~1 km) mapping of clouds and/or fog has been used to predict or explain 
plant species distributions (Fischer et al, 2009) and mortality (Baguskas et al, 2014) across 
limited areas. Extending the relatively high resolution classification of clouds from satellite data 
in space and time (Chapter 2) to help explain species distribution – in particular, giant sequoia 
(Chapter 3), is a primary focus of this dissertation. 
 
Meteorological Data from Satellite and Tower  
 

In Chapter 4 I use additional satellite, map, and meteorological tower data to investigate 
the climate of the giant sequoia. MODIS thermal data, in particular, reveal spatial patterns in 
land surface temperature that would not be captured with the existing sparse network of climate 
stations. The “Sequoia belt” has among the lowest range of average day-to-night (diel) LST in 
California, including coastal areas. This observation was so surprising that it was suspected that 
atmospheric or land surface characteristics other than temperature were affecting the 
measurements. Even the surface climate station data that do exist in the area did not appear to 
confirm the satellite result. Only with measurements from the tops of 55 meter tall 
meteorological towers located at the northern edge of the “Sequoia belt” were similar climatic 
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patterns observed. Temperatures measured at the top of a tower at 2015 meters (closest to the 
“Sequoia belt”) recorded lower ranges in diel temperature than even the satellite data. This 
related mostly to unusually low daytime temperatures, especially in the spring months. When 
combined with unusual afternoon peaks in dew point temperature (essentially, absolute 
humidity), this site had extremely high afternoon relative humidity values at height, especially in 
the spring. This coincides with the spring peak in cloud cover in this vicinity, and is obviously 
related, but illustrates that there is more to the unusual climate than just cloud cover. The 
combination of high humidity, cloud cover, and extremely low average winds, also characteristic 
of the area, suggests relatively low evaporative demand. 
  

Observations of Chapter 4 also suggest the importance of climate data at surprisingly fine 
temporal resolution. Climate-based distribution models are often criticized for their use of 
annually averaged and summed values of temperature and precipitation, respectively. Generally, 
the criticism is that finer temporal resolution (e.g., monthly or quarterly) should be considered, as 
well as extremes and variability (Easterling et al, 2000), since species don’t necessarily respond 
to average conditions. The half-hourly measurements of the meteorological towers here reveal 
that climatic patterns at temporal resolutions finer than even daily may be important as well. For 
example, regular peaks in relative humidity in the afternoon (found at the 2015 meter tower), 
when plants are active, would have different effects than regular pre-dawn peaks. This climatic 
behavior would not be seen in a daily record of minimum and maximum relative humidity, let 
alone longer time scales. 
 
Implications for Plant Species Distribution Modeling 
 

This research demonstrates the complexity of the giant sequoia climate, showing that the 
dimensionality of plant-relevant climate is obviously high. Interactions with other factors make 
the relationship between climate and plants even more complex. It would be prohibitively 
difficult to try to identify the unique characteristics of the environment for every species. This is 
another argument for data reduction in the form of optimally integrating variables. In any case, 
not all plant species will have a particular climate as unique as that for giant sequoia. Giant 
sequoia may have a globally unique climate. Nevertheless, this work indicates that improved 
identification and mapping of a range of plant-relevant climate variables may help to explain the 
distribution of many species, even without a perfect understanding of optimally integrating 
variables. While climate’s relevance to plant species distribution occurs in tandem with many 
other variables (making climate-based predictions alone potentially problematic), the difficulty 
in disentangling these factors should not be confused with the notion that climate does not matter 
to plant species distribution. 
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Chapter 2. Developing a Custom Cloud Climatology of the Western United 
States from Satellite Data, 1981-2012 
 

Abstract 
 
Most currently available cloud climatology data from satellite are at very coarse spatial 
resolution, on the order of tens of kilometers. This renders them of low utility for understanding 
solar radiation and other climatic patterns necessary for a variety of applications, including 
hydrological and ecological modeling. Higher resolution cloud mask products accompanying 
satellite data are found to be of insufficient accuracy to generate accurate higher resolution cloud 
climatologies. Here, over 30 years of satellite data were processed with novel cloud classification 
algorithms to generate a custom cloud climatology for the western United States. These data 
consisted of a time series of Advanced Very High Resolution Radiometer (AVHRR) data for 
1981-1999 and Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2000-2012 
(MOD09GA and MYD09GA products, from MODIS Terra and Aqua satellites, respectively). 
Standardized AVHRR data at .05 degree resolution obtained from NASA’s Land Long Term 
Data Record (LTDR) project (AVH09C1 data) enabled the development of a relatively accurate 
product from older sensor data that suffer from inconsistency in data quality, viewing geometry 
related distortion, limited spectral and thermal band information, and overpass time drift. The 
LTDR project’s development of a novel mid-infrared reflectance product was found to be 
especially helpful for the discrimination of clouds from snow, as was a custom attempt at 
deriving mid-infrared reflectance. MODIS thermal data were not used, but MODIS reflectance 
data at 500 meter resolution were found to generally be sufficient to separate most clouds from 
snow, especially with the use of band 5 shortwave infrared data in addition to one of the other 
shortwave bands. The three true color bands available in MODIS (compared to only one in 
AVHRR) were found to be especially helpful for separating clouds and snow from bright desert 
soils. Unfortunately, recent problems of striping in both Terra band 5 and Terra band 3 (blue) led 
to the need for classification algorithm adjustments for that sensor that did not completely 
redress resulting cloud classification problems. Nevertheless, these newly developed products 
provide vast improvements in cloud climatology compared to existing datasets that often have 
problems consistently discriminating clouds from snow and desert soils, or are mapped at much 
coarser spatial resolution. These improvements are critical for analyses requiring accurate 
relatively high resolution mapping of cloud cover, such as the distribution modeling of plant 
species that might be dependent on clouds. 

Introduction 
 

Cloud cover plays a major role in the Earth’s global climate (Ramanathan et al, 1989) 
and its role in regulating finer scale biological pattern is increasingly appreciated (Gentry, 1992; 
Goldsmith et al, 2013; Sklenár et al, 2008; Sugden and Robins, 1979). Future trends in cloud 
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cover are uncertain (Hansen et al, 1998), but will both affect and be affected by climate change 
(Ackerman and Stokes, 2003), with implications for the biodiversity of cloud forests (Foster, 
2001), among other areas. Besides providing useful climatological information for a variety of 
current applications (e.g., solar energy generation, ecological and hydrological modeling), 
improved mapping of historic global patterns and trends in cloud cover (i.e., a cloud 
climatology) might help toward the forecasting of future cloud cover regimes associated with 
climate change. The spatial resolution of cloud cover maps can be improved due to recent 
advances in daily global satellite imagery, with Moderate Resolution Imaging Spectroradiomter 
(MODIS) data allowing a better understanding of patterns and trends since 2000, and advances 
in Advanced Very High Resolution Radiometer (AVHRR) processing permitting a better 
understanding (but at a coarser resolution than for MODIS, despite the names) back to 1981. 

 
Historic patterns of cloud cover across large areas have not been consistently mapped 

with accuracy at a scale useful for most ecological purposes (i.e., less than tens of km). Historic 
cloud cover maps have generally been of very coarse resolution, especially for any products with 
global coverage. For example, the International Satellite Cloud Climatology Project (ISCCP) has 
used historic satellite imagery back to 1983 (mostly AVHRR) to generate a global record of 
cloud cover at the coarse spatial resolution of 32 to 280 km (2.5 degrees) and temporal resolution 
of days to months (Rossow and Schiffer, 1991; Schiffer and Rossow, 1983). Similarly, the 
Pathfinder Atmosphere (PATMOS) project has generated various cloud products at 110 km (~ 
1degree) resolution using AVHRR data from 1981 to 1999 (Jacobowitz et al, 2003; Stowe et al, 
2002). Slightly finer resolution products have been generated from NOAA’s High Resolution 
Infrared Radiation Sounder (HIRS) for 1979-2001 at approximately 20 km resolution (Wylie et 
al, 2005; Wylie and Menzel, 1999). The spatial resolution of these products fails to match that of 
many other important climate variables that are now commonly available at resolutions on the 
order of a kilometer to several kilometers, despite the availability of historic satellite data at these 
resolutions. Furthermore, the ability of ISCCP data to detect long-term trends in solar radiation at 
the surface (Pinker et al, 2005) has been found to be suspect due to satellite orbital drift and 
resulting viewing geometry inconsistency that affects cloud cover classification (Dai et al, 2006; 
Evan et al, 2007; Norris, 2000). While ISCCP finds decades-long declines in cloud cover, 
processing of HIRS data from 1979-2001 suggests little change in global cloud cover over a 
similar period (Wylie et al, 2005). 
 

More recent processing of both AVHRR (NOAA Pathfinder Atmosphere’s Extended 
climate dataset: PATMOS-x; (Heidinger et al, 2012)) and MODIS (NOAA Cloud Climatology 
product; (Douglas et al, 2010)) provide improvements to cloud climatology in resolution and 
accuracy, but still have some limitations: the PATMOS-x product tends to classify bright desert 
soils as clouds (see Appendix 2.A.1) and the NOAA Cloud Climatology is a relatively simple 
brightness thresholding product that tends to classify anything very bright, such as snow, as 
clouds. Even the MODIS normalized difference snow index (NDSI = (ρband 4 – ρband 6)/(ρband 4 + 
ρband 6); (Hall et al, 1995; Hall et al, 2002)) is not sufficient for consistent cloud and snow 
separation, primarily due to confusion between snow and ice clouds. The utility of MODIS band 
5 for discrimination of difficult-to-separate snow and clouds - due to a relative peak in band 5 for 
clouds, even those that have low reflectance in bands 6 and 7 (Riggs and Hall, 2004) - has been 
more recently noted. But their “peak band 5” ratio [(ρband 4 / ρband 5)/(ρband 5 / ρband 6)] has not been 
incorporated into standard processing of MODIS data. MODIS data are accompanied by more 
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elaborate cloud masks (Platnick et al, 2003), but these have been found to have some systematic 
error when processed over time (see below and Appendix 2.A.2). Significant advances have been 
made with MODIS data in the identification of clouds through spatial and temporal context 
(Lyapustin et al, 2008) and in the separation of clouds from snow using radiometric and 
topographic rules (Miller et al, 2005), but these improvements have not been employed to 
generate a long term cloud climatology, or incorporated into the standard MODIS cloud 
products. 

 
Improvements to and standardization of historic AVHRR data as part of NASA’s Land 

Long Term Data Record (LTDR) project (Pedelty et al, 2007) have helped to set the stage for a 
more accurate long term cloud climatology. This includes a novel band 3 (middle infrared) 
“reflectance” product (provided by the LTDR project as “experimental” (Pedelty et al, 2007) and 
derived by “removing” the thermal component of the band 3 radiance (Roger and Vermote, 
1997; Roger and Vermote, 1998)) that helps to improve the discrimination of snow and clouds, 
in particular. The LTDR project strives for a degree of consistency among diverse sources of 
historic imagery (e.g., AHVRR, 1981-1999; MODIS, 2000-present) to generate a now thirty-plus 
year continuous record of daily land observations from space (http://ltdr.nascom.nasa.gov). Daily 
global LTDR Version 3 AVHRR data at 0.05 degree resolution (7200 x 3600 pixels) can be 
browsed and downloaded from their website (ltdr.nascom.nasa.gov/ltdr/productSearch.html; 
AVH09C1 for radiometric data) and daily tiled MODIS reflectance data at ~500 meter resolution 
can be downloaded from NASA’s LAADS Web (http://ladsweb.nascom.nasa.gov/data/ 
search.html) or from the USGS LPDAAC “Data Pool” (https://lpdaac.usgs.gov/get_data/ 
data_pool; MOD09GA and MYD09GA, respectively, for MODIS Terra and Aqua reflectance 
data). 

 
Each of these satellite data sets is accompanied by cloud mask products - flagged in the 

various bits of the Quality Assessment (QA) field for AVHRR (Pedelty et al, 2007) and the 
“state_1km” Scientific Data Set (SDS) field for MODIS (http://modis-
sr.ltdri.org/products/MOD09_ UserGuide_v1_3.pdf). These products are not well established for 
cloud climatology purposes. The AVHRR LTDR cloud mask product employs the same “Clouds 
from AVHRR” (CLAVR-1; (Stowe et al, 1999)) algorithm of the original PATMOS project, but 
doesn’t appear to have been used to generate a higher resolution cloud climatology. The value in 
the second bit (technically bit number 1, “cloudy”) of AVH09C1’s QA field appears to represent 
all cloud cover (the first bit is supposed to be “partly cloudy” but appears to be always empty). 
The MODIS MOD09GA and MYD09GA cloud state bits (first two, “0 and 1”, of state_1km 
SDS) are derived from the MOD35 cloud mask, which does not always agree with the MOD06 
cloud product (Leinenkugel et al, 2013; Liu and Liu, 2013). There is also an “internal cloud flag” 
in bit 10 (counting from zero, otherwise it’s 11th) that does not always agree with the cloud state 
bits. The first bit (technically bit 0) appeared to best represent cloud cover for MODIS data (but 
see Appendix 2.A.2). These different MODIS products have variable uses, but are often designed 
for a focus on land cover and a desire to ensure cloud-free viewing. The resulting liberal 
approach to classification of clouds can result in haze, ocean glint, and even relatively bright 
surfaces such as snow (Hall and Riggs, 2007) or bare soils errantly classified as cloud. MODIS 
cloud masks have been found to be poor over winter snow cover in China (Wang et al, 2008) and 
even to have large errors of omission and commission of cloud cover in the Amazon (Hilker et 
al, 2012). Inconsistency in MODIS cloud classification related to underlying background land 
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cover has also been identified in an analysis across a whole year of daily data, regardless of 
which bits in the state_1km SDS are used to identify clouds (Wilson et al, 2014). Much of the 
confusion is likely due to the fact that different cloud products have been optimized for different 
purposes – which generally don’t include “consistency for cloud climatology purposes”. 
Identification of various problems has caused frequent changes in algorithms, with new 
“Collections” every few years (Ackerman et al, 1998; Frey et al, 2008). Yet problems persist, 
even in the most recent “Collection 6” (Wilson et al, 2014). Despite differences in sensors and 
cloud cover identification methodology, similar classification confusion issues occur for both 
AVHRR and MODIS, with frequent problems with snow and other bright surfaces.  

 
Some error in cloud cover classification may be unavoidable, especially for some thin or 

partial clouds (where variable degrees of mixing with variable background land cover can create 
a confounding variety of spectral signatures) and what might be “ice clouds” – those with low 
shortwave infrared reflectance, which results in a spectral signature much like snow. (Clouds 
with these characteristics are often assumed to be cirrus, but they can include the tops of 
cumulonimbus and perhaps other types of clouds. The common characteristic is that they likely 
contain frozen water. They will hereafter be simply referred to as ice clouds.) The overlooking of 
thin or partial clouds may not be a gross error for cloud climatology, especially if there are not 
substantial land cover related biases, but the latter problem of ice clouds may be a bigger one. 
These clouds with low shortwave infrared reflectance can be quite common. They can be 
errantly omitted in a cloud classification due to their spectral similarity to snow (Miller et al, 
2005), or contribute to misclassification of snow as cloud (Hall et al, 2002), depending on the 
classification algorithm. These issues can lead to substantial error, and even those errors that 
seem subtle can be magnified across a long-term climatology if systematic. This appears to 
particularly be the case for ice or snow and some bright desert playas. Confusion between snow 
and cloud is especially concerning if one is interested in identifying cloud cover frequency in 
mountainous areas of frequent snow cover, such as is the case for much of the western United 
States. 

 
Clearly there is a need for accurate and consistent (across space and time) cloud cover 

characterization. Optimal cloud cover products likely vary by user. A user interested in subtle 
nuances of land cover (e.g., change in plant productivity over time) would want all hints of cloud 
identified and removed and might not care if clouds were easier to identify and remove over 
particular cover types. A cloud climatology product, on the other hand, should have a particular 
focus on overall accuracy and consistency, minimizing any systematic bias. Spatial (e.g., 
underlying cover types) or temporal bias is concerning for anyone looking for cloud trends in 
space or time.  
 

Given that cloud classification accuracy likely declines for partial and the thinnest of 
clouds, and varies substantially by underlying cover types (e.g., high over water vs. lower over 
bright surfaces), research here did not put a major focus on always capturing the thinnest of 
clouds or partial clouds. Omitting a small portion of clouds in order to avoid commission error 
on oft-confused land-cover types results in an overall increase in accuracy according to an equal 
weighting of those errors – i.e., closer to the [0,1] point (perfect classification) on a receiver 
operating characteristic (ROC) curve (Coffin and Sukhatme, 1997). In addition to the issues of 
improved accuracy and consistency, this approach is defensible for several other reasons. 
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Frequent classification of partial cloudiness (i.e., subpixel clouds) as cloud would result in an 
overestimate of cloud frequency. Additionally, particularly thin clouds do not have an impact on 
surface radiation comparable to thick clouds. Furthermore, each of these hard-to-consistently-
identify cloud cover types might occur in reasonable proportion to the easily mapped cloud cover 
for a given pixel, so the resulting omission might be proportional and the resulting biases 
minimal. Only areas subject to unusually frequent hazy or partial clouds would be exceptions.  
 

The goal of this work is to improve upon existing satellite masks to generate consistent 
cloud classification and resulting climatology. This involves improved discrimination of cloud 
from snow and bright soils, in particular, for both MODIS and AVHRR data. This 
discrimination, and consistency in classification across cover types, may be easier with a slightly 
more conservative cloud classification. In a sense, improved discrimination could be thought of 
as creating a different and steeper ROC curve (higher true positive classification for a given false 
positive classification) compared to the standard product, with decreased commission error (i.e., 
false positives) enhanced by the more conservative classification (Figure 1). Additionally, the 
cloud classification is a balancing act of maximizing this overall accuracy, capturing overall 
frequency accurately, and doing so with consistency across underlying cover types. Figure 2 
illustrates these issues, and shows how accuracy in cloud classification can vary by underlying 
cover type: for example, classification over water has a steep curve because of water’s great 
contrast with cloud, while classification over deserts (and other bright surfaces) will have lower 
accuracy due to the reduced spectral contrast. Technically, these curves are not independent of 
each other unless land-cover specific classification is performed; otherwise classification 
decisions benefiting performance over one cover type will often be at the expense of 
performance over another cover type.  

 
This different performance according to underlying cover type and lack of independence 

in performance among cover types are reasons that many cloud mask algorithms have land-cover 
specific classification according to different “processing paths” (MODIS;(Frey et al, 2008)) or 
“cloud detection surface types” (PATMOS-x; (Heidinger et al, 2012)) – stratification of the 
landscape. This should allow optimization for different cover types and overall improvement, but 
it is dependent on an accurate cover map. Stratification can result in spurious abrupt boundaries 
in cloud frequency that are obvious problems (see Appendix 2.A.2 for MODIS examples), but it 
can also make it more difficult to identify problematic areas. Egregious errors may still be 
present, but relatively concealed, adding an extra layer of complexity in understanding and 
quantifying the accuracy of the product. As a result of some of these concerns, the work 
described here involved a universal mapping of clouds without stratification. 

Data and Methods 
 

Assistance was provided by NASA Ames personnel in acquiring historic satellite data. 
These data consisted of NASA’s LTDR daily AVHRR radiance and reflectance products 
(AVH09C1; 1981-1999), and MODIS Terra and Aqua daily reflectance data (MOD09 and 
MYD09, respectively, for 2000-2012 and 2002-2012, respectively). The NASA Earth Exchange 
Web Portal (NEX) was used for the storage and processing of the satellite data, and the storage 
of preliminarily processed products. AVHRR products are provided in a geographic projection 
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globally at .05 degree (~5 km) resolution. Terra and Aqua products were collected at a nominal 
resolution of 500 meters for 3 gridded tiles (h08v05, h08v04, h09v04) in sinusoidal projection 
(Figure 3). This tile selection was intended to cover all of California, but also covers much of the 
western United States, parts of Mexico and Canada, and a portion of the Eastern Pacific Ocean. 
While AVHRR data are collected at a nominal resolution of 1.1 km, and thus somewhat close to 
that of MODIS, the LTDR data have been processed and distributed at a coarser 0.05 degree (~5-
km) resolution, as a means of data reduction and standardization of the product (e.g., off-nadir 
viewing can greatly enlarge the true ground-sampled area of a given pixel for this wide field of 
view sensor).  
 

Table 1 and Table 2 provide band characteristics for the AVHRR and MODIS sensors, 
respectively. Table 3 gives exact dates for the different NOAA satellites associated with the 
AVHRR data. Table 4, Table 5, and Table 6 summarize the number of good days per month 
from each sensor (AVHRR, MODIS Terra, and MODIS Aqua, respectively), at least according 
to whether the images existed and were not empty or otherwise compromised in a major way. 
Zero values in Table 5 and Table 6 for February, 2000 and August, 2002 for MODIS Terra and 
Aqua, respectively, are the result of not processing the months at the inception of the data since 
they were incomplete. Terra began collecting data in late February of 2000, and Aqua in early 
August (August 8th) of 2002. Zero values in the months before these indicate the absence of data 
for these periods. Empty values after March 2012, on the other hand, correspond to the 
termination of processing for this work. 

 
The tables of “good days per month” indicate the number of days for which images 

existed. However, it was not completely unusual for images – especially early AVHRR data - to 
have gaps/areas of completely missing data within otherwise useful images. These areas would 
be errantly classified as entirely cloud free. These partial images were initially used with no 
attempt at correction for data gaps within otherwise apparently good data. Later processing 
involved determining rules for these gaps and making maps of their frequency. These could be 
used to correct the preliminary cloud frequency calculations. These bad (generally missing) data 
tended to occur more frequently over higher latitudes, especially in the winter months, and 
therefore did not substantially affect preliminary outputs for the initial area of interest of 
California. It was not clear if there was a “bad or missing data” flag accompanying the LTDR 
data that could be processed in any automated manner. 
 

All image data were stored on NASA’s NEX computers for processing. The daily 
(7200x3600) AVHRR images are ~170 Megabytes, and each (2400x2400) MODIS tile is ~70 
Megabytes, so this is approximately 60 Gigabytes per year for AVHRR data and 70 Gb/yr total 
for the 3 tiles of each MODIS sensor. (60 Gb/yr * 18 years) + (70 Gb/yr * 12 years) + (70 Gb/yr 
* 10 years) = ~2.6 Terabytes for the entire data record.  Even processing of the data to simple 
daily cloud masks added hundreds of Gb of data. AVHRR data were initially only processed for 
a (2000x1000) window of North America south of 55 degrees latitude, including much of the 
eastern Pacific and western Atlantic, so as to keep the cloud classification optimized for areas of 
interest and to reduce dataset size (by over an order of magnitude compared to global). This main 
subset consisted of pixels 600:2599 in the horizontal and 700:1699 in the vertical, from top left. 
Given .05 degree resolution, this corresponds to ~5.05° N to 55.05° N, and 150.05° W to 50.05° 
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W. Far northern latitudes were also not considered because of limited sunlight during the winter 
months and increased snow and cloud confusion.  

 
Data sources of note that were not used include MODIS thermal bands and other MODIS 

1 km resolution data, such as the “Cirrus” band (channel 26, 1.38 um). MODIS radiance data for 
Channel 26 and thermal wavelengths are only available as “Level 1” swath data, meaning they 
require a “swath to grid” conversion and the use of the MODIS Reprojection Tool. The difficulty 
in applying these conversions to thousands of images, uncertainty about their utility in improving 
cloud classification, and concerns about their coarser 1 km resolution contributed to the decision 
not to explore their use.1 MODIS thermal data are also available in a more processed, gridded 
format as “land surface temperature” (LST), but there are still concerns associated with the 1 km 
resolution, the lack of any data provided where a potentially inaccurate cloud mask has been 
applied, and its utility in improving cloud classification consistently. Thermal information is not 
a consistent physical characteristic of a surface, and can be unreliable for classification purposes, 
especially without accompanying meteorological information. 
 
AVHRR Processing 

The standard cloud mask was extracted from the AVHRR dataset, but as described in the 
AVHRR section of “Problems with Cloud Masks” (Appendix 2.A.1), was found to be very 
liberal in its definition of cloud, and included many areas of non-cloud, such as haze, sun glint on 
water bodies, and snow. A custom classification was developed to remove many of these 
problem areas. This custom classification focused on the three major problems associated with 
the standard cloud mask (haze/thin clouds, sun glint, and snow) and other problems associated 
with unusual band behavior (e.g., reflectance values in various bands at or below zero, or above 
one).  

 
The custom classification of clouds for AVHRR relied upon the manual determination of 

a series of thresholds (rules) in various bands and band ratios. These were derived in 
MATLAB® (The MathWorks, 2011) through extensive querying of values from clouds, snow, 
and other surfaces evident in multiple dates of AVHRR imagery. These surfaces were identified 
on individual images from a combination of reflected, thermal, and contextual information. See 
Figure 4 for a basic overview of the processing and Appendix 2.B.1 for MATLAB code 
containing the exact rules.  
 

First, hazy atmospheres (or possibly some very thin or partial clouds) were removed from 
consideration as cloud by requiring band 1 (red) reflectance to be greater than 0.12. Secondly, it 
was observed that what is commonly referred to as ocean glint (sun glint) tended to have 
unusually high “radiance” values for band 3 compared to band 1 reflectance. (Here referring to 
the raw band 3 product as radiance, because it has both the thermal and reflected contribution.) 
Clouds were therefore considered to have band 1 reflectance exceeding a threshold related to 
their band 3 radiance (band1 > (band3*9-2.45)), or, to account for some clouds with unusually 

1 Miller et al. (Miller et al, 2005) used the MODIS Cirrus band in their cloud/snow discrimination, in combination 
with a digital elevation model; water vapor in the lower atmosphere tends to absorb most of the radiance at 1.38 um, 
allowing high clouds (often cirrus) to stand out as brighter. But elevated areas can sometimes show surface returns 
in the Cirrus bands due to their thin - and often relatively dry – atmospheres. 
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low band 1 reflectance, a normalized difference of band 2 (NIR) and band 1 (red) [(ρNIR – ρred)/( 
ρNIR + ρred)] greater than 0.1. This ratio (Rouse Jr et al, 1974) is generally called the Normalized 
Difference Vegetation Index, or NDVI. It is not intended as a vegetation index here for these 
exceptional cases of radiometric problems. Clouds should generally have NDVI ≈ 0 (ρNIR = ρred), 
but if their red band is anomalously low, their NDVI will be anomalously high, assuming that the 
near infrared band is not similarly anomalous. Other rules prevent the selection of vegetated 
areas by this rule alone. Thirdly, clouds were differentiated from snow based primarily on their 
band 3 “reflectance” component as well as a normalized difference ratio of band 3 radiance and 
band 4 radiance [(radband3 – radband4)/(radband3 + radband4)] (which should also get at the reflectance 
component of band 3, since the thermal portion of band 3 should be somewhat proportional – if 
relatively gray body behavior in emission - to band 4, which is essentially all thermal). The 
LTDR-provided band 3 “reflectance” product and my normalized band 3 vs. band 4 ratio are 
very similar but not duplicates. Much more effort went into the creation of the band 3 
“reflectance” product (Roger and Vermote, 1997; Roger and Vermote, 1998), but there’s still 
some useful independent information in the normalized ratio. (See Table 7 for a list of various 
normalized ratios used in processing imagery.) Snow, with low reflectance in the spectral region 
covered by band 3, tends to have lower values than clouds in these products (although optically 
thick cirrus clouds with large ice crystals can be an exception (Miller et al, 2005)). Relatively 
high band 1 reflectance and the typically low NDVI of clouds were additionally used along with 
some variants on these band 3 related rules to assist with particularly problematic pixels. 

 
Special exceptions to the above set of rules were made for pixels with unusual band 

behavior, often covering large areas of AVHRR data. In the cases where band 1 or band 2 
anomalously exceeded 100% reflectance or had reflectance less than or equal to zero, band 3 
rules (high values in band 3 “reflectance” and the normalized difference band 3 vs. band 4 ratio) 
were incorporated to capture clouds. In cases where band 3 had reflectance less than or equal to 
zero, relatively high values in band 1 reflectance and the normalized difference band 3 vs. band 4 
ratio were indicative of clouds. Final cloud cover was determined according to those pixels that 
met the criteria of either of these two exceptions, or for those that met all three criteria in the 
previous paragraph. 

 
The above-described custom cloud classification fixed most of the AVHRR cloud mask 

problems (or at least created a reasonably accurate conservative cloud cover classification) but 
was still imperfect, due to some of the limitations of coarse-resolution, band-limited, and noisy 
AVHRR data. Noticeable problems persisted in select desert areas – playas and those that 
happen to have reddish soils (“happen to” because their true color is not evident with AVHRR – 
red soils must have other characteristics that make them confounding in AVHRR bands). 
Subtracting the standard LTDR cloud frequency from my custom classification cloud frequency 
led to a mask for these areas [within a 570:1010, 160:670 geographic box (x,y, from the top left) 
within my already existing subset; this corresponds to a northwest corner of 47.05 N, 121.55 W 
and a southeast corner of 21.55 N, 99.55 W: encompassing arid lands of the western U.S. and 
northern Mexico]. These arid lands were the only areas where I mapped clouds with a greater 
frequency than the LTDR cloud mask. This was clearly due to an overestimate in my 
classification rather than an underestimate in the LTDR product. Consequently, I recoded my 
monthly cloud frequency values of pixels within this mask area to those of the LTDR product if 
my monthly value exceeded the value of the standard product. This post-processing led to a halo 
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around some desert areas (particularly obvious over playas) in resulting cloud frequency 
products that were similar to halos in the products derived from the standard cloud masks. (See 
Appendix 2.A.1: It is speculated that the standard cloud product took advantage of a land cover-
based mask for these areas, and that their mask was not perfect – either not as extensive as it 
should have been, or slightly offset in its registration.) 
 

The custom cloud classification algorithms were applied in MATLAB to generate daily 
.mat cloud-mask files. These were aggregated to monthly and annual products (both as 
cumulative sums and as cloud frequency as a percentage of the good data for a given month). 
Monthly products were exported to ASCII grids that could be incorporated into ArcGIS for 
easier manipulation (e.g., reprojection) and analysis. (Daily .mat cloud masks could be analyzed 
in MATLAB, but were too numerous to systematically convert to other more manageable 
formats.) Various derived products could then be generated in ArcGIS from these individual 
monthly products. For example, linear trends in monthly and annual cloud frequency were 
generated for both the standard AVHRR LTDR cloud product and the custom cloud product. 
Monthly regressions, ignoring any missing month, were calculated first, and the annual trend was 
determined as the average of the monthly regressions. This averaging approach can lead to slight 
biases related to the differing numbers of good data (and trend duration) in each month, but it 
also makes use of the most possible data, including different start years.  
 
MODIS Processing 

The lack of a truly standard cloud mask for MODIS data, and concerns about the 
accuracy of the various cloud masks that were assessed (see Introduction and Appendix 2.A.2), 
led to the development of custom cloud masks for MODIS data as well (see Appendix 2.B.2 for 
MATLAB code). The final process for standard MODIS imagery (i.e., those data without 
substantial problems - discussed below) consisted of two major stages with several steps. In the 
first stage, the very spectrally similar clouds and snow were first separated from everything else 
on imagery using visual examination of images and manual generation of classification rules (see 
Figure 5 for a basic overview). With clouds and snow separated from everything else, focus 
could be turned to a second major stage comprising three steps to separate clouds from snow (see 
Figure 6 for a basic overview): 1) a series of classification trees (Breiman et al, 1984) was 
generated from a progressively increasing set of manually collected training samples to separate 
clouds from snow; 2) the resulting preliminary classification of clouds and snow was used to 
automate placement of a large number of cloud and snow training samples, with visual/manual 
quality assurance and control; and 3) the final classification tree model was generated with the 
vastly increased set of points and an increased set of predictor variables. Before describing these 
steps in greater detail, it is worth discussing some of the challenges encountered in 
discriminating clouds (from snow, especially) and their attempted remedies.  
 

Extensive analysis of color composites of multiple dates of MODIS Terra and Aqua 
scenes was initially conducted (in ENVI version 4.8 (Exelis Visual Information Solutions, 
Boulder, Colorado) and MATLAB) to ascertain whether spectral rules could be manually 
generated for consistent discrimination of cloudy and clear pixels. The use of color composites 
(generally false color composites) allows the simultaneous display of multiple dimensions (i.e., 
reflectance at difference wavelengths) necessary for identifying combinations of spectral 
information helpful in differentiation. Figure 7 shows a variety of MODIS Aqua color 
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composites over southern California from a mostly cloudy day in February of 2010. The Sierra 
Nevada (top-center of each image) has extensive snow cover, as do a few other scattered ranges. 
Discriminating cloud and snow is not possible in Figure 7.A (top), a true color composite (i.e., 
red, green, blue (RGB) channels = band 1, band 4, and band 3, respectively (1-4-3)). Even Figure 
7.B (middle), a 7-2-1 band combination (RGB = SWIR, NIR, Red), would fail to consistently 
distinguish all clouds from snow. Many clouds in this image have the strongly reduced band 7 
reflectance often associated with ice clouds, resulting in the same cyan color as the snow covered 
areas. (Note the bright clouds on the west edge that are magenta in this particular composite. 
This is a result of saturation in the NIR band, causing an unusual negative value that got treated 
as a zero in the green band in the color composite.) Only with information in the 7-5-1 color 
composite in Figure 7.C (bottom) can most types of clouds be consistently separated from snow 
covered areas. This is because ice clouds have a relative peak in band 5 compared to snow 
covered areas (Figure 8). Ice clouds continue to have a cyan appearance in a 7-5-1 display, while 
snow covered areas appear blue, as they are dark in both of the SWIR bands (bands 5 and 7).  
 

The use of many dates of imagery is important for understanding the amount of 
variability that needs to be accounted for. Figure 9 reveals the spectral variability that can be 
found among different clouds – their spectral “signatures” in MODIS (technically, bands 3 and 4 
(blue and green, respectively) should be moved to the left of band 1 for a more true signature; 
this should not matter much, as clouds should also be very “flat” in their reflectance from bands 
1 through 4 – the fact that they are not here appears problematic). This variability demonstrates 
that spectral processing techniques dependent on unique signatures (e.g., spectral unmixing) are 
not appropriate for cloud characterization. The use of many dates is also essential to ensure that 
image variability, atmospheric variability, and seasonal patterns in land cover type and 
illumination are accounted for. It also helped to reveal the various sensor problems that have 
arisen over time – particularly with MODIS Terra bands 3 and 5 (see “MODIS Imagery 
Problems” section below for discussion of how these impacted the cloud classification). 
Consistent discrimination in space and time is critical – it seems that many cloud classification 
algorithms only solve the simplest situations. For example, as alluded to above, snow is easily 
distinguished from clouds in MODIS bands 6 or 7 if one never considers the difficulty posed by 
ice clouds. Ice clouds reveal that band 5 is just as important as the conventionally recognized 
bands 6 and 7 for consistent snow and cloud separation. And it’s not just clouds that show 
variability. Spectral characteristics of snow can change over time due to factors such as dust and 
variable snow grain size (Painter et al, 2009). Snow and clouds can also be spectrally mixed with 
a variety of surfaces, making their discrimination even more difficult.  
 

Snow and clouds together, however, are quite spectrally distinct from most other land 
cover types. Few other land cover types exhibit such “grayness”, or spectral flatness, across the 
true color bands. Bright desert areas, and even bright desert playas, tend to be separable from 
clouds and snow based on their relatively high red reflectance compared to their reflectance in 
other visible bands. Even dark water looks very blue in a modified true color display when 
average true color reflectance [ρaverage = (ρred + ρgreen + ρblue)/3] is used to calculate the 
normalized difference for each of the visible channels (e.g., NDred = (ρred - ρaverage)/( ρred + ρaverage) – 
see Table 7). Figure 10 and Figure 11 show the difference between a standard true color 
composite and a composite with brightness-normalized color deviation, respectively, for a 
MODIS Aqua image in January of 2010 over much of California and Southwestern deserts. 
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These images have both clouds and snow. Each is bright in the former and dark in the latter. But 
desert soils, which can often be confused with snow and cloud due to their brightness, are clearly 
very red in the brightness-normalized color deviations. Unusual green halos are seen on the far 
periphery of thin clouds over the ocean in the brightness-normalized product. Comparison with 
the standard true color image reveals that these areas are not evident as clouds – they are not 
bright. Their unusual green color suggests a problem with MODIS atmospheric correction – 
perhaps these areas were not (or were) (in)appropriately identified as clouds during atmospheric 
processing.  
 

Separating clouds from snow is a greater challenge, especially due to the potential for 
confusion between snow and ice clouds. Since each tends to be spectrally flat in the visible and 
near-infrared bands, shortwave infrared bands (5-7) are very useful for their discrimination. 
Unfortunately, MODIS Aqua band 6 had frequent unusual radiometric values. This has been 
noted by others (Wang et al, 2006) and band 7 is now used as a substitute for band 6 in standard 
Aqua processing for snow cover, etc. This is often considered a problem for Aqua data, but I 
have not noted discernible difference in the utility of band 6 and band 7 – they are very highly 
correlated over all cover types and clouds. As a result, this project focused on the use of band 7 
instead of band 6 for both Aqua and Terra. 

