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ABSTRACT 

 

ANT COLONY INSPIRED MODELS  
FOR TRUST-BASED RECOMMENDATIONS  

 

Recommender Systems can be thought of as being information filtering systems that 

aid in predicting a user’s preference or rating for a certain item. Collaborative filtering is 

a technique used by some recommender systems to filter the information and thus 

provide a prediction by means of collaboration among similar users in the network. 

Trust-based recommender systems generate the recommendations by making use of 

known, expressed trust between the users to increase the accuracy of the 

recommendations. In my thesis, I propose a nature-inspired framework based on our 

Trust-based Ant Recommender (T-BAR) algorithm, that is applied to trust-based 

recommender systems to further increase the accuracy and the coverage of the 

recommendations in the network. T-BAR is the first successful application of an 

algorithm from the swarm intelligence field to trust-based recommender systems.  

T-BARis a hybrid of the Ant Colony System (ACS) computational model and the Ant 

System (AS) algorithm that mimics the behavior of ants during their foraging for a good 

food source. My proposed hybrid algorithm’s advantage over other known algorithms 

that have been used with Recommender Systems is that it considers all the target item 

ratings along the solution paths rather than just stopping and using the first rating found 

in the search process. The Epinions.com dataset is used for the empirical evaluation of 

Trust-based Ant Recommender (T-BAR) along with two different variations of it. The 
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performance of the algorithms is further analyzed by examining different views of the 

dataset to understand the algorithms’ strengths and weaknesses. T-BAR and its variations 

proved their success by drastically improving the coverage of the recommendations while 

maintaining a reasonable level of accuracy of the results in general. T-BAR outperforms 

the basic collaborative filtering (CF) algorithm that uses the Pearson Similarity and Paolo 

Massa’s MoleTrust (MT) by achieving a balanced trade-off between accuracy and 

coverage. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 RATIONALE 

In the past few years there has been an increasing demand for personalizing users’ 

experiences on the web and thus for filtering the vast amount of information available 

online in order to deliver the right piece of information to the right user. Recommender 

systems can assist in providing an adaptive web environment by suggesting to a user 

items, such as movies, books, music, jokes, articles, etc., that the user may find useful or 

interesting. Collaborative filtering techniques are considered to be the most popular 

approaches used in such systems which aim at finding users that are similar to the active 

user and then basing the recommendation of items on the item ratings provided by those 

like-minded users. But due to the inherent problems with recommender systems, such as 

cold start users and the lack of users’ ratings in general, many researchers shifted their 

attention to trust-based recommender systems where users explicitly express how much 

they trust other users rather than relying on the system to implicitly predict the similarity 

between them. Many researchers prefer to deal with implicit trust claiming that it is easier 

to calculate and collect, but this dissertation stems from the belief that systems that rely 

on explicit trust from users should not be neglected but should rather be extensively 

investigated to utilize the trust and overcome these challenges. 

The recommendation problem in trust-based recommender systems is considered to 

be an optimization problem since the goal is to reach and utilize as many useful, trust-
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worthy users as possible to predict the rating of an unseen item. Many optimization 

algorithms have been explored and successfully applied to recommender systems, 

including nature-inspired algorithms.  Ant algorithms have been recently considered in 

recommender systems, in which a group of decentralized agents mimic the behavior of 

ants in their colonies while searching for a good food source, leading to the emergence of 

a solution as a result of the collaborative behavior of the ants. Although successful, such 

algorithms have never been applied to trust-based recommender systems.  

This dissertation presents a set of novel models that are based on ant algorithms to 

solve the recommendation problem in trust-based recommender systems. 

 

1.2 CONTRIBUTIONS 

The main focus of this dissertation is to illustrate how the application of ant colony 

algorithms to analyze and utilize trust relationships in web-based social networks can 

exploit additional information within the network that can lead to better exploration of 

the solution space and thus to better personalized recommendations which enhance the 

system’s performance. 

The contributions of this dissertation can benefit research in trust-based online 

communities, recommender systems, and artificial intelligence systems. Through the 

presented models, this research shows that exploiting trust relationships in web-based 

social networks can enhance a user’s experience on the web. 
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 In order to accomplish the goals of this dissertation, the presented research achieves the 

following: 

• Design a model based on ant algorithms to increase the accuracy of 

recommendations in trust-based recommender systems. 

• The designed model must exploit and utilize all useful information in the system, 

including implicit and explicit trust, item ratings, and user popularities in the 

recommendation process. 

• Analyze the designed ant-based model to identify areas for improvement then 

deign the enhanced models to target specific problems in recommender systems, 

such as the cold start problem. 

 

1.3 ORGANIZATION 

For this dissertation, trust in web-based social networks has been chosen as a very 

specific area to study the larger issue of trust, reputation, and relationships in social 

networks. The decision to work with web-based social networks is imposed by the fact 

that they form a large, publicly available dataset with tremendous interest from the 

general public. Chapter 2 specifically defines what can be considered as a web-based 

social network, and then presents the results of an exhaustive survey of websites.  

Billions of user accounts spread across hundreds of websites were surveyed, with a wide 

subject range such as religious, dating, socializing, and entertainment. The description of 

the size of websites and their general categories is followed by an explanation of how 

users can add information to their social connections. In fact, several popular social 

networks have already incorporated a way for users to express trust among them within 
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the network, which increases the desirability to choose to work with these datasets. 

Before making any computations with trust in social networks, it is crucially 

important to define what trust is and the properties it has. Within computer science, trust 

has been adopted by many subfields to mean many different things. For example, it has 

been used to describe security and encryption [80], used as a mean for authentication or 

digital signatures [8], and as an attack-resistance gauge [149]. It was not until recently 

that the computing community has begun to consider the more social aspect of trust as a 

relationship between humans. The difficulty behind combining trust with algorithms and 

mathematical analyses is that trust is difficult to define, let alone to express as a 

quantifiable way. Intense theoretical analysis and complex models have been used to 

address this issue. However, the real improvement to the fusion of these two topics has 

come in the form of web-based social networks that force people to quantify trust. In 

Chapter 3, a definition of trust is presented within the context of the philosophical, 

sociological, and psychological communities. The definition captures the nature of social 

trust relationships yet remains clear and simple enough to be used in social networks on 

the web. The chapter explains the different trust properties to facilitate how they are used 

later in the work presented in this dissertation. 

A discussion about the basic components needed to devise a trust-based model is 

described in Chapter 4. The general definition of what trust metrics are and their 

importance is highlighted along the different types of trust algorithms. An overview of 

how trust is calculated in the literature is provided afterwards since they relate to the 

metrics presented in this research.  
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Chapter 5 provides a detailed explanation about Recommender Systems (RS), their 

building blocks, techniques, and applications. Recommender Systems gained a lot of 

popularity through their ability to recommend to users items that they will most likely 

find interesting. A deep understanding of recommender systems and their functionality 

paved the way for creating the proposed models in this dissertation. Most of the 

techniques and methods applied to RS stem from the field of Data Mining, thus Chapter 6 

covers the most popular techniques that one would expect to come across when working 

with RS. The chapter presents algorithms in each of the main steps of a data mining 

process, i.e. Data Preprocessing, Data Analysis, and Results Interpretation. 

Instead of following the traditional methodologies for building a RS, this dissertation 

opted to apply a nature-inspired algorithm inspired by the behavior of ants when foraging 

for food, which resulted in creating a novel approach for predicting the ratings in trust-

based RS. Thus, a detailed explanation of the basic terminologies and steps used in Ant 

Colony Optimization (ACO) algorithms in general is presented in Chapter 7. The chapter 

justifies how the behavior of real ants can be successfully simulated by artificial agents to 

accomplish the same successful results reached through a decentralized system similar to 

the one that real ants create.  

While analyzing ACO algorithms for this research, it was noticed that there is a 

window of opportunity to improve the performance of ACO algorithms by altering the 

way pheromone is initialized in such systems. The novel local pheromone initialization 

technique is explained in Chapter 8 as part of this dissertation’s contributions. The 

chapter includes the extensive experiments conducted on the travelling salesman problem 

along with the analysis of results, which prove that the presented technique can 
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significantly affect the speed of the system’s convergence to the optimal solution. 

Before discussing the details of the presented models in this research, Chapter 9 

covers the different attempts made in the literature to apply ant algorithms to RS. The 

presented overview supports the novelty of the presented models since they are the first 

successful application of ant algorithms to trust-based RS. For the sake of completion, the 

chapter also discusses the use of trust in different applications with ant algorithms. The 

chapter concludes by stating the problem to be solved by this research along with the 

formal definitions of the presented models’ parameters.  

Chapter 10 explains in details the specifications of the first presented model in this 

dissertation, Trust-Based Ant Recommender (T-BAR), with a description of how the 

model incorporates both local and global trust values, deals with encountered item 

ratings, enforces a path trust threshold, and utilizes the presented pheromone initialization 

technique. The model is tested and applied to the Epinions dataset and used to predict the 

rating for an unseen item by the user. The results are compared to the ones obtained from 

applying several other algorithms [93][94]. Chapter 11 elaborates on the details of these 

experiments providing a complete analysis and explanation of the results. In addition, the 

chapter discusses two variations of T-BAR that change the way the path trust quality is 

assessed and the results are compared to the ones previously obtained. 

Based on the detailed analysis of T-BAR and its two variations in Chapter 11, it was 

determined that there is room for improvement in terms of increasing the importance of 

explicit trust in the system to compensate for the lack of item ratings for cold start users, 

and in terms of increasing the level of communication between the artificial agents by 

sharing more information about the constructed solutions and studying the effect of that 
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on the system’s performance. 

To study the effect of increasing the influence of trust in the solution construction 

process, Chapter 12 presents two localized T-BAR models that reflect the differences in 

trust levels between the users on the initial pheromone levels assigned to the edges 

connecting these users. The new local pheromone initialization technique presented in 

Chapter 8 calculates a single value using local information within each neighborhood to 

initialize the pheromone level on the edges within that neighborhood. However, the 

localized T-BAR models still use local information to calculate the initial pheromone 

level but they use the individual trust values to reflect each edge’s importance. The 

chapter explains the details of two localized models: Simple Localized T-BAR  

(SLT-BAR) and Averaged Localized T-BAR (ALT-BAR). 

On the other hand, Chapter 13 discusses how altering the way ants communicate and 

share information can have an effect on the system’s results. The chapter introduces two 

dynamic T-BAR models: Dynamic Localized T-BAR (DLT-BAR) and Dynamic 

Averaged Localized T-BAR (DALT-BAR). The dynamic aspect of the two models stems 

from the dynamically changing local information within each neighborhood that is used 

by ants in their solution construction process. The results presented are compared to the 

ones obtained from other known algorithms in addition to the ones obtained from  

T-BAR. 

The analysis of the models presented in this dissertation shows how an understanding 

of the properties of relationship types within systems can lead to effective algorithms for 

understanding the implicit and hidden relationships in those systems.  
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This dissertation can be considered as an extension and an enhancement to the work 

done on trust-based social networks and to the work done in the field of ACO algorithms. 

This research complements the growing body of work that is integrating social network 

analysis and trust into the user experience as well as the work done in the field of 

artificial intelligence. 

Furthermore, the results here seem to suggest that a deeper understanding of the 

relationships in complex systems and methods for inferring information about them has 

the potential to lead to new discoveries in the social, biological, and physical sciences. 

Ultimately, trust and social preferences can be integrated into any number of potential 

applications. Social networks are only one type of complex system, and trust is only one 

type of relationship, so the possibilities are limitless. 
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CHAPTER 2 

WEB-BASED SOCIAL NETWORKS 

 

 

2.1 INTRODUCTION 

Web-based social networks (WBSN) have grown rapidly in number and scope since 

the mid-1990s. They present an interesting challenge to traditional ways of thinking 

about social networks. These networks are large, living examples of online user 

interactions. It has been rarely possible in the past to look at an actual network of millions 

of people without having to use models to fill in or simulate most of the network. It has 

always been a difficult problem to gather social information about a large group of users. 

With WBSN, there are many networks online with millions of users that need no 

generated data. These networks are also much more complex with respect to the types of 

relationships they could have within them. It is common to have information qualifying 

and quantifying aspects of the social connections between people in these systems. This 

means there is a potential for a much deeper analysis of the network. 

The term social network has become looser as interest in social networking has 

increased. Many sites promote themselves as social networks while they do not maintain 

any data that would be useful for a network analysis. This chapter presents a set of 

criteria for a system to qualify as a WBSN and another set for determining when 

information can be considered part of a relationship. 
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2.2 THE STUDY OF SOCIAL NETWORKS 

Most of the fundamental work in the analysis of social networks, and the major 

advances in the 20th
 century have been carried out in the fields of sociology, psychology, 

and communication [13][153][151]. With the goal of understanding the function of 

relationships in social networks, and how they affect the social systems within the 

networks, the conducted research has been mainly both theoretical and applicable. Labor 

markets [102], public health [23], and psychology [112] are just a few of the areas where 

social network analysis has generated interesting results. 

In the last ten years or so, there has been an increasing interest in the structure and 

dynamics of social networks to complement the work already being done in social 

network theory. Although one of the first and most popular papers in this area, Six 

Degrees of Separation [99], was done by Milgram who is a social scientist, but the topic 

has attracted attention from physical scientists as well. Their studies have covered issues 

such as mathematical analyses of the structure of small world networks [152], community 

structure [50], and how social network structure affects the spread of disease  [71][106]. 

As the web emerged and expanded, online communities and social networks became 

a source of interesting data. Garton, et al. [49] presented a detailed explanation on 

traditional social network analysis methods that could be applied to these online 

communities. Work in this area was also adopted by the interdisciplinary field of  

human-computer interaction (HCI), which resulted in interesting work related to the 

design and support of online communities [117] and their application to problems such as 

collaborative filtering [78] and electronic commerce [75]. 
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Social networks on the web offer new opportunities for researchers across the several 

disciplines. For example, social networks provide a new, large source of data for 

mathematical and structural analysis that can be applied to network topologies extracted 

from the web. At the same time, users are constantly participating online in rich social 

environments while building these networks. That creates a rich area for scientists 

interested in the general function of social interactions, however close attention should be 

paid to the contexts of these networks as they tend to be very restricted and thus they can 

serve as a window into specific communities. 

 

2.3 CHARACTERISTICS OF WBSN 

There are several ways in which social networks can be represented on the web. For 

example, a group of users can be considered to form a social network if they are 

connected through online transactions or if they post messages within the same thread on 

a news group or message board. There is a great misunderstanding about the properties of 

social networks among the common users and online communities. This led to many 

communities online to falsely claim to be or support social networks, while they lack 

some of the properties one may expect of a social network. A web-based social network 

must meet the following criteria [51]: 

1. The network must be easily accessible online through a web browser. This 

criterion eliminates networks where users would need to download special 

software on their computers in order to participate in them. It also excludes social 

networks based on other technologies, such as mobile devices such as networks 

formed on applications like WhatsApp or BBM. 
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2. Users must explicitly state their relationship with other people in the network. 

Although social networks can be extracted by analyzing implicit interactions 

between the users, a WBSN is more than just a potential source of social network 

data; it is a website or framework that has the goal of developing an explicit social 

network; i.e. users are aware that they are creating social connections with other 

users. This criterion excludes social networks that are based on events that link 

people through a connection created as a side effect of another process, such as 

auction transactions and co-postings. 

3. The system must have built-in support for users’ social connections. In other 

words, the system should be specifically designed to support a user’s ability to 

add another user to their social circle in the network. So a group of friends who 

maintain a simple HTML page with a list of their friends would not qualify as a 

WBSN because HTML does not have explicit built-in support for making social 

connections. A WBSN must have a unifying structure that connects the data and 

manages how it is presented and formatted. 

4. Relationships must be apparent and browsable. That does not necessarily mean 

that the data has to be public to anyone on the web, but it should be at least 

accessible to the registered users of the system. Websites where users maintain 

private lists of contacts or ones that allow users to bookmark the profiles of other 

users or maintain address books are ruled out as WBSN. Although these lists are 

explicit expressions of social connections, but they would not qualify a system as 

a WBSN if they cannot be seen and browsed by other users. 
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Based on these criteria, many of the major social networking websites like Tickle and 

LinkedIn would qualify as WBSN. For the same reasons, many dating sites, like 

Match.com, and other online communities that connect users, such as Craig's List or 

MeetUp.com, would be excluded.  

Within web-based social networks, users are often able to say more about their 

relationships than simply stating they exist. Yet, the functionality of a WBSN can be 

easily confused with the actual information about a relationship. Therefore, it is helpful to 

have a set of criteria to establish when an action or data qualifies as information about a 

relationship in the social network: 

1. A basic social networking connection between users must exist before adding any 

additional information about it. In order to use the additional information about a 

relationship, there must be a relationship between the individuals in the first place. 

2. The information must be persistent. Many websites allow users to send messages 

or mini-messages (such as "winks" or "pokes") to indicate interest without really 

establishing any form of connection. Since these are sent and do not persist as a 

label on the relationship, they do not qualify as a piece of information about a 

relationship. However, comments or endorsements about a person do persist on 

the website and are considered as free text descriptions of a relationship. 

3. The relationship information must be visible and editable by the user who added 

it. That does not necessarily mean that the information has to be publicly visible, 

some data, like trust ratings, are personal and users usually do not want to share 

them with others. 
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Figure 2.1: Web-based social networks membership ranked by population. 

 

2.4 A SURVEY OF WEB-BASED SOCIAL NETWORKS 

This section outlines the current most popular social networks available on the web. 

The number of registered and active users and primary purpose of each website, along 

with the launch date is described for each site. Sites that require an invitation to join are 

not included. The list of current WBSN is constantly growing and changing. As of 

December 16, 2013 there are over 150 active social networks online originating from 

different countries around the world. One of the earliest online social networks is 

classmates.com, which was launched in 1995 and is still active to this day with over 50 

million registered users. 

 

2.4.1 Size 

The size of the current WBSN varies greatly. The 10 most popular networks have 

over 100 million registered users, as shown in Table 2.1. Figure 2.1 shows the 

membership of sites ranked according to size. It is obvious that there is an exponential 

decrease in the membership of the sites moving from the largest to the smallest.
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2.4.2 Categorization 

With the vast amount of WBSN online, one may categorize these sites from different 

perspectives, such as location, purpose, and size. For example, the networks can be 

categorized based on purpose into: blogging, business, dating, photo sharing, religious, 

and social/entertaining. However, some networks may belong to multiple categories such 

as sites that serve both religious and dating purposes.  

 

2.4.3 Relationship Data 

As mentioned in the previous section, some WBSN allow users to add information 

about their relationships. However, it turns out that only one third of existing sites had 

some method for describing their connections. For the rest, the only method of describing 

relationships was through free-text comments. With a few exceptions (such as LinkedIn 

which is a professional networking site), most of those non-describing sites were dating 

or social/entertainment sites where testimonials were in the form of friends writing about 

their friends. On the other hand, the sites that allow users to describe their relationships 

usually do so in a more restricted way. Most of them include options for users to 

categorize their relationships such as Facebook where a relationship can be further 

categorized as a friend, cousin, family, work, city, etc. In some networks, relationship 

types can be user-defined, but usually users opt to choose from the site’s supplied list. 

Other sites provide users with the ability to rate aspects of their relationships using a 

numeric scale. For instance, the social website Orkut allows a user to rate another user 

based on three criteria: trust, attractiveness, and coolness. Each is rated on a scale from  

0 – 3, which could supply a social network analyst a deeper understanding about the 
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qualities of each relationship. 

Typically, an analyst begins by constructing a graph representation of the social 

network and using the rating numbers as labels on edges. It is important to understand the 

functional properties of the relationship characteristic. Determining whether the 

characteristic is symmetric between users, transitive or composable for example dictate 

the types of algorithms and mathematical methods that could be used to get a better 

insight about the indirect relationships between people in social networks. 

 

2.5 IMPORTANCE OF ANALYZING WBSN 

WBSN provide analysts with a magnified view of real living, evolving networks. 

Users manipulate their relationships frequently by adding, removing, and changing 

connections all the time. Also, the growth rate of such networks is remarkable with 

popular sites gaining literally hundreds and thousands of members everyday. Analysts 

can easily track new members and how they establish connections with existing members 

in the network at regular intervals, providing them with an insight on how social 

networks expand and evolve. In addition to the analysts’ ability to track the type of 

friends added to a person's network, they can also keep records of when those 

relationship types change. 

Computationally, there is an opportunity to develop algorithms that can  

analyze the connections within a social network’s graph. This can lead to 

recommendations for new connections and further understanding of the  

existing relationships between users. It is also possible to integrate users’ social 

preferences into applications, especially in networks that are open data sources.  
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Such data sources form the infrastructure for this dissertation, which aims to achieve 

online personalization through social intelligence. 
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CHAPTER 3 

TRUST: DEFINITION AND PROPERTIES 

 

 

3.1 INTRODUCTION 

Trust is a major factor among individuals in any functioning society [47][28][146] 

therefore it is natural to expect the same to be true in online social communities. When 

building an online system, there are several strategies to increase a user's trust in the 

system and in other users in general [137]. In WBSN where users explicitly define their 

trust relationships, otherwise known as trust-based social networks (TBSN), the goal is 

not necessarily just to build trust between members in the network but also to make 

useful computations with the existing data. In human societies, trust depends on several 

factors that are not necessarily easily modeled in a computational system. 

When a person is faced with the decision of whether or not to trust someone, several 

aspects govern that decision. These aspects include past experiences with that person and 

experiences with his or her friends, personal judgment of opinions or actions taken by 

that person, personal psychological reasons that probably are unrelated to the other 

person, rumors, other people’s opinions about that person, and possible advantages and 

disadvantages of extending trust to that person. Applying a usable notion of trust to social 

networks in a way that is computationally beneficial requires a precise, clear definition of 

trust that preserves the properties that we are all familiar with in our social lives. 

In order for trust to be measured in social networks, the definition of trust must be 

explicit and clear. Average users of online social networks need a simple definition that 



	
   20	
  

they can understand and relate to so that they can accurately describe their trust in others. 

Such a definition ensures avoiding muddled expressions of trust within the network due 

to confusion in understanding what the term refers to. 

 

3.2 DEFINITION OF TRUST 

There are different definitions for trust across many disciplines, such as in the areas 

of sociology, psychology, economics, political science, history, philosophy, and 

computer science. A major problem with defining trust is that it could mean something 

different to each person even if it is considered within the same context [34][135]. 

Since the focus of this dissertation is to utilize trust in TBSN for recommendation 

purposes, it is logical to focus on the perception of trust in the computer science field. 

