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Abstract

Symmetrical Windowing for Quantum States in Quasi-Classical
Trajectory Simulations

by

Stephen Joshua Cotton

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor William H. Miller, Chair

An approach has been developed for extracting approximate quantum state-
to-state information from classical trajectory simulations which “quantizes”
symmetrically both the initial and final classical actions associated with the
degrees of freedom of interest using quantum number bins (or “window func-
tions”) which are significantly narrower than unit-width. This approach thus
imposes a more stringent quantization condition on classical trajectory simu-
lations than has been traditionally employed, while doing so in a manner that
is time-symmetric and microscopically reversible.

To demonstrate this “symmetric quasi-classical” (SQC) approach for a
simple real system, collinear H +H

2

reactive scattering calculations were per-
formed [1] with SQC-quantization applied to the H

2

vibrational degree of free-
dom (DOF). It was seen that the use of window functions of approximately
1

2

-unit width led to calculated reaction probabilities in very good agreement
with quantum mechanical results over the threshold energy region, represent-
ing a significant improvement over what is obtained using the traditional quasi-
classical procedure.

The SQC approach was then applied [2] to the much more interesting and
challenging problem of incorporating non-adiabatic e↵ects into what would
otherwise be standard classical trajectory simulations. To do this, the classi-
cal Meyer-Miller (MM) Hamiltonian was used to model the electronic DOFs,
with SQC-quantization applied to the classical “electronic” actions of the MM
model—representing the occupations of the electronic states—in order to ex-
tract the electronic state population dynamics. It was demonstrated that if one
ties the zero-point energy (ZPE) of the electronic DOFs to the SQC windowing
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function’s width parameter this very simple SQC/MM approach is capable of
quantitatively reproducing quantum mechanical results for a range of standard
benchmark models of electronically non-adiabatic processes, including applica-
tions where “quantum” coherence e↵ects are significant. Notably, among these
benchmarks was the well-studied “spin-boson” model of condensed phase non-
adiabatic dynamics, in both its symmetric and asymmetric forms—the latter
of which many classical approaches fail to treat successfully.

The SQC/MM approach to the treatment of non-adiabatic dynamics was
next applied [3] to several recently proposed models of condensed phase elec-
tron transfer (ET) processes. For these problems, a flux-side correlation func-
tion framework modified for consistency with the SQC approach was devel-
oped for the calculation of thermal ET rate constants, and excellent accu-
racy was seen over wide ranges of non-adiabatic coupling strength and ener-
getic bias/exothermicity. Significantly, the “inverted regime” in thermal rate
constants (with increasing bias) known from Marcus Theory was reproduced
quantitatively for these models—representing the successful treatment of an-
other regime that classical approaches generally have di�culty in correctly
describing. Relatedly, a model of photoinduced proton coupled electron trans-
fer (PCET) was also addressed, and it was shown that the SQC/MM approach
could reasonably model the explicit population dynamics of the photoexcited
electron donor and acceptor states over the four parameter regimes considered.

The potential utility of the SQC/MM technique lies in its stunning sim-
plicity and the ease by which it may readily be incorporated into “ordinary”
molecular dynamics (MD) simulations. In short, a typical MD simulation may
be augmented to take non-adiabatic e↵ects into account simply by introducing
an auxiliary pair of classical “electronic” action-angle variables for each ener-
getically viable Born-Oppenheimer surface, and time-evolving these auxiliary
variables via Hamiltons equations (using the MM electronic Hamiltonian) in
the same manner that the other classical variables—i.e., the coordinates of all
the nuclei—are evolved forward in time. In a complex molecular system involv-
ing many hundreds or thousands of nuclear DOFs, the propagation of these
extra “electronic” variables represents a modest increase in computational ef-
fort, and yet, the examples presented herein suggest that in many instances the
SQC/MM approach will describe the true non-adiabatic quantum dynamics
to a reasonable and useful degree of quantitative accuracy.
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Chapter 1

Introduction, Background, and
Theory

1.1 The Traditional Quasi-Classical Approach

The quasi-classical (QC) approach embodies a simple methodology, based
purely on classical mechanics, for modeling transitions between quantum states
in atomic and molecular dynamics (MD) simulation. In the standard quasi-
classical trajectory (QCT) simulation [4], molecular vibrational and/or rota-
tional degrees of freedom (DOFs) are expressed in terms of classical action-
angle variables, the action variables being classical generalized momenta serv-
ing as the classical analogues of the vibrational and/or rotational quantum
numbers. “Quantization” is then accomplished by initializing classical trajec-
tories with integer values of the action variables—i.e., at the quantum energy
level of the initial state—and the final distribution of quantum states is ob-
tained by accumulating the values of the classical action variables in “bins”
(or histograms) of unit-width centered about the integer quantum values cor-
responding to the accessible quantum states.

For instance, in a typical collinear atom-diatom scattering process:

A+BC(N
1

) ! A+BC(N
2

) (inelastic)

or
A+BC(N

1

) ! AB(N
2

) + C (reactive)

where N is the vibrational quantum number of the diatomic molecule (and
there are no rotational DOFs), vibrational quantum state-to-state scattering
processes may be described by beginning trajectories with the vibrational en-
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1.2. TIGHTENING THE QUANTIZATION CONDITION:
BONNET’S AND RAYEZ’S “GAUSSIAN WINDOWING” APPROACH

ergy of the diatom BC(N
1

) being equal to the quantum mechanical energy
level of the initial vibrational state N

1

, and then “assigning” the trajectory to
the final quantum state N

2

whose energy level is closest to that of the actual
final classical vibrational energy. Repeating the process over an ensemble of
trajectories—i.e., as a phase space average over initial conditions—allows one
to map out the transition probabilities from the initial to all accessible final
vibrational quantum states. Rotational DOFs may be treated similarly.

Because this QCT approach is arguably the simplest (and least computa-
tionally demanding) way possible to extract quantum state specific informa-
tion from a classical MD simulation—and because it has been widely applied
to the treatment of complex molecular systems over the past 50 years—it is
worthwhile to explore how it can be improved and expanded upon, as it would
seem that any discernible improvement that one could come up with would
potentially have immediate practical utility.

1.2 Tightening the Quantization Condition:
Bonnet’s and Rayez’s “Gaussian Window-
ing” Approach

In this spirit of improving the QCT approach, several groups have recently
presented modifications to the traditional quasi-classical model which have
been seen to give improved results in particular applications. For instance,
Bonnet and Rayez [5], as well as Czäko and Bowman [6], have shown that
considerably improved quasi-classical results for product state distributions in
inelastic and reactive scattering processes can be obtained by using “Gaussian
binning” rather than the tradition box-shaped histogram bins (or “windowing”
functions) of the standard model. Significantly, the width parameter of these
Gaussian bins/windows is typically chosen to be something substantially less
than the unit-width used in the standard quasi-classical model, and in this
manner the approach forces the final conditions of the DOFs of interest to be
more narrowly restricted about their quantum values.

Furthermore, it is noted that in much of this work the restriction on the
final conditions of the trajectories can be quite severe, in many instances em-
ploying Gaussian windowing functions having widths of about 10% of the full
unit-width used in the traditional scheme. See Ref. [6]. This does then of
course raise e�ciency concerns if more than a few relevant DOFs are “quan-
tized” via such narrow binning. For example, quantizing vibrational motion
in a polyatomic involves binning the classical action variable associated with

4



CHAPTER 1. INTRODUCTION, BACKGROUND, AND THEORY

each of the polyatomic’s 3n � 6 normal modes (where n is the number of

atoms) and thus, fractionally, only
�

1

10

�
3n�6

of the trajectories are “counted”1

in such an approach. Thus, despite the simplicity of such techniques, it is still
key for e�ciency’s sake to identify the interesting DOFs where state-to-state
quantization is desired.

1.3 Concept of a Symmetrical Quasi-Classical
(SQC) Approach

Another potential modification to the traditional QCT technique stems from
the traditional approach’s inconsistent treatment of initial and final condi-
tions. In the case of a vibrational DOF, for example, a molecule’s initial
vibrational energy is equal to the true energy of the selected initial quantum
state, but a molecule’s final vibrational energy (as computed in the classical
trajectory simulation) does not generally come out equal to the true quantum
energy associated with the vibrational quantum state to which the molecule
is assigned.2

However, this does not have to be the case. It has been pointed out [7]
that the quasi-classical description may be made more self-consistent—and
made to obey microscopic reversibility—by averaging the initial values of the
classical action variables using the same window functions which are used to
bin the final action variables, thus enforcing quantization of the initial and
final classical action variables generally to the same extent.

One formal justification for such an approach may be shown based on semi-
classical principles by beginning with the “primitive” semiclassical expression
for the state-to-state transition probability [8]:

PN2 N1 =
X

n1=N1,
q12{roots of

Eq. (1.1b)}

1

2⇡

����
@n

2

(n
1

, q
1

)

@q
1

����
�1

(1.1a)

n
2

(N
1

, q
1

) = N
2

(1.1b)

1To be precise, all trajectories contribute to some extent if Gaussian windows are em-
ployed since the tails go to ±1, however, while requiring the same level of computation,
trajectories landing in the tails have little e↵ect on the outcome.

2In the traditional QCT approach, the final quantum state to which a trajectory is
assigned is simply that which is closest in energy to the final energy computed via the
classical trajectory simulation.
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1.3. CONCEPT OF A SYMMETRICAL QUASI-CLASSICAL (SQC)
APPROACH

where (n, q) are the classical action-angle variables for the quantized DOF in
question; (n

1

, q
1

) being their initial conditions and n
2

being the final value
of the action variable (the final angle q

2

is not needed). The final action
n
2

—which corresponds3 to the final quantum number for this DOF—is thus
a function of the initial action-angle variables n

1

and q
1

and also of the initial
values of any other variables corresponding to system’s other DOFs (trans-
lations, vibrations, rotations) which are not explicitly indicated in Eq. (1.1).
Because, in Eq. (1.1), the initial action n

1

is initialized to N
1

and the final
action n

2

is made equal to N
2

by finding the roots of n
2

(N
1

, q
1

) = N
2

, the

Jacobian
���@n2(N1,q1)

@q1

��� in Eq. (1.1) is evaluated over trajectories which begin and

end with their correct quantum values. In other words, the initial and final
classical actions in the primitive semiclassical expression for the N

1

! N
2

transition probability are constrained exactly to their quantum values.
Finding the roots q

1

of Eq. (1.1b) constitutes a double-ended boundary
value problem and hence, while feasible in simple cases, is generally imprac-
tical for complex systems of many interacting DOFs. Accordingly, the QCT
approach avoids the root search problem by simply assigning trajectories to
the closest final quantum state, and one can find the relationship of this ap-
proach to the primitive semiclassical expression of Eq. (1.1) simply by averag-
ing Eq. (1.1) over the final action n

2

by unit-width about the final quantum
value of the action N

2

:

PQC
N2 N1

=
X

n1=N1,
q12{roots of

Eq. (1.1b)}

Z N2+
1

2

N2�
1

2

dn
2

1

2⇡

����
@n

2

(n
1

, q
1

)

@q
1

����
�1

. (1.2)

A change of integration variables from n
2

to q
1

then gives the standard QCT
state-to-state expression:

PQC
N2 N1

=
1

2⇡

Z
2⇡

0

dq
1

h
�
1

2

� |n
2

(N
1

, q
1

)�N
2

|
�

(1.3)

where

h(x) =

⇢
0 x < 0
1 x � 0

is the usual Heaviside step-function. This is similar to the change of variables

3For a vibrational DOF, the classical action is actually n+ 1
2 , so that with ~ = 1, n is the

classical counterpart to the vibrational quantum number; i.e., the vibrational energy levels
are the energies for which n = 0, 1, 2, . . . .
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CHAPTER 1. INTRODUCTION, BACKGROUND, AND THEORY

which leads to the initial value representation of semiclassical theory—the SC-
IVR [9]—and Eq. (1.3) is also now expressed as an integral over only the initial
values of the angle variable q

1

, with the initial value of the action variable still
fixed at N

1

.
In view of the relationship of the QCT approach to the primitive semiclassi-

cal expression of Eq. (1.1), it is clear that a symmetrical quasi-classical (SQC)
approach (which treats quantization of initial and final states in equal fashion)
may be accomplished simply by averaging Eq. (1.1) over both the initial and
final action variables over a unit-width about their respective quantum values,
i.e. averaging n

1

over N
1

± 1

2

and n
2

over N
2

± 1

2

:

P SQC
N2 N1

=
X

n1=N1,
q12{roots of

Eq. (1.1b)}

Z N1+
1

2

N1�
1

2

dn
1

Z N2+
1

2

N2�
1

2

dn
2

1

2⇡

����
@n

2

(n
1

, q
1

)

@q
1

����
�1

; (1.4)

which after changing integration variables as above gives

P SQC
N2 N1

=
1

2⇡

Z 1

�1

2

dn
1

Z
2⇡

0

dq
1

h
�
1

2

� |n
1

�N
1

|
�
h
�
1

2

� |n
2

(n
1

, q
1

)�N
2

|
�
.

(1.5)
Thus, the basic SQC expression of Eq. (1.5) is just an average over the ini-
tial phase space4 of the DOF being “quantized,” with the integrand being the
product of normalized window functions for this DOF’s initial and final states.
And, moreover, since phase space averages are invariant to canonical transfor-
mations, Eq. (1.5) may be equivalently evaluated by averaging the integrand
over any canonical set of generalized momentum p and conjugate coordinate q.

The basic SQC expression of Eq. (1.5) has the desired property of micro-
scopic reversibility, but for reasons that will become more apparent below,
it is appealing (and quite useful) to go another step further beyond the stan-
dard QCT procedure and to symmetrically tighten the quantization conditions
imposed by Eq. (1.5) in the same spirit that Bonnet and Rayez applied nar-
rowed Gaussian windows to final product states. This may be done, of course,
simply by replacing the unit-width “bins” in equation Eq. (1.5) with normal-
ized window functions having reduced widths, whether Gaussians, histogram
“boxes,” or of some other functional form. The usefulness of this approach
has been demonstrated through the treatment of various examples which are
described herein, beginning with quantization of molecular vibrational degrees

4It has been assumed throughout that ~ = 1, so 2⇡ is the volume of phase space for one
degree of freedom. Also recall that the actual classical action is n+ 1

2 .
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1.3. CONCEPT OF A SYMMETRICAL QUASI-CLASSICAL (SQC)
APPROACH

of freedom in a simple reactive scattering scenario.
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Chapter 2

Reactive Scattering:
H +H

2

! H
2

+H

2.1 Motivation

To demonstrate the SQC approach in perhaps the simplest non-trivial con-
text, reactive scattering of H + H

2

(in the collinear geometry) was first con-
sidered. [1] One goal of this work was simply to ascertain the extent to which

Figure 2.1: View of the
H + H

2

BKMP2 [10] PES
in Cartesian coordinates
(collinear geometry)

symmetrically varying the windowing functions (using di↵erent classes of win-
dow functions, narrowing the window functions, etc.) e↵ected the calculated
results, and generally to gauge the sensitivity of such results to the variations.
However, another perhaps more useful goal was to determine the extent to
which symmetrically “tuning” the windowing functions could be used to yield
an optimal imitation of the true quantum mechanical (QM) state-to-state re-
action probabilities.

It turns out, to give a little historical perspective, that the latter goal (in

9



2.1. MOTIVATION

addition to the pedagogical advantage of microscopic reversibility) motivated
perhaps the original attempt to use a symmetrical approach to QCT simula-
tion. In particular, it was pointed out at a Faraday Discussion in 1973 [7] that
symmetrically averaging over initial and final vibrational actions might—just
as a practical matter—smooth out the sharp reaction thresholds often seen
in QCT simulations of reactive scattering events which, due to the smoothing
e↵ects of quantum tunneling, were often not seen in the true results. However,
the results presented at this meeting for collinear H+H

2

reactive scattering [7,
see the “General Discussion” following the published papers] revealed that
the additional smoothing provided by the symmetric approach vastly over-
smoothed the reaction probabilities in the threshold energy region. Hence,
despite any inherent pedagogical advantage, the symmetric approach was dis-
missed as not particularly useful.

Fig. 2.2 shows an updated version of essentially the same result from 1973
for the ground vibrational state to ground vibrational state reaction probabil-
ity, P

0 0

, recalculated using the current state of the art BKMP2 H
3

potential
energy surface (PES) [10]. The standard QCT result shows a sharp reaction
threshold, the QM result1 shows a smoothed threshold because of tunneling,
and the symmetrical version of the quasi-classical result significantly over-
smooths the classical reaction threshold, as just described.

While symmetrical windowing of vibrational states was considered back in
1973, what was not considered was the notion of narrowing the quantization
condition in the spirit of “Gaussian binning,” but to do so symmetrically with
respect to initial and final vibrational states. It is seen below that this simple
modification fixes the over-smoothing problem noted in this early work and
can be used to very closely mimic (for this particular problem) the correct
quantum result in the threshold energy region.

1Note that over this threshold energy region, P0 0(E) is equal to N(E), the cumulative
reaction probability, since the only open reactive channel is between ground vibrational
states. Thus, the QM curve displayed in Fig. 2.2 was generated via a direct calculation
of N(E) using a discrete variable representation (DVR) of the QM Green’s function with
absorbing boundary conditions (ABC). [11, 12, 13, These papers provide details of the DVR-
ABC Green’s function method. In particular, see Eq. 2.9(d) of Ref. [11] for the expression
used to directly calculate N(E). Eq. 3.2 of Ref. [13] was used as the analytical form of the
reactant and product adsorbing potentials.]
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Figure 2.2: Analogue of the
1973 result: Reaction prob-
ability P

0 0

for H + H
2

(collinear) versus total en-
ergy in eV; QCT (⇥), QM
(+), and symmetrical QCT
(S, �n = 1)

2.2 SQC Results

Thus, in order to investigate the SQC approach, considered first was the use of
square histogram window functions, as in the early work, but here varying the
widths �n about the quantum value N . The normalized histogram window
function for state N with width �n is thus

WN(n) =
1

�n
h

✓
�n

2
� |n�N |

◆
(2.1)

Replacing the unit-width histograms of Eq. (1.5) with these variable width
window functions gives, for the N

1

! N
2

transition probability,

P SQC
N2 N1

=
1

2⇡

Z
2⇡

0

dq
1

Z 1

1
2

dn
1

·WN1(n1

) ·WN2(n2

(n
1

, q
1

)). (2.2)

The 40-year old symmetric treatment recalculated in Fig. 2.2 corresponds to
using the windowing function of Eq. (2.1) with �n = 1, the maximum possible
value, which in 1973 was seen to be too large. Fig. 2.3 shows results for smaller
values of �n (again calculated using the BKMP2 PES [10]), and one sees that
a value of �n = 1

2

gives quite reasonable results over the threshold energy
region shown in Fig. 2.3a: the maximum reaction probability is in reasonable
agreement with the quantum result, as is the general shape of the reaction
probability curve over the threshold region.

The reaction probabilities shown in Fig. 2.3a for various choices of �n are
shown over a wider energy range in Fig. 2.3b. More precisely, Fig. 2.3b plots
the cumulative reaction probabilityN(E)—which is just equal to the sum of all

11
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(a) Reaction threshold energy region (P
0 0

(E) = N(E)
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(b) Expanded energy range (P
0 0

(E) 6= N(E))

Figure 2.3: Cummulative reaction probability N(E) for H + H
2

(collinear)
calculated via the SQC approach using histogram “box” window functions of
various widths: exact QM result (+); SQC with �n = 0.4 (⇥), �n = 0.5 (S),
and �n = 0.6 (2); energies are in electron volts (eVs)

12



CHAPTER 2. REACTIVE SCATTERING: H +H
2

! H
2

+H

state-to-state reaction probabilities Pp r(E) (reactants (r) to products (p))
which are non-zero over the higher energies of this expanded range. Here, one
sees that the results given by the symmetric binning procedure using various
width parameters exhibit a bit of an oscillation about the plateau region of the
QM N(E) curve before climbing in the high-energy region where additional
reactive channels open up.