 
Figure 12 shows that bands 1 and 7 (like the aforementioned NDSI based on the 

normalized difference of the respectively similar bands 4 and 6) are not sufficient to separate all 
snow from all clouds. Isolines of a normalized difference of bands 1 and 7 (i.e., nd17, analogous 
to NDSI) would plot as diagonal lines radiating from the origin in the scatterplot in Figure 12, 
with higher values toward the upper left of the scatter. Those pixels with extremely low band 7 
reflectance (x-axis in scatterplot) but moderate to high band 1 reflectance (y-axis in scatterplot) 
have high nd17 values and are mostly snow (highlighted by the software tool as a big patch of 
red over Sierra Nevada of California in upper-middle portion of image) but include some clouds 
(highlighted by the software tool as small spots of red over ocean off the coast of Point 
Concepcion on left-middle portion of image). Furthermore, some mixes of snow, rock, and 
vegetation can have spectral similarities to clouds - probably because they are similar to hazy 
clouds over vegetation and/or soil. Adding some amount of shadow to either of these can make 
discrimination even more difficult. 
 

The generation of other normalized band ratios, in addition to nd17, can assist with the 
discrimination. Given that band 5 was an important addition for separation of cloud and snow in 
color display, it is logical that indices involving band 5 would be useful. The normalized 
difference of bands 1 and 5 (nd15), as well as a version with an offset to band 5 (nd15sub) were 
developed. The offset (subtraction of 0.2 from band 5) provides a different origin to the isolines 
of the ratio in band 1 vs. band 5 spectral space (essentially providing different axes of 
separation), helping with the separation of clouds and snow under different conditions. The 
normalized difference true color bands also proved somewhat useful in snow and cloud 
separation, as snow mixing with vegetation and/or soil/rock was slightly more likely to have a 
green or red tint than spectrally similar clouds, which tend to have a slightly blue tint. (One could 
speculate that this relates to less of the blue light reflecting off the cloud having been scattered 
by the atmosphere on its return path; shorter wavelengths such as blue are scattered more and a 
cloud has less atmosphere above it; atmospheric correction of the imagery might not have 

22 
 
 



 

perfectly handled all of these factors.) Finally, using various summed ratios as variables in the 
classification trees was also found to be helpful – it essentially allows partitions to occur on 
multi-dimensional diagonal surfaces (hyperplanes) with respect to the original ratios, somewhat 
like a support vector machine; otherwise partitions can only be orthogonal to the original ratios. 
See Figure 13. This allows for various degrees of exceptions to thresholds according to 
magnitudes in other criteria. 

 
Given the potential for greater spectral similarity between snow and clouds, the first step 

in cloud classification, as mentioned above, involved generating a product including both cloud 
and snow (i.e., separating clouds and snow from everything else). Relatively small deviations in 
each of the true color band reflectance values from average true color reflectance (as described 
above), provided the first set of rules used to separate clouds and snow from other land cover 
types (i.e., clouds and snow are more gray, with lower deviations). Slightly larger positive blue 
deviations and more negative red deviations were allowed for clouds and snow, due to the 
aforementioned tendency of desert soils to be more red than blue. Only small deviations were 
allowed in the green band, due to potential confusion with vegetated areas. A few additional 
rules are required to augment the true color rules to ensure accurate capturing of snow and cloud. 
For example, near-infrared reflectance is required to be greater than 0.12. This prevents very 
hazy areas and sun-glint on water from being called cloud. (This may remove some very thin 
clouds over the ocean from consideration as cloud, but the goal is a more conservative and 
consistent cloud cover product, and this level of cloudiness would not be evident over bright 
surfaces.) Additionally, pixels have to either be moderately bright in the visible bands (ρred + 
ρgreen + ρblue > 0.9) or have moderately high normalized difference ratios of blue reflectance to 
band 5 reflectance or band 7 reflectance (i.e., nd35 or nd37). 2 These rules capture the vast 
majority of moderately obvious clouds and snow without including other cover types. (One final 
set of rules was required to add unusually bright pixels that had aberrant negative or zero NIR 
reflectance values and non-zero values for red reflectance; these pixels that had likely saturated 
the NIR detector are almost always clouds, though there may be rare exceptions of very bright 
snow.) 

 
With the accurate separation of clouds and snow from everything else achieved, the focus 

switched to the necessarily more automated discrimination (due to the difficulty) of clouds from 
snow. The separation of clouds and snow was performed in a three-stage process. In the first 
stage, values in an initial set of six indices for clouds and snow were manually collected in 
MATLAB through the querying of pixels on images from multiple seasons and years. A series of 
classification trees (Breiman et al, 1984) was generated in R (with mostly default settings of the 
rpart function (Therneau et al, 2010)) from a progressively increasing set of manually collected 
training samples. Ultimately, a limit in accuracy appeared to be reached with this initial set of six 
indices when the training set reached approximately two thousand training samples from a 
variety of clouds and snow. The tree developed from this training set was used to generate a 
preliminary classification of clouds and snow. The second stage of the process involved placing 

2 Band 3, blue, was used here instead of band 1, red, which was later used in similar ratios optimized for snow-cloud 
separation. This is because bright deserts tend to be reddish and relatively low in band 3, contributing to their 
desired lower values in the ratio. Band 1 is used for the snow-cloud separating versions, because the greater 
atmospheric contamination in band 3 can make snow look more cloud-like. 
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random points within each of these classes, in several image dates, in an automated fashion 
(using Hawth’s Tools (Beyer, 2004) in ArcGIS 9.3). A higher density of points was placed in 
areas associated with greater confusion between cloud and snow (from the classification tree’s 
terminal node classification statistics). All points were evaluated for correct assignment based on 
spectral characteristics and context using visual interpretation. Some were manually re-assigned 
to their correct class, if necessary, and some were deleted if their correct class was too difficult to 
determine (e.g., very thin or partial cloud over a snow covered area). The third stage involved 
using the approximately 22,000 resulting points in a second round of classification trees. This 
second set of classification trees incorporated additional variables such as the summed ratios 
described above and included slight variations in variable sets as well as the rpart function’s 
complexity parameter. The optimal tree for the final rules was chosen from this final suite based 
on apparent performance on a variety of MODIS images.  

 
In addition to a custom daily cloud mask, a custom daily snow mask was generated for 

MODIS (both Aqua and Terra) data. This was easily generated, as the initial cloud and snow 
mask was derived first and subsequent derivation of clouds left a snow mask as the remainder.  

 
Just as was done for the AVHRR data, classification algorithms were applied in 

MATLAB to generate custom daily .mat cloud-mask files. These were aggregated to monthly 
and annual products (both as cumulative sums and as cloud frequency as a percentage of the 
good data for a given month). Monthly products were exported to ASCII grids that could be 
incorporated into ArcGIS for easier manipulation (e.g., reprojection) and analysis. This involved 
first merging each of the monthly sets of 3 MODIS tiles in their native sinusoidal projection in 
MATLAB before export. Various derived products could then be generated in ArcGIS from 
these individual monthly products, including reprojections to more commonly used formats, such 
as the geographic projection of the AVHRR data. Daily .mat cloud masks could be analyzed in 
MATLAB, but were seen as too numerous to convert to other more manageable data types. 
 
MODIS Imagery Problems 

Beginning in 2007, striping in band 5 of MODIS Terra data became apparent in viewing 
false color composites. This is concerning, given the importance of band 5 in separating ice 
clouds from snow. The contaminating effect could be difficult to detect if the resulting pixel 
values (i.e., appearance on imagery) were not particularly anomalous. Special spectral rules were 
developed to identify bad band 5 areas that were likely over cloud or snow (Figure 14 for a basic 
overview of the rules and the latter part of Appendix 2.B.2 for detailed MATLAB code), as band 
5 is used in the first stage of processing to separate clouds and snow from everything else. 
Additional spectral rules were generated for the affected pixels that could be identified, to try to 
attain reasonable discrimination of cloud and snow without the use of band 5 (Figure 15 for a 
basic overview of the rules and the latter part of Appendix 2.B.2 for MATLAB code). The 
correction was moderately successful, and rendered the problem minimal, since the striping only 
affected a portion of the imagery, and ice clouds aren’t as common as other clouds. However, 
beginning near the very end of 2007, a more serious problem became evident for Terra’s band 3 
(blue channel). This had an inordinate effect on cloud discrimination, as the model was heavily 
dependent on clouds (and snow) having spectral flatness in the true color bands. The problem 
became progressively worse over the 2008 year. A rough fix of band 3 (rather than any changing 
of the model) on data beginning January 1, 2008 was attempted based on scan angle. The 
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magnitude of the problem tended to be correlated with sensor zenith angles in the backscatter 
(high sensor azimuth) direction. A simple linear correction (subtraction) to the blue band 
according to sensor zenith angle in the backscatter direction was applied (Figure 16 for a basic 
overview of the rules and the end of Appendix 2.B.2 for MATLAB). 3 The correction reduced 
the faulty blue band issue, but fairly substantial banding patterns remained; this is problematic, 
as the cloud and snow masking is heavily reliant on, and sensitive to error in, spectral flatness in 
the true color bands. The effectiveness of the correction across all images was difficult to assess. 
Alternatives, such as removing the true color criterion or relying on only the green and red bands 
to establish true color grayness, were not investigated thoroughly, but were not thought to offer 
improvement. In the end, substantial blanket omission of clouds was evident on select images. 
Overall cloud frequencies did not appear to be affected in a substantial way at first, but lowered 
frequencies in comparison with Aqua results led to likely spurious long-term trends. (See the 
Results section.) 
 
Accuracy Assessment 

Solar radiation values from three micrometeorological towers (Soaproot Saddle = -
119.256 , 37.031 , 1160 meters ; Providence Creek = -119.195 , 37.067 , 2015 meters ; Short 
Hair Creek = -118.987 , 37.067 , 2700 meters) collecting ½ hourly weather data at 55 meter 
height on an elevation transect on the west slope of the central Sierra Nevada were used to 
determine daily cloud conditions near satellite overpass times. These data were collected as part 
of the Southern Sierra Critical Zone Observatory project (http://criticalzone.org/sierra/; (Goulden 
et al, 2012)). The data available from various multi-year windows from 2008 to 2012 could be 
compared with some of the more recent data from MODIS for a ground-based attempt at 
accuracy assessment of the cloud classification. 

 
Ideally it would be possible to get a ground-based estimate of cloud cover at the exact 

time of satellite overpass. (Even more ideally, to be fair to the classification, cloud cover would 
be assessed from the ground with respect to the satellite’s position at the time of image 
collection!) This is difficult to acquire without advance knowledge of satellite overpass time, as 
solar radiation measurements, for example, may not be made with sufficiently fine temporal 
resolution. Even those from flux towers with historic half-hourly measurements will generally 
not perfectly coincide with satellite overpasses. Selection of the optimal half-hourly 
measurement for comparison is made more difficult by the fact that the MODIS overpass times 
are quite variable: MODIS Terra tends to pass over the Sierra Nevada of California, for example, 
at about 11 AM +/- 1 hour. Similarly, MODIS Aqua passes over the mountain range at about 1 
PM +/- 1 hour. Selecting the solar radiation measurement that most closely coincides with each 
of the two daily overpasses is a complex task for automated processing. It is much easier to 
select a particular time for each overpass each day. Given the potential time window of overpass 
for each sensor, the median of three half-hourly measurements (11 AM +/- 30 minutes and 1 PM 

3 Unfortunately, MODIS viewing geometry information is only available at ~1 km resolution, so even with 
resampling to the finer resolution of reflectance data, the data are inherently coarser than the spectral information. 
There is also an apparent problem in that the viewing geometry data do not always perfectly align with brightness 
differences in the imagery that should be related to viewing geometry differences, considering common bidirectional 
reflectance behavior; this suggests a disconnect between the two (i.e., likely error in the viewing geometry 
information). 
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+/- 30 minutes) that most closely coincide with each mean overpass time was selected. This 
approach should both filter any anomalous data and provide an approximation of the most likely 
level of solar radiation over this hour long period.  
 

The computed level of solar radiation can then be compared against the monthly 
maximum (i.e., maximum of the medians) for that time period to get a percentage index of 
radiation for a given overpass (100*daily value/monthly maximum). It was expected that clear 
days would have a value of >90 or >95 percent according to this index, with the differences 
related to variable illumination over the course of a month and some level of atmospheric 
variability. In fact, clear-day (determined from same-day MODIS imagery) values could be a bit 
lower than this expected value – and were allowed to be lower - often down to 65 to 80 percent, 
depending on the site. It is unlikely that this is entirely due to monthly illumination variability 
and atmospheric variability. It seems more likely that much of this is the result of “artificially” 
inflated monthly maxima due to reflectance off of nearby cloud formations: some of the days of 
monthly maxima appeared to be partly cloudy near the flux tower locations. 

 
Other climate station data were used to evaluate the AVHRR and MODIS cloud 

classifications as well. For example, as part of an effort to use the cloud classifications in an 
analysis of trends in California Central Valley winter Tule fog (Baldocchi and Waller, 2014), the 
satellite-data-derived fog product was compared with climate station estimates of fog. This 
included estimates of fog days based on a custom interpretation of California Irrigation 
Management Information System (CIMIS; www.cimis.water.ca.gov/cimis/data.jsp) climate 
station data for Shafter, California (35.533° N, 119.281° W), in the southern San Joaquin Valley 
near Bakersfield, which has daily climate data spanning the duration of imagery processed in this 
study. This custom model was manually developed, based on values during obvious fog days as 
determined from satellite data. Fog days were modeled according to daily solar radiation values 
averaging less than 96.9 watts/m2 (200 Langleys/day), precipitation less than 1 mm, and 
maximum minus minimum temperatures less than 10 °C. Relative humidity measurement was 
deemed too inconsistent and error-prone to be included in the model.  

 
The snow cover “climatology” that was simultaneously generated for MODIS data could 

also be used as a form of cloud cover classification accuracy. All classification as snow for areas 
that should never have snow cover (e.g., water bodies, low elevations in much of California) can 
be considered commission error in the snow product. Other than some bright desert playas that 
might be classified as snow, these errant snow classifications could also be considered as 
omission errors in the cloud product. Obviously, this assessment only covers a portion of 
possible cloud classification error, but it is likely to be a large one. Another partial assessment of 
classification on cloud vs. snow (for MODIS only) includes classification tree performance on 
training data for clouds and snow. This assessment occurred for both particularly difficult (i.e., 
spectrally similar) training pixels of cloud and snow, as well as a more general set of cloud and 
snow pixels.  

 
Classification accuracy can be measured in a variety of ways, even for a simple binary 

classification of “cloud” vs. “not cloud”. In addition to simple overall accuracy (quantity 
correctly classified divided by total), user’s and producer’s accuracy (related to errors of 
commission and omission, respectively) can also be reported. These measures do not account for 

26 
 
 



 

marginal frequencies (i.e., class proportions) and the resulting possibilities of chance agreement 
that have nothing to do with the ability of the classifier. The modified Kappa statistic (Foody, 
1992) accounts for the chance agreement that would arise based on the proportions of each class, 
both in truth and in the classification. The Tau statistic (Ma and Redmond, 1995) accounts for 
the same chance agreement due to actual class proportions, but with equal probabilities for each 
class in the classification, given that the classifier may have no knowledge of actual class 
proportions a priori. Each of these statistics is used in various parts of the accuracy assessment 
performed here.  

Results 
 
AVHRR 

Long-term annual cloud frequency derived from the main subset of AVHRR data over 
southern North America plus adjacent oceans is shown in Figure 17. This is the product after 
correction of aberrant values over southwestern deserts through comparison with the standard 
LTDR cloud product. Subtracting the corrected cloud frequency from cloud frequency derived 
from the LTDR cloud product for the month of January (Figure 19) is revealing. Areas where the 
desert mask/comparison was applied are black because the frequencies differ little, if at all, here. 
Water bodies north of 50 degrees are also black (actually negative values) due to the LTDR 
cloud mask not applying to these areas in winter (and not north of 60 degrees over land). Bright 
areas in the subtraction product indicate locations where the LTDR standard product mapped 
clouds with much greater frequency. This includes snowy areas of the Sierra Nevada, Central 
Rockies and the Great Plains. These should not be mapped with such high frequency in the 
standard LTDR product. For example, quick perusal of multiple dates of daily MODIS winter 
imagery over the Great Lakes reveals that the lakes should be mapped with a greater frequency 
of cloud cover in January than the adjacent land areas of the upper Midwest and northern Great 
Plains (i.e., “Lake Effect” clouds). The standard LTDR product is doing the opposite of this, 
obviously because of confusion between snow and cloud. Many other land cover boundaries also 
turn up in this subtraction product, including coastlines; these are the result of unusual patterns in 
the LTDR product. The LTDR product also mapped clouds with much greater frequency over 
oceans. These were often thin or partial clouds that the custom product (somewhat intentionally) 
missed, but they also tended to include a lot of sun glint and other non-clouds. 

 
Spatial patterns in the custom AVHRR-based annual cloud frequency product in Figure 

17 and Figure 18 do not show the many obvious patterns related to abrupt land cover boundaries 
that plague the standard LTDR cloud product (see Figure 38 at the end of Appendix 2.A). There 
is obvious variability related to broad ecoregional boundaries (North America CEC Level I 
ecoregions (Commission for Environmental Cooperation (Montréal, Québec). and Secretariat, 
1997)), but this is to be expected. The Great Lakes no longer stand out as an area of strikingly 
low cloud cover compared to their surroundings, primarily because snowy surrounding land is no 
longer classified as cloud with such high frequency in the winter. The custom AVHRR-derived 
product is at a much coarser resolution than the MODIS-derived product, but allows the analysis 
of cloud frequencies back to 1981. For example, it helped to extend the analysis of trends in 
California Central Valley winter Tule fog back to the 1981-82 fog season (Baldocchi and Waller, 
2014). AVHRR data are also useful for the synoptic viewing of patterns across large areas that is 
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more difficult to achieve through MODIS processing. For example, particularly low values of 
cloud frequency can be seen for the Caribbean, the Gulf of Mexico north of the Yucatan 
Peninsula, off the west coast of Mexico, and off the east coast of the United States. The north 
Atlantic stands out for its high cloud frequency, in addition to other areas that are not as 
surprising (e.g., Pacific Northwest and tropical mountains). The west coast of Newfoundland, in 
particular, is especially high in the winter months, and this is likely fog as well. Other areas with 
high winter cloud cover that are likely fog include the Great Lakes, the Rogue River Valley of 
southern Oregon around Grants Pass and the Port Alberni area of Vancouver Island, British 
Columbia. Many of these patterns are not evident in other products that frequently confuse 
clouds and ice/snow. 
 
MODIS 

Figure 20 shows monthly cloud frequency from MODIS Aqua from approximately 2002-
2012 (beginning and end years vary slightly by month) for California and areas of adjacent 
Oregon. Even though it does not have as long of a record as the Terra product, the Aqua product 
is likely the best for average cloud climatology purposes, because it did not have any of the 
problems that were associated with the Terra data. While the MODIS products do not have quite 
the temporal extent of AVHRR, limiting long-term trend analyses, they do have the improved 
spatial resolution and likely improved accuracy necessary for more detailed analysis of spatial 
patterns in cloud frequency. These products capture fine resolution in mountainous areas like the 
Sierra Nevada (outlined within California in Figure 20 with the Jepson floristic ecoregion 
(Hickman, 1993)) necessary to capture the mountain range’s high frequency variability in clouds. 
The west slope of the southern Sierra Nevada, in particular, stands out as an area of high cloud 
frequency from February to May, and again during October and November. Higher elevations to 
the east (evident as high cloud frequency during July and August summer monsoon period) are 
not mapped as high cloud frequency during the winter, despite their frequent snow cover. 
California’s Central Valley (just west of the Sierra Nevada) Tule fog is notable, especially in the 
southern part – the San Joaquin Valley, in the January cloud frequency image, and to some 
extent in the December image. The fog can occur in November and February as well, but is 
swamped by overall cloud frequency during these months. After applying a spatial filter to 
separate fog from general cloud cover (Baldocchi and Waller, 2014), the fine resolution and 
accuracy of the MODIS data allows a portion of the San Joaquin Valley between Hanford, 
Corcoran, and Tulare to be identified as the hotspot of Central Valley fog, at least from 2000-
2012. 

 
A direct comparison between April cloud frequencies derived from the Aqua custom 

classification and the Aqua standard cloud mask (Figure 21 and Figure 22, respectively) reveals 
differences that appear subtle, at first, but that have large implications. The standard cloud mask 
maps clouds with greater frequency over snow-covered areas of the Sierra Nevada, especially 
over areas with a lot of bare rock, such as northern Yosemite National Park. That much of this 
extra cloud cover is likely error due to the effects of bright snow and rock is revealed by dividing 
the standard cloud frequency product by the custom cloud frequency product (Figure 23). The 
tendency for bright deserts to be errantly classified as clouds in the standard data is also evident 
in this quotient product as bright areas across the bottom-right portion of the image. (Subtracting 
the two products instead of dividing yields a similar figure, but doesn’t highlight as well the 
greater tendency for the standard product to classify desert areas as cloud, due to the lower 
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frequencies and absolute differences.) The distribution of giant sequoia (Sequoiadendron 
giganteum (Lindl.) Buchholz) is overlaid in red on these figures to demonstrate the problem 
posed by cloud classification error: the correspondence of the tree with the high frequency of 
cloud cover on the west slope of the southern Sierra Nevada seen in Figure 21 is not nearly so 
evident in Figure 22 due to general increases in cloud cover mapped all over the snowy (and 
rocky) regions of the Sierra Nevada. This would obviously hinder an assessment of the extent to 
which the tree’s distribution might be related to cloud cover (see Chapter 3). 
 

Comparison between the cloud frequency results for the MODIS Aqua and Terra custom 
classifications reveals some problems with the latter. Subtracting Terra-derived monthly and 
annual cloud frequency from Aqua-derived equivalents (see Chapter 3, figures 25 and 26 for 
March and April versions) reveals that, even before band problems with Terra began around 
2008, the Terra classification was slightly more likely to classify portions of desert playas, as 
well as rugged snow and rock covered areas of the high Sierra Nevada, as cloud. (There is a 
slight possibility that the latter is due to an underestimate over these areas by the MODIS Aqua 
classification.) Another area with consistently low or negative values in these difference products 
occurs where there is real recession of coastal fog off the coast of California, but this is not 
substantial, due to the limited ~2 hour window between Terra and Aqua. In general, Aqua has 
slightly more cloud cover, and this is to be expected, given typical slight cloud increases in the 
afternoon globally (Stowe et al, 2002). Figure 24 is a graph of annual cloud frequencies from 
each satellite, including the annual difference between the frequencies from each satellite, for 
MODIS tile H08,V05. The difference is steady and small until 2008, when problems with the 
sensor on-board Terra increased. Interestingly, the differences are larger in 2008 and 2009 than 
in 2010 and 2011. It’s possible that my Terra correction was optimized for the most recent Terra 
data, and “over-corrected” 2008 and 2009 Terra data, when the problems weren’t quite as bad, 
creating a bigger problem. MODIS band 3 has two problems: one related to the “right side” of a 
swath at high zenith angles (actually a relatively continuous increase with zenith that can be 
ameliorated with a simple linear trend correction) and another that is more of a striping, which 
appears much harder to correct (and perhaps not as critical to correct). It’s difficult to determine 
whether the true color information with corrections is providing enough benefit to overcome the 
problems.4 
 

Overlaying annual cloud frequency from the custom classification of the 3 sinusoidal tiles 
of MODIS Aqua on top of the annual cloud frequency from the custom classification of AVHRR 
(Figure 25), one is challenged to see the boundary between the two. The three tiles appear as 
subtle parallelograms due to their original sinusoidal projection draped onto the geographic 
projection of the AVHRR data. This is a good sign for the accuracy of each product – especially 
the AVHRR product, which comes from a more problematic data set and brings lower 
expectations. Even the relatively low frequency in the AVHRR product off the coast of 
California (west of the diagonal MODIS boundary) from 1981-1999 data can be explained by the 

4 MODIS band 3 has two problems: one related to the “right side” of a swath at high zenith angles (actually a 
relatively continuous increase with zenith that can be ameliorated with a simple linear trend correction) and another 
that is more of a striping, which appears much harder to correct (and perhaps not as critical to correct). It’s difficult 
to determine whether the true color information with corrections is providing enough benefit to overcome the 
problems. 
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relatively lower frequency of fog during a couple-decade long positive phase of the Pacific 
Decadal Oscillation that switched back to a negative phase in 1998 (Johnstone and Dawson, 
2010). Regressions between MODIS cloud frequency (degraded to AVHRR resolution) and 
AVHRR cloud frequency for a grid of points for December and January support the general 
agreement (Figure 26 and Figure 27, respectively). The relationship is quite close to 1:1 for 
December (slope of regression 0.995, intercept of 0.01), with a fairly tight fit (R2 = 0.79) except 
for a set of points with values of 0.2 to 0.4 in the MODIS result that have values of 0.3 to 0.55 in 
the AVHRR classification. These are mostly high desert areas in which the AVHRR product is 
likely overestimating cloud frequency, possibly due to confusion with the bright soils and/or 
snow cover. The fit is slightly tighter for January (R2 = 0.83), but the relationship is no longer 
1:1 (slope = 1.25) and the intercept is -0.13 (AVHRR classification overestimates at low end and 
underestimates at high end). Overall, coarse-level agreement is encouraging, but far from perfect, 
with obvious spatial and temporal variability. 
 
Accuracy Assessment 

The above comparison with MODIS data is a sort of validation of the AVHRR product, 
although not technically an accuracy assessment. No standard accuracy assessment of the 
AVHRR classification was performed. Its coarse resolution makes comparison with climate 
station data somewhat inappropriate. But visual comparisons with another MODIS cloud 
frequency product (i.e., NOAA Cloud Climatology Product) further support its accuracy. For 
example, in a comparison with the NOAA MODIS product over southern Mexico (Figure 28), 
the custom AVHRR classification (Figure 29) captures very similar patterns of higher values 
over mountain ranges, with similar but slightly blurrier detail, due to its much coarser resolution. 
This is an area where the NOAA product can be expected to be quite accurate, even with its 
simple brightness threshold-based methodology, due to the fact that few other bright cover types 
(e.g., deserts and snowy areas) are found in this area. It is encouraging that the result from the 
totally independent custom algorithm for AVHRR, with little reliance on brightness alone, shows 
very similar patterns. 
 

Estimates of fog days from AVHRR compared somewhat favorably with those from the 
CIMIS climate station data. Overall agreement at the Shafter climate station was 76.9%. But 
much of this agreement was on non-foggy days, which are very easy to agree upon, simply by 
chance. If CIMIS data suggested fog, the AVHRR processing did not omit too many of these 
days, capturing these days 67.0% of the time as fog. AVHRR processing may have more 
substantial commission error though: only 37.3% of AVHRR fog days were considered fog by 
CIMIS processing. These numbers are all a little higher in the comparison for MODIS Terra fog 
days. Overall agreement is 84.7%, 72.4% of CIMIS fog days are classified as fog, and 48.3% of 
MODIS Terra fog days were considered fog by CIMIS processing. A corresponding Kappa value 
of 49.0% and a Tau value of 69.3% for (compared to 84.7% for overall agreement) reflect that a 
large portion of the agreement could be due to chance, especially the easy agreement on the 
many non-fog days. In general, the image-based approaches mapped much more fog than the 
CIMIS-based classification decision. It could be argued that the image processing is including a 
lot of cloudy days that aren’t foggy at the surface. But visual comparison with some daily 
imagery suggested that the image-based model performs better than the CIMIS-based model. 
The CIMIS-based model may be hindered by the inability to use relative humidity data due to the 
inconsistency and inaccuracy of relative humidity measurement (Dai, 2006). 
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The classification trees that were used to assist with final rule generation for 

discriminating clouds from snow on MODIS data provide an indication of classification 
performance, at least on training data. Performance on training data tends to depend on how 
challenging the training pixels are. When approximately 20,000 snow and cloud pixels were 
selected from a variety of dates of imagery in a relatively automated manner (i.e., not targeted to 
challenging pixels, but dropped over preliminary snow and cloud classifications, with manual 
edits over any errantly classified pixels), over 95% of pixels were correctly classified as snow or 
cloud. On one hand, this could be considered an overestimate of general classification accuracy 
because the model is honing in on these training pixels (i.e., overfitting) and might perform 
worse on independent imagery. On the other hand, these were relatively challenging dates of 
imagery (with complex mixes of clouds and snow) and the model was not allowed to overfit; this 
model using R’s default complexity parameter of .01 only had 6 splits and terminal nodes still 
had hundreds of samples. When classification trees were fed only 1,947 manually selected 
spectrally challenging pixels (e.g., ice clouds, shaded ice clouds, thin snow cover, and 
shaded/mixed snow cover), performance was a bit lower, at 84.3%. This is certainly a substantial 
underestimate of overall performance because it was restricted to challenging pixels, but does 
indicate that there is still some spectral inseparability of particularly problematic snow and 
clouds. It also demonstrates the sensitivity of these results to sampling. 
  

Table 8 shows the average annual number of days with snow commission error in the 
custom snow classification over a variety of sites that should never be classified as snow. These 
values are generally only about 2 days per year, suggesting low overall confusion rates, given 
approximately 100 (over land) to 200 (over ocean) cloudy days per year, and the fact that this is 
likely the main source of cloud error. But these values can vary by site and by year. MODIS 
Aqua, in particular, appears to have a bit of a problem with the well-forested Santa Cruz 
Mountains of the central California coast, with average commission errors of over 4 per year. It 
is not surprising that certain cover types, such as bright playas, are more likely to be mis-
classified. Confusion over darkly forested mountains is more surprising. It is likely due to 
weakness in separating snowy forested areas from some partially cloudy forested areas. [The 
standard MODIS snow product can suffer from the same problem of snow classification over 
California’s coastal forests on cloud edges (personal observation: https://earthdata.nasa.gov/ 
labs/worldview/).] My custom classification of MODIS data generally performs better for Terra 
than for Aqua over this particular forested area (and slightly better at most other sites) in terms of 
this type of cloud omission, except after 2009, when various radiometric problems with Terra 
became more pronounced and likely affected the results. It is unclear why the classification with 
early Terra performed better than that with early Aqua for this particular cloud omission, given 
the same classification algorithm. It is possible that problematic (i.e., ice) clouds are more 
common later in the day, during the Aqua overpass. 
 

Only the MODIS products underwent a truly ground-based attempt at accuracy 
assessment. Table 9 shows the results for comparison between the three meteorological towers 
and the MODIS daily cloud classifications from both Terra and Aqua, both for the custom 
classification developed here and the standard product that accompanies the data. Accuracy here 
is simply defined as percentage overall agreement on a binary cloud classification. The accuracy 
figures are quite comparable among the sites, sensors, and classifications, generally hovering just 
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above 70%. These numbers are surprisingly low, and almost certainly not reflective of the 
performance of the cloud classification algorithms. Mountainous areas with frequent snow cover 
are difficult areas to map well consistently, but extensive visual assessment of individual daily 
cloud masks, as well as the final climatological products, suggests that these numbers are very 
misleading. In fact, the accuracy of the cloud classification from automated processing of the 
tower radiation data is probably much lower than that from the satellite data. Further 
disagreement also likely arises from the various slight spatial and temporal mismatches that can 
occur. It is probably more appropriate to use this data as a relative comparison among sensors 
and classification approaches than as an absolute assessment of classification performance. 
 

Relative comparison reveals that the classification algorithms are performing comparably 
at the two lower elevation tower sites, but that the custom classification is performing 2-3% 
better (in absolute difference) than the standard classification at the highest site, both for Terra 
and Aqua. This is likely related to the known problems that the standard classification has with 
snow, which is quite common at this 2700 meter site. Both classifications perform notably worse 
(~3%) for Aqua than for Terra at this site. Otherwise, sensor and algorithm accuracy is quite 
comparable within a site. Overall cloud classification frequency does differ between the 
algorithms, across the sites. At the lower, 1160 meter site, the custom classification maps clouds 
with 4% and 7% less frequency than the standard classification, for Terra and Aqua respectively. 
Next, at the 2015 meter site, these figures jump to 19% and 14% less, respectively. Finally, at the 
highest site, these figures climb to 28% less for both sensors. Much of this may reflect the 
tendency for the standard algorithm to map snow cover as cloud. However, this could also be 
explained by the custom algorithm underestimating cloud cover at higher elevations – for 
example, if thin clouds over snow are classified as snow, or if particularly problematic types of 
ice clouds (classified as snow) are especially prevalent at the highest elevations.5 But the actual 
cloud frequency totals indicate that the custom algorithm captures frequency accurately at the 
highest site – only at the lowest site does it substantially underestimate overall frequency (mostly 
for Aqua), at least in comparison to the tower processing. 
 
Long Term Data Record (Consistency and Trends) 

One of the goals of the LTDR project is to develop a relatively consistent daily global 
record over the 30-plus year period. Detecting land cover trends over time, such as changes in a 
vegetation index like NDVI, requires that radiometric fidelity does not change over time. 
Atmospheric effects need to be accounted for in this attempt, including the removal of clouds. 
Even if consistency in cloud classification were achieved (see below), inherent differences 
among the satellites would make direct comparison of cloud cover frequencies among satellites 
problematic. Most significantly, AVHRR’s local overpass time does not perfectly correspond to 
a MODIS sensor’s overpass time (it is closest to Aqua, but even MODIS overpass times vary a 

5 A visual assessment of the custom cloud frequency products of MODIS does suggest a possible underestimate of 
cloud frequency over many high elevation snowy areas - generally the highest ridges without substantial tree cover - 
of much of the western United States. These areas surprisingly have lower mapped cloud frequency than 
surrounding lower elevations. But comparison with some daily imagery suggests that these lower values over the 
highest elevations could be real – clouds often hover below the highest peaks. It is difficult to confirm whether this 
is a real result, or whether there is indeed a bias against classifying thin or partial clouds if there is apparent snow 
underneath. 
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little by day), and drifted later in the day over time until a reset with each new NOAA satellite 
launch (Figure 30 and Figure 31). Different NOAA satellites launched with local overpass times 
of ~1:30 to 2:30, but each tended to drift later ~3 minutes per month. This inconsistency might 
not matter for a variable like land cover NDVI, which shouldn’t change much over the course of 
a day (but can because of artifacts introduced by varying sun-sensor viewing geometry). It can, 
however, substantially affect cloud cover frequencies, as demonstrated by the strong correlation 
observed by Stowe et al. (Stowe et al, 2002) in Figure 31. Some of this could be real increase 
due to meteorological factors, but this is likely a relatively small factor (Stowe et al, 2002). It is 
likely mostly due to both sun-sensor viewing geometry (higher solar zenith angles) and lower 
thermal radiance. It is difficult to standardize for all of these differences.  

 
Both the LTDR project’s standard cloud frequency products and the custom cloud 

frequency products developed here show yearly annual frequencies (averaged across the ~10,000 
km by 5,000 km subset spanning southern North America plus adjacent oceans) that also closely 
correspond to yearly trends in AVHRR zenith angle and overpass time (Figure 32): increasing 
frequencies with increasing zenith angle and later in the day. The varying amounts each year are 
so closely correlated with the varying overpass times of the sensor that the variability itself is 
unlikely to contain any real signal. Accordingly, it is hard to have confidence that the computed 
linear increases over time (0.1% per year for LTDR and 0.2% per year for custom) indicate a real 
trend. The large differences in frequencies between the two approaches might be concerning as 
well: the LTDR product maps clouds with 57% greater frequency on average (25% in absolute 
terms), with the linear trend suggesting an average from 68% in 1981 to 70% in 1999, and an 
average of 42% in 1981 to 46% in 1999 for the custom product. Mapped versions of the trends 
suggest that inaccuracy in the LTDR project’s standard classification of clouds (see Appendix 
2.A.1) is hindering its ability to accurately portray changes.  

 
Figure 33 shows that the 18 year (1982-1999) trend in February cloud frequency over 

much of North America according to the standard LTDR cloud mask has problems with snow-
covered areas of southern Canada, the northern U.S., the Rocky Mountains and the Sierra 
Nevada. The consistent gray colored areas indicate an approximate 10% (absolute) increase over 
the 18 years that is certainly due to an increased tendency to classify February snow cover as 
cloud toward the end of the period. Any real trend would be unlikely to be so correlated with 
areas of frequent snow cover. Similarly, the 1981 to 1999 trend in annual cloud frequency for 
this product (Figure 34) shows some increases in the far northern plains (mostly purple color 
west of Lake Superior) that are likely biased by the snow problem. But more striking is the likely 
spurious increasing cloud frequency over southern Texas and northeastern Mexico (mostly white 
color). This “trend” occurs in most of the LTDR monthly versions, and is likely due to a 
developing problem with bright desert soils. (Green areas over far northern water bodies relate to 
the LTDR project not mapping cloud cover above 50 degrees latitude over water bodies.) 
 