One of the most referenced works in the literature is Marsh's Formalising Trust as a 

Computational Concept [91]. In his work, Marsh sheds the light on the different elements 

affecting trust, from the biological to the sociological ones, in order to allow agents to 

interact in a distributed manner using an underlying trust model. His trust model is purely 

theoretical and complex. In addition to the difficulties faced with Marsh’s 

implementation, it does not seem to be appropriate for use in social networks. In social 

networks, users assign trust as a single rating describing their connection to others 

without explicit context or history, while in his work the focus was on interacting agents 

that could maintain information about history and observed behaviors.  In order to use his 

trust model in a social network setting, much of the necessary information is missing. 

Web-based social networks are popular among the average web users. Thus, the 

definition of trust in TBSN must be straightforward, uncomplicated, and clear enough so 
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that an average web user can understand what he is expressing and therefore can express 

it accurately. The most frequently referenced definition of trust is the one given by 

Deutsch in [33] where he states that trusting behavior occurs when a person (say Alison) 

encounters a situation where she faces an uncertain path. The result of following the path 

can be good or bad, and the occurrence of the good or bad result is dependent on the 

action of another person (say Bill). Moreover, the negative implication of the bad result is 

greater than the positive implication of the good result, which encourages Alison to make 

the correct choice. If she chooses to follow the path, then she has made a trusting choice; 

i.e. she trusts that Bill can lead the way and take the necessary steps to ensure the good 

outcome. The requirement indicating that the bad outcome must have greater negative 

impact than the positive impact of the good outcome was imposed in [55]. Sztompka 

[144] also defines trust in a simple manner, similar to that of Deutsch, by presenting trust 

as a gamble on the future that relies on the actions of others. There are two main 

components in both definitions: belief and commitment. A person believes that the trusted 

person will act in a certain way, then that belief is used as the motivation for committing 

to a particular action. The two components complement each other because belief or 

commitment alone is not enough to indicate trust. Believing in someone’s behavior 

without making commitments to specific actions based on that belief does not necessarily 

indicate trust. In the same manner, committing to an action that happens to be similar to 

or appears to be (by chance) dependent on the actions of someone else without having 

belief in his behavior does not imply trust either.  

In order to define trust to be computationally used in her dissertation in the area of 

computer science, Golbeck [51] extracted the main social aspects of trust from the 
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definitions above to define trust as follows: Alison trusts Bill if she commits to an action 

based on a belief that Bill's future actions will lead to a good outcome. The same 

definition is assumed in this research since it coincides with the context of Golbeck’s 

work. 

The action of the trusted person and the commitment by the trusting individual do not 

have to be significant and they rely on the context in which trust is being examined and 

defined. For example in the context of movies, Alison trusts Bill if she decides to see a 

movie (commits to an action) based on Bill’s recommendation (based on her belief that 

Bill has good taste in movies which happens to be similar to hers). 

The justification for the belief component of the definition may vary among people 

even within the same context. In the previous example, Alison believes that Bill has 

similar taste to hers and that is why she decides to trust his taste, while another person 

(say Mary) believes that Bill is popular and many people follow his recommendations so 

she will trust his taste based on that. People may base their belief on personal pervious 

experiences that have nothing to do with the other person, on a history of interactions 

with that person, or on information gathered from an outside source. 

It is important to pay attention to the fact that trust is not necessarily represented by a 

single value, but could be expressed as a group of values each referring to a different 

aspect within a single context. Referring again to the movies example, a person may have 

an overall opinion on how much he trust another person’s general taste in movies, but it 

would be more accurate and precise if a person is given the opportunity to express how 

much he trusts the other person’s taste in each movie genre. The process can be taken one 

step further by breaking down genres by period (50s, 60s, etc.), and so on. The 
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possibilities are endless when it comes to the different ways we can break down trust 

when used in TBSN, however it is crucial to maintain a balance between the accuracy of 

the trust expression and the complexity of the expression. 

The adopted definition of trust serves as the foundation for understanding the 

properties of trust, identifying where trust exists in social networks, and how it can be 

used in computations. 

 

3.3 PROPERTIES OF TRUST 

3.3.1 Transitivity 

The most important trust feature in the context of this dissertation is transitivity. With 

respect to trust, transitivity is not treated in the same way as it is treated in mathematics. 

For example, just because Alison highly trusts Bill, and Bill highly trusts Richard, that 

does not necessarily imply that Alison will highly trust Richard. However, there is a 

perception that trust can be passed between people. In our daily lives, it is common for us 

whenever we meet a new person to ask our trusted friends about how much they trust 

him. When we consider a trusted friend’s opinion about someone, we are using her 

opinion and integrating it with whatever knowledge we have to form an initial personal 

opinion about that person.  

The adopted definition of trust in this research supports the idea of transitivity. In the 

definition, trust involves a belief that the trusted person will take an action that will lead 

to a good outcome. For example, if Alison asks Bill whether or not Richard is a good 

mechanic, she is going to rely on Bill’s answer to guide her action of whether or not to 

use Richard because she believes Bill will give her information that will lead to a good 
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service outcome. If Bill suggests to Alison that she should trust Richard, Alison will rely 

on her trust in Bill to form some trust in Richard. So, it is obvious that Bill’s 

recommendation becomes the foundation for Alison’s belief component in her new trust 

for Richard since she developed some preliminary trust in him based on Bill’s 

information. 

This argument can be extended to longer chains of trust. For instance, when Alison 

asks Bill about his opinion in Richard, Bill may not know anything about Richard. So, 

Bill may turn to his trusted friend Mary to get her recommendation about Richard, and 

then he passes the recommendation he receives to Alison. Hence, the chain becomes: 

Alison → Bill → Mary → Richard. The definition of trust will not change along the 

chain and the two components (belief and commitment) are still intact at every step: 

Alison trusts Bill to provide her with information that will lead to a good outcome (which 

is her decision on whether or not she should trust Richard), and Bill trusts Mary to give 

him good information about Richard that will lead to a good result (which is the ability to 

provide Alison with reliable information about Richard). When we have a chain of trust, 

Bill’s future action is considered to be his decision to resort to Mary for her opinion about 

Richard. Therefore, this shows that it is possible to pass trust along a chain of trusting 

people. This is illustrated in part (a) of Figure 3.1. 

Since trust as a concept is not perfectly transitive, it is reasonable to expect it to 

deteriorate as it is passed down along a chain of connections. It is rational for Alison to 

have more trust in Bill’s information if he knew Richard directly, since she trusts Bill, 

rather than having the information passed down to her through a chain of people who 

trust each other, because she simply does not know whether or not they have the same 
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Figure 3.1: Path structures for finding trust. 

Part (a) a simple chain of people where Alison forms an opinion about Richard 
based on the information passed from Mary to Bill, then from Bill to Alison.  
Part (b) a more complex structure where Alison receives information about 
Richard from two people and she must come up with an opinion by composing 
the information she receives. 

 

standards she has when it comes to trusting people. The idea of propagating trust and 

exploiting the concept of transitivity along a chain of acquaintances has been the focus of 

many publications in the literature [59][61][73][74][127][159].  

Transitivity is an important aspect of trust in this dissertation because it contributes to 

reaching more possibly trust-worthy users that can assist in the recommendation process. 
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3.3.2 Composability 

Transitivity justifies the possibility of passing down trust information along a chain of 

people trusting each other. However, there are cases where the trust recommendations 

can be supplied by multiple chains leading to the unknown person. Of course the 

recommendations generated by the chains will not necessarily be identical. In fact, there 

might be diversity in the recommendations received by the different chains. This case is 

shown in part (b) of Figure 3.1, where many people are making recommendations about 

how much to trust Richard. In such a situation, Alison must compose the information 

received from the multiple chains to decide whether or not to trust Richard. For that 

reason, trust composability is another important property for making trust computations.  

The importance of trust composability becomes clear when the different trust 

recommendations are considered as sources that supply the belief component of trust. 

Receiving the information from multiple sources provides more reasoning and 

justification to support the belief. Usually, the trust values of each neighbor and their 

recommendations about the unknown person are all used as input for a composition 

function. The function’s details vary depending on the context and situation at hand. This 

is another computational issue that will be addressed in this work since a user may 

receive a prediction for an item’s rating from more than one source. The dissertation’s 

proposed integration of transitivity into its model along with the composition function 

used to assist in the recommendations have attributed to the high quality of the obtained 

results.  
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3.3.3 Personalization and Asymmetry 

Trust is subjective because it is an expression of personal opinion. Two people may 

have very different opinions about the trustworthiness of the same person due to several 

factors, such as previous experiences and interactions with that person. Therefore, it is 

crucial to personalize trust by computing it from each user’s perspective. 

The definition of trust includes a belief that the actions of the trusted person will lead 

to a good outcome. What distinguishes an outcome from being good or bad depends on 

the perspective of the person. For example, when two teams play against each other, what 

qualifies as a good outcome depends on which team the person is rooting for. Everyone 

has interests, priorities, and opinions that may clash with the interests, priorities, and 

opinions of others, therefore when and how much one would trust people will vary 

accordingly. From that perspective, it would be almost impossible to have a universal 

measure of the trustworthiness of a person. As a result, trust calculations must take into 

consideration the interests of the person requesting the information. 

The asymmetry aspect of trust is also important and is related to the fact that trust is 

subjective. Just because two people trust each other does not necessarily imply that they 

trust each other at the same level (trust is not necessarily identical in both directions). 

Nevertheless, trust could be a one-sided relationship where only one person in the 

relationship trusts the other [63][28] but this may be viewed as an extreme case. The truth 

of the matter is that most of the trust expressed between people is mutual [63] although 

there might be differences in how much they trust one another. This is due to differences 

in personal experiences, psychological backgrounds, and histories leading to the 

reasonable conclusion that any two people will evaluate their trust in one another 
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differently. A clear example is the relationship between parents and their children where 

they trust each other at different levels simply because there are certain tasks that children 

are not capable of. Another example is the relationship between employees and their 

supervisors; most employees would probably trust their supervisors more than the 

supervisors trust their employees. These types of relationships can be found in a variety 

of hierarchies [156]. Since asymmetric trust relationships can arise in any relationship, 

the trust models used in social networks must allow for these differences to be 

represented. 

 

3.4 THE VALUE OF TRUST 

Trust provides information about a social relationship so in a WBSN it is represented 

as a label on that relationship. There is great flexibility in how to format that label. 

However, trust is a fairly new concept in social networks and only a handful of the 

existing ones provide a way for expressing trust in one way or another.  

One of the simplest approaches for representing trust was observed in the social 

network eCademy in which users have two options: either state that an individual is 

trusted, or do not provide any trust statement about an individual. The technique used in 

this network does not allow trust to vary within a range; either it exists or it does not. 

Also, a user’s decision of not to issue a trust statement for another user implies that the 

user has no opinion or information about the other user. Therefore, their system lacks the 

ability to indicate untrustworthiness. It simply lets users indicate which people they trust. 

There are certain scenarios in which a relationship does not require any form of 

variance. For instance, relationships expressing whether or not you know someone, 
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whether you ever met at least once before, if you are related, or if you are co-workers 

would either exist or not. However, based on the common notion and understanding of 

what trust is, it can never be expressed as simple as that without having some variance in 

its degree or strength  [48][90][91]. 

There are other approaches for representing the levels of trust. Epinions.com provides 

users with two labels: trust (represented by a 1) and distrust or block list (represented as -

1). Richardson et al. [127] used a continuous range of 0 – 1 to allow for a precise trust 

expression. The social network Orkut allows trust to be expressed within a discrete range 

from 0 to 3. Many networks use labels to differentiate between the different levels of trust 

rather than using numbers (e.g. very low trust, low trust, moderate trust, high trust, and 

very high trust). There are many possibilities for labeling trust and expressing its degree, 

although most of them have never been used in any existing WBSN. It is also possible to 

use a ranking system to provide a relative, rather than absolute, value for trust. This could 

be combined with preference elicitation mechanisms [79][17] to build a profile of a user's 

trust model. In general, the most common way of expressing the variance in trust in most 

WBSN (that support the trust model) is to use a direct rating scheme that passes the 

burden of expressing trust to the users and allows for quick information extraction. The 

proposed models in this research are designed to work with the standard explicit rating of 

trust.  
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CHAPTER 4 

TRUST INFERENCE APPROACHES 

 

 

4.1 INTRODUCTION 

One of the goals in this dissertation is to develop a model that can utilize trust within 

a social network to generate good system outcomes. Rather than just using the explicit 

trust values in the system, the presented work in this research exploits trust between 

people that do not necessarily have a direct link between them in the network. This 

requires an understanding of the structure of trust-based social networks and analyzing 

how trust behaves within them. The term source is used to refer to the person whom we 

are trying to predict his trust in another person (regardless whether they are directly 

connected or not). The term destination describes the person whom we are trying to 

express trust towards. 

 

4.2 ONLINE SOCIETIES AS TRUST-BASED SOCIAL NETWORKS 

With the increasing popularity of online social networks, it has become common to 

interact with unknown people within the so-called global village. Therefore, a need has 

emerged for new tools to assist in deciding whether or not to trust someone online. 

Several solutions have been proposed in the literature, but the most useful ones where the 

techniques that use a decentralized collaborative assessment of the trustworthiness of 

unknown users [92]. The recent trends in TBSN support this idea by allowing each user 

to express her opinion in others by means of a trust rating.  
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Based on the adopted definition of trust in Chapter 3, a trust statement can be defined 

as the explicit opinion expressed by a user about another user with respect to the 

perceived quality of a certain characteristics of that user. For example, on a site where 

users provide reviews about products, users could be asked to express a positive trust 

statement on a user whose reviews and ratings they have consistently found to be useful 

and a negative trust statement on reviewers whose contributions are found to be 

consistently offensive, inaccurate, or in general useless. For instance, in the Epinions 

dataset trust T is expressed from user x towards a user y as a value within the range [0, 1], 

where Txy = 0 indicates that user x has issued a statement expressing his degree of trust in 

user y as the minimum, i.e. x totally distrusts y, while Txy = 1 means that user x totally 

trusts user y. This simple example is a reminder that trust is subjective so a user may 

receive different, and sometimes contradictive, trust values from different users. Also 

since trust is asymmetric then if x trusts y as 0.8, this does not necessarily mean that y has 

to trust x with the same degree, that is if y trusts x in the first place. In most TBSN, a user 

usually issues trust statements towards a small portion of the users in the network. The 

remaining users are considered unknown to the source user. 

A graph that represents the societies created by trust relationships can be created by 

aggregating the trust statements expressed by every user in the social network. A simple 

trust network is illustrated in Figure 4.1. The network is represented as a directed, 

weighted graph whose nodes represent users and edges indicate issued trust statements 

between the users. An edge would be pointing from the user who issued the trust 

statement (source) to the user whom trust is being expressed towards (destination). An 

edge is labeled with the associated (explicit) trust level. 
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Figure 4.1: A simple trust network.  

Nodes represent users and edges represent trust statements. The value 
associated with each edge reflects the level of trust in the direction of the edge. 

 

4.3 TRUST ALGORITHMS 

Given a social network, information about trust can be provided to users in many 

ways. In most settings, the goal usually is to recommend to one node how much to trust 

another node in the network. However, this is not the goal of this dissertation; trust plays 

only a part in this research which exploits the trust information in the network and 

incorporate trust algorithms as part of the bigger recommendation model. However, a 

description of the different trust algorithms is essential to understanding their 

functionality in the presented model.  

There are two different types of trust algorithms: global and local. Global algorithms 

compute a general trust value for each person in the network, without any form of 

personalization from the perspective of the source. Hence, regardless of who asks for a 

trust recommendation, the same value is provided to everyone since each destination has 

a universal trust value. On the other hand, local trust algorithms calculate trust from the 
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perspective of the person asking for the trust recommendation (source) and therefore the 

results are personalized (and may be different) for each user.  

Since trust is a personal opinion, it can be affected by many factors and thus it is 

reasonable for it to vary between two people. Based on that notion, it is only logical to 

predict that the personalization of trust, through a local algorithm, should improve the 

accuracy of the results. The calculation of the local trust relies heavily on the properties 

of transitivity and composability. Transitivity provides the ability to pass down 

information from the destination all the way back to the source, while composability 

provides the source with the power to combine the received information from multiple 

paths. 

 

4.4 LOCAL TRUST VS. GLOBAL TRUST 

A trust metric is a measurement that can be used to predict the trust level in unknown 

users. There are different techniques for accomplishing this task [53][84] but typically it 

involves controlled aggregation and/or propagation of trust over the trust network. In 

accordance to how trust algorithms are categorized, trust metrics are also classified into 

global and local ones [93][158]. Local trust metrics reflect the subjective opinions of the 

source user when predicting the trust he places in unknown users, while global trust 

metrics compute a single trust value that approximates how much the community as a 

whole trusts a specific user (the destination), independent of any specific user opinion. 

Usually such a global trust value can be thought of to reflect a user’s reputation [123]. 

For example, in the social network of Figure 4.1, a global trust rating for Richard 

would aggregate (probably average) the trust values issued from Mary and Jenny 
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resulting in a global trust value of 0.45 that is provided to any user in the network asking 

about Richard’s reputation. However, a local trust metric is used to predict the trust that 

each user could express towards Richard. So, if we average trust along the path leading 

from the source user to the destination, Bill’s predicted trust in Richard would be 0.35 

while Jack’s predicted trust in Richard would be 0.55. 

PageRank is probably one of the most popular global trust metrics available [111]. It 

is one of the algorithms used behind the Google search engine to generate a single rank 

for each Web page independently of the browsing user’s preferences. Although local trust 

metrics can be more precise and adaptive to a user’s personal views and opinions, they 

are however computationally more expensive since they need to be computed for every 

single user whereas global ones are generated once for the whole community. 

Nevertheless, a major advantage of using local trust metrics is that they can be attack-

resistant [84] by excluding malicious users from trust propagation and thus and they do 

not influence the results of a user’s personalization. Gori and Witten [57] show that 

malicious exploitation of links is an immanent and unavoidable problem for global trust 

metrics. In addition, the increasing popularity of link-farms worsens the problem for 

global trust metrics. The majority of trust metrics proposed in the literature are global, 

however there are a few local trust metrics such as the ones proposed by Golbeck [51], 

Ziegler [158], and Massa and Avesani [94]. 

There are certain scenarios where it is practical or useful for the system to favor one 

type of trust over the other. For example, in non-critical systems it may be cost and time 

effective to consider global trust rather than wasting resources personalizing every single 

trust recommendation, especially in social networks with a huge number of users. On the 
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other hand, there are cases where the accuracy of predicted trust affects the users’ trust in 

the system’s performance, thus the system favors to personalize the trust to gain users’ 

confidence.  

In this dissertation, it is believed that the two trust types are equally important as they 

provide different insight about the trust information in the network. The two trust types 

do not conflict with one another and therefore the proposed model incorporates the two 

trust types to complement each other. To be more realistic, the influence of the local trust 

in this research is higher than the influence of the global one to reflect the importance of 

personalization in the presented model. 

 

4.5 DEALING WITH TRUST IN COMPUTER SCIENCE 

4.5.1 Peer-to-Peer Systems 

Peer-to-peer (P2P) file sharing networks are similar to social networks in the sense 

that a peer is connected to another if they had interacted at least once. Thus, trust plays a 

major role in these networks.  

Nejdl [105] used trust to describe access control policies in P2P networks. If an agent 

can show proof that it meets the requirements in the access control policy, then the agent 

would be trusted to access information. For a P2P system to work, each node must 

correctly implement the network protocols and provide access to uncorrupted files. If a 

node is not reliable (i.e. points to a corrupted file or does not conform to the policy), it 

can affect the usefulness of the entire network. Thus, the trustworthiness of an agent 

reflects the quality of its participation in the P2P network. In an attempt to filter out the 

bad nodes from the network, several contributions in the literature have addressed the 
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issue of predicting the trustworthiness of unknown nodes. The EigenTrust algorithm [76] 

expresses trust as a function of corrupt files as opposed to valid files that the node 

provides. A peer continuously updates the trustworthiness of other peers with which it 

has interacted based on the proportion of good files it has received from that peer so far. 

The EigenTrust algorithm calculates trust as a variation of the PageRank algorithm [111] 

and it generates a globally accepted trust rating over a series of iterations using a matrix 

representation of the trust values. EigenTrust has been proven to be highly resistant to 

attack. There are other approaches to manage trust and reputations in P2P networks such 

as [75] in which they focus on how to share trust assessments in a distributed way. 

There is a major difference between trust in P2P networks and trust in social 

networks. In P2P networks, trust is based on the dependability of a node to conform to 

perfectly correct parameters. Thus, trust can be viewed as having a binary value of 0 or 1 

because a file is either corrupted or it is not; there is no such thing as a slightly corrupted 

file. However, in social networks two people may hold extremely different opinions 

about a topic (such as religion or politics), therefore there is no absolute truth to 

determine which one should be trusted and which one should not; a person decides how 

much to trust another based on personal opinion. In P2P networks the calculated trust 

provided by one peer represent the absolute truth for all peers. As a result, the need for 

personalization of a trust rating is minimized because each peer is expected to have the 

same experience as every other peer. 

It is worth noting that the use of trust in this dissertation is as a measure of reputation 

and not as one that leads to actions such as eliminating nodes from the system. 
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4.5.2 Public Key Infrastructure 

Trust has been used in the Public Key Infrastructure (PKI) in a similar manner to the 

way it is used in social networks. In order to execute secure transactions, it is crucial to 

map a name to a public key or, conversely, to find the public key associated with a 

certain user. In the absence of a centralized authority to map keys and names, the process 

of authentication can be accomplished by combining information from a path of 

authorities. The reliability of the chains may deteriorate if any of the intermediate 

authorities has poor information. Trust values can be combined over paths of authorities 

to determine the confidence in the authority at the end point. Several researchers have 

discussed the metrics for calculating trust over such paths including Tarah and Huitema 

[145], Mendes and Huitema [98], Maurer [96], and Reiter and Stubblebine [121]. 

The inputs and outputs used with these metrics could vary depending on the 

algorithms, approaches, and applications. For example, Maurer computes the confidence 

ratings and combines them with explicit trust statements and authenticity measures to 

infer authenticity information. Although his approach can be considered indirect and 

complex, others like Beth, Borcherding, and Klein's metric [16] used a simpler technique 

that take as input binary trust values, the source, and the destination, and generate a 

calculated trust value as output. 

 

4.5.3 Online Communities 

On the web, trust has ignited a lot of issues relating to security, authentication, and 

digital signatures. However, there have been substantial contributions that focus on the 

social aspects of trust. Levin et al. [85] used the Advogato website as a benchmark for 
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their research on trust metrics. Advogato is a community discussion board and resource 

for free software developers where a set of authoritative users collectively calculate the 

trust ratings for the other users using a network flow model. Levin’s trust metric 

constitutes certifications between members to determine the trust level of a person, and 

eventually their membership within a group. Access to post and edit website content is 

controlled by these certifications. Advogato is considered a global trust algorithm since 

the authoritative nodes are used to make calculations for every user, however it can be 

modified to carry out personalized calculations by using a single authoritative node, 

which converts the metric into a local one.  