Next, to investigate the e↵ect of altering the functional form of the win-
dowing function, employed (in Eq. (2.2)) were normalized Gaussian window
functions:

WN(n) =
1p

⇡�n/2
e�(

n�N
�n/2)

2

(2.3)

The result for �n = 1

2

is shown in Fig. 2.4 and compared to the result ob-
tained by using histogram windows, also with �n = 1

2

. While the use of
Gaussian windows does seem to give somewhat smoother results than the use
of histogram windows, choice of the optimal width parameter �n—see, e.g.,
the variation in Fig. 2.3b (for histogram windows, but also see Fig. 2.5b for
Gaussian windows)—is seen to have a significantly more pronounced e↵ect on
the results than the particular choice of the functional form of the window,
suggesting that in most cases, a simple adjustment of �n will likely provide
the greatest opportunity for tuning SQC calculations to the true quantum
results in most cases.

Nevertheless, despite the more significant e↵ect of varying the width pa-
rameter, reaction probabilities for H +H

2

calculated using Gaussian window
functions (Eq. (2.3)) of various widths �n are shown in Fig. 2.5, and it is seen
that the best overall SQC approximation is obtained by choosing a Gaussian
window of width �n = 1

2

. Over the reaction threshold energy region shown
in Fig. 2.5a, results for P

0 0

(E) computed using the SQC approach with this
window function show excellent agreement with the true QM result: in terms
of the onset of the tunneling region, the location and value of maximum reac-
tion probability, as well as the overall curve shape P

0 0

(E). Fig. 2.6a overlays
this result for �n = 1

2

with the analogue of the 1973 (also shown in Fig. 2.2).

Finally, since it is well-known from semiclassical theory2, also considered
was the use of the Wigner distribution for the initial and final action win-
dow functions. The Wigner distribution (in Cartesian variables) for a given

2See, for example, Ref. [14] regarding the linearized semiclassical initial value represen-
tation (LSC-IVR).
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(a) Reaction threshold energy region (P
0 0

(E) = N(E)
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(b) Expanded energy range (P
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(E) 6= N(E))

Figure 2.4: Comparison of Gaussian (⇥) versus histogram “box” (+) window
functions (of width �n = 1

2

) used to calculate N(E) for H + H
2

(collinear);
note the significant similarity, particularly over the full energy range in (b)
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(a) Reaction threshold energy region (P
0 0

(E) = N(E)
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(b) Expanded energy range (P
0 0

(E) 6= N(E))

Figure 2.5: Analogue of Fig. 2.3, but here using Gaussian window functions of
various widths �n versus the exact QM result (+): SQC with �n = 0.4 (⇥),
�n = 0.5 (S), and �n = 0.6 (2)
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vibrational quantum state N is

WN(p, x) =

Z
+1

�1
d�x eip�x �N(x+ �x

2

) �N(x� �x
2

) (2.4)

where �N(x) is the wavefunction corresponding to quantum state N. Evaluat-
ing Eq. (2.4) using the ground state 1D-harmonic oscillator wavefunction and
expressing the result in terms of action-angle variables gives

W
0

(n) = 2 e
�2

⇣
n+

1

2

⌘

(2.5)

as the window function for the ground vibrational state. This expression
was then used in Eq. (2.2) and the results are shown in Fig. 2.6b. Since
Eq. (2.5) gives a very broad distribution for the action variable n, and one
weighted heavily at small values, it does a poor job of localizing the action
variable n about the integer quantum value versus using Gaussian or histogram
window functions with �n set to 1

2

. Thus, reaction probabilities generated
with Eq. (2.5) provide very poor estimates of the correct quantum transition
probabilities as shown in Fig. 2.6b.
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(a) Summary of improvement: exact QM (+); traditional
(asymmetric) QCT (⇥); analogue of the 1973 result (S)
(i.e., SQC using histogram windows with �n = 1); SQC
using Gaussian windows with �n = 1

2

(2).
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(b) Poor result seen using the Wigner distribution func-
tion in the SQC approach (⇥) versus the QM result (+)

Figure 2.6: Improvements in the calculation of the threshold reaction proba-
bility (P

0 0

(E) = N(E)) for H+H
2

(collinear) seen using the SQC approach
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Chapter 3

Conclusion

Presented here in Part I has been the development of an extremely simple,
microscopically reversible, symmetric quasi-classical (SQC) procedure, and its
application to the quantization of nuclear DOFs in the reactive scattering
context.

In particular, it was demonstrated that vibrational state-to-state reaction
probabilities for collinear H +H

2

computed via the SQC approach using win-
dow functions of about 1

2

unit-width are in very good agreement with quantum
mechanical results over the threshold energy region (doing a reasonable job of
mimicking the onset of tunneling) and, moreover, it was shown that these
results represent a significant improvement over what is obtained from the
traditional QCT approach. In addition, while for this particular scattering
problem Gaussian window functions were found to give the best results, it was
demonstrated that the value chosen for the window function’s width parame-
ter, much more so than its functional form, was a far more significant factor
a↵ecting the results.

As far as e�ciency, there is a performance penalty associated with applying
the SQC approach with less than unit-width window functions because some
trajectories finishing with intermediate actions will be thrown out. However,
though this results in a scaling of computational cost by

✓
1

�n

◆G

(3.1)

where �n is the width parameter and G is the number of DOF which are
being “quantized,” typically one only wishes to quantize a small number of
key DOFs, and so this additional expense is likely of minor concern in many
cases; and, of course, this is o↵set by the fact that the “inputs” to the SQC
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procedure are just ordinary classical trajectories computed in the typical fash-
ion without any additional auxiliary computations (such as, e.g., semiclassical
phase information).

It is also interesting to contrast the SQC approach with the linearized ver-
sion of the semiclassical IVR (initial value representation), the LSC-IVR. The
relationship between the two is essentially that the LSC-IVR is the SQC ap-
proach if the functions used for the symmetric windowing are chosen to be the
classical Wigner distribution functions corresponding to the initial and final
quantum states. However, it was shown in Fig. 2.6b that the Wigner function
gives extremely poor results in the context ofH+H

2

reactive scattering relative
to the SQC approach implemented with simple, narrowed 1

2

-width histogram
window functions. Thus, although the LSC-IVR has been used successfully in
a variety of circumstances [9, 14, 15], the foregoing work demonstrates that the
SQC approach has the potential to lead to substantial and easily achievable
improvements over this and other simple trajectory-based methods.

As stated, this Part I has involved developing and applying the SQC ap-
proach to the quantization of nuclear DOF in the context of state-to-state
reactive scattering. In Part II, the SQC approach will be applied to the much
more interesting, challenging, and important problem of accurately treating
electronically non-adiabatic phenomena where the chemical dynamics is of-
tentimes dominated by the purely quantum e↵ect of coherent nuclear motion
on multiple Born-Oppenheimer PESs.
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Part II

Symmetric Quantization of
Electronic States and Treatment

of Non-Adiabatic Processes
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Chapter 4

Background

Within the standard picture provided by the Born-Oppenheimer approxima-
tion, chemical dynamics is generally envisioned as many interacting nuclear
degrees of freedom (DOFs)—e.g., intermolecular separations, intramolecular
vibrations, rotations, etc.—moving classically on e↵ective electronic potential
energy surfaces (PESs) generated by the mean electric field of the electrons
and neighboring nuclei—as typically determined by approximately solving the
electronic Schrödinger equation. However, when solutions to the electronic
Schrödinger equation over some range of nuclear geometries yield two or more
PESs which are close in energy, coupling between the PESs generally leads
to so-called non-adiabatic e↵ects such as quantum coherences between nuclear
motion on the multiple PESs, and ultimately transitions between the elec-
tronic states which are represented by the PESs. While, it is, of course, in
principle always possible to evaluate non-adiabatic e↵ects through a complete
solution to the coupled-channel Schrödinger equation with respect to all the
intersecting PESs, in practice this will only be computationally feasible for
simple chemical systems with only a few relevant DOFs.

Accordingly, a variety of quasi-classical and semiclassical approaches have
been proposed and tested for modeling non-adiabatic dynamics in lieu of di-
rectly solving the full Schrödinger equation, all having the goal of capturing
the essential features of the true quantum dynamics, but at an acceptable
computational cost. These approaches include, for example, the traditional
Ehrenfest model (described, for instance, in Ref. [9, see p. 1406]), as well as
approaches based on the fewest switches surface-hopping (FSSH) methodology
first introduced by Tully and coworkers [16].

The approach taken by Miller and coworkers [9] was to apply a semiclas-
sical treatment [17] and a linearized semiclassical treatment [14] to a classical
analogue model of the complete multi-state electronic system which was devel-
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oped in the much earlier work of Meyer and Miller [18, 19, 20] (and relatedly
of Miller and McCurdy [21]). The classical electronic Meyer-Miller (MM)
Hamiltonian embodying this model is a function of the quantum mechanical
electronic Hamiltonian matrix elements—which depend on the nuclear coordi-
nates {Ri}—and also on pairs of classical action-angle variables {ni, qi}—one
pair associated with each energetically accessible electronic state. These semi-
classical treatments based on the MM Hamiltonian were shown [17, 14, 22] to
yield quite reasonable results for a variety of model non-adiabatic problems,
including the benchmark problems Tully and co-workers used initially to test
the FSSH technique.

In the work presented here, a new and even simpler model has been ex-
plored which is based on the symmetric quasi-classical (SQC) approach pre-
sented in Part I. It may, in fact, be the simplest and least computationally-
intensive (but still reasonable) approach that one can envision for dealing with
this type of intrinsically quantum mechanical phenomena. In brief, one begins
by using the Meyer-Miller (MM) classical electronic Hamiltonian to represent
the electronic states in terms of classical action-angle variables, and then ap-
plies the SQC protocol in order to symmetrically “quantize” the initial and
final classical “electronic action” variables within some specified bounds of the
allowed quantum values. It is noted (as has been noted many times before)
that by mapping electronic DOF onto pairs of classical canonical variables, the
MM Hamiltonian treats nuclear and electronic DOFs in a dynamically consis-
tent classical framework. Likewise, the SQC approach places quantization of
initial and final states on equal footing.

After formally describing the theory behind the SQC/MM methodology,
the results of the approach applied to several problems of interest is presented.
The first set of applications are the three benchmark problems of Tully and
co-workers, and it is described how various important “tweaks” to the basic
approach were developed in the context of these models. Next presented are
the results of applying the approach to the well-studied spin-boson model of
condensed phase non-adiabatic processes, in both its symmetric and asymmet-
ric variants, and then to various recently proposed models of electron transfer
(ET) processes including a model of photo-induced proton coupled electron
transfer (PCET). This work then concludes with several examples of treating
systems of three non-adiabatically coupled electronic states (using two di↵erent
approaches). It is seen that the SQC/MM approach provides very reasonable
results in all cases and quite excellent results in most cases. It is of particular
note that this simple approach describes the asymmetric spin-boson problem
so well, for many approximate treatments which work well for the symmetric
spin-boson system have been seen to fail for the asymmetric version. It is
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CHAPTER 4. BACKGROUND

also significant that the SQC/MM approach is able to accurately handle the
Marcus inversion in ET rates (with increasing exothermicity), because this is
another regime where many simple methods are seen to fail.
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Chapter 5

Theory

5.1 The Meyer-Miller Classical Electronic Hamil-
tonian

For any system of electrons in an electric field generated by fixed nearby nuclei,
the time-dependent electronic wavefunction can be expanded in a complete
(possibly orthogonal) set of time-independent basis functions as

| el(t)i =
FX

k=1

ck(t) |ki (5.1)

where the time-dependence is captured by the complex coe�cients ck(t). If
one rewrites each ck(t) in terms of real functions nk(t) and qk(t) as

ck(t) =
p

nk(t) e
�iqk(t), (5.2)

then it can be shown that nk(t) and qk(t) are canonically conjugate action-
angle variables (with the action nk(t) acting as the momentum conjugate to
the coordinate angle qk(t)), and that these “electronic” action-angle variables
evolve in time according to Hamilton’s equations,

ṅk(t) = �@Hel(n,q;R)

@qk
(5.3a)

q̇k(t) =
@Hel(n,q;R)

@nk

, (5.3b)
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provided that the classical Hamiltonian used in Eq. (5.3) is identified as the
expectation value of the electronic quantum Hamiltonian operator written in
terms of the |ki basis functions:

Hel(R) = h el(t)| Ĥel | el(t)i =
FX

k,k0=1

c⇤k0 hk0| Ĥel |ki ck

=
FX

k,k0=1

c⇤k0ckHk,k0(R).

(5.4)

With substitution of
p

nk(t) e�iqk(t) for the ck(t)’s (i.e., using Eq. (5.2)), this
becomes

Hel(R,n,q) =
FX

k,k0=1

p
nk nk0 cos(qk � qk0) Hk,k0(R), (5.5a)

which upon rewriting the summation gives

Hel(R,n,q) =
FX

k=1

nk Hk,k(R) + 2
FX

k<k0=1

p
nk nk0 cos(qk � qk0) Hk,k0(R),

(5.5b)
the basic form of the classical analogue expression given in Ref. [18]. It is
straightforward to show that the “classical” time-evolution of the nk(t)’s and
qk(t)’s provided by this Hamiltonian when used in Hamilton’s equations for
ṅk(t) and q̇k(t) (i.e., Eq. (5.3)) is exactly equivalent to the time-evolution of
the ck(t)’s provided by the time-dependent Schrödinger Equation,

ċ(t) = �iH(R) · c(t), (5.6)

provided that the Hamiltonian only depends parametrically on the nuclear
coordinates R—e.g., if there is a pre-determined nuclear trajectory R(t). It is
therefore noted that the trajectories generated with Eq. (5.5) are equivalent to
the classical trajectories of the Ehrenfest approach generated by time-evolving
the quantum amplitudes {ck} according to Eq. (5.6). [23] It is also noted that
if the initial values of the nk(t)’s are chosen such that

FX

k=1

nk(t = 0) = 1,
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then the nk(t)’s may be interpreted as the probability of finding the electronic
system in quantum state |ki at time t—i.e., the nk(t)’s are the occupation
numbers of the electronic states (and one can easily show that

PF
k=1

nk(t) is
a constant of the motion as the system evolves according to Eqs. (5.3) and
(5.5), or equivalently according to Eq. (5.6)).

While it is true that Eq. (5.5) is equivalent to solving the time-dependent
electronic Schrödinger equation along a fixed (pre-determined) nuclear trajec-
tory, it is not an exact representation of the full coupled nuclear-electronic
quantum system. One defect in Eq. (5.5) noted in the original paper [18]
(which also carries over to the Ehrenfest approach as noted in Ref. [23]) is
that when the system begins in a pure quantum state—i.e., ni = 1 for the ini-
tial state i and nk = 0, 8 k 6= i—the Hamiltonian of Eq. (5.5) is independent
of the angle variables {qk} (i.e., the coupling term depending on Hk,k0 van-
ishes), which means that if the system starts in a pure state i, there is only a
single trajectory generated from Eqs. (5.3) and (5.5) rather than an ensemble
of trajectories which may be associated with a given ni ! nf transition.

Thus, when Eq. (5.5) was first proposed [18], Meyer and Miller added 1

2

to the nk’s in Eq. (5.5) (i.e., nk ! nk +
1

2

), and at the same time subtracted
1

2

PF
k=1

Hk,k from the diagonal terms, so that the e↵ect of the nk ! nk +
1

2

transformation was only to modify the o↵-diagonal coupling terms of Hel:

Hel(R,n,q) =
FX

k=1

nkHk,k(R)

+ 2
FX

k<k0=1

q
(nk +

1

2

)(nk0 +
1

2

) cos(qk � qk0)Hk,k0(R).

(5.7)

Since only the coupling terms are a↵ected, it remains true that ni = 1 (and
nk = 0, 8 k 6= i) still corresponds to initial electronic state i characterized
by electronic Hamiltonian matrix element Hi,i, however, the fact that the
coupling terms no longer vanish in this configuration results in the generation
of an ensemble of trajectories through variation of the initial angle variables
{qk}.

The value of 1

2

in the nk ! nk + 1

2

transformation was chosen in the
spirit of various Langer-type modifications well-known in semiclassical theory.
However, for reasons explained in detail below, it is advantageous within the
context of the SQC model to choose this value to be something less than 1

2

, and
it thus becomes a parameter of the SQC model henceforth labeled as �. Stock,
in Refs. [24] and [25], also found reducing the 1

2

to be a useful modification.
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The full nuclear-electronic MM Hamiltonian written in terms of action-angle
variables {ni, qi} and � is then given by:

H(P,R,n,q) =
|P|2

2µ
+

FX

k=1

nk Hkk(R)

+ 2
FX

k<k0=1

p
(nk + �)(nk0 + �) cos(qk � qk0) Hkk0(R).

(5.8)

where the first term is the kinetic energy of the nuclear DOFs and � is a
parameter chosen from the interval

�
0, 1

2

⇤
.

The Hamiltonian of Eq. (5.8) embodies the essential physics of the Meyer-
Miller model, but there are additional modifications which are generally made
to it in order to improve its practical implementation. For instance, the equa-
tions of motion generated from Eq. (5.8) via Hamilton’s equations, such as

q̇k(t) =
@H

@nk

= Hkk(R) +
FX

k0=1

r
nk0 + �

nk + �
cos(qk � qk0) Hkk0(R), (5.9)

become numerically ill-behaved when nk takes on values near its minimum
value (��). However, such singular behavior may be eliminated by transform-
ing the Hamiltonian of Eq. (5.8) to Cartesian oscillator variables {pi, xi} via
the canonical transformation

xk =
p

2(nk + �) cos(qk), (5.10a)

pk = �
p

2(nk + �) sin(qk) (5.10b)

having inverse transformation

nk =
1

2
p2k +

1

2
x2

k � �, (5.11a)

qk = � tan�1
✓
pk
xk

◆
(5.11b)
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which gives

H(P,R,p,x) =
|P|2

2µ
+

FX

k=1

✓
1

2
p2k +

1

2
x2

k � �

◆
Hkk(R)

+
FX

k<k0=1

(pkpk0 + xkxk0) Hkk0(R).

(5.12)

Not only do no singularities arise in the equations of motion generated from the
Cartesian representation of the MM Hamiltonian of Eq. (5.12) but, as an added
benefit, the resulting equations of motion may be more e�ciently integrated
due to the absence of any required transcendental function evaluation (on their
RHS).