The LTDR product’s mapped increase of cloud frequency over lower elevation desert 
areas of the southwest and northern Mexico makes the detection of a possible real decreasing 
trend in the region more difficult. The custom cloud frequency trend product maps this region as 
having fairly substantial decline in cloud cover across the board, from the Texas panhandle and 
southwestern Kansas through the southwest to the Pacific Ocean off southern and Baja 
California. These two trend products are otherwise somewhat similar across much of North 
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America and adjacent oceans. (It seems reasonable that two different cloud classification 
algorithms might agree on trends more than they agree on absolute frequencies, as the percentage 
disagreement may be fairly consistent across years.) It is encouraging that the custom product 
also shares some patterns with another long-term cloud trend product – that from a processing of 
ISCCP data (Figure 36): increases over the Pacific Northwest and offshore, as well as over the 
Great Plains of the U.S., with decreases over the Desert Southwest into northwestern Mexico and 
offshore, as well as for the Gulf of Mexico. (Some brown areas in Figure 35 match blue colors in 
Figure 36, indicating decreases, and some purple and white areas in Figure 35 match beige areas 
in Figure 36, indicating increases.) The ISCCP product might be viewed with some skepticism, 
however, due to noted problems with its consistency. The abrupt discontinuities between 
increases and decreases in the ISCCP trend product following geometric patterns are obviously 
problematic (e.g., Indian Ocean). 
 

Other than through a comparison with AVHRR data for long-term trends in California 
Central Valley Tule fog frequency (Baldocchi and Waller, 2014), long-term trends were not 
seriously investigated with MODIS data. Part of this relates to the problems with Terra data after 
2008, making close to a third of its data in this study suspect. The nine-plus year record for Aqua 
data here did not seem sufficient to warrant serious long term analysis; regular interannual 
variability would likely swamp the ability to detect any meaningful long-term trends. 

Discussion 
 

Most quantitative assessments performed in this study did not reveal the custom 
classifications to be substantial improvements over standard products. But that may relate to 
limitations in the assessments. Determining the accuracy and consistency of cloud products is as 
challenging as developing cloud products. The accuracy assessments need their own accuracy 
assessment. Qualitative assessment suggests that the custom classifications are, at a minimum, 
more consistent across cover types, an important consideration for a climatology product (e.g., 
one that is used for a relative comparison among areas, as for species distribution modeling). 
Consistency over time is not as clear. The Aqua-based custom product appears to have temporal 
consistency, but the Terra-based custom product was sensitive to radiometric problems in the 
data in recent years. Trends in the custom AVHRR classification appeared be less sensitive to 
spatial errors in classification than the standard AVHRR LTDR product, but have a different 
source of error related to insufficient treatment of variable and missing/bad AVHRR data. 
 

It was determined that small overall increasing trends in cloud cover in the custom 
AVHRR product were somewhat suspect due to obvious interannual relationships with overpass 
times and solar zenith angles, but these are not the only factors that might be influencing 
apparent long term trends. While the number of days with missing images (Table 4 demonstrates 
that the LTDR dataset has more missing AVHRR data earlier in the record; there are many fewer 
missing days after 1990) was controlled for by computing trends based on monthly cloud 
percentages (monthly sums divided by days of available imagery) rather than monthly cloud 
sums, this correction does not account for other data issues that varied over time. Altogether 
missing days are not the only problem in the AVHRR record. As mentioned earlier (Data and 
Methods), there are many days on which imagery only covers some parts of the world, leaving 
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huge gaps with no data. These would appear to be “good” days in my processing because they 
were not empty or absent files and the data have no flag indicating their presence. These types of 
spatial gaps were more common earlier in the record, and bias any trend calculation that does not 
correct for these factors. There were also extensive periods when the thermal channels were 
problematic, which also affected the critical channel 3 “reflectance” product (most notably in the 
first 18 days of January, 1995). These problems were not among those anomalous data that I was 
able to account for (see Data and Methods) and have implications for the computed cloud 
frequency and the detection of subtle trends, in particular. The LTDR standard cloud mask 
attempted to map clouds even when the thermal problem occurred (the reasonable performance 
probably indicates some awareness of the problem; otherwise I would expect any algorithm to 
have major error, as for mine). But the LTDR cloud masks in these cases appear to have higher 
error than usual. In terms of generating accurate cloud climatologies, it may be more appropriate 
to avoid and keep track of these bad data days than to try to map clouds in spite of problems. 
 

An accurate mapping of the frequency of “good” or “bad” data would be helpful. But it 
was difficult to determine the best set of rules for tracking these problem data. They were often 
characterized by particular values in different channels (e.g., zero, -9999, 32768). Generating 
frequency products for these different values in the different channels resulted in slightly 
different products. (For some reason, the difference between two of these “bad data” frequency 
products made for a pretty good desert mask.) It was difficult to determine which of these 
products was optimal. Corrections to the computed long-term trends based on these “bad data” 
frequency products was considered but never applied because of concerns about their accuracy. 
An alternative correction to the AVHRR trend products based on the assumption that there was a 
9.5% increase in good data over the 18 year record (using the increase from 42% to 46% and 
assuming that there was no true change: (46-42)/42 = .095) did not substantially alter spatial 
patterns in the trend map, although it did decrease the trend values slightly across the board. 
 

The custom classification of AVHRR cloud cover improved upon the standard LTDR 
product over snow-covered regions, but there is likely remaining confusion between cloud and 
snow. Custom MODIS products, benefiting from the various SWIR channels, further improve 
upon this discrimination. But even with MODIS, some confusion remains, especially for rugged 
canyons of mountainous regions, where shadowed mixes of rock and vegetation with snow are 
difficult to separate from likely similar mixes with clouds. Similar problems are evident in other 
MODIS-derived snow and cloud products, such as those for a Sierra Nevada hydrologic study 
group with their own custom classification (http://zero.eng.ucmerced.edu/snow/SN_view/ 
SN_remote/sn.php). A quick query of this product’s January, 2010 “Snow and Cloud” over the 
Sierra Nevada, for example, shows the rugged eastern edge of the snowy Sierra Nevada to often 
be errantly classified as cloud. These products focus on snow, but generate cloud maps in the 
process (Dozier et al, 2008). The error in classifying sparse snow cover on the edge of the Sierra 
as cloud is not of paramount concern for them. The MOD09 cloud state variable (from the 
MOD35 cloud product) appears to avoid this particular spectral ambiguity – probably through 
the use of thermal information – one reason that they’re only available at the 1 km resolution of 
their thermal data. (The MOD35 product does not tend to have this particular error, but has no 
shortage of others.) 
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Cloud mask products generated here may be substantial improvements over existing 
products, but still have some subtle errors. Unfortunately, even subtle errors, if systematic, can 
add up over time. Sometimes these errors are only evident after the processing of multiple years 
of imagery. For example, there may be a slight bias toward greater classification of cloud cover 
over water bodies than over land. This is likely because thin clouds are much easier to see over 
water than over land. It makes sense to try to capture these clouds. But a failure to capture 
corresponding levels of clouds over land leads to a bias. This bias is especially noticeable over 
select inland water bodies – those where it is particularly unlikely to have higher frequencies of 
cloud cover than surrounding areas (e.g., Salton Sea and Gulf of California; unlike more 
continental water bodies where water temperatures often exceed air temperatures, leading to 
clouds forming specifically over the water, thick clouds do not appear to form specifically over 
these desert water bodies – although they do get some kind of haze that, in combination with 
either a low sun or perhaps high satellite zenith angle, looks a bit like a cloud. This same haze 
would not get called cloud if it occurred over land.). Similar subtle biases appear to occur over 
other land cover types, such as dark green vegetation (perhaps for similar reasons? – hazy clouds 
over dark green vegetation are easier to see). Some of these biases can be difficult to discern, as 
forested areas (and some water bodies) might be expected to have higher cloud cover than other 
areas anyway. On the other hand, some areas may be biased low in their cloud cover frequency. 
For example, with extensive focus on differentiating ice clouds and snow, there may not have 
been enough focus on capturing thin clouds over snow, with the result that frequently snow-
covered areas have underestimates in their cloud frequency. 
 

The background-caused bias could be reduced by restricting the classification to more 
obvious clouds (although possibly introducing a negative bias if thin, hazy clouds have a 
tendency to form over particular cover types). That is because there is little confusion with bright 
white clouds. This might lead to better looking products, in terms of avoiding land cover bias. 
But, of course, it would involve a substantial overall underestimate of cloud cover frequency. 
Optimizing the trade-off among accuracy in overall cloud cover frequency (balancing omission 
and commission errors), overall classification accuracy (avoiding omission and commission 
errors), and consistency in cloud cover classification among background cover types (i.e., 
avoiding or balancing any systematic errors of omission or commission) is a delicate balancing 
task.  
 
Isssues with MODIS Compositing Along Scene Overlap Boundary 

Problems with the various MODIS cloud products manifest themselves in some scene 
overlap areas, where clouds are not always removed by the compositing algorithm. Clouds are 
sometimes selected instead of snow, and worse, sometimes selected instead of water. Part of the 
problem may relate to the use of different cloud mask products by different MODIS processing 
groups. Pronounced brightness variability due to viewing geometry effects is also evident. These 
factors suggest that it might just be preferable to have scenes stitched together along an obvious 
line. This would also avoid an artificial bias low in cloud frequency that is caused by a cloud 
removing algorithm for scene overlap areas. 
 

Cloud compositing problems are not the only issue in the scene overlap area. 1 km sensor 
zenith and azimuth products do not perfectly align with the viewing geometry related brightness 
effects apparent in the 500-m data, and this does not appear to be related to resampling and/or 
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resolution differences. It seems that different algorithms may have been applied at different 
stages. Appropriate application of the viewing-geometry related corrections for the problematic 
MODIS Terra blue band is difficult in scene overlap areas due to the problems with the mis-
alignment of the 1 km sensor geometry products and the 500-m reflectance products. 
 
Cloud Shadows 

This work did not attempt to map cloud shadows. These are challenging to separate from 
water and shadowed terrain. Time series rules, reliable water masks, and the use of a digital 
elevation model could help with refinement, but would be a challenge, and mapping both clouds 
and cloud shadow would be a form of double counting. The exception would be cloud-shadowed 
clouds, which would not be a form of double counting in terms of vertical projection onto the 
land surface. An attempt was made to map these particular cloud shadows. Technically, the 
location of cloud shadows is more important to plants than the vertical projection of clouds, but 
this is likely a very minor difference spatially, and unlikely to lead to any major systematic error. 
Recognition of cloud shadow is more important for land surface observations than for cloud 
climatology. 

Conclusions 
 

New cloud climatologies have been generated from custom cloud classification of 
AVHRR and MODIS (both Terra and Aqua) satellite data. Three sinusoidal grid tiles of MODIS 
data for 2000 to 2012 were processed, covering much of the western United States at 500 meter 
resolution. Additional tiles could be similarly processed, space permitting, providing more 
extensive spatial coverage. The AVHRR product, while at a coarser ~5-km resolution, extends 
the record back to 1981, allowing the long-term confirmation of patterns observed in the MODIS 
products or the broad assessment of trends, and providing convenient global coverage if desired 
(although with limited confidence over certain desert and polar areas, and the focus here was on 
a subset covering most of North America and adjacent ocean areas). Each custom product 
appears to offer improvements to existing cloud classifications derived from the respective 
sensors, at least in terms of consistency among land surface types, a very important consideration 
in a cloud climatology. Problems in all sensors have contributed to the need for substantial 
quality assurance and quality control, but most issues have been somewhat fixable. MODIS 
Aqua data, in particular, appear to have the fewest problems, and the most reliable cloud 
classification. Substantial differences across AVHRR and MODIS (spectral sampling 
differences, data quality, overpass times, spatial resolution, etc.) make the detailed assessment of 
trends across the satellites somewhat suspect, but not inconceivable (e.g., these products have 
been used for a long term assessment of trends in California Central Valley Tule fog). Even the 
reliability of trends within the AVHRR LTDR (1981-1999) may be questionable. Trends for 
MODIS data would be more reliable, but the record (especially for the even more reliable Aqua 
data) may not yet be quite long enough to detect meaningful climatic signals compared to regular 
interannual variability. Nevertheless, these data capture spatial patterns of cloud cover not 
previously observed due to previous efforts’ greater confusion with snow and other bright 
surfaces, such as desert soils. These problems would affect the performance of other cloud 
climatology products in ecological analyses, such as the prediction of plant species distributions. 
Chapter 3 of this dissertation explores the use of the custom monthly cloud frequency products 
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developed here from MODIS Aqua data for the prediction of giant sequoia distribution. It is 
likely that only with an accurate classification of clouds, without confusion between clouds and 
snow or rock in the snowy Sierra Nevada, could a cloud climatology demonstrate the importance 
of cloud cover to giant sequoia distribution.  
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Tables 
 
Table 1. AVHRR (LTDR AVH09C1) band characteristics. 
Bands 1 and 2 are surface reflectance, hence LTDR term “SREFL”. Bands 4 and 5 measure thermal 
emissions or brightness temperatures, hence LTDR term “BT”. Band 3 measures a region of both 
reflected and emitted radiance, and accordingly, two products are provided. 
  

Band Wavelength Range (µm) Common Term LTDR Term 
1 0.58-0.68 Visible or Red (VIS) SREFL_CH1 
2 0.725-1.1 Near Infrared (NIR) SREFL_CH2 
3 3.55-3.93 Middle Infrared (MIR) BT_CH3 & SREFL_CH3 
4 10.5-11.3 Longwave Infrared (LWIR) BT_CH4 
5 11.5-12.5 Longwave Infrared (LWIR) BT_CH5 

 
 
 
Table 2. MODIS surface reflectance (MOD09GA and MYD09GA) band characteristics. 
All bands are surface reflectance products, hence MOD09GA (or MYD09GA) term “Sur_refl”. 
 

Band Wavelength Range (µm) Common Term MOD09GA HDF Term 
1 0.62-0.67 Red Sur_refl_b01 
2 0.841-0.876 Near Infrared (NIR) Sur_refl_b02 
3 0.459-0.479 Blue Sur_refl_b03 
4 0.545-0.565 Green Sur_refl_b04 
5 1.23-1.25 Shortwave Infrared (SWIR) Sur_refl_b05 
6 1.628-1.652 Shortwave Infrared (SWIR) Sur_refl_b06 
7 2.105-2.155 Shortwave Infrared (SWIR) Sur_refl_b07 

 
 

 
 
 
  

Table 3. AVHRR LTDR: NOAA satellite dates. 
NOAA satellites have gradually reduced utility for cloud mapping over time due to continuous drift later 
in day. Data in later periods have overpass times when solar zenith angles high – extreme case ending 
with a data gap at the end of 1994. 
 
Satellite Start Date Finish Date
NOAA-7 6/14/1981 12/31/1984
NOAA-9 1/4/1985 11/7/1988
NOAA-11 11/8/1988 9/13/1994
NOAA-14 1/1/1995 12/31/1999   
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Table 4. AHVRR LTDR: "Good" days by month. 
Data regularly available after late July of 1981. Within windows of data availability, data gaps occur. 
Other than the big gap between satellites at the end of 1994, these gaps become less frequent by March of 
1991, although there are still occasional missing days in a few months. 
 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1981 0 0 0 0 0 5 11 31 30 31 30 31
1982 30 28 30 23 30 30 29 30 28 31 30 31
1983 31 28 31 30 31 30 30 30 30 31 30 31
1984 29 27 29 28 31 30 30 31 30 31 30 28
1985 26 28 30 30 31 30 31 31 30 31 29 31
1986 31 27 29 30 31 30 31 31 30 31 30 31
1987 31 28 31 30 31 30 31 31 30 31 30 31
1988 30 29 27 30 29 29 25 30 29 30 26 31
1989 31 28 29 29 31 30 31 31 30 31 30 31
1990 29 27 31 30 31 30 23 30 30 30 28 31
1991 22 25 31 30 31 30 31 31 30 31 30 31
1992 31 28 31 30 31 30 31 31 30 31 30 27
1993 31 28 30 30 31 30 31 31 30 31 30 31
1994 30 28 31 30 31 30 31 31 13 0 0 0
1995 31 28 31 30 31 30 31 31 30 31 30 31
1996 31 29 31 30 31 30 31 31 30 31 30 30
1997 31 28 31 30 31 30 31 31 30 31 30 31
1998 31 28 31 30 31 30 31 31 30 31 30 31
1999 31 28 31 30 31 30 31 31 30 30 30 31  

 

Orange: 1-4 missing days 

Red:  >= 5 missing days 
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Table 5. MODIS MOD09 Terra data: "Good" days by month. 
Regularly available after March, 2000, but with a few months early in the record (through end of 2003) 
with large data gaps. Occasional missing days after 2003. 
 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2000 0 0 30 26 31 29 31 18 30 30 29 31
2001 31 28 31 30 30 14 29 31 30 31 30 31
2002 31 28 21 28 31 30 31 31 30 31 30 31
2003 31 27 31 30 31 30 31 31 30 31 30 22
2004 31 28 31 30 31 29 31 31 30 31 30 30
2005 31 28 31 29 31 30 31 31 29 31 30 31
2006 31 28 31 30 31 30 31 29 30 31 30 31
2007 31 28 31 30 31 30 31 31 30 31 30 30
2008 31 29 31 29 31 30 31 31 29 31 30 28
2009 31 28 31 30 31 30 31 30 29 31 30 31
2010 31 28 31 30 31 30 31 31 30 31 30 31
2011 31 28 31 30 31 30 31 31 30 31 30 31
2012 31 29 31           

 

Table 6. MODIS MYD09 Aqua data: "Good" days by month. 
Regularly available after early September, 2002, with very few missing days. 
 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2000
2001
2002 0 0 0 0 0 0 0 0 28 31 30 31
2003 31 28 31 30 30 30 31 31 30 31 30 31
2004 31 29 31 30 31 30 31 31 30 31 30 31
2005 31 28 31 30 31 30 31 31 30 31 30 31
2006 31 28 31 30 31 30 31 31 30 31 30 31
2007 31 28 31 30 31 30 31 31 30 31 30 30
2008 31 29 31 30 31 30 31 31 30 31 30 31
2009 31 28 31 30 31 30 31 31 30 31 30 31
2010 31 28 31 30 31 30 31 31 30 31 30 31
2011 31 28 31 30 31 30 31 31 30 31 30 31
2012 31 29 31           
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Table 7. Common and custom normalized difference reflectance (or radiance) ratios. 
 

 
ρ = reflectance 
NIR = near infrared (this is band 2 in both AHVRR and MODIS; red is band 1 in both) 
rad = “radiance” (digital number proportional to radiance) 
x = MODIS band1, band4, or band3 (red, green, and blue) 
avg = (ρband1 + ρband4 + ρband3)/3 
  

Index Name Equation Sensor Source 
 
Vegetation Index (NDVI)     𝜌𝑁𝐼𝑅 −  𝜌𝑅𝑒𝑑

    𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 

 
 

AVHRR,MODIS 
 

(Rouse Jr et al, 
1974; Tucker, 

1979) 
 
Snow Index (NDSI)   𝜌𝐵𝑎𝑛𝑑4 −  𝜌𝐵𝑎𝑛𝑑6

  𝜌𝐵𝑎𝑛𝑑4 + 𝜌𝐵𝑎𝑛𝑑6
 

  
MODIS 

 
(Hall et al, 

1995) 
 
nt 𝑟𝑎𝑑𝐵𝑎𝑛𝑑3 −  𝑟𝑎𝑑𝐵𝑎𝑛𝑑4

𝑟𝑎𝑑𝐵𝑎𝑛𝑑3 + 𝑟𝑎𝑑𝐵𝑎𝑛𝑑4 − 0.444
 

  
AVHRR 

 
Custom 

 
nd35    𝜌𝐵𝑎𝑛𝑑3 −  𝜌𝐵𝑎𝑛𝑑5

   𝜌𝐵𝑎𝑛𝑑3 + 𝜌𝐵𝑎𝑛𝑑5
 

  
MODIS 

 
Custom 

 
nd37 

𝜌𝐵𝑎𝑛𝑑3 −  𝜌𝐵𝑎𝑛𝑑7
𝜌𝐵𝑎𝑛𝑑3 + 𝜌𝐵𝑎𝑛𝑑7

 
 

MODIS 
 

Custom 

 
nd15 

𝜌𝐵𝑎𝑛𝑑1 −  𝜌𝐵𝑎𝑛𝑑5
𝜌𝐵𝑎𝑛𝑑1 + 𝜌𝐵𝑎𝑛𝑑5

 
 

MODIS 
 

Custom 

 
nd15sub 

𝜌𝐵𝑎𝑛𝑑1 −  𝜌𝐵𝑎𝑛𝑑5 − 0.2
𝜌𝐵𝑎𝑛𝑑1 + 𝜌𝐵𝑎𝑛𝑑5 − 0.2

 
 

MODIS 
 

Custom 

 
nd17 

𝜌𝐵𝑎𝑛𝑑1 −  𝜌𝐵𝑎𝑛𝑑7
𝜌𝐵𝑎𝑛𝑑1 + 𝜌𝐵𝑎𝑛𝑑7

 
 

MODIS 
 

Custom 

 
b1ndev, b4ndev, b3ndev 𝜌𝐵𝑎𝑛𝑑𝑥 −  𝜌𝑎𝑣𝑔

𝜌𝐵𝑎𝑛𝑑𝑥 + 𝜌𝑎𝑣𝑔
 

 
MODIS 

 
Custom 

47 
 
 



 

Table 8. MODIS custom classification average snow commission errors (days misclassified) by year, 
locations without snow, for both Terra and Aqua satellites. 
These snow commission errors are likely omission errors in the cloud product. Given that snow is likely 
the largest source of error for the cloud mapping, these strongly relate to accuracy of cloud product. 
 

Terra, Year Ocean 
Santa Cruz 
Mountains 

San Joaquin 
Valley Mono Lake Lake Tahoe Average 

2001 0.71 1.34 0.78 0.43 0.25 0.70 
2002 0.48 1.91 1.53 0.29 0.35 0.91 
2003 0.45 1.9 2.15 0.12 0.4 1.00 
2004 0.65 1.95 0.37 0.17 0 0.63 
2005 1.09 2.26 1.88 0.73 0.92 1.38 
2006 2.69 5.26 0.92 1.41 1.53 2.36 
2007 1.69 2.38 1.66 0.56 0.31 1.32 
2008 0.83 1.71 1.71 0.73 1.03 1.20 
2009 1.93 4.06 2.08 0.9 2.57 2.31 
2010 3.47 4.82 3.42 0.58 2.01 2.86 
2011 3.55 3.8 2.37 2.2 2.8 2.94 
Average 1.59 2.85 1.72 0.74 1.11 1.60 

       
Aqua, Year Ocean 

Santa Cruz 
Mountains 

San Joaquin 
Valley Mono Lake Lake Tahoe Average 

2003 1.54 4.38 1.23 1.91 0.99 2.01 
2004 1.27 2.97 2.47 1.71 0.69 1.82 
2005 1.2 2.56 2.72 2.33 1.16 1.99 
2006 1.77 5.43 2.36 2.25 0.96 2.55 
2007 1.26 2.19 0.44 1.68 1.4 1.39 
2008 1.5 5.18 2.44 2.11 1.61 2.57 
2009 1.62 3.66 1.03 2.16 2.31 2.16 
2010 2.28 6.45 2.5 2.2 1.76 3.04 
2011 1.55 6.49 3.15 1.49 1.69 2.87 
Average 1.55 4.37 2.04 1.98 1.40 2.27 

 

 
 
Table 9. Meteorological tower-based accuracy assessment of MODIS cloud classifications. 
Generally similar performance except for increased accuracy (agreement) in custom classification may be 
apparent at 2700 meter site, likely due to better performance handling snow cover. 

Tower Site Sensor Standard Classification Custom Classification 

1160 m Terra 71.6 72.2 
Aqua 71.6 71.4 

2015 m Terra 73.5 73.0 
Aqua 75.0 74.4 

2700 m Terra 70.5 73.2 
Aqua 67.9 69.8 
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Figures 
 
 

 
 

Figure 1. Conceptual receiver operating characteristic curves in relation to different cloud 
classification algorithms and thresholds. 
Different algorithms are the red vs. orange curves, and different possible thresholds chosen are shown as 
stars. The goals of the custom cloud classification were to both improve discrimination, regardless of 
chosen thresholds (i.e., plot a steeper curve), and reduce commission error with confident identification of 
clouds. Omission error might increase slightly (on partial or thin clouds) but the net result would be closer 
to a perfect classification (top left corner). 
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Figure 2. Balancing act in cloud classification goals and realizations: conceptual collection of 
receiver operator characteristic (ROC) curves for clouds over different surface types.  
Steeper curves indicate better classification performance, with reduced omission error for a given 
commission error. Curves, and classification positions along the curve, are not independent of each other 
in practice, as different classification algorithms can be optimized for different underlying surfaces. 
Maximizing classification accuracy (minimizing the sum of errors, that is, false positives and false 
negatives) over different cover types does not necessarily balance false positives and false negatives 
(necessary to yield accurate overall frequencies - black dashed line). Actual realized outcomes may have 
relatively similar levels of omission error over different surfaces, but vastly different levels of 
commission error (as pictured with stars). This results in biased frequencies among surface types. If 
outcomes all fall along a given dashed diagonal line there will be no particular bias related to underlying 
cover types (whether balanced errors – black dashed line, general underestimates, or general 
overestimates – gray dashed line). 
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Figure 3. MODIS sinusoidal grid, with study tiles in yellow. 
http://nsidc.org/data/modis/data_summaries/landgrid.html 
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Figure 4. AVHRR processing: manually developed cloud rules from multi-image analysis. 
Basic overview of decision making process for discriminating clouds in AVHRR data. The first box 
comprises the standard processing rules. The second box comprises exceptions for anomalous data. 
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Figure 5. MODIS processing, 1st stage: manually developed rules for cloud OR snow from multi-
image analysis.  
First three boxes comprise rules for standard imagery. The second box accounts for anomalous data. 
 
 
 
 

53 
 
 



 

 
 
Figure 6. MODIS Processing, 2nd stage: a more automated rule-generation process with 
classification trees. 
Big box comprises relatively automated steps with classification trees. Latter steps related to ensuring that 
bad (saturated) near infrared data classified as cloud rather than snow. 
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Figure 7. MODIS Aqua, southern California, February 19, 2010; color composite comparison. 
Comparison of true color display (A. 1-4-3) and false color (B. 7-2-1 and C. 7-5-1). Only in the 7-5-1 
combination are snow-covered areas (within magenta ellipse, over the Sierra Nevada mountains) 
separable from virtually all clouds. 
 
 

A. 

B. 

C. 
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Figure 8. MODIS Aqua reflectance spectra, “ice” clouds and snow. 
Percentage reflectance has been multiplied by 10000 to obtain the y-axis reflectance “Value”. Note that 
the four ice cloud spectra have relative peaks in band 5, whereas the four snow spectra have relative dips. 
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Figure 9. MODIS Aqua reflectance spectra, variety of clouds, including "ice" clouds. 
As for above figure, percentage reflectance has been multiplied by 10000 to obtain the y-axis “Value”. Ice 
clouds are unusually dark in bands 6 and 7, just like snow. There is no unique spectral signature of cloud. 
 
 

 
 
Figure 10. MODIS Aqua, January 23, 2010. Tile H08,V05, true color. 
Brightness alone might appear to be sufficient to separate clouds and snow from unobscured surface. In 
fact, many desert soils and urban areas are brighter than many snowy forests and darker clouds. 
 
 
 

 “Ice” Clouds 
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Figure 11. MODIS Aqua, January 23, 2010. Tile H08,V05, true color normalized deviations. 
Few surfaces are as spectrally flat (i.e., grayscale) in the true color bands as clouds and snow. Stretching 
true color information by normalizing differences from average true color brightness highlights this. Dark 
areas indicate clouds and snow – this would already be a good mask without other spectral information. 
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Figure 12. MODIS Aqua, southern California, February 19, 2010; snow vs. cloud in 7-5-1 display. 
Top right figure shows Sierra Nevada snow and a variety of clouds in a 7-5-1 RGB color display. 
Scatterplot on left shows image pixels in Band 1 and Band 7 spectral space, with ostensible “snow” 
values (medium to high band 1 reflectance, low band 7 reflectance) highlighted in red. Bottom right 
figure shows same 7-5-1 display with associated pixels now masked in red. This spectral space is mostly 
snow but includes some darker “ice clouds” (shown in yellow circle). Band 5 information can resolve 
some of this confusion. 
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Figure 13. Conceptual diagram: variable thresholding. 
Black arrows indicate some arbitrary threshold value in a given variable. Different Boolean treatment 
(“and” vs. “or”) of various thresholds (common in cloud mask algorithms, and the typical output of 
classification trees) can result in dramatic classification differences, as indicated by different shading 
(light gray vs. dark gray). Merging, or adding, thresholds, allows models to consider non-orthogonal 
(diagonal) treatment of predictor variables (with resulting classification indicated by hatched pattern). In 
multiple dimensions, this would then be a multi-dimensional separating plane along a diagonal. This can 
improve classification accuracy, for example by allowing for values associated with lower probabilities in 
certain variables if complemented by values associated with higher probabilities in other variables. 
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Figure 14. MODIS Terra identification of bad band 5 data. 
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Figure 15. MODIS Terra processing of cloud and snow from bad band 5 data. 
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Figure 16. MODIS Terra identification of bad blue band (band 3) and basic correction. 
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Figure 17. AVHRR custom cloud classification: annual cloud frequency, 1981-1999. 
Compare with Figure 38 (Appendix 2.A).Correspondence with North American CEC ecoregions (yellow) 
is evident, but less high frequency variability related to contamination from underlying land cover.  
 

 
 
Figure 18. AVHRR custom cloud classification: annual cloud frequency, 1981-1999, color. 
Color version helps to highlight some spatial patterns and spatial window expanded slightly over 
Pacific Ocean. North American CEC ecoregions in black. Otherwise, same as for Figure 12. 
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Figure 19. AVHRR LTDR cloud frequency minus custom cloud frequency, January 1982-1999. 
Areas with much greater values in the LTDR product relate to a lower threshold for clouds (especially 
tropics) and LTDR confusion between snow and cloud (Sierra Nevada, southern Rockies, northern plains) 
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Figure 20. MODIS Aqua custom classification monthly cloud frequency, California.  
The Sierra Nevada Jepson ecoregion (Hickman, 1993) has been included for reference. Each month has 
been individually color stretched to improve contrast. 
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Figure 21. MODIS Aqua custom classification 
cloud frequency, April 2003-2011. 
Giant sequoia distribution highlighted in red. Good 
correspondence with high April cloud frequency. 

 
Figure 22. MODIS standard mask (cloud state 
variable) cloud frequency, April 2003-2011. 
Giant sequoia region in red no longer stands out 
with particularly high April cloud frequency. 

 

 
Figure 23. MODIS standard mask product divided by custom classification, April 2003-2011. 
High values over the higher Sierra Nevada mountains relate to misclassification of snow as cloud. 
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Figure 24. Custom MODIS Aqua and Terra annual cloud frequency and difference, tile H08V05 

MODIS Aqua (afternoon) will naturally have slightly higher values than Terra (morning). The shift in 
2008 to larger magnitude differences is associated with problems with the Terra data. 
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Figure 25. Overlay of MODIS Aqua cloud frequency on AVHRR cloud frequency (annual). 
North America CEC Level I ecoregions in red. Mapped frequencies for each of the two products are 
comparable enough that the boundaries of the three sinusoidal tiles of MODIS (parallelograms in the 
geographic projection of AVHRR) are subtle. 
 
 
 
 
 
 

69 
 
 



 

 
 

 
 

Figure 26. MODIS Aqua vs. AVHRR December cloud frequency comparison. 
The linear relationship is quite close to 1:1, with an offset very close to zero, obviating the need for an 
accompanying 1:1 line for comparison. Deviations from the close 1:1 relationship mostly relate to 
AVHRR estimates over desert areas (either due to bright soils or snow). 
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Figure 27. MODIS Aqua vs. AVHRR January cloud frequency comparison. 
The relationship is slightly tighter than for December (indicated by slightly higher R-squared value of 
0.83), but the slope falls off the 1:1 line (dashed), with an intercept far from zero. 
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Figure 28. Southern Mexico cloud frequency, MODIS Aqua, May to October (2006-2012) – NOAA 
Cloud Climatology Project. 
http://www.nssl.noaa.gov/projects/pacs/web/MODIS/ 
 
 

 
Figure 29. Southern Mexico cloud frequency, May to October (1981-1999), custom classification of 
AVHRR LTDR data. 
Gross patterns very similar to those in Figure 28 despite older imagery at coarser resolution. 
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Figure 30. AVHRR solar zenith angles over LTDR period (Tucker et al, 2005). 
Increasing trend in solar zenith angle over time after each satellite launch related to later overpass times. 
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Figure 31. (A) AVHRR equator crossing time for various NOAA satellites; (B) Annual cloud 
classification percent from ISCCP and original PATMOS (taken from Stowe et al., 2002). 
Increasingly later overpass times and higher zenith angles (Figure 30) appear to bias cloud frequency, at 
least for PATMOS product. Decline seen in ISCCP data is questionable for other reasons (Figure 36). 
 

B 

A 
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Figure 32. AVHRR annual custom cloud fraction vs. LTDR standard cloud fraction, averaged 
across ~10000x5000 km window. 
Multi-year trends in cloud frequency for both classifications are disturbingly similar to trends in satellite 
overpass times (Figure 31) and associated solar zenith angle values (Figure 30). 
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Figure 33. AVHRR LTDR standard February cloud frequency trend, percent per year, 1982-1999. 
Continuous gray values (trend ~0.6%/yr) throughout the Rocky Mountains and northern tier of U.S. states 
into Canada indicative of problem with increase in classifying winter snow as cloud cover. Increasing 
trend in northern Mexico may be related to a problem with desert soils. 

 

Figure 34. AVHRR LTDR standard annual cloud frequency trend, percent per year, 1981-1999. 
Snow problem less obvious in the annual product than in the February trend (Figure 33), but problem 
with deserts of northeastern Mexico and adjacent Texas apparent. 
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Figure 35. AVHRR custom annual cloud frequency trend, percent per year, 1981-1999. 
Avoiding problem with deserts helps to highlight large area of decrease from eastern Pacific off southern 
and Baja California through the southwestern U.S. to the southern High Plains. Otherwise, there is good 
agreement with Figure 34, including increases in Central America, northern South America and adjacent 
oceans. Reasonable agreement with ISCCP product in Figure 36 as well (see text). 
 
 

 
 
Figure 36. 1984-2000 trend in cloud cover (taken from Dai et al., 2006).  
This product has noted problems related to satellite viewing geometry (Norris, 2000; Evan et al., 2007). 
This is most obvious over the Indian Ocean. Sun glint off ocean surfaces may also be a problem. 
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Appendices 
 
Appendix 2.A. Problems with Cloud Masks 
 
2.A.1. AVHRR Cloud Mask Problems 
 

The new PATMOS-X classification (Heidinger et al, 2013) may be the most 
sophisticated publicly available classification of clouds from AVHRR imagery. These data are 
available on NOAA’s Comprehensive Large Array-Data Stewardship System (CLASS) website 
(www.class.noaa.gov). While the product performs well in many areas, bright deserts of the 
southwestern U.S. and northern Mexico are errantly classified as cloud in its April, 1993 cloud 
frequency product, as seen in Figure 37. (This figure was generated using both their daily 
“probably cloud” and “cloud” classes. The results are not very different if restricted to only 
“cloud”.) The main reason for this is likely that AVHRR does not have the three true color bands 
required for color information to separate most desert soils from clouds. Furthermore, some 
frozen lakes and bayshores of northern Minnesota, Manitoba, and Ontario appear to be classified 
as clouds in this product. It is likely that some snow covered areas (e.g., high Sierra Nevada 
mountains) also tend to get classified as cloud in this product. 

 
The standard LTDR cloud mask (second bit, i.e., bit number 1) that accompanies the 

AVHRR LTDR data generally avoids calling many of these same desert areas cloud. This is 
somewhat surprising, given the lack of sufficient true color information with AVHRR. It appears 
to be the result of customized processing specific to these desert areas. In fact, a halo effect is 
often seen in derived cloud frequency products on some edges of these desert areas – for 
example on the edge of the playa of the Black Rock Desert in northwestern Nevada (Figure 38). 
The most likely explanation is that the land cover product that was used to stratify processing of 
the AVHRR data was slightly offset from the raw data that were being classified. It is also 
possible that the LTDR cloud mask is able to handle these spectrally challenging desert areas 
with a spatial uniformity rule across several pixels (as employed by CLAVR-1). In particular, the 
use of a spatial filter might explain the halo effects. It is more difficult to imagine how this might 
explain the many other land cover patterns that appear in the LTDR cloud frequency product. 
These could either be the result of stratification and land-cover specific processing in other areas, 
or simply a very strong bias in cloud frequency due to confusion with the underlying land cover. 
The pronounced high cloud frequency along coastlines is especially notable. Snowy areas are 
also overly likely to be classified as cloudy. 
 
2.A.2. MODIS (Terra and Aqua) Cloud Mask Problems 
 

One problem with MODIS cloud masks is apparent before even looking at the data: it is 
not readily apparent which product is the most appropriate cloud mask. This may be partially 
explained by the fact that different users will have different definitions of clouds (e.g., those 
interested in land cover vs. atmospheric scientists). Even different MODIS processing teams use 
different cloud products. For example, the “cloud state” parameter found in the MOD09 
product’s “state flag” at 1 km resolution (bits 0 and 1) is derived from the MOD35 cloud 
product. The parameter differs substantially in spatial pattern from the “internal cloud algorithm 
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flag” in the same product’s bit 10 (eleventh bit). The MOD35 bit 0-1 combination in the first two 
bits – that is, a 1 in the first (“number 0”), rightmost, bit and a zero in the second (“number 1”) 
bit (i.e., bits should be read right to left) is called “cloudy” and looks like the best cloud mask, 
when comparing against raw reflectance data for a variety of land cover types. The supposedly 
“mixed” (i.e., mixed pixels containing some cloud) type (bit combination 1-0) also derived from 
MOD35 does not appear quite as good; in the southwestern U.S., it simply captures many bright 
desert areas. Similarly, the cloud shadow parameter (bit “number 2”, but actually the third bit) of 
the MOD09 state flag product does not appear accurate – it looks like a large buffer around the 
periphery of cloudy and even snow covered areas.  