Richardson et al. [127] use trust-based social networks to calculate a user’s belief in a 

statement by finding possible paths from the user (source) to any other user that holds an 

opinion about the statement in question. Trust values are concatenated along each path to 

produce a recommended belief in that statement. The values are then aggregated from the 

different paths to calculate the final trust value for the statement. They deliberately did 

not define a specific concatenation function for calculating trust between individuals, 

preferring to present a general framework as their main result. Grishchenko [60] adds to 

the work of Richardson et al. by addressing some issues and presenting applications 

related to their work.  

The problem with algorithms such as Kamvar [76], Zeigler and Lausen [159], and 

Richardson et al. is that they are all based on finding the principal eigenvector, which 

means that trust must be normalized first to function within the matrix. The normalization 

would affect the trust values because they will be dependant on the number of ratings that 

user has issued. If the user has made many trust ratings then the normalized trust value 
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will be lower than if he had rated only a few people. Other researchers, like Guha et al. 

[61] shifted their focus to study distrust and whether it can be propagated and inferred 

like trust. In their work they converted continuous ratings to binary values representing 

the two polar extremes of trust and distrust.  

Since the above contributions focus on utilizing trust in TBSN, they can be 

considered to align perfectly with the work done in this dissertation. In fact, they were the 

starting point for exploring the possible contributions in the early stages of this research. 



	
   40	
  

CHAPTER 5 

RECOMMENDER SYSTEMS 

 

 

5.1 INTRODUCTION 

Recommender Systems (RS) are one of the most popular applications used in web-

based social networks. RS are useful software tools and techniques that suggest to users 

items that may be of interest to them [88][122][21] and therefore assist users in online 

communities in making decisions about those items. The items could be movies, music, 

articles, books, or even jokes. It would be rare to find a single RS that suggests a variety 

of items to users (such as Amazon.com); most RS focus on a certain item type to be 

suggested (e.g. Netflix.com) because that greatly determines the system’s design, user 

interface, and the recommendation technique. Many users interact with RS on a daily 

basis without being aware of what goes on at the back-end. Websites such as Amazon, 

Netflix, YouTube, and TripAdvisor rely internally on a RS to deliver the right 

information to the users requesting (or needing) it. 

The motivation behind developing RS stems from the observation that users tend to 

rely on recommendations provided by others to assist them in making basic daily 

decisions. For example, before deciding on which movie to watch, many people prefer to 

read reviews provided by others or by relying on critics’ reviews in the local newspaper 

to aid their decision. Even at a bookstore, some feel overwhelmed when it comes to 

picking up a book to read and they end up purchasing one of the best sellers since they 

seem to be popular among the general public. 



	
   41	
  

5.2 RECOMMENDER SYSTEMS EVOLUTION AND FUNCTIONALITY 

Early RS were designed to benefit from the ratings provided by other users in the 

system to produce a list of recommended items to an active user, i.e. the user requesting 

recommendations. Such lists are usually aggregated from lists of items liked by users 

similar to the active user. The term similar users refers to users that have a similar rating 

pattern for items rated by the active user. The rationale behind this approach is that if the 

active user agreed in the past on the ratings of certain items with specific users, then the 

ratings provided by these similar users should be close to the active user’s taste and 

preferences. Such systems are known as collaborative filtering (CF) RS. 

When e-commerce websites started to emerge and gain popularity, there was a strong 

demand for an infrastructure that can filter the large repository of available items in order 

to guide the users (or customers) to easily locate the items they are interested in. Despite 

the efforts made by developers at the time, users still found it difficult to choose the item 

that would best suite their needs from the wide range of available alternatives. 

RS can be thought of as being the most effective solution for providing an adaptive 

web environment for users overwhelmed by the increased online information overload on 

e-commerce websites. RS have the ability to quickly filter the information to suite the 

needs of different users and therefore to personalize a user’s experience on the web. This 

personalization process results in different users receiving different item 

recommendations that match their tastes. Non-personalized recommendations have 

always been available and are fairly easy to generate. Such recommendations can be in 

the form of the top n best-seller books, top m music tracks that have been downloaded, or 

the most read news articles during that week. Although such lists may be useful for a 
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certain category or group of users, they are not the focus of RS as they do not provide any 

form of personalization for users. 

In their simplest form, RS provide lists of suggested items, but the difference between 

such lists and the ones just mentioned is that these lists are generated to match a user’s 

preferences and criteria, hence providing a personalized experience. Users’ preferences 

can either be expressed explicitly by the user, such as rating items in the system, or 

inferred implicitly by interpreting the user’s actions, such as navigating to a certain 

product page or purchasing an item. 

As the variety of information available on the web started to rapidly grow, especially 

with the wide spread of e-commerce websites and services, users had the tendency to 

make poor decisions simply because they were overwhelmed. In psychology that can be 

thought of as the implication of having too much freedom to select from the available 

options which turns later into a misery-inducing tyranny [132]. 

RS have become so sophisticated over the years and they can be relied upon to direct 

a user to the items that are of utmost relevance to his needs or preferences. The added 

advantage of RS is that they most often introduce the user to new unexplored items that 

the user would most probably never come across if he had to navigate through the items 

himself. Regardless of the different approaches or techniques applied to implement the 

various types of RS, they all share the same basic core function: analyze the user’s 

profile, which may include his preferences, needs and rating patterns, then compile a list 

of items that suites the user’s needs by utilizing the various types of knowledge and data 

about the users and items. In some RS, the user has the freedom to browse through the 

recommendations and may or may not accept them. Sometimes, the user’s feedback is 
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collected (either in an implicit form such as purchasing the same item again, or in an 

explicit manner such as when the user rates the item based on his experience with it). 

Such feedbacks are useful for a RS because it allows it to gain more knowledge about the 

user’s preferences and thus to fine-tune the future recommendations to better suite the 

user’s taste. 

 

5.3 RECOMMENDER SYSTEMS ROLES 

When someone is first introduced to RS, they can be falsely tricked into thinking that 

they only serve a single purpose: easing a user’s mission for finding certain items or 

services. But after a deep understanding of how RS are implemented and used, it 

immediately becomes evident that they have two major roles; the RS’s role on behalf of 

the service provider and the RS’s role on behalf of the user. For example, a travel 

services website would utilize a RS in a way that guarantees that it maximizes its 

turnover by selling more hotel rooms or increasing the number of travelers to a certain 

unpopular destination [124]. But a user of such a system is not aware of the service’s 

goals and is only concerned about booking a hotel room within a certain budget or 

exploring and finding interesting destinations. 

In fact, there are several reasons to use RS from both the service provider’s 

perspective and the user’s perspective. But ultimately, a RS must balance between the 

two sides’ needs in order to provide a valuable service for both. 

From a service provider’s point of view, the following sums up the most important 

reasons for it to benefit from such a technology [126]: 
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• Increase the number of sold items 

This can be considered the most important function of a RS for a service provider. 

For a commercial RS, its ultimate goal is to provide a user with items that closely 

match what he is looking for in order to increase the user’s probability of 

purchasing the item. Even non-commercial websites are interested in increasing 

the traffic on their site, although they do not gain profit from a user’s selection of 

a recommended item. So in both cases the ultimate goal from a service provider’s 

point of view is to increase the conversion rate, i.e. the number of users that 

accept the recommendation and consume an item, compared to the number of site 

visitors that simply browse through the items available. 

 

• Sell a variety of items 

Another major advantage for a service provider to use a RS is to increase users’ 

exposure to unpopular items. For example in a movie renting RS, the service 

provider is interested in profiting from renting all the movies available in its 

repository and not just the popular ones. Therefore, by utilizing a RS such movies 

can be suggested to the appropriate users based on their known needs and 

preferences. 

 

• Increase user satisfaction 

A well-designed RS can produce reliable, accurate, and useful recommendations 

for its users, which in turn increases the user’s satisfaction with the system and 

therefore increases the probability of using the system more frequently and 

accepting the recommendations. 
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• Increase user fidelity 

Due to the nature of RS and how they work, the system takes advantage of the 

acquired information from past user interactions which allows the system to treat 

a returned user as a valuable one by providing more accurate recommendations. 

As a result, the longer a user uses the system, the more refined his profile 

becomes which leads to producing a set of more customized recommendations 

that match his taste. 

 

• Gain a better understanding of users’ needs 

A RS has the ability to describe a user’s preferences, either by explicitly 

collecting them or by inferring them from recorded actions. Service providers can 

benefit from the increasingly growing knowledge about the users and therefore 

improve the management of its items or services provided. For example, a travel 

services website can gain a better understanding of what its users usually look for 

when booking a vacation. Such an understanding aids the system in providing the 

correct advertisement to the proper users, which in turns improves users’ 

satisfaction with the system’s ability to meet their needs. 

 
However, from the user’s side, a RS can be useful for different reasons and purposes 

[67], such as: 

• Finding some good items 

Most RS provide the user with a list of items that the user will most likely find 

interesting. Usually such lists are sorted by their ranks, where items with a high 

probability of being liked appear higher on the list. Some systems even augment 
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the items on the list with the prediction of how much the user would like them 

(predicted rating). Typically, such ratings usually fall within a scale of 1 to 5.   

 

• Finding all good items 

In some systems, it is desirable and even crucial for the RS to generate all the 

possible items that match the user’s needs. This is usually true in systems where 

the number of items is relatively small and in critical systems such as the ones 

used in the medical and financial fields. In these systems, the user can even 

benefit from any extra information the RS can provide him with, such as the 

rationale behind displaying these items or the user’s search criteria or profile 

specification that resulted in retrieving each item. 

 

• Annotation in context 

Within a specific context the RS can further highlight the items that closely match 

the user’s preferences based on the user’s long-term transaction or preference 

history. An example on that would be an electronic program guide that can 

emphasize or highlight the shows that would be worth watching, based on the 

user’s profile. 

 

• Recommend a sequence 

Some RS do not simply recommend an item to a user, but rather keep 

recommending items afterwards that fall within the same context of the user’s 

previously recommended items. Examples include recommending a compilation 

of music tracks or recommending a book about the same topic that a previously 
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recommended book was about. The sequence of recommended items usually 

includes items of the same type (books, music tracks, movies, etc.) as suggested 

by Shani et al. [133] and Hayes et al. [65]. 

 

• Recommend a bundle 

In some systems, the recommendations are not presented as single items, but 

rather offered as a package of different items that can fit well together. For 

instance, a travel services website may present the user, based on his preferences, 

with a bundle composed of a suggested airline or flight, a certain hotel, a rental 

car, and offers for some of the attractions in the desired destination [125]. 

 

• Just browsing 

A user may simply want to browse the repository of items available without any 

intention of making a purchase afterwards. The RS should be able to understand 

the user’s purpose behind browsing the catalog in that session to better assist him 

in meeting his browsing needs. 

 

• Test a recommender’s credibility 

Some users are on the fence when it comes to trusting a RS to provide them with 

recommendations that they could trust. Those users usually prefer to play around 

with the system in order to test it and get a feel of its recommendation ability. 

Some systems provide separate functions for those users to allow them to test the 

system’s behavior in addition to the basic recommendation functionality. 
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• Improve profile 

A RS’s ability in allowing the user to provide as much information about their 

preferences as they desire is a crucial aspect that should never be neglected. A 

user of the system is expected to understand that the more input they provide to 

the system, the stronger the benefit gained from the recommendations in 

subsequent sessions. Otherwise, if the system has no or little knowledge about the 

user’s likes or dislikes, then it will not be able to provide a personalized 

recommendation and thus the recommendation would be composed of the most 

popular items or the items that appeal to an average user of the system. 

 

• Express self 

For some reason, some users do not care about the recommendation aspect of the 

system, but rather get a lot of satisfaction by providing the system with their 

ratings and feedback about the items, thus feeling the freedom to express their 

opinions and beliefs. Those users can still be useful for the system because as they 

start feeling connected to it, this will lead to increasing traffic to the service 

provider’s website. 

 

• Help others 

Some users feel obliged to help others by providing their ratings and reviews 

about their recent experiences with the recommended items. Those users are very 

important in systems in which users are not expected to use that often, such as a 

car dealer’s RS. A user that provides feedback about his recently purchased car 

knows that this feedback will not be likely used by the system to guide him in his 
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future car purchase, but would be rather more helpful for other customers.  

 

• Influence others 

There are cases in which users are using the system with the sole purpose of 

affecting the decisions taken by other users. Although not always the case, but 

most of the times those are malicious users who are either trying to promote the 

sales, usage, or popularity of a specific item, or are trying to discourage the users 

and drive them away from certain items. 

 

5.4 DATA AND KNOWLEDGE SOURCES 

Due to the different roles that a RS can play within an information system, there 

could be several sources for the information collected during the recommendation 

process. Typically, knowledge and data are collected from information about the items, 

users, and the users’ interactions with the system (i.e. transactions). Not all RS are 

expected to exploit all the knowledge sources available. In its simplest form, a RS may 

only use the item ratings to generate the recommendations. On the other hand, advanced 

RS are more dependent on the available knowledge such as users’ demographical 

information, the context of items, and even the users’ transaction patterns. Follows is a 

detailed explanation of the three main knowledge sources for RS. 

 

5.4.1 Items 

The items are the objects that are recommended by the system. They can be 

represented as a complex unit with a set of attributes describing the item, or simply 

referred to using a handle or a single ID code. Items with low complexity and value 
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include DVDs, movies, music tracks, news articles and books. Items with higher 

complexity and value are mostly electronics such as cameras, laptops and cell phones. 

The items with the highest level of value possible are jobs, financial investments, and 

travel packages, just to name a few [101]. 

Regardless of its complexity, an item will always have a value in the system. Useful 

items for a user are considered to have a positive value while useless items that the user 

wrongfully selects are considered to have a negative value. It is worth noting that when a 

user is trying to find an item, he may incur two types of costs: a cognitive cost associated 

with the time and effort spent to locate the item, and a monetary cost in the case where 

items must be purchased.  

A RS may make use of several item attributes to further increase its understanding of 

the items’ structure and thus provide better recommendations. For instance, a movie RS 

may use information about the movie’s genre along with information about the director, 

actors, and year of production to increase the movie’s value in the system, i.e. increasing 

the movie’s chances of having a positive value when recommended to a user. 

 

5.4.2 Users 

The main purpose of any RS is to provide personalized recommendations to its users. 

In order to accomplish that, the system needs to build and exploit a user profile so that it 

can assist it in making useful recommendations. The profile in its simplest form consists 

of the different item ratings provided by the user. In more complex systems the profile 

may be composed of several attributes obtained from demographical information (age, 

gender, education, etc.), behavioral patterns (browsing pattern in a web-based RS, travel 

search history in a travel services RS, etc.) and/or relationships between the users in the 
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form of trust (whether it is explicitly defined by the users or implicitly inferred from the 

interaction history among the users). 

 

5.4.3 Transactions 

The term refers to the interactions that occur between the users and the system, stored 

in the form of a log. The logs include useful information for the recommendation process 

such as the items selected by a user, the captured description of the recommendation 

request, and/or the feedback provided by the user about their experience with the selected 

item in the form of a rating or review. 

Item ratings can be considered the most important piece of information in the log. It 

may be explicitly provided by the user or implicitly implied or calculated by means of the 

system’s analysis of the user’s interaction history with the item. Schafer et al. [131] 

indicates that ratings can be specified in several forms, such as: 

• Numerical ratings usually in the scale from 1 to 5 

• Ordinal ratings in which the user is asked to indicate his opinion, i.e. whether he 

strongly agrees, agrees, neutral, disagrees, or strongly disagrees with the 

system’s recommendation of the item. 

• Binary ratings in which the user either “agrees” or “disagrees” 

 

5.5 RECOMMENDATION TECHNIQUES 

To implement and reach the goal of any RS, a system must have the capability to 

predict the items that would appeal to the user’s needs and taste by analyzing the items 

and their usefulness for that user in order to be used in the system’s prediction process. 
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This approach is considered generic as it can be applied to simple RS as well as complex 

ones. Simple RS may lack knowledge about the users’ preferences or descriptions about 

the items. In such systems the most popular items are recommended since they would 

have a higher probability of appealing to an average user, as opposed to recommending a 

random item. The process of figuring out the most popular items that were chosen by 

other users can be considered as a form of analyzing the items to determine the most 

suitable ones. The analysis process is more obvious though in complex systems that have 

access to users’ profiles, preferences, and/or description of the items. 

There have been several attempts to categorize RS but the most widely used 

taxonomy is the one proposed by Burke [21], which differentiates between six different 

categories of recommendation techniques: 

 

5.5.1 Collaborative Filtering Recommender Systems 

The collaborative filtering (CF) technique is the most popular approach among RS 

researchers [131]. The basic CF techniques recommend to a user items that were liked by 

other users with a similar taste. The similarity in taste between two users is computed by 

comparing their rating history. We can consider users sharing similar rating profiles to be 

part of a neighborhood, thus having a strong correlation between the users (neighbors), 

which is sometimes referred to as user-user similarity. This neighborhood-based 

approach can also be applied on the item level as well in order to recommend items 

similar to other items liked by the same user, i.e. item-item similarity. Figure 5.1 

illustrates an example of a simple CF technique that uses user-user similarity while 

Figure 5.2 presents the same example using item-item similarity.  
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Figure 5.1: The user-item ratings matrix in a simple CF RS using user-user similarity. 

User-user similarity is used to predict the ratings for unrated items. To predict 
the rating of item i5 for user u1, the user’s rating profile is compared to other 
users’ profiles and a similarity measure is calculated. For example, if the Pearson 
Similarity is used then u2 and u4 would be the most similar to u1 and the 
predicted rating for i5 is calculated using the similar users’ ratings for that item. 

 

By applying a neighborhood-based approach, nearest neighbor algorithms gained 

popularity in the area of RS due to their simplicity and ability to provide personalized 

recommendations with good accuracy, yet it is worth noting that they have their share of 

downsides such as data sparsity and coverage issues. 

 

5.5.2 Content-Based Recommender Systems 

This type of RS attempts to learn a user’s preferences by analyzing the items rated by 

him in the past and then recommending items that are similar to his highly rated items. 

For example, if there’s a tendency for a user to give high ratings for songs by a certain 

artist, then the system will recommend unrated songs in the future by the same artist since 

they would have a high probability of being liked by that user.  

In such systems, access to information about the items, in addition to users’ ratings of 

items, is crucial for the recommendation process. 

 

 i1 i2 i3 i4 i5 … im 

u1 5 3 4 4 ? … 2 

u2 3 1 2 3 3 … 1 

u3 4 3 4 3 5 … 5 

u4 3 3 3 5 4 … 4 

… … … … … … … … 

un 3 1 3 2 1 … 1 
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Figure 5.2: The user-item ratings matrix in a simple CF RS using item-item 
similarity. 

Item-item similarity is used to predict the ratings for unrated items. To predict 
the rating of item i5 for user u1, the item’s rating profile (across the users) is 
compared to other items’ profiles and a similarity measure is calculated. For 
example, if the Cosine Similarity is used, i2 and i4 have a similar rating profile to 
i5’s across all users so the predicted rating for i5 is calculated using the similar 
items’ ratings for the target user u1. 

 

5.5.3 Demographic Recommender Systems 

Such systems have access to demographical information associated with each user 

and therefore suggest items that appeal to a certain demographic. For example, certain 

recommendations could be based on the age of the user, while others rely on the user’s 

location to provide proper suggestions, such as the restaurant reservation website 

OpenTable.com. Little attention has been given to this technique in RS research [89]. 

 

5.5.4 Knowledge-Based Recommender Systems 

By having access to domain-specific knowledge, knowledge-based techniques exploit 

how well certain item features can match a user’s needs and preferences and to what 

extent can an item be useful for a user. Two of the most popular knowledge-based 

 i1 i2 i3 i4 i5 … im 

u1 5 3 4 4 ? … 2 

u2 3 1 2 3 3 … 3 

u3 4 3 4 3 5 … 5 

u4 3 3 3 5 4 … 4 

… … … … … … … … 

un 3 1 3 2 1 … 1 
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systems are case-based systems and constraint-based systems. In both, the user explicitly 

provides the system with his requirements as an input, the system provides suggestions to 

the user to resolve conflicting requirements, and an explanation is provided for why the 

suggested items were recommended. In case-based systems [20][125], the system 

estimates how well a recommended item matches a user’s needs by means of a similarity 

function. The similarity score is then used to determine the usefulness of the item to the 

user. Constrained-based systems are more complicated since predetermined rules define 

how to relate a user’s requirement with an item feature. Such rules make up the 

knowledge base, which is utilized by the system in the recommendation process. 

Knowledge-based systems must have a learning component embedded in them to 

guarantee their successful functionality. 

 

5.5.5 Community-Based Recommender Systems 

These RS rely on a user’s social network to provide the proper recommendations. The 

basic principle behind community-based systems is that people tend to prefer 

recommendations provided by their friends (even if they have different tastes) rather than 

recommendations given by similar anonymous users [138]. With the increased popularity 

of WBSN in the past years, these RS gained a lot of interest from researchers in the field, 

hence referring to them as social-based systems [53]. Several attributes can be used to 

construct a social network between users, such as the number of interactions (e.g. emails 

exchanged) or the explicit expression of trust among the users. 

 



	
   56	
  

5.5.6 Hybrid Recommender Systems 

All of the above techniques have their pros and cons; therefore there were attempts to 

combine multiple techniques within a single system in order to take advantage of one 

while fixing the flaws of another. For instance, CF techniques suffer from the cold-start 

problem, i.e. the system’s inability to provide recommendations for items that have no 

ratings or for users that did not rate enough items. Yet, a content-based system does not 

suffer from this problem since the recommendations are based on an item’s features 

(rather than its number of ratings). So, it is obvious that by creating a hybrid system that 

combines both CF and content-based techniques, it can overcome such a problem while 

benefiting from the advantages provided by both techniques [21]. 

The presented work in this dissertation is considered a hybrid RS because it 

incorporates features inspired by CF techniques in addition to using a community-based 

RS where trust is chosen to define connections between users. This research refers to 

such RS as trust-based recommender systems (TBRS) to emphasize the role of trust in the 

recommendation process.    

 

5.6 RECOMMENDER SYSTEMS APPLICATIONS 

In addition to the theoretical contributions of recommender systems, researchers 

focused on their commercial applications with an emphasis on the practical aspects of the 

implementation of these systems. These aspects affect different stages in the RS’s life 

cycle, such as the design, implementation, and maintenance. 

In the design phase, these aspects include factors (such as the application’s domain) 

that determine the choice of algorithmic approach that should be applied.  
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Montaner et al. [101] classify existing RS applications with respect to specific 

application domains as: 

• Entertainment - recommendations for movies, music, TV shows. 

