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Abstract

An Extended Linear Difference Model for Mortality Projection,
with Applications to Japan

by

Futoshi Ishii
Doctor of Philosophy in Demography

University of California, Berkeley

Professor Kenneth W. Wachter, Co-Chair
Professor John R. Wilmoth, Co-Chair

In this dissertation, we propose the Tangent Vector Field (TVF) model for Japanese
mortality projection, which is an extended Linear Difference (LD) model, and show
its applications.

In the two chapters following the introduction, we describe the mortality trends
in Japan and review the mortality projection models for Japan.

Then, in the following two chapters, we describe the data and methods for
the mortality models, show the results of fitting, and discuss them with special
emphasis on the LD model. We describe the mathematical formulations for decline–
type and shift–type models, and discuss the inverse function of log mortality and
differential forms of mortality models. We discuss five models: two decline–type
models (the Proportional Hazard (PH) and Lee–Carter (LC) models), and three
shift–type models (the Horizontal Shifting (HS), Horizontal Lee–Carter (HL), and
LD models). In particular, we compare the LC and LD models from a statistical
viewpoint. The result guides better construction of a mortality projection model,
namely, a blended model with LC properties in youth and LD properties in older
age.

In the last chapter, we propose the TVF model applying the idea of tangent vec-
tor fields on the log mortality surface. We show a fully specified example of the
projection procedure of the TVF model with all constants and coefficients applied
for Japanese mortality projection. Then, we compare the TVF and LC models’ re-
sults of mortality projection. From the observation of the relative mortality rates,
we see that the LC model expresses mortality improvement only in a vertical di-
rection, whereas the TVF model succeeds in expressing a shifting of mortality im-
provement in the direction of older ages that are observed in the actual mortality.
In addition, we compare the projected mx curves. The mx by the LC model ex-
hibits an unnatural pattern because the slope of the curve diminishes once around
the age of 60 years and becomes much steeper after 80 years. The curve of the TVF
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model is more plausible. As a whole, we observe that the TVF model has many
advantages for Japanese mortality projection compared with the LC model.

We show that the TVF model proposed in this dissertation is not only quite
useful for Japanese mortality projection but also has various applicability. At this
point in time, there may be few countries with such strong shifting features for old
age mortality as Japan. However, some countries are likely to experience the same
mortality situation as Japan in the future through the extension of life expectancy.
Thus, the TVF model will be a useful tool for projections in such situations.
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Chapter 1

Introduction

This dissertation proposes and examines a novel model for Japanese mortality
projection, which is an extended Linear Difference (LD) model, namely, the Tan-
gent Vector Field (TVF) model. This model was originally developed for the 2012
official population projection for Japan conducted by the National Institute of Pop-
ulation and Social Security Research (NIPSSR 2012).

In Japan, the increase in life expectancy in the 20th century was remarkable
as with other developed countries. Moreover, the pace of the extension of life
expectancy was noticeable. Japanese life expectancy was at the lowest level among
developed countries in 1950. However, Japan caught up rapidly, overtook other
countries, and has since continued to increase.

However, these unique characteristics of Japanese mortality pose huge chal-
lenges for modeling and projecting mortality. Existing mortality models often can-
not capture the peculiarities of Japanese mortality and neither can the Lee-Carter
(LC) model (Lee and Carter 1992), which is now regarded internationally as a
standard model. We started our research originally to overcome this problem.

In this introduction, we overview our model, including a description of some
important concepts and the substantial rationale for the model. Then, we provide
an example of the projection procedure using the TVF model. Lastly, we describe
advantages of the TVF model.

First, we introduce some necessary concepts. There are three important ideas
infrequently used in general that we prefer to use in this dissertation:

(a) decline–type and shift–type models, and the inverse function of log mortality;

(b) differential forms of mortality models; and

(c) tangent vector fields on the log mortality surface.

These ideas are discussed in detail later. Here, we briefly describe them and
show the direction in which this dissertation proceeds.
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Fig. 1.1: Stylized Example of Mortality Improvement (Gompertz Case)

Regarding the first idea, let us observe Fig. 1.1 that shows a stylized example of
mortality improvement. The black straight line is the log mortality at a base point
of time. This is a Gompertz model because the log mortality is a linear function
of age. Assume that the mortality improved during a period of time and the log
mortality line moved to the colored (blue and red) lines. Usually, we recognize
the improvement, as shown by the blue arrow, that is, the value of log mortality
declines over time for a fixed age. However, this is also understood as improvement
as shown by the red arrow. This means that the black line shifted toward older
ages. In this case, the mortality improvement is recognized as a delay of the age
that attains to a fixed value of the log mortality. In the Gompertz model, they are
unidentifiable, making the blue and red line coincide.

In general, however, decline and shift do not yield the same results. Fig. 1.2
shows the generalized version of Fig. 1.1. The log mortality at the base point of
time shown by the black line is no longer straight. For simplicity, we consider
only the case in which the improvement occurs uniformly, that is, the black line
moves parallel. We see that the blue and red lines are different in this case, and
therefore, decline and shift exhibit different types of mortality improvement. We
show later that shift–type mortality improvement is preferable for understanding
Japanese old age mortality.

The inverse function of log mortality plays an important role in treating shift–
type models efficiently. Recall that we recognized an increase of the age that cor-
responds to a fixed value of the log mortality in the shift–type mortality improve-
ment. Here, the function that expresses the age that attains to a fixed value of the
log mortality is the inverse function of the log mortality rates. Therefore, shifting
features are modeled well by the inverse functions. Using this concept, we con-
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Fig. 1.2: Stylized Example of Mortality Improvement (General Case)

struct the LD model, which is a shift–type model. In addition, this enables us to
treat more general types of shift. As the LC model handles a different amount of
mortality decline with each age, we can treat a different amount of shifting with
each log mortality level using the inverse functions.

The second idea, differential forms of mortality models, relates to targets of mod-
eling. In general, the target of the mortality model is the age pattern of the log
mortality. We start this research by developing a mortality projection model, and
our models always include time as a variable. Therefore, we can model the mor-
tality with a baseline mortality pattern and a change of mortality over time. Thus,
we notice the differential of mortality function by time, which we call differential
forms.

Actually, when relational models, which express an arbitrary mortality pattern
by a standard age pattern and the differences from the standard pattern with some
parameters, are used for time series modeling of mortality rates, the differences
from the standard pattern mean changes of the mortality over time. In this case,
the changes are expressed by the differential of mortality by time. Therefore, esti-
mation of relational models for time series is equivalent to modeling the differen-
tial of the mortality. In this dissertation, differential forms are used more actively,
and play a central role in defining the LD model.

The third idea concerns practical implementation of the mortality projection
model. One of the reasons why shift–type models are not used frequently for mor-
tality projection is the difficulty in building an entire age model. Fig. 1.3 shows the
log mortality rates for Japanese females since 1970. We see that juvenile mortality
is never recognized as shifting. Therefore, shift–type models are applicable to adult
mortality only. However, we need an entire age model for mortality projection and
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Fig. 1.3: Log Mortality Rates(Japan, Female, 1970-2010)
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juvenile mortality is modeled only by decline–type models. This fact is considered
as a chief obstacle to applying shift–type models to mortality projections in prac-
tice.

Fig. 1.4 shows a stylized example of the change in mortality curves. If we use
the LD model, which is a shift–type adult mortality model, the direction of mor-
tality improvements is expressed by the age increases shown by the red arrows.
On the other hand, the mortality improvements in juvenile mortality are modeled
well by the decline– type models, such as the LC model, whose mortality improve-
ments are shown by the blue arrows. The arrows express the directions in which
the points on the log mortality curves are heading. Mathematically, these arrows
are formulated using tangent vector fields on the log mortality surface.

Fig. 1.5 shows an example of the log mortality surface S that is expressed in the
blue grid. The log mortality surface is a set of points in (x, t, y) ∈ R3, where x is
age, t is time, and y = log μx,t is log mortality.

Recall from the second idea that modeling the differential of the mortality func-
tion by time is equivalent to mortality modeling in time-series analysis. For decline–
type models, the mortality improvement rates ρx,t, which are the minus of the dif-
ferential of the log mortality, become the target of modeling. Equivalently, the
differential of the inverse of the log mortality is the target in the shift–type models.
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Fig. 1.4: Change in the Mortality Curves
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Let us consider what they express on the log mortality surface. We begin with
the black point in Fig. 1.5 and consider how mortality improvement is expressed
for the two types of models. In decline–type models, the mortality improvement is
recognized as a decline of log mortality with a fixed age, which means we travel
along the broad blue line on S in Fig.1.5. Here, the mortality improvement rates
ρx,t is the minus of the slope of the broad blue line at the black point. Therefore,
the vector ρ = (0, 1,−ρx,t) is a tangent vector on S and the set of the vectors for
all points form a tangent vector field on S. This is interpreted as follows: model-
ing the decline–type models are equivalent to considering the flows at each point
on the log mortality surface in the direction of age fixed with tangent vector ρ.
The same discussion holds for the shift–type models, except that we consider the
flows in the direction of the log mortality fixed with the broad orange line, and the
corresponding tangent vector is τ in Fig. 1.5.

Considering the flows on the log mortality surface enables us to construct an
entire age model in a natural way. We can consider an intermediate tangent vector
ξ by a weighted average of ρ and τ. Then, we can construct flows that coincide
decline–type flows in youth and shift–type flows in old ages, which produces an en-
tire age model. In this way, the tangent vector fields dissociate from the difficulties
of applying shift–type models to mortality projection.
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Fig. 1.5: Stylized Example of Log Mortality Surface
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Furthermore, considering the flows has substantive meaning. Usually, mor-
tality models are expressed as a function of age that defines a parameter to pick
out points on each curve. However, the flow on the log mortality surface means
that each point P(0) is associated with a specific point P(t) on the curve for time
t, which allows more general types of parameterization. In the LD model, the
level of the mortality is used for the parameterization. This feature has an advan-
tage when a change in log mortality depends more on mortality level than age.
Therefore, this is useful for modeling old age mortality in developed countries, es-
pecially Japan, when “the aging of mortality decline” plays an important role in
mortality improvement.

However, in this setting, , we no longer have a formula for a mortality model
as a function of age. To show how the projection procedure is carried out, here,
we provide an example of the procedure of the projection by vector approach. The
complete worked example appears in Chapter 6.

Before showing the example, we briefly describe some notations and defini-
tions related to our models, even though they are discussed in detail in the follow-
ing chapters. In this study, the log hazard function of mortality is expressed by
y = λx,t = log μx,t, and νy,t exhibits the inverse function of λx,t if defined. We use
the following two differential functions by time t: (1) ρx,t: the mortality improve-
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ment rate and (2) τy,t: the force of age increase defined as:

ρx,t =
def

−∂λx,t

∂t
= −∂ log μx,t

∂t

τy,t =
def

∂νy,t

∂t

Using these notations, the LC model is expressed as follows1:

λx,t = ax + ktbx

Here, ax is a baseline log mortality, kt is interpreted as an indicator for the level
of mortality at time t, and bx is a set of sensitivity constants that stands for the
amount of mortality improvement at age x for the unit change of kt.

The LD model is a shift-type model and is described using the force of age
increase τy,t that is a differential of the inverse function of log mortality. We define
the LD model satisfying the property that τy,t is a linear function of t for each t:

τy,t = f ′t + g′tx

The parameters f ′t and g′t exhibit the intercept and the slope of the line that
corresponds to a linear relationship between τy,t and x. We can obtain ft and gt by
integrating f ′t and g′t with t.

ft depends on the value of the slope and is not easy to interpret. Therefore, we
introduce another variable St as a location of the mortality curve instead of f ′t or
ft, defined as the age that the mortality rate equals to 0.5 at time t. In theory, we
can always covert from St to ft using the value of gt.

The TVF model is a blended mortality model that has the LC property in youth
and the LD property in older age. Therefore, to project the mortality by the TVF
model, we need all the parameters for the LC and the LD model, as well as a weight
function that combines the tangent vectors that correspond to the two models.
They are listed as follows:

• a baseline log mortality ax (estimated in the LC model)

• a set of Lee–Carter bx sensitivity constants

• estimated and projected values of kt for the LC model

• estimated and projected values of gt for the LD model

• estimated and projected values of St for the LD model (and the converted
values of ft)

1We consider mx,t in the discrete form is an approximation of μx+0.5,t+0.5 in the continuous form.
Moreover, we drop the error term from models. See Chapter 4 for details.
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• a weight function w(x, t)

Suppose we have already estimated the above parameters for now. We begin
with the vector field approach for the LC model. For the LC model, we can di-
rectly project λx,t (log mortality rates) from ax, bx, and kt

2. For example, λx,2010 is
projected by the formula:

λx,2010 = ax + k2010bx

In the vector field approach, we carry out the projection from the mortality rates
in year t to those for t + 1 recursively, starting from the baseline mortality. This is
just like a population projection procedure by the cohort component method. With
this approach, we project λx,2010 from λx,2009, adding −ρx,2009 = (k2010 − k2009)bx.

This procedure is expressed in the following diagram. The left box shows the
coordinates (x, y) = (x, λx,2009) by the LC model for t = 2009. The center box is the
vector ρ that indicates the change in each point on the mortality curve for the LC
model. The right box, which shows the coordinates (x, y) = (x, λx,2010) is obtained
by adding the center box to the left one.

t = 2009
x y
0 −6.41880
5 −9.20639
10 −9.67716
15 −9.09892
20 −8.28018
25 −8.12543
30 −7.94453
35 −7.64278
40 −7.24150
45 −6.82626
50 −6.39262
55 −6.03363
60 −5.66740
65 −5.30739
70 −4.82596
75 −4.24970
80 −3.61874
85 −2.91721
90 −2.23439
95 −1.62468
100 −1.09103
105 −0.67125
110 −0.38047

+

Change
x y
0 −0.02575
0 −0.02444
0 −0.02119
0 −0.01506
0 −0.01034
0 −0.01109
0 −0.01197
0 −0.01230
0 −0.01196
0 −0.01243
0 −0.01275
0 −0.01365
0 −0.01532
0 −0.01887
0 −0.02087
0 −0.02203
0 −0.02236
0 −0.01995
0 −0.01643
0 −0.01277
0 −0.00910
0 −0.00565
0 −0.00307

−→

t = 2010
x y
0 −6.44456
5 −9.23082
10 −9.69835
15 −9.11398
20 −8.29052
25 −8.13652
30 −7.95650
35 −7.65508
40 −7.25346
45 −6.83869
50 −6.40537
55 −6.04728
60 −5.68272
65 −5.32626
70 −4.84683
75 −4.27173
80 −3.64110
85 −2.93715
90 −2.25082
95 −1.63746

100 −1.10012
105 −0.67690
110 −0.38354

2Note that when we work on the discrete form, the age x actually represents the age interval
[x, x + 1). In this example, we treat non-integer values for x, which should be understood not as
the exact ages but as the age intervals.
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Next, we consider the projection procedure for the LD model with a similar
diagram as that for the LC.

The first box from the left is (x, y) = (x, λx,2009) by the LD model. The second
box expresses the vector τ of change for the LD model. Note that the values of
change τy,t are plugged in the ”x” (left) column here, which corresponds to the
direction of the flow for the LD model. We obtain the third box by adding the
first and second ones. It shows the relationship between x and y. However, this
is not a normal representation because the values of x are not integers. Therefore,
we ”standardize” it by linear interpolations and obtain a normal representation, as
shown in the fourth box.

t = 2009
x y
0 −6.41880
5 −9.20639
10 −9.67716
15 −9.09892
20 −8.28018
25 −8.12543
30 −7.94453
35 −7.64278
40 −7.24150
45 −6.82327
50 −6.38706
55 −6.02569
60 −5.65690
65 −5.29181
70 −4.80574
75 −4.22945
80 −3.59925
85 −2.90073
90 −2.22207
95 −1.61629
100 −1.08622
105 −0.66927
110 −0.38016

+

Change
x y

0.30780 0
0.29822 0
0.28865 0
0.27908 0
0.26950 0
0.25993 0
0.25035 0
0.24078 0
0.23121 0
0.22163 0
0.21206 0
0.20248 0
0.19291 0
0.18334 0
0.17376 0
0.16419 0
0.15461 0
0.14504 0
0.13547 0
0.12589 0
0.11632 0
0.10675 0
0.09717 0

−→

t = 2010
x y

0.30780 −6.41880
5.29822 −9.20639
10.28865 −9.67716
15.27908 −9.09892
20.26950 −8.28018
25.25993 −8.12543
30.25035 −7.94453
35.24078 −7.64278
40.23121 −7.24150
45.22163 −6.82327
50.21206 −6.38706
55.20248 −6.02569
60.19291 −5.65690
65.18334 −5.29181
70.17376 −4.80574
75.16419 −4.22945
80.15461 −3.59925
85.14504 −2.90073
90.13547 −2.22207
95.12589 −1.61629
100.11632 −1.08622
105.10675 −0.66927
110.09717 −0.38016

standardize−−−−→

t = 2010
x y
0
5 −9.17441
10 −9.65753
15 −9.16408
20 −8.31101
25 −8.13085
30 −7.95642
35 −7.66127
40 −7.25807
45 −6.84214
50 −6.40529
55 −6.04032
60 −5.67083
65 −5.30685
70 −4.82438
75 −4.24906
80 −3.61961
85 −2.92162
90 −2.23970
95 −1.63079
100 −1.09765
105 −0.67709
110 −0.38483

In this case, we cannot obtain the value for age 0 by linear interpolation. How-
ever, this causes no problem because we do not use the projected mortality rates
by the LD model for juvenile area.