Furthermore, the Cartesian form of Eq. (5.12) illustrates that the MM
model is a mapping of a set of F electronic states onto a set of F coupled “elec-
tronic” oscillators, and from the canonical transformation given by Eqs. (5.10)
and (5.11a), one has 1

2

p2k +
1

2

x2

k = nk + �, showing that the �-parameter rep-
resents the amount of zero-point energy (ZPE) injected into these oscillators
when they are initialized. Moreover, if � is taken to be 1

2

, Stock and Thoss
have shown [26] that replacing the classical coordinates and momentum (x, p)
in Eq. (5.12) by their quantum mechanical operators (x̂, p̂) yields an exact
representation of the full nuclear-electronic quantum system.1

Finally, one further transformation has generally been applied to the MM
Hamiltonian to put it into its final form for implementation (as it has been
employed in most of this work). That is, the diagonal elements—i.e., the
electronic PESs—are generally expressed relative to some reference potential
function, H̄(R), i.e.,

FX

k=1

nkHkk(R) ! H̄(R) +
FX

k=1

nk

�
Hkk(R)� H̄(R)

�
(5.13)

with the reference potential H̄(R) generally taken to be the average of all the

1While this fact is not utilized in the present work, it is important in a broader context
because it provides a justification for using Eq. (5.12) in more rigorous (and computationally
intensive) semiclassical treatments.
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PESs,
PF

k Hk,k(R). After re-expressing the summation2 in Eq. (5.13) to give

FX

k=1

nkHkk(R) ! H̄(R) +
1

F

FX

k<k0=1

(nk � nk0) · (Hkk(R)�Hk0k0(R)) , (5.14)

this transformation, along with Eq. (5.11a), may be applied to Eq. (5.12)
yielding

H(P,R,p,x) =
|P|2

2µ
+ H̄(R)

+
FX

k<k0=1

8
<

:

1

F

✓
1

2
p2k +

1

2
x2

k �
1

2
p2k0 �

1

2
xk02

◆
· (Hkk(R)�Hk0k0(R))

+ (pkpk0 + xkxk0) ·Hkk0(R)

9
=

;

(5.15)

which is the final form used herein. Eq. (5.15) treats the general case of F
electronic states. For the case of F = 2 electronic states, the MM Hamiltonian
is thus

H(P,R,p,x) =
|P|2

2µ
+ H̄(R)

+
1

2

✓
1

2
p2
1

+
1

2
x2

1

� 1

2
p2
2

� 1

2
x2

2

◆
·�H(R)

+ (p
1

p
2

+ x
1

x
2

) ·H
12

(R)

(5.16)

2The second terms in Eq. (5.13) and Eq. (5.14) are equivalent since:

FX

k=1

n
k

�
H

kk

� H̄
�
=

FX

k=1

n
k

 
H

kk

 
1

F

FX

k

0=1

!
� 1

F

FX

k

0=1

H
k

0
k

0

!

=
1

F

FX

k=1

FX

k

0=1

n
k

· (H
kk

�H
k

0
k

0)

=
1

F

FX

k<k

0=1

n
k

· (H
kk

�H
k

0
k

0) +
1

F

FX

k>k

0=1

n
k

· (H
kk

�H
k

0
k

0)

=
1

F

FX

k<k

0=1

(n
k

� n
k

0) · (H
kk

�H
k

0
k

0)

where in the last step the dummy-indices k and k0 have been interchanged in the second
summation.
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where H̄ = 1

2

(H
11

+H
22

) and �H = H
11

�H
22

. It is interesting to note that
with the rewriting of the Hamiltonian in terms of an average potential H̄(R),
the �-parameter does not appear, however it does still play the role of setting
the ZPE through its presence in the action-angle to Cartesian transformation
of Eq. (5.10).

Time-evolution of the combined nuclear-electronic system is then typically
done by generating classical trajectories in the Cartesian variables {pk, xk}
from the Hamiltonian of Eq. (5.15), which for 2 states is Eq. (5.16). When
required by the SQC procedure, as explained below, the electronic actions {nk}
may be computed via Eq. (5.11a), the inverse transformation from Cartesian
coordinates.

5.2 Symmetrical Windowing of the Electronic
States

In Part I, histogram and Gaussian window functions were applied symmet-
rically to the vibrational DOF of the H

2

molecule to compute state-to-state
reaction probabilities in H+H

2

scattering, and in this work it was discovered,
inter alia, that variation in the width of the window function had a much
more pronounced e↵ect on the computed results than the functional form of
the window function—i.e., whether it was taken to be a histogram or Gaussian.
From this perspective, it is seen that the important feature of the “Gaussian
Binning” procedure of Bonnet and Rayez [5] is that the window functions are
taken to be substantially less than unit-width (thereby imposing a narrowed
quantization condition) rather than that the “Gaussian Binning” uses Gaus-
sian functions per se. Thus, for sake of simplicity, and also for purposes of
remedying ZPE leakage to be explained below, only histogram window func-
tions were employed in the SQC procedure as applied to the treatment of
electronic DOFs in this Part II.

Accordingly, similar to the window function of Eq. (2.1) (employed in Part I
for the treatment of vibrational DOFs), a variable width normalized histogram
window function for binning the action nk corresponding to electronic state k
may be written as

wNk
(nk) =

1

2�
h (� � |nk �Nk|) , (5.17)

where Nk is a quantum number corresponding to the occupation of the kth
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state, i.e.

Nk =

⇢
1 occupied
0 unoccupied

,

� is the allowed deviation from the quantum value—i.e., half the width of
window function, and

h(x) =

⇢
0 x < 0
1 x � 0

is the Heaviside function. The only di↵erence between this window function
and that of Eq. (2.1) from Part I is that the width of the window function
�n has been set equal to 2�, where � is the ZPE parameter of Eqs. (5.10)
and (5.11a) (and appearing in the Hamiltonian of Eq. (5.12)). This is a key
choice, as it was discovered that tying the �-parameter to the width of the
action window function exactly balances the symmetric windowing constraints
(applied to the initial and final states) against the amount of ZPE put into the
model via Eq. (5.10), essentially remedying the ZPE-leakage problem which
has troubled and been worked on by others [27, 28].

For the case of a system consisting of two energetically accessible electronic
states, there is a pair of electronic action-angle variables (n, q) which corre-
spond to each state, and thus the window functions for use in the SQC proce-
dure are functions of the two action variables (n

1

, n
2

) associated with the two
states, parametrized by the two quantum numbers (N

1

, N
2

). Electronic state 1
has quantum numbers (N

1

, N
2

) = (1, 0) associated with it—corresponding to
state 1 being occupied and state 2 being unoccupied—and likewise, electronic
state 2 has quantum numbers (N

1

, N
2

) = (0, 1). The joint window function
for the complete electronic configuration corresponding to state 1 is thus the
product of two one-dimensional window functions of the form of Eq. (5.17)
and given by

W
1

(n
1

, n
2

) = w
1

(n
1

) · w
0

(n
2

), (5.18a)

and the joint window function for the complete electronic configuration corre-
sponding to state 2 is

W
2

(n
1

, n
2

) = w
0

(n
1

) · w
1

(n
2

). (5.18b)

Similarly, for a system having an arbitrary number of electronic states F , the
window function for the complete electronic configuration of the kth electronic
state is given by

Wk(n) = w
1

(nk) ·
FY

k0=1,
k0 6=k

w
0

(nk0) (5.19)
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These window functions may then be used in the SQC approach to compute
the transition probability from initial electronic state i to final electronic state
f at time t, Pf i(t). For the general case of F electronic states and G nuclear
DOFs having an initial distribution of nuclear coordinates R and momentum
P given by ⇢(P

0

,R
0

), this is done by evaluating

P̃f i(t) =
1

(2⇡~)G+F

Z
dP0 dR0 dn0 dq0 ⇢ (P0,R0) ·Wf (n(t)) ·Wi(n0

)

(5.20)
The phase space average of Eq. (5.20) is evaluated by Monte Carlo using
⇢(P

0

,R
0

) ·Wi(n0) as the sampling function, integrating trajectories (nuclear
and electronic DOFs) using the Hamiltonian of Eq. (5.15), and finally “project-
ing” the time-evolved ensemble onto the specified final state f by evaluating
the window function Wf (n(t)). Regarding the initial sampling of electronic ac-
tions, it is done according to Eq. (5.19): the action variable ni corresponding to
the initial electronic state i is sampled uniformly from the interval [1��, 1+�]
and the other action variables {nk, 8 k 6= i} are sampled uniformly from the
interval [��, �]. As for the angle variables {qk}, they are sampled uniformly
over the interval [0, 2⇡].3

It turns out that a transition probability P̃f i(t) computed with Eq. (5.20)
is generally unnormalized over the array of F possible final electronic states.
Thus, to complete the SQC procedure, a renormalized transition probability
Pf i(t) is given by

Pf i(t) =
P̃f i(t)PF
k=1

P̃k i(t)
. (5.21)

which is evaluated by calculating a P̃f i(t) via Eq. (5.20) for each combina-
tion of initial state i and possible final state f . This can be done e�ciently
with a single ensemble of trajectories sampled according to ⇢(P

0

,R
0

) ·Wi(n0

)
by simply accumulating the time-evolved electronic actions {nk(t)} into the
various “bins” given by Eq. (5.19) at the final time t.

For example, for the most common case of F = 2 electronic states, the
transition probability from initial state i = 1 to final state f = 2 is simply

P
2 1

(t) =
P̃
2 1

(t)

P̃
2 1

(t) + P̃
1 1

(t)
(5.22)

3The integrand doesn’t explicitly depend on q0 and so the angle variables are sample
uniformly, however the electronic actions n(t) will generally depend on q0 through the
Hamiltonian of Eq. (5.15) and Hamilton’s equations, Eq. (5.3).
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where P̃
2 1

(t) and P̃
1 1

(t) are evaluated according to Eq. (5.20) using the
2-state window functions of Eq. (5.18).

5.3 The Adiabatic Version of the Meyer-Miller
Classical Electronic Hamiltonian

Although a diabatic representation of the multi-state electronic Hamiltonian
is frequently used for the treatment of model non-adiabatic problems, for
the study of real chemical systems, one would generally employ the poten-
tial energy surfaces (PESs) that come from “quantum chemistry” electronic
structure calculations, and these PESs are typically expressed in the adiabatic
representation—i.e., they are the Born-Oppenheimer (BO) PESs computed
by diagonalizing the electronic Hamiltonian at each configuration of the nu-
clear coordinates. Thus, “real” applications of the SQC/MM approach would
typically more easily be accomplished directly in the adiabatic representation,
though in principle they should be equivalent.4

As developed in Section 5.1, in a diabatic representation, the electronic
Hamiltonian is generally not diagonal, and the o↵-diagonal elements represent
non-adiabatic couplings (possibly dependent on the nuclear coordinates) be-
tween what may be viewed as the diabatic PESs which are represented by the
diagonal elements. Hence, for the case of 2 electronic states in the diabatic
representation:

Ĥel(R)
diabatic rep.�������!

✓
H

11

(R) H
12

(R)
H

21

(R) H
22

(R)

◆
;

whereas in the adiabatic representation, the electronic Hamiltonian is diagonal
with eigenvalues representing the BO PESs:

Ĥel(R)
adiabatic rep.�������!

✓
E

1

(R) ø
ø E

2

(R)

◆
.

Thus, for two electronic states, the adiabatic version of the Meyer-Miller
Hamiltonian [18] is expressed in terms of the Born-Oppenheimer PESs E

1

(R)

4Though, they obviously cannot be equivalent if the transition probability being com-
puted is between initial and final states which are not equivalent to each other in their
respective representations—i.e., they are not transformations of one another.
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and E
2

(R), and takes the form

H(P,R,p,x) =
|P+�P|2

2µ
+ Ē(R)

+
1

2

✓
1

2
p2
1

+
1

2
x2

1

� 1

2
p2
2

� 1

2
x2

2

◆
·�E(R),

(5.23)

where , Ē = 1

2

(E
1

+ E
2

), �E = E
1

� E
2

, and

�P = (p
1

x
2

� p
2

x
1

) ·
⌧
 
2

����
@ 

1

(R)

@R

�
. (5.24)

From this expression, it is seen that while the electronic Hamiltonian provides
no coupling between electronic states in the adiabatic representation, the elec-
tronic states are coupled through the addition of �P to the vector of nuclear
momenta P in the nuclear kinetic energy term, and �P is a function of the

non-adiabatic coupling
D
 
2

���@ 1(R)

@R

E
. The wavefunctions  

1

(R) and  
2

(R) are

the adiabatic eigenvectors corresponding to the Born-Oppenheimer PESs, and

these and their non-adiabatic coupling
D
 
2

���@ 1(R)

@R

E
, along with the adiabatic

BO PESs, are typically obtained from an electronic structure calculation.
If instead, one begins with the non-adiabatic coupling of the diabatic elec-

tronic Hamiltonian matrix, H
12

(R) = H
21

(R), one can compute the non-
adiabatic coupling from

⌧
 
2

����
@ 

1

(R)

@R

�
=
@!(R)

@R
(5.25)

where the so-called “mixing angle” !(R) is given by

!(R) =
1

2
tan�1

✓
2H

12

(R)

H
11

(R)�H
22

(R)

◆
. (5.26)

There are model problems treated in this work which, although written in
a diabatic representation, have non-adiabatic couplings that do not vanish
asymptotically. As as a result, only the electronic states of the adiabatic
representation constitute physically meaningful initial and final states between
which a transition probability can be sensibly defined. For these problems, the
work presented here employed the adiabatic representation of Eq. (5.23).5

5An alternative approach would have been to (i) sample initial conditions in the adiabatic
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5.4. ALTERNATIVE REPRESENTATIONS AND
AN INTERPRETATION OF THE �-PARAMETER

5.4 Alternative Representations and
an Interpretation of the �-Parameter

5.4.1 The Miller-McCurdy Representation

Most of the calculations presented herein employed the Cartesian version of
the Meyer-Miller Hamiltonian given in Eq. (5.15), or more specifically, for
two states, Eq. (5.16). This particular classical representation of the elec-
tronic degrees of freedom (DOFs) is advantageous because (i) the equations of
motion are simple, containing no singularities nor requiring the evaluation of
square roots or transcendental functions, and (ii) because the general case of
F electronic states is elegantly handled with no additional complexity beyond
requiring additional pairs of action-angle variables.

However, for just F = 2 electronic states, the Cartesian representation of
Eq. (5.16) does involve twice as many electronic DOFs as are really required.
This can be seen by going back to the MM Hamiltonian written in terms of
action-angle variables (n,q)—i.e, Eq. (5.8)—which for two states is

H(P,R, n
1

, n
2

, q
1

, q
2

) =
|P|2

2µ
+ n

1

H
11

(R) + n
2

H
22

(R)

+ 2
p

(n
1

+ �)(n
2

+ �) cos(q
1

� q
2

) H
12

(R).

(5.27)

Due to conservation of probability, i.e., since n
1

+ n
2

= 1, clearly one of the
electronic action variables can be rewritten in terms of the other; and because
the Hamiltonian only depends on the di↵erence between the angles, q

1

� q
2

can also be replaced by a single angle variable.

The formal theory of canonical transformations can be used to show this
systematically. Specifically, one seeks two new pairs of action-angle variables
(N

1

, Q
1

) and (N
2

, Q
2

) which are functions of the old variables (n
1

, q
1

) and
(n

2

, q
2

) and which maintain the symplectic form of the Hamiltonian Eq. (5.27)
written in terms of the new variables. One of the new action variables is
selected to remain unchanged,

N
1

(n
1

, n
2

) = n
1

(5.28a)

representation, (ii) make a canonical transformation to the diabatic representation, (iii) do
the dynamics to time t using the diabatic Meyer-Miller Hamiltonian of Eq. (5.16), and (iv)
at time t make the inverse canonical transformation back to the adiabatic representation to
“bin” the trajectories via the SQC approach.
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and the other is selected to be the sum of the probabilities,

N
2

(n
1

, n
2

) = n
1

+ n
2

(5.28b)

(and then since N
2

= 1 this variable can be eliminated in the transformed
Hamiltonian). The so-called F

3

-type6 generating function

F
3

⌘ F
3

(n
1

, n
2

, Q
1

, Q
2

) (5.29)

along with its associated relations7

Ni = �@F3

@Qi

(5.30a)

qi = �@F3

@ni

(5.30b)

can then be used to find the correct new angle variables (Q
1

, Q
2

) which main-
tain the symplectic form of the transformed Hamiltonian. In particular, sat-
isfaction of Eq. (5.30a) leads to the immediate identification of the proper F

3

generating function as

F
3

(n
1

, n
2

, Q
1

, Q
2

) = �N
1

(n
1

, n
2

) ·Q
1

�N
2

(n
1

, n
2

) ·Q
2

, (5.31)

which can be used with the other F
3

-relation, Eq. (5.30b), and the transfor-
mation equations for the new actions {Ni}, Eq. (5.28), to give

q
1

=
@N

1

@n
1

·Q
1

+
@N

2

@n
1

·Q
2

= Q
1

+Q
2

(5.32a)

q
2

=
@N

1

@n
2

·Q
1

+
@N

2

@n
2

·Q
2

= Q
2

(5.32b)

whose inversion gives the new angle variables {Qi} in terms of the originals:

Q
1

= q
1

� q
2

, Q
2

= q
2

. (5.33)

Likewise, inverting Eq. (5.28) gives

n
1

= N
1

, n
2

= N
2

�N
1

, (5.34)

6See Goldstein [29], p. 384, Eq. (9-18).
7See Goldstein [29], p. 384, Eq. (9-20a).
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and substituting into the Hamiltonian Eq. (5.27) gives

H(P,R, N
1

, N
2

, Q
1

, Q
2

) =
|P|2

2µ
+ N

1

H
11

(R) + (N
2

�N
1

) H
22

(R)

+ 2
p
(N

1

+ �)(N
2

�N
1

+ �) cos(Q
1

) H
12

(R).
(5.35)

As expected, the transformed Hamiltonian is independent of Q
2

, and hence
Ṅ

2

= � @H
@Q2

= 0 and N
2

can be set to its quantum value of 1. Doing this, and
defining q ⌘ Q

1

and n ⌘ N
1

then gives

H(P,R, n, q) =
|P|2

2µ
+ n H

11

(R) + (1� n) H
22

(R)

+ 2
p

(n+ �)(1� n+ �) cos(q) H
12

(R),

(5.36)

which, other than the presence of �, is the expression given by Miller and
McCurdy [21].

The Miller-McCurdy (MMc) Hamiltonian of Eq. (5.36) was used in the
SQC approach to treat several of the 2-state examples below along with the
Cartesian MM version. It was seen to give comparable results in these cases,
though more di�cult to apply because care must be taken to handle the sin-
gularities in the equations of motion.

Strictly speaking, when used in the SQC approach, the MMc Hamiltonian
of Eq. (5.36) does not yield exactly the same results as the Cartesian MM
Hamiltonian of Eq. (5.16) because though the sum of the probabilities, n

1

+
n
2

, is dynamically conserved by both Hamiltonians, its conserved value is
determined by how one sets the initial conditions, and in the SQC approach,
due to the symmetric windowing functions having finite width 2�, initialization
of n

1

and n
2

does not force their sum to unity. In contrast, it is implicit in
the construction of the MMc Hamiltonian in terms of a single action variable
n that the probabilities sum to unity. Nevertheless, the results were seen to
be basically equivalent.

