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Abstract

Large-Scale, Low-Latency State Estimation Of Cyberphysical Systems With An
Application To Traffic Estimation

by

Timothy Jason Hunter

Doctor of Philosophy in Computer Sciences

University of California, Berkeley

Professor Alexandre Bayen, Chair

Large physical systems are increasingly prevalent, and designing estimation strategies
for them has become both a practical necessity and a complicated problem. Their sensing
infrastructure is usually ad-hoc, and the estimate of interest is often a complex function of
the data. At the same time, computing power is rapidly becoming a commodity. We show
with the study of two estimation tasks in urban transportation how the proper design of
algorithms can lead to significant gains in scalability compared to existing solutions.

A common problem in trip planning is to make a given deadline such as arriving at
the airport within an hour. Existing routing services optimize for the expected time of ar-
rival, but do not provide the most reliable route, which accounts for the variability in travel
times. Providing statistical information is even harder for trips in cities which undergo a
lot of variability. This thesis aims at building scalable algorithms for inferring statistical
distributions of travel time over very large road networks, using GPS points from vehicles
in real-time. We consider two complementary algorithms that differ in the characteristics of
the GPS data input, and in the complexity of the model: a simpler streaming Expectation-
Maximization algorithm that leverages very large volumes of extremely noisy data, and a
novel Markov Model-Gaussian Markov Random Field that extracts global statistical corre-
lations from high-frequency, privacy-preserving trajectories.

These two algorithms have been implemented and deployed in a pipeline that takes
streams of GPS data as input, and produces distributions of travel times accessible as output.
This pipeline is shown to scale on a large cluster of machines and can process tens of millions
of GPS observations from an area that comprises hundreds of thousands of road segments.
This is to our knowledge the first research framework that considers in an integrated fashion
the problem of statistical estimation of traffic at a very large scale from streams of GPS
data.
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Chapter 1

Introduction

From the midst of this darkness a sudden light
broke in upon me–a light so brilliant and
wondrous, yet so simple, that while I became
dizzy with the immensity of the prospect which
it illustrated, I was surprised that among so
many men of genius who had directed their
inquiries towards the same science, that I alone
should be reserved to discover so astonishing a
secret.

Mary Shelley, Frankenstein

Our society is increasingly dependent on very large infrastructure systems that pro-
vide vital services such as water, electricity, information, or energy. Prominent examples
are telecommunication systems, power grids, water distribution or transportation systems.
These systems are continuously monitored by a vast array of sensors, which gather large
streams of digital information. The integration of the physical processes of this system with
the computational processes is called a cyberphysical system. This network of sensors gives
information about the aggregate state of the system, or about local variables such as chem-
ical concentrations, power output, temperatures, etc. This step is commonly referred to as
state estimation or filtering. These variables are then used to provide corrective feedback
to the system (control). In order to process this stream of information, it will be more and
more common in the future to use massive amounts of computing power for the following
reasons:

• The sensing network is increasingly complex: it usually offers indirect measurements
of the state (the sensors are either not located in the area of interest or measure other
variables correlated with the variables of interest).

• Due to coupling effects, estimating the state of a large system is usually much more
difficult than estimating the states of the subsystems.
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Furthermore, as monitoring networks grow in complexity and versatility, they are usually
tasked with answering more complex questions such as predicting the evolution of the system
or performing diagnostics on critical sections (and also providing some statistical guarantees
about the quality of these diagnostics). These tasks often require much more computing
power than aggregating measurements, and yet become an increasingly important part of
the monitoring process. Examples include assessing the spread of toxic chemicals in a water
system or detecting radioactive surges in a nuclear core. These tasks grow in complexity
and will require more and more the use of advanced statistical and computing techniques in
order to be completed in a timely manner. Some disciplines such as weather forecasting have
already harnessed the potential offered by cost-effective computing platforms. We discuss in
this thesis the well-known challenge of vehicular traffic estimation, from the perspective of
a large cyberphysical system.

1.1 Car traffic as a cyberphysical system

Traffic. Traffic congestion affects nearly everyone in the world due to the environmental
damage and transportation delays it causes. The 2012 Urban Mobility Report [98] states that
traffic congestion causes 5.5 billion hours of extra travel in the United States in 2011, which
accounted for 2.9 billion extra gallons of fuel and an additional cost of $121 billion. Amongst
the modern man-made plagues, traffic congestion is a universally recognized challenge [36].
Building reliable and cost-effective traffic monitoring systems is a prerequisite to addressing
this phenomenon.

One way to alleviate the effects of traffic congestion is to provide accurate and timely
information to drivers. Providing drivers with accurate traffic information reduces the stress
associated with congestion and allows drivers to make informed decisions, which generally
increases the efficiency of the entire road network [18]. Researchers on Traffic Information
Systems (TIS) broadly agree that accurate information is critical to increase their usage
[30]. One of the main challenges of TIS is to provide reliable, accurate and timely travel
information to drivers, and especially travel time information.

The question of estimating traffic and providing accurate travel information is well un-
derstood in the case of highways. Modeling highway traffic conditions has been well-studied
by the transportation community, with work dating back to the pioneering work of Lighthill,
Whitham and Richards [74, 120]. Historically, the estimation of traffic congestion has been
limited to highways, and has relied mostly on a static, dedicated sensing infrastructure
such as loop detectors or cameras [121]. Recently, researchers demonstrated that estimating
highway traffic conditions can be done using only GPS probe vehicle data [122]. Traffic
estimation is still an open question in the case of roads within a city, called arterial roads.
Arterial roads are the major urban city streets that connect population centers within and
between cities. The estimation problem is more challenging in the case of arterial roads, due
to the higher complexity of city traffic, and to the cost of deploying a wide network of sensors
in large metropolitan areas. Dedicated traffic sensors are expensive to install, maintain and
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Figure 1.1.1: The travel time function that we desire to compute: given a start time and
a path across a road network, we wish to provide a statistical distribution of arrival times
(represented here as a cumulative distribution).

operate, which limits the number of sensors that governmental agencies can deploy on the
road network. The lack of sensor coverage across the arterial network thus motivates the use
of GPS probe vehicle data for estimating traffic conditions.

Goal. The specific problem we address in this study is how to extract travel time
distributions from sparse, noisy GPS measurements collected in real-time from vehicles,
and over a very large network. We wish to provide a function that, given any route in the
road network, returns statistical information of travel times over this route (see Figure 1.1).
Commercial providers [2, 4, 108] have so far focused on the easier task of assigning a single
number for the travel time on a road, which is usually understood as an average travel time1.
This number is usually not enough information for the end user. For example, consider a
trip to a nearby airport. A passenger would like to know when to leave her2 current location
in order to be at the airport with some reasonable confidence, and the mean does not convey
this information, or even worse, may be misleading the user into taking a route that has a
smaller mean but a larger variance (i.e., the trips are usually shorter but they are longer,
the delays are significant). Seasoned taxi drivers take their past experience into account to
develop their routing strategies, but this knowledge is hard to quantify and transfer to casual
drivers. Furthermore, computing the full statistical distribution of travel times lets the user
decide how much risk she is willing to take3.

Source of data. Probe data is information collected from moving vehicles, and typically
includes the location and speed of the vehicle. This type of data have been revolutionized by
the introduction of the Global Positioning System (GPS) in the 1980s. The most promising
source of data is the GPS receiver in personal smartphones and commercial fleet vehicles [53].
The GPS can measure the location of a receiver across the the globe with relatively high
accuracy. The last decade has brought the GPS to the masses by making it a standard

1For various legal reasons, these products purposefully omit any labeling that could be interpreted as a
statistical performance guarantee on the information provided to drivers.

2We follow the economics convention to address the casual driver with a female gender. See [100] for a
more complete discussion.

3Of course, leaving an infinity of time before the event is the only strategy to arrive with probability
one. We assume drivers would object to such a long trip to the airport.
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feature in smartphones. According to some studies [99], devices with a data connection and
a GPS will represent 80% of the cellphone market by 2015. GPS data collected for traffic
estimation purposes comes from two different sources:

• Fleet data. A number of businesses (taxi companies, FedEx, UPS, trucks) operate
large fleets of vehicles and optimize their services by tracking the locations of the
vehicles. This source of GPS information is usually of high volume (tens of thousands
of vehicles across the continent), low frequency (every minute or so), and with limited
privacy concerns. Also, their coverage of the road network can be limited to certain
areas.

• Smartphone data. Some global companies collect vehicular GPS data by using software
installed in the device, like mapping software (Garmin. Google, INRIX, Nokia, Waze,
etc.) This data is believed to be of high frequency and to be more or less scrubbed
from personal information during the collection process4. However, this data is sel-
dom accessible to researchers due to privacy, market fragmentation, and competitivity
concerns.

Probe data presents some compelling advantages over static sensors: it is much easier to
upgrade (for example by pushing software upgrades to devices), it is cheaper to operate
(the energy and transmission costs are shouldered by the end users) and its coverage is
usually very extensive (see Figure 1.2.1 for an example). It also presents some drawbacks:
achieving reasonable levels of privacy is an open question, the coverage is dependent on the
user base and may be poor in some areas, some variables like vehicle counts are not directly
observable, and the market fragmentation means that agreements must be negotiated with
each company that collects GPS data (often gathered from different users).

Pipeline. All the algorithms and techniques we are about to present have been imple-
mented and deployed within the Mobile Millennium traffic information system [20]. Mobile
Millennium infers real-time traffic conditions using GPS measurements from drivers running
cell phone applications, taxicabs, and other mobile and static data sources. This system was
initially deployed in the San Francisco Bay area and later expanded to other locations such
as Sacramento, Stockholm, and Porto. Mobile Millennium is intended to work at the scale of
large metropolitan areas: the road network considered in this work is a real road network (a
large portion of the greater Bay Area, comprising 506,685 road links) and the data for this
work is collected from thousands of vehicles that generate millions of observations per day.
Furthermore, Mobile Millennium is a research platform and can be used with various models
of travel time. We have built upon Mobile Millennium to provide a statistical estimation
engine for travel time, and expanding it was a significant contribution of this work. In this
data-intensive task, the final output is a multi-stage pipeline with each of the stages being
responsible for a separate task. This traffic pipeline is decomposed in the following modules:

4For example, as of February 2014, the privacy policy of Google maps states: “We you use [Google Maps],
we may collect and process information about your actual location, like GPS signal sent by a mobile device.
We may also use various technologies to determine location, such as [WiFi and cell tower information]”.
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• An ingestion module that takes all the feeds and stores them in a database,

• A path inference module that reconstructs trajectories from GPS points,

• Various travel time modules that compute travel time estimates on the road network,

• A validation module that implements different metrics of travel times (mean square
error or log-likelihood for example).

Most of this code is available under an open source license, and the output has been deployed
as a web service5.

Scaling/Spark. While a lot of research has focused on a few road intersections, we have
decided to work from the outset at the scale of large city. This adds multiple scalability
challenges: (1) the data to process is substantially larger, and (2) estimation algorithms
need to scale to millions of variables, which is a hard challenge in Machine Learning in
general. As a consequence, we investigate the use of novel cloud computing frameworks that
let scientific users deploy code across hundreds of computers in a transparent way. We have
implemented some of our algorithms on top of the Spark computing framework [124]. After
some modifications to Spark, we were able to achieve massive throughput with low-latency
(near real-time), an elusive yet necessary goal for complex cyberphysical systems.

Existing systems. Up to now, researchers have mostly tackled traffic estimation by
focusing on the different subtasks of data collection, data filtering, road link congestion
detection, etc. Research is usually done by using synthetic input or considering a small,
controlled environment. Very few researchers have attempted to consider the complete task
of traffic estimation in a holistic manner. There are formidable engineering challenges in
building a reliable system for mass collection of GPS data, and enlisting enough users to
reach a critical mass. This is why fully integrated TIS have been mostly pioneered in the
transportation industry, which has developed systems that scale to the whole world and that
ingest thousands of observations per second. However, there has been no published attempt
to quantify the quality of the solutions offered by the industry. The terms of use generally
limit scientific investigation of the output provided to the public. Furthermore, companies
that collect such data are loathe to share it with researchers due to obvious legal and privacy
concerns. The only successful examples of full platforms developed in academia that we
are aware of are Cartel [59] and Mobile Millennium [64]. Researchers have made significant
strides in tackling each subtask individually. However, this focused approach does not tackle
integration and scalability issues that arise when one considers the whole pipeline. We hope
that this work will provide some insight as to the problems that are relevant to researchers
in the field.

Traffic estimation and control goes beyond the roads and the cars that circulate there-
upon. It involves complex, distributed computations that monitor the flow of cars (the
physical part of the process). Crucial to these computations is a sensing infrastructure that
infers the state of the vehicular network. This tight coupling between physical and logical

5http://traffic.berkeley.edu/navigatesf

http://traffic.berkeley.edu/navigatesf
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processes characterizes the overall system as a cyberphysical system. It is common in com-
puter science to assume that correctness is decoupled from performance: a slow but correct
program is annoying but eventually completes its task. This is not the case in a cyberphys-
ical system. The physics of the process change the state of the system while computations
are performed, because these changes happen concurrently, not sequentially, to the compu-
tational process. This is why performance and timeliness of the computations are such a
critical aspect.

1.2 Complexity of modeling traffic from GPS

observations

What sort of GPS data can be processed by the Mobile Millennium system? A datum of
GPS information contains a time stamp, a unique identifier for the driver or the trip, a
location encoded by latitude and longitude, and often some other elements such as heading,
speed, status (empty, en route, etc.). These additional attributes were usually found to be
too noisy to be used in a systematic fashion, and were not used. Figure 1.2.1 graphically
presents a subset of this probe data collected by Mobile Millennium.

Our final objective is to give timely and accurate information about travel times to
the user. We aim to develop a model of travel times that can give non-trivial, informative
statistical bounds on the travel times. This goal informs the complexity of the model that we
wish to build. In particular, we aim to develop models that capture significant correlations
in travel times between different road sections.

Temporal disparity. Existing GPS data is very heterogeneous, both in a spatial sense
and in a temporal sense (see Figure 1.2.2 and Figure 1.2.3). Some small portions of the
road network (the highways and the main arterials) concentrate most of the data. It is not
always clear if this also means that these portions also concentrate most of the traffic. This
GPS data is collected from various sources that were not designed for traffic analysis; hence
they may record the location of a vehicle at intervals up to three minutes. These very low
frequency collection schemes make the bulk of the data collected these days, and using them
for accurate traffic estimation remains a challenge. Furthermore, in the case of individual
drivers, in order to limit privacy intrusion and to save battery life, it is common to only
record the location of the vehicle during short intervals (a few minutes to an hour). There
is no control over when the GPS unit will record the trip. As a conclusion, we have access
to large amount of a low-frequency data, or to a small amount of high-frequency data. This
is why we will present two models for traffic that correspond to these two typical scenarios.

• A first scenario in which we only have high-frequency data (Scenario “A”).

• A second scenario in which we have large amounts of sparse GPS data (Scenario “B”).

In both cases, we want to work at the scale of the city, and we will highlight the contributions
towards scaling the problem to very large metropolis.
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Figure 1.2.1: An example of dataset available to Mobile Millennium [20] and processed by
the path inference filter [63]: taxicabs in San Francisco from the Cabspotting program [10].
Large circles in red show the position of the taxis at a given time and small dots (in black)
show past positions (during the last ten hours) of the taxi fleet. The position of each vehicle
is observed every minute.
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A B

Figure 1.2.2: Temporal distribution of trajectories from a typical source of data. All trajec-
tories are observed in small chunks. The vertical axis corresponds to the overall duration
of the chunk, and the horizontal axis corresponds to the sampling rate of the chunk. Most
data is programmatically generated at many intervals between 20 and 60 seconds, or at fixed
intervals (10, 60, 90, 120 seconds). Most of it is generated at large intervals (¿ 10 seconds).
Scale is omitted for confidentiality reasons. The data used in each of the two data scenarios
(“A” and “B”) is marked by an interval.

Spatial disparity. It is clear to any driver that all the roads do not bear the same
traffic demand. As can be seen in Figure 1.2.3, this difference is very large (by more than
four orders of magnitude). Highways bear the brunt of heavy traffic and are used almost
continuously day and night. Most of the roads however are part of the tertiary network in
the suburban areas and are used a few times each day or less. These roads seldom present
any congestion, but may have some busy intersections (such as around schools) that are hard
to predict a priori. Between these two extremes lies a rich variety of road configurations
with one, two or three lanes, stop signs, signaled lights, bus and bicycle lanes, etc. Any
model that aims at a reasonable level of accuracy must (1) be robust to a scarcity of data
and/or noisy data, and (2) not depend too much on prior knowledge of the road network as
it is always shifting or inaccurate. Bayesian statistical models provide a compelling solution
to address these two issues.

Our approach will focus on extracting structure from data. In the case of traffic, there
is a wealth of research focused on explaining observations based on first principles (more
on that later). Our data exploration will be motivated by the general physical principals
behind the phenomenon. However, it will not try to explain as much as predict the future or
the unobserved data. In particular, some very strong simplifying assumptions will be made,
and justified only by the accuracy of the prediction they let us make. These assumptions
are justified only in the light that they let us make reasonable predictions using limited
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Figure 1.2.3: The number of observations (GPS points projected to the road network) by
link, in decreasing order (normalized by the length of the link), for a full day, from a com-
mercial data provider. The exact scale is shifted for confidentiality reasons. The first 100
elements correspond to highways. They contain 30% of all observations and have a very high
observation density. In these situations, a fine-grained physical model is effective. For 90%
of the links (index greater than 103), we barely observe a few vehicles per day on each road
(spread-out suburbs), so a simple historical models will be the best we can hope for. For the
middle range, we have enough observations for a richer statistical model, but not enough for
a finer physical model.

computing resources.

1.3 Organization of the thesis and contributions

This thesis is organized as follows. This first chapter introduced the problem of estimating
traffic at scale and gave an overview of the data currently available for this task. The
following chapters present a framework for extracting travel information from GPS data.

GPS data can be very noisy and needs to be filtered and map-matched onto the map
before any use. This is a challenging issue due to the long intervals between each observation.
Chapter 2 presents an algorithm to map-match GPS data from a very wide range of latencies
and for a variety of computation/accuracy trade-offs.

Contribution: The chapter formalizes the problem of reconstructing trajectories from
high to low-frequency observations, and presents an algorithm, called the Path Inference
Filter, to do that.

Publications: [60,61]
Chapter 3 considers the case of large amounts of low-latency data, which is representative
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of datasets currently available. In this case, the accuracy of the estimation problem is mostly
bound by computation times. If some further independence assumptions are made about
travel time distributions, we can build a model that can scale to hundreds of machines.

Contribution: Chapter 2 presents a model for travel times that can scale linearly to
massive inputs of sparse observations and very large road networks. It uses the Spark
programming framework [124] to distribute computations on a large cluster of computers.
Our implementation can update traffic estimates from hundreds of thousands of observations
in a few seconds. This algorithm is the core of an estimation pipeline deployed inside Mobile
Millennium. This engine gathers GPS observations from participating vehicles and produces
estimates of the travel times on the road network. As we will see, our framework can
accommodate any distribution of travel times, provided they expose a few functionalities
(sampling, parameter estimation from observations). This should be of interest to the traffic
researchers and practitioners since our framework solves the issues related to using raw GPS
samples, and let researchers build traffic estimates at a very large scale with low latency. A
probabilistic model of travel times on the arterial network is presented along with an online
Expectation Maximization (EM) algorithm for learning the parameters of this model (Section
3.2).

Publications: [62,64].
Chapter 4 makes different assumptions and explores the scenario in which a small amount

of high-frequency observations are available to the researcher. In this case, there is not
enough data in real-time to achieve real-time traffic estimation. However, one can build
a good baseline/historical model of travel times that takes into account the correlation of
travel time between different segments of the road network. We will motivate this model
with a careful look at the available data.

Contribution: The chapter presents a model for travel time that uses privacy-aware GPS
data, and that provides distributions of travel times for any path in the road network. We
also present an efficient inference algorithm based on Fast Fourier Transform to compute
these travel times. Our implementation can work with long paths (comprising hundreds of
road segments) on a large road network with more than half a million road links.

All the models considered so far have a reasonable size (less than a million variables), for
which inference and learning algorithms can be derived by adapting traditional techniques.
As the size of the problems at hand increases to truly enormous dimensions, some radically
different techniques may be required. Learning the Gaussian model presented in Chapter 4
requires evaluating the determinant of a very large matrix, which is a significant problem
in linear algebra for very large matrices. Chapter 5 presents a new algorithm that can
compute the determinant of a class of matrices (diagonally dominant matrices) in expected
near-linear time, which is a significant progress compared to the traditional intuition that
the computation time for the determinant is cubic with respect to the dimension.

Contribution: The chapter presents a number of algorithm for approximating the loga-
rithm of the determinant of real, symmetric, diagonally dominant matrices. More specifi-
cally, given a matrix A of size n × n with m non-zero coefficients, an ε−approximation of
n−1 log detA can be computed with high probability in expected time
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O
(
mε−2 log3 n log

(
κA
ε

)
log log8 n

)
, where κA is the condition number of A.

Publication: This part will be submitted to the SIAM Journal of Matrix Analysis and
Applications.

Finally, we will conclude in Chapter 6.
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Chapter 2

A map-matching algorithm for GPS
data

Pourquoi donc, reprit le Sirien, citez-vous un
certain Aristote en grec? C’est, répliqua le
savant, qu’il faut bien citer ce qu’on ne
comprend point du tout dans la langue qu’on
entend le moins.

Voltaire, Micromégas

2.1 Introduction

GPS receivers have enjoyed a widespread use in transportation and they are rapidly becoming
a commodity. They offer unique capabilities for tracking fleets of vehicles (for companies),
and routing and navigation (for individuals). These receivers are usually attached to a car
or a truck, also called a probe vehicle, and they relay information to a base station using the
data channels of cellphone networks (3G and 4G in particular).

One of the common problems which occurs when dealing with GPS traces is the correct
mapping of these observations to the road network, and the reconstruction of the trajectory
of the vehicle. We present a new class of algorithms, called the path inference filter, that
solves this problem in a principled and efficient way. Specific instantiations of this algorithm
have been deployed as part of the Mobile Millennium system, which is a traffic estimation
and prediction system developed at the University of California [20].

A typical datum provided by a probe vehicle includes an identifier of the vehicle, a
(noisy) position and a timestamp1. The two most important characteristics of GPS data
for traffic estimation purposes are the GPS localization accuracy and the sampling strategy

1The experiments in this dissertation use GPS observations only. However, nothing prevents the appli-
cation of the algorithms presented in this dissertation to other types of localized data.
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followed by the probe vehicle. In order to reduce power consumption or transmission costs,
probe vehicles do not continuously report their location to the base station. The probe data
currently available are generated using a combination of the two following strategies:

• Geographical sampling : GPS probes are programmed to send information in the vicinity
of virtual landmarks [78]. This concept was popularized by Nokia under the term
Virtual Trip Line [58]. These landmarks are usually laid over some predetermined
route followed by drivers.

• Temporal sampling : GPS probes send their position at fixed rate. The critical factor
is then the temporal resolution of the probe data. A low temporal resolution carries
some uncertainty as to which trajectory was followed. A high temporal resolution
gives access to the complete and precise trajectory of the vehicle. However, the device
usually consumes more power and communication bandwidth.

In the case of a high temporal resolution (typically, a frequency greater than one observation
per second), some highly successful methods have been developed for continuous estimation
[37, 84, 111]. However, most data collected at large scale today is generated by commercial
fleet vehicles. It is primarily used for tracking the vehicles and usually has a low temporal
resolution (1 to 2 minutes) [2, 4, 10, 108]. In the span of a minute, a vehicle in a city can
cover several blocks. Therefore, information on the precise path followed by the vehicle
is lost. Furthermore, due to GPS localization errors, recovering the location of a vehicle
that just sent an observation is a non trivial task: there are usually several roads that
could be compatible with any given GPS observation. Simple deterministic algorithms to
reconstruct trajectories fail due to misprojection (Figure 2.1.3) or shortcuts (Figure 2.1.2).
Such shortcomings have motivated our search for a principled approach that jointly considers
the mapping of observations to the network and the reconstruction of the trajectory.

The problem of mapping data points onto a map can be traced back to 1980 [21]. Re-
searchers started systematic studies after the introduction of the GPS system to civilian
applications in the 1990s [93,114]. These early approaches followed a geometric perspective,
associating each observation datum to some point in the network [119]. Later, this projection
technique was refined to use more information such as heading and road curvature. This
greedy matching, however, leads to poor trajectory reconstruction since it does not consider
the path leading up to a point [52,96,123]. New deterministic algorithms emerged to directly
match partial trajectories to the road by using the topology of the network [45] and topolog-
ical metrics based on the Fréchet distance [27, 117]. These deterministic algorithms cannot
readily cope with ambiguous observations [84], and were soon expanded into probabilistic
frameworks. A number of implementations were explored: particle filters [48, 91], Kalman
filters [89], Hidden Markov Models [23]2, and less mainstream approaches based on Belief

2Note that “probabilistic” models, as well as most of the “advanced” models (Kalman Filtering, Particle
Filtering, Hidden Markov Models) fall under the general umbrella of Dynamic Bayesian Filters, presented
in great detail in [111]. As such, they deserve a common theoretical treatment, and in particular all suffer
from the same pitfalls detailed in Section 2.3.
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Theory [42] and Fuzzy Logic [107]. We refer the reader to the exhaustive review by Quddus
et al. [92] for a more comprehensive history of map-matching.

Two types of information are missing in a sequence of GPS readings: the exact location
of the vehicle on the road network when the observation was emitted, and the path followed
from the previous location to the new location. These problems are correlated. The afore-
mentioned approaches focus on high-frequency sampling observations, for which the path
followed is extremely short (less than a few hundred meters, with very few intersections).
In this context, there is usually a dominant path that starts from a well-defined point, and
Bayesian filters accurately reconstruct paths from observations [48,89,111]. When sampling
rates are lower and observed points are further apart, however, a large number of paths
are possible between two points. Researchers have recently focused on efficiently identifying
these correct paths and have separated the joint problem of finding the paths and finding
the projections into two distinct problems. The first problem is path identification and the
second step is projection matching [23,44,110,123,131]. Some interesting trajectories mixing
points and paths that use a voting scheme have also recently been proposed [123]. Our filter
aims at solving the two problems at the same time, by considering a single unified notion of
trajectory.

The path inference filter is a probabilistic framework that aims at recovering trajectories
and road positions from low-frequency probe data in real time, and in a computationally
efficient manner. As will be shown, the performance of the filter degrades gracefully as the
sampling frequency decreases, and it can be tuned to different scenarios (such as real time
estimation with limited computing power or offline, high accuracy estimation).

The filter is justified from the Bayesian perspective of the noisy channel and falls into the
general class of Conditional Random Fields [72]. Our framework can be decomposed into
the following steps:

• Map matching : each GPS measurement from the input is projected onto a set of
possible candidate states on the road network.

• Path discovery: admissible paths are computed between pairs of candidate points on
the road network.

• Filtering : probabilities are assigned to the paths and the points using both a stochastic
model for the vehicle dynamics and probabilistic driver preferences learned from data.

The path inference filter presents a number of compelling advantages over the work found
in the current literature:

1. The approach presents a general framework grounded in established statistical theory
that encompasses, as special cases, most techniques presented as “geometric”, “topo-
logical” or “probabilistic”. In particular, it combines information about paths, points
and network topology in a single unified notion of trajectory.
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Figure 2.1.1: Dataflow of the path inference filter. The filter takes GPS measurements as
inputs, and returns probability distributions over paths and points.

2. Nearly all work on Map Matching is segmented into (and presents results for) either
high-frequency or low-frequency sampling. The path inference filter performs as well
as the current state-of-the-art approaches for sampling rates less than 30 seconds, and
improves upon the state of the art [123,131] by a factor of more than 10% for sampling
intervals greater than 60 seconds3. We also analyze failure cases and we show that the
output provided by the path inference filter is always “close” to the true output for
some metric.

3. As will be seen in Section 2.3, most existing approaches (which are based on Dynamic
Bayesian Networks) do not work well at lower frequencies due to the selection bias prob-
lem. Our work directly addresses this problem by performing inference on a Random
Field.

4. The path inference filter can be used with complex path models such as those used
in [23] and [44]. In the present discussion, we restrict ourselves to a class of models (the
exponential family distributions) that is rich enough to provide insight on the driving
patterns of the vehicles. Furthermore, when using this class of models, the learning
of new parameters leads to a convex problem formulation that is fast to solve. These

3Performance comparisons are complicated by the lack of a single agreed-upon benchmark dataset.
Nevertheless, the city we study is complex enough to compare favorably with cities studied with other
works.
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t=1

t=2

t=3

Figure 2.1.2: Example of failure in which an intuitive algorithm projects each GPS mea-
surement to the closest link. The raw GPS measurements are the triangles, the actual true
trajectory is the dashed line, and the reconstructed trajectory is the continuous line. Due
to noise in the observation, the point at t = 2 is closer to the orthogonal road and forces
the algorithm to add a left turn, while the vehicle is actually going straight. This problem
is frequently observed for GPS data in cities. The path inference filter provides one solution
to this problem.

parameters can be learned using standard Machine Learning algorithms, even when no
ground truth is available.

5. With careful engineering, it is possible to achieve high throughput on large-scale net-
works. Our reference implementation achieves an average throughput of hundreds of
GPS observations per second on a single core in real time. Furthermore, the algorithm
scales well on multiple cores and has achieved average throughput of several thousands
of points per second on a multicore architecture.

Algorithms often need to trade off accuracy for timeliness, and are considered either “local”
(greedy) or “global” (accumulating some number of points before returning an answer) [123].
The path inference filter is designed to work across the full spectrum of accuracy versus
latency. As we will show, we can still achieve good accuracy by delaying computations by
only one or two time steps. We will also present an offline variation of the algorithm that
performs full trajectory reconstruction with high throughput (at the expense of latency).

2.2 Map-matching and path discovery

The road network is described as a directed graph N = (V , E) in which the nodes are the
road intersections and the edges are the roads, referred to in the text as the links of the road
network. Each link is endowed with a number of physical attributes (link geometry, speed
limit, number of lanes, type of road, etc.). Since each road link is directed, there will be
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Figure 2.1.3: Example of failure when trying to minimize the path length between a sequence
of points. The raw observations are the triangles, the actual true trajectory is the dashed
line, and the reconstructed trajectory is the continuous line. The circles are possible locations
of the vehicle corresponding to the observations. The hashed circles are the states chosen by
this reconstruction algorithm. Due to GPS errors that induce problems explained in Figure
2.1.2, we must consider point projections on all links within a certain distance from the
observed GPS points. However, the path computed by a shortest path algorithm may not
correspond to the true trajectory. Note how, for t = 2 and t = 3, the wrong link and the
wrong states are elected to reconstruct the trajectory.

other road links pointing at the start of that road link, and a set of road links starting at
the end of that road link: given a link of the road network, the links into which a vehicle can
travel will be called outgoing links, and the links from which it can come will be called the
incoming links. Every location on the road network is completely specified by a given link l
and offset o on this link4. The offset is a non-negative real number bounded by the length of
the corresponding link, and represents the position on the link. At any time, the state x of a
vehicle consists of its location on the road network and some other optional information such
as speed, or heading. For our example we consider that the state is simply the location on
one of the road links (which are directed). Additional information such as speed, heading,
lane, etc. can easily be incorporated into the state:

x = (l, o)

Furthermore, for the remainder of the chapter we consider trajectory inference for a single
probe vehicle.

4The complex intersections are not given special consideration. Adding some specific features such as
described in [127] would be straightforward.
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2.2.1 From GPS points to discrete vehicle states

The points are projected to the road following a Bayesian formulation. Consider a GPS
observation g. We study the problem of projecting it to the road network according to our
knowledge of how this observation was generated. This generation process is represented
by a probability distribution ω (g|x) that, given a state x, returns a probability distribution
over all possible GPS observations g. Such distributions ω will be described in Section 2.3.4.
Additionally, we may have some prior knowledge over the state of the vehicle. For example,
some links may be visited more often than others, and some positions on links may be more
frequent, such as when vehicles accumulate at the intersections. This knowledge can be
encoded in a prior distribution Ω (x). Under this general setting, the state of a vehicle, given
a GPS observation, can be computed using Bayes rule:

π (x|g) ∝ ω (g|x) Ω (x) (2.2.1)

The letter π will define general probabilities, and their dependency on variables will always be
included. This probability distribution is defined up to a scaling factor in order to integrate
to 1. This posterior distribution is usually complicated, owing to the mixed nature of the
state. The state space is the product of a discrete space over the links and a continuous
space over the link offsets. Instead of representing it in closed form, some sampled values are
considered: for each link li, a finite number of states from this link are elected to represent
the posterior distribution of the states on this link π (o|g, l = li). A first way of accomplishing
this task is to grid the state space of each link, as illustrated in Figure 3.2.2. This strategy
is robust against the observation errors described in Section 2.2.2, but it introduces a large
number of states to consider. Furthermore, when new GPS values are observed every minute,
the vehicle can move quite extensively between updates. The grid step is usually small
compared to the distance traveled. Instead of defining a coarse grid over each link, another
approach is to use some most likely state on each link. Since our state is the pair of a link
and an offset on this link, this corresponds to selecting the most likely offset on each state:

∀li, o∗iposterior = argmax
o

π (o|g, l = li)

In practice, the probability distribution π (x|g) decays rapidly, and can be considered
overwhelmingly small beyond a certain distance from the observation g. Links located beyond
a certain radius need not be considered valid projection links, and may be discarded. In our
experiments, we found that a value of 80 meters would give good results.

