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Abstract

Abstract

Hyper-Resolution Global Land Surface Model at Regional-to-Local Scales
with observed Groundwater data assimilation

by
Raj Shekhar Singh
Doctor of Philosophy in Geography
University of California Berkeley

Professor Norman L Miller, Chair

Modeling groundwater is challenging: it is not readily visible and is difficult to
measure, with limited sets of observations available. Even though groundwater
models can reproduce water table and head variations, considerable drift in
modeled land surface states can nonetheless result from partially known geologic
structure, errors in the input forcing fields, and imperfect Land Surface Model (LSM)
parameterizations. These models frequently have biased results that are very
different from observations. While many hydrologic groups are grappling with
developing better models to resolve these issues, it is also possible to make models
more robust through data assimilation of observation groundwater data. The goal of
this project is to develop a methodology for high-resolution land surface model runs
over large spatial region and improve hydrologic modeling through observation
data assimilation, and then to apply this methodology to improve groundwater
monitoring and banking.

The high-resolution LSM modeling in this dissertation shows that model physics
performs well at these resolutions and actually leads to better modeling of
water/energy budget terms. The overarching goal of assimilation methodology is to
resolve the critical issue of how to improve groundwater modeling in LSMs that lack
sub-surface parameterizations and also run them on global scales. To achieve this,
the research in this dissertation has been divided into three parts. The first goal was
to run a commonly used land surface model at hyper resolution (1 km or finer) and
show that this improves the modeling results without breaking the model. The
second goal was to develop an observation data assimilation methodology to
improve the high-resolution model. The third was to show real-world applications
of this methodology.
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The need for improved accuracy is currently driving the development of hyper-
resolution land surface models that can be implemented at a continental scale with
resolutions of 1 km or finer. In Chapter 2, I describe our research incorporating fine-
scale grid resolutions and surface data into the National Center for Atmospheric
Research (NCAR) Community Land Model (CLM v4.0) for simulations at 1 km, 25 km,
and 100 km resolution using 1 km soil and topographic information. Multi-year
model runs were performed over the southwestern United States, including the
entire state of California and the Colorado River basin. Results show changes in the
total amount of CLM-modeled water storage and in the spatial and temporal
distributions of water in snow and soil reservoirs, as well as in surface fluxes and
energy balance. We also demonstrate the critical scales at which important
hydrological processes—such as snow water equivalent, soil moisture content, and
runoff—begin to more accurately capture the magnitude of the land water balance
for the entire domain. This proves that grid resolution itself is also a critical
component of accurate model simulations, and of hydrologic budget closure.

To inform future model progress, we compare simulation outputs to station and
gridded observations of model fields. Although the higher grid resolution model is
not driven by high-resolution forcing, grid resolution changes alone yield significant
reductions in the Root Mean Square Error (RMSE) between model outputs and
actual observations: the RMSE decreases by more than 35% for soil moisture, 36%
for terrestrial water storage anomaly, 34% for sensible heat, and 12% for snow
water equivalent. The results of a 100 m resolution simulation over a spatial sub-
domain indicate that parameters such as drainage, runoff, and infiltration are
significantly impacted when hillslope scales of ~100 meters or finer are considered.
We further show how limitations in the current model physics, including no lateral
flow between grid cells, can affect model simulation accuracy.

The results presented in Chapter 2 are encouraging, but also highlight the
limitations in improving an LSM by only increasing spatial resolution of the model
and the surface datasets. As was shown with the water table depth analysis,
increasing model resolution cannot compensate for parameterization errors and
lack of sub-surface information in CLM. However, this problem can be solved by
providing additional information to the model in the form of water table depth via
data assimilation.

In Chapter 3, I discuss the development and verification of a methodology for
assimilating observed groundwater depth measurements from multiple wells into
the high spatial resolution LSM. A kriging-based interpolation technique is
employed to overcome the problem of spatially and temporally sparse observations,
and the interpolated data is assimilated into the CLM4.0 at 1 km resolution in a test
region in northern California. Direct insertion and Ensemble Adjusted Kalman Filter
(EAKF) based techniques are used for assimilation with direct insertion, producing
better results and demonstrating major improvement in the simulation of water
table depth. The Linear Pearson correlation coefficient between the observed well
data and the assimilated model is 0.810, as opposed to only 0.107 for the non-
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assimilated model. This improvement is most significant where the water table
depth is greater than 5 m. Assimilation also improves soil moisture content,
especially in the dry season when the water table is at its lowest. Other variables,
including sensible heat flux, ground evaporation, infiltration, and runoff are also
analyzed in order to quantify the effect of this assimilation methodology. Though the
changes in these variables seem small, they can be very important in coupled
models, and the improved simulation of groundwater in the assimilated model can
explain the changes in these results.

This assimilation technique has been designed for use in regions with sparse and
varied observation data, and it can be easily adapted to work in LSMs with a
functional groundwater component. This gives us the capability to better model
groundwater for the recent past and present, and also the potential to apply climate
projections to probabilistically predict groundwater for future climate-change
scenarios.

We have collaborated with Wellintel Inc. to implement our methodology on the
ground using their observation data. We are in the process of setting up our model
over a large region along the central California coast, where for the past few months
Wellintel has implemented a pilot with measurements based on its water table
depth measuring devices. The aim of this collaboration is to provide users with
actionable water table depth data in and around their properties for the past,
present, and near future. We are combining this methodology with Wellintel data to
create a groundwater-management and groundwater-banking monitoring tool.

This is the first time that groundwater assimilation has been simulated in a high-
resolution LSM, and as such this project provides proof-of-concept and application
of a unique methodology that can be run at hyper resolution with data assimilation.
The assimilation method is a very powerful tool that researchers can now apply to
model land surface parameters much better than previously.
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Chapter 1

Chapter 1: Introduction

Terrestrial energy and water budgets can have a profound influence on the overall
behavior of the climate system. Monitoring and simulating these processes is key for
a number of important applications, including agricultural productivity forecasting,
flood and drought forecasting, and water resources management. However, to
address critical modeling challenges associated with these processes there is a need
for Land Surface Models (LSMs) that can be implemented either globally or over
very large domains with a resolution of 1 km or finer, and for techniques through
which observation data can be assimilated to improve model physics and output.
Development of such high-resolution LSMs—sometimes referred to as hyper-
resolution models—has been described as the grand challenge for the hydrologic and
land surface modeling community [Wood et al, 2011]. When combined with
assimilation techniques [Effort et al., 2012; NRC, 2000], these hyper-resolution LSMs
would allow for a better representation of processes that are sub-grid to the current
generation of models, and potentially enable more realistic process-level
simulations. Developing high-resolution (<1 km) LSMs that can also correctly
represent sub-surface hydrologic processes is also one of the big challenges
currently facing the land surface modeling community.

The goal of this dissertation is to run a global land surface model at high resolution
and to develop new assimilation techniques and constraints for bridging high-
resolution LSM simulations at regional-to-local scales with reduced uncertainty for
the study of terrestrial water storage variations, energy budgets, and water budgets.
[ have developed a methodology to adapt a more established and widely used LSM
to high resolution and combine it with data assimilation in order to improve model
results for monitoring water resources and groundwater banking. To this end, I
have collaborated with the groundwater monitoring company Wellintel Inc. in
developing our model-assimilation methodology to help average users get more
information about groundwater in and around their property.

1.1 Background

Many important fine-scale land surface characteristics are approximated
empirically in LSMs, including heterogeneous topography, soil texture, and
vegetation [Lawrence et al, 2011; Oleson et al., 2010b; Oleson et al., 2008]. As a
result, there are important underrepresented hydrological processes in coarser
LSMs, which include the effects of slope and aspect on runoff, infiltration, drainage,
and groundwater storage, as well as soil moisture redistribution and
evapotranspiration, and consequent effects on the surface energy budget [Ivanov et
al, 2004; VanderKwaak and Loague, 2001]. A number of studies have quantified the
simulation improvements of LSMs with increased horizontal resolution [A Kumar et
al., 2006; Meissner and Gerd, 2009; Wood et al., 2011], and higher-resolution model
processes are generally expected to be better resolved with more realistic process
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representations [Kollet and Maxwell, 2008]. High-resolution or hyper-resolution
models could also be coupled with regional climate models to provide better-
resolved forecasts and predictions for local management [Wood et al, 2011].
Because the grid size in distributed models has a direct effect on information
content and on the accuracy of simulation output [Kuo et al, 1999], studying the
effects of model resolution on model responses is an essential step toward further
improving our community modeling efforts [Famiglietti and Wood, 1994]; already,
higher-resolution grid size in LSMs has been shown to improve topographic
characteristics, wetness index, and outflow [Wolock and Price, 1994; Wolock and
McCabe, 2000; Zhang and Montgomery, 1994]. High spatial resolution models also
help improve simulated runoff and other hydrologic parameters by incorporating
different runoff mechanisms at varying scales [Haddeland et al., 2002; Kuo et al.,
1999; VanderKwaak and Loague, 2001]; [Vivoni et al, 2005]. Further, high-
resolution LSMs improve urban area simulations, as well as snow water equivalent
and snow-covered area variations in mountainous regions [Christensen et al., 1998;
Meierdiercks et al., 2010]. To adequately address critical energy balance and water
cycle applications, a high spatial resolution approach with an LSM on the order of
100 m to 1 km would be useful [Wood et al., 2011].

Recent studies applying LSMs at resolutions approaching 1 km have been
performed at regional scales, including COSMO-CLM [Meissner and Gerd, 2009] and
the NASA Land Information System (LIS) [A Kumar et al., 2006], and at catchment
scales approaching even higher resolutions [Christensen et al., 1998; Giorgi, 1990; Jin
etal, 2010; Jones et al., 1995; Meissner and Gerd, 2009; Rigon et al., 2006; Skamarock
et al, 2005]. Still, increasing the spatial resolution of LSMs to reach finer scales for
large domains remains a priority. Recent developments have allowed us to increase
the spatial resolution of global LSMs to 10-50 km, yet this might be insufficient for
resolving the complex terrain and slope information needed for significant model
improvements. The primary challenges of modeling at high resolution are the lack of
correct model parameterization at this resolution, the required computational
resources and the lack of input and of forcing datasets at this resolution [Famiglietti
et al., 2009; Kollet et al., 2010; A Kumar et al.,, 2006]. Global LSMs are all highly
parameterized, and most are lumped single-column models that operate outside the
spatial range for which the governing equations were derived. This is done with the
underlying assumption that the equations still capture the basic behavior of the
system, but in fact many of these parameterizations and assumptions might not be
suitable for accurate high-resolution modeling, and there is a need for further study
to quantify their effects.

Even for high-resolution models, modeling hydrologic parameters has been
challenging; the models still do not incorporate many important physical features,
such as sub-surface stratigraphy, lateral movement of ground water, and so on.
Historically, hydrologic modeling has been carried out either through complex
multi-dimensional fine-scale process descriptions or through lumped water balance
models that are applied at only global and regional scales. In spite of notable
progress in the development of advanced hydrologic models and data resources



Chapter 1

over the past two decades, the current class of physically based hydrologic models
falls short of providing much needed regional-to-local information on water
availability for addressing emerging societal needs [A Kumar et al., 2006; Wood et al.,
2011]. Instead, a high spatial resolution system approaching the order of 100 m to 1
km is required [Singh et al., 2014b; Wood et al., 2011]; such a model is expected to
be better resolved with more realistic outcomes [Kollet and Maxwell, 2008]. In
addition to increased resolution, interactive groundwater dynamics have been
added to LSMs [Fan, 2007; Liang et al., 2003; Lo et al., 2008; Lo et al., 2010; Maxwell
and Miller, 2005; Miguez-Macho et al., 2007; Xie et al., 2007; Yeh and Eltahir, 2005a;
b]. These advances indicate the importance of representing shallow groundwater
variations and interaction with soil moisture.

1.2 Community Land Model

This study is based on simulations using the Community Land Model version 4.0
(CLM4.0), the land component of the National Center for Atmospheric Research
(NCAR) Community Earth System Model (CESM 1.0.4) [Oleson et al., 2010b]. CLM is
one of the most widely used models and has been well studied; it is under constant
development, and new features and improvements are added regularly. As a part of
the CESM, CLM4.0 is easy to run in a coupled mode with the atmosphere, ice, and
ocean models, and it also performs well in an offline mode with atmospheric
forcings. The model is well explained in technical notes and user guides [Kluzek,
2012; Oleson et al., 2010b], so here I discuss only the aspects of the model that are of
primary importance for my analysis in this study.

The hydrologic cycle over land in CLM4.0 includes representations of interception of
precipitation by plant foliage and woodstems, throughfall and stemflow,
transpiration, soil evaporation, canopy evaporation, infiltration, runoff, soil water,
aquifer recharge, and snow. These are directly linked to the biogeophysics of the
model, and also affect temperature, precipitation, and runoff. Total runoff (both
surface and sub-surface) is routed downstream to oceans using a River Transport
Model (RTM) [Branstetter, 2001; Gent et al., 2010] that is synchronously coupled to
CLM4.0 for hydrological applications and for improved land-ocean-sea ice-
atmosphere coupling in the CESM. The hydrology scheme has been updated from
the earlier CLM3.5 and now includes a revised numerical solution of Richard’s
Equation [Decker and Zeng, 2009; Zeng and Decker, 2009], a revised soil evaporation
parameterization that removes the soil resistance term introduced in CLM3.5, and
an increase in the number of sub-surface layers to 15. The top ten layers (0-3.8 m)
are hydrologically active, and the lower five (3.8-42 m) are described as thermal
slabs that are hydrologically inactive and modeled as an unconfined aquifer (Figure
1.1; from CESM). The 3.8 m depth for the hydrologically active soil layer is assumed
to be constant throughout the simulated region.
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Figure 1.1: Schematic of Hydrology in CLM4.0 showing the different subsurface
layers and treatment of major groundwater components.

CLM4.0 addresses several elements that enable the study of two-way interactions
between the climate and human activities at the land surface, including land
cover/land use change, agricultural practices, and urbanization. An irrigation model
was added [Levis et al, 2012], as well as an urban land unit type and associated
urban canyon model [Oleson et al., 2010b] for the study of urban climate and heat
islands [Oleson et al., 2010b; Oleson et al., 2008], which improves CLM’s potential as
a high-resolution land surface modeling tool (Figure 1.2; from CESM). The urban
environment as simulated in CLM4.0 is based on the urban canyon concept, and
allows for the study of how climate change affects urban energy balance and the
evaluation of possible urban planning and design strategies to mitigate warming
(e.g., white roofs). The canyon system consists of roofs, walls (shaded and sunlit),
and a canyon floor. The canyon floor is divided into pervious (e.g., residential lawns
and parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. The heat
and moisture fluxes from each surface interact through a bulk air mass that
represents air in the urban canopy layer, for which specific humidity, wind, and
temperature are prognosed. The urban canopy air temperature can be compared
with the temperature of surrounding vegetated/soil (rural) surfaces to determine
heat island characteristics.
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Figure 1.2: Schematic showing the different aspects of the urban model in CLM4.0.

The snow model in CLM4.0 has been significantly modified to incorporate SNICAR
(SNow and ICe Aerosol Radiation) data, which represents the effect of aerosol
deposition (e.g., black and organic carbon and dust) on albedo, introduces a grain-
size dependent snow-aging parameterization, and permits vertically resolved
snowpack [Flanner and Zender, 2005; Flanner et al., 2007]. The snow model now
also includes a new density-dependent snow cover fraction parameterization [Niu et
al, 2007], a revised snow burial fraction over short vegetation [Wang and Zeng,
2009], and corrections to snow compaction [Oleson et al., 2008]. These changes are
explained in detail in the CLM4.0 technical report [Oleson et al., 2010b] and user
guide [Kluzek, 2012].

Fundamental to the CLM4.0 hydrology is the fractional saturated/impermeable area
(fsat) estimation, which is determined by the topographic characteristics and soil
moisture state of a grid cell [Niu and Yang, 2006]:

f;at :(l'f}rzll]fmax exp('O-Sﬁ)verZA)"‘f}rz,l (11)

where fmax is the maximum saturated fraction of the grid cell with respect to soil
moisture, fover is the decay factor (m-1), ZA (m) is the water table depth, and ff,1 is
the impermeable area fraction in frozen soil for the top layer. The maximum
saturated fraction fmax is defined as the discrete cumulative distribution function
(CDF) of the topographic index/wetness index (TI) when the grid cell mean water
table depth is zero [Niu et al.,, 2005]. It is calculated as the percentage of a grid cell
where TI is larger than or equal to the grid cell mean TI. Topographic Index in this
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study has been calculated explicitly for each grid cell at the resolution of the model
using the USGS 1/3 arc second (~10 m) National Elevation Dataset (NED, Data
available from USGS) through the process described by [Quinn et al., 1995; Wolock
and McCabe, 2000]. Tl is defined as the following:

TI=1n (A/tanf) (1.2)

where A is the upstream or contributing area per unit contour length, and f is the
grid cell topographic slope angle [Beven and Kirkby, 1979]. Tl is less for steeper
slopes and more for flat regions, which results in fmax being smaller for more hilly
grid cells and larger for grid cells with flat topography. Calculation of TI for studies
in this dissertation has been described in detain in Appendix A.

Drainage or sub-surface runoff (qdrai, kg m2 s1) is calculated using the SIMTOP
scheme [Niu et al, 2005] with a modification to account for reduced drainage in
frozen soils:

Qdmi:(l 'ﬁmp]CIdrai,max exp('fdmi ZA] (13)

where fimp is the fraction of impermeable area determined from the ice content of
the soil, furi is the decay factor (m1), and qdraimax= 5.5%10-3 kg m-2s-1 is the maximum
drainage when the water table depth is at the surface. This maximum drainage is a
global constant determined through sensitivity analysis and comparison with
observed runoff [Oleson et al., 2010b]. ZA (m) is the water table depth.

Surface runoff (qover, kg m2s1) consists of overland flow due to saturation excess
(Dunne runoff) and infiltration excess (Hortonian runoff), and the maximum soil
infiltration capacity is determined from soil texture and soil moisture [Entekhabi
and Eagleson, 1989]:

qover :fsatCIqu,O +[ 1 'f;at]maX[O;CIqu,O - Qinﬂ,max) (14‘)

Infiltration (qins, kg m=2s1) into the surface soil layer is calculated as the residual of
the surface water balance:

qinfl = qliq,0 - qover (15)

qiig0 is the total liquid precipitation reaching ground plus snow melt; ginfimax is the
maximum soil infiltration capacity (kg m-2s1), which is determined from the soil
texture and soil moisture values; and fmax is the maximum saturated fraction of the
grid cell.