• Content - personalized newspapers, recommendation for documents, 

recommendations of Web pages, e-learning applications, and article 

recommendations. 

• E-commerce - recommendations for consumers of products to buy such as books, 

cameras, PCs, beauty products, etc. 

• Services - recommendations of travel services, recommendation of houses to rent, 

or matchmaking services. 

The increased popularity of recommender systems expanded the scope of their 

possible advantages when applied to new applications, such as recommending friends or 

tweets to follow. Therefore, the above classification can be considered as an initial 

taxonomy of the existing types of RS application domains, since it is not expected to 

cover the new domains that are constantly being explored and added.  

In order to select the proper recommendation algorithm for a certain domain and to 

design an effective user interface, it is crucial for a RS developer to understand the 

domain’s specific characteristics, requirements, challenges, and limitations. In addition, it 

is important to analyze the available knowledge sources, which can greatly affect the 

algorithm choices as well. 
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5.7 RECOMMENDER SYSTEMS EVALUATION 

The process of evaluation is required during the different stages of any system’s life 

cycle [21][4]. For instance, evaluation is necessary during the design phase of a RS to 

ensure the selection of the proper recommendation approach. Usually offline evaluations 

are conducted by running several algorithms on the same dataset and comparing their 

performance to the actual values obtained from user interactions (i.e. ratings). Such 

evaluations are typically performed on either existing public benchmark data (if 

available), or on collected data. Bailey [12] stresses on the importance of carefully 

designing offline experiments in order to ensure reliable results. 

Evaluation is also required after the system has been launched. The algorithms might 

be very accurate in predicting user ratings, but for some reason the system may not be 

accepted by users because the system’s performance is not as expected. In such cases, it 

is usually useful to perform an online evaluation with real users of the system and 

analyze the system logs to further enhance the system performance. In addition, most of 

the algorithms include parameters, such as weights, thresholds, and number of neighbors 

that require constant adjustment and calibration regardless whether the evaluation is done 

online or offline. 

There are cases though where an online evaluation is too risky or not feasible. 

Therefore, the evaluation process would require a focused user study, where a controlled 

experiment is planned and a small group of users are asked to perform different tasks 

with different versions of the system. Later, questionnaires are distributed among the 

users to reflect on their experience. By analyzing the performance and feedback, the 

system’s quantitative and qualitative information can be collected and summarized. 
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Ideally, it would be beneficial to evaluate the implementation of existing real systems 

to determine their applicability, constraints, and challenges with respect to the new 

system. Unfortunately, many commercial RS owners are not willing to share their 

implementation or practice insights since it may give their competitors an advantage by 

revealing their trade’s secrets. The same obstacle is faced with benchmark data, as some 

owners are also unwilling to share their data or user interactions’ details even if it is for 

academic purposes. This was one of the main problems in this research since it was hard 

to find a dataset that shares both item ratings and trust information among users. Many 

dataset owners feel that sharing trust information would compromise user confidentiality. 

The Epinions dataset was the only publically available dataset that matched the needs of 

this research at the time of conducting the experiments for this dissertation. 
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CHAPTER 6 

DATA MINING TECHNIQUES 

FOR RECOMMENDER SYSTEMS 
 

 

6.1 INTRODUCTION 

Recommender Systems apply techniques and methodologies inspired by the ones 

used in related areas such as Human Computer Interaction (HCI) and Information 

Retrieval (IR). Typically, these techniques can be perceived as an instance of a Data 

Mining (DM) technique. In general, a DM process consists of three steps: Data 

Preprocessing, Data Analysis, and Results Interpretation as depicted in Figure 6.1. 

Follows is an overview of how the techniques used in each step can be useful in the study 

of RS.  

 

6.2 PREPROCESSING TECHNIQUES 

The term data generally refers to a collection of objects and their attributes, where an 

attribute is a property or a characteristic of an object. Other common names for an object 

include item, record, point, sample, instance, or observation. An attribute is sometimes 

referred to as a variable, feature, characteristic, or field. 

Real-life data is rarely used in DM techniques in its raw format, but rather needs to be 

transformed into a usable format. Specifically, three main issues need to be taken into 

consideration when designing a RS; namely similarity measures, sampling techniques, 

and dimensionality reduction.  
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Figure 6.1: Main steps and methods in a data mining problem. 
 

6.2.1 Distance and Similarity Measures 

Most classifiers and clustering methods rely on defining a proper similarity or 

distance measure. Perhaps the simplest example of a distance measure is the Euclidean 

Distance, which is defined as: 

    (6.1) 

where n is the number of dimensions (or attributes) and xk and yk refer to the kth attribute  

of the data objects x and y, respectively. 

The Minkowski Distance is a generalization of the Euclidean Distance of the form: 

(6.2) 

 

where r is the degree of the distance. In fact, the Minkowski Distance has specific names 
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depending on the value of r. When r = 1, it is usually known as the city block, 

Manhattan, taxicab, or L1 norm distance. The Euclidean Distance is the special case 

when r = 2. As r → ∞ it is known as the supremum, Lmax norm, or L∞ norm distance, 

which is usually used to compute the maximum difference between any dimensions of 

the data objects. 

Another commonly used distance is the Mahalanobis Distance that is defined as: 

(6.3) 

where σ is the covariance matrix of the data. 

A widely used approach is to use the Cosine Similarity by representing the items as 

document vectors in an n-dimensional space then computing the similarity as the cosine 

of the angle that 2 vectors form: 

 

(6.4) 

where the • operator refers to the vector dot product and ||x|| is the norm of vector x. 

Sometimes the Cosine Similarity is referred to as the L2 Norm. 

It is also common to measure the similarity between items by their correlation, i.e. 

the measurement of the linear relationship between them. The Pearson Correlation is 

probably the most commonly used correlation coefficient, among the many that may be 

applied. It is computed by: 

 (6.5) 

where Σ is the covariance of data points x and y, and σ is their standard deviation. 

The most commonly used similarity measures in RS have been the Cosine Similarity 

and the Pearson Correlation (or any of their many variations). However, depending on 

€ 

d(x,y) = (x − y)σ
−1

(x − y)T

€ 

cos(x,y) =
(x • y)
x y

€ 

Pearson(x,y) =
(x,y)∑

σx ×σy



	
   63	
  

the context of the RS and its data, any of the other distance measures can be applied. 

Spertus et al. [140] conducted a study in which they evaluated six different similarity 

measures applied to the Orkut social network. Although their results are biased by the 

context of their study, but they concluded that the best recommendation results were 

obtained when the Cosine Similarity was used. A similar study was carried by Lathia et 

al. [82], in which they concluded that in general the prediction accuracy of a RS is not 

affected by the similarity measure being used. In fact, an interesting observation in the 

context of their work was that sometimes using a random similarity measure provided 

better results than those of the well-known approaches. 

 

6.2.2 Sampling 

Sampling is one of the main techniques used in both the preprocessing and final data 

interpretation steps. It typically involves selecting a subset of relevant data from a large 

set of data. There are several reasons behind the necessity for this step. For example, 

there are cases where it is too computationally expensive to process the entire dataset. 

Sampling can be also used to create training and testing datasets where the training 

dataset is used to learn the parameters or configure the algorithms, while the testing 

dataset is used to evaluate the configuration obtained in the training phase. 

The key factor in sampling is to find a proper subset of the original dataset that can be 

used as a representation of the entire set. A good representative dataset should have 

almost the same properties of interest of the whole set. Random Sampling is the simplest 

sampling technique where each item has an equal probability of being selected, yet there 

are many other sophisticated approaches. For example, in the Stratified Sampling 

technique, the data is divided into several groups based on specific attributes after which 



	
   64	
  

random sampling is applied independently on each group.  

There are two main approaches to sampling in general: sampling without replacement 

and sampling with replacement. In the former, when an item is selected to be part of the 

sample, it is removed from the population. In the latter, an item remains to be part of the 

population even after being selected for the sample, increasing its probability to be added 

to the sample more than once.  

Basic random sampling without replacement is the most common approach applied. 

Usually an 80/20 proportion is used when dividing the data into training and testing sets 

respectively. In other words, random sampling without replacement is used to select 20% 

of the data for testing while leaving the remaining 80% for training purposes. However, 

the 80/20 proportion is not a strict standard that must be followed but it is only a common 

rule of thumb. Usually, any proportion that maintains the training set as more than 2/3rd 

of the dataset would be appropriate. 

Sometimes, sampling may cause an over-specialization to a particular division of the 

training and testing datasets. Therefore, training should be repeated K several times using 

K different combinations of training and testing datasets in each. After that, the average 

performance of the K learned models is reported. Such a process is known as cross 

validation. There are many variations to cross validation techniques. For instance, in 

repeated random sampling, a standard random sampling process is carried out K times. In 

n-fold cross validation, the dataset is divided into n folds such that one of the folds is 

used for testing the model and the remaining n − 1 folds are used for training. The 

process is then repeated n times with each of the n subsamples used exactly once as 

validation data. Another popular technique is the leave-one-out (LOO) approach which 
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can be considered as an extreme case of n-fold cross validation. In LOO, n is set to the 

number of items in the dataset resulting in the algorithm being run as many times as the 

number of data points. In each run, one of the data points is used for testing while the rest 

are used for training. Usually cross validation techniques provide reliable results when 

the dataset is very large [68]. 

When cross validation is used to sample ratings in RS, several issues need to be 

considered that may bias the sampling process. For instance, we may wish to consider the 

most recent ratings for sampling since those ratings represent the current trends. Or we 

may need to impose that the random sampling is done on a per user basis to preserve a 

certain proportion of ratings per user. Such issues can be considered to relate to the 

problem of RS evaluation, which is still a rich topic for research and discussion. 

 

6.2.3 Dimensionality Reduction 

Two common problems in most RS datasets are sparsity and dimensionality. In other 

words, most datasets have features that define a high dimensional space with very sparse 

information in that space. The curse of dimensionality greatly affects clustering and 

outlier detection since the density and distance between points become less meaningful in 

highly dimensional spaces. Dimensionality reduction techniques can overcome this 

problem by transforming the original high-dimensional space into a lower-dimensional 

one.  

Sparsity and the curse of dimensionality can exist in the simplest settings in RS since 

we are likely to have a sparse data matrix with thousands of rows and columns 

(corresponding to users and items) most of which are zeros or undefined. Therefore, 
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dimensionality reduction fits naturally in the preprocessing steps of RS. The advantage of 

applying dimensionality production is that its results can be directly used in the 

computation of the predicted recommendation values. Thus, many systems designers are 

encouraged to consider it as part of their RS design process rather than a preprocessing 

step. 

The most widely used dimensionality reduction algorithms in the context of RS are 

Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). Both 

can be used in isolation or as a preprocessing step for any of the other earlier mentioned 

techniques. 

Principal Component Analysis (PCA) [70] is a classical statistical method to find 

patterns in high dimensionality datasets. PCA can provide an ordered list of components 

with the largest variance from the data in terms of least square errors, such that the 

amount of variance captured by the first component is larger than the amount of variance 

on the second component and so on. The dimensionality of the data can be reduced by 

abandoning the components with a small contribution to the variance. 

Singular Value Decomposition [56] is also a powerful technique for dimensionality 

reduction, which is similar to PCA. The major challenge in SVD is to find a lower 

dimensional feature space where the new features represent concepts and the strength of 

each concept in the context of the collection is computable. 

Although current trends seem to prefer using SVD and similar techniques (such as 

Non-Negative Matrix Factorization) but earlier works in the literature used PCA. For 

instance, Goldberg et al. proposed in [54] the use of PCA in the context of an online joke 

recommendation system. In their system, Eigentaste, they start by selecting a subset of 
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items from the standard user-item matrix for which all users had a rating. This new 

matrix subset is then used to compute the global correlation matrix where a standard  

2-dimensional PCA is applied. 

SVD is known to being used as a tool to improve CF for some time. Sarwar et al. 

[130] present two different ways to use SVD in this context. One way would be to use 

SVD to uncover latent relations between customers and products, which is accomplished 

by first filling the zeros in the user-item matrix with the item’s average rating and then 

normalizing by subtracting the user’s average rating. This matrix is then factored using 

SVD and the resulting decomposition can be used directly to compute the predictions. 

The second approach is to use the low-dimensional space resulting from the SVD to 

improve neighborhood formation. 

 

6.3 CLASSIFICATION TECHNIQUES 

A classifier is a mapping between a feature space and a label space, where the 

features represent characteristics of the elements to be classified and the labels represent 

the classes. A simple example would be a restaurant RS, which can be implemented by a 

classifier that classifies restaurants into one of two categories (good, bad) based on a 

number of features that describe it. 

There are many types of classifiers, but they can be generalized as being either 

supervised or unsupervised classifiers. In supervised classification, a set of labels or 

categories is known in advance and we have a set of labeled examples that make up a 

training set. In unsupervised classification (or clustering), the labels or categories are 

unknown in advance and the task is to properly categorize the elements according to 
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some criteria. Some of the major classifiers used with RS include nearest neighbors, 

decision trees, and rule-based classifiers. 

 

6.3.1 Nearest Neighbors 

Nearest Neighbors (NN) are considered instance-based classifiers. They function by 

storing training records and using them later to predict the class label of unseen cases. A 

basic example is the Rote-Learner classifier, which memorizes the entire training set and 

classifies only if the attributes of the new record match one of the training examples 

exactly. A more complex and popular instance-based classifier is the Nearest Neighbor 

classifier (kNN) [30]. When the kNN classifier is provided with a point to be classified, it 

finds the k closest points (i.e. nearest neighbors) from the training records and then 

assigns a class label to that point according to the class labels of its nearest neighbors. 

The underlying idea is that if a record falls within a particular neighborhood where a 

class label is predominant then it is most likely for the record to belong to that very same 

class. 

The most challenging issue in kNN is how to choose the value of k. If k is too small, 

the classifier will be sensitive to noise points. Yet if k is too large, the neighborhood 

might include too many points from other classes with no obvious prominent class. 

kNN classifiers are of the simplest of all machine learning algorithms. Since they do 

not explicitly build models, they are considered lazy learners. Also, classifying unknown 

records can be relatively expensive since kNN classifiers defer many decisions to the 

classification step. 

Due to its simplicity, NN is one of the most common approaches to CF, and thus in 

designing RS. In fact, it would be rare to come across an overview of RS that does not 
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include a discussion about the use of the NN algorithm in the context of RS. The major 

advantage of this classifier over others is that its concept is closely related to the idea of 

CF. Finding like-minded users (or similar items) is essentially equivalent to finding 

neighbors for a given user or an item. Another advantage is related to the fact that the 

kNN classifier is a lazy learner and it does not need to learn and maintain a given model. 

As a result, the system can adapt to rapid changes in the user-ratings matrix. The 

downside of this is the constant need to re-compute the neighborhoods and the similarity 

matrix values (similarity measures). To overcome this specific problem, Amatriain et al. 

[6] proposed a neighborhood model that uses a reduced set of experts as the source for 

selecting neighbors. 

Although the kNN approach is simple and intuitive, it has shown good accuracy 

results and is very accommodating to improvements. As a matter of fact, its supremacy as 

the de facto standard for CF recommendations has only been challenged recently by new 

approaches based on dimensionality reduction. 

 

6.3.2 Decision Trees 

Decision trees are classifiers on a target attribute (or class) in the form of a tree 

structure [119][128]. The observations (or items) to classify are composed of attributes 

and their target values. The nodes of the tree can be either decision nodes, in these nodes 

a single attribute-value is tested to determine which branch of the subtree applies, or leaf 

nodes, which indicate the value of the target attribute. 

Decision tree induction can be accomplished through many algorithms, such as Hunts 

Algorithm, CART, ID3, C4.5, SLIQ, and SPRINT. The Hunt algorithm, which is one of 

the earliest and easiest to understand, is a recursive algorithm that relies on the test 
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condition applied to a given attribute that discriminates the observations by their target 

values. Once the partition induced by the test condition has been found, the algorithm is 

recursively repeated until a partition is empty or all the observations have the same target 

value. Decision tree induction usually stops once all observations belong to the same 

class. However for practical reasons, most decision trees implementations use pruning by 

which a node is not split any further if the number of observations in the node are below a 

certain threshold.  

The main advantages of building a classifier using a decision tree is that it is 

inexpensive to construct and it is extremely fast at classifying unknown instances. 

Another important advantage of decision trees is that they can be used to produce a set of 

rules that are easy to interpret while maintaining an accuracy that is comparable to the 

other basic classification techniques. 

Decision trees may be used in a model-based approach for a RS. One way to do it is 

to use content features to build a decision tree that models all the variables involved in 

the user preferences. Bouza et al. [18] implement this idea to construct a decision tree 

using semantic information available for the items. The tree is built after the user has 

rated only two items, where the features for each of the items are used to build a model 

that represents the user ratings. They used the information gain of every feature as the 

splitting criteria. 

It is only logical to determine that it is very difficult and unpractical to build a 

decision tree that tries to explain all the variables involved in the decision making 

process. However, decision trees may be used to model a particular part of the system, as 

demonstrated by the work of Cho et al. [25] and Nikovski et al. [107]. Another option to 
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utilize decision trees in a RS is to use them as a tool for item ranking, which has been 

studied in several settings [11][24]. 

 

6.3.3 Rule-Based Classifiers 

Rule-based classifiers classify data by using a collection of “if… then… ” rules. 

The rule antecedent or condition is an expression made of attribute conjunctions. The rule 

consequent is a positive or negative classification. 

A rule r covers a given instance x if the attributes of the instance satisfy the rule 

condition. The coverage of a rule is defined as the fraction of records that satisfy its 

antecedent. The accuracy is defined as the fraction of records that satisfy both the 

antecedent and the consequent. A classifier is said to contain mutually exclusive rules if 

the rules are independent of each other, i.e. every record is covered by at most one rule. A 

classifier is considered to have exhaustive rules if they account for every possible 

combination of attribute values, i.e. each record is covered by at least one rule. 

One of the advantages of rule-based classifiers is that they are extremely expressive 

since they are symbolic and operate with the attributes of the data without the need for 

any transformation. Rule-based classifiers are easy to interpret, easy to generate, and they 

can classify new instances efficiently. However, it is very difficult to build a complete 

recommender model based solely on rules. This is probably the main reason behind this 

method not being very popular in the context of RS. Deriving a rule-based system 

requires explicit prior knowledge of the decision making process, but a rule-based system 

can be useful for improving the performance of a RS by feeding the system with partial 

domain knowledge or business rules.  
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Anderson et al. [7] implemented a music CF RS that improves its performance by 

applying a rule-based system to the results of the CF process. For instance, if a user gives 

an album by a given artist a high rating, the predicted ratings for all other albums by this 

artist will be increased. Basu et al. applied in [14] an inductive approach using the Ripper 

system [26] to learn rules from data. They report slightly better results when using hybrid 

content and collaborative data to learn rules compared to a pure CF approach. 

 

6.4 CLUSTERING TECHNIQUES 

Clustering, which is also known as unsupervised learning, consists of assigning items 

to groups such that the items within each group are similar to one another [64]. In other 

words, the items in the same groups are more similar than items in different groups. The 

main objective of clustering is to find meaningful groupings that exist within the dataset. 

Similarity between items is regulated by distance measure, such as the Euclidean distance 

or the Mahalanobis distance. The goal of a clustering algorithm is to minimize intra-

cluster distances while maximizing inter-cluster distances. 

A major problem facing CF classifiers when being scaled is that the amount of 

distance computations (when using kNN for instance) drastically increases. One of the 

possible solutions to overcome this problem is to reduce the dimensionality, but even 

with that approach we may still have many objects for which the distances have to be 

computed. This is where clustering algorithms become useful because they can greatly 

improve the efficiency by reducing the number of operations that needs to be carried. 

However clustering techniques are unlikely to increase the accuracy of the results, unlike 

dimensionality reduction techniques. Hence, if a RS designer decides to apply a 
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clustering technique, attention must be paid to weigh the trade off between the decrease 

in accuracy and the increase in the performance efficiency. 

There are two main categories of clustering algorithms: hierarchical and partitional. 

Partitional clustering algorithms divide data items into non-overlapping clusters such 

that each data item can belong to exactly one cluster. Hierarchical clustering algorithms 

successively cluster items within found clusters, producing a set of hierarchically nested 

clusters that can be organized as a hierarchical tree. 

An ideal clustering algorithm would consider all possible partitions of the data and 

produce the partition that would minimize the objective function. Usually an objective 

function for a clustering algorithm measures the quality of the clustering. Clustering is 

not an easy problem and finding the optimal solution is often impossible. In fact it is 

considered an NP-hard problem, which is the reason why many clustering algorithms 

employ heuristics. Usually the decision to apply a particular clustering algorithm and the 

choice of parameters, such as the similarity measure, rely on many factors that mainly 

stem from the characteristics of the data. The k-means clustering algorithm and its 

variants are the most commonly used clustering techniques in RS. 

 

6.4.1 k-Means 

k-Means is a widely used partitional clustering method. The function partitions the N 

items of a dataset into k disjoint clusters (subsets) Sj, such that each cluster contains Nj 

items that are as close to each other as possible (in accordance to some distance measure). 

Each cluster in the partition is defined by its Nj members and by its centroid λj. The 

centroid for each cluster is defined as the point to where the sum of distances from all 
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items in that cluster is minimized. Therefore, the k-means algorithm can be defined as an 

iterative process to minimize E: 

     (6.6) 

where xn is a vector representing the  n-th item, λj is the centroid of the items in Sj, and d 

is the distance measure. The k-means algorithm moves items between clusters until E 

cannot be minimized any further. The algorithm works by randomly selecting k centroids 

then each item is assigned to the cluster whose centroid it is the closest to. The centroid 

of each cluster needs to be updated to reflect the addition and removal of items and the 

membership of moved items needs to be updated as well. This process continues until 

there are no further items to be moved between clusters. In practice, it has been noticed 

that most of the item convergences to their final partitions take place during the initial 

iterations of the algorithm, thus the stopping criterion is usually changed to one where a 

relatively few number of items change their clusters, rather than waiting for all items to 

converge, to improve efficiency.  

The basic k-means algorithm is a very simple and efficient algorithm. Yet, it has its 

share of shortcomings. For example, in order to choose the appropriate number of 

clusters k, prior knowledge of the data is required. Also, the selection of the initial k 

centroids has a major influence on the final clusters reached. Outliers greatly affect the 

algorithm, not to mention that k-means has some limitations when it comes to producing 

clusters of different sizes or densities. 

Xue et al. [154] illustrate a typical use of clustering in the context of a RS by 

applying the k-means algorithm as a preprocessing step to assist in neighborhood 

formation. In their work, they do not restrict the neighborhood to the cluster the user 

€ 

E = d(xn ,λj )n∈Sj∑1
k∑
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belongs to but rather use the distance from the user to different cluster centroids as a pre-

selection step for the neighbors. They also proposed a smoothing technique in which 

missing values for users within a cluster are replaced by cluster representatives. Their 

results show that their approach performs slightly better than standard kNN-based CF. 