In the rest of this chapter, the boldface symbol x will denote a finite collection of states
associated with a GPS observation g that we will use to represent the posterior distribution
π (x|g), and the integer I will denote its cardinality: x = (xi)1:I . These points are called
candidate state projections for the GPS measurement g. These discrete points will then
be linked together through trajectory information that takes into account the trajectory
and the dynamics of the vehicle. We now mention a few important points for a practical
implementation.
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State-space gridding

(Most likely measure-
ment prior)(Most likely posterior)

Figure 2.2.1: Example of a measurement g on a link and two strategies to associate state
projections to that measurement on a particular link (gridding and most likely location).
The GPS measurement is the triangle denoted g. For this particular measurement, the
observation distribution ω (x|g) and the posterior distribution π (x|g) are also represented.
When gridding, we select a number of states x1, · · ·xI spanning each link at regular intervals.
This allows us to use the posterior distribution and have a more precise distribution over the
location of the vehicle. However, it is more expensive to compute. Another strategy is to
consider a single point at the most probable offset x∗post according to the posterior distribution
π (x|g). However, this location depends on the prior, which is usually not available at this
stage (since the prior depends on the location of past and future points, for which we do not
also know the location). A simple approximation is to consider the most likely point x∗obs

according to the observation distribution.



CHAPTER 2. A MAP-MATCHING ALGORITHM FOR GPS DATA 20

A Bayesian formulation requires that we endow the state x with a prior distribution
Ω (x) that expresses our knowledge about the distribution of points on a link. When no such
information is available, since the offset is continuous and bounded on a segment, a natural
non-informative prior is the uniform distribution over offsets: Ω ∼ U ([0, length (l)]). In this
case, maximizing the posterior is equivalent to maximizing the conditional distribution from
the generative model:

∀li, o∗iobservation = argmaxoω (g|x = (o, li)) (2.2.2)

Having projected GPS points into discrete points on the road network, we now turn our
attention to connecting these points by paths in order to form trajectories.

2.2.2 From discrete vehicle states to trajectories

At each time step t, a GPS point gt (originating from a single vehicle) is observed. This GPS
point is then projected onto I t different candidate states denoted xt = xt1 · · ·xtIt . Because
this set of projections is finite, there is only a (small) finite number J t of paths that a vehicle
can have taken while moving from some state xti ∈ xt to some state xt+1

i′ ∈ xt+1. We denote
the set of candidate paths between the observation gt and the next observation gt+1 by pt :

pt =
(
ptj
)
j=1:Jt

Each path ptj goes from one of the projection states xti of gt to a projection state xt+1
i′ of gt+1.

There may be multiple pairs of states to consider, and between each pair of states, there
are typically several paths available (see Figure 2.2.2). Lastly, a trajectory is defined by the
succession of states and paths, starting and ending with a state:

τ = x1p1x2 · · · pt−1xt

where x1 is one element of x1, p1 of p1, and so on.
Due to speed limits leading to lower bounds on achievable travel times on the network,

there is only a finite number of paths a vehicle can take during a time interval ∆t. Such
paths can be computed using standard graph search algorithms. The depth of the search is
bounded by the maximum distance a vehicle can travel on the network at a speed vmax within
the time interval between each observation. An algorithm that performs well in practice is
the A* algorithm [49], a common graph search algorithm that makes use of a heuristic to
guide its search. The cost metric we use here is the expected travel time on each link, and
the heuristic is the shortest geographical distance. In order to ensure the correctness of
the A* algorithm, the heuristic has to verify some admissibility criteria. In practice, the
approximate cost computed by the heuristic has to be lower than the true cost metric. We
scale the shortest geographical distance by the inverse of the maximum speed limit of our
network (70 m.p.h.), which makes the heuristic admissible.
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t=1

t=2

(a) (b)

(c-1)

(c-3)

(c-2)

(c-4)

Figure 2.2.2: Example of path exploration between two observations. The true trajectory
and two associated GPS observations are shown in Figure (a). Figure (b) shows the set of
candidate projections associated with each observation. A path discovery algorithm com-
putes every acceptable path between between each pair of candidate projections. The four
figures (c-1) to (c-4) at the bottom show a few examples of such computed paths.
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t=1

t=2

t=3

t=4

Figure 2.2.3: Example of failure when observing strict physical consistency: due to the ob-
servation noise, the observation (3) appears physically behind (2) on the same link. Without
considering backward paths, the most plausible explanation is that the vehicle performed a
complete loop around the neighboring block.

The case of backward paths. It is convenient and realistic to assume that a vehicle
always drives forward, i.e. in the same direction of a link5. In our notation, a vehicle enters
a link at offset 0, drives along the link following a non-decreasing offset, and exits the link
when the offset value reaches the total length of the link. However, due to GPS noise, the
most likely state projection of a vehicle waiting at a red light may appear to go backward,
as shown in Figure 2.2.3. This leads to incorrect transitions if we assume that paths only go
forward on a link. While this issue could be readily solved if we knew the spot speed of the
vehicle, we cannot assume this information in our case. Three approaches to solve this issue
are discussed, depending on the application:

1. It is possible to keep a single state for each link (the most likely) and explore some
backward paths. These paths are assumed to go backward because of observation
noise. This solution provides connected states at the expense of physical consistency :
all the measurements are correctly projected to their most likely location, but the
trajectories themselves are not physically acceptable. This is useful for applications
that do not require connectedness between pairs of states, for example when computing
a distribution of the density of probe data per link.

2. It is also possible to disallow backward paths and consider multiple states per link,
such as a grid over the state space. A vehicle never goes backward, and in this case the
filter can generally account for the vehicle not moving by associating the same state to
successive observations. All the trajectories are physically consistent and the posterior

5Reverse driving is in some cases even illegal. For example, the laws of Glendale, Arizona, prohibit
reverse driving.
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state density is the same as the probability density of the most likely states, but is
more burdensome from a computational perspective (the number of paths to consider
grows quadratically with the number of states).

3. Finally it is possible to disallow backward paths and use a sparse number of states. The
path connectivity issue is solved using some heuristics. Our implementation creates a
new state projection on a link l using the following approach:
Given a new observation g, and its most likely state projection x∗ = (l, o∗):

a) If no projection for the link l was found at the previous time step, return x∗

b) If such a projection xbefore = (l, obefore) existed, return x = (l,max (obefore, o
∗))

With this heuristic, all the points will be well connected, but the density of the states
will not be the same as the density of the most likely reconstructed states.

In summary, the first solution is better for density estimations and the third approach
works better for travel time estimations. The second option is currently only used for
high-frequency offline filtering, for which paths are short, and for which more expensive
computations is an acceptable cost.

Handling errors. Maps may contains some inaccuracies, and may not cover all the
possible driving patterns. Two errors were found to have a serious effect on the performance
of the filter:

• Out of network driving: This usually occurs in parking lots or commercials driveways.

• Topological errors: Some links may be missing on the base map, or one-way roads may
have changed to two-way roads. These situations are handled by running flow analysis
on the trajectory graph. For every new incoming GPS point, after computing the paths
and states, it is checked if any candidate position of the first point of the trajectory is
reachable from any candidate position on the latest incoming point, or equivalently if
the trajectory graph has a positive flow. The set of state projections of an observation
may end up being disconnected from the start point even if at every step, there exists
a set of paths between each points. In this situation, the probability model will return
a probability of 0 (non-physical trajectories) for any trajectory. If a point becomes
unreachable from the start point, the trajectory is broken, and restarted again from
this point. Trajectory breaks were infrequent (less than a dozen for our dataset),
and a visual inspection showed that the vehicle was not following the topology of the
network and instead made U-turns or breached through one-way roads. Although we
have not implemented these extensions, it is very natural to express the map errors
in the probabilistic framework. These extensions are discussed in Sections 2.3.5 and
2.3.4.
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The GPS also has a complex error model and may return some location estimates completely
off the trajectory. We found these errors to appear at random, in an uncorrelated fashion.
The reference implementation detects these errors during the flow analysis with the following
heuristic: consider a sequence of points g(1), g(2), g(3). If g(1) cannot reach g(2), then compute
the reachability of g(3): if g(3) is reachable from g(1), then the point g(2) is an outlier and is
dropped. If g(3) is not reachable from g(1), we consider the trajectory is breached between
g(1) and g(2), and we restart the flow analysis from g(2). The reference implementation offers
an elegant recursive implementation.

2.3 Discrete filtering using a Conditional Random

Field

In the previous section, we reduced the trajectory reconstruction problem to a discrete selec-
tion problem between sets of candidate projection points, interleaved with sets of candidate
paths. A probabilistic framework can now be applied to infer a reconstructed trajectory
τ or probability distributions over candidate states and candidate paths. Without further
assumptions, one would have to enumerate and compute probabilities for every possible tra-
jectory. This is not possible for long sequences of observations, as the number of possible
trajectories grows exponentially with the number of observations chained together. By as-
suming additional independence relations, we turn this intractable inference problem into a
tractable one.

2.3.1 Conditional Random Fields to weight trajectories

The observation model provides the joint distribution of a state on the road network given an
observation. We have described the noisy generative model for the observations in Section
2.2.1. Assuming that the vehicle is at a point x, a GPS observation g will be observed
according to a model ω that describes a noisy observation channel. The value of g only
depends on the state of the vehicle, i.e. the model reads ω (g|x). For every time step t,
assuming that the vehicle is at the location xt, a GPS observation gt is created according to
the distribution ω (gt|xt).

Additionally, we endow the set of all possible paths on the road network with a probability
distribution. The transition model η describes the preference of a driver for a particular path.
In probabilistic terms, it provides a distribution η (p) defined over all possible paths p across
the road network. This distribution is not a distribution over actually observed paths as
much as a model of the preferences of the driver when given the choice between several
options.

We introduce the following Markov assumptions.

• Given a start state xstart and an end state xend, the path p followed by the vehicle
between these two points will only depend on the start state, the end state and the



CHAPTER 2. A MAP-MATCHING ALGORITHM FOR GPS DATA 25

path itself. In particular, it will not depend on previous paths or future paths.

• Consider a state x followed by a path pnext and preceded by a path pprevious, and asso-
ciated to a GPS measurement g. Then the paths taken by the vehicle are independent
from the GPS measurement g if the state x is known. In other words, the GPS mea-
surement does not add subsequent information given the knowledge of the state of the
vehicle.

Since a state is composed of an offset and a link, a path is completely determined by a start
state, an end state and a list of links in between. Conditional on the start state and end
state, the number of paths between these points is finite (it is the number of link paths that
join the start link and the end link).

Not every path is compatible with given start point and end point: the path must start
at the start state and must end at the end state. We formally express the compatibility
between a state x and the start state of a path p with the compatibility function δ:

δ (x, p) =

{
1 if the path p starts at point x

0 otherwise

Similarly, we introduce the compatibility function δ̄ to express the agreement between a
state and the end state of a path:

δ̄ (p, x) =

{
1 if the path p ends at point x

0 otherwise

Given a sequence of observations g1:T = g1 · · · gT and an associated trajectory τ =
x1p1 · · · xT , we define the unnormalized score, or potential, of the trajectory as:

φ
(
τ |g1:T

)
=

[
T−1∏
t=1

ω
(
gt|xt

)
δ
(
xt, pt

)
η
(
pt
)
δ̄
(
pt, xt+1

)]
ω
(
gT |xT

)
(2.3.1)

The non-negative function φ is called the potential function. A trajectory τ is said to be
a compatible trajectory with the observation sequence g1:T if φ

(
τ |g1:T

)
> 0. When properly

scaled, the potential φ defines a probability distribution over all possible trajectories, given
a sequence of observations:

π
(
τ |g1:T

)
=
φ
(
τ |g1:T

)
Z

(2.3.2)

The variable Z, called the partition function, is the sum of the potentials over all the com-
patible trajectories:

Z =
∑
τ

φ
(
τ |g1:T

)
We have combined the observation model ω and the transition model η into a single

potential function φ, which defines an unnormalized distribution over all trajectories. Such
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Figure 2.3.1: A Dynamic Bayesian Network (DBN) commonly used to model the trajectory
reconstruction problem. The arrows indicate the directed dependencies of the variables. The
GPS observations gt are generated from states xt. The unobserved paths pt are generated
from a state xt, following a transition probability distribution π̂ (p|x). The transition from
a path pt to a state xt follows the transition model π̂ (x|p).

  

Figure 2.3.2: Illustration of the Conditional Random Field defined over a trajectory τ =
x1p1x2p2x3 and a sequence of observations g1:3. The gray nodes indicate the observed values.
The solid lines indicate the factors between the variables: ω (gt|xt) between a state xt and
an observation gt, δ (xt, pt) η (pt) between a state xt and a path pt and δ̄ (pt, xt+1) between a
path pt and a subsequent state xt+1.

a probabilistic framework is called a Conditional Random Field (CRF) [72]. A CRF is an
undirected graphical model which is defined as the unnormalized product of factors over
cliques of factors (see Figure 2.3.2). There can be an exponentially large number of paths,
so the partition function cannot be computed by simply summing the value of φ over every
possible trajectory. As will be seen in Section 2.4, the value of Z needs to be computed
only during the training phase. Furthermore it can be computed efficiently using dynamic
programming.

The case against the Hidden Markov Model approach. The classical approach
to filtering in the context of trajectories is based on Hidden Markov Models (HMMs), or
their generalization, Dynamic Bayesian Networks (DBNs) [87]: a sequence of states and
trajectories form a trajectory, and the coupling of trajectories and states is done using
transition models π̂ (x|p) and π̂ (p|x). See Figure 2.3.1 for a representation.

This results in a chain-structured directed probabilistic graphical model in which the
path variables pt are unobserved. Depending on the specifics of the transition models, π̂ (x|p)
and π̂ (p|x), probabilistic inference has been done with Kalman filters [89, 91], the forward
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Figure 2.3.3: Example of a failure case when using a Hidden Markov Model: the solid black
path will be favored over all the other paths. The paths p1

i connect the states x1
j to x2

k. See
section II for more details on the notations.

algorithm or the Viterbi algorithm [23,24], or particle filters [48].
Hidden Markov Model representations, however, suffer from the selection bias problem,

first noted in the labeling of words sequences [72], which makes them not the best fit for
solving path inference problems. Consider the example trajectory τ = x1p1x2 observed in
our data, represented in Figure 2.3.3. For clarity, we consider only two states x1

1 and x1
2

associated with the GPS reading g1 and a single state x2
1 associated with g2. The paths(

p1
j

)
j

between x1 and x2 may either be the lone path p1
1 from x1

1 to x2
1 that allows a vehicle

to cross the Golden Gate Park, or one of the many paths between Cabrillo Street and Fulton
Street that go from x1

2 to x1, including p1
3 and p1

2. In the HMM representation, the transition
probabilities must sum to 1 when conditioned on a starting point. Since there is a single
path from x1

2 to x2, the probability of taking this path from the state x1
1 will be π̂ (p1

1|x1
1) = 1

so the overall probability of this path is π̂ (p1
1|g1) = π̂ (x1

1|g1). Consider now the paths from
x1

2 to x2
1: a lot of these paths will have a similar weight, since they correspond to different

turns and across the lattice of roads. For each path p amongst these N paths of similar
weight, Bayes assumption implies π̂ (p|x1

2) ≈ 1
N

so the overall probability of this path is
π̂ (p|g1) ≈ 1

N
π̂ (x1

2|g1). In this case, N can be large enough that π̂ (p1
1|g1) ≥ π̂ (p|g1), and the

remote path will be selected as the most likely path.
Due to their structures, all HMM models will be biased towards states that have the least

expansions. In the case of a road network, this can be pathological. In particular, the HMM
assumption will carry the effect of the selection bias as long as there are long disconnected
segments of road. This can be particularly troublesome in the case of road networks since
HMM models will end up being forced to assign too much weight to a highway (which
is highly disconnected) and not enough to the road network alongside the highway. Our
model, which is based on Conditional Random Fields, does not have this problem since
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the renormalization happens just once and is over all paths from start to end, rather than
renormalizing for every single state transition independently.

Efficient filtering algorithms. Using the probabilistic framework of the CRF, we wish
to infer:

• the most likely trajectory τ :

τ ∗ = argmax
τ

π
(
τ |g1:T

)
(2.3.3)

• the posterior distributions over the elements of the trajectory, i.e. the conditional
marginals π

(
xt|g1:T

)
and π

(
pt|g1:T

)
As will be seen, both elements can be computed without having to obtain the partition
function Z. The solution to both problems is a particular case of the Junction Tree algorithm
[87] and can be computed in time complexity linear in the time horizon by using a dynamic
programing formulation. Computing the most likely trajectory is a particular instantiation
of a standard dynamic programing algorithm called the Viterbi algorithm [43]. Using a
classic Machine Learning algorithm for chain-structured junction trees (the forward-backward
algorithm [25, 101]), all the conditional marginals can be computed in two passes over the
variables. In the next section, we detail the justification for the Viterbi algorithm and in
Section 2.3.3 we describe an efficient implementation of the forward-backward algorithm in
the context of this application.

2.3.2 Finding the most likely path

For the rest of this section, we fix a sequence of observations g1:T . For each observation
gt, we consider a set of candidate state projections xt. At each time step t ∈ [1 · · ·T − 1],
we consider a set of paths pt, so that each path pt from pt starts from some state xt ∈ xt

and ends at some state xt+1 ∈ xt+1. We will consider the set ς of valid trajectories in the
Cartesian space defined by these projections and these paths:

ς =

τ = x1p1 · · · pT−1xT |

xt ∈ xt

pt ∈ pt

δ̄ (xt, pt) = 1
δ (pt, xt+1) = 1


In particular, if I t is the number of candidate states associated with gt (i.e. the cardinal of
xt) and J t is the number of candidate paths in pt, then there are at most

∏T
1 I

t
∏T−1

1 J t

possible trajectories to consider. We will see, however, that most likely trajectory τ ∗ can be
computed in O (TI∗J∗) computations, with I∗ = maxt I

t and J∗ = maxt J
t.

The partition function Z does not depend on the current trajectory τ and need not be
computed when solving Equation 2.3.3:

τ ∗ = argmax
τ∈ς

π
(
τ |g1:T

)
= argmax

τ∈ς
φ
(
τ |g1:T

)
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Call φ∗
(
g1:T

)
the maximum value over all the potentials of the trajectories compatible

with the observations g1:T :
φ∗
(
g1:T

)
= max

τ∈ς
φ
(
τ |g1:T

)
(2.3.4)

The trajectory τ that realizes this maximum value is found by tracing back the compu-
tations. For example, some pointers to the intermediate partial trajectories can be stored
to trace back the complete trajectory, as done in the referring implementation [11]. This
is why we will only consider the computation of this maximum. The function φ depends
on the probability distributions ω and η, left undefined so far. These distributions will be
presented in depth in Sections 2.3.4 and 2.3.5.

It is useful to introduce notation related to a partial trajectory. Call τ 1:t the partial
trajectory until time step t:

τ 1:t = x1p1x2p2 · · ·xt

For a partial trajectory, we define some partial potentials φ (τ 1:t|g1:t) that only depend on
the observations seen so far:

φ
(
τ 1:t|g1:t

)
= ω

(
g1|x1

) t−1∏
t′=1

δ
(
xt
′
, pt
′
)
η
(
pt
′
)

·δ̄
(
pt
′
, xt

′+1
)
ω
(
gt
′+1|xt′+1

)
(2.3.5)

For each time step t, given a state index i ∈ [1, I t] we introduce the potential function
for trajectories that end at the state xti:

φti = max
τ1:t=x1p1··· .xt−1pt−1xti

φ
(
τ 1:t|g1:t

)
One sees:

φ∗ = max
i∈[1,IT ]

φTi

The partial potentials defined in Equation (2.3.5) follow an inductive identity:

φ1
i = ω

(
g1|xti

)
∀t, φt+1

i = max
i′ ∈ [1, I t]
j ∈ [1, J t]

[
φti′δ

(
xti′ , p

t
j

)
η
(
ptj
)
δ̄
(
ptj, x

t+1
i

)
ω
(
gt+1|xt+1

i

)]
(2.3.6)

By using this identity, the maximum potential φ∗ can be computed efficiently from the
partial maximum potentials φti. The computation of the trajectory that realizes this max-
imum potential ensues by tracing back the computation to find which partial trajectory
realized φti for each step t.
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t=1

t=2

t=3

T=4
(Unseen
so far)

Figure 2.3.4: Example of case handled by lagged smoothing which disambiguates the results
provided by tracking. An observation is available close to an exit ramp of a highway, for
which the algorithm has to decide if it corresponds to the vehicle exiting the highway. Lagged
smoothing analyzes subsequent points in the trajectory and can disambiguate the case.

2.3.3 Trajectory filtering and smoothing

We now turn our attention to the problem of computing the marginals of the posterior
distributions over the trajectories, i.e. the probability distributions π

(
xt|g1:T

)
and π

(
pt|g1:T

)
for all t. We introduce some additional notation to simplify the subsequent derivations. The
posterior probability q̄ti of the vehicle being at the state xti ∈ xt at time t, given all the
observations g1:T of the trajectory, is defined as:

qti ∝ π
(
xti|g1:T

)
=

1

Z

∑
τ=x1···pt−1xtip

t···xT
φ
(
τ |g1:T

)
The operator ∝ indicates that this distribution is defined up to some scaling factor, which
does not depend on x or p (but may depend on g1:T ). Indeed, we are interested in the
probabilistic weight of a state xti relative to the other possible states xti′ at the state time
t (and not to the actual, unscaled value of π

(
xti|g1:T

)
). This is why we consider (q̄ti)i as a

choice between a (finite) set of discrete variables, one choice per possible state xti. A natural
choice is to scale the distribution q̄ti so that the probabilistic weight of all possibilities is
equal to 1: ∑

1≤i≤It
q̄ti = 1

From a practical perspective, q̄t can be computed without the knowledge of the partition
function Z. Indeed, the only required elements are the unscaled values of π

(
xti|g1:T

)
for each

i. The distribution q̄t = (q̄ti)i is a multinomial distribution between I t choices, one for each
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state. The quantity q̄ti has a clear meaning: it is the probability that the vehicle is in state
xti, when choosing amongst the set (xti′)1≤i≤It , given all the observations g1:T .

For each time t and each path index j ∈ [1 · · · J t], we also introduce (up to a scaling
constant) the discrete distribution over the paths at time t given the observations g1:T :

rtj ∝ π
(
ptj|g1:T

)
which are scaled so that

∑
1≤j≤Jt r

t
j = 1.

This problem of smoothing in CRFs is a classic application of the Junction Tree algo-
rithm to chain-structured graphs [87]. For the sake of completeness, we derive an efficient
smoothing algorithm using our notations.

The definition of π
(
xti|g1:T

)
requires summing the potentials of all the trajectories that

pass through the state xti at time t. The key insight for efficient filtering or smoothing is to
make use of the chain structure of the graph, which lets us factorize the summation into two
terms, each of which can be computed much faster than the exponentially large summation.
Indeed, one can show from the structure of the clique graph that the following holds for all
time steps t:

π
(
xt|g1:T

)
∝ π

(
xt|g1:t

)
π
(
xt|gt+1:T

)
(2.3.7)

The first term of the pair corresponds to the effect that the past and present observations
(g1:t) have on our belief of the present state xt. The second term corresponds to the effect
that the future observations (gt+1:T ) have on our estimation of the present state. The terms
π (xt|g1:t) are related to each other by an equation that propagates forward in time, while the
terms π

(
xt|gt+1:T

)
are related through an equation that goes backward in time. This is why

we call π (xt|g1:t) the forward distribution for the states, and we denote it 6 by
(−→q t

i

)
1≤i≤It

:

−→q t
i ∝ π

(
xti|g1:t

)
The distribution −→q t

i is proportional to the posterior probability π (xti|g1:t) and the vector
−→q t

=
(−→q t

i

)
i

is normalized so that
∑It

i=1
−→q t

i = 1. We do this for the paths, by defining the

forward distribution for the paths :

−→r t
j ∝ π

(
ptj|g1:t

)
Again, the distributions are defined up to a normalization factor so that each component
sums to 1.

In the same fashion, we introduce the backward distributions for the states and the paths:

←−q t
i ∝ π

(
xti|gt+1:T

)
←−r t

j ∝ π
(
ptj|gt+1:T

)
6The arrow notation indicates that the computations for −→q t

i will be done forward in time.
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Using this set of notations, Equation (2.3.7) can be rewritten:

qti ∝ −→q t
i · ←−q

t
i

rtj ∝ −→r t
j · ←−r

t
j

Furthermore, −→r t
and −→q t

are related through a pair of recursive equations:

−→q 1
i ∝ π

(
x1
i |g1
)

−→r t
j ∝ η

(
ptj
) ∑

j:δ(xti,ptj)=1

−→q t
i

 (2.3.8)

−→q t
i ∝ ω

(
xti|gt

) ∑
j:δ̄(pt−1

j ,xti)=1

−→r t−1
j

 (2.3.9)

Similarly, the backward distributions can be defined recursively, starting from t = T :

←−q T
i ∝ 1

←−r t
j ∝ η

(
ptj
) ∑

j:δ̄(ptj ,x
t+1
i )=1

←−q t+1
i

 (2.3.10)

←−q t
i ∝ ω

(
xti|gt

) ∑
j:δ(xti,ptj)=1

←−r t
j

 (2.3.11)

Details of the forward algorithm and backward algorithm are provided in the Algorithm
2.1 and Algorithm 2.2 below. The complete algorithm for smoothing is detailed in the
Algorithm 2.3 below.

The Algorithm 2.3 (smoothing) requires all the observations of a trajectory in order to
run. We have presented so far an a posteriori algorithm that requires full knowledge of
measurements g1:T . In this form, it is not directly suitable for real-time applications that
involve streaming data, for which the data is available up to t only. However, this algorithm
can be adapted for a variety of scenarios:

• Smoothing, also called offline filtering. This corresponds to getting the best estimate
given all observations, i.e. to computing π

(
xt|g1:T

)
. The Algorithm 2.3 describes this

procedure.
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Algorithm 2.1 Description of forward recursion

Given a sequence of observations g1:T , a sequence of sets of candidate projections x1:T and
a sequence of sets of candidate paths p1:T−1:
Initialize the forward state distribution:
∀i = 1 · · · I1: −→q 1

i ← ω (x1
i |g1)

Normalize −→q 1

For every time step t from 1 to T − 1:
Compute the forward probability over the paths:
∀j = 1 · · · J t :
−→r t

j ← η
(
ptj
) (∑

j:δ(xti,ptj)=1
−→q t

i

)
Normalize −→r t

Compute the forward probability over the states:
∀i = 1 · · · I t+1 :
−→q t+1

i ← ω
(
xt+1
i |gt+1

) (∑
j:δ̄(ptj ,x

t+1
i )=1

−→r t
j

)
Normalize −→q t+1

Return the set of vectors
(−→q t

)
t

and
(−→r t

)
t

• Tracking, filtering, or online estimation. This usage corresponds to updating the cur-
rent state of the vehicle as soon as a new streaming observation is available, i.e. to
computing π (xt|g1:t). This is exactly the case the forward algorithm (Algorithm 2.1)
is set to solve. If one is simply interested in the most recent estimate, then only the
previous forward distribution −→q t

needs to be kept, and all distributions −→q t−1 · · · −→q 1

at previous times can be discarded. This application minimizes the latency and the
computations at the expense of the accuracy.

• Lagged smoothing, or lagged filtering. A few points of data are stored and processed
before returning a result. Algorithm 2.4 details this procedure, which involves com-
puting π

(
xt|g1:t+k

)
for some k > 0. A trade-off is being made between the latency

and the accuracy, as the information from the points gt+1:t+k is used to update the
estimate of the state xt. As shown in Section 2.6, even for small values of k (2 or 3),
such a procedure can bring significant improvements in the accuracy while keeping the
latency within reasonable bounds. A common ambiguity solved by lagged smoothing
is presented in Figure 2.3.4.

2.3.4 Observation model

We now describe the observation model ω. The observation probability is assumed only to
depend on the distance between the point and the GPS measurements. We take an isoradial
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Algorithm 2.2 Description of backward recursion

Given a sequence of observations g1:T , a sequence of sets of candidate projections x1:T and
a sequence of sets of candidate paths p1:T−1:
Initialize the backward state distribution
∀i = 1 · · · IT : ←−q T

i ← 1
For every time step t from T − 1 to 1:

Compute the forward probability over the paths:
∀j = 1 · · · J t :
←−r t

j ← η
(
ptj
) (∑

j:δ̄(ptj ,x
t+1
i )=1

←−q t+1
i

)
Normalize ←−r t

Compute the forward probability over the states:
∀i = 1 · · · I t:
←−q t

i ← ω
(
xt+1
i |gt+1

) (∑
j:δ(xti,ptj)=1

←−r t
j

)
Normalize ←−q t

Return the set of vectors
(←−q t

)
t

and
(←−r t

)
t

Algorithm 2.3 Trajectory smoothing algorithm

Given a sequence of observations g1:T , a sequence of sets of candidate projections x1:T and
a sequence of sets of candidate paths p1:T−1:

Compute
(−→q t

)
t

and
(−→r t

)
t

using the forward algorithm.

Compute
(←−q t

)
t

and
(←−r t

)
t

using the backward algorithm.

For every time step t:
∀j = 1 · · · J t : rtj ← −→r

t
j · ←−r

t
j

Normalize rt

∀i = 1 · · · I t: qti ← −→q
t
i · ←−q

t
i

Normalize qt

Return the set of vectors (qt)t and (rt)t

Gaussian noise model:

ω (g|x) = p (d (g, x))

=
1√
2πσ

(
− 1

2σ2
d (g, x)2

)
(2.3.12)

in which the function d is the distance function between geocoordinates. The standard
deviation σ is assumed to be constant over all the network. This is not true in practice
because of well documented urban canyoning effects [31, 109, 110] and satellite occlusions.
Updating the model accordingly presents no fundamental difficulty, and can be done by
geographical clustering of the regions of interest. Using the estimation techniques described
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Algorithm 2.4 Lagged smoothing algorithm

Given an integer k > 0, and a LIFO queue of observations:
Initialize the queue to the empty queue.
When receiving a new observation gt:

Push the observation in the queue
Run the forward filter on this observation
If t > k:

Run the backward filter on the queue
Compute qt−k, rt−k on the first element of the queue
Pop the queue and return qt−k and rt−k

later in Section 2.4.3 and Section 2.4.4, an value of σ between 10 and 15 meters could be
estimated for data of interest in this dissertation.

2.3.5 Driver model

The second model to consider is the driver behavior model. This model assigns a weight to
any acceptable path on the road network. We consider a model in the exponential family, in
which the weight distribution over any path p only depends on a selected number of features
ϕ (p) ∈ RK of the path. Possible features include the length of the path, the number of
stop signs, and the speed limits on the road. If the distribution is parametrized by a vector
µ ∈ RK so that the logarithm of the distribution of paths is a linear combination of the
features of the path:

η (p) ∝ exp
(
µTϕ (p)

)
(2.3.13)

The function ϕ is called the feature function, and the vector µ is called the behavioral
parameter vector, and simply encodes a weighted combination of the features.

In a simple model the vector ϕ (p) may be reduced to a single scalar, such as the length of
the path. Then the inverse of µ, a length, can be interpreted as a characteristic length. This
model simply states that the driver has a preference for shorter paths, and µ−1 indicates
how aggressively this driver wants to follow the shortest path. Such a model is explored in
Section (2.6). Other models considered include the mean speed and travel times, the stop
signs and signals, and the turns to the right or to the left.

In the Mobile Millennium system, the path inference filter is the input to a model designed
to learn travel times, so the feature function does not include dynamic features such as the
current travel time. Assuming this information is available, it would be easy to add as a
feature.
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2.4 Training procedure

The procedure detailed so far requires the calibration of the observation model and the driver
behavior model by setting some values for the weight vector µ and the standard deviation σ.
Using standard machine learning techniques, we maximize the likelihood of the observations
with respect to the parameters, and we evaluate the result against held-out trajectories using
several metrics detailed in Section 2.6. Computing likelihood will require the computation
of the partition function (which depends on µ and σ). We first present a procedure that
is valid for any path or point distributions that belong to the exponential family, and then
show how the models we presented in Section 2.3 fit into this framework.

2.4.1 Learning within the exponential family and sparse
trajectories

There is a striking similarity between the state variables x1:T and the path variables p1:T -
especially between the forward and backward distributions introduced in Equation (2.3.8).
This suggests to generalize our procedure to a context larger than states interleaved with
paths. Indeed, each step of choosing a path or a variable corresponds to making a choice
between a finite number of possibilities, and there is a limited number of pairwise compatible
choices (as encoded by the functions δ and δ̄). Following a trajectory corresponds to choosing
a new state (subject to the compatibility constraints of the previous state). In this section,
we introduce the proper notation to generalize our learning problem, and then show how this
learning problem can be efficiently solved. In the next section, we will describe the relation
between the new variables we are going to introduce and the parameters of our model.

Consider a joint sequence of multinomial random variables z1:L = z1 · · · zL drawn from
some space

∏L
l=1

{
1 · · ·K l

}
where K l is the dimensionality of the multinomial variable zl.

Given a realization z1:L from z1:L, we define a non-negative potential function ψ
(
z1:L
)

over
the sequence of variables. This potential function is controlled by a parameter vector θ ∈ RM :
ψ
(
z1:L
)

= ψ
(
z1:L; θ

)
7. Furthermore, we assume that this potential function is also defined

and non-negative over any subsequence ψ
(
z1:l
)
. Lastly, we assume that there exists at least

one sequence z1:L that has a positive potential. As in the previous section, the potential
function ψ, when properly normalized, defines a probability distribution of density π over
the variables z, and this distribution is parametrized by the vector θ:

π (z; θ) =
ψ (z; θ)

Z (θ)
(2.4.1)

with Z =
∑

z ψ (z; θ) called the partition function. We will show the partition function
defined here is the partition function introduced in Section 2.3.3.

