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Abstract

Collaborative Team Evasion Against a Faster Pursuer

by

Shih-Yuan Liu

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor J. Karl Hedrick, Chair

In the past decade, the level of autonomy of unmanned vehicles has been rising rapidly
from remote-controlled towards fully autonomous. Without human operators on board, teams
of autonomous vehicles are the best candidates for high risk applications such as search
and rescue after disasters and information gathering in hostile environments. For a team
of autonomous vehicles to operate effectively in these scenarios, it must be able to respond
promptly to environmental hazards and/or hostile entities. In this dissertation, a collaborative
team evasion framework is proposed to maximize the survival time of a team of autonomous
vehicles against a faster and more agile hostile agent. The proposed framework is based on
an open-loop formulation of the single-pursuer-multiple-evader pursuit-evasion game that is
conservative to the evaders and provides guarantees on team survival time in the worst-case
scenario. An iterative open-loop approach that repeatedly solves the open-loop problem
corresponding to the most current state of the game is developed to relax the conservatism
of the open-loop formulation and enhance the survival time performance. Extensions to the
framework make it possible to take into account the turning rate constraints of the evaders
and uncertainties in the position of the pursuer. Numerical approximations are also proposed
to reduced the required computation time. Through extensive simulations, the proposed
framework is shown to produce reliable strategies for the evaders that result in significantly
longer team survival time than previous work in the literature.



i

To my family, my wife, and my friends.



ii

Contents

Contents ii

List of Figures v

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The Team Evasion Game 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Closed-loop Formulation of the Team Evasion Game . . . . . . . . . . . . . . 9
2.4 Open-loop Formulations of the Team Evasion Game . . . . . . . . . . . . . . 12

2.4.1 Control-Control Formulations . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Sequence-Control Formulations . . . . . . . . . . . . . . . . . . . . . 14

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Open-loop Approach for Collaborative Team Evasion 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Properties of the Open-loop Optimal Controls . . . . . . . . . . . . . . . . . 18

3.2.1 Open-loop Optimal Pursuer Control . . . . . . . . . . . . . . . . . . 19
3.2.2 Open-loop Optimal Evader Control . . . . . . . . . . . . . . . . . . . 24

3.3 Solutions for the Open-loop Formulations . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Minimum Survival Time of a Given Evader Control . . . . . . . . . . 29
3.3.2 Open-loop Optimal Solution Conservative to the Pursuer . . . . . . . 31
3.3.3 Open-loop Optimal Solution Conservative to the Evaders . . . . . . . 32

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1 Resulting Behavior of Different Formulations . . . . . . . . . . . . . . 34
3.4.2 Difference in Team Survival Time Performance . . . . . . . . . . . . . 39



iii

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Iterative Open-loop Approach for Collaborative Team Evasion 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Iterative Open-loop Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Pursuer’s Strategy Against the Iterative Open-loop Approach . . . . 48

4.3 Approximation Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Gradient of the Open-loop Team Survival Time . . . . . . . . . . . . 54
4.3.2 Iterative Linear Programming Approach . . . . . . . . . . . . . . . . 56
4.3.3 Gradient-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.4 Constraint Sampling Heuristics . . . . . . . . . . . . . . . . . . . . . 58

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Team Survival Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Extensions for Collaborative Team Evasion 74
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Collaborative Evasion Against a Hidden Pursuer . . . . . . . . . . . . . . . . 74

5.2.1 Extensions to the Open-loop Formulation . . . . . . . . . . . . . . . . 75
5.2.2 Iterative Open-loop Approach Against a Hidden Pursuer . . . . . . . 82
5.2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Evaders with Turning Rate Constraints . . . . . . . . . . . . . . . . . . . . . 86
5.3.1 Dubins Vehicles and Dubins Path . . . . . . . . . . . . . . . . . . . . 87
5.3.2 Minimum Survival Time on a Dubins Path . . . . . . . . . . . . . . . 89
5.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Alternative Objective Function for Collaborative Team Evasion . . . . . . . 96
5.4.1 Accumulative Survival Time . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.2 Optimal Control with Respect to Accumulative Survival Time . . . . 98
5.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Conclusions 107
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendix A Gradient of the Team Survival Time 110

Appendix B Solutions for 2-evader Case and Pursuer-centric Formulations 113
B.1 Point Capture of Two Evaders in Succession . . . . . . . . . . . . . . . . . . 113



iv

B.2 Solution to the Pursuer-centric Formulation . . . . . . . . . . . . . . . . . . 118

Bibliography 120



v

List of Figures

3.2 Example of the resulting trajectory from greedy pursuer control . . . . . . . . . 23
3.3 Resulting optimal trajectories for the open-loop team evasion problem conservative

to the evaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Value of Γ?s(x

0
p,x

0
e,Θe) over all possible Θe under different capture sequences . . 35

3.5 Resulting optimal trajectories for supΘe
Γ?s(x

0
p,x

0
e,Θe) under different capture

sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 The value of infs∈SN supΘe

Γ?s(x
0
p,x

0
e,Θe) in a 2-evader case. . . . . . . . . . . . . 37

3.7 Resulting optimal trajectories of the open-loop formulation conservative to the
evaders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 The value of infs∈SN supΘe
Γ?s(x

0
p,x

0
e,Θe) in a 2-evader case and the resulting

open-loop optimal trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.9 Optimal trajectories for the open-loop formulation conservative to the pursuer of

a 3-evader layout under different capture sequences . . . . . . . . . . . . . . . . 40
3.10 Optimal trajectories for the open-loop formulation conservative to the pursuer of

a 4-evader and a 5-evader layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.11 Examples of optimal trajectories of the open-loop formulation conservative to the

evaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.12 Distributions of ratio of team survival time resulting from the pursuer-centric

formulation to that resulting from the evader-centric formulation over 500 layouts
for teams with different number of evaders . . . . . . . . . . . . . . . . . . . . . 43

4.1 Snapshots of a simulation with 2 evaders using the open-loop approach against an
optimal pursuer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Optimal open-loop survival time of a 2-evader team given different pursuer positions 50
4.3 Resulting optimal trajectories of the open-loop and iterative open-loop approach

for a 3-evader layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Resulting optimal trajectories of the open-loop and iterative open-loop approach

for a 3-evader layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 The gradient vectors ∇ΘeΓ?s? given different joint heading of evaders for a 2-evader

layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 The gradient vectors ∇ΘeΓ?s? given different joint heading of evaders for a 2-evader

layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



vi

4.7 Distribution of the team survival time ratio of the iterative open-loop approach to
the open-loop approach over 500 layouts for teams with different number of evaders 62

4.8 Distribution of the team survival time ratio of the iterative linear programming
approach (iLP) to that of the iterative open-loop approach (iOL) over 500 layouts
for teams with different number of evaders . . . . . . . . . . . . . . . . . . . . . 64

4.9 Distribution of the team survival time ratio of the gradient-based approach (GB)
to that of the iterative open-loop approach (iOL) over 500 layouts for teams with
different number of evaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10 Averaged ratio of team survival time of different constraint sampling heuristics to
that of the iterative open-loop approach . . . . . . . . . . . . . . . . . . . . . . 71

4.11 Averaged ratio of computation time per step of the iterative linear programming
approach (iLP) to that of the iterative open-loop approach (iOL) . . . . . . . . 72

4.12 Averaged ratio of computation time per step of the gradient-based method (GB)
to that of the iterative open-loop approach (iOL) and that of the iterative linear
programming approach (iLP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.13 Averaged ratio of the computation time per step of the gradient-based approach
with different constraint sampling heuristics to that of the iterative open-loop
(iOL) approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Open-loop optimal trajectories against a pursuer that can be anywhere within a
circular disk for different layouts . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Open-loop optimal trajectories against a pursuer that can be anywhere within a
circular disk for different layouts . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Snapshots of a simulation of the iterative open-loop approach against a hidden
pursuer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Distribution of the ratio of team survival time against a hidden pursuer to that
against a visible pursuer over 500 layouts for teams with different number of evaders 85

5.5 Example of heading control in the compressed Dubins admissible set and its
resulting trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Minimum survival time for an evader on a Dubins path against a pursuer that
can be anywhere within a circular disk . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 Snapshots of a simulation with Dubins evaders using the iterative open-loop
approach against a hidden pursuer . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8 Distribution of the ratio of the averaged computation time of the iOL approach
with turning rate constraints to that without turning rate constraints over 500
initial conditions with different number of evaders . . . . . . . . . . . . . . . . 95

5.9 Averaged ratio of team survival time of different maximum turning rates to that
of the lowest turning rate (π/4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.10 Resulting open-loop optimal trajectories of different objectives for a 2-evader layout101
5.11 The optimal joint heading with respect to the team survival time and accumulative

survival time for a family of 2-evader layouts . . . . . . . . . . . . . . . . . . . . 101
5.12 Resulting open-loop optimal trajectories of different objectives for a 3-evader layout103



vii

5.13 The optimal joint heading with respect to the team survival time and accumulative
survival time for a family of 3-evader layouts . . . . . . . . . . . . . . . . . . . . 103

5.14 Distribution of ratio of accumulative survival time of the collaborative iterative
open-loop approach to that of the selfish approach for teams with different number
of evaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.1 Geometrical solution for a 2 evader team (Edited from [23]) . . . . . . . . . . . 114
B.2 Example of non-geometrical solution for a team of 2 evaders against a faster

pursuer (Edited from [23]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



viii

Acknowledgments

Getting a Ph.D is a long journey and I would not have gotten this far without all the people
that have encouraged, supported, and inspired me along the way.

I would like to express my sincere appreciation to my advisor, Professor J. Karl Hedrick,
for being my mentor during the past six years. I would like to thank you for trusting me with
the HUNT project and for giving me the freedom to explore different research directions. Your
guidance has kept me on track not only in research, but also in life. A special thank you to
Professor Claire J. Tomlin for expanding my research horizons and helping me forage inspiring
and fruitful collaborations with others. I would also like to thank Professor Francesco Borrelli
for being a member of both my qualification and dissertation committee. Last, a thank you to
my research collaborators, Haomiao Huang, Zhengyuan Zhou, Claus Danielson, Ramanarayan
Vasudevan, Humberto Gonzalez, Jared Garvey, and Professor Dušan M. Stipanovič. The
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Chapter 1

Introduction

1.1 Background

Due to recent advancements in micro-processors, sensing technologies, and wireless commu-
nications, the level of autonomy of unmanned vehicles, such as unmanned aerial vehicles
(UAVs), unmanned ground vehicles (UGVs), and unmanned underwater vehicles (UUVs),
has been rising rapidly in the past decade from remote-controlled towards fully autonomous.
While a single autonomous vehicle is capable of performing interesting tasks such as river
tracking [1], interior mapping [2], and cleaning [3], a team of autonomous vehicles can take
on even more challenging tasks through communication and collaboration. Developments
in collaborative controls have enabled teams of autonomous vehicles to accomplish highly
sophisticated tasks such as collaborative surveillance and tracking [4], perimeter and convoy
patrol [5, 6], and collaborative grasping and transportation [7]. Without a human operator
on board, unmanned vehicles are also the best candidates for high risk applications such as
surveillance and control of forest fires [8], search and rescue after disasters [9], and information
gathering in hostile environments [10, 11]. For a team of autonomous vehicles to operate
effectively in these situations, the team must be able to promptly respond to environmental
hazards and/or hostile entities to ensure the survival of its members. However, in some
scenarios it might be impossible for all members of the team to survive. For example, when
a team encounters a faster and more agile hostile agent aiming to capture every vehicle in
the team; in these scenarios the autonomous vehicles need to collaboratively try to delay the
capture of the whole team for as long as possible. The focus of this dissertation is to develop
a collaborative team evasion framework for a team of autonomous agents to maximize the
team survival time against a faster and more agile pursuer.

1.2 Related Works

Pursuit-evasion games, as a form of differential games, have always been an area of rich
literature ever since they were proposed by Isaacs in [12]. One of the most famous example is
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the Homicidal Chauffeur problem where a faster but less maneuverable pursuer tries to capture
a slower but more agile evader in the least amount of time while the evader tries to delay
being captured for as long as possible. Early works in this area focused on pursuit-evasion
games played between a single pursuer and a single evader. Different versions of the game
often varied in the capabilities of the players, the capture condition, and the environment
in which the game is played. In [13], properties of the solutions to the Homicidal Chauffeur
problem under different speed ratio between the pursuer and the evader and different capture
radius were investigated and analyzed. In the Surveillance-Evasion problem proposed in [14],
the distance-based capture condition is replaced with a cone-based capture condition. In the
Lion-and-Man problem investigated in [15], the pursuer and the evader have equal speed and
the game is played in a circular arena with point capture condition. A concise review of these
important variants of the Homicidal Chauffeur problem that form the foundation of the field
can be found in [16].

With the theoretical advancement achieved through the study of the single-pursuer-
single-evader pursuit-evasion games, in recent years there has been an abundance of work
on pursuit-evasion games with more than one pursuer and/or evaders. For example, in
[17] and [18] the game is played between two pursuers and a single evader. In [19], the
cooperative version of the Homicidal Chauffeur problem where multiple pursuers with turning
rate constraints aim to capture an evader in an open environment is investigated and a
collaborative strategy for the pursuers inspired by the hunting and foraging behavior of fish
is proposed. In [20], the game is played between multiple pursuers and a single evader in a
closed environment. A cooperative strategy for the pursuers which guarantees the capture
of an evader with the same speed is derived in this work through the minimization of the
safe-reachable set of evaders. In [21], the lion-and-man problem is augmented with multiple
lions and a strategy which guarantees the capture of the evader in complex environments
with obstacles using three pursuers is proposed. The approach is later on extended to the
multiple-pursuer-multiple-evader scenario in [22].

The pursuit-evasion game where a faster pursuer aims to capture a team of slower evaders
in minimum time is referred to as the successive pursuit game. In [23], one of the seminal work
on this topic, the complete solution for the 2-evader case was derived. A concise review of the
result is provided in Appendix B. While the solution to the 2-evader case provides important
insight for the successive pursuit game, the techniques involved are not all generalizable to
teams with more than two evaders due to the curse of dimensionality. In [24], the formulation
of the successive pursuit game is modified so that the pursuer must declare a specific capture
sequence and later commit to it. This modified formulation, referred to as the fixed-sequence
formulation, puts the pursuer in a disadvantage and simplifies the solution for the evaders.
Similar modification are also investigated in [25] and a numerical method for solving the
optimal trajectories of the evaders under a specific capture sequence is proposed in [26].

The fixed-sequence formulation of the successive pursuit problem is closely related to
the traveling salesman problem where a salesman has to find the shortest route to visit a
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set of cities. A concise review on the development of the traveling salesman problem can
be found in [27]. In fact, in the special case where the evaders in the successive pursuit
problem are all stationary, the fixed-sequence formulation of the successive pursuit problem
is exactly the traveling salesman problem: the pursuer takes the role of the salesman and the
evaders takes the role of the cities. In [28], the fixed-sequence formulation is referred to as
the Moving-target Traveling Salesman Problem and the one-dimensional special case of the
game is solved. It has been shown in [29] that even the one-dimensional variant of the game
is NP-hard. The special case of the game where all evaders are moving in the same direction
with the same speed in a 2 dimensional space is referred to as the Kinetic Variant of Traveling
Salesman Problem. This variant is investigated in [30] and it has been shown that even with
2 evaders, there exists no polynomial time algorithm that can approximate the game with a
factor better than 2. In [31], [32] and [33], another variant of the traveling salesman problem
is proposed where each city can pick its own location from a given set after knowing the route
selected by the salesman; this variant is referred to as the Generalized Traveling Salesman
Problem. The fixed-sequence formulation of the successive pursuit game can be interpreted
as an extended version of the Generalized Traveling Salesman Problem where the sets of
the evaders vary with time. In [34], it is proposed that the optimal headings of the evaders
for a specific capture sequence in the fixed-sequence formulation can be derived by solving
a one-dimensional root searching problem regardless of the number of evaders in the team.
The root searching problem is formulated by exploiting the first-order optimality condition of
the optimization problem proposed in [26]. The optimal headings of the evaders for given a
specific capture sequence can hence be solved very efficiently and the algorithm scales nicely
with the number of evaders. However, to determine the optimal capture sequence for the
pursuer, brute-force approaches are used due to the combinatorial nature of the problem
and the complexities introduced by moving evaders. Very recently in [35], it is suggested
that the solution of the fixed-sequence formulation can be used in an iterative fashion to
approximate the optimal behavior for the original successive pursuit problem. However, there
is no guarantee on the accuracy of the approximation for either the pursuer or the evaders.

There are also many variants of the fixed-sequence successive pursuit game in the literature.
In [36], [37], and [38], a constraint on the turning rate of the pursuer is introduced to the
formulation and its effect on the optimal trajectory of the pursuer is investigated. In [39], a
variant referred to as the Detection Evasion Problem has the evaders maximize the minimal
distance between the pursuer and a specific evader instead of the team survival time. A
similar variant where the objective of the evaders is to avoid detection instead of capture
can also be found in [40]. This variant is also considered in 3-dimensional space in [41] and
[42]. In [43] and [44], the formulation is modified so that the pursuer aims to minimize the
distance to a specific evader while pursuing others.
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1.3 Motivation

The majority of work in the literature on the single-pursuer-multiple-evader pursuit-evasion
problem is pursuer-centric and aims to provide an applicable strategy for the pursuer rather
than the evaders. Furthermore, in the works that are not pursuer-centric, such as [23] and
[39], most the derived strategies for the evaders are only applicable for teams with 2 or 3
evaders; strategies that are applicable for larger teams are based on heuristics and cannot
provide guarantees on the survival time of the team. The goal of this dissertation is to
develop an evader-centric framework of the successive pursuit problem to fill in the gaps in
the literature on this topic, and to provide applicable strategies with guarantees for a team
of evaders to maximize their survival time when facing a faster pursuer.

1.4 Contributions

The main contributions of this dissertation are listed as follows:

• The open-loop formulation of the team evasion problem that is conservative to the
evaders. The formulation provides guaranteed team survival time and is the core of the
collaborative team evasion framework.

• The derivation of the properties of the open-loop optimal solutions for the pursuer and
the evaders that enable the development and implementation of the algorithm that
solves for the open-loop optimal joint heading of the evaders to maximize the worst-case
survival time of the team.

• The formulation of the iterative open-loop approach for collaborative evasion that
relaxes the conservatism of the open-loop approach and improves its effectiveness.

• The derivation of the gradient of the team survival time with respect to the joint heading
of the evaders under a specific capture sequence. This leads to various approximations
to the iterative open-loop approach that can achieve similar team survival time with
much less computation time.

• The extensions to the collaborative team evasion framework that enable the framework
to handle uncertainties in the position of the pursuer, constraints on the turning rates
of the evaders, and accumulative survival time as the objective function of the evaders.
These capabilities greatly enhance the applicability of the framework in more realistic
team evasion scenarios.

• The evaluation of the effectiveness of the proposed approaches through extensive
simulation.
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1.5 Dissertation Outline

The outline of each chapter in this dissertation is as follows.

Chapter 1 of this dissertation provides a concise review of pursuit-evasion games with a
focus on the single-pursuer-multiple-evader variants of the game. The lack of evader-centric
work in the literature on this topic is identified as the main motivation of the work in this
dissertation.

In Chapter 2, the closed-loop formulation of the team evasion game is defined. Open-loop
formulations of the game with different levels of action resolutions are also proposed in this
chapter and their implications discussed.

Chapter 3 is devoted to the open-loop formulation of the team evasion problem conservative
to the evaders, which is the core of the collaborative team evasion framework. Important
properties of the optimal solution to this open-loop formulation are derived. These properties
are then used to convert the infinite dimensional sup-inf problem to a finite dimensional one
that can be solved with standard nonlinear optimization techniques. The resulting behavior
and the team survival time of the proposed open-loop approach are compared to that of the
pursuer-centric approaches in the literature.

The open-loop approach proposed in the previous chapter is expanded to the iterative
open-loop approach in Chapter 4. The formulation and implementation of this approach
is detailed in this chapter. Various approximations to the iterative open-loop approach are
also introduced in this chapter for the purpose of decreasing the computational requirement
of the proposed framework. The survival time and computation time performance of the
proposed approach and the approximations are evaluated through extensive simulation.

In Chapter 5, several extensions to the collaborative team evasion framework are proposed.
These extensions enable the framework to handle uncertainties in the position of the pursuer,
turning rate constraints on the evaders, and alternative objective function. Details of the
derivations and implementations of these extensions are presented and their effectiveness is
demonstrated. These extensions greatly improve the applicability of the framework in more
realistic team evasion scenarios.

Chapter 6 concludes the dissertation and provides possible directions for future research.
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Chapter 2

The Team Evasion Game

2.1 Introduction

The team evasion game is a pursuit-evasion game between one faster pursuer and N evaders
which takes place in a two dimensional space R2. The goal of the pursuer is to capture all the
evaders as soon as possible. The evaders, as a team, aim to delay the capture of the whole
team for as long as possible. An evader is considered captured if at some point, the pursuer
coincides with the evader. Every agent has the ability to control its heading and speed at
any given time subjected only to a constraint on its maximum speed. Also, every agent is
aware of the position and trajectory of all other agents at all times.

In Section 2.2, the notations and terms that will be used throughout this dissertation are
defined. The closed-loop formulation of the team evasion game is defined Section 2.3 and
various open-loop formulations of the game are defined in Section 2.4. Section 2.5 concludes
this chapter.

2.2 Notations and Definitions

In this section, the notational convention and basic terms used throughout this work are
defined and explained. Variables are subscripted according to the agent that it refers to:
properties of the pursuer are subscripted with the letter p and variables describing the
properties of a single evader are subscripted with the letter e. When there are multiple
evaders in a team, they will be identified by numbers. For example, when there are one
pursuer and N evaders, the position of the pursuer is denoted by xp and the positions of
the N evaders will be denoted by x1, . . . , xN . A joint variable containing several different
variables is boldfaced and this convention also applies to the subscripts. The boldfaced e is
used to denoted the set of indexes of all N evaders; more specifically

e = {1, . . . , N}.
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The joint position of N evaders is denoted by

xe = (x1, . . . , xN)

and the maximum speeds of all the evaders are denoted by

ve = (v1, . . . , vN).

The maximum speed of the pursuer is denoted by vp, and without lost of generality it is set
to 1. For the pursuer to be faster than all evaders, the following conditions are imposed on
the maximum speed of the evaders:

0 ≤ vi < 1, i = 1, . . . , N. (2.1)

The trajectory of an agent is denoted by x(·) : R+ → R2, which is a function that maps
time to the position of the agent at the given time; x(t) ∈ R2 is the position of an agent at
time t. Following the conventions of the subscripts, the trajectory of the pursuer is denoted
by xp(·) and the trajectory of evader i is denoted by xi(·). The joint trajectory of the pursuer
and the evaders is denoted by x(·) = (xp(·),xe(·)) where xe(·) = (x1(·), . . . , xN (·)) is the joint
trajectory of all evaders.

The heading and speed of an agent at time t is represented by a 2-dimensional vector
u(t) ∈ R2 referred to as the action vector, or simply the action, of the agent at time t. The
direction of the vector u(t) represents the heading of the agent at time t, and the magnitude
of u(t) represents the ratio of the velocity of the agent at time t to the maximum velocity of
the agent. For example, ‖ui(t)‖ = 0.6 indicates that agent i is traveling at 60 percent of its
maximum speed at time t. The time trajectory of the action vector of an agent, denoted by
u(·) : R+ → R2, is defined as a function that maps a specific time to an action vector. This
action trajectory is referred to as the control, or control function, of the agent. In a similar
fashion to the trajectories of agents, the control for the pursuer is denoted by up(·) and the
joint control of the evaders is denoted by

ue(·) = (u1(·), . . . , uN(·)).

The set of admissible controls for an agent that has full control of its heading and cannot
exceed a finite maximum speed is denoted by

U = {u(·) | ‖u(t)‖ ≤ 1, t ∈ [0,∞)}. (2.2)

The set of admissible joint control for N evaders is defined as

UN = {(u1(·), . . . , uN(·))|ui(·) ∈ U for i = 1, . . . , N}. (2.3)

Note that since the magnitude of the action vector represents the ratio of the current speed
to the maximum speed instead of the actual speed, agents with different speeds share the
same admissible control set.
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In the team evasion game, the dynamics of the agents are decoupled from each other and
can be specified by the following differential equations:

ẋi(t) = viui(t), i = p, 1, . . . , N. (2.4)

For convenience, the following notation is used to denote the resulting trajectory of a given
control.

Definition 2.1 Resulting trajectory of a given control
For an agent starting at x0 with maximum speed v, the resulting trajectory by using the control
u(·) is denoted by

x(·) = traj(x0, v, u(·))

and the trajectory satisfies

x(t) = x0 +

∫ t

0

vu(τ)dτ, for t ≥ 0 (2.5)

The same notation is used for the function that maps joint initial position, joint maximum
speed, and joint control to the resulting joint trajectory. For example, given x0

e as the joint
initial position, ve as the joint maximum speed, and ue(·) as the joint control for N evaders,
the resulting joint trajectory of the team is

xe(·) = traj(x0
e,ve,ue(·))

which satisfies
xi(t) = traj(x0

i , vi, ui(·)), i = 1, . . . , N.

An evader is considered to be captured when its distance to the pursuer is zero. This
is referred to as the point capture condition. Given the initial positions, maximum speeds,
and controls of a pursuer and an evader, the survival time, or capture time of the evader is
defined as follows.

Definition 2.2 Evader survival time
Given x0

p and x0
e as the initial position of the pursuer and the evader, vp and ve as their

maximum speeds, and up(·) and ue(·) as their controls, the resulting survival time of the
evader is defined as

Γ(x0
p, x

0
e, up(·), ue(·)) = inf{t|xp(t) = xe(t)},

where
xp(·) = traj(x0

p, vp, up(·)) and xe(·) = traj(x0
e, ve, ue(·)).

Note that the maximum speed of the agents do affect the resulting survival time, since
they are constant properties of the agents they are omitted from the arguments of Γ for
notational simplicity. It is possible that of the given initial conditions and controls, there
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there exist no such t that satisfies the condition xp(t) = xe(t); in this case the survival time
of the evader is infinity according to the definition of infimum of an empty set. Defining
τ = Γ(x0

p, x
0
e, up(·), ue(·)) as the survival time of the evader, then Definition 2.2 implies that

when τ is finite, the following is true due to the point capture condition.

xp(τ) = xe(τ). (2.6)

The objective function of the team evasion game is the survival time of the evader that
survive the longest. In other words, it is the capture time of the evader that is captured last.
This time is referred to as the team survival time.

Definition 2.3 Team survival time
Given x0

p and x0
e as the initial position of a pursuer and N evaders, vp and ve as their

maximum speeds, and up(·) and ue(·) = (u1(·), . . . , uN (·)) as their controls, the team survival
time is defined as

Γ(x0
p,x

0
e, up(·),ue(·)) = sup

i∈{1,...,N}
Γ(x0

p, x
0
i , up(·), ui(·)). (2.7)

It is worth emphasizing again that the maximum speeds of the agents do affect the team
survival time but they are omitted from the arguments of Γ for notational simplicity.