Similarly, Sarwar et al. [129] present an approach to implement a scalable kNN classifier 

in which they partition the user space by applying the bisecting k-means algorithm and 

then they base the neighborhood formation process on these clusters. As expected, their 

results show a decrease in accuracy of around 5% as compared to standard kNN CF, but 

their method provided a significant improvement in efficiency.  

Connor and Herlocker [27] shifted their focus to clustering items instead of users. 

They tested different algorithms using the Pearson Correlation similarity measure. Their 

clustering improved efficiency, but all of their clustering techniques resulted in accuracy 

and coverage that are worse than a non-partitioned baseline. 

 

6.4.2 k-Means Alternatives 

• Density-based clustering algorithms  

DBSCAN [126] is an example of a density-based clustering algorithm, which 

utilizes the density as the number of points within a specified radius. The 

algorithm defines three kinds of points: core points that have more than a 

specified number of neighbors within a given distance; border points having 

fewer than the specified number but belong to a core point neighborhood; and 

noise points which are neither core nor border. The algorithm iteratively removes 

noise points and performs clustering on the remaining points. 

• Message-passing clustering algorithms  
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These are graph-based clustering methods that instead of staring the algorithm 

with the centroids as seeds, initially consider all points as centers, called 

exemplars. During the execution of the algorithm, the points exchange messages 

until clusters gradually emerge. Affinity Propagation is an example of such 

algorithms [46] which defines two types of messages between points (nodes): 

responsibility, which reflects how well-suited a receiving point is to serve as an 

exemplar of the point sending the message, considering other potential exemplars 

in the process; and availability, which is sent from a candidate exemplar to the 

point and reflects how appropriate it would be for the point to choose the 

candidate as its exemplar, considering support from other points that are choosing 

that same exemplar. Affinity propagation has demonstrated very good results in 

DNA sequence clustering, face clustering in images, and text summarization. 

 

• Hierarchical clustering 

As mentioned earlier, hierarchical clustering generates a set of nested clusters 

organized as a hierarchical tree (known as a dendogram). A major advantage of 

hierarchical clustering over partitional ones is that it does not need to specify a 

particular number of clusters in advanced. Any desired number of clusters can be 

extracted by selecting the tree at the proper level. In addition, hierarchical clusters 

can also sometimes correspond to meaningful taxonomies. Typically, hierarchical 

algorithms use a similarity or distance matrix and merge or split the clusters one 

at a time. There are two main approaches to hierarchical clustering: agglomerative 

and divisive clustering. Agglomerative hierarchical clustering starts with the 

points as individual clusters then at every step merges the clusters that are the 
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closest to each other until only one cluster (or k clusters) remains. On the other 

hand, divisive hierarchical clustering starts with one cluster that includes all 

points then at each step splits a cluster until each cluster contains a single point 

(or there are k clusters left).  

 

It is worth noting that k-means alternatives are rarely applied to RS because of the 

simplicity and efficiency of the k-means algorithm. So far, density-based and hierarchical 

clustering algorithms have not shown any signs of usefulness in the context of RS. 

However, message-passing algorithms have proved to be more efficient and that they can 

be easily translated to many RS problems. 

 

6.5 ASSOCIATION RULE MINING 

Association Rule Mining aims at finding rules that can predict the occurrence of an 

item based on the occurrences of other items. When two items are found to be related this 

indicates a co-occurrence, not a causality. It is common to confuse this technique with 

rule-based classifiers. 

An itemset is defined as a collection of one or more items.. A k-itemset is one that has 

k items. The frequency of a given itemset is known as the support count and the support 

of the itemset is the fraction of transactions that contain it. A frequent itemset is an 

itemset with a support that is greater or equal to a minimum support threshold, 

minSupThreshold. An association rule is an expression of the form X ⇒Y, where X and Y 

are itemsets. In this case the support of the association rule is the fraction of transactions 

that have both X and Y. On the other hand, the confidence of the rule is how often items 

in Y appear in transactions that contain X. 
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So, given a set of transactions T, the goal of association rule mining is to find all rules 

having support ≥ minSupThreshold and confidence ≥ minConfThreshold. A brute-force 

approach would list all possible association rules, computes the support and confidence 

for each rule and then gets rid of rules that do not satisfy both conditions. However, this 

is computationally expensive. Thus, a two-step approach is usually adopted where first all 

frequent are generated then high confidence rules from each frequent itemset are 

generated. 

Association rule mining has been effective in uncovering patterns and driving 

personalized marketing decisions for some time [5]. Although there is an obvious relation 

between this method and the goal of a RS, yet they have not become conventional yet. 

Probably this is due to the fact that association rule mining is similar to item-based CF 

but with less flexibility since it requires an explicit notion of transactions (co-occurrence 

of events in a given session). Despite all that, there have been several attempts in the 

literature to incorporate them into RS. 

For instance, Mobasher et al. [100] presented a web personalization system based on 

association rules mining. Their system identifies association rules from page views co-

occurrences based on users’ navigational patterns. Their method outperformed a  

kNN-based recommendation system with respect to both precision and coverage.  

Lin et al. [86] designed a new association-mining algorithm that adjusts the minimum 

support of the rules during mining in order to obtain an appropriate number of significant 

rules. Their measured accuracy outperformed previously reported values for correlation-

based recommendation. Cho et al. [25] combined Decision Trees and Association Rule 

Mining in a web shop RS. In their system, they derived association rules in order to link 
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related items, then a recommendation is computed by intersecting association rules with 

user preferences. They later tracked the association rules in different transaction sets such 

as purchases, basket placement, and click-through. They also applied a heuristic for 

weighting rules coming from each of the transaction sets, such as giving purchase 

association rules higher weights than click-through association rules. 
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CHAPTER 7 

ANT COLONY OPTIMIZATION 

 

 

7.1 INTRODUCTION 

The field of ant algorithms focuses on models derived from real ants’ behavior to 

solve a variety of optimization problems. Recommender systems are viewed as an 

optimization problem since the objective is to enhance the quality of recommendations by 

aiming to reach and utilize as much of the available information in the system as possible. 

Ant algorithms have only been recently applied to RS but they have not been considered 

to deal with trust-based recommender systems. The novelty of this dissertation is that it 

presents successful models based on ant algorithms to solve the recommendation problem 

in trust-based social networks.  

Ant algorithms is a family of algorithms that belongs to swarm intelligence methods, 

which are based on the collaboration between independent, decentralized, self-organizing 

agents that can lead the system to an emergent intelligent solution. The behavior of these 

artificial agents is usually one that stimulates behavior observed in nature, such as the 

behavior within colonies of ants, schools of fish, flocks of birds, or herds of land animals.   

Ants in nature are self-organized and highly coordinated in their colonies. Many 

different characteristics of the behavior of ants, such as foraging, division of labor, and 

brood sorting, inspired a variety of algorithms that are referred to as ant algorithms. The 

ants are capable of coordinating their activities via stigmergy, which is a form of indirect 

communication accomplished by modifying their environment. For instance, an ant 
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foraging for food would deposit a chemical on the ground, otherwise known as a 

pheromone, which would indicate to other ants that this path is a good one and thus 

increasing the probability of other ants reaching that food source. Biologists have 

concluded that stigmergic, indirect communication allows ants (and other social insects) 

to achieve self-organization. Therefore, any ant algorithm can be based on a form of 

artificial stigmergy to coordinate work in societies of artificial agents. 

This dissertation focuses on one of the most popular ant algorithms, ant colony 

optimization (ACO), which mimics the foraging behavior of ants in their colonies to 

solve discrete optimization problems. 

  

7.2 MIMICKING THE BEHAVIOR OF REAL ANTS 

7.2.1 Foraging Behavior of Ants 

 Early research on ants’ behavior showed that most of the communication among 

individuals, or an individual and the environment, is facilitated by the use of chemicals 

produced by ants, known as pheromones. Ants mark paths from found food sources to the 

nest creating pheromone trails. Other foraging ants can detect the pheromone on these 

trails to lead them a food source. Since more than one trail can be marked, ants tend to 

probabilistically choose the paths with strong pheromone concentration. 

 This ant behavior was investigated in a controlled environment by Deneubourg 

et al. [32] who conducted an experiment, known as the double bridge experiment, using 

one food source and one ant nest and connected them using a bridge with two branches of 

varying lengths, as depicted in Figure 7.1. Initially, ants were choosing one of the two 
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Figure 7.1: Experimental setup for the double bridge experiment  

Experiment uses two branches of different lengths. 

 

branches randomly since there is no pheromone (or the amount of pheromone is very 

low) and thus the ants would not have a certain preference, i.e. both branches would have 

the same probability. However, as time passes ants deposit more pheromone while 

crossing the branches, so the pheromone starts to accumulate faster on the shorter branch 

leading to more ants favoring it over the other branch until eventually the ants converge 

to that branch. This process of providing positive feedback illustrates the ants’ self-

organizing behavior. 

An interesting trait about pheromones is that they evaporate with time. Although their 

evaporation rate is low, but they can encourage ants to forget the suboptimal paths found, 

especially in the early stages of the search process and thus avoids a rapid convergence of 

the algorithm towards suboptimal areas of the solution space. In short, pheromone deposit 

promotes exploitation of good paths while pheromone evaporation forces ants into the 

exploration of other areas in the solution space. 
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7.2.2 Artificial Ants 

The double bridge experiment is a simple example that proves that ants have built-in 

optimization capabilities. These capabilities are evident from their use of probabilistic 

rules based on local information to find the shortest path between two points in their 

environment. Using this as an inspiration, Dorigo [41] was able to design artificial ants 

that, by moving on a graph model representing an environment, can find the shortest path 

between two nodes.  

In such a setup, at each time step each ant moves from its current node to a 

neighboring node at a constant speed of one unit of length per time unit. As a result, ants 

add one unit of pheromone to edges they cross. Just like real ants, artificial ants move on 

the graph by choosing a path connecting to one of the neighboring nodes 

probabilistically. 

Usually, artificial ants have a limited memory that can retain information regarding 

the partial paths that have been followed so far along with the cost of edges that have 

been crossed. According to this information, ants can dynamically adjust their behavior to 

build paths representing optimal solutions. Utilizing such a memory enables ant colony 

optimization algorithms to solve a wide range of optimization problems such as finding 

the minimum cost path between two nodes. 

There are different variations to how ants behave and deposit pheromones in ant 

algorithms. In some models an ant deposits the pheromone as it is building the path while 

in others an ant deposits the pheromone on the path on its way back to the nest. 

An ant can determine the cost of its solution by using the information in its memory. 

By evaluating the quality of its solution, an artificial ant can modulate the amount of 
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pheromone to be deposited. By incorporating the solution quality into the pheromone 

update function, subsequent ants can be strongly directed towards better solutions. 

Usually, shorter (or higher quality) paths get a higher amount of pheromone deposited on 

them. 

Pheromone evaporation is modeled in ACO by carefully applying an evaporation 

rule. Pheromone evaporation is crucially important because it reduces the influence of the 

pheromones that were deposited in the early stages of the search. Hence, it allows ants to 

forget the suboptimal paths found, and to discover new and better paths. 

  

7.2.3 Path-Searching Behavior 

To copy the behavior of real ants leaving their nest to forage for food, several 

artificial ants, K, are dispatched from the source node (nest) to find a good solution to the 

problem (food source). Each ant builds its solution step-by-step, where at each step the 

ant ki reads local information found on the current node and/or on the edge connecting the 

node to one of its neighbors. This information is used by the ant to probabilistically 

decide which node to move to next. At the very beginning of the search process, a 

constant amount of pheromone is assigned to all the edges in the graph. When positioned 

on a node x, an ant ki computes the probability of moving to a neighboring node y by 

using the amount of pheromone on the connecting edge, denoted by τxy. This probability 

is computed in general as: 

     (7.1) 

 

where pki
xy refers to the probability of ant ki moving from node x to node y, Nki

x is the 

neighborhood of ant ki at node x, and α is a parameter to control the influence of the € 

pxy
ki =

τxy
α

τxz
α

z∈Nx
ki∑
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pheromone. Note that the neighborhood Nki
x does not include nodes that cannot be part of 

the solution at this point, even if there are edges connecting to them from the current 

node. There are several reasons for not including certain nodes in the solution path; one 

reason could be because the node has already been added to the path and cycles are not 

allowed in the solution. Also note that different ACO algorithms have different variations 

of this probability. 

An ant repeatedly moves from one node to another in the same manner until it 

reaches the destination node or a dead end. When a certain destination (target node) is to 

be reached by all ants, the ants travelling on shorter paths will reach that destination 

faster. Usually several trials (iterations) are run within a single round of the algorithm to 

allow the system to properly converge to the optimal solution. 

 

7.2.4 Pheromone Update 

Depending on the ACO algorithm variation being used, ants update the pheromone 

level on crossed edges at different times (after crossing an edge, after reaching the 

destination, etc.). Regardless of the timing of the pheromone update, an ant ki deposits an 

amount of pheromone Δτki on the edges of its constructed path. The pheromone level τxy 

on an edge connecting node x to node y is updated as follows: 

τxy ! τxy + Δτki         (7.2) 

So by applying this pheromone update rule, the pheromone level on the edge xy is 

increased which increases the probability of later ants crossing this edge. 

The choice of the amount of pheromone to be deposited Δτki is important and is 

usually dictated by the context of the problem at hand. In some cases, it would be 

sufficient to use a constant value Δτ to be used by all K ants. In other cases, the amount 
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of pheromone can vary by calculating the amount as a function of the edge length or 

weight. When Δτki is calculated as a function of any of the available information, the 

main issue to pay attention to is that the function should be a non-increasing function of 

the parameter(s) used to ensure that, for example when edge length is used, shorter paths 

have higher pheromone levels than longer ones. Different ACO algorithms have different 

approaches and rules for updating the pheromone level on edges but they generally 

conform to the same process. 

 

7.2.5 Pheromone Evaporation 

Pheromone evaporation is an important trait of ACO algorithms because it can be 

considered as an exploration mechanism that avoids the quick convergence of ants to 

suboptimal solutions. As a matter of fact, decreasing the amount of pheromone on edges 

favors the exploration of different paths during the overall search process by forgetting 

the errors or poor choices made in the early stages and allowing continuous improvement 

of the learned problem structure. 

Evaporation causes the pheromone level on edges to decrease at an exponential 

speed. In ACO, the pheromone evaporation may be interleaved with pheromone deposit 

(depending on the variation used). For example, in algorithms where the pheromone 

evaporation occurs after updating the pheromone level on an edge, the evaporation 

follows the general form: 

τxy ! (1 - ρ) τxy         (7.3) 

where ρ ∈ (0, 1] is the pheromone evaporation coefficient. Just like pheromone deposit, 

each ACO algorithm has it own approach, rules, and equations for pheromone 

evaporation that abide by the general evaporation guidelines. 
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7.2.6 Setting the General Parameters of ACO Algorithms 

Correctly tuning and setting the parameters is essential to the success of any 

algorithm, and ACO is not any different. In ACO, the parameters to be set include: the 

number of ants K, the number of iterations t, the initial level of pheromone on edges τ0, 

the evaporation coefficient ρ, the influence parameters such as α, in addition to 

algorithms-specific parameters such as the search depth d.  

Intuitively, increasing the number of ants provides better approximation and 

convergence to the optimal solution. However, each additional ant added increases the 

computational overhead not to mention that once the ants start to converge to the optimal 

path(s), any subsequent ants will not significantly contribute to reaching the optimal 

solution. On the other hand, using a small number of ants would cause fluctuations in 

path choices in the initial iterations, which could lead to strong enforcement of 

suboptimal paths. Therefore, a proper choice for the number of ants should accomplish a 

balance between the computational complexity of the system and quality of the solution. 

The amount of pheromone Δτki deposited on edges is crucial in ACO algorithms 

because it affects the speed of convergence to the optimal solution. The initial pheromone 

level τ0 in ACO algorithms is usually set using a carefully chosen constant or using a pre-

calculated value obtained from running a quick sub-optimal path construction algorithm 

[42], such as the nearest neighbor algorithm. Regardless whether a constant or a 

calculated value is used, the pheromone level on all the edges is always initialized using 

the same value τ0. The reason behind having to carefully choose τ0 is that if the initial 

pheromone values are too low then the search will quickly be biased by the first paths 

generated by the ants, which usually leads towards the exploration of inferior zones of the 
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search space. On the contrary, if the initial pheromone values are too high, then many 

iterations will be useless while waiting for the evaporation process to reduce the 

pheromone values and consequently for the effect of pheromone deposited by ants to bias 

the search.   

The number of iterations t, the evaporation coefficient ρ, and the pheromone 

influence parameter α are usually determined by means of trial and error. Typically, α is 

set to a value of 1 because using larger values tend to amplify the influence of the initial 

random fluctuations. ρ is usually set to 0.1 for similar reasons. The maximum number of 

steps taken by each ant in an iteration, or the search depth d, should be carefully chosen 

too. Allowing ants to reach deeper levels while constructing the solution would increase 

the probability of all ants reaching the desired destinations. However, just like the 

number of ants, this comes at the expense of computational overhead.  

 

7.3 THE ANT COLONY OPTIMIZATION METAHEURISTIC 

Combinatorial optimization problems are captivating because they are often simple 

and easy to state but are very complex and difficult to solve. Many of the problems 

surfacing in applications are NP-hard, i.e. there is a strong belief that they cannot be 

solved to reach optimality within a polynomially bounded computation time. Therefore to 

find a practical solution, approximation methods are used to reach near optimal solutions 

in a reasonable amount of time. Such algorithms are known as metaheuristics and they 

usually use knowledge specific to the problem to build or improve the solution. Formally, 

a metaheuristic can be defined as a set of algorithmic concepts that can be used to guide 

or modify other heuristics to produce solutions beyond those normally generated when 
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searching for local optimality. In other words, a metaheuristic can be seen as a general-

purpose heuristic method designed to guide an underlying problem-specific heuristic 

towards promising regions of the search space containing high quality solutions. In fact, 

the use of heuristics paved the way for finding such good solutions to hard-to-solve 

optimization problems in a relatively short time. 

Ant colony optimization (ACO) is one of the successful metaheuristics inspired by 

the behavior of ants in their colonies. In ACO, artificial ants cooperate to find good 

solutions to difficult discrete optimization problems. The ants communicate indirectly by 

stigmergy (modifying their environment) thus these simple agents need to have 

computational resources allocated to them. Good solutions emerge as a result of the 

agents’ cooperative interactions. 

ACO can be applied to solve both static and dynamic combinatorial optimization 

problems. Static optimization problems are the ones in which the characteristics of the 

problem are set at the time of problem definition and do not change at run time. The 

Travelling Salesman Problem (TSP) is a popular example of such problems [69][83] 

[120], in which city locations and their relative distances do not change while searching 

for the solution.  On the other hand, dynamic optimization problems are defined as a 

function of certain quantities whose values are determined by the dynamics of an 

underlying system. At run time, the problem instance changes and the optimization 

algorithm must adapt to the constantly changing environment. The Network Routing 

Problem is an example of such situations because the data traffic and the network 

topology change constantly. 
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As previously mentioned, as ants are walking the graph and constructing solutions, 

they deposit pheromones along the way. Sometimes nodes and edges may have a 

heuristic value η associated with them. This heuristic value represents a priori 

information about the problem instance. However, the deposited pheromone during the 

graph walk encodes information about the ant search process and can only be updated by 

the ants themselves, thus it can be considered as posteriori information. Typically ηxy 

represents the cost (or an estimation of it) associated with the edge xy, which can be 

added to the cost of the other edges, that are used to construct the solution, to determine 

the overall solution cost. In those cases, there are endless possibilities for encoding the 

problem heuristics using ηxy. 

 

 7.4 THE ANT COLONY OPTIMIZATION PROBLEM SPECIFICATION 

ACO algorithms are typically applied to problems that can be represented as a 

connected graph G = (V, E) where the nodes V represent the components of the problem 

and E represents the edges connecting the components according to the problem-specific 

information. In ACO, each ant ki has the following properties: 

• It can exploit the graph G = (V, E) to search for the optimal solution. 

• It has a memory that can be used to store information about the constructed 

(partial) path so far. This memory is essential for: 

1. Building feasible solutions that conform to the implemented problem 

constraints. 

2. Computing the heuristic values η. 

3. Evaluating the solutions found. 
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4. Retracing the path backward (if needed). 

• It has a start state (node) and one or more termination conditions. 

• When in a state (node) x, if none of the termination conditions is satisfied then the 

ant moves forward to the next node y that belongs to the neighborhood Nki
x and 

the new state becomes node y. However, if at least one of the termination 

conditions is met, then the ant stops. 

• It selects a move by applying a probabilistic decision rule (such as Equation 7.1). 

This rule is a function of: 

1. The locally available pheromone levels. 

2. The heuristic values associated with the nodes and/or the edges.  

3. Information about the current node x and nodes belonging to the 

neighborhood Nki
x. 

• When adding a component (node) to the current state, it can update the 

pheromone level τ associated with it or with the corresponding edge. 

• Once it builds a solution, it can retrace the path backwards and update the 

pheromone level on the used components. 

 

Note that the K ants walk concurrently and independently of each other, and although 

each ant is capable of constructing a solution (that is not necessarily of a good quality), 

good quality solutions can only emerge as a result of the collective interactions among 

the ants. This interaction is accomplished by sensing and depositing pheromones on the 

constructed paths. This model represents a distributed learning process. 
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7.5 APPLYING ACO TO THE TRAVELLING SALESMAN PROBLEM  

Most researchers working on ACO algorithms opt to test their work on the Travelling 

Salesman Problem (TSP) for several reasons. The main reason is that TSP is an important 

NP-hard optimization problem that emerges in many applications. The problem can also 

be easily defined and understood which makes it suitable for testing ACO algorithms 

since the algorithm behavior will not be obscured by unknown factors. It also forms a 

standard testbed for new algorithms to be developed; hence an algorithm that proves its 

effectiveness on TSP does not usually need further proof of its usefulness. 

TSP is defined as a problem faced by a salesman who has to visit all customer cities, 

starting from his hometown, following a path that represents the shortest route possible to 

pass by all the cities (only once) and back to his hometown. The problem has been 

intensively studied in the literature and has attracted a lot of research efforts. 

 

7.5.1 Problem Definition and Representation 

The TSP optimization problem can be represented using a weighted graph  

G = (V, E) with V being the set of n cities (nodes) and E being the set of edges connecting 

these cities. Each edge (x, y) ∈ E is assigned a weight dxy that corresponds to the distance 

between cities x and y. In this example, the distance between any two cities is symmetric 

regardless of the direction of the walk, i.e. dxy = dyx. 