As far as e�ciency is concerned, any gains from integrating one pair of
action-angle variables (n, q) versus two pairs of Cartesian coordinates and
conjugate momenta (p

1

, x
1

, p
2

, x
2

) are likely o↵set by the square roots, sin-
gularities, and transcendental function evaluations appearing in the equations
of motion for n and q. Likewise, although one might expect improved conver-
gence of the Monte Carlo integration using the MMc Hamiltonian due to the
reduced dimensionality of the phase space, in practice, both methods converge
without di�culty for the systems treated in this work.
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5.4.2 A 2-State Spin-Representation

Another version of the MMc representation that is basically equivalent to that
given in Eq. (5.36) is a re-writing in terms of the action-angle variables for a
classical angular momentum of a spin-1

2

system. To see this, one may again
begin with the MM Hamiltonian for 2 electronic states written in terms of
action-angle variables, Eq. (5.27), but in this case re-express it in terms of
sum and di↵erence potential functions

H̄(R) =
1

2
(H

11

(R) +H
22

(R)) (5.37a)

�H(R) = H
11

(R)�H
22

(R) (5.37b)

which gives

H(P,R, n
1

, n
2

, q
1

, q
2

) =
|P|2

2µ
+ (n

1

+ n
2

) H̄(R) +
1

2
(n

1

� n
2

) �H(R)

+ 2
p
(n

1

+ �)(n
2

+ �) cos(q
1

� q
2

) H
12

(R).
(5.38)

Here—in order to reduce the Hamiltonian to depend on one action variable,
and again recognizing that the sum of the probabilities, n

1

+n
2

, is conserved—
one seeks a canonical transformation to the new action variables

N(n
1

, n
2

) = n
1

+ n
2

, (5.39a)

m(n
1

, n
2

) =
1

2
(n

1

� n
2

), (5.39b)

or inversely

n
1

=
1

2
N +m (5.40a)

n
2

=
1

2
N �m. (5.40b)

To find the appropriate angle variables (Q, q), one can again resort to the
appropriate F

3

-type generating function, satisfying Eq. (5.30a),

F
3

(n
1

, n
2

, Q, q) = �N(n
1

, n
2

) ·Q�m(n
1

, n
2

) · q, (5.41)
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for use in Eq. (5.30b), which yields

q
1

= Q+
1

2
q (5.42a)

q
2

= Q� 1

2
q, (5.42b)

or inversely

Q =
1

2
(q

1

+ q
2

) (5.43a)

q = q
1

� q
2

. (5.43b)

In terms of (N,Q) and (m, q), the Hamiltonian of Eq. (5.38) is then

H(P,R, N,m, q) =
|P|2

2µ
+ H̄(R) + m ·�H(R)

+ 2

s✓
N

2
+m+ �

◆✓
N

2
�m+ �

◆
cos(q) ·H

12

(R)

=
|P|2

2µ
+ H̄(R) + m ·�H(R)

+ 2

s✓
N

2
+ �

◆
2

�m2 cos(q) ·H
12

(R).

(5.44)

Since the quantum values of the original action variables are given by

(n
1

, n
2

) =

⇢
(1, 0) State 1
(0, 1) State 2

(5.45)

the corresponding quantum values of (N,m) from Eqs. (5.39a) and (5.39b) are
given by

(N,m) =

⇢
(1,+1

2

) State 1
(1,�1

2

) State 2
(5.46)

which suggests that Eq. (5.44) is the Hamiltonian for a spin-1
2

system in spin
action-angle variables (m, q) where m is the classical analogue of the spin-

projection quantum number (and q its conjugate angle), and that
�
N
2

+ �
�
2
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may be identified as S2, the square of the total spin angular momentum:

H(P,R, S,m, q) =
|P|2

2µ
+ H̄(R) + m ·�H(R)

+ 2
p
S2 �m2 cos(q) ·H

12

(R).

(5.47)

Of course, if one sets N = 1, Eq. (5.44) is algebraically equivalent to the MMc
Hamiltonian of Eq. (5.36) with the identification that m = n� 1

2

.

An alternative (and distinctly di↵erent) derivation of the spin-1
2

Hamilto-
nian of Eq. (5.47) was given in a later paper by Meyer and Miller [19]. In this
latter work, first it was appreciated that any Hermitian quantum operator Â
in a 2-state basis may be written as some linear combination of the 3 Pauli spin
operators (or matrices) �̂x, �̂y, �̂z along with the identify operator (matrix) Î,
i.e.

Â = a
0

Î + ax�̂x + ay�̂y + az ,̂�z, (5.48)

because, collectively, the 3 Pauli matrices plus the identity are linearly inde-
pendent and thus span the space of all possible Hermitian8 quantum operators
in 2 dimensions. On this basis, Â may be taken in Eq. (5.48) to be a 2-state
diabatic electronic Hamiltonian

Ĥel �!

H

11

H
21

H
12

H
22

�
(5.49)

and, after inserting the Pauli spin matrices

�̂x �! 1

2


0 1
1 0

�
�̂y �!

1

2


0 i

�i 0

�
�̂z �!

1

2


�1 0
0 1

�
(5.50)

(and the identify Î), the expression in Eq. (5.48) may be inverted to give the
a-coe�cients (a

0

, ax, ay, az) in terms of the matrix elements {Hk,k0}, thus pro-
viding an expansion of an arbitrary 2-state electron Hamiltonian Ĥel in terms
of spin-1

2

operators. Doing this for an arbitrary real-symmetric 2-state diabatic
electronic Hamiltonian (parametrically dependent on nuclear coordinates R)
results in

Ĥel(R) = H̄(R) · Î +�H(R) · �̂z + 2H
�1

2

,
1

2

(R) · �̂x, (5.51)

8The “Hermitian”-qualfier is applied because an arbitrary 2 ⇥ 2 complex matrix has 8
independent elements and so would not be generally representable as a linear combination
of only 4 2⇥ 2 matrices.
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where the electronic states “1” and “2” have been relabeled “�1

2

” and “1

2

” (to
correspond to the values of the projection spin quantum number m = ±1

2

);
H

12

! H
�1

2

,
1

2

and similarly for the matrix elements defining H̄ and �H. It

is interesting to note that if the parameters R representing the nuclear co-
ordinates were replaced by their position-space quantum operators R̂, then
this—with the addition of the nuclear kinetic energy operator—is an exact

representation of the full coupled nuclear-electronic Hamiltonian quantum op-
erator for this 2-state system. In other words, no approximation has been
made by re-expressing the electronic Hamiltonian operator in terms of the
Cartesian spin-operators.

Where the classical approximation does come into play is with the replace-
ment of the quantum Cartesian spin-operators by their classical analogues.
The Cartesian components of a classical angular momentum vector in free-
space may be written in terms of action-angle variables (m, q) as

2

4
Sx

Sy

Sz

3

5 =

2

4

p
S2 �m2 cos(q)p
S2 �m2 sin(q)

m

3

5 . (5.52)

Replacing �̂x, �̂y, �̂z in Eq. (5.51) with Sx, Sy, Sz written in terms of (m, q)
(and dropping the identity Î) then—with the addition of the nuclear kinetic

energy term |P|2
2µ

—yields the same expression given in Eq. (5.47) above. This
spin-operator analysis is extended to 3 electronic states below as presented in
the same work by Meyer and Miller [19].

5.4.3 An Interpreation of �

As noted in Ref. [2], interpreting the rewritten Miller-McCurdy (MMc) 2-
state Hamiltonian of Eq. (5.47) as being that of a spin-1

2

system, suggests a
potentially preferred choice for the �-parameter. If

S2 ⌘
✓
N

2
+ �

◆
2

=

✓
1

2
+ �

◆
2

is identified as the square of the total spin angular momentum for a spin-1
2

system, then possible choices for S2 and that of � =
p
S2 � 1

2

are:

S2

Classical

= s2 =

✓
1

2

◆
2

=
1

4
=) � = 0, (5.53a)
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i.e., the classical value for a spin-s system, and that implicitly used originally
by Miller and McCurdy [21]; and

S2

Langer

=

✓
s+

1

2

◆
2

=

✓
1

2
+

1

2

◆
2

= 1 =) � =
1

2
, (5.53b)

i.e., the classical value with the Langer-correction of 1

2

which was chosen by
Meyer and Miller [18];

S2

Quantum

= s(s+ 1) =
1

2

✓
1

2
+ 1

◆
=

3

4
=) � =

p
3� 1

2
(5.53c)

⇡ 0.366,

i.e., the quantum value.

As it turns out, the quantum value of � = 0.366 was seen to be an e↵ective
choice for every example described herein involving the treatment of 2 elec-
tronic states; and moreover, for the particular 2-state examples where other
values of � were explicitly tested, 0.366 was determined to be the optimal
choice over the tested range of � values. Thus, no problem-specific tuning of
the �-parameter was used to generate the results reported in this work.9

5.4.4 Direct Utilization of the the Spin-Vector Repre-
sentation for the Electronic DOF

As indicated, a problem with the MMc Hamiltonian, written either as Eq. (5.36)
or Eq. (5.47), is that singularities, square roots, and transcendental function
evaluations occur in the equations of motion. However, each of these problems
may be eliminated by working directly in terms of the Cartesian spin-vector
representation of the electronic DOF—i.e., by integrating the equations of
motion in terms of Sx, Sy, and Sz as given by Eq. (5.52) instead of m and q.

To see this, it is noted that if a Hamiltonian which depends on S, m,
and q (e.g., Eq. (5.47)) may be re-written so that it’s dependence on S, m,
and q is solely through the Cartesian components of the spin-vector given by

9The exemption being that for 3 electronic states, a similar justification (see Section 5.4.5)
can be made for choosing � = 0.414, which was thus used for each of the 3-state examples
treated herein.

45



5.4. ALTERNATIVE REPRESENTATIONS AND
AN INTERPRETATION OF THE �-PARAMETER

Eq. (5.52), i.e. if

H(m, q) ⌘ G(
p
S2 �m2 cos(q),

p
S2 �m2 sin(q),m)

= G(Sx, Sy, Sz),
(5.54)

then the time-evolution of m(t) and q(t) according to Hamilton’s equations

ṁ = �@H(m, q)

@q
(5.55a)

q̇ =
@H(m, q)

@m
(5.55b)

is equivalent to the time-evolution of the Cartesian spin-components according
to

~̇S(t) =
@G(~S(t))

@~S
⇥ ~S(t). (5.56)

The Hamiltonian of Eq. (5.47) in terms of the Cartesian spin components
is

H(P,R, Sx, Sy, Sz) =
|P|2

2µ
+ H̄(R) + Sz ·�H(R)

+ 2Sx ·H�1

2

,
1

2

(R),
(5.57)

and, from Eq. (5.56), the corresponding equations of motion for ~̇S(t) are

Ṡx(t) = ��H(t)Sy(t) (5.58a)

Ṡy(t) = �2H
�1

2

,
1

2

(t)Sz(t) +�H(t)Sx(t) (5.58b)

Ṡz(t) = 2H
�1

2

,
1

2

(t)Sy(t) (5.58c)

which are integrated simultaneously with the equations of motion for the nu-
clear DOF generated from Hamilton’s equations and Eq. (5.57):

Ṙi(t) =
@H

@Pi

=
Pi

µ
(5.59a)

Ṗi(t) = � @H

@Ri

= � @H̄

@Ri

� Sz ·
@�H

@Ri

� 2Sx ·
@H
�1

2

,
1

2

@Ri

; (5.59b)

which, as usual, gives the nuclear DOFs moving on an e↵ective electronic PES
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which is a weighted-average of the two diabatic PESs, but here the weight-
ing is specified by the electronic spin-components as they evolve according to
Eq. (5.58). From Eqs. (5.58) and (5.59) it is seen that the equations of motion
in the spin-vector representation are linear in the spin components, and free
of singularities, square roots, and transcendental functions. In other words,
for the case of F = 2 electronic states, integration in terms of the spin vector
~S provides all the advantages of the Cartesian representation.

The spin-vector representation is implemented within the SQC approach
in much the same way as the action-angle and Cartesian representations pre-
sented above. The SQC phase space average over initial conditions is still
evaluated according to Eq. (5.20) and the results renormalized according to
Eq. (5.22), except that the 2 action variables (n

1

, n
2

) sampled and “binned”
in the Cartesian representation are replaced by the single action variable
m = Sz, and likewise, the joint 2-dimensional histogram window functions
of Eqs. (5.18a) and (5.18b) are replaced by single-variable histogram window
functions analogous to Eq. (5.17) corresponding to the two possible spin states:

W
�1

2

(m) =
1

2�
h
�
� �

��m+ 1

2

��� (5.60a)

W
1

2

(m) =
1

2�
h
�
� �

��m� 1

2

��� . (5.60b)

Thus, if the initial electronic state is assigned to the quantum value ofm = �1

2

,
Eq. (5.20) is evaluated via Monte Carlo by uniformly sampling the initial ac-
tions m and conjugate angles q from the intervals [�1

2

��,�1

2

+�] and [0, 2⇡],
respectively, computing initial values for Sx, Sy, and Sz from Eq. (5.52), propa-
gating the spin-components and nuclear DOFs to the final time by integrating
Eqs. (5.58) and (5.59), and finally “projecting” onto the final spin states �1

2

and 1

2

using the the value of m = Sz for each trajectory with the window
functions of Eq. (5.60). This approach was verified numerically for several ex-
amples below and, as expected, found to be essentially equivalent to the MMc
approach done in terms of action-angle variables, and also quite similar to the
Cartesian MM approach—though not exactly the same for the same reasons
(stated in Section 5.4.1) that the MMc approach is not exactly equivalent to
the Cartesian MM approach.
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5.4.5 A 3-State Spin-Representation

For a 2-state electronic system, the MM and MMc Hamiltonians are analyti-
cally very similar and, in practice, have been verified to generate very similar
results—the primary di↵erence being, as noted earlier, whether each trajec-
tory is initialized exactly on the n

1

+ n
2

= 1 polyad (as is implicit in the
MMc Hamiltonian), or whether there is some variation about the n

1

+ n
2

= 1
polyad (as in the Cartesian SQC/MM approach). However, a 3-state version
of the MMc Hamiltonian may also be constructed in terms of the Cartesian
components of the spin vector ~S, and this model is analytically quite di↵erent
from the 3-state model given by the Cartesian MM Hamiltonian.

To construct the 3-state model, Meyer and Miller [19] analogized a system
of 3 electronic states to the spin states of a spin-1 quantum system (m 2
{�1, 0, 1}), and proceeded—in the spirit of the expansion given above for
a spin-1

2

operator in terms of the Pauli matrices (Eq. (5.48))—to write an

arbitrary quantum operator Â expressed in a 3-state basis in terms of the
spin-1 quantum operators Ŝx, Ŝy, and Ŝz. However, the linear expansion in
the spin operators (and the identify) given in Eq. (5.48) doesn’t work for more
than 2 states because, e.g., a complex 3⇥3 Hermitian matrix has 9 independent
elements10 and so 4 operators (including the identity Î) cannot span the full
space of possible Hermitian operators in 3 dimensions. Recognizing this, Meyer
and Miller sought an expansion of an arbitrary11 Hermitian operator in terms
of products of the quantum spin-operators, with the realization that once this
was done, each quantum spin operator could still be replaced by its classical
analogue—the appropriate Cartesian component of the classical spin-vector in
terms of action-angle variables (S,m, q) as given in Eq. (5.52).

For the 3-state case, only quadratic terms in the spin-operators are needed
to achieve this, and as shown in Ref. [19] in similar fashion to Eq. (5.48) for the
2-state case, an arbitrary 3-state symmetric diabatic electronic Hamiltonian
operator may be expanded in terms of its matrix elements and the quantum

10That is, 3 real diagonal elements and 3 complex lower o↵-diagonal elements.
11Ref. [19] did this for an arbitrary Hermitian operator in a basis of F -states, but here

just the 3-state case is considered.
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spin-1 operators as

Ĥel(Ŝx, Ŝy, Ŝz) = H
0,0 +

1

2
(H

1,1 �H�1,�1) · Ŝz

+
1p
2
(H

0,1 +H�1,0) · Ŝx +
p
2 (H

0,1 �H�1,0) · Ŝx Ŝz

+H�1,1

⇣
Ŝ2

x � Ŝ2

y

⌘
+

✓
H

1,1 +H�1,�1
2

�H
0,0

◆
· Ŝ2

z .

(5.61)

Once again, it is interesting to note that this representation of Ĥel in terms of
the spin-operators Ŝx, Ŝy, and Ŝz is exact.

To obtain the classical analogue model, one replaces the the Ŝx, Ŝy, and
Ŝz spin operators with the classical Sx, Sy, and Sz spin components, and then
applies Eq. (5.56) to obtain the equations of motion for the spin components:

Ṡx =
@H

@Sy

· Sz �
@H

@Sz

· Sy (5.62a)

Ṡy =
@H

@Sz

· Sx �
@H

@Sx

· Sz (5.62b)

Ṡz =
@H

@Sx

· Sy �
@H

@Sy

· Sx, (5.62c)

where

@H

@Sx

=
1p
2
(H

0,1 +H�1,0) +
p
2(H

0,1 �H�1,0) · Sz + 2H�1,1 · Sx (5.62d)

@H

@Sy

= �2H�1,1 · Sy (5.62e)

@H

@Sz

=
1

2
(H

1,1 �H�1,�1) +
p
2(H

0,1 �H�1,0) · Sx

+ (H
1,1 +H�1,�1 � 2H

0,0) · Sz.

(5.62f)

What is most interesting about the spin vector approach is that a single spin
DOF is used to represent the occupations of an arbitrary number of electronic
states. In other words, for F electronic states, what was represented in the
Cartesian MM model as F harmonic oscillators with 1 quantum of excitation
shared between them, is represented in the MM spin model as a single spin-F�1

2

DOF which evolves between the integer or half-integer spin states ranging from
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�F�1
2

· · · F�1
2

. For the case of 2 electronic states, these two di↵erent views are
essentially equivalent due to the fact that conservation of probability can be
used to eliminate one DOF from the MM model yielding the MMc model or
the MM spin model (the latter two being equivalent with the identification of
n = m+ 1

2

). However, because conservation of probability can only be used to
eliminate 1 DOF, this restraint cannot recreate the 1 DOF spin-model from
the MM Hamiltonian for F = 3 or more electronic states. Thus, for the case
of 3 (or more) electronic states, due to the Cartesian MM model and MM spin
model employing di↵erent numbers of DOFs, they are not necessarily expected
to give equivalent results.

However, there is an elegance and simplicity to the mapping of an arbitrary
number of electronic states to a single spin DOF (with the di↵erent electronic
states represented by the single spin-DOF being within � of the quantum
spin values). Thus, the results in Section 9.3 begin to investigate whether
such a simple model, for the case of 3 electronic DOFs, provides the same
level of accuracy seen with the Cartesian SQC/MM approach. In this regard,
rigorous quantum path integral calculations for several 3-state non-adiabatic
spin-boson systems are provided in Refs. [30] and [31], and these serve as good
benchmarks for evaluating the 3-state spin-vector model.
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Applications to Simple
Scattering Problems

Application of the SQC approach to the treatment of non-adiabatic dynamics
was first developed in the context of several simple scattering problems involv-
ing 1 nuclear DOF and 2 electronic states/DOFs. For each of these problems,
the nuclear DOF begins in the asymptotic region of one of the potential energy
surfaces (PESs), enters a region of non-adiabatic coupling, and then emerges—
either through reflection or transmission—on the same or the other PES with
some branching probability.

The benchmark problems chosen were the three well-studied non-adiabatic
models originally used by Tully [16] to test his “fewest switches” surface hop-
ping (FSSH) approach—specifically single and dual avoided crossings mod-
els and a model of extended non-adiabatic coupling. For both the avoided
crossing problems, and to a certain extent the extended coupling problem,
the SQC/MM approach is seen to give good quantitative agreement with the
quantum results. In addition, these benchmark problems provided a proving
ground for making valuable adjustments to the initial SQC model which have
been utilized throughout all subsequent work.

6.1 The Tully Models

Each of the Tully models were written in terms of a real-symmetric diabatic
electronic Hamiltonian matrix:

Ĥel(R)
diabatic����!
rep.


