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Abstract

Historically our understanding of the microscopic world has been impeded by limita-

tions in systems that behave classically. Even today, understanding simple problems

in quantum mechanics remains a difficult task both computationally and experi-

mentally. As a means of overcoming these classical limitations, the idea of using a

controllable quantum system to simulate a less controllable quantum system has been

proposed. This concept is known as quantum simulation and is the origin of the ideas

behind quantum computing.

In this thesis, experiments have been conducted that address the feasibility of using

devices with a circuit quantum electrodynamics (cQED) architecture as a quantum

simulator. In a cQED device, a superconducting qubit is capacitively coupled to a

superconducting resonator resulting in coherent quantum behavior of the qubit when

it interacts with photons inside the resonator. It has been shown theoretically that

by forming a lattice of cQED elements, different quantum phases of photons will

exist for different system parameters. In order to realize such a quantum simulator,

the necessary experimental foundation must first be developed. Here experimental

efforts were focused on addressing two primary issues: 1) designing and fabricating low

disorder lattices that are readily available to incorporate superconducting qubits, and

2) developing new measurement tools and techniques that can be used to characterize

large lattices, and probe the predicted quantum phases within the lattice.

Three experiments addressing these issues were performed. In the first experiment

a Kagome lattice of transmission line resonators was designed and fabricated, and a

comprehensive study on the effects of random disorder in the lattice demonstrated

that disorder was dependent on the resonator geometry. Subsequently a cryogenic

3-axis scanning stage was developed and the operation of the scanning stage was

demonstrated in the final two experiments. The first scanning experiment was con-

ducted on a 49 site Kagome lattice, where a sapphire defect was used to locally perturb
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each lattice site. This perturbative scanning probe microscopy provided a means to

measure the distribution of photon modes throughout the entire lattice. The second

scanning experiment was performed on a single transmission line resonator where a

transmon qubit was fabricated on a separate substrate, mounted to the tip of the

scanning stage and coupled to the resonator. Here the coupling strength of the qubit

to the resonator was mapped out demonstrating strong coupling over a wide scanning

range, thus indicating the potential for a scanning qubit to be used as a local quantum

probe.
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Chapter 1

Introduction

It is common in physics that theoretical proposals precede experimental observations.

Oftentimes the observed phenomena is the result of years of work and experimental

efforts. A popular example is the recent discovery of the Higgs boson at Cern. The

mass particle was predicted to exist by Peter Higgs in 1964 [44], then it took an

additional 48 years to develop the technology necessary to observe the existence of

the Higgs [19, 20]. Similar to the case of the Higgs Boson the work in this thesis

was motivated by theoretical proposals, and arduous experimental efforts are also

necessary to observe such phenomena. The calculations in these proposals provide

evidence of different quantum phases of light in an array of electromagnetic cavities,

where each cavity is coupled to a two-level quantum system. While no quantum

phase transitions were observed during the course of this thesis, a great deal has

been learned and the necessary framework has been laid for the success of future

experiments.

This chapter serves as an introduction to the ideas that have motivated the ex-

perimental efforts. To begin, section 1.1 provides an introduction to the concept of a

quantum simulator. Subsequently, section 1.2 presents highlighted discussions of the
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different platforms for realizing a quantum simulator, and why each of these platforms

is unique. Finally, in section 1.3 an over of the rest of the thesis will be presented.

1.1 Quantum Simulation

Figure 1.1: “Nature isn’t classical, dammit, and if you want to make a simulation
of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful
problem, because it doesn’t look so easy.” Richard Feynman, 1982 [30].

Quantum mechanics is a beautiful theory which is capable of describing the micro-

scopic world with incredible accuracy. The theories that formulate modern quantum

mechanics are a combined effort of many generations of physicists, all of which started

in 1900 with Max Planck’s ”act of desperation” [83]. As the result of so many great

minds it can be argued that the theory of quantum mechanics is one of mankind’s

greatest scientific developments. For example, many of the luxuries that exist to-

day are a direct result of developments in quantum mechanics, two notable examples

being the modern computer, and the laser. Regarding the computer, the advent of

quantum mechanics was crucial for the discovery of the device that single-handedly

revolutionized computers: the transistor.

Following the development of the transistor, digital computers were soon made

with the computational capacity large enough to significantly impact scientific
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progress, and yet despite tremendous advances of modern computers, these classical

devices are not well suited to tackle problems in quantum mechanics. This was

first brought to attention by Feynman, when he showed the difficulty of simulating

quantum systems with classical computers. He demonstrated that the computational

time of a classical computer for even the simplest states will scale exponentially

with the number of particles [30]. For example, a system of N spin 1/2 particles

will require 2N coefficients to be stored in memory, and also a 2Nx 2N matrix must

be exponentiated in order to compute the time evolution. For systems of large N ,

this becomes computationally intractable for even the most advanced computers. As

an alternative approach, Feynman proposed using a controllable quantum system

with comparable degrees of freedom in order to simulate quantum systems that were

difficult to model classically, or too complicated to study in a lab setting.

It is worth mentioning that a quantum simulator is not unlike a quantum com-

puter, but the focus of a quantum computer is slightly different than that of a quan-

tum simulator. Most quantum computing research is more focused on solving difficult

computational problems by implementing quantum algorithms, rather than simulat-

ing difficult problems from physics or chemistry. The best known example of the

motivation for quantum computation is Peter Shor’s quantum factoring algorithm

[96]. Shor’s algorithm demonstrated an exponential speedup for factoring large prime

numbers. With even the most sophisticated classical algorithms, factoring large prime

numbers is a computationally expensive task; ”public-key” cryptography based on

RSA exploits this fact [86]. While fear of exposing a weakness in RSA has been

a motivator for quantum computation, other quantum algorithms, such as Grover’s

search algorithm [40] have been developed, which further demonstrates the utility of

a quantum computer. Although a quantum computer would also have a significant

impact in other fields of science, it poses formidable experimental challenges and in

the short term a quantum simulator is more amenable to experimental efforts because
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it does not require explicit quantum gates or error correction, and less accuracy will

be needed [14].

For most current experimental efforts there are two flavors of quantum simulation:

an analogue quantum simulator and a digital quantum simulator. In an analogue

quantum simulator, a controllable Hamiltonian Hsim is engineered and then mapped

to the Hamiltonian of a hard-to-study system Hsys, and for accurate simulations it

is critical that Hsim be very similar to Hsys. Indeed, due to this constraint, there

are many different experimental platforms of analogue quantum simulators because

different systems are capable of realizing different Hamiltonians.[11, 9, 5, 47]. Much

of the focus for these types of quantum simulators has been guided by simulating

many-body quantum systems, which is what Feynman originally envisioned. Despite

the development in powerful classical computational methods; such as Monte-Carlo

and coupled-cluster methods, density functional theory, dynamical mean-field theory,

density matrix renormalization group theory and others, there are still entire classes of

problems that cannot be solved by these methods [17]. While it is has not been proven

that these problems cannot be simulated by classical means, a quantum simulator

could provide a means to develop new models and methods for studying these difficult

problems.

A digital quantum simulator is more closely related to a quantum computer, and

would be capable of simulating a wider range of Hamiltonians. It is essentially a

quantum circuit that is composed of one and two-qubit gates, which could in prin-

ciple simulate two body interactions. Such a system is well suited for studying time

evolution of a Hamiltonian. For example, such a system could be used to obtain the

solution to the Schrödinger equation |Ψ(t)〉 = e−i~Hsyst|Ψ(0)〉 for a time-independent

Hamiltonian Hsys [14]. The unitary time evolution of Hsys can be determined by

expanding Hsys into a the sum of many local interaction Hamiltonians, known as the

4



Trotter formula [64]

e−i~Hsyst ≈
(
e−i~H1t/ne−i~H2t/n . . . e−i~Hlt/n

)n
(1.1)

where Hsys =
∑l

iHi is satisfied. The simulation can be made more accurate by taking

finer time slices, the equivalent of making n larger. Much like a quantum computer, a

digital quantum simulator is going to be more prone to experimental difficulties than

an analogue quantum computer, but the long term goal of an all mighty universal

quantum simulator is worth the effort.

1.1.1 Criteria for quantum simulation

The requirements to successfully implement a quantum information processor have

been defined and are known as the DiVincenzo criteria [26]. In DiVincenzo’s paper

he enumerated five necessary criteria of a physical system in order to process quan-

tum information more efficiently than a classical computer. More recently a similar

set of requirements has been defined for a quantum simulator capable of simulating

many-body physics. Given the diversity of quantum simulators, the listed criteria ad-

dress analogue quantum simulators with the focus of simulating quantum many-body

problems [17].

1. A quantum system.

An obvious requirement, nonetheless the system must be composed of a system

of bosons or fermions with a large number of degrees of freedom. The particles

must be confined to a lattice or a finite region of space in order to initiate

particle-particle interactions.

2. Initialization of the system.

In order to understand how a system evolves it must be possible to initialize

the system into a known quantum state. The most practical initialization is a
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pure state, but initializing into a mixed state would provide a means to study

how entanglement propagates in many-body systems [54].

3. Hamiltonian engineering

In order to design a system capable of simulating another system, it must be

possible to engineer a distinct set of adjustable interactions between particles.

Furthermore, in the spirit of a true quantum simulator, the Hamiltonians that

are engineered should not be accessible by classical methods.

4. Measurement/Detection

It must be possible to perform measurements on the system. These measure-

ments could be performed locally or collectively. For example, it is reasonable

to address individual sites on a lattice, or the collective state of the particles

within the lattice.

5. Result Verification

By definition, there is no direct way to verify the results of a measurement if the

system is computationally intractable by classical means. However, it should

be possible to develop a comparison for the results by benchmarking the system

with solutions of known problems. Presumably new theoretical models could

be also developed in order to describe the observed phenomena; the original

objective of a quantum simulator.

1.2 Implementations of quantum simulators

There are many different platforms researchers are using in order to implement a

quantum simulator. The implementations presented in this section are by no means

an exhaustive list. Each platform described in this section is physically unique and

is well suited for solving different set of physically difficult problems. Additionally
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c d 

Figure 1.2: Different quantum simulation platforms. a, Ultracold atoms trapped in
a three dimensional optical lattice [10]. b, A linear string of ions confined to a linear
Paul trap (Image from quantum optics group at Innsbruck). c, Linear optics inte-
grated photonic quantum simulator [5]. d, Lattice of superconducting transmission
line resonators, each coupled to a transmon qubit [88].

each platform has its own set of advantages and limitations that must be overcome.

A major benefit to developing different platforms simultaneously is that results for

two different platforms could be compared as a means of verification. This would be

ideal as experimental systems start to push the computational limits. Here a physical

description of each platforms will be introduced, and followed by a brief discussion of

the types of problems these they are designed to solve.

1.2.1 Ultracold quantum gases

While each system is unique and has advantages and disadvantages, it goes without

saying that some systems are better suited than others. Of the systems reviewed here,

ultracold atomic gases have had the greatest quantum simulation success story [11].

They are naturally well suited because of the implicit quantum nature of single atoms.
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Ultracold atomic gases are so rich with physics that different classes of problems can

be simulated by modifying the experimental setup or changing type of atomic gas.

Two notable examples of the experiments with ultracold atomic gases are: observation

of Bose-Einstein condensation [1, 4, 21] and observing a Mott insulator to superfluid

phase transition [39]. More recently experiments have been focused on the studying

systems of interacting fermions by implementing a fermionic gas [11, 36].

Indeed, there are so many interesting experiments that have been realized that

highlighting each is not feasible. For this thesis the experiment of greatest interest

is the Mott-insulator to superfluid transition [39]. This quantum phase transition

is observed by trapping atoms in periodic potentials of light (figure 1.2), formed by

intersecting free-space light [10]. In these optical lattices an onsite interaction energy

U between atoms manifests, but is subdued when the nearest neighbor tunneling rate

J is small. This system is described very well by the Bose-Hubbard model

H = −J
∑
〈i j〉

a†iaj +
1

2
U
∑
i

ni(ni − 1) (1.2)

where ni = a†iai is the number of atoms at the ith site. By tuning the intensity of

the lasers forming the optical lattice, the effective tunneling rate J can be adjusted,

thereby changing the energy landscape of the system. The competition between U

and J will give rise to different quantum phases of the atoms. When U/J � 1 the

atomic wave function spreads homogeneously across the lattice, given by |ΨSF 〉U=0 ∝(∑M
i a†i

)N
|0〉, for M being the number of lattice sites, and N being the total number

of atoms, and the ground state of the system is a superfluid. When U/J � 1

a new ground state is realized in which the number of atoms per site n becomes

fixed and does not fluctuate. This is known as a Mott-inuslator and the many body

wave function describing this state is the product of Fock states for each lattice site

|ΨSF 〉J=0 ∝
∏M

i (a†i )
n|0〉. The accuracy at which the experimental system is described
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by the Bose-Hubbard model is shockingly good, and is a testament to the utility of

ultracold atomic gases for quantum simulation experiments.

1.2.2 Trapped Ions

Conventionally the focus of trapped ion experiments is for development of a quantum

information processor. What’s more, they are one of the most successful quantum

computing platforms. The success of trapped ions is due to the remarkable degree of

control of internal and external degrees of freedom of individual ions confined within

an electromagnetic trap [9, 52]. Ion control stems from a combination of UV and

RF control pulses on the ions while they are trapped inside a larger electromagnetic

potential. A common trap is the linear Paul trap as illustrated in figure 1.2. Within

the trap the ions can be Doppler cooled to the motional ground state and then

controlled with RF pulses [50]. Additionally, the internal states of the ions can be

controlled with UV light.

Trapped ions are particularly well suited as a system for studying interacting spin

systems. The internal hyperfine levels for a single trapped ion can be used to create an

effective spin 1/2. Then by applying an external field, the Coulomb repulsion between

adjacent ions will force them away from their equilibrium position. The result is that

nearest neighbor ions are forced to interact, thus engineering a spin-spin interaction.

By using the motional degrees of freedom to engineer a system of interacting spins ion

traps make an ideal candidate for quantum simulation of the quantum Ising model

H =
∑
i<j

Ji,jσ
x
i σ

x
j +By

∑
i

σyi (1.3)

where Ji,j is the nearest neighbor spin coupling strength, σx is the Pauli spin operator,

and By is the transverse magnetic field. This transverse Ising model is one of the

simplest spin models that has been shown to reveal interesting properties of quantum
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magnetism. Furthermore, in more than two dimensions the transverse Ising model

falls under the class of “NP-complete problems”, and is therefore an ideal model for

quantum simulation experiments [9, 52, 56, 82].

1.2.3 Photonic systems

One of the most significant features of photons is that they do not easily interact. For

this reason photonic systems are both advantageous and disadvantageous. This is an

advantage because it means photons are excellent carriers of quantum information,

and can travel long distances in either free space or via waveguide. For example, tele-

portation of entangled photons has been demonstrated between two Canary Islands, a

distance of 143 kilometers away [65]. There are many different ways to encode quan-

tum information within a photon: phase, angular momentum, path and polarization;

all of which are robust against sources of decoherence, thus making them an ideal

candidate for qubits [58]. However for these same reasons it is difficult to generate

entanglement between different qubits.

Due to the quantum nature of photons, photonic systems are well suited for quan-

tum simulation, but in contrast to other implementation systems reported, photonic

systems are better suited for simulating quantum phenomena of small sized systems

[5]. They have already started to have an impact in quantum chemistry calculations

which consume a significant amount of supercomputing resources. Notable experi-

ments include: a linear optics setup that has been used to help calculate the properties

of a hydrogen molecule with up to 20 digits of precision [63] and an experiment in

which a two photon entangled pair was use to simulate frustrated valence-bond states

by simulating the ground-state wavefunction of a Heisenberg spin system [66]. For

on chip photons, a series of beam splitters can be used to simulate quantum walks

of entangled photon pairs [79], and more recently experiments with quantum walks

have given rise to topological bound states [57]. The diversity of recent experiments
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is a testament to the utility of using photonic systems as an architecture for both

quantum simulation and studying quantum information.

1.2.4 Superconducting Circuits

The section touches on the focus of this thesis, realizing a quantum simulator based on

a superconducting circuit architecture. These systems are photonic systems, but un-

like the photonic systems highlighted in section 1.2.3, here photons can be easily made

to interact because of the presence of a nonlinear element; a superconducting qubit.

Furthermore the proposed quantum simulators are lattice based quantum simulators

where each lattice site is composed of a microwave resonator coupled to a super-

conducting qubit. The photons within these lattices have been predicted to exhibit

interesting quantum phase transitions, such as a Mott insulating to superfluid phase

transition[3, 38, 43, 47, 61]. The predicted phase transitions are not unlike the physics

observed in ultracold atomic gases trapped in periodic optical lattices described in

section 1.2.1; however, systems of interacting photons open a new door to studying

these quantum phases because photonic systems are intrinsically open. Making these

systems an ideal platform in which to study the physics of non-equilibrium systems

[47, 75, 88]. Additionally recent experiments have already demonstrated such non

equilibrium behavior by observing a photon number dependent cross-over in a two

site lattice [84].

Superconducting circuits are an ideal choice for realizing a lattice based quantum

simulator because of significant advances in the field of circuit quantum electrody-

namics (cQED), in which a superconducting transmon qubit is capacitively coupled

to a transmission line resonator [89]. Much of the success with cQED stems from the

easily obtainable strong coupling regime [103], and the fact that cQED devices can

be fabricated using standard lithography techniques. These devices are describe very

accurately by the Jaynes Cummings Hamiltonian, HJC , which describes fundamental
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interactions between photons coupled to a two level atom (section 2.2.1). It is truly

remarkable that these macroscopic objects containing billions of atoms can exhibit

coherent quantum behavior comparable to that of a single atom. In fact, these sys-

tems have such amazing quantum properties, they are now recognized as a leading

platform for a quantum information processor.

The aforementioned lattices are a natural extension of these cQED devices because

all the same fabrication processes apply, only on a larger scale. The lattices can be

describe by what is known as the Jaynes Cummings lattice Hamiltonian, which is

simply the sum of single Jaynes Cummings sites plus a coupling Hamiltonian, Hhop,

HJCL =
∑
j

HJC
j +Hhop − µN (1.4)

where µN is the energy conserving chemical potential times the number of photons

in the system. It is true that a chemical potential implies equilibrium physics, but

calculations using this Hamiltonian provide valuable intuition about the behavior of

these systems, and was used to predict the different quantum phases of light within the

lattice. Also, this Hamiltonian is considered to be valid on timescales faster than loss

mechanisms within the lattice. Since these lattices are intrinsically non-equilibrium,

it is impossible to completely isolate them from the environment. Although this is

not necessarily a limitation because it is possible to engineer quantum reservoirs [72];

paving a new way to study non-equilibrium systems. Whats more, a recent theoretical

proposal has outlined a method of experimentally creating a chemical potential of light

[41]. Using superconducting circuits as a platform for quantum simulation is still in

its early stages, but the rapidly increasing experimental progress in cQED coupled

to the abundance of theoretical proposals makes the future of these systems very

promising.
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1.3 Thesis Overview

The focus of this thesis is the experimental study of a lattice of superconducting

transmission line resonators that can be used for a photonic quantum simulator. The

significant contributions to this field are the design and fabrication of lattices, and

measurement techniques that use a new type of scanning probe microscopy that was

developed.

Chapter 2 explores the concept of using a lattice of circuit quantum electrodynam-

ics elements for an analogue quantum simulator. The chapter begins by highlighting

some of the important concepts of the fundamental element of these lattices; a super-

conducting qubit capacitively coupled to a transmission line resonator. The particle

of interest in the theoretical proposals is a hybridized photon called a polariton, there-

fore a brief discussion will be presented about how polaritons are formed. The model

used to describe a lattice of cQED sites is the Jaynes Cummings Lattice model. In

this chapter it will be presented and discussed in two different limits. Subsequently

the primary result from recent theoretical proposals will be presented and discussed;

the Mott insulator to superfluid quantum phase transition.

Chapter 3 transitions into the realm of experiment and begins by introducing the

concepts of a coplanar waveguide resonator, along with some important microwave

engineering techniques that are used to calculate relevant device parameters. Follow-

ing the introduction of well known microwave techniques, two different circuit analysis

approaches to a coplanar waveguide (CPW) resonator will be presented. The first

approach is a lumped element analysis and provides an intuitive picture of the CPW

resonator near resonance, and the subsequent approach is a distributed element anal-

ysis that is used to derive resonator eigenmode frequencies. The distributed element

analysis is then extended to lattices of CPW resonators and the interior photon hop-

ping rates and the exterior photon escape rates are derived. Following the derivation
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of the hopping rates, a discussion of how a lattice of microwave resonators is designed,

fabricated and packaged will be presented.

Chapter 4 introduces the experimental realization of a Kagome lattice of mi-

crowave resonators. The chapter begins with a derivation of the band structure for a

Kagome lattice beginning with a tight binding hamiltonian. Transport measurements

are the primary method measuring lattices. These measurements are discussed, and

then a measurement for a lattice consisting of 219 sites is presented and contrasted

with the expected band diagram. For successful quantum simulation experiments it is

necessary to have low disorder cavity lattices. The effects of disorder were studied in

the smallest realizable lattice; the Kagome star. The results from these experiments

will be presented, and it will be demonstrated that the effects of disorder are likely

due to fluctuations in the kinetic inductance of the coplanar waveguide. Fluctuations

in the inductance are shown to be consistent with fluctuations in the device features

that result from the fabrication process.

Chapter 5 demonstrates a perturbative scanning probe microscopy method on a

49 site Kagome lattice. This perturbative scanning method allows for imaging the

distribution of microwaves within the lattice, and demonstrates the first experimen-

tal results of a frustrated flatband within a Kagome lattice. The chapter begins by

discussing the experimental setup, and then goes into detail about a characteriza-

tion experiment conducted to understand the effects of perturbing a superconducting

coplanar waveguide resonator. The main result is presented last, and discusses how

the different lattice modes are measured and how the analysis is conducted.

Chapter 6 presents results on a scanning transmon qubit experiment; a ‘qubit

on a stick’. A proof of concept experiment in order to demonstrate the potential of

such scanning experiments to be used as a local quantum probe of interior lattice sites

within a cQED lattice. Here the main result that is presented is the characterization of

the coupling strength between the qubit and the cavity is characterized as a function
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of qubit position. A detailed discussion of the experimental techniques and data

analysis is also presented.

Chapter 7 begins by making some suggestions for future directions and also some

ideas for future experiments. Finally a summary of the work that was completed

within this thesis will be presented, along with some closing remarks.
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Chapter 2

Circuit QED lattices

2.1 Introduction

A system of interacting photons has generated a great deal of theoretical attention as

a potential platform for quantum simulation. While different experimental systems

exist in which to realize such a quantum simulator, superconducting circuits are a

leading candidate due to the long coherence times, ease of fabrication, potential for

scalability, and easily obtainable strong coupling regime. For these reasons, this work

has focused on the superconducting circuit architecture, and this chapter serves as

a theoretical introduction to the physics associated with a lattice based quantum

simulator using the superconducting circuit architecture.

Starting with section 2.2, a presentation will be given on the fundamental building

block of these systems; a transmon qubit capacitively coupled to a superconducting

transmission line resonator. The success that has resulted from this coupled system

has had tremendous impact in quantum information physics. As a result this has de-

veloped into a field of physics coined circuit quantum electrodynamics (cQED). There

have been many comprehensive studies of this topic published in both journal articles

and theses [7, 60, 90, 91], so here only the most relevant topics will be reviewed. The
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topics include: an introduction to Jaynes Cummings physics, some relevant regimes

that arise when tuning the system parameters of the Jaynes Cummings Hamiltonian,

and subsequent discussion on the type of superconducting qubit used within these

systems; the transmon qubit.

In section 2.3, a discussion on polaritons will be presented. In all of the theoretical

proposals, the particle of interest is the cavity polariton. In much of the literature,

it is implied that photons are the particle of interest, and that different quantum

phases of photons exist. While this is not entirely false, it is somewhat misleading.

The actual particle of interest in these proposals is the polariton, which has both

photonic and matter like components that result from interactions with a two level

system.

In section 2.4, the model that has been used to describe the proposed quantum

simulator will be presented. This model is a a straightforward extension of the Jaynes

Cummings hamiltonian presented in 2.2. Subsequent analysis of the lattice model

will be presented in sections 2.4.1 and 2.4.2. In these sections different limits within

parameters space are considered, and shown to provide significant intuition about

the different extremes of the system. Finally in section 2.5, a discussion on the main

result from theoretical proposals will be presented. This result is a calculation of the

mean field phase diagram, calculated using the hamiltonian presented in section 2.4.

This result will be contrasted with similar results from a system of ultracold atoms

trapped in optical lattices.

2.2 Circuit quantum electrodynamics

The focus of this work is developing large lattices of superconducting elements, in

order to observe the physics of interacting photons; however, before it is possible

to make headway on such a complicated subject it is necessary to learn the basics.
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With that in mind, the physics of a single site will be presented in order to develop

a necessary intuition for designing and understanding the physics of larger systems.

In cQED superconducting circuits are macroscopic objects that are capable of

displaying coherent microscopic quantum behavior. For example, a transmission line

resonator capacitively coupled to a superconducting qubit behaves analogously to an

atom coupled to light in an optical cavity. Remarkably both systems are fundamen-

tally different physically, operate in different energy spectrums, and yet are described

very accurately by the Jaynes Cummings Hamiltonian (JCH) . Superconducting cir-

cuits are limited to the microwave region of the light spectrum because of the energy

gap between normal electrons and Cooper pairs of electrons; excitations of higher en-

ergy will destroy the effects of superconductivity and result in destroying the coherent

quantum state.