 
Only the “cloudy” bit combination appears reasonably accurate in single scenes. 

However, even in this product, systematic errors are revealed when processed across long time 
periods. In Figure 39, showing annual cloud frequency derived from the standard cloud masks 
for MODIS Aqua, many desert areas have unusually high cloud cover – likely due to their bright 
reflectance. It is difficult to tell from this figure alone, but many frequently snow-covered areas 
also have spuriously high cloud frequency values. And other odd patterns turn up as well – an 
abrupt discontinuity in frequency is evident between the deserts and highlands of Arizona and 
northern Mexico. This is obviously the result of different cloud classification algorithms for 
water, coast, desert, and “land”, according to the MOD35 “processing path” (Wilson et al, 2014). 
The fact that lower-elevation vigorous agriculture in Arizona also shows up as anomalously high 
cloud frequency compared to surrounding desert suggests that it was either a vegetation-index 
related mask that was used for the different processing or the algorithm over “desert” has a 
problem with vigorous vegetation. Figure 40 zooms in on the annual cloud frequency product 
from MODIS Terra over southwestern California and northern Baja California. Urban areas of 
Los Angeles and San Diego have unusually high cloud cover, particularly in areas of dense 
build-up. Some bright desert areas can still be seen on the east. Finally, an obvious buffer (likely 
the “coast” processing path of MOD35) along the coast and around the offshore Channel Islands 
is evident as areas of slightly lower cloud cover. The processing path for “coast” probably 
adjusts the cloud classification due to confusion from bright beach sand and surf. But it also 
results in an underestimate of cloud frequency in these areas.  
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Figure 37. April 1993 cloud frequency derived from daily PATMOS-x cloud masks (AVHRR). 
Cloud mask algorithm has a problem with classifying bright deserts of the southwestern U.S. and northern  
Mexico (magenta ellipses) as cloud. This results in anomalously high cloud frequency for these areas. 
 
 

 
Figure 38. Annual cloud frequency derived from daily AVHRR LTDR standard cloud masks. 
Overlay of North American Commission for Environmental Cooperation Level I ecoregions in yellow 
shows the correspondence between cloud frequency and broad ecological patterns. Some high frequency 
variability related to land cover is evident, particularly along the lower Mississippi River Valley. 

Bright Deserts 
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Figure 39. MODIS MYD09 standard cloud mask, annual frequency (2002-2012), tile H08, V05. 
Bright desert soils are mapped with relatively high cloud frequency due to error in the individual daily 
cloud masks. Abrupt boundaries associated with land cover-specific processing are evident in eastern 
areas (Arizona and northern Mexico). Areas of bare rock and frequent snow are also mapped with excess 
cloud frequency, although this may be less obvious to the untrained eye. 
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Figure 40. MODIS MOD09 standard cloud mask, annual cloud frequency (2000-2012), southern 
California (sinusoidal projection). 
Same as previous figure, zooming in on southern California coastal and desert areas. Urban patterns are 
evident with excess cloud frequency, and buffers along the coast and around the Channel Islands (dark 
patches on left in the otherwise high cloud frequency Pacific Ocean) have anomalously low cloud cover 
compared to adjacent ocean. 
 
 
 
 
 
  

 

 

Los Angeles 

San Diego 

Bright Desert Soils 
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Appendix 2.B. MATLAB code 

2.B.1. AVHRR code 

Code is provided below for deriving daily standard and custom cloud masks from AVHRR 
AVH09C1 daily reflectance HDF data and looping through multiple years in MATLAB. First are 
some examples for reading in some images from a single day into MATLAB. January 4th, 1984 
data are used in the example. The year and calendar day are indicated following the 
“AVH09C1.A” in the import (hdfread) commands below. The NOAA-7 satellite is indicated by 
the “N07”. The last set of numbers (“2010…”) relates to a date and time of processing. For 
additional information, see: 
http://ltdr.nascom.nasa.gov/ltdr/docs/workshop/PEDELTY_LTDR_data_formats.pdf 
 
Each MATLAB line of code ends in a semi-colon (;). 
Comments in the code below are either in bold text or, using the MATLAB convention for non-
code comments, in green and following the pound (%) symbol. 
 
[MATLAB’s HDF Import Tool helped facilitate determining the commands for reading raster 
grids of data (or “Scientific Data Sets”, SDS) from HDF files. The tool’s importing is a relatively 
automated “point and click” process, with these next lines of code provided as output by the 
tool.]  
 
Example code for reading in images within the “EOS” subset of the file data: 
  
% Surface reflectance for channel 1 (red) 
SREFL_CH1 = hdfread('C:\AVHRR_HDF\AVH09C1.A1984004.N07.003.2010062183040.hdf', 'Grid', 'Fields', 
'SREFL_CH1'); 
% Surface reflectance for channel 2 (near infrared) 
SREFL_CH2 = hdfread('C:\AVHRR_HDF\AVH09C1.A1984004.N07.003.2010062183040.hdf', 'Grid', 'Fields', 
'SREFL_CH2'); 
% Quality Assessment field 
QA = hdfread('C:\AVHRR_HDF\AVH09C1.A1984004.N07.003.2010062183040.hdf', 'Grid', 'Fields', 'QA'); 
 
Examples within the “HDF” subset of the file data (note the slightly different import commands): 
 
% Brightness temperature, channel 3 [includes substantial reflectance component] 
BT_CH3 = hdfread('C:\AVHRR_HDF\AVH09C1.A1984004.N07.003.2010062183040.hdf', '/BT_CH3', 
'Index', {[1  1],[1  1],[3600  7200]}); 
% Brightness temperature, channel 4 [negligible reflectance component] 
BT_CH4 = hdfread('C:\AVHRR_HDF\AVH09C1.A1984004.N07.003.2010062183040.hdf', '/BT_CH4', 
'Index', {[1  1],[1  1],[3600  7200]}); 
% Brightness temperature, channel 5 [negligible reflectance component] 
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BT_CH5 = hdfread('C:\AVHRR_HDF\AVH09C1.A1984004.N07.003.2010062183040.hdf', '/BT_CH5', 
'Index', {[1  1],[1  1],[3600  7200]}); 
% LTDR’s “reflectance” component of channel 3 (mid infrared) 
SREFL_CH3 = hdfread('C:\AVHRR_HDF\AVH09C1.A1984004.N07.003.2010062183040.hdf', '/SREFL_CH3', 
'Index', {[1  1],[1  1],[3600  7200]}); 
 
------------------------------------------------------------ 
 
Actual code used in processing full set of AVHRR imagery begins here: 
 
% Program to loop through AVHRR data and generate official and custom cloud 
% masks 
path = '/AVHRR/';   % wherever the data are 
prefix = 'AVH09C1.A'; 
  
% loop through years 
for yr=1981:1999  % range of years processed 
  
    if yr==1988 | yr==1992 | yr==1996 %left out 1984 due to missing data 
    days=366; 
    else 
    days=365; 
    end 
%loop through days 
        for day=1:days 
             
            dastr=num2str(day); 
            if day<10 
            dstr=strcat('00',dastr); 
            elseif day>=10 & day<100 
            dstr=strcat('0',dastr); 
            else 
            dstr=dastr; 
            end 
     
  
    if yr==1981 | yr==1982 | yr==1983 | yr==1984 
            satel='N07'; 
            elseif yr==1985 | yr==1986 | yr==1987 | (yr==1988 & day<313) 
            satel='N09'; 
            elseif (yr==1988 & day>=313) | (yr > 1988 & yr < 1995) 
            satel='N11'; 
            else 
            satel='N14'; 
    end 
yrstr=num2str(yr);           
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counter=day 
fyle = dir(strcat(path,yrstr,'/',prefix,yrstr,dstr,'.',satel,'*hdf'));   
  
if isempty(fyle) 
    continue  % if the file does not exist (is empty) for the date, this returns to beginning of loop 
end 
if (fyle.bytes < 10000000)   % similarly, some files existed, but lacked much if any data: bad images 
    continue 
end 
  
% HDF files 
BT_CH3 = hdfread(strcat(path,yrstr,'/',fyle.name), '/BT_CH3', 'Index', {[1  1],[1  1],[3600  7200]}); 
BT_CH4 = hdfread(strcat(path,yrstr,'/',fyle.name), '/BT_CH4', 'Index', {[1  1],[1  1],[3600  7200]}); 
BT_CH5 = hdfread(strcat(path,yrstr,'/',fyle.name), '/BT_CH5', 'Index', {[1  1],[1  1],[3600  7200]}); 
SREFL_CH3 = hdfread(strcat(path,yrstr,'/',fyle.name), '/SREFL_CH3', 'Index', {[1  1],[1  1],[3600  7200]}); 
% EOS files (note slightly different read command structure) 
SREFL_CH1 = hdfread(strcat(path,yrstr,'/',fyle.name), 'Grid', 'Fields', 'SREFL_CH1'); 
SREFL_CH2 = hdfread(strcat(path,yrstr,'/',fyle.name), 'Grid', 'Fields', 'SREFL_CH2'); 
QA = hdfread(strcat(path,yrstr,'/',fyle.name), 'Grid', 'Fields', 'QA'); 
 
% BASIC CONVERSION OF DATA 
 
% Scaling values between 0 and 1 for 1000x2000 (row,column) pixel subset 
% “b” used for reflectance channels, and “t” used for brightness temperature 
b1 = double(SREFL_CH1(700:1699,600:2599))/10000; 
b2 = double(SREFL_CH2(700:1699,600:2599))/10000; 
t3 = double(BT_CH3(700:1699,600:2599))/10000; 
t4 = double(BT_CH4(700:1699,600:2599))/10000; 
t5 = double(BT_CH5(700:1699,600:2599))/10000; 
b3 = double(SREFL_CH3(700:1699,600:2599))/10000; 
 
% Getting bit 1 (second bit): LTDR “cloudy” field (standard cloud mask) 
qau = uint16(QA(700:1699,600:2599)); 
xx = bitget(qau,2); 
xxd = double(xx); 
 
% better stretch of thermal bands for display purposes 
t3s = t3*9-2; 
t4s = t4*9-2; 
t5s = t5*9-2; 
 
% normalized difference ratios  
nt = (t3s-t4s)./(t3s+t4s); 
% the above is my custom attempt at band 3 “reflectance” by normalizing the  
% difference between band 3 thermal and band 4 thermal 
rat = (b3-nt)./(b3+nt);  
% the above for some marginal clouds that seem to be higher in b3 
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ndvi = (b2-b1)./(b2+b1); 
 
% SERIES OF RULES FOR CLOUDS 
 
% Basic minimum low level of brightness in red band 
r1 = b1 >= 0.12;  
 
% Complex of rules involving various levels of derived b3 “reflectance” (clouds > snow) and custom 
normalized thermal ratio (clouds > snow), with additional variations including b1 reflectance and NDVI. 
r2 = (b3 >= 0.2 & nt>=.1) |b3>=.3 | nt>=.15 |(nt>=.1&(b3+nt)>=.25) 
|((b3+nt>=.2)&(b1>=.35|(b1>=0.2&ndvi<.03)))|((b3>=.07&nt>=.07)&(b1>=.35|(b1>=0.2&ndvi<.03)))|((b
3+nt)>=.09&b3>=(nt-.01)&(b1>=.35|(b1>=.2&ndvi<.03)))|(b3>=.04&rat>.16&ndvi<.06); 
 
% Rule to remove sunglint; NDVI for anomalous sunglint with very low b1 values 
r3 = ndvi>=0.1|b1>(t3s-0.45); 
 
% A COUPLE “FIXES” TO DEAL WITH ADDITIONAL ANOMALOUS DATA 
 
% Anomalous data in bands 1 or 2, along with some basic rules to decide cloud 
rfix = (b1>=1 | b2>=1 | b1<=0 | b2 <= 0) & (nt>=.15 | b3>=.3); 
 
% Anomalous data in band 3 (<0) with relatively liberal pair of cloud rules or 
% anomalous data in band 3 (=0) with more conservative pair of cloud rules 
rfix2 = (b3<0 & b1>=0.2 & nt>0)|(b3==0 & (b1 >=0.35 & nt>=.15)); 
 
% GROUPING ALL THE RULES 
 
% Have to meet all of the first 3 rules, OR one of the two fixes 
rcld = double((r1 & r2 & r3)|rfix|rfix2); 
 
% WRITING TO FILE 
% Convert custom and standard cloud masks to int16 
rcldint16 = int16(rcld); 
xxdint16 = int16(xxd); 
 
% write paths, names (yrstr and dstr relate to years and days derived from loops) 
wrpathrc = '/AVHRR/rcld_masks/'; 
wrpathxx = '/AVHRR/xxd_masks/'; 
filerc = strcat(yrstr,'.',dstr,'.rcld.mat'); 
filexx = strcat(yrstr,'.',dstr,'.xxd.mat'); 
save(strcat(wrpathrc,filerc),'rcldint16'); 
save(strcat(wrpathxx,filexx),'xxdint16'); 
 

end  % end of days loop 
end   % end of years loop 
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2.B.2. MODIS Code 
 
MODIS Aqua Data Processing:  
Example code for deriving daily standard and custom cloud masks from MYD09GA daily 
reflectance HDF data and looping through multiple years in MATLAB.  
 
Code is provided below for looping through multiple years of MODIS Aqua (and Terra until 
2007) imagery for three sinusoidal grid tiles. First are some examples for reading in some images 
from a single day into MATLAB. June 17th, 2012 data are used in the example. The year and 
calendar day are indicated following “MYD09GA.A” in the import (hdfread) commands below. 
Horizontal and vertical tile numbers follow the calendar date. The last set of numbers (“2012…”) 
relates to a date and time of processing. 
 
Each MATLAB line of code ends in a semi-colon (;). 
Comments below either in bold text or, using the MATLAB convention for non-code comments, 
in green and following the pound (%) symbol. 
 
MATLAB’s HDF Import Tool streamlines the reading of the individual raster grids of data (or 
“Scientific Data Sets”, SDS) within the HDF file, making the initial import commands below 
(i.e., hdfread) a relatively automated “point and click” process once the file has been navigated 
to.  
 
Within the “EOS” subset of the file data (rather than HDF, although little discernible difference): 
% Surface reflectance for channel 1 (red) 
sur_refl_b01_1 = 
hdfread('C:\MODIS_MYD09_2012daily\MYD09GA.A2012169.h08v05.005.2012171055901.hdf', 
'MODIS_Grid_500m_2D', 'Fields', 'sur_refl_b01_1'); 
% Surface reflectance for channel 2 (near infrared) 
sur_refl_b02_1 = 
hdfread('C:\MODIS_MYD09_2012daily\MYD09GA.A2012169.h08v05.005.2012171055901.hdf', 
'MODIS_Grid_500m_2D', 'Fields', 'sur_refl_b02_1'); 
% Surface reflectance for channel 3 (blue) 
sur_refl_b03_1 = 
hdfread('C:\MODIS_MYD09_2012daily\MYD09GA.A2012169.h08v05.005.2012171055901.hdf', 
'MODIS_Grid_500m_2D', 'Fields', 'sur_refl_b03_1'); 
% Surface reflectance for channel 4 (green) 
sur_refl_b04_1 = 
hdfread('C:\MODIS_MYD09_2012daily\MYD09GA.A2012169.h08v05.005.2012171055901.hdf', 
'MODIS_Grid_500m_2D', 'Fields', 'sur_refl_b04_1'); 
% Surface reflectance for channel 5 (shortwave infrared) 
sur_refl_b05_1 = 
hdfread('C:\MODIS_MYD09_2012daily\MYD09GA.A2012169.h08v05.005.2012171055901.hdf', 
'MODIS_Grid_500m_2D', 'Fields', 'sur_refl_b05_1'); 
% Surface reflectance for channel 6 (shortwave infrared) 

87 
 
 



 

sur_refl_b06_1 = 
hdfread('C:\MODIS_MYD09_2012daily\MYD09GA.A2012169.h08v05.005.2012171055901.hdf', 
'MODIS_Grid_500m_2D', 'Fields', 'sur_refl_b06_1'); 
% Surface reflectance for channel 7 (shortwave infrared) 
sur_refl_b07_1 = 
hdfread('C:\MODIS_MYD09_2012daily\MYD09GA.A2012169.h08v05.005.2012171055901.hdf', 
'MODIS_Grid_500m_2D', 'Fields', 'sur_refl_b07_1'); 
 
---------------------------------------------------- 
 
Actual code used in processing begins here: 
 
% Program to loop through MODIS Aqua data and generate custom cloud masks 
 
path = '/modis/MYD09GA.005/'; 
header='/MYD09GA.A'; 
  
for t=1:3                            % Loop through 3 sinusoidal grid tiles 
                        if t==1 
                            tile = 'h08v05'; 
                        end 
                        if t==2 
                            tile = 'h08v04'; 
                        end 
                        if t==3 
                            tile = 'h09v04'; 
                        end 
                        %if t==4 
                            %tile = 'h09v05'; 
                        %end    
for a=2002:2012 % Year loop for Aqua; Terra actually started in 2000 
    yrstr=num2str(a); 
    for b=1:12  %  Month of year loop to create two-digit month number 
        mostr=num2str(b); 
        if b<10 
            monstr=strcat('0',mostr); 
        end  %these just end if statement 
        if b>=10 
            monstr=mostr; 
        end   %this just ends this if statement 
         
            if (a==2004 | a==2008 | a==2012) & b==2 
            days=29; 
            elseif b==2 
            days=28; 
            elseif b==1 | b==3 | b==5 | b==7 | b==8 | b==10 | b==12 
            days=31; 

88 
 
 



 

            else 
            days=30; 
            end 
         
                for c=1:days % Day of month loop to get 2-digit day number for each day 
                    dastr=num2str(c); 
                    if c<10 
                    dayestr=strcat('0',dastr); 
                    end 
                    if c>=10 
                    dayestr=dastr; 
                    end 
        
         
        % Day of year through using Julian Date  – probably not the most sophisticated approach 
        mjd = mjuliandate(a,b,c); 
        if a == 2002 
            jdate = mjd-52274; 
        elseif a == 2003 
            jdate = mjd-52639; 
        elseif a == 2004 
            jdate = mjd-53004; 
        elseif a == 2005 
            jdate = mjd-53370; 
        elseif a == 2006 
            jdate = mjd-53735; 
        elseif a == 2007 
            jdate = mjd-54100; 
        elseif a == 2008 
            jdate = mjd-54465; 
        elseif a == 2009 
            jdate = mjd-54831; 
        elseif a == 2010 
            jdate = mjd-55196; 
        elseif a == 2011 
            jdate = mjd-55561; 
        elseif a == 2012 
            jdate = mjd-55926; 
        end 
             
    jstr=num2str(jdate); 
    if jdate<10 
        daystr=strcat('00',jstr); 
    elseif jdate>=10 & jdate<100 
        daystr=strcat('0',jstr); 
    elseif jdate>=100 
        daystr=jstr; 
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    end 
     
     
fyle = dir(strcat(path,yrstr,'.',monstr,'.',dayestr,header,yrstr,daystr,'.',tile,'*hdf'));   
  
if isempty(fyle) 
    continue % if the file does not exist (is empty) for the date, this returns to beginning of loop 
end 
if (fyle.bytes == 0) % some files existed in name, but lacked data: bad images 
    continue 
end 
  
bd1raw = 
hdfread(strcat(path,yrstr,'.',monstr,'.',dayestr,'/',fyle.name),'MODIS_Grid_500m_2D','Fields','sur_refl_b0
1_1'); 
  
bd2raw = 
hdfread(strcat(path,yrstr,'.',monstr,'.',dayestr,'/',fyle.name),'MODIS_Grid_500m_2D','Fields','sur_refl_b0
2_1'); 
  
bd3raw = 
hdfread(strcat(path,yrstr,'.',monstr,'.',dayestr,'/',fyle.name),'MODIS_Grid_500m_2D','Fields','sur_refl_b0
3_1'); 
  
bd4raw = 
hdfread(strcat(path,yrstr,'.',monstr,'.',dayestr,'/',fyle.name),'MODIS_Grid_500m_2D','Fields','sur_refl_b0
4_1'); 
  
bd5raw = 
hdfread(strcat(path,yrstr,'.',monstr,'.',dayestr,'/',fyle.name),'MODIS_Grid_500m_2D','Fields','sur_refl_b0
5_1'); 
  
bd6raw = 
hdfread(strcat(path,yrstr,'.',monstr,'.',dayestr,'/',fyle.name),'MODIS_Grid_500m_2D','Fields','sur_refl_b0
6_1'); 
  
bd7raw = 
hdfread(strcat(path,yrstr,'.',monstr,'.',dayestr,'/',fyle.name),'MODIS_Grid_500m_2D','Fields','sur_refl_b0
7_1'); 
 
% Removing scale factor to get reflectance back between 0 and 1 
bd1 = double(bd1raw)/10000; 
bd2 = double(bd2raw)/10000; 
bd3 = double(bd3raw)/10000; 
bd4 = double(bd4raw)/10000; 
bd5 = double(bd5raw)/10000; 
bd6 = double(bd6raw)/10000; 
bd7 = double(bd7raw)/10000; 
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clear bd1raw bd2raw bd3raw bd4raw bd5raw bd6raw bd7raw 
 
% various normalized difference ratios 
ndvi = (bd2-bd1)./(bd2+bd1); 
nd15 = (bd1-bd5)./(bd1+bd5); 
nd17 = (bd1-bd7)./(bd1+bd7); 
nd35 = (bd3-bd5)./(bd3+bd5); 
nd37 = (bd3-bd7)./(bd3+bd7); 
nd13 = (bd1-bd3)./(bd1+bd3); 
nd31 = (bd3-bd1)./(bd3+bd1); 
%cldresid = bd5-((bd1+bd7)/2); 
  
maskn05 = (bd2 >= .05);  % just to mask out dark stuff – not cloud even if high ratio 
nd15m = nd15 .* maskn05; 
nd17m = nd17 .* maskn05; 
nd35m = nd35 .* maskn05; 
nd37m = nd37 .* maskn05; 
ndvim = ndvi .* maskn05; 
 
nd15m5 = nd15m + 0.5;  % I think this later called nd15tp 
nd37mp = nd37m + 1; 
nd37mpd = nd37mp/2; 
  
% generating true color normalized deviations from average true color brightness 
avg3 = (bd1 + bd4 + bd3)/3; 
b1ndev = (bd1-avg3)./(bd1+avg3); 
b4ndev = (bd4-avg3)./(bd4+avg3); 
b3ndev = (bd3-avg3)./(bd3+avg3); 
 
% adding NIR criterion to the NDSI-like vis vs. shortwave ratios  
thr35 = nd35m > -0.15 & bd2 >= 0.12; 
thr35d = double(thr35); 
thr37 = nd37m >0 & bd2 >= 0.12; 
thr37d = double(thr37); 
  
thrstmult = thr35 & thr37; 
thrstmultd = double(thrstmult); 
thrstor = thr35 | thr37; % Should thresh change with or? 
% probably should’ve added a criterion based on the sum of thr35&thr37 
thrstord = double(thrstor); 
 
% Rules related to deviations from grayscale in true color bands  
tc1 = b1ndev > -.15 & b1ndev < .08; 
tc2 = b4ndev > -.05 & b4ndev < .05; 
tc3 = b3ndev > -.06 & b3ndev < .15; 
tc4 = b3ndev > -.08 & b3ndev <= -.06 & (ndvim >= .03 | (nd17m > 0.4 & nd15m > 0.2 & bd2 >= 0.12)); 
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tc1d = double(tc1); 
tc2d = double(tc2); 
tc3d = double(tc3); 
tc4d = double(tc4); 
  
tc4out = tc1d & tc2d & (tc3d | tc4d); % group of true color rules 
tc4outd = double(tc4out); 
 
tc4outnir = tc4outd & bd2 >= 0.12;  % adding NIR criterion to group of true color rules 
tc4outnird = double(tc4outnir); 
  
brite = (bd1 + bd4 + bd3) > 0.9;  % brightness rule for exceptional pixels that don’t meet SWIR criteria 
 
badnirfix = bd2 < .01 & bd1 > 0.2; 
  
cloudsnowb = badnirfix | (tc4outnir & (thrstor | brite)); % Determines cloud&snow from rest 
cloudsnowbd = double(cloudsnowb); 
  
avg751 = (bd7 + bd5 + bd1)/3; 
  
ndvim_p05 = ndvim + 0.5; 
  
% NEW RATIOS FOR CLASSIFICATION TREE  
ndvit = ndvi .* cloudsnowbd; %  multiplying serves as a mask to apply to cloud&snow 
ndvita = (ndvit + 0.25)*2; % stretches low ndvi values, centers near 0.5 
nd17t = nd17 .* cloudsnowbd; 
nd15t = nd15 .* cloudsnowbd; 
bd5sub = bd5 - 0.2; 
nd15sub = (bd1 - bd5sub)./(bd1 + bd5sub); % gives slightly different axis of separation to nd15 
nd15subt = nd15sub .* cloudsnowbd; 
nd15tp = nd15t + 0.5; 
  
red = ((b1ndev * 10)+0.5) .* cloudsnowbd; 
green = ((b4ndev * 10)+0.5) .* cloudsnowbd; 
blue = ((b3ndev * 10)+0.5) .* cloudsnowbd; 
 
% variables consisting of added ratios  
six = (nd17t + nd15tp + nd15subt + ndvita + red + green)/6; 
%five = (nd17t + nd15tp + nd15subt + ndvita + red)/5; 
four = (nd17t + nd15tp + ndvita + red)/4; 
%fourb = (nd17t + nd15tp + nd15subt + ndvita)/4; 
three = (nd17t + nd15tp + ndvita)/3; 
%threeb = (nd17t + nd15subt + ndvita)/3; 
%two = (nd17t + nd15tp)/2; 
%twob = (nd17t + nd15subt)/2; 
%twoc = (ndvita + nd15subt)/2; 
%twod = (ndvita + nd17t)/2; 
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%twoe = (red + green)/2; 
  
% TREE 23p: final rules 
% These separate snow from clouds: to generate the snow from the cloud&snow 
spp1 = six < .5707 & three >= .6238 & green >= .5332; 
spp2 = six >= .5707 & nd17t >= .6396; 
spp3 = six >= .5707 & nd17t < .6396 & four >= .5537 & green >= .4608 & three > .467; 
  
allspp = (spp1|spp2|spp3)&(1-badnirfix);  % SNOW 
allsppt = allspp .* cloudsnowbd;  
allclppt = cloudsnowbd - allsppt; % CLOUD 
  
% WRITING TO FILES 
snowint16 = int16(allsppt); 
cloudint16 = int16(allclppt); 
 
wrpathcl = '/modis/MYD09GA/'; 
wrpathsn = '/modis/MYD09GA/'; 
filecl = strcat(yrstr,'.',monstr,'.',dayestr,'.cloud.mat'); 
filesn = strcat(yrstr,'.',monstr,'.',dayestr,'.snow.mat'); 
save(strcat(wrpathcl,tile,'/cloud_masks/',filecl),'cloudint16'); 
save(strcat(wrpathsn,tile,'/snow_masks/',filesn),'snowint16'); 
  
  
                                    end % end of c=days loop 
  
                            end % end of b=months loop 
           
                end % end of a=years loop 
                 
    end % end of t=tiles loop 
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Code for MODIS Terra problems: bad band 5 beginning in 2007 and bad band 3 beginning 
in 2008. 
 
Rather than provide all of the redundant code, relevant changes are provided here.  Incorporating 
the changes into the standard code would require some comparison with section of the code 
above, but should be manageable. 
 
------------------------------------------------------------------------- 
 
% FIX for bad band5 
 
twod = (ndvita + nd17t)/2;  %  NOTE: NEED THIS ONE FOR TERRA (was commented out for Aqua) 
 

% Some new ratios to help identify bad band 5 
nd52 = (bd5 - bd2) ./ (bd5 + bd2); 
nd52t = nd52 .* cloudsnowbd; 
nd517 = (bd5 - bd1 - bd7) ./ (bd5 + bd1 + bd7); 
nd517t = nd517 .* cloudsnowbd; 
 
bad5m = (nd52t > 0.12 & nd517t > -0.3 & cloudsnowbd) | (bd5<.01 & cloudsnowbd) | (nd15tp > (nd17t 
+ 0.15) & nd15tp > .5); % This line identifies the bad band 5 data from what is already classified as cloud 
or snow 
 
snowx = (twod>0.62 & nd17t>0.4 & ndvita>0.55) | nd17t>0.8; 
snowxb = snowx.*bad5m; 
cloudxb = (1-snowx).*bad5m; 
allclpptx = allclppt + cloudxb - snowxb; % Adding newly classified cloud and subtracting newly classified 
snow to/from original cloud 
allspptx = allsppt + snowxb - cloudxb; % Adding newly classified snow and subtracting newly classified 
cloud to/from original snow  
  
snowint16 = int16(allspptx); 
cloudint16 = int16(allclpptx); 
 
------------------------------------------------------------------------------ 
 
% FIX for bad band 3 
 
% need to import the sensor azimuth and sensor zenith angle 
azim = 
hdfread(strcat(path,yrstr,'.',monstr,'.',dayestr,'/',fyle.name),'MODIS_Grid_1km_2D','Fields','SensorAzimu
th_1'); 
  
zeni = 
hdfread(strcat(path,yrstr,'.',monstr,'.',dayestr,'/',fyle.name),'MODIS_Grid_1km_2D','Fields','SensorZenit
h_1'); 
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------------------------------------------------ 
 
 
azimd = double(azim+18000)/36000;  % Scaling azimuth (-18000 to + 18000 to 0 to 1) 
zenid = double(zeni/10000); % Scaling zenith 0 to 1 
azr = zeros(2400,2400);  % just to establish dimensions for resampled reduced resolution 
znr = zeros(2400,2400); % “” “” 
for zx=1:1200  % reduce resolution loop for azim and zeni 
    for zy=1:1200 
        zx2=zx*2; 
        zy2=zy*2; 
        zx2m1 = zx2-1; 
        zy2m1 = zy2-1; 
        azr(zy2,zx2) = azimd(zy,zx); 
        azr(zy2m1,zx2) = azimd(zy,zx); 
        azr(zy2,zx2m1) = azimd(zy,zx); 
        azr(zy2m1,zx2m1) = azimd(zy,zx); 
        znr(zy2,zx2) = zenid(zy,zx); 
        znr(zy2m1,zx2) = zenid(zy,zx); 
        znr(zy2,zx2m1) = zenid(zy,zx); 
        znr(zy2m1,zx2m1) = zenid(zy,zx); 
    end 
end 
 
----------------------------------------------------- 
 
% stuff to "fix" the true color bad b3 problem 
redf = ((b1ndev * 10)+0.5);  % no changes here from before: just adding f to indicate use 
greenf = ((b4ndev * 10)+0.5); 
bluef = ((b3ndev * 10)+0.5); 
xx = azr < 0.5;  % these are negative (backscatter) azimuths originally 
yy = azr >= 0.5; % these are the azimuths >= 0 (forward scatter) originally 
bluefixxf = (bluef-znr).*xx;  % blue correction based on zenith, only applied where xx satisfied 
bluefixyf = bluef .* yy;   % no need for zenith-based blue correction here where yy satisfied (not xx) 
bluefixf = bluefixxf + bluefixyf; % merging the two above 
redfixxf = (redf+(znr/2)).*xx; % required change to red as a result of changing the blue  
redfixyf = redf .* yy; 
redfixf = redfixxf + redfixyf; 
greenfixxf = (greenf +(znr/2)).*xx; % required change to green as a result of changing the blue 
greenfixyf = greenf .* yy; 
greenfixf = greenfixxf + greenfixyf; 
 
% values of same rules from before changed for adjusted variables 
tc1 = redfixf > -1 & redfixf < 1.3;   
tc2 = greenfixf > 0 & greenfixf < 1; 
tc3 = bluefixf > -0.1 & bluefixf < 2; 
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tc4 = bluefixf > -0.3 & bluefixf < -0.1 & (ndvim >= .03 | (nd17m > 0.4 & nd15m > 0.2 & bd2 >= 0.12)); 
  
tc1d = double(tc1); 
tc2d = double(tc2); 
tc3d = double(tc3); 
tc4d = double(tc4); 
  
tc4out = tc1d & tc2d & (tc3d | tc4d); 
tc4outd = double(tc4out); 
clear tc1d tc2d tc3d tc4d 
  
tc4outnir = tc4outd & bd2 >= 0.12; 
tc4outnird = double(tc4outnir); 
  
brite = (bd1 + bd4 + bd3) > 0.9; 
  
badnirfix = bd2 < .01 & bd1 > 0.2; 
  
cloudsnowb = badnirfix | (tc4outnir & (thrstor | brite)); 
cloudsnowbd = double(cloudsnowb); 
  
clear tc4outnir tc4outnird tcout tcoutd 
clear thr35 thr35d thr37 thr37d thrstmult thrstmultd thrstor thrstord 
clear tc4out tc4outd tc1 tc2 tc3 tc4 tc1d tc2d tc3d tc4d 
  
avg751 = (bd7 + bd5 + bd1)/3; 
  
ndvim_p05 = ndvim + 0.5; 
  
% NEW RATIOS FOR CLASSIFICATION TREE 
  
ndvit = ndvi .* cloudsnowbd; 
ndvita = (ndvit + 0.25)*2; 
nd17t = nd17 .* cloudsnowbd; 
nd15t = nd15 .* cloudsnowbd; 
bd5sub = bd5 - 0.2; 
nd15sub = (bd1 - bd5sub)./(bd1 + bd5sub); 
nd15subt = nd15sub .* cloudsnowbd; 
nd15tp = nd15t + 0.5; 
  
% note that “fixed” variables replace equivalent non-fixed variables where necessary 
%six = (nd17t + nd15tp + nd15subt + ndvita + red + green)/6; 
sixfix = (nd17t + nd15tp + nd15subt + ndvita + redfixf + greenfixf)/6; 
%five = (nd17t + nd15tp + nd15subt + ndvita + red)/5; 
%four = (nd17t + nd15tp + ndvita + red)/4; 
fourfix = (nd17t + nd15tp + ndvita + redfixf)/4; 
%fourb = (nd17t + nd15tp + nd15subt + ndvita)/4; 
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three = (nd17t + nd15tp + ndvita)/3;   
%threeb = (nd17t + nd15subt + ndvita)/3; 
%two = (nd17t + nd15tp)/2; 
%twob = (nd17t + nd15subt)/2; 
%twoc = (ndvita + nd15subt)/2; 
twod = (ndvita + nd17t)/2;  % NOTE: NEED THIS ONE FOR MOD09 (Terra) 
%twoe = (red + green)/2; 
  
% TREE 23p 
%spp1 = six < .5707 & three >= .6238 & green >= .5332; 
%spp2 = six >= .5707 & nd17t >= .6396; 
%spp3 = six >= .5707 & nd17t < .6396 & four >= .5537 & green >= .4608 & three > .467; 
spp1 = sixfix < .5707 & three >= .6238 & greenfixf >= .5332; 
spp2 = sixfix >= .5707 & nd17t >= .6396; 
spp3 = sixfix >= .5707 & nd17t < .6396 & fourfix >= .5537 & greenfixf >= .4608 & three > .467; 
  
allspp = (spp1|spp2|spp3)&(1-badnirfix); 
allsppt = allspp .* cloudsnowbd; 
allclppt = cloudsnowbd - allsppt; 
  
clear spp1 spp2 spp3 allspp 
 
% FIX for bad band5 
 
nd52 = (bd5 - bd2) ./ (bd5 + bd2); 
nd52t = nd52 .* cloudsnowbd; 
nd517 = (bd5 - bd1 - bd7) ./ (bd5 + bd1 + bd7); 
nd517t = nd517 .* cloudsnowbd; 
bad5m = (nd52t > 0.12 & nd517t > -0.3 & cloudsnowbd) | (bd5<.01 & cloudsnowbd) | (nd15tp > (nd17t 
+ 0.15) & nd15tp > .5); 
clear nd52 nd52t nd517 nd517t 
snowx = (twod>0.62 & nd17t>0.4 & ndvita>0.55) | nd17t>0.8; 
snowxb = snowx.*bad5m; 
cloudxb = (1-snowx).*bad5m; 
allclpptx = allclppt + cloudxb - snowxb; 
allspptx = allsppt + snowxb - cloudxb; 
  
snowint16 = int16(allspptx); 
cloudint16 = int16(allclpptx); 
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Chapter 3. The Sierra Nevada’s Cloud Forest: Cloud Frequency the Strongest 
Predictor in Model of Climatic Controls on the Distribution of Giant Sequoia 
 

Abstract 
 
The restriction of giant sequoia (Sequoiadendron giganteum (Lindl.) Buchholz) to primarily the 
southern Sierra Nevada in California has long puzzled researchers (Hartesveldt et al, 1975). 
There were no obvious differences in current climate to explain the distribution. New, relatively 
high resolution cloud climatologies derived from AVHRR and MODIS satellite imagery 
demonstrate that the main part of the sequoia belt is the cloudiest area of California in March and 
April on average, and among the cloudiest areas throughout the year. Species distribution models 
reveal that April cloud cover frequency, in particular, is the strongest predictor of sequoia 
distribution from a large set of climate variables, but many other monthly cloud frequencies are 
strongly correlated with April. Frequent cloud formation appears to be associated with regular 
pooling of relatively humid air along the abrupt western slope of the Sierra Nevada in this region 
throughout the year. Cloud cover could be important for its increased ratio of diffuse to direct 
solar radiation, reduced daytime temperature and vapor pressure deficit, and retention of winter 
snowpack, all of which would contribute to a reduction of soil water deficit late in the relatively 
dry growing season. An imperfect match with all groves suggests that additional factors may be 
involved, but cloud cover and its associated conditions likely play a role in favoring sequoia in 
most cases. Determining the exact mechanistic controls would require substantial further inquiry, 
but it is now clear that the climate on the western slope of the southern Sierra Nevada, the 
sequoia belt, is substantially different from other portions of the mountain range. 