H

11

(R) H
12

(R)
H

12

(R) H
22

(R)

�
. (6.1)
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6.1. THE TULLY MODELS

The diagonal elements of this matrix may be referred to as the “diabatic” PESs
representing the di↵erent electronic “states,” while the o↵-diagonal elements
are the non-adiabatic couplings which, for these models, generally depend on
the nuclear coordinate R. Diagonalization of this matrix for each nuclear
configuration (R) yields the adiabatic PESs, E

1

(R) and E
2

(R). The diabatic
and adiabatic PESs (but not the couplings) are plotted in Fig. 6.1 for each of
the 3 models detailed below. For all three test problems, the mass associated
with nuclear coordinate R was taken to be 2000 (in atomic units) as was done
in Tully’s original paper.

6.1.1 Avoided Crossing

The one-dimensional single avoided crossing of two PESs is the most elemen-
tary (and common) non-adiabatic scenario, and the test problem used by Tully
is given by:

H
11

(R) =

(
A(1� e�BR) R � 0

�A(1� eBR) R < 0

H
22

(R) = �H
11

(R)

H
12

(R) = Ce�DR2

(6.2)

where A = 0.01, B = 1.6, C = 0.005, and D = 1 (all expressed in atomic
units). Again, the o↵-diagonal element H

12

(R) represents nuclear coordinate-
dependent couplings between the diabatic PESs of the two electronic states,
H

11

(R) and H
22

(R). See Fig. 6.1a.

6.1.2 Dual Avoided Crossing

The dual avoided crossing model used by Tully presents a somewhat more
complicated problem, exhibiting what are often referred to as Stückelberg
oscillations in the transmission probability curves. The model is given by

H
11

(R) = 0

H
22

(R) = �Ae�Bx2
+ E

0

H
12

(R) = Ce�DR2

(6.3)

where A = 0.1, B = 0.28, C = 0.015, D = 0.06, and E
0

= 0.05. See Fig. 6.1b.
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6.1.3 Model of Extended Coupling

The last of Tully’s three test problems is a model of extended coupling given
by:

H
11

(R) = �A

H
22

(R) = A

H
12

(R) =

(
BeCR) R < 0

B(2� e�CR) R � 0

(6.4)

where A = 6 ⇥ 10�4, B = 0.1, and C = 0.9. See Fig. 6.1c. Note that
this extended coupling model does not present a non-adiabatic curve-crossing
problem in the same sense as the first two problems.
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6.2 Initial Results for the Single Avoided Cross-
ing

When the SQC approach was first applied to the treatment of non-adiabatic
dynamics, it was initially assumed that the �-parameter in the MM Hamilto-
nian of Eq. (5.16) had the value of 1

2

, since that was the value used in Meyer
and Miller’s original work [18] and also in more recent work applying var-
ious semiclassical approximations to Eq. (5.16). In other words, originally,
the so-called �-parameter was not a parameter of the model at all, and the
selection of a width for the symmetric window functions used in the SQC ap-
proach was not thought to relate to it. Accordingly, the first non-adiabatic
calculations—which applied the SQC approach to the single and dual avoided
crossing models—assumed a value of � = 1

2

in Eq. (5.16) and proceeded to
vary the width parameter �n of the symmetric window functions without any
corresponding modification to the �-parameter.1

The results of this �-less approach are shown in Fig. 6.2. Specifically,
Fig. 6.2a shows the SQC-calculated probabilities of transmission onto the lower
surface, T

2 1

, as a function of initial nuclear momentum, calculated using win-
dow functions of di↵erent widths �n = {1.0, 0.7, 0.5}, along with the exact
quantum result;2 likewise Fig. 6.2b shows corresponding results for transmis-
sion onto the upper surface, T

1 1

.3

For transmission onto either surface, the �n = 1 result shows reasonable
agreement with the quantum result, at least qualitatively, throughout the cal-
culated momenta range. However, with regards to the SQC results calculated
using �n < 1: the �n = 0.5 result exhibits improved quantitative agreement
with the quantum result for low values of initial momenta, i.e., in the thresh-
old energy region, but unfortunately exhibits an unphysical oscillation or dip
in the transmission probabilities beyond the threshold region, becoming most
severe when the initial nuclear momentum is about 15 A.U. The same is true

1Once again, although the �-parameter does not appear in the Hamiltonian of Eq. (5.16)
used for these calcuations, it still has an e↵ect through the action-angle to Cartesian trans-
formation of Eq. (5.10)

2QM resuts were obtained via two-surface wave-packet propagation using the FFT
method of representing the kinetic energy operator in momentum-space—a generalization
of the standard single-surface approach of Ref. [32].

3For the single avoided crossing model, although the nuclear DOF begins on the lower
surface, the transmission probability T2 1 (switching from state 1 to state 2) corresponds to
the nuclear DOF emerging on the lower surface because the PESs cross and reverse energies
in the diabatic representation. Likewise, T1 1 (remaining in state 1) corresponds to the
nuclear DOF emerging on the upper surface.
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for the �n = 0.7 curve, albeit to a lesser extent.
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Figure 6.2: Transmission probabilities for the single avoided crossing calcu-
lated via the SQC approach without a �-parameter: exact QM result (+);
SQC with �n = 1 (⇥), �n = 0.7 (S), and �n = 0.5 (2)

57
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6.3 Analyzing Zero-Point Energy (ZPE) Leak-
age

To understand what appeared to be a serious defect in the model, the os-
cillations in the transition probability curves were investigated, and it was
discovered that these e↵ects are just a consequence of the fact that a classical
trajectory model will not generally maintain each electronic oscillator with an
amount of energy at least equal to its quantum zero-point energy (ZPE). In
this particular scattering example, an initial nuclear kinetic energy of around
15 A.U. is seen to cause a significant number of trajectories to end up with too
much electronic “action” localized in one oscillator at the expense of the other.
As a result, if the action window functions are contracted such that �n < 1,
these trajectories tend to be excluded—despite their final actions (n

1

, n
2

) not
representing a configuration intermediate between electronic states 1 and 2.

To illustrate this in detail, Fig. 6.3 presents scatter plots of the electronic
action variables n

2

versus n
1

for an ensemble of trajectories as they are ini-
tialized in the SQC approach, and after they reach their final electronic con-
figuration once the scattering process is complete (i.e., as t ! 1). Fig. 6.3a
corresponds to an initial nuclear momentum of 15 A.U. and so corresponds to
a data point in Fig. 6.2 where the unphysical oscillation in the transmission
probabilities has a severe e↵ect. The scatter plot in Fig. 6.3b corresponds to
an initial nuclear momentum of 20 A.U., a particular value in Fig. 6.2 where
the transmission probabilities aren’t e↵ected by the oscillation. Both plots
correspond to calculations with �n = 1

2

, as can be seen by the box-shaped
cluster of points of width �n = 1

2

centered at (n
1

, n
2

) = (1, 0)—which are the
initial actions of the trajectories since the trajectories begin in electronic state
1; and, electronic state 2 corresponds to a 2-D box of width �n = 1

2

centered
at (n

1

, n
2

) = (0, 1). The points scattered roughly along a diagonal line (joining
the two “boxes”) correspond to the final action distributions of the trajectories
after each trajectory has exited the region of the avoided crossing.4

Fig. 6.3a shows that for the case of an initial nuclear momentum of 15
A.U. the final action distribution largely favors electronic state 2, but that a
large number of the trajectories finish beyond the “box” representing electronic
state 2, specifically, in the far upper left of the plot, in a vertical strip with
n
1

in the range of [�0.5,�0.25] and n
2

in the range of [1, 2].5 Since for a

4The trajectories move along this diagonal line because Hamilton’s equations preserve
the value of n1(t) + n2(t) even if the sum isn’t initialized exactly to 1.

5Recall that with the convention of having n corresponding to the vibrational quantum
number, n1 and n2 can be negative, down to � 1

2 , since the actual classical actions of the
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Figure 6.3: Scatter plots of n
2

versus n
1

for both the initial and final conditions
of the ensemble of trajectories used in the �n = 1

2

calculations for the single
avoided crossing model

trajectory to be counted in calculating P
2 1

it must end up within the final
action window function centered at (0, 1), those finishing in this leftmost strip
do not end up being counted when �n = 1

2

—i.e., which would require n
1

to
be in the range [�0.25, 0.25]. However, it can also be seen from the figure
that if a wider window function with �n = 1 had been used instead—allowing
n
1

within the range [�0.5, 0.5]—many of these trajectories would be counted,
explaining why the transmission curves corresponding to �n = 1 shown in
Fig. 6.2 do not exhibit the anomalous unphysical oscillation.

Fig. 6.3b confirms this analysis. For the case of an initial nuclear mo-
mentum of 20 A.U., the transmission probabilities (P

2 1

and P
1 1

) plotted
in Fig. 6.2 exactly match the true quantum transmission probabilities (“+”
symbols in Fig. 6.2), and it is clearly seen that the oscillations in the trans-
mission curves do not e↵ect this particular data point. The scatter plot of
Fig. 6.3b shows why. In comparison to Fig. 6.3a, Fig. 6.3b shows that at 20
A.U., a fair number of trajectories still land outside the �n = 1

2

box centered
at (n

1

, n
2

) = (0, 1), but the accumulation in the upper left of the figure is
not nearly as severe, and is o↵set by a similar pattern in the lower right of
the figure (which also a↵ects the calculation of P

2 1

due to renormalization).
Moreover, the distribution of final electronic actions displayed in 6.3b appears
to be nearly symmetric if reflected about a line given by n

2

= n
1

, and it is

oscillators are then obtained by adding 1
2 .
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therefore nearly symmetric with respect to the windowing of the final elec-
tronic states, which explains why all the transmission curves in Fig. 6.2 (for
all values of �n) coincide at this point.

In sum, the spurious dips in the transmission curves shown in Fig. 6.2 are
clearly a result of the fact that for some range of initial nuclear momenta,
trajectories tend to overshoot the closest window function—whether it corre-
sponds to state 1 or 2—ending up with all their “vibrational” action stored in
either one electronic oscillator or the other; and that this problem stems from
the simple fact that a classical trajectory model does not preserve the QM
ZPE. However, what is immediately encouraging about this result is that de-
spite the fact that these particular trajectories do not fit the criteria of either
window function, they actually do finish much closer in action-space (n

1

, n
2

)
to one or the other of the electronic states (see, e.g., Fig. 6.3a)—i.e., they are
not being discarded for embodying a mixture of the two electronic states—
suggesting that, at least for this particular problem, if there was some sensible
way to include these trajectories in the statistics, the unphysical oscillations
could be eliminated.

6.4 Initial Results for the Dual Avoided Cross-
ing Model

Initial SQC results analogous to those presented for the single avoided crossing
problem are shown for the dual avoided crossing problem in Fig. 6.4. These �-
less SQC results were again calculated using widths of �n = {1, 0.7, 0.5} and
are plotted in Fig. 6.4 against the exact quantum result. Here, again, it is seen
that the �n = 1 result shows reasonable agreement with the quantum result
for transmission on either surface, T

2 1

and T
1 1

, throughout the displayed
energy range. However, as was also seen in modeling the single avoided cross-
ing, when �n < 1, the transmission probability curves exhibit an anomalous
oscillation, in this case becoming most severe in two regions of initial nuclear
kinetic energy (E)—at about log(E) = �1.2 and about log(E) = 0.4.

Accordingly, as was done above for the single avoided crossing model, the
cause of the oscillations was investigated and for this case too it was discovered
that the oscillations were a consequence of the classical simulation’s inability
to maintain the QM ZPE of the oscillators corresponding to the two electronic
states. And, this was again revealed by inspecting scatter plots of n

2

versus
n
1

, one corresponding to an initial energy where the oscillation had a severe
e↵ect (log(E) = �1.2 in Fig. 6.4) and one corresponding to an energy region
where the oscillation had no e↵ect (log(E) = �2.8 in Fig. 6.4). The former is
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Figure 6.4: Transmission probabilities for the dual avoided crossing calculated
via the SQC approach without a �-parameter: exact QM result (+); SQC with
�n = 1 (⇥), �n = 0.7 (S), and �n = 0.5 (2)
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6.5. ATTEMPT TO CURE ZPE LEAKAGE WITH THE
MILLER-MCCURDY MODEL
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(b) Initial nuclear kinetic energy of
log(E) = �2.8

Figure 6.5: Scatter plots of n
2

versus n
1

for the dual avoided crossing problem;
plotted are both initial and final conditions of the ensemble of trajectories used
in the �n = 1

2

calculations; E in A.U.

shown in Fig. 6.5a and the latter in Fig. 6.5b, both for �n = 1

2

, as done in
the analysis of the single avoided crossing model. Comparing Fig. 6.5a to the
result seen for the single avoided crossing model seen in Fig. 6.3a reveals that
the results are analogous, with a large number of trajectories finishing beyond
the �n = 1

2

window function for state 2. The similar scatter plot shown in
Fig. 6.5b for log(E) = �2.8 (where the oscillation isn’t present), does not
exhibit this e↵ect.

Therefore, in sum, it was found that essentially the same defect was present
in the SQC simulation of both model problems, and that in both cases the
defects—the anomalous oscillations in the P

1 1

and P
2 1

transmission prob-
abilities —were a direct consequence of ZPE leakage—an issue that would
seem to intrinsically plague any simple model based on classical trajectory
simulation.

6.5 Attempt to Cure ZPE Leakage with the
Miller-McCurdy Model

One approach which was tried to deal with the ZPE leakage problem was to
use the Miller-McCurdy (MMc) Hamiltonian. The scatter plots in Figs. 6.3
and 6.5 seem to suggest that ZPE leakage may be most severe for trajectories
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initialized further from the n
1

+n
2

= 1 polyad because in these regions the joint
action windowing functions written in terms of n

1

and n
2

are more restrictive
than right on the polyad. As explained in Section 5.4.1, in an SQC approach
based on the Miller-McCurdy Hamiltonian, there is only one action variable—
representing the fractional occupation of the 2 states—to be windowed, and it
is implicit in the model that the sum of the probabilities for the 2 states is 1.

Accordingly, the Miller-McCurdy model6 was employed in the SQC ap-
proach (using one-dimensional action window functions), and histograms de-
scribing the initial and final action distributions analogous to the scatter plots
shown in Figs. 6.3 and 6.5 are shown in Figs. 6.6a and 6.6b. However, rather
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Figure 6.6: Histogram plots of the MMc action variable n = 1

2

(n
2

� n
1

) for
both the initial (light-colored bars) and final conditions (darkened bars) of the
ensemble of trajectories used in the �n = 1

2

calculations with the MMc model

than the MMc Hamiltonian curing the problem, the results shown in Figs. 6.6a
and 6.6b illustrate it even more clearly: It is seen that the most probable value
of the action di↵erence variable n after the scattering interaction is ⇡ 1, which
since n = 1

2

(n
2

�n
1

) and n
1

+n
2

= 1 (strictly, in the MMc model) corresponds
to (n

1

, n
2

) =
�
�1

2

, 3
2

�
, which means that oscillator 1 is left with essentially

6Actually, an expression equivalent to the MMc Hamiltonian of Eq. (5.44) was used
having N = n1 + n2 = 1, � = 1

2 , and defining the action variable n = 1
2 (n2 � n1), or

equivalently n = �m as defined in Eq. (5.39b). The actual version of the MMc Hamiltonian
employed was thus

H(P,R, n, q) =
P 2

2µ
+ H̄(R) � n ·�H(R) + 2

p
1� n2 cos(q) ·H12(R). (6.5)
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zero energy,7 and that oscillator 2 has an action which is ⇡ 1

4

too high to fall
within the �n = 1

2

window function.
Therefore, it is seen that the MMc Hamiltonian doesn’t provide the answer.

Figs. 6.6a and 6.6b do show again that a �n = 1 window function would solve
the problem, but that would eliminate the constrained quantization condition
which the SQC approach is supposed to provide.

6.6 SQC Results Obtained by Tying � to �n

Based on the foregoing analysis, it is now rather obvious that ideally the width
of the widowing functions exactly match the amount of ZPE used to initialize
the trajectories so that no trajectories are lost due to ZPE leakage. One way
to do this is to set �n = 1 to match the ZPE, but the other way to do this is
to set the ZPE to match �n. Hence, in the MM and MMc Hamiltonians given
in Sections 5.1 and 5.4.1, the Langer modification of 1

2

has been replaced by a
variable �-parameter, and the width of the window functions used in the SQC
approach are also written in terms of � where �n = 2�. Thus, the strictness
of the “quantization” in the SQC approach is now expressed in terms of the
�-parameter, which also sets the amount of ZPE injected into the classical
trajectory simulation, as discussed in Section 5.1 (see Eq. (5.11a)).

Results using this approach (specifically, Eqs. (5.16), (5.20), and (5.21)
as described in Sections 5.1 and 5.2) for the single avoided crossing problem
are displayed in Fig. 6.7 calculated for a range of values of the �-parameter,
specifically for � 2

�
1

2

, 1
3

, 1
4

, 1
5

 
. Fig. 6.7a shows results for the probability of

transmission onto the lower surface (T
2 1

) as a function of initial nuclear mo-
mentum. Fig. 6.7b shows analogous results for the probability of transmission
on the upper surface (T

1 1

). Compared to the initial SQC results shown in
Fig. 6.2, it is seen here that the unphysical oscillations in the transition proba-
bilities for � < 1

2

(corresponding to �n < 1) have been completely eliminated,
allowing one to choose an optimal � and thereby set the restrictiveness of the
SQC “quantization.” Figs. 6.7a and 6.7b show that the primary e↵ect of vary-
ing � is to adjust the sharpness of the transmission probabilities onto the lower
and upper surfaces, and that a value for � of about 1

3

yields reasonable results.
However, based on the interpretation of the 2-state MMc Hamiltonian as that
of a classical spin-1

2

DOF, as discussed in Section 5.4.3, � has been selected to

have the value 0.366 ⇡
p
3�1
2

for all the 2-state calculations presented in this

7Again, the convention here is that n1 and n2 correspond to the quantum numbers, so
the true classical actions are obtained by adding 1

2 .

64



CHAPTER 6. APPLICATIONS TO SIMPLE SCATTERING PROBLEMS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

Pr
ob

ab
ilit

y

Nuclear Momentum (A.U.)

(a) Transmission to the lower surface, T
2 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

Pr
ob

ab
ilit

y

Nuclear Momentum (A.U.)

(b) Transmission to the upper surface, T
1 1

Figure 6.7: Transmission probabilities for the single avoided crossing problem
calculated via the SQC approach for various values of � 2

�
1

2

, 1
3

, 1
4

, 1
5

 
with

�n = 2�; the solid line (–) corresponds to � = 1

5

, and so forth

65



6.6. SQC RESULTS OBTAINED BY TYING � TO �N

work.8

Accordingly, for the single avoided crossing problem, Fig. 6.8a compares
SQC computed results using � = 0.366 to the exact quantum result, for both
upper and lower surface transmission (T

1 1

and T
2 1

), and the agreement is
seen to be excellent. Likewise, Fig. 6.8b shows results for the dual avoided
crossing problem, and again the SQC results using � = 0.366 show excellent
agreement with the quantum results. It is noted that the dual avoided crossing
problem exhibits what are referred to as Stückelberg oscillations in the trans-
mission probabilities, and despite the oscillations usually being attributed to
quantum (or semiclassical) interference e↵ects, they are well described in this
purely classical model.9

The extended coupling model of Eq. (6.4) is di↵erent than the preceding
two avoided crossing models in that the o↵-diagonal non-adiabatic coupling
element H

12

(R) is not localized in a particular region of the nuclear DOF
and instead is non-vanishing asymptotically in the product channel (R > 0).
For this reason, rather than use the diabatic Cartesian representation of the
MM Hamiltonian, the adiabatic Cartesian representation given by Eq. (5.23)
was employed. The calculated transmission curves (T

1 1

and T
2 1

) using
� = 0.366 versus the quantum results10 are plotted in Fig. 6.9a, and likewise,
the reflection curves (R

1 1

and R
2 1

) are plotted in Fig. 6.9b. The calculated
transmission on the lower surface (T

1 1

) as a function of incoming nuclear
momentum shows excellent agreement with the quantum result, however, for
transmission on the upper surface (T

2 1

), there is a discrete step structure in
the quantum result which is not reproduced in these calculations.11 The same
step structure is also present in the quantum-calculated reflection curves, and
again it is seen that this step structure is not reproduced in the SQC/MM
results.