Finally, we describe the TVF procedure that combines the two models. In the
TVF model, we compute the vector of change ξ by the weighted average of the vec-
tors ρ and τ. Using weight function w(x, t), the vector of change ξ is constructed
as shown in the following diagram.
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ρ
x y
0 −0.02575
0 −0.02444
0 −0.02119
0 −0.01506
0 −0.01034
0 −0.01109
0 −0.01197
0 −0.01230
0 −0.01196
0 −0.01243
0 −0.01275
0 −0.01365
0 −0.01532
0 −0.01887
0 −0.02087
0 −0.02203
0 −0.02236
0 −0.01995
0 −0.01643
0 −0.01277
0 −0.00910
0 −0.00565
0 −0.00307

×

1 − w(x, t)

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.83526
0.67052
0.50578
0.34104
0.17630
0.01155
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

+

τ
x y

0.30780 0
0.29822 0
0.28865 0
0.27908 0
0.26950 0
0.25993 0
0.25035 0
0.24078 0
0.23121 0
0.22163 0
0.21206 0
0.20248 0
0.19291 0
0.18334 0
0.17376 0
0.16419 0
0.15461 0
0.14504 0
0.13547 0
0.12589 0
0.11632 0
0.10675 0
0.09717 0

×

w(x, t)

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.16474
0.32948
0.49422
0.65896
0.82370
0.98845
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

=

ξ
x y

0.00000 −0.02575
0.00000 −0.02444
0.00000 −0.02119
0.00000 −0.01506
0.00000 −0.01034
0.00000 −0.01109
0.00000 −0.01197
0.00000 −0.01230
0.00000 −0.01196
0.03651 −0.01038
0.06987 −0.00855
0.10007 −0.00690
0.12712 −0.00522
0.15102 −0.00333
0.17175 −0.00024
0.16419 0.00000
0.15461 0.00000
0.14504 0.00000
0.13547 0.00000
0.12589 0.00000
0.11632 0.00000
0.10675 0.00000
0.09717 0.00000

Then, we can perform the projection similarly to the procedure for the LD
model, except we use ξ for the vector of change, as shown in the following dia-
gram.
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t = 2009
x y
0 −6.41880
5 −9.20639
10 −9.67716
15 −9.09892
20 −8.28018
25 −8.12543
30 −7.94453
35 −7.64278
40 −7.24150
45 −6.82327
50 −6.38706
55 −6.02569
60 −5.65690
65 −5.29181
70 −4.80574
75 −4.22945
80 −3.59925
85 −2.90073
90 −2.22207
95 −1.61629
100 −1.08622
105 −0.66927
110 −0.38016

+

Change
x y

0.00000 −0.02575
0.00000 −0.02444
0.00000 −0.02119
0.00000 −0.01506
0.00000 −0.01034
0.00000 −0.01109
0.00000 −0.01197
0.00000 −0.01230
0.00000 −0.01196
0.03651 −0.01038
0.06987 −0.00855
0.10007 −0.00690
0.12712 −0.00522
0.15102 −0.00333
0.17175 −0.00024
0.16419 0.00000
0.15461 0.00000
0.14504 0.00000
0.13547 0.00000
0.12589 0.00000
0.11632 0.00000
0.10675 0.00000
0.09717 0.00000

−→

t = 2010
x y

0.00000 −6.44456
5.00000 −9.23082
10.00000 −9.69835
15.00000 −9.11398
20.00000 −8.29052
25.00000 −8.13652
30.00000 −7.95650
35.00000 −7.65508
40.00000 −7.25346
45.03651 −6.83366
50.06987 −6.39560
55.10007 −6.03260
60.12712 −5.66212
65.15102 −5.29514
70.17175 −4.80598
75.16419 −4.22945
80.15461 −3.59925
85.14504 −2.90073
90.13547 −2.22207
95.12589 −1.61629
100.11632 −1.08622
105.10675 −0.66927
110.09717 −0.38016

standardize−−−−→

t = 2010
x y
0 −6.44456
5 −9.23082
10 −9.69835
15 −9.11398
20 −8.29052
25 −8.13652
30 −7.95650
35 −7.65508
40 −7.25346
45 −6.83675
50 −6.40159
55 −6.03981
60 −5.67128
65 −5.30752
70 −4.82441
75 −4.24906
80 −3.61961
85 −2.92162
90 −2.23970
95 −1.63079

100 −1.09765
105 −0.67709
110 −0.38483

In Chapter 6, we show a fully specified example of the projection procedure of
the TVF model with all constants and coefficients.

Lastly, we describe advantages of the TVF model. We will compare the LC and
LD models from a statistical viewpoint in Section 5.2, and see that LD’s perfor-
mance is better than LC’s performance over 75 years of age. This is brought by
the shift feature of the LD model that can express the ”aging of mortality decline”
observed in the recent mortality improvement in Japan. Moreover, the shift–type
models are applicable only for adult mortality and the juvenile mortality should
be modeled by the decline–type models. Therefore, the TVF model that has the LC
property in youth and the LD property in older age works quite well for mortality
projection for Japan.

Moreover, it is often mentioned that the projected mortality curve by the LC
model leads to an unnatural pattern especially in a long range projection. This is
caused by the fact that the parameter bx is fixed in the LC model, even though the
age distribution of the mortality improvement rates is not fixed actually. On the
other hand, we can obtain a plausible age pattern of mortality by the TVF model,
which is considered another advantage of our model.

The LD model that composes the older age part of the TVF model is useful not
only for projection but also analyses of mortality. We propose a decomposition
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method for the modal age at death in Section 5.3. Since the LD model is originally
developed for mortality projections, the number of parameters were reduced in
terms of parsimony. This might be a restriction in terms of a flexible expression for
various types of mortality situation. However, this feature brings another possi-
bility to derive simple analytical formula. The decomposition that we propose is
easy to apply when the mortality curves are modeled by the LD model, and has
a clear interpretation composed by shifting, compression and other parts. Thus,
we can say that the model that we propose is not only useful for Japanese mor-
tality projection but also has various applicability, as we discuss in the following
chapters.

This dissertation is organized as follows.
Chapter 2 describes Japan’s mortality trends. We discuss the unique character-

istics of Japanese mortality with the causes of extended life expectancy.
Chapter 3 reviews the mortality projection models for Japan. First, we re-

view the general modeling for mortality that includes a discussion of the relational
model described above. Then, we review the official mortality projection for Japan
that is the starting point of this research. Lastly, we review the LC model and its
applications to Japan.

Chapter 4 describes the data and methods for the study of the new mortality
models. Following the data description, we describe the method, starting with the
mathematical formulations for decline–type and shift–type models, and discuss the
inverse function of log mortality and differential forms of mortality models. Then,
we discuss five models: two decline–type models, which are the Proportional Haz-
ard (PH) and LC models, and three shift–type models, which are the Horizontal
Shifting (HS), Horizontal Lee–Carter (HL), and LD models.

Chapter 5 describes the results of fitting of the five models, with special focus
on the comparison of the LC and LD models. First, we fit the five mortality mod-
els to Japanese female old age mortality and examine which model is appropriate
for the projection of Japanese mortality. Then, we compare the LC and LD models
from a statistical viewpoint to examine whether it is more plausible to understand
Japan’s recent old age mortality as decline or shift. In addition, we show an appli-
cation of the LD model that is a decomposition method for the modal age at death,
and provide decomposition analyses for Japan with the method.

Chapter 6 describes a mortality projection by the TVF model. We discuss in
detail the method for building an entire age model by applying the idea of tangent
vector fields.
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Chapter 2

Mortality Trends in Japan

2.1 Trends in Life Expectancy (e0)

Longevity extension is one of the greatest achievements that human beings
have made through history. Life expectancy (e0) in the earliest human history is
assumed to have been around 20–35 years, whereas that of developed countries in
1900 was 40–50 years. Nowadays, life expectancy has reached about 80 years in
developed countries, having risen remarkably over the last few centuries, with a
substantial part of the historical extension achieved recently.

Fig. 2.1 shows the historical trends in life expectancy in Sweden since the mid-
18th century. This figure indicates that life expectancy was between about 30 and
40 years in 1750, whereas it is around 80 years now. In particular, we observe an
enormous increase in life expectancy in the 20th century.

In Japan, the increase in life expectancy in the 20th century was also remarkable,
in lines with other developed countries. Fig. 2.2 shows the trends in life expectancy
in Japan since around 1920 by the official life tables. In 1921–1925, life expectancy
was 42.06 and 43.20 years for males and females, respectively. However, it was
79.44 and 85.90 years for males and females, respectively, in 2011, having doubled
in around 90 years.

Not only the amount but also the pace of the increase is noticeable for Japanese
life expectancy. Fig. 2.3 compares the life expectancies of several developed coun-
tries in the second half of the 20th century. The black lines show the trajectories
for Japan, whereas the colored ones show those for other countries. We observe
that Japanese life expectancy was at its lowest level among developed countries
in 1950. However, Japan rapidly caught up, overtook the other countries, and has
continued to increase life expectancy. Therefore, the slopes of Japanese lines are
much steeper than those for the other countries, exhibiting unique characteristics
for Japanese mortality.
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Fig. 2.1: Trends of Life Expectancy (Sweden)

2.2 The Causes of Increases in Life Expectancy

2.2.1 Epidemiologic Transition Theory

The remarkable expansion of life expectancy in the first half of the 20th century
was caused mainly by a fall in the death rates because of a decline in infectious
disease mortality. This historical change in the structure of diseases and mortality
is explained by the epidemiologic transition theory. Epidemiologic transition is a
characteristic shift in the disease pattern of a population as mortality falls during
the demographic transition. Through the transition, acute, infectious diseases are
reduced, while chronic, degenerative diseases increase in prominence.

The epidemiologic transition theory was first introduced by Omran (1971). He
argues that during the epidemiologic transition, a long-term shift occurs in mortal-
ity and disease patterns whereby pandemics of infection are gradually displaced
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Fig. 2.2: Trends of Life Expectancy (Japan)

by degenerative and man-made diseases as the chief form of morbidity and pri-
mary cause of death. He distinguishes three stages:

• Age of pestilence and famine

• Age of receding pandemics

• Age of degenerative or “man-made” diseases

This transition causes a shift in the distribution of deaths from younger to older
ages. However, there was no significant observed mortality improvement until
1970. This led to discussion about survival curves becoming more rectangularized
as life expectancy increases assuming that the length of life is limited, and the im-
provement of life expectancy would slow down and eventually stop (Fries 1980).

However, the increase of life expectancy continued after 1970 due to the im-
provement in old age mortality associated with the fall in death rates from de-
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Fig. 2.3: Trends of Life Expectancy (Japan versus Other Countries)
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generative diseases. Old-age mortality improvement also contributes to the recent
prolongation of life expectancy in Japan. Olshansky and Ault (1986) argues that
this change of mortality improvement patterns should be regarded as a different
stage from the third one by Omran (1971), and proposes the forth stage of the epi-
demiologic transition: the age of delayed degenerative diseases.

Fig. 2.4 shows the trends of lx curves for Japanese females after World War
II. We observe that mortality improvement is caused by rectangularization before
1970. However, the improvement after 1970 could be regarded as a “delay” of
death rather than rectangularization. This would imply there is an advantage in
introducing a shifting feature of mortality curves to express the recent Japanese
mortality.
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Fig. 2.4: Trends of lx curves (Females, Japan)
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2.2.2 Causes of Deaths

Fig. 2.5 shows the age standardized death rates for males by major causes
since 1950 in Japan. The death rates from tuberculosis decreased remarkably in
the1950s–1960s. After the late 1960s, a decline in death rates from cerebrovascular
diseases played a major role in increasing life expectancy. The death rates from
malignant neoplasms increased gradually up to 1990 and have been decreasing
since 1995.

Wilmoth (2011) argues that the longevity increase of the past two centuries is
fundamentally a social phenomenon in which humans have recognized the causes
of mortality, reacted by seeking means of averting or delaying such causes, and
in this way reduced mortality rates across the age range. This pattern of recogni-
tion/reaction/reduction is an apt characterization of the process of mortality decline
in various eras and in relation to various causes of death. Wilmoth calls it the
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Fig. 2.5: Age-Standardized Death Rates by Major Causes (Males, Japan)

“triple R” theory of mortality improvement.
According to this theory, trends of the mortality rates by causes could be ex-

plained as follows: after the improvement of death rates from cerebrovascular dis-
eases, malignant neoplasms were recognized as the next target, and people reacted
to prevent or delay associated deaths, thus, finally succeeding in reducing mortal-
ity rates.

Therefore, it seems reasonable to expect that the Japanese mortality decline will
continue into the future because our efforts should be similar to those in the past
even though our focus may evolve.
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Chapter 3

Mortality Projection Models for Japan

In this chapter, we review the mortality projection models for Japan. First, we
review the general modeling for mortality in Section 3.1. Then, we review the
official mortality projection for Japan in Section 3.2. The mortality model proposed
in this dissertation is used in the official population projection in 2012. This is one
of the reasons why we develop a new projections model. Lastly, Section 3.3 reviews
the Lee–Carter model and its applications to Japan.

3.1 Modeling Age Patterns of Mortality

The intensity of mortality rates varies strongly with age. Generally, we can ob-
serve mortality rates more precisely if we disaggregate the rates into a single year
of age. However, this produces more complexity because we must now observe
a larger number of rates. It is convenient to simplify the life table functions by
simple rules or a small number of tables, which are accomplished by modeling the
age patterns of mortality.

There are three approaches for modeling mortality rates: (1) mathematical rep-
resentations, (2) tabular representations, and (3) relational models. In this section,
we review the mortality models for these three types.

3.1.1 Mathematical Representations

In the mathematical representation approach, some known mathematical func-
tions are used to express the pattern of mortality rates as a function of age, also
known as “the laws of mortality”. Table 3.1 shows some examples of mathemati-
cal representations. Although De Moivre proposed a simple function in 1725, the
most well known is the Gompertz model that expresses an exponential function
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for the force of mortality Gompertz (1825). Makeham (1860) adds a constant term
to the Gompertz model. This model is used to obtain smoothed rates for old age
mortality in the official life tables of Japan.

In old ages, the slopes of the log μ(x) often taper and the exponential function
overestimates the mortality rates. Perks (1932) and Beard (1971) propose logistic
functions to improve fitness in old ages.

Table 3.1: Examples of Mathematical Representations

De Moivre (1725) μ(x) =
1

ω − x
Gompertz (1825) μ(x) = B · Cx

Makeham (1860) μ(x) = A + B · Cx

Thiele (1872) μ(x) = a1e−b1x + a2e−
1
2 b2(x−c)2

+ a3eb3x

Perks (1932) μ(x) =
A + B · cx

1 + D · cx

Weibull (1951) μ(x) = αxβ−1

Beard (1961) μ(x) =
B · eux

1 + D · eux

Siler (1979) μ(x) = a1e−b1t + a2 + a3eb3t

Heligman-Pollard (1980)
q(x)
p(x)

= A(x+B)C
+ De−E(log x−log F)2

+ GHx

Rogers and Little (1993) y(x) = a0 + m1(x) + m2(x) + m3(x) + m4(x)
where
m1(x) = a1 exp(−α1x)
m2(x) = a2 exp(−α2(x − μ2) − exp(−λ2(x − μ2)))
m3(x) = a3 exp(−α3(x − μ3) − exp(−λ3(x − μ3)))
m4(x) = a4 exp(α4x)

y(x) = q(x),
q(x)
p(x)

, μ(x)

Thatcher et al. (1998) compare the fitness of some models for old ages. They
select six models: Gompertz; logistic (Perks); Kannisto; Weibull; Heligman and
Pollard; and quadratic. They write the logistic model as

μ(x) = c +
aebx

1 + αebx
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and define the Kannisto model as

μ(x) =
aebx

1 + aebx

which is the simplest form of the logistic models noticed by Kannisto. The re-
searchers find that the logistic model is most successful among the models, while
the Kannisto model has a practical advantage in that it has only two parameters.