2.2.1 Single site Jaynes Cummings

The Jaynes Cummings Hamiltonian model is the preferred method for describing in-

teractions between light trapped in a cavity and a single atom. It is a well understood,

and exactly solvable model that was first introduce in 1963 by Edwin Jaynes and Fred

Cummings [51]. It is a simple three part Hamiltonian that describes the fundamental

interactions between an atom and the light field HJC = Hfield + Hatom + Hint. Here

the light field is described as a simple harmonic oscillator at energy ~ωr, the atom by

a two level system at energy ~ωq (subscript q for qubit), and with a coupling strength

between the light field and the atom as ~g. The common form of this hamiltonian is

given as

HJC = ωra
†a+

ωq
2
σ+σ− + g(a†σ− + aσ+) (2.1)
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where ~ = 1 (this is the convention for the rest of this thesis), a† and a are the photon

creation and annihilation operators, and σ+ and σ− are the Pauli spin operators for

a two level system; which act to create and annihilate atomic excitations.

In equation 2.1 the rotating wave approximation was made by ignoring the counter

rotating terms (a†σ+ +aσ−). This is a valid approximation in the limit when ωr � g,

as these are not energy conserving terms. These terms correspond to the simultane-

ous creation or annihilation of an excitation and a photon within an atom and cavity

mode; which is not physical in this limit. However, when ωr ∝ g then the counter

rotating terms cannot be ignored, and HJC takes the form of the Rabi model hamil-

tonian [13]. In the large g limit the system is considered to be in the ultra-strong

coupling limit when [73].

2.2.2 Strong coupling limit

A limit well captured by the Jaynes Cummings hamiltonian is known as the resonant

strong coupling limit; when ωr ≈ ωq. When the resonance condition is met, the

allowed energies of the system are hybridized eigenstates separated by 2g
√
n, where

n is the number of photons inside the cavity (figure 2.1). The anharmonicity afforded

by the
√
n is a result of the quantum two level system inside the cavity. When a

system is coupled, excitations coherently oscillate between photons inside the cavity

and excitations of the qubit; an effect known as vacuum Rabi oscillations. These

oscillations occur at a rate 2g, and when many oscillations take place before a photon

escapes or qubit excitation decoheres the system is said to be in the strongly coupled;

which implies ωr > g > κ, γ.

For cQED experiments the strong coupling limit is easily obtainable due to the

large dipole moment attributed from the macroscopic size of the superconducting

circuits. A paper by Devoret et al. [23] provides a beautiful discussion for the physics
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a) 

b) 

Figure 2.1: a), Energy level diagram for the the resonant strong coupling limit ωr =
ωq > g > κ, γ. The left ladder corresponds to the state of the cavity with the
qubit in its ground state |g〉, and the right ladder corresponds to the qubit in its
excited state |e〉. Each outside rung represents the number of photons |n〉 inside the
cavity, with fewer photons in the cavity when the qubit is excited. When the qubit
is in resonance with the cavity, the system hybridizes to form the upper and lower
polariton bands |n,±〉. This is the photon number dependent vacuum Rabi splitting,
where the separation between the two eigenmodes is related to the number of photons
in the cavity 2g

√
n. b), An example measurement of the vacuum rabi splitting for a

cQED device well into the resonant strong coupling regime.

of the strong coupling limit, and discusses the limitations on capacitive coupling in

superconducting circuits.

The system is in the dispersive limit when the qubit and cavity are detuned in

energy, |ωr−ωq| = ∆ 6= 0. For quantum information processing it is often preferable to

operate within this limit because the qubit will not directly absorb cavity photons [12],

furthermore the Purcell effect on the qubit is weaker when the qubit is energetically

far away from the cavity [85]. Here the Purcell effect is when the qubit radiatively

decays through the cavity rather than emitting a photon back into the cavity; limiting

the lifetime of the qubit.
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In this limit a perturbative treatment on the hamiltonian can be used when the

detuning is greater than the coupling strength g/∆ � 1. By expanding the Jaynes

Cummings hamiltonian in powers of g2/∆ that hamiltonian takes the form

HJC ≈ ωr

(
a†a+

1

2

)
+

1

2

(
ωq +

2g2

∆
a†a+

g2

∆

)
σZ , (2.2)

where σZ is the Pauli spin operator for the state of the qubit; which returns ±1

depending on the qubit state. When dispersively shifted the qubit will not absorb

cavity photons, but from this expansion it can be seen that the state of the qubit

directly effects the cavity frequency. Two relevant effects can be noticed from this

expansion: the photon number dependent Stark shift g2/∆a†a, and the qubit state

dependent Lamb shift g2/∆. A consequence of these results is that the state of the

qubit can be determined by observing the frequency of the cavity. Furthermore,

quantum non demolition measurement of the photon number are possible as a result

of the photon number dependence in the Stark shift [53].

A particularly interesting regime within the dispersive limit is the strong coupling

dispersive regime. This is a narrow range of energies when the dispersive shift is large

compared to other decay mechanisms (g2/∆ > κ, γ). In this regime the qubit is more

strongly coupled and higher order terms must be considered in the expansion

HJC ≈ H0 +
g2

∆

(
2a†a+

1

2

)
σZ −

g4

∆3

((
a†a
)2

+ 2a†a+
1

2

)
σZ −

g4

∆3
a†a , (2.3)

whereH0 represents the hamiltonian for the uncoupled cavity and qubit from equation

2.1. In the second term the dependence on photon number is quadratic, ((a†a)2),

making the dispersive shift of the cavity more sensitive to small changes in photon

number (figure 2.2). This nonlinear dependence on photon number is due to the

presence of the qubit in the cavity, and gives rise to interacting photon phenomena
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that is mediated by the qubit. An example of such phenomena is the photon blockade

effect [45].

Figure 2.2: A ladder diagram showing the strong dispersive limit g2

∆
> κ, γ, and

g4

∆3 > κ, γ. The nonlinear dependence on the photon number can be observed in the
ladder diagram where the magnitude of the shift increases with photon number n,
and the higher order shift η = g4

∆3 . The lower diagram illustrates how a measured
spectrum would be shifted with respect to the photon number dependent dispersive
shift. Note that when not in the strong dispersive regime, the nonlinear photon
number dependence is small and can be neglected; only the dispersive cavity shift
proportional to g2/∆ is considered.

2.2.3 Loss mechanisms

The aforementioned decay rates κ and γ represent the different loss mechanisms in

these circuits. The cavity decay rate κ is determined by the capacitive coupling of

the coplanar waveguide resonator to a transmission line at each end of the cavity. For

these transmission line resonators, capacitors serve the purpose of semitransparent

mirrors, and the decay rate can be engineered in fabrication by varying the size of

the capacitance. A more detailed discussion on these cavities and the photon escape

rate will be presented in section 3.2.3.
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The qubit decay rate γ = Γ1+Γ2 is the sum of the different qubit loss mechanisms;

the qubit decay Γ1 = 1/T1 and qubit dephasing Γ2 = 1/T2. Here T1 is often referred

to as the excited state lifetime, or relaxation time of a superconducting qubit, and T2

is the spin dephasing time. Theoretically T2 ≤ 2T1, but for superconducting qubits

this has not been the case and measurements have consistently shown T2 ≤ T1. Apart

from the limited T2 measurements, much of the success of superconducting qubits has

been due to long coherence times, and in recent years coherence times have seen an

almost Moore’s law type exponential growth [24]. Removing sources of decoherence

constitutes a great deal of effort in superconducting qubit research, and a notable

method of increasing T1 is using a 3-D superconducting cavity; in which coherence

times of over 60µs have been observed [78].

2.2.4 The transmon

More than any other qubit, the transmon has impacted the success of cQED. In this

work the transmon qubit is the preferred qubit for a lattice based quantum simulator,

but since it is not the focus of this research only the main ideas behind the transmon

will be presented here. The discussions presented in this section outline results from

references [60, 91]. The name stems from transmission-line shunted plasma oscillation

qubit, and was first proposed by Koch et al. [60], and then experimentally observed a

year later by Schreier et al. [90]. A transmon is derived from a cooper pair box (CPB)

qubit that falls under a class of qubits called charge qubits; from which the number

of cooper pairs (n̂) is the good quantum number. The other two classes of qubits are

flux qubits, and phase qubits [18], but hard to eliminate sources of decoherence have

presented significant challenges for these qubits.
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Figure 2.3: a) A cartoon illustration of a transmon qubit capacitively coupled to
a coplanar waveguide resonator. Here finger capacitors are introduced to the two
islands to increase the capacitive coupling and lower Ec. The voltage drop across the
trasnmon is related to the number of photons stored within the resonator. b) The
simplified circuit representation for the transmon qubit. Here Cg1 is the capacitive
coupling to the resonator, Cg2 is the capacitive coupling to the ground plane, and Cs,
is the capacitive coupling between transmon islands. The charging energy is reduced
by increasing CΣ = (Cg1 + Cg2 + Cs). This figure is from the thesis of David Schuster
[91].

For cooper pair box, the hamiltonian is the sum of the electrostatic charging

energy Ec and the Josephson energy Ej,

H = 4Ec(n̂− ng)2 − Ejcos(φ̂) . (2.4)

The charging energy Ec = e2/2CΣ, accounts for the capacitive coupling energy be-

tween the two islands. If not for the Josephson tunnel junction, the number of cooper

pairs (n̂) on each island would be fixed and it would not be possible to change the

charge state. The addition of the tunneling barrier allows for cooper pairs to coher-

ently tunnel from one island to another, forming excited charge states. The original

cooper pair box operated in a limit where Ec ≈ Ej, but in this limit it was very

sensitive to charge noise, causing fluctuations in the number of excess cooper pairs ng

on the superconducting islands. Early results with the CPB were made possible by

operating the qubit in the “sweet spot” (figure 2.4 a), where the the charge dispersion

∂Ec/∂ng ≈ 0, and the spacing between levels is ≈ Ej.
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The transmon is essentially a CPB that operates in a parameter regime where

Ej � Ec. This is accomplished by increasing the capacitive coupling between the

two superconducting islands. By operating in this different parameter regime, the

transmon is made less sensitive to charge dispersion (figure 2.4). In Koch et al.

[60], it was shown that the charge dispersion of the mth energy level is exponentially

sensitive to the quantity
√
Ej/Ec.

εm ' (−1)mEc
24m+5

m!

√
2

π

(
Ej
2Ec

)m
2

+ 3
4

e−
√

8Ej/Ec (2.5)

This exponential sensitivity is the key factor to the success of the transmon, although

the cost is the suppression of anharmonicity between levels. However, it turns out

that this is not a deal breaker because the anharmonicity decreases linearly for in-

creasing Ej/Ec while charge dispersion decreases exponentially [60]. The absolute

anharmonicity is defined as α = E01−E12, is observed to be reduced for large values

of Ej/Ec.

For a qubit in the transmon regime, unlike the CPB there is no need to operate in a

charge “sweet spot”, which means that it is much easier to experimentally characterize

the qubit. For example the relevant energies Ec and Ej can be obtained from a simple

two photon spectroscopy measurement. By monitoring the cavity frequency ωr with

a drive photon, a second photon applied at the transition frequency ω01 will cause

the cavity frequency to shift resulting in a change in measurement amplitude. Due

to the anharmonicity it is also possible to excite the higher transition frequency ω12,

in the same way. Using the observed values of ω01 and ω12 the relevant energies Ec

and Ej can be backed out

Ej ≈ ~
(ω12 − ω01)2

8(ω01 − ω12)
(2.6)
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Figure 2.4: Charge dispersion curves for different parameter regimes of the CPB. For
ratios of Ej/Ec > 10 the sensitivity due to charge noise is significantly reduced and
the CPB is considered to be in the transmon regime. Here the anharmonicity is also
shown to decrease, but for values of 100 > Ej/Ec > 50, the absolute anharmonicity
is proportional to Ec, as observed in [90]. This figure is from the thesis of David
Schuster [91].

Ec ≈ −~α ≈ ~(ω01 − ω12) (2.7)

2.3 Polaritons

A polariton is a boson that manifests from a photon coupled to an electric dipole.

When a photon interacts with a dipole it will hybridize to form new energy levels.

These new eigenstates are the upper and lower polarition branches, and each branch

has both a photonic component and an matter component. Polaritons have been real-

ized many different physical systems, and two notable examples are: surface plasmon
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Figure 2.5: The hybridized eigenenergies of the Jaynes Cummings hamiltonian as a
function of the detuning, plotted for the first four excitation manifolds. The dashed
black line along the equator is the cavity resonance frequency, and the dashed black
line along the diagonal is the change in qubit frequency. When ωr = ωq, the system is
fully hybridized and the new eigenstates are half photon and half qubit excitation. For
increasing or decreasing ∆ the hybridization becomes suppressed and the polariton
will become more photon in a cavity, or more qubit excitation. For example, when
∆ > 0 the upper polariton branch asymptotically approaches a state that is pure
qubit excitation, and the lower branch asymptotically approaches a state that is pure
cavity photon with the qubit in its ground state.

polaritons [81], and exciton polaritons [22]. Surface plasmons manifest when light

is incident on a metal, causing classical excitations of free electrons near the surface

of a metal. The field of plasmonics looks to harvest plasmon polaritons using nano

fabrication techniques in order to create better waveguides, study near-field optics,

and develop new types of sensors [107]. Exciton polaritons are a quantum phenomena

and are more closely related to the polaritons of interest in this thesis. The polaritons

form when photons are forced to interact with excitons confined within a quantum

well. When many excitons exist within the quantum well, many polaritons will form

and have been shown to form bose einstein condensates within solids [55].

In cQED the upper and lower polariton branches can be solved for by diagnolizing

the JC hamiltonian. One of the most convenient features with the JC hamiltonian is
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that only nearest neighbor excitations are connected. As result the hamiltonian can

be written in a block diagonal form, which makes the solutions for the nth excitation

manifold spanned by |e, n− 1〉 and |g, n〉 exactly solvable. Explicitly written out,

HJC takes the form



(0) 0(
ωr g
g (ωr + ∆)

)(
2ωr g

√
2

g
√

2 (2ωr + ∆)

)
. . .

0

(
nωr g

√
n

g
√
n (nωr + ∆)

)


, (2.8)

where ∆ = ωq − ωr is the frequency detuning between the qubit and the resonator.

For additional convenience the matrix has been shifted by the vacuum state energy

ωr/2 to make the ground state zero (i.e. Eg,0 = 0). By simply diagnolizing a 2x2

matrix the exact eigenvalues of the nth sub matrix are

Enj± = njωr +
∆

2
±

√(
∆

2

)2

+ njg2 . (2.9)

which correspond to the allowed energies for the photon number dependent upper

and lower polariton branches (figure 2.5). The corresponding eigenstates are referred

to as the dressed state solutions and can be solved to give

|n,+〉 = sinθn |n, g〉+ cosθn |(n− 1), e〉 ,

|n,−〉 = cosθn |n, g〉 − sinθn |(n− 1), e〉 . (2.10)

where θn is the photon number dependent mixing angle, given as

θn =
1

2
arctan

(
2g
√
n

∆

)
. (2.11)
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These dressed state solutions show that a polariton is indeed a quasi-particle with

weight in both of the bare states of the system. They are photon number dependent

particles (figure 2.5), and for the photonic component, |g, n〉, the qubit is in its ground

state and there are n photons in the cavity. For the matter component, |e, (n− 1)〉,

the qubit is in an excited state, and there is one less photon in the cavity.

2.4 Jaynes cummings lattice

In recent years the Jaynes-Cummings lattice (JCL) model has received a significant

amount of theoretical attention as a model for studying strongly correlated many-

body systems. Although the JCL model does not directly address the computational

challenges associated with quantum many-body systems, it provides a theoretical

foundation for developing and realizing a physical system that could be used to simu-

late quantum many-body problems; i.e. a quantum simulator. This section, and the

ensuing subsections present the JCL model, and two limits in which it is analytically

solvable. The greater foundation of the subsequent theoretical work follows references

[61, 74].

The physical system the JCL model describes is a lattice of photonic cavities

where each lattice site is coupled to its own atom (or qubit). Theoretically this simply

expressed by a lattice of harmonic oscillators each coupled to its own two-level system.

To date, theoretical proposals have considered many different implementations of

this model, such as: atoms trapped in optical cavities [3], quantum dots in photonic

crystals [38], and the model considered in this thesis; a cQED based architecture

where each site consists of a transmission line resonator capacitively coupled to a

transmon qubit [47, 61, 74].
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The JCL model hamiltonian is (~ = 1)

HJC =
∑
j

HJC
j +Hhop − µN (2.12)

where,

HJC
j = ωra

†
jaj +

ωq
2
σ+
j σ
−
j + g(a†jσ

−
j + σ+

j aj) (2.13)

is the exactly solvable Jaynes Cummings hamiltonian described in section 2.2.1. Here

the index j denotes the lattice site that contains the coupled resonator-qubit subsys-

tem, and the part of the hamiltonian that governs the hopping of photons between

nearest-neighbor lattice sites is described by

Hhop =
∑
〈i,j〉

ti,j

(
a†iaj + a†jai

)
, (2.14)

where the hoping rate is ti,j. For the rest of this section it is assumed that ti,j = t,

and in most experimental energy regimes this assumption is correct. In this thesis

equation 2.14 has been rigorously studied experimentally, and subsequent sections

will discuss the interesting physics associated with this hamiltonian, and how it is

engineered with low disorder.

The chemical potential µ in equation 2.12 couples to the total polariton number

N =
∑

j nj =
∑

j(a
†
jaj + σ+

j σ
−
j ), and is in accordance with the grand canonical en-

semble from statistical mechanics. In the grand canonical ensemble the total number

of particles of the system N is allowed to fluctuate with a fixed chemical potential µ,

volume V and temperature T , but the mean particle number 〈N〉 is fixed.

The JCL model presented represents an equilibrium physics model, but the pho-

tonic systems of interest are intrinsically non-equilibrium. The inclusion of a chemical

potential is an assumption that is not physical because photons are naturally dissi-

pative, and the photon number cannot be conserved. Since the electromagnetic field
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of the photon interacts with matter, matter-like excitations will occur and result in

absorption; a form of non-radiative decay. Furthermore, photons will naturally escape

from the photonic systems as a rate κ.

While the model does not include the physics of dissipation, the equilibrium

physics described is expected to exist on timescales much less than the decay mech-

anisms of the system (i.e κ, γ). Furthermore, a recent theoretical proposal has sug-

gested that it is possible to engineer an artificial chemical potential with the use of a

Josephson parametric amplifier [41].

2.4.1 Atomic limit

Unlike the single site JC Hamiltonian, the JCL model does not support exact ana-

lytical solutions. It is therefore intuitive to examine the JCL model in the different

physical limits [61]. In the atomic limit, the nearest neighbor hopping rate is small

compared to the onsite interaction rate (g � t). To leading order the system becomes

decoupled from it’s nearest neighbors, and the hamiltonian can then be reduced to

the sum of single site JC Hamiltonians offset by the chemical potential.

H =
∑
j

(
hJCj − µnj

)
(2.15)

For negligible hopping, excitations will stay in their respective lattice sites, and

the resulting ground state wave function can be expressed as a product of states for

each individual lattice site |Ψ〉⊗j = |Ψ〉1 ⊗ · · · ⊗ |Ψ〉j. As a decoupled system each

lattice site can be evaluated with the single site JC Hamiltonian. For a fixed polariton

number at each site nj, the system Hamiltonian will become a sum of block diagonal
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Hamiltonians of the form.

hJCj =

∣∣∣∣∣∣∣
njωr

√
njg

√
njg (nj − 1)(ωr) + ωq

∣∣∣∣∣∣∣ (2.16)

The resulting energy spectrum for n ≥ 1 is given as

Enj± = njωr +
∆

2
±

√(
∆

2

)2

+ njg2 , (2.17)

with E0 = 0 for n = 0, and qubit resonator detuning given as ∆ = ωq − ωr. It

is worth noting, that this is a computationally difficult problem even in the weak

hopping/atomic limit. For computations the total size of the Hilbert space will be

determined by the size of the lattice and the polariton number n. The single site

Hilbert space for the lattice is given as Hj = 2n and the total size of the hilbert space

becomes H = (H1 ⊗ · · · ⊗ Hj) = Hn×m
1 , where m is the number of lattice sites.

The trivial ground state of the system is when n = 0, but for non-zero polariton

numbers n and a fixed chemical potential µ, the ground state is found by minimizing

the single site eigenengergies Eµ
n,± = min{Eµ

0 , E
µ
1,±, · · · }. It is obvious that Eµ

n,+ >

Eµ
n,−, so this means the ground state will either be the vacuum state |0〉, or the lower

polariton state |n,−〉.

In the atomic limit, when the polariton number n is an integer number of the

lattice sites; the system is expected to be in a state that is analogous to the Mott-

insulator from Bose-Hubbard physics [39]. However, by tuning the quantity (ωr − µ)

the system reaches a degeneracy point when Eµ
n−1,− = Eµ

n,−; marking the onset of

superfluidity. The full set of degeneracy points is given by

(µ− ω) /g =
√
n+ (∆/2g)2 −

√
n+ 1 + (∆/2g)2 (2.18)
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Figure 2.6: Stable ground state solutions for the JCL model in the atomic limit
(g � t). Decreasing the quantity µ − ω the system will transition between stable
states in which it is energetically favorable to have the same number of polaritons at
each site. As the number of polaritons in the system increases (i.e. µ− ω decreases),
the size of the stable regions shrinks until the system reaches an unstable region when
µ > ω. This is not a stable region because the process of adding more polaritons will
effectively lower the total energy of the system, which is not physical.

As seen in figure 2.6 the size of the ground state regions will decrease as the quantity

(µ−ω) decreases. This implies that the range in parameter space for the atomic limit

will get smaller for larger photon numbers.

2.4.2 Hopping limit

This section is meant to examine the ground state in the limit when the nearest

neighbor coupling is much larger than the onsite interaction strength t � g. When

the atom-cavity coupling g is very small, it is safe to assume that qubits will remain in

their ground state [61]. Consequently when considering the ground state of the system

the atomic contribution to the hamiltonian can be ignored and the hamiltonian will
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only have a photonic contribution given from the bosonic tight binding hamiltonian

HTB = (ω − µ)
∑
i

a†iai − t
∑
〈i,j〉

(
a†iaj + a†jai

)
. (2.19)

This hamiltonian can now be diagnolized in terms of single-particle bloch waves;

which is done by Fourier transforming the creation and annihilation operators, and

analyzing the momentum space hamiltonian. The result of this treatment will be

an expression for the energy dispersion ε(k), and will provide insight to the bosonic

ground state of the hopping lattice.

The Fourier transform of the the annihilation operator is given as

ai =
1√
Ns

∑
k

ake
−(ık·ri) (2.20)

where Ns is the total number of lattice sites, the sum is over all k’s in the first Brilloun

zone, and the creation operator a†i is the hermetian conjugate of ai. Inserting the

annihilation and creation operators the momentum space hamiltonian becomes

HTB =
(ω − µ)

Ns

∑
i

∑
k,k′

a†kak′e
−ı(k−k′)·ri − t

Ns

∑
〈i,j〉

∑
k,k′

a†kak′e
−ı(k·ri−k′·rj). (2.21)

The first term in equation 2.21 yields a delta function in k and k′, and the second

term can be simplified by introducing a lattice vector G, and considering the lattice

geometry. Up until now this has been a general treatment of the hamiltonian. Here

I will now consider a 2D square lattice, where the lattice vector is defined as G =

(±c,±c), c is the lattice constant, and using the ansatz rj = ri + G. Plugging these

expressions into equation 2.21 the hamiltonian can be written as

HTB = (ω − µ)
∑
k

a†kak −
t

Ns

∑
i

∑
G

∑
k,k′

a†kak′e
−ı(k−k′)·rie−ı(k′·G). (2.22)
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The second term now yields a delta function in k and k′, and is summed over all

lattice sites; which reduces the hamiltonian to

HTB = (ω − µ)
∑
k

a†kak − t
∑
G

∑
k

a†kake
−ı(k·G). (2.23)

Summing over the lattice vector G, yields the dispersion curve as a function of the

wave vector k, for the 2D square lattice

ε(k) =

(
(ω − µ)− 2t

2∑
i

cos(kic)

)
. (2.24)

Although the treatment shown here was for the 2D square lattice, it can easily

be extended to other geometries as well. For example the dispersion curve for a

honeycomb lattice is given as

ε±(k) = (ω − µ)± t
∣∣1 + e−ikxc + e−i(kx−ky)c

∣∣ , (2.25)

where the plus and minus signs represent the upper and lower bands of the dispersion

curve [61]. Consequently the ground state analysis of the bosonic tight binding hamil-

tonian is independent of the type of lattice, and due to the this bosonic nature of

photons the ground state of the hamiltonian can have N-fold degenerate occupancies

in the zero momentum state (k = 0). The ground state can be written as

E0 = N(ω − µ)−Nzct, (2.26)

where N is the the photon number, and zc is the lattice coordination number (i.e.

the number of nearest neighbors).

There are two insights to be gained from examining this ground state expression.

First there are no constraints to the photon number at a single lattice site. This

means that the photons can move freely throughout the lattice, which is analogous
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to the superfluid phase known from Bose Hubbard physics [39]. Second this ground

state presents an instability when zct > ω − µ. As it is not realistic that the ground

state energy is negative, this situation is not physical.

2.5 Mott insulator to superfluid phase transition

Phase transitions occur regularly in nature, but are most commonly associated with

changes in temperature. These temperature changes cause the properties of a medium

to physically change; a very common example would be water transitioning from liquid

to solid at T = 0 Co, or from liquid to gaseous steam at T = 100 Co. A quantum phase

transition is a change in the physical system at zero temperature (T = 0 K). These

transitions can be mediated by an external magnetic field, an external pressure, or

another external force that will change the energy of the system without changing the

temperature. The major motivation for the research in this thesis was the prediction

of a quantum phase transition involving photons. Calculations for a lattice of coupled

Jaynes Cummings sites demonstrated that photons within the lattice exhibit two

distinct quantum ground states. The two phases are a Mott insulating regime and a

superfluid regime. Many recent proposals have shown a transition from one regime

to another by tuning the energy ratio g/t [3, 38, 61].