2.3 Closed-loop Formulation of the Team Evasion

Game

With the necessary notation and basic elements defined in the previous section, the team
evasion game and its closed-loop formulation are presented in detail in this section.

The team evasion game is played between two players: the pursuer and the team of
evaders. Note that although the evaders are separated agents, the team acts as a single player
in the game. The goal of the pursuer is to minimize the team survival time Γ defined in
Definition 2.3 by capturing all evaders as soon as possible; the goal of the team of evaders is
to delay the capture of the whole team for as long as possible. There are various formulations
of the game that differ in what information are available to each player, in what order the
players play, and what kinds of actions are admissible. The closed-loop formulation, which is
the most general one, is presented here.

In the closed-loop team evasion game, the pursuer and the team of evaders have full access
to the action history of their opponents and are allowed to react to each other instantaneously.
Due to the simple motion dynamics defined in Eq. (2.4), the action history of an agent can be
understood as the past trajectory of the agent. At every instant, the pursuer determines its
action based on the current layout and the past trajectories of the evaders. The evaders also
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select their joint actions based on the current layout and the past trajectory of the pursuer.
A game with this specific information pattern can be formulated as a feedback strategy game
where the first player of the game selects a policy and the second player of the game selects a
control in response to the policy.

A policy defines how a player reacts to different controls of its opponent. More specifically,
a policy maps the control of the opponent to a control of the player. In the context of the
closed-loop team evasion game, a policy of the pursuer maps the joint control of evaders to a
control of the pursuer and is denoted by

πp(·) : UN → U .

A policy of the evaders maps the control of the pursuer to the joint control of evaders and is
denoted by

πe(·) : U → UN .

For example, given that the pursuer adopts a specific control up(·), the resulting joint control
of the evaders using policy πe(·) will be ue(·) = πe(up(·)).

Note that by definition, a control contains all actions of an agent from the beginning to
the end of the game. Hence, a policy defined as above does not automatically respect the
causality rule, which states that one cannot obtain information that is available only in the
future. More specifically in the context of the team evasion game, a player can only determine
its action based on the previous actions of its opponent, not the future ones. To enforce
the causality rule in the closed-loop formulation of the team evasion game, the policies that
are admissible for the first player has to be limited to the class of non-anticipating policies
defined as follows.

Definition 2.4 Non-anticipating policy
A policy π(·) is non-anticipating if for any given controls u(·) and u′(·) such that u(τ) =
u′(τ) for τ ∈ [0, t], the resulting controls of the policy, uπ(·) = π(u(·)) and u′π(·) = π(u(·)),
satisfy the following condition:

uπ(τ) = u′π(τ) for all τ ∈ [0, t].

In other words, given two controls that are the same until time τ , the resulting controls from
a non-anticipating policy have to also be the same until time τ .

Denoting the set of all non-anticipating policy by ΠNA, the closed-loop formulation of the
team evasion game is defined as follows:



CHAPTER 2. THE TEAM EVASION GAME 11

Definition 2.5 Closed-loop team evasion game
Given x0

p and x0
e as the initial positions of the pursuer and the evaders, the closed-loop team

evasion game is defined as

sup
πe(·)∈ΠNA

inf
up(·)∈U

Γ(x0
p,x

0
e, up(·), πe(up(·))). (2.8)

In this formulation, the team of evaders plays first by selecting a non-anticipating policy
πe(·) ∈ ΠNA, and the pursuer plays second by selecting an admissible control up(·) ∈ U . The
objective function of the game is the team survival time Γ(x0

p,xe, up(·), πe(up)), where up(·)
is the selected control of the pursuer and πe(up(·)) is the joint control resulting from the
policy of the evaders. Note that since the infup(·)∈U lies inside the supπe(·)∈ΠNA

, the pursuer
determines its control knowing the exact policy selected by the evaders. Hence, the pursuer
can always select the control that will result in the minimum possible team survival time in
response to the policy selected by the evaders. On the other hand, the evaders have to select
a policy without knowing the exact control of the pursuer since the evaders play first in this
formulation.

However, being the first player in this closed-loop formulation does not prevent the team
of evaders from reacting to different controls of the pursuer differently. By encoding the
policy with different joint controls in response to different controls of the pursuer, the team
can react differently when different controls are selected by the pursuer. For this reason, the
formulation defined in Definition 2.5 is referred to as the closed-loop formulation of the team
evasion game.

In general, the player who plays later in a game has an advantage. The sup-inf structure
of Eq. (2.8) implies that the pursuer has an advantage over the team of evaders. The resulting
team survival time is hence bias towards the minimizing player and is called the lower value
of the game. The game can also be formulated in an inf-sup structure as

inf
πp(·)∈ΠNA

sup
ue(·)∈UN

Γ(x0
p,x

0
e, πp(ue(·)),ue(·)). (2.9)

where the maximizing player has an advantage. Under this structure, the pursuer plays first
by picking a policy and the evaders play later by picking a joint control for the team. The
resulting value of this formulation is the upper value of the game.

It has been shown in [12] that for a differential game that satisfies Isaac’s condition and
has continuous value, the lower and upper values coincide. For the closed-loop team evasion
game, the Isaac’s condition is satisfied due to the decoupled dynamics of the players. The
value of the game, defined as the team survival time is indeed continuous with respect to
the initial layout. Hence, formulations in Eq. (2.8) and Eq. (2.9) are equivalent. The sup-inf
structure in Eq. (2.8) will be used as the standard closed-loop formulation of the team evasion
game in this work.
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Like most other differential games, the main challenges of the closed-loop team evasion
problem come from the exceedingly large dimensions of the admissible sets of the players.
The admissible control set U for the pursuer in Eq. (2.8) contains all possible controls for
the pursuer and is infinite dimensional. The set of all non-anticipating policies ΠNA is even
larger since an element of the set, which is a policy, has to encode responses to all possible
admissible controls.

2.4 Open-loop Formulations of the Team Evasion

Game

For a team with 2 evaders, the closed-loop team evasion problem can be solved by dynamic
programming as shown in [23]. A concise review of the results is presented in Appendix B.
While the solution derived through dynamic programming for the 2-evader case provides
important insights to the team evasion problem, the method suffers severely from the curse
of dimensionality. The complexity of the problem depends on the number of possible states
which grows exponentially with the number of evaders. For a team of 3 evaders, the state
space is 6 dimensional and is intractable for most of the numerical solvers currently available.
To derive a computationally efficient control algorithm for the evaders in the team evasion
game, modifications and simplifying assumptions have to be made. The open-loop framework
for pursuit-evasion games is recently proposed in [45] and is designed to bypass the curse
of dimensionality by simplifying the structure of closed-loop games. The application of the
open-loop framework in reach-avoid games can be found in [46]. In this section, various
open-loop formulations of the team evasion game are proposed and discussed.

The main difference between the open-loop formulations and the closed-loop formulations
of the team evasion game is in the decision variable of the players. Formulations of the team
evasion game can be categorized by the decision variables of the players and the order in
which the players play. For example, in closed-loop formulation of the team evasion game
proposed in Definition 2.5, the team of evaders plays first by picking a policy and the pursuer
plays second by picking a control. Hence the closed-loop formulation can be categorized
as a policy-control formulation that is conservative to the evaders. Four different types of
open-loop formulations for the team evasion game are presented in the following sections.

2.4.1 Control-Control Formulations

In a control-control formulation of the team evasion game, the decision variables for both the
first and the second player are control functions. A control-control formulation is open-loop
in nature in that the first player has to select its control for the game without knowing the
control of the second player. This makes it impossible for the first player to react to the
second player. The control of the first player is available to the second player when the second
player makes its decision. This allows the second player to better exploit the actions of the



CHAPTER 2. THE TEAM EVASION GAME 13

first player and hence put the first player in a disadvantage. Hence, the formulation is said
to be conservative to the first player.

2.4.1.1 Control-Control Formulation Conservative to the Pursuer

By setting the pursuer as the first player of the game, the control-control formulation for the
team evasion game conservative to the pursuer is defined as

inf
up(·)∈U

sup
ue(·)∈UN

Γ(x0
p,x

0
e, up(·),ue(·)). (2.10)

Note that the supue(·)∈UN for the team of evaders is inside the infup(·)∈U for the pursuer. This
implies that the evaders know the exact control selected by the pursuer when they select their
joint control. In this case, even though the evaders are slower than the pursuer, with the
knowledge of the control of the pursuer they can avoid capture indefinitely in R2. In other
words, the pursuer will not be able to capture the evaders at all if its control is disclosed to
the evaders beforehand. Hence, the resulting optimal team survival time of this formulation
of the game is always infinite except for the special case where the pursuer and all evaders
start at the same position.

It is worth noting that if a different capture condition is used, Eq. (2.11) can take on a
finite value for initial conditions that are not the special case mentioned above. For example,
if the capture condition is relaxed so that a capture can happen as long as the pursuer is
within a certain non-zero distance to the evader, then there exist some initial conditions where
the pursuer can capture the evaders in finite time in this open-loop formulation. However,
since the capture condition of the team evasion game is defined to be point capture, this
open-loop formulation is too conservative to the pursuer and does not provide any applicable
strategies for the pursuer or the evaders.

2.4.1.2 Control-Control Formulation Conservative to the Evaders

By setting the team of evaders as the first player of the game, the control-control formulation
of the team evasion game conservative to the evaders is defined as:

sup
ue(·)∈UN

inf
up(·)∈U

Γ(x0
p,x

0
e, up(·),ue(·)). (2.11)

The team of evaders select their joint control as the first player before knowing the control of
the pursuer. The pursuer, as the second player, solves the optimal control problem

inf
up(·)∈U

Γ(x0
p,x

0
e, up(·),ue(·)) (2.12)

to minimize the team survival time given the initial condition and the joint control of the
evaders ue(·).
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This formulation encodes a worst-case mentality for the evaders since they assume that
the pursuer will always act optimally against their joint control by applying the optimizer
of the optimal control problem defined in Eq. (2.12). Under this worst-case mentality, the
evaders assume that they can only achieve the minimum possible survival time given the
selected joint control. Planning for the worst case is the key characteristic of the open-loop
formulation. By considering the worst case, the resulting team survival time in Eq. (2.11)
is a guaranteed lower-bound of the team survival time for the evaders; this implies that by
following the optimizer of Eq. (2.11), the evaders can achieve at least the guaranteed team
survival time no matter what the pursuer does. Due to these characteristics, the open-loop
formulation conservative to the evaders forms the foundation of the open-loop approach to
collaborative team evasion. However, solving Eq. (2.11) is a challenging task in that even
with a given joint control of the evaders, the optimal control problem faced by the pursuer in
Eq. (2.12) is an infinity dimensional optimization problem. The sequence-control formulation
of the team evasion game, which will be presented in the next section, will provide more
insights to the problem faced by the pursuer and the evaders.

2.4.2 Sequence-Control Formulations

Recall that the control-control formulation conservative for the pursuer in Eq. (2.10) was
overly conservative to the pursuer in that the evaders are always able to survival indefinitely.
In this section, the sequence-control formulation of the team evasion game is proposed as an
alternative open-loop formulation which relaxes the conservatism towards the pursuer.

The set of admissible capture sequences for N evaders is defined as follows.

Definition 2.6 Set of admissible capture sequences for N evaders
The set of all admissible capture sequence for N evaders is defined as:

SN = {(s1, . . . , sN)|si ∈ N+, si 6= sj for i 6= j, sup
i
si = N}. (2.13)

The set SN contains all possible permutations of {1, . . . , N}. Each element of the set is a
capture sequence that contains the indexes of the N evaders in the order of the captures and
is denoted by s = (s1, . . . , sN) ∈ SN . For example, a capture sequence s = (3, 1, 2) indicates
that evader 3 is captured first, followed by evader 1 and then evader 2. In this case s1 = 3,
s2 = 1, and s3 = 2.

The minimum team survival time given a specific joint control of the evaders under a
specific capture sequence is defined as follows:
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Definition 2.7 Minimum Team Survival Time Given Capture Sequence
Given x0

p and x0
e as the initial position of the pursuer and the evader, vp and ve as their

maximum speeds, and ue as the joint control for the evaders, the minimum possible time it
takes the pursuer to capture all evaders according to a specific sequence s = (s1, . . . , sN) is:

Γ?s(x
0
p,x

0
e,ue(·)) = inf

up(·)∈U
Γ(x0

p,x
0
e, up(·),ue(·)) (2.14a)

s.t. Γ(x0
p, x

0
si
, up(·), usi(·)) ≤ Γ(x0

p, x
0
sj
, up(·), usj(·)) (2.14b)

for all i < j, for j = 1, . . . , N

The constraints listed in Eq. (2.14b) state that the capture time of the i-th evader in the
capture sequence has to be smaller than or equal to the capture time of the j-th evader in
the capture sequence if j is larger than i. These constraints ensure that only the pursuer
controls that result in the specified capture sequence are considered admissible. Note that
the team survival time under a specific sequence, denoted by Γ?s, is no longer a function of
the pursuer’s control up(·) in that it is assumed that the pursuer picks the optimal control
against the joint control of the evaders to achieve the minimum team survival time under
the capture sequence. Note that this minimum team survival time under a capture sequence
is closely related to, but not the same as, the minimum team survival defined previously in
Eq. (2.12). The difference between the two is that in Eq. (2.12), the pursuer can capture the
evaders in any order, but in Eq. (2.14) the pursuer has to capture the evaders according to
the order specified by s.

2.4.2.1 Sequence-Control Formulation Conservative to the Pursuer

Given x0
p and x0

e as the initial positions of the pursuer and the evaders, the sequence-control
formulation of team evasion game conservative to the pursuer is

inf
s∈SN

sup
ue(·)∈UN

Γ?s(x
0
p,x

0
e,ue(·)). (2.15)

As indicated by the inf-sup structure, in this formulation the pursuer plays first by selecting
a capture sequence; the evaders then select their joint control to maximize the team survival
time with the knowledge of the sequence selected by the pursuer. Although this formulation
is still conservative towards the pursuer, it is less so than the control-control formulation
conservative to the pursuer defined in Eq. (2.10). In this formulation, after the capture
sequence and the joint control of the evaders have been selected, the pursuer is allowed to
then pick the optimal control which captures the evaders according to the selected capture
sequence in minimum possible time. However, note that the resulting team survival time does
not serve as an upper-bound of the value of the closed-loop game defined in Definition 2.5.
This is because that the resulting optimal pursuer control from Eq. (2.14) relies on knowing
the future joint control of the evaders, which is not available in the closed-loop setting due to
causality. In other words, the team capture time in Eq. (2.15) might only be achievable by a
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pursuer that utilizes an anticipating policy. The evaders, on the other hand, have to solve
the optimal control problem

sup
ue(·)∈UN

Γ?s(x
0
p,x

0
e,ue(·)) (2.16)

to maximize the minimum possible capture time given the specified capture sequence s.

The sequence-control formulation of the team evasion game conservative to the pursuer is
equivalent to the fixed-sequence formulation of the successive pursuit game addressed in [25],
[26], and [34]. A concise review for these works is provided in Appendix B.

2.4.2.2 Sequence-Control Formulation Conservative to the Evaders

Given x0
p and x0

e as the initial positions of the pursuer and the evaders, the sequence-control
team evasion game conservative to the evaders is defined as

sup
ue(·)∈UN

inf
s∈SN

Γ?s(x
0
p,x

0
e,ue(·)). (2.17)

In this formulation, the evaders play first by choosing their joint control. The pursuer, as the
second player of the game, then selects a capture sequence and the corresponding optimal
control for that sequence with the knowledge of the joint control of evaders.

The following remark addresses the relationship between the sequence-control formulation
conservative to the evaders and the control-control formulation conservative to the evaders
defined in Eq. (2.11).

Remark 2.1
Given x0

p and x0
e as the initial position of the pursuer and N evaders, vp and ve as their

maximum speeds with vp > vi for i = 1, . . . , N , and ue(·) ∈ UN as the joint control for the
evaders,

inf
up(·)∈U

Γ(x0
p,x

0
e, up(·),ue(·)) = inf

s∈SN
Γ?s(x

0
p,x

0
e,ue(·)), (2.18)

and hence

sup
ue(·)∈UN

inf
up(·)∈U

Γ(x0
p,x

0
e, up(·),ue(·)) ≡ sup

ue(·)∈UN

inf
s∈SN

Γ?s(x
0
p,x

0
e,ue(·)). (2.19)

The control-control formulation, and sequence-control formulation of the team evasion game
are equivalent when formulated conservative to the evaders. The sequence-control formulation
will be used as the main open-loop formulation for the evaders in that it provides more
insights to the structure of the optimal control problem the evaders have to solve. The
solutions and implications of this formulation will be discussed in detail in Chapter 3.
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2.5 Conclusion

The closed-loop formulation of the team evasion game is proposed in this chapter. While the
closed-loop formulation best captures the essence of the team evasion game, it is extremely
hard to solve even for a team with 3 evaders. Two types of open-loop formulations for the game
are also proposed in this chapter: the control-control formulation where the decision variables
of the pursuer and the evaders are control functions and the sequence-control formulation
where the pursuer selects a capture sequence instead of a control function. Each type of
formulation can be formulated either to the pursuer or to the evaders. The control-control
formulation conservative to the pursuer serves no particular use to the pursuer or the evaders
in that the evaders can always survive indefinitely in this formulation. The sequence-control
formulation conservative to the pursuer is equivalent to the fixed-sequence formulation of the
successive pursuit game in the literature and is pursuer-centric. Finally, the control-control
formulation and the sequence-control formulation conservative to the evaders are shown to be
equivalent; the sequence-control formulation will serve as the core of the collaborative team
evasion framework and will be the focus of the next chapter.
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Chapter 3

Open-loop Approach for
Collaborative Team Evasion

3.1 Introduction

A lot of research has been done on the sequence-control formulation of the team evasion
game conservative to the pursuer proposed in Chapter 2. The solution, while providing the
pursuer with a method to select the optimal capture sequence in a conservative way, does not
provide the evaders with an applicable strategy in the team evasion scenarios. The focus of
this chapter is to derive the optimal solution to the sequence-control formulation conservative
to the evaders, which will provide the evaders with a collaborative strategy to maximize the
team survival time when facing a faster pursuer.

This chapter is organized as follows. In Section 3.2, the analytical properties of the
optimal solution to the open-loop team evasion problem are derived. Section 3.3 describes the
algorithm used to compute the optimal solution to the team evasion problem. The resulting
behavior and performance of the proposed open-loop approach for collaborative team evasion
are presented and discussed in Section 3.4. Finally, Section 3.5 concludes this chapter.

3.2 Properties of the Open-loop Optimal Controls

The proposed open-loop collaborative team evasion framework relies on solving the sequence-
control team evasion problem conservative to the evaders defined in the previous chapter
as

sup
ue(·)∈UN

inf
s∈SN

Γ?s(x
0
p,x

0
e,ue(·)). (3.1)

Note that the admissible set for the evaders is infinite dimensional since it contains all
possible joint controls for the team of evaders. Although not directly solvable in this form, the
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optimization problem can be converted into a form that can be solved much more efficiently
through exploitation of some properties of the optimizer of the definitions.

Definition 3.1 Set of admissible constant-heading-maximum-speed controls
The set of all controls with constant heading and maximum speed is defined as

Uθ = {u(·) | u(t) = (cos θ, sin θ) for t ≥ 0}, (3.2)

where θ is referred to as the heading of the agent.

Definition 3.2 Set of admissible constant-heading-maximum-speed joint controls
The set of all joint controls for N evaders with constant heading and maximum speed is
defined as

UNΘ = {(u1(·), . . . , uN(·)) | ui(·) ∈ Uθi for i = 1, . . . , N}, (3.3)

where Θ = (θ1, . . . , θN) is referred to as the joint heading of agents.

Definition 3.3 Front-Truncated Function
Given a function f(·) : R+ → RN , the notation f+τ (·) denotes the front-truncated version of
f(·) where the section of f(·) between 0 and τ is truncated. More specifically,

f+τ (t) = f(t+ τ) for t ≥ 0.

The notation of front-truncated function is often applied to trajectories and controls of the
agents in this dissertation. For example, given ue(·) as the joint control of evaders, the
front-truncated version of the joint control is denoted by u+τ

e (·) and it describes the joint
control of the evaders after time τ .

3.2.1 Open-loop Optimal Pursuer Control

Recall that Γ?s(x
0
p,x

0
e,ue(·)) represents the minimum possible team survival time under the

capture sequence s given that x0
p and xe are the initial positions of the pursuer and the

evaders and ue(·) is the joint control of the evaders. To be able to solve the optimization
problem in Eq. (3.1), an efficient algorithm that is capable of evaluating this minimum
possible team survival time under a specific capture sequence is to be developed. Note that
the maximum speeds of the pursuer and the evaders are denoted by vp and ve and they satisfy
vp > vi, i = 1, . . . , N . They are omitted in the arguments of the Γ?s function for notational
simplicity.

The following lemma describes an important property of the open-loop optimal pursuer
control against a single slower evader with given control.
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Lemma 3.1 Open-loop optimal pursuer control against a single evader
Define the optimal open-loop control for a pursuer starting at x0

p with maximum speed vp to
capture an evader starting at x0

e with maximum speed ve and control ue(·) as

u?p(·) = arg inf
up(·)∈U

Γ(x0
p, x

0
e, up(·), ue(·)),

then for all ue(·) ∈ U ,
u?p(·) ∈ Uθ.

Figure for proof of Lemma 3.1

Proof. Assume for contradiction that there exists a specific ue(·) ∈ U such that the resulting
u?p(·) /∈ Uθ, and the resulting minimum capture time is

τ ? = Γ(x0
p, x

0
e, u

?
p(·), ue(·)) = inf

up(·)∈U
Γ(x0

p, x
0
e, up(·), ue(·)). (3.4)

Define the resulting pursuer trajectory x?p(·) = traj(x0
p, vp, u

?
p(·)) and the resulting evader

trajectory xe(·) = traj(x0
e, ve, ue(·)). Based on the point capture condition, at capture time

τ ?

x?p(τ
?) = xe(τ

?). (3.5)

Since the shortest distance between two points in R2 is a straight line, there exist an alternative
pursuer control u′p(·) ∈ Uθ such that the resulting pursuer trajectory, x′p(·) = traj(x0

p, vp, u
′
p(·)),

satisfies
x′p(τ

′) = xe(τ
?) for τ ′ ≤ τ ?. (3.6)

At time τ ′, the pursuer is at x′p(τ
′) and the evader is at xe(τ

′). Knowing the evader control
ue(·), and hence the resulting trajectory of the evader xe(·), the pursuer can “backtrack” the
resulting trajectory of the evader between xe(τ

′) and xe(τ
?) and capture the evader at xe(τ

′′)
where τ ′ < τ ′′ < τ ?. Note that with this alternative control, the pursuer can capture the
evader at time τ ′′ < τ ?, which contradicts statement that τ ? is the minimum possible capture
time in Eq. (3.4). Hence, by contradiction, u?p(·) ∈ Uθ for all ue(·) ∈ U . �
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Lemma 3.1 shows that to capture an evader with known control in minimum time, the pursuer
must travel in straight line with maximum speed.

The next lemma is necessary for extending Lemma 3.1 to cases with multiple evaders.

Lemma 3.2 Effect of delayed capture on team survival time under a capture
sequence
Given x0

e as the initial positions of N evaders, ve as their maximum speeds, ue(·) as their
joint controls, and s = (s1, . . . , sN) as a capture sequence, define xe(·) = traj(x0

e,ve,ue) as
the resulting joint trajectory of the evaders, ŝ = (s2, . . . , sN) as the front-truncated capture
sequence, and ê = {s2, . . . , sN} as the set of evaders with the first evader in the capture
sequence removed. Assuming that the maximum speed of the pursuer is faster than all evaders,
then for all τ ′ such that τ ′ > τ ≥ 0,

τ ′ + Γ?ŝ(xs1(τ ′),xê(τ
′),u+τ ′

ê (·)) > τ + Γ?ŝ(xs1(τ),xê(τ),u+τ
ê (·)) (3.7)

(a) x0
p = xs1(τ)

(b) x0
p = xs1(τ ′)

Figure for proof of Lemma 3.2

Proof. Assume for contradiction that there exists a τ ′ > τ ≥ 0 such that

(τ ′ − τ) + Γ?ŝ(xs1(τ ′),xê(τ
′),u+τ ′

ê (·)) < Γ?ŝ(xs1(τ),xê(τ),u+τ
ê (·)). (3.8)
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Consider the scenario where the pursuer starts at xs1(τ), which is a point on the trajectory
of the first evader, and aims to capture the N − 1 evaders according to the capture sequence
ŝ = (s2, . . . , sN). Note that the first evader, indexed by s1, is omitted from ŝ. The N − 1
evaders start at xê(τ) with u+τ

ê (·) as their joint control. The term, Γ?ŝ(xs1(τ),xê(τ),u+τ
ê (·)),

on the right hand side of Eq. (3.8) is the minimum time it takes a pursuer starting at xs1(τ)
to capture all N − 1 evaders according to ŝ.

The term on the left hand side of Eq. (3.8) is the resulting team survival time of a specific
pursuer control. Starting from xs1(τ), the pursuer follows xs1(·), the future trajectory of
evader s1, with speed vs1 instead of its maximum speed vp, until it reaches xs1(τ

′) at time
τ ′. This takes the pursuer τ ′ − τ units of time. At time τ ′ the N − 1 evaders are at xê(τ

′)
and their joint control starting from this point is u+τ ′

ê (·). The pursuer then follows the
optimal pursuer control which captures all the N − 1 evaders from this configuration with
the minimum possible time Γ?ŝ(xs1(τ ′),xê(τ

′),u+τ ′

ê (·)). In other words, the left hand side of
Eq. (3.8) is an achievable team capture time for a pursuer starting at xs1(τ) to capture N − 1
evaders starting at xê(τ) with joint control u+τ

ê (·) according to the capture sequence ŝ.

Recall that the right hand side of the equation is the minimum achievable team capture
time for such scenario according to the definition. Equation (3.8) contradicts itself by stating
that there exists a team capture time that is shorter than the minimum possible team capture
time. Through contradiction, Eq. (3.7) is shown to be true for all τ ′ such that τ ′ > τ ≥ 0. �

Lemma 3.2 has shown that when the joint control of the evaders is known and the capture
sequence is given, delaying the capture any of the evaders will always result in a longer team
survival time.

Based on Lemma 3.2, the following theorem describes the optimal pursuer control that
achieves the minimum possible team survival time given the joint control of the evaders under
a specific capture sequence.

Theorem 3.3 Optimal pursuer control to capture a team of evaders with given
controls under a capture sequence
Given x0

e as the initial position of N evaders, ve as their maximum speeds, and ue(·) as their
joint control, for a pursuer starting at x0

p with maximum speed vp > vi for i = 1, . . . , N to cap-
ture all evaders according to the capture sequence s in minimum possible time Γ?s(x

0
p,x

0
e,ue(·)),

the pursuer must always capture the next evader in the capture sequence in minimum possible
time.