7The semicolon notation indicates that this function is parametrized by θ, but that θ is not a random
variable.
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We assume that ψ is an unscaled member of the exponential family : it is of the form:

ψ (z; θ) = h (z)
L∏
l=1

eθ·T
l(zl) (2.4.2)

In this representation, h is a non-negative function of z which does not depend on the
parameters, the operator · is the vector dot product, and the vectors T l

(
zl
)

are vector
mappings from the realization zl to RM for some M ∈ N, called feature vectors. Since the
variable zl is discrete and takes on values in

{
1 · · ·K l

}
, it is convenient to have a specific

notation for the feature vector associated with each value of this variable:

∀i ∈
{

1 · · ·K l
}
, T li = T l

(
zl = i

)
The sequence of variables z represents the choices associated with a single trajectory,

i.e. the concatenation of the xs and ps. In general, we will observe and would like to learn
from multiple trajectories at the same time. This is why we need to consider a collection of
variables

(
z(u)
)
u
, each of which follows the form above and each of which we can define a

potential ψ
(
z(u); θ

)
and a partition function Z(u) (θ) for. There the variable u indexes the

set of sequences of observations, i.e. the set of consecutive GPS measurements of a vehicle.
Since each of these trajectories will take place on a different portion of the road network, each
of the sequences z(u) will have a different state space. For each of these sequences of variables
z(u), we observe the respective realizations z(u) (which correspond to the observation of a
trajectory), and we wish to infer the parameter vector θ∗ that maximizes the likelihood of
all the realizations of the trajectories:

θ∗ = arg max
θ

∑
u

log π(u)
(
z(u); θ

)
= arg max

θ

∑
u

logψ
(
z(u); θ

)
− logZ(u) (θ)

= arg max
θ

∑
u

L(u)∑
l=1

θ · T l(u)
(
zl

(u)
)
− logZ(u) (θ)

(2.4.3)

where again the indexing u is for sets of measurements of a given trajectory. Similarly,
the length of a trajectory is indexed by u: L(u). From Equation 2.4.3, it is clear that
the log-likelihood function simply sums together the respective likelihood functions of each
trajectory. For clarity, we consider a single sequence z(u) only and we remove the indexing
with respect to u. With this simplification, we have for a single trajectory:

logψ (z; θ)− logZ (θ) =
L∑
l=1

θ · T l
(
zl
)
− logZ (θ) (2.4.4)

The first part of Equation (2.4.4) is linear with respect to θ and logZ (θ) is concave in
θ (it is the logarithm of a sum of exponentiated linear combinations of θ [26]) . As such,
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maximizing Equation (2.4.4) yields a unique solution (assuming no singular parametrization),
and some superlinear algorithms exist to solve this equation [26]. These algorithms rely on
the computation of the gradient and the Hessian matrix of logZ (θ). We now detail some
closed-form recursive formulas to compute these elements.

2.4.1.1 Efficient estimation of the partition function

A naive approach to the computation of the partition function Z (θ) leads to consider expo-
nentially many paths. Most of these computations can be factored using dynamic program-
ming 8. Recall the definition of the partition function:

Z (θ) =
∑
z

h (z)
L∏
l=1

eθ·T
l(zl)

So far, the function h was defined in in a generic way (it is non-negative and does not depend
on θ). We consider a particular shape that generalizes the functions δ and δ̄ introduced in
the previous section. In particular, the function h is assumed to be a binary function, from
the Cartesian space

∏L
l=1

{
1 · · ·K l

}
to {0, 1}, that decomposes to the product of binary

functions over consecutive pairs of variables:

h (z) =
L−1∏
l=1

hl
(
zl, zl−1

)
in which every function hl is a binary indicator hl :

{
1 · · ·K l

}
×
{

1 · · ·K l−1
}
→ {0, 1}. These

functions hl generalize the functions δ and δ for arguments z equal to either the xs or the
ps. It indicates the compatibility of the values of the instantiations zl and zl−1

Finally, we introduce the following notation. For each index l ∈ [1 · · ·L] and subindex
i ∈ [1 · · ·K l], we call Z l

i the partial summation of all partial paths z1:l that terminate at the
value zl = i:

Z l
i (θ) =

∑
z1:l:zl=i

h
(
z1:l
) l∏
m=1

eθ·T
m(zm)

=
∑

z1:l:zl=i

eθ·T
1(z1)

l∏
m=2

hm
(
zm, zm−1

)
eθ·T

m(zm)

This partial summation can also be defined recursively:

Z l
i (θ) = eθ·T

l
i

∑
j∈[1...Kl−1]:hl(zi,zj)=1

Z l−1
j (θ)

(2.4.5)

8This is - again - a specific application of the junction tree algorithm. See [87] for an explanation of the
general framework.



CHAPTER 2. A MAP-MATCHING ALGORITHM FOR GPS DATA 39

The start of the recursion is for all i ∈ {1 · · ·K1}:

Z1
i (θ) = eθ·T

1
i

and the complete partition function is the summation of the auxiliary values:

Z (θ) =
KL∑
i=1

ZL
i (θ)

Computing the partition function can be done in polynomial time complexity by a simple
application of dynamic programming. By using sparse data structures to implement h, some
additional savings in computations can be made9.

2.4.1.2 Estimation of the gradient

The estimation of the gradient for the first part of the log likelihood function is straightfor-
ward. The gradient of the partition function can also be computed using Equation (2.4.5):

∇θZ
l
i (θ) = Z l

i (θ)T li + eθ·T
l
i

∑
j:hl(zi,zj)=1

∇θZ
l−1
j (θ)

The Hessian matrix can be evaluated in similar fashion:

4θθZ
l
i (θ) =Z l

i (θ)
(
T li
) (
T li
)′

+ eθ·T
l
i

 ∑
j:hl(zi,zj)=1

∇θZ
l−1
j (θ)

(T li )′

+ eθ·T
l
i
(
T li
) ∑

j:hl(zi,zj)=1

∇θZ
l−1
j (θ)

′

+ eθ·T
l
i

∑
j:hl(zi,zj)=1

4θθZ
l−1
j (θ)

2.4.2 Exponential family models

We now express our formulation of Conditional Random Fields in a form compatible with
Equation (2.4.2).

9In particular, care should be taken to implement all the relevant computations in log-domain due to
the limited precision of floating point arithmetic on computers. The reference implementation [11] shows
one way to do it.
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Consider ε = σ−2 and θ the stacked vector of the desired parameters:

θ =

(
ε
µ

)
There is a direct correspondence between the path and state variables with the z variables

introduced above. Let us pose L = 2T − 1, then for all l ∈ [1, L] we have:

z2t = rt

z2t−1 = qt

and the feature vectors are simply the alternating values of ϕ and d, completed by some
zero values:

T 2t
i =

(
0

ϕ (pti)

)
T 2t−1
j =

(
−1

2
d
(
g, xtj

)2

0

)
These formulas establish how we can transform our learning problem that involves paths
and states into a more abstract problem that considers a single set of variables.

2.4.3 Supervised learning with known trajectories

The most straightforward way to learn µ and σ, or equivalently to learn the joint vector θ, is
to maximize the likelihood of some GPS observations g1:T , knowing the complete trajectory
followed by the vehicle. For all time t, we also know which path ptobserved was taken and
which state xtobserved produced the GPS observation gt. We make the assumption that the
observed path ptobserved is one of the possible path amongst the set of candidate paths

(
ptj
)
j
:

∃j ∈
[
1 · · · J t

]
: ptobserved = ptj

and similarly, that the observed state xtobserved is one of the possible states:

∃i ∈
[
1 · · · I t

]
: xtobserved = xti

In this case, the values of rt and qt are known (they are the matching indexes), and the opti-
mization problem of Equation (2.4.3) can be solved using methods outlined in Section 2.4.1.

2.4.4 Unsupervised learning with incomplete observations:
Expectation-Maximization

Usually, only the GPS observations g1:T are available; the values of r1:T−1 and q1:T (and
thus z1:L) are hidden to us. In this case, we estimate the expected likelihood L, which is the
expected value of the likelihood under the distribution over the assignment variables z1:L:
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L (θ) = Ez∼π(·|θ) [log (π (z; θ))] (2.4.6)

=
∑
z

π (z; θ) log (π (z; θ)) (2.4.7)

The intuition behind this expression is quite natural: since we do not know the value of
the assignment variable z, we consider the expectation of the likelihood over this variable.
This expectation is done with respect to the distribution π (z; θ). The challenge lies in
the dependency in θ of the very distribution used to take the expectation. Computing the
expected likelihood becomes much more complicated than simply solving the optimization
problem described in Equation (2.4.3).

One strategy is to find some “fill in” values for z that would correspond to our guesses of
which path was taken, and which point made the observation. However, such a guess would
likely involve our model for the data, which we are currently trying to learn. A solution to
this chicken and egg problem is the Expectation Maximization (EM) algorithm [85]. This
algorithm performs an iterative projection ascent by assigning some distributions (rather
than singular values) to every zl, and uses these distributions to updates the parameters
µ and σ using the procedures seen in Section 2.4.3. This iterative procedure performs two
steps:

1. Fixing some value for θ, it computes a distribution π̃ (z) = π (z; θ)

2. It then uses this distribution π̃ (z) to compute some new value of θ by solving the
approximate problem in which the expectation is fixed with respect to θ:

max
θ

Ez∼π̃(·) [log (π (z; θ))] (2.4.8)

This problem is significantly simpler than the optimization problem in Equation (2.4.6)
since the expectation itself does not depend on θ and thus is not part of the optimization
problem.

An algorithmic description of this algorithm is given in Algorithm 2.5. Under this procedure,
the expected likelihood is shown to converge to a local maximum [87]. It can be shown that
good values for the plug-in distribution π̃ are simply the values of the posterior distributions
π
(
pt|g1:T

)
and π

(
xt|g1:T

)
, i.e. the values qt and r̄t. Furthermore, owing to the particular

shape of the distribution π (z), taking the expectation is a simple task: we simply replace
the value of the feature vector by its expected value under the distribution π̃ (z). More
practically, we simply have to consider:

T 2t
(
z2t
)

= Ep∼π(·|θ,g1:T )

[(
0

ϕ (ptr)

)]
=

(
0

Ep∼π(θ,g1:T ) [ϕ (ptr)]

) (2.4.9)
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Algorithm 2.5 Expectation maximization algorithm for learning parameters without com-
plete observations.

Given a set of sequences of observations, an initial value of θ
Repeat until convergence:

For each sequence, compute rt and qt using Algorithm 2.3.
For each sequence, update expected values of T t using (2.4.9) and (2.4.10).
Compute a solution of Problem (2.4.3) using these new values of T t.

in which

Ep∼π(θ,g1:T )

[
ϕ
(
ptr
)]

=
It∑
i=1

rtiϕ
t
i

and

T 2t−1
(
z2t−1

)
=

 −1
2
Ex∼π(·|θ,g1:T )

[
d
(
g, xtqt

)2
]

0

 (2.4.10)

so that

Ex∼π(·|θ,g1:T )

[
d
(
g, xtqt

)2
]

=
Jt∑
i=1

q̄tid
(
g, xti

)2

These values of feature vectors plug directly into the supervised learning problem in Equation
(2.4.3) and produce updated parameters µ and σ, which are then used in turn for updating
the values of q̄ and r̄ and so on.

2.5 Results from field operational test

The path inference filter and its learning procedures were tested using field data through
the Mobile Millennium system. Ten San Francisco taxicabs were fit with high frequency
GPS (1 second sampling rate) in October 2010 during a two-day experiment. Together, they
collected about seven hundred thousand measurement points that provided a high-accuracy
ground truth. Additionally, the unsupervised learning filtering was tested on a significantly
larger dataset: one day one-minute samples of 600 taxis from the same fleet, which represents
600 000 points. For technical reasons, the two datasets could not be collected the same day,
but were collected the same day of the week (a Wednesday) three weeks prior to the high-
frequency collection campaign. Even if the GPS equipment was different, both datasets
presented the same distribution of GPS dispersion. Thus we evaluate two datasets collected
from the same source with the same spatial features: a smaller set at high frequency, called
“Dataset 1”, and a larger dataset sampled at 1 minute for which we do not know ground
truth, called “Dataset 2”. The map of the road network is a highly accurate map provided
by a commercial vendor. It covers the complete Bay Area and comprises about 560,000 road
links.
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Before we continue this discussion further, now is an appropriate time to digress and
reward the patient reader with a tasty distraction. Macarons are delicious almond cookies
filled with ganache, and are generally considered to be an extraordinary tour de force to
make. This is not the case. With the proper tools, one can make some delicious macarons
in any home kitchen, after knowing a few tips. Let me share with you a recipe that works
well in my case. It is adapted from BraveTart’s blog with a few changes. There are three
steps in baking a macaron: raising the egg whites into a meringue, folding the dry part into
the meringue (the “macaronage”), and the baking. Here are the ingredients you need: 140
grams of egg whites, 70 grams of regular fine sugar, 230 grams of powdered sugar, 115 grams
of almond powder. The egg whites need not be chilled for three days, at room temperature,
et caetera, et caetera. These details do not make any difference. In the United States all the
powdered sugars are adulterated with some starch (corn or tapioca). It has a slight impact
on the final product, but you will be fine otherwise. The almond powder should be sieved.
I never do it because cleaning a sieve is a pain, and it works fine. However, quantities are
crucial. Do not roughly take four eggs, 140 grams is 140 grams. I usually break three eggs
and then readjust all the other quantities based on the amount of egg whites I got. The
meringue is the one step you cannot miss if you have a beater or a kitchen robot. Just
make an incredibly stiff meringue, no need to try to look for the “bec d’oiseau” and all these
professional tips. Put the sugar with the egg whites and then beat three minutes at 50%
speed, three minutes at 75% speed, three minutes at 100% speed, and one more minute at
100% speed if you add some dying powder. No need to be shy here. The most crucial step is
the macaronage. Look at this video to see how to do it. The gesture is very important here.
One departure from BraveTart’s recipe is that I found the croûtage to make a big difference
when rising the macarons: once you have poured the macarons on a cooking plate covered
with wax paper, let them rest out of the kitchen for 30 or 45 minutes. The outer layer will
form a crust. The baking should take fifteen minutes in the oven at 300F, and then let it
cook until the shell is hardly attached to the inside (it does not move if you press a finger
on it). You can open the oven during cooking, it is not an issue.

2.5.1 Experiment design

The testing procedure is described in Algorithm 2.6: the filter was first run in trajectory
reconstruction mode (Viterbi algorithm) with settings and tuned for a high-frequency ap-
plication, using all the samples, in order to build a set of ground truth trajectories. The
trajectories were then downsampled to different temporal resolutions and were used to test
the filter in different configurations. The following features were tested:

• The sampling rate. The following values were tested: 1 second, 10 seconds, 30 seconds,
one minute, one and a half minute and two minutes

• The computing strategy: pure filtering (“online” or forward filtering), fixed-lagged
smoothing with a one- or two-point buffer (“1-lag” and “2-lag” strategies), Viterbi and
smoothing (“offline”, or forward-backward procedure).

http://bravetart.com/recipes/Macarons
http://www.youtube.com/watch?v=-2iCocPw_Qo
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Figure 2.5.1: Example of points collected in “Dataset 1”, in the Russian Hill neighborhood
in San Francisco. The (red) dots are the GPS observations (collected every second), and the
green lines are road links that contain a state projection. The black lines show the most
likely projections of the GPS points on the road network, using the Viterbi algorithm on a
gridded state-space with a 1-meter grid for the offsets.

Algorithm 2.6 Evaluation procedure

Given a set of high-frequency sequences of raw GPS data:

1. Map the raw high-frequency sequences on the road network

2. Run the Viterbi algorithm with default settings

3. Extract the most likely high frequency trajectory on the road network for each sequence

4. Given a set of projected high frequency trajectories:

a) Decimate the trajectories to a given sampling rate

b) Separate the set into a training subset and a test subset

c) Compute the best model parameters for a number of learning methods (most
likely, EM with a simple model or a more complex model)

d) Evaluate the model parameters with respect to different computing strategies
(Viterbi, online, offline, lagged smoothing) on the test subset
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• Different models:

– “Hard closest point”: A greedy deterministic model that computes the closest
point and then finds the shortest path to reach this closest point from the previous
point. This non-probabilistic model is the baseline which we compare against [45].
This greedy model may lead to non-feasible trajectories, for example by assigning
an observation to a dead end link from which it cannot recover.

– “Closest point” : A non-greedy version of “Hard closest point”. Among all the
feasible trajectories, this (naive, deterministic) model projects all the GPS data
to their closest projections and then selects the shortest path between each pro-
jection. The computing strategy chosen is important because the filter may de-
termine that some projections lead to dead end and force the trajectory to break.

– “Shortest path”: A naive model that selects the shortest path. Given paths of
the same length, it will take the path leading to the closest point. The points
projections are then recovered from the paths. This is similar to the approach
followed in [44,119].

– “Simple” A simple model that considers two features that could be tuned by hand:

1. ξ1 : The length of the path

2. ξ2 : The distance of a point projection to its GPS coordinate

This model was trained on learning data by two procedures:

∗ Supervised learning, in which the true trajectory is provided to the learning
algorithm, leading to the “MaxLL-Simple” model

∗ Unsupervised learning, which produced the model called “EM-Simple”

– “Complex” : A more complex model with a more diverse set of features, which is
complicated enough to discourage manual tuning:

1. Length of the path

2. Number of stop signs along the path

3. Number of signals (red lights)

4. Number of left turns made by the vehicle at road intersections

5. Number of right turns made by the vehicle at road intersections

6. Minimum average travel time (based on the speed limit)

7. Maximum average speed

8. Maximum number of lanes (representative of the class of the road)

9. Minimum number of lanes

10. Distance of a point to its GPS point

This model was first evaluated using supervised learning leading to the model
called “MaxLL-Complex”. The unsupervised learning procedure was also tried
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but failed to properly converge when using “Dataset 1”, obtained from high-
frequency samples: since this dataset is quite small, the EM procedure was able to
find an unbounded maximum and unbounded parameters. Unsupervised learning
was run again with “Dataset 2”, using the simple model as a start point and
converged properly this time. This set of parameters is presented under the label
“EM-Complex”.

All the models above are specific cases of our framework:

• “Simple” is a specific case of “Complex”, by restricting the complex model to only two
features.

• “Shortest path” is a specific case of “Simple” with |ξ1| � 1, |ξ2| � 1. We used
ξ1 = −1000 and ξ2 = −0.001

• “Closest point” is a specific case of “Simple” with |ξ1| � 1, |ξ2| � 1. We used
ξ1 = −0.001 and ξ2 = −1000

• “Hard closest point” can be reasonably approximated by running the “Closest point”
model with the Online filtering strategy.

Thanks to this observation, we implemented all the model using the same code and simply
changed the set of features and the parameters [11].

These models were evaluated under a number of metrics:

• The proportion of path misses: for each trajectory, it is the number of times the most
likely path was not the true path followed, divided by the number of time steps in the
trajectory.

• The proportion of state misses: for each trajectory, the number of times the most likely
projection was not the true projection.

• The log-likelihood of the true point projection. This is indicative of how often the true
point is identified by the model.

• The log-likelihood of the true path.

• The entropy of the path distribution and of the point distribution. This statistical
measure indicates the confidence assigned by the filter to its result. A small entropy
(close to 0) indicates that one path is strongly favored by the filter against all the other
ones, whereas a large entropy indicates that all paths are equal.

• The miscoverage of the route. Given two paths p and p′ the coverage of p by p′, denoted
cov (p, p′) is the amount of length of p that is shared with p′ (it is a semi-distance since
it is not symmetric). It is thus lower than the total length |p| of the path p. We measure

the dissimilarity of two paths by the relative miscoverage: mc (p) = 1 − cov(p∗,p)
|p∗| . If a

path is perfectly covered, its relative miscoverage will be 0.
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Sampling
rate
(sec-
onds)

Batches
used for
valida-

tion

Batches
used for
training

1 1 5
10 3 5
30 6 5
60 6 5
90 6 5
120 6 5

Table 2.1: Parameters used for the Path Inference experiments.

For about 0.06% of pairs of points, the true path could not be found by the A* algorithm
and was manually added to the set of discovered paths.

Each training session was evaluated with k-fold cross-validation, using the following pa-
rameters:

2.5.2 Results

Given the number of parameters to adjust, we only present the most salient results here.
The most important practical result is the raw accuracy of the filter: for each trajectory,

which proportion of the paths or of the points was correctly identified? These results are
presented in Figure 2.5.2 and Figure 2.5.3. As expected, the error rate is 0 for high frequencies
(low sampling period): all the points are correctly identified by all the algorithms. In the low
frequencies (high sampling periods), the error is still low (around 10%) for the trained models,
and also for the greedy model (“Hard closest point”). For sampling rates between 10 seconds
and 90 seconds, trained models (“Simple” and “Complex”) show a much higher performance
compared to untrained models (“Hard closest point”, “Closest point” and “Shortest path”).

We now turn our attention to the resilience of the models, i.e. how they perform when
they make mistakes. We use two statistical measures: the (log) likelihood of the true paths
(Figure 2.5.4) and the entropy of the distribution of points or paths (Figures 2.5.5 and
2.5.6). Note that in a perfect reconstruction with no ambiguity, the log likelihood would be
zero. Interestingly, the log likelihoods appear very stable as the sampling interval grows: our
algorithm will continue to assign high probabilities to the true projections even when many
more paths can be used to travel from one point to the other. The performance of the simple
and the complex models improves greatly when some backward filtering steps are used, and
stays relatively even across different time intervals.

We conclude the performance analysis by a discussion of the miscoverage (Figure 2.5.7).
The miscoverage gives a good indication of how far the path chosen by the filter differs from
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Figure 2.5.2: Point misses using trajectory reconstruction (Viterbi algorithm) for different
sampling rates, as a percentage of incorrect point reconstructions for each trajectory (posi-
tive, smaller is better). The solid line denotes the median, the squares denote the mean and
the dashed lines denote the 94% confidence interval. The black curve is the performance of a
greedy reconstruction algorithm, and the colored plots are the performances of probabilistic
algorithms for different features and weights learned by different methods. As expected, the
error rate is close to 0 for high frequencies (low sampling rates): all the points are correctly
identified by all the algorithms - except for the shortest path reconstruction, which greed-
ily chooses the nearest reachable projection. In the low frequencies (high sampling rates),
the error still stays low (around 10%) for the probabilistic models, and also for the greedy
model. For sampling rates between 10 seconds and 90 seconds, tuned models show a much
higher performance compared to greedy models (Hard closest point, closest point and short-
est path). However, we will see that the errors made by tuned models are more benign than
errors made by simple greedy models.
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Figure 2.5.3: Path misses using the Viterbi reconstruction for different models and different
sampling rates, as a percentage on each trajectory (lower is better). The solid line denotes
the median, the squares denote the mean and the dashed lines denote the 98% percentiles.
The error rate is close to 0 for high frequencies: the paths are correctly identified. In higher
sampling regions, there are many more paths to consider and the error increases substantially.
Nevertheless, the probabilistic models still perform very well: even at 2 minute intervals, they
are able to recover about 75% of the true paths. In particular, in these regions the shortest
path becomes a viable choice for most paths. Note how the greedy path reconstruction fails
rapidly as the sampling increases. Also note how the shortest path heuristic performs poorly.

the true path. Even if the paths are not exactly the same, some very similar path may get
selected, that may differ by a turn around a block. Note that the metric is based on length
covered. At high frequency however, the vehicle may be stopped and cover a length 0. This
metric is thus less useful at high frequency. A more complex model improves the coverage
by about 15% in smoothing. In high sampling resolution, the error is close to zero: the
paths considered by the filter, even if they do not match perfectly, are very close to the true
trajectory for lower frequencies. Two groups clearly emerge as far as computing strategies
are concerned: the online/1-lag group (orange and red curves) and the 2-lag and offline group
(green and blue curves). The relative miscoverage for the latter group is so low that more
than half of the probability mass is at zero. A number of outliers still raise the curve of the
last quartile as well as the mean, especially in the lower frequencies. The paths inferred by
the filter are never dramatically different: at two minute time intervals (for which the paths
are 1.7km on average), the returned path spans more than 80% of the true path on average.
The use of a more complicated model decreases the mean miscoverage as well as all quartile
metrics by more than 15%.

In the case of the complex model, the weights can provide some insight into the features
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Figure 2.5.4: (Negative of) Log likelihood of true paths for different strategies and different
sampling rates (positive, lower is better). The error bars denote the first and last quartiles
(the 25th and 75th percentiles). The solid line denotes the median, the squares denote the
mean and the dashed lines denote the 98% confidence interval. The likelihood decreases as
the sampling interval increases, which was to be expected. Note the relatively high mean
likelihood compared to the median: a number of true paths are assigned very low likelihood
by the model, but this phenomenon is mitigated by using better filtering strategies (2-lagged
and smoothing). The use of a more complex model (that accounts for a finer set of features
for each path) brings some improvements on the order of 25% of all metrics. The behavior
around high frequencies (1 and 10 second time intervals) is also very interesting. Most of
the paths are chosen nearly perfectly (the median is 0), but the filters are generally too
confident and assign very low probabilities to their outputs, which is why the likelihood
has a very heavy tail at high frequency. Note also that in the case of high frequency, the
use of an offline filter brings significantly more accurate results than a 2-lagged filter. This
difference disappears rapidly (it becomes insignificant at 10 second intervals). Note how the
EM trained filter performs worse in the low frequencies (note the difference of scale). The
points for online strategy (red) and for 2-lagged filtering (green) do not appear because they
are too close to the 1-lagged and offline strategies, respectively. Again in the EM setting,
the offline and 2-lagged filters perform considerably better than the cruder strategies.
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Figure 2.5.5: Distributions of point entropies with respect to sampling and for different
models. The colors show the performance of different filtering strategies (pure online, 1-lag,
2-lag and offline). The entropy is a measure of the confidence of the filter on its output
and quantifies the spread of the probability distribution over all the candidate points. The
solid line denotes the median, the squares denote the mean and the dashed lines denote the
95% confidence interval. The entropy starts at nearly zero for high frequency sampling : the
filters are very confident in their outputs. As sampling time increases, the entropy at the
output of the online filter increases notably. Since the online filter cannot go back to update
its belief, it is limited to pure forward prediction and as such cannot confidently choose a
trajectory that would work in all settings. For the other filtering strategies, the median is
close to zero while the mean is substantially higher. Indeed, the filter is very confident in its
output most of the time and assigns a weight of nearly one to one candidate, and nearly zero
to all the other outputs, but it is uncertain in a few cases. These few cases are at the origin
of the fat tail of the distributions of entropies and the relatively wide confidence intervals.
Note that using a more complex model improves the mean entropy by about 15%. Also,
in the case of EM, the entropy is very low (note the difference of scale): the EM model is
overconfident in its predictions and tends to assigns very large weights to a single choice,
even if it not the good one.
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Figure 2.5.6: Distributions of path entropies with respect to sampling period and for different
models (positive, lower is better). The colors show the performance of different filtering
strategies (purely online, 1-lag, 2-lag and offline) The entropy is a measure of the confidence
of the filter on its output and quantifies the spread of the probability distribution over all
the candidate paths. The solid line denotes the median, the squares denote the mean and
the dashed lines denote the 95% confidence interval. Compared to the points, the paths
distributions have a higher entropy: the filter is much less confident in choosing a single
path and spreads the probability weights across several choices. Again, the use of 2-lagged
smoothing is as good as pure offline smoothing, for the same computing cost and a fraction
of the data. Online and 1-lagged smoothing perform about as well, and definitely worse than
2-lagged smoothing. The use of a more complex model strongly improves the performance
of the filter: it results in more compact distribution over candidate paths. Again, the model
learned with EM is overconfident and tends to offer favor a single choice, except for a few
path distributions.
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Figure 2.5.7: Distribution of relative miscoverage of the paths (between 0 and 1, lower is
better). The solid line denotes the median, the squares denote the mean and the dashed
lines denote the 98% confidence interval. This metric evaluates how much of the true path
the most likely path covers , with respect to length (0 if it is completely different, 1 if the
two paths overlap completely). Two groups clearly emerge as far as computing strategies are
concerned: the online/1-lag group (orange and red curves) and the 2-lag and offline group
(green and blue curves). The relative miscoverage for the latter group is so low that more
than half of the mass is at the 0 and cannot be seen on the curve. There are still a number
of outliers that raise the curve of the last quartile as well as the mean, especially in the lower
frequencies. Note that the paths offered by the filter are never dramatically different: at two
minute time intervals (for which the paths are 1.7km on average), the returned path spans
more than 80% of the true path on average. The use of a more complicated model decreases
the mean miscoverage as well as the quartile metrics by more than 15%. Note that there is
a large spread of values at high frequency: indeed the metric is based on length covered and
at high frequency, the vehicle may be stopped and cover 0 length. This metric is thus less
indicative at high frequency.
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Figure 2.5.8: Learned weights for left or right turns preferences. The error bars indicate
the complete span of values computed for each time (0th and 100th percentile). For small
time intervals, any turning gets penalized but rapidly the model learns how to favor paths
with right turns against paths with left turns. A positive weight even means that - all other
factors being equal! - the driver would prefer turning on the right than going straight.
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Figure 2.5.9: Standard deviation learned by the simple models, in the supervised (Maximum
Likelihood) setting and the EM setting. The error bars indicate the complete span of values
computed for each time. Note that the maximum likelihood estimator rapidly converges
toward a fixed value of about 6 meters across any sampling time. The EM procedure also
rapidly converges, but it is overconfident and assigns a lower standard deviation overall.

involved in the decision-making process of the driver. In particular, for extended sampling
rates (t=120s), some interesting patterns appear. For example, the drivers do not show
a preference between driving through stop signs (w3 = −0.24 ± 0.07) or through signals
(w4 = −0.21±0.11). However, drivers show a clear preference to turn to the right, as seen in
Figure 2.5.8. This is may be attributed, in part, to the difficulty in crossing an intersection
in the United States.

From a computation perspective, given a driver model, the filtering algorithm can be
dramatically improved for about as much computations by using a full backward-forward
(smoothing) filter. Smoothing requires backing up an arbitrary sequence of points while 2-



CHAPTER 2. A MAP-MATCHING ALGORITHM FOR GPS DATA 55

1 10 30 60 90 120100

101

102

103

104

L
ea

rn
ed

 p
ro

pe
r 

le
ng

th
 (

m
)

Figure 2.5.10: Characteristic length learned by the simple models, in the supervised (Max-
imum Likelihood) setting and the EM setting. As hoped, it roughly corresponds to the
expected path length. The error bars indicate the complete span of values computed for
each time (0th and 100th percentile). Note how the spread increases for large time intervals.
Indeed, vehicles have different travel lengths at such time intervals, ranging from nearly 0
(when waiting at a signal) to more than 3 km (on the highway) and the models struggle
to accommodate a single characteristic length. This justifies the use of more complicated
models.

lagged smoothing only requires the last two points. For a slightly greater computing cost, the
filter can offer a solution with a lag of one or two interval time units that is very close to the
full smoothing solution. Fixed-lag smoothing will be the recommended solution for practical
applications, as it strikes a good balance of computation costs, accuracy and timeliness of
the results.

It should be noted the algorithm continues to provide decent results even when points
grow further apart. The errors steadily increase with the sampling rate until the 30 seconds
time interval, after which most metrics reach some plateau. This algorithm could be used in
tracking solutions to improve the battery life of the device by up to an order of magnitude
for GPSs that do not need extensive warm up. In particular, the tracking devices of fleet
vehicle are usually designed to emit every minute as the road-level accuracy is not a concern
in most cases.

2.5.3 Unsupervised learning results

The filter was also trained for the simple and complex models using Dataset 2. This dataset
does not include true observations but is two orders of magnitude larger than Dataset 1 for
the matching sampling period (1 minute). We report some comparisons between the models
previously trained with Dataset 1 (“MaxLL-Simple”, “EM-Simple”, “MaxLL-Complex”) and
the same simple and complex models trained on Dataset 2: “EM-Simple large” and “EM-
Complex large”. The learning procedure was calibrated using cross-validation and was run
in the following way: all unsupervised models were initialized with a hand-tuned heuristic
model involving only the standard deviation and the characteristic length (with the weight
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Figure 2.5.11: Expected likelihood of the true path. The central point is the mean log-
likelihood, the error bars indicate the 70% confidence interval. Note that the simple model
trained unsupervised with the small dataset has a much larger error, i.e. it assigns low
probabilities to the true path. Both unsupervised models tend to express the same behavior
but are much more robust.

of all the features set to 0). The Expectation-Maximization algorithm was then run for 3
iterations. Inside each EM iteration, the M-step was run with a single Newton-Raphson
iteration at each time, using the full gradient and Hessian and a quadratic penalty of 10−2.
During the E step, each sweep over the data took 13 hours 400 thousand points on a 32-core
Intel Xeon server.

We limit our discussion to the main findings for brevity. The unsupervised training finds
some weight values similar to those found with supervised learning. The magnitude of these
weights is larger than in the supervised settings. Indeed, during the E step, the algorithm is
free to assign any sensible value to the choice of the path. This may lead to a self-reinforcing
behavior and the exploration of a bad local minimum.

As Figures 2.5.11, 2.5.13, and 2.5.12 show, a large training dataset puts unsupervised
methods on par with supervised methods as far as performance metrics are concerned. Also,
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Figure 2.5.12: Proportion of true points incorrectly identified, for different models evaluated
with 1-minute sampling (lower is better). The central point is the mean proportion, the error
bars indicate the 70% confidence interval. Unsupervised models are very competitive against
supervised models, and the complex unsupervised model slightly outperforms all supervised
models.

the inspection of the parameters learned on this dataset corroborates the finding made
earlier. One is tempted to conclude that given enough observations, there no need to collect
expensive high-frequency data to train a model.

2.5.4 Key findings

Our algorithm can reconstruct a sensible approximation of the trajectory followed by the ve-
hicles analyzed, even in complex urban environments. In particular, the following conclusions
can be made:

• An intuitive deterministic heuristic (“Hard closest point”) dramatically fails for paths
at low frequencies, less so for points. It should not be considered for sampling intervals
larger than 30 seconds.
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Figure 2.5.13: Proportion of true paths incorrectly identified, for different models evaluated
with 1-minute sampling (lower is better). The central point is the mean proportion, the
error bars indicate the 70% confidence interval. The complex unsupervised model is as good
as the best supervised model.

• A simple probabilistic heuristic (“closest point”) gives good results for either very low
frequencies (2 minutes) or very high frequencies (a few seconds) with more 75% of paths
and 94% points correctly identified. However, the incorrect values are not as close to
the true trajectory as they are with more accurate models (“Simple” and “Complex”).

• For the medium range (10 seconds to 90 seconds), trained models (either supervised or
unsupervised) have a greatly improved accuracy compared to untrained models, with
80% to 95% of the paths correctly identified by the former.

• For the paths that are incorrectly identified, trained models (“Simple” or “Complex”)
provide better results compared to untrained models (the output paths are closer to
the true paths, and the uncertainty about which paths may have been taken is much
reduced). Furthermore, using a complex model (“Complex”) improves these results
even more by a factor of 13-20% on all metrics.
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• For filtering strategies: online filtering gives the worst results and its performance is
very similar to 1-lagged smoothing. The slower strategies (2-lagged smoothing and
offline) outperform the other two by far. Two-lagged smoothing is nearly as good as
offline smoothing, except in very high frequencies (less than 2 second sampling) for
which smoothing clearly provides better results.