Introduction 
 

Giant sequoia (Sequoiadendron giganteum (Lindl.) Buchholz), the largest tree in the 
world by volume, is a narrow endemic on the western slope of the Sierra Nevada Mountains of 
California, restricted to a mid-elevation belt of approximately 75 groves (Hartesveldt et al, 
1975). Most of these groves lie in the southern Sierra, south of the Kings River, with only 
sporadic outlying groves to the north (Figure 1). In particular, the highest and lowest elevation 
trees (2700 m and 850 m), tallest of the species (95 m), biggest by volume (General Sherman, 
~1500 m3), and biggest grove of trees (Redwood Mountain Grove), all occur within the Kaweah 
River drainage near the center of the southern concentration of groves. The limited distribution 
pre-dates logging, as the present boundaries have been relatively fixed for over 500 years 
(Rundel, 1971). The restricted distribution contrasts with that of its cousin, the coast redwood 
(Sequoia sempervirens (D. Don) Endl.) – the tallest tree in the world, which is relatively 
common in its Coast Range distribution from Central California to the southwestern corner of 
Oregon (Figure 1), despite its much more extensive logging history. Vigorous reproduction and 
growth of giant sequoia following logging and fire (Harvey et al, 1980) has revealed that the 
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current climate continues to favor the tree, and that it is not just a relict of historic cooler 
climates, despite its capability of living for several thousand years. 
 

The dearth of giant sequoia (hereafter, “sequoia”, not to be confused with the genus of its 
cousin) in the northern Sierra has long puzzled researchers, as appropriate elevations and more 
than sufficient precipitation (Figure 2 and Figure 3, respectively) appear to exist in the north. As 
reviewed by Hartesveldt et al. (Hartesveldt et al, 1975), early explanations that varied from 
historic factors (e.g., elimination by glaciation during Pleistocene (Muir, 1876)) to climatic 
factors such as winter cold (Wilson, 1928) do not hold up to scrutiny. For example, not all areas 
of the northern Sierra were glaciated (Figure 4) and the winter cold in the high southern groves is 
more extreme than that of lower elevation groves in the north. Sequoia has had a long association 
with fire (Harvey et al, 1980), but the relationship is complex (Stephenson, 1999), and there are 
no clear latitudinal differences in fire regime across the Sierra (e.g., LANDFIRE data; (Rollins, 
2009)). The most commonly accepted hypothesis for the distribution has been that the species is 
restricted to areas of appropriate temperature, with adequate groundwater (Rundel, 1972), as part 
of a “hydrophytic community” (Axelrod, 1959). However, even Muir observed that sequoia 
outcompetes its rivals on both wet and dry soils (Muir, 1876). To explain the frequent 
association with moisture, Muir argued that sequoia were responsible for water’s frequent 
presence, rather than vice-versa. Rundel (Rundel, 1972), alternatively, suggested that this 
groundwater came from summer thunderstorms over the “High Sierra” (higher elevations of the 
Sierra Nevada) via percolation. A close examination of grove boundaries with respect to 
topography and the often distant location of the High Sierra and summer precipitation calls this 
assertion into question. Why are the groves so concentrated in the southern Sierra, on the western 
slopes, rather far removed and hydrologically isolated from the High Sierra? Particularly, why is 
sequoia common from the Tule River watershed south to the Greenhorn Mountains - areas which 
have no possibility of hydrologic connection to the High Sierra? Why is the sequoia belt (~1500-
2400 meters in the south & ~1400-2000 meters in the north) so mesic in general, accompanied 
by many wet meadows and relatively rich herb and shrub diversity (Barbour and Minnich, 1988), 
yet it does not have higher precipitation than comparable (or even much lower) elevations in the 
northern Sierra?  Given that groundwater percolation from High Sierra thunderstorms is unlikely, 
other factors would need to explain this mesic setting and the associated sequoia distribution.  
 

The frequent concentration of clouds over mid-elevations of the west slope of the 
southern Sierra (what I will refer to as the “sequoia belt”) seen in individual satellite images 
(Waller, 2006) and custom cloud frequency products (Chapter 2) indicated that the climate of the 
southern Sierra is quite different from that of the northern Sierra, and were thought to be a 
possible factor in the puzzling scarcity of sequoia in the latter. Clouds or fog (clouds at the 
surface) are known to be an important control on species distributions in many ecosystems, 
including tropical montane cloud forests (Sugden and Robins, 1979; Gentry, 1992; Sklenár et al, 
2008), and have been related to the distribution of sequoia’s cousin, the coast redwood (Cannon, 
1901; Dawson, 1998). For sequoia, cloud cover could be important for its moderation of 
temperature, including reduced daytime temperatures, which would also increase relative 
humidity and reduce vapor pressure deficit. Sequoia could also benefit from the increased ratio 
of diffuse to direct light associated with cloud cover. Winter and early spring cloud cover would 
contribute to the retention of snowpack by reducing sublimation and delaying snowmelt. All of 
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these factors would contribute to a reduction of soil water deficit late in the relatively dry 
growing season.  
 

In this study, species distribution modeling is used to investigate climatic controls on the 
distribution of sequoia. In particular, custom cloud frequency products derived from satellite data 
are incorporated into the analysis to assess their importance in comparison to more 
conventionally used climate variables such as temperature and precipitation. Individual monthly 
frequencies are included to determine whether evident seasonality in cloud frequencies is 
relevant to sequoia distribution. Additional processing of satellite data allows the improved 
assessment of seasonal and longer-term trends in a particular pattern of cloud formation that is 
relatively restricted to the sequoia belt. 
 

Data and Methods 
 

An earlier analysis (Waller, 2006) using periodic observations from Landsat Thematic 
Mapper and other satellite data found that cloud banks frequently formed in the region of sequoia 
groves (Figure 7), especially in the spring. To explore whether this related to any systematic 
differences in (cloud) climate, custom-generated cloud climatologies from two different historic 
satellite sensors with daily coverage were assessed: the Advanced Very High Resolution 
Radiometer (AVHRR, 1981-1999) and the Moderate Resolution Imaging Spectroradiometer 
(MODIS, 2000-2012). The length of the satellite record was not absolutely essential to estimate 
cloud frequencies, but was already processed for a study looking at long-term trends in 
California’s Central Valley winter Tule fog (Baldocchi and Waller, 2014). As the core of the 
sequoia distribution conveniently, and perhaps not coincidentally, lies due east of the core of 
Central Valley Tule fog formation, this dataset was perfectly suited for sequoia analysis as well. 
Chapter 2 of this dissertation describes the custom classification of daily cloud cover through the 
processing of daily raw radiance and reflectance data from the AVHRR and MODIS sensors, 
respectively, in more detail. This creation of custom products was deemed necessary, as existing 
cloud cover masks for these satellite data were found to have problems of confusion between 
clouds and bright desert areas (Figure 5) and between clouds and snow (Figure 6). Even recent 
more sophisticated cloud classification algorithms (Heidinger et al, 2012) continue to have 
problems with discriminating clouds from snow and other bright areas [see Chapter 2] – a critical 
concern in temperate mountainous regions. Other cloud climatology data sets, such as the 
International Satellite Cloud Climatology Project (ISCCP) (Schiffer and Rossow, 1983) are at 
such a coarse resolution (32 km at finest) as to prevent determining whether they confuse cloud 
and snow, at least over the Sierra Nevada. In any case, such datasets would be too coarse to be of 
much use in relatively fine scale understanding of species distributions, and species distribution 
modeling at the ~1 km resolution of many large area climate data sets.  
 

While AVHRR data are collected at a nominal resolution of 1.1 km, and thus reasonably 
close to that of MODIS (nominally 500 meters for the reflectance data used here), the Long-
Term Data Record (LTDR) (Pedelty et al, 2007) versions used here are processed and stored at a 
coarser 0.05 degree (~5 km) resolution, as a means of data reduction and standardization of the 
product (e.g., off-nadir viewing can greatly enlarge the true ground-resolution of the data for this 
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wide field of view satellite). Products derived from MODIS data (Aqua, in particular), however, 
were the main source of cloud climatological data used in sequoia species distribution models 
described below. These products are more accurate, at finer resolution (finer even than the other 
climate variables used in species distribution modeling here (1 km)), and of sufficient duration 
for a representative monthly cloud climatology. 
 

“Sequoia Cloud Formation” (SCF) frequency maps were also created to highlight days on 
which cloud cover was focused over the sequoia belt specifically. Daily imagery can sometimes 
highlight the relationship with sequoia groves better than climatological averages (which can get 
somewhat swamped by more general cloud cover), especially for some of the outlying groves 
(Figure 7). Applying a spatial filter to daily cloud masks allows the assessment of the precise 
spatial patterns in cloud frequency associated with the particular “sequoia belt” pattern, and 
allows a better understanding of the pattern’s climatology and trends over time, relatively 
independently of the climatology and trends in overall cloud cover. Twenty-five manually 
selected points inside the region of frequent cloud cover were compared daily with 75 manually 
selected and well distributed points surrounding the sequoia region (Figure 8) in MATLAB. If a 
greater number of the 25 points within the region were cloudy than there were of the 75 points 
outside the region, this was considered a SCF day. This spatial filter is analogous to an approach 
that was used to identify days with winter Tule fog in California’s Central Valley (Baldocchi and 
Waller, 2014) – another cloud pattern with a distinctive spatial signature. Monthly and annual 
SCF climatologies were generated from these daily products. This approach has the obvious 
potential for spatial bias (with sensitivity to point numbers and placement), but was only used as 
a relative index of approximate SCF frequency for comparing among months and years – NOT 
for any of the predictive modeling in this study.  
 

Various other processing of the monthly cloud frequency products was performed to 
further investigate relevant aspects of the cloud climatology of the sequoia belt. This included 
principal component analyses (across the 12 monthly averages for both MODIS Terra and Aqua 
data, within California and Oregon), the computation of monthly standard deviations (across 
years) and the associated monthly coefficients of variation (across years). The MODIS-based 
cloud frequencies from Terra were subtracted from those for Aqua to assess the development of 
clouds over the course of a day. 
 

Assessment of controls on sequoia distribution involved the use of several statistical 
approaches. Maxent (Phillips et al, 2004; Phillips et al, 2006; Phillips and Dudík, 2008), a 
species distribution modeling program predicated upon maximum entropy principles, has been 
found to perform very well in comparisons of many models (Elith* et al, 2006). An advantage of 
Maxent is that it only requires species presence locations as the dependent variable, along with 
various predictor variables (mostly climate here, including monthly cloud cover frequency; Table 
1). Multiple Maxent models of sequoia were performed at the scale of California and Oregon and 
at the scale of the Sierra Nevada (Jepson ecoregion (Hickman, 1993)) with different sets of 
predictor variables, both to explore how modeling extent affected the results, and to better 
ascertain reasons for sequoia absence in the Pacific Northwest. 

 
Classification trees (Breiman et al, 1984; Ripley, 1996) and logistic regression were also 

performed in the R software package as alternative statistical approaches. These statistical 
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approaches require species absence data in addition to presence data; absence data can be harder 
to acquire than presence data, but in the case of a well-documented species like sequoia, there is 
certainty that areas that have not been mapped for species presence can be considered reliable 
absences. Similar to the Maxent model runs, analyses were performed at the extent of both 
California and Oregon, as well as at the extent of the Sierra Nevada ecoregion. 
 

Sequoia grove locations were derived from combining two different data sets. One high 
resolution map of grove boundaries was obtained for the main (southern Sierra) portion of the 
sequoia distribution from the National Park Service. A digital coverage of points from the Jepson 
Online Interchange – California Floristics (http://ucjeps.berkeley.edu/interchange/) was used for 
the remaining groves (which tend to be much smaller). Single sample points were randomly 
placed within each sequoia grove polygon so as to maximize independence among samples and 
these were combined with the points from the coverage (edited to ensure accuracy and native 
locations only). For statistical modeling requiring absence data, absence locations were 
generated by first buffering the grove locations (5 km buffer to account for a little bit of sample 
location error and climatic autocorrelation), and then ensuring that absence points fell outside of 
these buffers. Absence points were selected from a variety of locations for different models 
(extent of absences can vastly influence model results; source), including all of California and 
Oregon, the entire Sierra Nevada, and the Sierra Nevada with an extra concentration of absence 
points from just outside of the buffered polygons. 

 
In addition to the monthly cloud cover frequencies, other climate variables were derived 

from PRISM (Daly et al, 1994) and Daymet (Thornton et al, 1997). PRISM data have been 
found to be more reliable than Daymet (Daly, 2006; Daly et al, 2008), so its data are used for 
temperature and precipitation. For other variables not provided by PRISM – at least not at a 
relatively high 30 arc-second (~800 m) resolution free of charge (e.g., radiation and humidity), 
Daymet data at 1-km resolution were used. Similarly, in a custom-generated potential 
evapotranspiration (PET) product using a modified Priestley-Taylor model (Priestley and Taylor, 
1972), PRISM data were used for the monthly temperature and precipitation, whereas Daymet 
data were used for monthly radiation and humidity (vapor pressure). This PET dataset, and water 
balance products derived from it, were also used in the modeling. These included minimum and 
maximum monthly water balance (precipitation – PET), cumulative annual water balance (i.e., 
all monthly water surplus carried through), cumulative annual deficit (defined as no carry-over of 
monthly water surplus), and months of deficit (i.e., PET> precipitation). Other humidity-related 
variables (e.g., relative humidity and vapor pressure deficit) were derived from the monthly 
Daymet humidity (vapor pressure) and mean temperature (average of minimum and maximum 
temperature) data. Elevation was derived from a U.S. Geological Survey Digital Elevation 
Model (DEM). All PRISM, elevation, and cloud frequency data were resampled and reprojected 
to the 1-km resolution and Lambert Conformal Conic projection of Daymet data. In general, 
minimum and maximum monthly values, in addition to annual sums, averages, and ranges were 
used instead of all monthly values, in order to reduce the total number of variables. Table 1 
contains a list of the 45 variables used in statistical modeling, including 12 monthly cloud 
frequency variables. 
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Results 
 
Cloud Cover Mapping 

Custom mapping of daily cloud cover resulted in climatology products quite different 
from those generated from available cloud mask products. As described in Chapter 2, the 
differences between the custom mapping of AVHRR clouds (Figure 9) and the Long Term Data 
Record (LTDR) cloud masking (Figure 10) for March of 1982-1999 mostly relate to the 
classification of snow as cloud in the LTDR product. Resolving the confusion between snow and 
cloud in the custom product is critical, as only with consistent discrimination is it evident that 
cloud frequency is particularly high at mid-elevations over the southern (main) part of the 
sequoia distribution, especially in the early spring months. In fact, the sequoia belt is the 
cloudiest area of California in the months of March and April (50-70% frequency), whether the 
data come from a custom classification of AVHRR for 1982-1999 (March; Figure 9) or MODIS 
for 2003-2011 (April; Figure 11). Conversely, cloud cover is not particularly high over the 
sequoia belt (or adjacent highlands) in the summer months (e.g., ~10% in August, Figure 12), 
when summer thunderstorms would ostensibly provide water. [Precipitation data from climate 
stations and PRISM maps indicate that even the highest peaks of the southern Sierra receive less 
than 3 cm of precipitation in both July and August – for a total far less than 10% of their annual 
precipitation (e.g., http://www.wrcc.dri.edu/pcpn/west.frac.julaug.gif) and less than higher areas 
of the central and northern Sierra. Nor is there evidence of consistent snowmelt availability in the 
mid-summer months of July and August in river hydrographs for the Kaweah and Tule Rivers – 
two major watersheds entirely within the sequoia region (www.epa.gov/region9/water/ 
wetlands/tulare-hydrology/tulare-fullreport.pdf).] The seasonal trajectories of monthly cloud 
frequency within the sequoia belt (buffered sequoia coverage) for both Terra and Aqua, in 
comparison with corresponding values for coast redwoods, are shown in Figure 13. It is 
noteworthy that cloud frequency in the sequoia region tracks that in the Redwood region pretty 
closely, and is higher on April and May afternoons. A relative downtick in MODIS data for 
March may be anomalous, as this was the cloudiest period for sequoia in AVHRR data (1982-
1999).  
 

Figure 14 focuses on the core of the distribution and demonstrates the close 
correspondence between afternoon cloud frequency in April and the distribution of the groves - 
from the relatively isolated McKinley Grove in the north through the Kings Canyon and Sequoia 
National Park groves south to the southernmost grove of Deer Creek. The MODIS classification 
is able to capture detail at the scale of individual large NW-SE ridges trending away from the 
higher elevation Sierra crest. Clouds tend to pool on the west/southwest sides of these large 
ridges, and this may help explain the surprisingly high frequency of sequoia groves on west and 
southwest slopes (Hartesveldt et al, 1975). There are several groves that don’t correspond to the 
highest levels of cloud cover – notably those on the north-facing slopes of Kings Canyon (south 
wall) and the Freeman Creek and Cunningham groves east of the Great Western Divide to the 
south. (Other groves that cross to the east of the Western Divide near the southern limit do have 
high cloud frequency – here, this spur of the main Sierra Nevada, also called the Greenhorn 
Mountains, are low enough to allow frequent cloud passage over the ridge. The clouds often 
approach the Freeman Creek grove as well [webcam observations, http://ssgic.cr.usgs.gov/ 
dashboards/WebCam.htm, see Bald Mtn WebCam #1] but not with sufficient frequency to 
register strongly on the cloud frequency maps.) It should be noted that the rugged canyons of the 
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Kings (Middle and South Fork) and Kern Rivers, as well as the steep eastern escarpment of the 
Sierra Nevada (paralleling, but just to the west of, Highway 395), are errantly mapped as having 
high cloud frequency in the custom product due to confusion with mixed snow/rock/vegetation. 
Portions of the Owens Lake Bed are also errantly classified as cloudy. 
 

The effect of the spatial filtering for “Sequoia Cloud Formation” (SCF) days on the April 
MODIS Aqua cloud mask is seen in the difference between Figure 14 (no spatial filter applied) 
and Figure 15 (filter applied). Figure 16 plots the frequency of SCF by month within the sequoia 
belt (buffered coverage of the sequoia groves) as detected by this technique, in comparison to 
overall cloud frequency by month within the sequoia belt. April has the highest frequency, at 
about 16%, while August has the lowest frequency, at about 4%. These are likely an 
underestimate and overestimate, respectively, due to omission and commission error. This 
determination of an overestimate for summer months is based, in part, on evaluation of the 
resulting monthly patterns [Appendix 3.A.1; see Appendix 3.A.2. for annual patterns]. August, 
and other summer months, capture a few days when general high cloud cover happened to fall 
disproportionately over the sequoia belt (tricking the spatial filtering algorithm). SCF in non-
summer months, on the other hand, is more likely to miss days due to the more frequent general 
cloud cover during this period, especially across northern California. Figure 17 shows the 
computed SCF frequency by year within the sequoia belt, again in comparison to overall cloud 
frequency within the belt. The consistency at around 7% is likely a slight to moderate 
underestimate for aforementioned reasons, but the likelihood of an interannual bias is slight, and 
indicates that the formation appears steady over time. Interannual variability computations 
support this consistency: standard deviations of monthly cloud cover across years is low 
compared to adjacent areas of the Sierra Nevada and southern California, and the coefficients of 
variation are among the lowest in California. 
 

Principal component analyses (Table 2 for loadings from first 6 principal components on 
MODIS Aqua monthly cloud frequency for California and Oregon) reveal that the sequoia belt is 
not just an area of high frequency of cloud cover (1st P.C. with similar weights on fall through 
spring frequencies; image looks like the overall frequency product), but is also one of the 
dominant modes of intra-annual variability in California. While the 2nd P.C. captures the winter 
(Dec & Jan positive loadings) vs. summer (June-Sept negative loadings) contrast, the strong 
contrast between a spring peak and a winter peak in the 3rd P.C. (large negative weights in order 
of April, May, March, and February and large positive weights on January and December) 
captures the sequoia region with low values (due to negative loadings on spring months). 
Alternatively, the sequoia region has relatively high values in the 4th P.C due to positive weights 
on February and March (and negative weights on May and November - apparently getting at 
some contrast with far northeastern California and much of Oregon). These results are evident in 
a color composite of the 2nd through 4th P.C.’s (Figure 18). The sequoia belt turns up as orange – 
what looks like a sort of extreme of the California Floristic Province (Stebbins and Major, 1965) 
foothills - due to its very low blue values (4-2-3 RGB puts the 3rd P.C. in the blue channel) and 
high red values (4th P.C in red). The orange color indicates that the sequoia belt also has 
moderate values in the 2nd P.C. (high mid-winter and low in summer). The 4th P.C. includes 
positive weights on summer (July and August) as well, which results in a strange mix of the 
spring-peaking areas with monsoonal summer-peaking areas of southern California. These 
higher P.C.’s begin to make less clear sense, and the percentage of variance explained drops 
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quickly as well. The first seven P.C.’s appear to have some spatial coherence, with much less in 
the last five. 
 
Statistical Analyses and Distribution Modeling  

Statistical analyses reveal the strong association between cloud cover frequency and 
sequoia distribution. They are also potentially useful for disentangling other climatic factors that 
might be involved in sequoia distribution. However, species distribution modeling is sensitive to 
many choices, including the study area extent. An initial extent of California and Oregon was 
explored to help ascertain any factors that might be responsible for large scale patterns of the 
distribution (e.g., spring cloud cover is high in the Pacific Northwest, but there are no sequoia 
there), but this large extent caused variables with broad geographic trends (i.e., large 
autocorrelation range) to appear unusually important. For example, in the associated 
classification tree (see Figure 8), elevation and minimum (winter) monthly vapor pressure deficit 
(vpdm_mi in figure) simply allow all low elevation areas (elev<1518 meters) and most of 
Oregon, northern California, and high elevation areas to essentially be removed from 
consideration. It seems unlikely that those particular variables were chosen because of a very 
direct impact on sequoia distribution. Once these broad areas are essentially removed by the 
model, April cloud cover frequency is found to be important, and has the greatest reduction in 
deviance (indicated by length of descending “branches”) of any of the climate variables. 
Interestingly, a relatively low level of August cloud cover frequency is the last split to separate 
remaining non-sequoia areas from sequoia areas. Yet high summer cloud cover is not evident 
within the sequoia groves – it is more common at the highest elevations. Whether this last rule is 
ecologically meaningful, or just a way of removing some of the lower elevation areas with high 
April cloud cover, is not clear. 
 

Removing all but the Sierra Nevada ecoregion from the spatial extent of modeling 
consideration allows the highlighting of variables that are more locally correlated with sequoia 
distribution. Figure 9 shows that April cloud frequency is now the first split, still with a very 
high reduction in deviance, followed by many other monthly cloud cover variables (although not 
always with sequoia corresponding to high values – in fact, the winter and summer cloud cover 
variables may be serving as proxies for other elevation-related factors). It is noteworthy that 
another summer month cloud frequency (this time July) shows up as an important final split, 
with low values separating out areas without sequoia.         
 

Maxent models facilitate the evaluation of the relationship between different predictor 
variables and sequoia distribution. In modeling the distribution of sequoia at the extent of 
California and Oregon, Maxent shows similar trends to the classification tree, with April cloud 
frequency an important, but slightly secondary, variable. However, in confining modeling to the 
Sierra Nevada ecoregion, April cloud frequency is clearly the most important predictor (Table 3). 
Among 45 climate variables, it contributes to almost half of the model’s explanatory power. 
[This did not change in several model runs with subtle variations in Maxent’s modeling choices; 
the following comments generally refer to the model associated with Table 3.] It performs twice 
as well as most variables when used alone (i.e., highest solitary training gain). Only several other 
variables that are heavily correlated with April cloud frequency, such as February, May, and 
October cloud frequency, along with elevation or variables correlated with elevation (minimum 
temperatures and vapor pressure), consistently perform more than half as well as April cloud 
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frequency in this sort of simple bivariate analysis. While collinearity among the cloud frequency 
variables may impact the ability to relate Maxent’s results to the relative importance of each 
month’s cloud frequency, Maxent does not completely break down due to the collinearity - it is 
able to tease out the subtle differences that suggest that April cloud frequency is the most 
strongly related to sequoia distribution.  
 

Collinearity amongst the many climate variables explains why there are only negligible 
drops in training gain when any one variable is alternately removed in a jackknife approach – 
even April cloud frequency. It also likely explains why most of the cloud frequency variables do 
not contribute largely to the full model, despite many having high solitary training gain values – 
most of the cloud frequencies are heavily correlated with April cloud frequency within the Sierra 
Nevada (monthly correlations with April: Jan:0.7, Feb: 0.93, Mar:0.94, May:0.94, Jun:0.81, 
Jul:0.37, Aug:0.56, Sep:0.74, Oct:0.85, Nov:0.83, Dec:0.78). Somewhat surprisingly, removing 
only November cloud frequency (also quite correlated with April) resulted in the largest drop in 
model gain of any predictor variable, albeit a small one. On its own it is not considered a strong 
predictor, nor is it a large contributor to the full model (0.4% contribution). It must be 
contributing some unique information, however small. Maxent’s predictor variable response 
curves that are conditional upon other variables being held at their mean suggest (but do not 
ensure, as these do not account for interactions) that November cloud frequency has an inverse 
relationship with sequoia distribution, after accounting for April cloud frequency’s positive and 
strong relationship. November cloud frequency also has reasonably high permutation importance 
(8%) in the full model, indicating that the model is sensitive to randomly changing (permuting) 
its values in presence and background sites. Minimum monthly precipitation frequency has 
similar behavior: low solitary training gain and a somewhat low contribution to the full model 
(3.5%), with a negative relationship with Sequoia, but very large permutation importance. 
However, these permutation importance values fluctuate among slight variations in model runs 
much more than the percent contribution results, suggesting that the latter are more robust and 
informative. 
 

Maxent also provides response curves for each predictor variable that are independent of 
other variables in the model. These curves (Figure 21) are not sensitive to multicollinearity. The 
response curves for February through May show the importance of high cloud cover frequency at 
this time: the responses are monotonically increasing to the highest levels of cloud frequency and 
peak (logistic?) responses are also higher. On the other hand, sequoia groves do not correspond 
to highest cloud cover levels in other months of the year; for example, in the summer months 
(July-Sept) the highest cloud frequencies are at elevations well above the sequoia belt and so the 
response curves peak at the much lower values common at middle elevations. The response 
values (peak height) in the summer months are also not as high as they are for the spring months. 
Similarly, the late fall and early winter (Nov-Jan) have peak responses at moderate cloud 
frequencies, with lower peak response values. In these months, the highest cloud frequencies are 
at elevations below the sequoia belt or in the far northern Sierra and sequoia groves only have 
moderate cloud frequencies.  
 

Another statistical approach, logistic regression, has slightly different performance when 
all predictor variables are simultaneously evaluated, due to its greater sensitivity to 
multicollinearity. With most of the monthly cloud cover frequencies (especially spring) highly 
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correlated, the expected spring months are not found to be especially important when all 45 
climate variables are included. In fact, many of the other climate variables are heavily correlated 
as well. However, confining a logistic regression analysis to just a few simple climate variables 
(April cloud frequency, annual precipitation, maximum monthly temperature, and minimum 
monthly temperature) reveals that April cloud frequency is by far the most important (p<<.001 -
> actually, 3.77*10-11: i.e., very significant) of the four (Table 4). Maximum temperature is also 
found to be significant in this particular model, and its negative slope indicates that colder, 
possibly  higher elevation areas of the high April cloud frequency are more likely to have 
sequoia (perhaps where the clouds are near the surface terrain?). This may be analogous to the 
selection of summer cloud frequency values by the classification tree. Interestingly, given the 
Maxent results for April and November cloud frequency, forward stepwise logistic regression 
modeling finds a two-variable model of just April cloud frequency and November cloud 
frequency to be a much more parsimonious (lower Akaike’s Information Criterion, AIC (Akaike, 
1974)) model than this four variable model. November cloud frequency may be somewhat 
interchangeable with monthly maximum temperature in these particular models, as they both 
have negative slopes in the model resulting in comparable impacts, in terms of weighing higher 
elevations (due to lower cloud cover) more heavily (although, notably, both perform better with 
April cloud cover, in terms of AIC, than does elevation). 1  

Discussion 
 
Cloud Cover Frequency  

The sequoia belt is among the cloudiest areas of California over the course of a year, and 
is the cloudiest area of California in March and April, particularly in the afternoon. Clouds form 
specifically over the sequoia belt at any time of year, but with less frequency in the heart of the 
summer (i.e., July through September), when clouds tend to form at higher elevations, and to 
some extent the middle of winter (i.e., December and January), when clouds tend to form at 
slightly lower elevations – likely related to the Central Valley Tule Fog formation, as discussed 
below. Sequoia-specific cloud formation (SCF) shows great interannual consistency and the belt 
has particularly low monthly coefficients of variation in cloud cover frequency across years. 
April is the peak month for a sequoia-specific cloud formation (SCF) and April cloud frequency 
is consistently selected by various statistical approaches (i.e., Maxent, classification tree, and 
logistic regression) as the variable most strongly related to giant sequoia distribution, particularly 
when the analysis is confined to the Sierra Nevada. Yet April cloud frequency is also heavily 
correlated with other months so it is problematic to absolutely differentiate April from other 
months. It is not clear whether April cloud cover is particularly critical to sequoia distribution, or 
whether this is somewhat coincidental, as it happens to be the time of year when the cloud 
formation is slightly more restricted to areas directly over the elevations at which sequoia tend to 
grow.  

1 The model with the lowest AIC resulting from continuing the forward stepwise approach has nine more variables 
for a total of 11, 4 of which are monthly cloud frequency variables (April, positive slope; November, negative; 
February, negative; October, positive). This model explains 67% of the null deviance. It’s likely overfit but may also 
demonstrate the multivariate complexity of the controls on the distribution. Backward stepwise logistic regression 
results in a more complex model with even lower AIC, but it is even more likely to be overfit. Some type of cross-
validation would be required to demonstrate the overfitting, but sequoia is too restricted in its distribution to provide 
a relatively independent validation sample. 
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Cloud cover modifies local climate in a variety of ways (Sklenár et al, 2008), all of which 

could be factors in its having a relatively direct control on the distribution of giant sequoia. 
Clouds can moderate temperatures: cooling during the day, but also reducing cold at night. The 
reduction in radiation, daytime temperature, and vapor pressure deficits reduces 
evapotranspiration and sublimation and delays snowmelt, ameliorating drought stress. All of 
these could be especially helpful at the seedling stage, when the plant is particularly sensitive to 
drought conditions, especially with post-fire clearing and exposure. They could also be 
especially helpful during unusually dry years. (Many of these factors were included in 
distribution models but their importance might be missed if they are not mapped well, or if maps 
fail to capture important temporal aspects.) Direct input of fog water is also possible (Dawson, 
1998; Burgess and Dawson, 2004) but cloud base height was not a focus of this study due to 
difficulties in measuring remotely. Web cam observations reveal that these clouds are generally 
fairly stratiform (Figure 22); the eastern edge of formation, at a minimum, can be assumed to be 
intersecting mountain slopes and forming a fog. Cloud cover arriving in the afternoon might be 
particularly beneficial, as plants can take advantage of morning sun when temperatures, and thus 
vapor pressure deficits, are typically lower, and gain benefits of clouds when water demand is 
typically higher. Cloud cover also increases the proportion of diffuse to direct light, which can 
increase photosynthetic light use efficiency (Rocha et al, 2004; Alton et al, 2007) and water use 
efficiency, particularly during periods of low soil moisture (Rocha et al, 2004). Finally, clouds 
may simply alter the competitive balance among species, allowing those that perform better 
under these conditions to outcompete species that perform more poorly under these conditions 
(see Species Distributions section below).  
 

A more indirect role for cloud cover would relate to its correlation with other climatic 
variables that might more directly control the distribution. These would include high humidity 
and low vapor pressure deficit near the surface (of course, these aren’t just statistically correlated 
with cloud cover as there is a direct link at 100% humidity and zero VPD at cloud level), and 
perhaps historically mesic (higher precipitation?) climates, of which the clouds might be a sort of 
relict. Humidity and vapor pressure did not tend to have high importance as predictors in our 
statistical analysis, but this may be due to the fact that, as interpolations of sparse climate station 
data, they were not mapped as accurately, with fine spatial detail, as cloud cover. (Daymet data 
were used for humidity due to their availability at finer resolution – PRISM 800 meter humidity 
data were not freely available.)  
 
Humidity 

The particular image of cloud formation in Figure 7 is unique in the sense that the clouds 
are forming in mid-summer – but on a relatively cool day. This kind of pattern is not unusual, on 
the other hand, in the spring months. The fact that it can also occur on rare cold days in the 
summer suggests that humid air is often pooling up against the abrupt escarpment of the western 
slope of the Sierra in this region – perhaps throughout the year – and that only when this 
coincides with periodic cooler air (often associated with storm front passage) is the humidity 
obvious in the form of a cloud. Frequently higher humidity on the west slope of the southern 
Sierra is hinted at by a variety of sources (Chapter 4), even in the summer, but a lack of climate 
stations in the region likely contributes to a lack of accuracy and detail in mapping the spatial 
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pattern of this humidity (Feld et al, 2013), and possibly the lack of apparent importance in giant 
sequoia distribution modeling. 
 

The fact that a few sequoia groves occur well outside of the sequoia cloud belt (e.g., 
Placer County Grove, and both groves of Calaveras Big Trees) suggests that high cloud cover is 
not an absolute requirement in all locations. Other groves (e.g., those on the south wall of the 
South Fork of the Kings River canyon and those just east of the Greenhorn Mountain divide) fall 
just outside of the main belt of highest cloud frequency, suggesting that there may be an 
important variable that is very highly, but not perfectly, correlated with spring cloud frequency. 
Surface relative humidity (and low VPD) is a good candidate, and many of these outlier groves 
may be subject to frequently high humidity but just outside of the zone of frequent cloud 
formation.   

 
Of course, the perceived climate is an integration of many factors (Woodward, 1987; 

O'Brien et al, 2000), and sequoia distribution could just be a question of having an appropriate 
balance of all the other main factors (e.g., temperature, precipitation, wind, hydrology, and soil), 
where cloud cover or humidity tilts the balance in many cases. Alternatively, historic legacies 
could be invoked: perhaps these outlier areas are relicts with a cloudier, more humid history, and 
are holding on in particularly amenable sites or are on their way out. (This latter argument might 
be the case for the northernmost, Placer County grove, which has very few trees and no 
reproduction, but not the case for the next-most northernmost Calaveras groves, which are doing 
well (Cook, 1942); www.nps.gov/history/history/online_books/cook/groves.htm). Whatever the 
case might be, the existence of outlier groves does not refute the potential importance of cloud 
cover or humidity to sequoia survival in the majority of its groves.  
 
Endogenous vs. Exogenous Moisture 

What about extending Muir’s argument that the sequoias are creating the mesic 
environment – perhaps their transpiration is leading to the higher humidity and thus cloud 
formation? Several lines of evidence argue against this “endogenous” explanation of a local 
source of moisture. Evapotranspiration at these elevations is still quite low in early spring when 
clouds are most frequent – generally about 1-2 mm/day at most, while it is higher in the adjacent 
lower elevation foothills (Goulden et al, 2012). [See Chapter 2 for related discussion involving 
satellite and meteorological tower data.] Furthermore, related patterns of cloud development are 
not always entirely restricted to the sequoia belt – the clouds have a tendency to vary in their 
formation over elevation according to temperatures, generally occurring over progressively 
higher elevations from winter through late spring, from elevations well below the sequoia belt, to 
elevations just above. They also tend to move up latitudinally and in elevation over the course of 
a day, with higher frequencies over the more southern Tehachapi Mountains early in the day 
(e.g., Figure 23) to higher frequencies over the sequoia belt later in the day (e.g., Figure 24). 
Subtracting average morning cloud cover (i.e., MODIS Terra) from average afternoon cloud 
cover (i.e., MODIS Aqua) for the months of March (Figure 25) and April (Figure 26) confirms 
that the cloud cover over the sequoia belt regularly builds up in the afternoon. Bright areas of 
these figures indicate locations in which there is greater cloud cover in the afternoon than in the 
morning. Dark areas indicate locations in which there is greater cloud cover in the morning than 
in the afternoon – such as the daytime receding fog of the southern California coast in these 
spring months. (Alternatively, and unfortunately, dark areas over the eastern High Sierra and 
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White Mountains indicate areas where the custom processing of MODIS Terra, in particular, had 
a problem with snow and desert/rock mixes classified as cloud.) The Tehachapi Mountains likely 
do not show up as a dark region of decreased cloud cover despite the aforementioned cloud 
movement because they can also occasionally be an area of cloud build-up over the course of the 
afternoon, just as for the sequoia belt. The cloud movement and the cloud build-up have a net 
canceling effect. 
 

