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Abstract

Models for Understanding Student Thinking using Data from Complex Computerized
Science Tasks

by

Michelle Marie LaMar

Doctor of Philosophy in Education

University of California, Berkeley

Professor Sophia Rabe-Hesketh, Chair

The Next Generation Science Standards (NGSS Lead States, 2013) define performance tar-
gets which will require assessment tasks that can integrate discipline knowledge and cross-
cutting ideas with the practices of science. Complex computerized tasks will likely play a
large role in assessing these standards, but many questions remain about how best to make
use of such tasks within a psychometric framework (National Research Council, 2014). This
dissertation explores the use of a more extensive cognitive modeling approach, driven by the
extra information contained in action data collected while students interact with complex
computerized tasks. Three separate papers are included. In Chapter 2, a mixture IRT model
is presented that simultaneously classifies student understanding of a task while measuring
student ability within their class. The model is based on differentially scoring the subtask
action data from a complex performance. Simulation studies show that both class member-
ship and class-specific ability can be reasonably estimated given sufficient numbers of items
and response alternatives. The model is then applied to empirical data from a food-web
task, providing some evidence of feasibility and validity. Chapter 3 explores the potential
of using a more complex cognitive model for assessment purposes. Borrowing from the cog-
nitive science domain, student decisions within a strategic task are modeled with a Markov
decision process. Psychometric properties of the model are explored and simulation studies
report on parameter recovery within the context of a simple strategy game. In Chapter 4
the Markov decision process (MDP) measurement model is then applied to an educational
game to explore the practical benefits and difficulties of using such a model with real world
data. Estimates from the MDP model are found to correlate more strongly with posttest
results than a partial-credit IRT model based on outcome data alone.
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Chapter 1

Introduction

A strong argument can be made for the use of complex tasks in science assessment. Fun-
damentally, science is not a collection of facts, but instead a set of practices and a way of
viewing the world. Central to the practice of science is inquiry and investigation; posing
questions and seeking answers through principled scientific methods. The process of inquiry
involves both multiple layers of knowledge and skills and multiple steps to complete. It
has been found that testing isolated “inquiry skills” out of the experimental context of real
science does not predict student ability in a realistic investigation (McElhaney & Linn, 2011).

The world-view of the scientist, meanwhile, is filled with dynamic models that are contin-
ually being tested and revised. Working with these models involves not only understanding
their components, but also how the components interact to generate higher level phenom-
ena. Complex tasks are able to tap student thinking about entire systems, getting at the
mental models students bring to scientific problem solving (V. J. Shute et al., 2010; Buck-
ley, Gobert, Horwitz, & O’Dwyer, 2010). Evidence centered design suggests that we select
assessment tasks based on the evidence they can provide of the competencies we wish to
assess (Behrens, Mislevy, DiCerbo, & Levy, 2012). Both for assessing the understanding of
complex systems within science and for assessing student ability to engage productively in
scientific investigation and reasoning, complex tasks are compelling in how they can provide
direct evidence of competency.

Indeed, the recently published Next Generation Science Standards (NGSS, NGSS Lead
States, 2013) call for the integration of discipline knowledge and cross-cutting ideas with
the practices of science. They explicitly define performance targets that require students to
be able to simultaneously demonstrate both science knowledge and science practices. These
standards have strong implications for how science should be assessed. In their recent report
Developing Assessments for the Next Generation Science Standards, the National Research
Council (2014) points out that the NGSS requires assessment of three dimensions of science
learning, not just within the assessment, but within a individual tasks. They suggest that
effective assessments will contain a variety of different item types, with multi-component
performance tasks playing a central role. Their selected task examples feature extended
activities in which students carry out an investigation, construct an argument or create a
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representation.
Using complex tasks for assessment is not a new idea, and debate about their use under

a variety of names, such as performance assessment and authentic assessment, has been
ongoing for decades (Linn, Baker, & Dunbar, 1991). Advocates of complex tasks argue that
simple item formats, such as multiple choice or short answer, encourage the measurement of
discrete bits of factual knowledge rather than measuring the integretion of diverse knowledge
(Resnick & Resnick, 1992). Complex tasks also lend themselves more easily to probing the
types of thinking required in real-world problem solving of the modern work place (V. J. Shute
et al., 2010).

A number of difficulties arise from the use of complex tasks, however. Due to the length of
time such tasks require, the number of tasks that can be presented is limited. This results in
few data available for inference about student abilities if the tasks are scored in a traditional
manner, impacting the reliability of the measures (Brennan & Johnson, 1995). The extent of
such tasks also makes them more expensive to develop and more difficult to administer. For
high-stakes assessments, often professional raters are required, making the administration
expensive as well. In addition, complex tasks are often embedded in a context or scenario
which motivates the task. These contexts can compromise fairness and generalizability, as
some students may be more familiar with or more interested in the scenario than others
(Shavelson, Baxter, & Gao, 1993).

One way to deal with the issues of feasibility is to make the tasks computer-based.
Through the use of technology, multi-component tasks can be presented efficiently and com-
plex inquiries can be accomplished using software simulations (Pellegrino & Quellmalz, 2010).
While a computer-based assessment may lack some of the authenticity of a hands-on science
activity, there are compensating advantages. A simulation allows students to manipulate
variables they would not normally have access to, perform experiments over time periods
too large for a classroom experience, and see results at scales unavailable with affordable
equipment (Quellmalz, Timms, Buckley, et al., 2012).

In addition to the effect on the assessment task itself, the use of technology can have a
large effect on data collection. Computer-based activities provide the opportunity to track
individual actions students take as they are working on a complex task. DiCerbo and Behrens
(2012) point out that the use of technology for education heralds a paradigm shift in how
educators and students interact with data. They coin the terms ‘digital desert,’ to describe
the previous data ecology, and ‘digital ocean,’ to describe the world of abundant data in
which we will soon find ourselves. Application logfiles can record student actions within a
task, eye-tracking software can record where students focus their attention, and chat logs
can record how students collaborate with each other. Previously, reliable inferences were
dependent upon repeated measures in carefully controlled assessment environments. In a
world which provides streams of performance data, we could achieve reliable inferences about
student cognition by aggregating the smaller amounts of information contained in a much
larger, more diverse, sets of data. The challenge is to build the statistical methods and
models that can accomplish this task.

Complex tasks involve more sophisticated cognitive processes than do discreet recall
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tasks, often tapping multiple dimensions of ability and possibly multiple layers of knowledge
and skills. This is one of their advantages from the perspective of authentic assessment, as
they are then better surrogates of problem solving in the real world, but it also complicates
the psychometric models which allow us to make reliable use of the data from the tasks.
As recommended in the National Research Council’s book Knowing what Students Know
(2001), a logical way to deal with cognitive complexity is to more explicitly model cognitive
processes. Fortuitously, the data afforded by computerized tasks may enable the estimation
of these more advanced models.

To implement the vision set forth in the NGSS we will need to develop models and
techniques that allow us to make valid and reliable inferences about students’ ability to do
science. The psychometric implications of the complex tasks required for these assessments
have not yet been fully explored (Fu, Raizen, & Shavelson, 2009; National Research Council,
2014). I propose that the use of more sophisticated cognitive models, driven by the extra
information contained in action data collected while students interact with complex tasks,
might prove to be a productive research direction.

This dissertation is in a three paper format. Chapter 2 attempts to disentangle the layers
of cognitive complexity which might confound measurement in complex tasks. A mixture
IRT model is presented that simultaneously classifies student understanding of a task while
measuring student ability within their class. The model is based on differentially scoring the
subtask action data from a complex performance. Chapter 3 explores the potential of using a
more complex cognitive model for assessment purposes. Borrowing from the cognitive science
domain, student decisions within a complex task are modeled with a Markov decision process.
Chapter 4 then applies the Markov decision process measurement model to an educational
game to explore the practical benefits and difficulties of using such a model with real world
data.
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Chapter 2

Diagnosing Student Understanding
using a Differentially Scored Mixture
Model

2.1 Introduction

When students engage in a complex assessment task, a wide variety of cognitive factors
come into play. Not only do the students have varying levels of ability in skills that are
relevant to the task, but they also have multiple layers of mental models or schema (Siegler,
1976) which guide their performance. While understanding of the content being assessed is
a component of these mental models, the models also include conceptions about the goal of
the task assigned and beliefs about which strategies should be applied (Bransford, Brown,
& Cocking, 2000). These different layers of cognitive factors can complicate measurement of
any single ability construct.

For example, a pilot version of the SimScientist ecology assessment (Quellmalz, Timms,
Silberglitt, & Buckley, 2012) includes a complex task in which students were asked to draw a
food web after having observed the feeding interactions of a handful of organisms. The task
was scored based on how many correct and incorrect arrows the students drew. Students
generally performed well on this task, with over 50% of them drawing the correct food
web (Figure 2.1a). However, the third most common response pattern included no correct
arrows at all (Figure 2.1b). This response pattern connected all of the correct organisms,
but reversed the directionality of the arrows. While the arrow directionality is important,
as it indicates the flow of matter and energy within the food web, the low score which
these responses were assigned did not accurately reflect these students’ understanding of the
ecological system. In this case, the students’ concept of arrow directionality in a food web
confounded the measurement of their understanding of the feeding relationships.

This chapter proposes the differentially scored diagnostic mixture model (DSDMM) which
attempts to both classify students by their conceptions of the task goal and provide a mea-
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Figure 2.1: a) 54% of students drew the forward-arrow food web; b) 9% drew the reverse-
arrow food web

surement within each class of how well the student is able to perform the task given their
task conception. The DSDMM models the population as a mixture of sub-populations, each
of which hold a specific conception about how the task should be performed and each of
which can be modeled using an IRT model in which their conception is considered correct.

Diagnostic models attempting to classify students according to their misconceptions
or strategies have a rich history in psychometrics. Tatsuoka (1985) introduced rule-space
methodology with the goal of using both ability estimates and fit metrics to cluster students
by misconception. The misconceptions were matched to the student clusters by calculating
the ability estimate and fit of the response vectors that best represented the performance
of a student with each misconception of interest. Mislevy and Verhelst (1990), on the other
hand, introduced a mixture LLTM that parameterized item difficulty differently based on
the strategy used to solve the item. The mixture LLTM is able to both classify students by
strategy use and give a measure of the student’s ability to solve the items with their chosen
strategy. Wilson extended this approach into the developmental domain with his SALTUS
model (1989), in which different classes represent developmental stages.

More recently, Bradshaw and Templin (2013) combined item response and diagnostic
classification models to produce the SICM model, intended to both identify student mis-
conceptions and estimate student ability. Their approach is based on the nominal response
model (Bock, 1972), thus utilizing the information contained in incorrect as well as correct
responses. The misconceptions are treated as person attributes much like skill attributes in
a traditional diagnostic classification model (Rupp, Templin, & Henson, 2012). The proba-
bility of selecting a particular response is then modeled as a combination of the continuous
ability parameter θ and boolean misconception parameters within a logistic framework.

All of these approaches take a confirmatory view of classification, with the assumption
that the meaningful strategies, misconceptions or stages have already been identified. As
such they emphasize the importance of a strong cognitive model for producing diagnostic
estimates that are both interpretable and of educational value.

For the DSDMM the different diagnostic classes represent different ways in which a stu-
dent conceives that the task should be completed. A student who has no conception of how



CHAPTER 2. DIFFERENTIALLY SCORED DIAGNOSTIC MIXTURE MODEL 6

Figure 2.2: The DSDMM classification puts a response pattern on a concept vector, while
the ability estimate locates it along the vector.

the task should be completed will likely either produce no answer, in the case of a fully
constructed response task, or choose randomly among the response alternatives in the case
of a forced choice task. A student who has a task conception will, to the best of their ability,
complete the task according to that conception. Thus two layers of understanding are being
represented by the model: first, an ability to understand what the task is asking for and
second the ability to complete the task according to that understanding. By separating the
two layers, diagnostic information about task conceptions, which may include education-
ally relevant misconceptions, can be obtained while also estimating the students’ ability to
execute the task as they conceived it.

Geometrically, the DSDMM attempts to place each student’s performance within a con-
cept space (Figure 2.2) in which each conceptual class lies along a vector. The vector’s
orientation defines the concept and the distance along the vector represents the ability of
the student to perform well in accordance to that concept. The origin in this space represents
random response selection, or no intelligible response in the case of a constructed response
task. Thus at the origin, the performance is exhibiting no relation to any conceptual class
whatsoever. For a given assessment, defining the cognitive model involves selecting which
concepts are of interest and mapping the performance within each conceptual class onto the
possible responses for the items on the assessment. This process is similar to the definition
of a construct map and outcome space in the BEAR Assessment System (Wilson, 2005). In
our model, the concepts of interest are each treated as mutually exclusive constructs. One
important distinction between this model and other diagnostic classification models is that
the different classes do not converge to a common response vector at high ability levels.
Each class will converge to its’ ideal response vector at high ability levels, contextualizing
performance entirely within the class conception.
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For the food web example task, each pair of organisms can be considered as an item.
For any pair, Org-A and Org-B, there are three possible responses, an arrow drawn from
Org-A to Org-B, an arrow drawn from Org-B to Org-A, or no arrow drawn. Table 2.1 shows
the items and ideal responses for two concept classes: the forward-arrow food web and the
reverse-arrow food web. For fixed-response dichotomously-scored items, these ideal responses
serve as answer keys. Within each class, the students’ responses are scored according to the
class-specific answer key.

Table 2.1: Ideal responses (answer keys) for the forward-arrow food web and the reverse-
arrow food web conceptual classes. (G = grass, Ka = kangaroo, Cr = cricket, L = lizard,
Ko = kookaburra)

G-Ka G-Cr C-L L-Ko G-L G-Ko C-Ka C-Ko Ka-L Ka-Ko
Forw FW → → → → - - - - - -
Rev FW ← ← ← ← - - - - - -

In this chapter I explore the properties of this model through simulation studies and the
practical applicability of the model by fitting it to empirical data from the food web task
described above.

2.2 Theoretical Foundation

Model

The differentially scored diagnostic mixture model (DSDMM) is a latent class model in
the form of a mixture IRT model (Rost, 1990; Mislevy & Verhelst, 1990). For students
who are members of a particular class, it is assumed that their goal can be represented as
an ideal response pattern for the corresponding task conception and so their responses are
scored relative to that ideal. As class membership is unknown, and thus correct scoring is
unknown, each possibly meaningful response must be modeled with the class-specific response
scoring function, bik(r), the score for giving response r to item i by a person in class k. In
this study the model will be limited to fixed-response items (e.g. multiple choice) that are
dichotomously scored, though extensions may be possible.

Given fixed-response items, we can distinguish knowing the correct answer from selecting
the correct answer, as students may select a correct response as a guess (Samejima, 1979;
Thissen & Steinberg, 1986). For any given class k, the probability of student j knowing the
correct answer for item i is modeled as a one-parameter IRT model with class-specific item
difficulty parameters,
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p(κijk = 1|zj = k, θjk) =
e(θjk−δik)

(1 + e(θjk−δik))
, (2.1)

θjk ∼ N(μk, σk); δik ∼ N(0, τk),

where κijk is the latent binary variable that indicates whether student j in class k (k =
1, . . . , K) knows the correct response to item i. zj ∈ {1, . . . , K} is the class membership for
student j, θjk is student j’s ability, δik is the difficulty of item i in class k, and K is the total
number of classes.

If the student does not know the correct answer, he chooses randomly among the response
alternatives according to each response’s inherent attractiveness cirk. Which is to say, when
the answer is not known, student j’s response to item i, xij, is distributed over the R response
alternatives as the multi-category extension to the Bernoulli distribution, xij|(κijk = 0, zj =

k) ∼ Cat(ci1k, . . . , ciRk),
∑
r

cirk = 1.

If the student does know the answer, we assume he chooses the correct answer with a
probability of 1.0. The probability of selecting any given response for an item is then the sum
of the probability of knowing the answer and selecting that response given that knowledge,
and the probability of not knowing and selecting that response given not-knowing (Samejima,
1979),

p(xij = r|zj = k, θjk)

= p(κijk = 1|zj = k, θjk)p(xij = r|κijk = 1, zj = k)

+ p(κijk = 0|zj = k, θjk)p(xij = r|κijk = 0, zj = k). (2.2)

Note that when the student knows the correct answer, their probability of selecting any
response r equals 1 if r is the correct answer and 0 if r is not. Thus, p(xij = r|κijk = 1, zj = k)
is equal to the class-specific score of r, bik(r). Similarly, when a student does not know the
answer, they guess, so p(xij = r|κijk = 0, zj = k) is the class-specific guessing parameter for
response r, cirk. From this we get

p(xij = r|zj = k, θjk)

= bik(r)p(κijk = 1|zj = k, θjk) + cirk p(κijk = 0|zj = k, θjk)

= bik(r)p(κijk = 1|zj = k, θjk) + cirk{1− p(κijk = 1|zj = k, θjk)}
= cirk + {bik(r)− cirk}{p(κij = 1|zj = k, θjk)}

= cirk + {bik(r)− cirk}
{

e(θjk−δik)

1 + e(θjk−δik)

}
(2.3)

which has the form of the IRT 1PL with guessing (1PL-G; San Mart́ın, del Pino, & De Boeck,
2006), extended to model every response rather than modeling only the scored categories.
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The random selection portion of the model is important, first because it is central to a
“concept-free” response pattern which serves as the origin of our concept space, and second
because it prevents identification issues that arise when one concept manifests as an inversion
of another concept for a particular assessment. In a Rasch model, as θ moves below zero,
there comes a point at which the predicted probability of a student answering correctly
becomes smaller than their probability of randomly guessing the correct answer (assuming
a fixed response item). This implies that as θ gets smaller, the student is preferentially
selecting incorrect responses. Such behavior indicates that he does have a concept of how
the items should be answered, but his concept is the antithesis of the “correct” responses. In
the DSDMM, such an incorrect conception would be modeled as a separate class, allowing
the low end of every class ability spectrum to converge at the random guessing origin of the
concept space.

To serve as a common origin and thus an anchor for the various concept scales, the
probabilities of choosing different responses should thus converge among all classes as the
θjk become small. For this purpose our guessing parameters, cirk, are not class specific with
cirk = cir. One could argue further that at very low concept ability, no one response would be
more attractive than any other and thus all guessing parameters should be equal as cir = 1/R
where R is the number of response alternatives. Thus we will consider two different models,
the full model in which cir are free parameters, allowed to vary between 0 and 1, given the

constraint that
∑
r

cir = 1, ∀i, and the restricted model in which all cir are fixed to 1/R.

Putting all the classes together, the overarching mixture model represents the probability
of a student record as the marginal probability across class memberships,

p(Xj|θj) =
∑
k

(∏
i

p(xij|zj = k, θjk)

)
πk (2.4)

where πk is the probability of a person being a member of class k.