The saturated hydraulic conductivity, volumetric water content at saturation, Clapp
and Hornberger exponent, and saturated soil matric potential are determined using
soil texture values as described by [Clapp and Hornberger, 1978; Cosby et al., 1984;
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Niu et al, 2007; Oleson et al., 2010b]. The high-resolution soil texture dataset
needed for this purpose was produced using the CONUS-SOIL dataset at 30 arc
second (~1 km) resolution [Miller and White, 1998].

Determination of water table depth ZA is via [Niu et al., 2007], where a groundwater
component is added in the form of an unconfined aquifer lying below the
hydrologically active upper layers in the soil column (Figure 1.1). The solution for
ZA (m) is dependent on whether the water table is within or below the active soil
column layers, and the active and inactive water storage terms are used to account
for these conditions. The first water storage term W, (mm) is the water stored in the
unconfined aquifer, and varies with the change in water table depth when the water
table is below the lower boundary of the hydrologically active soil column. The
second water storage term W;(mm) is the total groundwater, which includes water
both within the soil column and in the unconfined aquifer. When the water table is
below the soil column then W, = W, (Figure 1.1), and when the water table is within
the soil column W, is constant (5000mm). This is because there is no water
exchange between the soil column and the underlying aquifer, while W; varies with
soil moisture conditions in different hydrologically active layers. These two water
stores are updated as the water table changes within the active soil column or the
inactive soil layers[Oleson et al., 2010b].

There is an unconfined aquifer at the bottom (below 3.8 m) of the soil column
(Figure 1.1). The depth of the water table is ZA (m), and changes in aquifer water
content W, (mm) and W (mm) are controlled by the balance between drainage from
the aquifer qarai and the unconfined aquifer recharge rate qrecharge (kgm-2s1) (defined
as positive from soil to aquifer). The water table depth is calculated from the aquifer
water storage scaled by the average specific yield Sy, where Sy, = 0.2 is the fraction of
water volume that can be drained by gravity in an unconfined aquifer [Niu et al,
2007; Oleson et al., 2010b], with the assumption that the initial amount of water in
the aquifer is 4800 mm and the corresponding water table depth is one meter below
the bottom of the active soil layer. For the case where the water table is within the
soil column, there is no water exchange between the soil column and the underlying
aquifer and the water table depth is calculated accordingly [Oleson et al., 2010b].

Atmospheric potential temperature 6.m (K) is an important parameter affected by
the high resolution topographic information, and is defined as follows:

0. =T +T,z (1.6)

tm — Tatm atm, h

where Tam (K) is the air where Tam is the temperature at height zgmn, and I'q =
0.0098 km-1 is the negative of the dry adiabatic lapse rate [Oleson et al., 2010b].
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1.3 High Resolution Modeling

Performing high-resolution LSM simulations globally is one of the grand challenges
facing the hydrologic community. The problem can be approached from multiple
directions and needs to be broken down into smaller pieces so that it can be solved
efficiently. While some groups are working to develop and improve new models that
perform better at higher resolutions, my research focuses instead on adapting a
more established and widely employed global LSM to high resolution then
combining this model with data assimilation techniques to improve model results.
In Chapter 2 of this dissertation I describe our approach to this issue in detail.

Running models at high resolution requires high-resolution input and forcing data,
which is frequently very difficult to create—especially for high-resolution or hyper-
resolution models running over very large spatial domains. We therefore prioritized
which data we could possibly attain or derive at high resolution based on
availability and the importance or sensitivity of such data in the model.

Topography is one of the most important spatial fields for determining surface
water flow, and is a key control on soil moisture variability at high resolution
[Famiglietti et al., 1998; Jana and Mohanty, 2012a; b]. A previous analysis of
TOPMODEL results has shown that model predictions of the depth of the water table,
of the ratio of overland flow to total flow, peak flow, and variance, and of the skew of
predicted stream flow were all affected by the digital elevation model (DEM)
resolution [Wolock and Price, 1994]. When used to calculate TI (Equation 1.2), high-
resolution topography affects the amount of information relayed to the model in the
form of maximum saturated fraction (fmax). This results in significantly improved
fractional saturated/impermeable area (fsar) estimation, which itself improves
drainage, runoff, infiltration, and soil moisture calculations. High-resolution
topography improves the representation of air temperature and the atmospheric
potential temperature in CLM4.0. As such, more refined topography will result in a
more precise representation of temperature, snow, and evapotranspiration
variability within the model domain. Alternatively, spatially averaged topography
will result in smoothed wider and lower elevation plateaus that might contain
different total snow amounts and an effectively different water balance. Spatial
variation in elevation over steep terrain is more faithfully represented at high
resolution, and will result in more accurate predictions of snow accumulation and
depletion.

Soil texture plays an important role in the calculation of soil conductivity
parameters, and studies have shown that improving soil depth information
improves land surface modeling results [Decker and Zeng, 2009; Gochis et al., 2010].
The saturated hydraulic conductivity, volumetric water content at saturation, Clapp
and Hornberger exponent, and saturated soil matric potential are determined using
soil texture values as described by [Clapp and Hornberger, 1978; Cosby et al., 1984;
Niu et al., 2007; Oleson et al., 2010b]. Soil texture also influences the partitioning of
moisture and energy fluxes at the land surface, and offers important feedback to the
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energy and water cycles over timescales ranging from hourly to inter-annual
[Reichle et al., 2002]. A more refined soil texture dataset will therefore improve the
model outputs.

1.4 Kriging and Geostatistics Tools

Geostatistics offers a way to describe the spatial continuity of natural phenomena,
and provides adaptations of classical regression techniques to take advantage of this
continuity [Isaaks and Srivastava, 1990]. Geostatistics is used to analyze auto-
correlated data, and in my research I employ these tools to compensate for gaps in
sparse observation data before data assimilation. Due to the unique nature of
groundwater (as explained in chapter 3), the geostatistics tools are shown to work
very well, yielding spatially interpolated values from observation data that were
used for assimilation. Geostatistical methods are optimal when the data are
normally distributed and stationary. Here I use two components of geostatistics:
semi-variogram analysis and kriging.

1.4.1 Semi-Variogram

The variogram characterizes the spatial continuity or roughness of a dataset.
Ordinary one-dimensional statistics for two datasets might be nearly identical, but
the spatial continuity can be quite different. Variogram analysis utilizes the
experimental variogram that is calculated from the observation data and the
variogram model, which is fitted to the observation data. The experimental
variogram is calculated by averaging one half of the squared difference over all pairs
of observations with the specified separation distance and direction, plotted as a
two-dimensional graph. The variogram model is chosen from a set of mathematical
functions that describe spatial relationships by matching the shape of the curve of
the experimental variogram to the shape of the curve of the mathematical function.

The experimental semi-variogram is calculated for the data using the following
equations:

1
y(h) = ——— ) [Z(u) - Z(u + b))’
2N(h) &, (1.7)

where y(h) is the value of the semi-variance at lag h, the separation distance
between the data pairs. N(h) is the number of data pairs found for the specified lag
vector h, and Z(u) and Z(u+h) are attribute values at location u and location u+h,
respectively. Lag h is defined as the separation distance between the data pairs.
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Figure 1.3: Characteristics of the Semi-variogram

The resulting semi-variogram has the following important characteristics.

Nugget: In theory, the semi-variogram value at the origin (0 lag) should be zero. If it
is significantly different from zero for lags very close to zero, then this semi-
variogram value is referred to as the nugget. The nugget represents variability at
distances smaller than the typical sample spacing, including measurement error.

Sill: This is the semi-variance value at which the variogram levels off. It also refers to
the “amplitude” of a certain component of the semi-variogram. For the plot above,
the “sill” could refer to the overall sill (1.0) or to the difference (0.8) between the
overall sill and the nugget (0.2).

Range: This is the lag distance at which the semi-variogram (or semi-variogram
component) reaches the sill value. Presumably, autocorrelation is essentially zero
beyond the range.

For the sake of kriging, we need to replace the empirical semi-variogram with an
acceptable semi-variogram model. Part of the reason for this is that the kriging
algorithm requires access to semi-variogram values for lag distances other than
those used in the empirical semi-variogram. More importantly, however, the semi-
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variogram models used in the kriging process must obey certain numerical
properties in order for the kriging equations to be solvable. Therefore, we choose
from a palette of acceptable semi-variogram models.

1.4.2 Ordinary Kriging

Kriging is a spatial interpolation based on regressing against observed values of
surrounding data points, weighted according to spatial covariance values. The
technique is used for generating optimal, unbiased estimates of regionalized
variables at un-sampled locations using the structural properties of a semi-
variogram and the initial set of data values. Kriging also provides the variance of the
estimates at every point [Isaaks and Srivastava, 1990; Leuangthong, 2008;
Wackernagel, 1999]. It takes into consideration the spatial structure of the
parameter and therefore outperforms other methods, such as the arithmetic mean,
nearest neighbor, distance weighted, and polynomial interpolation methods. Kriging
helps to compensate for the effects of data clustering by assigning less weight to
individual points within a cluster than to isolated data points. Kriging also provides
the variance at every point, which is an indicator of the accuracy of the estimated
value; this is the major advantage of kriging over other estimation techniques [V
Kumar and Remadevi, 2006].

Ordinary Kriging (OK) is the most widely employed kriging method, and also the
best unbiased linear estimator. It estimates values at unsampled locations between
known data points using a linear estimation procedure in a region for which the
variogram is known. This technique is more appropriate than other kriging
procedures when the variable being estimated does not exhibit a strong spatial
trend in any particular direction [Chung and Rogers, 2011; Wackernagel, 1999]; the
estimation is unbiased in the linear sense and results in minimum error variance.
The prerequisite for Ordinary Kriging is the assumption of stationarity and the
existence of the variogram model.

In this study, Ordinary Kriging is used to estimate water table depth and to support
data assimilation when very sparse observations are available. The slowly spatially
and temporally varying nature of water table depth helps in this assumption. This
kriging methodology has been well described and documented [Isaaks and
Srivastava, 1990; Leuangthong, 2008; Wackernagel, 1999] and only a cursory review
is provided here. All kriging estimators are variants of the basic linear regression

estimator Z*(u), which is defined by[Goovaerts, 1997]:
n(u)

Z'(w) = m(u) = Y A1 Z(u,) = m(u,)]
(1.8)
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where u are location vectors for an estimation point and one of its neighboring data
points. Vector u is indexed by o, where a ranges from 1 to n(u), n(u) is the number
of data points in the local neighborhood used for estimation of Z*(u), m(u) and

m(u,) are the expected values of Z(u) and Z(u,), and A (u) is the kriging weight

assigned to datum Z(u,,) for estimation location u. The same datum will receive a
different weight for different estimation locations.

Z(u) is treated as a random field with trend component m(u) and residual
component R(u) = Z(u)- m(u). Kriging estimates the residual at u as a weighted sum

of residuals at surrounding data points. Weights A, are derived from the covariance

function or semi-variogram, which should characterize the residual component. The
goal is to determine weights A that minimize the variance of the estimator, which
under unbiased constraints is the following:

E[Z*(u) - Z (w)] = 0 (1.9)

For Ordinary Kriging, rather than assuming that the mean is constant over the entire
domain we assume that it is constant in the local neighborhood of each estimation

point—that is, m(u,) = m(u) for each nearby data value Z(u.,) that we use to
estimate Z(u). The interpolation value Z* at any location Xy is this:

. y i=1,2,3..N (1.10)
Z'(x,) = ), AZ(x,)
i=1

where A; is the weight for the observation Z at location xi. In kriging, the weights A
are calculated by the following equations so that Z*(xo) is unbiased and optimal:

N
N ay(xx) +u=y(x,x,) =L23.N (1.11)
j=1
N
DA =1 (1.12)
j=1

where u is the Lagrange multiplier and y(x;, X;) is the semi-variogram between the
two points xi and x;, where i is not equal to j.

12
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1.5 DART - Data Assimilation Research Testbed

The Data Assimilation Research Testbed (DART) is a community facility for
ensemble data assimilation, developed and maintained at the NCAR Data
Assimilation Research Section (DAReS). DART offers modelers, observational
scientists, and geophysicists powerful, flexible data assimilation (DA) tools that are
easy to implement and use and can be customized to support efficient operational
DA applications. The DART software environment makes it easy to explore a variety
of data assimilation methods and observations with different numerical models, and
is it designed to facilitate the combination of assimilation algorithms, models, and
real (as well as synthetic) observations.

DART employs a modular programming approach to apply an Ensemble Kalman
Filter (EnKF) that nudges the underlying model toward a state more consistent with
observations. This method requires running multiple instances of a model to
generate an ensemble of states. A forward operator appropriate for the type of
observation being assimilated is applied to each state to generate the model's
estimate of the observation. DART algorithms are designed such that incorporating
new models and new observation types requires only minimal coding within a small
set of interface routines, and no modification to the existing model code.

Observations
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Figure 1. 4: Schematic diagram showing the DART assimilation methodology (from
the NCAR DAReS website)
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Figure 1.4 describes the DART view of ensemble data assimilation for models that
run as separate executables. Everything is driven by a Fortran namelist and the
presence or absence of observations. A Fortran executable named “filter” reads a
namelist, an initial state for the ensemble, and a file containing observations, and
then goes to work. Given the observations and an initial state, filter assimilates the
observations and then determines how far to advance the model (using information
from the namelist and the observation file). Filter forks a shell script to the system
that is responsible for three things: 1) converting the DART state vectors and
“advance_to_time” to the format required by the underlying model, 2) advancing the
model, and 3) converting the model output into a form suitable for filter. The model
advances each ensemble member (either in turn or all at once) and the model
output is converted to the input format expected by filter. The shell script then
finishes and signals filter to continue. This returns the assimilation procedure back
to the beginning and the cycle continues until either there are no further
observations to assimilate or the control information in the Fortran namelist is met.
When that happens a set of restart files that are suitable for continuing an
experiment with more observations and diagnostic files are written. These
diagnostic files allow for exploration of the assimilation before and after each
assimilation step and in “observation space”; each real observation is paired with
the estimates of the observation from each of the ensemble members (if desired).
Minimally, the ensemble-mean estimate of the observation and the ensemble spread
of the estimates are recorded.

1.6 Motivation and Outline

My dissertation work aims to be a part of the solution to a grand challenge: running
hyper-resolution LSMs at scales for a global domain with reduced uncertainty and
applications for groundwater management. To this end, I employed a commonly
used LSM and developed a methodology for simulations at very high resolutions
using fine-scale topographic and soil texture data; hydrologic modeling is then
improved by data assimilation of observed water table depth measurements. [ show
that the local energy and water budget terms can be calculated with improved
accuracy through this application of assimilation methods within a high spatial
resolution model. I also developed a kriging-based interpolation method to solve the
problem of sparse observation datasets for data assimilation. I have partnered with
Wellintel Inc. to apply this new methodology to modeling groundwater at high
spatio-temporal resolution in order to facilitate groundwater management and
banking.

Below is a brief outline of the work I present here as my dissertation.

Chapter 1 above introduces the problem and explores the literature to understand
the previous research and ongoing challenges in this area. I provide brief
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information about the NCAR Community Land Model (CLM4.0) used in the study,
and how it is set up. I describe and explain the high-resolution model, creation of
high-resolution surface datasets, atmospheric forcing datasets, and terrestrial
observation data. I also discuss the kriging methodology employed for interpolation
of data, and the data assimilation technique (including DART and direct insertion).

In Chapter 2 I demonstrate high-resolution land surface simulations over a large
domain and examine the effects of increased spatial resolution and high-resolution
topographic and soil texture information on water and energy-cycle variables in
CLM4.0. I run CLM4.0 at a 0.01° (~1 km) resolution over the southwestern United
States and at a 100 m resolution for a nested sub-domain located along the
California Central Valley and Sierra Nevada foothills. A secondary aim of this work is
to develop and test a 1 km resolution LSM over the state of California, which can be
used for future research applications. In this chapter I attempt to resolve the
inherent data and computational limitations by creating high-resolution datasets
and by focusing on a single aspect of model development: how sub-grid scale
parameterizations affect model results and accuracy at increasingly finer scales.
This chapter is based on the manuscript [Singh et al, 2014b], which has been
submitted for publication.

In Chapter 3 I take the high-resolution model developed in earlier chapters and
develop a methodology to assimilate observed water table depth data into CLM4.0.
The goal is to evaluate the improvement in hydrologic predictions (i.e., water table
depth, surface soil moisture, root zone soil moisture, latent heat, ground
evaporation, surface runoff, drainage, and infiltration) of a high spatial resolution
(100 m) version of CLM4.0 within a 1° by 1° domain in the Sierra Nevada foothills in
Northern California through assimilation of observed groundwater depth
measurements from multiple wells in the region. The study shows that the water
table depth can be calculated with improved accuracy through the application of
kriging-based assimilation methods in a high spatial resolution land surface model.
We performed evaluations to determine the best method for groundwater
assimilation and also analyzed the effect of assimilation on other water and energy
budget terms in CLM4.0, including runoff, soil moisture, ground evaporation, and
sensible heat. I show that assimilation successfully yields a good approximation of
water table depth in CLM4.0 throughout the region across all seasons. This chapter
is based on a manuscript [Singh et al, 2014a], which has been submitted for
publication and is now under revision.

Chapter 4 describes the collaboration with the private company Wellintel Inc. to
implement our modeling methodology with observation data assimilation on a
region in central California centered near Paso Robles. Wellintel has already
installed a dozen pilot wells and is installing thousands of low-cost and very reliable
water table depth measuring devices, which gives them one of the best
observational datasets on local groundwater variations. This chapter details how we
assimilate Wellintel’s observation data into our high-resolution model through the
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methodology described in earlier chapters. This gives us the capability to better
model groundwater for the recent past and present, and also the potential to force
our model with climate projections to probabilistically predict groundwater for
future climate-change scenarios. The project described in this chapter is ongoing as
we await installation of more Wellintel sensor devices and the finalization of our
near-real-time CLM+DART setup. This chapter is also being turned into a
manuscript for publication.