This type of phase transition has been observed for systems described by the

Bose-Hubbard model [39], but it is an interesting development to consider a system

of photons behaving like a system of atoms. This implies that the same fundamen-

tal physics exists in two fundamentally different systems, described by two different

hamiltonians; which is the essence of quantum simulation. As such, it is intuitive to

first consider this phase transition from the perspective of the Bose-Hubbard model;

subsequently results for the lattice of interacting photons will be presented. Also much
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Mott-Insulator Phase: U >> J 

Superfluid Phase: J >> U 

Figure 2.7: The phase diagram calculated by Fisher et al. [31] in the absence of
disorder. When J/U is small the system localized with an integer number of bosons
at each site. For large J/U , the bosons move freely throughout the lattice.

of the discussion on Bose-Hubbard model is an extension of a previous discussion in

section 1.2.1.

The phase diagram describing the Mott insulator to superfluid transition for a

system of bosons was first calculated by Fisher et al. [31] (figure 2.7), and it wasn’t

until 2002 that it was observed in a system of ultra cold atoms trapped in optical

lattices by Greiner et al [39]. The phase diagram showed that in different parameter

spaces, two physically different systems existed at zero temperature. From this phase

diagram a very intuitive picture of the Bose-Hubbard model arises.

H = −J
∑
〈i j〉

a†iaj +
1

2
U
∑
i

ni(ni − 1) (2.27)

where U is the onsite interaction, and J is the nearest neighbor hopping rate. The

different phases are a result of the competition between these two energies. In cold

atom systems the tunneling rate J is determined by the intensity of the lasers forming

the optical lattice, and the different regimes can be observed by adjusting the laser

power. When J/U � 1, the height of the energy potential trapping the bosons at

37



each site is small, and the wave function of the bosons spreads over the entire lattice.

This is known as the superfluid phase. An important distinction of the superfluid

phase is that the phase coherence of the bosons is preserved across the entire lattice.

The phase-number uncertainty principle ([98]) implies that the phase coherence of the

boson gives rise to a large uncertainty the particle number. Accordingly, at any given

site the number fluctuates and the variance of the boson number (Var(ni) = 〈ni〉)

forms a Poissonian distribution.

When two neutral atoms in close proximity of one another, a repulsive interaction

will result from collisions, also referred to as a contact interaction. This gives rise

to the onsite interaction U . It is also worth noting that charged atoms can be used

to change the sign of U . For the energy ratio J/U � 1, the potential trapping the

bosons is large compared to the repulsion and quantum fluctuations drive the system

into a state where an integer number of bosons are localized at each site. This stable

ground state is known as the Mott insulating phase, and is a state in which no phase

coherence is prevalent in the lattice. Furthermore each lattice site has the same fixed

particle number.

The predicted phase transition of the JCL hamiltonian (equation 2.12) is quali-

tatively very similar to the phase transition observed from the Bose Hubbard model.

For example, analogies can easily be drawn between the atomic limit described in

section 2.4.1 and the Mott Insulator phase; as well as the hopping dominated limit

discussed in section 2.4.1 and the superfluid phase. In fact it was shown in Koch et

al. [61] that the JCL model maps to the Bose Hubbard and an “effective Hubbard

U” can be defined as

Un,± =
(
Eµ

(n+1)± − E
µ
n± + µ

)
/n (2.28)

where Eµ is the energy in the atomic limit from equation 2.17. For this “effective U”

it can be argued that for large polariton number per site, the energy cost of adding

extra photons is negligible; which implies the system can no longer be in a localized
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Figure 2.8: Mean field calculation illustrating a Mott insulator to superfluid quantum
phase transition in the Jaynes Cummings Lattice [61]. Here κ = t is the nearest
neighbor photon hopping rate. The light blue region corresponds to Mott insulating
state with ψ = 0, and and n polaritons per site, which occurs when g � κ. For
increasing values of κ, the system will transition into a superfluid phase. In the Mott
insulating state the number of polaritons per lattice site will increase for increasing size
in the µ, however the size of the Mott lobes in parameter space decreases significantly
for increasing µ. For large values of κ the system becomes unstable, as discussed
in 2.4.2, because it corresponds to a negative ground state energy. This region is
illustrated by a white dotted line. Also it is not realistic to increase the chemical
potential µ−ω > 0, because this corresponds to a negative energy cost per polariton,
which is not physical.

regime. This is consistent with results for the Bose Hubbard model describing a gas of

non-interacting bosons. Furthermore, without assuming an atomic limit or a hopping

limit, a mean field theory calculation using the JCL hamiltonian demonstrated a

phase diagram much like the one calculated by Fisher et al. [31] (figure 2.8).

Mean field calculations are commonly used to reduce the computational difficulties

of many body calculations [95, 101, 102]. These calculations are an approximation,

but the approximation becomes increasingly accurate for an increasing number of

dimensions. In order to make this approximation the expectation of the field is

generally taken over the nearest neighbor sites, rather than extending across the

39



entire lattice; effectively decoupling the lattice sites. The general approach for the

mean field approximation is to substitute two operators with the expression a†iaj =

〈a†j〉ai + 〈aj〉a†i − 〈a
†
i〉〈a

†
j〉. This substitution is made on the hopping hamiltonian

(equation 2.14) which gives rise to

Hhop = t
∑
i

∑
j∈n.n.(i)

(
〈a†j〉ai + 〈aj〉a†i − 〈a

†
i〉〈a

†
j〉
)
, (2.29)

where n.n.(i) corresponds to only nearest neighbor sites [38, 61].

Introducing the superfluid order parameter ψ = zt〈ai〉, where z is the coordination

number (number of nearest neighbors), the full mean field JCL model can be expressed

as Hmf =
∑

i h
mf
i , where

hmfi = HJC − µN − (aiψ
∗ + a†iψ) +

1

zt
|ψ2| . (2.30)

The order parameter is a complex function that is defined as the derivative of the

free energy, and is a measure of a systems order as it transitions from one phase to

another. The system is considered to be ordered for values of ψ = 0, and as seen in

figure 2.8, the Mott insulator phase is reached for ψ = 0. For increasing values of ψ

the system transitions into a superfluid phase.

The mean field calculations have provided an intuitive picture of what is expected,

but they do not capture the true nature of these photonic systems. By including a

term for the chemical potential µ, these calculations assume an equilibrium picture.

While this is not realistic to include a chemical potential, implementing methods used

for calculations of open quantum systems is computationally very difficult. It is worth

mentioning that efforts are currently being made to engineer a chemical potential by

coupling lattice sites to a photonic quantum bath [41].
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Chapter 3

Design and fabrication of

microwave cavity lattices

3.1 Introduction

The JCL model has been used to produce many theoretically interesting results,

but for even the most substantial results the model was simplified beyond what is

experimentally achievable. For this reason realizing a quantum simulator based on

this model will require significant experimental efforts. The JCL model presented in

section 2.4 consists of two significant physical components that must be developed:

a lattice of resonators described by a tight binding hamiltonian (equation 2.14), and

a lattice of qubits. Due to the nature of the fabrication process it is necessary to

fabricate a lattice of resonators prior to including a lattice of qubits. Consequently

experimental efforts have followed this systematic approach towards realization and

have been focused on a lattice of resonators without qubits.

This chapter will discuss how a lattice of CPW resonators is designed and fab-

ricated. The fundamental building block in these lattices is a transmission line res-

onator. As such, it is both necessary and intuitive to understand the basic physics of
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a single resonator in order to properly design and understand a large lattice of res-

onators. In section 3.2 the transmission line resonator used for these lattices will be

discussed in great detail. The type of transmission line used is a coplanar wave-guide.

This chapter begins by discussing equations commonly used amongst microwave en-

gineers for calculating device parameters. Next in section 3.2.2, the effects of a mi-

crowave background on a CPW resonator will be presented, and some insight as to

how the background arises will discussed.

In subsequent sections two different methods of circuit analysis will be presented

in order to gain valuable insight about the intrinsic properties of a CPW resonator.

In section 3.2.3 a lumped element method will be used, and shown that when the

system is near resonance it is a good approximation for a CPW resonator. Next

in section 3.2.4 a distributed element approach is used in order to model a CPW

resonator. This analysis shows that the exact eigenmode frequencies for a resonator

can be calculated without any assumptions.

Scaling up to larger lattices inevitably requires new methods of analysis. In section

3.3 a distributed element analysis will be presented that extends from methods in

section 3.2.4. This analysis provides a means to calculate the rate at which photons

hop throughout the lattice and the rate at which photons decay from the lattice.

These hopping energies are expressed in terms of device parameters that can be

calculated using methods presented in previous sections.

Designing, fabricating, and developing necessary equipment in order to measure

these lattices consumed much more time than can be justified in this thesis. In section

3.4.1, some insight into how these complicated microwave structures are designed will

be provided. While the experiments in this thesis were conducted for only the empty

lattice of resonators, the lattices were design so that transmon qubits could be easily

integrated into these lattices. Subsequent sections discuss how these lattices were

fabricated (section 3.4.2) and the exhaustive efforts used for connecting ground planes
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Figure 3.1: A cartoon illustration of a conventional superconducting coplanar waveg-
uide resonator of length lres, with center pin width a, gap width s, fabricated on top of
a multi-layer dielectric substrate, mounted to a normal metal surface. Typical cQED
devices are fabricated on single-layer dielectric substrates, but the analysis presented
for the multilayer can easily be applied a single-layer, in the limit of h2 = 0.

(section 3.5.1). This chapter finishes up by presenting engineering associated with the

packaging hardware necessary to measure devices in an electrically and magnetically

isolated environment inside of a dilution refrigerator.

3.2 Coplanar waveguide resonators

A conventional coplanar waveguide is composed of three conductors on a dielectric

substrate. The two outer conductors are large semi-infinite ground planes and the

central conducting strip is separated from the ground planes by a small dielectric

(figure 3.1). This can be thought of as a planar version of a coaxial cable capable of

supporting a large range of frequencies (kHz - THz) [97]. Typical cQED experiments

operate in the microwave frequency spectrum from 4 -10 GHz, which are ideal for

CPWs. The excitations inside a CPW propagate inside the central conductor, but

the transverse electric field is confined within the gap between the center pin and the

ground planes. This confined field is the source of strong coupling in cQED.
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3.2.1 CPW properties

In the CPW geometry, resonators can be formed by interrupting the central conductor

on either end. The gaps in the center pin form capacitors between the transmission

line and the resonator. These two capacitors act as mirrors and allow standing waves

to form (figure 3.1). To a good approximation the resonant frequency of the standing

wave can be calculated as

ω(n−1) = n
c

√
εeff 2lres

, (3.1)

where n > 0 is the mode number (ω0 being the fundamental mode), c is the speed

of light, εeff is the effective dielectric constant, and lres is the length of conductor

between the capacitors. Due to the open boundary conditions formed by the capaci-

tors half a wavelength (λ/2) resonances are formed. Typical cQED experiments use

resonators where the fundamental mode ωr = ω0 falls within the frequency range 4-10

GHz, but cavities can easily be made to harness resonances with higher harmonics

by simply making the cavity longer. The higher harmonics are thus integer multiples

of the fundamental resonance ωn−1 = nω0.

For a conventional CPW all relevant circuit properties can be calculated if the

geometry and materials are known. Relevant parameters are the center pin a, the

dielectric gap s, and the permmitivity εr of the dielectric substrate. If these are known,

one can calculate the circuit impedance Z0, the effective dielectric constant εeff of

the waveguide and even the attenuation in the line α [97]. Analytical expressions of

these circuit properties can be derived using a conformal mapping technique within

a quasi-transverse electromagnetic mode (TEM) approximation [15]. This derivation

is not presented here. The results from conformal mapping are expressions for the

capacitance and inductance per unit length; which can then be used to calculate the

desired circuit properties Z0, and εeff .
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Here an example of a typical CPW calculation is presented for a CPW on a mul-

tilayer substrate [97]. This example can easily be simplified to single layer substrate

for h2 = 0. For this calculation the different dielectric regions are each analyzed sepa-

rately, therefore partial capacitances for each region can be evaluated. The resulting

total capacitance per unit length for a conventional CPW is simply the sum of all

partial capacitances in the circuit

CCPW = C1 + C2 + Cair . (3.2)

The total capacitance for the multilayered substrate (figure 3.1), with partial capaci-

tance regions for the two lower dielectrics C1 and C2, and also the partial capacitance

in the absence of all dielectrics Cair. The partial capacitance for dielectric layer 1 is

C1 = 2ε0(εr1 − 1)
K(k1)

K(k′1)
(3.3)

Where K(k1) and K(k′1) are elliptic integrals of the first kind and the geometric

dependence arises from the modulus for these elliptic integrals, k1 and k′1

k1 =
tanh( πs

4h1
)

tanh(π(s+2a)
4h1

)
(3.4)

k′1 =
√

1.0− (k1)2 (3.5)

where h1 is the height of the substrate as shown in figure 3.1. These elliptic in-

tegrals can easily be numerically evaluated using Matlab (ellipke) or Mathematica

(EllipticK). Similarly for dielectric layer 2

C2 = 2ε0(εr2 − εr1)
K(k2)

K(k′2)
, (3.6)
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and

k2 =
sinh( πs

4h2
)

sinh(π(s+2a)
4h2

)
(3.7)

k′2 =
√

1.0− (k2)2 , (3.8)

where h2 is the height of the layer (figure 3.1). The different trigonometric functions

tanh or sinh in k1,2 are determined by the boundary conditions of the dielectric,

and arise from the conformal mapping [15]. The tanh function the result of a metal

boundary, and the sinh function is the result of a dielectric boundary. Additionally

the partial capacitance to air is going to be the sum of partial capacitances for the

regions above and below the CPW

Cair = 2ε0
K(k1)

K(k′1)
+ 2ε0

K(k0)

K(k′0)
, (3.9)

where k0 = a/(s + 2a) is the modulus for an infinitely thick layer of air above the

CPW, and k1 was previously defined.

Given the partial capacitances, the impedance Z0, and effective dielectric constant

εeff can be calculated as

Z0 =
1

c

√
εeff

CCPW
, (3.10)

where c is the speed of light, and

εeff =
CCPW
Cair

. (3.11)

The attenuation constant for a CPW can also be calculated as the sum of attenuation

due to dielectric losses in the substrate, and also due to conductor losses in the center

pin and ground planes. In this thesis only superconductors are used and consequently

conductor losses are negligible; however, some loss arises due to defects/asymmetries
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in the microwave circuitry due to fabrication [97]

α =
π

λ0

εr√
εeff

q tan(δe) Nepers/meter . (3.12)

Here λ0 is the free space wavelength in meters, δe is the dielectric loss tangent, and q

is the filling factor given by

q =
1

2

K(k1)

K(k′1)

K(k′0)

K(k0)
, (3.13)

this expression assumes a single layer substrate (i.e h2 = 0).

The total inductance per unit length Ltot is not necessary for calculations of Z0

and εeff , because these properties are not dependent on the magnetic properties of

the CPW. Although the inductance does contribute to the frequency of the resonator

ω0 = 1/2
√
LtotCCPW lres, and is an important physical property when considering

superconducting circuits. For superconductors the total inductance is going to be the

sum of the temperature independent magnetic inductance and temperature dependent

kinetic inductance

Ltot = Lmag + Lkinetic . (3.14)

With the magnetic inductance being,

Lmag =
µ0

4

K(k′1)

K(k1)
. (3.15)

For normal metals the kinetic inductance can be ignored, but for superconductors

it must be considered. For example charged particles traveling thru a wire have

inductance because they generate a magnetic field, and according to Lenz’s law an

opposing magnetic field is induced so as to maintain a constant magnetic field. This is

referred to as magnetic inductance. Now in addition to magnetic potential energy the

charge particles have some kinetic energy, which is the cause of kinetic inductance. In

an AC electric field, the charged particles will oscillate at the frequency of the field,
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but the response time of the charged particles will be limited by the inductance. For

normal metals the charge particles will scatter off of eachother and off of impurities in

the metal, but for superconductors the electron pairs do not scatter, and the kinetic

inductance contributes to the response time.

Even for superconductors Lk is small compared to Lm and is usually ignored;

however, for CPW resonators Lk is more sensitive to the geometry than Lm, and

variations in a result in significant shifts in resonant frequency ωr = 1/2
√
LtotCtot.

This dependence arises from a geometrical factor where,

Lk =
µλ2

L(T )

da
g(a, s, d) (3.16)

where µo is the permeability in vacuum, λL is the temperature dependent magnetic

penetration depth, and g(a, s, d) is a geometrical factor derived from the conformal

mapping of a CPW [104].

g(a, s, t) =
1

2k2K(k)2

{
−ln

(
d

4a

)
+

2(a+ s)

(a+ 2s)
ln

(
s

a+ s

)
− a

(a+ 2s)
ln

(
d

4(a+ 2s)

)}
(3.17)

where a,s,d are as seen in figure 3.1. The topic of kinetic inductance will be further

discussed in chapter 4.1.

3.2.2 Resonance lineshapes

The most significant characteristic of superconductors is zero resistance at low tem-

peratures. Therefore CPW resonators can be fabricated with remarkably low losses,

and photons can be made to bounce back and forth up to a million times before they

leave the cavity. This means the loss mechanism of a CPW resonator is determined

by defects in the substrate dielectric εr, impurities in the superconductor, and asym-
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Figure 3.2: Lorentzian line-shapes with background B. The background has been
subtracted off for convenience. The FWHM of the line-shape is κ, and is a measure-
ment of the total loss of the resonator. The line shape is determined by the phase
of the background φ. For backgrounds that are not in phase (φ = 0) with the res-
onator a Fano resonance is observed. Typically the backgrounds that produce Fano
resonances are parasitic modes and can have undesirable consequences. With the
exception of ultra high Q devices (Q ≥ 106), the background will have little effect on
κ, but can significantly reduce qubit lifetimes T1 and T2. The qubit can capacitively
couple to the incoherent background modes in the resonator which results in decoher-
ence. Usual suspects for these parasitic modes are slot line modes, box modes, and
poorly designed microwave circuitry [105, 46, 34, 16]. Slot line modes are very com-
mon and are the most problematic because these resonances or excitations manifest
in the ground plane, and can be very difficult to eliminate. There are many sources
for slot line modes, to name a few: poorly connected ground planes, badly designed
circuit boards, impedance mismatches, and any sort of asymmetries in the microwave
circuitry. Basically good microwave hygiene is the best way to eliminate slot line
modes. Box modes are the result of resonances inside the sample holder that contains
the microwave circuits of interest. Typical means of reducing box modes are brute
force numerical calculations to design the sample box so that the resonance spectrum
is not within the frequency range of the qubit. Calculations are typically done using
software packages such as Ansoft HFSS.
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metries in the microwave circuitry. The metric for loss is referred to as the cavity

quality factor Q = ωr/κ, which is the ratio of the resonant frequency ωr to the cavity

loss rate κ. The cavity loss rate κ is also equivalent to the full width at half max

(FWHM) of a measured spectrum (figure 3.2). For CPW resonators the spectrum

follows a Lorentzian line shape of the form (ω = 2πf),

Flor(ω) =
A

1 + i2
κ

(ω − ωr)
+Be−iφ , (3.18)

where A is the amplitude of transmission on resonance, B is the amplitude of the

background noise, and φ is the phase of the background. This complex function

accurately describes a lossy system near resonance, but it is not exactly what is

observed from a network analyzer. The square amplitude of this function S21 =

|Flor(ω)|2 is what the network analyzer measures, and is what should be used for

fitting measured transmission peaks.

3.2.3 Lumped element analysis

Here a pedagogical approach is taken in order to develop an intuition for a CPW

resonator. The resonator will be treated as lumped element parallel LCR oscilla-

tor that is capacitively coupled to external transmission lines that are modeled with

resistors (figure 3.5a). This is a valid treatment for a CPW resonator near reso-

nance (ω − ω0 � 1) [32]. Subsequent to the lumped element analysis a more precise

distributed element analysis will be reviewed.

A simple parallel LCR oscillator will have a loss mechanism that determines the

internal ”unloaded” quality factor Qint of the resonator. Although in order to measure

the LCR oscillator it is necessary to couple to it externally, which contributes to the

total quality factor of the system. This ”loaded” quality factor QL is what is actually
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a 

b 

Figure 3.3: Lumped element model of CPW resonator. a An LCR oscillator ca-
pacitively coupled to transmission lines. The transmission lines are modeled with
RTL = 50Ω. b Lumped element circuit with the Norton equivalent coupling.

measured, and is given as

1

QL

=
1

Qint

+
1

Qext

(3.19)

The internal quality factor can be extracted from the impedance of the parallel LCR

oscillator

ZLCR(ω) =

(
1

ZL
+

1

ZC
+

1

ZR

)−1

=

(
1

jωL
+ jωC +

1

R

)−1

. (3.20)

This expression can be simplified by examining the oscillator near resonance. On

resonance the phase difference across the inductor and the capacitor is zero which re-

quires ZL = ZC . Using this assumption, and expanding for frequencies near resonance

ω − ω0 << 1, the impedance can be rewritten as

ZLCR(ω) =
R

1 + 2jRC(ω − ω0)
, (3.21)
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which is of the same form as equation 3.18. The characteristic properties of this

oscillator are

L =
2Ltotlres
n2π2

, (3.22)

C =
CCPW lres

2
, (3.23)

R =
Z0

αlres
, (3.24)

therefore, we can define

Qint = ω0RC =
RC√
LC

=
π

2αlres
. (3.25)

The LCR oscillator is capacitively coupled to RL = 50Ω input/output lines. This

coupling will result in capacitive and resistive loading of the resonator which will

effect the Q and the resonant frequency. To simplify this analysis one can assume

symmetric coupling Cin = Cout and then transform the series resistor and capacitor

into the Norton equivalent parallel connection figure 3.5b. The resulting expressions

are

R∗ =
1 + ω2

nC
2
inR

2
TL

ω2
nC

2
inRTL

, (3.26)

C∗ =
Cin

1 + ω2
nC

2
inR

2
TL

, (3.27)

The loaded quality factor for this parallel circuit is going to be the product of the

new loaded frequency ω∗n = 1/
√
L(C + 2C∗) and the new loaded RC constant.

QL = ω∗n(C||2C∗)(R||2R∗) =
ω∗n
κ

= ω∗n
C + 2C∗

1/R + 2/R∗
, (3.28)

The expression for κ can be further simplified by considering the coupling capacitors

to be small compared to the capacitance of the oscillator Cin � C, which leads to

C+2C∗ ≈ C. The internal loss of the resonator can be assumed to be negligible R�
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R∗ (valid for superconductors). Finally plugging in some typical experimental values

ωnCinRL ≈ (5 · 109)(1 · 10−14)(50) = 25 · 10−4 � 1, justifies R∗ ≈ RTL/ω
2
nC

2
inR

2
TL.

From these assumptions the simplified form for the cavity decay becomes

κ = 2ω3
nC

2
inRTLZ0 , (3.29)

where RTL = Z0 = 50Ω. This is a convenient form for the cavity loss rate because the

coupling capacitance Cin can be calculated numerically using a commercial software

package Ansoft Maxwell, and the resonant frequency can be computed from equation

3.1.

3.2.4 Distributed element analysis

A more accurate method method of breaking down a superconducting CPW trans-

mission line is using a distributed element method [59]. Using this method the exact

eigenmode frequencies of the resonator can be computed, and in the following sections

this method can be used to understand the capacitive coupling between resonators in

a lattice.

Here the distributed method breaks down the circuit into infinitesimally small

identical LC oscillator circuit elements. In contrast the lumped element method was

an example of spatially simplified circuit elements. The distributed model is composed

of the sum of inductances ldz and capacitances cdz, where l and c are inductances

and capacitances per unit length, and dz is the infinitesimal length scale (figure 3.5).

These elements can be evaluated using a Lagrangian in compact matrix notation

Ltl(~̇φi,n, ~φi,n) =
1

2
~̇φᵀ
iTj

~̇φi,n −
1

2
~φi,nV ~φi,n , (3.30)

where T and V are matrices forming the kinetic and potential energy contributions,

and ~φᵀ = (φ1, . . . , φN) is a vector of spatially dependent field elements inside the
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Figure 3.4: a Distributed element model of a CPW resonator capacitively coupled
to two transmission lines. Here c and l are the inductance and capacitance per unit
length, and Cin/out is the coupling capacitance to the transmission lines.

transmission line. Consider now a resonator capacitively coupled to transmission

lines on either end; the Lagrangian for this resonator can be written precisely as

L = L′TL in + L′TL out+

1

2
Cin(φ̇1 − φ̇in)2 +

1

2
Cout(φ̇N − φ̇out)2+

1

2

N∑
i=1

cdzφ̇2
i −

1

2ldz

N∑
i=2

(φi − φi−1)2 .

(3.31)

For clarification the expression is broken up into three parts: Lagrangians for input

and output transmission lines Lin/out, contributions to the energy from the capacitive

coupling to the resonator Cin/out, and the kinetic and potential energy contributions

for the resonator itself. The capacitive coupling contribution can be further expanded

to show: equation 3.32a, the capacitive interaction energy due to capacitive loading,

equation 3.32b, the capacitance contribution from the transmission line, and equation

3.32c, the capacitive contribution from the resonator.