This is likely to be a limitation of the SQC/MM approach. Although it is
seen to do an excellent job with the two avoided crossing problems, when there
are sharp transmission and reflection features—sharps steps, sharp resonances,
etc.—the windowing functions will tend to average them out of the results,

8Nevertheless, the feeling is that � should still be viewed as a “parameter” of the SQC
model, and that it is sensible to try di↵erent values for it depending on the system being
modeled, if for no other reason than to assess its e↵ect on the calculations and to gauge the
sensitivity of the results to its value.

9It has been noted before that so-called “quantum coherence” may be well described by
the classical MM model. [15, 33]

10Prof. John Tully provided the QM results.
11Though it is noted that di↵erent values of � were tried and � = 0.366 still turned out

to be essentially optimal based on the T1 1 curve.
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Figure 6.8: Transmission probabilities for the single and dual avoided crossing
problems calculated via the SQC approach employing � = 0.366 and with
�n = 2� versus the exact QM results
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at least to a certain extent. Of course, real non-adiabatic systems having
many interacting DOFs are less likely to show such sharp features.12 However,
even for this relatively strange model problem (with non-adiabatic coupling
extending as R ! 1), the SQC approach does a reasonable job of estimating
the threshold energy for reflection o↵ of both surfaces, as well as giving a
reasonable estimate of the general magnitude of the reflection probabilities.

6.7 Conclusion

It has been shown that for this initial class of non-adiabatic models—scattering
problems where the quantities of interest are the transmission and reflection
probabilities into the di↵erent electronic states as a function of incident nu-
clear kinetic energy—that the SQC approach does a reasonable job of describ-
ing the dynamics, qualitatively in all cases and quantitatively in most cases
(the exception being the rather odd extended coupling problem). These simple
scattering problems served as an initial proving ground of the approach and, in
particular, were useful for understanding that there needs to be a relationship
between the width of the SQC windowing functions and the zero-point energy
parameter in the MM Hamiltonian. With the approach validated for these
simple low-dimensional models, the logical next step is to tackle higher di-
mensional models which are more representative of the types of non-adiabatic
dynamics seen in the condensed phase environment.

12For example, see the spin-boson problems presented in Section 7.1.
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Chapter 7

Application to Electronic
Transitions in the Condensed
Phase

7.1 The Spin-Boson Model

The so-called “spin-boson” model provides a simple mathematical representa-
tion of the types of dissipative non-adiabatic dynamics seen in the condensed
phase. The model is given by the following diabatic Hamiltonian matrix ele-
ments:

H
11

(Q) = V
0

(Q) + V
1

(Q) + ✏

H
22

(Q) = V
0

(Q)� V
1

(Q)� ✏

H
12

(Q) = H
21

(Q) = �

(7.1)

where V
0

(Q) represents a bath of oscillators

V
0

(Q) =
FX

k=1

1

2
!2

kQ
2

k (7.2)

shifted by V
1

(Q)

V
1

(Q) =
FX

k=1

ckQk. (7.3)

The model is therefore mathematically just a pair of spatially o↵set and en-
ergetically displaced multi-dimensional harmonic oscillators coupled together
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7.1. THE SPIN-BOSON MODEL

by a constant non-adiabatic coupling �, but the notion is that the oscillators
model the e↵ect of the condensed phase environment on the energetics of the
two electronic states which are separated in energy by some fixed bias, in this
case 2✏. The bias (here 2✏, but often just ✏) distinguishes between two classes
of spin-boson problems: a symmetric variety where ✏ = 0, and an asymmet-
ric variety where there is a non-vanishing bias ✏ 6= 0. Furthermore, it is to
be noted that the asymmetric variant is generally viewed as being far more
challenging for simple methods to “get right.”

To make the modeling of the condensed phase environment more realistic,
a spectral density is chosen to provide an appropriate distribution of bath
frequencies {!k} in Eq. (7.2) (e.g., to match a particular solvent’s characteristic
distribution of vibrational frequencies), and the so-called coupling parameters
{ck} in Eq. (7.3) are chosen by the relationship

J(!) =
⇡

2

KX

k=1

c2k
wk

�(! � !k). (7.4)

Often the spectral density J(!) is chosen to be an Ohmic distribution,

J(!) = ⌘ !e�!/!c , (7.5)

having characteristic frequency !c and coupling (or friction) parameter ⌘,
sometimes (as here) given in terms of the so-called Kondo parameter ↵ by
⌘ = ⇡

2

↵. Representing the Ohmic distribution of Eq. (7.5) in the discrete form
of Eq. (7.4) implies that in this case the {ck}’s are given by

ck =
p

(2/⇡)�! !k J(!k), (7.6)

where �! is the spacing between the bath frequencies {!k}. All calculations
employed a bath of 100 nuclear DOFs—so of a dimensionality on the order of
what would be relevant to an electronic transition in the condensed phase.

This is also a su�cient enough number of interacting heavy-particle DOFs
that it is meaningful to characterize the system in terms of a temperature.
This is set within the model via selection of the initial momenta {Pk} and
positions {Qk} by Monte Carlo from the Wigner transform of the Boltzmann
operator for the initial state [14] (assumed here to be state 1):

e
��

⇣
1

2

|P|2+H11(Q)

⌘

;
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THE CONDENSED PHASE

which gives

⇢({Pk, Qk}) /
FY

k=1

exp

 
�↵k ·

"
1

2
P 2

k +
1

2
!2

k

✓
Qk +

ck
w2

k

◆
2

#!
, (7.7a)

where

↵k =
2

!k

tanh

✓
� !k

2

◆
. (7.7b)

It is noted that the calculation of the partition function is unnecessary in view
of the renormalization required by Eq. (5.21).

7.2 Results

The SQC approach employing � = 0.3661 was used to treat the symmetric spin-
boson problem (i.e., ✏ = 0 in Eq. (7.1)) and the more challenging asymmetric
version (i.e., ✏ 6= 0), and in both high and low temperature regimes relative
to the non-adiabatic coupling (expressed in terms of � · �). For each of the
4 cases, results are expressed in terms of the population di↵erence between
the upper (initial) state 1 and the lower state 2, i.e. as D(t) = P

1 1

(t) �
P
2 1

(t), and compared with the exact QM result. This highlights another
di↵erence between the calculations presented here for the spin-boson system
versus those for the 1-dimensional scattering problems treated in Chapter 6:
for the scattering problems the goal was to calculate the branching ratios
between the 2 final states in reflection and transmission at long time (for
various values of incident nuclear kinetic energy); here one wishes to calculate
the detailed time-dependence of the population ratio between the two states (as
well as the long-time limit of the population ratio, which should theoretically
obey detailed balance).

Accordingly, Fig. 7.1a displays results for the symmetric (✏ = 0) spin-
boson problem at high temperature relative to the non-adiabatic coupling,
� ·� = 0.1, with ↵ = 0.09 and !c/� = 2.5, a regime where the system exhibits
incoherent relaxation dynamics. Fig. 7.1b displays corresponding results for
the same symmetric (✏ = 0) system at low temperature relative to the non-
adiabatic coupling, � · � = 5, where the relaxation dynamics over a longer
time-scale manifests strong coherent oscillatory behavior. In both cases, the

1It should now be assumed implicit in the SQC model that �n = 2�.
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result calculated using the SQC approach shows good agreement with the QM
results [14, see Fig. 5].

Likewise, moving on to the asymmetric version (with ✏ = 1), Fig. 7.2a
provides results for the high temperature case, in this example with � · � =
0.25, ↵ = 0.1, and !c/� = 1.2 As with the symmetric problem at high
temperature, the SQC result here is seen to be in excellent agreement with
the exact results [34, see Fig. 4].

Finally, Fig. 7.2b presents results for the asymmetric problem at low tem-
perature, the most challenging of the 4 cases, with the parameters of the model
(other than the bias ✏) remaining virtually3 the same as in Fig. 7.1b. Here,
the population di↵erence, D(t) = P

1 1

(t)�P
2 1

(t), relaxes to an equilibrium
value representing unequal population between the two electronic states (i.e.,
limt!1D(t) 6= 0). Fig. 7.2b shows that the SQC result for the asymmetric
problem at low temperature reasonably replicates the oscillations, time-decay,
and long-time limit of the electronic populations shown in the QM result [34,
see Fig. 5.].

2Slightly di↵erent model parameters are used here relative to Fig. 7.1a simply due to the
particular QM results which were readily available.

3↵ = 0.1 in Fig. 7.2b, versus ↵ = 0.09 in Fig. 7.1b
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(a) High temperature: � ·� = 0.1; ↵ = 0.09, !c/� = 2.5

(b) Low temperature: � ·� = 5; ↵ = 0.09, !c/� = 2.5

Figure 7.1: Symmetric spin-boson problem (✏ = 0): D(t) = P
1 1

(t)� P
2 1

(t)
calculated using the SQC approach (–) versus QM results (•) (The QM results
are taken from Ref. [14].)

75



7.2. RESULTS

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

D
(t)

t x ∆ (A.U.)

 

(a) High temperature, � ·� = 0.25; ↵ = 0.1, !c/� = 1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14

D
(t)

t x ∆ (A.U.)

(b) Low temperature, � ·� = 5; ↵ = 0.1, !c/� = 2.5

Figure 7.2: Asymmetric spin-boson problem, ✏ = 1: D(t) = P
1 1

(t)�P
2 1

(t)
calculated using the SQC approach (–) versus QM results (•)

76



CHAPTER 7. APPLICATION TO ELECTRONIC TRANSITIONS IN
THE CONDENSED PHASE

7.3 Conclusion

Thus, for each of the symmetric and asymmetric spin-boson problems pre-
sented here, results calculated via the SQC methodology show excellent agree-
ment with QM results. It is noted that both the symmetric and asymmet-
ric spin-boson systems addressed here exhibit strong coherence e↵ects at low
temperature (relative to the non-adiabatic coupling), and that the detailed
time-dependence of these e↵ects are accurately reproduced in the SQC result,
despite the SQC model being based purely on classical mechanics.

While a technique as simple as the SQC/MM approach obviously cannot
hope to describe all condensed phase non-adiabatic problems as well as is
shown in Figs. 7.1 and 7.2, the successful treatment of the spin-boson model
in these examples does suggest that the approach may provide a way to handle
certain broad classes of these problems with great e�ciency. The scattering
results discussed in Chapter 6 only involved a single nuclear DOF, but the
calculations presented here for the spin-boson problem treated the dynamics
of a dissipative bath having 100 nuclear DOF. Nevertheless, despite the higher
dimensionality needed for modeling the condensed phase, since the inputs to
the SQC approach are still just ordinary classical trajectories, these systems
may still be handled with great e�ciency. It is noted that although most
of the definitive results presented here were computed using in the range of
50,000-100,000 trajectories, even just 1,000 trajectories are su�cient to pro-
vide reasonable results, and this may be done in seconds on a current 4-core
consumer-grade microprocessor.
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Chapter 8

Electron Transfer Reactions

8.1 Marcus Theory and Related Electron Trans-
fer Models

Electron transfer (ET) reactions in the condensed phase represent a particular
class of non-adiabatic processes which play a key role in many important chem-
ical and biological systems. It is well understood that when electron transfer
occurs in the condensed phase, solvent molecules reorient so as to stabilize the
charge distribution of the new electronic state. In Marcus Theory [35, 36, 37],
this solvent reorganization (occurring in concert with the electron’s motion)
is represented by way of a “solvent coordinate,” and the donor and acceptor
electronic states which characterize the transferring of the electron are then
represented as intersecting potential energy surfaces (PESs) expressed in terms
of this solvent coordinate. Marcus Theory further assumes that these donor
and acceptor diabatic PESs are of a simple quadratic form, and the famous
Marcus Rate equation is arrived at by applying the Golden Rule to the crossing
point of these surfaces:

kET (�) =
1

~�
2

r
�⇡

�
exp


�� (✏� �)2

4�

�
(8.1)

where � is the non-adiabatic coupling constant between the donor (initial)
and acceptor (final) electronic states, ✏ is the di↵erence in energy between the
electronic states, and � is the “reorganization energy”—equal to the di↵erence
in energy between initial and final electronic states with the solvent coordinate
fixed at its minimum value in the final electronic state.

While Marcus Theory has proved to be quite successful in a variety of
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contexts, there is of course great interest in developing trajectory-based ap-
proaches which can be accurately applied to non-adiabatically coupled PESs
of arbitrary form—i.e., generated from ab initio or semi-empirical electronic
structure theory—and seamlessly incorporated into what are nowadays routine
classical molecular dynamics (MD) simulations. In the spirit of developing such
approaches, several recent studies have adopted the Marcus Theory scheme
of characterizing the collective orientation of the solvent in terms of a “sol-
vent coordinate” (and representing the donor and acceptor electronic states as
intersecting quadratic PESs in the solvent coordinate), but then additionally
coupling these surfaces to a dissipative harmonic bath so that trajectory-based
approaches may be applied.

For example, Huo, Miller, and Coker [38] have proposed such a model and
treated it with a mixed approach combining the linearized semiclassical (LSC)
initial value representation (IVR) for the nuclear DOFs, and the full semi-
classical (SC) IVR for the electronic DOFs, the latter represented in terms of
the Cartesian version of the MM Hamiltonian as described herein. In so do-
ing, these investigators demonstrated that this PLDM methodology (“partial
linearized” semiclassical “density matrix” propagation) can accurately recover
Marcus Theory electron transfer rates varying by 5 orders of magnitude as a
function of the non-adiabatic coupling strength �, and by 3 orders of magni-
tude as a function of the energetic bias ✏, with accuracy extending into the
inverted rate regime known from Marcus Theory.1

A bit earlier, a similar “solvent coordinate” model was treated by Men-
zeleev, Ananth, and Miller [39] using the RPMD (“ring polymer molecular
dynamics”) approach, and these investigators found that reasonable results
(i.e., in accordance with Marcus Theory) could be obtained in the normal to
barrier-less regime, but that the RPMD approach (at least in that formulation)
was unable to describe rates in the inverted regime correctly.

The SQC/MM approach, of course, represents a much simpler (and more
easily implementable) strategy for the general treatment of non-adiabatic dy-
namics than either of these approaches, and so the question is whether it can
be as accurate as the more rigorous mixed classical/semiclassical PLDM tech-
nique applied by Coker et al.—for example, accurately handling the Marcus
inverted regime which, in contrast, the RPMD technique applied by Miller
et al. was unable to properly characterize. The encouraging results obtained
using the SQC/MM approach, in particular, for the dual avoided crossing

1The dependence of the ET rate on the bias ✏ in Eq. (8.1) shows that when the bias ✏ is
increased beyond the reorganization energy � the ET rate will “invert” and decrease as a
function of ✏.
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problem and the low-temperature spin-boson problem with their prominent
“quantum coherence” e↵ects, provide a reasonable basis for anticipating that
this very simple SQC approach will likely be able to describe the Marcus in-
verted region correctly.

The calculations presented below show that this is so, and that the SQC/MM
approach may be used to accurately calculate ET thermal rate constants over
wide ranges of non-adiabatic couplings and exothermicities. However, be-
fore the SQC results for these ET problems are presented, a technique for
the calculation of thermal rate constants must be introduced which involves
a modification to the standard flux-side correlation function rate calculation
framework which adapts it to the SQC approach.

8.2 An SQC-Adapted Flux-Side Correlation
Function Framework for Calculating Ther-
mal Rate Constants

It is possible to calculate the thermal rate constant for an electron transfer
process simply by fitting the time decay of the donor state population with
a decaying exponential function; i.e., with SQC calculations, to fit the results
of evaluating Eqs. (5.20) and (5.21). However, a better (and less ambiguous2)
approach is to formulate the calculation in terms of a modified flux-side cor-
relation function and to initialize trajectories at the “transition state” of the
non-adiabatic process.3

2Fitting the decay curves ends up being more di�cult than one might think because it
is di�cult to concoct a systematic (and automatic) process for determining what part of
the decay curve to fit. For decay from one bound state to another in a closed system, at
long enough times the backward reaction becomes a factor, and at very short times the
population decay is not exponential. Given the very large range of non-adiabatic couplings
and thus decay time scales treated here, unabmigously fitting this data becomes a non-trivial
task.

3This relates to another issue with the fitting of decay curves for these model problems.
As stated, at long times, the back reaction begins to have an e↵ect on the calculated decay
curve, yet it is di�cult to distinguish between what should be considered a back reaction and
what should properly be considered to be the recrossing dynamics of the foward reaction.
These issues become more problematic when determining a rate from the donor-state decay
curve because the dynamics must be calculated out to times long enough for trajectories to
reach the transition state from the donor state—which may be a very long time if reaction
rates are very low (i.e., for weak non-adiabatic coupling). Accordingly, for each of these
reasons, calculating a rate from trajectories initialized at the “transition state” of the non-
adiabatic process may be done with much less ambiguity and much greater computational
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8.2. AN SQC-ADAPTED FLUX-SIDE CORRELATION FUNCTION
FRAMEWORK FOR CALCULATING THERMAL RATE CONSTANTS

Accordingly, all calculations of ET rates presented herein employed the
standard expression for the thermal rate constant as the long-time limit of a
flux-side correlation function [40]:

k
2 1

(�) =
1

Qr

lim
t!1

C
(fs)
2 1

(t) (8.2)

where C(fs)
2 1

(t) is a flux-side correlation function corresponding to a non-adiabatic
transition from electronic state 1 to electronic state 2, and

Qr =
1

(2⇡~)G

Z
dPdR e

��
⇣

P2

2µ +H11(R)

⌘

(8.3)

is the reactant partition function for a system of G nuclear DOFs.

To use Eq. (8.2), it was discovered in the course of this work that several

modifications to the standard expression for C(fs)
2 1

(t) are required in order to
extract thermal rate constants from trajectory calculations in a manner consis-
tent with (and in the spirit of) the SQC approach. These modifications result
in a SQC-modified flux-side correlation function calculated as a “renormal-
ized” Boltzmann-weighted phase-space average of the classical reactive flux F
multiplied by a time-evolved SQC projection factor }

2 1

(which is essentially
the SQC equivalent of the “side”-operator):

C
(fs)
2 1

(t) =
1

(2⇡~)G+2

1

P̃tot(t)

Z
dP0 dR0 dn0 dq0

(
e
��

✓
|P0|2
2µ +

¯H(R0)+
1
2�n0 �H(R0)

◆

⇥ F
0

⇥ }
2 1

(t)

)
. (8.4)

The renormalization factor P̃tot(t) in Eq. (8.4) is given by P̃
2 1

(t)+P̃
1 1

(t) (as
in Eqs. (5.20) and (5.22) for population decay); �n

0

= n
1

(0) � n
2

(0); and H̄
and �H are the average and di↵erences of the diabatic PESs as appearing in
the MM Hamiltonian of Eq. (5.16)—which is used for evolving the trajectory
dynamics.

The reactive flux factor in Eq. (8.4) is defined as

F
0

= �(n
1

(0)� n
2

(0)) · dn2

dt

����
0

, (8.5)

e�ciency.
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which thereby sets the “dividing surface” between reactants and products to
be the line (n

1

= n
2

) evenly dividing the space of the electronic action vari-
ables midway between the SQC window functions defining electronic states 1
and 2. Thus, the reactive flux factor F

0

does, as required, properly define a
surface in the electronic phase space through which all reactive trajectories
must penetrate. Note that �n

0

= 0 in Eq. (8.4) with this choice of dividing
surface.