Proof. The statement is obviously true for N = 1. Assuming that the statement is true for
teams with N − 1 evaders, by Lemma 3.2 for the pursuer to achieve Γ?s(x

0
p,x

0
e,ue(·)), the first

evader has to be captured in minimum possible time. By induction, all evaders have to be
captured in minimum time according to the capture sequence. �
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The optimal pursuer control, which always captures the next evader in the capture
sequence in minimum possible time, is referred to as the greedy pursuer control.

Definition 3.4 Greedy pursuer control
Given x0

e as the initial position of N evaders, ve as their maximum speeds, ue(·) as their
joint control, and s = (s1, . . . , sN) as the capture sequence, assume that at time t the next
evader to capture is si and define

u′p(·) = arg inf
u′p(·)∈U

Γ(xp(t), xsi(t), u
′
p(·), u+t

si
(·)). (3.9)

The greedy pursuer control, denoted by u?p(·), satisfies

u?p(t) = u′p(0)

for all t such that the next evader to capture is si.

Figure 3.2 shows an example of the resulting trajectory of the greedy pursuer control to
capture three evaders with given controls in a specific order.

Figure 3.2: Example of the resulting trajectory from greedy pursuer control

In conclusion, in this section it has been shown that to capture a team of slower evaders
with joint initial position x0

e and known joint control ue(·) in a specific capture sequence s in
minimum time, the pursuer, starting at x0

p should always capture each evader in minimum
time according to the capture sequence. This results in straight-line-maximum-speed pursuer
trajectories between the capture points of the evaders, and the resulting team survival time
is denoted by Γ?s(x

0
p,x

0
e,ue(·)).
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3.2.2 Open-loop Optimal Evader Control

In the open-loop formulation for the team evasion problem conservative to the evaders, the
evaders have to find the joint control that maximizes the team survival time under the
assumption that the pursuer will act optimally against it using the optimal control derived in
the previous section. In this section, the properties of the optimal joint control of evaders in
the open-loop formulation are derived through a series of lemmas.

Starting with the single evader case, the following lemma reveals the relationship between
the control, capture point, and survival time of the evader in an open-loop setting.

Lemma 3.4 Minimum-time capture point and survival time
Given x0

p and x0
e as the initial positions of a pursuer and an evader, vp and ve as their

maximum speeds, and ue(·) ∈ U as the evader’s control, the minimum possible capture time
against an optimal pursuer in the open-loop setting is defined as

τ = inf
up(·)∈U

Γ(x0
p, x

0
e, up(·), ue(·)). (3.10)

The resulting minimum-time capture point is denoted by xe(τ) where xe(·) = traj(x0
e, ve, ue(·)).

Given an alternative evader control u′e(·) ∈ U , the resulting evader trajectory is denoted by
x′e(·) = traj(x0

e, ve, u
′
e(·)).

For all u′e(·) ∈ U such that the resulting evader trajectory x′e(·) satisfies

x′e(τ
′) = xe(τ) for a τ ′ < τ, (3.11)

the following inequality is true:

inf
up(·)∈U

Γ(x0
p, x

0
e, up(·), u′e(·)) ≥ τ. (3.12)

For proof of Lemma 3.4

Proof. Assume for contradiction that there exists a u′e(·) ∈ U with the resulting evader
trajectory x′e(·) = traj(x0

e, ve, u
′
e(·)) passing through xe(τ) at time τ ′ ≤ τ such that

inf
up(·)∈U

Γ((x0
p, x

0
e), up(·), u′e(·)) = τ ′′ < τ.
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This implies that the pursuer can reach x′e(τ
′′) at time τ ′′. Since vp > ve, the pursuer

can follow the trajectory x′e(·) further and reach x′e(τ
′) before time τ ′. With the condition

x′e(τ
′) = xe(τ) and τ ′ ≤ τ , this implies that the pursuer starting at x0

p can reach xe(τ) strictly
before time τ . Knowing the evader control, the pursuer will then be able to capture the
evader with the original control ue(·) before time τ by “backtracking” the evader’s trajectory.
This contradicts the fact that τ is the minimum possible capture time as defined in Eq. (3.10).
Hence, by contradiction, Eq. (3.12) is true for all u′e(·) that satisfies Eq. (3.11). �

The following theorem makes use of Lemma 3.4 to derive an important property of the
optimal joint control of evaders given a specific capture sequence.

Theorem 3.5 Open-loop optimal joint control of the evaders given a capture
sequence
Given x0

p and x0
e as the initial positions of a pursuer and N evaders, vp and ve as their

maximum speeds, and s = (s1, . . . , sN ) as the capture sequence, define the optimal joint control
for the evaders in the open-loop formulation of team evasion game conservative to the evaders
as

u?e(·) = arg sup
ue(·)∈UN

Γ?s(x
0
p,x

0
e,ue(·)). (3.13)

Then
u?e(·) ∈ UNΘ . (3.14)

Proof. When N = 1, the optimal open-loop control for the single evader is constant heading
maximum speed and points directly away from the pursuer.

Define ŝ = (s2, . . . , sN ) and ê = {s2, . . . , sN}, and assume for induction that u?ê(·) ∈ U
N−1
Θ .

Consider a joint control for N evaders ue(·) = (us1(·), . . . , usN (·)) and define the resulting
minimum capture time of the first evader to be

τ = inf
up(·)∈U

Γ(x0
p, x

0
s1
, up(·), us1(·)),

and the resulting capture point to be xs1(τ) with xs1(·) = traj(x0
s1
, vs1 , us1(·)). Assume

for contradiction that us1(·) is not constant heading and maximum speed between time
0 and time τ , but the joint control ue(·) does achieve the maximum team survival time
supue(·)∈UN Γ?s(x

0
p,x

0
e,ue(·)). Consider an alternative control for the first evader that travels

in constant heading and maximum speed to reach xs1(τ) at a time earlier than τ (this is
possible since the original us1(·) is not constant heading and maximum speed between time 0
and τ), and then follows the original trajectory xs1(·). According to Lemma 3.4, since with
this alternative control the evader can reach xs1(τ) before the original minimum capture time
τ , the pursuer can not capture the evader with the alternative control at any time earlier than
τ . In other words, with the alternative control, the evader will be capture by the optimal
pursuer at xs1(τ

′) with τ ′ > τ instead of xs1(τ). According to Lemma 3.2, this will result
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in a longer team survival time than the original ue(·). However, since the original ue(·) is
assumed to achieve the maximum possible team survival time, this leads to a contradiction.
By proof of contradiction, to achieve the maximum open-loop team survival time, the first
pursuer in the sequence has to travel in fixed heading and maximum speed.

By induction, this is true for all N and hence all evaders have to travel in constant
headings and maximum speeds to achieve the maximum team survival time in an open-loop
setting. �

With Theorem 3.5, the optimal joint control for a team of evaders in an open-loop setting
can be specified by the joint heading of the team. The heading of evader i is denoted by
θi and the joint heading of a team with N evaders is denoted by Θe = (θ1, . . . , θN). The
following remarks are made to simplify the optimal control problem faced by the evaders in
the sequence-control formulation conservative to the pursuer.

Remark 3.6
The optimal control problem for the evaders proposed in Eq. (2.16),

sup
ue(·)∈UN

Γ?s(x
0
p,x

0
e,ue(·)),

is equivalent to
sup

ue(·)∈UN
Θe

Γ?s(x
0
p,x

0
e,ue(·)),

where
Θe = (θ1, . . . , θN).

With a slight abuse on the notation of Γ?s, the optimal control problem for the evaders can be
expressed as

sup
Θe

Γ?s(x
0
p,x

0
e,Θe). (3.15)

Note that the optimal control problem in Eq. (2.16) is a variational optimization problem
which is infinite dimensional due to the admissible joint control set UN . However, by exploiting
the properties of the optimal control derived through Theorem 3.5, the problem is simplified
to the finite dimensional optimal control problem in Eq. (3.15). The admissible set for the
joint heading Θe is RN .

Remark 3.7
The sequence-control formulation conservative to the pursuer,

inf
s∈SN

sup
ue(·)∈UN

Γ?s(x
0
p,x

0
e,ue(·)),

as defined in Eq. (2.15) can be reformulated as

inf
s∈SN

sup
Θe

Γ?s(x
0
p,x

0
e,Θe), (3.16)
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where Θe is the joint heading of the evaders.

While Eq. (3.15) can be solved as a nonlinear optimization problem using techniques
such as sequential quadratic programming, it can be solved even more efficiently by the
method proposed in [34] and reviewed in B. However, the method proposed in [34] is based
on first-order optimality condition which is only applicable for the formulation conservative
to the purser, but not the one conservative to the evaders. The inf-sup formulation and the
derivation of its optimal solution is presented here to lay the foundation for the following
extensions of Theorem 3.5, which are important to the optimal solution of the open-loop
formulation conservative to the evaders.

Corollary 3.8
Given x0

p and x0
e as the initial positions of a pursuer and N evaders, vp and ve as their

maximum speeds, define the optimal joint control of evaders for the open-loop team evasion
problem conservative to the evaders as

u?e(·) = arg sup
ue∈UN

inf
s∈SN

Γ?s(x
0
p,x

0
e,ue(·)). (3.17)

Then
u?e(·) ∈ UNΘ . (3.18)

Proof. Assume for contradiction that there exists ue(·) /∈ UNΘ such that

inf
s∈SN

Γ?s(x
0
p,x

0
e,ue(·)) = sup

ue∈UN

inf
s∈SN

Γ?s(x
0
p,x

0
e,ue(·)). (3.19)

Since ue(·) /∈ UΘ, according to Theorem 3.5, for every s ∈ SN there exists a u′e(·) ∈ UNΘ such
that

Γ?s(x
0
p,x

0
e,u

′
e(·)) > Γ?s(x

0
p,x

0
e,ue(·)).

This implies that there exists u′e(·) such that

inf
s∈SN

Γ?s(x
0
p,x

0
e,u

′
e(·)) > inf

s∈SN
Γ?s(x

0
p,x

0
e,ue(·))

and hence contradicts Eq. (3.19). The proof is completed by proof of contradiction. �

With this corollary the following remark is made on the optimal control problem the team of
evaders faces in the sequence-control open-loop formulation conservative to the evaders.
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Remark 3.9
The optimal control problem for the team of evaders in the sequence-control open-loop formu-
lation conservative to the evaders as formulated in Eq. (2.17),

sup
ue(·)∈UN

inf
s∈SN

Γ?s(x
0
p,x

0
e,ue(·)),

is equivalent to
sup

ue(·)∈UN
Θe

inf
s∈SN

Γ?s(x
0
p,x

0
e,ue(·)).

With a slight abuse on the notation of Γ?s, the optimal control problem for the evaders can be
expressed as

sup
Θe

inf
s∈SN

Γ?s(x
0
p,x

0
e,Θe).

Figure 3.3: Resulting optimal trajectories for the open-loop team evasion problem conservative to
the evaders

Figure 3.3 shows the resulting trajectories of the optimal solution to the open-loop team
evasion problem conservative to the evaders for a 3-evader layout. The dark triangle is
the initial position of the pursuer while the solid colored circles are the initial positions of
the evaders. The hollow circles are the capture points of the evaders and the lines are the
trajectories of the agents.

3.3 Solutions for the Open-loop Formulations

Recall the open-loop formulation of the team evasion game conservative to the pursuer as
defined in Remark 3.7 as

inf
s∈SN

sup
Θe

Γ?s(x
0
p,x

0
e,Θe) (3.20)
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and the open-loop formulation of the team evasion game conservative to the evaders as
defined in Remark 3.9 as

sup
Θe

inf
s∈SN

Γ?s(x
0
p,x

0
e,Θe). (3.21)

In this section, the algorithms used to solve for the open-loop optimal solutions to these
formulations will be presented in detail.

3.3.1 Minimum Survival Time of a Given Evader Control

The following corollary describe how the minimum capture time of an evader with an
arbitrarily control can be evaluated based on Lemma 3.1.

Corollary 3.10 Minimum Capture Time of a Single Evader
Given x0

p and x0
e as the initial positions of a pursuer and an evader, vp and ve as their

maximum speeds, and ue(·) ∈ U as the control for the evader, the minimum possible capture
time is

inf
up(·)∈U

Γ(x0
p, x

0
e, up(·), ue(·)) = min{τ | τ ≥ 0 and

∥∥x0
p − xe(τ)

∥∥
2
− vpτ = 0} (3.22)

where xe(·) = traj(x0
e, ve, ue(·)).

Figure for proof of Corollary 3.10

Proof. The term
∥∥x0

p − xe(τ)
∥∥

2
in Eq. (3.22) is the distance between the initial position

of the pursuer and the position of the evader at time τ . The term vpτ is the maximum
distance the pursuer can travel in time τ . From Lemma 3.1, the minimum time capture
trajectory by the pursuer is always a straight line. Hence, the minimum positive τ such that∥∥x0

p − xe(τ)
∥∥

2
= vpτ is the first possible time that the evader can be captured. �

The minimum capture time of a single evader with given control can hence be computed by
finding the minimum positive root of

∥∥x0
p − xe(τ)

∥∥
2
− vpτ = 0. For cases where vp > ve, a

finite positive root always exist and the root searching can be done in finite time.



CHAPTER 3. OPEN-LOOP COLLABORATIVE TEAM EVASION 30

When the evaders are traveling with constant headings and maximum speeds, the eval-
uation of infup(·)∈U Γ(x0

p, x
0
e, up(·), ue(·)) can be further simplified according to the following

corollary.

Corollary 3.11
Given x0

p and x0
e as the initial positions of a pursuer and an evader, vp and ve as their maximum

speeds, assuming that the evader is traveling with a constant heading θ with maximum speed,
the minimum capture time is

ve
v2
p − v2

e

(
x̂ · êθ +

√
(x̂ · êθ)2 + (

v2
p

v2
e

− 1)(x̂ · x̂)

)
, (3.23)

where x̂ = xe− xp is the vector pointing from the pursuer to the evader, and êθ = [cos θ, sin θ]
is the unit vector point at the direction specified by θ.

Figure for proof of Corollary 3.11

Proof. At time t, the position of the evader is x0
p + x̂+ (vet)êθ, and the distance from this

point to the starting position of the pursuer is ‖x̂+ (vet)êθ‖2. According to Corollary 3.10,
for capture to happen at time t, the following equation must be true:

‖x̂+ (vet)êθ‖2 = vpt.

Taking the square of both sides and re-arranging the terms results in the following 2nd order
polynomial of t:

(v2
p − v2

e)t
2 − 2ve(x̂ · êθ)t− x̂ · x̂ = 0. (3.24)

The expression in Eq. (3.23) is the closed-form formula for the bigger root of the polynomial.
�

Note that compared to the case in Corollary 3.10 where the minimum survival time has to
be computed through a one dimensional search, with ue(·) ∈ Uθ the minimum survival time
can be evaluated much more efficiently through a closed-form formula.
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Algorithm 3.1 Minimum Capture Time of a Capture Sequence Given Joint Control of
Evaders: Γ?s(x

0
p,x

0
e,ue(·))

1: Given x0
p,x

0
e = (x0

1, . . . , x
0
N), s = (s1, . . . , sN), ve = (v1, . . . , vN) < vp, and ue(·) =

(u1(·), . . . , uN(·))
2: Initialize xp ← x0

p, τ ← 0
3: for i = 1, . . . , N do
4: xsi(·)← traj(x0

si
, vsi , usi(·))

5: τ ← τ + infup(·)∈U Γ(xp, xsi(τ), up(·), u+τ
si

(·))
6: xp ← xsi(τ)
7: end for
8: return τ

The minimum team survival time under a specific capture sequence given the joint control
of evaders can be evaluated by Algorithm 3.1. The algorithm is initialized with the pursuer
on the initial position and the time variable τ set to zero. For the i-th evader in the capture
sequence, indexed by si, the resulting trajectory xsi(·) is computed at line 4. The term
infup(·)∈U Γ(xp, xsi(τ), up(·), u+τ

si
(·)) in line 5 is the minimum capture time of evader si starting

from time τ ; the pursuer is at the capture position of evader si−1 and the evader is at xsi(τ)
with its future control being the front-truncated control u+τ

si
(·). In other words, it is the

difference between the survival time of evader si and evader si−1. Its value can be computed
according to Corollary 3.10 when ue(·) /∈ Uθ and according to Corollary 3.11 when ue(·) ∈ Uθ.
The final value of the variable τ is the survival time of the last captured evader in that it is
the sum of the difference in survival time of all N evaders. The computation scales linearly
with the number of evaders.

3.3.2 Optimal Solution to the Open-loop Formulation
Conservative to the Pursuer

In the open-loop formulation of the team evasion game conservative to the pursuer as defined
in Eq. (3.20), the pursuer has to select a capture sequence first. The evaders, given the
capture sequence of the pursuer, can then choose their joint heading to maximize the team
survival time. The optimal control problem faced by the team of evader is

sup
Θe

Γ?s(x
0
p,x

0
e,Θe). (3.25)

This optimization problem can be treated as a unconstrained non-linear optimization problem,
and can be solved numerically with standard non-linear optimization techniques such as the
sequential quadratic programming (SQP) as reviewed in [47]. The dimension of the problem
grows linearly with the dimension of the decision variable Θe, which is the same as the
number of evaders in the team.
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As proposed in [34] and reviewed in Chapter B, by exploiting the first order optimality
condition of the open-loop formulation conservative to the pursuer, the problem of finding
the optimal joint heading of the evaders can be converted to a one dimensional root searching
problem. While the root searching approach is much more efficient than the nonlinear
optimization approach for a team with large number of evaders, it is not applicable for the
open-loop formulation conservative to the evaders. Several examples of the resulting optimal
joint heading of the evaders are given in Section 3.4.

In the open-loop formulation conservative to the pursuer as formulated in Eq. (3.20), the
pursuer has to pick a capture sequence assuming that the evaders will react to the selected
capture sequence with the optimal joint heading. As mentioned in Chapter 1, the pursuer
faces a dynamic traveling salesman problem. While algorithms such as branch-and-bound [27]
are able to solve the traveling salesman problem of moderate size efficiently, these algorithms
all require that the inter-city distances being independent from the route selected by the
salesman. For example, given 3 cities labeled as A, B, and C, the time it takes the pursuer to
travel from A to B is the same whether or not the route selected by the pursuer is (A,B,C) or
(C,A,B). However, this is not true in the open-loop team evasion problem conservative to the
pursuer since the distance between the evaders is a function of time. Using the same example,
the time it takes the pursuer to capture evader B after evader A is captured, depends on
when evader A is captured. In [30] it has been shown that even with only 2 evaders, there
exists no polynomial time algorithm that can approximate the game with a factor better
than 2. The pursuer has to rely on heuristics or brute-force approaches to derive the optimal
capture sequence to capture the evaders. Examples of the optimal capture sequence for the
pursuer in this setting are given in Section 3.4.

3.3.3 Optimal Solution to the Open-loop Formulation
Conservative to the Evaders

In the open-loop formulation conservative to the pursuer discussed in the previous section, the
evaders are facing a relatively straight forward problem in that the capture sequence is known
to them. However, in the open-loop formulation conservative to the evaders formulated in
Eq. (3.21) as

sup
Θe

inf
s∈SN

Γ?s(x
0
p,x

0
e,Θe),

the evaders have to select their joint heading without knowing which capture sequence the
pursuer will choose. Hence, as indicated by the infs∈SN , the evaders assume that the pursuer
will pick the optimal capture sequence against the selected joint heading to minimize the
team survival time.

The decision variable of the first player, the joint heading of the evaders, is a continuous
variable, and the decision variable of the second player, the capture sequence, is a discrete one.
These are the characteristics of a minimax optimization problem. Although the open-loop
team evasion problem has the sup-inf structure where the first player is the maximizer and
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the second player is the minimizer, it can be easily converted to a inf-sup format by flipping
the sign of the objective function. However, to avoid confusion, and also to highlight the
fact that the goal of the evaders is to maximize the team survival time, the open-loop team
evasion problem will be kept in its sup-inf form.

The open-loop team evasion problem can be treated as an unconstrained non-linear
optimization problem with infs∈SN Γ?s(x

0
p,xe,Θe) being the objective function and the Θe ∈ RN

being the decision variable. Given a tuple of (x0
p,x

0
e,Θe), the objective function returns the

team survival time with the evaders captured according to the optimal capture sequence
defined as

s? = arg inf
s∈SN

Γ?s(x
0
p,xe,Θe).

In other words, the objective function is the point-wise minimum over a set of different Γ?s
functions, each function in the set represents the minimum team survival time under a specific
capture sequence. The values of Γ?s(x

0
p,x

0
e,Θe) and infs∈SN Γ?s(x

0
p,x

0
e,Θe) of a 2-evader layout

given different joint heading Θe are visualized in Fig. 3.4 and Fig. 3.6.

By exploiting the minimax structure, the unconstrained sup-inf problem proposed in
Eq. (3.21) can be converted to the following constrained optimization problem by introducing
a dummy variable z:

sup
Θe,z

z (3.26a)

s.t. z ≤ Γ?s(x
0
p,x

0
e,Θe) for all s ∈ SN . (3.26b)

The decision variable of the problem is [Θe, z] which has a dimension of N + 1. Note that
Eq. (3.26b) encodes one constraint on z and Θe for each of the possible capture sequences in
SN . The objective function z represents the minimum survival time of the team in that it is
constrained to be less than or equal to the survival time of all possible capture sequences.

The optimization problem proposed in Eq. (3.26) is linear in the objective function with
nonlinear constraints. It can then be converted in to the following optimization problem
through the use of Lagrange multiplier.

sup
Θe,z,λ1,...,λm

z +
m∑
i=1

λi(Γsi(x
0
p,x

0
e,Θe)− z) (3.27)

s.t. λi ≥ 0, for i = 1, . . . ,m (3.28)

Note that through these transformations, the minimax problem Eq. (3.21) has been converted
to a standard non-linear optimization problem with simple constraints. In this form it can
be solved numerically with sequential quadratic programming. Examples of the open-loop
optimal joint heading of the evaders and the resulting trajectories are presented and discussed
in the next section.
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3.4 Results and Discussion

In the open-loop formulation conservative to the pursuer in Eq. (3.20), the pursuer has to
declare a capture sequence and commit to it; the evaders can then optimize their headings
specifically to the declared capture sequence. The resulting optimal joint heading for the
evaders is

Θfix?
e = arg sup

Θe

Γ?sfix?(x0
p,x

0
e,Θe),

which is optimal specifically to the capture sequence

sfix? = arg inf
s∈SN

sup
Θe

Γ?s(x
0
p,x

0
e,Θe).

In the open-loop formulation conservative to the evaders in Eq. (3.21), it is assumed that the
evaders have to disclose their joint heading and the pursuer can then choose from all possible
capture sequences according to the joint heading of the evaders. The resulting optimal joint
heading of the evaders in this formulation is

Θ?
e = arg sup

Θe

inf
s∈SN

Γ?s(x
0
p,x

0
e,Θe)

and the optimal capture sequence is defined as

s? = arg inf
s∈SN

Γ?s(x
0
p,x

0
e,Θ

?
e).

In this section, the resulting behavior of the optimal solutions of these two formulations are
presented and compared.

3.4.1 Resulting Behavior of Different Formulations

A 2-evader layout as shown in Fig. 3.5 is used to illustrate the difference in the resulting
behavior of the two formulations. The initial position of the pursuer, denoted by x0

p, is
represented as a black triangle in the figures. The initial positions of the evaders are denoted
by x0

e = (x0
r, x

0
b) and are shown in the figures as the red and blue solid circles respectively.

The resulting trajectories of the agents are drawn as colored dashed lines, and the colored
hollow circles are the capture positions of the evaders. The initial layout is set to be
x0
p = (0, 0), x0

r = (1, 0), x0
b = (1.1,−0.1). The maximum speeds of the evaders are set to be

1/4 units per second and that of the pursuer is set to be 1 unit per second.

Conservative to the Pursuer

In the open-loop formulation conservative to the pursuer, the evaders are allowed to pick
their joint heading after knowing the exact capture sequence the pursuer is using.

Figure 3.4 shows the value of Γ?s(x
0
p,x

0
e,Θe), which is the minimum possible team survival

time, given all possible joint heading Θe under different capture sequences. The height of
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Figure 3.4: Value of Γ?s(x
0
p,x

0
e,Θe) over all possible Θe under different capture sequences

(a) s = (r, b) (b) s = (b, r)

Figure 3.5: Resulting optimal trajectories for supΘe
Γ?s(x

0
p,x

0
e,Θe) under different capture se-

quences.
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the surface in each figure represents the team survival time and the optimal team survival
time for each capture sequence is marked by a black star on the surface and the contour.
The x-axis and y-axis represent the heading of the red and blue evaders respectively and
are drawn from 0 to 2π. It can be observed from the figure that by choosing the capture
sequence s = (r, b), the pursuer can achieve lower team capture time against optimal joint
heading of the evaders. Hence, in the open-loop formulation conservative to the pursuer as
defined in Eq. (3.20), the optimal capture sequence for the pursuer is sfix? = (r, b).

Figure 3.5 shows the resulting trajectories of the optimal joint heading for each capture
sequence. Just like the geometrical solution described in [23], the last captured evader always
moves directly away from the capture point of the evader that is captured before it. It is
worth noting again that these joint headings of the evaders are optimal under the condition
that the capture sequence is known to the evaders and the pursuer is not allowed to deviate
from the capture sequence during the game.

Conservative to the Evaders

In the open-loop formulation conservative to the evaders, the evaders have to determine their
joint heading with the assumption that the selected joint heading will be revealed to the
pursuer and that the pursuer will then pick the optimal capture sequence against the selected
joint heading. With this worst-case mentality, the evaders try to find the joint heading
that has the longest minimum possible team survival time. Figure 3.6 shows the value of
infs∈SN Γ?s(x

0
p,x

0
e,Θe) with different Θe for the specific layout. Similar to Fig. 3.4, the height

of the surface indicates the team survival time given the corresponding joint heading of the
evaders; the color of the surface represents the optimal capture sequence against the joint
heading. For a joint heading of the evaders in the red region, the optimal capture sequence
for the pursuer is s? = (r, b); for a joint headings in the blue region, the optimal capture
sequence is s? = (b, r). For a joint heading that is on the boundary of both regions, the
pursuer can pick either of the capture sequence to achieve the same minimum team survival
time. Note that the surface in Fig. 3.6 is the point-wise minimum of the surfaces in Fig. 3.4a
and Fig. 3.4b.

The optimal joint heading for the evaders which results in the maximum team survival
time is marked by black stars both on the surface and on the contour. As shown in Fig. 3.6,
for this specific initial condition the optimal joint heading of the evaders happens to be on
boundaries of both the blue and the red regions. This indicates that against the open-loop
optimal joint heading of evaders, the minimum possible team survival time that can be
achieved by the pursuer is the same for both capture sequences. Figure 3.7a and Fig. 3.7b
show the resulting minimum time capture trajectories against the optimal joint heading under
the two capture sequences. The length of the dashed black lines are the same in these two
figures.