• Using a trained algorithm in a purely unsupervised fashion provides an accuracy as
good as when training in a supervised setting - within some limits and assuming enough
data is available. The model produced by EM (“EM-Simple”) is equally good in terms
of raw performance (path and point misses) but it may be overconfident.

• With more complex models, the filter can be used to infer some interesting patterns
about the behavior of the drivers.

2.6 Conclusion, discussion

We have presented a novel class of algorithms to track moving vehicles on a road network: the
path inference filter. This algorithm first projects the raw points onto candidate projections
on the road network and then builds candidate trajectories to link these candidate points.
An observation model and a driver model are then combined in a Conditional Random Field
to find the most probable trajectories.

The algorithm exhibits robustness to noise as well as to the peculiarities of driving in
urban road networks. It is competitive over a wide range of sampling rates (1 second to
2 minutes) and greatly outperforms intuitive deterministic algorithms. Furthermore, given
a set of ground truth data, the filter can be automatically tuned using a fast supervised
learning procedure. Alternatively, using enough regular GPS data with no ground truth, it
can be trained using unsupervised learning. Experimental results show that the unsupervised
learning procedure compares favorably against learning from ground truth data. One may
conclude that given enough observations, there no need to collect expensive high-frequency
data to train a model.

This algorithm supports a range of trade-offs between accuracy, timeliness and computing
needs. In its most accurate settings, it extends the current state of the art [123, 131]. This
result is supported by the theoretical foundations of Conditional Random Fields. Because
no standardized benchmark exists, the authors have released an open-source implementation
of the filter to foster comparison with other methodologies using other datasets [11].

In conjunction with careful engineering, this program can achieve high map-matching
throughput. The authors have written an industrial-strength version in the Scala program-
ming language, deployed in the Mobile Millennium system. This version maps GPS points at
a rate of about 400 points per second on a single core for the San Francisco Bay area (several
hundreds of thousands of road links), and has been scaled to multicore architecture to achieve
an average throughput of several thousand points per second [64]. This implementation has
been successfully deployed in Stockholm and Sacramento as well.
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A number of extensions could be considered to the core framework. In particular, more
detailed models of the driver behavior as well as algorithms for automatic feature selection
should bring additional improvements in performance. Another line of research is the map-
ping of very sparse data (sampling intervals longer than two minutes). Although the filter
already attempts to consider as few trajectories as possible, more aggressive pruning may
be necessary in order to achieve good performance. Finally, the EM procedure presented for
automatically tuning the algorithm requires large amounts of data to be effective, and could
be tested on larger datasets that what we have presented here.
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Chapter 3

A large-scale distributed streaming
model

A lawyer without history or literature is a
mechanic, a mere working mason; if he possesses
some knowledge of these, he may venture to call
himself an architect.

Sir Walter Scott, Guy Mannering

3.1 Introduction

The specific problem we address in this use case is how to extract travel time distributions
from sparse, noisy GPS measurements collected in real-time from vehicles, and over a very
large network. A probabilistic model of travel times on the arterial network is presented along
with an online Expectation Maximization (EM) algorithm for learning the parameters of this
model (Section 3.2). The algorithm is expensive due to the large dimension of the network
and the complexity inherent to the evolution of traffic. Furthermore, our EM algorithm has
no closed-form expression and requires sampling and non-linear optimization techniques.
This is why the use of a distributed system is appropriate.

This EM algorithm is the core of an estimation pipeline deployed inside the Mobile
Millennium traffic information system [3, 65]. This engine gathers GPS observations from
participating vehicles and produces estimates of the travel times on the road network. Mobile
Millennium is designed to work at the scale of large metropolitan areas: the road network
considered in this work is a real road network (a large portion of the greater Bay Area, com-
prising 506,685 road links) and the data for this work is collected from thousands of vehicles
that generate millions of observations per day. As a consequence of these specifications and
requirements, we employ highly scalable traffic algorithms. Furthermore, Mobile Millennium
is a research platform and can be used with various models of travel times. The fundamental
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unit of estimation is the probability distribution of travel times over a single link of the road
network. As will be seen, our framework can accommodate any distribution of travel times
that provided this distribution exposes a few functionalities (sampling, parameter estimation
from observations). This should be of interest to traffic researchers and practitioners since
our framework solves all the issues of using raw GPS samples to build traffic estimates at a
very large scale with low latency. Our framework has been released under an open-source
license and is available for download [9].

More generally, our system presents a way to cope with large amounts of data from
automation systems in a principled way. Industries such as genomic and astronomy have
learned to cope with extremely large datasets over the last decade. What makes cyberphysi-
cal systems stand out amongst these applications is the fast decay of the value of information:
in robotics systems for example, the data collected from sensors is usually fed into a control
system. Past information is often of limited or no value, sometimes as fast as in the span of
a few minutes or tens of seconds. This is unlike genomic records which, rather than being
processed immediately, need to be stored reliably for a long time. In essence, the incoming
information in cyberphysical systems needs to be considered as a stream, and not so much
as an ever-growing dataset. In this setting, the design of the computing platform becomes
critical to achieve both scalability (which implies robustness to computer failures) and la-
tency, which is all the more important as estimates are usually part of a larger decision
system. In this chapter, we investigate the use of Discretized Streams (D-Streams) [125], a
novel computing technique that process flows of incoming data on a cluster.

The present work is novel for three reasons:

• Our framework can work with a very large class of travel time distributions proposed
in the literature [50,55,76]. If a travel time distribution can perform some elementary
operations described in Section 3.2.4 (conditional sampling, maximum likelihood esti-
mation), then it can be used in our highly scalable architecture. Thus transportation
researchers can focus on designing good travel time distributions, leaving the system
aspects aside should they wish to deploy it on a real system.

• Our framework can accommodate complex distributions and spread the computations
across a large cluster. The natural baseline is Gaussian distributions, because a number
of important operations have close-formed solutions, unlike other distributions. How-
ever, Gaussian distributions are not adapted to represent traffic distributions: they
are not limited to the positive reals, and they lack a heavy tail (i.e., they are sensitive
to noise and outliers). These considerations drive our use of another simple distribu-
tion: the Gamma distribution. We present novel results regarding the sampling from
conditioned Gamma distributions.

• Building such a system is at the forefront of research in large scale systems. Our
algorithm (an EM algorithm on streaming data) is representative of a large class of
Machine Learning algorithms used in robotics and automation, and our overall design
could be used as well for these other algorithms and applications. This is why we
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present and explain the design of our system, as we find there are valuable lessons for
practitioners.

We start by presenting our general approach to traffic estimation and the Mobile Millennium
framework in Section 3.2. We then present in details how a non-trivial distribution of travel
times (a Gamma distribution) can be used on the system. We then present the system aspects
and the overall design of the system in Section 3.4. We finally evaluate our implementation in
Section 3.5 from the perspective of scalability (Section 3.5.2) and accuracy (Section 3.5.3).

3.2 Scalable traffic estimation from streaming data

Most GPS data available today is generated at low frequencies due to energy and bandwidth
constraints. This data is extremely noisy and provides indirect observations of the travel time
distributions on each link of the road network. We introduce here Mobile Millennium, a traffic
information system that is designed to process such data at low latencies and for very large
urban areas. In this section, we will discuss the overall architecture of the arterial estimation
pipeline. This pipeline make few assumptions about the actual travel time distribution
considered. This lets us define a highly scalable algorithm that is amenable to distribution
on cloud computing. In the next section, we will present a particular choice of travel time
distribution, along with some algorithms to perform the different steps. It should be noted
that the choice of the distribution can be made independently from our framework: most
distributions for travel times can be plugged into our framework and yield a very scalable
algorithm.

We define the road network as a graph D = (V , E), where the set E will be referred to
as the “links” of the road network (streets) and L as the “nodes” (road intersections). For
each link l ∈ E , the algorithm outputs X t

l , the time it takes at time index t to traverse link
l. This time is described as a probability distribution parametrized by a vector νl. Our goal
is then to estimate X t, the joint distribution of all link travel times across all links in E ,
for each time index t. We assume that the traffic is varying slowly enough that it can be
considered a steady state between each evaluation: our algorithm will consider that all the
observations between two consecutive time steps have been generated according to the same
state. To simplify notations, we will consider a single time interval and drop the reference
to time: the joint distribution of travel time is the multidimensional variable X.

We will first give an overview of the GPS data that is commercially available today,
and an algorithm that converts raw GPS points to map-matched trajectories with high
accuracy: the path inference filter (PIF) [61]. We will then present our modeling approach
to infer the traffic conditions from these GPS observations. Then we will explain how the
Mobile Millennium [65] pipeline implements this algorithm using a computing cloud as a
computation backend.
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Figure 3.2.1: Schematic architecture of the Mobile Millennium system.

3.2.1 Overview of the Mobile Millennium pipeline

The Mobile Millennium system incorporates a complete pipeline for receiving probe data,
filtering it, distributing it to estimation engines and displaying it, all in in real-time. This
software stack, written in Java and Scala, evaluates probabilistic distribution of travel times
over the road links, and uses as input the sparse, noisy GPS measurements from probe
vehicles.

The most computation-intensive parts of this pipeline have all been ported to a cloud
environment. We briefly describe the operations of the pipeline, pictured in Figure 3.2.1.

The observations are grouped into time intervals and sent to a traffic estimation engine,
which runs the learning algorithm described in the next section and returns distributions of
travel times for each link (Figure 3.2.3).

The travel time distributions are then stored and broadcast to clients and to a web
interface. Examples of means of travel times are shown in Figure 3.5.1.

It is important to point out that Mobile Millennium is intended to work at the scale of
large metropolitan areas. The road network considered in this work is a real road network (a
large portion of San Francisco downtown and of the greater Bay Area, comprising 506,685
road links) and the data is collected from the field (as opposed to simulated). A consequence
of this setting is the scalability requirement for the traffic algorithms we employ. Thus, from
the outset, our research has focused on designing algorithms that could work for large urban
areas with hundreds of thousands of links and millions of observations.
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3.2.2 Map-matching GPS probe data with the Path Inference
Filter

In order to reduce power consumption and transmission costs, probe vehicles do not con-
tinuously report their location to the base station. A high temporal resolution gives access
to the complete and precise trajectory of the vehicle, but this causes the device to consume
more power and communication bandwidth. Also, such data is not available at large scale
today, except in a very fragmented portion of the the private sector. A low temporal reso-
lution carries some uncertainty as to which trajectory was followed. In the case of a high
temporal resolution (typically, a frequency greater than an observation per second), some
highly successful methods have been developed for continuous estimation [37,84,111]. How-
ever, most data collected at large scale today is generated by commercial fleet vehicles. It
is primarily used for tracking the vehicles and usually has a low temporal resolution (1 to 2
minutes) [2, 4, 10, 108]. In the span of a minute, a vehicle in a city can cover several blocks
(see Figure 3.2.2 for an example). Information on the precise path followed by the vehicle is
lost. Furthermore, due to GPS localization errors, recovering the location of a vehicle that
just sent an observation is a non trivial task: there are usually several streets that could be
compatible with any given GPS observation. Simple deterministic algorithms to reconstruct
trajectories fail due to misprojection or shortcuts. The path inference filter [61] is a prob-
abilistic framework that recovers trajectories and road positions from low-frequency probe
data in real time, and in a computationally efficient manner.

This algorithm first projects the raw points onto candidate projections on the road net-
work and then builds candidate trajectories to link these candidate projections. An obser-
vation model and a driver model are then combined in a Conditional Random Field to find
the most probable trajectories, using the Viterbi algorithm. More precisely, the algorithm
performs the following steps:

• We map each point of raw (and possibly noisy) GPS data to a collection of nearby
candidate projections on the road network (Figure 2-1).

• For each vehicle, we reconstruct the most likely trajectory using a Conditional Random
Field [61] (Figure 2-2).

• Each segment of the trajectory between two GPS points is referred as an trajectory
measurement (Figure 2-3). A trajectory measurement consists in a start time, an end
time and a route on the road network. This route may span multiple road links, and
starts and ends at some offset within some links.

At the output of the PIF, we have transformed sequences of GPS readings into sequences of
trajectory readings. These readings are the input for our travel time estimation algorithm.
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Figure 3.2.2: Example of observation. The green mark represents an initial GPS reading, the
orange mark represents a subsequent reading. The black line marks the path of the vehicle,
as reconstructed by the path inference filter between the two GPS points and the numbers
are the indexes of each road link covered by this observation. Given a realization x4 of the
travel time distribution at time t = 4, all the information on travel times encoded by this
observation is summarized in the equation above.

3.2.3 Fundamental generative model

Estimating the travel time distributions is made difficult by the fact that we do not observe
travel times for individual links. Instead, each reading only specifies the total travel time
for an entire list of links traveled. We formally describe our estimation task as a maximum
likelihood estimation problem.

We consider one reading, described by an offset on a first road link ostart, an offset on
a last link oend, a list of m visited links l1 · · · lm, a start time, and a travel duration d (see
Figure 3.2.2 for an example of a reading). The observed travel time is a sum of (unobserved)
travel times on the visited links:

Xl1 (ostart, L (l)) +Xl2 + · · ·Xlm−1 +Xlm (0, oend) = d

We are going to introduce two assumptions: independence and scaling. The first one
is critical to our framework, and is widely used in practice. The scaling assumption is not
necessary, but offers some convenience for the development of the discussion. When working
with more sophisticated distributions and with enough data, it could easily be dispensed
with.

Independence assumption. To make the inference problem tractable, we model the
link travel times for each link l as a univariate distribution with parameter vector νl = (kl, θl),
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Figure 3.2.3: Map-matching algorithm: the raw GPS readings a first projected onto can-
didate points on the road network (Step 1). Then all feasible paths between each pair of
candidate points are computed (Step 2). A dynamic programing algorithm then finds the
most likely trajectory, using a Conditional Random Field (Step 3). Trajectory measure-
ments are the input to the Expectation Maximization algorithm. This algorithm outputs
distributions of travel times (Step 4).

and we assume these distributions are pairwise independent. The independence assumption
is standard in the transportation literature [51, 57] and it also leads to a highly scalable
estimation algorithm. We will discuss the validity of this assumption in Section 3.5.3.

Scaling assumption. The distribution of travel time Xl (a, b) between two offsets a and
b of a road link l can be significantly different in shape from the distribution Xl over the full
link. We simplify the problem by assuming that the partial travel time from the start of a
road link to some offset o is proportional to the distribution over the full link:

Xpartial (ostart, oend) = fl (ostart, oend)Xl

wher fl is a function in values between 0 and 1. In our implementation, we make the use of
the following function:

f (ostart, oend, L (l)) =

(
oend

L (l)

)r
−
(
ostart

L (l)

)r
for some r > 0. It is well-known that the travel time on a part of a road link is not
proportional to the travel time over the complete link [57]. The function f captures some
of this non-linearity. The factor r is selected by cross-validation and was set to be 2.1.
In all generality, this assumption may not be representative of empirical data, and it is a
convenient way to consider partial travel times without introducing additional parameters to
the model. However, in our streaming setting, the updates happen at high frequency (every
few second), and there is not enough observation to fully update the distributions, which
may lead to some overfitting. As we will see in the next section, this assumption may be
dispensed with when more complex traffic distributions are considered. This modelization
is fairly crude but gives sensible results in our experiments. It would be interesting to see
how this holds as more data becomes available in the future.
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Figure 3.2.4: Directed (Bayesian) graph of the travel time model. Grey nodes are observed
variables, white nodes are hidden variables. The arrows represent conditional dependencies
between the variables. Boxes encode plates, i.e. a factorization of repeating variables.

Using the two assumptions outlined above, the duration d of a travel is the linear com-
bination of realizations of travel times on the different links of the road network:

d =
∑
l∈E

α (l)xl

=
∑
l∈p

α (l)xl

where the vector α ∈ [0, 1]n is defined as follows1:

α (l1) = fl (ostart, L (l1))

α (lm) = fl (0, oend)

α (li) = 1 for i ∈ [2...m− 1]

and α (l) = 0 for all other links l. The vector α is called the path activation vector for this
reading. Note that fewer than 10 links are covered in a typical trajectory measurement, so
the path activation vectors are extremely sparse (the fill-in factor is less than 0.001%). We
will use this fact to achieve very good scaling of our algorithm.

For a given time interval, we can completely represent a trajectory reading by an ob-
servation Y = (α, d) ∈ (R+)

n × R∗+. Each observation Y (r) =
(
α(r), D(r)

)
describes the

rth trajectory’s travel time D(r) and path α(r) as inferred by earlier stages of the Mobile
Millennium pipeline. The travel time D(r) is the time interval between consecutive GPS
observations and is roughly one minute for our source of data.

The dependencies between the observations and the parameter vector ν can be repre-
sented as a Bayesian graphical model, which encodes all the dependencies between the vari-
ables in a very compact form (Figure 3.2.3). We now formalize the problem of estimating

1In practice, the definition of α needs to be adapted when an observation spans a only single link.
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the set of parameters ν = (νl)l for a set of observations
(
Y (r)

)
r=1···R as a learning problem.

We consider that the the current estimate of the traffic is completely described by indepen-
dent distributions (parametrized by some vectors νl) of the travel times over each road link.
These travel times are indirectly observed through a set of observations Y (r) =

(
α(r), d(r)

)
.

The set of parameters that maximizes the likelihood of these observations is solution to the
maximum likelihood problem:

max
ν

ll (Y ; ν) =
∑
r

log π

(
D(r)

∣∣∣∣α(r); ν

)
(3.2.1)

with π

(
D(r)

∣∣∣∣α(r); ν

)
the probability of observing the duration d =

∑
l (α (l))xl when xl is

generated according to the distribution π (·; νl) of the variable Xl. This likelihood can be
decomposed using the relations of independence between variables:

π

(
D(r)

∣∣∣∣α(r); ν

)
=

∫
X

π

(
D(r)

∣∣∣∣X,α(i)

)
π (X; ν) dX

=

∫
X

π

(
D(r)

∣∣∣∣X,α(i)

) ∏
l :α(r)(l)>0

π (Xl; νl) dXl


=

∫
X

π

(
D(r)

∣∣∣∣X,α(i)

) ∏
l :α(r)(l)>0

π (Xl; νl) dXl


Estimating the travel time distributions is made difficult by the fact that we do not observe
travel times X for individual links. Instead, each observation only specifies the total travel
time D for an entire list α of links traveled. To get around this problem, we use the
Expectation Maximization (EM) algorithm [34, 88]. The EM algorithm operates in two
phases: In the E-step it considers each travel time measurement and computes a distribution
over allocations of travel time to each of the links. In the M-step it computes the link
parameters that maximizes the likelihood of the travel times for the allocations made in the
E-step. By iterating this process the EM algorithm converges to a set of link parameters
that are a local maximum of the likelihood of the data. In our setting, we run the EM
algorithm in an online fashion: for each time step, we use the previous time step as a value,
perform a few (iterations and we monitor the convergence through the expected complete
log-likelihood. This form of online EM gives good results for our application (Section 3.5).

3.2.4 Dataflow of the algorithm

Figure 3.2.5 shows the data flow in the algorithm in more detail. In the E-step, we generate
per-link travel time samples from whole observations; specifically, for each observation Y (r) =(
α(r), d(r)

)
, we produce a set of U weighted samples X(r) =

{(
x(r,u), w(r,u)

)}
u=1···U , each
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Figure 3.2.5: System workflow of the EM algorithm. In the E-step, we generate per-
link travel time samples from whole observations; specifically, for each observation Y (r) =(
α(r), d(r)

)
, we produce a set of U weighted samples X(r) =

{(
x(r,u), w(r,u)

)}
u=1···U , each

sample x(r,u) produced by randomly dividing travel time d(r) among its constituent links
(producing a travel time x

(r,u)
li

for each edge li ∈ α(r)). We assign a weight w(r,u) as the

likelihood of travel time x(r,u) according to the current distribution parameters ν. In the
shuffle step, we regroup the samples X(r) by link, so that each link l now has samples

X̃l =
{(
s

(r,u)
l , w

(r,u)
l

)}
r,u

from all the observations r that go over it. In the M-step, we

recompute the parameters νl to fit link l’s travel time distribution to the samples X̃l.

sample x(r,u) produced by randomly dividing travel time d(r) among its constituent links
(producing a travel time x

(r,u)
li

for each edge li ∈ α(r)). We assign a weight w(r,u) as the

likelihood of travel time x(r,u) according to the current distribution parameters ν. In the
shuffle step, we regroup the samples X(r) by link, so that each link l now has samples

X̃l =
{(
s

(r,u)
l , w

(r,u)
l

)}
r,u

from all the observations r that go over it. In the M-step, we

recompute the parameters νl to fit link l’s travel time distribution to the samples X̃l.
So far, we have not introduced a particular distribution for the travel times Xl. This will

be the subject of the next section. We require only few operations on a distribution of travel
times:

• Sampling under a constraint: the Expectation step involves sampling X1 · · ·XU under
some constraint aTX = d. We will show in the next section how this operation can
be performed efficiently in the case of Gamma distributions. For more complicated
distributions, importance sampling may be used. This technique in turn only requires
the knowledge of the unnormalized p.d.f. of the distribution, which is usually not a
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concern.

• Solving the maximum likelihood problem: in the M step, for each of the links, we
solve a problem of the form maxν

∑
w̃(i) log π

(
x̃(i); ν

)
given a set of weighted samples(

w̃(i), x̃(i)
)
i
. This problem can be solved approximately, using gradient descent for

example. If the number of parameters is small (typically less than 4), grid search may
even yield an appropriate solution in a reasonable time.

The minimum requirements for travel time distributions are very mild and may satisfy com-
plex, multi-modal distributions. However, using complex distributions involves learning a
large number of parameters and may lead to overfitting when data is scarce. Since our goal is
to study the validity of the framework for very large networks and datasets, we will consider
in our discussion simple distributions. It will be interesting to compare in the future with
some other more realistic distributions.

3.3 Modeling travel times with Gamma distributions

The Gamma distribution is a simple unimodal, heavy-tailed distribution with a mean and
a scale parameter. In this section, we show how it can be used as a travel time distribution
and how it fits into our framework.

Gamma distributions substantially complicate the Expectation step, because sums of
independent Gamma distributions have no closed form. This is why we approximate the

conditional expectation X(r)|
(
α(r)
)T
X(r) = D(r) by sampling from this distribution. As

we will see, there is a surprisingly simple algorithm in the case of Gamma distributions.
While not strictly necessary, it is also useful to compute the value of the marginal likelihood

of each observation P
((
α(r)
)T
X(r) = D(r)

)
in order to track the converge of the EM algo-

rithm. Since the computations are independent for each of the observations, they are good
candidates for cloud computing.

This section is self contained and does not make use of concepts from the other sections.
We introduce it to show how a non-trivial distribution can be incorporated into the rest of
the framework, and what computations are necessary to fit in the framework presented is
Section 3.3.2. We present the main results in Section 3.3.1. Since the justification of these
results requires some measure-theoretic technicalities, the proofs are derived in the subse-
quent sections. These justifications will require introducing a new statistical distribution:
the Gamma-Dirichlet distribution.
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3.3.1 Learning with Gamma distributions

Consider a set of n independent Gamma distributions Ti ∼ Γ (ki, θi) with k ∈
(
R∗+
)n

and θ ∈(
R∗+
)n

, a n-dimensional vector of positive numbers α ∈
(
R∗+
)n

and d > 02. Call T the joint
distribution of all Tis. The purpose of this paragraph is to present some practical formulas
to sample and compute the density function of the sum

∑
i αiTi , which is a univariate

distribution.
Marginal likelihood Call U =

∑
i αiTi. Call θ = mini αiθi and k =

∑
i ki. The

probability density function of U is an infinite series [15, 86]:

fU (d) = θk
∏
i

(αiθi)
−k

∞∑
l=0

δlfΓ (d; k + l, θ)

in which fΓ is the density function of the Gamma distribution: fΓ (x; a, b) = Γ (a)−1 b−axa−1e−b
−1x

and (δj)j a series defined by the recursive formula:{
δ0 = 1

δl = 1
l

∑l
m=0 δl

(∑n
i=1 ki

(
1− αiθ−1

i θ
)l−m)

This result is a direct application of [86], using the scaling property of the Gamma distribu-
tion: αiTi ∼ Γ (ki, αiθi) for αi > 0.

Sampling from conditional gamma distributions.

Algorithm 3.1 Sampler for Gamma distributions conditioned on a hyperplane

Given α ∈
(
R∗+
)n

and d > 0.
Generate n independent samples ai ∼ Γ (ki, d

−1αiθi)
zi = dα−1

i
ai∑
k ak

Then z ∼ T |αTT = d

Our algorithm must provide values from the conditional distribution Z ∼ T |αTT = d.
While this distribution has a complex shape (in particular, it is defined over a zero-measure
hyperplane of the space of variable), there happens to exist a remarkably simple procedure
to sample values from the conditional Gamma distribution Z: sample n independent values
from Gamma distributions:

Ai ∼ Γ

(
ki,

αiθi
d

)
(3.3.1)

Then a suitably rescaled value of Ai follows the distribution of Z:

Zi =
d

αi

Ai∑
lAl

(3.3.2)

2The bivariate function Γ (·, ·) will refer to the Gamma distribution and the univariate function Γ (·) will
refer to the Gamma function. Which one is used should be clear from the context.
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To our knowledge, this is a new result regarding Gamma distributions. We present the proof
of correctness in the next Section. The proof requires some technical arguments that may
be skipped in a first reading. The algorithm is presented in Algorithm 3.1.

3.3.2 The Gamma-Dirichlet distribution

In order to show that the equations 3.3.1 and 3.3.2 give the correct distribution for Z, we
formally introduce a generalization of the Dirichlet distribution, which we call the Gamma-
Dirichlet distribution3. This distribution can be sampled using a closed for solution. We
show in a second step that its p.d.f. is the same as the p.d.f. of the conditional distribution
T |
∑

i Ti = 1. We then generalize to arbitrary positive combinations.
The Gamma-Dirichlet distribution. The regular simplex Sn ⊂ Rn is the convex hull

of the elementary vertices (ei)i∈[1,n]. Given a vector k ∈ (R+)
n

and a vector θ ∈ (R+)
n
, we

define the Gamma-Dirichlet distribution:

X ∼ ΓD (k, θ)

with values over the regular simplex Sn as the normalized sum of n elements drawn from
independent Gamma distributions:

Xi =
Yi∑
j Yj

with
Yi ∼ Γ (ki, θi) (3.3.3)

and Yi all pairwise independent. The Gamma-Dirichlet distribution is a simple of the Dirich-
let distribution: if θ = a1 for some a > 0, this is the Dirichlet distribution of the nth order.
The definition gives a straightforward procedure to sample some values from X.

Density. Note first that one needs to be careful in defining the underlying σ-algebra of
our probability space, as the values of X are located in an embedding of Rn of measure 0 (a
hyperplane). Consider the n-dimensional hyperplane Hn =

{
x|xT1 = 1

}
. This hyperplane

includes the simplex Sn. The Lebesgue measure of this set in Rn is zero. However, we can
consider the Lebesgue measure µ̃ defined over Rn−1 and the transform: φ : Rn−1 → Hn

defined by φ (u) =
(
u − 1Tu

)T
. This transform is a linear mapping and it defines a new

measure µ̂ for the space Hn based on µ̃. Under this measure, the measure of the simplex
Sn is positive. Call µ the measure defined over Sn by µ (·) = µ̂ (Sn)−1 µ̂ (·). Consider the
conditional distribution Zi = Yi|

∑
j Yj = 1 with Yi defined in Equation (3.3.3). The density

function of this distribution is 0 over Rn nearly everywhere, however it has non-zero measure
over the regular simplex Sn.

Call fΓD (x) the p.d.f. of the Gamma-Dirichlet distribution over Sn. Then we have:

fΓD (x) ∝
n∏
i=1

fΓ (xi; ki, θi)

3To our knowledge, the following results have not been presented in the literature so far.
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with fΓ (x; k, θ) defined above.

Proof. This proof is adapted from a similar proof [35] for the Dirichlet distribution. Using
the same notations as above, define Y =

∑
j Yj and Xi = Yi/Y for i ≤ n. The joint density

for the Y ’s is:
f (y) ∝

∏
i

yki−1
i e−

∑
θ−1
i yi

Define the transform ϕ̃ : Rn → Rn by: ỹ =
∑

i θ
−1
i yi and x̃i = ỹ−1θ−1

i yi for i ≤ n − 1. We
are going to show that the joint density of x̃ and ỹ can be written as g (x̃, ỹ) = a (x̃) b (ỹ),
which implies that the variables x̃ and ỹ are independent. This mapping is invertible and
its Jacobian at ỹ is

(∏
i θ
−1
i

)
ỹ. Thus the joint density of (ỹ, x̃) is:

g (ỹ, x̃) ∝

(1−
n−1∑
i=1

x̃i

)kn−1 n−1∏
i=1

x̃ki−1
i

 [ỹ∑i ki−1e−ỹ
]

This shows that the variables ỹ and x̃ are independent. Furthermore, from the expression
above, the distribution of x̃ is a Dirichlet distribution and the distribution of ỹ is a Gamma
distribution. The marginal for x̃ writes:

g (x̃) ∝

(
1−

n−1∑
i=1

x̃i

)kn−1 n−1∏
i=1

x̃ki−1
i

Now, we consider a change of variables for the joint variables y to remove the conditional
constraint

∑
i yi = 1. Define the transform ϕ : ŷ =

∑
i yi and x̂i = ŷ−1yi for k ≤ n− 1. This

mapping is also invertible, with Jacobian ŷk. The joint density of (ŷ, x̂) is:

g (ŷ, x̂) ∝

(1−
n−1∑
i=1

x̂i

)kn−1 n−1∏
i=1

x̂ki−1
i

 [ŷ∑i ki−1e−θnŷ
]

By identification, we get: g (x|y = 1) = g (∆−1x̃) with ∆ the diagonal matrix defined by

∆ii = θi. Since ϕ̃−1
(

(∆−1x̃, 1)
T
)

= x̃, the result ensues.

The previous result proves that the sampling procedure in Algorithm 3.1 is correct for the
simplex Sn (i.e. d = 1). We can then use the scaling transform of the Gamma distribution to
show it is also correct for other values of d. Indeed, the constraint αTT = d is also equivalent
to
∑
Yi = 1 with Yi = d−1αiTi ∼ Γ (ki,, d

−1αiθi). We can perform the conditional sampling
on the variables Yi, and then rescale the values obtained to get the correct distribution.

Proof. Consider a set of n independent Gamma distributions Ti ∼ Γ (ki, θi), a n-dimensional
vector of positive numbers α ∈

(
R∗+
)n

and t > 0. The purpose of this section is to present
some practical formulas to sample and compute the density function of the conditional
distribution:
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Z = T

∣∣∣∣∑
i

αiTi = d

We define this distribution over the n-dimensional simplex

Sα,d =

{
x ∈

(
R+
) ∣∣∣∣αTx = d

}
As before, we define a new measure over the hyperplane defined by αTx = d by an iso-
morphism from Rn−1, and use it as our base measure dz for Z. We call f the probability
density function of variable Z with respect to this measure. With respect to this measure,
the probability density function of Z is that of a Gamma-Dirichlet distribution:

f (z) ∝ fΓD

(
y; k, θ̂

)
with:

θ̂i = t−1αiθi

3.4 Discretized streams: large-scale real-time

processing of data streams

We now describe the design of the data processing pipeline of the Mobile Millennium system.
This framework takes streams of raw GPS data as input, and outputs states of traffic, in the
form of parameters of travel time distributions. We had the following requirements, which
are shared with most automation system:

• Low latency : we wanted to investigate update rates as high as every few seconds.

• Scalability and high throughput : the system should be able to handle tens or hundreds
of thousands of measurements per second

• Robustness to failures : the failure of machines should have a limited impact on the
performance of the system

• Testing multiple scenarios : the GPS data needs to go through some complex filtering
process (map-matching and trajectory reconstruction) before it can be used for esti-
mation, and the ability to perform cross-validation is a prerequisite to tuning these
algorithms. Thus, we needed to rerun or even run multiple instances of our algorithm
in parallel.
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• Flexible deployment solution: from the outset, our goal was to deploy our framework
on a generic cloud solution such as Amazon EC2. This implies limited control over the
topology of the computer network and over the characteristics of the computers.

Streams of hundreds of thousands of elements per second are common in cloud-based envi-
ronment. However, in our application, the Expectation step of the EM algorithm generates
a large number of samples for each observation. This multiplies the internal throughput rate
by a factor of 1000 to 10,000. Single computers cannot work at this rate, and a cloud-based
solution is required. Furthermore, these samples are ephemeral and can be deterministically
recreated from an observation: there is no need to store them. The novelty of our appli-
cation lies in combining the competing requirements of the different stages: the initial and
final steps have average throughput and their respective inputs and outputs require fault-
tolerant storage, while the intermediate computation steps must have high throughput and
be resilient to individual node failures.

In particular, since this is a research platform, we needed the ability to test and moni-
tor complex iterative algorithms. In this section, we will present the notion of Discretized
Streams, a concept recently introduced [125] and implemented in the Spark computing frame-
work. We will present how the design of D-Stream lets users build cyberphysical systems at
scale.

3.4.1 Limitations of current techniques

Current techniques to process large amounts of live streaming data can be broadly classified
into the following two categories.

• Using traditional streaming processing systems : Streaming databases like Stream-
Base [8] and Telegraph [28], and stream processing systems like Storm [7] have been
used to meet such processing requirements. While they do achieve low latencies, they
either have limited fault-tolerance properties (data lost on machine failure) or limited
scalability (cannot be run on large clusters).

• Using traditional batch processing systems : The live data is stored reliably in a repli-
cated file system like HDFS [1] and later processed in large batches (minutes to hours)
using traditional batch processing frameworks like Hadoop [1]. By design, these sys-
tems can process large volumes of data on large clusters in a fault-tolerant manner,
but they can only achieve latencies of minutes at best. Furthermore, the processing
model is too low level to conveniently express complex stream computations.