−Cinφ̇1φ̇in − Coutφ̇N φ̇out (3.32a)

Cin
1

2
φ̇2
in + Cout

1

2
φ̇2
out (3.32b)

Cin
1

2
φ̇2

1 + Cout
1

2
φ̇2
N (3.32c)

Recall the purpose of this analysis is to extract resonator mode frequency. From

equation 3.31 one can extract kinetic and potential energy matrices T and V for the
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resonator contribution;

Tii′ = δii′(cdz + Cinδi1 + CoutδiN) , (3.33)

and

V =
1

ldz


1 −1
−1 2 −1
−1 2 −1

. . .
−1 2 −1
−1 1

 . (3.34)

Typically for a transmission line, the nth eigenmodes are of the form ~φ =

ηnane
−iωnt, and a generalized eigenproblem V an = ω2

nTan with normalization con-

dition aᵀnTaµ = δµn can be solved to determine the normal modes of the system

[59]. This eigenproblem can be difficult to solve, but fortunately it can be simplified

because T is easily invertible, and thus T−1V = ω2
nan. The matrix for this expression

becomes

T−1V =
1

lc(dz)2



cdz
Cin+cdz

− cdz
Cin+cdz

−1 2 −1

−1 2 −1
. . .

−1 2 −1

− cdz
Cout+cdz

cdz
Cout+cdz


. (3.35)

Physically this matrix describes the discrete field φ at each infinitesimal section dz

inside the resonator. Rows i = 1 and i = N describe the field at the capacitive

boundaries, and rows i = 2→ N−1 describe the field in the interior of the resonator.

First considering interior section of the matrix, the field can be expressed as a discrete

laplacian.

∂2φ

∂z2
= lim

dz→0

[φ(z + dz)− φ(z)] + [φ(z − dz)− φ(z)]

lc dz2
, (3.36)
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Figure 3.5: Using fabricated devices parameters equation 3.42 was plotted where
the blue dots mark the first six exact eigenmode frequencies. Here the fundamental
mode is ω0 = 7.4 GHz. Values for this calculation were for a 50Ω impedance CPW
resonator, lres = 7500µm, l and c were computed using methods from section 3.2.1,
and Cin = Cout = 18 fF.

and in the continuous limit one obtains the following wave equation for the mode

φν(z)

d2φn
dz2

= −(ωn
√
lc)2 φn(z) . (3.37)

The capacitors at the ends of the resonators form the homogeneous boundary condi-

tions

− dφn
dz

∣∣∣∣
z=0

= lCinω
2
nφn

∣∣∣∣
z=0

(3.38)

dφn
dz

∣∣∣∣
z=lres

= lCoutω
2
nφn

∣∣∣∣
z=lres

(3.39)

Solutions to the wave equation will be sinusoidal functions of the form

φn(z) = A cos(ωn
√
lcz) +B sin(ωn

√
lcz) . (3.40)
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Using this sinusoidal function in conjunction with boundary conditions ,equation 3.38

and equation 3.39, a system of equations can then be set up to solve for the coefficients

A and B.

(
ηin β

−β sin(βlres)− ηout cos(βlres) β cos(βlres)− ηout sin(βlres)

)(
A
B

)
= 0 (3.41)

Where β = ωn
√
lc, and ηin/out = lCin/outω

2
n. Evaluating the determinant of this

matrix and doing a little algebra the exact eigenmodes frequencies of the resonator

can be given by solutions to the transcendental equation

tan(ω̄n) = − ω̄n(χin + χout)

1− χinχoutω̄2
n

, (3.42)

where ω̄n = ωn
√
lclres and χin/out = Cin/out/(clres). The distributed element analysis

for this resonator presented has been exact and although it must be solved numerically

provides a more accurate calculation of the resonant frequency compared to equation

3.1 because it takes into account the capacitive boundary conditions.

3.3 CPW resonator lattices

Developing a large network of coupled resonators in which transmon qubits can easily

be integrated is non-trivial task, with many experimental complications that must be

considered during the design process. This section focuses on how to design such a

lattice intelligently, and will highlight the experimental concerns that were considered.

The first issues that will be addressed are: understanding how photons decay from the

lattice, how photons hop throughout the lattice, and how these rates are related to

the capacitive coupling. By using a distributed element analysis, a derivation for the

lattice decay rate κ and for nearest neighbor photon hopping t will be presented for

a lattice of resonators that are capacitively coupled in a honeycomb lattice geometry.
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Following the derivation of the hopping rates a discussion of the how the lattice

was designed will be presented. This section will discuss how to symmetrically tile

CPW resonators equipped with transmon qubits in a honeycomb lattice geometry

while trying to conserve the physical size of a large lattice. Additionally, for large

lattices, boundary conditions for edge resonators must be considered; these boundary

conditions will be discussed.

3.3.1 Photon hopping rates

As shown in a preceding chapter, it is the competition between nearest neighbor

photon hopping t and onsite coupling g that will give rise to quantum phase transitions

of photons within a lattice. Given this dependence on the photon hopping rate, it is

critical to understand how to control and engineer nearest neighbor hopping rates in

order to realize a feasible quantum simulator. Here a distributed element approach is

used to drive the photon hopping rates for a honeycomb lattice of CPW resonators. In

subsequent chapters it will be shown that the photonic realization of the honeycomb

lattice is the dual lattice and is referred to as a Kagome lattice. For the rest of

the chapter it is presented as a honeycomb lattice because that is what is physically

realized and what is considered during the design process.

The lattice model presented here is a continuation of the preceding discussion for

a single site (section 3.2.4), and following that formalism from it is straight forward

write the total system Lagrangian. It is simply the sum of Lagrangians for single

resonator sites, coupling capacitors, and the output transmission lines.

L =
N∑
i=1

Lres,i + Lcoupling,i +

edge∑
i=1

LT.L.,i (3.43)

Where N is the total number of lattice sites, and for a symmetrically coupled lattice

the number of resonators will be the same as the number of coupling elements. The
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Figure 3.6: A distributed element model (DEM) of the honeycomb lattice of CPW
resonators; this model is an extension of the preceding DEM treatment for a single
resonator. Here each interior lattice site is symmetrically coupled to four nearest
neighbors, and each edge resonator is coupled to two interior resonators and a trans-
mission line. Theoretically it is convenient to consider an infinite lattice; however,
experimentally that is not feasible and the edges must be treated. When considering
a finite lattice there are two types of resonators that must be considered: interior
and edge. With a lattice of these two resonators, there are three types of capacitive
boundary conditions: interior to interior set by Cin, interior to edge set by Cin, and
edge to transmission line (TL) set by Cout. The blue ports represent transmission
lines and for analysis purposes are treated as a continuum of states.

transmission line Lagrangian is only summed over the number of edge resonators.

The individual resonator Lagrangians can be expressed as

Lres =
interior∑

i

1

2
φ̇ᵀ
iTinφ̇i −

1

2
φiV φi+

edge∑
i

1

2
φ̇ᵀ
iToutφ̇i −

1

2
φiV φi+

edge∑
i

1

2
ψ̇ᵀ
i TT.L.ψ̇i −

1

2
ψiV ψi

(3.44)

where the φi is the discrete field vector at lattice site i (equation 3.40), and ψi is a

continuous field afforded by the transmission line. The potential energy matrix V is
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the same as equation 3.34. The different boundary conditions arise from the coupling

capacitors and are present in the kinetic energy matrix Ti,i.

T(i,i′)in = δi,i′ (cdz + 2Cinδi,1 + 2Cinδi,N) (3.45)

T(i,i′)out = δi,i′ (cdz + 2Cinδi,1 + Coutδi,N) (3.46)

T(i,i′)T.L. = δi,i′ (cdz + Coutδj,N) (3.47)

The delta functions fix the boundary conditions at the ends of the resonators, where

the indices represent the position of the field along the resonator (figure 3.6). Each

interior resonator has two nearest neighbors on either end, so each capacitive energy

term has a factor of two not present in the previous analysis. Edge resonators are

each coupled to two interior resonators, and to a transmission line by Cout.

Each lattice site exchanges energy by capacitively coupling the fields from nearest

neighbor sites φi and φ′i. The coupling Lagrangian in equation 3.43 takes into account

the energy exchange with three different capacitive coupling terms: inner-inner, inner-

outer, and outer-transmission line. The coupling Lagrangian is of the form,

Lcoupling =− Cin
interior∑
<i,i′>

φ̇iφ̇i′

− Cin
edge∑
<i,i′>

(
φ̇iφ̇i′ + φ̇iφ̇i′

)

− Cout
edge∑
<i,i′>

φ̇iψ̇i′ .

(3.48)

To extract the photon hopping rates it is convenient to switch from the Lagrangian

picture to the Hamiltonian picture. This transition can be made easier by considering

the generalized eigenproblem V an = ω2
nTan (section 3.2.4) and expressing the field

operators in terms of eigenmodes φi →
∑

n ξi,nϕi,n(z) and ψi →
∑

n ζi,nϕ̃i,n(z), where
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n is the mode number. The resulting resonator Lagrangian can be written as

Lres =

resonators︷ ︸︸ ︷
N∑
i=1

∑
n

(
ξ̇2
i,n −

1

2
ω2
i,nξ

2
i,n

)
+

ports︷ ︸︸ ︷
edge∑
i=1

∑
n

(
ζ̇2
i,n −

1

2
ε2i,nζ

2
i,n

)
, (3.49)

where ωn is the resonator field frequency, and εn is the transmission line field fre-

quency. The coupling Lagranian becomes

Lcoupling =− C
in

(
interior∑
<i,i′>

ϕ̇i,n(0)ϕ̇i′,n(lres)ξ̇
2
i,nξ̇

2
i′,n

)

− C
in

(
edge∑
<i,i′>

ϕ̇i,n(0)ϕ̇i′,n(lres)ξ̇
2
i,nξ̇

2
i′,n + ϕ̇i,n(0)ϕ̇i′,n(lres)ξ̇

2
i,nξ̇

2
i′,n

)

− Cout

(
edge∑
<i,i′>

ψ̇i,n(lres)ψ̇i′,n(0)ζ̇2
i,nζ̇

2
i′,n

)
.

(3.50)

Now using ~y = (ξ1,1, ζ1,1, · · · ), the Lagrangian can be cast into a more convenient

matrix notation.

L =
1

2
~̇y ᵀ(I +K)~̇y − 1

2
~y ᵀ


ω2

1,1

ε21,1
. . .

ω2
i,n

ε2i,n

 ~y (3.51)

where the coupling Lagrangian has been written as Lcoupling = 1
2
~̇y ᵀK~̇y.

The Hamiltonian is the Legendre transformation of the Lagrangian H = pẏ − L,

and here it can be obtained by perforing a Legendre transformation on the velocity

vector ~̇y, to obtain the new momentum vector ~p = ∂L/∂~̇y = (I + K)~̇y. Additionally

it will be assumed that (I + K)−1 ≈ (I − K), (valid for K � 1). The resulting
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hamiltonian is of the form.

H = Hres −Hcoupling

= ~p ᵀ~̇y − L

=
1

2
~y ᵀ


ω2

1,1

ε21,1
. . .

ω2
i,n

ε2i,n

 ~y +
1

2
~p ᵀ~p− 1

2
~p ᵀK~p

(3.52)

Using the canonical quantization for the momentum and position vectors ~pi,n =√
ωi,n/2 (ia†i,n − iai,n) and ~yi,n = 1/

√
2ωi,n (a†i,n + ai,n), and then using the RWA,

the Hamiltonian begins to take a more familiar form. Now it can easily be seen

that the resonator term is of the form of the energy term in a harmonic oscillator,

Hres =
∑N

i=1 ωi,n(a†i,nai,n + 1
2
); although the coupling term Hcoupling = −1

2
~p ᵀK~p re-

quires further analysis to obtain the photon hopping rates.

The analysis can be made simpler by considering only the fundamental mode

n = 1. For a CPW resonator the fundamental mode is λ/2 which implies ϕi(0) =

−ϕi(lres). The resulting coupling Hamiltonian is

Hcoupling =− Cin |ϕin(0)|2 ωin
2

interior∑
<i,i′>

(
a†iai′+1 − a†iai′−1 + h.c.

)

Cinϕin(0)ϕout(0)

√
ωinωout

2

edge∑
<i,i′>

(
a†iai′+1 − a†iai′−1 + h.c.

)

Coutϕout(lres)

√
ωout
2

edge∑
<i,i′>

∑
n

ϕ̃n(0)
√
εn

(
a†ibi′ + h.c.

)
(3.53)

Leveraging the assumption of the fundamental mode again, it can be assumed

that the field is of the form ϕ(z) = A cos(zωn
√
lc), and the coefficient A can be

solved using normalization 1 = A2c
∫
dzϕ2(z) = A2clres/2. Considering just the bath

coupling term in the Hamiltonian (term containing Cout); the decay rate κ from a
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single edge resonator to a transmission line can be extracted with the use of Fermi’s

golden rule. The density of states in a single edge resonator for the fundamental mode

is ρ(ω0)→ dN/dE = lres
√
lc/π. The resulting decay rate is given as

κ =
2π

~
|〈i|Hport|f〉|2 ρ(Ei)

= 2π

∣∣∣∣14ϕ2
out(lres)ϕ̃

2
n(0)ω2

0C
2
out

∣∣∣∣ ρ(ω0)

= 2π

∣∣∣∣14 2

clres
cos2(lresω0

√
lc)

2

clres
ω2

0C
2
out

∣∣∣∣ lres
√
lc

π

= 2π

∣∣∣∣14 2ω0Z0

π
ω2

0C
2
out

∣∣∣∣ 2Z0

π

=
2

π
ω3

0Z
2
0C

2
out

(3.54)

which is of the same form as equation 3.29. For a lattice with many edge resonators

coupled to transmission lines, the total decay rate of the lattice, or the external quality

factor, Qext, of the lattice is effected by all edge resonators coupled to transmission

lines. If each edge has a different coupling the total decay rate is

κtotal =

(
1

κ1 + κ2 + . . .+ κNout

)−1

(3.55)

where Nout is the number of edge resonators coupled to transmission lines.

Considering the internal coupling hamiltonian, there are two types of internal

coupling rates, inner-inner, and inner-edge. Here it is assumed that these hopping

rates are equivalent which implies that ωin = ωout, and ϕin(0) ≈ Φout(0). Following

this assumption the internal hopping rate is given as

tin = Cin |ϕin(0)|2 ω0

2

≈ Cin
2

clres

ω0

2

=
Cinω

2
0Z0

π

(3.56)
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a	   b	  

Figure 3.7: Experimental values of the nearest neighbor photon hopping rate a, and
the photon escape rate b. The figures are plotted from equations derived in this
chapter, with capacitances determined numerically from finite element software An-
soft Maxwell. a Using equation 3.56, the hopping rate is plotted for two different
capacitor geometries. In comparison to optical cavities the capacitor functions as a
mirror, and the transparency can be tuned by adjusting the gap between cavities. The
parameters used for this calculation were ωr = 8GHz, Z0 = 50Ω, and Cin from the
finite element calculation. The two curves are for capacitor geometries with a 200µm
wide paddle (red) and a 220µm wide paddle (blue) (see figure 3.10 for example of
capacitor geometries). b Using equation 3.54, the same parameters the external hop-
ping rate κ was determined for a capacitor with a 220µm wide paddle. Also plotted
is Qext, which is determined by the sum of all resonators coupled to a transmission
line (equation 3.55). For the plotted Qext a lattice with four equally coupled output
resonators were considered κtotal = 4κ.

It is worth noting here that this is only the magnitude of the inner hopping rate.

Due to the λ/2 nature of the fundamental mode of a CPW resonator there is an

awkward minus sign present in the coupling Hamiltonian. This minus sign leads

to a frustrated hopping lattice, and for the honeycomb geometry leads to localized

modes within the hexagon of the lattice figure 3.8. These localized modes are highly

degenerate for a disorder less lattice, and result in a dispersion less photonic band

called a flatband. The physics of this flatband will be discussed in more detail in

subsequent sections. Here one can treat the minus sign mathematically by doing a

gauge transformation with the creation and annihilation operators; using ai/a
†
i →

ci/c
†
i and di/d

†
i . The result is the well known tight binding Hamiltonian.
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Figure 3.8: a The alternating sign of the field in a λ/2 resonator will result in frus-
trated coupling elements. For the honeycomb geometry shown here the effect of
frustrated coupling is the destructive interference of fields outside the inner hexagon,
and can result in localized modes within the hexagons [80, 59, 77]. b The frustrated
coupling leads to a minus sign in the coupling hamiltonian. The sign of the hopping
can be theoretically handled with a gauge transformation.

H = tin

interior∑
<i,i′>

(c†ici′+1 + c†ici′−1 + h.c.) + tin

edge∑
<i,i′>

(c†idi′+1 + c†idi′−1 + h.c.) (3.57)

The two terms in the Hamiltonian correspond to hopping between interior lattice

sites, and hopping to the edge sites. With this Hamiltonian all photons are contained

within the lattice. In order to consider the effects of lattice decay one would need

pursue an open quantum systems approach. In this case a Linblad master equation

should be considered.
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3.4 Lattice design and fabrication

3.4.1 Lattice design

The physical orientation of the microwave resonators is a honeycomb geometry. Sub-

sequent chapters will discuss how the photonic lattice is actually a Kagome lattice;

which is the dual of the honeycomb lattice. For design purposes it is only necessary

to consider the honeycomb lattice. The honeycomb lattice is a bravais lattice with

a two atom basis, where the separation between atoms is the lattice constant d, and

the entire lattice can be spanned with lattice vectors ~a1 and ~a2.

~a1 =
d

2

[
3,
√

3
]

(3.58)

~a2 =
d

2

[
3,−
√

3
]

(3.59)

A very notable realization of the honeycomb lattice is graphene [76]. In the graphene

lattice the atoms sit on the vertices and are separated by edges of length d. However,

in a honeycomb lattice of CPW resonators the vertices are the coupling elements,

composed of three-way coupling capacitors, and the resonators are the edges spanning

a length d that separates the coupling capacitors (figure 3.9).

For designing large honeycomb lattices, the use of lattice vectors can be very

advantageous. By first designing a unit cell composed of three resonators (figure

3.10), a lattice can be easily tiled by spacing unit cells at integer lengths of ~a1 and ~a2.

Unfortunately with this method issues will arise along the edges of the lattice and can

be cumbersome to deal with. All the lattices were designed using python, and then

saved in an Autocad dxf file format using the dxfwrite library. Conveniently these

files are also compatible with the Heidleberg mask maker in the shared cleanroom.

Designing a large honeycomb lattice of resonators required significant forethought

and understanding of the fabrication process in order to make a symmetric disorder
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Figure 3.9: A simple honeycomb lattice with lattice vector d. A realization of the
CPW resonator honeycomb lattice, where each is capable of yielding superconducting
transmon qubits.

less lattice. A useful strategy when designing complicated systems or structures, is to

first list all the limitations and restrictions that create a design constraint, and then

work towards a solution that satisfies the listed design constraints. Here the design

constraints that were considered will be listed, and then a subsequent discussion will

be presented outlining how these constraints were satisfied.

The end goal is a symmetric honeycomb lattice of resonators with a supercon-

ducting qubit coupled to each resonator. Here the foreseeable design constraints were

as follows:

1. a physically small lattice with many sites,

2. identical resonant frequencies at each site ( i.e. ωr,i = ωr,i+1),

3. maintain the same lattice constant d at each site,

4. the qubit position relative to the resonator must be the same for each site; as

shown in figure 3.10 ∆Xqubit, i = ∆Xqubit, i+1

5. each qubit must be oriented along the same axis.
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Figure 3.10: a The unit cell of the resonator honeycomb lattice. Despite the geometric
differences each resonator in the unit cell is designed to be identical in frequency ωr.
The difference is necessary for the qubit fabrication process, which requires each qubit
to have the same orientation. The unit cell device parameters were d = 4000µm,
lres = 7500µm, ∆Xqubit = 570µm, and ωr = 7.48GHz. b Example of a three way
coupling capacitor for a strongly coupled lattice, and c a weakly coupled lattice. d
The output coupling capacitor for strongly coupled lattice, and e a weakly coupled
lattice. f Edge resonator coupled to a λ/4 boundary resonator that is far detuned
from the resonant frequency of the lattice.

A major difficulty associated with designing a two dimensional lattice with many

sites is trying to increase the density of lattice sites, for a predetermined chip size.

For example, the length of an 8 GHz CPW resonator is lres ∼ 7.5mm long, and if

lres = d then the width of a unit cell would be 11.5mm, and such a lattice does scale

reasonably. Typically resonators are designed with a meandering middle section to

reduce the length, and for 2D lattices this works fine as long as the start and end of

the resonator are aligned along the same axis.

In order to ensure ωr,i = ωr,i+1, the length of each resonator must be the same at

each site; additionally each resonator must also have the same number of meandering

sections. It is understood that the effective length of a CPW bend is different than

the effective length of a straight (i.e. lbend = rbendθ 6= lstraight), and a difference in

meander number can result in systematic frequency disorder. Furthermore the bend
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radius chosen needs to be much larger than the feature geometry of the CPW (i.e

rbend � (s+ 2w)).

Integrating qubits in the lattice makes it more difficult to maintain symmetry.

Due to the qubit fabrication process, each qubit must be oriented along the same

axis, and also in order to reduce disorder in the qubit-resonator coupling g each qubit

must be the same distant ∆Xqubit from the capacitor. This will ensure that each qubit

is coupled to the same field maximum Vmax. The result of satisfying all these design

requirements was a unit cell composed of three physically different resonators that are

identical in frequency (figure 3.10). The consequence of satisfying these constraints

was an increase in the lattice vector d which meant that the lattice site density was

reduced.

Measurement in these lattices is performed by driving one edge resonator and

measuring the transmitted signal through a second edge resonator. Edge resonators

that are used for measurement are capacitively coupled to a transmission line. For

large lattices it is inevitable that there will be more edge resonators than measurable

RF lines within the dilution refrigerator. The left over dangling edge resonators were

managed by capacitively coupling to a far detuned quarter wavelength boundary

resonator.

3.4.2 Lattice fabrication

A circuit QED lattice is fabricated using both optical lithography and electron beam

lithography. A lattice without qubits is easily fabricated with standard photolithog-

raphy techniques because the smallest feature sizes are greater than 2µm (figure 3.10)

(standard photolithography starts to become difficult for feature sizes less tha 1µm).

For photolithography, an ∼ 800nm layer of AZ 1508 is used pattern lattices on a

thin 200nm film of Nb that has been sputtered onto a 0.5mm thick epipolished sap-

phire wafer. After exposing and developing the photoresist, a short O2 descum is
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performed to remove any undeveloped resist. Following the descum the Nb is etched

for 40s in SF6 plasma, inside an inductively coupled plasma etcher. After etching,

the left over photo resist is chemically removed and then another ’protective’ layer

of resist is applied so the lattice can be put into a dicing saw, and cut to the proper

size. Post dicing, the protective resist is chemically removed and then the lattices can

be prepped for qubit fabrication. Since qubits are very delicate devices, they should

always be the final fabrication step!

In this thesis results are only presented for an empty lattice, so only a brief

discussion of the qubit fabrication process will be presented here. As previously

mentioned the lattices have been designed to easily integrate transmon qubits; once

the photolithogrpahy procedures have been completed. The key component of the

transmon qubit is a Josephson junction which is about 100x100nm and fabricated

using a Dolan bridge technique [27]. This technique is a bilayer resist process in which

the bottom layer of resist is exposed leaving the top layer remaining in the form of

a bridge. The bottom layer of resist is a copolymer MMA(8.5) EL 13 (Ethyl-lactate

13%), and spins to about 550nm at 4000rpm. The top layer of resist is PMMA

A3 (955k weight) from Microchem, which spins to approximately 120nm thick at

4000rpm. A more detailed discussion of this fabrication process can be found in [91].

3.5 Packaging

3.5.1 Connecting ground planes

For each lattice it is critical that the ground planes are well grounded! For typical

cQED devices a high density of wirebonds is used to help prevent parasitic slot line

modes [105]. This is particularly important for large lattices because the isolated

ground planes are even more susceptible to slotline modes and undesirable excitations
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in the ground plane. In this thesis various methods have been explored in order to

provide good connections between isolated ground planes and will be discussed.

Wirebonding isolated ground planes is proven to be the easiest and most con-

venient method of connecting ground planes, but there are disadvantages to using

wirebonds. For example wirebonds have a large inductance, and a poorly placed wire

bond can be a source of flux noise in qubits. It has also been shown that a high

density of wirebonds is necessary to impede the propagation of slotline modes [16];

which isn’t always possible on chip. Additionally for large devices, wirebonds are

not a scalable method. The large lattice presented in this thesis are fabricated on a

35x35mm chip, and can contain up to 200 sites. Consequently these lattices require

> 1000 wirebonds that must be individually placed . Even with the help of an auto-

matic wirebonder (Questar Q7000 series) this is a very cumbersome task. It generally

takes many hours, and one slip of the hand can result in a misplaced wirebond that

will ruin a device.

Alternatives to wirebonding have been considered, and are an active area of re-

search within the superconducting qubit community. Here three methods that have

been considered will be discussed and while not all have been implemented for ex-

periments in this thesis, it is believed that these methods present a more scalable

alternative to wirebonds. The methods that have been considered are micro fabri-

cated air bridges, dielectric supported bridges and via holes through the substrate.

Micro fabricated air bridges have been demonstrated in previous cQED experiments,

and have demonstrated a reduction in the slot line modes by reducing the total in-

ductance [16]. While these have been shown to be advantageous over wirebonds there

are concerns and technical difficulties associate with them. The most obvious concern

is that they must all be made with 100% confidence because one collapsed bridge will

result in a shorted ground plane. It is understood that the reliability of fabricating

airbriges increases as the thickness of the metal film increases. One major drawback
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Figure 3.11: Over 1000 wire bonds used to connect ground planes to the copper
circuit board and also the isolated ground planes of a 219 site lattice. In the zoomed
in portion of the picture the high density of wirebonds can be observed. Wirebonds
are placed with ∼ 100µm spacing. Typically placing wire bonds from the copper
circuit board to the Nb chip were the most troublesome. This is a common issue,
and is usually the result of poorly mounting the device to the circuit board, and not
properly cleaning the surface of the circuit board. In general bonding from one Nb
surface to another was not problematic, but it is advised to move carefully because
one slip of the hand can easily produce a wire bond over a center pin; thus ruining
the device.

to these air bridges is the subsequent qubit fabrication. Due to the delicate qubit

fabrication process; qubits must be the final fabrication step, and the post bridge

processing has detrimental effects on bridge structure.