These models are considered in relation to old age mortality, whereas whole
age models have also been proposed, such as Siler (1979), Heligman and Pollard
(1980), and Rogers and Little (1994).

3.1.2 Tabular Representations

Tabular representations express arbitrary life tables by a set of tables that are
induced from some empirical ones. The most familiar are the Coale and Demeny
model life tables (Coale and Demeny 1983). This model has a parameter for mor-
tality level labeled from 1 to 25 that corresponds to the women’s e0, and a parame-
ter for mortality shape labeled “north”, “south”, “east,” and “west”. Fig. 3.1 shows
various levels of log mortality rates for the west model life tables. We observe that
only the level of mortality changes and the shape of the mortality curve is kept.
Fig. 3.2 shows the four shapes of the mortality rates in the model life tables for
level 10.

Fig. 3.1: Log Mortality Rates
(Coale and Demeny Model Life Ta-
bles)

Fig. 3.2: Log Mortality Rates
(Coale and Demeny Model Life Ta-
bles))

The model life tables have been used in the World Population Prospects. For
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countries lacking recent or reliable information on age patterns of mortality, sur-
vival ratios are obtained from model life tables (United Nations 2006).

3.1.3 Relational Models

The mathematical representations have an advantage in that they have only a
few parameters and simplify the life table functions, although the empirical life
table functions are not generally expressed by some known mathematical func-
tions. The tabular representations are free from this problem, whereas complexity
increases when we require various levels and/or shapes of mortality.

The relational models could be considered to have advantages for both math-
ematical and tabular representations. The relational model expresses an arbitrary
mortality pattern by a standard age pattern and the differences from the standard
age pattern with some parameters.

Brass (1971) introduces the first relational model, known as the Brass Logit Sys-
tem, in which we define the function Yx = log

(
lx

1−lx

)
, that is, logit transformation

of the lx, and express Ya
x , an arbitrary mortality pattern, as a linear combination

Ya
x = α + βYs

x. Here, Ys
x is the standard pattern, and α and β are the parameters for

level and shape, respectively.
When relational models are used for time series of mortality rates, including

mortality projections, the differences from the standard pattern mean changes of
mortality over time. In this case, the changes are expressed by the differential of
mortality by time. Therefore, the estimation of relational models for time series is
equivalent to modeling the differential of mortality. This is one of the important
concepts for building the LD model in the following discussions.

3.2 Review of the Official Mortality Projection for Japan

The National Institute of Population and Social Security Research (NIPSSR)
prepares the official population projections for Japan. To project the cohort change
of the population by deaths, future life tables are projected and set as assumptions
for the projection.

The NIPSSR has been releasing population projections almost every five years
since 1975. The methods for projecting mortality have changed over time and can
be divided into three groups indicated in Fig. 3.3 as the 1st, 2nd,and 3rd Genera-
tions.

We assemble the mortality projection for 1981 and before into the 1st generation
projection. The basic method used in the 1st generation involves projections by
reference to optimal life tables. As we saw in Chapter 2, Japanese life expectancy
in this period was the lowest of developed countries. Therefore, it was considered
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reasonable that the level of Japanese life expectancy would eventually approach
that of the higher life expectancy countries.

However, Japanese life expectancy was prolonged rapidly and attained almost
similar levels to those of other developed countries at about the end of the period
of the 1st generation. Therefore, it became impossible to use the optimal life ta-
ble method for projections for Japan. At the same time, the structure of deaths by
cause had been changing dramatically. In the 1970s, mortality by cerebrovascu-
lar diseases started to decline remarkably and this helped to raise life expectancy.
Thereafter, projection by cause of deaths was adopted as the method for the 2nd

generation projections.
As Wilmoth (1995) points out, the projection by cause of death tends to under-

estimate life expectancy. The 2nd generation projections by NIPSSR are not excep-
tions. We can observe from Fig. 3.3 that projected life expectancy is lower than
actual life expectancy.

Then, the relational models for the mortality for all causes of deaths are intro-
duced in the 3rd generation. They use the LC model with some modification to fit
Japanese mortality. We review these in Section 3.3.
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Fig. 3.3: Comparison of Life Expectancy in the Official Projections
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3.3 The Lee–Carter Model and its Application to Japan

There are various models for mortality projection. Among them, the Lee–Carter
(LC) model(Lee and Carter 1992) is now regarded as a standard method interna-
tionally. Tuljapurkar et al. (2000) applies this model to mortality in Group of 7
countries and demonstrates its effectiveness. Here, we briefly review a historical
background of this model.

The LC model has a standard age pattern of mortality and expresses deviations
from it with parameters, which is considered as a characteristic of the relational
models reviewed in Section 3.1. This method is based on the preceding works
for construction of model life tables. One of these studies is the UN model life
tables originated in United Nations (1956) and revised in United Nations (1982).
In United Nations (1982), the age patterns of mortality are stratified into clusters,
each cluster having a distinct average age pattern of mortality, and then a principal
components model is fitted to the deviations of each age pattern of mortality from
its own cluster average. Coale and Demeny model life tables (Coale and Demeny
1983) reviewed in Subsection 3.1.2 is constructed using a similar idea. They regress
nqx and log10(nqx) on e10 by least square method as:

nqx = Ax + Bxe10

log10(nqx) = A′
x + B′

xe10

The meanings of the parameters A′
x and B′

x are similar to the parameters ax and bx
used in the LC model.

This model is also based on the works of time-series modeling, in particular
the ARIMA (autoregressive integrated moving average) time-series model by Box
et al. (2013), first published in 1970. To project mortality rates with this model,
we need to project a parameter kt. Lee and Carter (1992) seek for an appropriate
ARIMA time-series model for the parameter kt and find that a random walk with
drift describes the parameter well, which shows that this forecasting is certainly
rooted in time-series modeling. This historical background confirms that the LC
model is built on a long tradition in demography and statistics.

Here, we provide the definition of the model in detail. Let ln(mx,t) be the natu-
ral logarithm of central death rates. Then, the LC model is expressed as follows.

ln(mx,t) = ax + ktbx + εx,t

where ax is the standard mortality age pattern and εx,t represents an error
term. To estimate the parameters bx and kt, we apply singular value decompo-
sition (SVD) to the matrix ln(mx,t) − ax:

ln(mx,t) − ax = ∑
i

uxiqivti (q1 ≥ q2 ≥ · · · )
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Then, we observe the term relating to q1 (the first singular value), and set

kt = q1vt1

bx = ux1

Here, the parameter kt is interpreted as an indicator for the level of mortality at
time t, and bx is the amount of mortality improvement at age x for the unit change
of kt. This interpretation means that the LC model expresses mortality improve-
ment as a decline of the mortality rate for each age x.

For mortality projections, first, the future values of kt are projected, and then,
the future mortality rates ln(mx,t) are projected using the projected kt values.

There are many studies that apply the LC model to Japanese mortality. Wilmoth
(1996) applies it to Japanese total mortality (Method I), and compares the projection
by forcing its future trend to match the projected Swedish trend (Method II) and
the projections by cause-specific mortality (Methods III and IV).

Komatsu (2002) studies and develops the projection procedure by applying the
LC method for the past Japanese official population projection in 2002 (NIPSSR
2002), known as the “Komatsu procedure.” This is the first mortality model in
the 3rd generation for the official projection. Moreover, Ogawa et al. (2002), Nanjo
and Yoshinaga (2003), Kogure and Hasegawa (2005), Ozeki (2005), and Oikawa
(2006) study the application of the LC model to Japanese mortality. Recently, Igawa
(2013) studies the residual structure involved in the application of the LC model
to Japanese death rates, and proposes the LC–Vector Autoregressive (LC–VAR)
model, which is an extended LC model. Moreover, Li et al. (2013) propose an ex-
tension of the LC model named as the LC method extended with rotation (LC ER).
We discuss their model in Chapter 6.

The Komatsu procedure, which is used in the past projection in 2002, applies a
LC model that is slightly modified to suit Japanese mortality projections. The main
differences are: (1) ax is the average of the most recent two years in the Komatsu
procedure, which is the average of the whole term in the original LC model and
(2) kt is projected by non-linear curve fitting in the Komatsu procedure1, not by
time-series analysis as in the original LC model.

However, comparing the projected life expectancy in the 2002 projection to the
actual one in Fig. 3.3, we observe that the projected level of e0 is less than the
actual level. Detailed observation shows that mortality rates for older ages tend to
be higher than the actual mortality rates.

In Lee and Miller (2001), the performance of the LC model in mortality pro-
jections is evaluated using data in the US, Canada, Sweden, France, and Japan.
The study shows that the projected life expectancy using the LC model tends to
be lower, especially if the projected period is lengthening. In addition, the study

1The fitted function is the average of the exponential and the logarithm function, which is sup-
posed to fit well with the recent trend in Japanese mortality.
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points out that this tendency is in some way related to the changing age pattern of
decline.

Wilmoth (1997) and Horiuchi and Wilmoth (1995) argue that the recent mortal-
ity improvement in old age for developed countries could be recognized as ”aging
of mortality decline,” which implies an increase in the age of the most pronounced
decline observed in several countries including Japan. If aging of mortality decline
is observed, then the LC model performs poorly because the distribution of mor-
tality improvement rates moves to an older direction, although it is assumed to be
constant in the LC model.

On this point, we saw in Section 2.2 that we can regard the recent mortality im-
provement in Japan as a “delay” of death rather than rectangularization, which is
related to a shifting of the mortality curve in the direction of older people. There-
fore, seeking a model that could express an age-shifting structure would improve
mortality projections.

As a mortality model with an age shifting structure, Bongaarts (2005) proposes
the “shifting logistic model,” noticing that the slope parameter in the three param-
eter logistic curve, which is fitted to the mortality data in each country, is almost
constant over time.

Ishii (2006) studies the LC model with an age shifting structure, and states that
the model has an advantage in fitting with Japanese old age mortality. The mortal-
ity projection model developed in Ishii (2006) is used in the 2006 official projection,
which is a LC model with an age-shifting structure applied with the shift amount
in the shifting logistic model.

Following these studies, we propose a new mortality projection model in this
dissertation that is a more sophisticated version of the model in Ishii (2006).
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Chapter 4

Data and Methods

In this Chapter, we describe the data and methods for the study of the new
mortality models.

4.1 Data

For the purpose of the mortality study in this dissertation, we use mortality
data for Japan from the Japanese Mortality Database (JMD).

We use

mx,t, x = xs(= 0), · · · , xe(= 150) and t = ts(= 1970), · · · , te(= 2010)

where t is a calendar year. We extrapolate the mortality rates above age 110 years
by fitting the two parameter logistic model

mx,t =
αt exp(βtx)

1 + αt exp(βtx)

which is the same method used in the JMD and HMD (Human Mortality Database).
Note that mx,t in the discrete form here represents the central death rate of age

[x, x + 1) in a calendar year t whose notations are different from the continuous
form in which x and t represent exact age and time, respectively. Thus, mx,t in the
discrete form is considered to be an approximation of μx+0.5,t+0.5 in the continu-
ous form. We use μx,t in theoretical discussion, whereas mx,t is used in numerical
computations.
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4.2 Methods

4.2.1 Formulation of Decline–type and Shift–type Models

In Section 3.3, we show that the Lee-Carter model, which expresses mortality
improvement as a decline of mortality rates, has some disadvantages for modeling
Japanese old age mortality, and that a model that could express an age-shifting
structure would improve the projections.

Here, we reconsider and compare the performance of decline–type and shift–
type models for the purpose of modeling Japanese adult mortality improvements.
To compare which model is better quantitatively, we need mathematical formula-
tions for both models.

To regard the mortality improvement as a decline means that the value of log
mortality declines over time for a fixed age. In this case, the mortality improve-
ment rates for an age decrease, or equivalently, the differential of the mortality im-
provement rates by time is negative. On the other hand, the delay of the age that
attains to a fixed value of the log mortality is considered as a shift of the mortality
curve. In this case, the age that corresponds to a fixed value of the log mortality
increases, or equivalently, the differential of the age by time is positive.

Actually, the function that expresses the age that attains to a fixed value of the
log mortality is the inverse function of the log mortality rates. Therefore, consid-
ering a shift-type model for the log mortality rates is identical to considering a
decline-type model for the inverse function of the log mortality rates (Figs. 4.1 and
4.2).

Fig. 4.1: Log Mortality Rates (Fe-
male Japan)
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Fig. 4.2: Inverse Log Mortality
Rates (Female Japan))
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Based on these observations, we can state the mathematical formulations putting
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special emphasis on the log mortality and its inverse functions, and the differential
of them by time.

Let X = [0, +∞) be the space of age and T = (−∞, +∞) be the space of time.
In the following discussion for modeling mortality, we work on μx,t, the hazard
function for exact age x ∈ X at time t ∈ T.

The log hazard function of mortality is expressed by y = λx,t = log μx,t, where
y ∈ Y = (−∞, +∞) is the value of the function. Then, the set S = {(x, t, y)|y =
λx,t} determines a surface in R3, called the log mortality surface. This is a conven-
tional representation of the log mortality surface. In this representation, y = λx,t is
considered as the height from the X–T plane in R3.

Here, we consider another representation of the log mortality surface under a
set of assumptions.

We assume that λx,t is a smooth continuous function with respect to x and t
defined on X0 × T0 = [0, ω]× [t0, t1] ⊂ X × T, where ω < +∞ is a finite maximum
age for mortality models.

For the purpose of modeling adult mortality, we further assume that λx,t ex-
hibits a strictly monotonic increase with respect to x for each t and x > x0(t).
Here, x0(t) represents the lower bound of x, above which λx,t exhibits a strictly
monotonic increase for each t. Then, for each t, the function λt(x) defined by

λt : X̃t → Y, λt(x) =
def

λx,t

is an injective (one to one) function of x, where X̃t = [x0(t), ω]. Let Ỹt = λt(X̃t),
then λt(x) : X̃t → Ỹt has an inverse function νt(y) : Ỹt → X̃t defined on Ỹt for each
t.

Let us define Y0 as follows:

Y0 =
def

[y0, y1], where y0 = sup
t∈T0

min Ỹt, y1 = inf
t∈T0

max Ỹt

Then, we can define νy,t : Y0 × T0 → X0 by

νy,t =
def

νt(y)

νy,t gives the age x at which the value of the log hazard function is equivalent to a
value y at time t.

Moreover, we define the following two differential functions by time t: (1) ρx,t:
the mortality improvement rate and (2) τy,t: the force of age increase.

ρx,t =
def

−∂λx,t

∂t
= −∂ log μx,t

∂t

τy,t =
def

∂νy,t

∂t
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Fig. 4.3 shows a stylized example of the log mortality surface and the two
differential functions ρx,t and τy,t. The blue lines show the log mortality surface
in the usual representation, that is, the height from the X–T plane which is deter-
mined by λx,t. The black point on the log mortality surface is (x, t, y) = (1, 2,−1.5),
which can be recognized also as the height from the X–T plane of −1.5 when
(x, t) = (1, 2). If we travel on the surface with x fixed, the height from the X–T
plane will decrease to around −1.86 when t = 3, which is shown by the brown
arrow. The difference between the two heights corresponds to −ρx,t.

On the other hand, the log mortality surface is also represented by the height
from the Y–T plane, which is determined by νy,t. From this viewpoint, the black
point recognizes that the height from the Y–T plane is 1 when (y, t) = (−1.5, 2).
The orange lines on the surface show the contour with y fixed, so we proceed along
these lines when traveling on the surface with y fixed. If we start again from the
black point but this time keep y fixed, the height from the Y–T plane will be 3 when
t = 3, which is shown in the purple arrow in Fig. 4.3. The difference between the
two heights corresponds to τx,t.
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Fig. 4.3: Log Mortality Surface and Two Differential Functions
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4.3 Descriptions of Decline-Type and Shift-Type Mod-
els

In this section, we describe the decline-type and shift-type adult mortality mod-
els. First, we describe the definitions of the proportional hazard model and the LC
model, which are considered decline-type models. Then, we introduce the horizon-
tal shifting model and the horizontal LC model, which are considered shift-type
models and correspond to the two decline-type models. In this chapter, we pro-
pose a new shift type of adult mortality model that can favorably express recent
Japanese old age mortality.

4.3.1 Decline-Type Mortality Models

The Proportional Hazard (PH) Model

The PH model is a simple model that expresses mortality improvement as de-
cline. In the PH model, λx,t, the log hazard rate function at time t is expressed
by

λx,t = log μx,t = ax + kt

where ax represents the baseline logged hazard rates. We drop the error term here-
after.