3.4.2 D-Streams - A programming model for stream processing

D-Streams execute deterministic computations similar to those in MapReduce for fault tol-
erance, but they do so at a much lower latency than previous systems, by keeping state in
memory, as opposed to saving it on disk between each step. The input data received from
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various input sources (e.g., webservices, sensors, etc) during each interval is stored reliably
across the cluster to form an input dataset for that interval. Once the time interval completes,
this dataset is processed via deterministic parallel operations (like mapping transformations
or filtering) to produce new datasets representing program outputs or intermediate states.
Finally, these datasets can be saved to external source such as databases. The advantage of
this model is that it provides the developer a convenient high-level programming model to
easily express complex stream computations while allowing the underlying system to pro-
cess the data in small batches thus achieving excellent fault-tolerance properties. D-Streams
support the same stateless transformations available in typical batch frameworks, including
map, reduce, groupBy, and join. In addition, D-Streams also provide stateful operators like
windowing and moving average operators that share data across time intervals. All the in-
termediate data computed using D-Streams are by design fault-tolerant, that is, no data is
lost if any machine fails. This is achieved by treating each batch of data (and each new
batch derived through transforms of the original dataset) as a dataset distributed across the
machines. Each dataset maintains a lineage of operations that was used to create it from
the raw input data (stored reliably by the system by automatic replication) [124]. Hence, in
the event of computer failure, if any partition is lost, it can be recomputed from raw input
data using the lineage. As these operations are deterministic, the recomputation can be
done using fine-grained tasks in parallel. This ensures fast recovery minimizing the effect of
the failure on the stream processing system. This novel technique is called parallel-recovery
and sets this abstraction apart from existing stream processing systems, that need to write
intermediate steps to disk or implement complex recovery mechanisms.

To implement D-Stream, we use Spark, an existing open-source, batch processing frame-
work, to create Spark Streaming. Spark is a fast, in-memory batch processing framework,
and we naturally extend this framework to implement D-Streams. Both these systems are
implemented in Scala [5] (a language based on the Java Virtual Machine), which allows them
integrate well with existing Java and Scala libraries for linear algebra, machine learning, etc.
Furthermore, the compact syntax of the Scala language hides all the complexities of dis-
tribution, replication and data access pattern behind an intuitive programming interface.
This code instantiates a D-Stream with the raw data and derives some other D-Streams that
correspond to each step of the algorithm. As can be seen, this code leverages the functional
API of Spark and Scala to express stream transformations in a very natural way. Spark
Streaming can scale to hundreds of cores while achieving latencies as low as hundreds of
milliseconds. We use this system to implement our traffic estimation algorithms, which we
shall explain next.

3.4.3 Lessons learned

In the process of designing this framework, we experienced several challenges and we made
several design decisions that we feel should be taken into consideration when considering
building a large system for cyberphysical computations.
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Computing in memory Keeping the computations in memory leads to dramatic per-
formance improvements, as the processes do not need to seek or write data on the disk.
We found that this improves both the throughput and the latency. The fault recovery is
provided by the lineage information, and is typically fast enough (a few seconds) for our
experiments.

Interfacing with databases One of the bottlenecks that came to us as a surprise is
the interaction with our primary storage (an Oracle database). After map-matching, the
data is written to the database. The nodes of the computing cloud then open a connection
periodically to read the new data at every beat. However, the database could not keep up
with hundreds of queries at the same time. Replicating the database in the cluster did not
lead to much improvement. Our solution was to use the database as an end point that would
not be queried by the cloud computers: at the end of the map-matching step, the stream
of map-matched observations is not only pushed to the database, but also to the Hadoop
filesystem (HDFS) that is spread on the cluster. We found the insertion mechanism to be
fast enough for this pattern.

Using immutable, stateless transforms working with immutable distributed datasets
called for a different programming style that emphasizes function-based transforms of data.
In this style, a filter would be implemented as a function that takes a state and some
observations, and creates a new object that contains the updated state: the original state
object is not modified. We found this style to be a significant departure from the common
practices in control and automation. Thus, a stream is defined as a sequence of transforms
on a dataset. The Scala programming language provides an elegant interface for expressing

Table 3.1: Despite what your eyes are interpreting, the squares labelled “A” and “B” on the
left image have the same color!
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these transformations. The immutability is a key factor in performing operations in memory
and in a fault-tolerant way. We found that in practice, performance bottlenecks did not
occur when using this programming style.

3.5 A case study: taxis in the San Francisco Bay Area

Having now described an algorithm for computing travel time distributions in real time on
a road network, we describe our validation experiments. These experiments explore two
settings:

• The raw performance of the machine learning algorithm, given a limited amount of
data and a computational budget,

• The performance of the Streaming Spark framework [124] in distributing computations
across a cluster, and the computational performance improvement gained by additional
hardware.

The performance of the algorithm is computed by asking the model to give travel time
distributions on unseen trajectories, slightly in the future. The observed travel time of the
trajectory is then compared with the distribution provided by the model. We measured
the L1 and L2 losses between the observed travel time and the distribution mean, and the
likelihood of the observed travel time with respect to the predicted travel time distribution.
This is done with different amount of data and different time horizons.

The computational efficiency of the algorithm is validated in two steps. First, we demon-
strate that our algorithm scales well: given twice as many computation nodes, it perform the
same task about twice as fast. We also see that this algorithm is bounded by computations.
Then, we demonstrate that it can sustain massive data flow rates under strict scheduling
constraints: we fix a completion time of a few seconds for each time step, and we find the
maximum flow rate under a given computational budget.

3.5.1 Taxis in San Francisco

Our implementation was run on a road network that corresponds to the greater San Francisco
Bay Area (506,685 road links), using taxi data provided by the Cabspotting project [10]. This
dataset contains GPS samples of a few thousand taxicabs emitted every minute, for more
than a year. All in all, it represents hundred of millions of GPS points. We ran our algorithm
on a typical day (August 12th 2010, a Tuesday) with different settings. An example of input
data is given in Figure 1.2.1. A typical output of travel times provided by the algorithm is
given in Figure 3.5.1.
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Figure 3.5.1: An example output of traffic estimates from our algorithm: mean travel times
on different road links in the business district of San Francisco during a complete day.

3.5.2 Good scalability results using a large cluster

In this section, we evaluate how much the cloud implementation helped with scaling the
Mobile Millennium EM traffic estimation algorithm. Distributing the computation across
machines provides a twofold advantage: each machine can perform computations in parallel,
and the overall amount of memory available is much greater.

Scaling. First, we evaluated how the runtime performance of the EM job could improve
with an increasing number of nodes/cores. The job was to learn a historical traffic estimate
for downtown San Francisco for a half-hour time-slice, using a large portion of the data split
in one-hour intervals. This data included 259,215 observed trajectories, and the network
consisted of 15,398 road links. We ran the experiment on two cloud platforms: the first was
using Amazon EC2 m1.large instances with 2 cores per node, and the second was a cloud
managed by the National Energy Research Scientific Computing Center (NERSC) with 4
cores per node. Figure 3.5.2 (bottom) shows near-linear scaling on EC2 until 80–160 cores.
Figure 3.5.2 (top) shows near-linear scaling for all the NERSC experiments. The limiting
factor for EC2 seems to have been network performance. In particular, some tasks were lost
due to repeated connection timeouts.

Scaling on Streaming Spark. After having found the bottlenecks in the Spark pro-
gram, we wrote another version in Streaming Spark. The two programs are strikingly similar
(see program listing in Appendix B). We then benchmarked the application. We ported this
application to Spark Streaming using an online version of the EM algorithm that merges in
new data every five seconds. The implementation was about 200 lines of Spark Streaming
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Figure 3.5.2: Experiments with Spark to build historical estimates of traffic, on NERSC
(top) and Amazon EC2 (bottom).

code, and wrapped the existing map and reduce functions in the offline program. In addi-
tion, we found that only using the real-time data could cause overfitting, because the data
received in five seconds is so sparse. We took advantage of D-Streams to also combine this
data with historical data from the same time during the past 10 days to resolve this problem.
Figure 3.5.3 shows the performance of the algorithm on up to 80 quad-core EC2 nodes. The
algorithm scales almost perfectly, largely because it is so CPU-bound, and provides answers
an order of magnitude faster than the previous implementation.

3.5.3 Our algorithm can be adjusted for trade-offs between
amount of data, computational resources and quality of the
output

We now study the accuracy of our algorithm in estimating the traffic. Even if we receive
a large number of observations per day, this number is not sufficient to cover properly in
real time all the road network: indeed, some sections of the road network are much less
traveled than the busy downtown areas. We use several strategies to mitigate this spatial
discrepancy:

• We use a prior on the Gamma distribution, itself a Gamma distribution since the
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Figure 3.5.3: Experiments with Streaming Spark: rate of observation processing for different
cluster sizes.

Gamma is in the exponential family and conjugate with itself. The parameters of this
prior are to 70% of the speed limit in mean and 1 minute or 50% of the travel time in
standard deviation, whichever is greater.

• We incorporate some data from the same day before the current time step, weighted by
an exponential decay scheme: the traffic in the arterial network is assumed to change
slowly enough.

• We also incorporate some data from previous days, corresponding to the same day of
the week (Monday, Tuesday, etc.). Traffic is expected to follow a weekly pattern during
the same month.

To summarize, a large number of observations are lumped together and weighted according
to the formula:

w = e−∆t−1
day(tobs−tcurrent)e−∆t−1

week(weekobs−weekcurrent)

The half-time decaying factors ∆tday and ∆tweek are set so that the corresponding weight is
0.2 at the end of the window.

Since the EM learning algorithm is not linear in the observations, we cannot reduce
each observation to some sufficient statistics. As the algorithm moves forward in time,
each observation will appear at different time steps with a different weight and needs to be
reprocessed. This is a significant limitation from this approach, but it makes for a good
testing ground of Streaming Spark.

Our EM algorithm can be adjusted in several ways:

• The number of weeks of data to look back (between 1 and 10)

• The time window to consider before the current observation (between 20 minutes and
2 hours)
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• The number of samples generated during the E-steps (10-100)

• The number of EM iterations (1-5)

• The duration of each time step (5 seconds-15 minutes)

The observations we process all have a duration of one minute, but travel times experienced
by users are usually much longer (10 minutes to a few hours). As such, a good metric
for assessing the quality of a model should not be on predicting travel times for one-minute
observations, but on longer distances. Hour-long travels are very likely to go be spent mostly
on highways, which is not the scope of this study, and taxicabs usually make small trips (10
to 30 minutes). This is why we focus our attention to travel times between one minute (the
observations) and 30 minutes (typical durations for taxi rides). As far as we know, this
study of different durations is seldom done in the study of traffic, which limits any attempt
to compare the performance between different algorithms.

The longer trajectories are obtained from the path inference filter. They are then cuts
into different pieces of the same length (1 minute, 5 minutes, 10 minutes, 20 minutes). Each
piece of trajectory is considered as an independent piece of trajectory for the purpose of
travel time prediction.

We ran the algorithm with 4 different settings:

• SlidingBig: the most expensive setting (10 weeks of data, 2 hours of data, 100 EM
samples, 5 EM iterations, 15 time steps), used as the baseline for comparison. Travel
time estimates are produced every 20 minutes,

• SlidingBig1: uses less data (40 minutes of data),

• SlidingBig2: uses less data (10 days),

• SlidingBig3: uses the same amount of data, but performs only a single EM iteration
every 4 minutes instead of 5 EM iterations every 20 minutes,

• SlidingBig4: uses the same amount of data, but generates only 10 EM samples for each
observation

For all these experiments, the prior was fixed.
We now compare the results obtained with the different experiments. We first turn our

attention to the L1 loss in Figure 3.5.4. As expected, the best performance is obtained for
experiment SlidingBig, which uses the most data. Interestingly enough, the best performance
is obtained for travels of medium length (4-11 minutes), and not for short trajectories. This
can be explained by the conversion step that transforms trajectory readings on partial links
into weighted observations on complete links. The relation between link travel time and
location on a link is more complex than a linear weighting. Nevertheless, the model gives
relatively good performance by this simple transform. When a vehicle is stopped at a red
light, it does not travel along the link but still has a non-zero travel time. In this case, the
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Figure 3.5.4: L1 residuals for different settings and for different travel times. The dashed lines
indicate the 95% confidence interval. On the x axis, the travel time of the the observations
considered for this metric.
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Figure 3.5.5: L2 residuals for different settings and for different travel times. The dashed
lines indicate the 95% confidence interval.

weight of an observation is taken to be half of the total travel time of the link. In particular,
the relative error increases as the duration (and the length) of travels increases. Performance
is not too different between experiments, which suggests some even smaller amount of data
could be considered.

The results for the L2 loss, presented in Figure 3.5.5, provide similar, if not more acute,
results. The RMSE is lowest for small to medium travels (in the range of 3-10 minutes).
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Figure 3.5.6: Log-likelihood of unobserved trajectories, for different trajectory lengths and
different settings. The median is presented on the left, while the mean is presented on the
right.

A probabilistic metric (the log-likelihood) gives a different insight, as shown in Figure
3.5.6. The model best explains the data for very short travel times (similar to what is
was trained on) but its precision falls down as the length of trajectories increases. All in
all, this results should not be unexpected: this model with independent links cannot take
into account the correlations that occur due to light synchronizations or drivers’ behavior.
As such, the probability density of a longer travel rapidly dilutes as the number of links
increases As we saw with our study of L1 and L2 errors, the mean travel time becomes the
only significant value of interest for longer travel times. In the light of this result, there seems
to be little to gain by modeling travel time with physically realistic, link-based, independent
distributions, as the independence assumption will strongly weigh on the quality of the
travel time for longer travels. Instead, we recommend focusing effort on simpler models
of travel times that take into account the correlations between links. We also present in
Figure 3.5.6 (Right) the mean of the log-likelihood. As can be seen in this plot, the Gaussian
distribution is significantly worse than the Gamma distribution: from inspection of the data,
we could conclude that it performs very badly with long tail observations (unusually long
stops at red lights). Furthermore, its symmetric nature causes a significant portion of the
probabilistic mass to be assigned to negative travel times: a Gaussian distribution cannot
at the same time have a small mean, a high standard deviation and mostly positive values.
This experiment should serve as another confirmation that modelling travel time noise with
a Normal distribution is not only unrealistic, but also leads to erratic results in the face of
experimental data.



CHAPTER 3. A LARGE-SCALE DISTRIBUTED STREAMING MODEL 87

Conclusion

As datasets grow in size, some new strategies are required to perform meaningful compu-
tations in a short amount of time. We explored the implementation of a large-scale state
estimation in near-real-time using D-Streams, a recently proposed streaming technique. Our
traffic algorithm is an Expectation-Maximization algorithm that computes travel time dis-
tributions of traffic by incremental online updates. This approach was validated with a large
dataset of GPS traces. This algorithm seems to compare favorably with the state of the art
and shows some attractive features from an implementation perspective. When distributed
on a cluster, this algorithm scales to very large road networks (half a million road links, tens
of thousands of observations per second) and can update traffic state in a few seconds.

In order to foster research in systems and in traffic, the authors have released the code
of Spark Streaming [6], the code of the EM traffic algorithm [9], and the dataset used for
these experiments [9].
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Chapter 4

Large scale estimation of travel time
correlations

Crombile maintenant ne venait plus au conseil;
levé à cinq heures du matin, il travaillait dix-huit
heures à son bureau et tombait epuisé dans sa
corbeille où les huissiers le ramassaient avec les
papiers qu’ils allaient vendre aux attachés
militaires de l’empire voisin.

Anatole France, L’̂ıle des pingouins

4.1 Large-scale statistical inference of traffic

A common problem in trip planning is to make a given deadline, for example arriving at
the airport within 45 minutes. Most routing services available today minimize the expected
travel time, but do not provide the most reliable route, which accounts for the variability in
travel times. Given a time budget, a routing service should provide the route with highest
probability of on-time arrival, as posed in stochastic on-time arrival (SOTA) routing [97].
Such an algorithm requires the estimation of the statistical distributions of travel times, or
at least of their means and variances, as done in [75]. Today, only few traffic information
platforms are available for the arterial network (the state of the art for highway networks
is more advanced) and they do not provide the statistical distributions of travel times. The
main contribution of the chapter is precisely to addresses this gap: we present a scalable
algorithm for learning path travel time distributions on the entire road network using probe
vehicle data.

The increasing penetration rate of probe vehicles provides a promising source of data to
learn and estimate travel time distributions in arterial networks. At present, there are two
general trends in estimation of travel times using this probe data. One trend, from kine-
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matic wave theory (see [56,130]), derives analytical probability distributions of travel times
and infer their parameters with probe vehicle data. These approaches are computationally
intensive, which limits their applicability for large scale networks. The other trend, seen in
large-scale navigation systems such as Google Maps, provides coarser information, such as
expected travel time, but can scale to world-sized traffic networks.

We bridge the two trends by creating a travel time estimator that (i) provides full prob-
ability distributions for arbitrary paths in real-time (sub-second), (ii) works on networks
the size of large cities (and perhaps larger) (iii) and accepts an arbitrary amount of input
probe data. The model uses a data-driven model which is able to leverage physical insight
from traffic flow research. Data-driven models, using dynamic Bayesian networks [54], near-
est neighbors [113] or Gaussian models [118] show the potential of such methods to make
accurate predictions when large amounts of data are available.

4.1.1 Physical insights derived from high-frequency trajectories

Arterial traffic is characterized by important travel time variability amongst users of the
network. This variability is mainly due to the presence of traffic lights and other impediments
such as pedestrian crossings and garbage trucks or buses which cause a fraction of the
vehicles to stop while others do not. Arterial traffic research [56] suggests that the detection
of stops explains most of the variability in the travel time distribution and underline the
multi-modality of the distributions. We studied high-frequency data collected during an
experiment in San Francisco (see Section 2.6 for more details about this experiment). This
experiment provided detailed trajectory information along stretches of the main arterial
network in San Francisco. After mapping the GPS points to the road, and reconstructing
the trajectories, we had a very precise account of the patterns of traffic on the ground. In
particular, we reached the following conclusions for the travel times on each link:

• discrete number of modes. The travel times follow a multi-modal distribution
across each block. There are generally two main modes that correspond to the light
signal at the end of the intersection (see Figure 4.1.2). This distribution can be pre-
dicted by simple physical models that take into account the dynamics of cars [55,56].

• lights correlation. Traffic lights on major streets may be synchronized to create
“green waves” (Figure 4.1.1): a vehicle which does not stop on a link is likely to not
stop on the subsequent link. A different vehicle arriving 10 seconds later may hit the
red light on the first link and have a high probability to stop on the subsequent link.
This phenomenon is analyzed in [94] using a Markov model with two modes (“slow”
and “fast”). The synchronization scheme for traffic lights is managed at the level of the
traffic district. However, this synchronization pattern is usually complex: it combines
traffic sensing equipment with handwritten rules and random pedestrian events, and
each district has a different set of rules. From the perspective of a traveling vehicle, we
consider the synchronization of the lights a discrete stochastic process, the parameters
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Figure 4.1.1: Sets of trajectories collected around two main arterial in San Francisco: north-
bound Franklin street on the left and northbound Van Ness avenue on the right. The
distance is normalized for each of the road link by the link length. Franklin street exhibits
much more variability in the travel times due to weaker correlations between the traffic lights.
Conversely, vehicles on Van Ness avenue are severely constrained and cannot drive too fast
or too slow due to the scheduling of the traffic lights. We wish to capture this variability in
travel times in our model.

of which can be inferred from observing enough vehicles. We will see in Section 4.2
how we can reliably model this process as Markov graph.

• travel time correlation inside each mode. It is well known that vehicles at lights
tend to travel together at the same speed. Besides the number of stops, travel times
may be correlated for the following reasons: (i) the behavior of individual drivers may
be different: some car may travel notably faster than some others, (ii) congestion
propagates on the network, making neighboring links likely to have similar congestion
levels. If a driver experiences a longer than usual travel time on a link because of heavy
traffic, she can will likely experience heavy traffic on the subsequent links. This is why,
if we were to fix a pattern of red and green lights across the whole network, we could
assume that all the travel times are still correlated. This is referred to as inner mode
correlation.

4.1.2 The modeling pipeline

We leverage these insights to develop the traffic estimation algorithm presented in this chap-
ter: an end-to-end, scalable model for inferring path travel time distributions, referred to as
a “pipeline” (Figure 4.1.3). It consists of a learning algorithm and an inference algorithm.

The learning algorithm consists in the following steps.
• Section 4.2: a Stop-go algorithm detects the number of stops on a link and compresses



CHAPTER 4. LARGE SCALE ESTIMATION OF TRAVEL TIME CORRELATIONS 91

Figure 4.1.2: Histogram of travel times collected on a road link in San Francisco, fit (solid
line) using a mixture of two Gaussian distributions. The two modes corresponding to the
green light and to the delay of the red light are clearly visible.
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Figure 4.1.3: Pipeline of the travel-time estimation model. The learning runs offline and
finds optimal parameters for the HMM and GMRF models. The inference runs online and
uses the learned parameters to produce travel time distributions on input paths.

the GPS traces1 into values of travel times on traversed links and corresponding number of
stops.
• Section 4.3.1: a Markov model (MM) captures the correlations of stopping / not stopping
for consecutive links. It characterizes the probability to stop / not stop on a link given that
the vehicle stopped or did not stop on the previous link traversed. The Stop-Go splitting
procedure (presented in the same section) produces a set of labeled data to train the Markov
model.
• Section 4.3.2: a Gaussian Markov Random Field (GMRF) captures the correlations in
travel times between neighboring links, given the number of stops on the links. There
is a significant body of prior work in the field of learning with graphical models [67, 68],
especially for learning problems on sparse GMRFs [47, 80]. Most of these algorithms do

1Before feeding raw GPS points to the Stop-Go model, each coordinate is mapped to a link and an offset
distance from the beginning of the link. We use the path-matching algorithm presented in Chapter 2.
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Figure 4.1.4: On the left, the road network used in the experiment. On the right, a blown-up
subsection (corresponding to the red polygon in the full network). The blown-up subsection
illustrates the level of detail from the map. The full road network comprises 505,000 road
links.

not scale linearly with respect to the dimension of the data, and are unsuitable for very
large problems (hundreds of thousands of variables). In particular, it becomes practically
impossible to store the entire covariance matrix, so even classical sub-gradient methods such
as [38] would require careful engineering.

We exploit the (near) planar structure of the underlying graphical model to more effi-
ciently obtain (approximate) algorithms that scale linearly with the size of the network. Our
algorithm leverages efficient algorithms to compute the Cholesky decomposition of the ad-
jacency matrix of planar graphs [29]. Our results can be extended to other physical systems
with local correlations.

After the learning, we proceed to the inference algorithm: we compute the travel time
distributions for arbitrary paths in the network (Section 4.4). While exact inference on this
model is intractable due to the number of possible states, we exploit the underlying structure
of the graphical model to approximate the requested travel time distribution.

Section 4.5 illustrates the accuracy and scalability of our model on a 505,000 road link
network spanning the San Francisco Bay Area.

Our code, as well as a showcase of the model running on San Francisco, is available at
http://traffic.berkeley.edu/navigateSF.

4.2 Trajectory compression with the Stop and Go

model

The stops due to traffic signals and other factors (double parking, garbage trucks and so on)
represent one of the main source of variability in urban travel times. More generally, consider
that a link can have m different discrete states. In practice, this number is inferred from the

http://traffic.berkeley.edu/navigateSF
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Figure 4.2.1: Representation of the data compression algorithm used in the Stop and Go
filter. In the top figure, the raw information about location and speed are given. In the
bottom figure, the Stop and Go filter has grouped together the points at zero speed (stop
detection) and assigned a unique location for the stopped intervals.

data and is different for each link. For a vehicle traveling on link l, the state sl ∈ {1,m}
of the trajectory is defined as the number of stops on the link. The following algorithm
estimates the number of stops given a set of noisy GPS samples from the trajectory on
link l. We consider a generic trajectory on a generic link and drop indices referring to the
trajectory and link for notation simplicity.

The trajectory of the vehicle is represented by an offset function T : [0, τ ] → R+, rep-
resenting the distance from the beginning of the link to the location of the vehicle at time
t (see Figure 4.2.3 for an example). The noisy GPS observations are defined by the times
0 = t0 < · · · < tJ ≤ τ , and the corresponding offsets xj = T (tj) + εj, where εj ∼ N (0, σ2)
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Figure 4.2.2: The forward bias problem with the path inference filter. The solid line is the
path followed by the vehicle, and the solid red dots are consecutive GPS observations made
along this path. The path inference filter assumes that vehicles only go forward on a link.
Due to noise in the observations, the points t = 2 and t = 7 will be further along than the
points t = {3, 4} and t = {8, 9} respectively. This will cause all these points to be assigned
the same location as t = 2 and t = 7. Thus, the output of the path inference filter is biased
towards a location that is further along than the true location, and towards showing a vehicle
than moves while it is stopped. The Stop and Go model corrects this issue.

are independent and identically distributed zero mean Gaussian random variables represent-
ing the GPS noise. While the noise is not Gaussian in practice, this model still gives good
results.

We process the observations (tj, xj)j=0,...,J to obtain stop and go trajectories of the probe
vehicles: the trajectory of a vehicle alternates between phases of Stop during which the
velocity of the vehicle is zero and Go during which the vehicle travels at positive speed.
The number of Stop phases represents the state of the trajectory. We assume that the
sampling frequency is high enough that the speed between successive observations (tj, xj)
and (tj+1, xj+1) is constant2 and denoted vj. Note that speeds are rarely provided by GPS
devices or are too noisy to be valuable for estimation.

Maximizing the log-likelihood of the observations is equivalent to solving the following
optimization problem

minimize
(vj)j∈{0,...,J−1}

1

2

J−1∑
j=0

(
xj+1 − x0 −

j∑
j′=0

vj′(tj′+1 − tj′)

)2

2The assumption is further justified by traffic modeling [56] which commonly assumes that each Go
phase has constant speed
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in which the xj and tj variables are known and fixed. This is a typical least-square opti-
mization problem in (vj)j, which we conveniently write in matrix form as:

minimize
v

1

2
||Av − b||22, (4.2.1)

with the notation v = (vj)j∈{0,...,J−1}, b = (xj − x0)j∈{1,...,J} and A is the lower triangular
matrix whose entry on line i ∈ {0, . . . , J − 1} and column k ∈ {0, . . . , i − 1} is given by
tk+1 − tk.

To detect the Stop phases, we add a l1 regularization term, with parameter λ to Prob-
lem (4.2.1). The resulting optimization problem is known as the LASSO [112] and reads

minimize
v

1

2
||Av − b||22 + λ||v||1, (4.2.2)

The solution of (4.2.2) is typically sparse [112], which means that there is a limited number
of non-zero entries, corresponding to the Go phases of the trajectory. The solution is used to
compute the number of Stops. Figure 4.2.4 illustrates the result of the trajectory estimation
and Stop detection algorithm. This algorithm, which works on the full trajectory of the
vehicle, can accurately reconstruct the Stop phases of the vehicle.

Remark: [Data compression] In our dataset3, the average number of GPS points sent
by a vehicle on a link is 9.6. The algorithm reduces the GPS trace to: entrance time in the
link, travel time, number of stops. The amount of data to be processed by the subsequent
algorithms is reduced by a factor of almost 10, which is crucial for large scale applications
which process large amounts of historical data.

Remark: [Fixing λ] In Equation (4.2.2), λ acts as a trade-off between the sparsity
of the solution and the fit to the observations. Cross-validation is not appropriate in our
setting to fix this parameter as it would require one to decimate the trajectory and use some
observations for the learning and others for the validation. Instead, λ is chosen by computing
the Bayesian Information Criterion (BIC), using [132] to estimate the number of degrees of
freedom. A LARS implementation [41] allows efficient computation to choose λ and compute
the corresponding solution.

4.3 A graphical model for travel times

We develop a travel time model which exploits the compressed data returned by the Stop-Go
model (number of stops and travel time experienced per link) and that takes into account
our simplifying assumptions about travel times on a road network (Figure 4.3.1). The model
captures the state transition probabilities: the probability of the number of stops on a link
given the number of stops on the previous link(s) of the trajectory. It also models the

3The number of GPS points per link depends on the level of congestion (vehicles spend a longer amount
of time on each link), average length of the links of the network and sampling frequency of the probe vehicles.
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Figure 4.2.3: Two typical scenarios in a signaled intersection. The horizontal axis is time
and the vertical axis is cumulative offset (shifted so that the zero corresponds to the end of
the link). The red and green color correspond to the time during which the light is red and
green, respectively: cars can only go through when the light is green. The solid dark blue
dots represent a typical observation when the light is green. The light blue dots represents
a typical observation when the light is red: the vehicle is forced to wait at zero speed for the
light to become green again.

Figure 4.2.4: Example from real data of trajectory estimation. In our implementation, the
trajectory is further compressed into alternating segments of Stop motion (in which the
speed is null) and Go motion (in which the speed is uniform). The solid points indicate the
transition points between Stop segments and Go segments.



CHAPTER 4. LARGE SCALE ESTIMATION OF TRAVEL TIME CORRELATIONS 97

  

Travel time

P
ro

ba
b i

lit
y

Figure 4.3.1: Picture representations about the travel times over a road link: the travel
time is a mixture of (typically) three Gaussian distributions: one mode for the travel times
corresponding to a green light, one mode for the travel times corresponding to a red light,
and one mode for complex random events (pedestrian, traffic occlusion, garbage truck, bus,
etc.)

correlations of travel times for neighboring links given their state (number of stops). The
travel time model is a combination of two models parametrized by a set of values denoted
by θ:
• A directed Markov model of discrete state random variables gives the joint probability
distribution of the link states

πθ
(
{Sl}l∈L

)
• A Gaussian Markov random field gives the joint distribution of the travel times

πθ

(
{Xl,s}l∈L,s∈{1,···m}

)
Figure 4.3.2 presents the graphical model that encodes the dependencies between the link

travel time Zl, the link states Sl and the conditional travel times Xl,s. The total travel time
experienced by a vehicle on link l is

Zl =
m−1∑
s=0

Xl,s1 {Sl = s}

The left portion of the figure shows a subset of the GMRF of travel time variables, and the
right portion shows a subset of the Markov chain of states.

The graphical model shows that conditioning on the states experienced along a path
allows one to compute the path travel time by summing over the corresponding variables
in the GMRF. Further, when one simultaneously conditions on the link travel times Zl and
the link states Sl, then the two models become independent, which allows one to learn the
models parameters separately. The rest of this section details the modeling and learning of
the two models.
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Figure 4.3.2: Graphical model of the travel times on a stretch of three one-way road links
(going from top to bottom of the figure). The travel times of each link Zl depend on two
conditionally independent set of variables: the discrete state variable (e.g. number of stops)
Sl and the conditional travel times Xl,s where s ∈ {Go, Red, Other}. The arrows between
the variables Sl represent the conditional dependencies between the random variables, af-
ter taking into account the Markov assumptions. The time variables Xl,s make a Markov
Random Field. The solid lines between the variables represent the conditional dependencies.

4.3.1 Markov model for state transitions

We consider the link state variables {Sl}l,∈L. Each variable Sl has support {1 · · ·m}. In
our experiment, vehicles travel along paths in the road network and cannot arbitrarily jump
from one road to another unconnectecd road. We formalize this notion of valid path

Valid path. Given a directed graph G, valid path is an ordered sequence p = (l1 · · · lB) ∈
LB of distinct elements so that for all consecutive pairs

(
l, l
′)

from p, we have an edge l→ l
′

in the graph G.
Consider a valid path p = (l1 · · · lB) ∈ LB in the road network. For simplicity, all the

li are assumed to be distinct (handling this case is not an issue in practice). Given the
path p of a vehicle, the variables {sli}i∈1···M have a Markov property: given the state sli−1

of the upstream link li−1, the conditional state Sli |Sli−1
is independent of the state of other

upstream links:

P
(
Sli |Sli−1

, . . . , Sl0
)

= P
(
Sli|Sli−1

)
(4.3.1)

This Markov model consists in discrete variables, with values in 1 · · ·m. For each link l,
we parametrize the model using an initial probability vector

πl (s) = P(Sl = s) (4.3.2)

and a transition probability matrix:

πu→l (su, sl) = P(Sl = sl|Su = su) (4.3.3)
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Figure 4.3.3: Example of travel time graph for the San Francisco area. The red box on the
left has been expanded in the undirected Gaussian Markov Random Field (top right) and
(directed) Discrete Markov Model (bottom right). In this example the number of discrete
states has been fixed to m = 3 for all nodes.

here πu→l (su, sl) is the probability that l is in state sl given that the upstream link u is in
state su.

We learn the initial probability vector πl and the transition probability matrices πu→l of
the Markov Chain by maximizing the likelihood of observing (s(n), y(n)). The log-likelihood
of all A observations of states is given by

ll =
A∑
a=1

M(a)∑
n=1

(
log
(
π
l
(n)
0

(
s

(n)
0

))
+
∑
u→l

log
(
πu→l

(
s(n)
u , s

(n)
l

)))
The parameters that maximize the log-likelihood are:

πu→l (su, sl) ∝ T̄ u→lsu,sl

πl (s) ∝ π̄ls

where π̄ls are the empirical counts of initial states and T̄ u→lsu,sl
are the empirical transition

counts. This solution corresponds to transitions and initial probabilities that are consistent
with the empirical counts of initial states and transitions.

Modeling note: While this Markov model is directed, it is not a Bayesian Graphical
Model because it may contain cycles between the variables. However, it is marginally a
graphical model with Markov properties: for any valid path p in the network with no self-
loop, the chain of variables Sl1 · · ·SlM encodes a valid discrete Markov model distribution
over these variables. The directed graph structure is an efficient way to compress all the
information about the marginal distributions of the valid subsets of variables.
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4.3.2 GMRF model for travel time distributions

We now present the model that describes the correlations between the travel time variables.
We assume that the random variables (Xl,s)l∈L,s∈[1,m] are Gaussian4, and they can be stacked

into one multivariate Gaussian variable X ∼ N (µ,Σ) of size r = m |L|, with mean µ and
covariance Σ. Recall that Xl,s is the travel time on link l conditioned on link state s, where
s ∈ [1,m]. This travel time is a Gaussian random variable with mean µl,s and variance σl,s.