Supported bridges are a safer alternative to air bridges, but the added dielectric

that is used to support the crossover connections will result in undesirable loss. In

this thesis supported bridges were developed and used for experiments involving a

scanning probe that was brought into contact with the surface of the lattice (figure

3.12). Here the support layer was a material called bisbenzocyclobutene (BCB), also

referred to as spin on glass. The type of BCB used was Cyclotene 4022-35 and was

selected because it can be patterned like photoresist using optical lithography, and

it has a very low loss tangent in the microwave regime γ = 0.0002 at up to 10GHz

[68]. BCB is an arduous material to work with, but despite the difficulty it turned
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Figure 3.12: Lithography process for BCB supported bridges that connect isolated
ground planes. Starting with a CPW resonator, the BCB is spin coated on the device.
Following the baking process the BCB is exposed, and since it is a negative resist, the
regions that are not exposed get removed in the developer. The BCB is then cured
at very high temperatures in a vacuum oven. After the BCB has been patterned, a
liftoff photolithography step is used to deposit aluminum over the BCB. The result
is a strip of aluminum supported by BCB.

out to be more reliable than deposited dielectrics. BCB is a negative resist which

means the unexposed regions get washed away during development. It spins to about

4µm thick, and post development it must be cured at 250 C in a vacuum over for

optimal electrical properties. See appendix B.1 for a detailed recipe. Following the

BCB deposition, a 300nm Al film is evaporated over the BCB with connections made

to the Nb ground planes. A 5 degree angled evaporation is used while rotating the

sample; this helped to ensure a conformal film thickness over the edges of the BCB.

Another approach that was considered but not fully tested was using via holes

to connect the upper ground plane to a lower ground plane. It is mentioned here

because ideally it could work without any of the drawbacks previously mentioned.

The process considered would be to laser drill small via holes on a thin sapphire

substrate, and then sputter Nb on both sides of the wafer. For good connections, it
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Figure 3.13: Images of laser drilled holes in a 0.5mm sapphire wafer, pictured with
an old 2x7mm single resonator cQED device for reference. The drilled holes are
shown here to illustrate that it is possible to create via hole ground connections on
isolated ground planes on a large lattice. Furthermore small vias could be developed
on smaller chips for the purpose of quantum simulation. The diameters of the three
hole sizes shown in the two pictures are ∼ 250µm, ∼ 500µm, and ∼ 2mm. These
types of ground connections were not implemented in this thesis, but I believe that
given the drawbacks and technical difficulties associated with other methods via holes
have the more potential for a scalable and more reliable method of connecting ground
planes.

is important to consider the aspect ratio of the substrate thickness and the via hole

diameter. For small diameters and thick substrates, it will be difficult to ensure the

sputtered Nb makes connections through the bias. Here images are shown of small

laser drilled holes in a 0.5mm thick sapphire substrate using a 500Watt YAG laser

(figure 3.13). By first patterning the via holes, devices could easily be patterned

around the via holes resulting in well connected ground planes without unnecessary

wirebonds or crossover bridges.

3.5.2 Printed circuit boards, and sample holders

In order to measure large lattices it was necessary to design and construct new hard-

ware, and new technical expertise in order to measure these devices at low temper-

atures. The technology developed here is complimentary to hardware used in tra-

ditional cQED experiments, but scaled up to incorporate more RF input lines, and

larger chip sizes. Much of the technical challenges that were overcome were related to
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35.3mm 

a b c 

Figure 3.14: Printed circuit board assembly for the dodecahedron sample box. This
assembly is design to neatly package large devices of microwave circuitry in an elctro-
magnetically shielded environment. a, A coverslip that fits over the microwave cir-
cuitry and prevents spurious radiation from coupling to the device. b, The twelve
port PCB designed for larger devices, more specifically lattices of microwave cavities.
The different ports provide different means of driving and measuring external lattice
sites. The wafer sits within the large hole in the center of the device. c, Copper plate
that the PCB is mounted to, in order to support the wafer that sits within the hole
in the PCB.

the difficulty associated with large devices. These technical challenges are addressed

in this section.

All devices must be properly thermally connected to a base plate of a dilution

refrigerator in order for the devices to reach a base temperature of ∼20mK. In order

to do this post fabricated devices are mounted to copper printed circuit board (PCB)

using a conductive cryogenic high performance silver paste (PELCO. Product No.

16047), and then mounted to a sample box machined from oxygen free copper. The

sample box is then secured to the baseplate of the dilution refrigerator. During each

mounting procedure good mechanical contact is essential. Additionally, to promote

thermal conductivity, small amounts of Apiezon N-Grease can be applied between

surfaces.

Since large lattices have many edge resonators, sample boxes were designed to

accommodate up to twelve RF connections; the maximum number of ports possible

(figure 3.15). Maximizing the number of ports also allows for flexibility when de-

signing future experiments. All RF cables used on the sample box and on the base
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b	  

c	  a	   e	  

Figure 3.15: The sample box used to package and mount the large microwave circuits
to the base plate of a dilution refrigerator, in an environment that is electrically and
magnetically shielded. All sample box material is machined out of high purity oxygen
free copper, to ensure maximum thermal conductivity. a, The assembled microwave
circuit board mounted to the base of the sample box. The RF connectors on the
circuit board align with the holes for RF cables on the lid. b, An overhead view
of the lid. c The sample box assembly is mounted to copper rods that are secured
to the lid of a mu-metal shield. Although not pictured, RF cables will secure to the
mu-metal lid and extend to the lid of the sample box. d Complete mu-metal shielding
for sample box, that is mounted to refrigerator baseplate. Maximum flux shielding is
achieved when the sample box positioned near the bottom of the Mu-metal shield.

plate of the dilution unit were made from semi-rigid UT-85C-TP-LL cables, and were

custom made for each sample box. Unused sample box cables were terminated with

50Ω terminators. The sample boxes were designed to fit within a Mu-metal shield

that was thermally anchored to the base plate with thick oxygen free copper braids.

The Mu-metal shield provides necessary shielding from unwanted flux noise.

The PCBs were designed and then constructed from Arlon AD1000, which is a low

loss dielectric sandwiched between electrical grade copper (figure 3.14). The material

and the design were sent to Hughes Circuits to be made. All transmission lines on the

PCB were designed to be 50Ω, and the upper and lower copper plates were connect by
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a high density of via holes. For smaller chips sizes the center of each chip was milled

out to leave a pocket just large enough for a fabricated devices. For large lattices the

pocket size was too large and the entire region was milled out. In order to secure

the device to the PCB, a copper plate was soldered to the backside of the PCB using

Amtech NWS-4100 solder. RF connectors were soldered to the topside of the PCB

with NWS-4100 by carefully applying the solder and then heating on a hotplate for

a few minutes at 225oC. For best results a generous amount of solder is suggested.

Prior to mounting devices to PCBs it is critical that the device is properly cleaned

and polished. A thick oxide will be formed on the PCBs after connectors have been

soldered, and this must be removed or else wire bonding will not be possible. The

treatment found to work best is as follows: soldering flux is first used to remove

the unwanted oxide, followed by a Q-tip covered in IPA to remove the corrosive flux.

Afterwards a fiberglass pen is gently used around the edge of the cutout region in order

to polish the surface, followed by Q-tip covered in IPA to remove any residual copper.

After cleaning the PCB the device can be securely mounted using the conductive

silver paste. Here it is important to apply a uniform layer so the device sits flat.
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Chapter 4

The Photonic Kagome Lattice

4.1 Introduction

An idea of growing interest is to use photons as particles in a quantum simulator for

non-equilibrium systems [61, 42, 38, 3, 43, 75, 47]. According to this idea, a photon

lattice is created with an array of cQED elements, each consisting of a photonic cavity

coupled strongly to a two level system, or qubit. In these lattices, photons can hop

between neighboring cavities and experience an effective photon-photon interaction

within each cavity, mediated by the qubit. The superconducting circuit architecture

is an attractive candidate for realizing such lattices due to the flexibility afforded by

lithographic fabrication and the relative ease of attaining strong coupling [8]. Such

cQED lattices have been predicted to exhibit a wide variety of phenomena, including a

superfluid-Mott insulator transition [61, 42, 38, 3], macroscopic quantum self trapping

[87], and even fractional quantum Hall physics [43].

Prior to fabricating such a complicated system a necessary first step is to under-

stand a lattice without qubits. This chapter focuses on understanding the empty

lattice, more specifically the photonic Kagome lattice which naturally arises from a

two-dimensional lattice of transmission line resonators. The signature of the Kagome
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lattice is the triangular plaquettes that make up the unit cell (figure 4.1); the source

of geometric frustration in the Kagome lattice. For this reason the Kagome lattice

has been a model of great theoretical interest for the study of frustrated spin systems,

and magnetism. For example it was used for the first proof of ferromagnetism on the

Hubbard model [69]. More recently there has been significant interest on studying

the ground state of interacting bosons [49, 80, 106]. The cQED lattices proposed in

this thesis represent an ideal architecture for realizing such a system of interacting

bosons.

Much of the interest in the Kagome lattice is due to the dispersionless band that

forms from the geometric frustration. This can be observed in the band structure, and

in this chapter a derivation of the Kagome lattice band structure will be presented,

along with a discussion of other unique properties associated with the Kagome lat-

tice. Transport measurements are the standard form of measurement used in these

experiments. A subsequent discussion on how these measurements are conducted is

presented. Subsequently, a transport measurement on a 219 site lattice will be pre-

sented and shown to comply with expected results from tight binding calculations.

In order for these lattices to be a useful for quantum simulation it is necessary to

be able to reliably fabricate low disorder lattices. To demonstrate this the smallest

complete two dimensional Kagome lattice (a 12-site lattice) was studied to asses the

reliability of the fabrication process. This is refereed to as a Kagome star and in this

experiment 25 different devices were measured for two different photon hopping rates

ti,j = 0.8MHz and ti,j = 31MHz. The spectra from transport measurements were

analyzed in order to study the effects of random disorder. By modifying the CPW

resonator geometry the random disorder was shown to be reduced to a few parts

in 104 of ωr, indicating that a lattice-based quantum simulator is a realizable goal.

The work on the Kagome star was published in Physical Review A [100], and in this

chapter a detailed review of how these results were achieved will be presented.
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Figure 4.1: The Kagome lattice is the reciprocal lattice of the honeycomb lattice.
Here both lattices are illustrated. The Kagome lattice is a bravais lattice with a
three atom basis, described by primitive vectors a1 and a2, and basis vectors r1 and
r2. Each atom in the unit cell is indicated by a different color. The labeling scheme
(a,b,c) is used in the subsequent derivation of the band structure.

4.2 Kagome Lattice Bandstructure

The Kagome lattice has a very unique band structure. The most interesting aspect

of the band structure is the dispersionless band that is consequence of the destructive

interference on the triangular plaquettes. Here a derivation of the band structure is

presented beginning with a tight binding hamiltonian [59].
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The primitive vectors that define the Kagome lattice are given as

~a1 = a(1, 0) (4.1)

~a1 = a(1,
1√
3

) (4.2)

and the basis vectors that describe the unit cell can be expressed as

~r0 = (0, 0) (4.3)

~r1 =
~a1

2
(4.4)

~r2 =
~a2

2
(4.5)

The allowed energy levels of a Kagome lattice are given by a tight binding hamiltonian,

HTB = ωr
∑
n,m

(
a†n,man,m + b†n,mbn,m + c†n,mcn,m

)
+

t
∑
n,m

(a†n,mbn,m + b†n,mcn,m + c†n,man,m+

a†n−1,m−1cn,m + a†n+1,m−1bn,m + c†n+1,mbn,m) +H.C. (4.6)

where the a, b, c (a†b†c†) are the creation (annihilation) operators for photons for

nearest neighbor sites, and the coupling scheme can be observed in figure 4.1. The

momentum space representation of the tight binding hamiltonian can be obtained by

performing a Fourier transform on HTB.

HTB = ωr
∑
~k

(
a†~ka~k + b†~kb~k + c†~kc~k

)
+

t
∑
~k

(
2a†~kb~kcos(~k · ~r2) + 2b†~kc~kcos(~k · ~r1) + 2c†~ka~kcos(~k · ~r1 − ~r2)

)
+H.C.

(4.7)
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Figure 4.2: Bandstructure of a Kagome lattice calculated with equations 4.9. The
allowed energies have been shifted by ωr, and normalized to the hopping rate t. Three
bands are observed, with the lowest energy band being a dispersionless band at energy
ε(k) = ωr − 2t. With the exception of the flatband, the Kagome band structure is
very similar to that of graphene. At six points in the first Brilluon zone, the upper
and lower bands meet at a dirac point, at energy ε(k) = ωr+t. The dispersion around

these singular points changes linearly with ~k and are known as dirac cones. In this
linear limit the points around the tight binding hamiltonian can be simplified and
shown to give rise to the dirac equation [62, 35].

Using the lattice symmetry this hamiltonian can now be expressed in a block diagonal

from

HTB =
∑
~k

(a†b†c†)


ωr 2tcos(~k · ~r2) 2tcos(~k · ~r1 − ~r2)

2tcos(~k · ~r2) ωr 2tcos(~k · ~r1)

2tcos(~k · ~r1 − ~r2) 2tcos(~k · ~r1) ωr



a

b

c

 (4.8)
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The dispersion ε(k) is thus obtained from diagnolization of the 3x3 matrix and gives

rise to three energy bands.

ε1(k) = ωr − 2t (4.9)

ε2,3(k) = ωr + t± |t|
√

4
(

cos2(~k · ~r1) + cos2(~k · ~r2) + cos2(~k · ~r1 − ~r2)
)
− 3 (4.10)

The resulting band structure has some unique properties. Similar to graphene there

are six dirac points within the first brilluon zone located at

~k = (4π/3a, 2π/3a)

= (−4π/3a,−2π/3a)

= (2π/3a, 4π/3a)

= (−2π/3a,−4π/3a)

= (−2π/3a, 2π/3a)

= (2π/3a,−2π/3a) (4.11)

The signature of these points is the linear dispersion close to the dirac point, and in

this linear limit takes the form of the massless dirac equation [62, 35]. Additionally

the lowest frequency band is a dispersionless band at energy ε(k) = ωr − 2t. For

fermionic systems the unit cell represents a highly unstable spin region, and gives rise

to complicated ground states [29]. Although more relavant to the system of interest

is the study of weakly interacting bosons in a dispersionless band. In this band the

group velocity will be zero dω/dk = 0, and degenerate localized states are expected. If

the flatband is the lowest energy band bosons will condense in these localized states,

and the nature of the ground state will be determined by the interactions of the

bosons [49].
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Figure 4.3: A 219 site lattice Kagome lattice mounted on a copper PCB. The gold
plated SMP connectors are used as input/ouput ports for the lattice. All edge res-
onators that are not connected to input/output ports are capacitively coupled to a
λ/4 resonator that is far detuned from the lattice (see section 3.4.1).

4.3 Transport measurements

Two-dimensional lattices represent a complicated network of microwave circuitry,

but are limited to the same two port measurement techniques used in even the sim-

plest microwave circuitry. In these experiments a vector network analyzer is used

to measure the frequency dependence of lattices by measuring S21 through two edge

resonators. All measurements are conducted in CW mode, and the amplitude of the

observed spectrum is in units of dB= 10Log(V1/V2), where V2 is the voltage measured

at the input port of the analyzer, and V1 is the voltage measured at the output port

of the analyzer. The major drawback to these types of measurements is that only

limited information about interior lattice sites can be extracted, and it is not possible

to directly measure transport through an interior lattice site without breaking the

symmetry of the lattice.

Results are presented for transport measurements on a 219 site lattice conducted

between two edge resonators on opposite sides of the lattice. The observed spectrum

is a measurement of all normal modes with measurable weight of resonators that
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Flat band 

Dirac Point 

Figure 4.4: Transport measurements through 219 site Kagome lattice plotted next to
a planar projection of a Kagome lattice band structure calculation. The measured
spectrum shows three bands that comply with the expected Kagome lattice bands.
The plots were align by shifting the frequency axes by the bare cavity resonance, and
normalized by t. Comparable features are a wide dip in the transmission spectrum is
observed near the expected dirac point is at energy ωr + t; along a low mode density
near this point. Additionally many peaks are observed near the expected flatband
frequency ωr−2t. Since the lower band touches the flatband many peaks are expected
in this region. Discrepancies between data and expected values are believed to be
the result of random disorder, and undesirable slot line modes in the ground plane.
There are many possible sources of slot line modes, but most the most common source
is insufficient ground connections (section 3.2.2), and post measurement inspection
points towards this as a major contribution.

are coupled to the input and output drive ports of the lattice. While the spectrum

appears to be a complicated mess of peaks, the outline of the three expected bands

can be observed (figure 4.4). By plotting the spectrum in this manner, and next to the

expected band structure, the outline of the three bands becomes more apparent. For

this reason the normalized frequency is plotted on the vertical axis. The frequency

axis of the measured spectrum was normalized with device parameters ωr = 8.55GHz

and t = 27.5MHz.
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4.4 The Effects of Disorder in the Kagome Star

4.4.1 Disorder in the Hamiltonian

Here 25 arrays of microwave cavities have been fabricated and characterized with each

cavity designed to be identical. The focus of these experiments is to understand and

reduce uncontrolled disorder in arrays of resonators in a kagome geometry. It was

discovered that disorder in the individual resonator frequencies mainly originates from

variations in the kinetic inductance due to small changes in the transverse dimensions

of each resonator. The disorder was reduced to less than two parts in 104 with a

suitable choice in the geometric layout of the transmission line resonators.

The system of coupled cavities is described by the Hamiltonian:

H =
∑
i

~(ωr + δi)(a
†
iai + 1

2
) +

∑
j>i

~tij(a†jai + a†iaj) (4.12)

where a†i , ai are the photon creation and annihilation operators corresponding to res-

onator i in the array. Where the frequency of resonator i and its shift due to random

disorder is given by ωr and δi, respectively. As derived in section 3.3.1 the hopping

rate between resonators i and j is given by

tij = 2Z0Cij(ωr + δi)(ωr + δj), (4.13)

where Cij denotes the coupling capacitance between the cavities and Z0 the charac-

teristic impedance of the transmission line [77]. The array studied consists of twelve

resonators coupled capacitively at their endpoints in a two-dimensional kagome ge-

ometry (figure 4.6). Photon hopping was achieved by coupling triples of resonators in

the interior of the array with symmetric three-way capacitors. This coupling scheme

naturally results in a kagome lattice.
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In an ideal array with uniform resonator frequencies ωr and hopping rate t, the

spacing between normal mode frequencies scales linearly with the photon hopping

rate, with a frequency separation between the highest and lowest modes of (3 +
√

5)t;

which arises from diagonalizing the 12x12 matrix resulting from equation (4.12). As-

suming that disorder in coupling capacitances is negligible, it is discovered that dis-

order in resonator frequencies leads to shifts of the normal mode frequencies through

the first term in equation (4.12) by an amount ∼ δi, whereas the additional disorder

in tij only results in corrections ∼ δit/ωr. Since ωr � tij, we can thus approximate

the photon hopping rate to be uniform with value t = 2Z0C ω
2
r for nearest-neighbor

resonators (equation 3.56), and tij = 0 for other resonator pairs. Therefore, the pri-

mary focus of these experiments is concerned with effects of disorder in resonator

frequencies (i.e. reducing δi).

4.4.2 Distribution of Disordered Normal Modes

Without disorder, there are eight distinct mode frequencies, four of which are doubly

degenerate. The presence of disorder breaks the degeneracy, widens the distribution

of normal mode frequencies, and results in twelve distinct frequencies. We study

the effects of disorder by numerically diagonalizing the Hamiltonian (equation 4.12)

for random {δi} drawn from a Gaussian distribution with a standard deviation σ.

The resulting histogram for the number of eigenmodes N(ω) dω in a given frequency

interval [ω, ω+dω] is shown in figure 4.5 for varying amounts of disorder σ. When σ �

t, disorder is negligible and the normal mode frequencies are all close to those of the

ideal lattice. As σ increases and becomes larger than t, the peaks in the distribution

associated with individual normal mode frequencies broaden and ultimately merge.

Once merging occurs, the observed mode frequencies and corresponding modes can

no longer be easily identified with the idealized modes, and the device is considered

to be dominated by disorder. In the limit of σ � t, the normal mode histogram
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Figure 4.5: (Color online) The normal mode histogram in the presence of disorder.
Normal mode frequencies are calculated from equation (4.12) using a set of {δi}
drawn from a Gaussian distribution with standard deviation σ. For each value of
σ, this procedure is repeated 107 times. Histograms are generated from 107 disorder
realizations (for each value of σ), and are normalized to the maximum number of
counts for clarity. For σ � t, the histogram is dominated by disorder and forms a
single Gaussian. For σ � t, the histogram shows sharp peaks corresponding to the
ideal normal mode frequencies.

approaches a single Gaussian of width σ from which the overall disorder of individual

resonator frequencies can be extracted. For this reason, devices with a small hopping

rate t are ideal for discerning the effects of disorder.

4.5 Kagome Star Device

By design, each coplanar waveguide resonator had a frequency of ωr/2π ≈ 7 GHz, and

an impedance Z0 = 50 Ω. At the outer edges of the array, each cavity is capacitively

coupled to a transmission line, resulting in a photon escape rate κ = 4Z2
0C

2
outω

3
r to

the continuum (equation 3.54). This allowed for transport measurements through
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Figure 4.6: a) Device picture of twelve capacitively coupled resonators. The overlaid
orange dashed lines have been drawn between the coupled resonators and illustrate
how the photonic lattice sites form a single kagome star. Transmission was measured
between the ports labeled ”Input” and ”Output”.b,c) Images of symmetric 3-way
capacitors with low hopping rate (t/2π = 0.8 MHz) with 10µm and 40µm wide
center pins. d) Capacitor with high hopping rate (t/2π = 31 MHz) and 40µm wide
center pin. e) Image of outer coupling capacitor (κ/2π = 0.05 MHz) for 40µm center
pin. f) Cross-section of coplanar waveguide resonator with center pin width a, on a
dielectric substrate εr.

opposite ports (figure 4.6) of the array using a vector network analyzer. The unused

ports were connected to 50 Ω terminators, though no significant difference was ob-

served when the ports were left open. Each device was cooled to a base temperature

of 20 mK inside a dilution refrigerator – a necessary requirement for future quantum

simulations with small numbers of polaritons [61, 42, 38, 3, 43, 59].

Results for the set of 25 devices is summarized in Table 4.1, includes samples with

two distinct hopping rates of t/2π = 0.8 MHz and t/2π = 31 MHz, which were ob-

tained from equation (4.13) by using values for the coupling capacitances determined

using a finite-element calculation. While the high-t devices allow us to access t� σ

and are most useful for quantum simulation, the low-t devices are the better choice

for characterizing disorder.
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t/2π (MHz) a (µm) σ/2π(MHz) σ/t # Measured
0.8 10 9.1± 2.8 11.5 13
0.8 20 3.9± 1.2 4.9 4
0.8 40 1.4± 0.8 1.7 4
31 40 1.3± 0.3 0.04 4

Table 4.1: Results extracted from 25 measured devices. Devices were characterized
with two different photon hopping rates t and three different center pin widths a. The
random disorder σ was extracted from peak positions of the transmission spectrum
for each device. The disorder is observed to decrease for increasing a. The ratio σ/t
is a metric of how the normal mode frequencies are effected by disorder. For the
40µm devices, σ is reduced to less that two parts in 104 of ωr/2π. All uncertainties
are computed from standard deviation of individual measurements.

4.6 Disorder Analysis on Transmission Spectra

We extract normal mode frequencies from the peak positions in the measured trans-

mission spectra (figure 4.7 a)-c)) in order to determine the disorder. To account for

small systematic shifts in devices made in separate fabrication batches, all frequencies

were expressed relative to the mean peak frequency of each spectrum, and normal-

ized to t. For low-t devices, not all twelve peaks are always visible. Such “missing”

peaks can be due to normal mode degeneracies (occuring in the ideal case), as well as

normal modes with small or vanishing amplitude in either of the resonators coupled

to the input or output port.

For low-t devices, analyzing the peak positions provides a systematic method for

extracting σ from a transmission measurement. Specifically, the disorder strength

can be extracted from the peak positions using:

σ2 =

〈
1

n

n∑
i=1

δ2
i

〉

=

〈
1

n

n∑
i=1

(
Ωdis
i − Ω̄dis

i

)2

〉
− 1

n

n∑
i=1

(
Ωi − Ω̄i

)2
, (4.14)

where n = 12 is the number of resonators in each sample, Ωi and Ωdis
i denote the twelve

normal mode frequencies in the absence and presence of disorder (supplementary A.1).
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Figure 4.7: Transmission spectra for measured devices. The first column shows spec-
tra for devices with a) t/2π = 0.8 MHz, a = 40µm, b) t/2π = 0.8 MHz, a = 20µm,
c) and t/2π = 0.8 MHz, a = 10µm. The width of the spectrum decreases for increas-
ing resonator width, demonstrating a decrease in σ. The second column d),e) shows
transmission spectra for two nominally identical devices with t/2π = 31 MHz and
a = 40µm. Each scan contains twelve well defined peaks that are consistent between
the two devices. Peak positions are similar to those expected, when accounting for a
systematic edge effect due to the difference between inner and outer capacitors. The
inset shows the lowest energy mode that is localized on the inner six resonators in
the absence of disorder.

Here Ω̄i and Ω̄dis
i are their means (for a single disorder realization), whereas ensemble

averages over disorder realization are denoted by 〈·〉. In the disorderless case, the

“variance” of the normal mode frequencies of the kagome star is 3t2.