In Chapter 5 I summarize the results of this dissertation and offer my concluding
remarks and recommendations. This section also describes future work that could
be undertaken to improve upon the results from this research and take it forward.

1.7 Summary of Contribution

The work presented here aims to increase our understanding of high-resolution
LSM simulations at large spatial domains that assimilate observed groundwater
data resulting in improved model predictability with reduced uncertainties.

Key contributions of this work include the following:

1. Running CLM4.0 simulations at high-to-hyper resolutions of 1 km and 100 m
over a very large spatial domain with high-resolution input data, while
demonstrating that the process can be easily expanded to global scales.

2. Quantifying the effects of changing model grid resolution on CLM4.0 physics,
and demonstrating how sub-grid scale parameterizations affect model
results at increasingly finer scales. This shows the resolution at which
parameters work well, and so highlights the need to develop either robust
parameterizations at required resolutions or (even better) scalable
parameterizations.

3. Proving that grid resolution itself is also critical for accurate model
simulations and for hydrologic budget closure, but also that there are no
improvements in modeling when the model resolution increases from
~100 km to ~25 km, as this is too coarse. Parameter calibration efforts are
potentially fruitless (or at least less effective) if an appropriate model
resolution is not achieved first.

4. Demonstrating that the higher-resolution model fails to show any

improvement in the simulated water table depth due to faulty model
parameterizations for this term.
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5. Developing a kriging-based interpolation scheme to solve the problem of
spatially and temporally sparse observation data. These data are necessary
for generating input data for assimilation.

6. Developing the DART+CLM groundwater assimilation methodology with help
from the NCAR DaRES group and the direct insertion assimilation
methodology in CLM4.0. I also demonstrate that the methodology can be
expanded to other LSMs with groundwater components. This method is most
useful in areas with sparse observation networks, significant groundwater
dependence, and inadequate recharge.

7. Demonstrating that groundwater assimilation in the high-resolution CLM4.0
significantly improves modeling results for water table depth. The
improvement is more significant in regions with deep water table profiles, as
CLM4.0 structurally performs very poorly in regions with water table depths
of more than 5 meters.

8. Collaborating with a private company to complement their observation data
resources with my high-resolution model using the new assimilation
methodology, and so providing users with a better assessment of
groundwater levels (both current and projected) at various spatial
resolutions.
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Chapter 2: Towards hyper-resolution land surface
modeling: The effects of model grid resolution on
simulations of the Southwestern US

2.1 Introduction

Hyper-resolution land surface modeling has been stated to be one of the ‘grand
challenges’ for the land surface modeling community. One way to approach the
challenge of better global modeling is to adapt a more established and widely used
global LSM for high-resolution simulation and to draw lessons from the results. In
this study, we examine the effects of increasing spatial resolution in a popular LSM
with a particular focus on hydrologic and energy budget processes. We have tried to
work around the inherent data and computational limitations by creating our own
high-resolution datasets, and by focusing on a single aspect of model development:
how sub-grid scale parameterizations affect model results at increasingly finer
scales. We hope that these regional-scale results will yield information that can be
easily expanded to global scales.

Here, we apply NCAR’s Community Land Model version 4 (CLM4.0) [Oleson et al.,
2010b] at 0.01-degree (~1km) resolution over the southwestern United States, and
at 100m resolution for a nested sub-domain located along the California Central
Valley and Sierra Nevada foothills. We test the effects of 1-km topographic and soil
texture information in CLM4.0, and the spatial sensitivity of the water and energy
cycle variables that depend on these fields. The resulting model outputs are
analyzed to understand how model physics are affected by changing model grid
resolutions. Model outputs are also compared to regional observations, providing
some qualitative direction for model improvement efforts, and offering information
about the necessary grid-resolutions and surface data sets for improved model
accuracy.

2.2 Methods

CLM4.0 was run in off-line mode over the southwestern United States at three
spatial resolutions; “hyper-resolution scale”, or ~1km grid cells (0.01° x 0.01°),
“present high-resolution global model scale”, or ~25km grid cells (0.23° x 0.31°) and
“normal global model scale”, or ~100km (0.9° x 1.25°). The model was run for six
years (2000-2005), for which good forcing and observation datasets were available,
and for which the surface datasets in CLM4.0 are optimized.

Additionally, a “hillslope scale” 100m-resolution, 1-year simulation from 1 January
2003 to 31 December 2003 was conducted within a small test area to evaluate the

model physics and spatial sensitivity of the model outputs at such high resolutions.

2.2.1 Model description
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This study is based on simulations of CLM4.0, the land component of the National
Center for Atmospheric Research Community (NCAR) Earth System Model (CESM
1.0.4) [Oleson et al., 2010b]. CLM4.0 is one of the most commonly used LSMs and
has deep sub-surface component combined with a complex above surface
description of processes. CLM has been used on regional and global scales and as a
part of the CESM system it is well suited to be readily combined with atmospheric,
ocean and sea ice models. CLM4.0 has been explained in detail in the chapter one. It
has been setup to run at resolutions of 1km and 100m and run in offline mode with
atmospheric forcing data for this study.

2.2.2 Study area

The study area is the southwestern United States, and includes California, Nevada,
and parts of Oregon, Idaho, Utah and Arizona. The area contains large climatic
variations, has major river basins and has been an ongoing focus area for hydrologic
studies by the authors. The coordinates for the 1km resolution model domain are
113.3°E-124.5°E x 31.4°N-43.4°N, and it is divided into 1200 x 1120 grid cells, each
0.01 degrees (Figure 2.1). The 100-m resolution test region has coordinates
39.191°N-39.426°N x 238.90625°E -238.59375°E. This sub-domain is located in the
Sierra Nevada foothills and is divided into 280 x 370 grid cells (Figure 2.1 inset).
This sub-domain includes the Sierra Foothills Research and Extension Center
(SFREC) research site run by University of California. The larger domain contains
two Fluxnet sites, one Soil Climate Analysis Network (SCAN) site, and one United
States Department of Agriculture - Agricultural Research Service (USDA-ARS) site,
with data in the required time period and which were used to obtain data for snow
water content, soil moisture content, sensible heat flux and latent heat flux for
evaluation of model output.
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Figure 2.1: Study area over which the model was run, showing the 1-degree grid
cells used in masking the GRACE observations and the observation data stations.

2.2.3 Data
2.2.3.1 Model surface datasets

Creating high-resolution surface datasets is one of the biggest challenges associated
with hyper-resolution land surface modeling. Topography is one of the most
important parameters in determining surface water flows, and is a key control on
soil moisture variability at high resolution [Famiglietti et al, 1998; Jana and
Mohanty; b]. A previous analysis of TOPMODEL results showed that model
predictions of the depth to the water table, the ratio of overland flow to total flow,
peak flow, and variance and skew of predicted stream flow were all affected by the
DEM resolution [Wolock and Price, 1994]. Soil texture also plays an important role
in the calculation of soil conductivity parameters, and studies have shown that

improving soil depth information improves land surface modeling results [Gochis et
al., 2010].

Following [Oleson et al, 2010a], surface datasets were created at each spatial
resolution for topography and soil texture. In previous studies, use of a 1/3 arc-
second DEM dataset is viewed as a “reasonable compromise” between the need for
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fine-grained accuracy and the demands of a high data volume [Wolock and McCabe,
2000; Zhang and Montgomery, 1994]. The topographic data for the model runs in
this study was generated at 1-km and 100-m resolutions using 1/3 arc-second
(~10m) resolution data available from NED USGS. The Topographic Index (TI)
values were calculated from 1/3 arc-second DEM using the ArcGIS™ software
following the method described in [Quinn et al., 1995]. The resulting 1/3 arc-second
resolution TI was used to calculate fmax values at 0.01° (~1km) resolution using the
method described by [Niu et al., 2005] (Figure 2.2).
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Figure 2.2: Comparing between ~100km, ~25km and ~1km resolution data sets for
soil sand fraction and Fmax for the test region

The distribution plot of fmax values at various resolutions (Figure 2.3) shows that the
1km resolution values have a broader and more continuous range, and represents a
distribution more comparable with reality. The mean values of the 1km resolution
topography are also lower than those of the coarser resolution topography, as a
larger number of steep slopes are captured in the high-resolution data. For steeper
slopes, the TI calculated tends to be lower, and thus the fnax values are lower.

The high-resolution soil texture dataset was produced using the United States
Geological Survey (USGS) State Soil Geographic (STATSGO) [Miller and White, 1998]
dataset at a 30 arc-second resolution. Higher (~100m) resolution Soil Survey
Geographic database (SSURGO) datasets were not available for the whole domain,
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so a nearest neighbor interpolation was used to create soil texture data at 100m
resolution. Figure 2.2 shows the percentage sand value and fnax calculated at 1km
resolution compared to coarser resolution data. For the 100m-resolution simulation
fmax Was calculated at 3 arc-second (~100m) resolution for the smaller region
(Figure 2.1, inset), while soil texture remained at the 30 arc-second resolution.

Except for the topographic and soil texture data, which were calculated at 1km

resolution by the authors, all other surface and aerosol input data were provided by
the NCAR CESM forcing dataset library at 0.23x0.31 degree resolution .
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Figure 2.3: Distribution of maximum saturated fraction (fmax) across the region at
various resolutions.

2.2.3.2 Model forcing datasets

Simulations at each resolution were forced with the 1/8-degree (0.125° x .125°)
resolution, 01 Jan 1979 to 31 Dec 2010 hourly atmospheric forcing data from North
American Land Data Assimilation System (NLDAS-2) atmospheric data, [Mitchell et
al., 2004b] rather than the usual T62 resolution NCAR provided forcing data [Qian et
al, 2006]. The NLDAS-2 domain, spatial resolution, computational grid, terrain
height, and land mask in NLDAS-2 are identical to NLDAS-1 [Mitchell et al., 2004a].
The initialization files were created after spin up of the model from bare soil at each
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resolution to reach thermal and hydrologic equilibrium [Lo et al., 2008]; in this case
the models were spun-up for 21 years from 1979 to 1999.

2.2.3.3 Observation datasets

The model outputs were compared with observation data to test the improvements
in the higher resolution model. Soil moisture observation data was obtained from
the US Department of Agriculture-Agriculture Research Service [Jackson et al., 2010]
site at Reynolds Creek, the Soil Climate Analysis Network (SCAN) site at Lynhart
Ranch, and the FLUXNET sites at Tonzi Ranch and Vaira Ranch [Baldocchi, 2011].

Sensible heat and Latent heat observation values were obtained from the FLUXNET
sites at Tonzi Ranch and Vaira Ranch. Groundwater observation data was obtained
from various wells maintained by the California Department of Water Resources
(DWR) and the US Geological Survey (USGS). DWR has hundreds of monitoring wells
in California and USGS has a few sites in this region too. Most wells did not have
enough observations during the model run time period and were excluded from our
analysis.

Snow water equivalent data was obtained from the National Snow and Ice Data
Center (NSIDC) Snow Data Assimilation System (SNODAS) data base [Center, 2004].
Terrestrial Water Storage Anomaly (ATWS) was calculated from NASA’s Gravity
Recovery and Climate Experiment (GRACE) data at the University of Texas at Austin,
Center for Space Research (CSR) [Wahr et al,, 2004], and the accompanying error
estimates, were constructed from level-3, Release 05 (RL-05) GRACE gridded land
solutions, available on the GRACE Tellus website (www.grace.jpl.nasa.gov).

2.2.4 Computational considerations

There were considerable computational and storage considerations for the 1km
resolution model to run over the southwestern US region. We used the parallel
computing clusters at Lawrence Berkeley National Lab for the model runs. For this
study we used computing 360 nodes to run the model, which took 2 days wall clock
time to complete 1 year of model simulation with 500GB of output data. A global run
at this resolution or higher would require very high computational resources and is
one of the main reasons why we wanted to test the model at this fine scale over the
southwestern US only.
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2.3 Results

Model output from the 1km-resolution simulations were compared with the 25km
and 100km resolution simulations and also with observations. We used the mean
values (Table 2.1), Pearson’s correlation coefficient (r) (Table 2.2), Root Mean
Square Error (RMSE) (Table 2.3), and model Bias (Table 2.4) to show agreement
across simulations and to quantify reduced errors associated with higher resolution

simulations.

Results from the 100m-resolution simulations were used to test

selected variables that are more sensitive to slope, such as surface runoff, drainage
and infiltration. Individual results are described below.

Table 2.1: Mean soil moisture content, infiltration, surface runoff, and sub-surface
runoff at 1km, 20km, and 100km resolution.

. 1km resolution 20km resolution 100 km
Spatial mean .
resolution
Soil Moisture (mm3/ mm3) 0.1430 0.1364 0.1370
Infiltration (mm/day) 0.4197 0.3872 0.3906
Surface Runoff (mm/day) 0.1786 0.3419 0.4169
Sub-Surface Runoff (mm/day) 0.3996 0.7535 0.9625

Table 2.2: Average Correlation Coefficient (r) between observation data and model
outputs at various resolutions.

Correlation Soil Moisture ATWS Latent Heat Sensible Heat SWE
Coefficient (1) (mm3/ mm3) (mm) (W/m2) (W/m2) (mm)
2fljler"at‘°“'1km 0.807 0.735 0.718 0914 | 0.880
Observation-25km 0.651 0.525 0.5831 0830 | 0.650
CLM

Observation-

100km CLM 0.640 0.454 0.616 0.830 0.360

Table 2.3: Average Root Mean Square Error (RMSE) between observation data and
model outputs at various resolutions.

RMSE Soil Moisture ATWS Latent Heat Sensible Heat SWE
(mm3/ mm3) (mm) (W/m2) (W/m2) (mm)

gll‘)l\s/lervatlon- 1km 0.077 214.130 22.724 20.737 0.081

Observation-

25km CLM 0.104 290.156 26.160 27.850 0.091

Observation-

100km CLM 0.100 262.589 23.356 30.093 0.117
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Table 2.4: Average Bias between observation data and model outputs at various
resolutions.

RMSE Soil Moisture ATWS Latent Heat Sensible Heat SWE
(mm3/ mm3) (mm) (W/m2) (W/m2) (mm)

Observation- 1km 0.0439 20.04 12.843 . 397 072

CLM

Observation-

25km CLM 0.0788 17.1 12.420 6.146 0.99

Observation-

100km CLM 0.0111 16.77 4.396 10.783 1.40

Table 2.5: CLM snow water equivalent statistics for three model grid resolutions.

Model SWE 1km 25km 100km

Mean (mm) 4.24 3.58 3.98
Standard dev. (mm) 21.47 22.56 23.39
Maximum (mm) 354.47 340.74 206.7
Total volume (mm3) 6.33x1020 2.72x1020 3.01x1020

2.3.1 Soil Moisture

At higher resolution the maximum saturated area (fmax) decreases, this should lead
to decreases in the fractional saturated area (fsa:). Figure 2.3 shows a 17% decrease
in mean frnax value and Figure 2.4 shows a 10% decrease in the mean fs: value at
1km resolution, as compared to at 20km resolution simulation. It also leads to a
decrease in runoff, increased mean infiltration values, and thus an increase in mean
soil moisture content (Table 2.1). Increasing resolution also increases the
distribution range of fmax and fw: values seen in Figure 2.3 and Figure 2.4,
respectively, as a wider variety of slopes are taken into consideration. The water
table depth at a location also affects the fs: distribution, and the regions with deep
water table and the regions with shallow water table depth are reflected by the
bimodal shape of the histogram. The fs: distribution affects the soil moisture
content and a similar bimodal distribution is found for the surface (upper layer) soil
moisture content distribution (Figure 2.5), the bimodal distribution here is
reflective of the wet and dry regions and also of the seasons.
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Normalized surface soil moisture content distribution at 1km resolution
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Figure 2.5: Distribution of normalized surface soil moisture content at various
resolutions over the test region. (a) 1km resolution CLM (b) 20 km resolution CLM
(c) 100 km resolution CLM

Model simulations at 100m, 1km, and 100km for 2003-2005 are compared to
observations at three FLUXNET sites: Tonzi Ranch, Vaira Ranch, and Reynolds Creek
(Figure 2.6). All simulations follow the observed seasonal trend fairly well, but the
1km resolution simulation shows marked improvement over the 25km and 100km
resolution simulations especially when short term trends and sudden variations in
soil moisture are taken into account. The model-to-observation correlation
coefficients for the Tonzi Ranch FLUXNET site are 0.9291 for 1km, 0.7761 for 25km,
and 0.7763 for 100km, thus showing an improvement of 19.7% over the 1km and
the 25km resolution simulations (Figure 2.6, a). Improvements in the correlation
coefficients of 15.5% and 43.2% respectively were seen in the Vaira Ranch site and
the Reynold’s Creek site (Figure 2.6 b and c). Comparing mean values for all sites the
1km resolution simulation showed an improvement of 23% in correlation
coefficient (Table 2.2) and a 35% improvement in RMSE (Table 2.3) compared to
the 20km resolution simulation.
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Figure 2.6: Comparison of surface Soil Moisture model outputs with observation (a)

FLUXNET, Tonzi Ranch site, (b) Fluxnet, Vaira ranch site, and (c) USDA-ARS,
Reynold’s Creek site. Correlation coefficient values in table.

2.3.2 Snow Water Equivalent

Maps of time-averaged Snow Water Equivalent (SWE) for the entire comparison
period (Figure 2.7) show an increasingly complex spatial structure in SWE with
increasing model resolution. The increased heterogeneity includes higher maxima in
individual grid-cell SWE amounts with higher variability across the domain, as well
as a higher total SWE amount across the domain (Table 2.5). There is a scale
dependent difference in the CLM4.0-derived timing of snow pack accumulation and
depletion rates resulting in changes to the seasonality of snow storage (Figure 2.8).
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Figure 2.7: Comparison of the time-mean (January 2003 - December 2005) snow
water equivalents over the domain for: (a) ~100km resolution simulation; (b)
~25km resolution simulation; and (c) ~1km resolution simulation. These are

compared with (d) 2003-2005 SNODAS SWE at 1 km resolution.
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and ~1km resolution simulation (magenta). These are compared with 2000-2005
SNODAS SWE at 12.5 km resolution (black). All time series have been smoothed
with a 21-day boxcar filter.