Estimation

The model is estimated with the Bayesian Markov Chain Monte Carlo (MCMC) approach
using OpenBUGS, an open-source evolution of WinBUGS (Lunn, Thomas, Best, & Spiegel-
halter, 2000). Bayesian point estimation involves taking the parameter value associated with
either the mode or the mean of the estimated posterior distribution. For the categorical class
membership parameter, the mean is not meaningful, so the maximum a-posteriori (MAP)
estimator is used, which is the parameter value at the mode of the posterior distribution.
The continuous parameters are estimated using the expected a-posteriori (EAP) estimator,
which is the mean of the posterior.

The model as expressed in the BUGS code assumes that a student can only be a member
of a single class. Thus there is only one θj parameter per student. The meaning of this
parameter, however, changes as the MCMC algorithm samples different values for zj, so
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taking its expectation over the full chain would not produce a correct estimate of θj. Instead,

after the MCMC run has converged, class-specific estimations, θ̂jk, are calculated from those
iterations in which zj = k, for any k which was sampled for student j. The final ability

estimate is taken as the modal class estimate, θ̂j = θ̂jẑj .
For Baysian estimation, prior probability distributions, or “priors”, must be specified

for each parameter. The θjk and δik parameters are assumed to be normal and take proir
distributions as θjk ∼ N(μk, σ

2
k) and δik ∼ N(0, τ 2k ). The hyper parameters μk, σk, and

τk require priors of their own. We take μk to be normal as μk ∼ N(0, 100), while the
standard deviations σk and τk take inverse gamma priors as σk ∼ InvGamma(0.2, 0.2) and
τk ∼ InvGamma(0.5, 0.5). The categorical group membership parameters, zj are given a
categorical prior Cat(π1, . . . , πK), where the categorical distribution is a multi-class extension
of the bernoulli distribution. The πk and cir parameters are both probabilities with ranges
constrained to [0, 1]. The uniform distribution over [0,1] is used as a prior for both, though
it is coded in BUGS as the equivalent dirichlet distribution, Dir(1, . . . , 1), as the dirichlet is
convenient for Gibbs sampling. The full BUGS code can be found in Appendix A.

For each MCMC estimation, three chains were run with a burn-in of 2000 iterations. The
Gelman-Rubin statistic, R̂ (Gelman & Rubin, 1992), was used to monitor convergence. Due
to the large number of parameters in the models, we determine convergence based on the
mean R̂ across all parameters and use the recommended 1.1 threshold (Gelman & Shirley,
2011), above which an estimation run is considered non-convergent.

While the class membership parameter can be estimated for all response patterns, the
concept space also includes a “concept-free” origin at which a pattern is not associated with
any concept class. To identify such patterns we will examine the shape of the posterior
distribution over zj. The posterior probability for class membership, p(zj|Xj) represents
the probability that student j is a member of class k given the response data Xj. Thus
the posterior probability of the estimated membership, ẑj, provides a confidence metric for
the classification. Based on a loss function which incorporates the cost of misclassifying
students and the cost of failing to classify students, a threshold, l can be selected such that
students for which p(ẑj|Xj) < l are considered unclassifiable, or members of the “concept-
free” group. The specification of the loss function and thus the threshold needed to make
these determinations will be explored as part of the simulation studies.

2.3 Simulation Studies

Two simulation studies were conducted to evaluate the performance of the DSDMM. The first
study examined the effect of test information and guessing parameterization on parameter
recovery. Test information is varied through the number of items and the number of response
alternatives per item along with the amount of distinction between the class ideal response
patterns. The guessing parameters, cir were either fixed at 1/R or were freely estimated.

The second simulation study examined the performance of the model under more realistic
conditions. As it is unlikely that all student conception classes will be identified in practice,
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we generated data with more classes than were used in the estimating model. We also
added students to the data set who are in the ‘concept-free’ zone, responding based on
the guessing parameters alone. Performance was evaluated based on how well we can both
classify the concept-oriented students and identify the concept-free students, along with
parameter recovery for person ability and item difficulty parameters.

Simulation Study 1

For this first study all students were assumed to possess a task concept and thus be a member
of one of the concept classes, both for data generation and estimation. Further, all of the
classes used to generate the data were represented in the fitted model.

Simulation Design

The goal of this study was to evaluate recovery of population parameters, πk, μk and σk,
student parameters, zj and θjk, and item parameters, δik and cir, under conditions that are
likely to affect parameter estimation. The simulated conditions (Table 2.2) vary features
of the assessment and features of the conceptual classes. For the assessment, the effect of
test length is examined with 10, 20 and 50 item tests as well as the effect of the number of
response alternatives per item, with 2, 3, 4 and 6 response categories. For the conceptual
classes, this study varies the number of classes (2 or 4) and the amount of distinction between
the classes. The class distinction is measured in terms of what proportion of items differ in
their ideal response between the classes. Class distinctions of .25, .5 and .9 were simulated.
For the four-class conditions, R = 2 was not included, as two response alternatives were
deemed insufficient to distinguish four classes.

Table 2.2: The factors that were varied in the generation of simulation data for the first
simulation study

Factor Description Values
I Number of Items 10, 20, 50
R Number of Response Alternatives 2, 3, 4, 6
K Number of Classes 2, 4
D Amount of Class Distinction .25, .5, .9
G Guessing Behavior uniform, preferential

As we hypothesized earlier that guessing behavior might be driven by either response-
specific attractiveness or by choosing uniformly at random from the available responses,
the guessing behavior is our final simulation factor. For the uniform-guessing condition,
the generating cir were all fixed at 1/R, while in the preferential-guessing condition, the

generating cir were allowed to vary between 0 and 1, constrained such that
∑
r

cir = 1 for

each item i. In all cases it was assumed that the response attractions were equal across
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classes. The full model, in which cir are free parameters, was estimated for the preferential-
guessing data so that recovery of all item parameters could be assessed. The restricted model,
with cir = 1/R, on the other hand, was estimated for both the uniform-guessing data, for
which the restricted model is the same as the generating model, and for the preferential-
guessing data to evaluate the consequences of mis-specifying the guessing behavior. For all
conditions, a sample size of 300 subjects was used and for each condition 20 replicate data
sets were generated.

The data were generated by first creating the test specifications for the first class, which
is considered to be the primary class. An answer key was generated by drawing I values
uniformly from the possible responses {1, . . . , R}. Item difficulty parameters were drawn
from a standard normal distribution, δik ∼ N(0, 1). The remaining K−1 classes are variants
of the primary class, with the amount of variation being controlled by D, the class distinction
factor. For each non-primary class, I ×D items (rounding down) are randomly selected to
differ in conceptual meaning from that of the primary class. For these items, new correct
answers are drawn from the remaining R− 1 responses, and new item difficulty parameters
are drawn from the standard normal. The guessing parameters, which are equal across
classes, are either set to be 1/R for the uniform-guessing datasets or they were drawn from

a uniform distribution and normalized to ensure
∑
r

cir = 1.

Next the student parameters were generated. Students were assigned to classes randomly
based on the mixing parameters πk. These parameters were fixed such that the first, or
primary class, would be the largest, and the remaining classes would have equal probabilities.
Thus for K = 2, π1 = .6 and π2 = .4, while for K = 4, π1 = .4 and π2 = π3 = π4 = .2.
The student class membership parameters were drawn from the categorical distribution as
zj ∼ Cat(π1, . . . , πK). For each class, the mean of θjk was drawn from a normal distribution,
μk ∼ N(0, 0.5). Student abilities were then drawn from the distribution associated with
their class, θj|zj = k ∼ N(μk, 1).

Finally the response data were generated in a two-step procedure. For each student j
in class k and each item i, we draw κijk, the indicator that the student knows the answer
to item i, from a bernoulli distribution κijk ∼ Bern(pijk) where pijk = p(κijk|zj = k, θjk) as
given by Equation 2.1. If κijk = 1, the student response is generated as the correct response
for item i in class k. If κijk = 0, the response is selected from the categorical distribution
over all responses with the probability of each response selection given by cir.

The class membership estimates were evaluated using the misclassification rate, or the
proportion of students whose membership was incorrectly estimated,

MissclassRate =
1

N

N∑
j

I(ẑj �= zj). (2.5)

The recovery of the student ability, θjk, the item difficulties δik and the guessing parame-
ters, cir was evaluated using the root mean squared error (RMSE). The RMSE is calculated
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Figure 2.3: Misclassification rate and RMSE for θ̂ by number of response alternatives (R),
number of items (I) and class distinction (D).

by taking the square-root of the mean squared error taken over all persons or items and all
replications. For example the RMSE for θ is

RMSE(θ) =

√√√√ 1

N ×M

M∑
m

N∑
j

(θ̂mj − θmj )
2, (2.6)

where N is the number of students and M is the number of replications.

Results

Full model, preferential-guessing data For the full model, which includes cir as free
parameters, run on the preferential-guessing data sets, the MCMC estimation of the 1260
simulation runs converged 97% of the time, where the convergence criterion was taken to be
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mean R̂ < 1.1 over all parameters (Gelman & Shirley, 2011). Convergence problems were
primarily associated with low information, with 73% of the problem runs having D = .25
and 48% having I = 10 and R = 2. Non-converging runs were removed from the results and
only those estimates which converged are analyzed here.

The estimated bias and RMSE of the population parameters, πk, μk, and σk, are shown
in Table 2.3 for the two class conditions. There appears to be a small negative bias in the
μ̂k parameters and a small positive bias in the π̂1 parameter. The negative bias in μ̂k is
likely due to the effect of misclassified students who would have lower estimated abilities
and thus bring the mean down. The π̂1 bias implies that the larger class (k = 1) tended
to be overpopulated, which would be expected as the true π1 > π2, so borderline students
would be drawn into the larger class.

Table 2.3: Population parameter recovery for the two-class full model

Parameter Bias RMSE
π1 0.0046 0.054
μ1 -0.0557 0.205
μ2 -0.0235 0.309
σ1 0.0000 0.077
σ2 -0.0314 0.110

Looking at the recovery of the person parameters, we found, unsurprisingly, that the
misclassification rates and the RMSE for θ̂ both improved as more information was added
to the assessment in the form of more items, more response alternatives and more class
distinction (Figure 2.3). The misclassification rate was most strongly affected by the number
of distinct items between the classes, where distinct items are defined as items whose ideal
response differs between classes. In fact, as seen in Figure 2.4, the relationship between the
log misclassification rate and the number of distinct items (I ×D rounded down) is almost
linear. The RMSE for θ̂, on the other hand, appears to be most strongly affected by the
number of items (Figure 2.3), similar to what one would expect from a single class IRT
model. Under high information conditions (I = 50, R = 6, D = .9), the person parameter
recovery was quite good with a mean misclassification rate of 0.0015 for the two class model
and 0.0068 for the four-class model while the RMSE of θ̂ was 0.38 and 0.39 respectively.

For item parameter recovery, there appears to be a strong dependency between the esti-
mates of δik and cir. When we calculate a per-replication RMSE for δ̂ik and ĉir, taking the
mean over the items, we find that the errors for the two parameters are highly correlated
(ρ = .71). The correlation of these errors is likely due to the known weak identifiability
between the difficulty and guessing parameters in the 1PLG models (San Mart́ın, Rolin, &
Castro, 2013). For example, when many students in class k choose the correct response to
an item, the resulting probabilities can be modeled either by an easy item with low δ̂ik or a
very high chance of guessing the correct response with ĉir ≈ 1.0. As the number of response
alternatives increases however, the number of cir parameters increase, with the result that
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Figure 2.4: Misclassification rate, on log scale, by number of distinct items between classes
and number of response alternatives (R).

any given ĉir is less likely to have a large error. This interpretation is consistent with the
simulation results, as the number of response alternatives had the largest effect on δ̂ik and ĉir
RMSE values (Figure 2.5). Interestingly, the next most significant factor appears to be the
class distinction, D. For R = 6 and D = .9, the mean RMSE of δ̂ik over all other conditions
was 0.29 logits (std. dev. 0.08). The mean RMSE for ĉir was 0.035 (std. dev. 0.007) over the
same conditions.

Restricted Model, uniform and preferential-guessing data The restricted version of
the model with cir fixed at 1/R was run both on the uniform-guessing and the preferential-
guessing sets of data.

The recovery of person parameters was found to be fairly resilient to the handling of
the guessing parameters. For the correctly specified models, an ANOVA analysis found that
there was little difference between the error rates of the full and restricted models, holding
I, R,D, and K constant. Use of the restricted model decreased the misclassification rate
by 0.005 (p = .03) and decreased the RMSE for θ̂ by 0.016 logits (p < .001). When the
restricted model was applied to the preferential-guessing data sets, as a misspecified model,
the misclassification rate showed a small increase of 0.014 (p < .001), while the RMSE of θ̂
increased by 0.024 logits (p < .001).
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Figure 2.5: RMSE of δ̂ik and ĉir by number of response alternatives (R), number of items
(I) and class distinction (D).

Not surprisingly, the handling of the guessing parameters had a large effect on item
parameter recovery. The restricted model used on the uniform-guessing data decreased the
RMSE of δ̂ik by 0.198 logits (p < .001). When the restricted model was used on the prefered
response data sets, the RMSE of δ̂ik increased by 0.267 logits overall. The amount of δ̂ik
RMSE increase was very dependent, however, upon the number of response alternatives. For
R = 2 the RMSE of δ̂ik increased by 0.797 logits while for R = 3, 4, and 6 the increase was
only 0.303, 0.141 and 0.053 respectively.

Simulation Study 2

In the second simulation study, parameter recovery was examined under more realistic con-
ditions. First the simulated data included a group of students who did not fall into any of
the conceptual classes as a “concept-free” class. This group simulated students who had no
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idea how to solve the problem. In addition, the model included one fewer conceptual class
than was present in the simulated population.

Simulation Design

The data sets for this simulation are all based on a medium information profile, with I = 20
items, R = 4 response alternatives per item and D = .5 class distinction. Fifty replicate
data sets were generated with four different conceptual classes along with a fifth class of
concept-free (CF) students. The class proportions were set at π = {.3, .2, .2, .2, .1} to allow
for a primary class as k = 1, and the concept-free class as k = 5 which takes up %10 of the
population. The sample size was set at N = 330, so that the number of students in concept
classes would be comparable to the data sets in the first simulation study (300).

Given these parameters, the data were generated using the same distributions as in the
first simulation study. Concept-free students were modeled by automatically setting κij5 = 0
and drawing responses from the guessing distribution only xij ∼ Cat(ci1, . . . , ci4). The data
sets were then copied and the concept-free students were removed to provide a performance
baseline without the complication of concept-free students.

Two models were run on all 100 data sets. The first was the four-class full DSDMM
model (i.e. with estimated guessing parameters). The second model was a three class full
DSDMM model in which the fourth generating class was dropped. For both models and all
data sets, “classifiable” students were identified based on a threshold, l, for the maximum
posterior probability of ẑj. The threshold was calculated based on an arbitrary criterion
that no more than 2% of the students should be misclassified. Using results from the first
simulation study, l was set at .85 as it was found that for both the two and four-class
models, approximately 2% of the students with p(ẑj|Xj) > .85 were misclassified. We expect
the concept-free students to fall below this threshold and so be unclassifiable, but very low
ability students within the concept classes are also likely to be considered unclassifiable.

Performance was evaluated by comparing misclassification rates and RMSE for θ̂ between
the data sets that included no concept students, and those that did not, as well as between
the data sets that were estimated using only three classes versus those that included all four
conceptual classes.

Results

The MCMC estimation of the four-class model appeared to converge well, with the mean R̂
(Rubin-Gelman statistic) for all runs falling below 1.1. For the three-class model, however,
19 of the simulation runs failed to converge based on a mean R̂ exceeding 1.1. The data
sets with convergence problems were almost equally divided between those with and without
concept-free students. In three cases the corresponding concept-free and no-concept-free
data sets both failed to converge. As in the first simulation study, non converging runs were
excluded from the analyzed data.
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Table 2.4: Performance of the three and four-class models with and without concept-free
students.

Misclass Rate

Model/Dataset All Students Classifiable Only % Classifiable RMSE θ̂ RMSE δ̂ik
4 class; no CF .073 .014 83.0% 0.597 0.466
4 class; with CF .172 .045 76.4% 0.612 0.401
3 class; no CF .257 .156 79.8% 1.282 0.667
3 class; with CF .332 .177 73.8% 1.142 0.551

The four-class model run on the data sets without concept-free students was intentionally
similar to a set of simulation runs from the first simulation study. This condition serves as a
baseline since it represents a correctly specified model without the complication of concept-
free students. The parameter recovery for this condition was, as expected, similar to that
obtained by equivalent data sets in the first simulation study (Table 2.4). The overall
misclassification rate, calculated with the best class membership estimate for every student,
was .073 while the misclassification rate among students who were considered classifiable,
based on p(ẑj|Xj) > .85, was .014.

The addition of concept-free students increased the mean overall misclassification rate by
about 10%, which is the proportion of concept-free student added. The classifiable student
misclassification rate however remained below 5%. Note that recovery of θ (for classifiable
students) and δik did not significantly decrease based on the addition of the concept-free
students.

Table 2.5: Population parameter recovery for the three and four-class models with and
without concept-free (CF) students

Bias
Model/Dataset μ̂1 μ̂2 μ̂3 μ̂4

4 class; no CF -0.033 -0.071 -0.034 -0.020
4 class; with CF -0.072 -0.392 -0.302 -0.285
3 class; no CF -0.665 -0.517 -0.635 -
3 class; with CF -0.598 -0.706 -0.831 -

When the three-class model was estimated on the same data sets, misclassification in-
creased considerably, as would be expected. However, given that 20% of the students could
not be correctly classified for the no-CF data sets and 30% could not be correctly classified
for the with-CF data sets, the overall misclassification rates are surprisingly good. Unfor-
tunately, the rise in RMSE for θ̂ implies that students from the missing class negatively
impact the per-class population ability estimates. In fact the bias for μk (Table 2.5) clearly
show how both the concept-free students and the missing class students bring the population
mean ability estimates down, especially for the smaller classes (k = {2, 3, 4}).
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2.4 Application Study

The DSDMM was applied to the food web task described at the beginning of this chapter
to determine the feasibility and utility of the approach. Exploratory analysis of this task
revealed both the frequent misconception about the directionality of arrows in a food web and
a less frequent, but educationally important misconception about the distinction between
food webs and food chains. The DSMRM was run with two classes to distinguish forward-
arrow from reverse-arrow students. While ideally we would also use a four-class model to
add the food-web versus food-chain distinction, in reality these classes were insufficiently
distinct to make identification feasible. Evidence of validity was drawn from an evaluation
of the classification and estimated ability of several common response patterns along with
comparison with student performance on an ecology posttest.

Methodology

Data from 3455 middle school students were analyzed. The students had completed the food
web task as part of a larger ecology assessment (Quellmalz, Timms, Silberglitt, & Buckley,
2012). These students also completed an ecology posttest which consisted of relevant ecology
multiple choice items. In the food web task (Figure 2.1), students first watched an animation
of an Australian ecosystem, and then were instructed to “Make a food web diagram. Draw
arrows to show the transfer of matter between organisms.” The students were allowed to
freely draw arrows connecting any of the five organisms displayed on the screen: grass,
kangaroo, cricket, lizard and kookaburra.