The movement up in elevation over the course of a day may also be evidence against an 
endogenous source of moisture. This movement is common throughout the year (and might be 
related to the convective boundary layer height – see Chapter 4), but especially noticeable in the 
winter, when the low elevation manifestation may be the obvious Tule fog blanketing the Central 
Valley floor. On some days it appears that this Tule fog layer may transition into clouds over the 
sequoia belt region (see Figure 27 and Figure 28; though there is no certainty that the clouds in 
Figure 26 over the Central Valley sit at the surface). These two different manifestations of “fog” 
(stratus that may or may not intercept the ground) may be related in the sense that they tend to 
follow the passage of storm fronts (the moisture source), are associated with low-level 
convergence and low winds as a result of topographic blockage by the Sierra Nevada, and 
capped by an inversion layer. They are rarely, if ever, seen at the same time, due to the vastly 
different boundary layer heights associated with the two events. See Chapter 4 for further 
discussion.  
 
Amelioration of Summer Drought? 

It may seem that if cloud cover were important to sequoia distribution, it would be in 
terms of relieving summer drought-stress, so that the cloud cover should show up in the drier 
summer months to be of benefit. But cloud cover does not have to be a summer-drought reliever 
to be important to sequoia distribution - an explanation that operates across summer months is 
unnecessary. Any difference in climate at any time of year among locations is sufficient to alter 
the competitive balance among species. Plant distributions are not just a matter of survival - 
plants do not simply grow where they do not die – something akin to their fundamental niche 
(Hutchinson, 1959). They have to outcompete other plants, among other things, resulting in their 
realized niche (Connell, 1961). Different climate regimes favor different plants, and cloud cover 
(or humidity) at any time of year is part of the climate regime. 
 
Soils, Hydrology, and Water Balance 

Sequoia is generally found in unglaciated regions with soils of granitic origin but this is 
not a sufficient explanation for their particular pattern of distribution - there is some variation in 
parent material and soil type among groves (Harvey et al, 1980; Elliott-Fisk et al, 1996). It is 
true that only southward from Yosemite is the west slope of the Sierra almost entirely underlain 
by granite, but this still does not explain why sequoia becomes much less common north of the 
Kings River. Nor does it explain why the highest elevation, lowest elevation, tallest, biggest by 
volume, and biggest groves of sequoia are all in the Kaweah River drainage. Sequoia is clearly 
faring best near the center of the core of its distribution. This sort of Gaussian (normally 
distributed around its center) behavior does not suggest a strong response to an edaphic factor. 
While hydrology and soils are likely to play an important role in sequoia distribution, their 
importance is mostly manifested at finer scales, likely explaining why forests of giant sequoia 
are not more continuously distributed within the core area. Unfortunately, accurate data on these 
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variables at fine scales tends to be lacking. The species distribution analysis performed here was 
a relatively coarse-scaled climate modeling effort that did not consider hydrology or soil and its 
potential effects on water storage and water deficit, among other factors. One study (Lutz et al, 
2010) found that giant sequoia had the highest (modeled) average actual evapotranspiration 
among the tree species of Yosemite National Park, and an associated relatively low water deficit 
(given that deficit is the difference between potential evapotranspiration and actual 
evapotranspiration). This resulted, in part, from their use of a soil map that gave soils of sequoia 
the highest average water holding capacity. While this is consistent with the finding (Goulden et 
al, 2012) that the mid-elevation forest belt of the west slope of the Sierra Nevada is likely able to 
sustain high productivity due to rooting into deep soils, there is a potential problem of circularity 
in using a soil map to predict sequoia distribution. Given that soil formation is a product of 
climate, organisms, relief, parent material, and time (i.e., CLORPT, sensu Jenny (Jenny, 1961)), 
the soils of sequoia groves may be deep because of the productive climate and the associated 
sequoia growth, and not the other way around. Restricting the analysis to climate variables (or, at 
least, standardizing soil depth) avoids this sort of circularity. Water balance is likely an important 
factor in sequoia distribution, but it would be useful to determine whether this is the case 
irrespective of soil depth (i.e., without trying to include soil depth in a water balance model). 
 
Wind 

Relatively complex water balance models (e.g., Penman-Monteith (Monteith, 1965)) also 
utilize information on wind, as it can play a large role in the evapotranspiration process. Two 
natural resources energy companies, 3Tier (http://www.3tier.com/en/support/resource-maps/) 
and AWS Truewind (now AWS Truepower, https://www.awstruepower.com/products/maps-and-
resource-data/), have produced maps of average winds at 80 meter height (Figure 29 and Figure 
30, respectively), that indicate that the eastern San Joaquin Valley and the foot of the sequoia 
belt are among the least windy portions of the country. A relative lack of wind at 80 meters 
would reduce the water stress felt by tall trees, in particular. It also may be a factor in allowing 
moist air and clouds to pool up near the sequoia belt, rather than being dispersed over the Sierra 
Nevada. The transition of the Sierra Nevada west slope to a north/south orientation here, rather 
than a north-northeast/south-southwest orientation, may also be a factor, especially due to the 
prevailing northwesterly winds in the San Joaquin Valley from spring through fall.  

 
Unfortunately, water vapor may not be the only atmospheric constituent pooling in the 

region due to relatively low winds. It may also be the reason air pollution is extremely bad in the 
San Joaquin Valley, and why other tree species in the vicinity of the sequoia belt are suffering 
from ozone chlorosis (Barbour and Minnich, 1988). Maps of chlorotic damage in the Sierra 
correspond to the sequoia belt (Panek et al, 2013), although generally peaking at a lower 
elevation. In any case, the lack of wind may be a large factor in the distribution of sequoia, but 
(just as for humidity) wind may not be mapped at the level of detail necessary to demonstrate its 
importance beyond the extent that it can be seen to be somewhat correlated with cloud cover 
frequency. 
 
Species Distributions 

The distribution of other plant species may also support the notion that the sequoia belt, 
or at least the western slope of the southern Sierra, has its own unique climate regime. While the 
Sierra Nevada is known to have high plant species diversity, it is not particularly high in 
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endemism. This has been attributed to the lack of topographic barriers with the similar 
environments of the Coast Ranges (Shevock, 1996). On one hand, this relative lack of endemism 
is an argument against a unique climate – on the other hand, it’s noteworthy that the Sierra 
Nevada has such a similar climate to the Coast Ranges. Sierra bleeding-heart (Dicentra 
nevadensis (Eastw.)) and purple fairly lantern (Calochortus amoenus (E. Greene)) have 
distributions nearly identical to that of the core distribution of giant sequoia, although at 
generally higher and lower elevations, respectively. Sierra bladdernut (Staphylea bolanderi (A. 
Gray)) also has a similar distribution, although also at a slightly lower elevation (with outliers in 
the Shasta Lake region). Alternatively, gray pine (Pinus sabiniana (Douglas)) has a long-noted 
(Griffin and Critchfield, 1972) gap in its distribution that corresponds nearly exactly (although at 
a lower elevation) to the main belt of sequoia (Figure 31). Researchers (Schwilk and Keeley, 
2006) have surmised that this gap is related to rugged topography and lack of adequate fire 
refugia due to the absence of large river valleys in the area. The rugged topography cannot be 
denied, and there is probably a connection between the steep escarpment in this portion of the 
Sierra and the sequoia distribution. However, it seems more likely that the relevance of the steep 
topography is related to the effect on the compactness of the cloud formation and a variety of 
other climatic factors, such as humidity and precipitation. That this different topography AND 
climate regime creates a unique fire regime is likely - it’s just difficult to disentangle the relative 
importance of climate and fire for species distribution. In any case, the pine grows in many fire 
prone areas without large river valley refugia (e.g., throughout the southern Central Coast 
Ranges). Yet it does not grow in other humid and cloudy areas, such as those near the coast. The 
pine may simply be outcompeted by other species in the different climate (and fire) regime in the 
foothills adjacent to the sequoia belt.  
 

Other species distributions in the vicinity of the sequoia belt are notable, although not as 
distinctive as the above-mentioned patterns. For example, the Douglas-fir (Pseudotsuga 
menziesii (Mirb.) Franco) Sierra distribution reaches its southern limit near the northern edge of 
the main sequoia belt, yet it extends farther south in the Coast Ranges; other species share this 
trend: e.g., Pacific madrone (Arbutus menziesii (Pursh)) and tanoak (Notholithocarpus 
densiflorus (Hook. & Arn.) Manos, Cannon, & Oh). Conversely, many other species have the 
opposite pattern in that they extend their range south along the west slope of the Sierra much 
farther than they do in the Coast Ranges, for example, Pacific dogwood (Cornus nuttallii 
(Audubon)), western redbud (Cercis occidentalis (Torrey)), mock orange (Philadelphus lewisii 
(Pursh)) and western azalea (Rhododendron occidentale (Torrey & A. Gray) A. Gray) - all of 
which have extreme southern California disjuncts (possibly due to summer monsoonal moisture, 
although general high frequency of cloudiness and rainfall could be factors as well), as well as 
beaked hazelnut (Corylus cornuta ssp. californica (Marsh.)), Sierra plum (Prunus subcordata 
(Benth.)), California buckeye (Aesculus californica (Spach) Nutt.), Oregon oak (Quercus 
garryana (Hook.)), and California nutmeg (Torreya californica (Torrey)). Something about the 
environment in the vicinity of the sequoia belt clearly allows some species to flourish and other 
species to be at a disadvantage. Including cloud cover frequencies in models of these species’ 
distributions could demonstrate how important cloud cover, or relative lack thereof, might be in 
controlling their distribution. 
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Conclusions 
 

A major hurdle for early hypotheses on the distribution of giant sequoia was in 
identifying differences in climate between that of the southern Sierra and that of the northern 
Sierra, besides the South’s expected slightly greater warmth and aridity at a given elevation 
(factors which would not be expected to favor sequoia). In fact, there appears to be much greater 
variability to the Sierra climate (for given elevations) than shown by simple climate variables 
interpolated from a sparse network of climate stations in rugged mountain terrain. Both the 
climate variables that need to be considered and the spatial pattern of those variables are difficult 
to understand with limited station data. Satellite data, in particular daily imagery with reasonably 
high resolution (i.e., MODIS), is revealing on both of these fronts. Unusually high cloud cover 
frequency currently stands out as the most salient environmental feature of the sequoia belt. But 
a host of factors suggests that the environment on the west slope of the southern Sierra Nevada in 
the vicinity of the giant sequoia groves is unique in a variety of ways.   

 
The fact that cloud frequency correlates with the giant sequoia distribution far better than 

any other climatic variables indicates that it is either a strong driver in the distribution or is 
heavily correlated with other driving environmental variables that are either not mapped, or not 
mapped very well. Further research is needed to clarify this. It should involve collection of high 
resolution information on humidity, radiation, wind, and snowpack (possibly along with 
precipitation and temperature), with a focus on several sequoia groves just inside and outside of 
the main zone of high cloud cover frequency. Chapter 4 touches upon some of these topics with 
the use of an elevation transect of micrometeorological tower measurements from a 55 meter 
height on half-hour time steps. These provide important insights but do not address the problem 
of meteorological data scarcity. Despite the needs for more data and further investigation to 
determine the exact mechanisms involved in the sequoia distribution, the correlation between 
cloud cover and sequoia is strong enough to suggest that cloud cover is indeed a factor. It may be 
fair to call the giant sequoia belt the cloud forest of the Sierra Nevada. 
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Tables 
 
Table 1. Predictor variables for species distribution models 
 

Annual  Source Monthly Maxima Source Monthly Minima Source 
Precipitation P Precipitation P Precipitation P 
Precipitation 
Frequency D 

Precipitation 
Frequency D 

Precipitation 
Frequency D 

Mean Maximum 
Temp P Temperature P Temperature P 
Mean Minimum Temp P Relative Humidity D Relative Humidity D 
Temperature Range 
(Max Mo.-Min Mo.) P Vapor Pressure D Vapor Pressure D 
Average Relative 
Humidity D 

Vapor Pressure 
Deficit D Vapor Pressure Deficit D 

Average Vapor 
Pressure D Radiation D Radiation D 
Average Radiation D PET D/P PET D/P 
Potential ET (PET) D/P Water Balance  D/P Water Balance  D/P 
PET Range D/P 

    Water Balance 
(cumulative annual 
PPT-PET, monthly 
carryover) D/P 

    Water Balance Range  D/P 
    Deficit (cumulative 

annual PPT-PET,no 
monthly carryover) D/P 

    Months of Deficit D/P 
    

      Other 
     Monthly Cloud 

Frequency C (12) 
    Elevation DEM 
    

      
      D = Daymet 

     P = PRISM 
     D/P = Jointly Derived 
     C = Custom Derived 

(12 separate months) 
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Table 2. Principal component loadings: MODIS Aqua monthly cloud frequency (California & 
Oregon). 
Values for months with strong loadings in bold (negative = black; positive = dark gray) in the 2nd through 
4th components (those P.C.’s included in Figure 18; P.C. 1 strongly correlated with overall frequency). 
 

  Principal Component   

 
1 2 3 4 5 6 

January 0.34 0.41 0.53 0.07 0.27 -0.33 
February 0.25 0.16 -0.20 0.62 -0.10 -0.15 
March 0.38 0.12 -0.24 0.29 -0.14 0.20 
April 0.36 0.05 -0.50 0.08 0.24 0.07 
May 0.36 -0.19 -0.31 -0.50 0.43 -0.02 
June 0.28 -0.35 0.01 -0.12 -0.17 -0.70 
July 0.06 -0.48 0.24 0.31 0.30 0.16 
August 0.12 -0.39 0.25 0.23 0.25 0.23 
September 0.17 -0.32 0.17 0.07 -0.09 0.07 
October 0.26 -0.23 0.06 -0.07 -0.57 -0.06 
November 0.36 0.06 0.20 -0.27 -0.36 0.49 
December 0.32 0.28 0.29 -0.16 0.14 0.11 
% Variance 
Explained 89.7 5.8 1.8 0.7 0.5 0.4 
       

 

 
 
Table 3. Maxent variable comparison, sequoia distribution model, Sierra Nevada ecoregion 
Solitary gain is an evaluation of an individual variables predictive ability, while percent contribution and 
permutation importance relate to the final model. The latter reflects the sensitivity of the final model to 
randomly changing (permuting) the value of the predictor in presence and background sites. Variables are 
sorted according to their solitary gain, which highlights the strength of the monthly cloud frequencies. 
 

Variable 
Solitary 

Gain 
Percent 

Contribution 
Permutation 
Importance 

Cloud frequency, April 1.69 45.2 0.38 
Cloud frequency, May 1.18 1.2 0.98 
Cloud frequency, February 0.97 0.0 0.09 
Mean minimum temperature 0.97 0.3 6.57 
Minimum monthly temperature 0.96 0.0 0.00 
Cloud frequency, October 0.93 0.2 2.26 
Maximum monthly absolute humidity 0.86 0.2 2.29 
Cloud frequency, March 0.86 2.9 10.34 
Elevation 0.86 13.4 5.30 
Annual average absolute humidity 0.82 0.0 0.00 
Maximum monthly VPD 0.81 1.6 2.37 
Maximum monthly water balance 0.76 0.0 0.00 
Maximum monthly precipitation 0.76 0.0 0.00 
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Annual precipitation 0.76 0.0 0.00 
Minimum monthly VPD 0.74 3.8 0.00 
Monthly maximum temperature 0.70 0.2 0.56 
Cloud frequency, August 0.69 0.5 1.76 
Annual water balance range 0.69 1.9 0.36 
Mean maximum temperature 0.67 0.0 0.00 
Annual precipitation frequency 0.65 10.2 2.45 
Annual water balance 0.63 0.0 0.00 
Minimum monthly precipitation  0.62 3.1 2.61 
Minimum monthly absolute humidity 0.61 0.4 1.81 
Cloud frequency, July 0.60 0.3 0.00 
Cloud frequency, September 0.59 0.3 2.17 
Maximum monthly precipitation frequency 0.51 0.0 0.00 
Annual deficit  0.51 0.0 0.00 
Annual temperature range 0.51 1.1 2.32 
Months of deficit 0.46 5.4 7.19 
Annual relative humidity 0.43 0.1 0.10 
Minimum monthly precipitation frequency 0.37 3.5 31.67 
Minimum monthly water balance 0.32 0.1 0.64 
Minimum monthly deficit 0.32 0.0 0.14 
Cloud frequency, June 0.31 0.8 3.26 
Maximum monthly PET 0.29 0.0 0.00 
Cloud frequency, January 0.29 0.0 0.00 
Minimum monthly relative humidity 0.18 0.0 0.00 
Minimum monthly radiation 0.17 2.1 0.00 
Maximum monthly radiation 0.16 0.4 2.54 
Minimum monthly PET 0.14 0.1 0.64 
Annual PET 0.10 0.1 0.70 
Cloud frequency, November 0.10 0.4 8.27 
Cloud frequency, December 0.08 0.0 0.00 
Annual radiation 0.06 0.1 0.21 
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Table 4. Four variable logistic regression results in R software, Sierra Nevada extent 
April cloud frequency (apr0311) by far the strongest predictor in this simple 4 variable model, with 
climate variables commonly used in simple models of species distributions (annual precipitation, 
maximum temperature of the warmest month, minimum temperature of the coldest month). 
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Figures 
 

 
Figure 1. Giant sequoia distribution in 
California (from Shirley, 1947).  
(Sequoia more restricted than its cousin, the 
coast redwood, which is common in the central 
and northern Coast Ranges.) 

 
Figure 2. Giant sequoia distribution in relation 
to elevation belts. 
Generally found at higher elevation belt in the 
south, lower elevations for outlier groves in north. 
No lack of appropriate elevations in the north. 

 

 
Figure 3. Giant sequoia distribution in  
relation to annual precipitation. 
No lack of adequate precipitation for  
sequoia in the northern Sierra Nevada. 

 
Figure 4. Maximum extent of Pleistocene 
glaciation in California (from Donley, 1979). 
Glaciers not extensive enough to explain absence 
of sequoia in the northern Sierra Nevada. 
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Figure 5. MODIS Terra official cloud mask, 
January average (2001-2012) 
Tile H08,V05 (Sinusoidal Projection). Strong 
evidence of error related to land cover. 

 
Figure 6. MODIS Terra official cloud mask, 
April average(2000-2011) 
Tile H08,V05 (Sinusoidal Projection). More subtle 
confusion with bright bare rock and snow mix. 

 
 

 
Figure 7. MODIS Aqua (~1:30 PM), 7/14/11, 
false color composite (RGB=7-2-1).  
Giant sequoia distribution highlighted in red. This 
color composite shows contrast between clouds 
(white) and snow (cyan).  
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Figure 8. Spatial filtering technique for identifying days of "Sequoia Cloud Formation" (SCF). 
Backdrop image is annual cloud frequency from MODIS Aqua, 2002-2012, for sinusoidal grid tile H08, 
V05 and only serves to help with spatial referencing. Spatio-temporal filtering is performed on a daily 
basis with individual MODIS cloud cover masks. If more of the 25 cyan points were identified as cloudy 
on a given day than of the 75 surrounding red points, the day was determined to have the SCF. All cloud 
cover on this day is then retained and contribute to the SCF frequency products in Figure 15 and 
Appendices 3.A.1 and 3.A.2. This approach has the obvious potential for spatial bias (with sensitivity to 
point numbers and placement), but was only used as a relative index of approximate SCF frequency for 
comparing among months and years – NOT for any of the predictive modeling in this study.  
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Figure 9. AVHRR March cloud frequency 
(Custom) with giant sequoia distribution 
Sequoia (red) show strong relationship with high 
cloud frequency in March (1982-1999 average). 
 

 
Figure 10. AVHRR March cloud frequency 
(LTDR) with giant sequoia distribution 
Misclassification of snow as cloud obscures 
relationship between Sequoia (red) and cloud. 

 
 

 
Figure 11. MODIS Aqua April cloud frequency 
with giant sequoia distribution 
Sequoia (red) show strong relationship with high 
cloud frequency in April (2003-2011 average). 

 
Figure 12. MODIS Aqua August cloud 
frequency with giant sequoia distribution 
Sequoia (red) show weak relationship with high 
cloud frequency in August (2003-2011). 

  
 
 

125 
 



 

 
 
 
 
Figure 13. Giant sequoia and coast redwood mean monthly cloud frequency comparison (MODIS 
Terra and Aqua).  
Redwood (red lines) has greater frequency on summer mornings (Terra, ~ 11 AM, dashed) and early- to 
mid-winter morning and afternoon, but sequoia (black lines) not far behind, and exceeds redwood on 
spring afternoons (Aqua, ~ 1 PM, solid). 
 
 

Month 
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Figure 14. MODIS Aqua Cloud Frequency, April 2003-11 (main sequoia belt). 
Giant sequoia (red) show good correspondence with April cloud frequency. 
 
 

 
Figure 15. MODIS Aqua "Sequoia Cloud Formation" frequency, April 2003-11 
Spatial filtering approach enhances relationship between sequoia (red) and clouds from Figure 14. 
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Figure 16. MODIS Aqua monthly cloud frequency (2003-2011) and frequency of “Sequoia Cloud 
Formation” within sequoia belt. 
Both show an obvious late winter and spring peak, but the specific formation over the giant sequoia area 
occurs with a much higher relative frequency in April. 
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Figure 17. MODIS Aqua annual cloud frequency, 2003-2011, sequoia belt. 
The frequency of specific “Sequoia Cloud Formation” appears steadier than the overall cloud frequency. 
This nine-year record is not long enough to establish long-term trends, but there is no obvious long-term 
trend apparent in either. 
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Figure 18. Color display of 2nd-4th principal components of MODIS Aqua monthly cloud 
frequency (2003-2011) for California and Oregon. RGB= PC4, PC2, PC3.  
Buffered giant sequoia groves outlined in black. Sequoia region notable for relatively high values in PC’s 
2 and 4, and distinctly low values in PC 3, hence orange color in display. Principal component loadings 
can be found in Table 2. 
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Figure 19. Giant sequoia classification tree in 
R, California and Oregon model extent 
April cloud frequency of secondary import. 

 
 
Figure 20. Giant sequoia classification tree in R, 
Sierra Nevada model extent 
April cloud frequency now of primary importance. 

 

 
 
Figure 21. Maxent response curves for the monthly cloud frequency predictor variables in sequoia 
distribution model. 
X-axis cloud frequency for given month, and y-axis sequoia response (~ probability). Sequoia distribution 
correlates with high levels of February, March, April, May, and October cloud cover. 
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Figure 22. Webcam images for giant sequoia region, Dec. 8, 2013 

A. Milk Ranch to Castle Rocks (Sequoia National Park) 
B. Jordan Peak to Needles (Sequoia National Forest) 

C. Three Rivers toward Moro Rock (Sequoia National Park) 
(http://ssgic.cr.usgs.gov/dashboards/WebCam.htm) 
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Figure 23. MODIS Terra (~11 AM) clouds 
Clouds frequently form over the extreme southern 
Sierra and Tehachapi Mountains in the morning. 

 
Figure 24. MODIS Aqua (~1 PM) clouds 
Later in the same day as Figure 23, the clouds have 
migrated to center over sequoia belt. 

 
 

 
Figure 25. MODIS March afternoon minus 
morning (Aqua-Terra) cloud frequency. 
Clouds clearly increasing over the day near the 
sequoia belt. 
 

 
Figure 26. MODIS April afternoon minus 
morning (Aqua-Terra) cloud frequency. 
Same as for March in Figure 25, but fog retreat 
near coast more evident. 
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Figure 27. MODIS,Terra (~11:00 AM),1/27/2010 
Possible winter Tule fog in the morning. No 
certainty of cloud base height at ground. 

 
Figure 28. MODIS, Aqua (~1:00 PM), 1/27/2010 
Later in same day as Figure 27, appears to hint at 
Sequoia Cloud Formation in the afternoon. 

 

 
 
Figure 29. 3Tier U.S. average wind speed at 80 meter height. 
The sequoia region and adjacent areas of the San Joaquin Valley have some of the lowest average wind 
speeds in the country. 
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Figure 30. AWS Truewind (now Truepower) U.S average wind speed at 80 meter height. 
This product does not agree with the 3Tier product everywhere (e.g., extreme differences over 
Appalachian Mountains) but it does agree that winds are low in the sequoia region. 
 
 

 
Figure 31. Giant sequoia distribution in relation to gray pine (Pinus sabiniana). 
Sequoia (magenta) occupies the long-noted gap in the distribution of the pine (teal), although at a higher 
elevation. 
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Appendices 
 
3.A.1. MODIS Aqua monthly frequency on days determined to have the “Sequoia Cloud Formation” for 
sinusoidal grid tile H08, V05 according to the spatial filter. The spatial filter of daily cloud cover masks 
helps to highlight the frequency of the specific formation over the region of giant sequoia. The product 
also indicates other areas that tend to be cloudy when the formation is occurring (e.g., southern California 
mountains and Great Basin ranges of Nevada). Monthly frequency percentages within the giant sequoia 
distribution (red) indicated. California is outlined in orange and the Sierra Nevada ecoregion is in yellow. 
 
 

    

    

    
 
 
 
 

January 
4.8% 
 

February 
6.4% 
 

March 
11.9% 
 

April 
15.7% 
 

May 
9.5% 
 

June 
5.8% 
 

July 
5.1% 
 

August 
3.5% 

September 
4.3% 

October 
8.0% 
 

November 
7.4% 

December 
4.4% 
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3.A.2. As for Appendix 3.A.1, but annual frequency, 2003-2011. 
 

   

   

   
 

2003 
6.6% 

2004 
7.6% 

2005 
7.8% 

2006 
6.9% 

2007 
6.9% 

2008 
6.9% 

2009 
6.5% 

2010 
7.6% 

2011 
7.8% 
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Chapter 4. Satellite, Mapped, and Meteorological Tower Data Reveal Unique 
Climate for Giant Sequoia 
 

Abstract 
 
Giant sequoia (Sequoiadendron giganteum (Lindley) Buchholz) occurs in scattered mid-
elevation (~1400-2400 m) groves across the west slope of the Sierra Nevada of California, with a 
much higher concentration in a relatively confined southern belt. The west slope of the southern 
Sierra Nevada in this vicinity, the “sequoia belt”, has a unique climate evidenced by a high 
frequency of cloud cover. Cloud cover can occur here at almost any time of year, but a sequoia 
belt formation is especially distinct on afternoons in spring months following the passage of cold 
fronts, while most of the region is otherwise cloud-free. A custom cloud mapping and 
climatology (Chapter 2) allowed the identification of this cloud cover as the strongest predictor 
of sequoia distribution from a large set of climatic variables (Chapter 3). This chapter describes 
the use of ancillary satellite data, climate station data (including data collected at 55 meters 
above the surface), and other data sources to investigate various aspects of the associated climate 
and ascertain the mechanisms behind the frequent cloud cover. In the process, unusual behavior 
in several other climatic covariates is identified to contribute to a particularly outstanding climate 
in the region that is not simply unusual for being cloudy. Many of these unusual characteristics 
are particularly evident at the 55 meter height of a micrometeorological tower. These include a 
consistently and extremely low range in diel temperature (particularly in spring), anomalously 
low spring temperatures (particularly during the day), dew point temperatures and relative 
humidity values that peak during the afternoon, and consistently and unusually low wind speeds. 
Any number and combination of these climatic covariates could also play a large role in the 
distribution of giant sequoia.  

Introduction 
 

Frequent cloud cover on the west slope of the southern Sierra Nevada (hereafter, Sierra) 
is a potential contributor to the distribution of giant sequoia (Sequoiadendron giganteum 
(Lindley) Buchholz), as described in Chapter 3 of this dissertation, but the clouds may be more 
of a symptom than a cause of a unique climate. While clouds increase surface relative humidity 
due to their impact on temperature, their actual formation is related to high vapor pressure 
relative to temperature (i.e., at saturation; conversely, low temperature relative to vapor pressure) 
at whatever elevation they are forming. Values of these variables at the surface, where they 
would have a direct impact on giant sequoia (hereafter, sequoia) growth, may be correlated with 
their values at elevation, irrespective of cloud formation. Identifying climatic drivers of the 
frequent cloud formation could help to clarify controls on sequoia distribution and, in the 
process, clarify the unique climatic conditions associated with the west slope of the southern 
Sierra. 
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Little attention has been paid to latitudinal patterns in climate in the Sierra. Differences in 
climate with elevation have begun to get more assessment, especially due to concerns about 
climate change and the impact on the rain vs. snow elevation threshold that can influence winter 
snowpack and summer runoff amounts (Jeton et al, 1996; Dettinger et al, 2004; Lundquist et al, 
2008). Some recent studies have touched upon characteristics of the Sierra environment that hint 
at the unique atmosphere of the west slope of the southern Sierra – the sequoia belt. One (Feld et 
al, 2013) found that the spatial patterns of dew point temperature lapse rates of Yosemite 
National Park in the central Sierra often behave differently from the steadier lapse rates of the 
American River basin to the north. Dew points of Yosemite drop less steeply to 2000 meters, 
especially in late spring and early summer (when they can drop at only 3 °C/km), and more 
rapidly above 2000 meters. A 5.3 °C/km lapse rate is more typical for the American River Basin. 
They attribute most of this difference between basins to the different topographic trend on the 
west slope of Yosemite (a steep rise to 2000 meters, followed by a descent into the Tuolumne 
River basin) and its effects on air flow patterns. They speculate that “flow separation” caused by 
the Clark Range (a spur off the main Sierra crest) keeps moister air to the west. The topographic 
configuration in Yosemite may be more similar to the abrupt topography of the west slope of the 
more southern Sierra, where dew point lapse rates might show a similar, if not more extreme, 
pattern. 
 

Feld et al. found that PRISM climate data (Daly et al, 1994) did a reasonably good job of 
capturing average dew point lapse rates in the Sierra, but performed better in the American River 
basin than in Yosemite where the complex topography and lack of sufficiently dense climate 
stations likely posed problems. PRISM and Daymet (Thornton et al, 1997) dew point maps 
sometimes hint at areas of relatively high dew points on the west slope of the southern Sierra, but 
patterns lack coherence – in the case of PRISM, abrupt discontinuous patterns in minimum 
temperature (resulting from their attempt to capture complex microclimates) have cascading 
effects on relative humidity. Inconsistency in relative humidity measurement at and among 
climate stations ((Dai, 2006); personal observation), whether due to sensor inconsistency or 
microclimatic effects, respectively, may further contribute to problems in mapping complex 
micro- and topo-climates in highly variable terrain. 
 

Other climate variables besides dew point have been found to show notable variation 
around the 2000 meter threshold on the west slope of the southern Sierra. A study of 
evapotranspiration across an elevation gradient (Goulden et al, 2012) found that winter 
productivity is maintained up to this elevation, which they attribute to plant functioning at 
relatively moderate winter temperatures up to this elevation. At some point above 2000 meters, 
but below 2700 meters, trees appear to go dormant in winter, without recovery during any 
periods of warm-up. This elevation also coincides with a marked turnover in species composition 
(Goulden et al, 2012). Atmospheric pollutants rising up from the Central Valley of California 
have also been found to reach a limit at approximately this 2000 meter threshold. For example, 
Barbour (Barbour and Minnich, 1988) mentions that west-slope forests of the southern Sierra 
between 1300 and 1900 meters are especially impacted by ozone exposure (and the resulting 
ozone chlorosis / chlorotic mottle disease). Other authors (Van Ooy and Carroll, 1995; Panek et 
al, 2013) have related this exposure to topographic situation and regional wind patterns that 
impact the southern Sierra more than similar areas to the north.  
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This chapter describes the use of a variety of satellite, surface, micrometorological 
(micromet) tower, and mapped (including modeled/assimilated reanalysis) climate data to 
investigate the unusual climate associated with frequent cloud formation over the sequoia belt on 
the west slope of the southern Sierra. Satellite and mapped data provide the synoptic view 
required to ascertain how the climate of the southern Sierra specifically differs from that of the 
northern Sierra, where sequoia is generally absent. Climate maps are used to determine whether 
there are any unusual long-term patterns in spring temperature, humidity, or precipitation 
associated with the frequent cloud formation during this period. Modeled reanalysis data allow 
similar analyses, but also provide a larger view (both horizontally and vertically) on whether the 
sequoia region is subject to unique (cold) airmasses in the spring or associated with particular 
vertical movements of air in the spring. Satellite land surface temperature data help to address 
whether unusual temperature patterns associated with the sequoia belt, not captured by mapped 
climate data, might contribute to its frequent cloud formation. Atmospheric data from satellite 
allow the assessment of whether atmospheric humidity and water vapor are frequently high in the 
sequoia belt even when clouds are not forming. Measurements at the top of 55 meter micromet 
towers are especially helpful for giving highly accurate measurements of the extent to which 
climate above the immediate surface differs from that near the surface – an important 
consideration for both tall trees and an unusual atmosphere. An elevation transect of four 55 
meter tall micromet towers spanning ~2300 meters in the south-central Sierra includes one tower 
roughly within the northern end of frequent “Sequoia Cloud Formation” (hereafter, SCF). This 
tower and transect allow detailed investigation of meteorological factors inside and just outside 
the SCF. Surface and tower top measurements of ½ hourly temperature, dew point, relative 
humidity, and wind speeds and direction, in particular, are assessed on days with and without 
afternoon cloud formation, and help to identify the climate and meteorological conditions 
associated with the frequent cloud formation. All of these disparate data sources help to clarify, 
in turn, possible controls on sequoia distribution. 

Data and Methods 
 

Chapter 2 of this dissertation described the generation of cloud climatologies from 
satellite data, including MODIS reflectance data. These were used to identify the particularly 
cloudy climate associated with sequoia distribution on the west slope of the southern Sierra in 
Chapter 3. Analysis here uses a variety of sources to ascertain climatic features associated with 
this particularly cloudy climate: 1) additional MODIS satellite data, including the land surface 
temperature product and various atmosphere products; 2) climate data from mapped and modeled 
reanalysis data sets, as well as surface climate stations; and 3) meteorological data from an 
elevation transect intersecting the northern end of the particularly cloudy belt, including surface 
measurements and 55 meter micrometeorological tower top measurements. 
 
MODIS Land Surface Temperature Data 

MODIS land and atmospheric data are easily accessible (http://ladsweb.nascom. 
nasa.gov/), generally with twice-daily coverage (Terra, with prefix MOD; and Aqua, with prefix 
MYD), and include many georegistered derived products. For example, MOD11 and MYD11 
data provide a total of 4 daily (2 day and 2 night) observations of land surface temperature (LST, 
an emitted radiance-based estimate of “skin” temperature, not to be confused with air 

140 
 



temperature). These sensors have equatorial crossing times of approximately 10:30 AM and 1:30 
PM daily, but due to the northern latitudes of the area of interest, local overpass times are closer 
to 10:00 AM +/- 50 minutes and 1:00 PM +/- 50 minutes. Night overpass times are ~12 hours 
later for each. Daily night time Aqua (~ 1 AM) and day time Aqua (~ 1 PM) data were 
downloaded from 2012 and “differenced” to determine an approximate range of daily diel land 
surface temperature (dLST) for cloud free days. These data were averaged over months and the 
entire year. In addition to the daily data, the 46 eight-day MYD11 LST composites for 2012 were 
processed and averaged for the year.  
 
MODIS Atmosphere and Vegetation Products 

Two other sources of MODIS satellite data were evaluated for remotely-sensed 
information on the climate of the sequoia belt: MOD05/MYD05 (Precipitable Water Vapor: 
PWV) and MOD07/MYD07 (Atmospheric Vertical Profile). MOD05/MYD05 have day (thermal 
infrared- and near infrared-derived) and night (only thermal infrared) products as well, and can 
be easily downloaded and viewed, but are only Level 2, so they do not come in a georegistered 
format, nor are easily reprojected. Similarly, MOD07/MYD07 provide 5 km resolution non-
georegistered vertical profiles of the atmosphere, which include temperature and dew point 
temperature at 20 atmospheric pressure levels, extending well up into the atmosphere, from 
which corresponding vapor pressures and relative humidity were determined for lower 
atmosphere levels. These pressure levels are related to height, which can vary somewhat in 
relation to regional air pressure patterns and more substantially with topography (they are 
generally at greater heights over elevated areas, although generally lower with respect to the 
surface terrain height – until the highest pressure values don’t even exist over higher terrain). 
Difficulties associated with the mass reprojection of these datasets discouraged their processing, 
but they are still useful for viewing purposes. 
  

Other satellite products of interest include MOD16 (actual evapotranspiration (AET) and 
potential evapotranspiration (PET)) and MOD13 vegetation indices (e.g., the Normalized 
Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI)), although the 
EVI associated with MOD13 has notable viewing geometry problems; MCD43B4 Nadir BRDF-
Adjusted Reflectance (NBAR) provides important modeled standardization of measured 
reflectance to a common nadir-viewing geometry (Schaaf et al, 2011) with which improved 
vegetation indices were calculated. Solar geometry is not standardized in the NBAR product. 
Table 1 summarizes the various MODIS data used and referenced here. 
 