 The TSP problem has the goal of finding the minimum length Hamiltonian cycle that 

constitutes a closed tour visiting each node in G only once. A solution to the problem is 

reported as a cyclic permutation of the cities (or their indices). The position of a city in 

the permutation is not important at all, but rather the relative order of cities is what 

matters. Thus, there are n permutations that represent the same solution. 
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7.5.2 Problem Formulation and Specification 

The only constraints in TSP are that all cities must be visited and that each city is 

visited at most once. These constraints affect the steps taken by each ant since a feasible 

step would be one moving the ant from its current city to an unvisited city. The 

pheromone level τxy reflects the desirability of visiting city y when located at city x. The 

heuristic information ηxy reflects the distance between two cities dxy and is usually set to 

be inversely proportional to it. Most ACO algorithms for TSP define the heuristic as a 

function of the distance, such as using ηxy = 1/dxy. 

Generally, in ACO algorithms an ant constructs a solution for TSP in a single 

iteration as follows: 

1. Choose an initial city, according to some criterion, for the ant to start its tour. 

2. Use pheromone τxy and heuristic ηxy values to probabilistically determine the 

order of cities to be visited by iteratively adding an unvisited city at each step, 

until all cities have been visited. 

3. Return to the initial city. When all other ants finish constructing their tours, 

determine, based on the solution quality, the amount of pheromone to be 

deposited along each (or only good) tours depending on the algorithm variation 

used. Usually pheromone evaporation occurs afterwards. 

This is roughly a high level description that applies to most ACO algorithms for TSP. 

Each ACO algorithm has its own way of dealing with the different aspects of the process, 

such as when to update the pheromone level on edges or how to calculate the probability 

of moving from one node to another. But regardless of the details, the algorithm repeats 

over several iterations t in which all ants construct their solutions. At the end of each 
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iteration, the tours are evaluated to determine the best ones found so far and the ants with 

the best solutions so far further increase the pheromone levels on those trails. At the end 

of the last iterations, the system converges to the optimal solution found as a result of the 

collaboration between the ants. 
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CHAPTER 8 

IMPROVING PHEROMONE INITIALIZATION 

IN ACO ALGORITHMS 
 

 

8.1 INTRODUCTION 

Most, if not all, of the work done in the literature with respect to ACO algorithms and 

their applications focuses on the details of solution construction, probability calculation, 

and finding new approaches for improving the way ants communicate and process 

information. However, pheromone initialization has been neglected by researchers who 

simply opt to use a constant value for the initialization, whether it has been pre-calculated 

or estimated. But properly initializing the pheromone level affects the speed of the 

system’s convergence to the optimal solution, and this research believes that this issue 

deserves more attention than it has been given so far. Before discussing the application of 

ACO algorithms to trust-based RS, an approach for locally initializing the pheromone 

level on edges in ant algorithms is presented and the conducted experiments’ results 

highlight the advantages of adopting such an approach in ACO algorithms in general, and 

consequently in the presented models for this dissertation.  

 

8.2 INITIAL PHEROMONE LEVEL IN TRADITIONAL ACO ALGORITHMS FOR 

TSP 
Typically, an ideal value for the initial pheromone level τ0 on edges in ACO 

algorithms would be one that is as close as possible to the average pheromone level 
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expected to be deposited by an ant ki on an edge during one iteration. Choosing a very 

small value will slow the convergence process and may result in the system not getting a 

chance to reach the optimal solution (but rather a suboptimal one). Initializing the 

pheromone level using a large value will cause a fast convergence, which means the 

system will not take its time to explore other possible paths and eventually it will be stuck 

in a suboptimal solution. Also the choice between whether to use a constant value for τ0 

or to pre-calculate it using a quick suboptimal path construction algorithm [42] affects the 

quality of the solution. However, in both cases, the pheromone level on all edges in the 

system is initialized using the same value τ0.  

There are different approaches for pre-calculating a value for τ0. Even within the 

context of a certain problem there is no standard approach to be followed. However, the 

standard application of each ACO algorithm for the TSP has a set of suggested 

initializations associated with each that have been proven to yield good results. For 

example, when the Ant System (AS) algorithm is applied to the TSP problem, it has been 

suggested by Dorigo et al. [40] to initialize τ0 as follows: 

τ0 = K/Cnn          (8.1) 

where K is the number of ants and Cnn is the length of a tour constructed by applying the 

nearest neighbor algorithm. In Elitist Ant System (EAS) [35][41] more parameters are 

considered in the initialization, such that: 

τ0 = (n + K)/ρCnn         (8.2) 

where n is the number of cities and ρ is the evaporation coefficient used in the 

pheromone evaporation process, which in this specific case is usually set to 0.5.  

MAX-MIN Ant System [142][143][141] (MMAS) suggests an initialization that only 
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Table 8.1: Suggested parameter settings for ACO algorithms when applied to TSP. 

ACO 
Algorithm 

α  β  ρ  K τ0 

AS 1 2 to 5 0.5 n K/Cnn 
EAS 1 2 to 5 0.5 n (n + K)/ρCnn 

MMAS 1 2 to 5 0.02 n 1/ρCnn 

ACS 1 2 to 5 0.1 10 1/nCnn 

 

 

considers the nearest neighbor tour length in addition to the pheromone evaporation 

coefficient: 

τ0 = 1/ρCnn          (8.3) 

Similarly, the Ant Colony System algorithm (ACS) uses the number of cities n instead of 

the evaporation coefficient, as follows: 

τ0 = 1/nCnn          (8.4) 

Table 8.1 summarizes the suggested parameter values used by these algorithms. 

 

8.3 THE LOCAL PHEROMONE INITIALIZATION TECHNIQUE 

While reviewing the literature for this dissertation, it was evident that all of the 

proposed ACO algorithms for the TSP focus on devising new ways for the agents to 

interact and probabilistically move on the graph while neglecting any attempts to improve 

the way the basic parameters are initialized. Although the suggested parameters 

summarized in Table 8.1 have been proven to provide good results, but that does not 

mean that there is no room for improvement. That was the motivation behind the initial 

phase of this research in which the possibility of improving the performance of ACO 
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algorithms by using a new pheromone initialization approach was investigated.  

The suggested pheromone initialization techniques in the literature, regardless 

whether a constant or a pre-calculated value is used, can be considered as what this 

research refers to as a global pheromone initialization technique since the value is 

calculated once and applied to all edges. However, this research categorizes (and names) 

the presented technique as a local pheromone initialization technique since it calculates 

the initial pheromone levels locally within each node’s neighborhood rather than using a 

one-size-fits-all approach.  

In ACO algorithms in order for the system to converge properly in a timely manner, 

the initial pheromone level on edges should be a value close to what an ant is expected to 

deposit on an edge during a single iteration. The incentive behind the presented local 

initialization approach is that since we are looking for a value that is close to what an ant 

would deposit, and since ants determine the amount of pheromone to be deposited based 

on local calculations that yield different deposited amounts based on the quality of each 

path, then it does not make sense to initialize all edges using the same value especially 

knowing that not all edges are of equal quality in the path construction process. 

In the remainder of this chapter, the new local pheromone initialization technique is 

defined and the experiments that were carried are presented along with a comparison to a 

standard application of the ACS algorithm to the TSP. 

 

8.4 APPLYING THE LOCAL PHEROMONE INITIALIZATION TECHNIQUE TO 

ACS FOR TSP 
In this research, the ACS algorithm was chosen to experiment with its pheromone 

initialization when the algorithm is used to solve the TSP. The choice of ACS was not 
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arbitrary; AS is the first ACO algorithms to be proposed in the literature while ACS is an 

extension to it that has a better exploitation for the local search and it performs 

pheromone evaporation and deposit on the best solutions found so far rather than 

updating all paths, so it would make more sense to consider ACS rather than AS. EAS 

and MMAS both use an initial pheromone value that is a function of the pheromone 

evaporation coefficient ρ, which is a parameter that needs to be controlled. If EAS or 

MMAS were chosen for this experiment it would have been hard to determine whether 

the results obtained are attributed to the new local initialization technique or to the value 

used for ρ. 

In the new local initialization approach, a local initialization technique is followed in 

which ants initialize the edges locally within each neighborhood before deciding which 

one to cross (upon their first encounter). The goals are: 

1. Use local information from the surrounding neighborhood Nki
x to determine the 

proper initial pheromone level on the neighboring edges to reduce the effect of 

external factors (from distant nodes). 

2. Avoid initializing edges that are never encountered. 

3. Reduce the number of iterations needed (time spent) for the system to converge. 

 
The basic idea behind the new technique is to use local information from the 

surrounding neighborhood to initialize the pheromone level on each edge xy before 

calculating the probability pki
xy of crossing the edge for the first time. Therefore an initial 

local value τ0
xy is used to initialize the pheromone level on an edge xy instead of 

initializing with the constant τ0. In the new approach, τ0
xy is defined as the inverse of the 

sum of weights (distances) associated with uninitialized edges y ∈ Nki
x that can be 
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potentially crossed from the current node (city) x as follows: 

 

     (8.5) 

where wxz refers to the weight associated with the edge (distance between two cities) x 

and z and Nki*
x is the neighborhood of potential nodes, from the perspective of ant ki, with 

uninitialized connected edges to node x. Note that 

€ 

Nx
ki* ⊆ Nx

ki . 

To be more specific, imagine the following scenario: an ant ki is on node x and wants 

to determine which node y in its neighborhood Nki
x should it move to next. The 

probability of moving to any node y involves the pheromone level τxy as dictated by 

Equation 7.1 (or any variation of it). If any of the edges in the neighborhood does not 

have pheromone associated with it, then the ant needs to initialize the pheromone level 

first before proceeding with the probability calculation. 

An ant ki can face one of three possible cases:   

• Case 1: None of the encountered edges have been initialized yet. 

In this case, all potential edges within Nki
x are initialized using Equation 8.5. 

• Case 2: Some potential neighboring edges have not been initialized while the rest 

have pheromone values associated with them.   

When faced with such a scenario, the algorithm only considers the potential 

uninitialized edges in Nki*
x when applying Equation 8.5 to initialize. 

• Case 3: All potential neighboring edges have associated pheromone level values 

(i.e. they have already been initialized). 

€ 

τxy
0 =

1
wxz

z∈Nx
ki*

∑
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Figure 8.1: Local pheromone initialization example.  
Ant ki is located at node x for the TSP.  
Case 1: None of the encountered edges has been initialized so the weight on all 
edges are used to calculate the initial pheromone level.  
Case 2: Some of the encountered edges has been initialized so the weight on the 
uninitialized edges are used to calculate the initial pheromone level while the 
initialized edges remain unchanged. 

 

In such a case, the ACS algorithm proceeds with the calculation of the probability 

pki
xy of moving to a potential neighboring node. Figure 8.1 shows examples 

corresponding to cases 1 and 2. 
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Note that in the presented local initialization approach, not all edges will be initialized 

during the first iteration of the system; it is possible to have pheromone initializations in 

every iteration until the system converges. It is expected however for the percentage of 

the initialized edges per iteration to decrease in the final iterations since that’s when the 

system starts to converge to the optimal solution. 

 

8.5 LOCAL PHEROMONE INITIALIZATION FEASIBILITY TESTING  

8.5.1 Preliminary Experiments 

In order to test the feasibility of the new local pheromone initialization technique, a 

synthetic TSP dataset with 50 cities and randomly generated distances among them was 

used. For the sake of comparison, three different algorithms were tested using the local 

pheromone initialization technique on the randomly generated dataset: 

• ACSnn: The ACS algorithm using the length of tour calculated using the nearest 

neighbor algorithm to initialize τ0 (Equation 8.4). 

• ACSavg: The ACS algorithm using a pre-calculated constant value that initializes 

τ0 using: 

τ0 = 1/(n * avgDist)         (8.6) 

where n is the number of cities and avgDist refers to the average distance between 

any two cities in the used dataset. 

• ACSlocal: The ACS algorithm initializing τ0 using the new local pheromone 

initialization technique (Equation 8.5). 
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Table 8.2: Summary of preliminary results obtained by applying ACSavg, ACSnn, and 
ACSlocal to a randomly generated TSP dataset with 50 cities over 2500 iterations. 
 

Algorithm No. of ants Length of best 
tour found 

# of iterations to 
find best tour 

Time (milliseconds) to 
find best tour 

10 1838 784 17515 

20 1870 1582 68562 ACSavg 

30 1884 1603 106875 

10 1914 336 9703 

20 1883 1118 60422 ACSnn 

30 1927 1273 97328 

10 1947 316 8688 

20 2012 2015 101516 ACSlocal 

30 1923 850 64672 

 

 

8.5.2 Analysis of Preliminary Results 

A quick glance at Figures 8.2 and 8.3 shows that ACSlocal has a great potential for 

improving the results for the TSP. By examining the results in Table 8.2, it can be seen 

how the local initialization algorithm achieved reasonable results that are slightly worse 

than ACSavg and ACSnn by increasing the best tour length found by ~1% in the case of 20 

ants (ACSlocal vs. ACSnn). However, ACSlocal exceeded the performance of the other two 

algorithms with respect to both the number of iterations needed and the time required to 

reach the solution. For example, ACSlocal has a ~2% increase in tour length when 

compared to ACSnn using 10 ants, but it yielded a ~ 6% reduction in the number of 

iterations needed and ~10% reduction with respect to time. This analysis is also 

applicable when comparing ACSlocal to both ACSavg and ACSnn algorithms using 10 and 

30 ants. Probably due to some anomalies, ACSlocal did not perform well when 20 ants 

were used.  
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Figure 8.2: Comparing the length of the best tour found for TSP by applying ACSavg, 
ACSnn, and ACSlocal. 
 

 

 

 

 

 

 

 
 
 
Figure 8.3: Comparing the number of iteration needed to find the best tour for TSP 
by applying ACSavg, ACSnn, and ACSlocal. 

 

So, taking into consideration the size of the dataset, the experiment has shown that the 

local pheromone initialization technique seems to be promising enough to be tested on 

larger datasets.  
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8.6 ADDITIONAL EXPERIMENTS AND THEIR RESULTS  

Since the new local pheromone initialization technique showed some promise, 

additional experiments were curried using larger datesets. Table 8.3 compares the results 

obtained by applying ACSnn and ACSlocal on 11 different dataset. The datasets provide a 

variety in size (the number next to each dataset corresponds to the number of cities), 

which provides a way to monitor the effect of the dataset size on the algorithms’ 

performances. The results highlighted in red in Table 8.3 indicate that ACSnn performed 

better while numbers highlighted in green mark the datasets in which ACSlocal performed 

better.  

There was not an obvious trend or parameter that could have affected the results. For 

example, both datasets pr76 and eil76 have 76 cities however ACSlocal performed better 

in one while ACSnn generated better results in the other which could be attributed to the 

range of distances between the cities in the datasets. Overall, ACSlocal resulted in a better 

performance (or tied ACSnn) in 8 out of the 11 tested datasets. Also, the percentage of 

edges that were not crossed and hence were not initialized in ACSlocal can be further 

analyzed to extract information that may be useful for improving the performance of the 

system as a whole. For example note that in burmal14, ulysses22, and pr76, ACSlocal 

provided better results while initializing 91% of the edges for the two former datasets and 

93% of the edges in the latter. 

Based on the results obtained with the extensive experiments carried to validate the 

feasibility of using a new local pheromone initialization technique when applying the 

ACS algorithm to the TSP, ACSlocal has demonstrated the ability to improve the results 

either by successfully constructing shorter routes. Even in cases in which the algorithm  
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Table 8.3: Summary of experimental results obtained by applying ACSnn and ACSlocal 
to 11 TSP datasets* using 50 ants, β = 2, and 50 iterations. 
 

Database Algorithm Min Length Max Length Avg Length Ratio of 
Initialized Edges 

ACSnn 430 551 500 100% 
eil51 ACSlocal 443 601 517 95% 

ACSnn 23122 28885 26047 100% 
kroA100 ACSlocal 22862 29484 26260 96% 

ACSnn 33274 41296 37153 100% 
att48 ACSlocal 32564 41594 26994 95% 

ACSnn 25 32.1392 26.73 100% 
burmal14 ACSlocal 25 32.1397 26.8 91% 

ACSnn 8681 10697 9704 100% 
bayg29 ACSlocal 8445 10831 9695 94% 

ACSnn 7311 9356 8320 100% 
berlin52 ACSlocal 7477 10135 8778 92% 

ACSnn 556 705 639 100% 
eil76 ACSlocal 597 791 690 94% 

ACSnn 116437 144605 131607 100% 
pr76 ACSlocal 114064 156760 135816 93% 

ACSnn 696 866 780 100% 
st70 ACSlocal 690 893 788 95% 

ACSnn 51 72 57 100% 
ulysses16 ACSlocal 51 72 56 90% 

ACSnn 54 75 59 100% 
ulysses22 ACSlocal 53 77 60 91% 

 

 

 

did not improve the results, the presented local initialization managed to accomplish 

reasonable results in a shorter time or a fewer number of iterations. Hence, local 

pheromone initialization in ACO algorithms is adopted as the pheromone initialization 

approach in this dissertation to increase the accuracy of recommendations in TBRS. 

* http://iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/ 
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CHAPTER 9 

ANT ALGORITHMS IN RS AND PROBLEM DEFINITION 
 

 

9.1 INTRODUCTION 

There have been some efforts in the literature to apply algorithms from the area of 

swarm intelligence to recommender systems, such as the proposed RS in [4] that uses a 

particle swarm optimization algorithm and the fuzzy genetic RS presented in [3]. A few 

attempts involve the use of ant algorithms and there are only a limited number of 

successful applications. These applications vary from providing recommendations in 

different types of RS to using ant algorithms for clustering and classification purposes. 

Up until the day the research of this dissertation was proposed, no one has ever attempted 

to apply any form of ant algorithms to RS that use explicit trust values among the users 

(i.e. TBRS). 

 

9.2 RELATED WORK 

9.2.1 Ant Algorithms and Recommender Systems 

Only a few researchers have attempted to apply ant algorithms to recommender 

systems in general. As a result, each attempt is completely different from the other in the 

sense that, for example, some deal with certain RS techniques  (content-based, 

collaborative filtering, etc.) and each applies ant algorithms for a different purpose 

(clustering, rule-based classification, etc.). 
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Ant based clustering was first introduced by Deneuborg [32], where in his model ants 

discriminate between different kinds of items and spatially arrange them within the 

context of a content-based RS. The proposed approach by Kanade and Hall [77], 

combines ant based clustering and fuzzy c-means. Their model was employed by  

Nadi et al. who presented a fuzzy ant-based recommender system [104] that provides 

online users with a list of recommendations based on the comparison of the user’s 

navigational behavior with other user’s data. Their model combines ACO algorithms and 

fuzzy logic to generate the recommendations. Sharma et al. [136] developed an ACO 

algorithm called Ant-Recommender with the aim of recommending items within clusters 

of user profiles. The ants in their algorithm sense pheromone found on clusters rather 

than on individual paths to determine the best cluster to provide a recommendation from. 

The ant colony metaphor was also used by Sobecki [139] for selecting optimal solutions 

in his hybrid recommendation method and by Bedi et al. [15] who presented a 

recommender system based on the collaborative behavior of ants. 

 

9.2.2 Ant Algorithms and Trust 

Ant algorithms have been successfully used in several applications dealing with trust. 

However, there has not been a single application (at the time of this research) that utilizes 

ant algorithms to deal with explicit trust in TBRS. The only work in the literature that 

claims to do so is Bedi and Sharma’s proposed algorithm, Trust Based Ant Recommender 

System (TARS) [15] in which they allege that their ant algorithm provides 

recommendations by integrating trust between users while in fact what their model does 

is compute trust between users based on profile similarity rather than use explicitly stated 
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trust among users. This dissertation believes that the way they name and refer to their 

algorithm is misleading. 

Some of the recent work proposed in academia that incorporates trust into the 

application of ACO algorithms include Lin et al.’s proposed trust model [86] that adopts 

an ACO algorithm to simulate trust relationships between cloud entities in cloud 

computing. Also, Yang et al. [155] developed a trust evaluation model in P2P networks 

where the reputation level of a target peer depends on the trust values on the different 

recommendation paths. Ant algorithms have been applied to mobile ad hoc networks as 

well to estimate the degree of trust between nodes [150]. ACO algorithms are ideal for 

reaching optimality in grid scheduling problems, such as the work presented in [81] in 

which their ant-based module predicts trust throughout a network grid by forecasting a 

trust value for each entity to determine its self-protection capabilities as well as its 

reputation. 

ACO algorithms have inspired many solutions in diverse applications, but since it is a 

newly adopted approach, especially in the field of RS, it makes it hard to find suitable 

datasets or to compare any significant contribution to similar work in the literature. 

    

9.3 PROBLEM DEFINITION 

9.3.1 Problem Statement 

The previous chapters covered different areas that fall within the scope of this 

dissertation, which ties all these areas through its main goal. This research’s main 

purpose is to present a model capable of providing a user with a rating prediction for an 

unseen/unrated item by utilizing the rating information provided by other users in the 
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network that are not necessarily directly trusted by that user. 

Formally, the problem addressed in this dissertation is stated as: 

Obtain an item rating rx
i for user x with respect to item i from users y that do not 

necessarily belong to user x’s web of trust WOTx. 

 
9.3.2 Model Parameters 

This research deals with trust-based recommender systems (TBRS) since trust is 

incorporated in the prediction process. The parameters the presented model consist of: 

• A set of n users, U 

U = {u1, u2, u3, …, un}  

• A set of m items, I 

I = {i1, i2, i3, …, im} 

• A set of nxm item ratings, R 

R = {rx
i},  x ∈ U, i ∈ I 

• A set of n(n – 1) trust values, T 

T = {Txy},  x ∈ U, y ∈ U, x ≠ y 

• A set of n webs of trust (neighborhoods), C 

C = {WOTx},  x ∈ U 

WOTx = {Txy},  x ∈ U, y ∈ U, x ≠ y 

• A set of n popularity values, P 

P = {Py},  y ∈ WOTz ∀ z ∈ U 

 
Note that the set R is used to construct the [nxm] user-item matrix while C is used to 

populate the [nxn] user-trust matrix. The web of trust of a user x, WOTx, refers to the set 
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of users that user x explicitly issued trust statements for. The popularity of each user Py is 

pre-calculated as a function of the trust statements Tzy that were issued from users z 

towards user y. 

 
The presented model deals with additional parameters consisting of: 

• d, the maximum search depth, i.e. the maximum length of a trust path between 

any two users x and y. 

• n(Ixy), the number of co-rated items between users x and y such that y ∈ WOTx. 

• PTs, the path trust of a solution s. The path trust PTs reflects the propagated trust 

along the solution path, which is calculated as a function of the trust Txy between 

adjacent users on that path. The path trust can also be a function of additional 

parameters depending on the way it is calculated. 