Each pair of organisms (a,b) were coded as a separate item with three response choices:
1) no arrow, 2) b→ a, and 3) a→ b, giving ten items in total. For the two classes, the
forward and reverse food webs, the answer keys used are shown in Table 2.1 giving a class
distinction factor of D = .4. The posited third and fourth classes, forward and reverse food
chains, have answer keys that differ by only one item from their corresponding food web
classes (D = .1). As the first simulation study has shown that even two class models with
I = 10 and D = .25 yield poor classification and ability estimates, the four-class model was
deemed impractical for these application data.

Initial attempts to fit the full model, with cir treated as free parameters, to the applica-
tion data using the MCMC approach failed to converge even after 6000 iterations. As the
parameters of interest here are the person parameters, and the simulation studies found that
person parameter estimates are fairly robust when simplifying to the restricted model, in
which all cir are fixed at 1/R, this restricted model was used for the application study. The
classification threshold established in the simulation studies of p(ẑj|Xj) > .85 was used to
distinguish classifiable from unclassifiable students.

To provide validity evidence for the application results, we examine face validity by
looking at how particular response patterns were classified and what ability estimates they
produced as well as external construct validity by comparing the person estimates with
estimates of content ability from the ecology posttest. The posttest estimates came from



CHAPTER 2. DIFFERENTIALLY SCORED DIAGNOSTIC MIXTURE MODEL 20

a two-dimensional IRT analysis of the posttest scores in which content and inquiry were
modeled as two ability dimensions. The DSDMM estimates will be compared only with the
content ability estimates, as those reflect the skills needed for the food-web task.

Results

Using the restricted model, the estimation took about four hours and converged with mean
R̂ = 1.037 and max R̂ = 1.293.

As seen in Table 2.6, most of the students were estimated to be forward food web students.
This class also had the highest estimated class-specific ability mean of μ̂1 = 4.3 logits. This
seems reasonable as 54% of the students drew the forward food web exactly. The reverse
food web students also performed well, with a mean ability estimate of μ̂2 = 3.0 logits.
Only 4.5% of the students were considered unclassifiable based on our posterior probability
threshold of .85. These students, unsurprisingly, had the lowest mean ability estimate of 0.8
logits.

Table 2.6: Population characteristics by classification for the FoodWeb task analysis.

Proportion

Class of Students Mean θ̂ SD θ̂
Forward Food Web .768 4.30 0.92
Reverse Food Web .186 3.01 1.36
Unclassifiable .045 0.80 1.18

To examine face validity, the estimates for students with particular response patterns were
analyzed. While there were 780 different response patterns, 77.4% of students responded
with one of the top six patterns, which are shown in Table 2.7. Each response pattern was
classified as we would expect. The ability estimates are also reasonable, with the class ideal
response patterns generating a very high estimate, and patterns that deviate from ideal
ranking lower dependent upon the amount of deviation. Note that the ability estimates of
specific patterns are not directly comparable between classes as both the mean and standard
deviation are class-specific.

To understand how a student gets to be labeled as “unclassifiable,” we looked at the top
response patterns for the unclassifiable students. They are grass→kang, cric→liz, liz←kook
(12 students), grass←kang, grass→cric, cric←liz, liz→kook (9 students) and grass→kang,
grass←cric, cric←liz, liz→kook. These patterns mostly connect the correct organisms, but
arrow directionality appears fairly random. The unclassifiable status thus seems appropriate.

Student performance on the posttest was compared with estimated class and class-specific
ability for evidence of external validity. The mean estimated content ability of students,
based on the posttest, was found to be significantly different between those students clas-
sified as forward food web, 0.522 logits and those classified as reverse food web −0.433
logits, (t-value = 17.31, df = 990, p < .001). As the forward food web is more correct, the
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Table 2.7: Population characteristics by response pattern for the FoodWeb task.

Response Pattern Num Stud. Classified Mean θ̂ SD θ̂

1842 forward 4.877 0.028

310 forward 3.440 0.021

298 reverse 4.240 0.032

96 reverse 2.829 0.022

75 forward 3.274 0.022

55 forward 2.155 0.020

significant difference in the posttest ability estimates demonstrates both that the DSDMM
can classify students into cognitively distinguishable groups and that the groups align with
construct ability in the expected direction. The unclassifiable students, meanwhile, had a
mean estimated posttest ability of −0.661, which was significantly lower than the reverse
food web students (t-value = −2.30, df = 231, p-value = .022). Further, the class-specific
ability estimates for both forward and reverse classes correlate with posttest content-ability
estimates. For students estimated to be forward food web, the correlation between estimated
ability from the food-web task and estimated ability from the posttest was .287 (p < .001)
while the reverse food web students showed a correlation of .254 (p < .001). While both of
these correlations are fairly low, the posttest covered a large range of ecology topics only one
of which was tested by the food-web task. The fact that both classes show a significant cor-
relation with posttest results supports the hypothesis that the class-specific ability estimates
are evidence of the construct, even for the class exhibiting a misunderstanding.
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2.5 Discussion

The first simulation study showed that we can get good recovery of person parameters,
including class membership and class-specific ability, given enough test information. Clearly
the numbers of items and the number of response alternatives are within the test designer’s
control, and so can be increased to produce acceptable results. Perhaps less obviously, the
amount of class distinction can also be manipulated by the test designer, assuming that the
class conceptions of interest are known in advance. If diagnosing student conception is a
primary goal of the assessment, items can be designed to distinguish between the concepts,
increasing the class distinction and the total number of items which differ between classes.

The second simulation study showed that failing to model significant student conceptions
can result in decreased accuracy of the ability estimation as well as some decrease in the
classification accuracy. This finding reinforces the conclusion that the DSDMM is best used
as a confirmatory model based on a strong cognitive model of student performance on the
task at hand. The addition of concept-free students did not greatly impact the classification
accuracy of the classifiable students nor did it greatly increase the RMSE for θ̂. Thus the
model seems resilient to these students near the origin of the concept space provided that
an appropriate classification threshold is used.

This study explored a method for diagnosing student systemic task conceptions using an
IRT mixture model. There are a number of limitations to this current work and opportunities
for further research. One limitation of this study was the assumption that selection among
incorrect responses is not affected by student ability. The work could be extended to include
ability in the probability of selecting an incorrect response, either using the nominal response
model (Bock, 1972) or the 1PL-AG (San Mart́ın et al., 2006). It would be interesting to
see if these parameters displayed any patterns between classes that might indicate that
student of higher abilities transition from one class to another. In this study we considered
only fixed response type items for which the probability of each possible response could be
individually modeled. Future work might include an extension to fully constructed response
tasks. Finally, the classification of the concept-free students by identifying unclassifiable
students in a post-estimation procedure may have distorted the distribution of those students
who properly belonged to a concept class. We could add a concept-free class directly to the
model, perhaps in a nested classification structure, so that large proportions of uninformed
students can be cleanly estimated separately from the concept-class students.
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Chapter 3

Using a Markov Decision Process for
Measurement of Student Capability in
Complex Tasks

Complex tasks are, by their nature, made up of sub-steps. Students engaging in such tasks
are required to plan out a problem-solving approach and take multiple actions to reach the
final outcome. Some examples of complex tasks include laboratory experiments, questions
on high level physics exams and strategy games like chess. It is usually easy to assign a
value or score the final outcome – did the student draw the correct conclusions? get the
right answer? win the game? But there are many ways to go wrong in a complex task and a
single end result is insufficient to draw reliable conclusions about student ability. Focusing
only on outcomes also ignores the wealth of data contained in the actions that students take
within the task. When we can capture such sub-task action data, as is straightforward in
a computerized setting, we should be able to use those data to improve our estimates of
student ability.

To make use of any data in a latent trait measurement model, we need to map the
observed data onto the construct that we wish to measure. In assessment, this mapping is
done through scoring; a higher score shows evidence of more of the construct being measured
(Wilson, 2005). Thus for the sub-task action data, the first challenge is to assign values or
scores to the data provided by the actions. In a multi-step task, especially one that can be
solved using different strategies, it is not clear how to assign these values. An action taken
at one stage of the process might be of high value while the same action taken at a different
point would be useless. A second problem with sub-task action data is the dependence within
the data. Because we assume that students form and implement a plan, their actions cannot
be considered independent of one another. Further complicating matters, the paths students
take through the problem space may differ in length and difficulty. One student may end up
facing a decision another student avoided by choosing different initial actions. This type of
data is difficult to model with either classical test theory or item response theory, requiring
a more structured and dynamic model (Mislevy et al., 2002).
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The most common approach to dealing with data from complex tasks is to employ feature
extraction in which salient indicators of the intended construct are selected and aggregated
across the full student performance. Such feature extraction might involve hand coding
log files to find indicators of productive behaviors (Buckley et al., 2010) or using complex
algorithms to identify effective patterns of actions (Vendlinksi & Stevens, 2002). Once the
features are extracted, they are fequently modeled using Bayes nets, which allow for more
complex dependency relationships than are commonly found in item response theory (IRT)
approaches (Mislevy et al., 2002). In some intelligent tutoring systems, actions are scored
by comparison to an “ideal student model” which is based on a set of production rules that
specify, for each decision point, what action would be appropriate using a series of if-then
statements (Corbett, Anderson, & O’Brien, 1995). These systems, once created, can be used
for assessment of complex tasks (Draney, Pirolli, & Wilson, 1995) but the production rules
themselves are laborious to generate and are not generalizable.

Ideally we would like to find a feasible and generalizable method for making use of the
information in each decision, or action, that the student takes within the task. One approach
comes from recognizing that each decision is made within the context of the current state of
the problem. For example, in chess, the state of the problem is represented by the pieces on
the chess board. Any particular move only makes sense in relation to the current arrangement
of the pieces. In general, the meaning, and therefore value, of each action is dependent upon
the state of the problem at that moment. Further, as the problem state contains the manifest
results of previous actions, each decision can be considered independent of other decisions
given the current problem state. For the chess example, this implies that based only on
the current state of the chess board a player can choose an appropriate move, even with
no knowledge of exactly which moves brought the board to that state. This is, of course, a
simplification, as in reality the game history would inform the player of which moves their
opponent is likely to make, and thus which of their available moves is most likely to be
successful. For now we set aside such within-task learning, though it could be an interesting
extension of this work.

As the problem state gives the task actions both value and independence, the state can
be considered analogous to an item in a traditional assessment framework. Thus, rather than
identifying responses by sequence, we associate them with the problem state in which they
were chosen. The number of possible “items” would then be as large as the state space and
each student would only have responses for a small number of them. Given this approach, we
could model the probability of a student taking an action in a particular state using an IRT
framework by including the scoring parameter within the model as in the nominal response
model (Bock, 1972)

p(xsj = rs|θj) = exp(brsθj + ξsr)∑Rs

m=1 exp(bmsθj + ξsm)
,

Rs∑
r=1

ξsr = 0,
Rs∑
r=1

bsr = 0, θj ∼ N(μ, σ2), (3.1)

where brs is the score parameter for response r in state s, Rs is the total number of response
alternatives possible in state s, ξsr is the intercept for response r in state s, and θj is the
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ability of person j. To estimate this model we would need to estimate 2Rs−2 parameters for
each state contained in the data. If we fix the score parameters by hand, as is traditionally
done in a partial credit model, the number of parameters would be reduced to Rs − 1 per
state, but scores would need to be specified for every action in every state. To put this in
perspective, a simple strategy game such as tic-tac-toe has 5,478 legal game states (board
positions), with each state allowing 2 to 9 possible actions. Specifying scoring for each state-
action pair by hand would be a monumental task. Estimating the remaining parameters
would require massive amounts of data, given that each game would only provide data for
nine game states.

Instead, we propose explicitly modeling the student’s decision making process to express
the scoring parameters in terms of a smaller, more tractable, set of parameters, similar to
the approach taken in an LLTM (Fischer, 1973). For this purpose we use a Markov decision
process which links the probability of choosing a particular action in a particular state to
the likelihood of achieving a predefined goal, such as succeeding in the task at hand. In this
chapter we develop a measurement model for complex assessment tasks by combining the
IRT approach with a Markov decision process cognitive model.

3.1 Markov Decision Process as a Cognitive Model

A Markov decision process (MDP) is a method for choosing optimal actions based on a
longitudinal cost-benefit analysis (Puterman, 1994). The basic MDP depends upon the
principle of rationality, assuming that agents will tend to choose the most beneficial action
based on their goals and understanding of the system.

Formally, an MDP is defined by {S,A, T,R, γ} where S is the set of possible states of
the system and A is the set of actions that one can take. T represents the transition model,
p(s′|s, a), the probability of transitioning to a state s′ given that action a was taken in state
s. R corresponds to the reward structure r(s, a, s′) which specifies the immediate reward for
taking action a in state s and entering state s′, while γ ∈ [0, 1] is the discount parameter,
representing the relative value of future versus immediate rewards. From this specification,
one can calculate the Q function, which is the expected sum of discounted rewards obtained
by taking action a while in state s:

Q(s, a) =
∑
s′∈S

p(s′|s, a)
(
r(s, a, s′) + γ

∑
a′∈A

p(a′|s′)Q(s′, a′)

)
, (3.2)

where p(a|s) is the decision rule, or policy, by which actions are chosen given a particular
state. The Q function essentially assigns a value to each action in each state. In Equation
3.2, r(s, a, s′) is the immediate reward for taking action a in state s, assuming it results in

state s′, while
∑
a′∈A

p(a′|s′)Q(s′, a′) is the expected value of the next state, marginalized over

the possible next actions. Thus the quantity inside the large parentheses is the sum of the
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immediate reward and the discounted value of the future state. The expectation of this sum
is then taken over all possible states s′ that might result from action a in state s. Note that
the function is recursive, as the value of a state is defined using the Q function itself. The
Q function can be calculated using dynamic programming (Howard, 1960).

Historically, MDPs have been used in the context of robotics or computer artificial intel-
ligence to find optimal paths through a problem space. The optimal policy, π(s), is the set of
actions for a given state s which maximize a specified criterion (Puterman, 1994). When the
MDP problem has a definitive end point, the optimization criterion is usually taken to be the
maximal expected total rewards. The optimal policy therefore can be found by maximizing
a modified Q function, Q∗(s, a), over all possible actions (Ng & Russell, 2000). Q∗ assumes
that an optimal action will also be taken in all future states:

Q∗(s, a) =
∑
s′∈S

p(s′|s, a) (r(si, ai, s′) + γQ(s′, π(s′))) (3.3)

π(s) = argmax
a∈A

(Q∗(s, a)).

Note that for optimal policies, it is assumed that an optimal action is taken with a probability
of 1, p(a ∈ π(s)|s) = 1, thus the last term in Equation 3.2 reduces as

∑
a′∈A

p(a′|s′)Q(s′, a′) =
∑

a′∈π(s)
p(a′|s′)Q(s′, a′) (3.4)

= max
a∈A

(Q(s′, a))
∑

a′∈π(s)
p(a′|s′)

= max
a∈A

(Q(s′, a))p(a ∈ π(s)|s)
= max

a∈A
(Q(s′, a)) = Q(s′, π(s′)).

More recently, Markov decision processes have been used as a cognitive model to describe
not only human decision making, but also people’s ability to infer the goals and beliefs of
others. Baker, Saxe and Tenenbaum, (2011), describe a “Bayesian theory of mind” in which
cognition is modeled as a partially observed MDP. They hypothesize that people act based
on their beliefs, modeled by the state space, action set and transition functions, and in
accordance to their desires, which are modeled by the reward structure. In their earlier work
(2009), they used an MDP to show how one person might infer the goals of another through
the observation of their actions. When modeling human decision making, the policy is not
assumed to be optimal, as humans make mistakes. Frequently a Boltzmann policy is used
(Baker et al., 2009),

p(a|s) ∝ eβQ(s,a) (3.5)
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where β ∈ [0,∞) represents the decision maker’s capability to optimize actions according
to the Q function. As β increases, the probability of taking the action with the highest Q
value, i.e. π(s), increases. When β goes to zero, the action probabilities become equal, and
actions are selected uniformly at random.

Note that under this model the decision maker is at worst performing randomly. As a
cognitive model, the MDP specifies the individual’s actual goals and beliefs, and we assume
that the individual’s actions are consistent with those goals and beliefs based on the principle
of rationality (Baker et al., 2009). Thus while an individual might make mistakes in the
pursuit of their goals, represented by lower β values, they will not consistently act contrary
to their interests, based on their understanding of the situation. On the other hand, if we
were to specify an alternative MDPM ′ = {S ′, A′, T ′, R′, γ′} which did not match the decision
maker’s internal model, then it would be possible for the probability of optimal action under
M ′ to fall below random chance.

In the cognitive modeling domain, however, the intent is to infer what MDP is being used
internally by a decision maker. As such, all the MDP parameters represent the individual’s
understanding of the problem space. The reward structure R reflects that person’s personal
goals and values; the action set A includes only the actions they know are available; the
state space S includes only system states they understand as possible; and T represents
their understanding of the system dynamics. This subjective quality of the model allows
it to be used for making inferences about different elements of an agent’s cognition, based
upon their actions (Baker et al., 2011; Rafferty, LaMar, & Griffiths, in press). In particular,
inverse reinforcement learning utilizes MDPs to infer discrete goals based on action traces
by estimating the most probable values of the reward function (Ng & Russell, 2000), while
inverse planning algorithms infer student understanding of the effects of their actions by
estimating parameters in the transition function (Rafferty et al., in press).

3.2 Markov Decision Processes for Assessment

While the Markov decision process model contains numerous parameters that could be al-
lowed to differ by person, for this study we will focus primarily on the single variable β, as a
measure of a student’s capability to optimally solve a specific problem. As is appropriate for
an educational assessment, we will fix the state space, action set and transition parameters to
objectively correct values so that β represents the capability to solve the problem accurately,
rather than to solve the problem given misconceptions about the problem space. Parts of
the reward structure, on the other hand, may depend upon student motivation. We will
explore how such motivation parameters interact with student problem solving capability
and whether or not they are distinguishable. In previous work using the MDP model for
inference (Baker et al., 2011; Rafferty et al., in press), person-specific goals and beliefs were
estimated, but β was assumed to be common across participants, and was either fixed or
estimated at the population level. Here we propose to make β person specific and so give it
a person-specific subscript, βj. The formulation of the Q function remains as in Equation
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3.2, except that we note explicitly the dependency upon the capability parameter βj. The
conditional probability of student j selecting action a when in state s now becomes

p(a|s, βj) =
exp (βjQ(s, a|βj))∑

a′∈A exp (βjQ(s, a′|βj))
(3.6)

As the MDP model for assessment reflects the correct, rather than the student, conception
of the problem, it is now possible for students to consistently choose a non-optimal action.
In this study, however, we will retain the minimum limit of zero for βj as that is traditional
for the MDP model. Students who have misconceptions will then tend to cluster near that
lower limit.