CLM4.0-simulated SWE for the southwestern US is compared with the gridded 1km
resolution SNODAS (NOHRSC, 2004) daily data from 1 September 2003 to 31
December 2005 (Figure 2.8). The correlation coefficients (r) between the SNODAS
and CLM4.0 domain-total snow water equivalent time series are 0.88 at 1km
resolution, 0.65 at 25km resolution, and 0.36 at 100km resolution (Table 2.2). The
RMSE between the SNODAS and CLM4.0 is 0.081 m at 1km resolution, 0.091 m at
25km resolution, and 0.117 at 100km resolution (Table 2.3). This shows that there
is some improvement in the timing of snow accumulation and snowmelt with the
higher resolution model simulation, and a low bias in snow amount for the coarser
model resolutions.

Figure 2.9 shows the distribution of the time-mean snow water equivalent within
the domain for all three resolutions. The 1km resolution simulation shows a more
continuous spread of snow amount across the domain, indicating more
heterogeneity in grid cell snow compared to the 25 km and 100 km simulations.
This is due to the improved distribution of temperatures across the domain, whose
time-mean distribution is also shown in Figure 2.9. The dependence of snow cover
on temperature affects the total amount of snow within the domain, due to the
heterogeneous topography in the 1km simulation allowing for a higher number of
cold grid cells.
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Figure 2.9: Time-mean snow water equivalent distributions across the domain for
the three model resolutions (left column). Time mean 2m air temperature
distributions across the domain for the three model resolutions (right column). The
top row contains the 1-km simulations, the middle row contains the 25-km
simulations and the bottom row contains the 100-km simulations.

2.3.3 Water Table depth

The water table depth (ZA) values obtained from the models are compared with
observation data obtained from dozens of well sites with daily measurement data
maintained by the California Department of Water Resources and the USGS. The ZA
calculation in CLM4.0 has a very high level of parameterization and thus increasing
resolution has a minimal effect, as seen in Figure 2.6, where 1km, 25km, and 100km
resolution simulations yield similar results. CLM4.0 reasonably well predicts when
there is a shallow (< 4m) water table within the region, as it calculates the amount
of water in the top ten active soil layers to approximately 4 meters below the
surface. However, the model has difficulty in deeper regions.

The ZA is estimated by the water balance through a reservoir system [Oleson et al.,
2010b], because of this, the ZA in CLM4.0 does not vary substantially from the initial
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value. To illustrate this impact, outputs from four regions with different ZA profiles
from shallow to very deep are plotted in Figure 2.10. The ZA in CLM4.0 remains
constant at a very shallow level of 3-5 meters and has significantly less variation
throughout the region. The results indicate that regions where ZA is shallow (Figure
2.10a) the CLM4.0-calculated ZA is closer to observation values, but in places where

ZA is below 5-6 meters, the CLM4.0 calculated ZA completely misses the observed
trend (Figures 2.10 b, ¢, and d).
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Figure 2.10: Comparison of water table depth at 1km, 25km, and 100km resolution
with Observation data. (a) DWR site 1 with shallow water table depth. (b) DWR site
2 with medium water table depth. (c) DWR site 3 with Deep water table depth. (d)
USGS site 1 with deep water table depth.

2.3.4 Terrestrial Water Storage

Monthly Terrestrial Water Storage (TWS) in the combined Sacramento and San
Joaquin River Basins was calculated at the three resolutions using CLM4.0 output. A
river basin mask was created for each model resolution to match the GRACE
resolution basins for extracting the output data. Mean-monthly CLM4.0 data was
then used to generate the TWS time series for these river basins from 1 January
2003 to 31 December 2005 by summing the model-based groundwater, soil
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moisture content and snow water equivalent at each time step.

Generally, our results show that as model resolution increases the magnitude of
TWS and its variability increases. This is due to the decrease in runoff as described
in section 3.1, and also to changes in SWE as described in section 3.2. The relatively
little change in ZA across resolutions does not contribute to TWS differences
between resolutions.

We calculated the model terrestrial water storage anomaly (ATWS) and compared
these results with the Gravity Recovery and Climate Experiment (GRACE)-derived
monthly observation of ATWS (Figure 2.11), where ATWS was calculated as the
difference between the monthly mean values and the mean over the years 2003-
2005. The GRACE observations and their accompanying error estimates were
obtained from the latest release version (RLO5) of the GRACE dataset, and were
subset to match the time period of the model simulations.

The correlation coefficients between CLM4.0 and GRACE ATWS are 0.735 for 1km,
0.525 for 25km, and 0.4535 for 100km resolution simulations (Table 2.2). The
ATWS RMSE values also show significant improvement at higher resolution, where
1km is 210 mm, 25km is 290 mm and 100km is 260mm. The 1km resolution shows
an improvement of 40% in the correlation coefficient as compared to the 25km
resolution, and it shows an improvement of 35% in RMSE values when compared to
the 100km resolution (Table 2.3). Even though the 1km RMSE and correlation
coefficient shows significant improvement, the RMSE values are still very high. This
may be attributed to less than satisfactory groundwater processes within CLM4.0, as
groundwater variation is by far the largest contributor to the ATWS calculation.

800 .

ATWS Anomaly (mm)

. | 1 | I |
0% 2003.5 2004 2004.5 2005 20055 2006
Time (Year)

—GRACE - kmCM - 2%kmC™M - 100km CLM

Figure 2.11: Comparison of ATWS from GRACE observations (with error bars) with
ATWS calculated from model outputs at various resolutions for Sacramento-San
Joaquin River Basin.
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2.3.5 Sensible and Latent heat fluxes

Increasing the model grid resolution and adding more realistic topographic detail
generally improves model temperature simulation by creating more realistic
elevations and surface slopes. The change in runoff driven by changes in fmax affects
the amount of moisture available for evaporation, which in turn affects the division
of sensible and latent heat fluxes. In regions with relatively more water and
sufficient energy input, the higher resolution model consumes more energy in latent
heating.

The sensible heat and latent heat calculated in the CLM4.0 simulations were
compared with observations obtained from the FLUXNET sites at Tonzi Ranch and
Vaira Ranch for the period 2003-2005. The observation to model correlation
coefficients for sensible heat show the 1km resolution simulation has approximately
a 10% improvement over the 25km and 100km resolutions for both the Tonzi and
Vaira Ranch sites (Figures 2.12 and 2.13). Similarly for the latent heat values the
1km resolution simulation shows approximately 20% improvement in correlation
coefficient compared to coarser resolution outputs (Table 2.2).

RMSE values calculated for sensible heat between the observation and model at
1km show 48% and 24% error reductions for the Tonzi ranch and Vaira ranch sites
respectively. For latent heat the 1km resolution simulation shows an improvement
of 23% and 11% for the Tonzi ranch and Vaira ranch sites, respectively (Table 2.3).
Observation to model Bias (Table 2.4) suggests no significant trend between the
model bias and model resolution, thus implying that the increase in spatial
resolution does not lead to any systematic errors in CLM4.0. The improved 1km
RMSE can be attributed to better resolved surface heterogeneities such as slope and
height, which are not captured at 100 km or 25 km resolution. The CLM4.0-
simulated sensible and latent heat values at 1km, 25km, and 100km follow the
observed seasonal variation closely thus showing that the model physics at seasonal
scale are the same at various resolutions and the main difference between the
outputs occurs at higher temporal resolution and spatial resolution.
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Figure 2.12: Comparison between observed Sensible and Latent heat fluxes with
model outputs at Tonzi Ranch site (FLUXNET). (a) Time series of Sensible heat
observation and CLM4.0 predictions from 2003-2005 with Correlation Coefficient
between observation and predictions in the table (b) Time series of Latent heat
observations and CLM4.0 predictions from 2003-2005 with Correlation Coefficient

between observation and predictions in the table.
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Figure 2.13: Comparison between observed Sensible and Latent heat fluxes with
model outputs at Vaira Ranch site (FLUXNET). (a) Time series of Sensible heat
Observation and CLM4.0 predictions from 2003-2005 with Correlation Coefficient
between observation and predictions in the table. (b) Time series of Latent heat
Observation and CLM4.0 predictions from 2003-2005 with Correlation Coefficient
between observation and predictions in the table.

2.3.6 Representative hillslope simulation at 100m resolution

As an additional experiment, CLM4.0 was run for a small test region (Figure 2.1,
inset) at 3-arc-second (~100m) resolution from 1 January 2003 to 31 December
2003. At this resolution, CLM4.0 approaches the hillslope scale and topographic
features, especially extremely steep or flat terrain, are more realistically
represented by the TI values. Topography tends to be spatially smoothed by
averaging at coarser resolutions. This can be seen in the histogram of the
distribution of the fractional saturated area (fs.:) values in Figure 2.14, in which the
100m-resolution histogram has longer and smoother tails. The extreme values in
the 100m-resolution histogram are representative of the steep slopes not captured
at 1km. The effect of scale on topographic smoothing has a significant impact on
model outputs, especially runoff, infiltration, and drainage. For comparison between
resolutions, we define spatial bias here as the difference between the 1km-
resolution output and the interpolated values of the 100m-resolution outputs
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aggregated to 1km over the same grid cells within the sub-domain. The biases are
plotted against slope as represented by fs.: at 1km and 100m (Figure 2.15).
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Figure 2.14: Histogram showing the distribution of fsat values in 1km and 100m
resolution models and its impact on the Drainage, Runoff and Infiltration values.
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Figure 2.15: Bias between the 1km and 100m resolution runs plotted against slope
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rank correlation represents a significant correlation if rs, > 0.35. (a) Sub-surface
drainage bias plotted against fi: calculated at 1km and (d) 90m resolutions. (b)
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Infiltration bias plotted against fs: calculated at 1km and (e) 90m resolutions. (c)
Surface runoff bias plotted against fs: calculated at 1km and (f) 90m resolutions

In comparing the 100m resolution with the 1km resolution, the sub-surface
drainage and infiltration rates should decrease and the surface runoff rate should
increase with steeper slopes, hence the biases in these rates should also increase as
we move toward steeper slopes. It can be seen in Figure 2.15 d, e, and f that the bias
does become stronger as we move from gentle terrain to steeper slopes. It’s also
important to note that when the biases are plotted against the 1km-resolution slope
data there is no clear trend in the biases (Figure 2.15 a, b, and c). They show a
positive correlation coefficient between sub-surface drainage and infiltration, and a
negative correlation for surface runoff values.

The Spearman correlation values (rsp) were also calculated and a statistically
significant relationship (a = 0.01) between the model bias and slope is indicated by
Spearman correlation values greater than 0.35. It can be can seen in Figures 2.15 d,
e, and f that the relationship between the bias in model outputs and 100m
resolution topographic data is robustly significant, while in Figures 2.15 a, b, and ¢
the 1km-resolution topographic data do not show such a relationship. An analysis
between the coarser resolution simulations over the entire southwestern US domain
with the coarser topographic data did not indicate such a relationship (not shown).
This demonstrates that the slope information is not completely relayed even at the
1km-resolution to CLM4.0 for these variables and the full effect of realistic
topography on runoff, infiltration, and drainage can be improved by reaching the
true hillslope scale of 100m or less.

The CLM4.0 model physics do not include lateral subsurface flow. To test the effects
of this assumption on model hydrology, we examine the distribution of simulated
water table depths for a single day in the winter season, 30 January 2003, when the
water table was at its highest annual level (Figure 2.16). The water table depths
show spatial patterning consistent with the spatial distribution of soil textures and
with gradients in topography. Since soil texture information was included at a
coarser resolution of 30 arc-second (~1km), which is the highest resolution
currently available for simulations with 10-m topographic information, and because
lateral flow is not included, there is spatial heterogeneity in water table depths that
would likely not be sustainable with lateral flow included.

The map of water table depth gradients [m/100m; calculated as (dZ/dx? + dZ/dy?)
1/2 where Z is water table depth [m], shows regions where there is a 100m grid cell
gradient of greater than 30cm depth in red (Figure 2.16). Approximately 21% of
model grid cells showed a significant gradient in water table heights (>0.3%) during
the wettest period, while certain regions (<1% of the domain) showed a gradient -
or more accurately, a discontinuity - in water table depths of more than 1m. Even
with higher resolution soil texture information, these gradients in the domain
during the wet season could result in the lateral redistribution of water for a 100m
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resolution simulation. The fraction of grid cells showing gradients greater than
0.3% dropped significantly after the wet season, with a mean of approximately 2%
through the entire yearlong simulation.

0.7

o
o
ZWT gradient (m)

50 100 150 200 250 300 350

Figure 2.16: The 100m resolution daily water table depth in meters for January 30,
2003 (left panel). The water table depth spatial gradients for the same model day,
in meters (right panel). Gradients (per 100m) greater than 0.3 meters are shown in
red, and some gradients (<1%) exceeded 1 meter.

2.4 Discussion

The scientific aim of this study is to show high-resolution simulations over a large
domain where the accompanying high-resolution topographic and soil texture data
differ from coarser resolution simulations using a popular LSM, CLM4.0. A
secondary aim of this work was to develop and test a 1km resolution model over the
state of California, which can be used for future research applications.

Our results help to identify several scale-based and non-scale-based problems in
CLM4.0 model parameterizations. For a number of parameterizations (those used in
drainage, runoff and infiltration), the change in resolution has a significant impact,
especially when hillslope scales of ~100m are considered. For other
parameterizations (those used in the calculation of water table depth), simulation
results were not improved by a high-resolution grid and surface data.

Model outputs also do not show much improvement in correlation values or RMSE
with observations as the model resolution increases from ~100km to ~25 km. This
is because there is little difference in topographic information between smoothened
25 km and 100km resolutions, as these scales are still too coarse. The biases
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between model outputs and observations were also calculated to check if the change
in CLM4.0 resolution introduces any systematic errors. However, the biases do not
show any trends relative to model resolution. This leads us to the conclusion that
the increase in resolution of CLM4.0 does not introduce error and the model
generally works well for higher resolution applications.

Soil moisture content is calculated by Richard’s equation in CLM4.0 and represents
an important test of model resolution on the hydrologic cycle, as it is heavily
influenced by the resolution of slope and soil texture. Near-surface soil moisture is a
key variable within coupled atmospheric and terrestrial hydrologic models used for
climate simulations, as it represents a residual of the fluxes in the water balance.
Since soil moisture influences the partitioning of water and energy fluxes at the land
surface, it has important feedbacks on the energy and water cycles over timescales
ranging from hourly to inter-annual [Reichle et al., 2002].

The results show improvement in the CLM4.0 simulation at 1km resolution for
surface parameters such as the soil moisture content and sensible heat when
compared to observations. These variables are highly affected by the soil texture
and surface topography and improve when higher resolution topographic and soil
texture data are inputted because of changes in the topography represented in fmax.
At the resolutions discussed, all simulations follow the seasonal patterns closely
with observations. This is expected, as the atmospheric forcing data, which drives
the seasonal to annual patterns, is the same for all cases. This result indicates that
the model physics perform similarly at all resolutions, and that improvement in the
correlation at higher resolution with observations is likely due to the resolution of
the input topography and soil texture.

The simulation of snow water equivalent and snow cover area in CLM4.0 is highly
sensitive to spatial resolution, and topographic effects could contribute substantially
to the water budget through snow storage. For the 2005 simulation there was 74%
more snow across the study domain at 1km, as compared to the 25 km resolution.
The effect of topography on snow alters the timing and magnitude of snowmelt
runoff generation, and has immediate implications for CLM4.0-based water resource
applications. In coarser resolution CLM4.0 simulations, where complex mountain
terrain is represented as a broad plateau, altered snowmelt and runoff generation
leads to a change in the duration of the snow season and a bias in total snow amount
across the domain. This supports previous work showing that sub-grid
heterogeneity in surface characterizations play a major role in snow formation and
melt [J/in and Miller, 2007]. Consequently, the CLM4.0 density-dependent snow
cover fraction may require significant calibration to be effectively employed at
coarse scales (e.g. 0.25 degrees).

Snow cover can have a cumulative impact on long-range coupled climate
simulations through land-surface and atmosphere feedbacks and changes in the
timing and magnitude of freshwater input to the oceans. Because of the CLM4.0
model design, the presence of snow in a grid cell can have feedbacks on the coupled
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climate system through changes in surface albedo. The overall direct beam («a} ,
and diffuse ground ( ¢, ,) albedos in the CLM4.0 are weighted combinations of “soil”
and snow albedos.

v U _ i 2.1
ag,/\ - asoi,/\ (1 fsno ) + asno,A Sno

2.2
ag,/\ = asoi,/\ (1 - f;no ) + a&no,A Sno

where fino is the fraction of the ground with snow cover (Niu and Yang 2007). These
directly affect the direct and diffuse radiative fluxes absorbed by the vegetation and
land surface. In order to obtain any reasonable accuracy in higher order processes
(such as the effects of black carbon or grain-size snow aging), these albedos need to
be faithfully approximated to achieve the correct base line (first order) snow
amount for the grid cells within the study region.

The higher resolution model fails to show any improvement in the simulated water
table depth. This can be explained by the water table depth calculation in CLM4.0,
which is highly parameterized with a specific yield fixed at 0.2 throughout, an initial
amount of water in the aquifer is fixed at 4800mm, and the water table is initialized
at 1m below the bottom active soil layer. This parameterization, combined with a
lack of lateral groundwater flow and lack of information on subsurface stratigraphy
in CLM4.0 makes it very difficult to accurately calculate water table depth variations.
It also forces the water table depth to remain mostly shallow throughout the region.

Increased resolution in CLM4.0 significantly improves the terrestrial water storage
anomaly, ATWS. The ATWS value in the 1km-resolution simulation shows significant
improvement when compared to GRACE satellite observation data for the
Sacramento-San Joaquin Basin. This can be attributed to changes in runoff, snow
and soil moisture at this scale.

Differences between the 100m and 1km resolution runoff, infiltration and drainage
are mainly due to the change in the topographic surface data. However, the CLM4.0
simulation for the southwestern US at 100m resolution requires significant
computational resources for the creation of surface data at 100m, and Terabytes of
output data that require storage. Such limitations made this simulation a significant
challenge. For these reasons, the 100m simulation was restricted to a small test
domain within the southwestern US study region.