From the factorization property given by the Hammersley-Clifford Theorem (CITE), it
is well known that the precision matrix Q = Σ−1 encodes the conditional dependencies
between the variables. Since a link is assumed to be conditionally correlated only with its
(geographical) neighbors, the precision matrix is very sparse. Furthermore, this sparsity
pattern is of particular interest: its pattern is that of a graph which is nearly planar. We
take advantage of this structure to devise efficient algorithms that (1) estimate the precision
matrix given some observations, and (2), infer the covariance between any pair of variables.

As mentioned earlier, we have a set of A trajectories obtained from GPS data. After
map-matching and trajectory reconstruction (Section 4.2), the set of observed trajectories
{Wa}a=1,··· ,A are sequences of observed states and variables (travel time)5:

Wa = (l1, s1) (l2, s2) · · · (lMa , sMa)

xa =
(
xal,s
)

(l,s)∈Wa

In our notations, xa is an observation of the random vector Xa = (Xi)i∈Wa
, which is a Ma-

dimensional marginal (or subset) of the full distribution X. Hence Xa is also a multivariate
Gaussian with mean µ(Wa) and covariance Σ(Wa) obtained by dropping the irrelevant variables
(the variables that one wants to marginalize out) from the mean vector µ and the covariance
matrix Σ. Its likelihood is thus the likelihood under the marginal distribution:

log π
(
xa;µ(Wa),Σ(Wa)

)
=

C − 1
2

log
∣∣Σ(Wa)

∣∣− 1
2

(
xa − µ(Wa)

)T
Σ−1

(Wa)

(
xa − µ(Wa)

)
,

(4.3.4)

where C is a constant which does not depend on the parameters of the model.
The problem of estimating the parameters of the model θ = (µ,Σ) from the i.i.d. set of

observations D = {Wa}a=1,··· ,A consists in finding the set of parameters θ? = {µ?,Σ?} that

maximize the sum of the likelihoods of each of the observations6:

l (θ|D) =
A∑
a=1

log π
(
xa;µ(Wa),Σ(Wa)

)
(4.3.5)

4While Gaussian travel times can theoretically predict negative travel time, in practice, these probabilities
are virtually zero, as validated in Section 4.5.

5One could consider that the states and the variables are not directly observed, but guessed after a
complicated process. The Expectation-Maximization algorithm could be run to estimate the value of the
state and of the variable.

6The independent and identically distributed (i.i.d.) assumption is defined on the pair of marginal
observation and masking subset.
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Unfortunately, the problem of maximizing (4.3.5) is in general not convex and may have
multiple local minima since we have only partially observed variables xa. A popular strategy
in this case is to complete the vector (by computing the most likely completion given the
observed variables). This algorithm is called the Expectation-Maximization (EM) procedure.
In our case, the EM procedure is not a good fit for two reasons:

• Since we observe only a small fraction of the values of each vector, the vast majority
of the values we would use for learning would be sampled values, which would make
the convergence rate dramatically slow.

• The data completion step would create a complete n−size sample for each of our
observation, thus our complexity for the data completion step would be O (Nn), which
is too large to be practical.

Instead, we solve a related problem by computing sufficient statistics from all the observa-
tions. Consider the simpler scenario in which all data has been observed, and denote the
empirical covariance matrix by Σ̃. The maximum likelihood problem to find the most likely
precision matrix is then equivalent to:

minimize
S

− log |Q|+ Tr
(
QΣ̃
)

(4.3.6)

under the structured sparsity constraints Quv = 0 ∀ (u, v) /∈ E . The objective is not defined
when Q is not positive definite, so the constraint that S is positive definite is implicit. A
key point to notice is that the objective only depends on a restricted subset of terms of the
covariance matrix:

Tr
(
QΣ̃
)

=
∑

(u,v)∈E

QuvΣ̃uv

This observation motivates the following approach: instead of considering the individ-
ual likelihoods of each observation individually, we consider the covariance that would be
produced if all the observations were aggregated into a single covariance matrix. This ap-
proach discards some information, for example the fact that some variables are more often
seen than others. However, it lets us solve the full covariance Problem (4.3.6) using partial
observations. Indeed, all we need to do is estimate the values of the coefficients Σ̃uv for (u, v)
a non-zero in the precision matrix. We present one way to estimate these coefficients.

Let Ni be the number of observations of the variable Xi: Ni = card (p : i ∈ Wa). Combin-
ing all the observations that come across Xi, we can approximate the mean of any function
f (Xi) by some empirical mean, using the Ni samples:

Ei [f (Xi)] =
1

Ni

∑
p:i∈Wa

f (xpi ) (4.3.7)

Similarly, we define the number of observations of both Xi and Xj:

Ni∩j = card ({p : i ∈ Wa and j ∈ Wa})
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We can approximate the mean of any function f (Xi, Xj) of Xi, Xj, using the set of obser-
vations that span both variables Xi and Xj:

Ei∩j [f (Xi, Xj)] =
1

Ni∩j

∑
p : i,j∈Wa

f
(
xpi , x

p
j

)
(4.3.8)

Using this notation, the empirical mean is µ̂i = Ei [Xi]. Call Σ̂ the partial empirical
covariance matrix (PECM):

Σ̂ij =

{
Ei∩j [XiXj]− Ei [Xi]Ej [Xj] if (i, j) ∈ E
0 otherwise

Using this PECM as a proxy for the real covariance matrix, one can then estimate the
most likely GMRF by solving the following problem:

minimize
S

− log |Q|+
〈
Q, Σ̂

〉
(4.3.9)

Note that this definition is asymptotically consistent: in the limit, when an infinite
number of observations are gathered (Nij →∞), the PECM will converge towards the true

covariance: indeed Σ̂ij → E [XiXj]− E [Xi]E [Xj] and for all Q:〈
Q, Σ̂

〉
→
〈
Q,E

[
XXT

]
− E [X]E [X]T

〉
.

Unfortunately, the problem is not convex because Σ̂ is not necessarily positive semi-
definite (although it is if the number of samples is large enough), since the variables are only
partially observed. For instance, if we have a partially observed bivariate Gaussian variable
X: (10, 10), (−10,−10), (1, ?), (−1, ?), (?, 1), (?,−1), the empirical covariance matrix Σ̂
has diagonal entries (51, 51) and off-diagonal entries (100, 100). Its eigenvalues are −49, 151
hence it is not definite positive.

There is a number of ways to correct this. The simplest we found is to scale all the
coefficients so that they have the same variance:

Σ̂ij =

{√
αijEi∩j [XiXj]− 1√

αij
Ei [Xi]Ej [Xj] if Nij > 0

0 otherwise

αij =

√
Ei [Xi]Ej [Xj]

Ei∩j [Xi]Ei∩j [Xj]

This transformation has the advantage of being local and easy to compute. This is why it
is completed by an increase of the diagonal coefficients by some factor of the identity matrix.

Another problem is due to the relative imbalance between the distributions of samples:
cars travel much more on some roads than others. This means that some edges may be much
better estimated than some others, but this confidence does not appear in the PECM. In
practice, we found that pruning the edges with too few observations improved the results.
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Figure i: As part of our research on novel modes of transportation, we have visited the
GoogleX center for autonomous driving in Vilyuysk, Siberia, Russia. This picture shows
the new autonomous Google hovercraft being tested in a snow blizzard. The author is on

the left.
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4.4 Fast inference in the travel time graph

Having seen how the model parameters θ have been determined, we turn our attention to
the computation of travel times across a path. In the rest of the discussion, we consider that
each link has the same number m of discrete states. Generalizing to a different number of
states is straightforward. The inference task takes as input a valid path p = (p1 · · · pB) ∈ LB
and returns the cumulative distribution of the path travel time Z(p):

h (t) : R+ → [0, 1]

t → P
(
Z(p) ≤ t

)
The path travel time (i.e. total travel time along the path) is easily defined in a conditional
way. Assuming that the states Sl of the links have been fixed to the values sl, the travel
time is then an instantiation of the sum of the time variables that correspond to this state:

Z(p)| (sl)l =
B∑
i=1

Xli,sli

Then, the total travel time is one instantiation across all possible state tuples of the links:

Z(p) =
∑

s∈[1,m]L

1 {S = s}Z(p)|s

Since the conditional variable Z(p)|s is a sum of (dependent) Gaussian variables, the variable
Z(p) is simply a mixture of one-dimensional Gaussian distribution. However, this mixture has
as many elements as the number of state configurations along the path p, which is mB. This
number prevents the computation for any reasonably large path (m = 3, B = 100). We are
going to present some algorithms that can approximate the density function this mixture: one
algorithm based on sampling, one algorithm based of convolution for independent Gaussians,
and one algorithm based on a junction tree approximation for non-independent variables.

Before we introduce these algorithms, we are going to formalize the problem and introduce
additional notations. Note that we can marginalize out all the variables that do not pertain
to path p, so we can reduce the problem to a linear chain of variables (see Figures 4.4.1 and
4.3.2).

4.4.1 Formalization

We consider the parametrization of a unidimensional distribution with a discrete Markov
model coupled with a joint multivariate gaussian distribution as follows (see an example in
Figure 4.4.1). Consider a trellis of random variables stacked in B layers, each of the layers
having width m ≥ 17. There is thus a total of Bm normal variables and B discrete variables,

7The case of different width is straightforward to derive from the following discussion
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each with m possible states. For the sake of convenience, we are going to simply label each
variable by a pair of indexes u, v so that each variable is denoted Yu,v, with u ∈ [1, B] and
v ∈ [1,m]. The mapping to a link and a state Xl,s to a variable Yu,v is straightforward.

A state path in the trellis is a sequence of integers that corresponds to a choice of a
variable in each of the layers:

q = q1 · · · qB ∈ [1,m]B

When we consider a state subpath from layer u to layer v (inclusive), we will note qu:vthe
partial state path:

qu:v = ququ+1 · · · qv ∈ [1,m]v−u

We now introduce some statistical models over this structure. All the variables Yu,v are
stacked together into a single vector Y : y ∈ RBm. We consider that the variables Yu,v are
jointly Gaussian:

Y ∼ N
(
µ̂, Σ̂

)
(4.4.1)

with µ̂ ∈ RBm and Σ̂ ∈ SBm+ .
We introduce a Markov Model over the state paths:

q ∼ MM (p) (4.4.2)

which is simply defined as a Markov chain transition, starting from state q0 ∈ [1,m]:

π (q0) = π0 (q0)

π (qu:v) = πu (qu, qu+1) π (qu+1:v) (4.4.3)

=
v−1∏
w=u

πw (qw, qw+1) (4.4.4)

In this definition, the π0 (·) defines the distribution over the initial state:
∑m

j=1 π0 (j) = 1,
and the distributions πu (·, ·) are the transition probabilities:

∀u ∈ [1, B − 1] , ∀i ∈ [1,m] :
m∑
j=1

πu (i, j) = 1

We need one additional piece of notation: given a state path q (which can be a sub-path),
consider the activation vector a (q) ∈ RBm:

a (qu:v) =
v∑

k=u

ek,qk

Using this notation, the description of the MM-GMRF process is much simplified. The
distribution Z over the real is defined as a mixture of Gaussians over the paths:

q ∼ MM (p)
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Figure 4.4.1: Example of MM-GMRF process. The qu variables are the continuous variables
selection process. They form a discrete Markov model: the dependencies between the vari-
ables are represented by the arrows). The Yu,v variables make a joint Gaussian distribution
(their dependencies are represented by the box around all the variables).

Z|q = a (q)T Y

Call f (α, β) the function that defines the p.d.f. of a univariate Normal distribution with
mean α and variance β:

∀y ∈ R, f (α, β) (y) =
1√
2πβ

e−
1
2β

(y−α)2

This notation will prove convenient when we define convolution operations over the space
of functions. Then the p.d.f. of Z is a mixture of univariate Gaussian distributions:

πh =
∑
q

π (q)π (·|q)

=
∑
q

π (q) f
(
a (q)T µ̂, σ (q)2

)
where the variance σ (q)2 is introduced as a shortcut for the projection of the full covariance:

σ (q)2 = a (p)T Σ̂a (q) (4.4.5)

There are mB possible paths, each of which makes a different element in the mixture. This
number is much too large for enumerating all the elements of the mixture. We present here
an algorithm that computes a discretized approximation (a histogram) of the p.d.f. of Z in
linear time.
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4.4.2 Gibbs sampling

One of the simplest way of building an approximation of the distribution Z is to sample
state paths according to Equation 4.4.2, and consider the final distribution as representative
of all the state path. Consider C state paths sampled from p:

∀c ∈ [1, C] , q̂c ∈ [1,m]B : q̂c ∼ MM (p)

Building these state paths is straightforward from the distribution encoded in Equations
4.4.3. Then the approximate mixture is:

π̂h =
1

C

∑
c

f
(
a (q̂c)

T µ̂, σ (q̂)
)

It is clear that this distribution tends towards h as C grows.
This procedure is fast and easy to implement, however it is hard to compute an error

bound on the quality of the approximation. Indeed, if the transitions are all uniform, then
all the modes have equal probability and should all be contained in the distribution. In
practice, the transitions are generally skewed towards a few dominant modes, so it may be
applicable. We present next a procedure for which the error can be quantified and bounded.

4.4.3 The case of the independent variables

For this section only, consider the simpler case in which the variables Yu,v are all independent

Gaussian distributions. Then the covariance matrix Σ̂ is diagonal:

Σ̂ab =

{
∆a a = b
0 a 6= b

The key observation that derives from this choice of covariance is that the covariance of
individual variables is decomposable along a path:

σ (pu:v)
2 =

v∑
w=u

∆w,pw

We consider the problem of computing the distribution over a set of subpaths that start
and end at the same variable. Given u < v, i ∈ [1,m] and j ∈ [1,m], our goal is to compute
the partial sum of the mixture:

π̃u:v (i→ j) =
∑

q=qu···qv :qu=i , qv=j

π (q) f
(
a (q)T µ, σ (q)2

)
This is not a properly scaled probability distribution. However, when summing over all

the possible outputs j, this is a valid probability distribution:∫ m∑
k=1

π̃u:v (i→ k) (x) dx = 1

We have the following recursive relation:
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Proposition 1. Recursion for independent variables:

π̃u:v (i→ j) = f
(
µ(u,i),∆(u,i)

)
�

[
m∑
k=1

πu (i, k) π̃u+1:v (k → j)

]

in which � is the convolution operator between two functions:

(g � h) (x) =

∫
g (x− t)h (t) dt

The main insight is to decompose each of the modes of the distribution using a convolution
operator, which is a consequence of using independent Gaussian distributions. Using our
notation:

∀β, β ′ > 0, f (α + α′, β + β′) = f (α′, β′)� f (α, β) (4.4.6)

Proof. Consider two independent Gaussian random variables V and V ′ with respective means
α and α

′
, and variances β an β

′
. The resulting distribution W has mean α+α′ and variance

β + β′.

Since the convolution operator is associative over the space of real functions, we can
map the associativity of the parameters to the function space and factorize some common
operations. Here is the proof of the main proposition.

Proof. From the lemma above, for any path:

f
(
a (qu:v)

T µ, σ (qu:v)
2
)

= f
(
µ(u,qu),∆(u,qu)

)
� f

(
a (qu+1:v)

T µ, σ (qu+1:v)
2
)

Using the definition of the partial mixture sum:
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π̃u:v (i→ j) =
∑

q=qu···qv :qu=i , qv=j

π (q) f
(
a (q)T µ, σ (q)2

)
=

m∑
k=1

∑
qu+2:v :qv=j

π (i, k, qu+2:v)

×f
(
a (k, qu+2:v)

T µ+ µ(u,i), σ (k, qu+2:v)
2 + ∆(u,i)

)
=

m∑
k=1

∑
qu+2:v :qv=j

πu (i, k) π (k, qu+2:v)

×f
(
a (k, qu+2:v)

T µ+ µ(u,i), σ (k, qu+2:v)
2 + ∆(u,i)

)
=

m∑
k=1

πu (i, k)
∑

qu+2:v :qv=j

π (k, qu+2:v)

×f
(
µ(u,i),∆(u,i)

)
� f

(
a (k, qu+2:v)

T µ, σ (k, qu+2:v)
2
)

= f
(
µ(u,i),∆(u,i)

)
�

×

 m∑
k=1

πu (i, k)
∑

qu+2:v :qv=j

π (k, qu+2:v) f
(
a (k, qu+2:v)

T µ, σ (k, qu+2:v)
2
)

= f
(
µ(u,i),∆(u,i)

)
�

[
m∑
k=1

πu (i, k) π̃u+1:v (k → j)

]

Once we can compute efficiently these partial mixture sums, they can be combined into
complete distributions. Given a start probability π0:

π =
m∑
i=0

m∑
j=0

π0 (i) π̃1:m (i→ j)

=

n1∑
i=0

π0 (i)

[
nm∑
j=0

π̃1:m (i→ j)

]

Note The same algorithm could also work by considering the conditional distributions

π̂u:v (i) =
nv∑
k=1

π̃u:v (i→ k)

(which are well-defined, well-scaled probability distributions). However, as we will see later,
using this explicit parameters leads to very elegant caching algorithms.



CHAPTER 4. LARGE SCALE ESTIMATION OF TRAVEL TIME CORRELATIONS110

4.4.4 Low rank covariance approximation

Compute the variances of each sequence of variables:

e (s)T Σ e (s)

with s being a valid sequence of variables in the graph of variables.
Using the full covariance matrix Σ to estimate the covariance of each path σ (s)2 =

e (p, s)T Σe (p, s) is impractical for two reasons: as mentioned before, we cannot expect to
compute and access the full covariance matrix, and also the sum e (p, s)T Σe (p, s) sums I2

elements from the covariance matrix. Since we do not need to know the variance terms with
full precision, an approximation strategy using random projections is appropriate. More
specifically, we use the following result from [13]:

Given some fixed vectors v1 · · · vn ∈ Rd and ε > 0, let R ∈ Rk×d be a random matrix with
random Bernoulli entries ±1/

√
k and with k ≥ 24ε−2 log n. Then with probability at least

1− 1/n:
(1− ε) ‖vi‖2 ≤ ‖Rvi‖2 ≤ (1 + ε) ‖vi‖2

Call R such a matrix. Consider the Cholesky decomposition of the precision matrix,
S = LLT . Then

σ (s)2 = e (p, s)T Σe (p, s)

= e (p, s)T L−TL−1e (p, s)

=
∥∥L−1e (p, s)

∥∥2

From the following lemma, we can approximate this norm:

σ̂2 (s) =
∥∥QT e (p, s)

∥∥2
=

∥∥∥∥∥ ∑
i=1···I

Q(li,si)

∥∥∥∥∥
2

(4.4.7)

with P = RL−1 and R defined as obtained from the lemma above. Computing the approx-
imate variance σ̂2 requires the addition of I vectors of size k. In practice, this summing
operation is vectorized and very fast.

This method assumes we can efficiently compute the Cholesky factorization, and that
inversion operation L−1x is efficient as well. In our case, the graph of the GMRF is nearly
planar. Some very efficient algorithms exist that compute the Cholesky factorization in
near-linear time ( [29,32]). In practice, computing the Q matrix is very fast.

4.5 Experiments

The previous section presents an algorithm to turn GPS traces from a small fraction of the
vehicles traveling on the road network into valuable traffic information to develop large scale
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traffic information platforms and optimal and robust routing capabilities. The value of the
model depends crucially on the quality of the estimates of point to point travel time distri-
bution. Another key feature of the algorithm is its computational complexity and its ability
to scale on large road networks. The large number of road segments and intersections leads
to high-dimensional problems for any network of reasonable size. Moreover, the estimate
for travel time distributions between any two points on the network needs to be computed
in real-time. It would not be acceptable to wait more than a few seconds to get the re-
sults. This section first analyzes the quality of the learning and the estimation of the model.
Then, we study the computational complexity of the algorithm and its ability to scale on
large networks. In particular, some aspects of the algorithm arise as trade-offs between the
computational complexity and the desired precision in the learning and real-time inference.

The validation results are based on anonymized GPS traces provided by a GPS data
aggregator. We consider an arterial network in the Bay Area of San Francisco, CA with
506,585 links. The algorithm processes 426 million GPS points, aggregated from 2,640,319
individual trajectories. Each trajectory is less than 20 minutes long for privacy reasons.

4.5.1 Travel time distribution

The full validation of the performance of the algorithm requires the observation of the travel
time of every vehicle on every link of the network. This mode of validation is unfortunately
not available for any reasonably sized network. We validate the learning capabilities of the
algorithm using data which was not used to train the HMM and GMRF. On this validation
dataset, we perform two types of validation: (i) a path-level validation (a limited set of
individual paths are evaluated) and (ii) a network-level validation (metrics taken over the
entire validation dataset).

Comparison models

In this Section, the results of the model are compared to simpler models which arise as special
cases of the model presented in the chapter. We introduce these models and denominations,
which we use throughout the evaluation.
• One mode independent : The travel time distribution on each segment is Gaussian. The
travel time on distinct segments are independent random variables.
• One mode: The travel time distribution on the network is a multi-variate Gaussian (one
dimension per link). In the precision matrix, element (i, j) may be non-zero if i and j map
to neighboring links in the road network.
• Multi-modal independent : Same as the MM-GMRF, excepted that the covariance matrix
of the multi-variate Gaussian is diagonal, imposing that given the mode, the travel times on
different links of the network are independent.
The model developed in this chapter is referred to as the MM-GMRF model.
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Figure 4.5.1: 50% and 90% confidence intervals computed by the different models and com-
pared to the validation travel times on the selected paths.

Path validation

Most probe vehicles have different paths throughout the road network. Among the trajec-
tories of the vehicles in the validation set, we select a set of paths for which a large enough
number of vehicles has traveled to perform statistical validation of the distribution of travel
times. We impose a minimum length (set to 150 m in the numerical experiments) on these
paths to ensure that we validate the learning of the spatial distributions of the modes (Sec-
tion 2.3) and the spatial correlations between each mode (Section 4.3.2). The paths are
selected for having the largest amount of validation data.

For each selected path, the box plots in Figure 4.5.1 compare the 50% and 90% confidence
intervals of the validation data collected on the path (top box) with the intervals computed
by the different models (Multi-modal independent, MM-GMRF (our model), One mode and
One mode independent, from top to bottom). We also display the median travel times as
a vertical black line, both for the validation data and the different models. Scatter crosses,
representing the validation travel times, are super-imposed to the results of each model to
improve visualization.
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We notice a significant difference in the results between the uni-modal models (One mode
and One mode independent) and the multi-modal models (Multi-modal independent, MM-
GMRF ). The uni-modal models tend to over-estimate both the median and the variance of
travel times. These models cannot account for the difference of travel times due to stops
on trajectories, which is one of the main features of arterial traffic [56]. The over-estimated
variance illustrates why it is important to incorporate the variability of travel times due to
stops in the structure of the model. On the other side, the multi-modal models are able to
capture the features of the distribution fairly accurately. The differences in accuracy between
the Multi-modal independent model and the MM-GMRF model (which takes into account
correlations in the Gaussian distribution) are not significant, even though the model with
correlations estimates the variability slightly more accurately. It seems that capturing the
variability of travel times due to stop is the most important feature of the model.

In Figure 4.5.2, we display the cumulative distribution of the validation data and the
cumulative distribution of each model for the same paths as for Figure 4.5.1 (displayed in
the same order). The figure displays more precisely the difference in the estimation accuracy
of the different models. As seen in Figure 4.5.1, the multi-modal models are more accurate
than their uni-modal counterparts.

Network scale validation

Most points in the observation dataset represent different paths for the probe vehicles. For
this reason, the distributions cannot be compared directly. Instead, we compute the log-
likelihood of each validation path and analyze the quality of the travel time bounds provided
by the distribution for each path.

Figure 4.5.3 a) displays the average likelihood of the validation paths computed by the
different models. The figure also analyzes how the path length influences the results. There
are two motivations for doing so: (i) the length of the path influences the support of the
distribution (longer paths are expected to have a larger support) which may affect the like-
lihood and (ii) the different models may perform differently on different lengths as they do
not take into account spatial dependencies in a similar way.

As was expected from the analysis of Figures 4.5.1 and 4.5.2, the multi-modal models
perform better than their uni-modal counterparts. Compared to the path validation results,
the figure shows more significantly the effect of correlations. The figure shows slight improve-
ments for the multi-modal model which takes into account the correlations. Surprisingly,
the contrary is true for the uni-modal models. We also notice that the likelihood decreases
with the length of the path, as we were expecting.

Figure 4.5.3 b) analyzes the quality of the travel time distribution computed on the
network. For that, we use a p-p plot (or percentile-percentile plot) which assesses how much
each learned distribution matches the validation data. To each path p in the validation
dataset corresponds an inverse cumulative distribution P−1

p (computed from the trained
model) and a travel time observation zp. A point (α, β) on the curve corresponds to having
β percent of the validation points such that zp ≤ P−1

p (α). If the estimation was perfect,
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Figure 4.5.2: Cumulative distribution of travel times computed by the different models and
compared to the validation travel times received on the selected paths.

there would be exactly α% of the data points in the percentile α. To quantify how much
each model deviates from perfect estimation, we display two metrics denoted a (above) and
b (below). Let f correspond to the p-p curve of a model, the corresponding metrics are
computed as follows:

a =

∫ 1

0

max(f(α)− α, 0) dα , b =

∫ 1

0

max(α− f(α), 0) dα

These values provide insight on the quality of the fit of the model. For example, a model
with a large a-value tends to overestimate travel times. Similarly, a model with a large b-
value tends to underestimate travel times. Both uni-modal models have large a-values. The
large variance estimated by the models (already noticed in Figure 4.5.1) to account for the
variability of travel times leads to non-negligible probability densities for small travel times
which are not physically possible. Compared to the likelihood validation of Figure 4.5.3
a), the p-p plot analyzes the quality of fit for different percentiles of the distribution. In
particular, we notice that the effect of capturing the correlations in the multi-variate model
mostly affects the estimation of the low and high percentiles in the distribution. We expect
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a)

b)

Figure 4.5.3: a) Average log-likelihood of the validation paths (by path length), for each
model. b) Validation of the distribution percentiles for each model.

that this is due to the fact that correlations accounts for the impacts of slow vs. fast drivers
or congested vs. lest congested conditions.
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Figure 4.5.4: Log-log plot of the training time, as a function of the size of the GMRF.

4.5.2 Scaling

In this section, we discuss the scalability aspects of the learning algorithm (it is clear from the
discussion in Section 4.3.2 that the inference is independent from the size of the network). We
ran the learning for networks defined by different bounding boxes. The bounding boxes were
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adjusted so that the number of links in each subnetworks had different orders of magnitude.
The longest step by far is the training of the GMRF. We report in Figure 4.5.4 the training
time for different networks, all other parameters being equal. As can be seen, the training
time increases linearly with the number of variables of the GMRF over a large range of
network sizes. The graphs associated to each GMRF are extremely sparse: the average
vertex degree of the largest graph is 9.46.

Conclusion The state of the art for travel time estimation has focused on either precise
and computationally intensive physical models, or large scale, data-driven approaches. We
have presented a novel algorithm for travel time estimation that aims at combining the
best of both worlds, by combining physical insights with some scalable algorithms. We
model the variability of travel times due to stops at intersections using a Stop-Go model (to
detect stops) and a HMM to learn the spatial dependencies between stop locations. We also
take into account the spatio-temporal correlations of travel times due to driving behavior
or congestion, using a Gaussian Markov Random Fields. In particular, we present a highly
scalable algorithm to train and perform inference on Gaussian Markov Random Fields, when
applied on geographs.

We analyze the accuracy of the model using probe vehicle data collected over the Bay
Area of San Francisco, CA. The results underline the importance to take into account the
multi-modality of travel times in arterial networks due to the presence of traffic signals. The
quality of the results we obtain are competitive with the state of the state of the art in
traffic, and also highlight the good scalability of our algorithm.
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Chapter 5

Computing determinants at very large
scale

Le faux se répand vite, et le vrai surnage
lentement.

George Sand, Césarine Dietrich

5.1 Introduction

So far, our analysis has focused on the practical problem of estimating large, graph-based
statistical models. We now consider the case of extremely large models with millions or
billions of random variables. At such a scale, any operation has to be completed in a time
that is at most linear with the structure of the problem. Any algorithm that takes longer will
be hopelessly slow at such a scale. Such problems are not common (yet) in civil engineering
applications, but they begin to crop up in other disciplines as we will see. We investigate
how novel results in graph theory can inform the design of low-complexity algorithms for
machine learning. In this chapter, we present some algorithms which present some appealing
theoretical guarantees, but for which there is no known implementation. We present these
results with the hope that they will motivate further research into practical algorithms.

One of the simplest models to represent interactions between random variables is the
multivariate Gaussian model, also called Gaussian Markov Random Field, that we used in
Chapter 4. Consider a Gaussian distribution X ∼ N (µ,Σ) where µ is the mean and Σ is
the covariance matrix. It is more convenient to consider the precision matrix S = Σ−1. In
most application, the precision matrix is sparse, the sparsity pattern representing condition
dependencies between the variables [116]. The log-likelihood of one observation x is the sum
of a log-determinant and a scalar product:

log π (x) =
1

2
log detS − 1

2
(x− µ)T S (x− µ)− n

2
log (2π)
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Tuning the parameters of this model against a set of observations requires computing the
determinant of the precision matrix, and this computation is in general the bottleneck.
Instead of considering the general problem of computing the determinant of symmetric,
positive-definite matrices, we focus on a more restricted case: computing the determinant of
symmetric, diagonally dominant (SDD) matrices, i.e. real symmetric matrices A for which:

Aii ≥
∑
j 6=i

|Aij|

The set of all such matrices of size n × n is denoted SDDn, and the set of all symmetric
real matrices is called Sn. Call m the number of non-zero entries in A. We are interested in
computing the determinant of sparse matrices, i.e. matrices for which m� n2.

The best exact algorithm known for computing the determinant of general matrices, the
Cholesky factorization, runs in a cubic complexity O (n3). Computing the factorization can
be sped up for a few specific patterns such as trees, but no algorithm has been shown to work
in a generic way for SDDn, let alone general symmetric matrices. We present an algorithm
that returns an approximation of the logarithm of the determinant in time quasi-linear
with the number of non-zero entries of A. More specifically, we show that our algorithm,
UltraLogDet, computes an ε-approximation of the logarithm of the determinant with high
probability and in expected time1:

Õ
(
mε−2 log3 n log2

(nκA
ε

))
where κA is the condition number of A. This algorithm builds upon the work of Spielmann

and Teng on ultra-sparsifiers [105], and it critically exploits the recent improvements from
Koutis, Miller and Peng [70]. This is to our knowledge the first algorithm that presents
a nearly linear complexity which depends neither on the condition number of A (except
through a log-term) nor on a specific pattern for the non-zero coefficients of A.

The sophistication of the algorithm transpires through the large exponent of log log n.
However, our algorithm will directly benefit from any improvement on ultra-sparsifiers.
Given the considerable practical importance of such preconditioners, we expect some fast im-
provements in this area. Also, the bulk of the work is performed in a Monte Carlo procedure
that is straightforward to parallelize. Furthermore, we also present simpler, non-optimal
algorithms that compute upper and lower bounds of the logarithm of the determinant, and
that may be of more immediate practical interest.

5.1.1 Background

There are two approaches in numerical linear algebra to approximately compute a determi-
nant (or the log of the determinant): by performing a (partial) Cholesky factorization of A,
or by considering the trace of some power series.

1We use the notation Õ to hide a factor at most (log log n)
8
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As mentioned above, the Cholesky factorization performs a decomposition of the form:
A = PLDLTP T with P a permutation matrix, L a low-triangular matrix with 1 on the
diagonal and D a diagonal matrix of non-negative coefficients. Then the log-determinant of
A is simply2:

log |A| =
∑
i

logDii

The complexity of dense Cholesky factorization for dense matrices is O (n3). Unfortunately,
Cholesky factorization usually does not gain much from the knowledge of the sparsity pattern
due to the fill-in problem (see [83], section 3.2). There is one case, though, for which Cholesky
factorization is efficient: if the sparsity pattern of A is a tree, then performing Cholesky
factorization takes O (n) time, and the matrix L is a banded matrix [77]. If the sparsity
pattern of A is not a tree, however, this advantageous decomposition does not hold anymore.

When the matrix A is close to the identity, more precisely when the spectral radius
of M = A − I is less than 1, one can use the remarkable Martin expansion of the log-
determinant [81]:

log |A| = Tr (logA) (5.1.1)

where logA is the matrix logarithm defined by the series expansion:

logA =
∞∑
i=0

(−1)i

i+ 1
M i (5.1.2)

The determinant can then be computed by a sum of traces of the power of M , and the rate
of convergence of this series is driven by the spectral radius M . This line of reasoning has
led researchers to look for decompositions of A of the form A = U +V with the determinant
of U being easier to compute and U−1V having a small spectral radius (less than 1). Then
log |A| = log |U | + log |U−1V + I|. The most common decomposition U, V is in terms of
block diagonal and off-diagonal terms, which can then use Hadamard inequalities on the
determinant to bound the error [66]. Diagonal blocks also have the advantage of having
determinants easy to compute. However, this approach requires some strong assumptions
on the condition number of A, which may not hold in practice.

The trace approach is driven by spectral properties (the condition number) while the
Cholesky approach is driven by graphical properties (the non-zero pattern). We propose
to combine these two approaches by decomposing the problem with one component that
is close to a tree (and is more amenable to Cholesky methods), and one component that
has a bounded condition number. Our solution is to use a spectral sparsifier introduced by
Spielman in [104].

2We will use the |·| operator to denote the determinant, it will be clear from the context that it is different
from the absolute value.
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5.1.2 Applications

The problem of estimating determinants has important applications in spatial data analysis,
statistical physics and statistics. In spatial statistics, it is often convenient to interpolate
measurements in a 2-, 3- or 4-dimensional volume using a sparse Gaussian process, a tech-
nique known in the geospatial community as kriging [73,126]. Computing the optimal param-
eters of this Gaussian process involves repeated evaluations of the partition function, which
is a log-determinant. In this context, a diagonally dominant matrix for the Gram matrix of
the process corresponds to distant interactions between points of measure (which is verified
in some contexts, see [90]). Determinants also play a crucial role in quantum physics and in
theoretical physics. The wave function of a system of multiple fermion particles is an anti-
symmetric function which can be described as a determinant (Slater determinant, [16, 79]).
In the theory of quantum chromodynamics (QCD), the interaction between particles can be
discretized on a lattice, and the energy level of particles is the determinant of some functional
operators over this lattice [40]. It is itself a very complex problem because of the size of the
matrices involved for any non-trivial problem, for which the number of variables is typically
in the millions [22]. In this setting, the restriction to diagonally dominant matrices can be
interpreted as an interaction between relatively massive particles [33], or as a bound on the
propagation of interactions between sites in the lattice [22].