It will be noted that Equation 3.6 is very similar to the nominal response model discussed
earlier (Equation 3.1), and is part of the family of item response theory models known as
divide-by-total models (Thissen & Steinberg, 1986). There are two significant differences
from traditional IRT models. First, the Q functions, which might be seen as discrimination
or scoring parameters, depend themselves upon the value of βj. Functionally, Q(s, a|βj) acts
very much like a response score as it gives a value for each possible action in each state.
However, because the action probability is part of the Q function (Equation 3.2), Q(s, a|βj)
does not fit the traditional concept of an objective score. For the MDP measurement model,
we refer to Q(s, a|βj) as the action value and note that it is dependent upon both person
and state.

The second difference from standard IRT formulations is that Equation 3.6 lacks an
intercept parameter, which in the IRT framework represents item difficulty for a dichotomous
model or response attractiveness in a partial credit or nominal model. The lack of intercept
implies that for all states, as βj goes to zero, the probability of selecting any action a goes
to 1/R where R = |As|.

While the lack of intercept suggests that the model ignores differences in decision diffi-
culty, within the MDP framework decision difficulty is instead represented by the contrast
among the Q values for the available actions of a given state. When a decision is ‘easy,’ one
action will have a much higher Q value than the others, making the selection of the correct
action quite probable. For a more challenging decision, the distinction between the actions
will be more subtle and the Q values will be closer together. The implications of interpreting
Q value differentials for decision difficulty will be further explored in Section 3.5.

The remaining MDP parameter space includes the reward-structure parameters and the
discount parameter. The reward structure is usually simple to parameterize. For example,
rewards can often be specified by a large positive end reward for achieving the correct final
state Rgoal and a small negative cost for taking any action that does not result in the goal
state Rmove. This reward structure will always be describable with two parameters, no
matter how large the state space or action set. We will discuss the implications of the
reward parameters for model identification in Section 3.5 and explore the interplay between
reward and capability at the population level in Section 3.6. The final parameter, the
discount parameter, modulates the value of rewards over time, in particular allowing future
rewards to be less valuable than present rewards. Depending upon the specific problem
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being modeled, the discount parameter might be considered to be subjective and therefore
a person-specific parameter. On the other hand, for many short-term problems in which
particular outcomes result in specified rewards, such as a scored test or a straight-forward
strategy game, the discount parameter is logically set to 1.0 as the final score is considered
to be equally valuable at any point in the task. For this study we shall consider the discount
parameter to be fixed and known.

3.3 Estimation

The observed data for student j consist of a sequence of state-action pairs,

Oj = {(s1j, a1j), (s2j, a2j), . . . (sTjj, aTjj)}. (3.7)

where Tj is the total number of actions taken by the student. Each pair indicates a state and
the action taken in that state. When it is necessary to capture the final state after the last
action is taken, an extra action such as STOP is added to form the last pair in the observed
data and Tj is incremented to include this last pair.

The Markov property applies to this model, allowing us to take each action to be con-
ditionally independent, conditioned upon student capability and the system state in which
the action was taken. Thus the probability of the observed data can be written as

p(Oj|βj) =

Tj∏
t=1

p(atj|stj, βj) =

Tj∏
t=1

exp (Q(stj, atj|βj)βj)∑
a′∈A exp (Q(stj, a′|βj)βj)

. (3.8)

βj ∼ lnN(μ, σ2)

We estimate the model by taking the βj parameters as random effects with a parametric
log-normal distribution, lnN(μ, σ2). A variable is log-normally distributed when a log trans-
formation of the variable would be normally distributed, thus we can alternatively define
βj = exp(λj) with λj ∼ N(μ, σ2). The use of the log-normal distribution ensures that βj is
restricted to be non-negative, as is desirable for our interpretation of the latent trait, but
it also makes sense conceptually. The log-normal distribution is found naturally as the dis-
tribution of growth metrics (Limpert, Stahel, & Abbt, 2001). In particular when growth is
best modeled by a multiplicative rather than an additive process the log-normal distribution
results. As learning is arguably a multiplicative growth process, the log-normal is attractive
among the positive-bound probability distributions. Log-normal ability distributions have
also been used previously in psychometric models to achieve a lower bound to the probability
of response selection without the introduction of guessing parameters (Bradshaw & Templin,
2013).

We define the set of all model parameters to include the capability distribution param-
eters, μ and σ, along with the Q function parameters, R which are the set of parameters
needed to define the reward structure. To estimate the model parameters, we use marginal
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maximum likelihood (MML), marginalizing over the βj distribution. The marginal likelihood
for the model parameters is

L(μ, σ,R) =

∫
βj

N∏
j

p(Oj|βj;R)G(βj;μ, σ)dβj, (3.9)

where G(βj;μ, σ) is the log-normal probability distribution. This likelihood cannot be evalu-
ated analytically. Not only is the integral intractable, but the Q-function must be calculated
through iterative approximation. To evaluate the integral, Gaussian quadrature is used for
integration over λj = ln(βj) with nine quadrature points. The MDP Q-function is calcu-
lated using policy iteration methods (Howard, 1960) in which the state values and action
probabilities are iteratively updated until they are changing less than a specified convergence
criterion.

The maximization could then be performed either by an iterative optimization algorithm
over the parameter space, or through an MCMC approach if prior distributions are specified
for all model parameters. Numerical approximation is used for this study. The maximization
over the parameter space is implemented using the nlopt C++ library in two stages, with a
“global” search conducted over a large range followed by a localized optimization using the
global results as starting values. These algorithms introduce some randomness to avoid local
optima, so multiple runs over the same data do not always produce the exact same results.

After the model parameters have been estimated, βj parameters are predicted using
empirical Bayesian estimation, with the prior set to the empirically estimated distribution
lnN(μ̂, σ̂2). The point estimates are taken as the maximum a-posteriori (MAP) estimates,
which correspond to the βj values at which the posterior distribution is maximized,

β̂j = argmax
βj

p(Oj|βj)G(βj;μ, σ). (3.10)

All of the estimation code was custom written using the C++ programming language.

3.4 An Illustrative Example

To illustrate the functioning and psychometric properties of the model, as well as to study
parameter recovery in the simulation studies, we will use as an example the popular board
puzzle game known as “Peg Solitaire.” The peg solitaire game consists of a board with holes,
some of which are filled with pegs. The holes can be arranged in a rectangular, triangular
or hexagonal grid, though only rectangular grids are considered here. Legal moves involve
one peg jumping over an adjacent peg into an empty hole on the other side, after which the
jumped peg is removed from the board. The goal is to leave as few pegs on the board as
possible. Often leaving a single peg is considered a win, while leaving more than one peg is
a loss. The complexity of the game can vary depending upon the size and configuration of
the board and starting position.
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Figure 3.1: A simple Peg Solitaire game. The empty circles are holes and black filled circles
are pegs. The upper left represents the starting board. Gray circles show where pegs were
moved from, while the X shows where pegs were jumped over and removed. Each numbered
board configuration corresponds to a game state.
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As an example, a very simple game is shown in Figure 3.1. Reading from the starting
state 1 on the top left, a 5-move winning solution is shown. Each jump is shown in the
following diagram, so from board position 1, we see that the middle peg is moved up to the
top row, and the peg that was jumped is removed, as shown in board position 2. Completing
this puzzle takes exactly five moves, but the solution is not unique. Note that the starting
position is symmetric, and an equivalent winning solution can be obtained by jumping the
middle peg down in the first move rather than up. Similarly, the very last move of the game
can be taken in either direction.

To describe the peg solitaire game as a Markov decision process (MDP), each element
of the MDP, (state space, action set, transition function, reward function and discount
parameter) must be specified for the game. The general state space includes all possible
configurations of the pegs on the board. For a particular game however, the state space S
can be reduced to all reachable peg configurations given the starting configuration. For the
very simple game shown in Figure 3.1, there are only 22 reachable states, six of which are
shown. Note that a game state involves only the actual position of the pegs, not the move
which preceded it, although the move is shown in the diagram for clarity. Many specific
states might be achieved through more than one path. The full action set A contains all
possible peg jumps at any point in the game. For a particular state, however, the number
of legal moves is limited. Therefore we define subsets As ⊂ A as all possible actions from
state s. The possible actions include all legal peg jumps in state s along with the reset and
score actions. The reset action resets the board back to the starting state and is allowed in
any state other than the starting state or the final winning state. The score action ends the
game and assigns the final rewards for the board. It is allowed from any state.

The transition model, p(s′|a, s) is deterministic for the peg solitaire game. A legal move
will transition to the board state which has the jumping peg moved over and the jumped
peg removed with a probability of 1.0. The probability of transitioning into any other state
is 0.0. Also the probability of an illegal move transitioning into any state what-so-ever is
0.0. The reset action transitions to the starting position with a probability of 1.0, while the
score action does not change the game state.

The reward function could either reward only a complete win, leaving only one peg on
the board, or it could give ‘partial credit’ by assigning decreasing rewards for final positions
that include more pegs. It is interesting to note that the different reward structures would
change the behavior of skilled players. If we reward only single-peg solutions, a player who
has made a mistake would most likely reset the game or quit, depending upon the cost of
each move and the length of the current path. Under the partial-credit reward structure,
however, it might make sense to continue on to a near-win result. For this study we define
a partial-credit reward structure with four parameters as described in Table 3.1.

Finally, for this game we take the discount parameter γ to be fixed at 1.0, as the value
of winning is not smaller earlier in the game than it is later in the game.

Using the example reward values from Table 3.1 for the example game pictured in Figure
3.1, we will now illustrate how the action values and probabilities could be calculated. Pegs
and holes will be referenced by row and column, (r,c), where (1, 1) is the hole in the upper
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Table 3.1: Reward parameterization for the Peg Solitaire MDP.

Parameter Description Example Value
Rwin Reward for scoring with only one peg left on the board 5.0
Rpeg Adjustment to score for each additional peg remaining -1.0
Rmove Reward (cost) for each game move -0.1
Rreset Reward (cost) for reseting the game -1.0

left corner of the board. It is often easiest in MDPs to work backwards from an end state
(Puterman, 1994). Thus we will start with state 6, shown in Figure 3.1. State 6 has only
one remaining peg and so the only action available is score. The score action ends the game,
so there are no future actions and there is no change of state. Thus the Q function reduces
to only the immediate reward for scoring the game in state 6, Q(s6, ascore) = r(s6, ascore, s6)
which is Rwin = 5.0.

Iterating backward, we now look at state 5. There are four actions available in state
5, but we will ignore the reset action for now, as it produces loops and so complicates the
calculations. Of the three remaining actions, two are peg moves: moving the (3, 2) peg to
(3, 4) or moving the (3, 3) peg to (3, 1), and the third action is score. Both peg moves result
in a winning state and thus are accorded equivalent value. The real choice here is between
making one of those moves, or quitting early. Table 3.2 shows the Q values for each move
and the action probabilities for two sample values of βj. For the peg move (3, 2) → (3, 4),
the Q value is calculated as

Q(s5, a3234) = r(s5, a3234, s6) +
∑
a′∈A

p(a′|s′)Q(s′, a′)

= r(s5, a3234, s6) +Q(s6, ascore)

= Rmove +Rwin = −0.1 + 5.0 = 4.9

As there is only one possible action in the next state, the action probability is 1, and so
the Q value is not differentiated by βj value. The action probabilities, however, show that
the lower capability student has a higher probability of quitting before reaching the highest
score, as the βj values do come into that calculation,

p(ascore|s5, βj) =
exp(βjQ(s5, ascore)

exp(βjQ(s5, a3234) + exp(βjQ(s5, a3331)) + exp(βjQ(s5, ascore))

State 4 has only two possible actions, move (1, 3) → (3, 3) or score (Table 3.3). For this
state, however, the value of the Q function is now slightly different for βj = 0.5 vs. 2.0.
Because a student with βj = 0.5 is less likely to take the correct move if they get to state 5,
the move that takes them to that state is less valuable. For example the value for the move
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Table 3.2: Values and probabilities for the example game, state 5.

Move Q(s, a|βj) Action Probabilities
βj = 0.5 βj = 2.0 βj = 0.5 βj = 2.0

(3, 2) → (3, 4) 4.9 4.9 .38 .46
(3, 3) → (3, 1) 4.9 4.9 .38 .46

score 4.0 4.0 .24 .08

(1, 3) → (3, 3) is

Q(s4, a1333|βj) = r(s4, a1333, s5) +
∑
a′∈A

p(a′|s′, βj)Q(s′, a′|βj)

= r(s4, a1333, s5) + p(a3234|s5, βj)Q(s5, a3234|βj)+

p(a3331|s5, βj)Q(s5, a3331|βj) + p(ascore|s5, βj)Q(s5, ascore|βj).

(3.11)

If we plug in the values for βj = 0.5 or βj = 2.0 from Table 3.2, we see how the Q function
begins to differ by capability,

Q(s4, a1333|βj = 0.5) = −0.1 + .38× 4.9 + .38× 4.9 + .24× 4.0 = 4.6

Q(s4, a1333|βj = 2.0) = −0.1 + .46× 4.9 + .46× 4.9 + .08× 4.0 = 4.7

Table 3.3: Values and probabilities for the example game, state 4.

Move Q(s, a|βj) Action Probabilities
βj = 0.5 βj = 2.0 βj = 0.5 βj = 2.0

(1, 3) → (3, 3) 4.6 4.7 .69 .97
score 3.0 3.0 .31 .03

Looking at game state 3, we see four different available moves (Table 3.4). The optimal
move leads to state 4, while the other three are dead end moves which must be scored in
the next action for a value of 3.0. Their move value is thus 2.9, as the cost of making a
move is -0.1. Here we see much greater differences in the value of the correct move, 4.0 vs.
4.6 for the βj values of 0.5 and 2.0. We also see large differences in the action probabilities.
The student with βj = 0.5 is predicted to have a 32% chance of choosing the optimal action,
while the βj = 2.0 student has a 90% chance of selecting it.

Going all the way back to the beginning of the game we see that State 2 has one optimal
move out of three possible actions while state 1 has two optimal moves out of five possible
actions. The Q values and probabilities could be similarly calculated for these states, but
will not be shown here. It should be noted that this method of calculating the Q values via
backward propagation is not possible in our actual MDP setup as the reset action produces



CHAPTER 3. MDP FOR MEASUREMENT OF STUDENT CAPABILITY 35

Table 3.4: Values and probabilities for the example game, state 3.

Move Q(s, a|βj) Action Probabilities
βj = 0.5 βj = 2.0 βj = 0.5 βj = 2.0

(4, 3) → (2, 3) 4.0 4.6 .32 .90
(3, 2) → (3, 4) 2.9 2.9 .19 .03
(3, 3) → (3, 1) 2.9 2.9 .19 .03
(3, 3) → (5, 3) 2.9 2.9 .19 .03

score 2.0 2.0 .12 .005

possible loops in the state space. In the actual code, policy iteration methods (Howard,
1960) are used.

Our example showed action probabilities for two different values of βj. To see how the
probabilities change over the capability range, Figure 3.2 shows the probability of selecting
an optimal move for states 2, 3, 4 and 5 as a function of βj. One interesting consequence of
having the lowest value of βj correspond to uniform random selection is that the probabilities
of a correct move near βj = 0 are dominated by the ratio of correct choices to total choices.
This suggests that greater distinction between action probabilities, and thus between pre-
dicted βj values in the lower range, will be achieved by giving students more choices at each
decision point.

3.5 Psychometric Properties of the Model

Monotonicity and Decision Difficulty Ordering

As a measure of capability within a problem space, we desire specific relationships between
βj and the probability of selecting an ‘optimal action’ for any given state. Recall that within
the MDP framework, π(s) is defined as the set of optimal actions for state s. If a person
selects action a while in state s, we can define the probability that they selected an optimal
action as p(a ∈ π(s)|s, βj).

For a continuous measurement model, one expects monotonicity between βj and p(a ∈
π(s)|s, βj), meaning that as βj values increase, the probability of selecting an optimal action
should be non-decreasing. If we define ΔQ(s, a′|βj) = Q(s, π(s)|βj) − Q(s, a′|βj), we note
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Figure 3.2: The probability of selecting an optimal response as a function of capability, βj,
for the game states 2 through 5 corresponding to Figure 3.1

that the log odds of choosing an element of π(s) rather than a′ is

log

(
p(π(s)|s, βj)

p(a′|s, βj)

)
= log

(
exp(βjQ(s, π(s)|βj))

exp(βjQ(s, a′|βj))

)
(3.12)

= log

(
exp(βj[Q(s, a′|βj) + ΔQ(s, a′|βj)])

exp(βjQ(s, a′|βj))

)

= log

(
exp(βjQ(s, a′|βj)) exp(βjΔQ(s, a′|βj))

exp(βjQ(s, a′|βj))

)
= log (exp(βjΔQ(s, a′|βj))) = βjΔQ(s, a′|βj)

For a state s whose value does not depend upon future actions, i.e. a terminal state, the Q
function does not depend upon βj and the log-odds of choosing π(s) increases as βj increases.
For any other state, ΔQ depends upon βj only because βj affects the probability of selecting
optimal actions in the future. It can be shown that increasing βj always increases the value
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of future states, but the interplay of the transition probabilities and the reward structure
complicates the proof that ΔQ would always increase as βj increases in every state. Instead,
we suggest that the weaker criterion of convergence to an optimal action as βj increases
should suffice to ensure that βj can be interpreted as a measure of the capability to find an
optimal solution. Formally then we require that as lim

βj→∞
p(a ∈ π(s)|s, βj) = 1.0.

This requirement is easily satisfied by the MDP model. We note that the probability of
selecting an action from a finite set of actions A is

p(a|s, βj) =
exp (βjQ(s, a|βj))∑

a′∈A exp (βjQ(s, a′|βj))
.

The set of actions π(s) is defined as actions which maximize Q(s, a|βj). We refer to an
element of this set as aπ(s). For each a′ /∈ π(s) there exists a constant ca′ > 0 such that

Q(s, a′|βj) = Q(s, aπ(s)|βj)− ca′ .

Out of the action set A, we define the number of optimal actions in state s to be Nπ = |π(S)|,
now the probability of selecting a particular aπ(s) ∈ π(s) is

p(aπ(s)|s, βj) =
exp (βjQ(s, aπ(s)|βj))∑
a′∈A exp (βjQ(s, a′|βj))

=
1∑

a′∈A
exp (βjQ(s, a′|βj))

exp (βjQ(s, aπ(s)|βj))

=
1

Nπ +
∑

a′ /∈π(s)
exp (βjQ(s, aπ(s)|βj)− βjca′)

exp (βjQ(s, aπ(s)|βj))

=
1

Nπ +
∑

a′ /∈π(s)
exp (βjQ(s, aπ(s)|βj))

exp (βjQ(s, aπ(s)|βj)) exp βjca′

=
1

Nπ +
∑

a′ /∈π(s)
1

exp βjca′

As βj → ∞,
1

exp (βjca′)
→ 0 for each a′ /∈ π(s). Thus

lim
βj→∞

p(aπ(s)|s, βj) =
1

Nπ

The probability of selecting an action that is contained in the set of optimal action is

p(a ∈ π(s)|s, βj) =
∑
aπ(s)

p(aπ(s)|s, βj)
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so

lim
βj→∞

p(a ∈ π(s)|s, βj) =
∑
aπ(s)

1

Nπ

= 1.