Applying this method to samples with a standard 10µm width of the transmission

line center pin, it was found that the disorder σ/2π = (9.1 ± 2.8) MHz was larger

than expected from resonator length variations due to finite resolution in optical

lithography. To investigate the origin of this disorder, devices were fabricated with

different widths a of the center pin, while maintaining a constant Z0. As a result a

systematic dependence of disorder on a was discovered.
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By increasing the center pin width devices with small disorder were found to

be reproducible, subsequently four high-t (strongly coupled) devices were fabricated

and studied. Transmission spectra for all four of these devices revealed very similar

normal mode frequencies, confirming that disorder was small. Two representative

transmission spectra are shown in figure 4.7 d, e. For all high-t devices, the lowest

energy mode is significantly smaller in amplitude than the other eleven modes. In the

absence of disorder, the lowest energy mode is localized to the six inner resonators and

cannot be driven from any port. For the infinite kagome lattice, it is these localized

states that lead to the known flat bands [59, 70, 69, 71]. Disorder in the array weakly

breaks this localization and causes the mode to acquire a small amplitude in the outer

resonators.

For high-t devices, σ is small compared to t and both variances on the right-hand

side of Eq. (4.14) are large and nearly cancel each other. Consequently, an alternate

method to extract σ in these devices is used. In devices where t� σ, the twelve peaks

are easily identifiable in the transmission spectra and directly indicate the variation

in individual normal mode frequencies. In this limit, the frequency Ωdis
j of the jth

normal mode can be expanded to lowest order in the {δi} as

Ωdis
j = Ωj +

∑
i

∂Ωj

∂δi
δi. (4.15)

The variance of this normal mode frequency with respect to disorder is then

σ2
j =

〈(
Ωdis
j

)2
〉
−
〈
Ωdis
j

〉2

=
∑
i

(
∂Ωj

∂δi

)2

σ2. (4.16)

The partial derivatives in equation (4.16) can be calculated numerically. Doing so, one

finds that for each pair of degenerate normal modes the two normal mode frequencies
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Figure 4.8: The magnitude of Lk is shown to change drastically for increasing a (blue),
but the ratio Lm/Lk (red) is shown to increase 3 orders of magnitude, demonstrating
that Lm is less sensitive to resonator geometry. Consequently for ωr ∝ 1/

√
(Lm + Lk)

small changes in Lk result in significant changes in ωr.

depend on mutually exclusive sets of the {δi}. Thus, these two eigenfrequencies

fluctuate independently about a common mean value. In order to estimate disorder

σ from the measurements of the high-t devices, first the variance of the frequencies

corresponding to each set of singly or doubly degenerate normal modes is calculated.

Then, using equation (4.16), the variance is scaled by the sum of the squares of the

partial derivatives to calculate an estimate for the disorder σ. Finally the average

of the estimates for σ is found for all of the sets of normal modes, weighted by the

order of the degeneracy of each set. Using this method, a σ = (1.1 ± 0.6) MHz is

determined, which is well into the limit of σ � t.

4.7 Geometric Dependence of Kinetic Inductance

The magnitude of disorder decreases with increasing center pin width (figure 4.10).

This dependence of disorder on the device geometry can be attributed to random

variations in the width of the center pin that arise during microfabrication. These
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Figure 4.9: SEM image showing the undesired effects of the fabrication process. The
features were designed to maintain a 50 Ω impedance, with feature sizes a = 10µm
and s = 4.186µm. The image on the left shows a measured centerpin width of
a = 10.27µm and a gap size s = 3.749µm. Deviations in the CPW feature sizes are
understood to be the main source of frequency disorder in CPW lattices. The image
on the left shows the serrated edges produced by the plasma etch process used to etch
200 nm of Nb (appendix B.2 for etch recipe). This is also considered to contribute to
the effects of random disorder in these lattices.

variations in width result in variations in the kinetic inductance Lk, which in turn

affects the resonator frequency through the relation:

ωr =
1

2
√

(Lm + Lk)Ctot

(4.17)

where Lm is the intrinsic magnetic inductance and Ctot is the total capacitance. In

normal metals, Lk is suppressed by electron scattering but in superconductors the

DC electrical resistance is vanishing and Lk is no longer suppressed. A discussion on

how to calculate Lm and Lk is presented in chapter 3.2.1.

Although Lk is more relevant in superconductors, it is still two orders of magnitude

smaller than Lm, for the device geometry considered here; however, Lk is significantly

more susceptible to geometric deviations than Lm (figure 4.8). For a single resonator,

Lk typically only results in a small shift in ωr [33, 32]. For arrays of coupled resonators,
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Figure 4.10: Random disorder versus center pin width for all devices. Disorder ex-
tracted from low-t devices is plotted in black with upward pointing triangles, while
disorder extracted from high-t devices is plotted in green with a downward pointing
triangle. The curve shows the difference in frequency for two resonators, one with
center pin width equal to the value on the horizontal axis and the other with a center
pin width 600 nm smaller and dielectric gap 1200 nm larger. Error bars are computed
from standard deviation of individual measurements.

however, these small shifts can introduce significant disorder if the kinetic inductance

contributions vary across the array.

For the small length scales used here, the sensitivity of the kinetic inductance to

variations in a decreases rapidly as the width a is increased [104]1.

In the devices studied variations in the center pin width of up to ∼ 600 nm were

observed and twice that for the dielectric gap, when examining them with a scanning

electron microscope. An example of this can be observed in figure 4.9 where the

centerpin is seen to be ∼ 270nm different than the designed centerline width. The

random disorder expected due to kinetic inductance variations can be estimated by

comparing ωr for cavities of equal length but with widths differing by the observed

600 nm, see figure 4.10. The random disorder observed here is consistent with varia-

1The expression for Lk from [104] is accurate for film thickness less than twice the penetration
depth. It was used here to obtain a rough estimate for the geometric dependence of the supercon-
ductor
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tions in device geometry and can be reduced to less than two parts in 104 by making

resonators with 40µm wide center pins.

4.8 Summary

In this chapter the properties of the photonic Kagome lattice have been presented.

Theoretically it has been shown how the band structure arises from a simple tight

binding Hamiltonian, and also that transport measurements on a lattice of 219 sites

behave according to the expected tight binding calculations. It was also shown that

by reducing the size of the lattice to a single Kagome star it was possible to system-

atically study the source of disorder in these lattices. It was shown that the kinetic

inductance was very sensitive to the geometry of the transmission line resonator, and

that increasing the feature sizes reduced the effects of undesirable disorder to less

than a few parts in 104 [100].

These photon lattices open the door for future experiments looking for quantum

phase transitions and other many-body photon effects in coupled cQED arrays, and

reliably fabricating these photon lattices is an important first step towards realizing

a functional quantum simulator. The Kagome lattice is an ideal choice for such

experiments, because it has a long history of theoretical proposals for being used

as a model lattice for a quantum simulator. Furthermore the naturally occurring

frustration in the Kagome lattice could lead to new proposals for studying the physics

of interacting polaritons in dispersionless bands. Addiotionally, with random disorder

sufficiently reduced future experiments with cavity arrays could be used to study

localization effects by adding controlled amounts of disorder [2, 92].
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Chapter 5

Scanning Probe Microscopy on a

Kagome Lattice

5.1 Introduction

In this chapter a perturbative scanned probe microscopy (SPM) method is presented

that is used to observe the internal mode structure of microwaves within a 49 site

Kagome lattice. This perturbative method provides a means of gaining insight about

interior lattice sites, while only measuring transmission from edge resonators. By

positioning a small piece of dielectric above the surface of a single lattice resonator,

Figure 5.1: Illustration of the perturbative scanning microscopy experiment on a
lattice of microwave resonators. The green square is the scannable defect above a
lattice of coplanar waveguide resonators.
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the frequency will change forming a local defect, furthermore adjusting the position

of the dielectric will allow for tunability of the defect size. The shift in resonance at

a single site will result in a measurable frequency shift of modes that have weight at

that site, with the magnitude of the shift proportional to the strength of the field.

It is worth noting that similar perturbative measurement techniques have been

used to characterize higher order modes in large RF cavities for accelerators [6, 37, 67].

These experiments are referred to as bead-pull experiments, and it has this name

because in the experiment a dielectric bead is pulled on a string through a 3D RF

cavity. The resonances of the cavities can thus be characterized by measuring the

frequency shift as the bead is pulled through the cavity. Furthermore perturbative

scanning measurements have also been used to study mesoscopic physics, where the

coherent flow of electrons in a two dimensional electron gas was measured by using an

AFM cantilever probe to perturb the flow of electrons near a quantum point contact

[28, 99].

The chapter begins by discussing some technical details of the experiment; the

scanning stage, the type of defect used to perturb each lattice site, the Kagome

lattice used in the experiment, and the basic movement of the probe. Next the results

from a calibration experiment will be presented. The goal of the experiment was to

understand how the probe effected the resonant frequency of a coplanar waveguide

resonator, and to quantify the response of the resonator as a function of the height of

the probe. Subsequently the experiment where the defect is scanned over a Kagome

lattice of resonators will be presented. First navigating the probe relative to the

lattice features will be discussed, followed by a detailed treatment of how the mode

weights were accurately extracted from the experimental data. Finally the measured

mode weights of three different normal modes will be presented, and compared to

theoretically predicted mode weights.
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Figure 5.2: On the left a stack of three cryogenic linear nano-positioners mounted
to a gold plated copper frame, that is mounted to the bottom of a Bluefors dilution
refrigerator. The positioner at the bottom of the stack (ANPz101/RES) provides Z
movement with a working distance of 12 mm. The two linear positioners (Attocube
ANPx340/RES) at the top of the stack provide XY movement and have a working
distance of 20 mm. In order to reduce the heating after movement, gold plated copper
plates are mounted between each positioner, and are also mechanically clamped to
copper braid that is then secured to the bottom of the dilution refrigerator. On the
right is a zoomed in picture of the square piece of sapphire glued to a gold-plated
copper rod. The sapphire defect was glued using MMA (methyl methacryllate) ebeam
resist. The defect is pictured above a single coplanar waveguide resonator that is used
for defect calibration.

5.2 Experimental setup

The defect consisted of a 2mm x 2mm epipolished sapphire wafer that was glued to

a copper rod, and then mounted to a three axis nano-positioner scanning stage. In

figure 5.2 it can be seen mounted to the copper stage above a single straight resonator.

The defect was designed to be much wider than the center pin of the resonator, but

shorter than the length of a single resonator. This ensured that the defect would

cover the entire center pin but, would not overlap with multiple resonators.
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Figure 5.3: a The lattice was design was previously discussed in section 3.4.1. A
large lattice was fabricated so that it would be easier to probe a single site without
interfering with other sites. b The lattice unit cell. For all measurements the sapphire
probe was centered over the meandering region. While no qubits were used during the
experiment, the resonators were designed to be qubits could be easily integrated into
the lattice. c Edge resonator capacitor coupled to transmission line for measurement.
d Edge resonator capacitor coupled to quarter wavelength resonator detuned to 10νr.
Here only four edge resonators were coupled to transmission lines for measurement
(indicated with green arrows). The number of measurement ports were limited by
the wiring within the dilution refrigerator. e The BCB supported crossover that
connected isolated ground planes.

5.2.1 Kagome lattice for scanning

The lattice used for scanning contained 49 resonators, with each resonator designed to

have a frequency of νr = 7.48GHz, a nearest neighbor hopping rate of ti,j = 100MHz,

and an edge resonator escape rate of κ = 300kHz. The lattice was fabricated using

photolithography on 200nm of sputtered Nb on a 500µm thick sapphire substrate

(figure 5.3). Isolated ground planes within the lattice were connected with 300nm

aluminum bridges evaporated on top of a 4µm thick pad of bisbenzocyclobutene

(BCB); a very low loss dielectric [68]. Supported cross-over connections were used

instead of wirebonds to prevent shorts to ground when the scanning probe was brought

into contact with the surface. The device was mounted to a copper PCB using high-
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performance silver paste, and wirebonds were used to ground the outer edges of the

lattice, and connect to measurement ports.

5.2.2 Probe movement

To begin each experiment, the probe was slowly moved into mechanical contact with

the surface of the device. Once in contact, moving the probe laterally consisted of an

up-over-down sequence per step; always ending a step with the probe in mechanical

contact with the surface of the device. A transmission measurement was made after

each step in order to observe changes in the spectrum. The changes in transmission

spectrum were then used to gauge the relative position of the probe. For each lateral

up-over-down step sequence, the movements consisted of 100µm up, 100µm over, and

110µm down; ensuring good mechanical contact.

The length of the over step determined the accuracy of the probe position, but

due to the large feature sizes of the lattice and the large size of the sapphire probe,

100µm position uncertainty was more than sufficient. Each lateral step heated the

dilution refrigerator from 15mK to over 90mK and would take several minutes to settle

to base temperature. Measurements were taken between 35-40mK in order to reduce

wait times, and while the lattice without qubits did not require such low temperatures,

all measurements were performed at the same temperature for consistency.

5.3 Defect Calibration

When the defect is positioned above the resonator the effective dielectric constant

εeff of the resonator will change, resulting in a change in resonant frequency ωr =

c√
εeff 2lres

. An analogous way to consider this is that the capacitance per unit length,

C will change as a result of the defect; this will change the resonant frequency, ωr =

1√
CLlres

in a similar way. In section 3.2.1 it was shown that C is proportional to εeff .
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Figure 5.4: a A straight resonator used for defect calibration. For this experiment the
probe was centered over the resonator, then starting from one capacitor it was moved
across the resonator in 100µm steps. After each step a transmission measurement
was made. bfb Cartoon illustration of misalignment between the probe and the
resonator. This type of misalignment resulted in asymmetric coupling to the probe
near the capacitors.

Therefore both of these interpretations provide an intuitive picture for the effects of

the perturbing a resonator, and are accurate as long as the entire resonator is covered

by the defect. However, it was discovered that these expressions do not accurately

describe the situation when the resonator is only partially covered. Consequently

other numerical methods were necessary to quantify the effects of the resonator. In

order to verify the numerics, a calibration experiment was performed, and the results

were compared to simulations from a finite element software package, Ansoft HFSS

(High Frequency Structural Simulator).

5.3.1 Frequency shift vs probe y-position

A single transmission line resonator with no meandering lines was used to calibrate the

effect of scanning a dielectric probe over the surface of a resonator (figure 5.4 a). The

resonator was 7500µm in length, had an unperturbed resonant frequency of νr = 8.2

GHz and a cavity decay rate of κ = 2 MHz. In order to fully calibrate the effect of

the sapphire probe, the frequency response of the cavity was measured for 92 different
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Figure 5.5: The measured frequency shift of a long straight transmission line res-
onator, at different probe positions along the transverse axis of the resonator. At
each position the probe is centered over the resonator and is in mechanical contact.
The curve was produced by an HFSS simulation for a flat probe that is 2µm above the
surface of the resonator. This height difference between experiment and simulation
is related to the asymmetry at maximum shifts and is understood to be the result
of probe tilt (figure 5.4 b). The symmetric shifts about the center of the resonator
are expected for a λ/2. Here the maximum shifts occur when the edge of the probe
is directly above the edge of the capacitor, and the probe couples most strongly to
the field inside the cavity. When the probe is centered over the resonator, it is only
weakly coupled to the field inside the cavity.

probe positions. The spacing between each probe position was 100µm, and the probe

was centered over the resonator in mechanical contact for each measurement.

In the measured frequency shift, a sinusoidal dependence was observed as a func-

tion of the probe position (figure 5.5). This behavior is expected for a λ/2 resonator,

because the electric field amplitude is at a maximum near the capacitors and zero at

the center. As observed, the frequency of the resonator was most drastically effected

when the probe was strongly coupled to the field in the resonator. A maximum shift of

680MHz occurred when the probe was above one end of the resonator, and a minimum

shift of 80MHz was observed when the probe was centered over the resonator. As

seen in figure 5.5, the agreement between the measured frequency shifts and the HFSS

calculation show very good agreement, validating the use of this software package.
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A 22MHz asymmetry between maximum shifts was observed and is understood

to be caused from misalignment between the probe and the resonator (figure 5.4 b).

Misalignment angles of θ‖ ∼ 0.02deg and θ⊥ ∼ 0.06deg, were determined by compar-

ing measurements to finite element simulations (figure 5.6 a). The misalignment is

understood to result from the adhesive used to glue the sapphire to the copper rod,

and also the conductive paste that was used to secure the resonator to the copper

circuit board.

5.3.2 Frequency shift vs probe z-position

By adjusting the vertical separation between the resonator and the probe, the resonant

frequency can be tuned in a controlled manner. On a single resonator the change in

resonant frequency can be measured directly, but in a large lattice the change in

frequency when one site is perturbed does not directly provide the frequency shift

as a function of height. In order to determine the shift in resonance of a lattice

resonator, a calibration metric was developed from the measurements on the single

resonator. The probe was positioned near a field maximum, then from contact was

moved vertically away in 2µm steps. After each step a transmission measurement

was made.

The shift as a function of probe z-postion (δr(z)) for single resonator was analyzed

and a ’best fit’ function was used to describe the observed shift. The function was a

second-order rational function of the form

δr(z) = f(z) =
a

z2 + bz + c
+ d, (5.1)

where a, b, c, and d are free fit parameters. An HFSS calculation was also done

to model the probe z-position and demonstrated a similar curvature (figure 5.6 a).

However, curve for the measured shift and the curve for the HFSS calculated shift
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Figure 5.6: The shift of a single transmission line resonator is plotted as a function
of the vertical position of the dielectric probe. For both measurement and simulation
the edge of the probe is positioned 446µm from the edge of the capacitor. The edge
of the capacitor is considered to be the probe position at maximum shift. a) The
contact z-position of the measured frequency shift was adjusted to be 1.5µm in order
to align the data with the simulation. The fit function was applied to measurement
and simulation demonstrating the validity of the fit. The divergence at intermediate
probe heights is not well understood, but is considered to be due to a combination of
probe misalignment and error in the probe position. The coefficients used in the fits
were; for the measured data: a = -52.636, b = 57.148, c = 16.216; for the HFSS data:
a = -44.398, b = 17.512, c = 61.654. b) Simulations for a tilted probe at the same
446µm probe position. At higher tilt angles the frequency shifts at low z-positions
are significantly smaller. The contact z-position can be explained by a probe with
misalignment angle θ = 0.02deg.
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showed a slight deviation in curvature between 8µm - 30µm. This is understood to

be due to misalignment between the probe and the resonator (figure 5.6 b).

5.4 Scanning the probe over the Kagome lattice

In the transmission spectrum for an unperturbed lattice a large family of peaks is

observed in a bandwidth of ∼ 600MHz; close to the theoretical bandwidth of 6tij.

This spectrum is measured from two non-adjacent edge resonators, and only captures

modes that have a measurable weight in those edge resonators (figure 5.7 a). When

a single site is perturbed modes with weight at that site will shift an amount propor-

tional to the weight. For each interior lattice site one of the flatband modes will have

the most weight, and therefore the largest shift. For a negatively detuned lattice site,

this will cause the flatband mode to shift well below the observed bandwidth (figure

5.7 b).

7.23 7.25 7.27 7.29 7.31

−100

−75

−50

−25

0

Frequency (GHz)

S2
1 

(d
Bm

)

7.2 7.3 7.4 7.5 7.6 7.7 7.8

−80

−60

−40

−20

Frequency (GHz)

S2
1 

(d
Bm

)

36

35

49

a b 

Figure 5.7: a Transmission spectrum for a Kagome lattice of 49 resonators. Here
the three numbers (35, 36, 49) illustrate the three modes that were tracked while
perturbing each lattice site. b Measured transmission at the bottom of the frequency
band for five different probe positions. Each transmission trace was separated for
clarity. The flatband mode is shown to shift ∼ 55MHz from it’s unperturbed fre-
quency. For each interior lattice site the flatband mode was observed to have the
largest frequency shift. The probe positions above the resonator from top to bottom
were: z = 241.93µm, z = 17.19µm, z = 12.96µm, and z = 8.73µm.
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5.4.1 Probe position calibration

In order to center the probe over each resonator, and to accurately quantify the ef-

fects of the probe for each resonator, it was necessary to determine the position of the

probe relative to each lattice site. The X and Y positions of the probe relative to the

scanning stage could be determined by measurement of the resistive position encoders

integrated into the Attocubes; however these position readings did not directly trans-

late to lattice coordinates, and further calibration was necessary in order to center

the probe. The probe position relative to the a given lattice site was determined by

monitoring the shift of the flatband mode. The probe could be accurately centered

in X and Y by moving the probe off of a resonator onto the ground plane, and also

by moving the probe onto a three-way coupler and then back off (figure 5.8).
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Figure 5.8: Here transmission measurements are shown for transverse probe move-
ment. Each measurement is made when the probe is in mechanical contact. a)
Starting on a ground plane, the probe is moved across one lattice resonator, traverses
a large ground plane, and then stops centered on different lattice resonator. Here a
significant shift in the lowest frequency mode is observed when the probe is in contact
with a resonator. When the probe is in contact with the ground plane there is no ob-
servable shift. The shift of the lowest frequency mode indicates when the probe steps
onto a lattice resonator and this position is known within 100µm; the uncertainty is
determined by step size used. b) Starting at the edge of a three-way coupling capaci-
tor, the probe is moved across the capacitor, then off the capacitor and onto a lattice
resonator. When the probe covers a three-way capacitor three different lattice sites
are simultaneously perturbed resulting in multiple modes shifting down in frequency.
The modes shifting back up in frequency indicates the probe is no longer covering
the capacitor, and the position of probe relative to the capacitor can be determined
within 100µm.
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When the probe is positioned above the ground plane no frequency shifts are

observed. By moving across a resonator from one ground plane to another, it was

easy to establish when the probe was centered over the resonator. When the probe is

positioned over a three-way coupler, multiple sites are perturbed and the frequency

spectrum changes significantly. By observing when the probe moved off of the three-

way resonators, the edge of the resonator could be established by observing when the

multiple modes stopped shifting.

5.4.2 The z-scan; tuning the defect size

At each lattice site the probe was first centered over the resonator, moved into contact,

and then moved vertically away from the surface. When in contact, calculations

indicate the probe to be ∼ 4µm above the resonator, approximately the same height

as the BCB supported bridges. The probe was retracted from contact with a 0.8µm

step size up to ∼ 20µm, and then a 10µm step size up to ∼ 300µm. Transmission

measurements were made at each probe position (figure 5.9). When in close proximity

to the surface large frequency shifts > 300MHz are generated, but at probe heights

≥ 200µm, the frequency shifts per step are small and the shifted resonant frequency

will asymptotically approach the unperturbed resonant frequency (figure 5.11).

5.4.3 Probe z-position error bars

The uncertainty in the probe position stems from the accuracy of the reading of

the resistive encoder on the nano-positioner; this uncertainty is more critical for Z

position measurements. The position is determined by applying a constant voltage

to the nano-positioners, and measuring a calibrated resistance. The accuracy of the

reading is proportional to the amplitude of the applied voltage, but larger voltages

would result in heating of the dilution unit. Consequently a voltage was chosen such
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Figure 5.9: Starting in contact the probe is vertically moved away from the surface
of a resonator in the Kagome lattice. Here measurements for two different interior
lattice sites illustrating the response of the modes for different probe heights. The
most notable shift is the lowest frequency flatband mode. These measurements only
show the first set of probe position measurements, where the step size is 0.8µm per
step.

that the fridge wouldn’t heat up, and the position measurements were accurate up to

200nm.

The experimental uncertainty in the probe position was extracted from a linear

fits of position of the readings; the uncertainty was the standard deviation of the fit

(figure 5.10). For measurements conducted during the scanning lattice experiment,

the results were in the form of a shift in frequency as a function of probe height. From

the calibration metrics, the probe height was converted to resonator detuning, and

the uncertainty in the probe height was converted to uncertainty in detuning using

propagation of errors and taking a numerical derivative of equation 5.1 .

σexp
d =

√(
∂f

∂z

)2

σ2
z (5.2)

Additionally there was an uncertainty in the numerical simulations used to con-

vert the probe position to defect shift. This uncertainty resulted from using a reduced

the computational mesh in order to reduce the computational time for the HFSS cal-

culations. The uncertainty was determined by running multiple simulations with the

probe at a fixed position and calculating the standard deviation measured frequency
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Figure 5.10: The uncertainty in the Z position of the probe is determined from the
standard deviation of a linear fit to the attocube position readings. Additionally the
experimental stepsize was determined from the slope of the linear fit. After the probe
is centered over the resonator it is moved out of contact. For these measurements two
step sizes are used a) when the probe is close to the surface of the lattice, smaller
step sizes are used, and the uncertainty in the probe position is more prevalent. b)
After the probe is far enough from the surface, a larger step size is used, and the
uncertainty in the position reading is not as prevalent.

shifts. The resulting uncertainty was σsim
d = 1.57MHz, and the total uncertainty in

the determined defect is given as

σd =
√

(σexp
d )2 + (σsim

d )2 . (5.3)

5.5 Photon modes in a Kagome lattice

In the experiment each lattice site was perturbed, and the size of the perturbation was

tuned by bringing the probe into contact and then vertically moving the probe away

from the resonator until the modes stopped shifting. For each perturbed resonator

the 35th, 36th, and 49th modes were tracked, and the shift each of these modes was

analyzed and used to determine the distribution of the modes within the lattice.

The 35th, and 36th modes are the two modes nearest to the dirac point at ωr + t,

and the 49th mode is the highest frequency mode. Each mode had a large spacing

between adjacent modes, and did not overlap with other modes when perturbed by the
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probe; resulting in hard to handle mode degeneracies. In addition to the modes being

in low density regions, the modes were easily identifiable for theoretical comparisons.

In order to track the three modes, a Lorentzian fit was applied to each mode,

for each probe z-position. The frequency shift of each mode was determined by

subtracting the frequency determined by the fit from the frequency at the highest

probe height. This method provided the mode frequency shift as a function of the

probe’s z-position, but a more arduous method was necessary to determine the defect

size δr(z).