Mapped, Modeled Reanalyis, and Surface Station Climate Data 

Climate data included PRISM (Daly et al, 1994) and Daymet (Thornton et al, 1997) 
maps. Analysis focused on patterns of relative humidity, temperature and precipitation. Relevant 
seasonal patterns of temperature and precipitation, in particular, were identified through the 
simple differencing of values between months. This included comparisons of spring (April) and 
fall (October) temperatures, late winter/early spring (March) and winter (February) temperatures, 
and late winter/early spring (March) and late fall/early winter (December) precipitation. Surface 
climate information was obtained from Remote Automated Weather Station (RAWS; 
www.raws.dri.edu) data. This included data on average monthly snowfall and total precipitation 
for a variety of mid-elevation sites across the Sierra. A ratio of monthly snowfall (not snow 
water equivalent) to total monthly precipitation (likely very close to snow water equivalent in 
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winter months) provided a relative index of temperatures aloft during precipitating storm events. 
Higher ratios suggest a higher percentage of precipitation falling as snow and/or a colder and 
drier snow.  
 

Other climate data were derived from National Center for Environmental 
Prediction/North American Regional Reanalysis (NCEP/NARR) (Kalnay et al, 1996) data 
(available at http://www.esrl.noaa.gov/psd/cgi-bin/data/narr/plotmonth.pl). Atmospheric vertical 
velocity (Omega) values, at a variety of atmospheric pressure heights, show average spatial 
patterns of rising and descending air in various months. NCEP/NARR data were also used to 
calculate monthly integrated precipitable water vapor (PWV) across the atmosphere. Finally, 
additional NCEP/NARR mapped datasets (e.g., geopotential heights, vector winds and 
meridional winds) provide supporting information on larger-scale climate patterns. 
 
Meteorological Data 

An elevation transect of flux towers (Goulden et al, 2012), part of an ecohydrological 
study associated with the Southern Sierra Critical Zone Observatory 
(http://criticalzone.org/national/), has been a source of micrometeorological measurements for 
several years on the west slope of the south-central Sierra at an elevation interval of ~800 m 
(405, 1160, 2015, and 2700 m) with ½ hourly climatic measurements (including temperature, 
relative humidity, incoming solar radiation, sensible heat flux, latent heat flux, wind speed, and 
wind direction) at 55 meters above the ground surface (Table 2 and Figure 1). The data span 
various 2-4 year windows, from 2009-2012, depending on the site, with some inconsistency in 
data acquisition. The transect crosses elevations of the sequoia belt near the northern extent of 
the main belt of high cloud frequency. (Sequoia start to become much less common this far 
north, but the McKinley Grove of trees is quite close to the transect, occurring at ~1900 meters, 
less than 10 air miles southeast of the 2015 m tower and about 12 miles west/southwest of the 
2700 m tower. The SCF is still commonly present here, and the 2015 m tower, in particular, falls 
within the zone of high cloud frequency.) These tower data are accompanied by surface 
measurements, along with an additional network of climate data loggers scattered throughout the 
Providence Creek watershed (mostly elevated within tree canopies) just south of the 2015 m 
tower. 
 

Dew point, vapor pressure deficit, and dew point depression (temperature minus dew 
point temperature; proportional to lifting condensation level) were additionally calculated from 
the tower data. These, along with the above-mentioned climate variables of interest were then 
averaged (when data were available – technically, using NanMean in Matlab to ignore empty 
values; NanMedian was used for wind direction – these should have binned the into directional 
categories and then processed with “Mode”, but trends were still evident and these data were not 
a focus) for the half hour intervals across the days of the month to generate average ½ hourly 
trajectories by month. Individual months were then averaged across the multiple years to 
generate longer-term monthly averages. Relative humidity poses a unique situation for averaging 
values, given that the saturation vapor pressure (and thus relative humidity) is an exponential 
function of temperature. See Appendix 4.A.1 for a brief discussion of the issue.  
 

Climate averages on days without afternoon cloud cover were also generated. This was 
an attempt to evaluate whether climate patterns on clear days were different from those days on 
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which the SCF was occurring. These clear afternoons were determined by selecting the days on 
which afternoon radiation (8 measurements from 12 to 3:30) was within 85% of an estimated 
daily afternoon maximum for a month, determined by taking the maximum value from each of 
those 8 ½ hour increments over the course of a month. This daily afternoon maximum value may 
overestimate a given day’s potential afternoon radiation, both because of solar variability over a 
month (e.g., late January will be higher than early January, near winter solstice), and because 
reflection off of nearby clouds can enhance local radiation values. The 85% figure accounts for 
this possible overestimate and was determined as a compromise between accidentally including 
cloudy days and obtaining too little data. [This method does not discriminate between the SCF 
days and general afternoon cloud cover. If this were the goal, more complex daily analysis would 
be required, including comparison with satellite data. The SCF filter was intended as a relative 
index for comparison among months and years – it is less appropriate for absolute analyses. See 
Chapter 3 for more details.] 

Results 
 
MODIS Satellite Land Surface Temperature Data 

The sequoia belt has notably low diel land surface temperature (dLST) range throughout 
the year on MODIS LST data. These areas have low values in the annual average for 2012 and 
even stand out as low in the difference between summer dLST (~8 °C) and winter dLST (~ 4 
°C), meaning that their summer dLST values, while higher than winter, are especially low 
relative to other areas. That is, they have a low daily range, and a low seasonal range in their 
daily range. Figure 2, a classification of the values in color, highlights the low average range of 
temperature in the sequoia belt compared to other areas of California. Figure 3, with the same 
information but in continuous grayscale, highlights a similarity in appearance with a true color 
band, indicating a relationship with vegetation density. The dLST has a very strong (negative) 
correlation with cloud cover frequency in the Sierra (i.e., lower temperature range with more 
cloud cover), even though all the LST values come from clear days (Figure 4). A belt of low 
dLST extends a bit beyond the main range of sequoia, both south and north, from the southern 
end of the Greenhorn Mountains east of Bakersfield to west of the Mariposa Grove of 
southwestern Yosemite National Park. An outlier of low dLST matches the Tuolumne and 
Merced Groves of western Yosemite. Only the far northern groves of sequoia do not have 
strikingly low dLST values, just as they do not have strikingly high cloud cover frequency. 
 
MODIS Satellite Atmospheric Data 

MODIS PWV (MOD05) integrated water vapor products and vertical profile data 
(MOD07) were found to have some consistency and accuracy issues. The thermal and near-
infrared versions of the MOD05 water vapor products do not tend to agree, with the thermal 
product apparently more sensitive to upper atmosphere moisture, and the near-infrared (NIR) 
product more sensitive to lower atmosphere moisture. Most obviously, the thermal product maps 
areas adjacent to cloud formation as high water vapor, whereas the NIR product maps these areas 
as low water vapor. The thermal product is also at a much coarser resolution (5 km vs. the 1 km 
resolution of the NIR product). Similarly, the vertical profile data are very coarse (also at 5 km), 
often noisy-looking, and have coarse patches of missing data ostensibly related to atmospheric 
pressure levels that are absent at various elevations.  
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Despite disagreement between the two water vapor products, they tend to agree that the 

edge of California’s Central Valley in the vicinity of the sequoia belt is a region of frequently 
high integrated water vapor. The NIR-based PWV data (Figure 5), at a finer resolution and 
possibly more sensitive to lower atmosphere moisture, show this pooling of moisture at the foot 
of the sequoia belt especially well. Because it integrates across the atmosphere, there is a strong 
tendency for lower elevation areas to have higher values, and it is difficult to disentangle the 
inverse relationship between elevation and water vapor without intensive processing. The 
thermal PWV product appears slightly less reliable for capturing the humidity of the sequoia 
region – this may be due to its sensitivity to upper atmospheric moisture, as well as its coarseness 
and noisiness. It has inconsistent behavior when the actual cloud formation is occurring: 
sometimes showing high values adjacent to clouds when the formation occurs, sometimes overly 
masking clouds in the region (probably due to high PWV values), and sometimes showing low 
PWV values and missing the clouds altogether. 

 
The MODIS vertical profile data show consistently high relative humidity in the vicinity 

of the sequoia belt, at a variety of pressure levels (Figure 6). These high humidity values are a 
result of unusually low temperatures compared to surroundings and high dew point temperatures. 
These patterns were evident at a variety of the higher pressure levels (mostly observed at 700, 
780, and 850 mb, very roughly corresponding to ~3000, 2200 and 1500 meters, respectively) 
typically available for the area. The highest pressures (e.g., 1000 mb, approximately sea-level) 
are missing data due to the elevation. In general, areas of higher surface elevations 
counterintuitively tend to have relatively higher temperatures and dew point temperatures at the 
various elevated pressure levels – this is likely related to the fact these areas have respective 
pressure heights that are relatively low compared to their surface elevations (i.e., not as high 
above the surface as they would be elsewhere). 

 
In contrast to the adjacent high elevations, MYD07 vertical profile data consistently show 

low elevations for the 850 hPa pressure heights over the foothills of the sequoia belt (evaluated 
in January, April, and July). These are expected to be ~1500 meters, and yet values of ~200 
meters are observed here. Similarly, 700 hPa heights of 1700-1800 meters are found here, rather 
than the expected ~3000 meters. This is evidence of a consistent low pressure trough due to 
rising air. Low atmospheric pressure is, in turn, associated with cold air aloft (Ahrens, 2011).  
 
Climate Maps and Station Data 

PRISM climate data show patchy areas of west slope Sierra ridge-tops with ranges in 
monthly maximum minus minimum (i.e., diel) temperature (~10-11 °C) that are almost as low as 
those indicated by the satellite data. But sequoia groves often sit just below these ridge-tops and 
tend to have slightly larger ranges in temperature (~12-14 °C) in the mapped data. Many other 
ridges and higher elevations throughout the Sierra are mapped with lower temperature ranges. 
The lowest temperature ranges (~7-9 °C) in California are mapped along the immediate coast 
and highest elevations of some coastal ranges and the Sierra. (Contrastingly, some of these 
coastal ranges have extremely large temperature variations in Daymet climate data. This is likely 
due to problems with extrapolating to high elevations based on elevation lapse rates derived from 
comparing coastally influenced low elevations with more continental higher elevation stations.) 
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Long-term NCDC climate data from Grant Grove and Giant Forest comport with these PRISM 
values, with monthly diel ranges of temperature from 10 °C (winter) to 13-15 °C (summer). 
 

Patches of high relative humidity are usually associated with these areas of low 
maximum temperature. Overall, they hint at some high values on the western slope of the 
southern Sierra, but they do not stand out compared to the high humidity values near the highest 
elevations of the Sierra. Nor do the patches of higher relative humidity perfectly coincide with 
the sequoia groves, likely for the same reason that the areas of low maximum temperature do not 
perfectly coincide.  
 

Subtracting April maximum temperature data (PRISM) from October and November 
maximum temperature data indicate that California stands out from the rest of the United States 
in terms of relatively cool spring temperatures. Most of the U.S. is warmer in April than in 
November. The immediate coast of California, the tops of some coast range mountains, the 
highest parts of the Sierra, and parts of the sequoia belt are exceptions to the nationwide pattern. 
Similarly, only California’s coastal mountain ranges and the western front of the Sierra are 
substantially colder in April than in October (Figure 7). Zooming in a bit on California in Figure 
8 (March maximum temperature minus February maximum temperature), March has little to no 
warm-up from February on the west slope of the southern Sierra – one of the few areas other 
than a coastally influenced zone (of primarily southern and central California) with this behavior. 

 
Cold spring storms may explain these relatively cold spring temperatures in the 

mountains of California, and the west slope of the southern Sierra, in particular. PRISM data 
indicate that the latter has a relatively high frequency of spring storms – for example, it gets 
much more precipitation in March than in December (Figure 9) – like the mountains of southern 
California, and unlike areas of the Pacific Northwest, which have a peak or near-peak of 
precipitation in December. The fact that spring storms in California are particularly cold, 
especially at elevation, is supported by climate data showing monthly snowfall in relation to 
monthly total precipitation. Dividing the former by the latter yields a ratio that peaks in March 
and April for a variety of sites at mid-elevations (5000-7000’) in the Sierra, including the Giant 
Forest and Grant Grove areas of the sequoia region (Figure 10). These high ratios in spring 
indicate either of two possibilities: 1) of the precipitation that falls in spring, it is more likely to 
fall as snow, and 2) the snow is drier and less dense in spring (i.e., more snow for a given water 
equivalent). Each of these possibilities indicates colder conditions during storms. 
 

Figure 8 shows the Giant Forest and the Grant Grove as behaving like other mid-
elevation areas of the Sierra in terms of snowfall in relation to total precipitation. But this is not 
shown in combination with the information from Figure 9 – the map that shows that a relatively 
high portion of the sequoia region’s precipitation comes in March (and April too, although not 
shown). The result is that these sequoia sites get about as much snow in April (25.6” and 25.0” 
for Giant Forest and Grant Grove, respectively) as they do in December (28.9” and 26.9” for the 
two sites, respectively), despite getting ~60% of the total precipitation. They also get about twice 
as much snow in April as in November (12.8” and 15.7”, respectively), despite very similar 
amounts of total precipitation in these months. These relative amounts are not matched by other 
areas of the Sierra, where April snowfall is comparable to November snowfall. 
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Like the MODIS atmospheric pressure height data, NCEP/NARR data show consistent 
rising air in the southern San Joaquin Valley, with negative vertical velocity (Omega) values at 
850 hPa (~1500 m) on average throughout the year except for December and January. Appendix 
4.A.2 shows these products for January and April, as well as 500 hPA (~5500 m) products for 
the same months showing consistent descending air aloft over the southern Sierra associated with 
subsidence. The coarsely-interpolated resolution of 0.3 degrees may explain an imperfect spatial 
match with the sequoia foothills (seen in MODIS data) in the pattern of rising air in the 850 hPa 
product. 
 

NCEP/NARR data were also used to calculate integrated precipitable water vapor 
(PWV). (See the Appendix 4.A.3 for exemplary months.) These data give confirmation that the 
Central Valley of California has unusually high PWV in spring months, relative to air above 
adjacent areas of the Pacific Ocean. PWV values tend to vary seasonally with temperatures, as 
warmer air can hold more moisture, hence different value scaling in the legends. The adjacent 
Pacific provides a sensible standard for comparison with the Central Valley, as consistent 
westerly and northwesterly winds result in its strong influence on Central Valley airmasses.  
 
Tower Air Temperature Data 

Tower measurements of temperature at 55 meters show even lower diel ranges in 
temperature than the satellite and surface measurements. At the 2015 meter tower, within the 
cloud belt, average diel air temperature range varies from only 1 °C in the fall through spring to 
about 2 °C in the summer months (Figure 11). Outside of the main cloud belt, at the 2700 meter 
tower, these ranges go up slightly, but still remain quite low, from about 2-4 °C, with the lowest 
ranges in winter (Figure 12). This difference among tower sites is less than the difference 
between 55 meters and the surface; surface measurements near the 2015 meter tower have 
seasonal variation in diel temperature ranges from 3-8 °C, with the lowest ranges (and lowest 
temperatures) December through April (Figure 13). It is notable that this latter range is still quite 
a bit lower than values for the NCDC climate stations associated with the sequoia groves. It is in 
line with ranges in dLST from MODIS for this area. It is also in line with seasonal variation in 
diel temperature ranges for the lower two towers, where the lowest ranges are restricted to the 
winter months. 
 

Air temperatures at the 2015 meter tower are relatively warm in January and quite cold in 
the late winter and early spring, with February to April colder than January. Substantial warm-up 
occurs in late spring through summer, but late spring months are still colder than would be 
expected (e.g., May<< October and June<<September) for non-coastal locations (where thermal 
inertia associated with a large adjacent body of water should be less of a factor). The upper (2700 
meter) tower showed similar seasonal behavior, with unusually cold spring values. The lower 
two towers show somewhat similar seasonal patterns, though January is progressively relatively 
colder with decreasing elevation, and late spring (i.e., April and May) values are progressively 
relatively warmer (Figure 14 and Figure 15). The fact that January is quite cold at the lower 
(especially lowest) towers demonstrates that the results at the upper towers were very likely not 
related to any especially anomalously warm January months and anomalously cold spring 
months; the upper elevations simply have unusual seasonal temperature patterns. 
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Slightly different monthly temperature patterns were evident on days without substantial 
afternoon cloud cover, as determined by the afternoon radiation algorithm (Figure 16). 
December, February, and March air temperatures at the 2015 meter tower were a bit warmer in 
these cases, in line with the previously (i.e., on averages from all days) warmer January 
temperatures. April is also a bit warmer – slightly warmer than January in these cases, although 
still much colder in comparison than would be expected of most areas of the northern 
hemisphere (e.g., much colder than October and November). These daily periods (midnight to 
midnight) finish warmer than they started because they are a select subset of the data. 

 
Tower Humidity Data 

Relative humidity measurements across the transect of four towers (Figure 17) were 
especially revealing, in terms of the timing of cloud formation. The 2015 meter tower, within the 
SCF belt, had annual peak relative humidity during the afternoon, as opposed to other sites 
which experienced maximum humidity in the early morning (405 meter) or early evening (other 
two). This afternoon peak in relative humidity is highly unusual and coincides with the timing of 
the SCF. The monthly patterns at the 2015 meter tower (Figure 18) reveal that this afternoon 
peak is strongest in the spring months (February-June, in particular April), followed by the fall 
months of October and November, just as for frequency of the SCF. 

 
Relative humidity is determined from the ratio of vapor pressure (determined from dew 

point temperature) and saturation vapor pressure (determined from temperature). Dew point 
temperatures peak in the early to mid-afternoon at the 2015 meter tower (Figure 19). This is 
much earlier in the day than for other towers. And while seasonal patterns in dew point 
temperature look to be about what might be expected seasonally, with winter lowest and summer 
highest, actual temperatures at the 2015 meter tower (Figure 11) do not follow the same seasonal 
trends, and this has major implications for relative humidity. In combination with incredibly low 
swings in diel temperature, spring temperatures (February-April) are extremely low – lower 
throughout the day and night than in January. May and June are also colder than would be 
expected. These afternoon peaks in dew point and low afternoon temperatures combine to cause 
the unusually high February-June afternoon relative humidity values. 
 

Many of these same climate patterns were evident on days without afternoon-specific 
cloud development, as determined by the afternoon radiation algorithm. Relative humidity is 
often high at the 2015 meter tower, even on days without afternoon cloud cover (Figure 20). 
Interestingly, however, February and March are notably lower (behaving more like winter 
months on these clear days in terms of both their overall lowering, and in only having a narrow 
later afternoon peak), as are October and November to some extent, while April through June 
continue to have particularly high relative humidity values, especially notable in the early 
afternoon.  

 
Tower Wind Data 

Tower winds might be slightly low (compared to U.S. maps at 80 meter height) due to 
their measurement at 55 m, but values are extremely low, especially at the Soaproot Saddle 
(1160 m) site, where average wind speed is less than 1 m/s (Figure 21). Towers record slightly 
increasing winds moving away from this site, with adjacent towers averaging about 2 m/s and the 
highest (2700 m) tower averaging just a bit over 2 m/s. The three highest towers all record 
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consistently low values at night (generally lowest in summer), with higher values during the day 
(peaking in the spring and summer at the upper two, with no clear seasonal trend at the 3rd 
highest). While daytime winds at the upper two sites are between 2-3.5 m/s and evening winds 
are 1-2 m/s, the 1160 m site has daytime winds of 1-1.4 m/s and night winds half of that. The 
lowest tower shows much more daily and seasonal variability, with generally lower winds in the 
winter (day and night) and generally higher winds in the summer (day and night). Most months 
at this lowest tower show a substantial early morning and early evening trough (abrupt drops in 
wind speed that coincide with a switch in wind direction, morning and night), although the early 
evening trough becomes very muted in the spring and summer (with late spring and summer 
having another near-midnight drop in wind speed). 
 

Wind directions are pretty consistent throughout the year at each tower, but vary among 
towers and switch between day and night at all of the towers. Daytime winds are consistently 
from the southeast at 2015 meters. The towers just above and below (2700 m, and 1160 m) have 
daytime winds consistently from south/southwest. The lowest site, at 405 m, has the least 
consistency over the day in wind direction, with winds generally migrating from south early in 
the day in all seasons, to southwest (winter), west (spring), and northwest (summer) over the 
course of the afternoon to early evening. The low site has much greater consistency in direction 
at night, when winds are always from the northeast. The next tower up (1160 m) has winds 
consistently from the east/northeast at night. The upper towers tend to have winds from the north 
at night. 

Discussion 
 
MODIS Satellite Land Surface Temperature Data 

MODIS LST has been found to have very little bias for night-time air temperature 
measurement. Daytime LST values, however, are often far from air temperature values, due the 
heating of the surface “skin”. This is most extreme in hot deserts, where daytime LST values 
exceeding 50 °C often occur, even when air temperatures are far below this. This difference 
between radiant LST and air temperature is likely the main reason that many areas with low diel 
air temperature (i.e., coastal areas) do not also have extremely low diel LST. Only well-vegetated 
canopies in regions of low diel air temperature also have particularly low dLST. It has been 
suggested (Goulden, personal communication) that the particularly low dLST of the sequoia belt 
may essentially be mapping tree height, because the CZO towers up at heights of tree canopies 
(55 m) capture similarly low temperature range. More specifically, it was suggested that the low 
dLST might be an integration of temperature from surface to tree canopy height, and may 
include the effects of evaporative cooling and canopy shadowing. It is difficult to know the 
extent to which MODIS LST might be integrating radiant temperature across height in its LST 
measurement, because it is notoriously difficult to validate the daytime LST (Wang et al, 2008). 
Coarse pixel resolution and the diversity of land cover types, as well as a diversity of surface 
heights from which LST may be sensed, all pose problems for validation. It does seem likely that 
something cool above the surface (either canopy or air) is influencing the LST measurements in 
the sequoia belt, however, as this is one of the few areas where daytime LST values are on par 
with surface air temperature, and yet one would expect at least some additional contribution from 
surface heating, despite the dense vegetation. In any case, the spatial pattern of low dLST doesn’t 
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perfectly coincide with consistently tall forest, but it does tend to follow a region of fairly 
continuous mostly forested vegetation cover, with a good deal of canopy shadowing. It also 
coincides so closely with the SCF (Figure 4), despite the fact that the LST measurements come 
from clear days, that there is likely a direct relationship between the two: these areas must be 
consistently cold above the surface, and more frequently reaching saturation vapor pressure as a 
result.  

 
There is also the possibility that high humidity associated with the cloud belt is 

contaminating the LST measurement. Cloud cover can radically alter LST values – areas of 
clouds are usually masked (sometimes too much so), but thin clouds can be missed (personal 
observation). While long term processing can help to remove the effects of these anomalous data, 
the fact that thin clouds, cloud edges, and other areas near clouds often show up as low LST 
raises the concern that areas of high humidity, and not just thin clouds, might alter LST 
measurement. It has been shown that the product does not have large errors related to surface 
humidity (Wang et al, 2008), but processing to avoid humidity contamination involves view-
angle specific correction (Wan and Dozier, 1996; Wan, 2008), and some residual view-angle 
related error remains (Wang et al, 2008). It seems likely that variable atmospheric humidity, or 
even just missed cloud edges and thin clouds, could be a factor. 

 
Several factors suggest that humidity or cloud contamination should not be the dominant 

mechanism influencing low dLST values in the sequoia belt. The spatial pattern of low dLST is 
very consistent on a daily basis (during clear skies when measurements are reliable) – even in 
winter, when water vapor is not expected to be high at these elevations (above common 
boundary layer inversion heights). Yet other data sets (tower data, as well as MODIS precipitable 
water vapor and vertical profile of dew point) indicate that high humidity and water vapor are not 
present in the region on every day. Mostly, however, there appears to be confirmation that these 
low dLST values are real, contrary to what might have been suggested by established climate 
stations and maps of the area. The surface measurements in the forest (Upper Providence Creek) 
give comparable ranges to satellite-derived dLST, and the tower data at 55 meters have even 
lower temperature ranges. The substantial magnitude of differences with established climate 
stations may give more reason to be concerned about the representativeness of the established 
climate stations than for the satellite data. For example, the Shadequarter RAWS station just west 
of Sequoia National Park at 1240 meters includes a picture of the site in its metadata: the met 
station is positioned over a patch of dirt (http://www.raws.dri.edu/cgi-
bin/rawMAIN.pl?caCSHQ) on a bare grassy ridge. This relative lack of vegetation will cause it 
to heat up much more than areas with more typical levels of vegetation, which will benefit from 
canopy shading and evaporative cooling. And this site has relatively low diel temperature ranges 
(compared to other established climate stations) of 7-11 °C. 
 

Considering the above factors and extensive viewing of thermal data, the factors likely 
contributing to the especially low dLST of the “sequoia belt” include, in possible order of their 
dominance: 
 

1) A truly low range in diel temperature at (~tree) height due to exogenous climatic factors, 
but also often perceived at height here due to pixels consisting of well-stocked stands of 
(often tall) trees 

149 
 



2) Low surface heating and surface radiative temperature due to relatively continuous 
canopy cover, as well as shadowing from canopy and terrain 

3) Same as for factor 2, but leading to cooling of actual air 
4) The evapotranspirative cooling effects of these well-vegetated stands on air and surfaces 
5) Atmospheric (mostly water vapor) contamination of radiance data  

 
These factors are not mutually exclusive. The perception of surface temperature at tree height 
described in factor 1 could apply to factors 2 through 4 as well. Factors 1, 3, and 4 are real air 
temperature effects. Factor 2 is likely a very large factor – there is certainly some uncertainty 
associated with this order.  
 

MODIS Aqua-based dLST is calculated from night-time temperatures (at ~1 AM) that 
could be far from the minimum in some areas where substantial cooling occurs throughout the 
evening until early morning (pre-dawn). This potential bias would probably be far larger than 
any bias associated with not necessarily truly capturing the high temperature by measuring at ~1 
PM. Surface measurements near the 2015 meter tower suggest that night-time temperatures there 
more or less bottom out not long after the sun sets, not tending to cool substantially through the 
evening. This behavior is not necessarily typical, however, and regional variability in the 
difference between 1 AM temperature and pre-dawn minima could play a role in the dLST 
patterns. Accounting for this bias would probably raise dLST values across the board, but would 
also likely increase the contrast between humid and dry areas, where greater night-time cooling 
might be expected in the latter. 
 
MODIS Satellite Atmospheric Data 

The MOD05 precipitable water vapor (PWV) and MOD07 atmospheric vertical profile 
products were useful for confirming that humidity and water vapor are frequently high in the 
vicinity of the sequoia belt but precision with which conclusions could be made is low. Just as 
the two different versions of the PWV product often fail to agree on amounts, the vertical profile 
data can look a bit different from the PWV products. While the vertical profile data are coarse 
and noisy, the regularity with which the sequoia belt is mapped as having high relative humidity 
at a variety of pressure levels (generally low temperature AND high dew point temperature) is 
concerning; tower measurements indicate that high humidity should not be ever-present. There is 
a slight concern that the unusual air temperatures or underlying vegetation characteristics could 
be artificially influencing the vertical profile humidity value.  

 
The fact that the two different PWV products (thermal infrared and near-infrared) do not 

show the same patterns of water vapor is also a concern, but there still appears to be useful 
information, particularly in the NIR-based product. The daytime only MOD05 NIR-based PWV 
product is the finer resolution of the two PWV products and more sensitive to lower atmosphere 
moisture. As such, it is a better indicator of humidity in the region of the sequoia belt. This 
product is useful for giving an idea of the rough geographic location and frequency of moisture 
pooling, but the exact atmospheric height of the moisture is not provided. It appears to show 
lower elevations near the sequoia belt as having frequently higher levels of water vapor, but 
radical drop-offs with elevation. While this may reflect reality to some extent, due to the thinner 
atmosphere at higher elevations, it’s possible that this product may underestimate vapor at higher 
altitudes, just as it appears to be less sensitive to upper atmosphere moisture. An underestimate 
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of vapor at higher altitudes seems to be supported by the high relative humidity values indicated 
by the MOD08 vertical profile product over mountains (red ellipses in Figure 6) that are mapped 
as having low integrated water vapor (compare same areas in Figure 5). 
 
Climate Maps and Station Data 

PRISM climate maps hint at patterns of interest in the sequoia belt, but fail to show 
strong local correlation between climate variables and sequoia distribution consistently. This can 
be seen through a visual comparison and also in the fact that PRISM climate were not strong 
drivers in modeling the distribution of sequoia (Chapter 3). The lack of strong relationship may 
be the result of any of several factors: inconsistency in surface station data (e.g., microclimatic 
effects) leads to inconsistency in maps; they capture surface patterns rather than above-surface 
patterns that sequoia is more responsive to; they do capture some relevant climatic patterns, but 
these are just slightly offset from species locations. These maps are the best available, more 
reliable than Daymet in the complex terrain of the Sierra, but it is likely that they would benefit 
still from a denser network of climate stations (Feld et al, 2013). It is important that these climate 
stations are judiciously placed, consider microclimatic differences, and perhaps even surface 
height differences.  

 
PRISM climate data may not capture the fine-scale climate that sequoias perceive, for the 

above-mentioned reasons, but they may capture broad patterns that help to explain the story 
behind the unique climate of the west slope of the southern Sierra. For example, the unusually 
cold early spring (March and April) temperatures in the Coast Ranges of California and the west 
slope of the Sierra were highlighted by comparison with their October and November 
temperatures. These areas stand out nationally for their relatively (i.e., relative to fall) cold early 
spring temperatures. (The sequoia belt also stands out to some extent as having low values in the 
PRISM-derived diel temperature range for the same months of March and April, due to these low 
daytime values.) The evident differences between spring and fall temperatures are not as extreme 
as those observed in the tower data, because the maps are derived from surface measurements 
that are more sensitive to local surface warming with the relatively higher sun and increased 
radiation in the spring months. (At all four towers, solar radiation is comparable between March 
and October, but April is greater and November is less, even with greater spring cloud cover.) 
The relatively cold spring values are more extreme in the mountains than near the coast, 
suggesting that they are not related to local ocean temperature differences between spring and 
fall. 
 

Especially cold spring temperatures above the surface are strongly indicated by the 
snowfall to total precipitation ratios for mid-elevation RAWS data for the Sierra. Surprisingly 
cold spring temperatures have also been reported for some of the highest elevations (RAWS at 
3800 m) of the White Mountains in eastern California (Hall, 1991). These were attributed to a 
high frequency of closed low pressure systems in late winter and spring. This greater frequency 
of closed lows in the spring relates to more frequent meridional flow in spring, as the Pacific 
High migrates north. There is some evidence for this in northeastern Pacific Ocean patterns of 
geopotential heights, vector winds, and meridional winds in NCEP/NARR data. All indicate 
average flow arriving in California from the northwest in spring, as opposed to closer to due west 
in the winter. 
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Tower Air Temperature Data 
Tower collected air temperature data suggest that the satellite-based LST data may, in 

fact, strongly reflect air temperatures just above the surface. Diel variability in air temperature at 
the towers is actually lower than the unusually low satellite-based dLST values. These ranges are 
consistently approximately 1-2 °C throughout the year for the 2015 meter tower. This site, like 
the other towers, is less subject to surface diel heating and cooling shown by adjacent surface 
measurements. But it is also outstanding compared to other towers: only the upper tower comes 
close to having similarly low diel temperature ranges. This 2015 meter tower appears to sit 
within the unique zone associated with cloud formation and consistently cold air (especially in 
spring) at height. It may be well-positioned with respect to local topography and winds, as well, 
which may help it capture conditions reflective of those above the surface layer. The lower 1160 
meter tower is also close to the cloud and low temperature zone, but does not share the same low 
diel pattern as the 2015 meter tower. It is likely that while this site often sits under clouds, it 
tends to be farther under the clouds than the 2015 meter site. There may also be other aspects of 
its local situation that prevent it from capturing any elevated extremely low temperature ranges. 
 
Tower Humidity Data 

Just as the towers capture temperature conditions that differ from the immediate surface, 
they capture relative humidity values that differ. Colder daytime temperatures in comparison to 
the surface, in combination with dew point temperatures that are not proportionally lower, result 
in higher relative humidity values, at least for the 2015 meter tower. This tower is distinct from 
others in having a daytime (early afternoon) peak in relative humidity. This is quite unusual, and 
is the result of dew point temperatures peaking early in the afternoon, and the unusually low 
temperature rise during the day. This is also consistent with this tower better tapping into the 
atmosphere above the surface layer: cool moist air associated with cloud formation likely has a 
tendency to sit a bit above the surface, just as the clouds do not always form a ground fog (at 
least not at every elevation; it is more likely on their eastern edge where they may intersect the 
terrain).  

 
Even days without the afternoon cloud development have unusually high relative 

humidity values throughout the afternoon, at least for April and May (and to some extent June). 
February, March, and November have notably different daily relative humidity trajectories on 
days without the afternoon-specific cloud development. The trajectories, with steep peaks only in 
the late afternoon with low solar elevation, look more like those for the winter months of 
December and January, although they occur on relatively warm days. It is difficult to speculate 
upon the reasons for the different behavior between late spring and early spring in this case.  
 

The next tower above on the transect (2700 meters) has steadily rising relative humidity 
throughout the day from mid-morning on, that always peaks near the end of the day or early 
evening. This is the result of dew point peaks later in the day, combined with more substantial 
late afternoon drops in temperature. The next tower below (1160 meters) has similar patterns to 
the upper tower in the late fall through early spring. In the late spring and summer, however, this 
site has large drops in relative humidity throughout the day, associated with larger temperature 
increases, and late afternoon dew point decreases. This is very similar to the lowest (405 meter) 
tower, which has steady daily declines to late afternoon troughs in relative humidity consistently 
throughout the year, due to the fact that its dew points are highest early in the day (reaching 
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afternoon plateaus in fall through early spring, but dropping substantially in the afternoon in May 
through September). 
 

Either the air at 55 meters above the surface at 2015 meters on the west slope of the 
southern Sierra, the sequoia belt, is quite a bit different from the air at 55 meters, just ~800 
meters above and below this elevation, or the 2015 meter tower happens to be more suitably 
located for obtaining characteristics of the atmosphere above the immediate surface layer. Two 
RAWS climate stations on the west slope of the southern Sierra show daily dew point and 
relative humidity trends that are similar to that of the 2015 meter tower, with frequent afternoon 
peaks, but at 2300 meters (Park Ridge) and 2570 meters (Buck Rock). These stations are both on 
exposed ridge sites, suggesting that the siting with respect to local topography may be the key 
factor. But the appropriate elevation belt as the unique factor cannot be dismissed either, as these 
sites are not substantially above the sequoia belt, and the 2570 meter station appears to 
experience less frequent incursions of afternoon water vapor than the 2300 meter site. 
 
Tower Wind Data 

Two different wind maps for the United States (AWS Truepower and 3Tier) portray the 
east side of the San Joaquin valley and the adjacent southern Sierra foothills as having the lowest 
average wind speeds (at 80 meter height) in the country, at less than 4 meters/second. Finer 
patterns of the lowest winds within this low wind area are not detailed (wind rose data for larger 
cities in the valley, such as Fresno and Bakersfield, indicate averages in the low 3’s, with slightly 
higher values in spring and slightly lower values in winter) but tower data here suggest that the 
lowest winds may actually occur somewhere between 400 and 2000 meters (likely near the 1160 
meter tower) on the west slope of the Sierra. Other sources closer to the main sequoia belt (e.g., 
RAWS Park Ridge at 2300 meters) suggest that the elevation of minimum winds may be at a 
higher elevation within the heart of the sequoia belt – they are frequently very low (e.g., 1-2 mph 
= < 1 meter/second) at the 2300 meter station, at least at the surface. 

 
Low winds may be the reason that water vapor pools in the region, along with other 

atmospheric constituents, such as aerosols and pollutants (ozone and nitrogen) that are known to 
show high values in the region (Van Ooy and Carroll, 1995; Panek et al, 2013). Vertical profiles 
of the atmosphere in the southern San Joaquin Valley show strong relations between specific 
humidity and ozone and possibly NO2 (Ian Faloona, PhD, personal communication), with peaks 
in each near the top of the summer boundary layer (800-900 meters). LIDAR profiles of the 
Central Valley atmosphere reveal spatial patterns of aerosols (De Young et al, 2005; Lewis et al, 
2010) pooling at the top of the mixed layer (1200-2000 meters) against the slopes of the 
Tehachapi Mountains and extreme southern Sierra.  
  

Many of the wind directions might relate to local topography with respect to 
mountain/valley breezes, but the steady low wind during the day from the southeast at the 2015 
meter site is consistent with evidence that moisture (and resulting clouds) is additionally 
transported parallel to the Sierra, possibly as part of the Fresno Eddy – topographically induced 
counterclockwise circulation around the periphery of the San Joaquin Valley (Bao et al, 2008). 
This mountain parallel flow is sometimes observed on satellite time series to transport clouds in 
a north and northwesterly direction along the western front of the Sierra. This same circulation 
has been identified as a possible cause of ozone transport into the west slope of Sequoia and 
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Kings Canyon National Parks (Panek et al, 2013). That this southeasterly wind is only picked up 
at the 2015 meter tower may relate to the possibility that this tower is better positioned above 
surface processes and/or to the possibility that this air movement is fairly confined to this 
elevation belt. Wind profiler data in the Sierra foothills near Auburn have also been found to 
show extremely low winds from the southeast at altitude, although in this case it is between 900 
and 1800 meters, or 500-1400 meters above the surface (Fast et al, 2012), and this is also well 
north of the influence of the Fresno eddy. 
 