 
The only constraints that are enforced in the model are: 

• Only consider solutions with trust path PTs ≥ PTthreshold because this research 

believes that high quality solutions will result from paths with a high trust 

propagation value. 

• Solutions must not exceed a maximum depth d. 
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CHAPTER 10 

T-BAR: A TRUST-BASED ANT RECOMMENDER 
 

 

10.1 INTRODUCTION 

Trust-Based Ant Recommender (T-BAR) is the main presented model in this 

dissertation. T-BAR is a nature-inspired hybrid algorithm spawned from ACO algorithms 

for predicting recommendations  (ratings) in trust-based recommender systems. The 

presented model is considered a pioneer approach to applying ACO algorithms to the 

area of trust-based RS. 

T-BAR is a dynamic model based on the probabilistic methodology followed by ACO 

algorithms. The results achieved prove that T-BAR can produce good results when 

recommending items to users, while balancing the tradeoff between results accuracy and 

data coverage. The Epinions dataset is used as a testbed to verify the accuracy of the 

obtained results. 

 

10.2 TRUST NETWORK AND INPUT REPRESENTATION 

The trust network in T-BAR is modeled as a digraph G=(V, E), where the set of 

nodes V represents users and the set of directed edges E represents the trust statements 

issued between the users. The values on the edges indicate the issued trust values. In the 

presented model the input consists of two matrices: 
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1. [nxm] item-ratings matrix that holds the ratings given by the users to different 

items in the past, with the n rows being the users in the system and the m 

columns representing the items in the system. 

2. [nxn] user-trust matrix that holds the trust statements issued between the n users 

in the system with the rows representing the source users issuing the trust 

statements and the columns being the target users whom the trust statements are 

issued for. 

 

10.3 T-BAR’S SPECIFICATIONS 

T-BAR is a hybrid algorithm derived from both the AS and ACS algorithms proposed 

by Dorigo et al. in [42] and [40]. Follows is a detailed description of how ants behave 

and communicate in T-BAR, in addition to the specifics of how the system deals with 

pheromone deposit and evaporation. The discussion includes an explanation of what 

values are assigned to parameters. 

 

10.3.1 The Artificial Ants and Edge Selection 

T-BAR dispatches a predetermined number of K ants from the active user (source) 

with the goal of reaching as many good users as possible. Good users are users that can 

be reached through the active user’s extended web of trust (i.e. friends of friends) and 

have a rating r for the target item i. Each of the K ants moves in the network by first 

calculating the probability pki
xy of crossing the edge connecting the current node x to each 

neighboring node y using the following equation inspired by the probability calculation in 

AS algorithms: 
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 (10.1) 

 

where Ν ki
x refers to the feasible neighborhood when ant ki is located at node x, and where 

y is part of that neighborhood. 

Note that the probability pk
xy highly depends on two parameters in Equation 10.1: τxy 

which is the pheromone level on the edge xy, and ηxy which is the desirability of the move 

from node x to node y. α and β are both parameters that control the influence of τxy and 

ηxy respectively. Recall that in complex ACO algorithms, and specifically in ACS, ηxy is 

considered as a priori desirability computed by heuristics while τxy is a posteriori 

indication about the goodness of the move. Once the probabilities pki
xy are calculated the 

ant ki moves along the edge that yielded the highest probability. 

In T-BAR the ants stop their solution construction either when each ant reaches a set 

search depth d or if no more edges can be traversed. Once all K ants stop, the process 

repeats by dispatching the K ants again from the active user (source). The repeated 

process stops completely after a certain number of iterations t. During the last iteration 

each ant ki keeps a record of good users that it came across while constructing its last 

path. Remember that good users are those with a rating r for the target item i. 

In this dissertation, and after extensive trials and experimentations, the parameters of 

Equation 10.1 are defined as: 

ηxy = Txy         (10.2) 

β = Py          (10.3) 

α = 1          (10.4) 

€ 

pxy
ki =

(τxy )
α (ηxy )

β

(τxz)
α (ηxz)

β

z∈Nx
ki

∑
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where Txy is the trust value issued from user x to user y, and Py is the popularity 

(reputation) of user y computed as the average trust issued to user y by users z that have 

user y in their web of trust WOTz: 

(10.5) 

where n(z) is the number of users z that issued a trust statement towards user y. Note that 

Equations 10.2 and 10.3 represent how both local and global trust metrics have been 

incorporated into the presented model respectively, unlike other approaches in the 

literature that solely depend on one of the two metrics [51][94][123][158]. 

 

10.3.2 Pheromone Update Mechanism 

In real life, while ants forage for food they deposit pheromone along their path to 

inform other ants that the path has been discovered. Other ants can smell the pheromone 

on the paths and subsequently tend to follow, probabilistically, the paths with a higher 

pheromone concentration. The pheromone build-up on the path leading to a good food 

source results in all the ants at the end converging to that path. However, an important 

trait about pheromones is that they evaporate as time passes by and the evaporation 

mechanism reduces the influence of the pheromone deposited by early ants and favors the 

exploration of new paths rather than exploiting the already discovered ones. In other 

words, the evaporation prevents the ants from converging to poor paths discovered during 

the early stages of the search. 

The pheromone update mechanism in T-BAR interleaves the process of pheromone 

deposit and evaporation, which is similar to the way it is accomplished in ACS 

algorithms. In T-BAR, pheromone update is achieved on two levels: a local one and on a 

global one.  

€ 

Py =

Tzy
y∈WOTz
∑
n(z )
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The local pheromone update occurs as each ant ki traverses an edge xy. The 

pheromone level τxy on the edge is adjusted by: 

(10.6) 

where τxy is the pheromone level on the edge xy, ρ is the pheromone evaporation 

coefficient, and τ0
xy is the initial pheromone level on the edge xy initialized using the 

local initialization algorithm presented earlier (Equation 8.5). Typically in ACS, ρ is 

usually set to 0.1 [42].  

The global pheromone update takes place at the end of each iteration when all the K 

ants finish constructing their solutions. Unlike the local pheromone update, not all edges 

will be globally updated but rather only the ones belonging to the best solutions (paths) 

constructed in that iteration. In T-BAR the global pheromone update is accomplished in 

several steps. First, the model computes the path trust PTki for each constructed solution 

by an ant ki. The path trust [110] is a function of the number of co-rated items n(Ixy) 

between two adjacent users x and y and the trust Txy issued by user x towards user y: 

 

(10.7) 

In T-BAR, Pki refers to the path constructed by ant ki at the end of an iteration. After 

calculating the K path trusts, the algorithm adds the paths Pki that satisfy the criteria  

PTki ≥ PTthreshold to the set of best paths Pbest. The path trust is calculated in this manner in 

T-BAR based on the belief that the value of trust between two users x and y is 

strengthened by the number of items that were rated by both users. Note that in this 

manner, T-BAR manages to maintain a semi-item-based CF feature in the system by 

€ 

τxy = (1 − ρ ).τxy + ρ.τxy
0

€ 

PTki =

n(Ixy ).Txy( )
xy∈Pki

∑

n(Ixy )
xy∈Pki

∑
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considering the number of co-rated items along the constructed paths. Also note that path 

trust is a function of the local trust (although it has been already considered in Equation 

10.1) to emphasize the importance of local trust over global trust (user reputation). 

Lastly, after calculating and comparing the path trusts on the constructed solutions, the 

global pheromone update is applied on the edges belonging to the paths in Pbest: 

(10.8) 

where xy ∈ Pki, Pki ∈ Pbest and: 

(10.9) 

Note that the global pheromone update contributes to the pheromone build-up on 

good paths and thus helps the ants in subsequent iterations to ultimately converge to these 

paths. Also, T-BAR does not use a similarity measure, which is an important step in most 

RS using CF techniques, but rather uses the number of co-rated items as a semi-similarity 

measure. Another advantage of T-BAR over other known algorithms is that both local 

and global trust values are considered in the model; the local trust values influence the 

probability of the ants choosing a certain path while global trust values, used in the form 

of a user’s reputation, are used as the influence parameter for the local trust. 

 

10.3.3 Pheromone Initialization Mechanism 

Since the way T-BAR is modeled coincides with the way the TSP is represented, and 

since the local pheromone initialization technique (presented in Chapter 8) proved its 

feasibility when used to solve the TSP, the presented initialization approach was adopted 

in T-BAR in this research to properly initialize the pheromone level on edges in the 

system.  

 

€ 

τxy = (1 − ρ ).τxy + ρ. Δτki
best

€ 

Δτki
best = PTki



	
   118	
  

In T-BAR, the pheromone level on edges is initialized locally right before an ant 

encounters it (regardless whether it is traversed or not) using the trust information in the 

network. Before an ant ki computes the probability pki
xy of crossing one of the adjacent 

edges xy, it checks whether they have been initialized or not. If not then the adjacent 

edges are initialized using the inverse of the sum of their assigned trust values Txy from 

node x: 

(10.10) 

Therefore, the edges in the system will not necessarily have the same initial 

pheromone level. 

 

10.4 PREDICTING THE RATING FOR THE TARGET ITEM 

As previously mentioned, the K ants in T-BAR keep a record of the good users that 

they come across while constructing the paths in the last iteration, where good users are 

considered to be users u that have a rating for the target item i, denoted by ri
u. 

The reason behind keeping the record is that in T-BAR at the end of the last iteration 

the system should have converged into the best solutions (paths) and that is when the set 

of good users becomes useful. T-BAR averages the ratings ri
u obtained from good users y 

found on these paths to calculate the target item’s predicted rating for the active user x: 

€ 

ri
x =

ri
u

u∈P best

∑

n(u)
          (10.11) 

where n(u) is the number of good users u. This research believes that since the paths were 

labeled as being good ones and since they have a high path trust value, we might as well 

use all the ratings encountered along them as opposed to only using the item rating given 

€ 

τxy
0 =

1
Txz

z∈Nx
ki*

∑
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by the last user reached on each path, which is the case in both TidalTrust [51] and 

MoleTrust  [110]. Considering all the item ratings along the constructed paths rather than 

stopping the search at the first node encountered with an item rating is another trivial 

contribution in this dissertation since the ants continue constructing their solutions until 

the depth d is reached. Also, most of the mentioned proposed algorithms use a trust 

threshold that limits the paths that can be traversed, however this research strongly 

believes that every trust value (good or bad) contributes to the rating prediction and thus 

does not impose such a constraint on the individual trust between users but rather uses the 

threshold to filter the constructed paths according to the level of their path trust. 

 

10.5 T-BAR ALGORITHM 

The following is a high-level pseudocode of T-BAR: 

• Initialize the number of ants K, the number of iterations t, the search depth d, and 

the path trust threshold PTthreshold 

• For each iteration t 

o Initialize Pbest 

o For each ant ki 

1. Initialize all neighboring edges, if they have not been initialized 

yet, using Equation 10.10. 

2. Compute the probability pki
xy of all possible moves from the 

current node x to all neighboring nodes y ∈ Nki
x using Equation 

10.1. 

3. Move to node y that yielded the highest probability pki
xy. 
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4. Add the edge xy to the constructed path so far Pki and locally 

update the pheromone level on it using Equation 10.6. 

5. If the depth d is reached or if there are no more edges to be 

crossed, stop. 

o Compute the path trust PTki for each constructed path Pki using  

Equation 10.7. 

o Add the paths Pki having PTki ≥ PTthreshold to Pbest 

o Globally update the edges that are part of the paths in Pbest using  

Equation 10.8. 

• Calculate the predicted rating ri
x using the ratings ri

u that appeared on the paths Pki 

in the last Pbest using Equation 10.11. 

 

10.6 EXPERIMENTAL EVALUATION SETUP 

This section provides the details of the experiments that were conducted to validate 

the performance of T-BAR. T-BAR’s results are compared to the ones obtained by Massa 

et al. in [94] since it is one of the major techniques that were applied to TBRS 

[1][8][13][21]. Namely, the results are compared to a basic CF algorithm that uses the 

Pearson Similarity measure for computing the similarity between the users and to 

Massa’s proposed MoleTrust algorithm, which replaces the similarities in CF with the 

explicit trust values in the network. The results are analyzed across different views of the 

dataset to further understand T-BAR’s pros and cons. 
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10.6.1 The Epinions Dataset 

The Epinions dataset was used in this dissertation for the empirical evaluation. The 

reason behind the dataset choice lies in the fact that there is a scarcity in the availability 

of datasets that contain both item ratings along with explicitly issued trust values among 

the users. Another reason is that it was the dataset of choice in [94] so for the sake of 

comparison the same dataset was chosen. The Epinions dataset is composed of 49,290 

users that rated 139,738 unique items at least once. The ratings range between 1 and 5 

with 5 being the best rating. In addition there are 487,181 explicitly issued trust 

statements among the users. In this dataset there is no range for the issued trust values; if 

a user trusts another then that is expressed with a trust value of 1. More than half the 

users in the dataset rated less than 5 items each. Such users are referred to as cold start 

users; i.e. users who provided only a few ratings for the items in the dataset. Cold start 

users typically make it harder for RS to predict new item ratings for them due to lack of 

information in their rating profiles. When it comes to the ratings 45% of them are 5 and 

29% of them are 4, which means that more than half the ratings in the dataset are good 

ones. 

The dataset can be further classified into different categories, or views. These views 

are [94]  

1. cold start users, users who rated less than 5 items;  

2. heavy raters, users who rated more than 10 items;  

3. opinionated users, users who rated 5 or more items and whose standard deviation 

is greater than 1.5;  

4. black sheep, users who rated 5 or more items and the average distance of their 
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rating for item i with respect to the mean rating of item i is greater than 1;  

5. niche items, items that received less than 5 ratings; and  

6. controversial items, items with ratings whose standard deviation is greater than 

1.5. 

 
10.6.2 The Evaluation Metrics 

In order to be capable of comparing T-BAR’s results to the ones obtained in Massa et 

al.’s work [94], the same evaluation metrics referenced in their work were used. 

Massa et al. used the Mean Absolute Error (MAE), which is the average of the 

absolute difference between the predicted rating and the hidden rating of an item. 

However, they point out that a major drawback with this metric is that it does not weigh 

the prediction error by the user’s number of ratings and therefore the MAE for heavy 

raters weighs as much as the one for cold start users (more than half the users). This 

results in the error for heavy raters shadowing the one for cold start users. To overcome 

this problem Massa et al. presented the Mean Absolute User Error (MAUE), which can 

be computed by first finding the MAE for each user independently then by averaging the 

MAE across the users. In this manner, all the users would have the same weight. 

The ratings coverage (RC) [66] was also used to assess a RS’s ability to generate a 

prediction for the hidden rating, regardless of its accuracy. The RC refers to the fraction 

of ratings that were generated by the RS, while using the leave-one-out technique, against 

the actual number of ratings in the dataset. In other words, it is a measure of a RS’s 

ability to predict a rating for a target item. But just like the MAE, RC suffers from not 

properly weighing the ratings. Therefore Massa et al. used the users coverage (UC) as the 

fraction of users for which the RS was able to provide at least one prediction. 
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CHAPTER 11 

T-BAR’S DETAILED EXPERIMENTS AND THEIR 

EVALUATIONS 
 

 

11.1 INTRODUCTION 

This chapter covers the details of the experiments conducted to validate the 

effectiveness of T-BAR in increasing the accuracy of predicted item ratings in trust-based 

recommender systems. The chapter analyzes the results of applying the basic T-BAR and 

two variations of it to the Epinions dataset along with the empirical evaluation and 

comparison of the results against some known algorithms. The results are also inspected 

with respect to different views of the dataset in which the users and the items are further 

classified to better understand T-BAR’s performance in different situations. In general, 

the empirical results show that T-BAR and its variations can improve the accuracy of 

some predictions while always providing a significantly better coverage of the dataset 

when compared to the other algorithms, regardless of the prediction accuracy. This 

property can be useful in systems in which we are interested in achieving a higher 

quantity of predictions over the quality of these predictions. 

 

11.2 T-BAR’S PARAMETERS 

The leave-one-out technique was applied to test T-BAR’s ability to correctly predict 

the items’ ratings in a TBRS. Just like in any ACO algorithm, the different parameters in 

T-BAR had to be experimented with in order to determine the best set to be used. For this 
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specific purpose, a total of 22 experiments were carried varying the number of ants K (5, 

10, 20, 30, 40, 50), the number of iterations t (5, 10, 20, 30, 40, 50), the search depth d 

(10, 20, 30, 40, 50), and the path trust threshold PTthreshold (0.1, 0.3, 0.5, 0.7, 0.9). The 

baseline when all these variations were tested was 10 ants, 10 iterations, a search depth of 

30, and a path trust threshold of 0.5. It turned out that there was not a significant 

improvement in the Mean Absolute Error (MAE) or the ratings coverage (RC) when the 

parameters were varied, thus the baseline settings were used for the experiments while 

varying the search depth d (10, 30, 50) for comparing T-BAR with the results presented 

in [93]. 

 

11.3 COLLABORATIVE FILTERING ON EPINIONS DATASET 

The results of the experiments in this dissertation are compared to several algorithms 

including the basic CF technique. The problem with CF is that although it is simple and 

straightforward but there are different ways it can be applied and the set thresholds and 

restrictions can greatly affect the results such as [115]: 

• Only considering the target item ratings provided by the top k similar 

users. 

• Calculating the similarity with users who have rated the target item and 

have at least n co-rated items with the target user. 

• Considering users that have a similarity ≥ a similarity threshold. 

Most CF implementations use one or a combination of the mentioned restrictions. The 

only restriction that all implementations conform to is to select users that have a positive 

similarity value because there is no sense in considering ratings from dissimilar users. 
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Table 11.1: MAE of different CF implementations on Epinions dataset. 

 

Table 11.2: RC of different CF implementations on Epinions dataset. 

 

 

Table 11.1 compares the results reported from different applications of the basic CF 

algorithm using Pearson Similarity to the Epinions dataset in the literature, in addition to 

this dissertation’s implementation of the technique (Basic CF) using the leave-one-out 

technique. The Pearson Similarity formula used in Basic CF’s implementation is: 

 

     (11.1) 

 

Algorithm 
Views 

Basic CF  Massa’s CF Victor et al.’s CF Pham et al.’s CF 

All 0.636 0.843 0.84 0.96 

Cold Start Users 1.669 1.094 - - 

Heavy Raters 0.554 0.850 - - 

Controversial Items 1.487 1.515 1.34 - 

Niche Items 0.525 0.822 - - 

Opinionated Users 0.829 1.2 - - 

Black Sheep 0.782 1.235 - - 

Algorithm 
Views 

Basic CF Massa’s CF Victor et al.’s CF Pham et al.’s CF 

All 75% 51% 79% 56% 

Cold Start Users 44% 3% - - 

Heavy Raters 73% 58% - - 

Controversial Items 68% 45% 81% - 

Niche Items 56% 12% - - 

Opinionated Users 70% 50% - - 

Black Sheep 78% 56% - - 

€ 

Pearson(x,y) =
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where rx
i refers to the user x’s rating of item i, rx refers to user x’s average item rating, 

and Ixy is the set of items co-rated by users x and y. The detailed steps of Basic CF are as 

follows: 

1. For each user, hide the rating for the target item and calculate the Pearson 

Similarity with all other users in the dataset (using Equation 11.1) as long as: 

a. They have a rating for the hidden target item. 

b. They have rated at least two items in common with the target user. 

2. After calculating the similarities, discard the users that yielded a negative 

similarity value (i.e. non-similar users). 

3. Average the target item ratings across the remaining users to generate the 

predicted item rating. 

4. Compare the predicted rating with the actual rating to estimate the MAE. 

5. Repeat steps 1 – 4 for all items rated by each user. 

6. Average the MAE across all users/items. 

 
Both Massa et al.’s implementation of CF [94] and Victor et al.’s approach [148] take 

into consideration the similarity weight in the item rating prediction process, and thus 

predict the rating for the hidden item as: 

      
(11.2) 

 

where R+ refers to the set of users that have rated item i and have a positive similarity 

with user x. However, although the two approaches claim to be using the same technique 

for predicting item ratings, but the reported results in Table 11.1 show that some other 
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ri
x = rx +

Pearson(x,y)(ri
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parameters or additional restrictions were applied which caused the differences in the 

reported results. 

In [115], Pham et al.’s application of the CF technique on the Epinions dataset has an 

additional restriction for selecting the candidate similar users which requires user y to 

have rated at least four items in common with the target user x.  

 

11.4 EXPERIMENTAL RESULTS 

In this dissertation, T-BAR’s results are compared to two different algorithms: CF 

which is a CF algorithm implemented by Massa [92][93] using the Pearson Similarity 

and the MoleTrust algorithm (MT) [94] but with three different propagation horizons  

(1, 2, and 3) referred to as MT1, MT2, and MT3.  

Tables 11.3 and 11.4 show the results obtained by T-BAR against the two algorithms. 

T-BAR10, T-BAR30, and T-BAR50 refer to the three different search depths used. In 

order to highlight T-BAR’s strengths, this research compares the worst of the three T-

BAR algorithms with the best of the MT algorithms. Note that it would not make sense to 

use the same depths used in MT when testing T-BAR because the former follows a 

breadth-wise search while the latter searches for a solution in a depth-wise manner. 

Doing so would cause the number of nodes/edges that can be traversed by T-BAR to 

greatly decrease compared to the ones reached by MT. 

A quick glance at the first row in Tables 11.3 and 11.4 will show that T-BAR 

drastically increases the overall accuracy and coverage of the recommendations over the 

whole dataset. But when the results are weighed by the number of users it can be seen 

from the first row in Table 11.5 that T-BAR does not perform as well as CF or MT. 
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Table 11.3: MAE of the basic algorithms on different views. 

Algorithm 
Views Massa’s 

CF MT1 MT2 MT3 T-BAR 
10 

T-BAR 
30 

T-BAR 
50 

All 0.843 0.832 0.846 0.829 0.298 0.315 0.304 

Cold Start Users 1.094 0.674 0.833 0.854 1.459 1.4 1.426 

Heavy Raters 0.850 0.873 0.869 0.846 0.212 0.22 0.22 
Controversial 
Items 1.515 1.425 1.618 1.687 1.995 1.976 1.913 

Niche Items 0.822 0.734 0.806 0.828 0.572 0.582 0.534 
Opinionated 
Users 1.2 1.02 1.102 1.096 1.308 1.56 1.319 

Black Sheep 1.235 1.152 1.238 1.242 1.973 1.813 1.915 
 

Table 11.4: RC of the basic algorithms on different views. 