The SQC projection factor }
2 1

(t) is expressed in terms of the windowing
functions of Eq. (5.18) as

}
2 1

(t) = W
2

(n
1

(t), n
2

(t)) ·W
1

(n
1

(�t), n
2

(�t)) (8.6)

which requires (as t ! 1) that trajectories begin in state 1 (the donor elec-
tronic state) and finish in state 2 (the acceptor electronic state). Thus, in
the usual fashion, the phase space average of Eq. (8.4) is evaluated by begin-
ning trajectories at the dividing surface defined by the flux factor of Eq. (8.5),
evolving the trajectories forward and backward in time via Hamilton’s equa-
tions (via the MM Hamiltonian of Eq. (5.16)), and then applying the SQC
projection factor of Eq. (8.6). Again, for all of the 2-state ET calculations

presented here, the �-parameter was kept fixed at 0.366 ⇡
p
3�1
2

.
The flux factor in Eq. (8.5) is written in terms of the “dividing surface”

n
1

= n
2

. However, the crux of the SQC approach is to impose quantization by
defining the reactant and product regions of the electronic phase space by the
window functions of Eq. (5.18), and since these regions are disjoint from one
another, there is actually a “dividing volume” between reactant and product
regions of the electronic phase space. Based on this notion and, in addition,
based on the observance that (in many parameter regimes) the typical reactive
trajectory re-crosses the surface n

1

= n
2

many times, it was found that con-
vergence of the integral in Eq. (8.4) could best be accomplished by modifying
Eq. (8.5) such that:

dn
2

dt

����
0

! �n
2

�t
=

n
2

(tfor)� n
2

(tback)

tfor � tback
(8.7)

where tfor is the (positive) time when a trajectory first enters the product elec-
tronic space running in the forward time direction, and tback is the (negative)
time when a trajectory first enters the reactant electronic space running in the
backward time direction.4 In the same spirit, it is noted that the renormaliza-
tion factor P̃tot(t) is present in Eq. (8.4) for the same reason it is present in

4Note that Eqs. (8.5) and (8.7) could equivalently be written in terms of dn1
dt

since
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Eqs. (5.20) and (5.22): to account for those times when a trajectory is in the
intermediate region of the electronic phase space and thereby e↵ectively not
counted (at that time) towards the population of any electronic state.

In any event, this SQC-modified framework for the direct calculation of
thermal rate constants—provide by Eq. (8.2) through Eq. (8.7)—was found to
be e↵ective and was used for all the ET rate calculations presented here.

8.3 SQC Thermal Rate Constants for Two “Sol-
vent Coordinate” Models of Electron Trans-
fer

With the rate calculation properly formulated in terms of an SQC-consistent
version of the flux-side correlation function (Eq. (8.4)), presented here are the
results of applying this SQC methodology to the “solvent coordinate” models
of ET proposed by Coker et al. [38] and Miller et al. [39].

8.3.1 Treatment of the “Solvent Coordinate” Model of
Coker et al.

The ET model employed by Huo, Miller, and Coker [38] to test the PLDM
methodology (“partial linearized” semiclassical “density matrix” propagation)
is defined by the following diabatic electronic matrix for which the diagonal
elements (i.e., the donor and acceptor diabatic PESs) are shifted quadratic
functions of the solvent coordinate R, with constant o↵-diagonal coupling �
and energetic bias ✏:

H
11

(R) =
1

2
µ⌦2R2 + CsR +

✏

2

H
22

(R) =
1

2
µ⌦2R2 � CsR� ✏

2
H

12

= H
21

= �,

(8.8)

dn1
dt

= �dn2
dt

and so, on the basis of symmetry, �n2
�t

was actually calculated as

1

2
· n2(tfor)� n2(tback)� n1(tfor) + n1(tback)

t
for

� t
back

.
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where ⌦ = 3.5⇥10�4, µ = 1, � = 2.39⇥10�2, and Cs =
p
�/2 ⌦ (all expressed

in atomic units). In this model, the two diabatic PESs, H
11

(R) and H
22

(R),
are coupled through the solvent coordinate R to a bath of oscillators:

Hbath(P,Q) =
KX

k=1

(
1

2
P 2

k +
1

2
!2

k

✓
Qk +

ck
!2

k

R

◆
2

)
, (8.9)

and, as with the spin-boson problems presented in Chapter 7, an Ohmic
distribution—i.e., Eq. (7.5)—was chosen for spectral density of the bath, here
with coupling/friction parameter ⌘ = 1.49⇥ 10�5 and characteristic frequency
!c = ⌦. The bath frequencies {!k} and coupling constants {ck} are there-
fore chosen as in Eqs. (7.4) and (7.6), as done with the spin-boson problems.
Likewise, the bath DOFs were thermally initialized by Monte Carlo from the
Wigner transform of the Boltzmann operator for the bath, e��Hbath(P,Q), which
gives a distribution function of the same form as in Eq. (7.7). All thermal rate
calculations employed a discretization of 100 bath modes (except where noted
below), also as done in Chapter 7.

Accordingly, thermal rate constants at 300 K for the ET model of Coker
et al. in Eq. (8.8) were computed via the SQC approach as outline in Section
8.2. These SQC rate constants were then compared against the rates given by
Marcus Theory from Eq. (8.1). The comparison is shown in Fig. 8.1. Fig. 8.1a
shows the variation in thermal rates as a function of the non-adiabatic coupling
�, and the agreement with Marcus Theory is excellent—over about 3 orders of
magnitude in coupling strength and 5 orders of magnitude in ET rate. Fig. 8.1a
also shows that for strong coupling, � ·� ⇡ 1 or greater, the SQC-calculated
ET rates are lower than those of Marcus Theory. Nevertheless, they are in
good agreement with the PLDM results shown in Fig. 8.1a which also deviate
from Marcus Theory in the strong-coupling regime.

Fig. 8.1a corresponds to the symmetric case where the energetic bias ✏ = 0.
In Fig. 8.1b the non-adiabatic coupling is held fixed at � = 5 ⇥ 10�5 (at the
lower end in Fig. 8.1a), and the energetic bias ✏ is varied in order to illus-
trate the ET rate dependence on exothermicity/bias and the inverted regime
known from Marcus Theory. Once again, the SQC calculations show excellent
agreement with MT—here, over about 3 orders of magnitude variation in ET
rates. It is noted that these figures are analogous to those prepared by Coker
et al. [38, see Figs. 1 and 2(a)] for illustrating the excellent accuracy of the
PLDM technique, but again, because that technique treats the electronic DOF
semiclassically, it presumably represents a substantially higher computational
e↵ort than the simple SQC binning approach applied here.
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Figure 8.1: SQC-calculated electron transfer (ET) thermal rate constants ver-
sus Marcus Theory for the “solvent coordinate” model of Coker et al. across
widely varying regimes of non-adiabatic coupling � and energetic bias ✏
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The SQC results shown in Fig. 8.1 were calculated by evaluating the SQC-
expression for the flux-side correlation function C

(fs)
2 1

(t) given in Eq. (8.4),
dividing it by Qr as calculated with Eq. (8.3), and doing this for a suf-
ficient length of time t so as to estimate the long-time limit required by
Eq. (8.2). Thus, presented in Figs. 8.2 and 8.3 is the explicit time-dependence

of Q�1r C
(fs)
2 1

(t) corresponding to each of the thermal rate constants shown in
Fig. 8.1. Figs. 8.2 and 8.3 illustrate that one consequence of the renormaliza-
tion factor P̃tot(t) in Eq. (8.4) is that in the long-time limit Q�1r C

(fs)
2 1

(t) actually
decays to the thermal rate constant. This is the reverse of the conventional
property of the flux-side correlation function, but occurs because P̃tot(t) in
the denominator of Eq. (8.4) grows in value as time progresses along with the
integral in the numerator. (In e↵ect, the first trajectory to give a non-zero
projection factor }

2 1

(t) typically has the highest microscopic “rate.”)
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Figure 8.2: Q�1r C
(fs)
2 1

(t) corresponding to the thermal rate constants of
Fig. 8.1a, showing the variation with the nonadiabatic coupling �

The correlation functions shown in Fig. 8.2 also illustrate the dependence
of this system’s relaxation dynamics on variation of the non-adiabatic coupling
constant �. It is seen that � e↵ectively sets the timescale of the relaxation
dynamics, and it is for this reason that the time interval chosen for each
dynamical calculation exhibited in Fig. 8.2 varies depending on the chosen
value of�. (I.e., a longer time step is used for weaker coupling.) In contrast, �
does not vary over the calculations presented in Fig. 8.3, and so each correlation
function in this figure has been uniformly calculated out to 5 picoseconds.
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(t) corresponding to the thermal rate constants of
Fig. 8.1b, showing the variation with the energetic bias ✏
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Fig. 8.3a shows the manner in which Q�1r C
(fs)
2 1

(t) varies up to the barrierless
rate, and Fig. 8.3b from the barrierless rate into the inverted regime. Thus
the symmetry of the traces shown in Fig. 8.3a with those of Fig. 8.3b echoes
the quadratic dependence of the ET rates shown in Fig. 8.1b.

One additional practical point concerns Monte Carlo sampling of the sol-
vent coordinate R. In all calculations presented here, the solvent coordinate
sampling function was chosen to be a Gaussian in R centered at the crossing
point of H

11

(R) and H
22

(R). For the symmetric case (✏ = 0), this corresponds
to R̄ = 0, which is the minimum of the e↵ective potential felt by the solvent
coordinate when the electronic DOFs are located at the dividing surface (i.e.,
where n

1

= n
2

, and where they are initialized according to Eq. (8.5)). How-
ever, for the asymmetric cases (✏ > 0), the crossing point is located away from
the minimum of the e↵ective potential, and in the inverted region, high up on
its repulsive wall. For this reason, it was found to be somewhat more challeng-
ing to obtain converged results in the inverted regime—which was also noted
by Coker et al. with respect to their PLDM work. In these cases, initializing R
using a relatively narrow Gaussian distribution was found to be helpful (and
also in the spirit of Marcus Theory). Thus, for the calculations in Fig. 8.1b
(varying ✏), a choice of �R = 10 was employed (the standard deviation of the
Gaussian distribution in atomic units). For Fig. 8.1a (varying �), the lack of
energetic bias (✏ = 0) made a narrow distribution in R less important, however
it was retained for consistency with Fig. 8.1b except in the strong coupling
regime—i.e., for large values of �—where improved convergence was found by
a slight scaling of �R with increased coupling. Thus, to summarize, for both
Figs. 8.1a and 8.1b, the width of the solvent coordinate’s sampling function
was chosen such that:

�R =

(
�
0

�  �
0

�
0

· log
10

⇣
�

�0

⌘
� > �

0

(8.10)

where �
0

= 10, and �
0

= 5 ⇥ 10�5 (i.e., the constant value of the non-
adiabatic coupling from Fig. 8.1b). The larger value of �R used in the strong
non-adiabatic coupling regime (far right of Fig. 8.1a) can be understood on
the basis that strong non-adiabatic coupling allows electronic transitions to
occur further from the crossing point of the PESs.

Finally, we note that while it may be instructive to analyze and understand
where the most reactive regions of the solvent DOF are located, employing
more sophisticated importance sampling techniques in a more general MD
simulation would likely make this exercise unnecessary. Likewise, no attempt
was made to minimize the number of trajectories used to generate the definitive
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results shown here, using on the order of 106 trajectories to generate Fig. 8.1b,
for instance. However, one again assumes that clever importance sampling
would typically reduce this number by several orders of magnitude when called
for. In fact, a very reasonable (similar) version of Fig. 8.1b can be obtained
with an ensemble of just 104 trajectories sampled according to Eq. (8.10). See,
e.g., Fig. 8.4.

Figure 8.4: Same as Fig. 8.1b
but using just 104 trajectories
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8.3.2 Treatment of the “Solvent Coordinate” Model of
Miller et al.

The second “solvent coordinate” ET model considered was that to which Men-
zeleev, Ananth, and Miller [39] applied the RPMD (“ring polymer molecular
dynamics”) method. Similar to Eq. (8.8) (of Coker et al. treated in Section
8.3.1), a quadratic Hamiltonian having constant non-adiabatic coupling was
employed,

H
11

(R) = a
1

R2 + b
1

R + c
1

H
22

(R) = a
2

R2 + b
2

R + c
2

H
12

= H
21

= �,

(8.11)

coupled to a harmonic bath of form equivalent to Eq. (8.9), with ⌘ = 4.19,
!c = 2.28 ⇥ 10�3, and µ = 1836 (in Eq. (5.16)). The coe�cients a

1

, b
1

, c
1

,
a
2

, b
2

, c
2

of Eq. (8.11) are listed in Table 8.1 for 4 di↵erent cases (I-IV) of
energetic bias ✏ between the electronic states and slight variations in non-
adiabatic coupling �.

Table 8.2 gives the ET rates reported in Miller et al.’s prior work calcu-
lated according to Marcus Theory (MT), the ring polymer molecular dynamics
(RPMD) method, semiclassical instanton theory (SCI), and full quantum dy-
namics (QM), along with the present results calculated here using the SQC
approach. The results show that the SQC approach very closely reproduces
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Table 8.1: Diabatic electronic PES parmeters and non-adiabatic coupling pa-
rameters for the ET model of Miller et al. in Eq. (8.11)

(a) PES paramters for State 1

Case a
1

⇥ 103 b
1

⇥ 102 c
1

I 4.7722 1.1308 -2.1576
II 4.7722 1.1308 -2.1477
III 4.7722 1.1308 -2.1411
IV 4.7720 1.1307 -2.1245

[All parameters are given in atomic units.]

(b) PES paramters for State 2

Case a
2

⇥ 103 b
2

⇥ 102 c
2

I 4.7722 -1.1308 -2.1576
II 4.7722 -1.1308 -2.1561
III 4.7721 -1.1308 -2.1551
IV 4.7720 -1.1308 -2.1526

[All parameters are given in atomic units.]

(c) Bias and coupling between State 1
and State 2

Case ✏ �⇥ 105

I 0.0 2.0662
II -0.015 2.0916
III -0.025 2.1088
IV -0.050 2.1524

[All parameters are given in atomic units.]
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Table 8.2: Comparison of thermal rate constants computed for the ET model
of Miller et al. in Eq. (8.11) using various approaches; MT, RPMD, SCI, and
QM results taken from Ref. [39]

Case MT RPMD SCI QM SQC
I 6.7 6.05 5.1 6.7± 0.1 6.92
II 8.3 7.73 6.6 8.5± 0.1 8.43
III 9.1 8.54 7.4 9.0± 0.3 9.17
IV 9.8 9.27 8.6 10.8± 0.9 9.38

[values are log
10

(kET ⇥ sec)]

the QM results for 3 of the 4 cases, doing a notably better job than the other
methods listed with the exception of Marcus Theory (MT) which also does
quite well. Fig. 8.5a plots these SQC rates for Cases I-IV along with Miller
et al.’s QM results, again showing good agreement within the QM result’s
reported error bars. Fig. 8.5b shows the time-dependence of Q�1r C

(fs)
2 1

(t) for
each of the 4 cases.5

As before, it was important to center the solvent coordinate sampling func-
tion about the crossing point between the electronic PESs in order to generate
reasonable results, and in addition, it was again helpful to choose the width of
the sampling function �R to be relatively narrow. The length scale implied by
Eq. (8.11) and Table 8.1 is much smaller than that given by Eq. (8.8) above,
and so here the variation in R was set to �R = 0.1 in order to generate the
results shown in Fig. 8.5a (and �R was kept at that value despite Eq. (8.10)
since � varies only slightly between Cases I-IV as shown in Table 8.1).

The final case, Case IV, nearly corresponds to the barrierless configuration
of the two electronic states, and for this set of parameters, the calculation did
not seem to converge with any reliability (as shown by the noisy correlation
function in Fig. 8.5b for Case IV) while producing the least accurate result
(see Table 8.2 and Fig. 8.5a). However, one should also note that the QM rate
for Case IV is reported in Ref. [39] with a much larger uncertainty than that
for Cases I-III, and nor do the other approximate methods whose results are
reported in Ref. [39] do a better job of hitting either the MT result or the
QM result (which for Case IV seems to possibly be fairly di↵erent from the
MT result). In any event, one notes that di�culty with Case IV may not be
unique to the SQC approach.

It should also be noted that the harmonic bath of Eq. (8.9) (coupled to
the Hamiltonian of Eq. (8.11)) was discretized in Ref. [39] using only 12 bath

5Again, per Eq. (8.2), equal to the rate constant as t ! 1.
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Cases I-IV shown in Table 8.1
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modes, and so for purposes of comparison the same has been done here. How-
ever, increasing the number of bath modes (to say 100, as used in the other
calculations presented here) does a↵ect the results—particularly for Case IV
where it was found that a more finely discretized bath caused the system to
relax so quickly that virtually no electronic transitions were found to occur.
Possibly, this provides a clue as to why Case IV was di�cult for the various
approaches to handle. Nevertheless, one concludes that within the constraints
and limitations of this prior ET model, it has been shown that the SQC ap-
proach produces quite reasonable results overall.

8.4 Modeling of Photoinduced Proton Cou-
pled Electron Transfer

Another recent analytical model of a condensed phase ET processes is the sim-
ple model of photoinduced proton coupled electron transfer (PCET) suggested
by Venkataraman, Soudackov, and Hammes-Schi↵er [41]. Their proposed di-
abatic Hamiltonian matrix is very similar to those of Eqs. (8.8) and (8.11),
except that in the PCET context, instead of a solvent coordinate, the key
DOF (coupled to a harmonic bath) is the coordinate R of the proton which
facilitates the ET process. Furthermore, since the electron transfer process
from donor electronic state H

11

(R) to acceptor electronic state H
22

(R) is be-
ing modeled as photoinduced, the donor state H

11

(R) is assumed populated
via instantaneous photoexcitation from a ground electronic state H

0

(R). Each
of these electronic states is given a quadratic form in the model, and thus the
ground, donor, and acceptor states, and the non-adiabatic coupling are as
follows:

H
0

(R) =
1

2
mp !

2

0

(R�R
0

)2

H
11

(R) =
1

2
mp !

2

1

(R�R
1

)2 + ✏
1

H
22

(R) =
1

2
mp !

2

2

(R�R
2

)2 + ✏
2

H
12

= H
21

= �

(8.12)

where mp is taken to be 1836 A.U. so that the coordinate R depicts the dy-
namics of a proton-mediated ET process.

Similar to the collective solvent coordinate models treated in Sections 8.3.1
and 8.3.2, interaction with the condensed phase is modeled by coupling the
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PCET system to a dissipative harmonic bath of nearly the same form as
Eq. (8.9)—including a spectral density given by Eq. (7.4) and initialized via
Eq. (7.6)—the di↵erence being here that instead of coupling to the nuclear
coordinate R, the bath is coupled to n

1

, the electronic population of the donor
state (in the Meyer-Miller framework, the action of the electronic oscillator
DOF associated with state 1):

Hbath(P,Q) =
KX

k=1

(
1

2
P 2

k +
1

2
!2

k

✓
Qk +

ck
!2

k

n
1

◆
2

)
. (8.13)

The parameters used here and in the prior work of Hammes-Schi↵er et al. for
each of the four Models A-D are given in Table 8.3. As above, 100 modes were
used in the discretized bath of Eq. (8.13).