Boundary Layers and Subsidence Inversions 

Topographic configuration of the Central Valley and surrounding mountains may play a 
role in the convergence of air at the surface, low winds, rising air, and high convective boundary 
layer heights in the Central Valley, which are especially high on afternoons in the spring months 
of March to June (Bianco et al, 2011; Jeong et al, 2013). The surprising timing of this increased 
boundary layer (and its secondary sub-peak in October and November), as opposed to summer 
when greater convection is expected, coincides perfectly with the timing of increased SCF 
(Figure 22). Boundary layers have been modeled as particularly high on the periphery of the 
Central Valley at this time (Jeong et al, 2013). Relative humidity is often higher near the top of 
the convective boundary layer in the afternoon (Fast et al, 2012) and this elevated humid layer 
may pool (and often form clouds) against the topographic blocking of the mid-elevations of the 
abrupt west slope of the southern Sierra, especially after the passage of cold fronts with residual 
moisture from the maritime polar airmass. The situation may be analogous to the cold winter 
nortes that bring cold (of continental origin, in this case) polar air to eastern Mexico leading to 
the formation of a stratus deck at intermediate (1000 to 2000 m) elevations on the east side of the 
Sierra Madre Oriental, under the capping influence of a subsidence inversion (Fitzjarrald, 
1986).1 This formation has also been described as upslope fog reinforced by stratus advection 
(Garcia-Garcia and Zarraluqui, 2008). California’s boundary layers are often under the influence 
of strong subsidence inversions – these are known to influence the formation of Central Valley 
Tule fog in winter (Holets and Swanson, 1981) and California coastal fog in summer (Iacobellis 
et al, 2009). 

 
The development of the convective boundary layer has been identified as a means to loft 

pollutants upward in the Central Valley and into the Sierra (Bao et al, 2007; Collett Jr et al, 
1990; Fast et al, 2012) and it likely does the same for water vapor. The boundary layer over the 
adjacent Sierra is typically much shallower than that observed for the Central Valley in spring 
(Choi et al, 2011; Jeong et al, 2012; Jeong et al, 2013), and this may cause the stratus deck to be 
much closer to the surface in the Sierra (and even squeeze the water vapor into a shallower 
stratum?). A capping subsidence inversion at the top of the boundary layer (occasionally 
penetrated by convective activity and cumulus formation) keeps the moist air and clouds below 
the highest elevations of the Sierra, which generally sit high and dry in these conditions. 
 

Cloud formation over the sequoia belt may not always be the result of the exact same 
mechanism. Larger cloud events that extend into the Central Valley, with the appearance of a 
flat-topped stratus deck, might be more indicative of a large-scale rising convective boundary 
layer (capped by a subsidence inversion) driving the formation. However, when cloud formation 

1 Modification of the cold, polar air by the warm water of the Gulf of Mexico (Cavazos, 1994) provides the moisture 
and heat at the surface to enhance convection, possibly making it more like the maritime polar air in California.] 
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is only directly adjacent to the slopes of the Sierra and less stratified, it might be more indicative 
of (shallow) upslope flow (anabatic flow due to local convection) and adiabatic cooling. Nor 
does every cloud formation coincide with an afternoon peak in relative humidity at the surface: 
after a major front passes through, there may be enough residual moisture in the atmosphere that 
an afternoon rise in the convective boundary layer is not required to provide the moisture for 
cloud formation. 
 
Exogenous vs. Endogenous Sources of Moisture and Cooling 

The sequoia belt, particularly the southern end, has among the lowest LST swings (at 
least from ~1:00 AM to ~1:00 PM) in California – rivaled only by a few coastal mountain 
regions dominated by coastal redwoods, such as the Santa Cruz Mountains. Various lines of 
evidence presented here suggest that this is the result of unique climate patterns in the region, 
with unusual levels of cool daytime temperature and high relative moisture that may often sit 
above the surface layer. An argument might be made that the relatively cool daytime 
temperatures and high relative moisture could be the result of a highly productive ecosystem 
with high levels of evapotranspiration and the associated evaporative cooling. This is similar to 
the argument addressed in Chapter 3 about whether the productive forest is the main source of 
moisture for the SCF development. It was argued in Chapter 3 that daily movement and 
seasonality of the clouds do not support this notion. (The clouds do not develop and hover over 
sequoia groves – they often move latitudinally over the course of a day in a predictable manner, 
often coalescing over the sequoia region in the afternoon; additionally, their most frequent 
season does not coincide with the most productive period.) 
 

Of course, the trees are transpiring water, and the latent heat of vaporization is a cooling 
process, so they have some impact. The question would be whether the forests are transpiring 
more water in the southern Sierra than in the northern Sierra, ostensibly related to greater 
productivity in the south. The answer is that there is no evidence that the sequoia belt is more 
productive and water-using than other regions of the Sierra, at least according to ET mapping. 
For example, data from the Breathing Earth System Simulator (BESS (Ryu et al, 2011)) suggest 
an average of only 464 mm of ET for the main sequoia belt for 2009. Mixed conifer forests of 
the northern Sierra are found to be just as high, if not higher (generally 450-500 mm according to 
this product). The MOD16 MODIS ET product (which has been found to have problems in 
comparison with flux tower data (Goulden et al, 2012)) gives average ET values across the main 
sequoia belt of 570 mm in 2011 and 525 mm in 2012. These tend to be among the higher values 
of the southern Sierra, but the same MODIS products show many higher values in productive 
areas of the northern Sierra forests – of around 800 mm in 2011 (wet year) and 750 mm in 2012 
(dry year). MODIS products show even higher values in coastal redwood (Sequoia sempervirens 
(D. Don) Endl.) forests with values of 800-1100 mm (compared to only 500-800 mm in BESS 
data). 
 

These ET products have different methodologies and can be very sensitive to various 
remotely-derived inputs, which are often problematic. For example, vegetation indices such as 
the Normalized Difference Vegetation Index (NDVI; (Tucker, 1979)) and the Enhanced 
Vegetation Index (EVI; (Huete et al, 2002)) are known to be sensitive to solar illumination 
angles (Galvão et al, 2011), which can cause seasonally varying levels of the indices that have 
nothing to do with vegetation productivity. The Sierra, in particular, is a noted area in which ET 
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products do not agree very well (Velpuri et al, 2013), so the values determined for sequoia areas 
should be interpreted with caution. While the remotely-derived products appear to be giving 
similar ET values for the sequoia forests, with no sign of increased productivity over the west 
slope of the southern Sierra, much higher values have been estimated for Sierra mid-elevation 
forests from flux tower data (Goulden et al, 2012). Despite the lack of any mapped evidence, it is 
possible that sequoia forests are more productive than those in the northern Sierra, but if this 
were the case, there would still be the question of why the sequoia were able to be so productive 
in the south. 
 

In any case, the tower-collected micromet data do not support the notion of an 
endogenous source for moisture and cooling. The 2015 meter tower shows latent heat flux (an 
indicator of evapotranspiration, ET) to be consistently low from November through March, with 
only a small uptick in April (Figure 23), the month with the highest relative humidity values and 
cloud formation frequencies. May through September have much higher levels of ET, with a 
peak in July, and yet these are not the months with the highest levels of relative humidity. The 
consistently low dLST throughout the year, with low seasonality, additionally suggests that local 
ET is not the strongest driver of remotely-measured surface temperature, given the high 
seasonality of ET.  
 
Sublimation: Tower Latent Heat Flux and RAWS Climate Data 

Given that plants are inactive at the 2700 meter tower in winter (Goulden et al, 2012), 
measured latent heat flux (Figure 24) at this time may be dominated by sublimation. With 
average latent heat values of 10-20 Watts/m2, this equates to 0.3 to 0.6 mm of sublimation per 
day and possibly 90 mm over the duration of snow cover (~November/December to May at this 
elevation). Cloud cover plays a role in keeping this number from being even larger. It is notable 
that latent heat values are skewed toward before noon (1/2 hour interval “25”) at the 2015 meter 
tower (Figure 23) and the 2700 meter tower (Figure 24) in the early spring months (March-May), 
but skewed toward after noon at the 405 meter tower (Figure 25), as would typically be expected 
based on typically warmer temperatures and increased vaporpressure deficits. The lower site is 
certainly experiencing afternoon transpiration during this period, but the uppermost site should 
not be under any kind of stomatal regulation at this dormant time of year – the afternoon decline 
there suggests that afternoon cloud cover indeed plays a large role in reducing evaporation (i.e., 
mostly sublimation at this time of year). The reductions in spring afternoon transpiration at the 
2015 meter site, on the other hand, where plants are likely active (Goulden et al, 2012), is likely 
related to the local peaks in afternoon humidity and reduced vapor pressure deficits. 

 
The reduced sublimation and snow loss due to cloud cover should be evident in the 

persistence and amount of snow on the ground in spring. Good maps of spring snow depth are 
lacking, but RAWS climate station data provide average snow depth by month. Giant Forest and 
Grant Grove (1945 meters and 2010 meters elevation, respectively), with ~480 cm of snowfall 
each year on average, have an average of 12.7 cm and 15.2 cm, respectively, of snow on the 
ground in May. Farther north in the Sierra, Donner Memorial (1815 meters) and Huntington 
Lake (2140 meters) have comparable levels of snowfall each year, but only 5.1 cm and 7.6 cm, 
respectively, of snow on the ground in May. As mentioned, however, the southern areas also 
receive a higher fraction of their precipitation during this later period in the wet season. An 
extensive analysis was beyond the scope of this work, but cursory research suggests that cloud 
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cover’s impact on snow’s persistence and contribution to soil moisture could be a non-negligible 
factor in summer water relations. 
 
Other Observations: Doppler RADAR 

San Joaquin Valley NEXRAD S-Band Doppler RADAR (HNX, Hanford, CA) near 
Fresno consistently picks up a reasonably strong return from the vicinity of the sequoia belt, even 
when clouds (and certainly not rain) are not evident. This “anomalous propagation” (AP) signal 
is captured at elevations just below the sequoia belt – a narrow more-or-less elevation-related 
band during the day that looks to be particularly associated with steep escarpments, often 
expanding to a much wider, but more diffuse-looking band in the evening and overnight. Many 
authors (Laurence et al, 2002; Weckwerth et al, 2005; Fabry, 2006) have described the potential 
for S-band RADAR to map relative humidity due to its sensitivity to water vapor. Apparently the 
best correlations are found between refractivity and the mixing ratio (specific humidity), which 
measures the mass of water vapor relative to air. Refractivity is a known AP problem in humid 
coastal areas and storm fronts due to high gradients of both temperature and moisture (Bech et 
al, 2000; Chang and Lin, 2011). It may be more plausible that the AP is picking up on the 
frequent temperature anomalies in the sequoia region, rather than humidity, as the temperature 
anomalies are likely more frequent.   
 
Relationship Between Central Valley Tule Fog and Sequoia Cloud Formation 

There may be a relationship between a common winter ground (radiative) fog in the 
Central Valley (Tule fog) and the SCF. Mornings with Tule fog sometimes segue into afternoons 
with clouds adjacent to or over the sequoia belt. Researchers have hypothesized that one of the 
sources of fog intercepting higher elevations in the Sierra might be a lifting of Tule fogs 
“previously trapped near the floor of the San Joaquin Valley” (L COLLETT et al, 1991). The 
two formations don’t occur at the same time – Tule fog is common overnight and into the 
morning, tending to burn off during the day, while clouds (or fog) move over the sequoia vicinity 
during the day with clearing over the Central Valley. And seasonally, Tule fog is more common 
mid-winter. But some of the mechanisms may be similar. Tule fog benefits from a subsidence 
inversion, low winds, and some moisture provided by frontal passage. All of these factors appear 
to be involved in the sequoia belt cloud formation, as this is an area of unusually low winds and 
the inversion may be acting as a ceiling to trap the humid air. [There is a noteworthy correlation 
between inversion strength over the southern Sierra foothills and that (generally associated with 
coastal fog) over San Diego from March-May (Iacobellis et al, 2009).] The difference in timing 
(both daily and seasonally) between the two events may simply be a product of the different 
elevations and the timing of local boundary layer inversions. It is notable that the SCF is due east 
of the core of the Tule fog formation – the area with the highest frequency of the winter fog.  

 
The fact that inversions have been found to be much more common during periods of 

atmospheric ridging (Iacobellis et al, 2009), as occurs during dry periods, leads to the possibility 
that inversions and resulting pooling of moist air at the base of the Sierra may be especially 
important for sequoia as a buffer against drought. The relationship between the SCF and sequoia 
distribution could be analogous to the importance of the Tule fog in promoting herbaceous cover 
in the Central Valley over what otherwise might be desert shrublands, based on the low 
precipitation levels there (Twisselmann, 1967). 
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Conclusions 
 

It is now clear that the sequoia belt of the Sierra has a highly unusual climate, beyond 
simply having a high frequency of cloud cover. This may be confirmation that cloud cover is not 
the only unusual factor responsible for the general restriction of sequoia to the southern Sierra. 
High cloud frequency was an obvious symptom of this climate and encouraged investigation. 
Thermal data from satellites indicated that areas of high cloud frequency (and the sequoia 
distribution) appeared to be associated with unusually cold daytime temperatures and unusually 
low diel temperature ranges. Concerns about the accuracy of the satellite data led to an 
assessment of climate and weather data mapped and measured in the region. Data included 
recent measurements made at the tops of 55 meter tall micrometeorological towers across a 
southern Sierra elevation transect. The tower data revealed that the climate at 55 meters can be 
quite different from the climate at the surface. This may especially be the case in the sequoia 
belt, where tower data reveal astounding climatic characteristics. Surprising features include diel 
ranges of temperature throughout the year of only 1-2 °C, spring temperatures colder than mid-
winter temperatures throughout the day, and large afternoon peaks in dew point, which, when 
combined with low diel temperature swings, contribute to unusual afternoon peaks in relative 
humidity throughout the year, even on clear days. These afternoon peaks in relative humidity 
(only observed at tower height) are very likely related to the frequent afternoon cloud formation 
in the belt. 
 

A possible mechanism for afternoon peaks in dew point and relative humidity is large 
scale rising air near the surface transporting water vapor into cooler air aloft. This rising air 
could be due to surface heating and a rising convective boundary layer, or convergence of winds 
at a surface low and divergence aloft. The resulting clouds, in turn, are capped by a subsidence 
inversion aloft. Cold air aloft, especially in spring, may relate to the still-cold northern Pacific 
Ocean at this time, together with increased meridional flow and airmasses from the northwest, as 
the Pacific High moves north. Local topographic factors likely play a role as well, trapping the 
cold air and moisture against the steep west slope of the southern Sierra. All of these possible 
factors require more investigation. 

 
The unusual climatic observations in the sequoia belt, particularly from tower data, 

suggest the need for a variety of additions and improvements to our climate monitoring network. 
Climate station and map data do not appear to consistently capture this unique climate. Much of 
this may relate to the use of climate station data sensitive to local siting and surface conditions 
that differ tremendously from those just above the surface. The collection of more information at 
a variety of heights above the surface could help to better characterize the climate that trees 
(especially large trees) perceive. This research suggests that satellite data may be helpful in 
identifying particular unique locations where measurements at height would be especially 
beneficial. In addition to more locations in two dimensions and three dimensions, more precision 
in the temporal aspects of humidity measurement would be beneficial. The timing of minimum 
and maximum relative humidity has strong implications for vegetation and should be reported 
(or collection of something like early AM and PM values should be standardized). The sequoia 
belt is unusual in having peak relative humidity during the day; the common assumption that 
peak relative humidity generally occurs early in the morning is probably violated anywhere near 
an afternoon cloud formation. 
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This study revealed unique climatic conditions associated with the sequoia belt. Strong 

explanatory hypotheses are generated, grounded in an array of data sources, but exact 
mechanisms continue to be unanswered.  These include relationships with sequoia autecology 
and the synecology of the sequoia belt, as well as the mechanisms behind the climatic patterns.  
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Tables 
 
 
Table 1. MODIS satellite data products evaluated. 

Short Name MODIS Data Product Spatial Resolution (m) 
Temporal 

Granularity 
MOD05/MYD05 Total Precipitable Water 1000 (Near-Infrared, Day) and Daily 

  
5000 (Thermal, Day and Night) 

 MOD07/MYD07 Atmospheric Profile 5000 Daily 
MOD09GA/MYD09GA Surface Reflectance 500 (bands 1-7) Daily 
MOD11A2/MYD11A2 Land Surface Temperature 1000 8-day 

 
and Emissivity 

  MOD13/MYD13 Vegetation Indices 500 Daily 
MOD16 Evapotranspiration 1000 Year 
MCD43B4 Nadir BRDF-Adjusted 1000 16-day 

 
Reflectance 

  
 

 
 

 

 
 
 

Table 2. Sierra Nevada Critical Zone Observatory micrometeorological flux tower sites. 

 
Tower Elevation (m) Latitude Longitude 
San Joaquin Experimental Range 405 37.109 -119.731 
Soaproot Saddle 1160 37.031 -119.256 
Providence Creek 2015 37.067 -119.195 
Shorthair Creek 2700 37.067 -118.987 
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Figures 
 

 
Figure 1. Southern Sierra Nevada Critical Zone Observatory biometeorological towers elevational 
transect with respect to giant sequoia distribution and April cloud formation (SCF) frequency. 
The 2015 meter tower is at the upper and northern end of frequent cloud formation, but well within 
typical elevations of giant sequoia. 
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Figure 2. Average MODIS Aqua diel range in land surface temperature (°C), 2012 – classified. 
Portion of MODIS tile H08,V05 within California and adjacent areas. Buffered giant sequoia distribution 
in thick black line, along with Sierra Nevada ecoregion in thin black line. Southern portions of the 
sequoia belt have among the lowest average range of temperature in the state. Data are for clear days 
only, so results may be biased high, due to the moderating effects of clouds. 
 
 
 

 

166 
 



 
Figure 3. Average MODIS Aqua diel range in land surface temperature (°C), 2012 - grayscale. 
Same as Figure 2 but continuous grayscale. Grayscale better conveys appearance of strong relationship 
(negative correlation) with vegetation density, as this looks similar to a visible band image. 
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Figure 4. MODIS Aqua average afternoon annual cloud frequency (2003-11) vs. average diel range 
in MODIS Aqua land surface temperature (°C), 2012.  
Random points selected within giant sequoia groves (red boxes) and throughout the Sierra Nevada (blue 
points).  
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Figure 5.  MODIS Aqua near-infrared precipitable 
water vapor (MYD05), California and adjacent 
areas: August 19, 2011 

Red ellipses highlight steep water vapor gradient areas 
of northwestern Sacramento Valley (north) and eastern 
San Joaquin Valley (south), each with apparent 
“pooling” of water vapor in foothills. Water vapor is 
integrated across the atmosphere, so values low over 
mountains and areas of high clouds.  

 
 

 

Figure 6. MODIS Aqua atmospheric 
vertical profile (MYD07) relative 
humidity: August 19, 2011 

Same areas as Figure 5 on the same date 
appear much different in a humidity product. 
Higher elevations generally have higher 
values (note frequent reversal from water 
vapor product), but foothills of eastern San 
Joaquin Valley (sequoia belt) still high. 
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Figure 7. PRISM October maximum temperature minus April maximum temperature (°C).  
California outlined in orange and the Sierra Nevada Jepson Ecoregion outlined in red. California 
unusually cold in April compared with much of the United States, and particularly high values for 
California coast ranges and west slope of the Sierra Nevada indicate April much colder than October.  
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Figure 8. PRISM March maximum temperature minus February maximum temperature (°C). 
Most areas tend to warm substantially between February and March (brown areas greater than 3 °C). 
Coastal California is a general exception (white areas less than 1 °C), warming very little due to the 
moderating influence of the cool ocean. The west slope of the southern Sierra Nevada joins the coastal 
areas in having very little warming in March, likely due to the impact of spring cloud cover. The patterns 
throughout the Sierra Nevada are generally quite noisy, however, likely due to the paucity of climate 
stations in the Sierra Nevada, and the complicating effects of the rugged topography. 
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Figure 9. PRISM average March precipitation minus average December precipitation (cm) 

Much of the western United States has a winter peak in precipitation but the timing can differ. A large 
portion has comparable precipitation in December and March (small difference areas are shades of green). 
The Pacific Northwest tends to have its precipitation skewed earlier in the “rain season”, with much 
higher values in December than in March (white areas). Southern California mountains and the west slope 
of the southern Sierra Nevada are notably skewed toward precipitation later in the “rain season”, with 
much higher values in March (brown areas). 
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Figure 10. Monthly snowfall divided by precipitation, Sierra Nevada mid-elevation RAWS sites 

March and April have a relatively high amount of snowfall relative to total precipitation at a variety of 
Sierra Nevada sites, including two sequoia groves. This could indicate a higher proportion of snow events 
to rain events, but it is more likely related to a colder and drier snow. 
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Figure 11. Average 1/2 hourly temperature by month: 2015 meter tower. 
This site has a very low average range in diel temperature, of 1-2 °C. 

 
 

 
 

Figure 12. Average 1/2 hourly temperature by month: 2700 meter tower. 
Site has a slightly higher range in diel temperature at 2700 m, but still only 2-4 °C. 
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Figure 13. Average hourly temperature by month: surface measurement, 2015 meters. 
Surface has higher ranges in temperature (3-8 °C) than tower, especially in the summer months. 
 

 

 
 
 

Figure 14. Average 1/2 hourly temperature by month: 1160 meter tower. 
Much larger range in temperature (3-8 °C) at this tower, more like surface measurement above. 
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Figure 15. Average 1/2 hourly temperature by month: 405 meter tower. 
Higher ranges in temperatures here too. Winter months colder than spring months at this lower tower. 
 

 

 
 
Figure 16. Average temperature by month: 2015 meter tower, days with clear afternoons. 
Even days with clear afternoons have extremely low range in temperature, though spring now warmer. 
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Figure 17. Annually averaged 1/2 hourly relative humidity across 4 tower elevational transect. 
Afternoon peak in afternoon at 2015 m highly unusual. Early evening peaks at others also notable. 
 
 

 
 
Figure 18. Average 1/2 hourly relative humidity by month: 2015 meter tower. 
Afternoon peaks throughout the year, but most pronounced in early spring months (Feb-April). 
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Figure 19. Average 1/2 hourly dew point temperature by month: 2015 meter tower. 
Pronounced afternoon peaks in dew point, in contrast to small changes in air temperature. 
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Figure 20. Relative humidity by month: 2015 meter tower, days with clear afternoons. 
Even days with clear afternoons have afternoon peaks in relative humidity. More pronounced in 
late spring months (April-June), in comparison to early spring peak for all days  
Figure 18. 
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Figure 21. Annually averaged 1/2 hourly wind speed across 4 tower elevational transect of Sierra 
Nevada. 
All sites have very low average wind speeds, with especially low winds at the 1160 meter site. Upper 
three sites have obvious early afternoon peaks, while the lower site has no pronounced peak. 
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Figure 22. Average monthly frequency of "Sequoia Cloud Formation” within sequoia belt. 
Spring peak in the particular cloud formation coincides with spring peaks in convective boundary layer 
height of adjacent areas of the Central Valley. 
 
 

 
 
 
Figure 23. Average ½ hourly latent heat flux by month, 2015 meter tower. 
Low spring values suggest local transpiration not source of spring clouds or low temperature range. 
Skew toward morning in spring months suggests afternoon clouds and humidity reducing evaporation. 
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Figure 24. Average ½ hourly latent heat flux by month, 2700 meter tower. 
Likely mostly sublimation in winter and spring. Skew toward morning in spring suggests cloud impact. 
 
 

 
 
Figure 25. Average ½ hourly latent heat flux by month, 405 meter tower. 
Skew toward afternoon suggests no reduction due to clouds or humidity at this lowest site. 
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Appendices 
 
4.A.1. Averaging relative humidity values 
 
There is an issue associated with averaging relative humidity values, because of the non-linear 
relationship between saturation vapor pressure and temperature. Technically, if dealing with the 
mixing of separate air parcels (and, for example, trying to determine if a mixing cloud will form) 
one should first convert relative humidity and temperature values to vapor pressure values, which 
can then be proportionally averaged along with temperature (essentially saturation vapor 
pressure). The (proportionally weighted) average of two relative humidity values (at different 
temperatures) is not the same as the average of the two vapor pressures divided by the average of 
the two different temperatures: it can be an underestimate (e.g., in the case of two non-saturated 
air parcels mixing to form a saturated air parcel, that is, a mixing cloud) or an overestimate, 
depending on the slope of the vapor pressure (y-axis) and temperature (x-axis) relationship 
between the two air parcels. If the slope is high it will be an underestimate, and if the slope is 
low it will be an overestimate. In the latter case, there will be greater overestimates for larger 
differences in relative humidity and for lower relative humidity values (because these are higher 
temperatures with greater differences in saturation vapor pressure for a given difference in 
relative humidity) and/or lower temperatures (where a given temperature difference has a greater 
effect on relative humidity for a given vapor pressure). But this does not mean that we should 
want the result that would be appropriate for the mixing of two air parcels; for example, we 
would not want to report values of 100% or more in the extreme case of warm humid days 
averaged with very cold days. That is, assessing the character of air at a given location over time 
(i.e., how close is it to condensation) is not the same thing as the mixing of air parcels. A simple 
averaging of relative humidity values is appropriate for assessing the character of air over time. 
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4.A.2. NCEP NARR Average Vertical Velocity (Omega) data. January and April (2000-2012) 
at 850 hPa (upper panels) and 500 hPa (lower panels). The southern San Joaquin Valley tends to 
have rising air (negative Omega values) at 850 hPa (~1500 m) in most months (represented by 
April here), except for mid-winter. Both months are characterized by descending air over the 
southern Sierra Nevada at 500 hPa (~5500 m). The associated subsidence likely contributes to 
the presence of capping inversions aloft. 
 
                 January, 850 hPa 

 

                    April, 850 hPa 

 
 
                 January, 500 hPa 

 

 
                    April, 500 hPa 

 

January 2000-2012 April 2000-2012 

January 2000-2012 April 2000-2012 
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4.A.3. NCEP NARR integrated precipitable water vapor (PWV) data of select months. 
January is representative of winter conditions, with relatively low water vapor over land, due to 
cold temperatures, other than areas under some coastal influence, including the Central Valley of 
California. The legends change among months, so relative amounts are easier to note. In January 
the Central Valley PWV only reaches values for the southern and central California coast, lower 
than coastal values for the Pacific Northwest. By April the Central Valley exceeds all but the 
north coast of California. This may be related to the generally thicker boundary layer that forms 
during this period. This pattern more or less extends to June. The pattern changes radically in 
July (although so does the legend), when southern monsoonal influence dominates. The southern 
Central Valley is still quite high relative to much of California and the Pacific. 
 

  
 

 

 

 
 

January 2000-2012 April 2000-2012 

June 2000-2012 July 2000-2012 

185 
 



 

Chapter 5. Conclusions 
 

Summary of Key Findings 
 
Key aspects of this dissertation involved: 1) improved mapping of cloud cover from 

satellite imagery, in order to generate accurate monthly cloud frequency variables; 2) use of 
these cloud frequency variables to demonstrate the importance of cloud cover, a previously 
overlooked climate variable, to the distribution of a particularly charismatic plant species, giant 
sequoia; and 3) investigation of the climate in the vicinity of giant sequoia, to explain 
mechanisms behind the frequent cloud cover, and, in the process, identify other climatic factors 
that may also be important to the tree’s distribution. 

 
In the first major study (Chapter 2), novel algorithms were developed for improved 

classification of clouds in daily satellite imagery from 1981 to 2012. The main improvements 
were in terms of consistency across cover types, including deserts and snow covered areas. This 
is an important concern for species distribution modeling, in which relative differences among 
areas are more relevant than absolute amounts. The cloud classification included both Advanced 
Very High Resolution Radiometer (AVHRR) data for 1981 to 1999 at ~5 km resolution (.05°) 
and Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2000 to 2012 at ~500 
meter resolution. These daily cloud classifications were converted into monthly, annual, and 
longer-term cloud frequency products. The extended record allows the long-term assessment of 
patterns and trends in cloud cover, although limitations associated with the coarser resolution and 
older data of AVHRR make precision in long-term trends suspect. MODIS Aqua and Terra 
products, however, were more accurate, and their ~10 and 12 year records, respectively, covered 
here are long enough to generate accurate monthly cloud frequency climatology products. 

 
In Chapter 3, the monthly cloud frequencies generated from MODIS Aqua were used in 

species distribution models for giant sequoia and found to be the strongest predictors of its 
distribution from a large suite of climate variables. April afternoon cloud frequency, in 
particular, was found to be the strongest predictor, but many of the monthly frequencies are 
highly correlated with April. A high frequency of cloud cover, especially in spring, differentiates 
the climate of the west slope of the southern Sierra Nevada, where giant sequoia are prolific, 
from northern parts of the range, where the tree is practically absent. Other mapped cloud 
products, contaminated by confusion with high elevation snow, would likely not have found this 
important result. The result illustrates the importance of accuracy in mapping as well as the 
importance of previously neglected aspects of climate for species distribution modeling. 

 
In Chapter 4, a substantial number of unusual climate patterns was found to be associated 

with the frequent cloud formation on the west slope of the southern Sierra Nevada. MODIS land 
surface temperature (LST) data revealed that the same area of frequent cloud formation has 
unusually low diel LST range throughout the year. This is in spite of the fact that these satellite 
LST data can only come from days with clear skies, when temperature ranges would be expected 
to be higher. Surface and mapped climate data sets do not capture this behavior, but 
meteorological data from a 55 meter tall tower positioned within the northern limits of the 
frequent cloud belt captured even more extreme behavior. Here, diel temperatures vary only 1-2 
degrees C on average each day. Furthermore, spring temperatures are unusually cold at this 
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tower top, with March and April temperatures colder than January. When combined with dew 
point temperatures (essentially absolute humidity) at the tower top that regularly, strongly, and 
unusually, peak in the afternoon, afternoon relative humidities, especially in the spring, can get 
very high. High afternoon relative humidity values are often present even on clear days. This 
provides some evidence that it might not just be the cloud cover responsible for sequoia 
distribution and that relative humidity values above the surface may need better mapping. Other 
aspects of the climate in the region were quite distinctive as well, including incredibly low wind 
speeds at tower top height all across a 2300 meter elevation transect of four meteorological 
towers. Surface climate station data also revealed unusually high ratios of snowfall to total 
precipitation in the spring months of March and April (higher than winter) across mid-elevations 
of the entire Sierra Nevada. When combined with the southern Sierra Nevada having a relative 
peak in late winter and early spring (March/April) moisture, this indicates that mid-elevations of 
the southern Sierra Nevada have an unusually high amount of spring snowfall relative to other 
areas of comparable annual precipitation in the mountain range. These snowfall results suggest 
that cold air aloft in spring is characteristic of much of the Sierra Nevada, but relatively high 
water vapor in the spring in the southern Sierra Nevada may be the particular key to frequent 
cloud formation there. 

 
Directions for Future Research 

 
A key aspect of this dissertation involved improvements in cloud frequency mapping 

with satellite data. Further improvements to the cloud frequency products could continue to be 
made. These would especially help with detecting subtle trends in cloud frequency over time. For 
example, while the southwestern deserts of the United States appeared to be an area of declining 
cloud frequency during the AVHRR record of 1981-1999, this was also an area in which 
AVHRR cloud classification has some challenges. The better detection of trends, with AVHRR 
in particular, would require the better treatment of its problematic data, including difficult to 
track data gaps and aberrations. With respect to clouds and giant sequoia, improvements could be 
made to the admittedly ad hoc spatial filtering method for detecting temporal trends in the 
particular cloud formation over the sequoia belt. The cloud formation is restricted enough that 
the coarse resolution of the AVHRR data may not be very helpful for assessing trends, but 
MODIS data are beginning to be, as the MODIS data record is now approaching 15 years. 
Surface station data may be helpful in this regard, as well as for validation of the satellite data, 
but climate stations are sparse in the area. 

 
There may be limitations to what can be done with accurate cloud classification from the 

AVHRR LTDR data, but processing following land-cover related stratification would likely help 
optimize the classification over different areas. This approach has merit but can be sensitive to 
the accuracy of the land cover map. Similar strategies could be pursued with MODIS data as 
well, although the MODIS-derived cloud product developed here probably has less room for 
improvement. A more detailed accuracy assessment of the custom MODIS classification would 
help to identify areas that might need particular attention. Some snow-covered areas would be 
likely candidates. There is a possible underestimate of cloud frequency in snowy mountain 
locations in the custom MODIS cloud classification generated here, and a dearth of climate 
stations at these elevations makes accuracy assessment in these areas especially hard. The 
evaluation of daily cloud masks in relation to individual satellite images may be an effective way 
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of assessing the accuracy of the cloud product over these areas. The use of visual cues – 
essentially contextual classification – is extremely helpful for analyzing satellite data. For the 
same reasons, classification algorithms that can make better use of context (both spatial and 
temporal) may have substantial merit for further investigations. For example, areas that appear to 
be persistently cloudy may be more likely to be something else, such as snow or desert playa. Of 
course, care must be taken not to eliminate areas that just happen to be persistently cloudy. 

 
The original daily cloud maps generated here are only a single snapshot (AVHRR) or two 

(MODIS) over the course of a day. Finer temporal resolution could be achieved with weather 
satellite data with higher frequency of image capture (e.g., every 15 minutes for the 
Geostationary Satellite System, GOES). The higher resolution of MODIS (and even Landsat data 
at ~30 meters, despite its 8-16 day return interval, if enough are available over its multi-decadal 
record) could potentially be used to spatially downscale the finer temporal-resolution, but coarser 
spatial resolution, GOES data. Alternatively, new sensors at finer spatial and temporal resolution 
may eventually make this notion of downscaling academic. Finer temporal resolution in cloud 
cover mapping would contribute to improvements in mapping patterns of solar radiation. 

  
The distribution modeling of sequoia in Chapter 3 would benefit from the incorporation 

and/or improvement of maps of climate variables identified in Chapter 4 as possibly relevant to 
cloud formation. Spatial patterns of relative humidity at some height above the surface might be 
ideal, but even improved mapping of relative humidity at the surface would be helpful. The 
incredibly low winds speeds in the area may also be a factor in cloud formation and persistence, 
and highlight the need for better wind maps. Given that unique spatial and temporal cloud cover 
patterns may be obvious symptoms of unique climates, they, along with other patterns in satellite 
imagery, such as land surface temperature patterns and surface reflectance (i.e., vegetation) 
patterns, could be used to guide the siting for increased sampling of various climate variables. 
They could also be used to improve the interpolation among the sites for better mapping of the 
climate variables. The need for improved climate mapping includes temporal aspects as well as 
spatial aspects. Micrometeorological tower data investigated in Chapter 4 indicated that climate 
variables such as relative humidity can vary substantially over the course of a day, with the time 
of peak values varying substantially among sites. Even daily minimum and maximum values 
would not capture the important result that the tower site with peak relative humidity in the 
afternoon also had the most frequent afternoon cloud cover. 

 
Given that cloud cover has a strong influence on solar radiation, temperature, humidity, 

and snowpack retention, and that all of these variables can factor into the overall site water 
balance, a better understanding of cloud cover has major implications for improved mapping of 
the water balance. Water balance variables are hypothesized to be among the best integrators of 
the plant-relevant environment and likely important in many species distributions, but their 
accurate mapping is heavily dependent on accurate characterization of the soil contribution. This 
accurate characterization is currently lacking, but relevant aspects of the soil contribution might 
potentially be solved if they are the only unknown in a comprehensive vegetation and water 
balance model. 

 
Better maps of various climate and climate-derived variables, such as the water balance, 

would also be useful to hone in on the physiological ecology of giant sequoia, and the exact 
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manner in which sequoia is benefiting from its unique climate. Quantifying the water savings 
from its increased cloud cover in comparison to its increased humidity (and reduced vapor 
pressure deficits) might help to clarify the critical mechanisms, and also better understand 
sequoia sensitivity to future climate changes. A better understanding of sequoia’s response to the 
increased ratio of diffuse radiation to direct sunlight provided by cloud cover is also needed, as 
increases in light use efficiency could contribute to increases in water use efficiency. Feedbacks 
among climate, sequoia, and fire certainly deserve better attention as well. A unique climate 
likely promotes a unique fire regime.  

 
Some hypotheses were put forth in Chapter 4 related to the different meteorological 

factors that might be involved in the cloud formation associated with giant sequoia. These 
hypotheses were supported by important ground measurements. Continued micrometeorological 
data collection from the southern Sierra Nevada Critical Zone Observatory elevational transect 
would help to ascertain whether the very unusual meteorological patterns recorded (e.g., very 
cold spring temperatures at 55 meters aloft at the 2015 meter elevation tower) were not just a 
several-year aberration. It is also worth determining whether there is anything unusual about the 
particular siting of the tower at 2015 meters and whether it perceives characteristics of the free 
troposphere. It is highly unlikely that the data were an aberration, as they are consistent with 
aspects of the atmosphere suggested by many other sources. But continued measurement and 
comparison with other data sources would help to better understand the mechanisms behind the 
unusual climate. Clearly understanding the meteorological mechanisms and how they might 
change in the future, together with improved understanding of environmental controls on giant 
sequoia distribution and performance, is necessary in order to better forecast giant sequoia 
response to future climate changes. The cloud frequency maps and other climate patterns 
revealed in this dissertation should help to guide the further understanding of this globally 
outstanding species and its unique climate.  
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