Note that the non-uniqueness of the optimal capture sequence is not a general property
of the open-loop optimal joint heading of the evaders, but instead a special property of the
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Figure 3.7: Resulting optimal trajectories of the open-loop formulation conservative to the evaders.
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e,Θe) in a 2-evader case and the resulting open-loop

optimal trajectories

initial condition. Figure 3.8a shows the value of the open-loop team survival time and its
resulting trajectories of a slightly different initial condition where xp = (0, 0), xr = (1, 0), xb =
(1.3,−0.1), and vr = vb = 0.25. Compared to the case shown in Fig. 3.6, the optimal joint
heading for the evaders is inside the red region instead of being on the boundaries of both
regions. The optimal capture sequence against the open-loop optimal joint heading of the
evaders is unique in this case and the resulting trajectories are shown in Fig. 3.8b.

Teams with More Evaders

Figure 3.9 shows the resulting trajectories of the optimal joint heading of the evaders for
a specific layout with 3 evaders given different capture sequences. Figure 3.10 shows the
resulting optimal trajectories for a 4-evader layout and a 5-evader layout. As shown by the
figures, the optimal joint heading of the evaders for the open-loop formulation conservative
to the pursuer share similar characteristics with the two-evader case described previously.
The most pronounced characteristic is that the last captured evader is always moving directly
away from the capture point of the evader that is captured before it. This is because that the
function Γ?s(x

0
p, x

0
e,Θe), which is the minimum possible team survival time under a specific

capture sequence, is differentiable under Θe and hence has to satisfy the first-order optimality
condition which states that the gradient has to vanish at the optimizer. Since the survival
time of the last evader in the sequence is defined as the team survival time, if the last evader
is not heading directly away from the capture point of its previous evader, the joint heading
can not have a zero gradient vector in that the survival time of the team can obviously be
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increased by adjusting the heading of the last evader.

Figure 3.11 shows the trajectories resulting from the open-loop optimal solution to the
team evasion problem conservative to the evaders. Note that in all four cases, the optimal
capture sequences are not unique. Only the trajectories resulting from one of the optimal
capture sequences is shown in each figure. In these examples, the last captured evaders are
not traveling directly away from the capture point of their previous evaders.

3.4.2 Difference in Team Survival Time Performance

Most of the works in the literature use the formulation conservative to the pursuer to provide
the pursuer with a way to select a reasonable capture sequence; the strategy derived for the
evaders with this formulation is not effective in a more realistic team evasion scenario. In a
realistic team evasion scenario, it is unlikely that the pursuer will declare its capture sequence
to the evaders, neither will it be obligated to follow a specific capture sequence during the
pursuit. In this case, the evaders have to use the strategy resulting from the formulation
conservative to them.

To quantitatively measure the performance of different approaches, a benchmarking data
set is constructed with 500 randomly generated layouts for each of the team sizes: 2, 3, 4, and
5 evaders. In all of the 2000 layouts, the pursuer always starts from the origin (0, 0). The posi-
tions of the evaders are sampled randomly from a uniform distribution in a unit square centered
at the origin. The vertexes of the square are located at (−0.5,−0.5), (−0.5, 0.5), (0.5, 0.5),
and (0.5,−0.5). The maximum speed of the pursuer is set to 1 unit per second and the
maximum speeds of the evaders are set to be 0.25 units per second. This benchmarking
dataset is used throughout this dissertation.

Given a specific joint heading of the evaders, Θe, the minimum possible team survival
time against a pursuer that knows the joint heading of the evaders and is not obligated to
commit to any specific capture sequence is defined as

inf
s∈SN

Γ?s(x
0
p,x

0
e,Θe).

For each layout, the minimum possible team survival time for two different joint heading of
the evaders is measured: one is the joint heading optimal for the formulation conservative
to the pursuer, denoted by Θfix?

e ; the other is the joint heading optimal for the formulation
conservative to the evaders, denoted by Θ?

e. The distribution of the ratio of the resulting team
survival time from Θfix?

e to that from Θ?
e over the 500 layouts are shown in Figure 3.12. As

shown in the figures, this ratio is always smaller than or equal to one. This implies that when
facing a pursuer that is not constrained to commit to a specific capture sequence, a team of
evader using the open-loop formulation conservative to the evaders will always survive longer
than (or at least equally as long as) a team using the formulation conservative to the pursuer.
Also, it can be observed that the difference in team survival time performance of the two
formulations is more pronounced when the number of evaders in the team increases. While
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(a) s = (r, g, b) (b) s = (r, b, g)

(c) s = (g, r, b) (d) s = (g, b, r)

(e) s = (b, r, g) (f) s = (b, g, r)

Figure 3.9: Optimal trajectories for the open-loop formulation conservative to the pursuer of a
3-evader layout under different capture sequences
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(a) 4 evaders (b) 5 evaders

Figure 3.10: Optimal trajectories for the open-loop formulation conservative to the pursuer of a
4-evader and a 5-evader layout

in the 2-evader cases, the survival time ratio is 1 for about 450 out of the 500 layouts, in the
5-evader cases, none of the layouts have a ratio of 1 and a significant amount of the layouts
have a ratio below 0.5. This shows that the formulation conservative to the evader is much
more suitable than the one conservative to the pursuer for a team with several evaders in a
team evasion scenario.

3.5 Conclusion

In this chapter, the properties of the optimal solution to the open-loop formulation of the
team evasion problem are derived. It has been shown that for any given joint control of the
evaders, the optimal strategy for a faster pursuer to capture the team of evaders in a specific
capture sequence is to greedily minimize the survival time of the currently targeted evader.
An algorithm is proposed to compute the minimum possible team survival time of a team of
evaders under a specific capture sequence with a given joint control. The resulting optimal
trajectory of the pursuer connects the capture points of the evaders with straight lines. It
has also been shown that the optimal strategy for the evaders in the open-loop setting is
to all travel with their maximum speeds with constant headings. With these properties,
the optimization problem that the evaders have to solve for the optimal joint control can
be converted from an infinity dimensional optimization problem to a finite dimensional
optimization problem. The resulting finite dimensional sup-inf optimization problem can
be solved through standard nonlinear optimization techniques such as sequential quadratic
programming.

The resulting open-loop optimal joint heading of the evaders maximizes the minimum
possible team survival time under the assumption that the pursuer will select the optimal
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(a) 3 evaders (b) 4 evaders

(c) 5 evaders (d) 5 evaders

Figure 3.11: Examples of optimal trajectories of the open-loop formulation conservative to the
evaders
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(a) 2 evaders
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(b) 3 evaders
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(c) 4 evaders
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(d) 5 evaders

Figure 3.12: Distributions of ratio of team survival time resulting from the pursuer-centric
formulation to that resulting from the evader-centric formulation over 500 layouts for teams with
different number of evaders
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capture sequence against the joint heading of the evaders. This is different from the pursuer-
centric frameworks in the literature where the pursuer has to declare a capture sequence and
commit to it before knowing the joint heading of the evaders. As a result of the worst-case
mentality of the proposed framework, the resulting open-loop optimal joint heading of the
evaders comes with a guaranteed team survival time. The team is guaranteed to survive at
least as long as this team survival time by following the optimal joint heading regardless of the
action of the pursuer; the evaders can achieve an even higher team survival time if the pursuer
acts suboptimally. A team that follows the joint heading derived from the pursuer-centric
frameworks performs poorly when facing a pursuer that is not obligated to capture the
evaders in any specific capture sequence. This is due to the overly aggressive headings of the
evaders being easily exploitable by the pursuer. Through extensive simulations, it has been
shown that in a more realistic team evasion scenario, the proposed open-loop collaborative
team evasion framework performs much better in terms of team survival time than the
pursuer-centric frameworks in the literature.

In conclusion, the proposed open-loop collaborative team evasion framework provides the
evaders with a strategy to maximize the minimum possible team survival time when facing a
faster pursuer by solving a finite dimensional optimization problem; the conservatism towards
the evaders embedded in the formulation results in a guaranteed team survival time for the
team which is not provided by any of the previous work in the literature.
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Chapter 4

Iterative Open-loop Approach for
Collaborative Team Evasion

4.1 Introduction

In the open-loop approach for collaborative team evasion proposed in the previous chapter,
the team of evaders determines their joint heading by solving the open-loop formulation of
team evasion problem conservative to the evaders. The evaders then follow the open-loop
optimal joint heading with respect to the initial condition of the game until they are all
captured by the pursuer eventually. In the open-loop approach, the evaders are guaranteed
to achieve the derived team survival time and be able to achieve even better performance if
the pursuer acts suboptimally.

In this chapter, the iterative open-loop approach is proposed to relax the conservatism of
the open-loop approach by adjusting the joint heading of the evaders during the chase using
open-loop optimal joint heading with respect to the most current state of the game. The
formulation and implementation of the iterative open-loop approach is outlined in Section 4.2.
Several approximations to the iterative open-loop approach are proposed in Section 4.3 to
reduce the computational requirement. The performance of the iterative open-loop approach
and the approximations are presented and discussed in Section 4.4, and the chapter is
concluded in Section 4.5.

4.2 Iterative Open-loop Approach

4.2.1 Formulation

The iterative open-loop approach for team evasion is based on the open-loop approach
proposed in the previous chapter. The open-loop optimal joint heading for the team evasion
problem conservative to the evaders is defined as follows.
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Definition 4.1 Open-loop optimal joint heading of the evaders
Given x0

p and x0
e as the initial positions of a pursuer and N evaders and vp and ve as their

maximum speeds where vp > ve, the open-loop optimal joint heading is defined as

Θ?
e(x

0
p,x

0
e) = arg sup

Θe

inf
s∈SN

Γ?s(x
0
p,x

0
e,Θe), (4.1)

where SN is the set of all possible capture sequences for N evaders and Γ?s(x
0
p,x

0
e,Θe) is the

minimum possible team survival time of the given layout and joint heading of evaders under
the condition that the evaders must be captured according to the sequence s.

Note that although the speeds of the pursuer and the evaders do affect the open-loop optimal
joint heading Θ?

e and the team survival time Γ?s, since they are properties of the agents that
stay constant during the game, they are omitted in the arguments for notational simplicity.

The largest lower bound of the open-loop team survival time given a specific initial
condition is defined as follows:

Definition 4.2 Largest lower bound of the open-loop team survival time
Given x0

p and x0
e as the initial position for a pursuer and N evaders and vp and ve as their

maximum speeds where vp > ve, the largest lower bound of the open-loop team survival time
is defined as

Γol?(x0
p,x

0
e) = sup

Θe

inf
s∈SN

Γ?s(x
0
p,x

0
e,Θe). (4.2)

The joint control of a team of evaders using the open-loop approach for collaborative team
evasion proposed in the previous chapter can be described as

Θe(t) = Θ?
e(x

0
p,x

0
e) for t ≥ 0, (4.3)

where (x0
p,x

0
e) is the initial layout of the game. In other words, the evaders commit to the

open-loop optimal joint heading of the initial layout of the game and do not change their
headings once the game starts. With the open-loop approach, the team is guaranteed to
survive for at least Γol?(x0

p,x
0
e) against an optimal pursuer that knows the exact joint control

of the evaders. Any suboptimal action from the pursuer will result in a longer team survival
time than the largest lower bound.

Figure 4.1 shows states of the game at different times during the pursuit where the team
of evaders uses the open-loop team evasion approach against an optimal pursuer. The pursuer
is marked by a dark triangle and the evaders are marked by solid blue dots. The dashed
lines are the open-loop optimal trajectories for the initial condition shown in Fig. 4.1a and
the hollow dots are the predicted capture points. Figure 4.1b shows the state of the game
when the first evader is captured at t = 1.21. The solid lines in this figure are the traversed
trajectories of the agents. Note that with the open-loop approach to team evasion, the second
evader is still following the open-loop optimal heading with respect to the initial condition
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(a) t = 0 (b) t = 1.21

Figure 4.1: Snapshots of a simulation with 2 evaders using the open-loop approach against an
optimal pursuer

of the game. However, the team can actually achieve a longer team survival time if the
second evader adjust its heading to move directly away from the pursuer. This example
demonstrates the conservatism of the open-loop approach. The evaders can further increase
the team survival time by adjusting their headings during the game according to the most
current layout instead of blindly following the joint heading that was optimal for the initial
condition.

The iterative open-loop approach is designed to relax the conservatism of the open-loop
approach by allowing the evaders to adjust their headings during the game. With this
additional freedom, the evaders can better exploit suboptimal actions of the pursuer and
achieve longer team survival time than the open-loop approach. In the iterative open-loop
approach, the evaders adjust their joint heading to be the open-loop optimal one with respect
to the most current state of the game in a predetermined frequency. The approach can be
described as follows.

Definition 4.3 Iterative open-loop approach (iOL) for collaborative team evasion
Given that the evaders adjust their joint heading every ∆t starting from t = 0, the resulting
joint heading control of the evaders is:

Θe(t) = Θ?
e(xp(n∆t),xe(n∆t)) for n∆t ≤ t < (n+ 1)∆t, n ∈ N+. (4.4)

It is worth pointing out that to keep the computation for the iterative open-loop approach
tractable, although the evaders can and will change their headings at future updates, they



CHAPTER 4. ITERATIVE OPEN-LOOP COLLABORATIVE TEAM EVASION 48

do not take the future adjustments into account when determining the joint heading for
the current update. In other words, at each update the evaders still plan as if they have to
commit to the selected joint heading until the end of the game.

4.2.2 Implementation

To implement the iterative open-loop approach, the open-loop optimal joint heading defined
in Eq. (4.1) has to be solved at every update. The optimization problem in Eq. (4.1) is
a non-linear and non-concave maximization problem and is solved by sequential quadratic
programming. Like most of the nonlinear optimization routines, the initialization of the
routine affects the resulting optimizer and there is no guarantee that a global optimal will
be found. This issue can be addressed by re-sampling, which initializes the optimization
routine with several different initial guesses and then selects the best optimizer from the
results. However, applying re-sampling at every update will slow down the iterative open-loop
approach significantly since the non-linear, non-concave maximization problem has to be
solved multiple times at every update. Furthermore, the number of initial guesses required to
sufficiently cover the joint heading space to achieve global optimal grows rapidly with the
number of evaders in the team.

A technique that is commonly used for receding horizon control problems with nonlinearity
is utilized to alleviate a part of the computational burden. At every update, the optimal
joint heading of the previous update is used as the initial guess for the optimization routine.
With this technique, the optimization problem only has to be solved once at each update.
Also, since with a short enough update time the layout does not change much between
two consecutive updates, the initial guess is usually very close to the open-loop optimal
joint heading of the current layout. For the iterative open-loop approach, this initialization
technique also has the benefit of a shorter convergence time in that sequential quadratic
programming is especially efficient when initialized closed to an optimizer.

In the simulations used to evaluate the survival time performance of the iterative open-loop
approach, for evaders without turning rate constraints, the open-loop optimal joint heading
of the initial layout is computed by using the re-sampling technique. After the first update
at t = 0, the re-sampling process is skipped at the rest of the updates and the open-loop
optimal joint heading from the previous update is used to initialize the optimization routine.

4.2.3 Pursuer’s Strategy Against the Iterative Open-loop
Approach

The team survival time performance of the open-loop approach proposed in the previous
chapter is measured by the minimum possible team survival time against an optimal pursuer
that knows the exact control of the evaders. The minimum possible team survival time and the
optimal pursuer trajectory are simply byproducts of the solution of the sup-inf optimization
problem solved by the evaders. However, since the evaders adjust their joint heading at every
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update time in the iterative open-loop approach, the resulting team survival time must be
measured by simulating the whole game. Furthermore, the optimal pursuer strategy against
iterative open-loop evaders is necessary for the simulation. Deriving the optimal trajectory
for the pursuer to minimize the team survival time in the iterative open-loop setting is an
extremely challenging optimal control problem. The difficulty can be illustrated by the
following example.

Consider a scenario where the evaders are using the iterative open-loop approach and
only adjust their joint heading twice: first at t = 0 and then at t = t′ > 0. Assume that the
pursuer knows that the evaders are using the iterative open-loop approach and the exact
update time. In this scenario, given the initial layout (x0

p,x
0
e), the joint heading of the evaders

from t = 0 to t = t′ is determined as Θ?
e(x

0
p,x

0
e). Hence, the joint position of the evaders at

time t′, denoted by xe(t
′), is also determined solely by the initial condition. At time t′, the

joint heading of the evaders will be adjusted to Θ?
e(xp(t

′),xe(t
′)). Starting from time t′, they

can survive for Γol?(xp(t
′),xe(t

′)) units of time in the worst case. The resulting minimum
possible team survival time starting from t = 0 is

t′ + Γol?(xp(t
′),xe(t

′)), (4.5)

which is a function of the position of the pursuer at time t′. Denoting the set of all possible
position a pursuer starting from x0

p at t = 0 with maximum speed vp can reach in t′ seconds
as

D(x0
p, vpt

′) = {x | ‖x− xp‖2 ≤ vpt
′}, (4.6)

the optimal position for the pursuer to be at time t′ is

arg inf
xp(t′)∈D(x0

p,vpt
′)

Γol?(xp(t
′),xe(t

′)). (4.7)

For each possible xp(t
′) in D(x0

p, vpt
′), the pursuer has to solve for the open-loop optimal

joint heading of the evaders for that specific layout, namely Θ?(xp(t
′),xe(t

′)), to be able
to evaluate the open-loop optimal team survival time Γol?(xp(t

′),xe(t
′)). Each of these

evaluations requires solving an N dimensional optimization problem. Figure 4.2 shows the
resulting value of Γol?(xp(t

′),xe(t
′)) given different xp(t

′) in a 2-evader case. The two colored
circles are the position of the evaders at time t′ and the dark triangle is the position of the
pursuer at t = 0. The circular contour contains all possible positions the pursuer can be
at time t′. The regions in the circle are colored according to the value of Γol?(xp(t

′),xe(t
′))

where a darker color represents a shorter team survival time.

It is worth emphasizing that for each xp(t
′), there is a corresponding open-loop optimal joint

heading for the evaders. In other words, the resulting value of infxp(t′)∈D(x0
p,vpt

′) Γol?(xp(t
′),xe(t

′))
is not the result of one specific open-loop joint heading of the evaders, but instead a family
of them. It can be observed from Fig. 4.2 that in general when the pursuer is closer to the
evaders the open-loop optimal team survival time is shorter. However, the pursuer being
equidistant to the two evaders results in a higher team survival time. The contour shows
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that the minimum team survival time is not a convex function of the pursuer’s position and
that the best pursuer position is not on the point that is closest to one of the evaders. The
optimal xp(t

′) for the pursuer to minimize the team survival time can only be found by a
brute-force approach.

Figure 4.2: Optimal open-loop survival time of a 2-evader team given different pursuer positions

The procedure described above only covers the case where the evaders adjust their joint
heading twice. Now consider a case where in addition to t = 0 and t = t′, the evaders also
adjust their joint heading one more time at t = t′′ > t′. The resulting team survival time is

t′′ + Γol?(xp(t
′′),xe(t

′′))

and is determined by the positions of the pursuer and the evaders at time t′′. The joint
position of the evaders at time t′ is still determined solely by the initial layout. However, the
joint position of the evaders at time t′′, denoted by xe(t

′′), is determined by Θ?(xp(t
′),xe(t

′)),
which is in turn determined by xp(t

′). As of the position of the pursuer at time t′′, for each
xp(t

′) ∈ D(x0
p, vpt

′) there is a corresponding D(xp(t
′), vp(t

′′− t′)) describing where the pursuer
can be at time t′′. To find the optimal position to be at t′′, the pursuer must evaluate the
resulting minimum possible team survival time given all possible positions in these disks
resulting from different xp(t

′)’s. The following remark can be made regarding the complexity
of the optimal control problem faced by the pursuer.

Remark 4.1
The number of N dimensional optimization problems the pursuer has to solve to find the
optimal strategy against a team of N evaders using the iterative open-loop approach for team
evasion scales exponentially with the number of times the evaders update their joint heading.

Solving for the optimal pursuer strategy against a team of evaders utilizing the iterative
open-loop approach for team evasion quickly becomes intractable even for a team with few
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evaders and moderate amount of updates. This is beneficial for the evaders in that by
updating their joint heading often, it is hard for the pursuer to determine its optimal action.
However, this also makes measuring the worst-case team survival time performance of the
iterative open-loop approach computationally intractable. Hence, a near optimal greedy
strategy for the pursuer is constructed to evaluate the performance of the iterative open-loop
approach quantitatively.

Definition 4.4 Greedy open-loop pursuer heading
Given xp(t) and xe(t) as the positions of the pursuer and the evaders at time t and Θe(t) as
the joint heading of the evaders, the greedy open-loop pursuer heading is denoted by

θol?p (xp(t),xe(t),Θe(t))

and is defined to be the initial heading of the pursuer that can achieve the minimum possible
open-loop team survival time

inf
s∈SN

Γ?s(xp(t),xe(t),Θe(t)).

The greedy pursuer strategy against iterative open-loop evaders is defined as

Definition 4.5 Greedy pursuer strategy against iterative open-loop evaders
Given that the evaders update their joint heading every ∆t second starting from t = 0, the
heading of the pursuer resulting from the greedy pursuer strategy is

θp(t) = θol?p (xp(n∆t),xe(n∆t),Θe(n∆t)) for n∆t ≤ t < (n+ 1)∆t, n ∈ N+. (4.8)

With this strategy, at every update time the pursuer sets its heading to be optimal to the
current layout and the current joint heading of the evaders under the assumption that the
evaders will stay true to their current joint heading for the rest of the game. For the open-loop
optimal joint heading of a specific layout, there often exist multiple optimal capture sequences
that can achieve the same minimum possible team survival time in the open-loop setting.
Due to the limited numerical resolution of the simulation environment, It is possible for
the pursuer to switch between multiple open-loop optimal capture sequences during the
chase. However, these capture sequences do not all result in the same team survival time in
the iterative open-loop setting. Without actually simulating the rest of the game for each
open-loop optimal capture sequences, there is no effective way for the pursuer to distinguish
among these candidates of optimal capture sequence. To prevent unwanted switching which
hurts the performance of the pursuer significantly, hysteresis is added to the pursuer’s strategy
so that given several candidates of the optimal capture sequence, the pursuer is encouraged
to select the capture sequence that is consistent with the previous update.

Figure 4.3a shows the open-loop optimal trajectories of a layout with 3 evaders. The solid
blue circles are the initial position of the evaders and the dark triangle is that of the pursuer.
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(a) Open-loop (b) Iterative open-loop

Figure 4.3: Resulting optimal trajectories of the open-loop and iterative open-loop approach for a
3-evader layout

(a) Open-loop (b) Iterative open-loop

Figure 4.4: Resulting optimal trajectories of the open-loop and iterative open-loop approach for a
3-evader layout



CHAPTER 4. ITERATIVE OPEN-LOOP COLLABORATIVE TEAM EVASION 53

The hollow circles are the open-loop optimal capture positions of the evaders and the dashed
lines are the open-loop optimal trajectories of the pursuer and the evaders. Figure 4.3b shows
the actual resulting trajectories with the evaders using the iterative open-loop approach and
the pursuer using the greedy strategy. The hollow circles are the actual capture position of
the evaders and the solid lines are the resulting trajectories of the pursuer and the evaders.
The pursuer has a maximum speed of 1 and the evaders’ maximum speeds are 0.25. Both
the evaders and the pursuer adjust their headings every 0.01 seconds. Note that the resulting
trajectories in Fig. 4.3b are curves and are different from the open-loop optimal trajectories
of the initial layout shown in Fig. 4.3a. While the open-loop approach predicts an open-loop
optimal team survival time of 2.59 seconds for the initial layout, the iterative open-loop
approach actually achieves a team survival time of 2.63 seconds. The team survival time
ratio of the iterative open-loop approach to that of the open-loop approach is 1.015. In this
case, the iterative open-loop approach achieves a slightly better team survival time than the
open-loop approach.

Figure 4.4 shows the open-loop and iterative open-loop trajectories of a different 3-evader
layout. Note that in Fig. 4.4b the resulting trajectories are straight lines and are exactly
the same as the open-loop optimal trajectories of the initial condition shown in Fig. 4.4a.
In other words, for the 3-evader layout shown in Fig. 4.4, the iterative open-loop approach
perform exactly the same as the open-loop approach in terms of team survival time. The
ratio of team survival time is hence 1 and the open-loop approach is actually optimal in the
iterative open-loop setting for this layout. The key difference between the layouts shown in
Fig. 4.3 and Fig. 4.4 that results in different team survival time ratio is the uniqueness of
the optimal capture sequence. In the layout shown in Fig. 4.4, the optimal capture sequence
against the open-loop optimal joint heading with respect to the initial layout is unique. Hence,
resulting joint heading of the evaders is optimized for one specific capture sequence and
stays constant throughout the game against an optimal pursuer. In this case, the iterative
open-loop approach can only achieve the same team survival time as the open-loop approach.

4.3 Approximation Approaches

As mentioned in Section 3.3.3, finding the open-loop optimal joint heading for the team of
evaders in a given layout requires solving a N dimensional constrained non-liner optimization
problem. Although standard nonlinear optimization technique can solve the problem in
reasonable time for a small team, it can be time consuming for a team of moderate size.
In this section, various approximated formulation of the open-loop team evasion problem
are proposed to simplify or bypass the non-linear optimization problem in the interest of
computation time.
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4.3.1 Gradient of the Open-loop Team Survival Time

The approximation techniques that will be proposed in this section all make use of the
gradient vector of the team survival time under a specific capture sequence with respect
to the joint heading of the evaders. The definition and derivation of this gradient term is
presented here.

The term Γ?s(xp,xe,Θe) is defined in Eq. (2.14) as the minimum possible time it takes a
pursuer starting at xp with maximum speed vp to capture evaders starting at xe = (x1, . . . , xN )
with maximum speeds ve = (v1, . . . , vN) and constant joint heading Θe = (θ1, . . . , θN)
according to the capture sequence s = (s1, . . . , sN). The following notations are defined to
facilitate further discussion regarding the gradient of the team survival time under a specific
capture sequence.

Definition 4.6 Minimum survival time of an evader under a capture sequence
Given xp and xe as the positions of one pursuer and N evaders, vp and ve as their maximum
speeds, Θe as the joint heading of the evaders, and s = (s1, . . . , sN) as the capture sequence,
the minimum survival time of the j-th evader in the capture sequence against an optimal
pursuer that knows the exact control of the evaders is defined as

τsj = Γ?s′(xp,xe,Θe), where s′ = (s1, . . . , sj). (4.9)

Following this definition, the minimum survival time difference between the j-th evader and
the (j− 1)-th evader in the capture sequence s = (s1, . . . , sN ) is denoted by τ̂sj and defined as

τ̂sj = τsj − τsj−1
. (4.10)

Note that with this definition the minimum possible survival time of the j-th evader in the
capture sequence can be expressed as

τsj =

j∑
k=1

τ̂sk (4.11)

where τ̂s1 is defined to be zero. The minimum possible team survival time under a specific
capture sequence can be expressed as

Γ?s(xp,xe,Θe) =
N∑
j=1

τ̂sj . (4.12)

The gradient of the team survival time with respect to the joint heading of evaders can be
written as

∇ΘeΓ
?
s =

[
N∑
j=1

∂τ̂sj
∂θ1

,

N∑
j=1

∂τ̂sj
∂θ2

, . . . ,

N∑
j=1

∂τ̂sj
∂θN

]
, (4.13)
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(a) Layout and Optimal Trajectories (b) Gradient Vectors

Figure 4.5: The gradient vectors ∇ΘeΓ?s? given different joint heading of evaders for a 2-evader
layout

(a) Layout and Optimal Trajectories (b) Gradient Vectors

Figure 4.6: The gradient vectors ∇ΘeΓ?s? given different joint heading of evaders for a 2-evader
layout
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which is a row vector of length N . The details of the derivation and computation of this
gradient term is provided in Appendix A.