In the PH model, ρx,t, which is the rate of mortality improvement, is expressed
as follows.

ρx,t = −dkt

dt
= −k′t

Therefore, it is constant with respect to age. This is the differential form for this
model.

The Lee–Carter (LC) Model

The LC model is expressed by the following formula (Lee and Carter 1992) as
shown in Chapter3.

λx,t = log μx,t = ax + ktbx

where ax is a standard age pattern of mortality.
Taking a partial derivative by time t, we obtain the following relationship.

ρx,t = −dkt

dt
bx = −k′tbx (4.1)

Equation 4.1 shows that the age distribution of ρx,t is constant in the LC model. If
we further assume that kt is linear over time, then ρx,t is constant over time. There-
fore, the LC model works well when the age specific rate of mortality improvement
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is considered to be constant over time, that is, the mortality improvement is con-
sidered as a decline.

4.3.2 Shift-Type Mortality Models

The Horizontal Shifting (HS) Model

Next, we discuss models that express mortality improvement through a shift.
The simplest model for shifting would be one whereby the entire log hazard curve
moves to the right-hand side. We can restate this model using the inverse function
of log hazard mortality νy,t, that is, the proportional hazard model for νy,t.

This HS model is expressed formally as follows:

νy,t = ay + kt

In the differential form,

τy,t =
dkt

dt
= k′t

Parameter estimation for the HS model is completely identical to the PH mod-
els, except for adapting these procedures to νy,t instead of λx,t.

The Horizontal Lee–Carter (HL) Model

As we consider the LC model, which admits a different amount of decline by
age and provides a more general framework compared to the PH model, we can
also consider the LC model for νy,t, which in turn supports a more general shifting
feature. We call this the HL model.

νy,t = ay + ktby

In the differential form,

τy,t =
dkt

dt
by = −k′tby

4.3.3 The Linear Difference (LD) Model

First, we show the following property of τy,t for the two parameter logistic
model. It is a theoretical foundation of the LD model.

Proposition 1. For the two parameter logistic model

y = λx,t = log
αt exp(βtx)

1 + αt exp(βtx)
= log αt + βtx − log(1 + αt exp(βtx))

τy,t is a linear function of x for each t, that is,

τy,t = f ′t + g′tx
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Proof.

ey =
αt exp(βtx)

1 + αt exp(βtx)

⇔αt exp(βtx) =
ey

1 − ey

By differentiating both sides by t with y fixed, we obtain

α′t exp(βtx) + αt

(
β′

tx + βt
∂x
∂t

)
= 0

⇔∂x
∂t

= − α′t
αtβt

− β′
t

βt
x

Since the actual old mortality rates in the HMD and JMD are estimated using
the two parameter logistic model, τy,t for the old age that we use is expected to
satisfy this relationship.

Let us define the LD model satisfying this property, that is, τy,t is a linear func-
tion of x for each t. Then, we can describe the condition for the model in the
continuous form as follows.

τy,t = f ′t + g′tx

This is the differential form. By integrating both sides with t, we obtain

νy,t = ft + gtx + ay

where ay denotes a standard pattern of inverse log hazard rates.
Fig. 4.4 shows the stylized example of the LD model. The colored horizontal

arrows in the upper half show the extent of the shift of the mortality curve during
a short period that corresponds to τy,t. The vertical arrows at the bottom have the
same lengths as those on the upper side with the same color whose directions are
rotated 90 degrees counter-clockwise. The LD model requires that the extent of the
shift is a linear function of age, which means the end point of the arrows form a
straight line, as shown by the dotted line.

The parameter g′t refers to the slope of the dotted line, which indicates that g′t
is negative in this example. Therefore, gt declines during this short period. If the
mortality curve shifts completely parallel, then the slope of the dotted line becomes
zero, and thus, g′t = 0 and gt stay constant. Therefore, we interpret the parameters
g′t and gt as

• compression ⇐⇒ g′t < 0 and gt: decline

• parallel ⇐⇒ g′t = 0 and gt: constant
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Fig. 4.4: Stylized example of the LD model
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• decompression ⇐⇒ g′t > 0 and gt: increase

The absolute value of gt means the slope of the difference of age increases at
time t compared to the baseline mortality that is considered close to the midpoint
of the base period t0. Therefore, the negative sign of gt indicates the mortality
curve at time t is more compressed compared to the baseline mortality for t > t0
and less compressed for t < t0.

Here, we introduce another variable, St, as a location of the mortality curve
instead of f ′t or ft. ft is the intercept of the line formed by the arrows in Fig. 4.4. It
depends on the value of the slope and is not easy to interpret. Here, we define St
as the age that the mortality rate equals 0.5 at time t. In the Kannisto model,

μ(x, t) =
α(t)eβ(t)x

1 + α(t)eβ(t)x

the age x that satisfies μ(x, t) = 0.5 is x = − log α(t)
β(t) , which is the inflection point

of the logistic curve and is considered preferable for measuring the location of
the mortality curve, excluding the effects of the slope of the mortality. Actually,
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Fig. 4.5: Stylized example of the Effect of Change in St and gt
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the shifting logistic model proposed by Bongaarts (2005) measures the extent of
the shifting between t0 and t by − log(α(t)/α(t0))

β , assuming β(t) is constant. This is
equivalent to the difference of S(t) in our notation and also supports the validity
of this parameter as a location of the curve.

In theory, we can convert from St to ft using the value of gt with the following
formula:

ft = (1 − gt)St − St0 +
∫ t

t0

gsS′
sds

This formula is derived from St = St0 + ft + gt ft −
∫ t

t0
gsS′

sds, which, in turn, is
obtained from the integration of S′

t = f ′t + g′tSt, which is the definition of the LD
model τy,t = f ′t + g′tx.

The above formula is approximated by the formula ft ≈ (1 − gt)St − St0 when
the difference between t0 and t is not large. For Japanese females, St ≈ 100, S′

t ≈
0.1, and |gt| < 0.25. Then, if t − t0 = 50, we obtain

∫ t
t0
|gsS′

s|ds < 1.25 � St.
Therefore, this is a fairly good approximation for ordinary mortality projections
and can avoid the process of numerical integrations .
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For numerical computation in the discrete form, we can use the following re-
cursive formula that is derived from S′

t = f ′t + g′tSt

ft2 ≈ ft1 + (St2 − St1) − (gt2 − gt1)
St2 + St1

2

Fig. 4.5 shows a stylized example of the effect of change in St and gt. Assuming
that the mortality curve at a base year is shown as the black line, an increase of
St with gt fixed changes the curve into that shown as the red line. Therefore, we
can recognize the mortality improvement by the increase of St as the shifting of
the mortality curve. On the other hand, a decline of gt with St fixed changes the
curve into that shown as the blue line, which exhibits some compression features
of mortality during the improvement.

In the following chapters, we fit these models to actual Japanese old age female
mortality for Japanese females and compare them.

4.4 Methods for Parameter Estimations

Next, we discuss the computational methods for parameter estimation and
some variants of the LD model.

First, we need to estimate the inverse function of λx,t. Section 4.1 noted that we
use mx,t in numerical computations, and we estimate νy,t as the inverse function of
log(mx,t) for x ≥ 25. To estimate the inverse function, we estimate the age x that
corresponds to a value of log mortality y using linear interpolation for

y = −10.00,−9.99,−9.98, · · · ,−0.02,−0.01

for each t when the value of log mortality is available. Then we set the domain of y
as the maximum interval that the values of log mortality are available throughout
the years from ts(= 1970) to te(= 2010). For Japanese females, the domain is
[ys, ye] = [−7.15,−0.01].

In addition, we need the differential functions of λx,t and νy,t. We use the fol-
lowing approximations for the two differential functions in terms of statistical sta-
bility.

ρx,t ≈ −λx,t+2 − λx,t−2

4

τy,t ≈
νy,t+2 − νy,t−2

4
Therefore, we can compute ρx,t and τy,t only for t = 1972, · · · , 2008.

For the two decline models, we need baseline log mortality ax, whereas we
need baseline inverse log mortality ay for the three shift models. For comparisons
of the models in Chapter 5, we use the average from 1970 to 2010 as the baselines,



39

which represents the same method used in the original LC model. However, it
is favorable to use a recent pattern for the purpose of the mortality projections.
Therefore, we use the average from 2006 to 2010 in the application to mortality
projections in Chapter 6.

Then, the parameters kt in the PH and HS models are estimated using the least
square method. For the LC and HL models, the parameters kt and bx or by are
usually estimated by singular value decomposition, which is essentially equivalent
to the lease square method. Therefore, we also use the least square method for
estimation of the LD model. We can rewrite the normal form of the LD model as
νy,t − ay = gtx + ft, which means that the difference of the inverse log mortality
and the baseline is a linear function of x. Then,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

νy0,ts − ay0

νy0+1,ts − ay0+1
...

νye,ts − aye

νy0,ts+1 − ay0

νy0+1,ts+1 − ay0+1
...

νye,ts+1 − aye
...

νy0,te − ay0

νy0+1,te − ay0+1
...

νye,te − aye

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

νy0,ts 1
νy0+1,ts 1

...
...

νye,ts 1
νy0,ts+1 1

νy0+1,ts+1 1
...

...
νye,ts+1 1

. . .
νy0,te 1

νy0+1,te 1
...

...
νye,te 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gts

fts

gts+1
fts+1

...
gte

fte

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ε

(4.2)
Rewriting this formula as Y = Xβ + ε, we can estimate β̂ as

β̂ = (X ′X)−1X ′Y

by the least square method. Thus, we can estimate the parameters ft and gt. We
call this the naive LD method. When we compare the performances of the models
in Chapter 5, we use the naive LD method.

For the purpose of mortality projection, we use a slightly modified version of
the LD method. The first modification is the range of the data. In Chapter 5, we
show the LD model’s performance is better than that of the LC model for ages
over about 75 years old. Following this observation, we propose a blended mor-
tality model that has the LC property in youth and the LD property in older age in
Chapter 6. To obtain better performance for the LD part of the model, we restrict
the range of the data only for older ages. We compute ysm, which is the minimum
value of log mortality at 60 years of age during the period, and yem, which is the
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maximum value at 120 years of age. Then, we set the domain of νy,t as [ysm, yem]
instead of [ys, ye]. For Japanese females, [ysm, yem] = [−5.69,−0.06].

However, we can only estimate the model that the log mortality rates lie in
[ysm, yem] by this method, and we need the estimates outside [ysm, yem]. We can
obtain them if we extrapolate νy,t assuming that the relationship νy,t = ft + gtx +
ay holds outside of [ysm, yem] in theory. However, this relationship does not hold
precisely. Therefore, we repeat the process of parameter estimation by plugging
the estimated νy,t in the left-hand side of Equation (4.2) into νy,t in the right-hand
side until it reaches convergence. This is the second modification. We call this the
modified LD method.
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Chapter 5

Linear Difference Model

In this chapter, we fit the five mortality models to Japanese female old age mor-
tality and examine which model is appropriate for the projection of Japanese mor-
tality.

5.1 Fitting the Mortality Models

5.1.1 Fitting Decline-Type Mortality Models

The Proportional Hazard Model (PH)

First, we fit the PH model to the actual mortality rates. Here, we set ax as the
average log hazard rate for the entire period.

Fig. 5.1 shows the actual log hazard rates (λx,t) and the estimated rates with the
PH model. We observe that the estimated rates do not exhibit good fit, particularly
in the older age groups. Fig. 5.2 shows the difference between the actual and
estimated rates. From this graph, we see that the actual values are higher than
those of the model for the age range of about 60–80 years in 1970, whereas these
values are decreasing over time. However, the opposite movement is observed for
ages over 90 years. This is caused by a limitation of the PH model, whereby the
rate of mortality improvement is constant with respect to age.
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Fig. 5.1: Mortality Rates (Actual and Model, PH)
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The Lee–Carter Model (LC)

Fig. 5.3 shows the actual log hazard rates (λx,t) and the estimated rates by
the LC model. This figure illustrates that the fit with the actual values is fairly
improved by using the LC model because of its flexibility, which allows different
mortality improvement rates by age.

However, we can observe from Fig. 5.4 that the difference between the ac-
tual and estimated rates exhibits a trend, whereby the actual values are higher in
younger age groups and lower in older age groups near the beginning and the end
of the entire period; whereas the opposite is true around the middle of the period.

The reason why this trend for the error components is observed is ascribed to
the change in the age specific mortality improvement rates over time. Therefore,
we examine the ρx,t functions for these two models next.
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Fig. 5.3: Mortality Rates (Actual and Model, LC)
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Figs. 5.5 and 5.6 show the ρx,t functions for the actual and estimated values
for each of the two models. The blue lines show the ρx,t by the actual mortality
rates. We observe that most of the mortality improvement rates have mountain-
shaped curves with peaks. In contrast, the mortality improvement rates under the
PH model, expressed by the pink line, are horizontal. This difference in shape is
viewed as a cause of the estimates by the PH model being not well fitted, as we
observed in Fig. 5.2.

The peak of the mortality improvement rate by the LC model, indicated by the
green curves, is like that of the actual value and this improves the fit, as we have
seen in Fig. 5.4. However, the age distribution of the rates is fixed in the LC model,
whereas it changes dynamically in the actual values.

Thus, the actual age distribution of mortality improvement rates changes over
time and is not constant as in the LC model, thus, causing the propensity for error
in the LC model, as observed in Fig. 5.4. We could view this result as a limitation
when the mortality improvement is considered as a decline.
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Fig. 5.5: Comparison of Mortality Improvement Rates (1975–1990)
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Fig. 5.6: Comparison of Mortality Improvement Rates (1991–2006)
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5.1.2 Fitting Shift-Type Mortality Models

The Horizontal Shifting (HS) Model

Next, we fit the shift models to actual mortality. First, we consider the HS
model.

Parameter estimation for the HS model is completely identical to the PH mod-
els, except for adapting these procedures to νy,t instead of λx,t. Fig. 5.7 shows the
actual inverse mortality rates (νy,t) and the estimated rates by the HS model, and
Fig. 5.8 is the difference between the actual and the estimated rates.

We see that the performance of fit by the HS model is much better than that
by the PH model, even though both have the same structure. For 1970, which is
indicated by the light blue line, the actual values are higher in younger ages and
lower in older ages, although the errors are not as high for other years.
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Fig. 5.7: Inverse Mortality Rates (Actual and Model, HS)
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The Horizontal Lee-Carter Model (HL)

Next, we fit the HL model.
Fig. 5.9 shows actual inverse mortality rates (νy,t) and the estimated rates un-

der the HS model, and Fig. 5.10 shows the difference between the actual and the
estimated rates. We see that the HL model seems to be improved compared to the
HS model. However, we also observe that the improvement between the shift pair
is not as large as the decline pair. This means that relaxing the limitation, in which
the force of age increase in the HS model is restricted to the constant function, does
not cause significant improvement of fit in the HL model. This could be explained
by the difference in the shape of τy,t, the force of age increase.
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Fig. 5.9: Inverse Mortality Rates (Actual and Model, HL)
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Fig. 5.10: Difference of Inverse Mortality Rates (Actual and Model, HL)
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The Linear Difference Model (LD)

Lastly, we fit the LD model. Before observing the results for fit, we note esti-
mated parameters of the LD model in Fig. 5.11.

Fig. 5.11: Estimated Parameters (LD)
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The upper box shows the estimated gt. We observe that gt decreased between
1970 and 1980, therefore g′t < 0 in this period. We can interpret this as there having
been compression of mortality during this period. Between 1980 and 2000, gt starts
near zero, decreases slightly until 1990, and then returns to around 0 in 2000. We
can see that gt remains almost stationary, therefore, g′t is around zero. This implies
that there was little compression of the mortality curve and the shifting is strongly
close to parallel in this period. After 2000, gt decreases slightly.

The middle box shows the trends of ft. As discussed in Chapter 4, the level of ft
is affected by gt and this is not easy to interpret. Therefore, we see the parameter St
in the bottom box instead. We can observe that St increases steadily in this period,
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which reveals the strong shifting feature of the old mortality in Japan.
Fig. 5.12 is the actual inverse mortality rates and the estimated rates by the LD

model, and Fig. 5.13 is the difference between the actual and the estimated rates.
From these figures, we observe that the LD model fits well with the actual values.
Even though the performance seems to be lower than that of the HL model, the
LD model has an advantage that it needs fewer parameters than the HL model.
Because the domain of the log mortality [ys, ye] = [−7.15,−0.01] for Japanese fe-
males, we have 715 levels of the log mortality. Also we have 41 points of time from
1970 to 2010. Therefore, the number of the parameters is 1,471 for the HL, which
is the sum of 715 (ay), 715 (by) and 41(kt), whereas there are 797 parameters for the
LD, which is the sum of 715 (ay), 41 (gt) and 41( ft).
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Fig. 5.12: Inverse Mortality Rates (Actual and Model, LD)
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Fig. 5.13: Difference of Inverse Mortality Rates (Actual and Model, LD)
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Figs. 5.14 and 5.15 show the relationship between τy,t and x (age) for the actual
mortality, HS, HL, and LD models. τy,t for the LD model are shown by the red
lines. We can see that the force of age increase for the HS model (pink lines) is
almost horizontal, and that the distribution of τy,t for the HL model (green lines)
is similar. According to these restrictions, the two models sometimes exhibit big
differences from the actual rates, for example, in 1996. Compared to these models,
we observe that the LD model performs somewhat better.