For these reasons, computing estimates of the log-determinant has been an active problem
in physics and statistics. In particular, the Martin expansion presented in Equation (5.1.1)
is extensively used in quantum physics [66], and it can be combined with sampling method
to estimate the trace of a matrix series ( [128], [82], [129]). Another different line of research
has worked on bounds on the values of the determinant itself. This is deeply connected to
simplifying statistical models using variational methods. Such a relaxation using a message-
passing technique is presented in [115]. Our method is close in spirit to Reuksen’s work [95] by
the use of a preconditioner. However, Reuksen considers preconditioners based on a clever
approximation of the Cholesky decomposition, and its interaction with the eigenvalues of
the complete matrix is not well understood. Using simpler methods based on sampling, we
are able to carefully control the spectrum of the remainder, which in turn leads to strong
convergence guarantees.

5.1.3 A note on scaling

Unlike other common characteristics of linear operators, the determinant and the log-determinant
are very sensitive to dimensionality. We will follow the approach of Reuksen [95] and consider
the regularized log-determinant f (A) = n−1 log |A| instead of the log-determinant. The reg-
ularized determinant has appealing properties with respect to dimensionality. In particular,
its sensitivity to perturbations does not increase with the dimensionality, but only depends
on spectral properties of the operator A. For example, calling λmin and λmax the minimum
and maximum eigenvalues of A, respectively:

log λmin ≤ f (A) ≤ log λmax
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|f (A+ εI)− f (A)| ≤ ε
∥∥A−1

∥∥
2

+O
(
ε2
)

The last inequality in particular shows that any perturbation to log |A| will be in the order
O (n), and so that all the interesting log-determinants in practice will be dominated by some
O (n).

5.1.4 Main results

We first present some general results about the preconditioning of determinants. Consider
A ∈ SDDn invertible, and some other matrix B ∈ SDDn that is close to A in the spectral
sense. All the results of this section stem from observing that:

log |A| = log |B|+ log
∣∣B−1A

∣∣
log |B|+ Tr

(
log
(
B−1A

))
The first section is concerned with estimating the remainder term Tr (log (B−1A)) using the
Martin expansion. The exact inverse B−1 is usually not available, but we are given instead a
linear operator C that is an ε−approximation of B−1, for example using a conjugate gradient
method. We show in Section 5.2 that if the precision of this approximation is high enough,
we can estimate the remainder with high probability and with a reasonable number of calls
to the operator C (this sentence will be made precise in the rather technical Theorem 3).
Using this general framework, the subsequent Section 5.3.1 shows that spectral sparsifiers
make excellent preconditioners that are close enough to A and so that computing the Martin
expansion is not too expansive. In particular, we build upon the recursive structure of
Spielman-Teng ultra-sparsifiers to obtain our main result:

Theorem 1. On input A ∈ SDDn with m non-zeros, η > 0, the algorithm UltraLogDet

returns a scalar z so that:
P
[∣∣z − n−1 log |A|

∣∣ > ε
]
≤ η

and this algorithm completes in expected time Õ
(
mε−2 log3 n log2

(
κA
ε

)
log (η−1)

)
. Moreover,

if ε > Ω(n−1), then the running time improves by a factor ε.

The rest of the chapter is structured as follows. In the next section, we present some
results about estimating the log-determinant from a truncated expansion. These results will
justify the use of preconditioners to compute the determinant of a matrix. The techniques
developed by Spielman et al. work on the Laplacians of weighted graphs [102]. Section 3
introduces some new concepts to expand the notion of determinants to Laplacian matrices,
and presents a few straightforward results in the relations between graph Laplacians and SDD
matrices. Section 3.2 will use these new concepts to introduce a first family of preconditioners
based on low-stretch spanning trees. Finally, Section 3.3 contains the proof of our main result,
an algorithm to compute determinants in near-linear time.
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5.2 Preconditioned log-determinants

We begin by a close inspection of a simple sampling algorithm to compute log-determinants,
presented first in [19]. We will first present some error bounds on this algorithm that expand
on bounds previously presented in [17] and [19]. This section considers general symmetric
matrices and does not make assumptions about diagonal dominance.

Consider a real symmetric matrix S ∈ S+
n such that its spectral radius is less than 1:

0 � S � (1− δ) I for some δ ∈ (0, 1). Our goal is to compute log |I − S| up to precision ε
and with high probability. From the Martin expansion:

log |I − S| = −Tr

(
∞∑
k=1

1

k
Sk

)
(5.2.1)

This series of traces can be estimated by Monte Carlo sampling, up to precision ε with
high probability, by truncating the series and by replacing the exact trace evaluation by
xTSkx for some suitably chosen random variables x. In order to bound the errors, we will
bound the large deviation errors using the following Bernstein inequality:

Lemma 1. [Bernstein’s inequality] Let X1 · · ·Xn be independent random variables with
E [Xi] = 0, |Xi| < c almost surely. Call σ2 = 1

n

∑
i Var (Xi), then for all ε > 0:

P

[
1

n

∣∣∣∑
i

Xi

∣∣∣ ≥ ε

]
≤ 2 exp

(
− nε2

2σ2 + 2cε/3

)
We can adapt some results from [19] to prove this bound on the deviation from the trace.

Lemma 2. Consider H ∈ Sn with the assumption λminIn � H � λmaxI. Consider p vectors
sampled from the standard Normal distribution: ui ∼ N (0, In) for i = 1 · · · p. Then for all
ε > 0:

P

[∣∣∣∣∣1p
p∑
i=1

uTi Hui
uTi ui

− 1

n
Tr (H)

∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
− pε2

4 (λmax−λmin)2

n
+ 2 (λmax−λmin)ε

3

)
Proof. The distribution of ui is invariant through a rotation, so we can consider H diagonal.
We assume without loss of generality that H = diag (λ1, · · · , λn). Again without loss of
generality, we assume that λ′max = λmax−λmin and λ′min = 0 (by considering H ′ = H−λminI).

Call Vi =
uTi Hui
uTi ui

−n−1Tr (H). Using results from [19], we have: |Vi| ≤ λmax−λmin, E [Vi] = 0

and

Var (Vi) =
2

n(n+ 2)

n∑
i=1

(
λi − n−1Tr (H)

)2

Each of the variables Vi is independent, so invoking Lemma 1 gives:

P

[
1

p

∣∣∣∣∣
p∑
i=1

Vi

∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
− pε2

2σ2 + 2 (λmax − λmin) ε/3

)
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with

σ2 =
2

n(n+ 2)

n∑
i=1

(
λi − n−1Tr (H)

)2

≤ 2

n2

n∑
i=1

(λmax − λmin)2 =
2

n
(λmax − λmin)2

The previous lemma shows that if the eigenspectrum of a matrix is bounded, we can
obtain a Bernstein bound on the error incurred by sampling the trace. Furthermore, the
convergence of the series (5.2.1) is also determined by the extremal eigenvalues of S. If we
truncate the series (5.2.1), we can bound the truncation error using the extremal eigenvalues.
We formalize this intuition in the following theorem, which is adapted from the main theorem
in [19]. While that main theorem in [19] only considered a confidence interval based on the
covariance properties of Gaussian distribution, we generalize this result to a more general
Bernstein bound.

Theorem 2. Consider S ∈ S+
n with 0 � S � (1− δ) I for some δ ∈ (0, 1). Call y =

n−1 log |I − S| the quantity to estimate, and consider ui ∼ N (0, In) for i = 1 · · · p all inde-
pendent. Call ŷp,l an estimator of the truncated series of l elements computed by sampling
the trace using p samples:

ŷp,l = −1

p

p∑
j=1

l∑
k=1

1

k

uTj S
kuj

uTj uj

Given ε > 0 and η ∈ (0, 1), the ŷp,l approximates y up to precision ε with probability at least
1− η by choosing p ≥ 16

(
1
ε

+ 1
nε2

)
log (2/η) log2 (δ−1) and l ≥ 2δ−1 log

(
n
δε

)
:

P [|y − ŷp,l| ≥ ε] ≤ η

The proof of this result is detailed in Appendix A.
From this theorem we derive two results that justify the notion of preconditioners for

determinants: one for exact preconditioners and one for approximate preconditioners. The
corresponding algorithm, which we call PreconditionedLogDetMonteCarlo, is presented in
Algorithm 5.1.

Corollary 1. Let A ∈ S+
n and B ∈ S+

n be positive definite matrices so that B is a
κ−approximation of A:

A � B � κA (5.2.2)

Given ε > 0 and η ∈ (0, 1), the algorithm PreconditionedLogDetMonteCarlo computes
1
n

log |B−1A| up to precision ε with probability greater than 1− η, by performing

16κ

(
1

ε
+

1

nε2

)
log

(
2κ

ε

)
log (2/η) log2 (κ)

vector inversions from B and vector multiplies from A.
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The proof of this corollary is presented in Appendix A. Usually, computing the exact
inverse by an SDD matrix is too expensive. We can instead extend the previous result to
consider a black box procedure that approximately computes B−1x. If the error introduced
by the approximate inversion is small enough, the result from the previous corollary still
holds. This is what the following theorem establishes:

Theorem 3. Consider A,B ∈ S+
n positive definite with B a κ−approximation of A with

κ ≥ 2. Furthermore, assume there exists a linear operator C so that for all y ∈ Rn, C
returns a ν−approximation of B−1y:∥∥C (y)−B−1y

∥∥
B
≤ ν

∥∥B−1y
∥∥
B

Given η ∈ (0, 1) and ε > 0, if ν ≤ min
(

ε
8κ3κ(B)

, 1
2κ

)
, then the algorithm

PreconditionedLogDetMonteCarlo returns a scalar z so that:

P
[∣∣z − n−1 log

∣∣B−1A
∣∣∣∣ ≥ ε

]
≤ η

by performing 64κ
(

1
ε

+ 1
nε2

)
log
(

2κ
ε

)
log (2/η) log2 (κ) vector calls to the operator C and vec-

tor multiplies from A.

The proof of this result is detailed in Appendix A. While the overall bound looks the
same, the constant (taken away by the O (·) notation) is four times as large as in Corollary
1.

This last theorem shows that we can compute a good approximation of the log-determinant
if the preconditioner B: (a) is close to A in the spectral sense, and (b) can be approximately
inverted and the error introduced by the approximate inversion can be controlled. This
happens to be the case for symmetric, diagonally dominant matrices.

Algorithm 5.1 PreconditionedLogDetMonteCarlo

Algorithm PreconditionedLogDetMonteCarlo(B,A,η,p,l):
y ← 0
for j from 1 to p:

Sample u ∼ N (0, I)
v← u/ ‖u‖
z ← 0
for k from 1 to l:

v← B−1Av up to precision η
z ← z + k−1vTu

y ← y + p−1z
Return y
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5.2.1 A first preconditioner

While the results in this section are not the main claims of this paper, we hope they will
provide some intuition, and an easier path towards an implementation.

We present a first preconditioner that is not optimal, but that will motivate our results
for stronger preconditioners: a tree that spans the graph G. Every graph has a low-stretch
spanning tree, as discovered by Alon et al. [14]. The bound of Alon et al. was then improved
by Abraham et al. [12]. We restate their main result.

Lemma 3. (Lemma 9.2 from [105]). Consider a weighted graph G. There exists a spanning
tree T that is a subgraph of G so that:

LT � LG � κLT

with κ = Õ (m log n).

Proof. This follows directly from [105]. T is a subgraph of G (with the same weights on the
edges), so LT � LG (see [105] for example for a proof of this fact). Furthermore, we have
LG � stT (G)LT . This latter inequality is a result of Spielman et al. in [102] that we will
generalize further in Lemma 11. Finally, a result by [12] shows that T can be chosen such
that stT (G) ≤ O(m log n(log log n)3).

Trees enjoy a lot of convenient properties for Gaussian elimination. The Cholesky fac-
torization of a tree can be computed in linear time, and furthermore this factorization has a
linear number of non-zero elements [105]. This factorization can be expressed as:

LT = PLDLTP T

where P is a permutation matrix, L is a lower-triangular matrix with the diagonal being all
ones, and D a diagonal matrix in which all the elements but the last one are positive, the
last element being 0. These well-known facts about trees are presented in [105]. Once the
Cholesky factorization of the tree is performed, the log-determinant of the original graph is
an immediate by-product:

log |LT | =
n−1∑
i=1

logDii

Furthermore, computing L+
T x also takes O (n) computations by forward-backward substi-

tution (see [39]). Combining Corollary 1 and Lemma (6) gives immediately the following
result.

Theorem 4. Let G be a graph with n vertices and m edges. Its PLD can be computed up to
a precision ε and with high probability in time:

Õ

(
m2 log n log2 (m)

(
1

ε
+

1

nε2

)
log

(
2m

ε

)
log (2/η)

)
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Proof. Using Lemma (6), we compute a low-stretch tree LT so that LT � LG � κLT with
κ = Õ (m log n). Using Corollary (1), approximating the PLD with high precision requires

Õ

(
κ

(
1

ε
+

1

nε2

)
log

(
2κ

ε

)
log (2/η) log2 (κ)

)
= Õ

(
m log n

(
1

ε
+

1

nε2

)
log

(
2m

ε

)
log (2/η) log2 (m)

)
inversions by the tree T (done in O (n)) and vector products by the floated Laplacian
FLG(done in O (m)). The overall cost is

Õ

(
m2 log n log2 (m)

(
1

ε
+

1

nε2

)
log

(
2m

ε

)
log (2/η)

)
.

The previous result shows that the log-determinant can be computed in roughly O (m2)
(m being the number of non-zero entries). This result may be of independent interest since it
requires relatively little machinery to compute, and it is a theoretical improvement already
for graphs with small vertex degree (m = O

(
n1+o(1)

)
) over the Cholesky factorization of

G (which has complexity O (n3) in all generality). Also, note that the PLD of the tree
constructed above provides an upper bound to the log-determinant of G since LG � κLT .
We will see in Subsection 5.3.4 that we can compute a non-trivial lower bound as well.

5.3 Ultra-sparsifiers as determinant preconditioners

5.3.1 Reduction on a Laplacian

From now on, we consider the computation of logA, where A ∈ SDDn. The techniques we
will develop work on Laplacian matrices instead of SDD matrices. An SDD matrix is positive
semi-definite while a Laplacian matrix is always singular, since its nullspace is spanned by
1. We generalize the definition of the determinant to handle this technicality.

Definition 1. Pseudo-log-determinant (PLD): Let A ∈ Sn+ be a non-null positive semi-
definite matrix. The pseudo-log-determinant is defined by the sum of the logarithms of all
the positive eigenvalues:

ld (A) =
∑
λi>0

log (λi)

where λi are the eigenvalues of A.

The interest of the PLD lies in the connection between SDD matrices and some associated
Laplacian. It is well-known that solving an SDD system in SDDn can be reduced to solving
a Laplacian system of size 2n+1, using the reduction technique introduced Gremban in [46].



CHAPTER 5. COMPUTING DETERMINANTS AT VERY LARGE SCALE 127

Recall that a Laplacian has all its non-diagonal terms non-positive, the sum of each row and
each column being zero. The reduction has been simplified by Kelner et al. in [69], Appendix
A. Using the Kelner et al. reduction, we can turn the computation of a the log-determinant
of a SDD system into the computation of two PLDs of Laplacians, as shown in the next
lemma.

Lemma 4. Kelner et al. reduction for log-determinants. Given an invertible SDD matrix
A, consider the Kelner decomposition A = D1 + Ap + An +D2 where:

• Ap is the matrix that contains all the positive off-diagonal terms of A

• Anis the matrix that contains all the negative off-diagonal terms of A

• D1 is a diagonal matrix that verifies D1 (i, i) =
∑

j 6=i |A (i, j)|

• D2 is the excess diagonal matrix: D2 = A− Ap − An −D1

Call Â = D1 + An − Ap and Ã =

(
D1 +D2/2 + An −D2/2− Ap
−D2/2− Ap D1 +D2/2 + An

)
. Then Â and Ã

are both Laplacian matrices and

log |A| = ld
(
Ã
)
− ld

(
Â
)

Proof. The matrices Â and Ã are Laplacian by constructions, and we show that the eigenval-
ues of Ã are exactly the concatenation of the eigenvalues of Â and A. Call λi an eigenvalue

of A with x an associated eigenvector. Then the vector

(
x
−x

)
is an eigenvector of Ã with

associated eigenvalue λ. Similarly, call µi an eigenvalue of Â with y an associated eigenvec-

tor. Then µ is an eigenvalue of Ã with associated eigenvector

(
y
y

)
. Since Ã is exactly of

size 2n, the set of eigenvalues of Ã is exactly the concatenation of the eigenvalues of Â and

A. By definition of the PLD: ld
(
Ã
)

=
∑

i:λi>0 log λi +
∑

µi>0 log µi. Since A is invertible,

λi > 0 for all i and
∑

i:λi>0 log λi =
∑

i log λi = log |A|. Finally, by definition of the PLD,

we get
∑

µi>0 log µi = ld
(
Â
)

.

To any Laplacian L we can associate a unique positive definite matrix FL (up to a
permutation), and this transform preserves eigenvalues and matrix inequalities. We call this
process “floating” of the Laplacian, by analogy to the “grounding” in the electrical sense of
the SDD matrix as a Laplacian introduced by Gremban (see [46], Chapter 4).

Definition 2. Floating a Laplacian. Consider L a Laplacian matrix. Call FL the matrix
formed by removing the last row and the last column from L.
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The following lemma shows that the Laplacian matrix overdetermines a system, and that
no information is lost by floating it.

Lemma 5. Consider Z a (weighted) Laplacian matrix of a connected graph, then:

1. The eigenvalues of FZ are the positive eigenvalues of Z, and the corresponding eigen-
vectors for FZ are the same eigenvectors, truncated by the last coefficient.

2. ld (Z) = log |FZ |

3. Given Z1, Z2 Laplacian matrices, we have Z1 � Z2 ⇒ FZ1 � FZ2 .

The proof of this lemma is straightforward, and is contained in Appendix B.
A Laplacian matrix can be considered either for its graphical properties, or for its alge-

braic properties. Recent results have shown a deep connection between these two aspects,
and they let us develop a general framework for computing determinants: consider a Lapla-
cian LG identified to its graph G. Using graphical properties of LG, we can construct a
subgraph H of G for which the PLD is easier to compute and that is a good approximation
of G in the spectral sense. Then we can float the subgraph H and apply results of section
5.2 to approximate the remainder with high probability. More precisely:

ld (LG) = log |FLG|
= ld (LH)− log |FLH |+ log |FLG |
= ld (LH) + log

∣∣F−1
LH
FLG

∣∣
The first term ld (LH) is usually easier to compute by considering the graphical proper-

ties of LH , while the remainder log
∣∣F−1

LH
FLG

∣∣ is approximated by sampling. Preconditioner
graphs LH are typically efficient to factorize using Cholesky factorization, and close enough
to G so that the sampling procedure from the previous section can be applied to compute
log
∣∣F−1

LH
FLG

∣∣. We will see how to adapt Spielman and Teng’s remarkable work on ultra-
sparsifiers to produce good preconditioners H for the determinant.

5.3.2 A first preconditioner

While the results in this section are not the main claims of this paper, we hope they will
provide some intuition, and an easier path towards an implementation.

We present a first preconditioner that is not optimal, but that will motivate our results
for stronger preconditioners: a tree that spans the graph G. Every graph has a low-stretch
spanning tree, as discovered by Alon et al. [14]. The bound of Alon et al. was then improved
by Abraham et al. [12]. We restate their main result.

Lemma 6. (Lemma 9.2 from [105]). Consider a weighted graph G. There exists a spanning
tree T that is a subgraph of G so that:

LT � LG � κLT
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with κ = Õ (m log n).

Proof. This follows directly from [105]. T is a subgraph of G (with the same weights on the
edges), so LT � LG (see [105] for example for a proof of this fact). Furthermore, we have
LG � stT (G)LT . This latter inequality is a result of Spielman et al. in [102] that we will
generalize further in Lemma 11. Finally, a result by [12] shows that T can be chosen such
that stT (G) ≤ O(m log n(log log n)3).

Trees enjoy a lot of convenient properties for Gaussian elimination. The Cholesky fac-
torization of a tree can be computed in linear time, and furthermore this factorization has a
linear number of non-zero elements [105]. This factorization can be expressed as:

LT = PLDLTP T

where P is a permutation matrix, L is a lower-triangular matrix with the diagonal being all
ones, and D a diagonal matrix in which all the elements but the last one are positive, the
last element being 0. These well-known facts about trees are presented in [105]. Once the
Cholesky factorization of the tree is performed, the log-determinant of the original graph is
an immediate by-product:

log |LT | =
n−1∑
i=1

logDii

Furthermore, computing L+
T x also takes O (n) computations by forward-backward substi-

tution (see [39]). Combining Corollary 1 and Lemma (6) gives immediately the following
result.

Theorem 5. Let G be a graph with n vertices and m edges. Its PLD can be computed up to
a precision ε and with high probability in time:

Õ

(
m2 log n log2 (m)

(
1

ε
+

1

nε2

)
log

(
2m

ε

)
log (2/η)

)
Proof. Using Lemma (6), we compute a low-stretch tree LT so that LT � LG � κLT with
κ = Õ (m log n). Using Corollary (1), approximating the PLD with high precision requires

Õ

(
κ

(
1

ε
+

1

nε2

)
log

(
2κ

ε

)
log (2/η) log2 (κ)

)
= Õ

(
m log n

(
1

ε
+

1

nε2

)
log

(
2m

ε

)
log (2/η) log2 (m)

)
inversions by the tree T (done in O (n)) and vector products by the floated Laplacian
FLG(done in O (m)). The overall cost is

Õ

(
m2 log n log2 (m)

(
1

ε
+

1

nε2

)
log

(
2m

ε

)
log (2/η)

)
.
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The previous result shows that the log-determinant can be computed in roughly O (m2)
(m being the number of non-zero entries). This result may be of independent interest since it
requires relatively little machinery to compute, and it is a theoretical improvement already
for graphs with small vertex degree (m = O

(
n1+o(1)

)
) over the Cholesky factorization of

G (which has complexity O (n3) in all generality). Also, note that the PLD of the tree
constructed above provides an upper bound to the log-determinant of G since LG � κLT .
We will see in Subsection 5.3.4 that we can compute a non-trivial lower bound as well.

5.3.3 Incremental sparsifiers

We can do better and achieve near-linear time by using ultra-sparsifiers. The main insight
of our result is that the class preconditioners presented by Spielman and Teng are based on
incomplete Cholesky factorization, and hence have a determinant that is relatively easy to
compute, and furthermore that they are excellent spectral preconditioners, so the procedure
PreconditionedLogDetMonteCarlo is efficient to apply. We reintroduce some concepts
presented in [70] to present a self-contained result. The following paragraphs are well-known
facts about Spielman-Teng preconditioners and have been presented in [70,105].

The central idea to the Spielman-Teng preconditioner is to sample O (n) edges from the
graph A, to form a subgraph B that is close to a tree (hence it is easy to compute some partial
Cholesky factorization), yet it is close to the original A is the spectral sense (A � B � κA),
thanks to the additional edges. The partial Cholesky factorization is computed using the
GreedyElimination algorithm presented in [70]. In order for this section to be self-contained,
we include here the main results of Section 4 in [105].

Consider the Laplacian matrix LB of the subgraph B. There exists an algorithm that
computes the partial Cholesky factorization:

LB = PLCLTP T

where:

• P is a permutation matrix

• L is a non-singular, low triangular matrix of the form

L =

(
L1,1 0
L2,1 In1

)
with the diagonal of L1,1 being all ones.

• C has the form

C =

(
Dn−n1 0

0 LA1

)
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and every row and column of LA1 has at least 3 non-zero coefficients. Furthermore,
LA1 is itself Laplacian and:

ld (LG) =

n−n1∑
1

logDii + ld (LA1)

The exact algorithm that achieves this factorization is called GreedyElimination and is
presented in [70]. Using this factorization, the PLD of the original Laplacian LA is:

ld (LA) = ld (LB) + ld
(
B+A

)
=

n−n1∑
1

logDii + ld (A1) + ld
(
B+A

)
(5.3.1)

Thus, we are left with solving a smaller problem A1, and we approximate the value of
ld (B+A) using the algorithm SampleLogDet. ST preconditioners are appealing for this
task: they guarantee that A1 is substantially smaller than A, so the recursion completes in
O (log n) steps. Furthermore, computing the vector product B+Ax is itself efficient (in can
be done approximated in near-linear time), so we can apply Theorem 3. We formalize the
notion of chain of preconditioners by reintroducing some material from [70].

Algorithm 5.2 Sketch of the main algorithm

Algorithm UltraLogDet(A,ε,η):
If A is of a small size (<100), directly compute ld (A) with a dense Cholesky factorization.
Compute B =IncrementalSparsify(A)
Compute D,A′ =PartialCholesky(B)

η ← min
(

ε
8κ3κ(B)

, 1
2κ

)
p← 8

(
1
ε

+ 1
nε2

)
log (η−1) log2 (δ−1)

l← δ−1 log
(

2
εδ

)
Compute s =PreconditionedLogDetMonteCarlo(B,A, η, p, l)
Return s+ log |D|+UltraLogDet(A′,ε,η)

Definition 3. Definition 4.2 from [71]. Good preconditioning chain. Let d ∈ N∗, C =
{A1 = A,B1, A2, B2, A3 . . . Bd−1, Ad} be a chain of graphs and K = (κ1 · · ·κd−1) ∈ Rd−1

+ . We
say that {C,K} is a good preconditioning chain for A if there exists U = (µ1 · · ·µd) ∈ Nd

+ so
that:

1. Ai � Bi � κiAi .

2. Ai+1= GreedyElimination(Bi) .

3. The number of edges of Ai is less than µi.
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4. µ1 = µ2 = m where m is the number of edges of A.

5. µi/µi+1 ≥ cr
⌈√

κi
⌉

for some constant cr.

6. κi+1 ≤ κi.

7. µd is smaller than some fixed arbitrary constant.

Good chains exist, as found by Koutis, Miller and Peng:

Lemma 7. (Lemma 4.5 from [71]) Given a graph A, the algorithm BuildChain(A, p) from
[71] produces with probability 1 − p a good preconditioning chain {C,K} such that κ1 =
Õ
(
log2 n

)
and κi = κc for all i ≥ 2 for some constant κc. The length of the chain is

d = O (log n) and the algorithm runs in expected time Õ (m log n) .

These chains furthermore can be used as good preconditioners for conjugate gradient
and lead to near-linear algorithms for approximate inversion (Lemma 7.2 from [70]). This
remarkable result has been significantly strengthened in the previous years, so that SDD
systems can be considered to be solved in (expected) linear time.

Lemma 8. (Theorem 4.6 from [71]). Given A ∈ SDDn with m non-zero entries, b ∈ Rn

and ν > 0, a vector x such that ‖x− A+b‖A < ν ‖A+b‖A can be computed in expected time
Õ (m log n log (1/ν)).

It should now become clear how we can combine a good chain with the Algorithm
PreconditionedLogDetMonteCarlo. We start by building a chain. The partial Cholesky
factorizations at each step of the chain provide an upper bound on ld (A). We then refine
this upper bound by running PreconditionedLogDetMonteCarlo at each state of the chain
to approximate ld

(
B+
i Ai

)
with high probability. The complete algorithm is presented in

Algorithm 5.2. We now have all the tools required to prove Theorem 1. These tools are
very tall and must be carried over a long distance between the sections of this thesis, which
is why we have embedded in these pages the perfect animal to carry them over. If you are
reading an electronic copy of this dissertation, you can search in the text for a four-legged
mammal with a very long neck.

Proof of Theorem 1. First, recall that we can consider either an SDD or its grounded
Laplacian thanks to the relation log |A| = ldLA. Call A1 = LA the first element of the chain.
In this proof, all the matrices will be Laplacian from now on. Using Lemma 7, consider
C = {A1 = A,B1, A2, . . . Ad} a good chain for A, with d = O (log n). More precisely, since
Ai+1= GreedyElimination(Bi), the Laplacian Bi can be factored as:

Bi = PiLi

(
D(i) 0

0 Ai+1

)
LTi P

T
i

with Pi a permutation matrix, Li a lower triangular matrix with 1 one the diagonal and D(i)a
positive definite diagonal matrix. The matrix D(i) is an immediate by-product of running
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the algorithm GreedyElimination and can be obtained when forming the chain C at no
additional cost.

From the discussion at the start of the section, it is clear that ldBi =
∑

k logD
(i)
k +ldAi+1.

From the discussion in Section 5.2, the log-determinant of A is:

log |A| = ldA1

= ldB1 + ld
(
B+

1 A1

)
=

∑
k

logD
(1)
k + ldA2 + ld

(
B+

1 A1

)
...

= ldAd +
d∑
i=1

(∑
k

logD
(i)
k

)
+

d∑
i=1

ld
(
B+
i Ai

)
The term ldAd can be estimated by dense Cholesky factorization at cost O (1), and the

diagonal Cholesky terms
∑

k logD
(i)
k are already computed from the chain. We are left with

estimating the d remainders ld
(
B+
i Ai

)
. By construction, Ai � Bi � κiAi and by Lemma 8,

there exists an operator Ci so that
∥∥Ci (b)−B+

i b
∥∥
Bi
< ν

∥∥B+
i b
∥∥
Bi

for all b with a choice of
relative precision ν = ε

16κ3i κ(Bi)
.

This relative precision depends on the condition number κ (Bi) of Bi. We can coarsely
relate this condition number to the condition number of A1by noting the following:

• Since Ai � Bi � κiAi by construction, κ (Bi) ≤ κiκ (Ai)

• For diagonally dominant matrices or Laplacian matrices, the condition number of the
partial Cholesky factor is bounded by the condition number of the original matrix.
This can be seen by analyzing one update in the Cholesky factorization. Given a

partially factorized matrix Ã =

 Ip 0 0
0 a b
0 bT S

, after factorization, the next matrix is(
Ip+1 0

0 S − a−1bbT

)
. The spectrum of the Schur complement S− a−1bbT is bounded

by the spectrum of

(
a b
bT S

)
(see Corollary 2.3 in [?]) and thus its condition number

is upper bounded by that of Ã.

As a consequence, we have for all i: κ (Ai+1) ≤ κ (Bi) ≤ κiκ (Ai) ≤
∏i

j=1 κjκ (A1) =

Õ (κ1κ
i−1
c κ (A)) with κc the constant introduced in Lemma 7. This coarse analysis gives us

the bound:
κ (Bi) ≤ Õ

(
κlogn
c log2 n κ (A)

)
= Õ

(
nlog κc log2 n κ (A)

)
.

Consider the relative precision ν̃ = Õ
(
n− log κc log−8 n ε

κ(A)

)
so that ν̃ ≤ νi for all i. Con-

structing the operator Ci is a byproduct of forming the chain C. By Theorem 2, each
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remainder ld
(
B+
i Ai

)
can be approximated to precision ε with probability at least 1 − η

using Algorithm 5.1. Furthermore, this algorithm works in expected time

Õ

(
m log n log (1/ν̃)κ1

(
1

ε
+

1

nε2

)
log
(nκ1

ν̃

)
log2 (κ1) log

(
η−1
))

= Õ

(
m log3 n

(
1

ε
+

1

nε2

)
log2

(
nκ (A)

ε

)
log
(
η−1
))

By a union bound, the result also holds on the sum of all the log n approximations of the
remainders. We can simplify this bound a little by assuming that ε ≥ n−1, which then

becomes Õ
(
mε−1 log3 n log2

(
nκ(A)
ε

)
log (η−1)

)
.

5.3.4 Stretch bounds on preconditioners

How good is the estimate provided by the preconditioner? Intuitively, this depends on how
well the preconditioner LH approximates the graph LG. This notion of quality of approx-
imation can be formalized by the notion of stretch. This section presents a deterministic
bound on the PLD of LG based on the PLD of LH and the stretch of G relative to H. This
may be useful in practice as it gives a (tight) interval for the PLD before performing any
Monte-Carlo estimation of the residual.

The stretch of a graph is usually defined with respect to a (spanning) tree. In our analysis,
it is convenient and straightforward to generalize this definition to arbitrary graphs. To our
knowledge, this straightforward extension is not considered in the literature, so we feel
compelled to properly introduce it.

Definition 4. Generalized stretch. Consider V a set of vertices, G = (V , EG) , H = (V , EH)
connected graphs over the same set of vertices, and LG, LH their respective Laplacians. The
stretch of G with respect to H is the sum of the effective resistances of each edge of graph G
with respect to graph H,

stH (G) =
∑

(u,v)∈EG

LG (u, v) (Xu −Xv)T L+
H (Xu −Xv)

with Xu ∈ Rn the unit vector that is 1 at position u, and zero otherwise.

If the graph H is a tree, this is a standard definition of stretch, because the effective
resistance (Xu −Xv)T L+

H (Xu −Xv) between vertices u and v is the sum of all resistances
over the unique path between u and v (see Lemma 2.4 in [106]). Furthermore, the argu-
ments to prove Theorem 2.1 in [106] carry over to our definition of stretch. For the sake of
completeness, we include this result:

Lemma 9. (Straightforward generalization of Theorem 2.1 in [106]) Let G = (V , EG) , H =
(V , EH) be connected graphs over the same set of vertices, and LG, LH their respective
Laplacians. Then:

stH (G) = Tr
(
L+
HLG

)
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with L+
Hthe pseudo-inverse of LH .