5.5.1 Mode shift vs defect size

For a defect at a single site, the allowed energies of the lattice followed a modified

tight binding hamiltonian (~ = 1),

H(z) =
∑
i

(ωr + 1
2
)a†iai + δr(z)a†kak +

∑
j>i

tij(a
†
jai + a†iaj) (5.4)

where δr(z) is the defect size as a function of the z-position of the probe at site k. The

value of δr(z) is determined numerically by an HFSS simulation, and by using equation

5.1 to fit the simulation results. For each lattice resonator an HFSS simulation was

conducted for different probe z-positions, but since a full lattice simulation was not

feasible, each lattice site was modeled as a single two port resonator; similar to the

calculations presented in section 5.3.2.

The interior resonators were modeled such that the capacitors had a cavity escape

rate of 2t at each end, and edge resonators were modeled to have an escape rate of

κ on one end and 2t on the other. For each simulation the probe was positioned

above the resonator based on probe positions extracted from the position calibration

measurements (section 5.4.1). Due to the long computational time necessary for

accurate simulations, probe heights were only simulated from 10nm to 20.01µm with
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Figure 5.11: Measured and expected normal mode shifts as a function of the Defect
size for two different interior lattice sites (left stack is all one lattice site, and right
stack is another). a), b) The small defect limit for three measured normal modes at
different interior lattice sites. Each mode is plotted along with a linear fit, demon-
strating the linear dependence of the mode shift for small defect sizes. Experimental
weights are determined by extracting the slope from the linear fit in this limit. c), d)
In the large defect limit modes with more weight at that site produce a large nonlinear
shift. Additionally modes with little weight continue to shift linearly. Each curve is
the expected shift based on tight binding calculations with equation 5.4. Error bars
represent the propagated uncertainty in the probe position (section 5.4.3). Gaps in
the data for Defect size ∼ 50MHz are the result of changing the probe step size from
0.8µm to 10µm. e), f) In a frustrated Kagome lattice each flatband mode is localized
within an interior hexagon. When a lattice site on one of the interior hexagons is
perturbed, the flatband mode within that hexagon will shift monotonically with the
defect size. Additionally, for large perturbations the flatband will shift linearly with
the defect size. Here experimental evidence of the flatband mode is presented along
with the expected values. The shift of the flatband due to the perturbation was an
order of magnitude larger than non flatband modes, and since these modes are de-
generate, there is only one expected flatband frequency is the same. Discrepancies
between experimental data in e) is understood to be caused by random disorder in
the lattice.
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2µm step size. In order to extrapolate δr to higher z-positions, the functional form of

f(z) was determined from the fit results on the single resonator measurements, and

a the simulation results at each site were fit using an updated expression of the form

δr(z) = akf(bkz), where ak and bk are fit parameters unique for each lattice site k.

The measured frequency shift for each of the three modes were plotted as a func-

tion of the simulated results for δr(z). Using the same δr(z), the equation 5.4 was

diagnolized and the resulting eigenvalues were also plotted demonstrating good agree-

ment between experiment and theory (figure 5.11). The discrepancies in the flatband

data are believed to be the result of random disorder in the lattice. The flatband

modes are most susceptible to disorder, and the effects are a change in the shape of

the mode shift as a function of defect size.

5.5.2 The measured mode weights

At large probe heights the size of the perturbation is small, s.t. |δr/ωr| � |δr/ti,j| � 1,

and the normal modes will shift linearly with the size of the defect (figure 5.11 a,b). In

this small perturbation limit a first order approximation can be used, and the mode

shift δµ as a function of the size of the perturbation δr is equal to the normalized

Mode No. S.O.W. Percent error M.S.E

35 0.991 0.009 0.011
36 0.996 0.016 0.010
49 0.981 0.045 0.008

Table 5.1: Error analysis for the experimentally measured weights of the three normal
modes. At each lattice site the mode weight was extracted from a linear fit of data for
δνµ vs δνr. The extracted weights are naturally normalized and the sum of weights
(S.O.W.) should be 1. A theoretical S.O.W. was determined from a linear fit of
expected values, and then used to determine the percent error in the experiment.
The reported M.S.E. was determined as the average squared difference between the
experimental and expected slope values at each site.
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Figure 5.12: The photon distributions for the 35th, 36th, 49th modes. Here the mode
weights are plotted according to the Kagome lattice symmetry, and are quantified
by the color, with red representing a larger percentage of the photon, and blue rep-
resenting negligible percentage of the photon. Experimental results are represented
by the larger circles and the theoretical results from tight binding calculations are
represented by the interior circles. While there is some small discrepancies in the high
probability regions, the low probability (regions where there shouldn’t be photons)
shows a very good agreement between experiment and theory.

weight of the mode,

δµ,k
δr,k
' 〈Ψ0

µ,k|Ψ0
µ,k〉, (5.5)

where µ is the mode index, k is the lattice site index and |Ψ0
µ,k〉 is the normalized

normal mode eigenvector. In the linear limit the slope of the mode shift vs the defect

size is equivalent to the mode weight. The experimental weight was determined by

carrying out a linear fit to the data in this limit. The extracted weights were naturally

normalized and the sum of weights for each mode was found to be within less than a

2% of the expected value (table 5.1).

The expected modes were determined by calculating the expected mode shift using

equation 5.4 over the same range of δr as the experiment, and then extracting the

slope from a linear fit. Both the experimental weights and the expected weights were

plotted for the three different modes, illustrating the different distributions for the

photons within the lattice in a 2D color plot (figure 5.12). Here the experimental

weights are illustrated by larger circles, and the expected weights are illustrated by

smaller circles embedded in the larger circles. Additionally a 3D plot of the mode

weights was constructed to highlight the agreement between experiment and theory
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(figure 5.13). The discrepancy between experiment and theory is believed to arise

from systematic disorder in the lattice.

5.6 Summary

In this chapter the results from a perturbative scanning probe microscopy experiment

on a 49-site Kagome lattice have been presented. By scanning a sapphire defect over

the surface of each lattice site the distribution of three different photon modes was

mapped throughout the lattice. In order to understand and quantify the experimental

results a separate characterization experiment was conducted on a single coplanar

wave-guide resonator. In this experiment, the scanning probe was scanned laterally

and vertically over the surface of the resonator. By adjusting the position of the probe

the resonator was shown to be tunable up to 680 MHz, often a desirable capability

experimentally. The response of the resonator to the sapphire probe was analyzed,

compared to a finite element simulation, and a best fit function was determined to

convert the measured probe position into defect size.

Using the same finite element software the size of the perturbation caused by the

probe was determined, and used to extract the weight of the photons as each site. In

the limit when the size of the perturbation was small the shift in the lattice modes

were observed to shift linearly with the perturbation, and the slope of the linear shift

was equal to the mode weights. Experimental results were compared to theoretical

calculations from a tight binding hamiltonian, and a calculated percent error was

reported to be less than 5%. Additionally, a unique feature of the Kagome lattice is a

dispersionless band that forms from due to the geometric frustration. Here evidence

was presented that demonstrates the first frustrated flatband within a Kagome lattice.

These results are represent a valuable experimental step towards the development of

a cQED based quantum simulator.
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Figure 5.13: A 3D construction of the photon mode weights for the 35th, 36th, 49th

modes. Experimental results are represented by the larger semi-transparent cylinders,
and theoretical results by the interior smaller dark blue cylinders. The height of each
cylinder, and the color of the top of the cylinder shows the percentage of the photon
at that site.
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Chapter 6

Scanning circuit quantum

electrodynamics

6.1 Introduction

This chapter details results for a scanning transmon qubit, strongly coupled to a

transmission line resonator; this work was published in Nature Communications [94].

This qubit on a stick experiment was performed as a proof of concept, to demonstrate

the potential of this tool for future applications as a local quantum probe on a lattice

of transmission line resonators each coupled to a transmon qubit. Additionally such

a tool would be a valuable resource for CQED characterization experiments. The

chapter begins by discussing the experimental details of the scanning probe, such

as the scanning stage that was constructed, the transmon qubit, and the coplanar

waveguide resonator CPWR.

As a result of the uniqueness of these measurements, a detailed discussion of the

measurement procedure will be provided, in addition to the analysis methods that

were used. Subsequently the main result of strong coupling over a large scanning

range will be presented and discussed. Additional discussions of experimental details
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Figure 6.1: Illustration of the scanning transmon qubit.

will be presented following the main result. These details focus on parasitic modes

that exist in the ground plane, and how the dependence of the resonator on the

vertical position of the qubit.

6.2 Experimental setup

The qubit chip was mounted face down to a cryogenic three-axis positioning stage

and positioned over a separate chip containing a λ/2 niobium CPWR (figure 6.2). In

order to avoid direct contact between the resonator and the qubit, pads of photoresist

7µm thick were deposited on the corners of the qubit chip (figure 6.3). The positioners

were mounted to a copper frame that was mounted to a dilution refrigerator which

operated at temperatures 35mK.

6.2.1 Qubit on a stick

The scanning qubit described shown in figure 6.3 is a transmon design consisting of

two aluminum islands connected by a thin aluminum wire interrupted by an aluminum

oxide tunnel barrier, known as a Josephson junction [60]. The transmon design is

well suited for scanning because it couples to CPWRs capacitively and requires no

physical connections. The tunnel barrier provides a large nonlinear inductance which,
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Figure 6.2: On the left a stack of three cryogenic linear nano-positioners mounted
to a gold plated copper frame, that mounts to the bottom of a Bluefors dilution
refrigerator. A smaller positioner (ANPz101/RES) sits at the bottom of the stack
and provides Z movement with a working distance of 12 mm. Two linear positioners
(Attocube ANPx340/RES) sit at the top of the stack, are mounted to the copper
frame, and provide XY movement and have a working distance of 20 mm. In order
to reduce the heating after movement, gold copper plates are mounted between each
positioner, which is also mechanically clamped to copper braid that is then secured to
the bottom of the dilution refrigerator. On the right a zoomed in picture of the qubit
mounted to a copper rod positioned above the CPWR. A small solenoid is formed
at the tip of the rod in order to flux tune the qubit. The magnet was coated in
STYCAST 2850 FT to secure the wire.

together with the capacitance between the two islands, makes the transmon behave

as a nonlinear LC oscillator whose lowest two energy states can be used as a qubit. A

pair of tunnel barriers in parallel form a loop, as seen in figure 6.3, which allows for

tuning the qubit energy with magnetic flux. By varying the flux through this loop

with a magnet coil incorporated into the positioner, the qubit frequency νq could be

varied from a maximum value of 12.1 GHz to close to zero [60]. Although here the

flux loop’s only purpose is to make the qubit energy tunable, such a loop can also be

operated as a sensitive local magnetometer in a scanning SQUID microscope[48].

The qubit was fabricated using electron beam lithography and double-angle

shadow evaporation with controlled oxidation of 30 and 100 nm layers of aluminum

onto a 4 × 4 mm sapphire chip. The 0.5 × 1.0 mm crashpads on the corners of the
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Figure 6.3: The transmon qubit chip used for scanning experiments. The qubit is sur-
rounded by an aluminum ground plane, with SU8 crash pads on all four corners. On
the far right, an SEM image shows the SQUID loop formed by the parallel junctions.

chip were made with photolithography of SU-8 2005 photoresist. The qubit chip was

glued with methyl methacrylate to the tip of a highly conductive copper rod, with a

magnetic tip, that is mounted to the cryogenic positioning stage. The wiring scheme

of the coaxial lines was the same as that described in DiCarlo et al. [25].

6.2.2 Scanning resonator

The half-wave niobium resonator had a resonant frequency of 7.6 GHz without the

presence of the qubit. The frequency νr of the resonator was found to increase when

the qubit chip was brought into close proximity. The qubit was only scanned across

the long straight section of the resonator, hence avoiding coupling the qubit to two

sections of the resonator simultaneously. The resonator was defined by photolithogra-

phy and acid etch (H2O, HF, and HNO3 in a 7.5:4:1 ratio) of a 200 nm film of niobium

on a 14×14 mm sapphire chip. The resonator chip was mounted to a copper-patterned

circuit board with silver paste and aluminium wire bonds, which connected the input

and output transmission lines to coaxial lines. Wire bonds were only placed around

the edge of the chip outside the footprint of the qubit chip.
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Figure 6.4: CPWR used for strong coupling a scanning transmon qubit. Inset shows
finger capacitors used to define the photon escape rate κ = 10 MHz. Subsequent
qubit positions follow the x and y coordinate system shown here.

6.3 Qubit on a stick measurement procedure

Here the strength g of the coupling between the resonator and the qubit as a function

of qubit position is studied. Following Koch et al. [60], the Hamiltonian Ĥ describing

the coupled resonator-qubit system can be approximated by the Jaynes-Cummings

Hamiltonian

Ĥ = hνr

(
â†â+

1

2

)
+
hνq

2
σ̂z +

hg

2

(
âσ̂+ + â†σ̂−

)
(6.1)

with νr and νq the resonator and qubit frequencies respectively. In this expression,

â, â† are the creation and annihilation operators associated with photons in the res-

onator and σ̂+, σ̂−, and σ̂z are the Pauli spin matrices associated with the qubit when

treated as a two-level system. On resonance (νq = νr), the first two excited states of

the system are (|0 ↑〉 ± |1 ↓〉)/
√

2 with corresponding energies hνr± hg above that of

the ground state |0 ↓〉 where |nq〉 is the state with n photons in the resonator and the

qubit in state q with ↓ (↑) representing the qubit ground (excited) state. When driven

with a microwave excitation, transitions to each of these excited states are allowed,
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resulting in two peaks in the low power transmission spectrum. The coupling between

the qubit and the resonator is determined by observing the frequency splitting 2g of

these peaks, which is known as the vacuum Rabi splitting.

6.3.1 Finding resonance

The frequency νr of the resonator is dependent on the qubit’s x and y positions.

In order to ensure that resonance was possible at every qubit position, the qubit

energy was tuned by varying the magnetic flux through the qubits’ flux loop. In

addition to the resonator’s position dependence, changing the position of the qubit

affected the threading of flux through the qubits SQUID loop. Once the SQUID

loop was moved away from the gaps in the coplanar waveguide and positioned above

the superconducting ground plane, the amount of flux produced by the magnet coil

required to tune the qubit into resonance increased rapidly because the Meissner effect

screened the magnetic field away from the superconducting ground plane.

In figure 6.5c, the coil magnetic flux that brought the qubit into resonance with

the resonator is plotted for each position of figure 6.5a. The impact of the magnetic

field screening could be greatly reduced by fabricating holes in the resonators ground

plane. The strong dependence of the resonant magnetic flux on the qubit position as

well as the steepness of the slope of qubit frequency versus magnetic flux (maximum

qubit frequency νq,max ∼ 12.1 GHz) necessitated careful flux scanning at each qubit

position in order to locate resonance. Searching for resonance by monitoring the

transmission spectrum for an avoided crossing feature like the one shown in figure

6.9b would have required a long measurement time at each qubit position. Instead,

only the low power transmission at the frequency νr of the high power transmission

peak was monitored as the flux was swept. This results in a dip in transmission when

the qubit is tuned into resonance (figure 6.6b).
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Figure 6.5: a The transmission spectra with the qubit tuned into resonance with the
resonator is plotted for a series of qubit positions. At each position, the background
is removed and the transmission is scaled so that the maximum transmission is unity.
The frequency of each spectrum is offset so that the two peaks are centered around
zero. The color map (in arbitrary units) is the same as that used in figure 6.8 b, The
resonator frequency is plotted for each qubit position of figure 6.8. The frequency
axis of each spectrum in figure 6.8 was offset by the frequency plotted here. c, The
total flux (in arbitrary units) required to bring the qubit into resonance is plotted
versus qubit position for the scan shown in figure 6.8.
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When |νr − νq| � g, the coupled system is in the dispersive limit and one of

the two mode frequencies ν± given in Supplemental Equation (S1) differs from νr

by ∼ g2/(νr − νq) and is associated with a large peak in transmission. For most

qubit frequencies the dispersive shift on the cavity is small compared to the resonator

linewidth κ (typically 10MHz but as high as 35MHz at some qubit positions) and

so transmission at νr is still high. However, when νq ∼ νr, the mode frequencies are

shifted from νr by g > κ and transmission at νr is low. Figure 6.6a illustrates this

behavior by showing transmission at νr versus flux and input power. Regular dips

in transmission occur at low drive power where the qubit passes through resonance.

Figure 6.6b plots just the low power transmission versus flux and shows that resonance

can be easily identified by monitoring transmission at just one frequency value. In

practice, a scan like that shown in figure 6.6b was taken at each position to identify

the resonant flux range, and then a scan like that shown in figure 6.5 was taken over

this flux range to obtain transmission spectra to fit for g.

Additional features are present in the crossover from the low power region to the

high power region of the transmission. Figure 6.6c shows a finer scan of transmission

versus power and flux at a qubit position close to that of the scan in figure 6.6a. These

features are likely related to higher level qubit transitions coming into resonance with

the resonator, though additional analysis is needed. While it is necessary to bring

the resonator-qubit system into resonance in order to infer the coupling strength

from the vacuum Rabi splitting, many CQED experiments, including the photon

number measurement described in Johnson et al. [53], are performed with the qubit

frequency detuned several hundred megahertz from the resonator. In this dispersive

regime precise tuning of the qubit frequency is not required, and the qubit can be

fabricated with a single tunnel barrier and measured without an external magnetic

field.
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Figure 6.6: Transmission at the resonator frequency versus input power and magnetic
flux. a The transmission at νr is plotted versus input microwave power on a log scale
and magnetic flux threading the qubit loop. The flux axis has been scaled by the
observed flux period φ0. The power axis is uncalibrated, but the cross-over near -15
on resonance occurs as the photon occupation of the resonator increases from 0.1 to
10. The scan was taken at the same x position as figure 6.5 with the qubit close to
the center pin and g = 29MHz. b, The average of the transmission for input powers
less than −19 in panel a is plotted versus flux. c, Another scan of transmission versus
power and flux like that in panel a is plotted for a flux region close to resonance. The
flux axis is uncalibrated. The scan was taken at a position with g = 21 MHz, close to
the position used for the scan shown in panel a. For panels a and c, the same color
map (in arbitrary units) as that of figure 6.5 is used.
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Figure 6.7: Fitting resonator transmission. a, The transmission at y = 146µm in
figure 6.5 is plotted in arbitrary units along with a fit to equation 6.4. The fit
coefficients are A = 57, B = 0.2, g = 20 MHz, κ = 14 MHz, νr = 8.342 GHz, and
νq = 8.339 GHz. b, Transmission spectra recorded at the same position as panel a are
plotted versus flux in arbitrary units as the qubit passes through resonance. The same
color map (in arbitrary units) as that of figure 6.8 is used. Averaging the coefficients
from fits to the transmission at each flux value gives A = 59 ± 3, B = 0.30 ± 0.05,
g = 20.4 ± 0.3 MHz, κ = 12.8 ± 0.8 MHz, and νr = 8.342 ± 0.001 GHz where the
errors represent the standard deviation of the coefficients.

6.3.2 Fitting resonance transmission

Transmission measurements were made in the low power limit for which the rate of

photons entering the resonator was less than the escape rate, so that the resonator

occupancy was less than one photon on average (figure 6.7). In this case, the trans-

mission spectrum contains peaks at frequencies ν± corresponding to transitions from

the ground state |0 ↓〉 to the states |+〉 and |−〉 which possess a |1 ↓〉 component

and are located at energies hν+ and hν− above the ground state. The states and their

frequencies are found by diagonalizing the Hamiltonian given in equation 6.1:

|±〉 =

∆
2
±
√(

∆
2

)2
+ g2√

g2 +

(
∆
2
±
√(

∆
2

)2
+ g2

)2
|0 ↑〉+

g√
g2 +

(
∆
2
±
√(

∆
2

)2
+ g2

)2
|1 ↓〉 (6.2)
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and

ν± =
νr + νq ±

√
4g2 + ∆2

2
(6.3)

with ∆ = νq−νr. The peak amplitudes are proportional to the probabilities ω± = |〈1 ↓

|±〉|2 of a photon being measured in the states |±〉. The peak line widths γ± are equal

to the decay rates of the qubit (T−1
1 ) and the photon (κ) weighted by the probability

of measuring a qubit excitation and a photon respectively:γ± = ω±κ+ (1−ω±)T−1
1 .

The transmission peaks are taken to follow a lorentzian lineshape and the following

function is used to fit the resonator transmission:

S21(ν) = B + A

∣∣∣∣∣∑
±

ω±l(ν, νpm, γ±)

∣∣∣∣∣
2

(6.4)

where A is the overall amplitude accounting for all attenuation and amplification in

the measurement circuit, B is the background of the detector, and l(ν, ν0, γ) is the

complex lorentzian centered at ν0 with width γ:

l(ν, ν0, γ) =

(
1− iν − ν0

γ/2

)−1

(6.5)

When fitting for g, the parameters A, B, κ, νq, νr, and g were allowed to vary, while

T1 was was held fixed to the value obtained from coherence measurements. Figure 6.7

shows the result of fitting one of the transmission spectra from figure 6.8. Also shown

is a plot of transmission versus flux as the qubit passes through resonance. For the

coupling strength values shown in figure 6.9, similar flux scans were taken and the

plotted values of coupling strength were obtained by averaging the coupling strength

values obtained from fitting the transmission at each flux value.
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Figure 6.8: The transmission spectra with the qubit tuned into resonance with the
resonator is plotted for a series of qubit positions. At each position, the background
is removed and the transmission is scaled so that the maximum transmission is unity.
The frequency of each spectrum is offset so that the two peaks are centered around
zero. The vertical axis represents the difference between the frequency of the applied
microwave drive and the resonator frequency. The shifted peak locations can also
be interpreted as values of the coupling strength g, which is equal to half the peak
separation. The y origin is taken to be the point of smallest peak separation, which can
be interpret as the position where the qubit is centred over the resonator. The color
represents the magnitude of microwave transmission and is plotted in arbitrary units,
as the total gain and loss within the measurement chain has not been calibrated. The
suppressed transmission at positions y = ±30 and 125µm is due to coupling between
the resonator and a parasitic resonance in the metal frame of the qubit chip.

6.3.3 Resonance transmission spectra

Figure 6.8 shows the transmission spectra of the resonator for a sequence of regularly

spaced qubit positions along the y axis perpendicular to the long dimension of the

resonator. At each position, the current through the magnet coil was adjusted to bring

the qubit into resonance (section 6.3.1), at which point the single transmission peak of

the resonator was transformed into two peaks of equal height because of the vacuum

Rabi splitting; clearly demonstrating strong coupling between the scanning qubit and

the resonator. The position scan shows two regions of large peak separation symmetric

about a position with nearly no peak separation, which was set as the origin. In
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coupling to the resonator the transmon behaves as a dipole antenna. Because the

two islands of the qubit are identical, by symmetry no coupling is expected when

the qubit is centered above the resonator at y = 0. The points of maximum peak

separation occur at y ≈ ±50µm where one of the two islands is centered over the

resonator. At these points, the observed coupling strength g ≈ 140 MHz was well into

the strong coupling regime g > κ, T−1
1 where the qubit relaxation time T1 = 3.2µs was

determined by time-domain measurements (section 6.5) and the photon escape rate

κ = 10 MHz was set by the resonator’s output coupling capacitor which was chosen

to be large in order to increase the rate of data acquisition. The photon escape rate

κ, proportional to the linewidth of the transmission peak, was relatively constant

as a function of position except for positions where a parasitic mode coupled to the

resonator and broadened the linewidth to as much as 35 MHz (see Supplementary

Note 2).

Scans of resonant transmission versus y position like figure 6.8 were repeated at five

positions along the length of the resonator (the x̂ direction) with a spacing of 600µm.

The coupling strengths g were extracted from fits to the transmission spectrum at

each qubit position (section 6.3.2) are plotted in figure 6.9. The coupling strength

increases as the qubit moves from the voltage node at the center of the resonator

to the antinode at its end but exhibits the same shape for its y dependence at each

x position. For technical reasons related to the operation of the positioning stage,

measurements of the coupling strength at different z positions were not performed

(section 6.4).

6.4 Position dependent coupling

The voltage profiles of the modes of a CPWR with open boundary conditions are

sinusoidal along the length of the resonator with antinodes at its ends. The coupling
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strength is proportional to the resonator voltage with one photon present and so

should follow this sinusoid. The maximum coupling strength at each x position shown

in figure 6.10a was fit to the sinusoidal form:

g (∆x) = gmax sin

(
π

∆x+ x0

lr

)
(6.6)

where lr = 7, 872µm is the resonator length and gmax and x0 were the fitting parame-

ters. Here ∆x is the set of displacements in x from the first x position (i.e. the values

are 0µm; 600µm; 1, 200µm; etc.). In figure 6.10a, the measured coupling strengths

and the fit are plotted versus x = ∆x+ x0.

The scan shown in figure 6.8 was taken on a separate cooldown from the scans

shown in figure 6.9. The same resonator and qubit samples were used for both sets

of measurements, but the sample stage was disassembled in between the cooldowns.

During the cooldown in which data in figure 6.8 was taken, the qubit’s x position was

not varied, so the absolute x position of the data is not known. However, using the

maximum value of g from figure 6.8 and the curve shown in figure 6.10a to calibrate

the x position, one finds the data in figure 6.8 was taken at x = 2, 116µm.