The topographic slope data in the 100m-resolution simulation has a significant

impact on the division of surface water between runoff, infiltration, and drainage.
These values were negligibly impacted by the increase in model resolution from
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~100km to 1km, as the hill slopes that affect them are smoothened out, even at 1km
resolution topography. Between the 1km and 100m resolution model outputs, the
biases are significantly correlated with the topographic data resolution. This result
validates the initial hypothesis that the hillslope scale heterogeneities affecting
these variables can only be captured at spatial scales of 100m-resolution and finer.
While the 1km resolution version of CLM4.0 works well for surface parameters,
such as sensible heat and soil moisture, the resolution needs to be at 100m or finer
to actually see the effect of slope on variables such as runoff, drainage, and
infiltration. Ideally, 100m would be a more preferred scale to capture the hillslope
scale hydrologic processes, though there remain limitations in obtaining input data
at this resolution. Our results indicate that lateral flow between grid cells is an
important missing process needed for simulations at 100m resolution or finer
during the wettest portion of the year.

2.5 Conclusion

Many processes in the CLM4.0 are represented in an empirical fashion, and
increasing model grid resolution, while proven here to be helpful, is ultimately only
one important component of model improvement. More accuracy in model forcing
at the required simulation resolutions is also a critical step toward producing
accurate results. Also, active calibration of the model using reliable and consistent
observations of model states and fluxes is important. The results we show help to
demonstrate the critical scales for which important hydrological processes, such as
snow water equivalent, soil moisture content, and runoff begin to more accurately
capture the magnitude of the land water balance for the entire domain. This proves
that grid resolution itself is also a critical component of accurate model simulations,
and for hydrologic budget closure. Parameter calibration efforts may be fruitless
(or at least less effective) if an appropriate model resolution is not achieved first.

Correct implementations of surface flow in hyper-resolution hydrologic models will
also require much better representation of the subsurface, including lateral flow.
The importance of subsurface and surface water dynamics for land surface and land
atmosphere exchanges has been addressed by various studies [Bierkens and Van den
Hurk, 2007]. These studies suggest that there exists a strong linkage between the
mass, energy, and momentum balances of the subsurface and the land surface,
which require integration of two different paradigms.

The results presented in this numerical experiment are encouraging, but also point
out the limitations in improving an LSM by just increasing spatial resolution and
surface datasets. As was shown with the water table depth analysis, there is a need
to develop parameterizations at the required resolution and to improve the way
variables, such as the water table depth, are calculated in the CLM4.0 physics. As we
increase the model resolution, correct implementations of surface flow will also
require much better representation of the subsurface soil texture and stratigraphy.
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Chapter 3: Improving Land Surface Model predictions at
high resolution via assimilation of groundwater
observation data.

3.1 Introduction

Groundwater resource management is very important for a sustainable future. Over
2.5 billion people worldwide rely on groundwater as their primary source of
drinking water and for crop irrigation. There are no comprehensive national or
global groundwater level networks in existence with uniform coverage at high
resolution of major aquifers, climate zones and land use types [Hutson, 2004; Shah
et al, 2001]. To better assess and manage groundwater supplies, there is a
recognized need to improve monitoring of these resources, especially at regional
scales through use of better models and assimilation techniques|[Effort et al., 2012;
NRC, 2000] it also provides a key towards sustainable management of water
resources and better understanding of the local impacts of climate and land use
change.

Groundwater modeling is challenging since groundwater variations are not readily
visible and it is difficult to measure spatially, with limited sets of observations
available. Even though groundwater models can reproduce water table and head
variations, partially known geologic structure, errors in the input forcing fields and
imperfect LSM parameterizations can lead to considerable drift in modeled land
surface states. These models frequently tend to have biased results that are very
different from observations. As we have shown in the previous chapter that even
increasing the model resolution to 1km or 100 meters is not of much help in terms
of better groundwater modeling due to systematic errors in the parameterization of
water table depth calculations, lack of subsurface stratiagraphy information and
absence of lateral water flow between grid cells. While many hydrologic groups are
working to develop better models that can solve some of these issues, there are
methods to make the models more robust through data assimilation of observed
groundwater data.

During the past decade a range of data assimilation techniques have been developed
to optimally merge coarse-resolution LSM estimates with satellite observations to
reduce modeling errors arising from various sources. At their core, these
approaches provide a methodology for properly updating error-prone model
predictions with incomplete and uncertain observations of model states [Chen et al.,
2011; Moradkhani, 2008; Reichle et al., 2002]. With the availability of new and better
observation datasets, such as the remote-sensed Gravity Recovery and Climate
Experiment (GRACE) observations, new methodologies are being developed
[Zaitchik et al., 2008], but with partial success due to inherent model biases [Chen et
al, 2011]. There have been very few studies on the assimilation of groundwater
measurements into LSMs, even though such models poorly simulate deep
groundwater as we have shown in chapter 2. As deep unconfined aquifer dynamics
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are now being simulated in LSM’s, for example, the NCAR’s Community Land Model
version 4.0 (CLM4.0)[Oleson et al., 2010b; Zeng and Decker, 2009], it provides us
with an opportunity to improve the groundwater modeling using assimilation of
well level observation data.

The aim of this study is to evaluate the improvements in hydrologic prediction (i.e.
water table depth, surface soil moisture, root zone soil moisture, latent heat, ground
evaporation, surface runoff, drainage and infiltration) of a high spatial resolution
version of CLM4.0 within a 1° by 1° domain in the Sierra Nevada foothills in
Northern California through assimilation of observed groundwater depth
measurements from multiple wells in the region. The primary hypothesis is that the
local water budget terms can be calculated with improved accuracy through the
application of groundwater kriging based assimilation methods within a high spatial
resolution model. In this study the NCAR Community Land Model version 4
(CLM4.0) is run at 0.01-degree (~1km) resolution over the test region. Two
methods for data assimilation; Ensemble Kalman Filter (EnKF) based assimilation
and direct insertion are used to improve model predictions and the outputs are
compared with predictions from CLM4.0 without assimilation and observation data.
The model setup for this study is similar to the one in chapter 2. The assimilation
methodologies, datasets used and relevant model dynamics are explained in Section
3.2. Results are presented and evaluated in section 3.3 and these results and their
consequences are discussed in Section 3.4 of this chapter.

3.2 Methods

The CLM4.0 is run offline without assimilation and with assimilation using the direct
insertion method from 1 April 2003 to 30 March 2004 at a 30 arc-second (~1km)
resolution over the test region.

3.2.1 Model description

The model used in this work for advancing hyper-resolution terrestrial simulations
is CLM4.0, the land component of the NCAR Community Earth System Model.
Fundamental to the CLM4.0 hydrology is the fractional saturated area (fs.:) and
Topographic Index that have been discussed earlier in Chapter 1. The new version
of CESM now supports multi instance runs and was used for the CLM+DART
assimilation runs, the land surface part remains the same in both versions of CESM.

The saturated hydraulic conductivity, volumetric water content at saturation, the
Clapp and Hornberger exponent and the saturated soil matric potential are
determined using soil texture values [Clapp and Hornberger, 1978; Cosby et al.,
1984; Niu et al., 2007; Oleson et al., 2010b]. The high-resolution soil texture dataset
for this purpose was produced using the CONUS-SOIL dataset at 30 arc second
(~1km) resolution[Miller and White, 1998].
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Determination of water table depth, ZA (m) in CLM4.0 is based on the work by [Niu
etal, 2007]. In their approach, a groundwater component is added in the form of an
unconfined aquifer lying below the hydrologically active upper layers in the soil
column (Figure 1.1). The solution for ZA is dependent on whether the water table is
within or below the active soil column layers. The active and inactive water storage
terms are used to account for these conditions. The first water storage term, W,
(mm), is the water stored in the unconfined aquifer and it varies with the change in
water table depth when the water table is below the lower boundary of the
hydrologically active soil column. The second water storage term, W;(mm) is the
total groundwater, which includes water within the soil column and water in the
unconfined aquifer. When the water table is below the soil column then W; = W, and
when the water table is within the soil column, W, is constant (5000mm) because
there is no water exchange between the soil column and the underlying aquifer,
while W; varies with soil moisture conditions. These two water stores are updated
as the water table changes within the active soil column or in the inactive soil layers
[Oleson et al., 2010b]. The water table depth is calculated from the aquifer water
storage scaled by the average specific yield (S)), where Sy, = 0.2 is the fraction of
water volume that can be drained by gravity in an unconfined aquifer [Niu et al,
2007]; [Oleson et al., 2010b], with the assumptions that the initial amount of water
in the aquifer is 4800 mm and the corresponding water table depth is one meter
below the bottom of the active soil layer. For the case when the water table is within
the soil column, there is no water exchange between the soil column and the
underlying aquifer and the water table depth is calculated accordingly [Oleson et al.,
2010b]. There is an unconfined aquifer at the bottom of the soil column (Figure 1.1).
The depth to the water table is ZA and changes in aquifer water content W, and W;
are controlled by the balance between drainage from the aquifer water qdrai and the
unconfined aquifer recharge rate qrecharge (kgm-2s1) (defined as positive from soil to
aquifer) . Other aspects of the CLM4.0 affecting this study have been discussed in
detail in chapter 1.

3.2.2 Study area:

The study area presented here is a 1° x 1° area in northern California that extends
from the eastern part of the northern California Central Valley (CCV) to the Sierra
Nevada foothills with coordinates -121.00E 39.00N x -122.00E 40.00N and is
divided into 120x120 grid cells, each 30 arc-second (~1km), for grid cell based
simulations using CLM4.0 (Figure 3.1). This study area contains the Sierra Foothills
Research and Extension Center (SFREC), a UC field research station, a number of
natural stream and managed irrigation source wetlands, and the Yuba River. It has
strong topographic variation from east to west, where the western part of the study
region lies in the CCV and is nearly flat with a mean elevation of approximately 20m-
30m above mean sea level and the eastern part of the region is in the foothills and
rises to 1000m in elevation.
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and (c) Percentage Sand data at 30 arc-second (~1km) resolution.

3.2.3 Data

This study required near surface meteorological data and surface data to force the
model and groundwater observation data used for a kriging-based interpolation
leading to assimilation. The Digital Elevation Model (DEM) data for the topography
was obtained from the 1/3 arc-second (~10m) resolution USGS dataset.

3.2.3.1 Model surface datasets
CLM4.0 was forced using 30 arc-second (~1km) resolution input data files.
The Topographic Index (TI) values were calculated from 1/3 arc-second (~10m)
resolution DEM datasets provided by the USGS using the ArcGIS™ software at each
pixel following the method described in [Quinn et al.,, 1995]. The resulting Tl at 1/3
arc-second resolution was then used to calculate fmax values at 30 arc-second

resolution using the method described in [Niu et al., 2005].

The high-resolution soil texture dataset was produced using the CONUS-SOIL
dataset at a 30 arc-second (~1km) resolution. Other surface and aerosol input data
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were provided by the NCAR 0.23 x 0.31 datasets and were held constant over the
study area.

The initialization files were created after spin up of the model from bare soil at each
resolution to reach thermal and hydrologic equilibrium [Lo et al., 2008]; in this case
the models were spun-up for 21 years from 1982 to March, 2003. A 40-member
ensemble was created by a similar 21 year spin up, to initialize the multi instance
CESM code used for assimilation using Ensemble Kalman Filter (EnKF).

3.2.3.2 Model forcing datasets

Offline CLM4.0 simulations were forced with the 1/8-degree (0.125° x .125°)
resolution, 01 Jan 1979 to 31 Dec 2010 hourly atmospheric forcing data from the
North American Land Data Assimilation System version 2 (NLDAS-2) atmospheric
data, [Mitchell et al., 2004b] rather than the usual T62 resolution NCAR provided
forcing data [Qian et al, 2006]. The NLDAS-2 domain, spatial resolution,
computational grid, terrain height, and land mask in NLDAS-2 are identical to
NLDAS-1 [Mitchell et al., 2004a]. Earlier the atmospheric input forcing used was the
global 1948-2004, 3-hour, T62 resolution (1.875°k1.914°) dataset derived by
combining observation-based analyses of monthly precipitation and surface air
temperature with intra-monthly variations from the National Centers for
Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR)
Reanalysis. We used an 80 ensemble member atmospheric forcing dataset at 2.5°x
1.875° resolution created by the NCAR-CAM (Community Atmospheric Model) runs
with data assimilation and obtained from NCAR for the EnKF-based CLM4.0
assimilation run.

3.2.3.3 Groundwater data

Groundwater measurement data is collected from datasets provided by the
California Department of Water Resources (DWR). The observation wells are
located mainly in the Central Valley part of the study domain. Lack of well data in
the mountains is explained by the assumption that the Sierra Nevada mountains
have a limited capacity to store groundwater [Famiglietti et al., 2011]. DWR has
more than 300 well sites available but many of the well measurements are not
continuous and for a particular month the number of sites with observation varies
from 60 to 150. For every month there are a sufficient number of well observations
to apply an ordinary kriging methodology to interpolate water table depth over the
whole region, we also perform cross validation tests to make sure kriging is giving
us consistent results. The observed data is used to perform kriging for the start of
every month, groundwater is temporally and spatially slowly varying with time and
this helps to justify this assumption [V Kumar and Remadevi, 2006]. A proper data
quality check is maintained so that any biased data is not used in the kriging process.
Thgis is done by first filtering data on the basis of DWR listed codes for different
disruptions such as leakages or pumping and secondly by not using any data values
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which significantly differs from other observations in the region. The DWR well data
measurements are given in feet and were converted to meters for the assimilation,
as all measurements in the model are in SI units.

Another set of continuous water table depth data is also retrieved from DWR that is
only used for comparison and validation purposes, and not for the kriging.
Continuous well data is only available at fifteen sites in the test region. These wells
give good quality daily measurements but most sites have some kind of disruption
for some times in the year.

3.2.4 Hydrologic data assimilation

Data assimilation is the method of making models utilize the information from
observations of the system being modeled. Good assimilation makes the modeled
state more consistent with the observations, particularly future observations.
Effective data assimilation systems tend to make forecasts more accurate - within
the ability of the model, naturally - and tend to make ‘hindcasts’ (the model state
immediately after the observations have been assimilated) to more accurately
reflect the state of the system.

The observed groundwater well data obtained for assimilation are too sparse so the
data from DWR was used to create a kriging setup to interpolate groundwater depth
in the test region. Kriging is then used to provide the observation data at the spatial
and temporal resolution we need for the assimilation process. Kriging variance
obtained is used to assign measurement errors in an Ensemble Adjusted Kalman
Filter (EAKF)-based assimilation process. The kriged data is assimilated into the
model at a monthly time step using two very distinct techniques, Ensemble Kalman
Filter and Direction Insertion. These two methodologies, which are slightly different
from those described in chapterl, are explained in detail below.

3.2.4.1 Kriging methodology

Kriging is a technique for generating optimal, unbiased estimates of regionalized
variables at un-sampled locations using the structural properties of a semi-
variogram and the initial set of data values. Ordinary Kriging is the most widely
used kriging method and is also designated as the best-unbiased linear estimator. It
estimates values at un-sampled locations between known data points using a linear
estimation procedure, in a region for which the variogram is known. The estimation
is unbiased in the linear sense and results in minimum error variance. Ordinary
Kriging was used for the purpose of this study.

Getting quality observation data at sufficient locations was a challenge but it is
extremely important for this study. The water table data from the DWR was checked
for any anomalies or errors; error codes provided by DWR were used as a guide for
this purpose. The first data of every month at each available well location is used for
kriging at any given month. This provides a sufficient number of data locations for a
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meaningful kriging, the slow spatially and temporally varying nature of water table
depth helps in this assumption. The kriging methodology used here has been well
described and documented in chapter 1 and only a cursory review of this specific
approach is provided here, more details have been explained by [Isaaks and
Srivastava, 1990; Leuangthong, 2008; Wackernagel, 1999].

Stationarity and de-trending of observation data is crucial to get good interpolation
results through the kriging methodology. The groundwater level height from Mean
Sea Level (MSL) at the corresponding observation location was calculated by
subtracting the groundwater depth from the reference height. This step helps to
remove anomalies that may affect the kriging process because of any sudden change
in surface features. The ordinary kriging method works much better when the
topographic changes are removed [Chung and Rogers, 2011]. A three dimensional
plane is fitted to the dataset and the residuals are calculated at each site to remove
any systematic trend in the data. These calculated residuals are normally
distributed and stationary and thus suitable for kriging (Figure 3.2a).

The experimental semi-variogram is calculated from this residual data and a
theoretical variogram was calculated for modeling purposes. The semi-variogram
for every month was calculated. The lag distances were grouped into 20 bins with
lag distance varying from 4000 feet to 8000 feet in various months of the year, the
tolerance was fixed at half the lag distance. These lag distances and tolerances were
used for calculation of the semi-variogram (Figure 3.2b). Determining the correct
theoretical variogram model is important and Spherical, Gaussian and exponential
theoretical variogram models were all fitted to the experimental variogram. For
each theoretical variogram I calculated the standard error and the Gaussian model
gave the minimum standard error for most months and thus was selected for
kriging purpose.

The residuals calculated were then kriged to get values at the nodes of a 120x120
grid that exactly correspond to the CLM4.0 output resolution grid. Ordinary kriging
was used to calculate the interpolated value at every location as explained in section
1.4.2. The kriged output values of the residuals thus obtained are added to the fitted
plane values at each node to get groundwater level values (Figure 3.2c). The ground
water levels are subtracted from the topographic height at the location obtained
from USGS DEM dataset to calculate the groundwater depth at the respective nodes.

Groundwater depth is calculated at every grid cell location in the test region; in this
case in a 120x120 grid matrix. We know by previous studies that groundwater in
the mountainous region is very deep and cannot be modeled by CLM4.0 hydrology
also there are no observational groundwater stations in the mountains thus the
water table in mountainous regions is capped at 50 meters depth, as we must
specify water table depth values for all points Figure 3.2(d).
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Scatter plot of residuals for Mar-2003 (feet)
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Figure 3.2: Kriging plots for March-2003 (a) Residuals at groundwater
measurement well locations. (b) Experimental and theoretically fitted spherical
variogram for the corresponding data. (c) Groundwater level from mean sea
level calculated by ordinary kriging (OK). (d) Water table depth as calculated by
the kriging method and DEM dataset, the maximum water table depth is

assumed to be 50 meters.