Figures 4.5b and 4.6b illustrate the direction and magnitude of the gradient vector given
different joint headings of the evaders for the 2-evader layouts shown in Figs. 4.5a and 4.6a
respectively. More specifically, the arrows represent the magnitudes and directions of the
gradient vectors ∇ΘeΓ

?
s? given the joint heading Θe = (θ1, θ2). The color of the regions in

Figs. 4.5b and 4.6b are determined by the optimal capture sequence. In the red regions, the
optimal capture sequence s? given the joint heading is to capture the red evader first and
then the blue evader; in the blue regions, the optimal capture sequence is to capture the blue
evader first and then the red evader. The white cross in each figure indicates the open-loop
optimal joint heading for the evaders given the corresponding layouts. The trajectories shown
in Figs. 4.5a and 4.6a are the optimal trajectories resulting from the open-loop optimal joint
headings.

Note that in Fig. 4.5b the optimal joint heading is located within the red region, which
indicates that there exist a unique optimal capture sequence with respect to the optimal
joint heading. The gradient vectors point in the general direction of the optimizer and their
magnitudes decrease near the optimizer. In Fig. 4.6b, the optimal joint heading is located
on the boundary of both the red and blue region. As a result there exists multiple capture
sequences that can achieve the minimum possible team survival time against the open-loop
optimal joint heading. In this case, the gradient vectors still point in the general direction of
the optimizer, however, unlike in Fig. 4.6a, their magnitudes do not vanish near the optimizer.
Also, the gradient vectors in this case often point outward near the boundary of the regions.
In both of these cases, the gradient vectors behave “nicely” near the optimizer in that a point
started nearby will be drawn to the optimizer by following the gradient vector field. These
characteristics will be exploited in the gradient-based method, which will be introduced in
Section 4.3.3.

4.3.2 Iterative Linear Programming Approach

In the open-loop approach for collaborative team evasion proposed in Section 3.3.3, a team
of evaders solves the sup-inf optimization problem

sup
Θe

inf
s∈SN

Γ?s(x
0
p,x

0
e,Θe)

for the open-loop optimal joint heading. By introducing a dummy variable z to represent
the team survival time as the objective function, the sup-inf optimization problem can be
converted to the following constrained optimization problem:

sup
Θe,z

z (4.14a)

s.t. z ≤ Γ?s(x
0
p,x

0
e,Θe) for all s ∈ SN . (4.14b)
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The constraints listed in Eq. (4.14b) are nonlinear since the function Γ?s(x
0
p,x

0
e,Θe) is nonlinear

in Θe. By making use of the gradient of the team survival time with respect to the joint
heading of the evaders derived in the previous section, the constraints can be approximated
with linear ones. The resulting optimization problem is

sup
Θe,z

z (4.15a)

s.t. z ≤ ∇ΘeΓ
?
s

∣∣∣∣
(x0

p,x
0
e,Θ

0
e)

· (Θe −Θ0
e) + Γ?s(x

0
p,x

0
e,Θ

0
e),∀s ∈ SN (4.15b)∥∥Θe −Θ0

e

∥∥
∞ ≤ ∆θ, (4.15c)

where Θ0
e denotes the joint heading of the evaders the constraints are linearized about and

the term ∆θ is the step size of the updates in joint heading. The right-hand side of the
constraints in Eq. (4.15b) are the Taylor expansions to the first order of Γ?s(x

0
p,x

0
e,Θe) with

respect to the joint heading Θe at the specific layout and joint heading (x0
p,x

0
e,Θ

0
e). Note that

although the Taylor expansion is taken with respect to the joint heading Θe, the resulting
constraints in Eq. (4.15b) are also linear in the decision variable of the optimization problem
(Θe, z). The constraint on the step size of the joint heading defined in Eq. (4.15c) are also
linear in terms of (Θe, z). They are added to limit the solution of the optimization problem
to a local region of the current joint heading since the linear approximation is only valid
locally. The constraints on step size also prevent the solution of the optimization problem
from going to infinity. Since both the constraints and the objective function are linear in
terms of the decision variables (Θe, z), Eq. (4.15) is a linear program (LP) and can be solved
very efficiently by conventional LP techniques such as the simplex method [48].

The iterative linear programming approach for team evasion is implemented similarly
to the original iterative open-loop approach. At each update time, a new linear program
is formulated with the constraints linearized about (xp(n∆t),xe(n∆t),Θe(n∆t)), the most
current layout and joint heading of the evaders. The resulting team survival time and
computation time performance of the iterative linear programming approach are presented in
Section 4.4.

4.3.3 Gradient-Based Approach

The iterative linear programming approach proposed in the previous section replaces the
nonlinear optimization problem in the iterative open-loop approach with a linear program.
However, to generate the linear program, the gradients of the team survival time for all
possible capture sequences have to be computed. Although a linear program with large
amount of constraints can be solved fairly efficiently, for a team with moderate amount
of evaders the time it takes to compute all the gradient terms in order to construct the
constraints quickly surpasses the time it takes to solve the linear program. Furthermore,
like any other constrained optimization problem with large amount of constraints, a lot of
the constraints are redundant in that ignoring them will not affect the optimizer; only the
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constraints that are active at the optimizer will actually effect the solution to the optimization
problem. This implies that a lot of the computation spent on constructing the gradient terms
are wasted since most of the constraints are not active at the optimizer and do not affect
the solution at all. Also, although the iterative linear programming approach is already
much more computationally efficient than the original iterative open-loop approach which
requires solving a non-linear optimization problem at every update time, solving a LP still
requires a certain level of computing power which might not be available in some light weight
autonomous vehicles such as micro UAVs. The gradient-based approach is designed to bypass
most of the gradient computation and the need of an optimization solver. The approach can
be described as follows.

Given that a team of evaders adjusts their joint heading every ∆t time starting from
t = 0, the joint heading resulting from the gradient-based approach is

Θe(t) = Θe(n∆t) + ∆θ∆t

∇ΘeΓ
?
s?

∣∣∣∣
(xp(n∆t),xe(n∆t),Θe(n∆t))∥∥∥∥∥∇ΘeΓ

?
s?

∣∣∣∣
(xp(n∆t),xe(n∆t),Θe(n∆t))

∥∥∥∥∥
∞

for n∆t ≤ t < (n+ 1)∆t, n ∈ N+ (4.16)

where
s? = arg inf

s∈SN
Γ?s(xp(n∆t),xe(n∆t),Θe(n∆t)) (4.17)

is the optimal capture sequence for the layout and joint heading of the evaders at the update
time. The term ∆θ and the update interval ∆t determine the step size of the adjustment in
the joint heading space in terms of infinity norm. Note that no evader can change its heading
more than the amount of ∆θ∆t at each update, hence the parameter ∆θ can be interpreted
as the maximum turning rate of an evader. The joint heading of the evaders is kept constant
between updates according to the definition.

Compared to the iterative linear programming approach, in which the gradient term for
all possible capture sequences are computed, in the gradient-based approach only the gradient
term for the optimal capture sequence s? is computed. Furthermore, no optimization solver
is needed for the implementation of the gradient-based approach. These traits improve the
computation time performance significantly. The resulting performance in survival time and
computation time of the gradient-based approach are presented in Section 4.4.

4.3.4 Constraint Sampling Heuristics

In the gradient-based approach proposed in the previous section, while the gradient term only
has to be computed for the optimal capture sequence, the resulting team survival time under
all possible capture sequences still has to be evaluated to determine the optimal capture
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sequence. Due to the factorial growth of the number of possible capture sequences with the
number of evaders in the team, the gradient-based approach at its current state still can
not be implemented for a team with a large amount of evaders. The constraint sampling
techniques that will be presented in this section are designed to address this issue.

Given xp and xe as the position of the pursuer and the evaders and Θe as the joint heading
of evaders, the optimal capture sequence is defined as

s?(xp,xe,Θe) = arg inf
s∈SN

Γ?s(x
0
p,xe,Θe).

The task of determining s? can be viewed as a search problem on a tree. The root node
of the tree is the initial state tuple (xp,xe,Θe) with N evaders. From this node, there are
N possible descendant nodes, each representing the resulting state of the game when one
of the N evaders is captured. From each of these descendant nodes, there are then N − 1
descendant nodes based on which of the N − 1 evaders left is captured. The tree grows in
this fashion factorially. A transition cost is set for each transition between a parent node and
a descendant node as the minimum time it takes the pursuer to capture the evader that is in
the parent node but not the descendant node. There are N ! final nodes where all the evaders
are captured, each path from the root node to the final node represents a specific capture
sequence; the sum of transition cost on such path is the minimum possible team survival
time under that capture sequence. The heuristics that are used to find the optimal capture
sequence are presented as follows.

All-Sequence (All-Seq)

The naive way to find the optimal capture sequence is to evaluate the minimum capture
time of all the possible capture sequences. This process can be parallelized by splitting the
capture sequences into N groups of (N − 1)! capture sequences according to the first evader
in the capture sequence. Each evader is then only in charge of evaluating the capture time of
(N − 1)! capture sequences. A randomly assigned evader can then compare the results, each
from one of the N groups and determine the optimal capture sequence. With this parallelism
the computation time is proportional to (N − 1)! instead of N !. However, as the number of
evaders increases, this quickly becomes computationally intractable.

For computational tractability with a large team of evaders, some pruning techniques
with heuristics are utilized while traversing the tree so that only a subset of the nodes are
evaluated. For each state we use the heuristics to pick at most K of the possible descendant
nodes to be expanded further. Here K is the branching factor of the heuristic and there
will be at most NK capture sequences evaluated. Among these NK captures sequences, the
one with the minimum capture time will be selected as the approximate optimal capture
sequence. Three different heuristics for picking the K descendant are presented as follows.
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Stepwise-Distance-K (SD-K)

This heuristic evaluates the distance from the pursuer to the evaders and picks the K closest
evaders that are still not captured. Note that when K = 1, this heuristic results in a step-wise
greedy capture sequence where the pursuer always captures the closest evader first. With
this heuristic, only the distances between the pursuer and the evaders are taken into account
and the headings of the evaders are ignored.

Stepwise-Time-K (ST-K)

This heuristic compares the minimum time it takes for the pursuer to capture each evader
that is still alive, and picks the K evaders that can be captured the soonest. Compared to
the SD-K, which only makes use of the positions of the evaders, this heuristic takes into
account both the positions and the headings of the evaders.

Stepwise-Sum-of-Distance-K (SSD-K)

This heuristic compares the sum of distances from the pursuer to all evaders that are still
alive when a capture happens. The evaders that will result in the K largest sum of distance
to other evaders when captured by the pursuer are selected. This heuristic not only takes
into account the positions and headings of the evaders at the current state, but also their
positions when the next capture happens.

With these heuristics, the number of capture sequences that has to be evaluated in the
gradient-based approach drops from N ! to KN . Although it is still exponential in terms of
the number of evaders in the team, with a small value of K, it does allowed the approach to
be applied to teams with larger number of evaders without requiring too much computation
time.

4.4 Results and Discussion

The survival time and computational time of the different approaches proposed in this chapter
are evaluated and discussed in detail in this section. The same benchmarking dataset with
500 randomly generated layouts for teams with 2, 3, 4, and 5 as mentioned in the previous
chapters is used in the simulations. In all simulations, the pursuer uses the greedy open-loop
strategy as described in Section 4.2.3. The update interval ∆t is set to be 0.01 seconds.
Although in the original formulation, an evader is only captured when its distance to the
pursuer is zero, due to the limited numerical resolution of the simulation environment, the
capture distance is set to 0.004 units. The simulation environment and the algorithms are
implemented in MATLAB with the functions that are time-critical converted to C code in the
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form of .mex files with the help of MATLAB Coder1. The simulations are run on a laptop
with Intel R© CoreTM i5-4300 CPU and 8 gigabytes of RAM.

4.4.1 Team Survival Time

The performance of each proposed approach in terms of the team survival time are presented
and discussed in detail in this section.

Iterative Open-loop Approach

The open-loop approach to team evasion proposed in Chapter 3 maximizes the minimum
possible team survival time for the evaders with respect to the initial condition of the game
under the assumption that they cannot change their headings afterwards. The iterative
open-loop approach proposed in this chapter relaxes the conservatism of the open-loop
approach by setting the joint heading of the evader to the open-loop optimal joint heading
with respect to the most current state of the game at each update time. With the iterative
open-loop method, it is possible for the evaders to achieve a longer team survival time that is
higher than the one predicted by the open-loop approach according to the initial condition of
the game.

The ratio of the team survival time achieved by the iterative open-loop approach to that
of the open-loop approach is used to evaluate the effectiveness of the iterative open-loop
approach relative to the open-loop approach. Figure 4.7 shows the distributions of the ratio
of the team survival time over the 500 layouts in the benchmarking dataset for teams with
2, 3, 4, and 5 evaders. As shown in the figures, this ratio is always bigger than or equal to
one, indicating that the iterative open-loop approach can always achieve at least the same,
and often better, team survival time predicted by the open-loop approach. Recall that in
Section 4.2, it has been shown that when the optimal capture sequence against the open-loop
optimal joint heading of the evaders is unique, the optimal capture sequence remains the same
during the game if the pursuer acts optimally. When this happens, the iterative open-loop
approach can only perform equally as well as the open-loop approach against an optimal
pursuer. Figures 4.7a to 4.7d shows that the number of times that the iterative open-loop
approach performs only equally as well as the open-loop approach decreases rapidly when
there are more evaders in the team. This indicates that with more evaders, it is more likely
for multiple open-loop optimal capture sequences to exist for the open-loop optimal joint
heading. As mentioned before, these open-loop optimal capture sequences that can achieve
the same optimal team survival time in the open-loop setting, does not perform equally well
in the iterative open-loop setting. There is no efficient way for the pursuer to determine
the optimal capture sequence in the iterative open-loop setting; the pursuer has to either
simulate the whole chase for each possible capture sequence, or rely on heuristics. As a result,
having multiple open-loop optimal capture sequence is actually beneficial to the evaders in

1http://www.mathworks.com/products/matlab-coder/

http://www.mathworks.com/products/matlab-coder/
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Figure 4.7: Distribution of the team survival time ratio of the iterative open-loop approach to the
open-loop approach over 500 layouts for teams with different number of evaders
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the iterative open-loop setting in that it makes it harder for the pursuer to determine the
optimal capture sequence.

It can also be observed from Figs. 4.7a to 4.7d that not only does the iterative open-loop
approach perform better than the open-loop approach more often when there are more evaders,
it also achieves a higher ratio of team survival time on average. This shows that a team with
more evaders benefits more from the relaxed conservatism of the iterative open-loop approach
than a smaller team.

Iterative Linear Programming Approach

The iterative linear programming (iLP) approach approximates the iterative open-loop
approach by replacing the constrained nonlinear optimization problem that has to be solved
at each update with a linear program. The performance of the iterative linear programming
approach relative to the original iterative open-loop approach is measured by the ratio of
the resulting team survival time. Figure 4.8 shows the distribution of the ratio over the
benchmarking set for teams with 2, 3, 4, and 5 evaders. In all simulations, the step size of the
iLP approach in the joint heading space, denoted by ∆θ in Eq. (4.15c), is set to be π (rad/s),
which means that at each update the maximum change in heading for each evader is π ×∆t
(rad) where ∆t is the update interval which is set to 0.01.

In Figs. 4.8a to 4.8d, the ratios of team survival time are all very close to one, indicating
that the iterative linear programming approach performs similarly as the iterative open-loop
approach. This shows that the linearized constraints in Eq. (4.15b) and the limitation on
the step size in the joint heading space in Eq. (4.15c) successfully approximate the behavior
resulting from the nonlinear optimization problem in the original iterative open-loop approach.
The survival time performance of the iterative linear programming approach does degrade
slightly when there are more evaders in the team as shown in Figs. 4.8a to 4.8d The very few
cases in each of the team size where the iterative linear programming approach outperforms
the iterative open-loop approach are caused by the sub-optimality of the greedy pursuer
strategy which is used to measure the team survival time of both approaches.

Gradient-Based Approach

The gradient-based approach (GB) approximates the iterative open-loop approach by updating
the joint heading of the evaders in the direction of the gradient of the team survival time
under the optimal capture sequence. Figure 4.9 shows the team survival time ratio of the
gradient-based approach to that of the original iterative open-loop approach. The step size
in the joint heading space, denoted by ∆θ, is set to the same value π (rad/s) as in the
iterative linear programming approach. Compared to the performance in team survival time
of the iterative linear programming approach shown in Fig. 4.8, the gradient-based approach
perform slightly worse than the iterative linear programming approach in terms of the number
of times it achieves a team survival time ratio of 1. Also, the ratio of team survival time
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Figure 4.8: Distribution of the team survival time ratio of the iterative linear programming
approach (iLP) to that of the iterative open-loop approach (iOL) over 500 layouts for teams with
different number of evaders
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Figure 4.9: Distribution of the team survival time ratio of the gradient-based approach (GB) to
that of the iterative open-loop approach (iOL) over 500 layouts for teams with different number of
evaders
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degrades more severely than the iterative linear programming approach when there are more
evaders in the team.

The slight drop in survival time performance compared to the iterative linear programming
approach is to be expected in that the gradient-based approach can be viewed a simplified
version of the iterative linear programming approach. While the iterative linear programming
approach makes use of the gradient information of the team survival time under all possible
capture sequences, the gradient-based approach only makes use of the gradient information
of that of the optimal capture sequence. Actually, if all the constraints of the iterative linear
programming approach listed in Eq. (4.15b) are ignored except the one for the optimal capture
sequence, the iterative linear programming approach is exactly the same as the gradient-based
approach. Although the gradient-based performs slightly worse than the iterative liner
programming approach in terms of the team survival time, the main benefit of the approach
lies in its much shorter computation time, which will be presented in Section 4.4.2.

Gradient-Based Approach with Constraint Sampling

The constraint sampling heuristics proposed in Section 4.3.4 are designed to further decrease
the computation required for the gradient-based approach by evaluating only a subset of the
capture sequences when determining the optimal one. Their impact on the team survival
time are evaluated on the benchmarking dataset and discussed here.

Figure 4.10 shows the average ratio of the team survival time of the gradient-based
approach with different constraint sampling heuristics to that of the iterative open-loop
approach. The bars labeled All-Seq are the averaged team survival time ratios when all
possible capture sequences are taken into account during the selection of the optimal capture
sequence. The bars labeled SD-K, ST-K, and SSD-K are the team survival time performance
of the Stepwise-Distance-K, Stepwise-Time-K, and Stepwise-Sum-of-Distance-K heuristics
respectively with K being their branching factor. For example, SC-2 represents the heuristics
where only the 2 closest evaders to the pursuer are considered during each step of the tree
search as described in Section 4.3.4.

For the 2-evader cases, the gradient-based approach performs almost the same as the
iterative open-loop method. The performance degrades slightly as the number of evaders
increases. The All-Seq method, which is the gradient-based approach without constraint
sampling, achieves about 90% of the survival time achieved by the iterative open-loop method
in the 5-evader layouts. As for the performance of the constraint sampling heuristics with
a branching factor of 1, none of the heuristics performs as well as the brute-force All-Seq
method. However, with a branching factor of 2, all three heuristics perform very similarly to
the brute-force approach.

The survival time performance of the gradient-based approach are affected by the initial
joint heading of the evaders. The results in Fig. 4.10a are gathered from the best-case scenarios
where the evaders are initialized with the open-loop optimal joint heading with respect to
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the initial layouts. Note that to determining these open-loop optimal joint headings requires
solving the constrained nonlinear optimization problem formulated in Eq. (4.14). This is in a
way in conflict with the emphasis on short computation time and ease of implementation of the
gradient-based approach. Hence, a different set of simulations were run on the benchmarking
dataset where the initial headings of the evaders are set to be pointing away from the pursuer
instead of the open-loop optimal headings of the layout. The results are shown in Figure 4.10b.
As expected, since the evaders are not initialized optimally, the performance in team survival
time degrades slightly compared to the optimally initialized cases. The trend of performance
degradation with increasing number of evaders remains the same. However, the average
survival time is still within 20% of that of the iterative open-loop approach even with a team
of 5 evaders. Figure 4.10b also shows that regardless of how the evaders are initialized, there
is not a significant difference in team survival time performance between the three different
heuristics. This implies that none of these is particularly worse than the others. In this case
the SD-K heuristics are preferred since they require the least computation.

4.4.2 Computation Time

The iterative linear programming approach and the gradient-based approach provide different
levels of approximation and simplification to the original iterative open-loop approach. The
constraint sampling heuristics are used to further decrease the computation required for the
gradient-based approach. The computation time is measured as the time it takes an algorithm
to return the resulting joint heading of the evaders in an update. This computation time is
averaged over all updates in the simulations ran on the benchmarking dataset. Note that the
computational overheads introduced by the simulating environment, such as the time it takes
to evolve the state of the game given the headings of the agents or the time it takes to record
the simulation results are not included in the computation time of the algorithms.

For the iterative open-loop approach, the constrained nonlinear optimization problem is
solved by the fminimax function of the Optimization Toolbox in MATLAB. The computation
time of the iterative open-loop approach is used as a baseline to which other approaches are
compared. The open-loop optimal joint heading for each initial condition in the benchmarking
dataset is precomputed off-line with re-sampling. All approaches are initialized with the
open-loop optimal joint heading at the beginning of each simulation.

Iterative Linear Programming Approach

The linear program formulated by the iterative linear programming approach at each update
is solved by the linprog function of the Optimization Toolbox in MATLAB. The step size
parameter ∆θ is set to be π (rad/s) and the update time ∆t is set to 0.01.

Figure 4.11 shows the ratio of the averaged computation time of the iterative linear
programming approach (iLP) to that of the iterative open-loop approach (iOL). The dark
circles in the figure represent the mean computation time over all 500 runs and the error bars
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represent plus and minus one standard deviation. As shown in the figure, the computation
time of the iterative linear programming approach is about 1/5 of that of the iterative
open-loop approach. Combined with the almost identical team survival time performance to
that of the iterative open-loop approach as shown in Fig. 4.8, the proposed iLP approach is a
highly effective approximation. Also, the ratio of computation time shows a gradual trend of
decrease when there are more evaders in the team, indicating that the gain in computation
time performance of the iterative linear programming approach is more pronounced when
there are more evaders in the team.

Gradient-Based Approach

The majority of the computation time of the iterative linear programming approach are
spent on formulating the linear program, which requires the evaluation of the gradient
of team survival time under all possible capture sequences. The gradient-based approach
bypasses these computational burden by evaluating only the gradient of team survival time
of the optimal capture sequence. Furthermore, no optimization routine is needed for the
implementation of the gradient-based approach. The algorithm is implemented as .mex

functions which are compiled C codes converted from MATLAB functions by the MATLAB
Coder.

Figure 4.12 shows the ratio of the averaged computation time of the gradient-based
approach (GB) to that of the iterative open-loop approach (iOL) and that of the iterative
linear programming approach (iLP). The dark circles in the figures are the mean of the
averaged computation time of the 500 simulations and the error bars represent plus and
minus one standard deviation of the averaged computation time. In Fig. 4.12a, the mean of
the ratio is between 1/150 and 1/200; in Fig. 4.12b the mean of the ratio is around 1/30.
As expected, the gradient-based method is much more computationally efficient than the
iterative open-loop approach and also more efficient than the iterative linear programming
approach.

In terms of team survival time performance, the gradient-based approach is slightly
worse than the iterative iLP approach. However, due to its significantly lower demand on
computational power and its ease of implementation, the gradient-based approach is ideal to
be implemented on teams composed of simpler autonomous vehicles.

Gradient-Based Approach with Constraint Sampling Heuristics

The main bottleneck of scaling the gradient-based approach to teams with large number of
evaders is the need to evaluate the open-loop team survival time resulting from all possible
capture sequences which grows factorially with the number of evaders in the team. The
constraint sampling heuristics are designed to evaluate only a subset of all the possible capture
sequences to increase the computation time performance.
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Figure 4.13 shows the ratio of the average computation time per step of the gradient-
based approach with various constraint sampling heuristics to that of the iterative open-loop
approach. With the heuristics, the gradient-based approach is more than 100 times faster than
the iterative open-loop approach. For 2 to 4 evaders, the heuristics with a branching factor
of 2 takes about as long or even longer to compute than the All-Seq brute-force approach.
This is due to the computational overheads induced by the necessary bookkeeping of the tree
search process that is not excluded from the computation time. As the number of evaders
increases, the effects of these overheads become less and less significant. For 5-evader cases,
the heuristics with K = 2 outperforms the brute-force All-Seq approach in computational
time. Similar to the survival time performance, there is not a significant difference between
the computation time performance of the three different heuristics.

4.5 Conclusion

The iterative open-loop approach to collaborative team evasion proposed in this chapter
extends the open-loop approach to team evasion by adjusting the joint heading of the evaders
at a predefined frequency according to the open-loop optimal joint heading with respect to the
most current state of the game. Compared to the open-loop approach proposed in Chapter 3,
which is conservative towards the evaders and uses only the open-loop optimal joint heading
with respect to the initial condition of the game, the iterative open-loop approach relaxes the
conservatism and is capable of achieving even better team survival time. A greedy pursuer
strategy against the iterative open-loop evaders is developed to quantitatively evaluate the
team survival time performance of the proposed approach. Through extensive simulations, it
has been shown that the iterative open-loop approach can indeed enhance the team survival
time in most of the cases and the improvement is more pronounced for teams with more
evaders.

An algorithm that can compute the gradient vector of the minimum possible team
survival time under a specific capture sequence with respect to the joint heading of the
evaders is also proposed in this chapter. Several approximations to the iterative open-
loop approach, including the iterative linear programming approach and the gradient-based
approach, rely on this gradient term to lower the required computation of the original
iterative open-loop approach. The iterative linear programming approach approximates the
nonlinear optimization problem that has to be solved at each update in the iterative open-loop
approach with a linear program and drastically decreases the computation time. The gradient-
based approach further decreases the computation time of the iterative linear programming
approach through bypassing the need to compute the gradient terms for all possible capture
sequences and the need to solve an optimization problem at every update. The constraint
sampling heuristics can further decrease the computation time of the gradient-based approach
by evaluating only a subset of the capture sequences when determining the optimal one.
Simulation results show that all of these approximations trade some performance in team
survival time for less computation; the loss in team survival time performance and the gain
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in computation time performance are both more prominent for teams with more evaders.
Compared to the original iterative open-loop approach, the iterative linear programming
approach achieves 99 percent of the team survival time on average while spending only 1/5
the computation time; the gradient based approach achieves around 96 percent of the team
survival time on average while spending around 1/150 of the computation time.