While it is reassuring that increased capability converges to optimal action choice, we
must be careful when we define the MDP model for a problem space, that the mathematical
definition of optimal matches the intended best path(s) through the problem. For example,
while it is tempting to interpret the discount parameter γ cognitively, as a decreased ability
to foresee the value of future actions, within the traditional settings for the MDP framework,
γ is not a person parameter but instead represents real decrease in future rewards, such as
are common in economics. If γ is set below 1, then there can exist situations in which the
optimal policy is to take a shorter path to a lower final reward rather than taking the longer
path to the highest final reward. If we expect the highest capability students to achieve the
highest score, then we need to either ensure that all path lengths are equal or set γ = 1.0.
A similar problem can arise from setting a negative reward value for actions that move
the student closer to the reward. This will be discussed in more depth under parameter
interpretation.

Another interesting property of psychometric models is the ordering of decisions, or
items, by difficulty. Here we define decision difficulty as the probability of giving an optimal
response, or p(a ∈ π(s)|s, βj), with a lower probability indicating a more difficult decision.
When difficulty ordering is invariant across capabilities, the model is said to possess the prop-
erty of “double monotonicity” (Skrondal & Rabe-Hesketh, 2007). Rasch models, for example,
exhibit double monotonicity and the property is considered desirable for parameter interpre-
tation. For 2PL IRT models, on the other hand, difficulty ordering can vary by capability.
For our MDP model, double monotonicity would imply that if p(a ∈ π(sA)|sA, βj = c) >
p(a ∈ π(sB)|sB, βj = c) then for all c′, p(a ∈ π(sA)|sA, βj = c′) ≥ p(a ∈ π(sB)|sB, βj = c′).
From the example probability graph (Figure 3.2) we see that the MDP model does not give
decision difficulty ordering invariance. However the crossing of the p(a ∈ π(s)|s, βj) lines
is largely due to the fact that decision difficulty near zero is dominated by the number of
options, while decision difficulty at large values of βj is dominated by the differences in the
Q(s, a|βj) value.

To understand better how the Q values are related to decision difficulty, we will examine
some hypothetical decisions, all of which have the same number of options. First it should be
noted that the decision difficulty is not affected by the overall magnitude of the Q function.
This is clear from the fact that one could add an arbitrary constant C to the all Q values
in Equation 3.6, and it would factor out of both the numerator and denominator, thus
canceling. The difficulty, then, is determined by the difference between the Q values of the
available options, as defined by ΔQ(s, a′|βj) above. Given a decision with only two options
and for which ΔQ(s, a′|βj) = ΔQ(s, a′) we can compare the decision characteristic curves
for four such decisions of differing values of ΔQ(s, a′) (Figure 3.3). High contrast decisions,
such as ΔQ(s, a′) = 4.0 provide high distinction between capabilities near zero, but do little
to distinguish the higher capability students. The low contrast decisions, on the other hand,
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Figure 3.3: The probability of selecting an optimal response as a function of capability, βj,
for 2-option decisions of differing ΔQ(s, a′)

result in smaller differences in the action probabilities, but continue to distinguish students
into the high βj values.

Parameter Interpretation

Three elements affect the overall probability of choosing an optimal action. First the βj

value directly affects choice probability in the decision model, Equation 3.6. Second the
differences between the Q values for the available actions affect the choice probabilities.
These differences are themselves affected by two parts of the model, the βj values as they
affect the probability of future optimal action, and finally the reward values which provide
a scale for Q. Note that the capability parameter βj has two mechanisms by which it affects
the action probabilities. We refer to the effect of βj as it acts through the Q function as the
indirect effect of βj, contrasted with the direct effect of βj as a parameter in the decision
model. Each of these three elements can be interpreted cognitively. The direct effect of
βj models the student’s ability to make a correct decision given their understanding of the
problem. The indirect effect of βj models the student’s ability to understand what the
effects of their actions will be in the future. Note that the farther the away goal is, the more
diluted the Q values become for a low βj student. This maps to an intuitive understanding
that higher capability students would be able to ‘read’ farther into the problem than lower
capability students. Finally, the reward structure models the motivation of the students.
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As reward differences increase, the ΔQ values increase leading to an increased probability
of choosing an optimal action. Further, a larger move penalty will cause lower capability
students to gravitate to shorter paths through the problem space, even if they do not result
in the highest final score.

Identification

If we wish to attach meaning to point estimates from a statistical model, we need to ensure
that the model is identified, which is to say that there exists a single best set of estimates
for the various parameters. Our model has two sources of potential identification prob-
lems. First, in divide-by-total models, the logit is invariant to translation, meaning that
an arbitrary constant c could be added to all values βjQ(s, a|βj) for a given decision with-
out changing the decision probabilities. Second, because of the multiplicative relationship
between βj and Q(s, a|βj), an arbitrary factor could also be introduced to both values as

βjQ(s, a|βj) = (cβj)

(
Q(s, a|βj)

c

)
. (3.13)

As we are using a log-normal βj, multiplying βj by a constant is equivalent to an additive
translation of the log-transformed normal variable λj

cβj = c exp(λj) = exp(ln c+ λj) = exp(λj + c′), (3.14)

thus resulting in a shift of the μ parameter but not affecting σ. Note that multiplying βj by
a factor c would also affect Q(s, a|βj) in many states due to the dependence on βj. Thus this
is not a pure identification problem, but may result in weak identifiability, causing problems
with the estimation algorithms.

To produce an clearly identified model, therefore, we will need to constrain either the scale
and location of the βj distribution or the scale and location of the Q(s, a|βj) distribution.
If we were to constrain the βj distribution, we would have to constrain two parameters, to
achieve both the additive and multiplicative identification, which would leave little of interest
to estimate about the student capability distribution. Therefore, we choose to apply the
constraints to the distribution of the Q(s, a|βj) values. First we fix the maximum Q(s, a|βj)
to give us the location constraint. This is straight-forward in an MDP, as generally there
is an end goal with a large pay-off which drives the process. For the peg solitaire game,
for example, we would fix Rwin to a set value to provide this constraint. Next we need to
constrain the scale of Q(s, a|βj) by fixing an interval within the range of possible values.
Again, depending upon the parameterization of R, this can usually be easily handled by
setting a second parameter within the reward structure. For the peg solitaire game, we
would fix the penalty for leaving an extra peg, Rpeg, which fixes the difference between
scoring the present board state and taking another move when one is available.

When we consider the identifiability of a model, we should note that the issue is not
a mere statistical technicality. Model identification problems indicate the limits of the in-
ference we can make from data. The linear identification problem, present in many IRT
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based models, indicates that we cannot infer absolute student capability, but only relative
student capability. Our second identification problem is interesting because it involves an
interplay between the reward parameters and the capability parameter. If these were each
single parameters, we would conclude that we cannot distinguish between capability and
motivation. In fact, most educational assessment models are unable to distinguish between
capability and motivation. While motivation is not even parameterized in common assess-
ment models, there is an implicit assumption that either students are highly motivated so
that we can be sure we are measuring ability, or that we are actually measuring the combi-
nation of ability and motivation. In particular, the highly-motivated low-ability student and
the poorly-motivated high-ability student are generally indistinguishable. An MDP model,
however, might be able to make that distinction. While we are forced to constrain two
parameters of the peg solitaire reward structure, there remain two free parameters, Rmove

and Rreset. As the Rmove parameter signifies the subjective cost of taking an action, it seems
particularly related to motivation. A student who is uninterested in playing the game might
consider each addition move a significant expenditure of effort. This would be modeled by a
large negative Rmove value and would result in the student tending to choose shorter paths
through the problem space. These students would be more likely to quit early and less likely
to find the highest final reward state. Highly motivated students, on the other hand, would
be modeled by small negative Rmove values, resulting in play that takes more actions to
achieve a better final reward. We will evaluate the ability of our MDP model to distinguish
between capability and motivation, as indicated by Rmove, in the second simulation study.

3.6 Simulation Studies

Simulation studies were performed to evaluate the performance of the MDP model for mea-
surement by examining parameter recovery under controlled conditions. The peg solitaire
game explained in Section 3.4 was used for all the simulations. This task is appealing be-
cause it is a pure strategy game with no hidden information and can easily be scaled in
complexity by increasing the board size or changing the starting configuration. There is no
stochastic component to the game, in that all state transitions are deterministic. While the
MDP approach works well with probabilistic systems which include an element of chance in
the outcomes, a deterministic game is more comparable to current assessments in which the
outcomes are determined directly by student actions.

Simulation study 1 evaluated basic recovery of the population capability parameters, μ
and σ and the student capability parameter, βj, under ideal conditions. For these simulations
the model reward parameters, R are all fixed at favorable, consistent values for both the gen-
erating and estimating models. In study 2, we evaluated the distinguishability of capability
and motivation at the population level by estimating both the capability distribution and
the free reward parameters in four distinct simulated samples.

For all of the simulations, the model parameter and capability estimates were compared
to the generating parameters and evaluated using the bias and root mean squared error
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Figure 3.4: Starting positions for the game boards used for the simulation study.

(RMSE).

Simulation Design

Four different game boards were used to examine the effect of task complexity on parameter
recovery (Figure 3.4). They varied in game length from the Tiny Cross board, which can be
solved in 5 moves, as was shown in Figure 3.1, to the Big-L board which requires 13 moves
to win (Table 3.5). While longer solution paths are an indication of complexity, the number
of meaningful choices at each move also contributes to complexity. For example, a long path
with no branching will probably be easier to solve than a shorter path with multiple options
at each choice point. In game theory, complexity is often measured using either the size of
the reachable state space, which is the total number of game states that can be reached from
the initial position, or the number of leaf nodes, which is the total number of game states
in which no further moves (other than score and reset) are possible. We can also look at
the total number of distinct allowable moves as an indication of game complexity. Table 3.5
shows that of the selected game boards, the Big-L board has the longest path to solution,
but the Diamond board has higher values on every other complexity measure.

Play records were simulated by using the MDP as a generating model. For all simulations,
γ was fixed at 1.0 to reflect the temporal invariance of the value of winning. Rwin was fixed
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Table 3.5: Complexity measures for the game boards used in the simulation studies.

Solution
Board Name Path Length Reachable States Leaf Nodes Move Actions
Tiny Cross 5 22 11 12
Big Cross 8 153 42 22
Big-L 13 807 47 30
Diamond 11 5923 1454 70

at 5.0 and Rpeg was fixed at 1.0 for identification purposes. Given generating parameter
values for μ, σ, Rmove and Rreset, student samples were generated as

βj = exp(λj); λj ∼ N(μ, σ). (3.15)

To simulate student game records on each board, the MDP was solved for each simulated
value of βj, yielding the appropriate Q values for each possible game state. For each game
board, our simulated students started in the starting state, the original board configuration,
and then drew their next action from the available actions according to the probabilities
given in Equation 3.6. If the action was to score the game, the game play was finished, if
not, the next state was calculated based on the selected action. This was repeated until
game completion.

Study 1: Recovery of Population and Person Parameters

This simulation study evaluated the recovery of the population parameters, μ and σ and the
person parameters βj. A single sample of 200 students was simulated from a population with
μ = 0.0 and σ = 0.75. The reward parameters were set to Rmove = −0.1 and Rreset = −1.0.
The students in this simulated sample played each of the four game boards 50 times, giving
a total of 4,000 game records. This design allows us to more easily evaluate the bias and
standard error of the βj estimates as well as to directly compare the information gained
from the differing game boards. As multiple samples were not simulated, the study does
not provide information about how the estimates might be affected by differing sample
characteristics.

As described in Section 3.3, the population parameters, μ and σ were estimated using
maximum marginal likelihood, then the individual capability parameters, βj were estimated
using maximum a-posteriori (MAP) with the estimated population distribution lnN(μ̂, σ̂2)
used as the prior. For all estimations the reward parameters, R, were fixed to the same values
as in the generating model. Estimated biases and RMSE values were calculated relative to
the values from generated sample.



CHAPTER 3. MDP FOR MEASUREMENT OF STUDENT CAPABILITY 44

1 2 3 4

1
2

3
4

Tiny Cross

M
ea

n 
E

st
  β

1 2 3 4

1
2

3
4

Big Cross

M
ea

n 
E

st
  β

1 2 3 4

1
2

3
4

Big L

M
ea

n 
E

st
  β

1 2 3 4

1
2

3
4

Diamond

M
ea

n 
E

st
  β

1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True β

R
M

S
E

 fo
r 

 β

1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True β

R
M

S
E

 fo
r 

 β

1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True β

R
M

S
E

 fo
r 

 β

1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True β

R
M

S
E

 fo
r 

 β

Figure 3.5: Top row: Mean β̂j by true βj. Bottom row: RMSE of βj by true βj.

Results

Population parameter recovery was fairly good as shown in Table 3.6. There was a slight
positive bias in both μ̂ and σ̂, but the RMSE for both parameters remained small. Both the
bias and RMSE for μ remained fairly consistent across different board complexities, but the
errors for σ do show a decrease for the two more complex boards.

Table 3.6: Population parameter recovery with fixed reward values for four different game
boards, standard errors are shown in parentheses.

μ σ
Board Bias RMSE Bias RMSE
Tiny Cross 0.017 (0.008) 0.055 (0.023) 0.103 (0.029) 0.217 (0.102)
Big Cross 0.028 (0.007) 0.053 (0.024) 0.076 (0.014) 0.121 (0.053)
Big-L 0.019 (0.008) 0.058 (0.034) 0.056 (0.011) 0.093 (0.049)
Diamond 0.012 (0.009) 0.058 (0.033) 0.056 (0.013) 0.105 (0.046)

Recovery of the person parameters, βj can be seen as a function of true βj in Figure 3.5.
For the lower values of βj, the mean of the estimates track the true value of βj quite well, as
they generally lie upon the identity line as shown on the graphs. As βj gets large however,
the estimates level off, showing increasing bias and RMSE. The error in the estimates for
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these high capability students appears to be due to ceiling effects as students who perform
perfectly on the task cannot be distinguished.

To determine the point at which βj values give a high probability of perfect play, we
analyzed the simulated play records for all of the simulation runs. Plays which resulted in
the maximum score, without once resetting the board, were considered ‘perfect play.’ We
calculated a ceiling threshold based on the true βj value above which students produced
perfect plays at least 60% of the time. These thresholds varied by game board, but ranged
between 2 and 2.6 logits, as shown in the fourth column of Table 3.7. The simulation results
data were then truncated by removing students that fell above the threshold on each board.
The number of students removed in this process was ≤ 20%, as shown in column five of
Table 3.7.

Table 3.7 shows the β̂j simulation results for the full population and the truncated pop-
ulations. While the bias and RMSE for the full population are quite large, the truncated
population show little bias and reasonable RMSE for βj. The difference in ceiling thresholds
among the boards suggests that the ceiling effect is task dependent. The highest threshold
is for the Big-L board which is also the board with the longest solution path, indicating that
record length, rather than state space size more closely affects the amount of ceiling effect
in the estimates.

Table 3.7: Recovery of βj with fixed reward values for four different game boards, with and
without truncation for perfect play.

Full Population Ceiling Students Truncated Pop.
Board Bias RMSE Thresh. Remaining Bias RMSE
Tiny Cross -0.318 0.738 2.03 0.80 -0.064 0.395
Big Cross -0.228 0.631 2.33 0.84 -0.036 0.362
Big-L -0.208 0.571 2.62 0.88 -0.072 0.365
Diamond -0.220 0.587 2.28 0.84 -0.045 0.327

Study 2: Recovery of Reward and Population Model Parameters

For this study we examined separability of capability from motivation at the population
level. In particular, we were interested in whether the model could distinguish between
highly-motivated low-ability populations and poorly-motivated high-ability populations.

Design

Four samples were generated to simulate populations that were of differing capability and
motivation. The generating parameters are shown in Table 3.8. For capability, we varied μ
between the groups. A μ value of 0.5 gives a median βj value of 1.65 while μ = −0.5 gives a
median βj of 0.61. There is still considerable overlap between the distributions of the high
and low capability groups. For motivation, we varied the move cost, Rmove. The value of
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Rmove should be considered relative to the potential gain for taking a single move, Rpeg which
is fixed at 1.0. The high motivation groups have a very low move cost of −0.05 which would
encourage them to keep trying after making a mistake. For the low motivation students, on
the other hand, the cost of a move is half of the expected gain from the move, given perfect
future play. For low capability students, perfect play is unlikely, so this reward value should
discourage continued attempts after errors. Rreset was fixed to −1.0 in all conditions. In all
cases N = 200 students were simulated and each simulated student played each of the four
game boards 25 times.

Table 3.8: Generating parameters for the four samples used in simulation study 2

Sample Capability Motivation μ σ Rmove Rreset Rwin Rpeg

1 High High 0.5 0.75 -0.05 -1.0 5.0 1.0
2 High Low 0.5 0.75 -0.75 -1.0 5.0 1.0
3 Low High -0.5 0.75 -0.05 -1.0 5.0 1.0
4 Low Low -0.5 0.75 -0.75 -1.0 5.0 1.0

For each set of game records, the population parameters and reward parameter were
simultaneously estimated. Person βj parameters were then estimated using the MAP esti-
mators as described previously.

Results

The differences between the four populations were evident immediately in the simulated game
records. As predicted, the higher motivation students reset the game more often (Table 3.9),
especially among the lower capability group, and thus had longer game records. The mean
total score, however, is less distinctive. In particular the mean total score of the high-ability
low-motivation group is quite similar to that of the low-ability high-motivation group.

Table 3.9: Mean number of resets and total score per dataset by capability and motivation
conditions.

Sample Capability Motivation Mean # Resets Mean Total Score
1 High High 85.7 3.77
2 High Low 3.6 0.73
3 Low High 105.7 0.95
4 Low Low 19.9 -1.07

Looking at results for individual data sets (Figure 3.6), we see that mean total score is
insufficient for distinguishing between the high-ability low-motivation (HALM) and the low-
ability high-motivation (LAHM) groups. In fact there is even considerable overlap between
the low-ability low-motivation (LALM) group and the other two. Only the high-ability
high-motivation (HAHM) group stands out as truly distinct. The estimates from the MDP
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Figure 3.6: Distribution of per-dataset mean total score, estimated μ and estimated Rmove

by experimental condition, where HAHM is “High Ability High Motivation, HALM is “High
Ability Low Motivation”, LAHM is “Low Ability High Motivation” and LALM is “Low
Ability High Motivation”.

model, on the other hand, are able to distinguish all groups. Figure 3.6 shows how the
distributions of μ̂ are mostly non-overlapping between the high and low ability groups while
the distributions of R̂move are completely distinct between the high and low motivation
groups. In Figure 3.7 we can see how the two parameters together are sufficient to cleanly
distinguish the sample data sets into the four experimental groups. The only estimates which
might be misclassified are the few LALM students with very low R̂move who also had high
β̂j values. These can be seen in the upper left part of Figure 3.7 closer to the HALM cluster
than to the LALM cluster.