In these figures, we observe that the actual mortality rates indicated with the
blue lines are well modeled by a linear function of age. They are completely linear
in old age according to the proposition shown at the beginning of this subsection.
Again, the force of age increase for the HS model (pink lines) is completely hori-
zontal and does not show good fit to the actual rates. τy,t for the HL model (green
lines) tend to decrease in old ages, whereas that for the actual rates exhibits both in-
crease and decrease. This is caused by the restriction that the distribution is fixed.
From these observations, we can conclude that the linear assumption for τy,t in the
LD model works better.
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Fig. 5.14: Comparison of the Force of Age Increase by Age (1975–1990)
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Fig. 5.15: Comparison of the Force of Age Increase by Age (1991–2006)
Comparison of the Force of Age Increase by Age
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The definition of the LD model

τy,t = f ′t + g′tx

is equivalent to the following differential equation:

x′(t) = f ′(t) + g′(t)x(t)

This is a linear ordinary differential equation of order 1 and has a closed-form
solution as follows.

x(t) = exp
(∫ t

0
g′(u)du

) (
x(0) +

∫ t

0
f ′(u) exp

(
−

∫ u

0
g′(v)dv

)
du

)
(5.1)

We can verify this formula by differentiating x(t).

x′(t) =
d
dt

{
exp

(∫ t

0
g′(u)du

) (
x(0) +

∫ t

0
f ′(u) exp

(
−

∫ u

0
g′(v)dv

)
du

)}

= exp
(∫ t

0
g′(u)du

)
g′(t)x(0)

+ exp
(∫ t

0
g′(u)du

)
g′(t)

∫ t

0
f ′(u) exp

(
−

∫ u

0
g′(v)dv

)
du

+ exp
(∫ t

0
g′(u)du

)
f ′(t) exp

(
−

∫ t

0
g′(v)dv

)

= g′(t)
{

exp
(∫ t

0
g′(u)du

) (
x(0) +

∫ t

0
f ′(u) exp

(
−

∫ u

0
g′(v)dv

)
du

)}
+ f ′(t)
= f ′(t) + g′(t)x(t)

Here, we show some examples using this formula and observe the effects of
the parameters, in particular g(t). When f ′(t) and g′(t) are constant, substituting
f ′(t) = f ′0 and g′(t) = g′0 in Equation 5.1, we obtain

x(t) = exp(g′0t)x(0) − f ′0
g′0

exp(g′0t) +
f ′0
g′0

when g′0 �= 0.
To show the numerical examples, we assume the following Gompertz model as

a baseline mortality.
λx,0 = 0.13x − 13

Fig. 5.16 shows the log mortality for t = 0, 10, · · · , 50 with f ′0 = 0.2 and g′0 =
−0.002. In this example, g′0 is negative and g(t) = −0.002t decreases linearly,
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which indicates the mortality curve at time t becomes more compressed compared
to the baseline mortality. Fig. 5.16 confirms this.

Fig. 5.17 shows the log mortality when we set f ′0 = −0.05 and g′0 = 0.0015.
Then, g(t) = 0.0015t increases linearly and the log mortality becomes less com-
pressed over time, as shown in Figs. 5.17.
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Fig. 5.16: Example of the LD model (g′0 < 0)
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Fig. 5.17: Example of the LD model (g′0 > 0)

70 75 80 85 90 95

−
4.

0
−

3.
5

−
3.

0
−

2.
5

−
2.

0
−

1.
5

Example of the LD model (g’0 > 0)

Age

lo
g 

m
or

ta
lit

y

t =  0
t =  10
t =  20
t =  30
t =  40
t =  50



61

5.2 Comparison of the Models from a Statistical View-
point

In this section, we compare the LC and LD models from a statistical viewpoint
to examine whether it is more plausible to understand Japan’s recent old age mor-
tality as decline or shift. Our approach is as follows.

1. The true mortality rates are assumed to be those estimated by models.

2. The number of deaths follows a binomial distribution B(Nx,t, px,t), where Nx,t
is the size of the population and px,t is the death rate for age x and calendar
year t.

3. Nx,t is approximated by the closest integer to Ex,t (exposure to risk).

Here, we take 0.01% as a critical value to construct the confidence intervals (CI),
since Nx,t would present too large a value for the Japanese female population.

In Figs. 5.18, 5.19, and 5.20, the blue lines show the difference of log actual
mortality rates against the model rates by the LC. The pink and green lines show
the difference of upper and lower CIs against the model values, respectively. We
observe that actual rates between ages 80 to 100 years tend to move out of the
CIs. Actual values are placed over the upper CIs between 1980 and 1995, whereas
actual values are placed under the lower CIs before 1975 or after 2000.

Figs. 5.21, 5.22, and 5.23 show the same for the LD model, which differs from
the LC model in that the actual values between ages 60 to 80 years tend to move
out of the CIs. Actual values are placed over the upper CIs before 1985, whereas
actual values are placed under the lower CIs after 1995.
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Fig. 5.18: Difference of Log Actual Rate and CI against Model (LC)(1970–1984,
critical value = 0.01%)
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Fig. 5.19: Difference of Log Actual Rate and CI against Model (LC)(1985–1999,
critical value = 0.01%)
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Fig. 5.20: Difference of Log Actual Rate and CI against Model (LC)(2000–2010,
critical value = 0.01%)
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Fig. 5.21: Difference of Log Actual Rate and CI against Model (LD)(1970–1984,
critical value = 0.01%)
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Fig. 5.22: Difference of Log Actual Rate and CI against Model (LD)(1985–1999,
critical value = 0.01%)
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Fig. 5.23: Difference of Log Actual Rate and CI against Model (LD)(2000–2010,
critical value = 0.01%)
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Fig. 5.24 shows the proportion of the log actual mortality rates that are outside
of the CIs for each age in the LC and LD models. This indicates that, even though
the proportions of LD are higher under about 75 years of age, the performance of
LD is considered better than that of LC over 75 years of age. This result suggests
that shift is more strongly supported as a factor behind the recent old age mortality
improvement in Japan than decline.

Moreover, this result also acts as a guide for a better construction of a mortality
projection model. The shift–type models are applicable only for adult mortality and
juvenile mortality should be modeled by the decline–type models. The results show
that old age mortality is better modeled by the LD, and middle age mortality by
the LC. Therefore, it would work quite well if we could construct a blended model
that has the LC property in youth and the LD property in older age. In Chapter 6,
we propose a model for projection based on this observation by applying the idea
of tangent vector fields on the log mortality surface.
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Fig. 5.24: Proportion of Log Actual Values That Are Outside of CI (critical value =
0.01%)
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5.3 Application to Analysis of the Trends of Modal
Age at Death

Recently, the modal age at death has received more attention as an indicator of
longevity (Horiuchi et al. 2013). Although many studies discuss the modal age
at death, there are few articles that examine decomposition analyses of the change
of the modal age in terms of the shifting and/or the compression of the mortality
curve. In this section, we propose a new decomposition method for the modal
age at death using the LD model, and provide decomposition analyses with the
method.

5.3.1 Decomposition of the Change in Modal Age using the LD
Model

First, we describe the methods for estimating Mt, the modal age at death. It
is often difficult to estimate Mt from the raw dx functions in the life tables be-
cause of the fluctuations. Therefore, smoothing methods and/or parametric mod-
elings are usually used in estimation. Canudas-Romo (2008) uses the approxi-
mation by quadratic function originally proposed by Kannisto. Horiuchi et al.
(2013) use a nonparametric smoothing method based on P-splines. Here, we use
the minimum-R3 moving averages with nine terms by Greville (1981) for smooth-
ing the mx functions that are used in the official life tables for Japan, and estimate
Mt using quadratic approximations used in Canudas-Romo (2008).

In the LD model, we derive the following decomposition of the trends of Mt.

d
dt

Mt = f ′t + g′t

⎛
⎜⎜⎝Mt − 1

μx,t −
∂2

∂x2 λx,t
∂

∂x λx,t

⎞
⎟⎟⎠ = S′

t + g′t(Mt − St) − g′tDt

where Dt = 1

μx,t−
∂2

∂x2 λx,t
∂

∂x λx,t

.

This formula is interpreted as follows. S′
t represents the amount of shifting,

g′t(Mt − St) is the effect of compression at the modal age, and −g′tDt represents
the gap of the modal age at t + dt and the age at t + dt that the value of λx,t of the
modal age at t takes. Moreover, the formula d

dt Mt = f ′t + g′t(Mt − Dt) could be
understood that the change of the modal age at death is equal to the force of age
increase for the age Mt − Dt.

To derive this decomposition, we first notice a relationship that holds on Mt.
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Proposition 2. When x = Mt, then

∂

∂t
μx,t =

∂

∂t
∂

∂x
λx,t

Proof.

∂2

∂x2 lx,t = − ∂

∂x
(μx,tlx,t)

= −∂μx,t

∂x
lx,t − μx,t

∂lx,t

∂x

= −lx,t

{
∂μx,t

∂x
− μ2

x,t

}

If x = Mt, then ∂2

∂x2 lx,t = 0. Therefore,

∂μx,t

∂x
= μ2

x,t

⇔ ∂

∂x
log μx,t = μx,t

⇒ ∂

∂t
μx,t =

∂

∂t
∂

∂x
λx,t

In the following discussion, we consider the expression of Mt as a linear com-
bination of the tangent vectors on S whose directions, defined as either x or y, are
fixed. Then, we use the abovementioned relationship to describe the location of
Mt.

Before we provide the formula for Mt, we show the following relationships that
hold in the LD model.

Proposition 3. When x is fixed,

∂

∂t
μx,t = − ∂

∂x
μx,t( f ′t + g′tx)

∂

∂t

(
∂

∂x
λx,t

)
= − ∂2

∂x2 λx,t( f ′t + g′tx) − ∂

∂x
λx,tg′t

Proof. The log mortality surface S is defined by the equation λx,t − y = 0, and the
tangent space on (x0, t0, y0) is Y − y0 = ∂λx,t

∂x (X − x0) + ∂λx,t
∂t (T − t0). (τy,t, 1, 0) is a

tangent vector on S, therefore, we have

0 =
∂λx,t

∂x
τy,t +

∂λx,t

∂t

⇔ 1
μx,t

∂μx,t

∂t
= − 1

μx,t

∂μx,t

∂x
( f ′t + g′tx)
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This proves the first equation.
Then, using this formula,

∂

∂t

(
∂

∂x
λx,t

)
=

∂

∂x

(
∂

∂t
λx,t

)

= − ∂

∂x

{
∂

∂x
λx,t( f ′t + g′tx)

}

= − ∂2

∂x2 λx,t( f ′t + g′tx) − ∂

∂x
λx,tg′t

This completes the proof of the second equation.

Next we observe a similar relationship when y is fixed. Obviously, ∂
∂t μx,t = 0

when y = λx,t is fixed. We consider the directional derivative along τy,t of the slope
∂

∂x λx,t.

Proposition 4. When y is fixed,
∂

∂t
μx,t = 0

Dτy,t

(
∂

∂x
λx,t

)
= − ∂

∂x
λx,tg′t

Proof. The slope at t = t0 is expressed as y
x when x → 0. Then, at t = t0 + h, for

a small h, the slope is expressed as

y′

x′
=

y
(1 + g′t0

)hx

since x′ = {x0 + x + ( f ′t0
+ g′t0

(x0 + x))h} − {x0 + ( f ′t0
+ g′t0

(x0))h}.
Then,

Dτy,t

(
∂

∂x
λx,t

)
= lim

h→0

1
h

{
y

(1 + g′t0
)hx

− y
x

}

= lim
h→0

1
h
y
x

−hg′t0

1 + hg′t0

= − ∂

∂x
λ(x0, t0)g′t0

We are now ready to derive the first formula. Assume that M, the tangent
vector on S along x = Mt, is expressed by a linear combination of A and B as
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M = (1 − k)A + kB, where A and B are the tangent vectors on S when x and y,
respectively, are fixed. Then, d

dt Mt = k( f ′t + g′tx).
Using Proposition 3,

− (1 − k)
{

∂2

∂x2 λx,t( f ′t + g′tx) − ∂

∂x
λx,tg′t

}
− k

∂

∂x
λx,tg′t = −(1 − k)

∂

∂x
μx,t( f ′t + g′tx)

⇔k( f ′t + g′tx) = − g′t

μx,t −
∂2

∂x2 λx,t
∂

∂x λx,t

+ ( f ′t + g′tx)

Substituting x = Mt,

d
dt

Mt = f ′t + g′t

⎛
⎜⎜⎝Mt − 1

μx,t −
∂2

∂x2 λx,t
∂

∂x λx,t

⎞
⎟⎟⎠ = S′

t + g′t(Mt − St) − g′tDt

where Dt = 1

μx,t−
∂2

∂x2 λx,t
∂

∂x λx,t

.

This completes the proof of the decomposition.

5.3.2 Results of Decomposition

Fig. 5.25 shows the trends of Mt for the actual mortality and the LD model. We
observe that both trends are similar, thus, we analyze the trends with the mortality
rates by the LD model.

Fig. 5.26 shows the results of the decomposition of the change of Mt for the LD
model every 10 years. We observe that the increase of Mt is caused mainly by the
shift from 1980 to 2000, whereas compression plays a larger part before 1970 and
after 2000.
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Fig. 5.25: Trends of the Modal Age at Death (Actual and LD, Females, Japan)
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Fig. 5.26: Decomposition of the change of the Modal Age at Death (Females Japan)
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Chapter 6

Tangent Vector Field Approach to
Mortality Projection

6.1 Tangent Vector Field Approach to Mortality Pro-
jection

6.1.1 Building an Entire Age Model Using Tangent Vector Fields

In Chapter 4, we propose the LD model for adult mortality for Japan. However,
we need an entire age model for mortality projection. In this section, we propose
a method for solving this problem by applying tangent vector fields on the log
mortality surface.

We begin with a stylized example of the change in mortality curves shown in
Fig. 6.1. Now, we use the LD model for adult mortality, whose direction of mortal-
ity improvements is expressed by the age increases shown by the red arrows. On
the other hand, the mortality improvements in juvenile mortality are well modeled
by the decline– type models, such as the LC model, whose mortality improvements
are shown by the blue arrows. The arrows show the directions in which the points
on the log mortality curves are heading. Mathematically, these arrows are formu-
lated using tangent vector fields on the log mortality surface.

In Chapter 4, we define the two differential functions, ρx,t and τy,t. Here, the
following vectors that make use of these functions are tangent vectors on S, as
shown in Fig. 6.2.

ρ(x0, t0, y0) = (0, 1,−ρx0,t0)
τ(x0, t0, y0) = (τy0,t0 , 1, 0)

Each tangent vector defines a tangent vector field on S. If ρx,t and/or τy,t satisfy
the conditions for the LC model and/or the LD model, respectively, we can say the
upper vector field corresponds to the LC model, and the lower vector field to the
LD model.
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Fig. 6.1: Change in the Mortality Curves
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Then, from these two vector fields, we can construct one vector field as follows:

• For each point on the adult mortality area, we pick the vector from the LD
model.

• For each point on the juvenile mortality area, we pick the vector from the LC
model.

• For each point between the two areas, we take a weighted average of the two
vectors.

More precisely, we use a weight function w(x, t) that takes 0 in young age and
1 in old age, and define a new tangent vector field ξ:

ξ = (1 − w(x, t))ρ(x, t, y) + w(x, t)τ(x, t, y)
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Fig. 6.2: Tangent Vectors on the Log Mortality Surface
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This vector field induces a blended mortality model that has the LC property in
youth and the LD property in older age. We call it the Tangent Vector Fields (TVF)
model. Fig. 6.3 shows an example of the construction of the TVF model.
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Fig. 6.3: Example of Construction of a Tangent Vector Field
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6.1.2 Application to Japanese Mortality Projection

We can project mortality rates with the TVF model by projecting the parameters
for the LC and LD models. Actually, the TVF model is used in the 2012 official
population projection in Japan (NIPSSR 2012). Moreover, Ishii and Lanzieri (2013)
perform some experimental mortality projections for the EU countries using the
TVF model and compare them with those by the LC model. Here, we simplify the
method used in the Japanese official projection and perform a mortality projection
as an example of application of the LD model1.