In conclusion, the iterative open-loop approach to collaborative team evasion is capable of
achieving better team survival time while keeping the guarantees of the open-loop approach.
The approximation approaches provide good trade-offs between team survival time and
computation time. With the proposed approximation approaches the collaborative team
evasion framework can be implemented on autonomous agent teams with lower computation
power.
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(a) Evaders initialized with open-loop optimal joint heading

(b) Evader initialized with headings pointing away from the pursuer

Figure 4.10: Averaged ratio of team survival time of different constraint sampling heuristics to
that of the iterative open-loop approach
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Figure 4.11: Averaged ratio of computation time per step of the iterative linear programming
approach (iLP) to that of the iterative open-loop approach (iOL)
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Figure 4.12: Averaged ratio of computation time per step of the gradient-based method (GB)
to that of the iterative open-loop approach (iOL) and that of the iterative linear programming
approach (iLP)
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Figure 4.13: Averaged ratio of the computation time per step of the gradient-based approach
with different constraint sampling heuristics to that of the iterative open-loop (iOL) approach
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Chapter 5

Extensions for Collaborative Team
Evasion

5.1 Introduction

The open-loop and iterative open-loop approaches to team evasion proposed in Chapter 3
and Chapter 4 are based on two assumptions that are not necessarily true in realistic team
evasion scenarios: the exact position of the pursuer are known to the evaders at all time and
the evaders have unlimited turning rates. Also, the objective function that can be handled
by the collaborative team evasion framework is limited to the team survival time. In this
chapter, several extensions to the collaborative team evasion framework are presented to
address these limitations. In Section 5.2, the framework is extended to handle uncertainties
in the position of the pursuer. In Section 5.3, modification to the formulations are made
to incorporate constraints on the turning rates of the evaders. Section 5.4 explores and
evaluates the applicability of the framework to accumulative survival time. Finally, Section 5.5
concludes this chapter.

5.2 Collaborative Evasion Against a Hidden Pursuer

In the open-loop and iterative open-loop approaches for team evasion proposed in the previous
chapters, it was assumed that the position of the pursuer is known to the evaders at all
time. However, in a more realistic pursuit-evasion scenario, the evaders seldom have perfect
information about the position of the pursuer. The evaders have to estimate the position of
the pursuer using the information they have gathered with their sensors and uncertainties
often arise in the estimation process. In extreme cases, the evaders might not be able to detect
the pursuer at all. In this section, the collaborative team evasion framework is extended to
enable a team of evaders to maximize the team survival time against a hidden pursuer.
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5.2.1 Extensions to the Open-loop Formulation

A team of evaders that cannot detect the pursuer can still obtain some information about
the position of the pursuer since when an evader is captured, the pursuer has to be at the
capture point. In other words, after losing a teammate to a pursuer, the team of evaders
knows the exact position of the pursuer at the capture time. Assuming that the evaders
know (or has an estimation of) the maximum speed of the pursuer, the evaders can limit the
possible position of the pursuer to a circular disk centered at the previous capture point. The
radius of the disk can be determined by the maximum speed of the pursuer and the time
that has passed since the previous capture. This disk in which the pursuer can be is referred
to as the pursuer disk.

Definition 5.1 Notation for a circular disk
Given a point x ∈ R2 and a positive length r ≥ 0, the circular disk centered at x with a radius
of r is defined as

D(x, r) = {x′ | ‖x′ − x‖2 ≤ r}.

Definition 5.2 Pursuer disk
Given that at time t = 0 a pursuer with maximum speed vp is located at x0

p, then the set of all
possible positions the pursuer can be at time t ≥ 0, referred to as the pursuer disk, is

D(x0
p, vp × t). (5.1)

Recall the open-loop formulation of the team evasion problem conservative to the evaders
defined in Chapter 3 as

sup
ue(·)∈UN

inf
s∈SN

Γ?s(x
0
p,x

0
e,ue(·)). (5.2)

The evaders have to solve a maximization problem with the objective function being

inf
s∈SN

Γ?s(x
0
p,x

0
e,ue(·)),

where x0
p is the exact position of the pursuer. Consider the case where the pursuer can

be anywhere within a disk D(x0
p, r), the open-loop team evasion problem can be defined as

follows.

Definition 5.3 Open-loop formulation of team evasion against a pursuer disk
Given a team of evaders with joint position x0

e and joint speed ve, the open-loop team evasion
problem against a pursuer with maximum speed vp that can be anywhere within a disk D(x0

p, r)
is

sup
ue(·)∈UN

inf
s∈SN

inf
xp∈D(x0

p,r)
Γ?s(xp,x

0
e,ue(·)). (5.3)
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In this extended open-loop formulation of the team evasion game, the evaders have to solve a
maximization problem with the objective function being

inf
s∈SN

inf
xp∈D(x0

p,r)
Γ?s(xp,x

0
e,ue(·)). (5.4)

Note that the inf over all possible capture sequences is put outside of the inf over all possible
positions within the pursuer disk. This implies that the pursuer can select its position from
the disk after a capture sequence is selected; a different position can be selected for each
capture sequence.

To be able to solve the maximization problem for the evaders, an algorithm that can
evaluate the value of the objective function given the state of the game and the parameters
has to be developed. In this case, with an extra layer of inf in the formulation, the challenge
lies in finding the minimum possible team survival time

inf
xp∈D(x0

p,r)
Γ?s(xp,x

0
e,ue(·)) (5.5)

where x0
p and r are the center and radius of the pursuer disk, x0

e and ue(·) are the joint
position and joint control of the evaders, and s is a given capture sequence. The following
lemma describes how the minimum possible survival time of a single evader against a pursuer
that can be anywhere within a disk is derived.

Lemma 5.1 Minimum possible survival time against a pursuer disk
Given a pursuer with maximum speed vp that can be anywhere within the disk D(x0

p, r), the
minimum possible time an evader can survival by staring at x0

e with maximum speed ve and
following the control ue(·) is defined as

t? = inf
xp∈D(x0

p,r)
Γ?(xp, x

0
e, ue(·)). (5.6)

Then, when x0
e /∈ D(x0

p, r), t? satisfies∥∥xe(t?)− x0
p

∥∥ = vp × t? + r, (5.7)

where xe(·) = traj(x0
e, ve, ue(·)) is the resulting trajectory of the evader given the initial

condition, maximum speed, and control.

When x0
e ∈ D(x0

p, r), t? = 0.

Proof. Denote the position of the pursuer at time t by xp(t). Since the pursuer has to be at
the same position as the evader to capture it and the evader is captured at t?, the following
equality is true:

xp(t
?) = xe(t

?).
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Figure for proof of Lemma 5.1

The minimum distance between xe(t
?) and the disk D(x0

p, r) is
∥∥xe(t?)− x0

p

∥∥
2
− r. This is

the distance the pursuer has to traverse in t? units of time to capture the evader at xe(t
?).

Since the maximum speed of the pursuer is vp, Eq. (5.7) can be derived by rearranging the
terms. For cases where x0

e ∈ D(x0
p, r), the evader is capture instantaneously since the pursuer

can select its starting position xp(0) to be x0
e. �

The optimal position in the disk for the pursuer to achieve the minimum possible capture
time is the point that is closest to the capture point xe(t

?). This point is on the boundary of
the disk and is co-linear with the center of the disk and the capture point xe(t

?).

With the ability to evaluate the minimum possible survival time of a single evader when
the pursuer can be anywhere within a circular disk, Algorithm 5.1 describes the evaluation
of the minimum possible team survival time given a specific capture sequence and joint
control of evaders. The algorithm iterates through the evaders according to the given capture
sequence. In each iteration, the variable τ keeps track of the capture time of the previous
evader in the sequence. The trajectory of the current evader resulting from the given control
is generated in line 4 and the position of the current evader when the previous one is captured
is extracted in line 5. The capture time τ is updated in line 6 with u+τ

si
(·) being the front

truncated version of the control of the i-th evader in the sequence. In line 10 and line 11, the
radius of the pursuer disk is set to zero and the center of the pursuer disk is set to the capture
point of the i-th evader in the capture sequence. The radius of the pursuer disk is only ever
non-zero for the first evader in the capture sequence since once an evader is captured, the
exact location of the pursuer at the capture time is known to the evaders and there is no
further uncertainties regarding the position of an optimal pursuer for the rest of the game.

In Algorithm 5.1 the given joint control of evaders, ue(·), can be of any form. In this case,
a 1-dimensional search is required to solve for the minimum possible capture time in line 6.
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Algorithm 5.1 infxp∈D(x0
p,r

0) Γ?s(xp,x
0
e,ue(·))

1: Given x0
p,x

0
e = (x0

1, . . . , x
0
N), s = (s1, . . . , sN), ve = (v1, . . . , vN) < vp, and ue(·) =

(u1(·), . . . , uN(·))
2: τ ← 0, xc ← x0

p, r ← r0

3: for i = 1, . . . , N do
4: xsi(·)← traj(x0

si
, vsi , usi(·))

5: xe ← xsi(τ)
6: τ ← τ + infxp∈D(xc,r) Γ?(xp, xe, u

+τ
si

(·))
7: if i = N then
8: return τ
9: else

10: r ← 0
11: xc ← xsi(τ)
12: end if
13: end for

However, for the special case where the evaders use only constant headings joint control, e.g.
ue(·) ∈ Uθ, the implementation of line 6 can be simplified through the following lemma.

Lemma 5.2 Minimum possible survival time given a constant-heading-maxi-
mum-speed evader control
Following Lemma 5.1, in the special case where ue(·) ∈ Uθ, when x0

e /∈ D(x0
p, r), t? is the

minimum positive root of the 2nd order polynomial of t∥∥x0
e + (ve × t)eθe − x0

p

∥∥
2

= vp × t+ r, (5.8)

where eθe = [cos θe, sin θe]
T .

When x0
e ∈ D(x0

p, r), t? = 0.

Proof. The proof follows directly from Lemma 5.1 and the trajectory of the evader in
constant heading:

xe(t) = x0
e + (ve × t)eθe .

�

With this lemma, the evaluation of line 6 can be done very efficiently with the closed-form
formula for the roots of a 2nd order polynomial.

With Algorithm 5.1, the value of

inf
s∈SN

inf
xp∈D(x0

p,r)
Γ?s(xp,x

0
e,ue(·))



CHAPTER 5. EXTENSIONS FOR COLLABORATIVE TEAM EVASION 79

can be evaluated by taking the minimum over all possible capture sequence s ∈ SN . It can
be shown through the similar procedures described in Section 3.2 that even when facing a
pursuer that can be anywhere within in a disk, the optimal joint control for the evaders in
the open-loop setting still belongs to the constant headings joint control set UNΘ .

Remark 5.3
The open-loop team evasion problem for the evaders against a pursuer that can be anywhere
within a circular disk is defined as

sup
Θe

inf
s∈SN

inf
xp∈D(x0

p,r)
Γ?s(xp,xe,Θe), (5.9)

where Θe is the joint heading of the evaders.

Although the objective function of the maximization problem in Eq. (5.9) is slightly more
complicated than that of the original open-loop team evasion problem for the evaders, it still
has the minimax structure and can be formulated as a constrained nonlinear optimization
problem similar to the one defined in Eq. (3.26). Hence, it can again be solved by sequential
quadratic programming.

Figure 5.1 shows examples of the open-loop optimal trajectories given that the pursuer can
be anywhere within a disk. The pursuer disk is shown as a gray disk with a hollow triangle
at the center and the optimal position of the pursuer is marked by a black triangle. The
positions of the evaders are marked with solid blue circles while the predicted captured points
are marked by hollow circles. The colored dashed lines are the open-loop optimal trajectories
of the pursuer and the evaders resulting from the optimal open-loop joint heading. Note that
there often exist multiple optimal capture sequences against the optimal joint heading of
the evaders and each of these capture sequence has a corresponding optimal position of the
pursuer; for clarity, only the resulting trajectories of one of the optimal capture sequences is
shown in the figures.

Figure 5.2 shows the resulting optimal joint headings of the evaders given the same layouts
shown in Fig. 5.1 but with much larger pursuer disks that enclose all evaders. In these cases,
the first evader in each of the capture sequences is always considered to be instantly captured.
For example in Fig. 5.2a, the resulting open-loop optimal joint heading of the evaders results
in the evaders moving directly away from each other. This is because that for the capture
sequence that captures the lower evader first, the lower evader is considered to be captured
instantaneously and the optimal heading for the upper evader is to go directly away from
the capture point. The situation is similar for the capture sequence that captures the upper
evader first; the resulting optimal heading for the lower evader is to move directly away from
the initial position of the upper evader. Similar behaviors can also be observed in Figs. 5.2b
to 5.2d.

The proposed extension to the open-loop team evasion framework enables the team of
evaders to handle the cases where the pursuer can be anywhere within a circular disk with
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(a) 2 evaders (b) 3 evaders

(c) 4 evaders (d) 5 evaders

Figure 5.1: Open-loop optimal trajectories against a pursuer that can be anywhere within a
circular disk for different layouts
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(a) 2 evaders (b) 3 evaders

(c) 4 evaders (d) 5 evaders

Figure 5.2: Open-loop optimal trajectories against a pursuer that can be anywhere within a
circular disk for different layouts
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a known center and radius. The worst-case mentality of the evaders is preserved in this
extension and so is the guarantee on the minimum possible team survival time. The resulting
behavior, although qualitatively similar to the original case, is more conservative due to the
additional advantage granted to the pursuer.

5.2.2 Iterative Open-loop Approach Against a Hidden Pursuer

The extension to the open-loop team evasion framework proposed in the previous section
can also be applied to the iterative open-loop approach. In the original iterative open-loop
approach for team evasion proposed in Chapter 4, at each update the team of evaders sets the
joint heading to the open-loop optimal joint heading with respect to the most current state
of the game, which includes the exact location of the pursuer. When facing a hidden pursuer,
the exact position of the pursuer is only available to the evaders when a capture happens,
hence in the updates between captures the evaders have to keep track of the center and radius
of the pursuer disk to determine the corresponding open-loop optimal joint heading. Given
that an update happens at time t when the pursuer disk is D(xtp, r) and the joint position of
the evaders is xe, the evaders set their joint heading to

Θ?
e(D(xtp, r),xe) = arg sup

Θe

inf
s∈SN

inf
xp∈D(xtp,r)

Γ?s(xp,xe,Θe). (5.10)

and stay true to this joint heading until the next update. At the next update time t′ > t,
assuming that the joint position of the evaders is x′e, the radius of the pursuer disk is increased
to r′ = r+ vp× (t′− t) and the center of the disk stays at xtp. If an evader is captured at xc in
this update, the center of the pursuer disk is set to the capture point xc and the radius of the
disk is set to 0. The rest of the evaders will update their headings to the open-loop optimal
joint heading Θ?

e(D(xc, 0),x′e). If no evaders are captured at this update, the joint heading of
the evaders is set to the open-loop optimal joint heading with respect to the pursuer disk
with the increased radius, namely Θ?

e(D(xtp, r
′),x′e).

Recall that to measure the team survival time performance of the original iterative open-
loop approach, a greedy pursuer strategy was proposed in Section 4.2.3. With the greedy
strategy, the pursuer sets its heading to be the open-loop optimal heading against the joint
heading of the evaders at every update. The greedy strategy was necessary for measuring
the survival time performance of the iterative open-loop approach because computing the
optimal pursuer trajectory in the iterative open-loop setting is computationally intractable.
However, when facing a hidden pursuer, it is possible to obtain a conservative measurement
of the team survival time without specifying a heading control scheme for the pursuer. Since
the open-loop optimal joint heading of the evaders is affected only by the pursuer disk and
not by the actual position of the pursuer, the heading control for the pursuer does not matter.
This conservative measurement can be obtained by modifying the capture condition so that
an evader is considered captured when it touches (or is inside of) the pursuer disk. When
there are multiple evaders satisfying this condition, the pursuer can only capture one of them.
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The resulting team survival time is only affected by the capture sequence selected by the
pursuer, not its actual trajectory. The measured team survival time is an under-estimation
of the actual minimum possible team survival time that can be achieved by a pursuer that
has to pick its heading at each update. The modified capture condition allows the pursuer
that might have selected a suboptimal heading in the previous updates to still capture the
evader in minimum time possible in the open-loop sense.

Figure 5.3 shows several snapshots taken at different times during a simulation run against
a hidden pursuer. In these figures, the pursuer disk is represented by a gray disk with
its centered marked by a hollow triangle. The solid blue dots are the current positions of
the evaders, and the solid black triangle marks the optimal position of the pursuer. The
hollow dots are the predicted optimal capture positions of the evaders given the current
open-loop optimal joint headings. The colored dashed lines are the predicted open-loop
optimal trajectories of the agents and the solid lines are the past trajectories of the agents.
Figure 5.3a shows the initial condition of the game at t = 0. Note that there are 3 evaders in
the team at this time. This can be interpreted as the beginning of the collaborative evasion
for a 4-evader team that starts when one of the 4 evaders is captured at the origin, revealing
the exact position of the pursuer to the 3 evaders left. In Fig. 5.3b, the radius of the pursuer
disk grows with time. Figure 5.3c shows the moment right before the lowest evader is capture
and Fig. 5.3d shows the moment right after the capture happens. Note that after the capture,
the center of the pursuer disk is moved to the capture point and the radius of the disk is
set to zero. Figure 5.3e shows the moment right before the second evader is captured and
Fig. 5.3f shows the state of the game when only one evader is left.

5.2.3 Results and Discussion

To measure the effectiveness of the proposed approach, the survival time performance of
the extended iterative open-loop approach against a hidden pursuer is measured on the
benchmarking dataset and compared to that of the original iterative open-loop approach
against a visible pursuer. Similar to the example shown in Fig. 5.3, at the beginning of each
simulation the position of the pursuer is known to the evaders, but during the simulations
the evaders can only locate the pursuer when an evader is captured. An evader is considered
captured when it is in contact with the pursuer disk; the pursuer is moved to the capture
point when a capture happens. The performance in team survival time against a visible
pursuer is taken directly from the simulation results in Chapter 4.

Figure 5.4 shows the distribution of the ratio of team survival time against a hidden
pursuer to that against a visible pursuer over the 500 layouts in the benchmarking dataset for
different number of evaders. According to the result, the team achieves a lower team survival
time when facing a hidden pursuer than when facing a visible pursuer. This difference in
performance of team survival time comes from the additional conservatism introduced by the
extension made for the pursuer disk and the modified capture condition. For the extension,
when facing a hidden pursuer, the evaders use the formulation in Eq. (5.9) which comes
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(a) t = 0 (b) t = 0.4

(c) t = 0.9 (d) t = 0.95

(e) t = 1.75 (f) t = 2.7

Figure 5.3: Snapshots of a simulation of the iterative open-loop approach against a hidden pursuer
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(a) 2 evaders
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(b) 3 evaders
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(c) 4 evaders
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(d) 5 evaders

Figure 5.4: Distribution of the ratio of team survival time against a hidden pursuer to that against
a visible pursuer over 500 layouts for teams with different number of evaders
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with the conservative assumption that the pursuer can be at different positions within the
disk when different capture sequences are considered. However, in reality the pursuer can
only be at a single position at any given time. This conservative assumption results in a
more conservative joint heading of the evaders and hence a shorter team survival time. For
the modified capture condition, the team survival time measured by the original capture
condition and a greedy pursuer strategy is achievable by an optimal pursuer which knows
the joint heading of the evaders at every update; the team survival time measured with the
modified capture condition, however, is a lower-bound on the minimum possible team survival
time which is some cases might be unachievable even by an optimal pursuer due to causality.

Figures 5.4a to 5.4d show that the survival time performance against a hidden pursuer
degrades generally with the increase of the number of evaders in the team. This is to be
expected in that when there are more evaders in the team there are more capture sequences
to be taken into account by the evaders; the conservatism introduced by assuming that
the pursuer can be at different positions when different capture sequences are considered
is manifested by the increase in the number of capture sequences. It is worth noting that
although the iterative open-loop approach does perform worse when the team is facing a
hidden pursuer than when it is facing a visible pursuer, the difference in survival time is
small on average. In most of the layouts the ratio of team survival time against a hidden
pursuer to that against a visible pursuer is above 0.8. This shows that the proposed approach
against a hidden pursuer is effective in such scenarios. The small difference in team survival
time performance also supports the statement that the greedy pursuer strategy for heading
control proposed in Section 4.2.3 is near optimal in that it often enables a visible pursuer to
achieve the minimum possible team survival time achievable only by a hidden pursuer under
relaxed capture condition.

The proposed extension to the team evasion framework enables the evaders to maximize
their team survival time when the pursuer can be anywhere within a circular disk. By
adjusting the radius of the disk according to the maximum speed of the pursuer and updating
the center of the disk when a capture happens, a team of evaders can achieve a comparable
team survival time when facing a hidden pursuer to when facing a visible pursuer.

5.3 Evaders with Turning Rate Constraints

In the original formulation of the team evasion problem, the evaders are assumed to have
unlimited turning rates and hence can change their headings instantaneously. However,
most of the autonomous vehicles have limited turning rates due to physical constraints. In
this section the collaborative team evasion framework is extended to take into account the
constraints on turning rates of the evaders.
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5.3.1 Dubins Vehicles and Dubins Path

The idea of a Dubins vehicle is proposed by Dubins in his seminal work [49]. A Dubins
vehicle is a vehicle that can only travel forward in constant speed and can not exceed a finite
maximum turning rate. In the literature for path planning, nonholonomic vehicles such as
fixed-wing aircrafts and most of the wheeled ground vehicles are often modeled as Dubins
vehicles. The trajectory of a Dubins vehicle is called a Dubins path. It is continuous and
differentiable at every point and its curvature is upperbounded by a finite value. In this
extension to the collaborative team evasion framework, the evaders are modeled as Dubins
vehicles and the admissible control set is modified so that the evader can only produce Dubins
paths.

Recall the original formulation of the team evasion problem for the evaders defined in
Eq. (3.1) as

sup
ue(·)∈UN

inf
s∈SN

Γ?s(x
0
p,x

0
e,ue(·)).

The admissible control set for a single evader is defined in Eq. (2.2) as

U = {u(·)|‖u(t)‖ ≤ 1, t ∈ [0,∞)}.

and the admissible control set for a team of N evaders is defined in Eq. (2.3) as

UN = {(u1(·), . . . , uN(·))|ui(·) ∈ U for i = 1, . . . , N}

The admissible control set for a Dubins evader can be defined as follows.

Definition 5.4 Dubins admissible control set
For a Dubins evader with θ0 as its current heading and ω as its maximum turning rate, the
Dubins admissible control set is defined as

Dω,θ0 = {θ(·) : R+ → R | θ(0) = θ0, |θ̇(t)| ≤ ω for t > 0}. (5.11)

Note that for a Dubins evader, the control θ(·) no longer specifies the velocity of the evader
since it always travels in maximum speed. Dω,θ0 is a subset of the original admissible control
set U .

The admissible joint control set for a team of Dubins evaders is defined as follows.

Definition 5.5 Dubins admissible joint control set
For N Dubins evaders with current joint heading Θ0 = (θ0

1, . . . , θ
0
N) and joint maximum

turning rate Ωe = (ω1, . . . , ωN), the Dubins admissible joint control set is defined as

DΩ,Θ0 = {(θ1(·), . . . , θN(·)) | θi(·) ∈ Dωi,θ0
i

for i = 1, . . . , N}. (5.12)

The open-loop team evasion problem for Dubins evaders is defined as follows.
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Definition 5.6 Open-loop team evasion problem for Dubins evaders
Given x0

p and x0
e as the positions of the pursuer and evaders and vp and ve as their maximum

speeds, the open-loop team evasion problem for the team of Dubins evaders that have Ωe as
their joint maximum turning rate and Θ0

e as their current joint heading is

sup
Θe(·)∈D

Ωe,Θ
0
e

inf
s∈SN

Γ?s(x
0
p,x

0
e,Θe(·)). (5.13)

It is worth noting that to be consistent with the worst-case mentality of the evaders in the
open-loop formulation of team evasion problem, no constraints are put on the turning rate of
the pursuer. The function Γ?s returns the minimum possible team survival time against a
pursuer that can change its heading instantaneously.

Although the Dubins admissible joint control set is a subset of the general admissible
joint control set, the optimization problem in Eq. (5.13) is still an infinite dimensional one.
To be able to solve for the open-loop optimal joint control for a team of Dubins evaders, the
admissible joint control set has to be further compressed. Consider the following definition of
a compressed admissible control set for a Dubins evader.

Definition 5.7 Compressed Dubins admissible control set
For a Dubins evader with current heading θ0 and maximum turning rate ω, the compressed
Dubins admissible control set is defined as

D̂ω,θ0 = {θ(·) : R+ → R | θ(0) = θ0,∃tc ≥ 0 such that

|θ̇(t)| = ω for t ∈ [0, tc) and θ̇(t) = 0 for t ≥ tc}. (5.14)

Definition 5.8 Compressed Dubins admissible joint control set
For N Dubins evaders with current joint heading Θ0 = (θ0

1, . . . , θ
0
N) and joint maximum

turning rate Ωe = (ω1, . . . , ωN), the compressed Dubins admissible joint control set is defined
as

D̂Ωe,Θ0 = {(θ1(·), . . . , θN(·)) | θi(·) ∈ D̂ωi,θ0
i

for i = 1, . . . , N}. (5.15)

An evader using a control in this set starts from the initial heading θ0, turns in maximum
turning rate ω in one direction for a finite amount of time tc, and then travels in constant
heading thereafter.

By swapping the admissible joint control set of the evaders DΩe,Θ0
e

with the compressed

Dubins admissible control set D̂Ωe,Θ0
e

in Eq. (5.13), the open-loop team evasion problem for
Dubins evaders defined in Definition 5.6 can be approximated by

sup
Θe(·)∈D̂

Ωe,Θ
0
e

inf
s∈SN

Γ?s(x
0
p,x

0
e,Θe(·)). (5.16)
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Note that for a given pair of initial heading θ0 and maximum turning rate ω, a heading control
θ(·) ∈ D̂ω,θ0 can be uniquely specified by the direction and duration of the turn. Alternatively,
it can also be specified by the direction of the turn and the goal heading defined as

φ = θ(ts).

By specifying a rule to select the appropriate direction of the turn for a given goal heading, a
heading control in the compressed Dubins control set can be specified simply by the goal
heading in a similar way that a constant heading control can be specified by the heading
of an evader. Here the direction of the turn is picked to be the one that can reach the goal
heading in minimum amount of time. Figure 5.5a shows a heading control θ(·) specified by an
initial heading θ0, a maximum turning rate ω, and a goal heading φ. The turning direction is
selected to be counter-clockwise in this case. Figure 5.5b shows the resulting trajectory of an
evader starting at x0

e using this heading control.