The mean estimates for the population level parameters (μ, σ, and Rmove) are shown in
Table 3.10. These aggregated estimates are very close to the true values from the sample. For
the high-ability sample, mean(βj) = 0.56 and sd(βj) = 0.69 while for the low-ability sample,
mean(βj) = −0.48 and sd(βj) = 0.72. The high-motivation data sets were generated with
Rmove = −0.05 and the low-motivation sets had Rmove = −0.75.

While the recovery of Rmove is fairly consistent across conditions, the recover of μ and σ
vary considerably by experimental condition (Table 3.11). The bias and RMSE of μ appears
to be best for the HAHM group and worst for the LAHM group. For σ, however, both
low ability groups perform considerably better than the high ability groups, with HALM
giving the most accurate estimates for σ. Interestingly, while the estimation of Rmove was
good overall, the estimation performed poorest for the HALM group. This may indicate
that there is still some amount of scale trade-off between the βj distribution and the reward
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Table 3.10: Mean parameter estimates across all four boards and 25 runs, by experimental
group, with standard deviation in parentheses.

Sample Capability Motivation μ σ Rmove

1 High High 0.559 (0.122) 1.016 (0.879) -0.039 (0.032)
2 High Low 0.681 (0.279) 0.743 (0.192) -0.774 (0.077)
3 Low High -0.639 (0.482) 0.908 (0.590) -0.062 (0.047)
4 Low Low -0.400 (0.276) 0.900 (0.514) -0.774 (0.111)

parameters. The difference in complexity introduced by the four different game boards
turned out to not significantly affect parameter recovery.

We note that for even the best performing condition in this study, the estimation errors
are higher than those achieved in study 1. This is to be expected as we are estimating more
parameters, but it is a concern as we attempt to expand the role of the measurement model
to encompass measurement of motivation and perhaps beliefs through estimation of reward
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Table 3.11: Parameter recovery over all replications and all boards by experimental group.

μ σ Rmove

Sample Capability Motivation Bias RMSE Bias RMSE Bias RMSE
1 High High -0.005 0.122 0.324 0.932 0.011 0.034
2 High Low 0.117 0.301 0.050 0.197 -0.024 0.080
3 Low High -0.155 0.504 0.183 0.615 -0.012 0.048
4 Low Low 0.084 0.288 0.176 0.540 -0.024 0.113
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Figure 3.8: Histograms of σ̂ for the four different conditions.

and transition function parameters.
An examination of the results from individual estimation runs uncovered an interesting

phenomenon in the estimation. For the high-motivation groups, a handful of data sets were
estimated to have a very large σ value (Figure 3.8). These data sets were also accompanied by
a large error in the estimation of μ. The σ parameter for a log-normal distribution controls
the shape of the distribution. As σ gets large, the distribution becomes more and more
concentrated near zero. Thus a gross over-estimation of σ will have the effect of pushing
the β̂j to near zero when using Bayes modal estimators. Figure 3.9 shows the estimates of
βj versus the true βj values for two different runs on the Diamond board for the HAHM
group. Repeated estimation runs on one of the data sets which produced a high σ estimate
did not consistently reproduce the erroneous estimate, due to randomness in the estimation
algorithms. In fact an estimate of σ̂ > 3 was produced less than 1 in 5 runs and always
resulted in a much smaller log-likelihood than the estimation runs that produced smaller
estimates for σ. This seems to indicate that oddly high σ̂ may be failure of the estimation
algorithm, akin to a convergence failure, rather than a valid parameter estimate for the data.
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condition on the Diamond board.

3.7 Discussion

In this chapter we’ve explored the use of a Markov decision process as the basis for a mea-
surement model in the context of complex strategic problems. The model departs from
standard psychometric models in several aspects. Decision difficulty is encoded in the dif-
ferences between the values of the available options rather than in a separately estimated
parameter. Further, this decision difficulty has a multiplicative relationship with the latent
capability parameter, rather than a linear relationship. These factors lead to the constraint
that the latent capability parameter be non-negative, and we have chosen here to model it
with a log-normal distribution. Perhaps most unusual, the capability parameter is itself a
component of the decision difficulty calculation, making decision difficulty ability-specific.

As a cognitive model for decision making, the MDP includes elements that correspond to
motivation, beliefs and problem-solving capability. Because these elements each affect action
probability in different ways, estimation of motivation and beliefs are naturally separable
from an estimation of problem-solving capability. Both goals and beliefs have been estimated
using MDP models before (Ng & Russell, 2000; Baker et al., 2011; Rafferty et al., in press),
but in those cases the focus was on classifying agents by their goals and beliefs and the
Boltzmann parameter, β, was taken to be a nuisance parameter at most. This present study
focused on the Boltzmann parameter as a measure of problem-solving capability and further
explored how the MDP might be used to separate commonly the confounded latent traits of
capability and motivation.

As a consequence of restricting βj to be non-negative, the probability of choosing an
optimal action was constrained to be uniform random chance at worst. When used as a
cognitive model, such a constraint makes sense, as it is assumed that the student goals
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and beliefs are correctly represented by the MDP specification. In an educational setting,
however, it is more than likely that some students will have misconceptions about the content,
mechanics or goals of the task. These misconceptions could cause the student to consistently
select non-optimal actions if the MDP has been specified to reflect a correct interpretation
of the task. Thus one limitation of the current model is that it does not properly model the
actions of students with misconceptions. The model might be extended to allow for different
MDP specifications for different sub-populations, as a mixture model, thus classifying student
by misconception while measuring their problem solving capability, similar to the model
presented in Chapter 2.

The first simulation study showed that the MDP model was able to recover both the
population distribution of βj and individual βj values up to a ceiling threshold at which
students were indistinguishable due to perfect responses. This finding presents one piece
of evidence that an MDP might be used as an informative measurement model, provided
that the MDP is, in fact, a good generative model for student performance. Further validity
evidence must rely on analysis of actual student data so that estimates can be compared to
external measures and student self-reports. If the validity of the MDP measurement models
can be fully established, they may proof to be of value in analyzing performance tasks, for
which traditional approaches require many replicate outcome measures to produce a reliable
estimate.

One puzzling result from the first simulation study was how little game complexity mat-
tered in the recovery of the parameters. While the larger boards had lower RMSE for σ,
the RMSE and bias for μ and βj were little affected by game board. Complexity did appear
to affect the difficulty of the task however, as the ceiling thresholds for perfect-play were
higher for the more complex boards. This finding seems to indicate that the measurement
gain from increasing the complexity of tasks may lie primarily in accurately measuring more
of the upper capability students, though further exploration of this issue is needed.

The second simulation study showed that at the population level, both μ and Rmove can be
fairly accurately estimated. If these parameters are valid representations of student capability
and motivation, such estimation could prevent confusion between the low-motivated and the
low-ability students. In particular, we were able to clearly separate data sets that were
generated under ‘high-ability but low-motivation’ conditions from those that were generated
under ‘low-ability and high-motivation’ conditions – a separation that was not possible using
the final outcome metric alone. The next step in this line of research would be to classify
students into sub-populations based on motivation while still estimating their capability.

In the second simulation it was found that the estimation algorithm occasionally produced
spurious results in the form of an unusually large estimation for the capability distribution
parameter σ. This problem can likely be ameliorated through an improvement of the esti-
mation methodology. For example multiple estimations might be run from different starting
values so that the global maximum of the likelihood can be more reliably selected. Another
possibility would be to use a Bayesian approach to the estimation of population parameters,
such as MCMC. This would allow the specification of a prior distribution on σ which would
have the effect of reducing unusually large estimates. A similar result could be achieved
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without using MCMC by adding a penalty term associated with high σ values. Estimation
methodology was not the focus of this study, and future work could do much to make it
more efficient and reliable.

While all demonstrations and simulations of the model in this study has occurred in the
context of a simple board game puzzle, the MDP model is generalizable to many different
problem-solving tasks. To model a new task with an MDP, the state space, action set,
transition function and reward structure need to be specified. As a part of this study, a
generalized MDP C++ library has been created which facilitates the specification of a task
as an MDP, and provides an interface for parameter estimation. Still, modeling new tasks
with this library requires writing C++ code. Future work might include producing an R
package for MDP models, which would provide an interface within an environment generally
more familiar to statisticians.
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Chapter 4

Applying the Markov Decision
Process Measurement Model to an
Educational Game

There is increasing interest in combining educational games and assessment, either by includ-
ing assessments seamlessly within games intended for learning (V. Shute, 2011) or by using
the game primarily as an assessment, exemplified by the recent work at Glass Lab (Mislevy
et al., 2014). In particular, simulation games which require students to solve complex prob-
lems within a somewhat realistic environment can be both challenging and engaging for the
student. When used as an assessment, such programs can provide more data than the cor-
rect/incorrect scores supplied by traditional assessments - they enable access to a wealth of
additional data about student performance, in the form of actions that the students take
within the game (Shaffer & Gee, 2012). Not only do these tasks provide an opportunity for
students to demonstrate higher level skills in planning and system thinking (V. J. Shute et al.,
2010) but discrete actions within the complex performance reveal students’ understanding
of domain specific mechanisms.

Used as assessments, games are examples of complex performance tasks. While outcome
metrics are available in terms of achieving predefined goals or “winning” different game lev-
els, much of the available data relates to actions performed as part of the problem solving
within a particular game challenge. Sometimes referred to as log-file data (Buckley et al.,
2010), making use of the information contained in this type of data is an area of active
research. When the game or simulation contains clearly definable “right” actions, measure-
ment evidence can be collected by merely aggregating the number of occurrences of such
desirable behaviors. In many cases, however, it is not the individual action, but the relation-
ships between actions or the context within which an action was taken that contain possible
evidence of student expertise.

As presented in Chapter 3, Markov decision processes (MDP) can be combined with
item response theory to create a measurement model from these internal action data. While
the model was developed and studied via simulation in that chapter, the complications of
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applying the model to an actual educational game have yet to be evaluated.
This chapter explores an application of the MDP measurement model to empirical data

from an actual educational game. The study focuses on the feasibility and utility of the
approach for real world data as well as providing a demonstration of how the model can
accommodate the quirks and requirements of such a project. In the following sections I
describe the application game, Microbes, review the MDP measurement model and show
how the model can be applied to the Microbes game. I then fit the model to data from
a pilot study and estimate person specific abilities. The ability estimates are compared to
post-test scores for evidence of external validity. The performance of the MDP model is also
compared to IRT models which rely solely on outcome data from the game. Finally I discuss
the overall outcome, including what was successfully achieved, the difficulties encountered,
how such difficulties might be overcome and the generalizability of the approach to similar
educational games.

4.1 Microbes

Microbes is an educational game in which students learn about cell biology by playing the
part of a microbe navigating through increasingly challenging environments (Red Hill Stu-
dios, 2009). Publicly available on the pbsKids website, the game is part of the Lifeboat
to Mars series played by hundreds of students each month. For each of the ten levels, the
student receives a description of the environment they are about to enter, is given an oppor-
tunity to configure their microbe by “buying” upgrades, and then attempts to navigate the
environment to reach the goal without being eaten or running out of energy. To succeed at
each level, the student must understand both the challenge presented by the environment
and the features or behaviors that will enable the microbe to survive those challenges. If the
student succeeds, they are given ten game tokens and move on to the next level. If they fail,
they are encouraged to try again, reconfiguring their microbe if they wish.

The educational focus of the game is cellular energy production, so the microbe features
of most interest are mitochondria, which facilitate the conversion of food to energy, and
chloroplasts, which generate food from sunlight. In the configuration phase of the game, the
student is able to buy mitochondria and chloroplasts using the tokens they have earned from
previous levels. The first four levels of the game are tutorials in which the students learn
to drive their microbe around the tank using the keyboard’s arrow keys and recognize food
and predators. These levels also ensure that the student has earned some tokens by the time
they reach levels that require mitochondria (at level 5) and chloroplasts (at level 6).

The data analyzed here were collected as part of a pilot study in which 233 students
played the game and then took a multiple choice post-test. For each student, play records
were collected that list actions taken and results of the actions. Recorded actions include
buying microbe features or playing a level, while the results record the outcome from each
play-level attempt. The outcome from playing a level might be success, as when the microbe
made it to the goal post, or failure if it died. In cases of failure, the cause of death is recorded
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Figure 4.1: Markov decision process model.

as is the microbe’s distance from the goal post at death. Information on exactly how the
student navigated through the level is not available. The multiple-choice post-test covered
topics of cell biology deemed to be similar in content to the Microbes game.

4.2 Markov Decision Processes

Markov decision processes (MDPs) model sequential decision making in a non-deterministic
setting (Puterman, 1994). MDPs are often used to find an optimal sequence of actions
through a state space, optimizing rewards that result from taking specific actions in specific
states. The states are collections of variables that describe the relevant factors pertaining to
the problem at hand, while the rewards reflect either cost or benefit gained from taking an
action in a particular state and transitioning to the next state. The model is probabilistic in
that the progression from one state to the next need not be determined completely by the
actions taken in the previous state, but instead can be influenced by random effects. Thus
the transition function between states is a probability distribution over the state space. The
MDP model (Figure 4.1) is expressed in discrete time increments, t ∈ 1, 2, 3, . . . N . When
N < ∞ the model is known as a finite horizon MDP. At each time interval t, the system is in
a particular state st and the agent takes an action at. The system then moves to state st+1

and the agent incurs the cost or receives the benefit of that transition as rt+1. Cognitively,
the MDP depends upon the principle of rationality, assuming that agents will tend to choose
the most beneficial action based on their goals and understanding of the system.

An MDP can be formally defined by it’s components, {S,A, T,R, γ}. S is the set of
possible states of the system and A is the set of actions that one can take. T represents the
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transition model, p(st+1|st, at), the probability of transitioning to the state st+1 given that
action at was taken in state st. R corresponds to the reward structure r(st, at, st+1) which
specifies the reward for taking action at in state st and entering state st+1, while γ ∈ [0, 1] is
the discount parameter, representing the relative value of future versus immediate rewards.
From this specification, one can calculate the Q function, which is the expected sum of
discounted rewards obtained by taking action at while in state st,

Q(st, at) =
∑

st+1∈S
p(st+1|st, at)

⎛
⎝r(st, at, st+1) + γ

∑
at+1∈A

p(at+1|st+1)Q(st+1, at+1)

⎞
⎠ . (4.1)

p(at|st) is the decision rule, or policy, by which actions are chosen given a particular state. In
Equation 4.1, r(st, at, st+1) is the immediate reward for taking action at in state st assuming

it results in state st+1, while
∑

at+1∈A
p(at+1|st+1)Q(st+1, at+1) is the expected value of the

next state, marginalized over the possible next actions. Thus the quantity inside the large
parentheses is the sum of the immediate reward and the discounted value of the future state.
The expectation of this sum is then taken over all possible states st+1 that might result from
action at in state st. Note that the function is recursive, as the value of a state is defined
using the Q function itself. The Q function can be calculated using dynamic programming
(Howard, 1960).

Historically, MDPs have been used in the context of robotics or computer artificial in-
telligence to find the best actions to take in any given state, known as the optimal policy.
More recently, Markov decision processes have been used as a cognitive model to describe
not only human decision making, but also people’s ability to infer the goals and beliefs of
others. Baker, Saxe and Tenenbaum (2011), describe a “Bayesian theory of mind” in which
cognition is modeled as a partially observed MDP. They hypothesize that people act based
on their beliefs, modeled by the state space, action set and transition functions, and in ac-
cordance to their desires, which are modeled by the reward structure. In their earlier work,
(2009), they used an MDP to show how one person might infer the goals of another through
the observation of their actions. When modeling human decision making, the policy is not
assumed to be optimal, as humans do make errors. Frequently a Boltzmann policy is used
(Baker et al., 2009),

p(at|st) ∝ eβQ(st,at) (4.2)

where β ∈ [0,∞) represents the decision maker’s capability to optimize actions according
to the Q function. As β increases, the probability of taking the action with the highest Q
value increases. When β goes to zero, the action probabilities become equal, and actions are
selected uniformly at random.

One important aspect of the MDP when used as a cognitive model is that the parameters
S,A, T,R, γ all represent the decision maker’s understanding of the problem space. If, for
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example, there are available actions unknown to the decision maker, those actions will not be
be part of the action set in his personal formulation of the problem. This subjective quality
of the model allows it to be used for making inferences about an agent’s understanding
of the problem based upon their actions (Baker et al., 2011; Rafferty et al., in press). In
particular, the agent’s goals are encoded in the reward structure, while their beliefs about
system dynamics are encoded in the transition function. Inverse reinforcement learning
utilizes MDPs to infer discrete goals based on action traces through an estimation of the
most probable values of the reward function (Ng & Russell, 2000), while inverse planning
algorithms infer student understanding of the effects of their actions based an estimation of
parameters in the transition function (Rafferty et al., in press).

4.3 Markov Decision Processes for Assessment

To use the Markov decision process model for assessment, we are interested primarily in
β as a measure of a student’s capability to optimally solve a specific problem. All other
parameters will either be fixed, when it can reasonably be assumed that the parameters
affect all participants in a well understood way, or estimated at the population level with
the assumption that all participants share a common understanding of the problem. The
formulation of the Q function remains as in Equation 4.1, except that we note explicitly the
dependency upon the capability parameter, transforming β into the person-specific latent
variable βj. The conditional probability of student j selecting action at when in state st now
becomes

p(at|st, βj) =
exp (βjQ(st, at|βj))∑

a′t∈A exp (βjQ(st, a′t|βj))
. (4.3)

In practice we treat βj as a random parameter when we are estimating the model from
the population data. Because we wish βj to remain positive we take βj ∼ lnN(μ, σ) (see
Chapter 3 for an extended discussion). Thus our model parameters include the distributional
parameters μ and σ.

The remaining MDP parameter space includes the transition function parameters, the
reward-structure parameters and the discount parameter. These parameters might be fixed
or estimated, depending upon the intended inference. As was discussed in Chapter 3, the val-
ues in the reward structure determine the magnitude and scale of the Q function, which must
be constrained to produce an identifiable model. Thus even when the reward parameters are
estimated, at least two of the parameters must be fixed for identification purposes.