3.2.4.2 DART- Data Assimilation Research Testbed

The Data Assimilation Research Testbed (DART) is a community facility for
ensemble data assimilation. It has been developed and is maintained by the Data
Assimilation Research Section (DAReS) at the National Center for Atmospheric
Research (NCAR). In our study a 40-member CLM4.0, the land surface part of CESM
multi instance version of CESM, is used for data assimilation. DART+CLM is set up in
such a way that no changes are necessary in the CLM4.0 code itself. CLM4.0 stops
and writes restart and history files at the end of the run, these files are used to
extract the DART state vectors. Using the kriged observation data provided,
increments are calculated and applied to the DART state vector. CLM4.0 restart files
are updated with the new adjusted DART state vectors and these restart files are
used by the post run script to start the new runs. The initial 40-member CLM4.0
ensemble of initialization data is created after a 21-year spin up run. The data is
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forced using an 80 member atmospheric forcing dataset created from CAM runs and
data assimilation by NCAR.

3.2.4.3 Assimilation methodology

Assimilation is carried out using two separate methodologies. First is the direct
insertion of kriged groundwater data into restart files at the start of each month.
The second method is an ensemble based methodology devised by DART that uses
an Ensemble Adjusted Kalman Filter (EAKF) for data assimilation [Anderson, 2001].

Observation water table data (ZWT)
calculated, quality controlled and
kriged. Aquifer water content WA

and WT calculated from observation

IWT

Initial state from Another

yes

spinup or restart file Monthly
from previous run Cycle?
A
,l,No
| Output |
v
Diagnostics and v
Analysis
Run CLM for one Replace ZWT, WA and
month, initialized using [€ WT value in restart file
assimilated restart files based on observation

Figure 3.3: Schematic Diagram showing the direct insertion based assimilation
methodology.

The processed groundwater data from DWR is kriged to calculate water table depth
(ZWT_r) at each grid location by the method as described in the section 2.4.1.

Direct insertion is one of the earliest and most simplistic approaches to data
assimilation in which the forecast model states are directly replaced with the
observations (Figure 3.3). This approach makes the explicit assumption that the
model is wrong and that the observations are right, which both disregards
important information provided by the model and preserves observation errors. A
key disadvantage of this approach is that model physics are solely relied upon to
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propagate the information to unobserved parts of the system [Houser et al., 1998;
Walker and Houser, 2001; Walker and Houser, 2005]

For the direct insertion methodology, if the calculated water table depth (ZWT_r) is
in the hydrologically active or inactive soil regions (Figure 1.1), then aquifer water
content variables W,_r and W¢_r are calculated for each grid location [Oleson et al.,
2010b]. The assimilation methodology used here is based on the principle of
minimum change in the native CLM4.0 code, so we assimilate the kriged data by
replacing the variables only in the restart files. The initial restart file is created after
the spin-up run and subsequent restart files are created at the end of every month.
The variables water table depth (ZWT), aquifer water content (W.) and total
groundwater content (W) in the restart file are replaced by the kriged/calculated
variables; ZWT_r, W._r and W¢r. The assimilated restart file is then used as an
initialization file for the subsequent offline CLM4.0 simulation.
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Figure 3.4: Schematic Diagram showing the DART+CLM assimilation
methodology setup.

In DART+CLM assimilation methodology (Figure 3.4; modified from figure in
chapter 1) observation sequence files are created using the kriged water table depth
at the first day of every month. The kriging variance is calculated at each location
and used to calculate the measurement error at each grid point. DART+CLM runs for
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a month then assimilates the observation data provided for the month using the
DART algorithm. The restart files are automatically updated and used to initialize
the run for next month. The assimilation uses an Ensemble Kalman Filter to update
the restart files with the new observation values. The exact methodology is shown in
Figure 3.4 and more information about DART has been provided in chapter 1.

The spatial resolution of the observation groundwater data is not enough to give us
a meaningful assimilation result at high resolution; therefore ordinary kriging is
used to interpolate water table depth values at the start of each month at every grid
point location. Kriging has been previously used successfully to predict water table
depth at a coarser spatial and temporal scales [Godin, 2012; V Kumar and Remadevi,
2006]. Here kriging is used to provide the data at the spatial and temporal
resolution we need for the assimilation, but kriging alone cannot give us outputs at
the temporal scale we require, nor does it let us compare the effect of assimilation
on other model parameters. Various assimilation methodologies can be used after
kriging, such as the Ensemble Kalman smoother [Zaitchik et al., 2008], Ensemble
Kalman filter [Reichle et al., 2009], or unscented Kalman filter [Tian, 2008]. Here
DART uses the Ensemble Adjusted Kalman Filter (EAKF) which has been shown to
give better results than the traditional Ensemble Kalman Filter [Anderson, 2001].

3.3 Results

The CLM4.0 is run offline without assimilation, with assimilation using direct
insertion methodology and with assimilation using DART based EAKF from 1 April
2003 to 30 March 2004 at a 30 arc-second (~1km) resolution. The outputs are
archived at a daily time step. The water table depth outputs are plotted and
compared with each other and with observation data for all the runs. We performed
evaluations to determine the best method for groundwater assimilation and also
analyzed the effect of assimilation on other water and energy budget terms in the
model, including runoff, soil moisture, ground evaporation and sensible heat.

The equations used to calculate the correlation coefficient (r); RMSE, skill and bias
are described as:

L_cov,y,) (3.1)
OXOY

1 n
~ Y, -
RMSE= "7 (3.2)
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RMSE
. 1 n
Bias = _E(Ye -Y) (3.4)
n 1

where Y. is the model estimate, Y, is the observation and n is the number of
observations. RMSE, and RMSE, are root-mean square errors for the model with
assimilation and model without assimilation, respectively

3.3.1 Assimilation using EAKF based DART

The Ensemble Kalman Filter based assimilation method fails to give good results. It
ignores most of the observation data, as there is a huge difference between the
ensemble of model calculated water table depth and the observed water table depth.
The ensemble spread also remains very small and significantly different from the
observation values. We tried to increase initial ensemble spread by using a longer
spin-up time, but the spread stabilizes after 15 years and does not change much
after that. This difference between model calculated water table depth and
observation values can be attributed to the fact that the CLM4.0 groundwater model
assumes a uniform 3.8m depth aquifer throughout the whole region and calculates
water table depth with this assumption. The water table depth calculated has a bias
towards being shallow throughout the whole region year round. The observations
on the other hand are spread across the region where the water table not only
significantly varies through out the region, but also during different seasons. This
causes the posterior to not vary much from the prior and the ensemble spread
remains very small throughout the run. We did, however, see a noticeable increase
in the spread during wet winter months, as the water table rises and the model state
agrees more with the observation values. This can be seen in Figure 3.5, where the
spread of the prior and the posterior at the start of each assimilation cycle are
shown.

Figure 3.6 shows the innovation (Posterior - Prior values) plots at the start of each
assimilation cycle. It clearly shows that assimilation does not have much impact on
the posterior except for some places in the wet winter months when the water table
depth rises and the model state and the observation values are more in agreement.
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Figure 3.5: Ensemble spread of forecast (prior) and analysis (posterior) ensembles.

Innovation plots for all the month across the whole region
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each months assimilation cycle
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Figure 3.7 shows the comparison of model outputs to observations at three different
well locations with different water table (WT) profiles, deep (WT>10m), medium
(3m<WT<10m) and shallow (WT<5m). Model outputs from the two different
assimilation runs and a control run without any assimilation is compared to
observation data from the continuous observations datasets obtained at these sites.
The plots clearly show that the assimilation using EAKF is not having much impact
on the output water table depth values and the output plot in those cases clearly
looks very similar to the output from the run without assimilation. It also shows that
assimilation using EAKF does not give us good output when compared with the
observed water table depths at these sites. For other hydrologic fluxes too here is
not much impact to be seen due to the assimilation process.
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Figure 3.7: Comparison of water table depth for three well sites. (a) Deep water
table profile (WT >10m) (39.5792N-121.697E) (b) Medium water table profile
(3m<WT<10m) (39.5446N-121.6857E) (b) Shallow water table profile (WT <5m)
(39.583 N-121.754E)

3.3.2 Assimilation using direct insertion method

The direct insertion assimilation method gives us much better results. The water
table depth values at the start of every month are updated to be that of the values
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obtained after ordinary kriging. The daily outputs then are compared with the
observation values to check the effectiveness of the assimilation method.

3.3.2.1 Water Table depth

The SFREC test region has distinct topography that is reflected in the output water
table depth. The upper right portion of the region is the Sierra Nevada Mountains,
which is assumed to have little or very deep groundwater and is reflected by a water
table depth in the region of more than 25 meters (figure 3.8). We can also see the
Sutter Buttes at 39.2N121.8W, which is a volcanic rock formation abruptly rising to
more than 600 meters, and is also called the “world’s smallest mountain range”.

Mean Water Table depth plots for all the month across the whole region Metgrs

Apr-2003 May-2003 Jun-2003 Jul-2003

40 40

-121.8121.6121.4-121.2 -121

121.8121.6121.4-121.2 -121 -121.8121.6121.4-121.2 -121

Aug-2008 Sep-2003 Oct-2003 Nov-2003

7 8
-~ < - 5
-121.8121.6121.4-121.2 -121 -121.8121.6121.4-121.2 -121 -121.8121.6121.4-121.2 -121

Dec-2003 Jan-2004 Mar-2004

Latitude (°North)

-121.8121.6121.4-121.2 121 -12 g121 612 41212 121 121.8121.6121.4-121.2 -121

-121.8121.6121.4-121.2 121

>

Longitude (°East) >

Figure 3.8: Mean monthly plots of water table depth below the surface in meters
across the SFREC test region for the period April 2003 through March 2004. Sutter
Buttes is seen as the quasi-circular shape in red (>25m depth).

The plots in Figure 3.8 reflect the seasonal variations of groundwater as we move
from the rainy winter season to the dry summer season. As expected the lowest
water table depths in this domain are in the foothill where the water table meets the
surface at many places and where wetlands are formed. There are also significant
numbers of observed wetlands in this region. The lower left corner of the plots show
an anomalously large water table depth, which is an error due to lack of data in that
region during a few months (especially August 2003 and November 2003). Overall
the plots look good and further analysis and comparisons with observed values in
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later sections prove that the assimilation is quite successful in giving us a good
approximation of water table depth in CLM4.0 throughout the region across all
seasons.

Figure 3.9 shows a time series of mean-area water table comparison for CLM4.0
with assimilation, CLM4.0 without assimilation, and observation data from 1 April
2003 to 30 March 2004. The mean-area water table observations are based on all
data available for each day and the corresponding values in the models at respective
measurement sites. The assimilated model follows the observation data much more
closely while the model without assimilation almost always remains at a shallow
level. The linear Pearson correlation coefficient of the observation data is 0.81 with
the assimilated model and 0.1065 with the non-assimilated model. The RMSE of the
observation data with the model with assimilation is 3.1613 while the RMSE for the
model without assimilation is 8.2755 (Table 3.1). The results clearly show the vast
difference between the observation and model values with assimilation and without
assimilation, especially at locations where the water table is deep.
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Figure 3.9: Comparison of model mean-area Water Table depth with observation
well data from DWR. Mean of all available observation well data and corresponding
grid cells in models for a particular day is taken for comparison.

Figure 3.10 shows plots comparing individual continuous well data with model
water table depth (WT) data at three locations (a) Deep water table profile
(WT>10m) 39.579 N-121.697 E, (b) Medium water table profile (3m<WT<10m)
39.544 N-121.687 E, and (c) Shallow water table profile (WT <5m) 39.583 N-
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121.754 E, with the corresponding grid cell for CLM4.0 with and without
assimilation from 1st April 2003 to 30th March 2004. The well site locations are all
near the center of the test region and these observations are not used in the kriging
interpolation scheme. CLM4.0 with assimilation shows an excellent correlation with
the observation data and captures the monthly variations much better than CLM4.0
without assimilation. The water table depth in CLM4.0 without assimilation stays
quite constant at a shallow water table depth. This comparison has the limitation
that the model results each represent a 1km? grid cell, while the observation well
represents a much smaller spatial footprint. The observation dataset is sometimes
intermittently unavailable as in Figure 3.10(c), where it is not available after August
2003. The assimilated model also captures the annual trend very well at all three
sites.
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Figure 3.10: Comparison of water table depth for three well sites with continuous
data. . (a) Deep water table profile (WT >10m) (39.5792 N-121.697E) (b) Medium
water table profile (3m<WT<10m) (39.5446 N-121.687 E) (c) Shallow water table
profile (WT<5m) (39.583 N-121.754 E)
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Table 3.1: Evaluation of water table depth estimates from model with and without

assimilation:
Plots Obs-CLM4 (assimilated) Obs-CLM4
RMSE RMSE Skill
mean-area (Figure 3.8) 0.8304 3.4641 0.76
well-to-grid at 39.544 N -121.687 E 1.0886 1.6427 0.34
well-to-grid at 39.579 N-121.697 E 1.3550 8.1450 0.83
well-to-grid at 39.583 N-121.754 E 0.8035 0.6472 -0.24

Table 3.2: Evaluation of soil moisture, sensible heat
estimates from model with and without assimilation:

and ground evaporation

Variables Obs-CLM4 (assimilated) | Obs-CLM4
RMSE RMSE Skill
Soil Moisture; 0-10cm 0.0237 0.0251 0.06
Soil Moisture; 0-100cm 0.0356 0.0424 0.16
Soil Moisture; 0-200cm 0.0307 0.0391 0.22
Sensible Heat; W/m? 13.1613 17.4382 0.25
Ground Evaporation; W/m? 3.2348 3.7226 0.13

When the water table depth is shallow; i.e. between 2 - 5 m (Figure 3.10c), then
water table depth calculated through CLM4.0 without assimilation gives good
results with high correlation and low RMSE with the observation data. Sites where
the water table depth is below 5 meters the water table depth calculated by CLM4.0
without assimilation misses the trend as can see from the plot in Figure 3.10b, and
the RMSE values are much higher. Table 3.1 shows the RMSE values at these three
different locations and also over the entire domain, highlighting the improvements
in results from CLM4.0 with assimilation compared to normal offline CLM4.0 runs.

3.3.2.2 Soil moisture

In addition to the evaluation of groundwater level variation with and without
assimilation, we provide an analysis of other terrestrial water and energy budget
fields such as soil moisture content, sensible heat, ground evaporation, runoff and
infiltration. The effect of assimilation of water table depth values on other model
variables and fluxes needs to be assessed to fully understand the impact of direct
insertion based assimilation technique on CLM4.0 simulation outputs.
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Figure 3.11: Difference in soil moisture content (mm3/mm3) between model with
assimilation and model without assimilation for (a) the root zone top 8 layers of soil
(0-100 cm) during summer (b) during winter and for surface soil moisture, top layer
(0-1.7cm) (c) during summer (d) during winter.

Differences in soil moisture content across the whole region is calculated and
compared for the root zone soil moisture, top 8 layers in CLM4.0 (0-100 cm), top
200 cm of soil layer and for the surface layer (0-1.7cm). Table 3.2 shows the RMSE
values between the two models for these three regions, indicating a significant
reduction in RMSE of CLM4.0 with assimilation compared to CLM4.0 without
assimilation for all three soil regions. There is also a detectable effect of the
assimilation on soil moisture across the whole region as seen in Figure 3.11. During
the June-August (JJA) summer months, soil moisture content in CLM4.0 is reduced
due to assimilation for both the surface and the root zone layers throughout the
region (Figure 3.11 a,c). This effect can be attributed to the fact that CLM4.0 without
assimilation has a very uniform shallow water table across the region, but in CLM4.0
with assimilation the water table depth becomes more variable and is in general
deeper during summer months. This affects the root zone moisture and surface
moisture [Lo and Famiglietti, 2010]. The effect in winter months is much weaker,
since the water table is shallower during the wet winter season (Figure 3.11 b, d).
CLM4.0 with assimilation and without assimilation have similar water table depth
profiles in this study domain during wet seasons, thus the soil moisture values are
also similar and the difference is quite small. The effect of groundwater on soil
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moisture in a particular soil layer decreases, as the distance between that layer and
water table increases, therefore the difference in the root zone soil moisture is
greater than the surface soil moisture.

Surface soil moisture and root zone soil moisture are very important parameters in
LSM’s and affect the surface energy budget terms, evapotranspiration, boundary
layer development, plant water usage and recycled precipitation. Even though the
maximum value of soil moisture difference is in the range of around 5% in summers
it can have significant impacts, as similar small changes in surface soil moisture
have been known to affect these variables quite significantly [Lo and Famiglietti,
2011].

3.3.2.3 Sensible heat and Ground evaporation

The effect of groundwater assimilation on sensible heat and ground evaporation are
compared for dry summer (JJA) and wet December-February (DJF) winter months
in Figure 3.12. Table 3.2 calculates the RMSE values between the two models over
the region, which shows significant reduction in RMSE in CLM4.0 with assimilation
compared to CLM4.0 without assimilation. The differences between the sensible
heat values in CLM4.0 with and without the assimilation, especially during the
summer months can be explained by the fact that the water table depth in the
assimilated model is lower in summer months, which reduces the surface soil
moisture content during these months, causing the sensible heat to increase and
ground evaporation to decrease across the whole region (Figure 3.12 a, b). The
effect is negligible during winter months, as the water table depth is shallow and
surface soil moisture difference is quite small this time of the year between the two
models (Figure 3.11). Similarly ground evaporation decreases in summer due to
less water in the soil and does not show any significant change in winters when the
soil water content does not significantly differ between the two models (Figure 3.12
c, d).
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Figure 3.12: Difference in Sensible heat (W/m?) (a) During summer and (b) During
winter and Ground evaporation (W/m?) (c) During summer, and (d) During winter
across the SFREC test region.

The effect on soil moisture content, sensible heat, and ground evaporation can be
explained as a result of a more accurate water table depth in the assimilated model
and indicates better model results for these variables as well. The changes on these
variables may seem small at around 5% for soil water content and 25 W/m? in
sensible heat values, they can have big impacts on the boundary layer development
and other variables within a coupled model [Lo and Famiglietti, 2011].