Table 8.3: Parameters for the donor and acceptor diabatic electronic states,
and ground electronic state, of the photoinduced PCET model of Hammes-
Schi↵er et al. in Eq. (8.12)

Model ✏
1

� ✏
2

R
0

R
1

R
2

!
0

!
1

!
3

A 1 -0.5 0 -0.5 3000 3000 3000
B 0 -0.5 0 -0.5 3000 3000 3000
C 0 -0.5 0 -0.5 2500 3000 2500
D 0 -0.15 0 -0.5 3000 3000 3000

[Energies are in eV, lengths in Å, and frequencies in cm�1]

Within this model, photoinduced proton coupled electron transfer (PCET)
from donor state H

11

to acceptor state H
22

is simulated by setting the initial
electronic state to H

11

, and initializing the proton coordinate R and its conju-
gate momentum from the Wigner distribution associated with the Boltzmann
operator for the ground state H

0

—thus modeling instantaneous photoexcita-
tion from H

0

to the donor electronic state H
11

. In the SQC approach, of
course, setting the initial electronic state to 1 amounts to choosing the action
variables (n

1

, n
2

) from the window function of Eq. (5.18a). Donor state H
11

is then allowed to decay to acceptor state H
22

by time-evolving the electronic
DOFs and proton DOF according to the MM Hamiltonian of Eq. (5.16) in the
usual manner and applying the windowing functions associated with the donor
and acceptor states Eqs. (5.18a) and (5.18b), respectively, at each desired time.

SQC results for the survival probability P
1 1

(t) of the donor state for each
of the 4 Models A-D given in Table 8.3 are shown in Fig. 8.6 plotted against
the results given by reduced density matrix (RDM) theory as calculated by
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Figure 8.6: Electronic state population dynamics calculated with the SQC
approach versus RDM theory for the PCET model of Hammes-Schi↵er et al.,
specifically for the 4 sets of parameters given in in Table 8.3 as Models A-D
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Hammes-Schi↵er et al. in Ref. [41]. The SQC results shown in Figs. 8.6a
and 8.6b (for Models A and B) show nearly perfect agreement with Hammes-
Schi↵er et al.’s prior RDM results. The SQC results shown in Figs. 8.6c
and 8.6d exhibit some deviation from the RDM results, but are still fairly
reasonable, being o↵ by a population di↵erence of about 10%. One has to
assume that these deviations are due to the limitations of the SQC approach,
but since the RDM methodology is also not exact, one cannot necessarily
rule out the possibility that part of the discrepancy is attributable to the
limitations of the RDM technique. In any event, overall the SQC approach
does a commendable job of capturing the varying characteristics of the PCET
dynamics exhibited by these di↵erent models.

8.5 Conclusion Regarding Electron Transfer
Results

Condensed phase electron transfer represents an important class of non-adiabatic
processes, and the examples treated and discussed in this chapter have shown
that the SQC/MM approach can successfully be applied to a variety of con-
densed phase ET models over a variety of parameter regimes.

In particular, it was shown that with a suitably modified flux-side corre-
lation function framework adapted for consistency with the SQC approach,
thermal rate constants for ET may be directly calculated in very good agree-
ment with Marcus Theory over 5 orders of magnitude as a function of the
non-adiabatic coupling strength and over 3 orders of magnitude as a function
of the energetic bias between the electronic states, including a correct descrip-
tion of the Marcus inverted regime. Moreover, similar to what was shown for
the spin-boson problems treated in Chapter 7, the explicit time-dependence of
donor and acceptor electronic state populations for a non-equilibrium PCET
process was also considered, and it was seen that the population decay from
the photoexcited donor electronic state was handled very reasonably (relative
to results from reduced density matrix theory) with the SQC/MM approach.

Finally, it is worth emphasizing that no problem-specific tuning of param-
eters was done to achieve these results. The only parameter of the SQC/MM

model is the �-parameter, and its value was held fixed 0.366 ⇡
p
3�1
2

through-
out these calculations—the same value used for the spin-boson problems treated
in Chapter 7 and for the 3 Tully problems treated in Chapter 6.
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Chapter 9

Treatment of 3-State
Non-Adiabatic Systems

Non-adiabatic systems having 3 energetically viable electronic PESs present a
progressively more challenging problem for simple methods to handle properly.
Results for the treatment of such systems with the SQC/MM approach are
shown below, though it should be noted that these are not the first SQC
results to be generated for systems having 3 or more coupled electronic states.
Specifically, Tao (of Peking University) has already successfully applied the
SQC approach to the treatment of 3- and 5-state models of singlet fission in
polyacene dimers. [42]

9.1 A 3-Oscillator Cartesian Hamiltonian
Versus a Spin-1 Hamiltonian with 1 DOF

The MM Hamiltonian may be easily written in terms of F electronic states
as shown in Eq. (5.15). In this representation, a pair of action-angle variables
(n, q) is assigned to each of the F electronic states, and F -dimensional window
functions are applied symmetrically both initially and finally to the F classical
action variables (possibly converted to-and-from a (p, x)-pair if the Cartesian
version is employed).

The MMc spin-representation, however—although more complicated to
discover for 3 or more states—provides an even simpler representation in-
volving only a single pair of spin angular momentum action-angle variables
for an F -state system. As discussed in Section 5.4.5, for 2 electronic states
this spin-representation is nearly equivalent to the MM Hamiltonian, but for
3 or more electronic states it is not. Thus, in this chapter, the first question
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9.2. CHOICE OF � FOR 3 ELECTRONIC STATES

to be addressed is how well the 3-state Cartesian MM Hamiltonian treats a
model 3-state system following the SQC approach, and if it works well, the sec-
ond question to be addressed is whether the 3-state MMc spin-representation
performs equivalently well.

9.2 Choice of � for 3 Electronic States

In order to employ the SQC approach, one must choose a value for the �-
parameter. In this regard, it seems appropriate to adapt the interpretation of
� given in Section 5.4.3 to the case of 3 electronic states. For the case of 2
electronic states, the rationalization of Section 5.4.3 lead to an identification
of � = 0.366. This was based on viewing Eq. (5.44) as a Hamiltonian for a

spin-1
2

DOF, identifying
�
1

2

+ �
�
2

as S2 in Eq. (5.44), choosing S2 = s(s+ 1),
the quantum value for the square of the total spin angular momentum, and
then calculating � =

p
S2 � 1

2

.
For the case of F = 3 or more electronic states, one again may choose �

in a manner consistent with the quantum value of the square of the total spin
angular momentum. As explained in Section 5.4.5, a system of F electronic
states may be mapped within the MMc spin model to a system of spin s = F�1

2

having integer or half-integer quantum values of the spin projection quantum
number m ranging from �s to s which correspond to the di↵erent electronic
states (for 3 states m 2 {�1, 0, 1}). These values serve as the centers of the
SQC windowing functions in the MMc spin model, their width being 2�, and
so for each of the quantum values of m there is a windowing function covering
the interval [m� �,m+ �].

The idea then is that one chooses � so that if all the angular momentum
associated with a given quantum value of S2 = s(s+ 1) ends up in Sz—which
can happen because the classical trajectory simulation does not preserve the
uncertainty principle1—then these extreme values of Sz = ±

p
S2 still fall

within the range of the windowing functions corresponding to the highest and
lowest spin states whose centers are at ±s. For either extremum, this amounts
to choosing � such that p

S2 = s+ � (9.1)

which for the quantum value of S2 = s(s+ 1) gives

� =
p

s(s+ 1)� s, (9.2)

1This is really just the angular version of the zero-point energy leakage problem associated
with oscillator model analyzed in detail in Section 6.6.
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where s = F�1
2

for F electronic states. For F = 2 electronic states and s = 1

2

,
this gives (as before) � = 0.366. However, for F = 3 electronic states and
s = 1, the chosen value of � is

p
2 � 1 ⇡ 0.414 (just slightly larger), and this

value was used for all the 3-state calculations presented in Section 9.3, though
it is noted that the value is close enough to the 2-state value that it was seen
to make little di↵erence. Finally, in the continuum limit, � ! 1

2

as s ! 1.2

9.3 Results for Benchmark 3-State Spin-Boson
Problems

Two papers by Sim and Makri, Refs. [30] and [31], provide rigorous quantum
path integral calculations for 3-state spin-boson systems. Ref. [31] provides
rigorous quantum results for a variety of spin-boson parameters regimes which
model the dynamics of charge-transfer in a photosynthetic reaction center,
specifically for various mutant and wild-type reaction center configurations.

Fig. 9.1 provides the results of treating the model 3-state spin-boson prob-
lem from Ref. [30] with the SQC approach—Fig. 9.1a showing the results of
using the Cartesian MM Hamiltonian of Eq. (5.15), and Fig. 9.1b the results of
using the spin-1 MMc Hamiltonian of Eq. (5.61). Both calculations employed
� = 0.414, as explained in Section 9.2. It is seen that the results are very
similar (albeit not quite identical), despite the spin-Hamiltonian modeling the
entire 3-state electronic configuration with only a single DOF treated within
the SQC framework. Moreover, if one compares these two plots with those
shown in Ref. [30, see, e.g., Fig. 8], it is seen that the populations of all 3
states shown in Fig. 9.1 are in quite reasonable quantitative agreement with
Ref. [30]’s quantum path integral results over the full time interval simulated.

Likewise, Fig. 9.2 provides analogous SQC results for one of the bench-
mark 3-state spin-boson photosynthetic charge transfer models presented in
Ref. [31], specifically, for the wild-type “C2” configuration at 280 K whose
population dynamics are presented in Ref. [31]’s Fig. 13(a). Here, the pop-

2I.e.,

lim
s!1

�(s) = lim
s!1

(
p
s(s+ 1)� s = s

 r
1 +

1

s
� 1

!
= s

✓
1 +

1

2s
� 1

8s2
+ · · ·� 1

◆)

= lim
s!1

⇢
1

2
+

1

8s
+ · · ·

�
=

1

2
.
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(a) Results using the Cartesian MM Hamiltonian of
Eq. (5.15)
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(b) Results using the spin-1 MMc Hamiltonian of
Eq. (5.61)

Figure 9.1: Electronic state population dynamics calculated with the SQC
approach for the benchmark 3-state spin-boson problem presented in Ref. [30,
see, e.g., Fig. 8 for comparison]
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ulation dynamics shown in Fig. 9.2a—calculated using the Cartesian MM
Hamiltonian—exhibit some notable discrepancies with Makri et al.’s quan-
tum path integral results, but the general characteristics of these SQC results
are qualitatively reasonable. However, the SQC results shown in Fig. 9.2b—
calculated using the spin-1 MMc Hamiltonian—are in complete disagreement
with both the QM and Cartesian MM results, representing what appears to
be a significant breakdown in the spin-1 MMc model. In particular, Fig. 9.2b
shows almost no decay from the initial donor state 0, and thus no transfer
of probability density to the acceptor state 2, in complete disagreement with
what is seen in Fig. 9.2a for the Cartesian MM model (and in Ref. [30]’s QM
results).

This was surprising in view of the reasonable results obtained for the treat-
ment of the model from Ref. [30] (shown in Fig. 9.1b), and so the cause of the
failure was investigated further. State 1 in this photosynthetic charge transfer
model, the “bridge state,” is intermediate in energy between the initial donor
state 0, and acceptor state 2, and must play a role in the charge transfer process
because both state 0 and state 2 are coupled to it (to state 1) but not to each
other. The same is true for the spin-boson model of Ref. [30] shown in Fig. 9.1.
However, in the wild-type “C2” configuration of the model from Ref. [31], the
coupling between the initial donor state 0 and bridge state 1 is very weak (be-
ing only 22 cm�1)—making this 0 ! 1 transition the rate-limiting step—and
it turns out that this weak coupling is what somehow causes the spin-model to
fail. While the mechanism of the failure is still not completely understood, it
was verified that the spin-1 MMc Hamiltonian would give the same results as
the Cartesian MM Hamiltonian if one simply increases the coupling constant
between states 0 and 1 by about 50 cm�1. In any event, one must conclude
that while the MMc spin model may be appealing in many respects, at this
point, it unfortunately does not seen to do a reasonable job of treating cou-
pled 3-state dynamics over the same parameter regime well-handled by the
Cartesian MM model—and, in particular, seems unable to properly handle
the weak-coupling regime.
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Figure 9.2: Electronic state population dynamics calculated with the SQC
approach for one of the benchmark 3-state spin-boson photosynthetic charge
transfer models presented in Ref. [31, see results for wild-type configuration
C2 at 280 K presented in Fig. 13(a) for comparison]
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Chapter 10

Concluding Remarks

10.1 Significance of the SQC/MM Approach
for the Treatment of Non-Adiabatic Pro-
cesses

The SQC approach for incorporating non-adiabatic e↵ects into classical trajec-
tory simulations via the Meyer-Miller (MM) Hamiltonian is stunningly simple,
but therein lies its potential strength. In short, within the SQC/MM frame-
work, non-adiabatic e↵ects may be straightforwardly incorporated into real-
istic simulations of complicated (high-dimensional) molecular processes sim-
ply by introducing an auxiliary pair of “electronic” action-angle variables for
each energetically viable PES, and time-evolving these auxiliary variables via
Hamilton’s equations (using the MM electronic Hamiltonian) in the same man-
ner that the other classical variables—i.e., the coordinates of the nuclei—are
propagated forward in time.

Accordingly, it is noted that in a complex molecular system where the
electronic energy is a function of a great many nuclear DOF, the propaga-
tion of these extra “electronic” variables represents a very modest increase
in computational e↵ort over a standard molecular dynamics (MD) approach.
Furthermore, in view of its potential viability as demonstrated by the calcu-
lations presented in this work, the pedagogical and theoretical “advantages”
of the SQC/MM approach should also be noted: e.g., that electronic and nu-
clear DOF are treated in a uniform dynamically consistent fashion—via the
MM Hamiltonian—and in a manner that preserves microscopic time-reversal
symmetry—via the SQC approach.
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10.2 General Remarks Regarding the Incor-
poration of Quantum Mechanical E↵ects
Via the SQC Approach

With regards generally to the incorporation of quantum e↵ects, it has been
shown that although the SQC approach is strictly-speaking purely classical—
i.e., it uses classical trajectories as its inputs without any corresponding semi-
classical phase calculation—it does provide a simple mechanism for incorpo-
rating a variety of quantum e↵ects into chemical dynamics simulations.

Electronically non-adiabatic e↵ects are generally perceived as being a purely
quantum mechanical phenomena, yet the preceding work in Part II has demon-
strated how these e↵ects may be incorporated (quite accurately, in many cases)
into purely classical simulations. Interestingly, quantum coherence between
di↵erent electronic PESs—i.e., nuclear DOFs moving in quantum superposi-
tion on multiple electronic PESs—is well-described in the SQC/MM approach
by the classical nuclear DOFs experiencing a mean-field e↵ective potential due
to contributions from all the relevant accessible electronic PESs. In this man-
ner, the SQC/MM approach provides a more realistic model of multi-surface
quantum coherence e↵ects than what is provided by the standard surface-
hopping approaches to non-adiabatic dynamics where the nuclear DOFs “hop”
from one PES to another but at any one time only experience the forces exerted
by a single electronic PES.

With respect to other classes of quantum e↵ects, it was shown in Part I how
nuclear motion—specifically nuclear vibration, but rotational motion could be
handled analogously—may be quantized in the SQC approach through the
application of symmetric windowing functions, in this case in the context of
state-to-state reactive scattering calculations. From a semiclassical perspec-
tive, such quantization occurs through phase interference between trajectories
taking di↵erent classical paths. In the SQC approach, instead of explicitly
calculating the phase interference, it is mimicked through application of the
symmetric windowing functions. If the incorporation of additional phase in-
terference and quantization e↵ects is desired—e.g., there are important quan-
tized intermediate states—this could presumably additionally be incorporated
through the use of windowing functions for the intermediate states.

In addition to coherence, interference, and quantization e↵ects, tunneling
(of course) represents an important class of quantum phenomena. In this re-
gard, it was found in the context of reactive scattering that the SQC approach
may be employed to usefully approximate the onset of tunneling in the re-
action threshold energy region, although clearly, since the approach is purely
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classical, individual trajectories do not “tunnel” per se. Rather, it is the distri-
bution of initial coordinates and momenta given by an initial state windowing
function of finite but constrained width which is able to mimic (but usefully)
the true quantum tunneling e↵ect. However, one does note the obvious lim-
itation that this approach is not going to accurately reproduce the very low
magnitude reaction probabilities characteristic of the deep tunneling regime.

10.3 Future Work

The most immediate task at hand is to investigate whether there is any way
to “patch” the 3-state spin-1 MMc model (where the 3 quantum values of
the projection quantum number m 2 {�1, 0, 1} represent the 3 electronic
states) to properly handle the weak-coupling limit where it seems to fail in
comparison to calculations done with the Cartesian MM model. It was noted
that the (poor) results obtained in the weak coupling limit depended on which
of the 3 electronic states was mapped to the middle spin-0 state of the spin
model (the assignment of electronic states to spin states being arbitrary). This
is obviously unsatisfactory—the results should be the same regardless of the
chosen mapping (as it is in the Cartesian MM model)—and it is thought that
this asymmetry may somehow be related to the root of the problem. It is true
that the spin model is inherently asymmetric with respect to the treatment
of the 3 electronic states, and so if this is the root of the issue, it may be
impossible to correct in a reasonable way; though, oddly, it does not seem to
be an issue outside of the weak coupling regime because, there, the spin MMc
and Cartesian MM Hamiltonians give equivalent results as shown in Fig. 9.1.
However, none of these issues have been studied in detail, and the spin-1 model,
being such an elegant (and e�cient) mapping of a 3-state non-adiabatic system
onto just 1 DOF, seems to warrant further investigation.

Assuming no “patch” for the MMc 3-state spin-1 Hamiltonian can be
discovered, another option to be explored involving the concept of a spin-
Hamiltonian is to attempt to map N electronic states onto N spin-1

2

DOFs.
In some respects, since there would be N spin DOFs the model could be
viewed as a pedagogical hybrid between the N -DOF MM oscillator model and
the 1-DOF MMc spin model. Such an approach may be based on the approach
Miller and White took [43] for constructing a multi-fermion spin-Hamiltonian.

An avenue for future work in an entirely di↵erent direction is an investiga-
tion into whether (and how) the MM Hamiltonian treats so-called geometric
phase e↵ects. Recently, Ryabinkin, Joubert-Doriol, and Izmaylov studied [44]
the role of the geometric phase in radiationless electronic state transitions in
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the bis(methylene) adamantyl cation, the butatriene cation, and pyrazine in
its neutral state by solving the time-dependent Schrödinger equation for di↵er-
ent (reduced dimensional) versions of the Hamiltonians for the three systems
which include and exclude (to di↵erent extents) geometric phase e↵ects. In
future studies, one would like to determine the extent to which this class of
quantum e↵ects is properly included in the purely classical models presented
in this work.

Finally, the hope and goal is that the SQC/MM approach will find good use
treating non-adiabatic e↵ects in “real” chemical systems where adiabatic PESs
and non-adiabatic couplings are computed via rigorous “quantum chemistry”
electronic structure calculations. The Martinez Research Group at Stanford
University is in the process of applying the SQC/MM approach to the non-
adiabatic dynamics of ethylene—likely doing the quantum chemistry on the
fly; see, e.g., Ref. [45]. Likewise, the Head-Gordon Research Group at U.C.
Berkeley—specialists in electronic structure theory— have expressed interest
in applying these techniques in their work with realistic systems. It will be
interesting to see the SQC/MM approach scaled-up, and to determine whether
any additional theoretical “tweaks” to the model will be required.
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