Note that we use the base period from 2006 to 2010 and the modified LD method
for mortality projection, as discussed in Section 4.4. Therefore, the value of the pa-
rameters is different from those in Chapter 5.

To project the mortality by the TVF model, we need the following parameters.

• a baseline log mortality ax (estimated in the LC model)

• a set of Lee–Carter bx sensitivity constants

• estimated and projected values of kt for the LC model

• estimated and projected values of gt for the LD model

• estimated and projected values of St for the LD model (and the converted
values of ft)

• a weight function w(x, t)

In our example, we project kt for the LC model by a non-linear fitting, and gt
and St for the LD model by linear regressions. Therefore, we need some more
parameters for projections of kt, St, and gt. However, any other methods that can
produce their projected values can be chosen. In the following discussion, we show
how the parameters are estimated and projected in our example.

First, we estimate the parameters ax and bx by the usual LC method using a
singular value decomposition. Table 6.1 shows the estimated ax and bx for x =
0, 5, · · · , 110. The results for all ages x (x ≤ 110) are shown in appendix (Table
A.1).

Recall that when we work on the discrete form, age x actually represents the
age interval [x, x + 1). In the following discussion, we treat non-integer values for
x that should be understood not as the exact ages but as the age intervals.

At the same time, we obtain the estimated parameters kt from the LC proce-
dure. We need future values of kt for mortality projection. Usually, a linear extrap-
olation is used for projecting kt in the LC method. However, the trajectory of kt

1Note that the results of the projection here are different from the 2012 official projection because,
for example, we simplify the method and use other procedures for parameter estimation.
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Table 6.1: Estimated ax and bx

x ax bx
0 -6.40128 0.04189
5 -9.18976 0.03974

10 -9.66274 0.03446
15 -9.08868 0.02449
20 -8.27315 0.01682
25 -8.11789 0.01803
30 -7.93639 0.01947
35 -7.63442 0.02000
40 -7.23336 0.01945
45 -6.81780 0.02022
50 -6.38395 0.02074
55 -6.02434 0.02220
60 -5.65698 0.02491
65 -5.29455 0.03069
70 -4.81176 0.03394
75 -4.23470 0.03584
80 -3.60353 0.03636
85 -2.90363 0.03244
90 -2.22321 0.02672
95 -1.61599 0.02077

100 -1.08484 0.01479
105 -0.66740 0.00919
110 -0.37838 0.00499

for Japan is different from a linear function because of the rapid improvement of
mortality after World War II. In the 2012 official population projection, kt is pro-
jected with extrapolation using non-linear fitting. The function is the average of
the exponential and log function:

1
2

[{A1 exp(B1(t − t0 + 1)) + C1} + {A2 log(B2 + (t − t0 + 1)) + C2}]

where t0 = 1970.
Extrapolation using non-linear fitting exhibits a good performance in fitting kt

for Japan and has been used since the 2002 projection. Here, we use the same
non-linear fitting method. The estimated function for non-linear fitting is

1
2

[{64.941595 exp(−0.024326(t − 1970 + 1)) − 24.887423}
+ {−40.352946 log(22.568412 + (t − 1970 + 1)) + 166.417569}]
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The actual and projected kt is shown in Fig. 6.4 and Tables 6.2 and 6.3. In
Fig. 6.4, the black and red lines show the estimated and projected parameters
respectively. We observe that fitting of kt is quite good and confirm the efficiency
of the non-linear fitting used in the official projections.

Fig. 6.4: Projection of kt
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Table 6.2: Estimated kt
Year kt
1970 39.00959
1971 36.46058
1972 35.28939
1973 35.04089
1974 33.58641
1975 31.76990
1976 30.22631
1977 28.14799
1978 26.86690
1979 24.93465
1980 24.66965
1981 23.17092
1982 21.49438
1983 21.30911
1984 19.70636
1985 18.49024
1986 17.11708
1987 15.52292
1988 15.92624
1989 14.76668
1990 14.28867
1991 13.05575
1992 13.17009
1993 12.82659
1994 10.78384
1995 12.35414
1996 8.97750
1997 8.25865
1998 8.33862
1999 7.78368
2000 5.30455
2001 4.25513
2002 3.81737
2003 3.48299
2004 1.63163
2005 2.31065
2006 1.54488
2007 0.12343
2008 0.19286
2009 -0.87076
2010 -0.99041

Table 6.3: Projected kt
Year kt Year kt
1970 38.69973 2015 -3.93249
1971 37.09971 2016 -4.47949
1972 35.55145 2017 -5.01619
1973 34.05193 2018 -5.54286
1974 32.59846 2019 -6.05976
1975 31.18856 2020 -6.56714
1976 29.82001 2021 -7.06522
1977 28.49076 2022 -7.55426
1978 27.19892 2023 -8.03447
1979 25.94278 2024 -8.50607
1980 24.72074 2025 -8.96927
1981 23.53132 2026 -9.42429
1982 22.37314 2027 -9.87132
1983 21.24492 2028 -10.31055
1984 20.14546 2029 -10.74217
1985 19.07364 2030 -11.16637
1986 18.02841 2031 -11.58332
1987 17.00879 2032 -11.99320
1988 16.01382 2033 -12.39617
1989 15.04264 2034 -12.79240
1990 14.09441 2035 -13.18205
1991 13.16834 2036 -13.56526
1992 12.26369 2037 -13.94219
1993 11.37973 2038 -14.31299
1994 10.51580 2039 -14.67780
1995 9.67125 2040 -15.03675
1996 8.84546 2041 -15.38998
1997 8.03785 2042 -15.73762
1998 7.24786 2043 -16.07979
1999 6.47494 2044 -16.41663
2000 5.71859 2045 -16.74824
2001 4.97831 2046 -17.07476
2002 4.25363 2047 -17.39628
2003 3.54409 2048 -17.71293
2004 2.84927 2049 -18.02482
2005 2.16874 2050 -18.33204
2006 1.50209 2051 -18.63470
2007 0.84894 2052 -18.93290
2008 0.20892 2053 -19.22674
2009 -0.41834 2054 -19.51631
2010 -1.03318 2055 -19.80170
2011 -1.63595 2056 -20.08302
2012 -2.22695 2057 -20.36034
2013 -2.80651 2058 -20.63374
2014 -3.37492 2059 -20.90333

2060 -21.16916
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Next, we discuss the parameters for the LD model. Applying the modified LD
method described in Section 4.4, we can obtain the estimated parameters gt (and ft)
for 1970 – 2010. We can also estimate the parameter St for age x for t that satisfies
mx,t = 0.5. Table 6.4 shows the estimated values for gt and St.

For the projection of gt and St, we first regress them on the projected kt from
1970 to 2010, and then extrapolate them using the value of kt after 2010. The for-
mulae are:

gt = 0.0035978 + 0.0031131kt

St = 104.59967 − 0.17440kt

The projected values for gt and St are shown in Table 6.5 and Fig. 6.5. Even
though the fitness of St and gt is less effective than that of kt, we see that they suc-
ceed in capturing the long-term trends and the projected trajectories are considered
to be plausible.

Fig. 6.5: Projection of gt and St
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Table 6.4: Estimated gt and St
Year gt St
1970 0.14081 98.44532
1971 0.14922 99.67369
1972 0.13666 99.56049
1973 0.10989 98.62987
1974 0.09683 98.45862
1975 0.09999 99.00625
1976 0.08716 98.91745
1977 0.09192 99.66118
1978 0.08472 99.77548
1979 0.08848 100.44246
1980 0.06264 99.46466
1981 0.06397 99.94836
1982 0.08051 101.07333
1983 0.05710 100.33948
1984 0.05862 100.86782
1985 0.05179 100.81415
1986 0.05066 101.29046
1987 0.05258 101.71017
1988 0.03255 101.01421
1989 0.04154 101.69801
1990 0.02278 101.18247
1991 0.02994 101.67975
1992 0.03562 101.92643
1993 0.03249 101.94270
1994 0.02784 102.25687
1995 0.03130 102.25062
1996 0.04224 103.23662
1997 0.03609 103.31385
1998 0.04180 103.75121
1999 0.03021 103.25987
2000 0.03972 104.25056
2001 0.03434 104.39306
2002 0.03771 104.75828
2003 0.02886 104.68350
2004 0.02787 104.86259
2005 0.01668 104.46800
2006 0.01296 104.71687
2007 0.00860 104.72304
2008 -0.00026 104.58248
2009 -0.00578 104.84067
2010 -0.01585 104.37655

Table 6.5: Projected gt and St

Year gt St Year gt St
1970 0.12407 97.85043 2015 -0.00864 105.28550
1971 0.11909 98.12948 2016 -0.01035 105.38090
1972 0.11427 98.39949 2017 -0.01202 105.47450
1973 0.10960 98.66101 2018 -0.01366 105.56635
1974 0.10508 98.91450 2019 -0.01527 105.65650
1975 0.10069 99.16038 2020 -0.01685 105.74498
1976 0.09643 99.39906 2021 -0.01840 105.83185
1977 0.09229 99.63088 2022 -0.01992 105.91714
1978 0.08827 99.85618 2023 -0.02141 106.00088
1979 0.08436 100.07525 2024 -0.02288 106.08313
1980 0.08056 100.28837 2025 -0.02432 106.16391
1981 0.07685 100.49581 2026 -0.02574 106.24327
1982 0.07325 100.69779 2027 -0.02713 106.32123
1983 0.06973 100.89456 2028 -0.02850 106.39783
1984 0.06631 101.08630 2029 -0.02984 106.47311
1985 0.06298 101.27323 2030 -0.03116 106.54709
1986 0.05972 101.45551 2031 -0.03246 106.61981
1987 0.05655 101.63334 2032 -0.03374 106.69129
1988 0.05345 101.80686 2033 -0.03499 106.76157
1989 0.05043 101.97623 2034 -0.03623 106.83067
1990 0.04747 102.14160 2035 -0.03744 106.89862
1991 0.04459 102.30311 2036 -0.03863 106.96546
1992 0.04178 102.46088 2037 -0.03981 107.03119
1993 0.03902 102.61504 2038 -0.04096 107.09586
1994 0.03633 102.76571 2039 -0.04210 107.15948
1995 0.03371 102.91300 2040 -0.04321 107.22208
1996 0.03113 103.05702 2041 -0.04431 107.28369
1997 0.02862 103.19787 2042 -0.04539 107.34431
1998 0.02616 103.33564 2043 -0.04646 107.40399
1999 0.02375 103.47044 2044 -0.04751 107.46273
2000 0.02140 103.60235 2045 -0.04854 107.52057
2001 0.01910 103.73145 2046 -0.04956 107.57751
2002 0.01684 103.85784 2047 -0.05056 107.63359
2003 0.01463 103.98158 2048 -0.05154 107.68881
2004 0.01247 104.10276 2049 -0.05251 107.74320
2005 0.01035 104.22144 2050 -0.05347 107.79678
2006 0.00827 104.33771 2051 -0.05441 107.84957
2007 0.00624 104.45162 2052 -0.05534 107.90157
2008 0.00425 104.56324 2053 -0.05626 107.95282
2009 0.00230 104.67263 2054 -0.05716 108.00332
2010 0.00038 104.77986 2055 -0.05805 108.05309
2011 -0.00150 104.88498 2056 -0.05892 108.10215
2012 -0.00333 104.98805 2057 -0.05979 108.15052
2013 -0.00514 105.08913 2058 -0.06064 108.19820
2014 -0.00691 105.18826 2059 -0.06148 108.24522

2060 -0.06230 108.29158
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Next, we calculate ft. For the computation of ft, we use the following recursive
formula.

ft2 ≈ ft1 + (St2 − St1) − (gt2 − gt1)
St2 + St1

2
To project ft, we begin with the baseline mortality. At the baseline, we have

ft = gt = 0. The value of St is 104.64792, which is obtained by a linear interpo-
lation from the ax shown in Table A.1. Then, the parameter ft at t = 2009 that is
considered close to the baseline is

f2009 = 0 + (104.67263 − 104.64792) − (0.0022955 − 0)
104.67263 + 104.64792

2
= −0.21554

Then, we can compute the values for the next (or previous) years step by step.
For example, f2010 is

f2010 = −0.21554 + (104.77986 − 104.67263)

− (0.00038143 − 0.0022955)
104.77986 + 104.67263

2
= 0.09214

Table 6.6 shows the projected values of ft.
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Table 6.6: Projected ft
Year ft Year ft
1970 -19.36897 2015 1.54578
1971 -18.60184 2016 1.82055
1972 -17.85820 2017 2.09030
1973 -17.13674 2018 2.35516
1974 -16.43626 2019 2.61525
1975 -15.75569 2020 2.87069
1976 -15.09404 2021 3.12159
1977 -14.45042 2022 3.36806
1978 -13.82399 2023 3.61021
1979 -13.21401 2024 3.84814
1980 -12.61976 2025 4.08195
1981 -12.04060 2026 4.31175
1982 -11.47591 2027 4.53761
1983 -10.92513 2028 4.75965
1984 -10.38772 2029 4.97794
1985 -9.86320 2030 5.19257
1986 -9.35108 2031 5.40363
1987 -8.85094 2032 5.61121
1988 -8.36235 2033 5.81537
1989 -7.88492 2034 6.01621
1990 -7.41828 2035 6.21379
1991 -6.96207 2036 6.40819
1992 -6.51597 2037 6.59948
1993 -6.07964 2038 6.78773
1994 -5.65278 2039 6.97301
1995 -5.23511 2040 7.15539
1996 -4.82635 2041 7.33494
1997 -4.42622 2042 7.51170
1998 -4.03448 2043 7.68575
1999 -3.65088 2044 7.85715
2000 -3.27519 2045 8.02596
2001 -2.90718 2046 8.19222
2002 -2.54663 2047 8.35600
2003 -2.19335 2048 8.51735
2004 -1.84712 2049 8.67633
2005 -1.50777 2050 8.83298
2006 -1.17509 2051 8.98735
2007 -0.84891 2052 9.13950
2008 -0.52907 2053 9.28947
2009 -0.21554 2054 9.43731
2010 0.09214 2055 9.58306
2011 0.39398 2056 9.72677
2012 0.69012 2057 9.86849
2013 0.98070 2058 10.00824
2014 1.26588 2059 10.14608

2060 10.28204
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Next, we consider the weight function w(x, t). This function is used to carry
out weighted averages of the vectors that correspond to the LC and LD models,
and then, w(x, t) should take 0 in young age and 1 in old age. In young age, it
is preferable that the upper bound of the area in which w(x, t) takes 0 is constant
with respect to age because the LC model is used in this area. However, it is more
appropriate that the lower bound of the area in which w(x, t) takes 1 in old age
corresponds to the level of the mortality rate where the LD model is used. There-
fore, we move the lower bound x1(t) corresponding to the log mortality rate for
the age of 70 years at year 2008. Thus, x1(t) is set as x1(2008) = 70 at t = 2008 and
is varied satisfying the condition that λx1(t),t = λ70,2008.

For the projection of x1(t), we use the following equation that holds in the
discrete form.

Proposition 5. If x(t1) and x(t2) are the points on the log mortality surface of the LD
model and are on the same flow that has the same values of log mortality, then

x(t2) =
1 − gt1

1 − gt2

x(t1) +
ft2 − ft1

1 − gt2

Proof. In the LD model, νy,t = ay + gtx + ft. Therefore, x(t1) and x(t2) are ex-
pressed as follows using x(t0), which is the value of x for the baseline mortality
curve on the flow:

x(t1) = x(t0) + gt1 x(t1) + ft1

x(t2) = x(t0) + gt2 x(t2) + ft2

Subtracting the upper equation from the lower,

(1 − gt2)x(t2) = (1 − gt1)x(t1) + ft2 − ft1

This proves the proposition.