3.3.2.4 Surface Runoff and Infiltration

The groundwater assimilation also highlights CLM4.0 parameterization problems
associated with surface runoff and infiltration in regions with deep or no
groundwater (Figure 3.13). The problem highlighted is that of surface water
division between runoff and infiltration. A key concept underlying this approach in
CLM4.0 is the fractional saturated/impermeable area fsa, which is determined by
the topography, water table depth, and soil moisture content of a grid cell [Niu et al.,
2005; Oleson et al., 2010b; Oleson et al, 2008]. Grid cells where the water table
depth is very deep or with no groundwater, such as the Sierra Mountains within the
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test region, CLM4.0 computes very low fs values and reduces the runoff to
unrealistically low values. This anomaly only affects the division between runoff and
infiltration and the sum of both remains constant in both the assimilated and non-
assimilated versions of CLM4.0. It is our view that this is a model-specific problem in
CLM4.0 for areas with a very deep water table. The lack of a routing scheme in this
offline version additionally limits these values and our ability to compare the
outputs with observation data.
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Figure 3.13: CLM4-simulated surface runoff (mm/yr) with and without assimilation
(a, b); Infiltration (mm/yr) with and without assimilation (¢, d); Fractional
Saturated area with and without assimilation (e, f)

3.4 Discussion
Current LSMs lack appropriate groundwater dynamics for high-resolution (1km and
higher) simulations. Here we have shown that groundwater dynamics, process

descriptions, and parameterizations within CLM4.0 can be improved through the
assimilation of groundwater observations. CLM4.0 groundwater dynamics improves
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remarkably with such assimilation in the study domain that includes the eastern
part of the northern California Central Valley and the Sierra Nevada foothills region.

In this study we assimilate sparse groundwater measurement data into CLM4.0
using a kriging-based interpolation technique. Kriging is necessary to generate
assimilation data at higher spatial density so as to have a significant impact on the
model outputs. Two different assimilation techniques are used, direct insertion and
an Ensemble Kalman Filter (EnKF) based method. Though the EnKF has been widely
used in the past for assimilation purposes, in this case it fails to give better results as
this method relies on the prior model state to calculate the posterior values. In this
experiment the CLM4.0 model states are significantly different from the observation
due to inherent biases and parameterization in CLM4.0 and also the ensemble
spread of the model remains small, thus rejecting most of the observation values
that are significantly different from the model values.

The direct insertion method performs much better and the results indicate
increased accuracy in simulated groundwater variations across the study region
throughout the year. The assimilation of groundwater data in CLM4.0 does not lead
to any major breakdown of model results or model parameterization. Assimilation
leads to some minor changes in variables such as the soil moisture, ground
evaporation and sensible heat values that can be explained to be due to improved
groundwater modeling and its impact on these variables. The direct insertion
assimilation technique gives good results, however at the start of each monthly
update there is a discontinuous jump between the kriged and assimilated value at
each location. This jump is due to the fact that we are trying to assimilate the kriged
water table depth in the model at a monthly time step and we don’t want to use any
statistical smoothing technique at this stage, as it will interfere with our study to
isolate the effect of this assimilation technique.

CLM4.0 without assimilation performs quite well in regions with shallow water
table depth or in seasons when the water table is higher (late winter, spring in this
region). This may be because CLM4.0 solves Richard’s equation only in the top 10
soil layers, that is, up to 3.8 m depth, while the lower 5 layers just act as thermal
slabs. The other reason may be due to the water table depth calculation
methodology in CLM4.0 and its parameterization, which is suitable for large-scale
(~100km), but not hill-slope or even 1km resolution. The improvements in water
table depth modeling by assimilation and these results highlight scale-dependent
breakdowns within the CLM4.0 hydrology scheme that needs to be changed for
improved high-resolution modeling.

The results discussed above indicate that this assimilation technique can be used in
regional-scale high-resolution groundwater modeling for areas with very sparse
monitoring stations. This can help improve our groundwater monitoring abilities
and studies of the impact of human induced or natural changes on groundwater
availability. However, at present, this methodology is somewhat limited due to
biases and parameterizations within LSMs, including CLM4.0. This has been
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demonstrated here through the calculation of surface runoff, infiltration and
fractional saturated area values. Even though calculation of the fractional saturated
area is improved with the assimilation scheme, its impact on surface runoff remains
incorrect, especially in mountainous regions with very deep groundwater. This
parameterization, to calculate surface runoff using groundwater depth values, may
well be correct for global climate model scale applications, but will require a more
comprehensive scale-dependent type of parameterization for regional applications
at higher resolution. These biases also restrict the use of the more accepted
Ensemble Kalman Filter based assimilation techniques. Correct representation of
surface flow in hyper-resolution hydrologic models will also require much better
representation of the subsurface. The importance of subsurface and surface water
dynamics for land surface and land atmosphere exchanges has been addressed in
various studies [Bierkens and Van den Hurk, 2007]. These studies suggest that there
exists a strong linkage between the mass, energy, and momentum balances of the
subsurface and the land surface, which require integration of two different
paradigms.

The assimilation of the interpolated data into CLM4.0 is at a preliminary stage and
the application of this technique combined with our use of kriging to interpolate
water table observation data in sparsely measured regions requires further
evaluation and is the basis of our ongoing research. Nonetheless, these results are
very encouraging and will potentially help to usher in a new era and methodology of
groundwater assimilation into LSMs.

3.5 Conclusion

The failure of CLM+DART is because of insufficient ensemble spread, which can be
changed by making sure that the initial ensemble spread in the initialization files is
sufficiently large. In this study we tried to do that by increasing the spin-up time but
were unsuccessful. The reason was that for creating ensembles we were perturbing
the atmospheric forcing, but the impact due to that on the water table depth
variation was minimal. We have developed a new method where we use
mathematical functions to create artificial spread in the water table depth at the
start of the assimilation process. This initial perturbation of the water table depth
ensures a large ensemble spread in water table depth in line with the observation
data. Using this approach we believe we can now improve assimilation using the
CLM+DART technique.

Application of this kriging-based interpolation and assimilation scheme into CLM4.0
can be expanded to other LSMs and other regions with minimal observation
networks. This method may be more useful in areas with significant groundwater
dependence and with inadequate recharge. 1 have been trying to develop this
methodology with other observational techniques, including the Gravity Recovery
and Climate Experiments (GRACE) and GPS, to further improve global groundwater
monitoring capabilities. We can create GRACE water table variation data at 1km
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resolution using specific yield data at that resolution for assimilation purpose
[Scanlon et al, 2012]. The new CLM4.5 model also has a much better developed
specific yield parameterization to calculate water table depth and this should
further improve the assimilation results.

As an application of these studies, I'm currently collaborating with a private
company interested in groundwater monitoring by implementing the groundwater
assimilation methodology to give water table depth information in space and time.
The implementation of this technique on ground and the collaboration has been
explained in the next chapter of this dissertation and is a manuscript under
preparation.
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Chapter 4: Application of Groundwater assimilation at
high resolution over Paso Robles region, California

4.1 Introduction

Groundwater is a very important resource, especially for more than 2.5 billion
people worldwide that completely depend on it for their drinking water needs. In
the United States about 23 percent of the freshwater used in 2005 came from
groundwater sources. Groundwater accounts for 98% of rural domestic supplies,
35% of public supplies and 42% of irrigation supplies in the United States. It is
especially important in those parts of the country that don't have ample surface-
water sources, such as the arid Western part of the country, including the California
Central Valley and Mid-Western agricultural belt. It often takes more work and cost
to access groundwater as opposed to surface water, but where there is little water
on the land surface, groundwater can supply the water resource needs of people,
animals, and agro-ecosystems. For 2005, most of the U.S. fresh groundwater
withdrawals, 68 percent, were for irrigation, while another 19 percent was used for
public-supply purposes, mainly to supply drinking water to the population.
Groundwater is also crucial for people who supply their own water (domestic use),
as over 98 percent of self-supplied domestic water withdrawals are from
groundwater. The importance of groundwater increases even more during times of
drought when surface water is not abundantly available, thus groundwater acts as a
resource bank for water in times of need. Groundwater is being used unsustainably
in most parts of the world and globally we are withdrawing 3.5 times more water
than sustainable [Gleeson et al., 2012]. The situation is especially alarming in places
such as northwestern India [Rodell et al, 2009] and the California Central Valley
[Famiglietti et al., 2011; Steward et al., 2013]. The use of groundwater is rapidly
growing with increasing population density and the respective increasing pace of
consumption.

There is a recognized need to better assess, model and manage groundwater
supplies to improve groundwater monitoring and prediction so that this precious
resource can be scientifically managed. Presently there are no comprehensive
national or global groundwater level networks in existence with uniform coverage
of major aquifers, climate zones and land use types [Hutson, 2004; Shah et al., 2001].
Even in California, the largest user of groundwater in the country, there is a severe
lack of groundwater monitoring resources at sufficient spatial density. The USGS
and DWR in California have several groundwater measurement sites but most of
these wells do not take measurements continuously nor are they monitored
regularly, on top of that the funding for such monitoring stations has actually been
decreasing since the early 1990s. Groundwater modeling is also very challenging as
even the most sophisticated models struggle with partially known subsurface
features, errors in input forcing data and imperfect parameterizations in models.
The groundwater models frequently have considerable drift in their outputs, are
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poorly integrated with larger land surface processes and are ill suited for modeling
groundwater at large continental scales. There is also a huge demand from people
to know groundwater within their properties for past, present and future time
periods. Groundwater also affects property values for many homeowners, farmers
and communities.

There is a recognized need to know groundwater at sufficient spatial and temporal
resolution. This can only be achieved through high resolution modeling outputs, but
current Land Surface Models (LSMs) lack appropriate groundwater dynamics for
high-resolution (1 km and higher) simulations. These problems can be overcome by
using data assimilation to guide the high-resolution models towards more correct
solutions. The sparse water table measurement values can be interpolated by
kriging to obtain a high-resolution spatial map of water table depth in the region at
certain times. These calculated spatial values can be inserted/assimilated into the
model to improve spatio-temporal predictability. We have developed a methodology
for assimilating observed groundwater depth measurements from multiple wells
into a high spatial resolution LSM as explained in chapter 3. This assimilation
technique has been designed to be useful in places with sparse observation data,
with different types of observation data and it can be easily adapted to work with
any LSM’s that have a functional groundwater component. We have discussed this
method in detail and discussed results in chapters 2 and 3 above [Singh et al., 2014a;
Singh et al.,, 2014b]. Our methodology is ripe to help communities in groundwater
banking and management in a scientific manner and our aim has been to use the
techniques developed to benefit people by bringing it into the market for greater
social impact.

4.2 Wellintel collaboration

We believe that the best way to help people with our groundwater modeling
methodology would be to collaborate with companies and institutions that are
already working on this problem and need such modeling services. Wellintel as a
company is dedicated to offer solutions for an average user to monitor and learn
about the groundwater levels on their properties. While their aim has been to
provide an inexpensive and easy to use method for groundwater monitoring, it fits
perfectly into our methodology of using observation data for assimilation to provide
high-resolution spatio-temporal groundwater modeling results. Wellintel also saw
the need to expand their service to their users and thus we both agreed to
collaborate to develop this modeling technique under the UC Berkeley Industrial
Alliance Program.

4.2.1 Wellintel

Wellntel is a water technology company that has developed a continuous, cloud-
based groundwater level monitoring system designed to provide useful information
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to groundwater stakeholders including private well owners like homeowners and
farmers, and optionally, to scientists, financiers, insurers, regulators and businesses.

The Wellntel system consists of an inexpensive but accurate permanent sensor that
measures and logs static groundwater level, pumping drawdown, recovery rates
over time and saves the information securely and privately in the cloud, where users
login, see and share their data, set alerts to prevent expensive failures, and can also
view their groundwater information combined with other related data, like rainfall
or soil moisture. While designed to be sold at a consumer price-point and installable
using common tools, the Wellntel sensor uses a sophisticated temperature-
compensated, sonar-based technology and a novel algorithm that is not confused by
in-well obstruction or noise from pumping or water, and calibrates on-the-fly. It is
battery powered, environmentally robust, and communicates wirelessly via a
gateway or cell phone to the Internet. By treating virtually any borehole well as a
groundwater level testing station and using supplemental geologic and
environmental data, Wellntel data supports precise regional groundwater models
and statistics that have been previously impossible, due to a lack of continuous
measurements. Wellintel aims to make groundwater visible and sustainable with it’s
water level sensors providing unique water table depth time series data that will
expand rapidly to include tens and thousands of location to become the largest such
database in the United States.

Figure 4.1: Schematic of a Wellintel data sensor (left panel) and schematic of the
data display and well location (right panel)

Wellntel sensor owners are usually private well owners who themselves use the

information to lower risk, prevent emergencies, reduce service costs and surprises.
They also face the risk of damaging their wells if they pump dry, Wellintel solves
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that issue by giving them capacity to constantly monitor water table depth at the
well site location. This can save thousands of dollars in well repair or replacement
also as budding local groundwater experts; they often share what they know with
science or local groundwater experts to strengthen groundwater management
methods and policies. Eventually with multiple smart wells in a region, Wellintel
will have a high quality, continuous water table depth dataset which can help drive a
lot of innovation in groundwater modeling and management.

4.2.2 Synergy between the Hydroclimate Group at UCB and Wellintel

The Hydroclimate Group at UC Berkeley has expertise in regional-to-site scale
hydrometeorology and groundwater modeling and data assimilation [Maxwell and
Miller, 2005; Miller and Kim, 1996]. We have developed high-resolution dynamically
coupled surface water-groundwater models [Maxwell and Miller, 2005; Pan et al.,
2008; Singh et al, 2014b] and techniques for assimilating water table depth
observations into groundwater models [Singh et al., 2014b] to reduce uncertainty
and improve historic and projected predictability. Wellintel has developed an
operational groundwater level sensor for real-time monitoring at rural sites and has
a business plan to install hundreds of thousands of low cost water table depth
sensors, which will provide continuous high quality data. By combining such time-
series data and our model-assimilation methods we can run models with
observation data assimilation that can give us very high quality land surface data
products, which can be used to create high resolution groundwater maps in past,
present and future. These data products advance Wellintel’s goals by providing their
users with unmatched information about groundwater in and around their
properties at various times. While we met Wellintel alongside a groundwater
conference an important opportunity to collaborate was realized and we partnered
with Wellintel to use their water table depth measurements for assimilation into our
high-resolution model to provide better assessment of groundwater levels at
various spatial resolution for both present and future times to the users.

4.3 Methods

Our goal is to assimilate sensor-based groundwater data into our surface-subsurface
terrestrial hydrology model to yield high-resolution spatio-temporal fields. The
water table depth can be modeled at high resolution in space and time for historic
and projected changes. Here we plan to run the National Center for Atmospheric
Research (NCAR) terrestrial hydrology model, the Community Land Model version
4.0 (CLM4.0) that we have advanced for data assimilation application [Singh et al.,
2014a; Singh et al., 2014b]. Using the North American Land Data Assimilation
System (NLDAS-2) atmospheric data [Mitchell et al., 2004b] as forcing, we generate
historic (2003-2006) simulations of groundwater variation with the assimilation of
Wellintel flow data. This task will quantify the improvement in groundwater
prediction through application of monitoring data. Simulations for this test study
will initially be at a 15-minute time step and 1 km length scale. This can be
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improved, but there remains a limit due to the length scale of available
characterization data.

4.3.1 Model description

The model used in this work for implementing hyper-resolution terrestrial
simulations is CLM4.0, the land component of the NCAR Community Earth System
Model, which has been discussed in detail previously in this dissertation. The move
to the more advanced CLM4.5 under CESM1.2 is under process and we are working
on getting the DART assimilation methodology setup with the new CESM model.

4.3.2 Study area

The study area presented here is a 1° x 1° area in central California coast that
extends from the western part of the northern California Central Valley (CCV) to the
central coast with coordinates -121.00E 35.00N x -120.00E 36.00N and is divided
into 100x100 grid cells, each 36 arc-second (~1km), for grid cell based simulations
using CLM4.0 (Figure 4.2). This study area contains the Paso Robles groundwater
basin that has been experiencing a severe groundwater shortage in recent times as
industrial scale agriculture has expanded in the region, which relies on groundwater
for their irrigation needs. There have also been a lot of new vineyard developments
in the region that have been blamed for much of the decline. Wellintel has a large
customer base in this area that are using their groundwater measurement devices to
monitor groundwater and are willing to share the data for scientific research
purposes. The area has its own challenges with large geographic variations from
coastal regions to hilly vineyards to parts of the Central Valley. The study region
covers the San Louis Obispo County and contains the Paso Robles groundwater
basin.
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(b) ()

Figure 4.2: (a) The CLM4.0 model test domain, (b) Fraction of saturated area, Fmax,
and (c) Percentage Sand data at 0.01-degree resolution.

4.3.3 Data

Similar to the previously discussed study in chapters 2 and 3, this project required
near-surface meteorological forcing data and surface datasets for running the model.
We also need groundwater observation data for the kriging-based interpolation
leading to assimilation. The high-resolution datasets were custom created by us and
the other datasets were obtained from sources explained below. In general, access
to datasets is one of the biggest limitations in running a proper high-resolution
model and creating such datasets was one of the biggest challenges we faced.

4.3.3.1 Model surface datasets

The input forcing data is very similar to datasets used in the previous chapters
though the data had to be created for the Paso Robles region at the resolution at
which we wanted to run the model. The topographic data for the model runs in this
study was generated at 1-km resolution using 1/3 arc-second (~10-m) resolution
data available from the National Elevation Dataset (NED) USGS using methods
described earlier in this. The high-resolution soil texture dataset was produced
using the STATSGO [Miller and White, 1998] dataset available at 1km resolution.
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Except for the topographic and soil texture data, which were calculated at 1km
resolution by the authors, all other surface and aerosol input data were provided by
the NCAR CESM forcing dataset library at 0.23° x 0.31° resolution . We also plan to
run the model at much higher reolutions of 100 meters and 30 meters, and we have
been creating datasets at these resolutions following the methods described earlier.

4.3.3.2 Model forcing datasets

Simulations at each resolution were forced with the 0.125° x .125° resolution for 01
Jan 1979 - present, with hourly atmospheric forcing data from the North American
Land Data Assimilation System (NLDAS-2) atmospheric data, [Mitchell et al., 2004b].
To achieve our goals for near real-time assimilation we are working on
incorporating the latest NLDAS-2 forcing data to create forcing for the CESM model.
The initialization files were created after spin up of the model from bare soil at each
resolution for 20 years to reach thermal and hydrologic equilibrium [Lo et al.,, 2008].

4.3.3.3 Groundwater data

Groundwater measurement data is obtained from datasets provided by Welllntel
through their groundwater sensor network. Additional Wellintel sensors are still
being installed and for now we are augmenting these observations with data from
the California Department of Water Resources (DWR) managed well sites and the
San Luis Obispo County Engineering Department managed well sites. The Wellintel
sensors are mainly located in farms and vineyards in the region where users are
eager to know the water table depth at their properties and around it.