(a) Heading control (b) Resulting trajectory

Figure 5.5: Example of heading control in the compressed Dubins admissible set and its resulting
trajectory

By parameterizing the Dubins joint heading control for a team of N evaders with the
joint goal heading

Φe = (φ1, . . . , φN) ∈ RN ,

the optimization problem in Eq. (5.16) can be written as a finite dimensional sup-inf problem

sup
Φe∈RN

inf
s∈SN

Γ?s(x
0
p,x

0
e,Θ

0
e,Ωe,Φe). (5.17)

5.3.2 Minimum Survival Time on a Dubins Path

Combined with the extension proposed in the previous section which allows the framework
to handle a pursuer that can be anywhere within a circular disk, the extended open-loop
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Figure 5.6: Minimum survival time for an evader on a Dubins path against a pursuer that can be
anywhere within a circular disk

formulation of the team evasion problem can be written as

sup
Φe∈RN

inf
s∈SN

inf
xp∈D(x0

p,r)
Γ?s(xp,x

0
e,Θ

0
e,Ωe,Φe), (5.18)

where x0
p is the center of the disk and r is the radius of the disk. The function Γ?s(xp,x

0
e,Θ

0
e,Ωe,Φe)

returns the minimum possible capture time for a pursuer starting at xp to capture a team of
evaders with joint position x0

e, current joint heading Θ0
e, maximum joint turning rate Ωe, and

joint goal heading Φe according to the capture sequence s.

To be able to solve Eq. (5.18) for the optimal joint goal heading of the evaders, an efficient
way to evaluate the function has to first be developed. First consider the case for a single
evader. Figure 5.6 shows the trajectory of an evader which uses a heading control from the
compressed Dubins admissible control set. Note that at t = 0 the evader is at the position of
the black dot with heading θ0, and at time t = tc the evader will reach the position of the gray
dot with the goal heading φ and then travels in a straight line thereafter. As for the pursuer,
it can be anywhere within the gray disk centered at x0

p with radius r at time t = 0. At t = tc,
the radius of the disk will be increased by vp× tc, which is the maximum distance the pursuer
can cover within that time. Algorithm 5.2 is used to evaluate the minimum possible capture
time on such trajectory. In line 2, the trajectory of the evader is generated according to
the current state of the evader, its maximum speed and turning rate, and its goal heading.
The time tc in line 3 is the time it takes the evader to reach its goal heading and the x′e in
line 4 is the position of the evader at time tc. The pursuer with a maximum speed of vp
and is located at x0

p when t = 0 can be anywhere within the disk D(x0
p, r + vp × tc) at time

tc. The computation required to solve for the minimum possible survival time depends on
the relationship between D(x0

p, r + vp × tc) and x′e. The two possibilities are as follows: The
first possibility is that the evader is not within the pursuer disk at time tc. Since starting
from tc the evader will travel in a straight line, the minimum time it takes the pursuer to
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Algorithm 5.2 infxp∈D(x0
p,r)

Γ?(xp, x
0
e, θ

0
e , ωe, φe)

1: Given x0
p, vp, x

0
e, ve, θ

0
e , ωe, φe, r

2: xe(·)← traj(x0
e, θ

0
e , ωe, θe)

3: tc ← |θ0
e−φ|
ωe

4: x′e ← xe(tc)
5: if x′e /∈ D(x0

p, r + vp × tc) then
6: return tc + infxp∈D(x0

p,r+vp×tc) Γ?(xp, x
′
e, φ)

7: else
8: return min{t |

∥∥x0
p − xe(t)

∥∥
2

= vp × t+ r, t ≥ 0}
9: end if

capture the evader starting from this point in time is infxp∈D(x0
p,vp×tc) Γ?(xp, x

′
e, φ). This can

be evaluated by Algorithm 5.1 which involves only the evaluation of a closed-form formula.
In this case, the actual minimum survival time of the evader is returned in line 6. The second
possibility is that at time tc the evader is already within the pursuer disk. In this case it is
possible for the evader to be capture before time tc while it is still on the curved section of
the trajectory. As described in line 8, the minimum possible capture time for the evader then
has to be derived by finding the minimum t that is bigger than or equal to zero and satisfies∥∥x0

p − xe(t)
∥∥

2
= vp × t+ r. (5.19)

Such t can be found by solving a one dimensional root searching problem limited to the
segment t ∈ [0, tc]. Although slightly slower than a closed-form formula, this can still be done
fairly efficiently.

With the ability to compute the minimum capture time of a single evader against a
pursuer that can be anywhere within a disk, the value of infxp∈D(x0

p,r)
Γ?s(xp,x

0
e,Θ

0
e,Ωe,Φe) for

a team of N evaders can be computed by Algorithm 5.3 which is extended from Algorithm 5.1
in Section 5.2. The algorithm is initialized with the initial condition of the game, including
the configuration of the pursuer and evaders, their maximum speeds, the maximum turning
rates of the evaders, and their initial and goal headings. The heading(θ0

si
, ωsi , φsi) in line 4

returns the heading control function given the initial heading, maximum turning rate, and
goal heading of a specific evader as illustrated in Fig. 5.5. The traj(x0

si
, vsi , θsi(·)) in line 5

returns the resulting trajectory of an evader given its initial position, maximum speed, and
heading control. The variable τ keeps track of the time each evader in the capture sequence
is captured. In line 6, the position and heading of the i-th evader in the capture sequence
when the previous evader is captured is extracted from the resulting trajectory and heading
control. In line 7, the minimum time it takes the pursuer to capture the i-th evader in the
capture sequence starting from time τ is computed using Algorithm 5.2 and τ is updated
with the capture time of the i-th evader. The position of the pursuer is then moved to the
minimum time capture position of the i-th evader in line 12. Note that since the pursuer has
to be at the same position as an evader to capture it, there is no further uncertainty in the
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Algorithm 5.3 infxp∈D(x0
p,r

0) Γ?s(xp,x
0
e,Θ

0
e,Ωe,Φe)

1: Given x0
p,x

0
e = (x0

1, . . . , x
0
N), s = (s1, . . . , sN), ve = (v1, . . . , vN) < vp, Θ0

e = (θ1, . . . , θN),
Ωe = (ω1, . . . , ωN), and Φe = (φ1, . . . , φN)

2: τ ← 0, x′p ← x0
p, r ← r0

3: for i = 1, . . . , N do
4: θsi(·)← heading(θ0

si
, ωsi , φsi)

5: xsi(·)← traj(x0
si
, vsi , θsi(·))

6: xe ← xsi(τ), θe = θsi(τ)
7: τ ← τ + infxp∈D(x′p,r) Γ?(xp, xe, θe, ωsi , φsi)
8: if i = N then
9: return τ

10: else
11: r ← 0
12: x′p ← xsi(τ)
13: end if
14: end for

pursuer’s position after a capture happens. Hence in line 11, the radius of the pursuer disk is
set to zero after the first evader in the capture sequence is captured.

With Algorithm 5.2, the optimization problem in Eq. (5.18) can then be solved by
exploiting the minimax structure of the problem using the same procedure outlined in
Section 3.3. The solution is the open-loop optimal joint goal heading of the evaders that will
maximize the worst case team survival time of the team. In the iterative open-loop approach,
the open-loop optimal joint heading of the team with respect to the most current state of the
game is resolved at every update time. The resulting behavior and performance are presented
and discussed in the next section.

5.3.3 Results and Discussion

Resulting Trajectories

Figure 5.7 shows four snapshots taken from a simulation of a team of evaders with limited
turning rates utilizing the iterative open-loop approach to evade a faster and hidden pursuer.
The positions of the evaders are marked by the blue solid circles and the pursuer disk D(x0

p, r)
is represented by a gray disk. The center of the disk is marked by a hollow triangle and
the optimal position of the pursuer is marked by a dark triangle. The solid lines are the
trajectories of the evaders starting from t = 0 while the dashed lines represent the planned
future trajectories of agents. The hollow circles are the predicted minimum-time capture
points of the evaders. Although there often exists multiple optimal capture sequence and each
of these capture sequences has a set of predicted trajectories and capture points associated
with it, for clarity, only the predicted trajectories and capture points associated with one
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(a) t = 0 (b) t = 0.5

(c) t = 0.7 (d) t = 0.8

Figure 5.7: Snapshots of a simulation with Dubins evaders using the iterative open-loop approach
against a hidden pursuer
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specific optimal capture sequence are shown in the figures. It is worth emphasizing that the
actual position and the intended capture sequence of the pursuer are not available to the
evaders during the simulations; they are shown in the figures to help visualizing the intention
of the agents only.

Figure 5.7a shows the initial condition of the game at t = 0 where the pursuer is starting
from the origin with its position known to the 5 evaders. It can be interpreted as the time
when one of the evaders of a 6-evader team is captured at the origin. Since before the capture
there was no way for the evaders to detect the pursuer, the evasion only starts when the first
evader is captured. The 5 evaders that are not captured become aware to the presence of the
pursuer at time t = 0 and start to use the iterative open-loop approach to delay the capture
of the whole team with the pursuer disk centered at the origin. Figure 5.7b shows the state
of the game 0.5 seconds after the game starts. The uncertainty in the pursuer’s position
has grown and the pursuer can be anywhere within a circular disk centered at the origin
with r = 0.5. Figure 5.7c shows the state of the game at t = 0.7 when an evader is captured.
Note that this again reveals the position of the pursuer to the team of evaders and hence
the center of the disk is moved to the capture position and the radius of the disk is set to
zero. Figure 5.7d shows the state of the game at t = 0.8 which is slightly after the capture at
t = 0.7. The center of the disk is kept at the capture point of the previously captured evader
and the radius of the disk is increased to 0.1. The simulation continues until the last evader
is captured. The resulting trajectories of the agents coincide with the predicted trajectories
shown in Figure 5.7d.

It is worth noting that in this case the trajectories of the evaders show line symmetry
to the x-axis. This is due to the symmetric nature of the initial layout and the fact that
there exist multiple capture sequence that can achieve the minimum possible team capture
time given the open-loop optimal joint goal heading. For example, although in Fig. 5.7 the
pursuer captures the evaders in a counter-clockwise order, it is obvious that the pursuer
can achieve the same capture time by capturing the evaders in a clockwise order. The
open-loop formulation for team evasion takes all possible capture sequences into account
when determining the open-loop optimal joint goal heading for the team. The resulting
optimal joint goal heading is often a compromise between multiple capture sequences and is
designed to maximize the worst-case team survival time.

Computation Time Performance

As mentioned in Section 5.3.2, in some cases finding the minimum possible survival time for a
Dubins path requires a one dimensional root search which is more expensive computationally
than evaluating a closed-form formula. To evaluate the impact of the turning rate constraints
on the computational time performance of the iterative open-loop approach, initial conditions
in the benchmarking dataset are simulated with the maximum turning rates of the evaders set
to different values. For each simulation, the computation time is averaged over all updates.
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Figure 5.8: Distribution of the ratio of the averaged computation time of the iOL approach with
turning rate constraints to that without turning rate constraints over 500 initial conditions with
different number of evaders

Figure 5.8 shows the distribution of the ratio of averaged computation time for the
iterative open-loop approach with turning rate constraints to that without the turning rate
constraints. The black dots are the averaged computation time ratio over the 500 initial
conditions in the dataset and the errorbars represent plus and minus one standard deviation
of the distribution. In Fig. 5.8a, the maximum turning rates of the evaders are set to π
(rad/s) and in Fig. 5.8b the maximum turning rates are set to 2π (rad/s). In both cases, when
there are less evaders in the team, the ratio of computation time is almost always 1. This
shows that in some cases the iterative open-loop approach with turning rate constraints does
not require more computation time than the iterative open-loop approach without turning
rate constraints. When there are more evaders in the team, the average computation time
is longer for teams with smaller maximum turning rates. This is because that with smaller
maximum turning rates, it takes the evaders longer to reach their goal headings. As a result,
there are more cases where a capture can happen on the curved sections of the trajectories
of the evaders. More specifically, line 8 in Algorithm 5.2 is invoked more often. When it is
invoked, determining the survival time of the evader requires a 1 dimensional root searching
routine that requires more computation time than the evaluation of a closed-form formula.

The computation time performance of the proposed iterative open-loop approach for
evaders with turning rate constraints is comparable to that for evaders without tunning rate
constraints. The performance is influenced by both the number of evaders in the team and
the maximum turning rates of the evaders.
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Figure 5.9: Averaged ratio of team survival time of different maximum turning rates to that of
the lowest turning rate (π/4)

Survival Time Performance

The effects of the maximum turning rates of the evaders on the team survival time are
evaluated on the benchmarking dataset. Each initial condition in the dataset is simulated 4
times with the maximum turning rates of the evaders set to π/4, π/2, π, and 2π radians per
second. The team survival time achieved by a team of evaders with π/4 radians per second
as their maximum turning rates is used as the baseline team survival to which other cases are
compared. Figure 5.9 shows the averaged ratio of team survival time for teams with different
maximum turning rates. The team survival time ratio improves as the maximum turning
rates of the evaders increase, however the gain in performance also diminishes gradually.
This is to be expected since even with unlimited turning rates the team still can not survive
indefinitely and will be captured in finite time. Another important trend shown in the figure
is that a team with more evaders benefits more from higher turning rates than a team with
fewer evaders.

5.4 Alternative Objective Function for Collaborative

Team Evasion

In the proposed open-loop and iterative open-loop approaches for team evasion, the objective
of the team of evaders is to maximize the team survival time which is defined to be the
survival time of the evader that survives the longest. This objective is a selfless one in that
each member of the team focuses solely on maximizing the team survival time without any
concern to its own survival time. Although the collaborative team evasion framework and its
various extensions proposed in this dissertation are originally designed only for this specific
objective, they are applicable for different objectives with some minor modifications. In this
section, an alternative objective function for collaborative team evasion called accumulative
survival time is proposed; the resulting behavior of the evaders using this objective function
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is evaluated and discussed.

5.4.1 Accumulative Survival Time

In this section, the accumulative survival time is defined and the necessary modifications for
the collaborative team evasion framework to use it as the objective are detailed.

The accumulative survival time is defined to be the positively weighted sum of the survival
time of all the evaders in the team.

Definition 5.9 Accumulative team survival time
Given x0

p as the initial position of the pursuer, x0
e = (x0

1, . . . , x
0
N) as the initial positions of

N evaders, up(·) as the control of the pursuer, ue(·) = (u1(·), . . . , uN(·)) as the joint control
of the evaders, and w = (w1, . . . , wN) as the weightings where wi > 0 for i = 1, . . . , N , the
accumulative team survival time is defined as

Γ̄(x0
p,x

0
e, up(·),ue(·)) =

N∑
i=1

wiΓ(x0
p, x

0
i , up(·), ui(·)),

where Γ(x0
p, x

0
i , up(·), u0

i (·)) is the capture time of evader i as defined in Definition 2.2.

Recall that the original team survival time is defined as

Γ(x0
p,x

0
e, up(·),ue(·)) = sup

i∈{1,...,N}
Γ(x0

p, x
0
i , up(·), ui(·))

which is the maximum of the survival time of all evaders in the team. The accumulative
survival time, on the other hand, measures the weighted sum of individual survival times of
the evaders in the team. Note that according to the definition, both the team survival time
and the accumulative survival time are infinity when the given controls for the pursuer and
the evaders do not lead to the capture of all evaders.

Definition 5.10 Accumulative survival time under a capture sequence
Following Definition 5.9, the accumulative survival time under a specific capture sequence
s = (s1, . . . , sN) for N evaders is defined as

Γ̄s(x
0
p,x

0
e, up(·),ue(·)) ={

∞ if ∃i > j such that Γ(x0
p, x

0
si
, up(·), usi(·)) < Γ(x0

p, x
0
sj
, up(·), usj(·))

Γ̄(x0
p,x

0
e, up(·),ue(·)) otherwise

(5.20)

Unlike Γ̄(x0
p,x

0
e, up(·),ue(·)) in Definition 5.9 which is infinity only when there are evaders

left not captured, the Γ̄s(x
0
p,x

0
e, up(·),ue(·)) in Definition 5.10 can be infinity also when all

the evaders are captured but not according to the capture sequence s.
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Definition 5.11 Minimum possible accumulative survival time under a capture
sequence
Following Definition 5.10, the minimum possible accumulative survival time for a team of N
evaders under a specific capture sequence s = (s1, . . . , sN) is

Γ̄?s(x
0
p,x

0
e,ue(·)) = inf

up(·)∈U
Γ̄s(x

0
p,x

0
e, up(·),ue(·)). (5.21)

To compute the value of Γ̄?s(x
0
p,x

0
e,ue(·)), an efficient way to determine the minimizer for the

optimization problem on the right hand side of Eq. (5.21) is presented in the next section.

5.4.2 Optimal Control with Respect to Accumulative Survival
Time

Theorem 3.3 in Chapter 3 states that to minimize the team survival time under a specific
capture sequence given the joint control of the evaders, the pursuer should capture each
evader in minimum possible time. In other words, greedily minimizing the survival time of
the currently targeted evader will minimize the team survival time under a specific capture
sequence for the pursuer. The following lemma shows that this is also true when the objective
of the pursuer is to minimize the accumulative survival time under a specific capture sequence.

Lemma 5.4 Optimality of the greedy pursuer strategy for accumulative survival
time
Given x0

p as the initial position of the pursuer, x0
e as the initial positions of N evaders, vp

and ve as their maximum speeds where vp > ve, ue(·) as the joint control of the evaders, and
s as the capture sequence, the following equality is always true:

arg inf
up(·)∈U

Γ̄s(x
0
p,x

0
e, up(·),ue(·)) = arg inf

up(·)∈U
Γs(x

0
p,x

0
e, up(·),ue(·)) (5.22)

Proof. Define
u?p(·) = arg inf

up(·)∈U
Γs(x

0
p,x

0
e, up(·),ue(·)) (5.23)

as the optimal pursuer control to minimize the team survival time under capture sequence s.
Define

ŝi = (s1, . . . , si) (5.24)

as the capture sequence that keeps only the first i elements of s. The survival time of the
i-th evader in the capture sequence s given that the pursuer uses the control up(·) is

Γŝi(x
0
p,x

0
e, up(·),ue(·)). (5.25)

According to Theorem 3.3, the u?p(·) in Eq. (5.23) is also the optimizer for the team survival
time under this family of capture sequences, more specifically

u?p(·) = arg inf
up(·)∈U

Γŝi(x
0
p,x

0
e, up(·),ue(·)) for i = 1, . . . , N. (5.26)
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The optimizer of a new objective function defined as the positively weighted sum of all Γŝi ’s
is still the same. Hence

u?p(·) = arg inf
up(·)∈U

N∑
i=1

wiΓŝi(x
0
p,x

0
e, up(·),ue(·))

= arg inf
up(·)∈U

Γ̄s(x
0
p,x

0
e, up(·),ue(·))

which completes the proof. �

With Lemma 5.4, Algorithm 3.1 can be used to evaluated the minimum possible accu-
mulative survival time of a given layout, joint control of the evaders, and a specific capture
sequence with some minor modifications. The modified algorithm is outlined in Algorithm 5.4.

Algorithm 5.4 Minimum accumulative survival time under a capture sequence given joint
control of evaders: Γ̄?s(x

0
p,x

0
e,ue(·))

1: Given x0
p,x

0
e = (x0

1, . . . , x
0
N), s = (s1, . . . , sN), ve = (v1, . . . , vN) < vp, ue(·) =

(u1(·), . . . , uN(·)), and w = (w1, . . . , wN)
2: Initialize xp ← x0

p, τ ← 0, τ̄ ← 0
3: for i = 1, . . . , N do
4: xsi(·)← traj(x0

si
, vsi , usi(·))

5: τ ← τ + infup(·)∈U Γ(xp, xsi(τ), up(·), u+τ
si

(·))
6: xp ← xsi(τ)
7: τ̄ ← τ̄ + wsiτ
8: end for
9: return τ̄

The u?p(·) in Eq. (5.23) is defined as the optimal pursuer control with respect to a specific
capture sequence. In the open-loop formulation of collaborative team evasion, the pursuer has
the freedom to select any capture sequence. The optimal capture sequence for the pursuer is
defined as

s? = arg inf
s∈SN

Γ̄?s(x
0
p,xe,ue(·)),

which is the capture sequence that will minimize the accumulative team survival time given
the specific layout and joint control of the evaders. It is worth noting that Lemma 5.4 does
not imply that the optimal capture sequence for team survival time will be the same as
the one for accumulative survival time, or that accumulative survival time with different
weightings will share the same optimal capture sequence. Given the same layout and joint
heading of the evaders, a pursuer might behave differently depending on whether it is aiming
to minimize the team survival time or the accumulative survival time.
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The open-loop optimal accumulative survival time for the team of evaders is defined as

sup
ue(·)∈UN

inf
s∈SN

Γ̄?s(x
0
p,x

0
e,ue(·)). (5.27)

Theorem 3.5 which states that the optimal controls for the evaders in the open-loop formulation
are constant heading controls is also true when the evaders are trying to maximize the positively
weighted accumulative survival time instead of the team survival time. As a result, the
open-loop team evasion problem with the accumulative survival time as the objective can
also be simplified as

sup
Θe

inf
s∈SN

Γ̄?s(x
0
p,x

0
e,Θe). (5.28)

As a finite dimensional minimax problem, it can be converted to a constrained nonlinear
optimization problem through the same procedure described in Section 3.3 and solved by
sequential quadratic programming. With little or no modifications, the iterative open-loop
approach proposed in Chapter 4 and the extensions to the framework proposed in the previous
sections of this chapter are all applicable for the team evasion problem with accumulative
survival time as the objective function.

5.4.3 Results and Discussion

Resulting Open-loop Optimal Behavior

In this section, the difference in behavior of the evaders when they use accumulative survival
time as the objective and when they use team survival time as the objective is examined.

The team survival time as an objective function encourages selfless behavior from the
evaders. For an evader that is not the last captured evader of the team, it has no concern
of its own survival; the only way it can contribute to the team objective is by “luring” the
pursuer to move in certain direction to force the pursuer to traverse a longer distance to
reach the last evader. In other words, every evader in the team is trying to maximize the
survival time of a specific evader when a specific capture sequence is concerned. The balance
between the evaders comes from the fact that there exist multiple optimal capture sequences
and the last captured evader might be different in each of them. The accumulative team
survival time, on the other hand, encourages a more balanced collaborative behavior. In
the case where the survival time of each evader is weighted equally regardless of its order of
capture, every second an evader is surviving it contributes to the team objective in two ways:
by its own survival time and the survival time it earns for its teammates. As a result, each
evader tries to strike a balance between the survival time of itself and the team.

Figure 5.10 shows the resulting open-loop optimal trajectories with respect to different
objectives for a 2-evader layout. The dark triangle is the position of the pursuer and the blue
solid circles are the initial position of the evaders. The dashed lines are the resulting open-loop
optimal trajectories given the layout and the hollow circles are the predicted capture points of
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(a) Team survival time (b) Uniformly weighted accumulative sur-
vival time

Figure 5.10: Resulting open-loop optimal trajectories of different objectives for a 2-evader layout

(a) Parameters of a 2-evader layout (b) Split angle of the optimal joint heading
with respect to different objectives given dis-
tance ratio

Figure 5.11: The optimal joint heading with respect to the team survival time and accumulative
survival time for a family of 2-evader layouts
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the evaders. Figure 5.10a shows the resulting trajectories using the team survival time as the
objective and Fig. 5.10b shows those using uniformly weighted accumulative survival time as
the objective. The evaders using the accumulative team survival time as their objective point
slightly more to the right and away from the pursuer. This results in a longer survival time
for the evader that is captured first compared to the one shown in Fig. 5.10a. Figure 5.11
shows the difference in the optimal joint heading with respect to the two different objectives
for a family of 2-evader layouts. As shown in Fig. 5.11a, the layout is line symmetric to the
x-axis. The distance between the evaders is denoted by L and the horizontal distance from
the pursuer to the evaders is denoted by D. A layout in this family is characterized by the
distance ratio D/L; the larger this ratio is, the farther away the pursuer is from the evaders
compared to the distance between the evaders. Due to the symmetric nature of both the
layout and the open-loop formulation of team evasion, the headings of the 2 evaders are also
always symmetrical to the x-axis. Hence, the optimal joint heading can be specified by the
angle between the headings of the evaders which is referred to as the split angle and denoted
by ψ. A split angle of 0 degree indicates that the evaders are both moving directly to the
right; a split angle of 180 degrees indicates that the evaders are moving directly away from
each other. Figure 5.11b shows the resulting split angle given different distance ratios and
different objectives. The split angle is always smaller when the objective is to maximize the
accumulative survival time. The difference between the split angles resulting from the two
objectives is more pronounced when the distance ratio is larger.

Figure 5.12 shows the resulting optimal trajectories with respect to different objectives
for a 3-evader layout that is symmetrical to the x-axis. Figure 5.13 shows the split angle
under different distance ratios resulting from different objectives. Note that for this family of
3-evader layouts, which is symmetrical to the x-axis, the optimal heading of the evader in
the middle is always pointing to the right and the optimal headings of the upper and lower
evaders are always symmetrical. Hence, the open-loop optimal joint heading can again be
specified by the split angle ψ as defined in Fig. 5.13a. Figure 5.13b shows the split angle
optimal for different objectives with different distance ratio. Similar to the trend shown in
Fig. 5.11b, the split angle optimal for the accumulative survival time is smaller than the split
angle optimal for the team survival time and the difference between them increases with the
distance ratio. It is worth noting that the split angle optimal for the team survival time
is always above 280 degrees regardless of the distance ratio; the headings of the upper and
lower evaders are always pointing in the second and third quadrants respectively. However,
the split angle optimal for the accumulative survival time can range from 290 degrees to 140
degrees; when the pursuer is far away from the team, the headings of the upper and lower
evaders can be pointing in the first and fourth quadrants respectively.

Accumulative Survival Time Performance of the Iterative Open-loop Approach

Similar to the original open-loop approach for team evasion with respect to team survival time,
the one with respect to accumulative survival time can also be applied iteratively to relax
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(a) Team survival time (b) Uniformly weighted accumulative sur-
vival time

Figure 5.12: Resulting open-loop optimal trajectories of different objectives for a 3-evader layout

(a) Parameters of a 3-evader layout (b) Split angle of the optimal joint heading
with respect to different objectives given dis-
tance ratio

Figure 5.13: The optimal joint heading with respect to the team survival time and accumulative
survival time for a family of 3-evader layouts
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the conservatism of the open-loop formulation. To evaluate the performance of the iterative
open-loop approach for team evasion with accumulative survival time as the objective, a
reasonable baseline approach has to be developed. Consider a naive approach to team evasion
where each evader tries only to maximize its own survival time by heading directly away from
the pursuer at every update. This selfish approach serves well as the baseline approach to
which the proposed collaborative approach is compared in that it highlights the performance
that can be gained through collaboration.

Figure 5.14 shows the distribution of ratios of accumulative survival time of the collabo-
rative iterative open-loop approach to that of the selfish approach for teams with different
number of evaders. From Figs. 5.14a to 5.14d, the benefit in terms of the accumulative
survival time is more pronounced when there are more evaders in the team. For a team
with 2 evaders, in a lot of the initial conditions the selfish approach performs as well as the
collaborative approach. For a team with 5 evaders, the collaborative approach constantly
outperforms the selfish approach by a factor of 1.4. These results show the importance of
collaboration in the team evasion scenario.