Then, substituting t1 = 2008, t1 = t, and x(t1) = 70,

x1(t) =
1 − g2008

1 − gt
· 70 +

ft − f2008

1 − gt

Table 6.7 shows the projected values of x1(t).
Using the projected x1(t), we define the weight function w(x, t) as the following

piecewise linear function.

w(x, t) =

⎧⎪⎨
⎪⎩

0 (x < x0(t) = 40)
x−x0(t)

x1(t)−x0(t) (x0(t) ≤ x < x1(t))
1 (x ≥ x1(t))

Fig. 6.6 shows the projected w(x, t) for t = 1970, 1980, · · · , 2060 and 2008.
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Fig. 6.6: Projection of w(x, t)
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Table 6.7: Projected x1(t)
Year x1(t) Year x1(t)
1970 58.06732 2015 71.16233
1971 58.60982 2016 71.31434
1972 59.13046 2017 71.46315
1973 59.63073 2018 71.60885
1974 60.11196 2019 71.75153
1975 60.57536 2020 71.89129
1976 61.02200 2021 72.02820
1977 61.45287 2022 72.16234
1978 61.86888 2023 72.29380
1979 62.27083 2024 72.42264
1980 62.65949 2025 72.54895
1981 63.03554 2026 72.67279
1982 63.39963 2027 72.79423
1983 63.75233 2028 72.91333
1984 64.09420 2029 73.03016
1985 64.42575 2030 73.14478
1986 64.74744 2031 73.25725
1987 65.05972 2032 73.36763
1988 65.36301 2033 73.47596
1989 65.65768 2034 73.58231
1990 65.94410 2035 73.68673
1991 66.22261 2036 73.78926
1992 66.49354 2037 73.88996
1993 66.75718 2038 73.98887
1994 67.01381 2039 74.08603
1995 67.26372 2040 74.18150
1996 67.50714 2041 74.27531
1997 67.74433 2042 74.36751
1998 67.97552 2043 74.45814
1999 68.20091 2044 74.54723
2000 68.42073 2045 74.63482
2001 68.63515 2046 74.72095
2002 68.84438 2047 74.80566
2003 69.04859 2048 74.88897
2004 69.24794 2049 74.97093
2005 69.44261 2050 75.05157
2006 69.63274 2051 75.13092
2007 69.81849 2052 75.20900
2008 70.00000 2053 75.28585
2009 70.17725 2054 75.36150
2010 70.35067 2055 75.43597
2011 70.52024 2056 75.50930
2012 70.68608 2057 75.58150
2013 70.84830 2058 75.65261
2014 71.00702 2059 75.72266

2060 75.79165
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Now we have all the parameters to perform projection of the mortality rates by
the TVF model. Unlike the LC model, the TVF model does not have explicit for-
mula for mortality rates for a year, t. We carry out the projection from the mortality
rates in year t to those for t + 1 recursively, starting from the baseline mortality, just
like the population projection procedure by the cohort component method. Here,
we begin with the case of the LC model in the vector approach used in the TVF
model.

For the LC model, we can directly project λx,t from ax, bx, and kt, shown in
Tables 6.1 and 6.3. For example, λx,t for t = 2009 are obtained as follows.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ0,2009
λ5,2009
λ10,2009
λ15,2009
λ20,2009
λ25,2009
λ30,2009
λ35,2009
λ40,2009
λ45,2009
λ50,2009
λ55,2009
λ60,2009
λ65,2009
λ70,2009
λ75,2009
λ80,2009
λ85,2009
λ90,2009
λ95,2009
λ100,2009
λ105,2009
λ110,2009

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6.40128
−9.18976
−9.66274
−9.08868
−8.27315
−8.11789
−7.93639
−7.63442
−7.23336
−6.81780
−6.38395
−6.02434
−5.65698
−5.29455
−4.81176
−4.23470
−3.60353
−2.90363
−2.22321
−1.61599
−1.08484
−0.66740
−0.37838

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 0.41834

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.04189
0.03974
0.03446
0.02449
0.01682
0.01803
0.01947
0.02000
0.01945
0.02022
0.02074
0.02220
0.02491
0.03069
0.03394
0.03584
0.03636
0.03244
0.02672
0.02077
0.01479
0.00919
0.00499

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6.41880
−9.20639
−9.67716
−9.09892
−8.28018
−8.12543
−7.94453
−7.64278
−7.24150
−6.82626
−6.39262
−6.03363
−5.66740
−5.30739
−4.82596
−4.24970
−3.61874
−2.91721
−2.23439
−1.62468
−1.09103
−0.67125
−0.38047

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can obtain λx,2010 by changing k2009 = −0.41834 to k2010 = −1.03318 in the
above formula. Then, the difference between λx,2010 and λx,2009 is equal to (k2010 −
k2009)bx. Therefore, we can obtain λx,2010 by adding −ρx,2009 = (k2010 − k2009)bx to
λx,2009, which corresponds to the vector field approach.

This procedure is expressed in the following diagram. The left-hand box shows
the coordinates (x, y) = (x, λx,2009) by the LC model for t = 2009. The center box
is the vector ρ that indicates the change in each point on the mortality curve for the
LC model. The right box showing the coordinates (x, y) = (x, λx,2010) is obtained
by adding the center box to the left-hand one.
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t = 2009
x y
0 −6.41880
5 −9.20639
10 −9.67716
15 −9.09892
20 −8.28018
25 −8.12543
30 −7.94453
35 −7.64278
40 −7.24150
45 −6.82626
50 −6.39262
55 −6.03363
60 −5.66740
65 −5.30739
70 −4.82596
75 −4.24970
80 −3.61874
85 −2.91721
90 −2.23439
95 −1.62468
100 −1.09103
105 −0.67125
110 −0.38047

+

Change
x y
0 −0.02575
0 −0.02444
0 −0.02119
0 −0.01506
0 −0.01034
0 −0.01109
0 −0.01197
0 −0.01230
0 −0.01196
0 −0.01243
0 −0.01275
0 −0.01365
0 −0.01532
0 −0.01887
0 −0.02087
0 −0.02203
0 −0.02236
0 −0.01995
0 −0.01643
0 −0.01277
0 −0.00910
0 −0.00565
0 −0.00307

−→

t = 2010
x y
0 −6.44456
5 −9.23082
10 −9.69835
15 −9.11398
20 −8.29052
25 −8.13652
30 −7.95650
35 −7.65508
40 −7.25346
45 −6.83869
50 −6.40537
55 −6.04728
60 −5.68272
65 −5.32626
70 −4.84683
75 −4.27173
80 −3.64110
85 −2.93715
90 −2.25082
95 −1.63746

100 −1.10012
105 −0.67690
110 −0.38354

Next, we consider the LD model. From Proposition 5, we can derive the differ-
ence τy,t = x(t + 1) − x(t) as follows.

x(t + 1) − x(t) =
gt+1 − gt

1 − gt+1
x(t) +

ft+1 − ft

1 − gt+1

For t = 2009, we have
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x(2010) − x(2009) = −0.0019148x(t) + 0.30780 = −0.0019148

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 0.30780 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.30780
0.29822
0.28865
0.27908
0.26950
0.25993
0.25035
0.24078
0.23121
0.22163
0.21206
0.20248
0.19291
0.18334
0.17376
0.16419
0.15461
0.14504
0.13547
0.12589
0.11632
0.10675
0.09717

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now we consider the projection procedure for the LD model with a similar
diagram as that for the LC.

The first box from the left is (x, y) = (x, λx,2009) by the LD model. The sec-
ond box expresses the vector τ of change for the LD model. Note that τy,t =
x(t + 1) − x(t) is plugged in the ”x” (left) column here, which corresponds to the
direction of the flow for the LD model. We obtain the third box by adding the
first and second ones. It shows the relationship between x and y. However, this
is not a normal representation because the values of x are not integers. Therefore,
we ”standardize” it by linear interpolations and obtain a normal representation,
shown in the fourth box.



94

t = 2009
x y
0 −6.41880
5 −9.20639
10 −9.67716
15 −9.09892
20 −8.28018
25 −8.12543
30 −7.94453
35 −7.64278
40 −7.24150
45 −6.82327
50 −6.38706
55 −6.02569
60 −5.65690
65 −5.29181
70 −4.80574
75 −4.22945
80 −3.59925
85 −2.90073
90 −2.22207
95 −1.61629
100 −1.08622
105 −0.66927
110 −0.38016

+

Change
x y

0.30780 0
0.29822 0
0.28865 0
0.27908 0
0.26950 0
0.25993 0
0.25035 0
0.24078 0
0.23121 0
0.22163 0
0.21206 0
0.20248 0
0.19291 0
0.18334 0
0.17376 0
0.16419 0
0.15461 0
0.14504 0
0.13547 0
0.12589 0
0.11632 0
0.10675 0
0.09717 0

−→

t = 2010
x y

0.30780 −6.41880
5.29822 −9.20639
10.28865 −9.67716
15.27908 −9.09892
20.26950 −8.28018
25.25993 −8.12543
30.25035 −7.94453
35.24078 −7.64278
40.23121 −7.24150
45.22163 −6.82327
50.21206 −6.38706
55.20248 −6.02569
60.19291 −5.65690
65.18334 −5.29181
70.17376 −4.80574
75.16419 −4.22945
80.15461 −3.59925
85.14504 −2.90073
90.13547 −2.22207
95.12589 −1.61629
100.11632 −1.08622
105.10675 −0.66927
110.09717 −0.38016

standardize−−−−→

t = 2010
x y
0
5 −9.17441
10 −9.65753
15 −9.16408
20 −8.31101
25 −8.13085
30 −7.95642
35 −7.66127
40 −7.25807
45 −6.84214
50 −6.40529
55 −6.04032
60 −5.67083
65 −5.30685
70 −4.82438
75 −4.24906
80 −3.61961
85 −2.92162
90 −2.23970
95 −1.63079
100 −1.09765
105 −0.67709
110 −0.38483

In this case, we cannot obtain the value for age 0 by linear interpolation. How-
ever, it causes no problem because we do not use the projected mortality rates by
the LD model for the juvenile area.

Finally, we describe the TVF procedure that combines the two models. In the
TVF model, we make the vector of change ξ by the weighted average of the vectors
ρ and τ. Using w(x, t), which we have already prepared, ξ is constructed as in the
following diagram.
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ρ
x y
0 −0.02575
0 −0.02444
0 −0.02119
0 −0.01506
0 −0.01034
0 −0.01109
0 −0.01197
0 −0.01230
0 −0.01196
0 −0.01243
0 −0.01275
0 −0.01365
0 −0.01532
0 −0.01887
0 −0.02087
0 −0.02203
0 −0.02236
0 −0.01995
0 −0.01643
0 −0.01277
0 −0.00910
0 −0.00565
0 −0.00307

×

1 − w(x, t)

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.83526
0.67052
0.50578
0.34104
0.17630
0.01155
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

+

τ
x y

0.30780 0
0.29822 0
0.28865 0
0.27908 0
0.26950 0
0.25993 0
0.25035 0
0.24078 0
0.23121 0
0.22163 0
0.21206 0
0.20248 0
0.19291 0
0.18334 0
0.17376 0
0.16419 0
0.15461 0
0.14504 0
0.13547 0
0.12589 0
0.11632 0
0.10675 0
0.09717 0

×

w(x, t)

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.16474
0.32948
0.49422
0.65896
0.82370
0.98845
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

=

ξ
x y

0.00000 −0.02575
0.00000 −0.02444
0.00000 −0.02119
0.00000 −0.01506
0.00000 −0.01034
0.00000 −0.01109
0.00000 −0.01197
0.00000 −0.01230
0.00000 −0.01196
0.03651 −0.01038
0.06987 −0.00855
0.10007 −0.00690
0.12712 −0.00522
0.15102 −0.00333
0.17175 −0.00024
0.16419 0.00000
0.15461 0.00000
0.14504 0.00000
0.13547 0.00000
0.12589 0.00000
0.11632 0.00000
0.10675 0.00000
0.09717 0.00000

Then, we can perform the projection like the procedure for the LD model, ex-
cept we use ξ for the vector for change, as shown in the following diagram.
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t = 2009
x y
0 −6.41880
5 −9.20639
10 −9.67716
15 −9.09892
20 −8.28018
25 −8.12543
30 −7.94453
35 −7.64278
40 −7.24150
45 −6.82327
50 −6.38706
55 −6.02569
60 −5.65690
65 −5.29181
70 −4.80574
75 −4.22945
80 −3.59925
85 −2.90073
90 −2.22207
95 −1.61629
100 −1.08622
105 −0.66927
110 −0.38016

+

Change
x y

0.00000 −0.02575
0.00000 −0.02444
0.00000 −0.02119
0.00000 −0.01506
0.00000 −0.01034
0.00000 −0.01109
0.00000 −0.01197
0.00000 −0.01230
0.00000 −0.01196
0.03651 −0.01038
0.06987 −0.00855
0.10007 −0.00690
0.12712 −0.00522
0.15102 −0.00333
0.17175 −0.00024
0.16419 0.00000
0.15461 0.00000
0.14504 0.00000
0.13547 0.00000
0.12589 0.00000
0.11632 0.00000
0.10675 0.00000
0.09717 0.00000

−→

t = 2010
x y

0.00000 −6.44456
5.00000 −9.23082
10.00000 −9.69835
15.00000 −9.11398
20.00000 −8.29052
25.00000 −8.13652
30.00000 −7.95650
35.00000 −7.65508
40.00000 −7.25346
45.03651 −6.83366
50.06987 −6.39560
55.10007 −6.03260
60.12712 −5.66212
65.15102 −5.29514
70.17175 −4.80598
75.16419 −4.22945
80.15461 −3.59925
85.14504 −2.90073
90.13547 −2.22207
95.12589 −1.61629
100.11632 −1.08622
105.10675 −0.66927
110.09717 −0.38016

standardize−−−−→

t = 2010
x y
0 −6.44456
5 −9.23082
10 −9.69835
15 −9.11398
20 −8.29052
25 −8.13652
30 −7.95650
35 −7.65508
40 −7.25346
45 −6.83675
50 −6.40159
55 −6.03981
60 −5.67128
65 −5.30752
70 −4.82441
75 −4.24906
80 −3.61961
85 −2.92162
90 −2.23970
95 −1.63079

100 −1.09765
105 −0.67709
110 −0.38483

The projected log mortality rates for t = 2009 and 2010 by the LC and TVF
models for all ages x (x ≤ 110) are shown in the Appendix (Tables A.2 and A.3).

Fig. 6.7 shows the projected e0 for the LC and TVF models. We see that the two
models yield almost the same trajectories for future life expectancy. However, the
projected age patterns differ.

We compare the relative mortality rates for the actual and estimated rates by
the LC and TVF models, compared with the recent level (the average from 2006 to
2010). Fig. 6.8 shows the actual relative mortality rates. With the LC model, actual
mortality is estimated and projected as in Fig. 6.9. We observe that the LC model
expresses mortality improvement in a vertical direction, which is a characteristic
of decline–type models.

On the other hand, Fig. 6.10, an estimation and projection by the TVF model,
shows that the TVF model succeeds in expressing the shifting of mortality im-
provement in the direction of older ages.

Fig. 6.11 compares the projected age pattern of mx for the LC and TVF models.
The projected mx curves by the LC model exhibit an unnatural pattern because
their slope diminishes once around the age of 60 years and then becomes much
steeper above the age of 80 years. The curve of the TVF model is more plausible.
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Fig. 6.7: Projected Life Expectancy
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Fig. 6.8: Relative Mortality Rates
(Actual)
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Fig. 6.9: Relative Mortality Rates
(LC)
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Fig. 6.10: Relative Mortality Rates
(TVF)
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Fig. 6.11: Comparison of mx curves (LC and TVF)
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6.1.3 Discussion of Mortality Projection

Li et al. (2013) propose an extension of the LC model, the Lee–Carter method
extended with rotation (LC ER). In this subsection, we review their method and
discuss a comparison with the TVF model.

The first step of their model is the modification of bx in the LC model. They
smooth bx at ages 15–65 years to equal the average value for this age range, and
then reduce the values at ages 0–14 years to this average. Next, they proportionally
adjust the values of bx at ages 70 years and older to make b70 = b65, and then,
proportionally adjust the values of bx at all ages to make bx sum to 1. They call this
modified bx the ultimate values, bu(x).

The second step of their model is to set B(x, t), which means the extended LC
age pattern of mortality decline at time t starting with bo(x) by the LC model and
smoothly converging to bu(x). They define a linear weight function, w(t), and a
smooth weight function, ws(t), as:

w(t) =
eo(t) − 80

eu
o − 80

ws(t) =
{

0.5
[
1 + sin

[π

2
(2 · w(t) − 1)

]]}p

where eo(t) is the life expectancy at time t estimated by the LC method, and eu
o is

the level of the life expectancy at which the rotation finishes, which they choose to
be 102 years. p adjusts the speed of rotation and p = 0.5 is taken as the default.

Then, they set B(x, t) as:

B(x, t) =

⎧⎨
⎩

bo(x), eo(t) < 80
(1 − ws(t))bo(x) + ws(t)bu(x), 80 ≤ eo(t) < eu

o
bu(x), eu

o ≤ eo(t)

Two points should be noticed as unique characteristics of their model. First, it
needs only the parameters that are estimated in the usual LC method. Therefore,
it is easy to apply their rotation if one already has the estimated parameters by
the LC method. Second, their model does not depend on the actual change of age
pattern of mortality decline. They mention that the rotation is subtle and difficult
to handle in mortality models. This would be one of the reasons why they do not
use the actual pattern in the model.