In total there are more than a dozen Wellintel monitored well sites and over 300
well sites monitored by DWR and San Luis Obispo, but most of DWR and San Luis
Obispo County observations are decades old and very few wells have the data for
the months required for this study. We need at least a certain number of well
observations to apply an ordinary kriging methodology to interpolate water table
depth over the whole region and the results improve with more well observations in
the region. We also perform cross validation tests to make sure kriging is giving us
consistent results and compare it with observations on ground from multiple
sources as explained in earlier chapters. The observed data is used to perform
kriging for the start of every month, groundwater is temporally and spatially slowly
varying with time and this helps to justify this assumption [V Kumar and Remadevi,
2006]. A proper data quality check is maintained so that any biased data is not used
in the kriging process, first by filtering data on the basis of DWR listed codes for
different disruption like leakages or pumping and secondly by removing outlier
measurements. The well owners mostly use the US customary units and thus we
have done our calculation in feet.
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4.3.4 Data Assimilation

Data assimilation is a well-established technique used to improve model prediction,
and is widely used in weather forecasting. The groundwater observation data from
Wellintel and other sources is used for assimilation into the higher solution CLM4.0
model that should improve the model outputs as we have already established in
previous chapters that assimilation of water table depth data into a high-resolution
model significantly improves model predicted water table depth calculations. We
use the same methods for data assimilation as established in chapter 3 and follow a
very similar approach.

The sparse groundwater observation data are kriged using the methods described
in chapter 3 and is used to produce interpolated water table depth values at each
and every node (Figure 4.3) at the resolution at which we are running the model; 1
km for now but will change as we move forward with model data. As Wellintel is
expanding rapidly in the region with aims of hundreds of sensors in a few months
the kriged results should improve considerably in the future. The kriged data is
assimilated into the model using the direct insertion method for now to check for
consistency while we work on combining the latest version of CESM (with CLM 4.5)
with the NCAR Data Assimilation Research Testbed (DART) Ensemble Kalman Filter
system. Our goal is to set up an automated data assimilation system through which
Wellintel water level sensor data can be assimilated at near real-time to provide
continuous updating of water table depth variations over the domain.
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Figure 4.3: Kriging plots for March 20014 (a) Kriged residuals calculated over the
site (b) Kriged groundwater level calculated over the site. (c) The DEM over the test
region in feet. (d) Water table depth as calculated by the Kriging method and DEM
dataset.

4.4 Implementation and traction

We have already established that the high resolution model with groundwater
assimilation improves groundwater modeling (Chapter 3) [Singh et al., 2014a], the
challenge in Paso Robles has been to implement the methodology on ground and
refine it to work with Wellintel data at the resolution and time scale that is needed.

The first step has been to run the model over the area of interest and characterize
the water table depth calculated by the model. As we can see in Figure 4.4 the model
gives a shallow water table depth throughout the region as expected. This is mainly
due to the way groundwater is characterized in CLM4.0 and has been well explained
in chapter 2 and chapter 3. The mean water table depth at 1 km resolution (Figure
4.3) does capture some of the spatial heterogeneity and follows the topography to
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some extent but on the whole it is extremely shallow.

Mean water table depth over Paso Robles Region (meters)
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Figure 4.4: Mean water table depth (meters) over the Paso Robles region in time
and space from 2003 to 2006

The second step was to do kriging of the observation water table data in the region
as we can see in Figure 4.3. This kriged water table shows a much deeper water
table profile throughout the region, which is more consistent with the observations.
The Kriging output improves with the number of well locations and at present state
we are waiting to obtain data from more wells to get good observation-interpolated
data for assimilation.

These kriged observation values are then assimilated into the model to give us
better water table depth in the region across various temporal and spatial scales.
We want to use our improved CLM+DART assimilation methodology that will allow
automation in assimilation. The CLM+DART assimilation process is still under
construction and we are working with Wellintel to get this into production as soon
as possible.

The collaboration is at a stage where we have proven that our methods work at a
different location and initial implementation at client site locations. It is set to
continue and we aim to provide first information to the users in a couple of months,
and then provide an automated updating and data file transport procedure.

77



Chapter 4

4.5 Discussion

Our experience in land surface modeling in the region shows that the high-
resolution model with data assimilation will be very useful for the users. We are
still awaiting more datasets from the region to get better-interpolated observation
data that can be assimilated in CLM4.0. Our models are currently setup to predict
water table depth and the collaboration is going strong with a lot of learning on both
sides. Our group is very enthusiastic about our research being implemented on the
ground as a real-world application that directly benefits users at a large scale. We
are working to solve the issues of making the production of useful data quick, which
can then benefit the company and its users immensely.

There is a lot of work that needs to be done to make this research more beneficial to
the users community. We are planning to initiate monthly-to-seasonal groundwater
forecasting with our assimilated models in the region. Water table depth forecasting
will utilize the tested system with uncertainty analysis based on the historic
simulations. By conditioning model simulations with weather input we will forecast
water table depth. Our long experience in historic and projected regional
atmospheric and land surface-subsurface modeling using reanalysis data,
observations, and general circulation model data as initial and boundary conditions
will prove invaluable to this task [Kueppers et al., 2008; Kyriakidis et al., 2001; Miller
and Kim, 1996; Miller et al., 1999; Tseng et al, 2012]. Water table depth can be
predicted for the region for various climate change scenarios thus helping users
assess value and risk associated with their property. The models can be forced with
climate change scenario projections and the outputs obtained can help to
probabilistically inform users of future impacts on the groundwater availability in
and around their property. Meaningful statistics of groundwater change as a
function of weather variations and water withdrawal will be at the monthly-to-
seasonal time scale and will give users knowledge on projections of water table
changes that are coupled to weather variation and expected withdrawal rates.
Projected outputs of seasonal forecasts for water table depth will inform users
enabling them to better prepare for the incoming season.

We are also working to develop an easily accessible Graphical User Interface design
based on Geographic Information System (GIS) spatial maps of data generated by
the assimilation of Wellintel water level sensor data into CLM4.0. Maps will be
overlaid on a GIS platform and be made accessible to users via smart phones and the
web. The data in the servers used by the frontend viewing platform can be updated
continuously with the model outputs. The model outputs at a chosen timescale can
be overlaid over a map of the region using the GIS interface and users can view the
spatio-temporal water table depth variations via the web and smart phones. The
interface will be made intuitive such that changes in water table depth in and
around their property are easily viewed. We will incorporate statistical graphs and
charts to provide important information tailored to user needs.
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4.6 Conclusion

Our collaboration with Wellintel is still developing and additional needs to be done
and are learning about critical issues that users on the ground care about and which
datasets are most useful to them. We are working with Wellintel to develop specific
datasets in the time frame that is deemed most useful.

The collaboration has a promising future with our team gearing up to run the model
at even higher resolution with improved parameterizations and real-time
assimilation using the CLM+DART setup. We are also working towards a set of static
characterizations of the stratigraphy, soil, and urban infrastructure, as well as
dynamic characterizations for vegetation and any other time-varying variables.
Wellintel is all set to expand rapidly this year, thus providing the best water table
depth measurement datasets in the country at near real-time.
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Chapter 5: Conclusion and Recommendation

Modeling groundwater is challenging: groundwater is not a readily visible quantity
and is difficult to measure, with limited sets of observations available. Although
groundwater models can reproduce water table and head variations, partially
known geologic structure, errors in the input forcing fields, and imperfect LSM
parameterizations can lead to considerable drift in modeled land surface states. As a
result, these models frequently produce biased results that are very different from
observations. While many hydrologic groups are grappling with developing better
models, it is also possible to instead make the existing models more robust through
data assimilation of observed groundwater data. The goal of this research was to
develop a methodology for high-resolution LSM runs and to improve hydrologic
modeling through observation data assimilation, and then to apply the improved
model for groundwater monitoring and banking.

The high resolution CLM4.0 simulations in this dissertation show that the model
physics performs well at these resolutions, and leads to better modeling of water
and energy budget terms. The assimilation methodology answers the critical
question of how to improve groundwater modeling in LSMs that lack sufficient sub-
surface parameterizations, and also how to run these LSMs globally at hyper-
resolution scales.

5.1 Summary and Conclusion

My doctoral dissertation had three distinct research goals. The first was to run a
commonly used LSM at hyper resolution, showing that doing so did not break the
model and in fact improved modeling results. The second was to develop an
observation data assimilation methodology that improves the high-resolution model.
The third goal was to show the applicability of this approach as part of a real-world
need for a well-defined user community.

The need for improved accuracy drives the development of such hyper-resolution
LSMs, which can be implemented at continental scales with resolutions of 1 km or
finer. In Chapter 2 we reported our research incorporating fine-scale grid
resolutions and surface data into NCAR Community Land Model version 4.0 (CLM
v4.0) for simulations at 1 km, 25 km, and 100 km resolutions using 1 km soil and
topographic information. Multi-year model runs were performed over the
southwestern United States, including the entire state of California and the Colorado
River basin, with results demonstrating changes in the total amount of CLM-
modeled water storage and in the spatial and temporal distributions of water in
snow and soil reservoirs, as well as in surface fluxes and energy balance. We have
also demonstrated the critical scales at which important hydrological processes—
such as snow water equivalent, soil moisture content, and runoff—begin to more
accurately capture the magnitude of the land water balance for the entire domain.

80



Chapter 5

This proves that grid resolution is itself a critical component of accurate model
simulations, and of hydrologic budget closure.

We also compared simulation outputs to station and gridded observations of model
fields. Although the higher grid resolution model is not driven by high-resolution
forcing, grid resolution changes alone nonetheless yield a significant reduction in
differences between the model’s output and direct observations; the RMSE
decreases by more than 35%, 36%, 34%, and 12% for soil moisture, terrestrial
water storage anomaly, sensible heat, and snow water equivalent, respectively.
Additionally, we performed a 100 m resolution simulation over a spatial sub-
domain, the results of which indicate that parameters such as drainage, runoff, and
infiltration are significantly impacted when hillslope scales of ~100 m or finer are
considered. We also show how limitations of the current model physics, including
the absence of lateral flow between grid cells, can affect model simulation accuracy.

The results presented in Chapter 2 are encouraging, but also point to limitations in
improving an LSM only by increasing spatial resolution and surface datasets. As
shown in the water table depth analysis, increased model resolution alone cannot
compensate for errors in parameterization and for the lack of sub-surface
information in CLM4.0. This problem can be solved by providing additional
information to the model in the form of water table depth data assimilation.

In Chapter 3, I provided the development and verification of a methodology for
assimilating observed groundwater depth measurements from multiple wells into
the high spatial resolution LSM. A kriging-based interpolation technique overcomes
the problem of spatially and temporally sparse observations, and the interpolated
data is assimilated into CLM4.0 at 1 km resolution in a test region in northern
California. Direct insertion and EAKF-based techniques are used for assimilation,
with direct insertion producing better results and showing major improvement in
the simulation of water table depth. The Linear Pearson correlation coefficient
between the observed well data and the assimilated model is 0.810, but with the
non-assimilated model it is only 0.107. This improvement is most significant when
water table depth is greater than 5 m. Assimilation also improves soil moisture
content, especially in the dry season when the water table is at its lowest. Other
variables, including sensible heat flux, ground evaporation, infiltration, and runoff
are analyzed to quantify the effects of this new assimilation methodology. Though
the changes in these variables seem small, they can nonetheless be critical in
coupled models, and the improved simulation of groundwater in the assimilated
model can explain the change in results.

In chapter 4 I describe the industrial collaboration to implement our assimilation
technique for a domain along the central California coast. This assimilation
technique has been designed to be useful in regions with sparse and varied
observation data, and it can be easily adapted to work in other LSMs that have a
functional groundwater component. Using observation data from Wellintel Inc. we
have implemented this methodology and are bringing this forward as an operational
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procedure by setting up our model over a large region centered near Paso Robles
where the company has been running a pilot for its water table depth measuring
devices. Wellintel is set to expand rapidly this year, providing the best water table
depth measurement datasets in the country at near real-time. The aim of this
collaboration is to provide users with actionable water table depth data in and
around their properties for the recent past, present, and for future projections. This
methodology combined with Wellintel data is being developed into a groundwater-
management and groundwater-banking tool.

This is the first time that groundwater assimilation has been attempted in a high-
resolution LSM, and hence this project provides a unique methodology for applying
the benefits of a global LSM that can be run at hyper resolution with data
assimilation to improve its groundwater modeling. The whole setup offers a
powerful tool to researchers for modeling land surface parameters better than ever
before, as it is readily transferable to most any LSM.

5.2 Recommendations

Model outputs do not show much improvement as resolution increases from
~100 km to ~25 km because there is little difference in topographic information
between the resolutions; these scales are still too coarse. Most model parameters
begin to improve at 1 km resolution, but others, such as drainage, infiltration, and
runoff improve only as we reach 100 m or hill slope scale resolution. There is a
recognized need to increase resolution to at least hill slope scale—100 m resolution
or finer—with better representation of the sub-surface soil texture and stratigraphy.
The next step is to develop parameterizations at the required resolution and to
improve how variables such as water table depth are calculated in the CLM4.0
physics. Parameter calibration efforts will likely be fruitless (or at least much less
effective) if an appropriate model resolution is not achieved first.

To achieve the maximum impact in our work, we need to strengthen our
collaboration with partners such as Wellintel Inc. This collaboration has a promising
future, with our team gearing up to run the model at even higher resolution with
improved parameterizations and real-time assimilation using the CLM+DART setup.
We are also working toward a set of static characterizations of the stratigraphy, soil,
and urban infrastructure, as well as dynamic characterizations for vegetation and
other time-varying variables. The CLM+DART methodology needs to be improved,
as that might be the best method for data assimilation.
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Appendix A

Appendix A: Calculation of Topographic Index

Topographic/Wetness index (TI) is a very important parameter in CLM that helps
on calculating the maximum saturated fraction (fmax). fmax and its effect on
calculating the various land surface parameters is well explains in Chapter 1. TI is
the main way that the topographic information is relayed to the model in CLM.
Topographic Index used in this study has been calculated explicitly for each grid cell
at the resolution the model is run using the USGS 1/3 arc second (~10m) National
Elevation Dataset (NED, Data available from USGS) using the process described in
[Quinn et al., 1995; Wolock and McCabe, 2000]. TI is defined as:

TI=1n (A/tanf) (B.1)

where A is the upstream or contributing area per unit contour length, and f is the
grid cell topographic slope angle [Beven and Kirkby, 1979]. Tl is a function of both the
slope and the upstream contributing area per unit width orthogonal to the flow direction.
It is actually the inverse of the stream-power law and therefore relates to fluid flow and
deposition within the landscape. TI is less for steeper slopes and more for flat regions.

TI at 10m-resolution was not available even though DEM at that resolution has been
available for some time. To wuse high-resolution information [ calculated
Topographic Index at 10m-resolution using the method described in [Beven and
Kirkby, 1979; Quinn et al., 1995]. I used ArcGIS™ to create a model for calculating TI
from DEM data obtained from NED (Figure B1). Steps involved in calculation of
topographic index as in the model are following.

1. Filling DEM
The DEM data is analyzed and sink terms are filled.

2. Calculating slope

Slope of the terrain is calculated and converted into radians. B

3. Calculating flow direction

Flow direction is encoded as an angle in radians counter-clockwise from east
as a continuous (floating point) quantity between 0 and 2 pi. The flow
direction angle is determined as the direction of the steepest downward
slope on the eight triangular facets formed in a 3 x 3 grid cell window
centered on the grid cell of interest. (Figure B1)
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4. Calculating flow accumulation

Flow accumulation is computed in terms of the number of grid cells draining
into the grid cell of interest. The contribution at each grid cell is taken
initially as one. The contributing area of each grid cell is then taken as its own
contribution plus the contribution from upslope neighbors that have some
fraction draining to it. The flow from each cell either all drains to one
neighbor, if the angle falls along a cardinal (0, p/2, p, 3p/2) or diagonal (p/4,
3p/4, 5p/4, 7p/4) direction, or is on an angle falling between the direct angle
to two adjacent neighbor. ‘A’ is calculated

5. Calculating Topographic Index = In (A/tanf3)

~ 7
2 Tan —
P
Slope
) 1
. o orv v .m pp— .@
T 32 | 64 |128 fow I Plus (2) ——
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drop
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Figure B1: ArcGIS model for calculating Topographic Index from DEM obtained from
USGS-NED

The biggest challenge in calculating the TI was the size of the dataset involved in
calculations. The DEM dataset over all of SWUS at 10m-resolution was in many
gigabytes. Calculation with such large data in ArcGIS took many days to complete.
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The following figures show TI calculated at 10m-resolution over the area of interest
in this dissertation.

topindex

Value
- High : 30.6036

Low : -4.53731

Figure B2: Topographic Index at 10m resolution over the SWUS over which the
model was run at 1km resolution as discussed in Chapter 2
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Figure B3: Topographic Index calculated at 10m resolution (a) Topographic Index
over Northern California Central Valley, (b) Topographic Index at the region over
which the 100m resolution run was done in Chapter 2
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Figure B3: Topographic Index calculated at 10m resolution (a) Topographic Index
over Northern California Central Valley, (b) Topographic Index at the region over

which the 100m resolution run was done in Chapter 2
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Appendix B: Running CLM at 30m resolution

As we showed in Chapter 2, processes like infiltration and runoff are modeled much
better at 100 meters or sub 100m resolution. The goal of hyper resolution model is
to reach hillslope scale that might be <100m at certain regions. We tested our
model setup to run at 30m resolution by creating input files at that resolution. The
aim of this study was also to check if the model still performed similarly and the
feasibility of this resolution. The TI was calculated at 10m thus it provided fmax
values at 30m resolution, the soil texture data at this resolution is not available and
thus we used the 1km resolution data used earlier. All other input variables were at
same resolution as in Chapter 2 and 3.
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Figure B1: Maximum saturated fraction (fmax) data at the region over which the
100m resolution run was done in Chapter 2 (a) at 100m resolution (b) at 30m
resolution
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Figure B2: Fractional saturated/impermeable area (fsa:) data at the region over
which the 100m resolution run was done in Chapter 2 (a) at 100m resolution (b) at

30m resolution
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