5.5 Conclusion

Three extensions to the collaborative team evasion framework are proposed in this chapter.
They enable the framework to handle uncertainties in pursuer’s position, evaders with limited
turning rates, and the family of accumulative survival time as the objective function.

To handle uncertainties in the pursuer’s position, the original open-loop formulation for
the team evasion problem conservative to the evaders is augmented with an extra layer of
minimization which allows the pursuer to select its position from a circular disk given the
joint control of the evaders and the capture sequence. With the proposed algorithm, the
augmented open-loop optimization problem can be solved iteratively using the most current
state of the game as in the original iterative open-loop approach. By adjusting the center and
radius of the pursuer disk at each update time according to the previously known position of
the pursuer and its maximum speed, the evaders can efficiently extend their team survival
time against a hidden pursuer. The effectiveness of the proposed extension is evaluated
through simulations, and the results show that the framework is capable of losing as little as
5 percent of team survival time when facing an optimal hidden pursuer instead of a visible
one.

To handle evaders with turning rate constraints, the admissible control set of the evaders
is replaced with the compressed Dubins admissible control set which contains all controls
that starts by turning with maximum turning rate and then travels with constant heading
thereafter. An algorithm is developed to evaluate the minimum possible survival time of
an evader with such control. This algorithm requires only the evaluation of a closed-form
formula when the evader is captured on the constant heading section of its trajectory; it
requires a one dimensional root searching routine when the evader is captured on the curved
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(c) 4 evaders

0 0.5 1 1.5 2 2.5
0

100

200

300

400

500

Accumulative survival time ratio
(collaborative/selfish)

N
um

be
r 

of
 ti

m
es

(d) 5 evaders

Figure 5.14: Distribution of ratio of accumulative survival time of the collaborative iterative
open-loop approach to that of the selfish approach for teams with different number of evaders
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section of its trajectory. The simulation results show that a team with more evaders benefits
more from higher turning rates than a team with fewer evaders.

The accumulative survival time is defined as the weighted sum of the survival times of
the evaders in the team. It is shown that the optimal pursuer trajectory to minimize a
positively weighted accumulative survival time of the team under a specific capture sequence
is identical to the trajectory that minimizes the team survival time under the same capture
sequence. Hence, the previously proposed algorithms for evaluating the minimum possible
team survival time can also be used to evaluate the minimum possible accumulative survival
time with minor modification. The uniformly weighted accumulative survival time is used
as an example to demonstrate the different behaviors of the team resulting from different
objectives of team evasion. The simulations results show that the collaborative team evasion
framework with uniformly weighted accumulative survival time as its objective performs
much better than a naive non-collaborative approach.

While the open-loop and iterative open-loop approaches proposed in Chapter 3 and
Chapter 4 are derived under simple assumptions such as unlimited turning rates and perfect
sensing, the extensions proposed in this chapter demonstrate the flexibility of the collaborative
team evasion framework and its applicability in realistic team evasion scenarios.
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Chapter 6

Conclusions

This dissertation proposes the collaborative team evasion framework as an evader-centric
solution to the single-pursuer-multiple-evader pursuit-evasion game where a team of evaders
aims to delay the capture of the whole team by a faster pursuer – the team evasion game.
Compared to most of the work in the literature on the team evasion game that uses pursuer-
centric formulations and results in overly aggressive strategies for the evaders, the proposed
collaborative team evasion framework is conservative to the evaders and produces reliable
strategies for the team with guaranteed team survival time. The proposed approximations
to the framework lower the requirements on computational power through different levels
of abstraction and simplification and allow the framework to be implemented on simpler
platforms. The various extensions proposed in this dissertation improve the applicability of
the collaborative team evasion framework in more realistic team evasion scenarios by enabling
the framework to handle uncertainties in the position of the pursuer, constraints on the
turning rates of the evaders, and to use accumulative survival time as the team objective.

6.1 Summary

Chapter 1 of this dissertation reviews the history and the current state of the literature on the
single-pursuer-multiple-evader pursuit-evasion games. The lack of evader-centric formulations
in the literature is identified as the main motivation for this dissertation.

The team evasion problem is defined in Chapter 2 along with its closed-loop formulation,
control-control open-loop formulations, and sequence-control open-loop formulations. The
properties and implications of these formulations are presented and discussed.

Chapter 3 focuses on the open-loop formulation of the team evasion game conservative
to the evaders. In this formulation the joint control of the evaders is made available to the
pursuer and the pursuer is assumed to act optimally against the selected joint control of the
evaders. It is shown that under a given capture sequence the optimal strategy for the pursuer
is to greedily minimize the survival time of the currently targeted evader, and the open-loop
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optimal trajectories of the evaders are always straight lines. The minimum possible team
survival time of a given capture sequence and joint heading can be evaluated efficiently by
exploiting these properties of the optimal open-loop trajectories. The open-loop optimal
joint heading of the evaders can then be obtained by solving a finite dimensional sup-inf
optimization problem. The performance of the proposed open-loop approach for collaborative
team evasion is evaluated through extensive simulations and is shown to outperform the
pursuer-centric frameworks in the literature in terms of team survival time.

In Chapter 4 the derivation and implementation of the iterative open-loop approach
is presented in detail. The iterative open-loop approach relaxes the conservatism of the
open-loop approach by re-solving the open-loop problem at a per-determined frequency using
the most current state of the game. The simulation results show that the iteratively open-loop
approach consistently outperforms the open-loop approach in terms of team survival time.
Several approximations to the framework are also proposed in this chapter, including the
iterative linear programming approach and the gradient-based approach with constraint
sampling heuristics. The iterative linear programming approach linearizes the nonlinear
optimization problem in the original iterative open-loop approach by making use of the
gradient of the team survival time with respect to the joint heading of evaders. The gradient-
based approach further decreases the requirement on computational power by only considering
the gradient of the team survival time under the optimal capture sequence. The proposed
approximations are capable of achieving similar team survival time as the original iterative
open-loop approach with much less computation time.

In Chapter 5, the collaborative team evasion framework is augmented with several
extensions to improve its applicability in more realistic team evasion scenarios. Three
extensions are proposed in this chapter. The first extension enables the team to effectively
delay capture by a hidden pursuer as long as the maximum speed of the pursuer is know
or can be estimated. With this extension, the framework can achieve similar team survival
time when facing a hidden pursuer and when facing a visible pursuer. The second extension
allows evaders with limited turning rates to plan their evasion accordingly. The impact of
the turning rate constraints are shown to be more significant when there are more evaders
in a team. Finally, the third extension improves the flexibility of the collaborative team
evasion framework by allowing the team to maximize the weighted sum of survival times of
its members instead of the team survival time.

Finally, Chapter 6 concludes this dissertation and provides possible directions for future
research.

6.2 Future Work

Several aspects of the collaborative team evasion framework can be improved and expanded
through further research.
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Scaling to larger evader team

In its current centralized form, the proposed collaborative team evasion framework cannot be
implemented efficiently for teams with large number of evaders due to the factorial growth of
the possible capture sequence with the number of evaders: for a team with N evaders, there
exist N ! possible capture sequences. Through distributive optimization techniques, such as
the proportional-integral distributive optimization proposed in [50], it is possible to develop a
distributive version of the collaborative team evasion framework where each evader only has
to solve a smaller open-loop team evasion problem involving its neighbors. The accumulative
team survival time will be the more appropriate objective for the team in this distributed
version of the framework in that it allows the evaders to adjust the weighting of its own
survival time according to its connectivity.

Expected Survival Time and Pursuer Modeling

By assuming that the pursuer will always act optimally by picking the best capture sequence
and corresponding control against the joint heading of the evaders, the current formulation
of the collaborative team evasion aims to maximize the worst-case survival time of the team.
However, since selecting the optimal capture sequence to capture a team of moving evaders
is a very challenging problem, it is very likely that in a realistic team evasion scenario the
pursuer will not be able to select the optimal capture sequence consistently and will exhibit
some bias in its selection. Modifying the framework so that the evaders aim to maximize the
expected value of the survival time instead of the worst-case survival time can potentially
better exploit the suboptimality of the pursuer in a more realistic setting. Tools such as
Bayesian inference can be used to infer the intention of the pursuer based on its previous
actions which might be sufficient for the evaders to determine the next target of the pursuer.
The main challenge is to obtain the probability distribution of how likely the pursuer is to
select each capture sequence given the current state of the game.

Alternative Objectives

In the proposed collaborative team evasion framework, the only goal of the team is to survive
as long as possible. An interesting direction for future research is to explore other possible
objectives for team evasion such as ensuring a specific member of the team can reach certain
locations before being captured.
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Appendix A

Gradient of the Team Survival Time

Recall the gradient of the team survival time with respect to the joint heading of evaders
under a specific capture sequence defined in Section 4.3.1 as

∇ΘeΓ
?
s =

[
N∑
j=1

∂τ̂sj
∂θ1

,
N∑
j=1

∂τ̂sj
∂θ2

, . . . ,
N∑
j=1

∂τ̂sj
∂θN

]
, (A.1)

where
τ̂sj = τsj − τsj−1

(A.2)

and
τsj = Γ?s′(xp,xe,Θe) with s′ = (s1, . . . , sj). (A.3)

The partial derivative
∂τ̂sj
∂θi

represents how the change of heading of evader i affects the survival
time of the j-th evader in the capture sequence. Note that here the subscript i is used to
refer to the indexes of the evaders, and the subscript j is used to refer to the order of an
evader in the capture sequence. To clarify the relationship between the two, captureOrder is
defined as follows.

Definition A.1 Capture Order of an Evader in a Sequence
The capture order of evader i in a capture sequence s = (s1, . . . , sN) is defined as

captureOrder(i) = {j | sj = i} (A.4)

To compute the partial derivatives, recall Corollary 3.11 which can be written as

τ̂sj =
vsj

v2
p − v2

sj

(
x̂sj · êθsj +

√
(x̂sj · êθsj )2 + (

v2
p

v2
sj

− 1)(x̂sj · x̂sj)

)
, (A.5)

where
x̂sj = xsj(τsj−1

)− xp(τsj−1
) (A.6)
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is the vector pointing from the pursuer to the j-th evader in the capture sequence when the
(j − 1)-th evader is captured and

êθsj = (cos θsj , sin θsj) (A.7)

is the unit vector pointing at the heading direction of the j-th evader in the capture sequence.

The value of
∂τ̂sj
∂θi

depends on the relationship between j and captureOrder(i). Since the
heading of an evader cannot affect the survival time of the evaders preceding it in the capture
sequence,

∂τ̂sj
∂θi

= 0 for j < captureOrder(i). (A.8)

For j ≥ captureOrder(i), the partial derivatives follow the general form:

∂τ̂sj
∂θi

=
vsj

v2
p − v2

sj

{
Ai,j +

1

Bj

(
(x̂sj · êθsj )Ai,j + (

v2
p

v2
sj

− 1)(x̂sj ·
∂x̂sj
∂θi

)

)}
, (A.9)

where

Bj =

√
(x̂sj · êθsj )2 + (

v2
p

v2
sj

− 1)(x̂sj · x̂sj) (A.10)

and the terms Ai,j and
∂x̂sj
∂θi

takes different forms depends on how much larger j is to
captureOrder(i).

For j = captureOrder(i),

Ai,j = x̂sj ·
∂êθsj
∂θsj

(A.11)

∂x̂sj
∂θi

= (vsj

j−1∑
k=1

τ̂sk)
∂êθsj
∂θsj

. (A.12)

For j = captureOrder(i) + 1,

Ai,j =
∂x̂sj
∂θi
· êθsj (A.13)

∂x̂sj
∂θi

=
∂τ̂sj−1

∂θi
(vsj êθsj − vsj−1

êθsj−1
)− (vsj−1

j−1∑
k=1

τ̂sk)
∂êθsj−1

∂θsj−1

. (A.14)

For j > captureOrder(i) + 1,

Ai,j =
∂x̂sj
∂θi
· êθsj (A.15)

∂x̂sj
∂θi

= (vsj êθsj − vsj−1
êθsj−1

)

j−1∑
k=captureOrder(i)

∂τ̂sk
∂θi

. (A.16)
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Note that the value of
∂τ̂sj
∂θi

depends on the value of τ̂sk and
∂τ̂sk
∂θi

for all k < j. Hence, to
compute the gradient vector ∇ΘeΓ

?
s of a specific tuple (xp,xe,Θe) under a specific capture

sequence s = (s1, . . . , sN), the survival time of each evader has to first be computed using

Algorithm 3.1. Then, the value of the
∂τ̂sj
∂θi

’s can be computed in a sequential fashion
starting with i = s1 and j = 1 in that the survival time of the first evader in the capture
sequence depends only on the layout and its own heading. The partial derivatives of
i = s1, j = 2, . . . , N can then be computed sequentially with increasing j. With the value

of
∂τ̂sj
∂θi

for i = s1, j = 1, . . . , N , the value of the partial derivatives of i = s2 can then be
computed sequentially with j = 2, . . . , N in a similar fashion. The value of all the partial
derivatives can be computed by following this procedure. The amount of computation scales
polynomially with the number of evaders.



113

Appendix B

Solutions for 2-evader Case and
Pursuer-centric Formulations

In this appendix, previous work on the successive pursuit problem proposed is reviewed
concisely. The solution to the closed-loop formulation of the team evasion game for teams
with 2 evaders proposed in [23] is presented in Section B.1 and the general solution to the
pursuer-centric formulation of the game proposed in [34] is presented in Section B.2.

B.1 Point Capture of Two Evaders in Succession

The closed-loop team evasion problem is referred to as the successive pursuit problem by
Breakwell et al. in [23] since the pursuer has to capture all evaders in succession. Although
only applicable for a 2-evader team, it is one of the few work in the literature where the
closed-loop formulation of the team evasion problem is solved exactly without modification
or simplification to the formulation. The solution approach and the characteristics of the
solution motivate the open-loop team evasion framework proposed in this dissertation and
hence are presented in this section.

The optimal solution to the closed-loop team evasion game with two evaders can be put
into one of the two categories: the geometric solutions and the non-geometric solutions.

Geometrical Solution

The geometric solution is based on the simplifying assumption that the pursuer has to commit
to a specific capture sequence that is known to the evaders. While this is not the complete
solution to the closed-loop team evasion problem, it is optimal for some initial conditions.

For the case where there is only one evader, all possible capture points of the evader are
within the Apollonius disk defined as following:
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Figure B.1: Geometrical solution for a 2 evader team (Edited from [23])

Definition B.1 Apollonius Disk
For an evader starting at x0

e with a maximum speed of ve and a pursuer starting at x0
p with a

maximum speed of vp, the Apollonius disk of this pair of pursuer and evader is

Apo(x0
p, x

0
e, vp, ve) = {x | ‖x− x

0
e‖2∥∥x− x0
p

∥∥
2

≤ ve
vp
}. (B.1)

The boundary of the disk, denoted by ∂Apo(x0
p, x

0
e, vp, ve), is referred to as the Apollonius

circle. For any point on the circle, the ratio of the distance to the evader and that to the
pursuer is ve/vp. The evader can reach any point inside the circle before the pursuer by
traveling with maximum speed in a constant heading; it can reach points on the circle at
the same time as an optimal pursuer. In the team evasion problem with a single evader,
the evader will always pick the point on the circle that is farthest away from the pursuer
to maximize its survival time. By moving directly away from the pursuer, the evader can
achieve the maximum survival time

τ =

∥∥x0
p − x0

e

∥∥
2

(vp − ve)
, (B.2)

which is the initial distance between the pursuer and the evader divided by the rate at which
the distance shrinks. When the maximum speeds of the pursuer and the evader are given,
the optimal survival time is directly proportional to the initial distance between the pursuer
and the evader.

For a team with two evaders, the optimal strategy of the evaders is more complicated.
Consider the case where the pursuer has to capture the evaders according to a specific capture
sequence. Assuming that the first evader is capture at time τ1 and the capture point is
denoted by x1(τ1), the optimal strategy for the second evader to maximize its survival time,
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which by definition is the team survival time, is to maximize its distance from x1(τ1) by
moving directly away from it. It is worth emphasizing that this strategy for the second evader
is optimal under the condition that the pursuer must capture the evaders according to the
capture sequence. Recall that the first evader can select its capture point to be anywhere on
its Apollonious by moving directly towards the point with constant heading and maximum
speed. The following remark describes the resulting team survival time given that the first
evader is captured on a specific point on the Apollonious circle and that the second evader
moves directly away from this capture point starting from the beginning of the game.

Remark B.1 Maximum survival time of the second evader given a specific cap-
ture point of the first evader
Given x0

p, x
0
1, and x0

2 as the initial positions of the pursuer and two evaders, vp and ve
as their maximum speeds and assuming that the first evader is captured by the pursuer on
x1(τ1) ∈ ∂Apo(x0

1, x
0
p, ve, vp) at time τ1, the maximum survival time for evader 2 against the

optimal pursuer is

τ2 =

∥∥x0
p − x1(τ1)

∥∥
2

+ ‖x1(τ1)− x0
2‖2

vp − ve
. (B.3)

Note that the survival time of the second evader, given that it acts optimally, depends on the
capture point selected by the first evader. Different capture points on the Apollonius disk
will result in different optimal trajectories for the second evader and hence different team
survival times. The capture point that will result in the maximum possible team survival
time must satisfy the conditions stated in the following remark:

Remark B.2 Geometrical condition for the optimal capture point of the first
evader
Denote an ellipse with its foci located at x0

p and x0
1 and passes through x1(τ1) by Elli(x0

p, x
0
2, x1(τ1)).

Under the same assumptions in Remark B.1, the capture point of the first evader, denoted by
x1(τ1), results in maximum possible survival time for the second evader starting at x0

2 if and
only if ∂Elli(x0

p, x
0
2, x1(τ)) intersects ∂Apo(x0

1, x
0
p, ve, vp) only at x1(τ1).

Note that for all x ∈ Elli(x0
p, x

0
2, x1(τ)),∥∥x− x0

p

∥∥
2

+
∥∥x− x0

2

∥∥
2
≤
∥∥x1(τ1)− x0

p

∥∥
2

+
∥∥x1(τ1)− x0

2

∥∥
2
. (B.4)

As shown Fig. B.1, when x1(τ1) is the only point on the Apollonius circle that touches the
boundary of the ellipse, the Apollonius disk is completely enclosed by the ellipse and hence
every other possible capture points of the first evader will result in a shorter team survival
time compared to x1(τ1). An important geometrical property of this tangent point, denoted
by A in Fig. B.1, is that the line CA where C is the center of the Apollonius circle bisects
∠PAE2.

Although this geometrical problem has no closed-form solution, it can be formulated as
a root searching problem as described in [34] which will be reviewed in the next section.
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With the optimal capture point determined, the optimal control for the first evader is to
move toward this optimal capture point with constant heading and maximum speed. For the
second evader, the optimal control is to move directly away from the capture point of the
first evader with constant heading and maximum speed.

The geometrical solution is only optimal under the condition that the pursuer is committed
to capture the evaders according to the capture sequence. It is optimal to the closed-loop
formulation of the game only when the specified capture sequence stays optimal for the whole
duration of the game. Using the layout shown in Fig. B.1 as an example, if the initial position
of the second evader is within the region colored in gray, the second evader will become the
closer evader to the pursuer when following the geometrical solution and the geometrical
solution will no longer be optimal. For these initial conditions, the optimal solutions for the
pursuer and the evaders are non-geometrical and have to be solved differently.

Non-geometrical Solution

Figure B.2: Example of non-geometrical solution for a team of 2 evaders against a faster pursuer
(Edited from [23])

The team survival time of the closed-loop team evasion game, denoted by V , is a function
of the joint position of the agents. For a 2-evader team, the value can also be denoted as a
function of the position vectors of the pursuer and the two evader as V (xp(t), x1(t), x2(t)).
An action vector, denoted by ui(t), represents the instantaneous heading of agent i in the
form of a unit vector pointing at the traveling direction of the agent. The derivative of the
position vector of an agent at time t is determined by its action vector according to

dxi
dt

∣∣∣∣
t

= viui(t). (B.5)
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The main equation of Isaacs for the successive pursuit problem with 2 evaders is:

min
up

max
u1,u2

{
∂V

∂xp
· vpup +

2∑
i=1

∂V

∂xi
· viui

}
+ 1 = 0. (B.6)

Since the dynamics of the agents are disjointed, the optimal action vector of the pursuer
should parallel ∂V

∂xp
in opposite direction, and the optimal action vector for evader i should

parallel ∂V
∂xi

. By substituting the optimal action vectors, Eq. (B.6) becomes

1− vp
∣∣∣∣ ∂V∂xp

∣∣∣∣+
2∑
i=1

vi

∣∣∣∣∂V∂xi
∣∣∣∣ = 0. (B.7)

The value of the game, although originally defined as a function of the position vectors of the
pursuer and the 2 evaders denoted by V (xp, x1, x2), can also be defined as V (x̄1, x̄2), where
x̄i = xi − xp for i = 1, 2 are the relative position vectors pointing from the pursuer to the 2
evaders respectively. The partial derivatives of V with respect to the pursuer position vector
xp is

∂V

∂xp
=
∂V

∂x̄1

∂x̄1

∂xp
+
∂V

∂x̄2

∂x̄2

∂xp
(B.8)

according to the chain rule. Since ∂x̄i
∂xp

= −1 and ∂V
∂x̄i

= ∂V
∂xi

for i = 1, 2, the previous equation

can be rewritten as
∂V

∂xp
+
∂V

∂x1

+
∂V

∂x2

= 0. (B.9)

This equation governs the heading directions of the pursuer and the evaders during the game.

Unlike the geometrical solution where the optimal trajectories of the agents are all straight
lines, in the non-geometrical solution the optimal trajectories are composed of straight lines
and curves. The curved phase of the game starts when the two evaders are equidistant to the
pursuer. More specifically, when

‖x̄1‖ = ‖x̄2‖. (B.10)

The curved phase ends when the relative configuration of the game reaches the point
represented by the point EC in Fig. B.1. By denoting the headings of the agents through a
measurement relative to a fixed direction in the coordinate system and combining Eq. (B.7),
Eq. (B.9), and Eq. (B.10), the resulting optimal trajectories can be derived through backward
integration of a system of ODEs detailed in [23]. Figure B.2 shows an example of the
non-geometrical solution to the team evasion problem. The initial position of the pursuer is
marked by a triangle and the initial positions of the two evaders are marked by solid circles.
Note that the evaders are equidistant to the pursuer at the beginning of the game and stay
so in the curved sections of their trajectories. The end of the curved sections are marked by
a bar on the trajectories of the agents. After reaching these points, the agents then travel in
straight lines as in the case of the geometrical solution. In this example, the pursuer decides
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to capture evader E1 before evader E2. The resulting capture point of the first evader is
marked by a hollow circle in the figure. The second evader heads directly away from the
capture point of the first evaders at the end of its curved section.

B.2 Solution to the Pursuer-centric Formulation

In the previous section, it has been shown that when the pursuer has to capture two evaders
according to a specific capture sequence, the optimal headings of the evaders have to satisfy
certain geometrical conditions. In [34], this result is extended to the general case of N evaders
through the first-order optimality conditions. The derivation is reviewed concisely in this
section.

Denote the initial position of evader i by xi, its capture point by yi, and its maximum
speed by βi < 1 for i = 1, . . . , N . Without lost of generality, the speed of the pursuer is
defined to be one and the capture sequence is such that the evaders are captured according
to their indexes. The survival time of the i-th evader in the capture sequence is

Ti =
1

βi
‖yi − xi‖, (B.11)

which is the distance between the starting point and the capture point of the i-th evader
divided by its maximum speed. Define the following functions

Gi(yi, yi−1) =
1

βi
‖yi − xi‖ −

1

βi−1

‖yi−1 − xi−1‖ − ‖yi − yi−1‖ (B.12)

for i = 1, . . . , N and also x0 = y0 and 1
β0

= 0. These functions compute the difference between

the time the i-th evader can survival after the (i− 1)-th evader is captured and the time it
takes the pursuer to travel from the capture point of the (i− 1)-th evader to that of the i-th
evader; for an optimal pursuer, this difference should always be zero.

To maximize the team survival time, the evaders solve the following constrained optimiza-
tion problem:

max
y1,...,yN

TN (B.13)

s.t.Gi(yi, yi−1) = 0, for i = 1, . . . , N. (B.14)

As pointed out in [34], the Lagrange multiplier rule states that for a local maximum of the
constrained optimization problem, denoted by (y?1, . . . , y

?
N), there exists a nonzero vector

(λ1, . . . , λN) ∈ RN such that the partial derivatives of the function

f(y1, . . . , yN , λ1, . . . , λN) = ‖yN − xN‖+
N∑
i=1

λiGi(yi, yi−1) (B.15)
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with respect to each yi for i = 1, . . . , N at the local maximum are zero. More specifically,

∂f(y?1, . . . , y
?
N , λ1, . . . , λN)

∂yi
= 0 for i = 1, . . . , N. (B.16)

By denoting the unit vector pointing at the heading direction of the pursuer between the
capture time of the (i− 1)-th evader and the i-th evader by eip, and the unit vector pointing
at the heading direction of the i-th evader by ei, Eq. (B.16) can be rearranged as

ei+1
p = eip + (1− λi

λi+1

)wi (B.17)

where

wi =
1

βi
ei − eip. (B.18)

Combined with the fact that eip is a unit vector for all i’s, the following equation describes
the relationship between ei+1

p and eip:

ei+1
p = eip − 2〈eip,

wi
‖wi‖

〉 wi
‖wi‖

. (B.19)

In other words, given ei, βi, and eip, which are the heading of the i-th evader, the maximum
speed of the i-th evader, and the optimal heading for the pursuer to capture the i-th evader,
the heading of the pursuer to capture the next evader in the capture sequence that will satisfy
the first-order optimality condition is uniquely determined. Subsequently, given the derived
ei+1
p , the heading for the (i+ 1)-th evader that will satisfies the constraints listed in Eq. (B.14)

is also uniquely determined. As a result, given the initial positions of the pursuer and the
evaders, their maximum speeds, and a heading for the first evader in the capture sequence,
the headings of the rest of the evaders that satisfy the first-order optimality conditions can
be derived by repeatedly applying Eq. (B.19). However, the resulting joint heading, which
is generated according to a specific heading for the first evader, is only a candidate for the
optimal joint heading of evaders. The optimality of the resulting joint heading has to be
verified by testing whether or not the heading of the last evader is pointing directly away
from the pursuer when the (N − 1)-th evader is captured. More specifically, by denoting the
heading of the first evader by θ1 and defining the function

F (θ1) = 〈eNp , eN〉, (B.20)

the optimal joint heading for the team of evaders under a specific capture sequence can
be solved by finding the value of θ1 which satisfies F (θ1) = 0. In conclusion, the optimal
joint heading of the evaders under a specific capture sequence can be converted to a one
dimensional root searching problem and can be solved efficiently even for a team with many
evaders.
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