However, for Japanese case, we see that actual mortality already exhibits a
strong shifting feature. Therefore, we have sufficient data to model the shift of
mortality curves. Moreover, their model is based essentially on the LC frame-
work, which is a decline-type model, even though the rotation feature is captured
more clearly using the shift-type model. It is usually considered difficult to blend
a shift-type and a decline-type model, so the choice might be made to stay in the
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decline-type framework. However, we show it is possible to construct a hybrid
model with a tangent vector approach. Thus, it is more efficient to use the shift-
type model directly in this situation. Therefore, the TVF model is considered better
for Japanese mortality projection.
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Chapter 7

Summary and Conclusion

In this dissertation, we proposed the Tangent Vector Field (TVF) model, which
is an extended Linear Difference (LD) model, for Japanese mortality projection,
and showed its applications.

Following the mathematical formulations for decline–type and shift–type mod-
els, we compared five models; the Proportional Hazard (PH) model, the Lee–
Carter (LC) model, the Horizontal Shifting (HS) model, the Horizontal Lee–Carter
(HL) model, and the Linear Difference (LD) model.

We first examined the decline–type models. For the PH model, the estimated
rates did not exhibit good fit, particularly in the older age groups. On the other
hand, we saw that the fit with the actual values was fairly improved by using the
LC model because of its flexibility, which allows different mortality improvement
rates by age. From the observation of ρx,t, we saw that most of the actual mor-
tality improvement rates have mountain-shaped curves with peaks. In contrast,
the mortality improvement rates under the PH model are horizontal. This differ-
ence in shape was viewed as a cause for the estimates by the PH model not being
well fitted. The peak of the mortality improvement rate by the LC model was like
that of the actual value and this improves the fit. However, the age distribution of
the rates was fixed in the LC model, whereas it changed dynamically in the actual
values. Thus, the actual age distribution of mortality improvement rates changed
over time and was not constant, as in the LC model, causing a propensity for er-
ror in the LC model. We could see this result as a limitation when the mortality
improvement is considered as a decline.

Next, we observed shift–type models. We saw that the performance of fit by the
HS model is much better than by the PH model, even though both have the same
structure. We saw that the HL model seemed to be an improvement on the HS
model. However, we also observed that the improvement between the shift pair
was not as large as the decline pair. We observed that the LD model fit well with
the actual values. Even though the performance seemed to be lower than the HL
model, the LD model had an advantage in that it needed fewer parameters than
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the HL model. From the observation of τy,t, we saw that the force of age increase
for the HS model was almost horizontal, and that the distribution of τy,t for the
HL model was similar. According to these restrictions, the two models sometimes
exhibited big differences from the actual rates. Compared to these models, we
observed that the LD model performed better.

Following these considerations, we compared the LC and LD models from a
statistical viewpoint. From the observation of the proportion where the log actual
mortality rates were outside of the CIs for each age in the LC and LD models, we
saw that even though the proportions of LD were higher under about 75 years of
age, the performance of LD was considered better than that of LC over 75 years
of age. This result suggested that shift was more strongly supported as a factor
behind the recent old age mortality improvement in Japan compared to decline.
This result also implied that a better construction for mortality projection model
would be a blended model that had the LC property in youth and the LD property
in older age. We also showed that the LD model is useful for not only projection
but also analyses of mortality. We proposed a new decomposition method for the
modal age at death using the LD model, and gave decomposition analyses with the
method. Because the LD model was developed originally for mortality projections,
the number of parameters was reduced for parsimony. This might be a restriction
in terms of a flexible expression for various types of mortality situation. How-
ever, this feature brought another possibility to derive simple analytical formulas.
The decomposition that we proposed was easy to apply when the mortality curves
were modeled by the LD model, and had a clear interpretation composed by shift-
ing, compression, and other parts. From the results of the decomposition, we ob-
served a strong parallel shifting feature from 1980 to 2000 that also increased Mt
by shifting components. On the other hand, the compression components played
a larger part for the increase of Mt before 1970 and after 2000. The analytical de-
composition of trends in the modal age at death would be considered useful for
understanding old age mortality.

Lastly, we proposed the TVF model applying the idea of the tangent vector
fields on the log mortality surface. We showed a fully specified example of the pro-
jection procedure of the TVF model with all the constants and coefficients applied
for Japanese mortality projection. Then, we compared the results of the mortality
projection by the TVF model with those by the LC model. From the observation
of the relative mortality rates, we saw that the LC model expressed mortality im-
provement only in a vertical direction, whereas the TVF model succeeded in ex-
pressing the shifting of mortality improvement in the direction of older ages that
were observed in the actual mortality. We also compared the projected mx curves.
mx by the LC model exhibited an unnatural pattern, since the slope of the curve
diminished once around the age of 60 years and then became much steeper above
the age of 80 years. The curve of the TVF model was more plausible. As a whole,
we revealed that the TVF model had many advantages for Japanese mortality pro-
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jection compared with the LC model.
We believe we can show that the TVF model proposed in this dissertation is not

only quite useful for Japanese mortality projection but has various applicability.
At this point in time, there may be few countries with such strong shifting features
for old age mortality as Japan. However, some countries are likely to experience
the same mortality situation as Japan in the future through the extension of life
expectancy. The TVF model will be a useful tool for projections in such situations.
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Table A.1: Estimated ax and bx
x ax bx x ax bx
0 -6.40128 0.04189 55 -6.02434 0.02220
1 -7.56570 0.04148 56 -5.95121 0.02256
2 -8.40707 0.04093 57 -5.87799 0.02299
3 -8.87631 0.04008 58 -5.80321 0.02345
4 -9.08272 0.03977 59 -5.72895 0.02406
5 -9.18976 0.03974 60 -5.65698 0.02491
6 -9.31893 0.03945 61 -5.58885 0.02609
7 -9.41992 0.03788 62 -5.52176 0.02741
8 -9.50769 0.03590 63 -5.45129 0.02865
9 -9.59478 0.03467 64 -5.37567 0.02974

10 -9.66274 0.03446 65 -5.29455 0.03069
11 -9.70433 0.03523 66 -5.20694 0.03148
12 -9.66996 0.03467 67 -5.11474 0.03217
13 -9.53375 0.03176 68 -5.01886 0.03284
14 -9.32034 0.02773 69 -4.91827 0.03346
15 -9.08868 0.02449 70 -4.81176 0.03394
16 -8.88028 0.02280 71 -4.70201 0.03439
17 -8.69083 0.02161 72 -4.58860 0.03479
18 -8.52585 0.02031 73 -4.47221 0.03514
19 -8.38658 0.01858 74 -4.35407 0.03549
20 -8.27315 0.01682 75 -4.23470 0.03584
21 -8.20709 0.01613 76 -4.11360 0.03614
22 -8.17738 0.01632 77 -3.98995 0.03635
23 -8.16238 0.01698 78 -3.86393 0.03649
24 -8.13896 0.01742 79 -3.73518 0.03651
25 -8.11789 0.01803 80 -3.60353 0.03636
26 -8.09379 0.01849 81 -3.46956 0.03604
27 -8.06580 0.01895 82 -3.33195 0.03545
28 -8.02747 0.01921 83 -3.19100 0.03461
29 -7.98383 0.01937 84 -3.04772 0.03360
30 -7.93639 0.01947 85 -2.90363 0.03244
31 -7.89004 0.01973 86 -2.76162 0.03126
32 -7.83823 0.01997 87 -2.62259 0.03007
33 -7.77986 0.02021 88 -2.48642 0.02891
34 -7.71094 0.02023 89 -2.35342 0.02781
35 -7.63442 0.02000 90 -2.22321 0.02672
36 -7.54937 0.01943 91 -2.09564 0.02555
37 -7.46423 0.01895 92 -1.97088 0.02429
38 -7.38079 0.01873 93 -1.84934 0.02303
39 -7.30510 0.01897 94 -1.73122 0.02186
40 -7.23336 0.01945 95 -1.61599 0.02077
41 -7.15649 0.01984 96 -1.50350 0.01971
42 -7.07419 0.02008 97 -1.39322 0.01854
43 -6.98839 0.02015 98 -1.28600 0.01728
44 -6.90223 0.02016 99 -1.18309 0.01602
45 -6.81780 0.02022 100 -1.08484 0.01479
46 -6.73427 0.02036 101 -0.99128 0.01359
47 -6.64950 0.02056 102 -0.90262 0.01243
48 -6.55913 0.02062 103 -0.81902 0.01130
49 -6.46950 0.02067 104 -0.74060 0.01021
50 -6.38395 0.02074 105 -0.66740 0.00919
51 -6.30493 0.02093 106 -0.59946 0.00822
52 -6.23445 0.02131 107 -0.53670 0.00731
53 -6.16550 0.02163 108 -0.47905 0.00647
54 -6.09599 0.02191 109 -0.42634 0.00570

110 -0.37838 0.00499
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Table A.2: Projected Log Mortality Rates by the LC model
Age 2009 2010 Age 2009 2010

0 -6.41880 -6.44456 55 -6.03363 -6.04728
1 -7.58306 -7.60856 56 -5.96065 -5.97452
2 -8.42419 -8.44936 57 -5.88761 -5.90175
3 -8.89308 -8.91772 58 -5.81302 -5.82744
4 -9.09936 -9.12382 59 -5.73901 -5.75380
5 -9.20639 -9.23082 60 -5.66740 -5.68272
6 -9.33543 -9.35969 61 -5.59976 -5.61580
7 -9.43577 -9.45906 62 -5.53323 -5.55008
8 -9.52271 -9.54478 63 -5.46328 -5.48090
9 -9.60928 -9.63060 64 -5.38811 -5.40639

10 -9.67716 -9.69835 65 -5.30739 -5.32626
11 -9.71907 -9.74073 66 -5.22011 -5.23946
12 -9.68446 -9.70577 67 -5.12819 -5.14797
13 -9.54703 -9.56656 68 -5.03260 -5.05280
14 -9.33194 -9.34899 69 -4.93227 -4.95284
15 -9.09892 -9.11398 70 -4.82596 -4.84683
16 -8.88982 -8.90384 71 -4.71639 -4.73754
17 -8.69987 -8.71315 72 -4.60315 -4.62454
18 -8.53435 -8.54683 73 -4.48691 -4.50851
19 -8.39436 -8.40578 74 -4.36892 -4.39074
20 -8.28018 -8.29052 75 -4.24970 -4.27173
21 -8.21383 -8.22375 76 -4.12872 -4.15094
22 -8.18421 -8.19424 77 -4.00516 -4.02751
23 -8.16949 -8.17993 78 -3.87920 -3.90163
24 -8.14625 -8.15696 79 -3.75045 -3.77290
25 -8.12543 -8.13652 80 -3.61874 -3.64110
26 -8.10152 -8.11289 81 -3.48464 -3.50680
27 -8.07372 -8.08537 82 -3.34678 -3.36858
28 -8.03551 -8.04733 83 -3.20548 -3.22676
29 -7.99193 -8.00384 84 -3.06177 -3.08243
30 -7.94453 -7.95650 85 -2.91721 -2.93715
31 -7.89829 -7.91042 86 -2.77469 -2.79391
32 -7.84658 -7.85886 87 -2.63517 -2.65366
33 -7.78832 -7.80075 88 -2.49851 -2.51629
34 -7.71941 -7.73185 89 -2.36505 -2.38215
35 -7.64278 -7.65508 90 -2.23439 -2.25082
36 -7.55750 -7.56945 91 -2.10633 -2.12204
37 -7.47216 -7.48381 92 -1.98104 -1.99597
38 -7.38863 -7.40015 93 -1.85898 -1.87314
39 -7.31304 -7.32470 94 -1.74036 -1.75381
40 -7.24150 -7.25346 95 -1.62468 -1.63746
41 -7.16479 -7.17699 96 -1.51175 -1.52386
42 -7.08259 -7.09494 97 -1.40097 -1.41237
43 -6.99682 -7.00921 98 -1.29323 -1.30385
44 -6.91067 -6.92307 99 -1.18980 -1.19964
45 -6.82626 -6.83869 100 -1.09103 -1.10012
46 -6.74279 -6.75531 101 -0.99697 -1.00533
47 -6.65810 -6.67073 102 -0.90782 -0.91546
48 -6.56776 -6.58043 103 -0.82375 -0.83069
49 -6.47814 -6.49085 104 -0.74487 -0.75115
50 -6.39262 -6.40537 105 -0.67125 -0.67690
51 -6.31369 -6.32656 106 -0.60289 -0.60795
52 -6.24336 -6.25646 107 -0.53976 -0.54426
53 -6.17455 -6.18785 108 -0.48175 -0.48573
54 -6.10515 -6.11862 109 -0.42872 -0.43222

110 -0.38047 -0.38354
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Table A.3: Projected Log Mortality Rates by the TVF model
Age 2009 2010 Age 2009 2010

0 -6.41880 -6.44456 55 -6.02569 -6.03981
1 -7.58306 -7.60856 56 -5.95219 -5.96652
2 -8.42419 -8.44936 57 -5.87855 -5.89295
3 -8.89308 -8.91772 58 -5.80344 -5.81806
4 -9.09936 -9.12382 59 -5.72896 -5.74357
5 -9.20639 -9.23082 60 -5.65690 -5.67128
6 -9.33543 -9.35969 61 -5.58856 -5.60252
7 -9.43577 -9.45906 62 -5.52101 -5.53490
8 -9.52271 -9.54478 63 -5.44995 -5.46430
9 -9.60928 -9.63060 64 -5.37367 -5.38868

10 -9.67716 -9.69835 65 -5.29181 -5.30752
11 -9.71907 -9.74073 66 -5.20354 -5.22006
12 -9.68446 -9.70577 67 -5.11072 -5.12776
13 -9.54703 -9.56656 68 -5.01416 -5.03158
14 -9.33194 -9.34899 69 -4.91282 -4.93078
15 -9.09892 -9.11398 70 -4.80574 -4.82441
16 -8.88982 -8.90384 71 -4.69605 -4.71494
17 -8.69987 -8.71315 72 -4.58275 -4.60204
18 -8.53435 -8.54683 73 -4.46654 -4.48610
19 -8.39436 -8.40578 74 -4.34862 -4.36825
20 -8.28018 -8.29052 75 -4.22945 -4.24906
21 -8.21383 -8.22375 76 -4.10852 -4.12819
22 -8.18421 -8.19424 77 -3.98507 -4.00490
23 -8.16949 -8.17993 78 -3.85923 -3.87921
24 -8.14625 -8.15696 79 -3.73068 -3.75084
25 -8.12543 -8.13652 80 -3.59925 -3.61961
26 -8.10152 -8.11289 81 -3.46549 -3.48595
27 -8.07372 -8.08537 82 -3.32810 -3.34886
28 -8.03551 -8.04733 83 -3.18742 -3.20840
29 -7.99193 -8.00384 84 -3.04445 -3.06550
30 -7.94453 -7.95650 85 -2.90073 -2.92162
31 -7.89829 -7.91042 86 -2.75910 -2.77941
32 -7.84658 -7.85886 87 -2.62044 -2.64005
33 -7.78832 -7.80075 88 -2.48462 -2.50357
34 -7.71941 -7.73185 89 -2.35196 -2.37022
35 -7.64278 -7.65508 90 -2.22207 -2.23970
36 -7.55750 -7.56945 91 -2.09481 -2.11184
37 -7.47216 -7.48381 92 -1.97035 -1.98676
38 -7.38863 -7.40015 93 -1.84910 -1.86486
39 -7.31304 -7.32470 94 -1.73125 -1.74634
40 -7.24150 -7.25346 95 -1.61629 -1.63079
41 -7.16418 -7.17655 96 -1.50405 -1.51799
42 -7.08134 -7.09411 97 -1.39400 -1.40746
43 -6.99496 -7.00805 98 -1.28701 -1.29989
44 -6.90824 -6.92155 99 -1.18430 -1.19647
45 -6.82327 -6.83675 100 -1.08622 -1.09765
46 -6.73921 -6.75289 101 -0.99281 -1.00351
47 -6.65380 -6.66780 102 -0.90427 -0.91425
48 -6.56292 -6.57741 103 -0.82077 -0.83002
49 -6.47288 -6.48752 104 -0.74241 -0.75094
50 -6.38706 -6.40159 105 -0.66927 -0.67709
51 -6.30792 -6.32214 106 -0.60134 -0.60848
52 -6.23712 -6.25086 107 -0.53859 -0.54506
53 -6.16778 -6.18150 108 -0.48091 -0.48675
54 -6.09779 -6.11164 109 -0.42817 -0.43340

110 -0.38016 -0.38483