4.4 Modeling the Microbes Game

To apply the MDP measurement model to the Microbes game, we must first model the
Microbes game play as a Markov decision process. This involves defining the state space S,
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action set A, reward structure R, and the transition probabilities T . For a complex game
which includes many different variables, the immediate question is how much of that com-
plexity to include in the model. As our goal in this application is to provide a measurement
of student understanding of microbe energy production, we chose to focus on state variables
and actions that directly relate to those concepts. Another issue is how much of the game
record to model at one time. We initially attempted to model complete game play records
over all six game levels with a single MDP. This seemed attractive because these records
would capture both decisions about actions taken within a level and decisions about the or-
der in which the levels were played. Modeling these complete game records, however, proved
problematic for two reasons. First, students often took breaks between the levels, sometime
breaks of several days, making the continuity of the play over the full game questionable.
Second, the MDP model over six game levels required an extremely large state space, which
made the calculation of the Q function and thus the estimation of parameters very slow.
Instead we decided to model each game level with a separate MDP, but combine the models
when making inference (see Section 4.5). This produced a more reasonable state space while
losing only the information about a student’s choice to switch game levels, choices that were
unlikely to be relevant to our intended inference.

The state space S must capture the meaningful differences in the state of the game as
students play. For Microbes, the game state primarily consists of two parts, the environment
through which the microbe must navigate and the current configuration of the microbe.
Given our assessment goal, the relevant variables for the environment are how much food
and how much sun are available, while the relevant variables for the microbe are the number
of mitochondria and number of chloroplasts contained within the microbe. During the play of
the game these variables interact to determine the amount of energy available to the microbe
and thus heavily influence its chance of survival. Other variables that were available in the
game records but deemed not relevant to the inferences we wished to make included the
amount of predators and barriers in the environment and the type of locomotion organelle
with which the microbe was equipped.

As the availability of food and sun are constant for each game level and we are modeling
each level with a separate MDP, we can consider food and sun to be fixed within the models,
determined by game level as shown in Table 4.1. The amounts are coded as discrete integers
ranging from 0, no food or no light, to 3 for abundant food or abundant light. Note that
levels 1 − 4 are tutorial levels and are not modeled as part of the MDP for assessment.
Because food, Fl, and sun, Sl, are fixed within each level’s model, they are not actually
variables within the state space.

The number of mitochondria, ms, and number of chloroplasts, cs, within the microbe
are state variables as they can change due to student interaction with a game level. As
optimal numbers of mitochondria and chloroplasts were around 4 or 5 of each, we model
these variables as integers ranging from 0 to 10. To give appropriate rewards, we also need
to track when the student was successful in playing a level and whether they have already
beaten this level. Thus we include two additional state variables, just-won, a boolean that
is 1 if the previous action resulted in a win and 0 otherwise, and won-level, a boolean that
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Table 4.1: Availability of food and sun in the microbe’s environment for each modeled game
level.

Level (l) Food (Fl) Sun (Sl)
5 2 0
6 0 3
7 0 2
8 1 1
9 1 0
10 0 1

is 1 if the student has ever won this level. Overall we have four tracked state variables and
11× 11× 2× 2 = 484 game states per level.

For the MDP action set we again focus on content relevant actions, defining A = {buy-
mito, buy-chloro, play-level, stop}. The first two actions directly affect the configuration
of the microbe, incrementing the respective counts. The play-level action occurs when the
student decides to play the level with the current microbe configuration. This action either
does not change the state (when the student fails to reach the goal) or results in a state in
which just-won and won-level are set to 1, based partly on the configuration of the microbe
and partly on the student’s ability to play the maze-navigating part of the game. Finally
the stop action occurs when the student decides to stop playing the game level. This often
occurs after they have succeeded in winning the level, but may occur after any other action.

The reward function R is set up to reflect the values that students might give to par-
ticular action-result pairs. While the game has an internal monetary system which might
be considered as a natural reward structure, the “game tokens” are of no use other than
for buying microbe features and thus the students probably don’t value them intrinsically.
Instead we base our reward structure on the estimated psychological value of each transition.
We assume that students value making progress in the game, which involves winning the
game level they are working on. They may wish to play that level again, even after having
won, but we assume that a second win is less rewarding than the initial one. Thus we assign
two parameters for the reward of winning a level: RhighWin when the student wins a level
for the first time, and RlowWin for a repeated win. For non-winning actions, we parameterize
the reward (cost) for a buy action as Rbuy, and for playing without winning as Rlose.

The transition function, p(st+1|at, st), for purchase actions is deterministic. If a student
buys a mitochondrion they will transition to the state in which their microbe configuration
includes one more mitochondrion, up to the limit of the state space. If they try to buy a
feature that would exceed the limits of the state space, the action has no effect. The play-
level action, on the other hand, is probabilistic, resulting either in success or failure based
in part on how well the microbe configuration is suited to the environment.

The probability of success is a function of the interactions between the environment
(food and sun) and the microbe (mitochondria and chloroplasts). We can thus express the
probability of successful play for a level as a logistic model based on the game variables for
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environment and microbe configuration,

logit(p(success|play, s, l)) = α0 + α1Fl + α2Flms + α3Sl + α4Slcs + α5Slrs (4.4)

where Fl is the available food, Sl is the available sunlight, ms is the current number of
mitochondria and cs is the current number of chloroplasts. The final factor, rs, is intended
to capture the balance between mitochondria and chloroplasts, as a balanced microbe is
more efficient than an unbalanced microbe in the presence of sunlight. Thus we define

rs = 1− |cs −ms + 0.0001|
(cs +ms + 0.0001)

(4.5)

with 0.0001 added to prevent discontinuity when both cs and ms are zero. Note that rs will
be approximately zero when the microbe has one type of organelle but not the other and it
will be approximately 1 when cs = ms.

The coefficients in Equation 4.4 express the utility of each factor for microbe survival.
α0 is the easiness of the level with no food or sun. α1 represents the utility of food in
the absence of mitochondria and α3 represents the utility of sunlight in the absence of
chloroplasts. α2 represents the increased utility of food for each additional mitochondria,
and similarly α4 represents the increased utility of sunlight for each additional chloroplast.
Finally α5 represents the increased utility of sunlight when the microbe contains a balanced
number of mitochondria and chloroplasts.

Once the elements of the MDPs are defined, the Q functions can be calculated. The
student response probability is then modeled using the MDP models for each game level
within the action probability equation defined in Equation 4.3.

4.5 Estimation

Estimation proceeds in two phases. First the model parameters are estimated and then indi-
vidual student abilities are predicted, given the estimated model parameters. The observed
data for student j on game level l consist of a sequence of state-action pairs,

Ojl = {(s1jl, a1jl), (s2jl, a2jl), . . . (sTjljl, aTjljl)}. (4.6)

where Tjl is the total number of actions taken by the student on level l. Each pair indicates
the game state for that interval and the action taken in that state. The full record for
student j includes {Oj1, Oj2, . . . OjL} where L is the total number of possible game levels. If
a student did not play a particular level l, then Ojl would be the empty set.

The Markov property applies to this model, allowing us to take not only each level as
conditionally independent, but also each action within a level to be conditionally indepen-
dent, conditioned upon student capability and the system state in which the action was
taken. Thus the probability of the observed data can be written as
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p(Oj|βj) =
L∏
l=1

Tjl∏
t=1

p(atjl|stjl, βj) =
L∏
l=1

Tjl∏
t=1

exp (Ql(stjl, atjl|βj)βj)∑
a′∈A exp (Ql(stjl, a′|βj)βj)

. (4.7)

βj ∼ lnN(μ, σ2)

We estimate the model by taking the βj parameters as random effects with a parametric
log-normal distribution, lnN(μ, σ2). A variable is log-normally distributed when a log trans-
formation of the variable would be normally distributed, thus we can alternatively define
βj = exp(λj) with λj ∼ N(μ, σ2). The use of the log-normal distribution is discussed in
more detail in Chapter 3.

We define the set of all model parameters to include the capability distribution param-
eters, μ and σ, along with the Q function parameters, R and T , where R is the set of
parameters needed to define the reward structure and T is the set of parameters needed to
define the transition function. To estimate the model parameters, we use marginal maximum
likelihood (MML), marginalizing over the βj distribution. The marginal likelihood for the
model parameters is

L(μ, σ,R, T ) =

∫
βj

N∏
j

p(Oj|βj;R, T )G(βj;μ, σ)dβj, (4.8)

where G(βj;μ, σ) is the log-normal probability distribution. This likelihood cannot be evalu-
ated analytically. Not only is the integral intractable, but the Q-function must be calculated
through iterative approximation. To evaluate the integral, Gaussian quadrature is used for
integration over λj = ln(βj) with nine quadrature points. The Ql functions are calculated
using policy iteration methods (Howard, 1960) in which the state values and action prob-
abilities are iteratively updated until they are changing less than a specified convergence
criterion.

The maximization could then be performed either by an iterative optimization algorithm
over the parameter space, or through an MCMC approach if prior distributions are specified
for all model parameters. Numerical approximation is used for this study. The maximization
over the parameter space is implemented using the nlopt C++ library in two stages, with a
“global” search conducted over a large range followed by a localized optimization using the
global results as starting values.

Once the model parameters have been estimated, individual student capabilities are
predicted. They can be predicted based on a straight-forward maximal likelihood estimation
(MLE) or using an empirical Bayesian approach in which the estimated βj distribution is
used as a prior to determine the posterior distribution for βj. As was noted in the discussion
of Chapter 3, the Bayesian estimation using a log-normal distribution for βj has shown a
tendency to push estimates into the lowest part of the distribution, especially when σ is
estimated to be large. For this application study, therefore, we will predict βj using both the
MLE and MAP and explore the effects of the differing methods on the resulting estimation.
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The MDP modeling software used in Chapter 3 was customized to model the Microbes
game. The customization included writing code for the transition functions and the reward
functions. The state space and action sets were defined using the standard modules included
in the MDP builder.

4.6 Application

Data

The data come from a pilot study in which the Microbes game was evaluated as an assessment
instrument. In the study, middle school students played the game, either in class, in an after-
school program or at home. Students were then given an in-class multiple-choice post-test
which covered appropriate topics in cellular biology. The game play by the students was
largely unsupervised, and so while some students completed all of the ten game levels, many
students played only a few levels. We are not modeling the first four game levels, as they
function more as game-interface tutorials, so we are only interested in the 238 students who
completed at least one of the levels from five to ten. Of these students, 148 also completed
the post-test.

Game play data

The game play data consisted of a sequence of action steps where actions included buying
mitochondria, buying chloroplasts and playing the level. At each action step, the pre-action
state of the game was recorded in the form of the game level, the number of mitochondria
and the number of chloroplasts in the microbe. For play actions, the data also indicate the
results of the play as either ‘success’ or ‘failed.’ When the student moved to a new level or
stopped playing the game a ‘STOP’ action was inserted to indicate their decision to stop
playing that game level. Excluding the STOP actions, the initial data file recorded 5970
student actions. A sample game record for a single student is shown in Table 4.2. This
student played levels 5 and 6, buying two mitochondria on level 5 before choosing to play
the level. The first play attempt failed, but the student succeeded the second time. Then
the student moved on to level 6, bought a chloroplast and successfully played the level before
stopping.

In the actual student data complications arise. Some students bought excessive amounts
of organelles, well beyond the ten mitochondria and chloroplasts that were considered rea-
sonable to model. One student, for example, managed to produce a microbe with 50 mito-
chondria and 157 chloroplasts. To keep our model within reasonable bounds, any actions
taken in a game state that exceeded the maximum numbers of mitochondria and chloroplasts
were removed from the game record. This truncation removed 710 actions and affected 28
of the students.

A less straight-forward issue with the data arose from students who continued to play
a level after they had already succeeded in winning that level. It is unclear whether the
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Table 4.2: A sample game record.

Level Num Mito Num Chloro Action Result
5 0 0 Buy Mito -
5 1 0 Buy Mito -
5 2 0 Play Failed
5 2 0 Play Success
5 2 0 STOP -
6 2 0 Buy Chloro -
6 2 1 Play Level Success
6 2 1 STOP -

actions students take after winning a level are useful in a capability measurement context.
Up to the point of their first win, it is reasonable to assume that students are motivated by
trying to win the game level and thus can be reasonably modeled by the Markov decision
process described previously. After they have beaten the level, we expect them to move
on to the next level or quit the game. When they continue interacting with the completed
level, however, it is unclear what they are trying to accomplish. These may be students
who wish to beat the level faster than their previous win, or they may just be exploring
the consequences of different paths. As an MDP is a goal oriented model of behavior, we
cannot expect to fit data for which the goals are completely unknown. Thus, inferences
about student capability in cell biology may be more valid if we trim the data after the first
win for each level, eliminating these ambiguous actions from the play records. To evaluate
the utility of this post-win data, we will fit our models to two versions of the data: one in
which post-win actions are included, and one in which they are removed.

Excluding stop actions, the minimum record length was 1 action while the maximum
record length was 199 actions for both the full and trimmed data. The 199 action record
was something of an outlier however, with the next longest record being 80 actions for the
full data and 60 actions for the trimmed data. The median record length for the full data
was 21.5 actions while for the trimmed data it was 19 actions. Students played between one
and six levels with 128 students playing all six levels and 64 students playing three or fewer
levels.

Game outcome data

To compare our MDP capability estimates to more traditional measures, we also processed
the raw data into a more standard, outcome-oriented format. For this data we retain only
the results of the student’s play-level actions during the game. Each level can then be
considered as an ‘item’ with the item score based on the student’s win record on that level.
As students are allowed to play any level multiple times, however, there is not a one-to-one
correspondence between levels and play results. For example, the sample game record shown
in Table 4.2 would result in the outcome record shown on the left side of Table 4.3. The
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student played level 5 twice, failing on their first try but succeeding on their second try, and
played level 6 only once, succeeding on that try.

Table 4.3: The sample record from Table 4.2 processed for outcome statistics only.

Scoring
Level Try Num Success First Try Partial Credit
5 1 0
5 2 1 0 2
6 1 1 1 3

Some students were very persistent, trying a level as many as 28 times before either
winning or quiting. To deal with these repeated attempt data, we scored the levels in
two different ways. First, using dichotomous scoring, we recorded only the outcome for a
student’s first try on each level. By this scoring, the sample student would get a 0 on level 5
and 1 on level 6, as shown on the right side of Table 4.3. First-try scoring lumps all students
who failed their first attempt together, even though some succeeded on their second attempt
and others took 20 tries to succeed. As an alternative, we also used partial credit scoring
in which students receive scores from 0 to 3 for each level, depending upon how many tries
they required to succeed. Success on the first try was awarded a score of 3, on the second
try a score of 2, and on the third try a score of 1. Students who could not win by their third
try were given a score of 0 for that level. Using the partial credit scoring, the sample record
would be scored 2 for level 5 and 3 for level 6 as shown in the last column of Table 4.3 .

Post-test data

Our final data set comes from the multiple-choice post-test used as part of the pilot study.
There were 24 items which dealt with topics such as the basic needs of microbes and the
functionality of special organelles such as mitochondria and chloroplasts. As the game is
particularly focused on the functionality of mitochondria and chloroplasts, we note that
10 of the items were specifically targeted at those organelles. The items were all scored
dichotomously.

Not all students completed all questions on the post-test, with 20 students out of 148
skipping one or more question. One student skipped ten questions, all others completed at
least 19 of the 24 questions. All skipped questions were coded as missing data. The post-test
scores ranged from 1 to 24 with a mean of 13.0 correct answers.

Models

MDP

The game play records were modeled with the Markov decision process measurement models
detailed in sections 4.3 and 4.4. Each game level was modeled with an MDP for that specific
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level but with shared parameters across all levels. This approach allows the state space for
each MDP to be kept small while utilizing the information from the complete game records
for parameter estimation.

In the Microbe MDP, the transition parameters represent a cognitive model of the in-
teraction between the microbe’s organelles and its environment. If we were to estimate the
transition parameters based on the student action data, we would be estimating the stu-
dents’ beliefs about how the system worked (Rafferty et al., in press), as it is their internal
representations of the interaction between organelles and environment that determine their
actions. Such a diagnostic model could have uses, particularly in a formative assessment, but
such is not the goal here. Instead, to produce a capability-oriented measurement model, we
fix the transition parameters to represent the correct belief and use the estimation of βj as
a measure of how closely their actions match optimal actions given that correct belief. The
question then arises, how do we determine the correct values for the transition parameters?
Two different approaches were compared for making that determination. First a set of values
were assigned based on theoretical considerations of how the microbe’s configuration and the
environmental factors should affect the probability of success. The theoretical values were
set as shown in Table 4.4. These values reflect that food can be used by the microbe directly,
but is more efficiently converted to energy in the presence of mitochondria, while sun is not
useful to the microbe without chloroplasts and is increasingly useful when chloroplasts are
matched with mitochondria. The last coefficient, α5 is set to 2 rather than 1 because as a
ratio, rs ranges between 0 and 1, while the other factors are integer value ranging up to 3
for food and sun and up to 10 for mitochondria and chloroplasts.

Table 4.4: Theoretical and empirical transition parameter values for the MDP measurement
model. Standard errors are in parentheses.

Parameter Function Theoretical Empirical
α0 intercept -5 -2.70 (0.14)
α1 coefficient for food alone 1 0.67 (0.09)
α2 interaction between food and mi-

tochondria
1 0.12 (0.02)

α3 coefficient for sun alone 0 0*
α4 interaction between sun and

chloroplasts
1 0.23 (0.03)

α5 interaction between sun and the
ratio of mitochondria to chloro-
plasts

2 0.97 (0.14)

*Constrained parameter.

The theoretical values for the transition parameters are fairly imprecise, expressing only
the positive value of the different combinations of microbial and environmental factors with-
out resolving the relative value between the different factors. One way to achieve a closer
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approximation of those coefficients is to estimate the empirical value of each factor based on
the outcome data. As many students have played the game with different configurations of
microbes in different environments (different levels) we have enough data to determine the
effect of each factor on the probability of winning the game level. Note that this is different
from estimating the transition parameters as part of the MDP model, in which case the
estimation would be based on when the students choose the play action rather than when
they were successful in their play. To empirically determine the effect of the organelles and
environmental factors on the probability of successful play, we modeled the play outcomes
using a hierarchical logistic regression with plays nested in students.

The regression model is the same as Equation 4.4 excepting that we add a random
intercept, ζj at the person level:

logit{p(Ytj = 1|xtj, ζj)} =α0 + α1Flt + α2Fltmst + α3Slt + α4Sltcst + α5Sltrst + ζj (4.9)

ζj ∼ N(0, σ′)

where Ytj is 1 if student j won their tth play of the game, and xtj = {Flt , Slt ,mst , cst , rst}
where lt is the game level being attempted, and st is the game state in which student j
played the game, at try t. The different game levels are deterministically described by the
explanatory variables Flt and Slt , so game level does not separately enter into the model.
While the student results do provide empirical evidence of which game states produced a
higher probability of success, it should be noted that the selection of states in which attempts
were made was far from random. As students would favor particular game states for level-
play, the data suffer from selection bias and therefore the estimates may exhibit some bias.
The model was estimated using lmer in R using adaptive Gauss-Hermite quadrature with 15
nodes and produced the coefficient in the ‘Empirical’ column of Table 4.4. The full regression
results can be found in Appendix B.