Proof. We denote E (u, v) the Laplacian unit matrix that is 1 in position u, v: E (u, v) =
(Xu −Xv) (Xu −Xv)T . This is the same arguments as the original proof:

Tr
(
L+
HLG

)
=

∑
(u,v)∈EG

LG (u, v) Tr
(
E (u, v)L+

H

)
=

∑
(u,v)∈EG

LG (u, v) Tr
(

(Xu −Xv) (Xu −Xv)T L+
H

)
=

∑
(u,v)∈EG

LG (u, v) (Xu −Xv)T L+
H (Xu −Xv)

= stH (G)

A consequence is stH (G) ≥ Card (EG) ≥ n − 1 for connected G and H with LG � LH ,
and that for any connected graph G, stG (G) = n− 1. Scaling and matrix inequalities carry
over with the stretch as well. Given A,B,C connected graphs, and α, β > 0:

stαA (βB) = α−1βstA (B)

LA � LB ⇒ stA (C) ≥ stB (C)

LA � LB ⇒ stC (A) ≤ stC (B)

Lemma 10. For any connected graph G, stG (G) = n− 1.

Proof. Consider the diagonalization of LG: LG = P∆P T with P ∈ Rn×n−1 and ∆ =
diag (λ1, · · · , λn−1). Then

stG (G) = Tr
(
P∆P TP∆−1P T

)
= Tr (In−1) = n− 1

A number of properties of the stretch extend to general graphs using the generalized
stretch. In particular, the stretch inequality (Lemma 8.2 in [105]) can be generalized to
arbitrary graphs (instead of spanning trees).

Lemma 11. Let G = (V , EG) , H = (V , EH) be connected graphs over the same set of
vertices, and LG, LH their respective Laplacians. Then:

LG � stH (G)LH
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Proof. The proof is very similar to that of Lemma 8.2 in [106], except that the invocation
of Lemma 8.1 is replaced by invoking Lemma 18 in Appendix B. The Laplacian G can be
written as a linear combination of edge Laplacian matrices:

LG =
∑
e∈EG

ωeL (e) =
∑

(u,v)∈EG

ω(u,v) (Xu −Xv) (Xu −Xv)T

and a positivity result on the Schur complement gives

(Xu −Xv) (Xu −Xv)T �
(

(Xu −Xv)T L+
H (Xu −Xv)

)
LH

By summing all the edge inequalities, we get:

LG �
∑

(u,v)∈EG

ω(u,v) (Xu −Xv)T L+
H (Xu −Xv)LH

� stH (G)LH

This bound is remarkable as it relates any pair of (connected) graphs, as opposed to
spanning trees or subgraphs. An approximation of the generalized stretch can be quickly
computed using a construct detailed in [103], as we will see below. We now introduce the
main result of this section: a bound on the PLD of LG using the PLD of LH and the stretch.

Theorem 6. Let G = (V , EG) , H = (V , EH) be connected graphs over the same set of
vertices, and LG, LH their respective Laplacians. Assuming LH � LG, then:

ld (LH) + log (stH (G)− n+ 2) ≤ ld (LG) ≤ ld (LH) + (n− 1) log

(
stH (G)

n− 1

)
(5.3.2)

This bound is tight.

Proof. This is an application of Jensen’s inequality on ld
(
L+
HLG

)
. We have ld(LG) =

ld(LH) + ld
(
L+
HG
)

and ld
(
L+
HG
)

= ld
(√

LH
+
LG
√
LH

+
)

with
√
T the matrix square root

of T . From Lemma 19, we have the following inequality:

ld
(√

LH
+
LG
√
LH

+
)
≤ (n− 1) log

Tr
(√

LH
+
LG
√
LH

+
)

n− 1


= (n− 1) log

(
Tr
(
L+
HLG

)
n− 1

)

= (n− 1) log

(
stH (G)

n− 1

)
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The latter equality is an application of Lemma 9.
The lower bound is slightly more involved. Call λi the positive eigenvalues of

√
LH

+
LG
√
LH

+

and σ = stH (G). We have 1 ≤ λi from the assumption LH � LG. By definition:
ld
(
L+
HLG

)
=
∑

i log λi. Furthermore, we know from Lemma 9 that
∑

i λi = σ. The up-
per and lower bounds on λi give:

ld
(
L+
HLG

)
≥min

∑
i

log λi

s.t.λi ≥ 1,
∑
i

λi = σ

Since there are precisely n − 1 positive eigenvalues λi, one can show that the minimization
problem above has a unique minimum which is log (σ − n+ 2).

To see that, consider the equivalent problem of minimizing
∑

i log (1 + ui) under the
constraints

∑
i ui = σ − (n− 1) and ui ≥ 0. Note that:

∑
i

log (1 + ui) = log

(∏
i

[1 + ui]

)
= log

(
1 +

∑
i

ui + Poly (u)

)

with Poly (u) ≥ 0 for all ui ≥ 0, so we get:
∑

i log (1 + ui) ≥ log (1 +
∑

i ui) and this inequal-

ity is tight for u1 = σ − (n− 1) and ui≥2 = 0. Thus the vector λ∗ = (σ − n+ 2, 1 · · · 1)T is
(a) a solution to the minimization problem above, and (b) the objective value of any feasible
vector λ is higher or equal. Thus, this is the solution (unique up to a permutation). Hence
we have ld

(
L+
HLG

)
≥
∑

i log λ∗i = log (σ − n+ 2).
Finally, note that if H = G, then stH (G) = n− 1, which gives an equality.

Note that Lemma 11 gives us LH � LG � stH (G)LH which implies ld (LH) ≤ ld (LG) ≤
ld (LH)+n log stH (G). The inequalities in Theorem 6 are stronger. Interestingly, it does not
make assumption on the topology of the graphs (such as LH being a subset of LG). Research
on conditioners has focused so far on low-stretch approximations that are subgraphs of
the original graph. It remains to be seen if some better preconditioners can be found with
stretches in O (n) by considering more general graphs. In this case, the machinery developed
in Section 3 would not be necessary.

From a practical perspective, the stretch can be calculated also in near-linear time with
respect to the number of non-zero entries.

Lemma 12. Let G = (V , EG) , H = (V , EH) be connected graphs over the same set of
vertices, and LG, LH their respective Laplacians. Call r = maxe LH (e) /mine LH (e). Given
ε > 0, there exists an algorithm that returns a scalar y so that:

(1− ε) stH (G) ≤ y ≤ (1 + ε) stH (G)

with high probability and in expected time Õ (mε−2 log (rn)).
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Proof. This is a straightforward consequence of Theorem 2 in [103]. Once the effective
resistance of an edge can be approximated in time O (log n/ε2), we can sum it and weight it
by the conductance in G for each edge.

5.3.5 Fast inexact estimates

The bound presented in Equation 5.3.2 has some interesting consequences if one is interested
only in a rough estimate of the log-determinant: if ε = O (1), it is possible to approximate the
log-determinant in expected time Õ

(
m+ n log3 n

)
. We will make use of this sparsification

result from Spielman and Srivastava [103]:

Lemma 13. (Theorem 12 in [103]). Given a Laplacian LG with m edges, there is an
expected Õ (m/ε2) algorithm that produces a graph LH with O (n log n/ε2) edges that satisfies
(1− ε)LG � LH � (1 + ε)LG.

An immediate consequence is that given any graph, we can find a graph with a near-
optimal stretch (up to an ε factor) and O (n log n/ε2) edges.

Lemma 14. Given a Laplacian LG with m edges, there is an expected Õ (m/ε2) algo-
rithm that produces a graph LH with O (n log n/ε2) edges that satisfies (n− 1) ≤ stH (G) �
1+ε
1−ε (n− 1).

Proof. Consider a graph H produced by Lemma 13, which verifies (1− ε)LG � LH �
(1 + ε)LG. Using the stretch over this matrix inequality, this implies:

st(1+ε)G (G) ≤ stH (G) ≤ st(1−ε)G (G)

which is equivalent to:

(1 + ε)−1 stG (G) ≤ stH (G) ≤ (1− ε)−1 stG (G)

and the stretch of a connected graph with respect to itself is n − 1. By rescaling H to
(1 + ε)−1H, we get:

n− 1 ≤ stH (G) ≤ 1 + ε

1− ε
(n− 1)

Here is the main result of this section:

Proposition 1. There exists an algorithm that on input A ∈ SDDn, returns an approxima-
tion n−1 log |A| with precision 1/2 in expected time
Õ
(
m+ n log3 n log2 κ(A)

)
with κ(A) the condition number of A.
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Proof. Given LA, compute H from Lemma 14 using ε = 1/16 so that (n− 1) ≤ stH (G) �
(1 + 1/8) (n− 1). Then, using Theorem 6, this leads to the bound:

ld (H) ≤ log |A| ≤ ld (H) +
n− 1

4

since H has O (n log n) edges by construction, we can use Theorem 1 to compute a 1/4-
approximation of ld (H) in expected time Õ

(
n log3 n log2 (κ(H))

)
. By construction κ(H) ≤

1+1/16
1−1/16

κ(A), hence the result.

It would be interesting to see if this technique could be developed to handle arbitrary
precision as well.

Comments

Since the bulk of the computations are performed in estimating the residue PLD, it would be
interesting to see if this could be bypassed using better bounds based on the stretch. Also,
even if this algorithm presents a linear bound, it requires a fairly advanced machinery (ST
solvers) that may limit its practicality. Some heuristic implementation, for example based
on algebraic multi-grid methods, could be a first step in this direction.

The author is much indebted to Satish Rao and Jim Demmel for suggesting the original
idea and their helpful comments on an earlier draft of this discussion. This chapter is based
on a collaboration with Ahmed El Alaoui and Alexandre Bayen, and is at this time being
submitted to the SIAM Journal of Matrix Analysis and Applications.
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Chapter 6

Conclusion

He attacked everything in life with a mixture of
extraordinary genius and naive incompetence
and it was often difficult to tell which was which.

Douglas Adams, The Hitchhiker’s guide to the
galaxy

We now conclude this dissertation. This thesis presents a study to the question of es-
timating travel times across a large road network. It studies the challenges of building a
pipeline and estimation algorithms that operate at large scale from real-world datasets. In
particular, it studies the limitations of available techniques when confronted to the diversity
of data collected in the real world.

The private sector has already deployed traffic information systems that serve millions of
individuals with great success. These systems collect very large amounts of data from users
and in return give some information about travel times. However, this process does not give
any confidence interval or statistical guarantees to the user. We propose in this dissertation
several models that address this deficiency.

6.1 Advantages and deficiencies of data-driven models

When describing a phenomenon, a model should have two goals: explain and predict. A good
model should reconcile some laws considered to hold within the context of the experiment
with some observations. This is the explanation part. It should further be able to predict
some aspects not observed yet. In all cases, there are some intrinsic variables within the
model that need to be calibrated against the data and with respect to the physics behind
the model. In physical models, these variables correspond to physical quantities that inform
the scientist about the phenomenon. In statistical models, these variables are usually non-
dimensional parameters that describe abstract correlations between random variables.
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In the case of traffic, we make the case that loosing the comprehension that goes along
with physical models gives access to a much richer class of models that describe the obser-
vations better.

The second goal of prediction can be quantitatively evaluated, although there will be al-
ways some argument about the proper metrics and protocols to evaluate the predictive power
of a model. Purely statistical models, which use previous data to predict the distribution of
future data, do not offer much insight about the system we are looking at. However, their
calibration parameters can usually be refined using well-understood optimization techniques
when presented with data, and the quality of their inference is directly related to the cali-
bration. In particular, they can usually be adjusted to prevent overfitting. Models in which
calibration parameters are physical constants can be much harder to calibrate to the data
at hand. In particular, they rely on some assumptions that may not be verified in practice.
Furthermore, it may not be possible to diagnose if all the assumptions required by these
models are actually met within the experiment (such as deciding that some quantities are
negligible against others). Naively calibrating them with observed data may lead to a good
fit but some unrealistic choice of parameters. It is common to add some Bayesian priors or
smoothing/regularization terms, but these terms are seldom grounded with some theoretical
justification. Furthermore, data-driven models are often driven by smooth parameters and
degrade gracefully with the lack of data. Physical models have a fixed number of parameters
that depend on the theoretical considerations. This number is usually very hard to change
because it depends on the relation between different physical quantities, unlike sparsity or
BIC criterions. It ensues that physical models have a lower bound in terms of observation
if they want to retain some predictive power and not overfit the existing data. On the
other hand, the number of parameters of statistical models can be adjusted in an automated
fashion based on the amount of data at hand.

In both cases, some diagnostic tools exist such as the bootstrap. It would be advantageous
for the transportation community to investigate the confidence intervals of some bounds on
the calibration of physical parameters, to ensure that the bias of the experimenter is not
coming into play.

Statistical models are not restricted to a specific structure, and thus can be structured in
a way that is more amenable to computations, but cannot be justified on theoretical grounds.
For example, it is clear that the traffic on one road link will have an impact on surrounding
road links, but it is a common assumption to consider each link to be independent. A lot of
transportation literature has focused on adding some correlations, but the conservation laws
behind it are challenging to model accurately. The simple model introduced in Chapter 4
can predict such correlations, but it does not give any insights about the cause of these
correlations.
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6.2 Summary of contributions

This thesis shows how a data-driven approach that relies on insights derived from the data,
combined with a quantitative approach towards measurement goals, can lead to an estimation
platform that is both robust and reliable, and that can work at very large scales with massive
amounts of data. Physical models are used to inform the choice of statistical models, and
new techniques are presented to use these statistical models at scale. We present a framework
that works for different tradeoffs of quality of data, timeliness and computing resources.

Chapter 2 presents a principled approach for map-matching GPS data onto the road
network. This approach works on a wide range of conditions, and is shown to encompass a
large range of existing techniques. We have presented a novel class of algorithms to track
moving vehicles on a road network: the Path Inference Filter. This algorithm first projects
the raw points onto candidate projections on the road network and then builds candidate
trajectories to link these candidate points. An observation model and a driver model are
then combined in a Conditional Random Field to find the most probable trajectories.

The algorithm exhibits robustness to noise as well as to the peculiarities of driving in
urban road networks. It is competitive over a wide range of sampling rates (1 seconds to 2
minutes) and greatly outperforms intuitive deterministic algorithms. Furthermore, given
a set of ground truth data, the filter can be automatically tuned using a fast supervised
learning procedure. Alternatively, using enough regular GPS data with no ground truth, it
can be trained using unsupervised learning. Experimental results show that the unsupervised
learning procedure compares favorably against learning from ground truth data.

Chapter 3 presents how to use very large quantities of extremely noisy observations at
scale to estimate travel times on a large network. As datasets grow in size, some new
strategies are required to perform meaningful computations in a short amount of time.
We explored the implementation of a large-scale state estimation in near-real-time using
Discretized Streams, a recently proposed streaming technique. Our traffic algorithm is an
Expectation-Maximization algorithm that computes travel time distributions of traffic by in-
cremental online updates. This approach was validated with a large dataset of GPS traces.
This algorithm seems to compare favorably with the state of the art and shows some attrac-
tive scalability features from an implementation perspective. When distributed on a cluster,
this algorithm scales to very large road networks (half a million road links, tens of thousands
of observations per second) and can update traffic state in a few seconds.

Chapter 4 focuses on a travel time estimator that works with future GPS data and that
takes into account the correlations of travel times. The state of the art for travel time
estimation has focused on either precise and computationally intensive physical models, or
large scale, data-driven approaches. We have presented a novel algorithm for travel time
estimation that aims at combining the best of both worlds, by combining physical insights
with some scalable algorithms. We model the variability of travel times due to stops at
intersections using a Stop-Go model (to detect stops) and a Hidden Markov Model to learn
the spatial dependencies between stop locations. We also take into account the spatio-
temporal correlations of travel times due to driving behavior or congestion, using a Gaussian
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Markov Random Fields. In particular, we present a highly scalable algorithm to train and
perform inference on Gaussian Markov Random Fields, when applied on planar graphs.

We analyze the accuracy of the model using probe vehicle data collected over the Bay
Area of San Francisco, CA. The results underline the importance to take into account the
multi-modality of travel times in arterial networks due to the presence of traffic signals.
The quality of the results we obtain are competitive with the state of the state of the art
in traffic, and also highlight the good scalability of our algorithm. It remains to be seen
how this system could be tested and deployed in an industrial setting. Furthermore, traffic
information systems are only one component of a larger set of vital services we have grown
accustomed to depend upon. It will be interesting to see how traffic can be combined with
health monitoring, weather, public safety systems to provide a comprehensive view of a large
megalopolis.
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Appendices

Mais on ne se bat pas dans l’espoir du succès!
Non! non! C’est bien plus beau lorsque c’est
inutile!

Edmond Rostand, Cyrano de Bergerac

Appendix A: Proofs of Section 5.2

A.1 Proof of Theorem 2

Proof. The proof of this theorem follows the proof of the Main Theorem in [19] with some
slight modifications. Using triangular inequality:

|y − ŷp,l| ≤ |E [ŷp,l]− ŷp,l|+ |y − E [ŷp,l]|

Since S is upper-bounded by (1− δ) I, we have for all k ∈ N:∣∣Tr
(
Sk
)∣∣ ≤ n (1− δ)k

We have E [ŷp,l] = −
∑l

i=1 i
−1Si and y = −

∑∞
i=1 i

−1Si. Using again triangle inequality, we
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can bound the error with respect to the expected value:

|y − E [ŷp,l]| = n−1

∣∣∣∣∣
∞∑

i=l+1

1

i
Tr
(
Sk
)∣∣∣∣∣

≤ n−1

∞∑
i=l+1

1

i

∣∣Tr
(
Sk
)∣∣

≤ 1

n (l + 1)

∞∑
i=l+1

∣∣Tr
(
Sk
)∣∣

≤ 1

l + 1

∞∑
i=l+1

(1− δ)k

≤ 1

l + 1

(1− δ)l+1

δ

≤ (1− δ)l+1

δ

And since δ ≤ − log (1− δ), for a choice of l ≥ δ−1 log
(

2
εδ

)
, the latter part is less than

ε/2. We now bound the first part using Lemma 2. Call H the truncated series:

H = −
m∑
i=1

1

i
Si

This truncated series is upper-bounded by 0 (H is negative, semi-definite). The lowest
eigenvalue of the truncated series can be lower-bounded in terms of δ:

H = −
m∑
i=1

1

i
Si � −

m∑
i=1

1

i
(1− δ)i I � −

+∞∑
i=1

1

i
(1− δ)i I = (log δ) I

We can now invoke Lemma 2 to conclude:

P

[∣∣∣∣∣1p
p∑
i=1

(
uTi ui

)−1
uTi Hui − n−1Tr (H)

∣∣∣∣∣ ≥ ε

2

]
≤ 2 exp

(
− pε2

16 (log(1/δ))2

n
+ 4 log(1/δ)ε

3

)

Thus, any choice of

p ≥ 16

(
1

ε
+

1

nε2

)
log (2/η) log2

(
δ−1
)
≥ log (2/η) ε−2

(
16

(log (1/δ))2

n
+

4

3
ε log

(
δ−1
))

satisfies the inequality: 2 exp
(
− pε2

16n−1(log(1/δ))2+4 log(1/δ)ε/3

)
≤ η.
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A.2 Proof of Corollary 1

Proof. We introduce some notations that will prove useful for the rest of the section:

H = I −B−1A

S = I −B−1/2AB−1/2

with B−1/2 the inverse of the square root1 of the positive-definite matrix B. The inequality
(5.2.2) is equivalent to κ−1B � A � B, or also:(

1− κ−1
)
I � I −B−1/2AB−1/2 � 0(

1− κ−1
)
I � S � 0 (6.2.1)

The matrix S is a contraction, and its spectral radius is determined by κ. Furthermore,
computing the determinant of B−1A is equivalent to computing the determinant of I − S:

log |I − S| = log
∣∣B−1/2AB−1/2

∣∣
= log |A| − log |B|
= log

∣∣B−1A
∣∣

= log |I −H|

and invoking Theorem 2 gives us bounds on the number of calls to matrix-vector mul-
tiplies with respect to S. It would seem at this point that computing the inverse square
root of B is required, undermining our effort. However, we can reorganize the terms in the
series expansion to yield only full inverses of B. Indeed, given l ∈ N∗, consider the truncated

1Given a real PSD matrix X, which can be diagonalized: X = Q∆QT with ∆ diagonal, and ∆ii ≥ 0.
Call Y = Q

√
∆QT the square root of X, then Y 2 = X.
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series:

yl = −Tr

(
l∑

i=1

1

i
Si

)

= −
l∑

i=1

1

i
Tr
(
Si
)

= −
l∑

i=1

1

i
Tr

(∑
j

(
j

i− j

)
(−1)j

(
B−1/2AB−1/2

)j)

= −
l∑

i=1

1

i

∑
j

(
j

i− j

)
(−1)j Tr

((
B−1/2AB−1/2

)j)
= −

l∑
i=1

1

i

∑
j

(
j

i− j

)
(−1)j Tr

((
B−1A

)j)
= −

l∑
i=1

1

i
Tr

(∑
j

(
j

i− j

)
(−1)j

(
B−1A

)j)

= −
l∑

i=1

1

i
Tr
(
H i
)

Hence, the practical computation of the latter sum can be done on A−1B. To conclude, if
we compute p = 16

(
1
ε

+ 1
nε2

)
log (2/η) log2 (κ) truncated chains of length l = κ log

(
2κ
ε

)
, we

get our result. This requires lp multiplications by A and inversions by B.

A.3 Proof of Theorem 3

We prove here the main result of Section 5.2. In the following, A and B are positive-definite
matrices in Sn, and B is a κ−approximation of A (A � B � κA). The following notations
will prove useful:

S = I −B−1/2AB−1/2 (6.2.2)

R = I −B−1A (6.2.3)

ϕ = κ−1

Recall the definition of the matrix norm. Given M ∈ S+
n , ‖M‖B = maxx 6=0

√
xTMx
xTBx
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Lemma 15. S and R are contractions for the Euclidian and B−norms:

‖S‖ ≤ 1− ϕ
‖R‖ ≤ 1− ϕ
‖R‖B ≤ (1− ϕ)2

Proof. Recall the definition of the matrix norm: ‖S‖ = maxxT x≤1

√
xTSx. Since we know

from Equation (6.2.1) that S � (1− ϕ) I, we get the first inequality.
The second inequality is a consequence of Proposition 3.3 from [105]: A and B have the

same nullspace and we have the linear matrix inequality A � B � κA, which implies that
the eigenvalues of B−1A lie between κ−1 = ϕ and 1. This implies that the eigenvalues of
I −B−1A are between 0 and 1− ϕ.

Recall the definition of the matrix norm induced by the B-norm over Rn:

‖R‖B = max
x 6=0

‖Rx‖B
‖x‖B

= max
‖x‖2B≤1

√
xTRTBRx

= max
xTBx≤1

√
xTRTBRx

= max
yT y≤1

√
yTB−1/2RTBRB−1/2y

and the latter expression simplifies:

B−1/2RTBRB−1/2 = B−1/2
(
I − AB−1

)
B
(
I −B−1A

)
B−1/2

=
(
I −B−1/2AB−1/2

) (
I −B−1/2AB−1/2

)
= S2

so we get:
‖R‖B =

∥∥S2
∥∥ ≤ ‖S‖2 ≤ (1− ϕ)2

The approximation of the log-determinant is performed by computing sequences of power
series

(
Rkx

)
k
. These chains are computed approximately by repeated applications of the

R operator on the previous element of the chain, starting from a random variable x0. We
formalize the notion of an approximate chain.

Definition 5. Approximate power sequence. Given a linear operator H, a start point x(0) ∈
Rn, and a positive-definite matrix D, we define an ε−approximate power sequence as a
sequence that does not deviate too much from the power sequence:∥∥x(k+1) −Hx(k)

∥∥
D
≤ ε

∥∥Hx(k)
∥∥
D
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We now prove the following result that is quite intuitive: if the operator H is a contraction
and if the relative error ε is not too great, the sum of all the errors on the chain is bounded.

Lemma 16. Let H be a linear operator and D a norm over the space of that linear operator.
Assume that the operator H is a contraction under this norm (‖H‖D < 1) and consider
ρ ∈ (0, 1) so that ‖H‖D ≤ (1− ρ)2. Consider

(
x(k)
)
k

a ν−approximate power sequence for
the operator H and the norm D. If ρ ≤ 1/2 and ν ≤ ρ/2, the total error is bounded:

∞∑
k=0

∥∥x(k) −Hkx(0)
∥∥
D
≤ 4ρ−2ν

∥∥x(0)
∥∥
D

Proof. Call ωk =
∥∥x(k) −Hkx(0)

∥∥
D

and θk =
∥∥Hx(k)

∥∥
D

. We are going to bound the rate of
convergence of these two series. We have first using triangular inequality on the D norm
and then the definition of the induced matrix norm.

θk ≤
∥∥Hx(k) −Hkx(0)

∥∥
D

+
∥∥Hkx(0)

∥∥
D

= ωk +
∥∥Hkx(0)

∥∥
D

≤ ωk + ‖H‖kD
∥∥x(0)

∥∥
D

We now bound the error on the ωk sequence:

ωk+1 =
∥∥x(k+1) −Hx(k) +Hx(k) −Hk+1x(0)

∥∥
D

≤
∥∥Hx(k) −Hk+1x(0)

∥∥
D

+
∥∥x(k+1) −Hx(k)

∥∥
D

≤ ‖H‖D
∥∥x(k) −Hkx(0)

∥∥
D

+ ν
∥∥Hx(k)

∥∥
D

= ‖H‖D ωk + νθk

≤ ‖H‖D ωk + ν
(
ωk + ‖H‖kD

∥∥x(0)
∥∥
D

)
≤ [‖H‖D + ν]ωk + ν ‖H‖kD

∥∥x(0)
∥∥
D

The assumption ρ ≤ 1 −
√
‖H‖D is equivalent to ‖H‖D ≤ (1− ρ)2, so the last inequality

implies:
ωk+1 ≤

[
(1− ρ)2 + ν

]
ωk + ν (1− ρ)2k

∥∥x(0)
∥∥
D

Note that the inequality (1− ρ)2 + ν ≤ 1 − ρ is equivalent to ν ≤ ρ − ρ2. Using the
hypothesis, this implies:

ωk+1 ≤ (1− ρ)ωk + ν (1− ρ)2k
∥∥x(0)

∥∥
D

(6.2.4)

We show by induction that:

∀k, ωk ≤
ν
∥∥x(0)

∥∥
D

1−
√

1− ρ

(√
1− ρ

)k−1
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Note first that

ω1 =
∥∥x(1) −Hx(0)

∥∥
D

≤ ν
∥∥Hx(0)

∥∥
D

≤ ν ‖H‖D
∥∥x(0)

∥∥
D

≤ ν (1− ρ)2
∥∥x(0)

∥∥
D

≤ ν
∥∥x(0)

∥∥
D

So this relation is verified for k = 1. Now, assuming it is true for k, we use Equation (6.2.4)
to see that:

ωk ≤ (1− ρ)ωk + ν (1− ρ)2k
∥∥x(0)

∥∥
D

≤ (1− ρ)ωk + ν
(√

1− ρ
)k ∥∥x(0)

∥∥
D

≤ ν
∥∥x(0)

∥∥
D

[
(1− ρ)

1−
√

1− ρ

(√
1− ρ

)k−1

+
(√

1− ρ
)k]

= ν
∥∥x(0)

∥∥
D

(√
1− ρ

)k [ √
1− ρ

1−
√

1− ρ
+ 1

]
=

ν
∥∥x(0)

∥∥
D

1−
√

1− ρ

(√
1− ρ

)k
which is the the property for k + 1. Using this property, we can sum all the errors by a
geometric series (note that ω0 = 0).

∞∑
k=1

ωk ≤
ν
∥∥x(0)

∥∥
D

1−
√

1− ρ

∞∑
k=0

(√
1− ρ

)k
=

ν
∥∥x(0)

∥∥
D(

1−
√

1− ρ
)2

Finally, note that for ρ ∈ (0, 1/2), the inequality ν ≤ ρ/2 implies ν ≤ ρ−ρ2. Furthermore,
by concavity of the square root function, we have

√
1− ρ ≤ 1 − ρ/2 for ρ ≤ 1. Thus,(

1−
√

1− ρ
)2 ≥ ρ2/4 and we get our result.

We can use the bound on the norm of A to compute bound the error with a preconditioner:

Lemma 17. Consider A,B with the same hypothesis as above, x0 ∈ Rn, and the additional
hypothesis ν ∈

(
0, 1

2κ

)
and κ ≥ 2, and (xu)u an ν−approximate power sequence for the

operator R with start vector x0. Then:∣∣∣∣∣
l∑

i=1

1

i
xT0R

ix0 −
l∑

i=1

1

i
xT0 xi

∣∣∣∣∣ ≤ 4νκ2
√
κ (B) ‖x0‖2

where κ (B) is the condition number of B.
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Proof. Call ẑ the truncated sequence:

ẑ =
l∑

i=1

1

i
xT0 xi

This sequence is an approximation of the exact sequence z:

z =
l∑

i=1

1

i
xT0R

ix0

We now bound the error between the two sequences:

|ẑ − z| ≤
l∑

i=1

1

i

∣∣xT0 (Rix0 − xi
)∣∣ ≤ l∑

i=1

∣∣xT0 (Rix0 − xi
)∣∣ ≤ l∑

i=1

∣∣∣(B−1x0

)T
B
(
Rix0 − xi

)∣∣∣
(6.2.5)

Using the Cauchy-Schwartz inequality, we obtain:∣∣∣(B−1x0

)T
B
(
Rix0 − xi

)∣∣∣ =
∣∣〈B−1x0, R

ix0 − xi
〉
B

∣∣ ≤ ∥∥B−1x0

∥∥
B

∥∥Rix0 − xi
∥∥
B

(6.2.6)

From Lemma (15), we have ‖R‖B ≤ (1− ϕ)2, and from the hypothesis, we have ν ∈ (0, ϕ/2)
and ϕ ≤ 1/2, so we can bound the deviation using the bound from Lemma 16:

l∑
i=1

∥∥Rix0 − xi
∥∥
B
≤

∞∑
i=1

∥∥Rix0 − xi
∥∥
B
≤ 4ϕ−2ν ‖x0‖B = 4κ2ν ‖x0‖B (6.2.7)

Combining Equations (6.2.5), (6.2.6) and (6.2.7), we get:

|ẑ − z| ≤
∥∥B−1x0

∥∥
B

l∑
i=1

∥∥Rix0 − xi
∥∥
B
≤ 4νκ2

∥∥B−1x0

∥∥
B
‖x0‖B

Finally, it is more convenient to consider the Euclidian norm for the norm of x0. Call λmax

and λmin the extremal eigenvalues of the positive semidefinite matrix B. By definition of the
matrix norm: ‖x0‖B =

√
xT0Bx0 ≤

√
λmax ‖x0‖ and ‖B−1x0‖B =

√
xT0B

−1x0 ≤
√
λ−1

min ‖x0‖
so we get:

|ẑ − z| ≤ 4νκ2
√
κ (B) ‖x0‖2

where κ (B) is the condition number of B.

We now have all the elements required for the proof of Theorem 3.

Proof. Consider uj ∼ N (0, In) for j = 1 · · · p, and xi,j =

{
uj/ ‖uj‖ i = 0

xi−1,j − C (Axi−1,j) i > 0
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Call

zp,l =
1

p

p∑
j=1

l∑
i=1

1

i
(x0,j)

T xi,j

ŷp,l =
1

p

p∑
j=1

l∑
k=1

1

k
(x0,j)

T Skx0,j

By construction, (xi,j)i is an ν−approximate chain for the operator R. Applying Lemma
17 to the operator R under the norm B, we get:

|zp,l − ŷp,l| ≤ 4νκ2
√
κ (B)

[
1

p

p∑
j=1

‖x0,j‖2

]
= 4νκ2

√
κ (B)

since ‖x0,j‖2 = 1, which gives us a deterministic bound. Consider ν ≤ min

(
ε

8κ2
√
κ(B)

, 1
2κ

)
.

Then |zp,l − ŷp,l| ≤ ε/2. Furthermore:

|zp,l − y| ≤ |zp,l − ŷp,l|+ |y − ŷp,l|

and P [|y − ŷp,l| ≥ ε/2] ≤ η for a choice of p ≥ 16
(

1
ε

+ 1
nε2

)
log (2/η) log2 (δ−1) and l ≥

4κ log
(
n
δε

)
. Hence, we get our bound result of

pl = 64κ

(
1

ε
+

1

nε2

)
log (2/η) log2

(
δ−1
)

log
( n
δε

)

Appendix B: Proofs of Section 5.3.1

We put here the proofs that pertain to Section 5.3.1.

B.1 Properties of the generalized Laplacian

Proof of Lemma 5.

Proof. The first statement is obvious from the construction of the grounded Laplacian.
Statment (2) is a direct consequence of the fact that FZ = PZP T with P = (In 0).
Then the third statement is a simple consequence of statement 2, as ld (Z) =

∑
i log λi

with (λi)i the n− 1 positive eigenvalues of Z.
Statement (4) is straightforward after observing that the floating procedure is a linear

transform from Sn to Sn−1, so it preserves the matrix inequalities.
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B.2 Technical lemmas for Theorem 1

This lemma generalizes Lemma 8.1 in [105].

Lemma 18. Consider A ∈ Sn positive semi-definite, and x ∈ Rn. Then xxT �
(
xTA+x

)
A

Proof. Without loss of generality, consider xTx = 1. Consider the eigenvalue decomposition
of A: A =

∑
i λiuiu

T
i . Since (ui)i is an orthonormal basis of Rn, we only need to establish

that
(
uTi x

)2 ≤
(
xTA+x

)
uTi Aui for all i. The latter term can be simplified:

(
xTA+x

)
uTi Aui =

(
xT

[∑
j

λ−1
j uju

T
j

]
x

)
λi

= λi
∑
j

λ−1
j

(
uTj x

)2

≥
(
uTi x

)2

which is the inequality we wanted.

Lemma 19. Jensen inequality for the matrix logarithm. Let A ∈ Sn be a positive semi-
definite matrix with p positive eigenvalues. Then

ld (A) ≤ p log

(
Tr (A)

p

)
Proof. This is a direct application of Jensen’s inequality. Call (λi)i the positive eigenvalues
of A. Then ld (A) =

∑
i log λi. By concavity of the logarithm:

∑
i

log λi ≤ p log

(∑
λi
p

)
= p log

(
Tr (A)

p

)