The coupling strength as a function of the transverse position of the qubit follows

an expression for the coupling strength given in Koch et al. [60]:

g (x, y, z) = 2

√
2Zc

h
m (x) νrβ (y, z)n01 (y, z, νr) (6.7)

with the characteristic line impedance Zc taken to be 50 Ω and m(x) the sinusoidal

mode shape factor given in equation (6.6). In order to describe the voltage division

factor β and the transmon matrix element n01, we first define Cjk to be the capacitance

between components j and k and label the components of the system with a and b

for the two islands of the transmon, p for the resonator center pin, and g for all other

pieces of metal (the two ground planes and the metal frame on the qubit chip). The
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Figure 6.9: Traces of g versus qubit y position are shown for five qubit x positions
spaced ∼ 600µm apart from each other. The traces correspond to scans, such as the
one shown in figure 6.8. Each value of g was determined by fitting several transmission
spectra taken at values of magnetic flux for which the qubit frequency was close to
that of the resonator. The sign of ∆x is such that with increasing ∆x the qubit moves
from the electric field node at the center of the resonator towards the electric field
antinode at its end. The individual coupling strength values between y = 55 and
80µm that deviate from the smooth trends of g versus y for ∆x ≥ 1.2 mm correspond
to positions where the resonator coupled to a parasitic mode in the metal frame of
the qubit chip (section 6.6).

voltage division factor β gives the fraction of the voltage drop from the resonator

center pin to ground that falls across the two islands of the qubit. It can be written

in terms of capacitance coefficients as

β =
|CapCbg − CbpCag|

Cab (CΣ,a + CΣ,b) + CΣ,aCΣ,b

(6.8)

where CΣ,x = Cxp + Cxg. The matrix element n01 was determined by numerically

diagonalizing the transmon Hamiltonian given in Koch et al. [60]

Ĥ = 4ECn̂
2 − EJ cos ϕ̂ (6.9)
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to finds its eigenstates and eigenenergies and then evaluating n01 = 〈0|n̂|1〉, where |0〉

and |1〉 are the eigenstates with the two lowest energies, E0 and E1. The charging

energy EC = e2/2CΣ was calculated using the total capacitance given by

CΣ = Cab +

(
1

CΣ,a

+
1

CΣ,b

)−1

. (6.10)

The qubit frequency νq is given by (E1−E0)/h and is thus a function of EC and EJ.

In calculating n01, νq(EC, EJ) was numerically inverted to solve for EJ(EC, νq) with

νq set equal to νr since measurements of the coupling strength were made with the

qubit close to the resonator’s frequency.

In order to produce the fit shown in figure 6.10b, the coupling strength g(x, y, z)

was calculated using the known values of Zc and νr, the value of x obtained from

the fit in figure 6.10a, and the values of the capacitances Cjk found by finite element

analysis for a grid of y and z values with 1µm spacing. The measured coupling

strength versus y was fit to the g(y, z) found by interpolating between the y and z

grid points with z as the only free parameter. The finite element simulation was

then repeated with the fitted value of z in order to produce the curve shown in

figure 6.10b. We note that at the fitted value of z = 11.0µm the charging energy

EC = 388 MHz is similar to values used in other CQED experiments and corresponds

to a ratio of EJ/EC = 59, within the transmon regime where the offset charge across

the transmon islands (not included in the Hamiltonian given above) may be ignored.

The finite element simulation included a layer of metal on the qubit chip that was

not symmetric about the qubit and resulted in a asymmetry about y = 0 with the

value of g at −y being about 1% larger than the value at +y.

By the use of alignment marks on the resonator and qubit chips, it was possible

to confirm that the misalignment between the two chips in the xy plane was 3◦ ± 1◦.

A misalignment of 3◦ was used in the finite element calculations for the capacitance
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Figure 6.10: The maximum coupling strength g of each trace in figure 6.9 is plotted
versus x position along with a fit to the expected sinusoidal dependence. The x origin
represents the midpoint of the resonator. The offset of the data points from the
resonator midpoint was determined by the fit (see Methods). The other fit parameter,
the maximum coupling strength the end of the resonator, was found to be 185 MHz.
(b) The largest trace of g versus y in figure 6.9 is replotted along with a fit to the form
expected from finite element modeling of the qubit-resonator systems capacitance
matrix (see Methods). The fitting function uses the resonator frequency νr, the
system geometry, and the qubit x position determined in panel a as fixed inputs and
treats the qubit height z, found to be 11 mm, as its only free parameter.

coefficients. Using a misalignment of 2◦ (4◦) instead gave a the fitted height z of

11.1µm (10.7µm).

6.5 Coherence measurements

Qubit coherence times (T1 = 3.2 ± 0.1µs, T ∗2 = 0.66 ± 0.05µs, section 2.2.3) were

obtained using the techniques described in Schreier et al. [90]. For T1, the qubit was

driven into the excited state by a pulse slightly detuned from the qubit frequency
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with detuning ∆ ∼ 10 MHz and then measured with a pulse at the cavity frequency

at a delay time τ after the qubit pulse. The excited state probability obtained from

many averages for a series of values of τ was fit to a decaying exponential with time

constant T1. For T ∗2 , the qubit was excited by a pulse with half the height of the

pulse that drove the qubit into the excited state and excited again with a second

identical pulse after a delay time τ ; commonly referred to as a Hahn Echo experiment

[93]. Then the qubit state was measured. The value of T ∗2 was obtained by fitting the

qubit excited state probability to an exponentially decaying sinusoid with frequency

∆ and decay constant T ∗2 .

The measurements were made during the same cool down and at the same x

position as the data shown in figure 6.8. In order to obtain consistent measurements,

the measurements were made immediately after the refrigerator was warmed up to

20K and then cooled back down to its base temperature. The coherence measurements

were performed at y = −113µm (g = 31 MHz) in figure 6.8 with the qubit frequency

detuned 700 MHz below the resonator.

6.6 Parasitic modes

In figure 6.8, the transmission is suppressed near y = ±30 and ±125µm due to the

resonators coupling to parasitic modes. Because the behavior of these modes is nearly

symmetric in qubit position, we believe them to be caused by resonances between the

resonator chip and a layer of metal on the qubit chip that was patterned nearly

symmetrically. The extra metal on the qubit chip was deposited for technical reasons

and is not needed for the functioning of the qubit. By redesigning the qubit chip or

resonator chip, these modes could be eliminated.

In figure 6.5a, the data from 6.8 is replotted after removing the background and

normalizing the transmission peaks to unity in order to make the peaks near y = ±30
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and ±125µm more visible. In figure 6.8, the origin of the frequency axis was set to the

location of the high power transmission peak and the qubit frequency was tuned to

produce two peaks of equal height in transmission. For some positions near where the

resonator coupled to the parasitic modes, these conditions produced two peaks not

centered around zero. In 6.5a, the frequency axis at each position has been shifted to

center the peaks around zero, so that the transmission peaks at neighboring positions

can be more easily compared.

The parasitic modes appeared as lower and broader peaks in transmission at fre-

quencies that varied with position and did not vary with magnetic flux. These modes

were always present but only affected the measurement of the resonator-qubit system

when their frequencies were close to the resonator frequency. When the frequency of

one of these modes was close to the resonator frequency, the coupling between the

parasitic mode and the resonator resulted in two modes with excitations partially of

the resonator and partially of the parasitic mode. The narrower peak of the resulting

two peaks in transmission was chosen to be the resonator peak for the purpose of

coupling to the qubit. The width of this peak increased from κ = 10 MHz when the

resonator was not coupled to a parasitic mode to a maximum value of 35MHz when

it was most strongly coupled. Figure 6.5b shows the frequency of the chosen peak for

each position in figure 6.8. Jumps in the resonator frequency due to avoided crossings

with parasitic modes are visible at the y positions with low transmission in figure 6.8.

Although the modes appear to affect the qubit symmetrically about y = 0 in figure

6.8, the modes y dependence varied with x position. In particular, for the data of

figure 6.9, the resonant frequency versus qubit y position plots looked similar to that

in 6.5b, but were shifted in y by 30 to 40µm.
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6.7 Resonator dependence on qubit height

Results have been presented for the coupling of the qubit to the resonator as a function

of lateral position (x and y). Measurements of the couplings dependence on the qubits

vertical displacement z from the resonator were not possible due to misalignment

between the resonator and qubit chips. Evidence of this misalignment is visible in

figure 6.11a which plots the resonator frequency versus the positioners z reading

denoted by zp.

The origin of zp was chosen to be the point at which the positioner could no longer

advance due to contact with the resonator chip. Above zp = 40µm, the resonator

frequency is shifted to higher values as the qubit chip is brought closer as expected

due to the modification of the resonators effective dielectric constant by the qubits

presence. Below 40µm, the resonator frequencys dependence on zp weakens and

disappears even as the positioner continues to move. We interpret this behavior as

the qubit chip coming into first partial contact with the resonator and then nearly full

contact as compliance in the sample holder allow the two chips to align. We attribute

the relatively small magnitude of the discrepancy of the qubit height obtained by the

fit shown in figure 6.10 from the height of the photoresist pads to this compliance in

the sample holder.

The resonator frequencys dependence on the qubit chip height shown in figure

6.11a allowed the resonator to be used to measure the qubit height. Supplementary

Figure S4b plots noise spectra of the transmitted phase at the resonator frequency

when the qubit chip is at zp = 0 and 43µm. We interpret the phase fluctuations

present when the qubit chip is hovering above the resonator and not present when

the qubit chip is in mechanical contact as being due to motion of the qubit chip

relative to the resonator chip.

Using the resonators phase versus frequency curve to convert the phase noise

into an effective resonator frequency noise and then the curve shown in figure 6.11a
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Figure 6.11: The effects of retracting the qubit from the resonator chip. a, The
resonator frequency is plotted versus the reading zp of the z positioner. At zp = 0,
the qubit chip is in hard contact with the resonator chip and can not be advanced
further. b, The noise spectrum of the transmitted phase at the resonator frequency
νr is plotted for the positions zp = 0 and 43µm. c, The noise spectrum of the
qubit-resonator displacement is plotted for zp = 43µm using the data from panel b.
The slope of the curve shown in panel a was used to convert the phase data into
displacement.

to convert frequency into position, we obtain the position noise spectrum shown in

figure 6.11c. Repeating this procedure at another zp position and using the amplitude

noise instead of the phase noise resulted in vibration spectra with similar features at

similar magnitudes, confirming the interpretation of the features as being due to

vibration of the qubit chip. The spectrum shown in figure 6.11c is typical for the

mechanical response of cryogenic positioners such as those used in this experiment.

The motion of the refrigerator base plate inferred from the spectrum shown in figure

6.11c agreed with measurements made with an accelerometer of another refrigerator

that was the same model as that used for the measurements presented here. Because
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all measurements of the qubit were made with the resonator and qubit chips in hard

contact, no vibration isolation elements were included in the sample holder. In order

to measure the dependence of the qubit-resonator coupling on height, such vibration

isolation would need to be considered in addition to the alignment of the qubit and

resonator chips.
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Chapter 7

Conclusion

7.1 Future work

In this thesis I have presented the foundational experimental work for development of

a photonic based quantum simulator. When reflecting on this work it is apparent that

much of the research in the beginning was guided by experimental intuition, and also

knowledge transferred from adjacent fields. Consequently many lessons were learned,

and now hindsight can be used to improve upon future experiments. In this section

I will conclude by highlighting some design suggestions for improving experiments,

and then I will discuss some straightforward experiments with the scanning probe

that could be used to impact not only lattice based experiments, but also the field of

cQED.

7.1.1 Lattices and disorder

All lattices presented in this thesis formed a Kagome geometry. This lattice type

naturally arises from symmetrically coupling three resonators together in a two di-

mensional geometry. One particular reason this lattice is of interest is because of the

unique band structure that arises; for example the lowest energy flatband. Further-
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more, for lattices with higher coordination number, it is believed that the measure-

ments will more closely follow the theoretical mean field calculations; which are more

accurate in higher dimensions. However, there are also many complications that arise

in the two-dimensional architecture; most significantly the complications that arise

from fabrication.

While much of the work in this thesis focused on reducing the effects of random

disorder in the Kagome lattice, it is very likely that systematic disorder is still present

in the larger lattices. Systematic disorder is believed to emerge because of the asym-

metric resonator design necessary for the qubit fabrication process. Although a lot

of effort went into engineering identical resonator, there is always room for improve-

ment. One particular improvement could be made by designing identical resonators

and fabricating the capacitive islands of the transmon in photolithography. Then

during the ebeam lithography step, the josephson junctions could be fabricated such

that they are either perpendicular or rotated 60o from the islands. If the junction

rotations are done properly, they will all be aligned and the double angle evaporation

method could still be used for qubit fabrication.

One possible route to overcome fabrication difficulty of a two dimensional lattice

would be to study one-dimensional lattices. Here each lattice site could be easily

made identical; furthermore it has been shown that similar physics arises in a one-

dimensional lattice [75]. Although the reduced dimensionality is further removed from

mean field calculations, such experiments could provide valuable insight about the

physics of open quantum systems. Such positive feedback would be invaluable for the

more difficult experiments involving multi-dimensional lattices.

7.1.2 Qubit characterization experiment

The scanning probe experiments were motivated as a means to observe the inter-

nal lattice sites of a two-dimensional lattice. However, it has the potential to be a
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a 

b 

Figure 7.1: Applications of scanning CQED. a, In a single cool down it would be
possible to measure many qubits and obtain valuable statistics on qubit properties.
b, A scanning transmon capable of quantum measurements could be used for mea-
surements of interior dynamics in the Jaynes Cummings lattice.

very useful tool for learning more about the qubit fabrication process. In this thesis

resonator disorder has been investigated, but the effects of qubit disorder in a large

lattice still remain an open question. A straight forward next experiment for the

scanning probe would be to fabricate a large array of qubits on a single chip, and

then scan them one by one across the resonator (figure 7.1a). This type of characteri-

zation experiment would provide useful statistics on important qubit properties such

as qubit frequency disorder, and also qubit coherence times T1 and T ∗2 . Additionally,

by fabricating many qubits with different geometries it would be possible to optimize

the qubit fabrication process in a single cool down.
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7.1.3 Probing quantum states

For experiments where the lattices have qubits, transmission measurements will be

difficult to interpret the different quantum phases. For this reason a scannable qubit

that is capable of doing quantum measurements of photon numbers at different lattice

sites is highly desirable. This type of readout experiment has already been demon-

strated to work on chip by Johnson et al. [53]; the difficulty now is getting it working

on a movable probe. Once the technical details of this experiment have been ironed

out, the question will be how to distinguish the proposed quantum states that exist

within the lattice [61].

One possible method will be to take ensemble measurements of the photon number

at different interior sites. By measuring the photon number many times, the state

of the system could be inferred based on the fluctuations of the photon number. For

example the polariton number is given as (keeping in mind polaritons are analogous

to photons),

Ni = a†iai + σ+
i σ
−
i (7.1)

and then an ensemble measurement of this value would provide the variance of the

polariton number

∆N = 〈N2
i 〉 − 〈Ni〉2. (7.2)

For the sought after Mott insulator state the variance is expected to be zero on

a timescale t < 1/κ, T1, T
∗
2 , and for a superfluid state the variance is expected to

follow a Poisson distribution; the expected distribution for a coherent state. Such

measurements would provide compelling evidence of the different phases.
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7.2 Summary

The results in this thesis have laid the necessary experimental foundation for realizing

a light based-quantum simulator. While no quantum phase transitions were actually

observed, significant progress was made, and the problems that were solved were of

fundamental importance for future experiments. As Isaac Newton once said, ”If I

have seen further, it is by standing on the shoulders of giants.”

The first experiments in this thesis focused on developing a two dimensional lattice

of capacitively coupled transmission line resonators without qubits. These resonators

are the most basic building blocks in a circuit quantum electrodynamics architecture,

and constructing a low disorder lattice of such resonators was an arduous task. Here

a 12 resonator lattice that formed a Kagome star was studied, and it was discovered

that small inconsistencies in the geometry of the resonator due to the fabrication

process resulted in random shifts in different resonator frequencies [100]. These un-

desirable frequency shifts were suppressed by increasing the resonator feature sizes;

no noticeable consequences from the change in geometry were observed. Furthermore

calculations demonstrated that the undesirable shift was due to fluctuations in the

Kinetic inductance of the superconductor.

There are still many open questions that remain about what is necessary for

observing quantum phase transitions in cQED lattices, but one of the most significant

questions relates to the finite size effects.The relevant theoretical proposals have all

assumed the systems to be in the thermodynamic limit (infinite sized lattice) [38,

47, 61]; which raises the question how big must the lattice be in order to satisfy this

assumption? While the answer to this question is still unknown, large lattices have

been designed and studied. The largest lattice capable of incorporating transmon

qubits contained 49 sites. It is believed that these are not large enough, but the

size restriction was limited by technical constraints. Although, due to the ease of

fabricating these lattices, larger sizes should be obtainable in future experiments.
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One significant experimental challenge with the cQED architecture is related to

the two dimensional orientation of the lattices. Consequently only exterior lattice

sites are accessible by standard RF measurement techniques. In order to be able to

observe the physics of interior lattice sites, a scanning probe microscopy tool was

developed and two separate experiments were conducted in order to demonstrate the

usefulness of such a scanning probe.

In one experiment, transmission measurements through a 49 site Kagome lattice

without qubits were performed while perturbing each site with a sapphire defect. By

perturbing each lattice site, it was possible to observe how photons flowed throughout

the lattice, and create a map of the distribution of photons within the lattice. This

experiment was primarily conducted as a “proof of concept” experiment, although

such measurements could prove to be meaningful for probing exotic quantum states

within a lattice with qubits. All the experimental measurements were compared to

tight-binding calculations using experimental parameters, and shown to be in excel-

lent agreement. Additionally evidence of a frustrated flatband was observed during

the experiment. Such flatband modes are unique to the Kagome geometry, and are

of greater interest for studying Ising model physics of interacting spins, and quantum

magnetism. It is very likely that the result demonstrating the flatband will be of

greater interest in future experiments.

The motivation of the scanning probe is its potential for a mobile quantum probe,

capable of conducting quantum photon number detection. In the predicted quantum

phases, the interesting Mott-insulator phase is defined by a fixed photon number at

each site. By coupling a second superconducting qubit to an interior lattice site, it

should be possible to extract the photon number from a single site, and measure the

photon number variance; thereby determining the quantum state of the lattice. Here

another “proof-of-concept” experiment was conducted in order to demonstrate the

operation of a scannable qubit. In this experiment a separately fabricated, mobile
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transmon qubit was coupled to a superconducting resonator. It was demonstrated

that the superconducting qubit could obtain strong coupling to a transmission line

resonator over a large scanning area [94].

The potential for superconducting circuits to be used to observe exotic states of

light has motivated the work within this thesis; however, the true impact of these

devices is still unknown. For example, most theoretical proposals have assumed a

system well within equilibrium. This is not the case, because photonic systems area

naturally dissipative, making them an ideal system to study non-equilibrium physics.

Historically, systems far from equilibrium have been difficult to study, and theoretical

models are generally computationally expensive. The use of cQED lattices to study

non-equilibrium systems has already started to emerge, for example with a 2-site

dimer, a non-equilibrium phase transition that is driven by dissipation has already

been observed [84].

The true potential of cQED lattices will be subjects of future theses, but it is only

by the hard work of the early pioneers that such results are possible. I am hopeful

that interesting physics is on the horizon, and that future physicists are as inspired

as I was.
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Appendix A

Disorder Analysis

A.1 Disordered Peak Analysis

In a lattice of microwave cavities, disorder is an undesirable shift in the resonant

frequency s.t. ωi = ωr + δi where δi is a random shift at site i. The total disorder

in an array of resonators is the mean shift in resonant frequency σ2 = 〈1/n
∑

i δ
2
i 〉.

Here it is shown that the total disorder can be extracted from a measurement of the

peak positions Ωdis
i .

Some useful linear algebra relationships

〈
(x− 〈x〉)2

〉
= 〈x2〉 − 〈x〉2 (A.1)

tr(A) =
∑
i

λi (A.2)

∑
i

∑
j

A2
ij =

∑
i

A2
ii +

∑
i

∑
j 6=i

A2
ij (A.3)
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First show that the variance in disordered peak positions, from a disordered hamil-

tonian H is equal to the variance of of the matrix elements in that hamiltonian.

∑
i

(Ωdis
i − Ω̄dis)2 =

∑
i

(Ωdis
i )2 −

n∑
i

(Ω̄dis)2

= tr(H2)− n(
1

n

∑
i

Ωdis
i )(

1

n

∑
i

Ωdis
i )

= tr(H2)− 1

n
Tr(H)2

=
∑
i

∑
j

h2
ij −

1

n

(∑
i

hij

)2

=
∑
i

∑
j

h2
ij − n

(
1

n

∑
i

hij

)2

=
∑
i

∑
j

h2
ij − nh̄2

=
∑
i

∑
j

h2
ij −

∑
i

h̄2 (A.4)

Now show that the variance in peak positions without disorder is related to the off

diagonal matrix elements

∑
i

(Ωi − Ω̄)2 =
∑
i

Ω2
i −

n∑
i

Ω̄2

=
∑
i

Tr
(
[H − diag(H)]2

)
− 1

n
Tr (H − diag(H))2

=
∑
i

Tr
(
[H − diag(H)]2

)
=
∑
i

∑
j 6=i

h2
ij (A.5)

Combining the above results it is shown that the difference in variances is the equal

to the sum of shifts in resonant frequency.
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∑
i

(Ωdis
i − Ω̄dis)2 −

∑
i

(Ωi − Ω̄)2 =
∑
i

∑
j

h2
ij −

∑
i

h̄2 −
∑
i

∑
j 6=i

h2
ij

=
∑
i

h2
ii −

∑
i

h̄2

=
∑
i

(hii − h̄)2

=
∑
i

δ2
i (A.6)
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Appendix B

Fabrication recipes

B.1 BCB fabrication

Pre-treat substrate with O2 Plasma clean

15-20 etch with 300 Watt RF power, 180-190mT O2 chamber pressure

Spin coat BCB adhesion promoter

Spin at 3000 rpm; 20 sec.; 500 rpm/s

Bake for 30s at 100 C

Spin coat Cyclotene 4022-35

Slow ramp 500 rpm; 10 sec; 100 rpm/s

3500 rpm; 200 rpm/s; for 60s (film thickness ∼ 4.8 to 5um post development)

Bake for 90s at 90 C

Exposure MJB4 2.0 s

MJB4 2.0 s

Bake 5 min at 60 C; cover with glass

Develop in heated DS 3000 developer

Bring DS 3000 to 35 C on a hotplate. Use a thermometer make sure correct
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temperature. (May take 20-30 min to warm developer)

Submerge into DS 300 for 10 min

Remove from heated DS 3000 and dip into room temperature bath of DS 3000

(This slows the development)

Rinse thoroughly in DI water, then N2 dry

Post exposure bake for 60s at 90 C

Cure in vacuum oven (a good cure is important for better performance!)

Pump out chamber then purge with nitrogen. Repeat many times to remove

all oxygen from chamber. After finished pump out chamber and leave under

vacuum.

Slowly ramp to 150 C (at least 60 min)

Hold oven temp at 150 C for 15 min

Ramp oven temp to 250 C, and hold for 2 hours

Cool to room temp

Descum to remove thin film of BCB from surface of substrate.

5 min etch with 80:20 mixture of O2:CF4 plasma.

Look at substrate under microscope to check for residue, or check film thickness

with profolometer

If residue remains, repeat etch until all residue is removed.

B.2 Niobium plasma etch

A plasma etch recipe to etch 200nm of Nb in an inductively coupled plasma etcher.

The etch consists of two steps, an O2 plasma descum followed by an SF6 plasma etch.

Plasma etches are the most consistent method of etching metals, but there are often

undesirable side effects on sidewalls that can be difficult to debug (figure 4.9).
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O2 plasma descum

50mTorr chamber pressure

100 Watt RF power

20 scam O2 gas flow rate

10 sec. etch time

SF6 plasma etch

2.0 mTorr chamber pressure

150 Watt RF power

5.0 sccm O2 gas flow rate

50 sccm SF6 gas flow rate

50 sec. etch time

B.3 Niobium wet etch

This wet etch recipe will etch 200 nm of Nb. Wet etches are not as isotropic as

directional plasma etches, but when equipment breaks down it is a very convenient

backup plan. This wet etch is a three-part acid etch of H2O:HNO3:HF in a ratio of

7.5 : 4 : 1. The specific recipe used is as follows:

Preparation step: pre pour all liquids into separate containers

20 ml of Hydrofluoric Acid

80 ml of Nitric Acid

150 ml of D.I. water

Etching procedure

Pour D.I. water into non-glass container

Pour Nitric Acid into D.I. water

Pour Hydrofluoric Acid into D.I.:Nitric mixture
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Stir acid solution

Submerge Nb wafer into solution for 20 seconds

Immediately remove and rinse off in D.I. water

Note: for best results etch device immediately after mixing acid solution. The etch

rate will change drastically if the solution is allowed to sit too long.
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Appendix C

Publications

Publications that resulted from the work in this thesis.

• Underwood, D.L., Shanks, W.E., Koch, J., Houck, A.A. ”Low Disorder Mi-

crowave Cavity Lattices for Quantum Simulation with Photons.” Phys. Rev. A

86, 023837 (2012)

• Shanks, W.E., Underwood, D.L., Houck, A.A. ”A scanning transmon qubit for

strong coupling circuit quantum electrodynamics.” Nat. Comm. 4, 1991 (2012)
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Appendix D

Conference Presentations

• APS March Meeting, ’Imaging the Mode Structure of a Kagome Lattice of Su-

perconducting Resonators with a Scanning Defect ’, March 2014

• Les Houches School of Physics, ’Quantum Optics and Nano Photonics’, August

2013

• APS March Meeting, ’Realizing a Lattice-Based Quantum Simulator Using Cir-

cuit Quantum Electrodynamics ’, March 2013

• CLEO ’Low Disorder Microwave Cavity Lattices for Quantum Simulation With

Photons,’ May 2012

• APS March Meeting, ’Disorder in a Kagome Lattice of Superconducting Copla-

nar Waveguide Resonators ’, March 2012

• APS March Meeting, ’Microwave Cavity Lattices for Simulating Condensed

Matter Physics ’, March 2011
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