In addition to the transition parameters, the reward parameters must also be specified
or estimated. For the model to be identified, the reward structure must include two fixed
parameters which constrain the location and scale of the Q function (see Chapter 3). We
constrain the reward for winning, Rwin = 1 and the reward for stopping, Rstop = 0 to serve
this function. The only remaining reward parameters of interest are Rbuy, the reward (or
cost) of buying organelles and Rlose the cost of losing a play attempt. We can estimate
Rbuy and Rlose at the population level as an estimate the subjective cost that students
generally assigned to time spent configuring their microbe and to losing their play attempt.
To maintain meaning of the parameters, however, we restrict the range of Rbuy ∈ (−Rwin, 0),
as values of Rbuy outside of this range would fundamentally change the cognitive model
represented by the MDP. Similar to the transition function, we will fit a model in which all
of the reward parameters are constrained to their theoretical values, and one in which the
Rbuy and Rlose are estimated as model parameters.
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IRT

For the comparison IRT model we used a Rasch model, estimated with the item parameters
constrained to sum to zero. Student abilities were predicted using both maximum likelihood
(MLE) and expected a-posteriori (EAP) estimation methods. We fit the ‘first try’ outcome
data using a dichotomous model (IRT FT) and the partial credit outcome data using a
partial credit model (IRT PC). The post-test data were also fit with a dichotomous Rasch
model. All IRT models were run using ACER’s ConQuest software (Wu, Adams, & Wilson,
1998).

Analysis

Four different MDP models were compared (Table 4.5), varying whether the transition pa-
rameters are set to theoretical or empirical values and whether the reward parameters are
fully constrained or partially estimated. The model fits were compared based on their log-
likelihood and AIC fit statistics. The student capability parameters were then estimated
using both the MLE and MAP estimation methods. For validity evidence, we examined the
pair-wise correlation of these capability estimates with estimates from the students’ post-test
results. The MDP estimates were also compared to those generated by the outcome-only
IRT models to determine if the models utilizing the game action data provide any additional
information beyond that available in the win/lose data. These analyses were performed
twice, once on the full data and once on the trimmed data in which actions after the first
win per level have been removed.

Table 4.5: MDP models to be compared.

transition estimated
model parameters model parameters

1 theoretical μ, σ
2 empirical μ, σ
3 theoretical μ, σ,Rbuy, Rlose

4 empirical μ, σ,Rbuy, Rlose

Results

For all models, the estimates from the full and trimmed data were similar, but the person
estimates from the trimmed data correlated better with the post-test results. Thus the
results from the trimmed data will be reported here. Similarly, while the person capability
parameters, βj were estimated using both the MAP and MLE methods, we found that the
MAP estimates were very sensitive to the estimated capability distribution parameters. In
particular, high values of σ̂ tended to force the capability estimates close to zero, because
for log-normal distributions, the σ parameter is a shape parameter and high values create
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a distribution that is highly peaked at the low end of the range. These estimates did not
correlate as well with the post-test capability estimates as did the MLE estimates. For the
remainder of this section, we will use the MLE estimates.

We first look at model fit, comparing the theoretical versus empirical transition param-
eters and the completely fixed versus estimated reward parameters. Table 4.6 shows that
model 4, with empirical transition parameters and estimated reward parameters, produced
the best fit by all criteria. The estimated distribution of βj varied widely, with μ estimated
near 0 by model 1 and around 1.4 for the other three models. The σ parameter was generally
estimated to be large, with 1.755 being the lowest estimate, given by model 3.

Table 4.6: Comparison of MDP models running on the trimmed data.

model 1 model 2 model 3 model 4
Parameter Estimates

μ 0.051 1.445 1.410 1.467
σ 2.503 1.933 1.755 3.024

Rlose -0.20* -0.20* -0.006 -0.067
Rbuy -0.10* -0.10* -0.969 -0.675

Model Fit
-2 log(L) 15461.87 14887.86 13444.96 12694.45

AIC 15465.87 14891.86 13452.96 12702.45
*Fixed parameters.

For the models which estimated the reward parameters, we note that Rlose was estimated
to be close to zero while Rbuy was nearly the negative of Rwin, the reward for winning.
Given such estimates, the MDP would predict that in almost any game state, students
would choose to play the level rather than buy an organelle, as there would be little cost
for playing and losing compared to the relatively large cost for upgrading the microbe. The
fact that the model produced these estimates suggests that a significant proportion of the
sample students are indeed choosing to play too often and to buy not often enough. The
reward estimates, while within the range for what is rational, change the meaning of the
MDP as a measurement model as they change which actions are optimal. If play is always
the optimal action, then students who bought organelles would be considered to be showing
poor judgment and thus receive lower ability estimates. Thus for models 3 and 4, βj may no
longer serve as a measurement of understanding cell biology.

Comparing the capability estimates given by the four MDP models, we can see from
Figure 4.2 that models 3 and 4 appear to be behaving quite differently from models 1 and
2. Many of the students who were given very low estimates in the fixed reward models (1
and 2) are given high estimates in the corresponding estimated reward models (3 and 4).
Other students seem to be distributed almost randomly by the estimated reward models.
This fits with our interpretation of how the estimated values of Rlose and Rbuy would alter
the meaning of the MDP. While we would like to use the estimates of Rbuy to measure the
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Figure 4.2: Comparison of fixed reward models (x-axes) and estimated reward models (y-
axes) when estimated over the full sample. Correlations were -.43 for models 1 and 3 and
-.14 for models 2 and 4. Note that 6 extreme values in the second graph are not shown for
clarity of the remaining estimates.

general motivation of the students while also measuring their content understanding with
βj, this methodology cannot be used if the estimated R values fundamentally change the
measurement construct.

Interestingly, for the fixed reward models, the distribution of the log(β̂j) values appear
bi-modal (Figure 4.3), though we would expect log(βj) to be normally distributed. Thus it
seems probable that our population consists of two distinct subpopulations. Examination of
the play records for the students whose estimates were in the lower clusters revealed that a
large proportion of these students never bought any mitochondria or chloroplasts.

Of the original 238 students, 50 of them never bought a single organelle. These were not
students who merely quit early. The median number of levels played in this group was 5 out
of the 6 possible, while the median number of play attempts was 17.5. Not surprisingly, these
students made up a large proportion of those who received very low capability estimates in
the fixed reward models. For model 1, for example, of the 71 students whose log(β̂j) was less
than −5, 46 were no-buy students. While some of these no-buy students are likely to have
been truly confused about the value of the organelles, it seems odd that so many students
would not have understood the simplest part of the content, that a microbe’s organelles help
it to survive. Indeed it seems plausible that instead many of them were playing based on a
cognitive model that did not match our hypothesized model. It is possible, for example, that
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Figure 4.3: Distribution of log(β̂j) for the fixed reward models. We expect log(βj) to be
normally distributed but find it to be bimodal.

some of these students did not understand the game interface for purchasing organelles, and
therefore never managed to buy any. This could explain the usual estimates for the reward
parameters when we estimated them over the full population.

To test whether the estimation of the R parameters would be feasible in the absence
of these possibly off-model students, models 3 and 4 were estimated again using only those
students who had at least one organelle purchase. Those parameters estimates were then used
to predict the individual βj parameters for the full sample, including the no-buy students.
These results are presented in Table 4.7 and referred to as models 3′ and 4′ to distinguish
them from the original model estimates. Again we find the estimated penalty for losing to be
much smaller than in our theoretical value, while the estimated cost for buying is larger than
the fixed value. The buy cost this time is not prohibitive, however, and buying organelles
remains a probable option in many game states. The predicted βj values from these models
correlate reasonably with models 1 and 2 with the results of model 3′ correlating with model
1 as ρ = .99 and the results of model 4′ correlating with model 2 as ρ = .72.

Interestingly, when we compare the person estimates for the models to the post-test
capability estimates, we find the highest correlations are not given by the models with
the best overall fit. Table 4.8 shows that model 3′, using theoretical transition parameter
values and estimated reward parameters, yields the highest correlations with the post-test
capability estimates, ρ = .52. The IRT models correlate less well than any of the candidate
MDP models with the best correlating model having ρ = .38, suggesting that the process
data does in fact provide relevant information beyond what can be gained from the outcome
data on which the IRT models rely. The correlation between model 3′ and IRT PC was .76,
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Table 4.7: Models 3 and 4 estimated only on records that included at least one buy action.

model 3′ model 4′

Parameter Estimates
μ 1.037 1.500
σ 1.041 4.844

Rlose -0.035 -0.028
Rbuy -0.203 -0.328

Model Fit
-2 log(L) 11235.18 10842.70

AIC 11243.18 10850.70

even higher than either’s correlation to the post-test. This is not very surprising, as we would
expect there to be a strong connection between the actions taken in the game and the final
outcome. While the Pearson correlation statistics are encouraging, it should be noted that
any inferences made from Pearson correlations assume two normal distributions, and that
assumption is clearly violated here. Thus for comparison, the Spearman correlations, which
do not assume normality, are also provided. The model rankings by Spearman correlation
are the same as with the Pearson correlations, with model 3′ doing the best overall and the
partial credit model correlating highest of the two IRT models.

Table 4.8: Correlations between capability estimates from MDP models, IRT models and
the post-test IRT model.

Correlation with Post-Test
Pearson Spearman

MDP mod 1 .507 .474
MDP mod 2 .439 .445
MDP mod 3′ .516 .492
MDP mod 4′ .405 .450

IRT FT .317 .311
IRT PC .379 .388

Correlations can be deceptive, however, so we examined the relationship between the
highest correlating MDP model, the highest correlating IRT model and the post-test esti-
mates in Figure 4.4. There are plausible linear trends in all three graphs, confirming the
interpretation of the correlation statistics. Of the students who performed poorly on the
MDP assessment (β̂j < 0.1), 66% of them also performed poorly on the post-test (β̂j < 0).
Of the 12 low performing MDP students who achieved an above zero estimate on the post-
test, 8 were students who had not bought any organelles. This might be considered further
evidence that the game performance of some students was more reflective of problems with
the technology rather than understanding of the content.
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Figure 4.4: The relationships between capability estimates based on the MDP model 3′, the
IRT PC model and the post-test IRT model.

4.7 Discussion

The application of the MDP measurement model to the Microbe game data was generally
successful. The positive correlations with post-test capability estimates provide reasonable
validity evidence that the model is measuring a construct similar to the construct measured
in the post-test. Further, the fact that the MDP capability estimates correlated more highly
than the best IRT model’s estimates suggests that the MDP model, and the process data
on which it relies, can yield more information about student competency than outcome data
alone.

It should be noted, however, that with the highest correlation at .52, all of these model
estimates correlate less strongly than we would expect from an alternate form assessment.
While the game data does contain information about student capability, it does not appear
to provide the same amount of information that a dedicated assessment would. This is not
surprising, as the game in question was not designed to be an assessment at all. As Mislevy
and colleagues point out (2012), while games can share similar design goals to assessments,
they do not necessarily do so. To act as good assessments, games need to be designed with
assessment principles in mind.

An interesting issue that this study has uncovered is the relationship between model fit
and measurement utility when using a cognitive model for measurement. The MDP models
that used the empirical transition parameters proved to be a much better fit for the data,
implying that those models were closer to the cognitive model students used while playing
the game. On the other hand, those models did not correlate as well with the post-test
results. This seeming contradiction may be caused by the differing purposes of cognitive
modeling and measurement. Educational measurement involves comparing a performance
against a standard, much like a yardstick. In traditional psychometrics, the instrument is
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calibrated by estimating assessment-specific model parameters. While these estimates rely
upon student data, they are assumed to be estimates of true parameters that do not. For
the MDP as a cognitive model, on the other hand, almost all of the parameters can be
considered person-specific or at least population specific. In this study we identify only one
of those parameters as the latent variable which we are measuring. If we then estimate the
non-measurement parameters from the data, we may be doing something akin to customizing
the yardstick to the population before measuring with it. Thus it is not surprising that the
theoretical values would produce a better measurement as they are, in effect, acting as a
standard, ensuring that the measurement still means what we intend it to mean.

If on the other hand, the conceptions reflected in the transition or reward parameters are
of interest, a latent class model could be used to diagnose the student conceptions (Rafferty
et al., in press). A direction of future research would be to combine the latent class model and
the continuous measurement model as a mixture model, similar to the DSDMM described
in Chapter 2. Such a model might, for example, be able to distinguish the students who did
not seem to understand the organelle purchasing interface while at the same time providing
valid capability measures for those that did. This would be analogous to our model 3′ in
which we estimated the model parameters based on a subset of the population, though in
the present study we identified the subpopulations by hand.

One of the goals of this study was to examine the feasibility of applying the MDP mea-
surement model to real life data. While the MDP approach holds the promise of a generalized
model that can be fit to many different complex tasks, the current state of the art requires
considerable customization to the task of interest. The first challenge is specifying the MDP
model for the task. It was not always clear which variables to include in the state space,
which actions were important and how to best parameterize the transition function and the
reward structure. Using the MDP as a generating model can be a great help in this phase
of development to determine if the model is producing the behavior that would be expected.
Even with the MDP properly specified, custom C++ code was required to implement the
transition and reward modules. If these models are to be used by non-specialists, future
development should include both a wider range of out-of-the-box MDP solutions and tools
to aid in the formulation and testing of new type of MDP models.
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Chapter 5

Concluding Thoughts

One of the reoccurring themes of this work has been the interplay between student conception
and student ability. While high ability students, holding the accepted correct concept of the
domain, are easy to recognize, what does it mean to be “low ability?” Is ignorance the same
as misconception? I would argue that complete ignorance, what I refer to as “concept-free”
in Chapter 2, results in choosing responses uniformly at random. These are students for
whom the terms in the prompt may have little meaning. If, for example, a kindergardener
was presented with a multiple-choice calculus test, the best he could do is to randomly
choose responses. Thus when we observe students performing worse than random chance,
they are demonstrating something beyond ignorance; they are demonstrating an incorrect
conception. This could be a misconception about the content knowledge, about the goal of
the task, about the procedure needed to solve the problem, or about the problem space in
general.

Chapter 2 explicitly addressed this issue by defining a concept space and classifying
students within that space by task conception. In Chapters 3 and 4, however, the same
issue lurked under the surface. The Markov decision process model assumes that students
understand the system dynamics as specified in the transition model and have goals that are
consistent with the defined reward structure. It also assumes that students know what is
possible, both in terms of their available actions and in terms of the scope of the state space.
From this stance, we can identify students who hold the correct conception and are good at
optimizing their actions, but we cannot distinguish a poor planner from a confused student.
The obvious extension is to create an MDP mixture model, one in which we can classify
students according to their beliefs, while also measuring their strategic thinking within their
belief system. This combines the conceptual framework of the DSDMM with the context-
sensitive decision modeling of the MDP. It is a direction in which I hope to extend my
work.

In the case of formative assessment, diagnosing misconceptions may be more valuable
than labeling students as “low ability,” as instruction can be customized based on the diag-
noses. Even in the case of summative or high-stakes assessments, however, the distinction
is important. If a misconception about a non-construct-relevant element of the task is con-



CHAPTER 5. CONCLUDING THOUGHTS 75

founding measurement of the construct of interest, it would be better to know that we
cannot estimate this student’s ability, rather than to believe we have accurately estimated
him as low-ability. Traditional assessments have attempted to avoid this problem by making
each item clear and simple enough that construct irrelevant variance was minimized. With
complex tasks, we can no longer avoid such complications.

As the NGSS prods psychometricians to look more seriously at the implications of using
complex tasks, I hope that these thoughts will become part of a wider discussion about
the cognitive models needed to produce efficient, reliable and valid estimates about relevant
student traits, based on the data available from these tasks. Such a discussion will need to in-
clude cognitive scientists, data scientists, and learning specialists as well as psychometricians
and science educators. I look forward to being part of the conversation.
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Appendix A

DSDMM BUGS Code

Full Model

model
{
# Item difficulties are constrained to sum to zero. We start by
# drawing all but the last item from a zero mean normal distribution.
# The variance is a hyper-parameter, but not group specific.
for(i in 1:(I-1)) {
for (g in 1:G) {
delta[i,g] ~ dnorm(0, d_pre)

}
}

# Constrain the item parameters to sum to 0 by setting
# the last item delta to the negative sum of the others.
for (g in 1:G) {
delta[I,g] <- -sum(delta[1:(I-1),g])

}

# Group membership has a categorical prior.
for(s in 1:N) {
group[s] ~ dcat(pi[1:G])

}

# The priors for the mixing proportion parameters (pi) are dirichlet(1,...,1),
# which is equivalent to gamma(1,1,), normalized.
for (g in 1:G) {
pi[g] <- dg[g]/sum(dg[1:G])
dg[g] ~ dgamma(1,1)

}

# The guessing parameters. Also using dirichlet priors.
for(i in 1:I) {

for(r in 1:R) {
c[i,r] <- ci[i,r]/sum(ci[i,1:R])
ci[i,r] ~ dgamma(1,1)
}

}

for(s in 1:N) {
# Student abilities, with normal priors:
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theta[s] ~ dnorm(th_mu[group[s]], th_pre[group[s]])

# The model of the data:
for(i in 1:I) {
for(r in 1:R) {

p[s,i,r] <- c[i,r] +
(equals(r, key[group[s],i]) - c[i,r])* (exp(theta[s] - delta[i,group[s]]) /
(1+exp(theta[s] - delta[i,group[s]])))

}
x[s,i] ~ dcat(p[s,i,1:R])

}
}

# Hyper-priors:
d_pre ~ dgamma(0.5, 0.5)

for (g in 1:G) {
th_mu[g] ~ dnorm(0, 0.01)
th_pre[g] ~ dgamma(0.2, 0.2)

}
}
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Appendix B

Transition Parameter HLM
Regression

Generalized linear mixed model fit by the adaptive Gaussian Hermite approximation
Formula: success ~ (1 | studID) + food + food_mito + sun_chloro + sun_mcRatio

Data: playResDat_sub
AIC BIC logLik deviance

2919 2956 -1453 2907
Random effects:
Groups Name Variance Std.Dev.
studID (Intercept) 1.0464 1.023
Number of obs: 3393, groups: studID, 235

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.69638 0.14171 -19.028 < 2e-16 ***
food 0.67497 0.09475 7.124 1.05e-12 ***
food_mito 0.12202 0.01739 7.016 2.28e-12 ***
sun_chloro 0.23440 0.03468 6.758 1.40e-11 ***
sun_mcRatio 0.96557 0.13853 6.970 3.17e-12 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:
(Intr) food fod_mt sn_chl

food -0.591
food_mito -0.141 -0.439
sun_chloro -0.320 0.249 0.029
sun_mcRatio -0.283 0.191 0.108 -0.628