Algorithm 
Views Massa’s 

CF MT1 MT2 MT3 T-BAR 
10 

T-BAR 
30 

T-BAR 
50 

All 51% 28% 61% 74% 93% 97% 97% 

Cold Start Users 3% 11% 25% 42% 91% 95% 96% 

Heavy Raters 58% 31% 65% 78% 93% 97% 97% 
Controversial 
Items 45% 25% 61% 81% 59% 77% 81% 

Niche Items 12% 8% 24% 20% 48% 66% 69% 
Opinionated 
Users 50% 23% 57% 74% 94% 99% 99% 

Black Sheep 56% 24% 59% 76% 77% 93% 92% 
 

 

Yet, coverage-wise it is extremely obvious from the first row in Table 11.6 that T-BAR 

still outperforms the other techniques by increasing the ability to provide a 

recommendation to a random user by at least 30%.  
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Figure 11.1: MAE of the basic algorithms across different views. 

 

 

 

 

 

 

 

 

 

Figure 11.2: RC of the basic algorithms across different views. 
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Table 11.5: MAUE of the basic algorithms on different views. 

Algorithm 
Views Massa’s 

CF MT1 MT2 MT3 T-BAR 
10 

T-BAR 
30 

T-BAR 
50 

All 0.938 0.790 0.856 0.844 1.203 1.2 1.202 

Cold Start Users 1.173 0.674 0.820 0.854 1.581 1.561 1.563 

Heavy Raters 0.903 0.834 0.861 0.834 0.282 0.298 0.293 
Controversial 
Items 1.503 1.326 1.571 1.650 1.967 2.064 1.971 

Niche Items 0.854 0.671 0.808 0.843 0.896 0.874 0.851 
Opinionated 
Users 1.316 0.938 1.090 1.092 1.262 1.307 1.294 

Black Sheep 1.407 1.075 1.258 1.285 1.973 1.923 1.984 
 

Table 11.6: UC of the basic algorithms on different views. 

Algorithm 
Views Massa’s 

CF MT1 MT2 MT3 T-BAR 
10 

T-BAR 
30 

T-BAR 
50 

All 41% 47% 60% 66% 96% 98% 99% 

Cold Start Users 3% 18% 31% 43% 97% 99% 99% 

Heavy Raters 86% 80% 88% 89% 93% 97% 98% 
Controversial 
Items 16% 12% 22% 28% 92% 95% 97% 

Niche Items 11% 10% 21% 33% 74% 83% 85% 
Opinionated 
Users 61% 61% 77% 80% 94% 99% 99% 

Black Sheep 68% 61% 75% 78% 81% 94% 94% 
 

 

Recall that more than half the users in the Epinions dataset are classified as cold start 

users, which usually poses a challenge for RS, and although T-BAR does not achieve a 

better accuracy than the ones reached by MT or CF (as can be seen in Figures 11.1 and 

11.3), T-BAR still manages to generate a relatively low error rate in general while 

drastically improving the ratings coverage as illustrated in Figures 11.2 and 11.4.  
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Figure 11.3: MAUE of the basic algorithms across different views. 

 

 

 

 

 

 

 

 

 

Figure 11.4: UC of the basic algorithms across different views. 
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coverage. For heavy raters T-BAR had a MAUE of ~0.3 compared to MT1 and MT3’s 

MAUE of 0.846. The reason behind T-BAR’s superior performance for heavy raters can 

be attributed to the way that T-BAR works. Recall that at the end of each iteration the 

number of co-rated items between adjacent users along Pki plays a major role in 

increasing the path trust and increasing the pheromone level on that path, which will also 

increase the probability of having a greater number of co-rated items between adjacent 

users. In addition these paths were selected by the ants while constructing their solution 

partly because of their high trust along their edges. These two reasons contributed to the 

increase in the predictions’ accuracy for heavy raters in T-BAR. The latter argument can 

be also used to validate T-BAR’s high accuracy and coverage for niche items. Niche 

items can be thought of as the unpopular items since they received less than 5 ratings. By 

examining Tables 11.3, 11.4, 11.5, and 11.6 it can be seen how both CF and MT both 

miserably fail to provide an accurate rating for such items, that is if they were able to 

generate one in the first place because of their low RC and UC for those items. Table 

11.4 shows how MT at its best can only predict a rating for only ~24% of niche items.  

T-BAR’s ability to incorporate all the trusted good users’ ratings for such items along the 

paths over several iterations plays a major role in its enhanced performance over the 

others. 

However, MT outperformed T-BAR with respect to controversial items, opinionated 

users, and black sheep users. But, for opinionated users and black sheep users it is still 

obvious that T-BAR can provide a better rating coverage even after weighing the results 

by the number of users as seen in Figure 11.4. In general though, Massa’s CF technique 

outperformed both MT and T-BAR with respect to the prediction accuracy of 
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controversial items. This can be explained by the fact that when an item receives a wide 

range of ratings it is better to consider the opinion of like-minded users since their taste 

would be similar rather than relying on users’ trust in one another, which may not 

necessarily indicate that they have the same taste. 

 

11.5 ADDITIONAL EXPERIMENTS AND THEIR RESULTS 

In an attempt to further improve the performance and the coverage of T-BAR, 

different variations of the algorithm were tested in this dissertation by altering the way 

some values are calculated. One variation was to dispatch the ants from users in the 

source user x’s WOTx rather than from the source user x in hopes of improving the 

ratings’ accuracy for cold start users. The results did not show a significant improvement 

in either the accuracy or the RC and therefore the results were discarded. 

In other attempts, the criteria for selecting the best paths at the end of each iteration 

was changed. Instead of calculating the path trust PT, the average trust of good users 

along the constructed paths was used. A path would be then added to PTbest if the average 

trust (popularity) of such users is greater than a trust threshold. The average was weighed 

in one variation by the length of the path and in another variation by the number of good 

users on that path. This dissertation refers to the former version as T-BARPL (PL referring 

to path length) and to the latter as T-BARGU (where GU stands for good users). Tables 

11.7 and 11.8 display the results of testing these two variations using different thresholds 

and depths while Tables 11.9 and 11.10 show the results averaged by users. 
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Figure 11.5: MAE of the new algorithms across different views. 

 

 

 

 

 

 

 

 

 

Figure 11.6: RC of the new algorithms across different views. 
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The results in general show that T-BARGU outperforms T-BARPL, which makes sense 

since the number of good users along a path would contribute to increasing the accuracy 

of the prediction better than the length of the path (i.e. quality vs. quantity). Comparing 

Figures 11.5 and 11.7 to Figure 11.1 shows that T-BARGU still managed to achieve a 

MAE and MAUE below or around the 1.5 margin for cold start users, a MAE and MAUE 

below 0.5 for heavy raters, and a MAE and MAUE of ~ 2 for controversial 

items, which are all really close to T-BAR’s performance. Yet looking at Figures 11.6 

and 11.8 will show how T-BARGU has a drastic improvement in coverage compared to  

T-BAR’s coverage. T-BARGU is considered to have a perfect coverage of 100% for all 

users and ratings, which means that T-BARGU was able to provide at least one rating for 

all users and all items, and therefore the system will never fail to provide an item rating 

for any random user (regardless of the rating’s accuracy). These reasons make  

T-BARGU a better option as an algorithm than T-BAR for the three mentioned categories 

of users. Just like T-BAR though, black sheep users and opinionated users posed a 

challenge for both T-BARPL and T-BARGU. The only downside of T-BARGU when 

compared to T-BAR is that it does not perform well for niche items, producing a MAE 

and MAUE of ~2 while T-BAR achieves a MAE and MAUE of ~0.6 for such items. 

Overall if we were to compare T-BAR, T-BARPL, and T-BARGU we can conclude 

that all three algorithms perform generally well by providing a good balance between 

prediction accuracy and coverage compared to the results achieved by Massa et al. in 

[94]. Both T-BAR and T-BARGU can achieve a better prediction accuracy but T-BARGU 

is capable of achieving a perfect coverage for all users and all items but at the expense of 

the prediction accuracy. 
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Figure 11.7: MAUE of the new algorithms across different views. 

 

 

 

 

 

 

 

 

 

Figure 11.8: UC of the new algorithms across different views. 
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11.6 SUMMARY OF RESULTS 

The empirical evaluation of this dissertation’s Trust-Based Ant Recommender,  

T-BAR, on the Epinions dataset proved that the model can drastically improve the 

prediction accuracy as opposed to the accuracy achieved by traditional CF techniques or 

by Massa et al.’s proposed MoleTrust. The novelty of T-BAR and its two variations, 

especially T-BARGU, proved to be very useful for heavy raters as they managed to 

achieve a MAE as low as ~ 0.2 for such users compared to MT and CF algorithms’ MAE 

of ~ 0.8. On the other hand, MT and classic CF techniques outperformed T-BAR with 

respect to controversial items. But coverage wise, T-BARPL and T-BARGU achieved a 

perfect RC of 100% for all users (including cold start users) regardless of the prediction 

accuracy. This can be useful in situations where the system can tolerate bad predictions 

early on for cold start users until they become heavy raters such as in Netflix.com where 

users are encouraged to rate as many movies as they can so that the system can provide 

better movie ratings in the future for unseen movies. T-BAR outperformed its two 

variations, CF, and MT for niche items by achieving a low MAE of ~ 0.6 and a coverage 

of at least 50%; the other algorithms failed in that manner. T-BAR would be useful in 

situations where the dataset is composed of many items receiving less than 5 ratings. 

Netflix.com is a good example for this case since not all movies are expected to be highly 

rated or even receiving a decent number of ratings such as unknown indie movies that 

gain popularity (and accumulate ratings) over a long period of time. If CF or MT 

techniques were to be applied in such scenarios the system would be able to provide a 

movie rating only for ~ 3% of cold start users in the case of CF algorithms, and for  

~ 42% of such users in MT algorithm (MT3). If the generation of ratings for all users is 
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critical in a system, regardless of the prediction accuracy, then T-BARGU should be the 

algorithm of choice since it can achieve a MAE close to the ones obtained by T-BAR but 

with a better coverage rate. In critical systems though where the accuracy of the 

prediction outweighs the importance of the coverage, CF techniques would definitely be 

the better option to be applied rather than MT or T-BAR. 

However, the success of T-BAR’s application to TBRS inspired the work in this 

research to explore other ways that T-BAR can be modified in order to further enhance 

the performance and possibly solve the problem of cold start users.  
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CHAPTER 12 

LOCALIZED T-BAR MODELS 
 

 

12.1 INTRODUCTION 

T-BAR proved its ability to enhance the performance of TBRS in terms of accuracy 

and coverage especially for heavy raters compared to Massa’s CF and MoleTrust. 

However, T-BAR is considered the basic model presented in this dissertation and its 

success encouraged additional investigation to determine areas in which the model can be 

improved. Since the local pheromone initialization technique presented in Chapter 8 is 

considered as one of the main contributions of this research and since it is the first 

successful attempt in the literature to alter the way pheromone is initialized in ACO 

algorithms, it has been determined in this dissertation that the area of pheromone 

initialization still has room for improvement and hence can be further explored and 

enhanced by presenting localized models of T-BAR that reflect the differences in trust 

level between edges in the pheromone initialization process. 

 

12.2 RATIONALE BEHIND LOCALIZED T-BAR MODELS 

Trust plays a major role in any algorithm applied to TBRS and one of the reasons 

behind T-BAR’s success is the fact that it greatly incorporates trust in its 

recommendation process by interleaving the trust values with popularities and aspects of 

similarities between users in the search process, which allowed the system to eventually 

find good users with good quality. In other words, the quality of good users reached 
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through T-BAR is high due to its ability to find users that have many items in common 

with the active user (source) and that have a high trust level. 

T-BAR performs extremely well for heavy raters, which would make sense when 

considering that, in addition to the reasons discussed above, heavy raters have rated many 

items and therefore reinforces the quality of good users found (i.e. it would be easier to 

find co-rated items for such users). However, the same cannot be said for cold start users 

and that would explain T-BAR’s inability to perform well for them. 

In order to overcome this problem in the localized models, trust is given a bigger role 

in guiding the ants in their search process without impacting their ability to perform well 

for other users. This research saw a window of opportunity in the way the initial 

pheromone level is calculated since T-BAR initializes all edges within a WOTx using the 

same value without taking into consideration the individual differences between the 

edges in terms of trust. Therefore, trust needs to be reinforced whenever an ant needs to 

initialize the pheromone level on edges in order to reflect the differences in trust (and 

importance) between the edges to compensate for the lack of item ratings and co-rated 

items for cold start users. Thus, the new localized T-BAR models differ from T-BAR in 

that an ant will still use the trust values within a neighborhood to determine the initial 

pheromone level on edges however in the localized models the trust level on each edge is 

further incorporated to reflect its importance compared to others in that neighborhood. 

 

12.3 PHEROMONE INITIALIZATION MECHANISM IN LOCALIZED MODELS 
The localized T-BAR models follow the same methodology applied in T-BAR to 

predict ratings for unseen items for the active user in TBRS. The influence of trust 

between users in these models is increased in the pheromone initialization step, which 
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would allow the changes to be reflected in other aspects of the system as well.  

In the localized models, each edge xy within WOTx is assigned a different initial 

pheromone level τ0
xy that would reflect its associated trust level Txy when compared to 

other edges in the neighborhood. The initialization task is assigned to the individual ants 

where each ant ki initializes the pheromone level on edges within a WOTx upon their first 

encounter in the system. Before an ant ki calculates the probability of crossing an edge xy 

it has to check whether that edge has been initialized or not. If not, then the ant would 

utilize the locally available information within WOTx to calculate τ0
xy. 

Two localized models are presented in this dissertation: Simple Localized T-BAR  

(SLT-BAR) and Averaged Localized T-BAR (ALT-BAR). SLT-BAR calculates the 

initial pheromone level on edges xy as follows: 

€ 

τxy
0 =

Txy
Txz

z∈WOTx

∑
          (12.1) 

which, when compared to the local pheromone initialization technique (Equation 8.5), 

increases the initial pheromone level on edges. On the other hand, ALT-BAR calculates 

the initial values using:   

€ 

τxy
0 =

Txy
n(ux ). Txz

z∈WOTx

∑
         (12.2) 

where n(ux) refers to the number of users in WOTx. n(ux) is used to average the initial 

pheromone levels within each WOTx by its number of users and thus to decrease the 

values used for initialization while still maintaining the differences in importance 

between edges. 
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The effect of the introduced changes in the pheromone initialization step in both 

models will consequently impact: 

1. The probability pki
xy (Equation 10.1) because the initial pheromone level on an 

edge xy determines the initial probability of crossing that edge and since the edges 

within WOTx will not have the same initial pheromone value then we expect edges 

with higher trust levels to have higher initial pheromone levels and thus a higher 

probability of being crossed. 

2. The local pheromone update of τxy (Equation 10.6) because it involves the initial 

pheromone level to determine the amount of pheromone to be deposited. If all 

edges within WOTx have the same initial pheromone level then it would be 

expected for the pheromone to increase at the same rate on those edges. But if the 

initial pheromone levels reflect their associated trust then pheromone will 

accumulate faster on edges with higher initial pheromone levels. 

 
Figure 12.1 is an example that depicts how pheromone is initialized in the two models. 

 

12.4 EXPERIMENTAL RESULTS 

The localized T-BAR models were tested on the Epinions dataset against a basic CF 

algorithm [92][93], Massa’s MoleTrust algorithm (MT) [94], and T-BAR since it is the 

basic trust-based ant recommender. Since varying the search depth d in previous 

experiments did not show any significant change in the results, the experiments for the 

localized T-BAR models used the search depth of 10 for all compared algorithms (which 

is equivalent to MoleTrust’s MT1). 
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Figure 12.1: Example of pheromone initialization in localized T-BAR models. 

(a) Simple Localized T-BAR initialization mechanism.  
(b) Averaged Localized T-BAR initialization mechanism. 
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Table 12.1: MAE of localized T-BAR models against the basic algorithms. 

Algorithm 
Views Massa’s 

CF MT T-BAR SLT-BAR ALT-BAR 

All 0.843 0.832 0.298 0.985 0.57 

Cold Start Users 1.094 0.674 1.459 1.824 0.502 

Heavy Raters 0.850 0.873 0.212 0.912 0.62 
Controversial 
Items 1.515 1.425 1.995 2.1 1.27 

Niche Items 0.822 0.734 0.572 0.78 0.56 

Opinionated Users 1.2 1.02 1.308 1.13 0.889 

Black Sheep 1.235 1.152 1.973 1.44 0.935 
 
Table 12.2: RC of localized T-BAR models against the basic algorithms. 

Algorithm 
Views Massa’s 

CF MT T-BAR SLT-BAR ALT-BAR 

All 51% 28% 93% 81% 90% 

Cold Start Users 3% 11% 91% 12% 53% 

Heavy Raters 58% 31% 93% 85% 92% 
Controversial 
Items 45% 25% 59% 23% 48% 

Niche Items 12% 8% 48% 49% 83% 

Opinionated Users 50% 23% 94% 62% 54% 

Black Sheep 56% 24% 77% 63% 54% 
 
 

 

When it comes to comparing ALT-BAR to the other algorithms, it can be seen by 

comparing the MAE of the different algorithms (Table 12.1) alongside their RC  

(Table 12.2) that T-BAR outperforms the other algorithms in terms of overall ratings 

accuracy and coverage. However since the results obtained for heavy raters can heavily 

affect the overall MAE of the algorithms, a quick glance at Tables 12.3 and 12.4 would 

give a better insight on how those algorithms rank against each other regardless of the 
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Figure 12.2: MAE of localized T-BAR models against the basic algorithms. 

 

 

 

 

 

 

 

 

 

Figure 12.3: RC of localized T-BAR models against the basic algorithms. 

 

number of users within each category. The MAUE and UC show that ALT-BAR achieves 

a good overall balance by reaching a MAUE ~ 0.6 and a UC of 71% for all users. 
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Table 12.3: MAUE of localized T-BAR models against the basic algorithms. 

Algorithm 
Views Massa’s 

CF MT T-BAR SLT-BAR ALT-BAR 

All 0.938 0.790 1.203 0.983 0.592 

Cold Start Users 1.173 0.674 1.581 1.88 0.43 

Heavy Raters 0.903 0.834 0.282 0.87 0.683 
Controversial 
Items 1.503 1.326 1.967 1.97 1.307 

Niche Items 0.854 0.671 0.896 0.83 0.91 

Opinionated Users 1.316 0.938 1.262 1.325 0.755 

Black Sheep 1.407 1.075 1.973 1.303 1.102 
 

Table 12.4: UC of localized T-BAR models against the basic algorithms. 

Algorithm 
Views Massa’s 

CF MT T-BAR SLT-BAR ALT-BAR 

All 41% 47% 96% 78% 71% 

Cold Start Users 3% 18% 97% 17% 56% 

Heavy Raters 86% 80% 93% 92% 92% 
Controversial 
Items 16% 12% 92% 13% 82% 

Niche Items 11% 10% 74% 74% 90% 

Opinionated Users 61% 61% 94% 72% 68% 

Black Sheep 68% 61% 81% 77% 69% 
 

 

A major advantage of ALT-BAR over all algorithms is evident in its superior 

performance for cold start users as can be seen in terms of both MAE and MAUE. Recall 

that more than half the users in the Epinions dataset are classified as cold start users and 

they usually pose a challenge for RS. ALT-BAR achieved the best accuracy for cold start 

users by reaching a MAE of 0.5 and a MAUE of 0.4. Although MT achieved a MAE of  
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Figure 12.4: MAUE of localized T-BAR models against the basic algorithms. 

 

 

 

 

 

 

 

 

 

 
Figure 12.5: UC of localized T-BAR models against the basic algorithms. 

 

~ 0.7 for cold start users but ALT-BAR’s RC of 53% is much higher than MT’s 11% 

which still proves that ALT-BAR can handle such users very well. 
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In general, T-BAR is always the better choice if the dataset is composed mostly of 

heavy raters since it provides an amazing performance that surpasses the ones achieved 

by all other algorithms (MAE ~ 0.2 and 93% RC). However, ALT-BAR would be the 

perfect choice for any dataset that greatly suffers from cold start users. Opinionated users 

are another category of users that can be a challenge to deal with in different algorithms, 

as is obvious in the MAUE achieved by CF, MT, and T-BAR in Table 12.3. However, 

ALT-BAR performs well for those users by dropping the MAUE to ~ 0.8 with a 68% 

UC. 

 

12.5 SUMMARY OF RESULTS 

This chapter presented two localized T-BAR models that reinforce the importance of 

trust in TBRS. The Averaged Localized T-BAR model provided better results in general 

than the Simple Localized T-BAR model because it reduces the increase in the initial 

pheromone level (due to using trust) by averaging the values by the number of users 

within each neighborhood thus still maintaining the differences in importance between 

the edges.  

Since cold start users lack the availability of item ratings, ALT-BAR relies heavily on 

the trust issued between users to guide the ants in their exploration of the solution space. 

ALT-BAR achieves that by assigning each edge an initial pheromone level that reflects 

the edge’s associated importance (trust). Given the significance of the initial pheromone 

level in ACO algorithms in determining the system’s convergence to the optimal 

solution, ALT-BAR’s pheromone initialization approach proved to be feasible in terms of 

allowing the ants to expand their exploration scope for cold start users while managing to 
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exploit the good discovered paths for heavy raters which results in finding good users 

with a rating for the target item in general. 

Although ALT-BAR’s expanded exploration of the other paths guided by the trust 

between users impacted its performance for heavy raters but despite this setback when 

compared to the other algorithms, ALT-BAR managed to balance the overall trade-off 

between prediction accuracy and coverage for both cold start users and heavy raters. 
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CHAPTER 13 

DYNAMIC T-BAR MODELS 
 

 

13.1 INTRODUCTION 

Both T-BAR and ALT-BAR demonstrated their abilities to handle heavy raters and 

cold start users respectively by altering the way pheromone is initialized on edges, which 

greatly affects the system’s ability to properly converge to the optimal solutions in a 

timely manner. The success of the two models and the observation of the effect of  

ALT-BAR’s initialization mechanism on the way ants explore the solution space inspired 

the work in this dissertation to shift the focus to the way ants behave and communicate to 

explore new areas that could enhance the performance of the system.  

So far, the communication between the ants is at a minimal level sharing only 

information about which neighborhoods have been explored in the solution space. Thus, 

the work in this research is expanded to include the possibility of increasing the level of 

communication between the decentralized agents and studying the effect on the 

prediction accuracy in TBRS. The changes in the communication mechanism will also 

affect the pheromone initialization in the presented dynamic T-BAR models. 

 

13.2 RATIONALE BEHIND DYNAMIC T-BAR MODELS 

T-BAR and ALT-BAR’s local pheromone initialization approaches, in which the 

artificial ants initialize all edges within a feasible neighborhood upon their first 

encounter, result in the ants sharing only information about which neighborhoods have 
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been encountered and thus initialized so far. The information is useful for the ants in the 

two models because it informs them about the trust level in the neighborhood as a whole 

in T-BAR and about the individual trust on edges in ALT-BAR, which eventually 

dictates which paths to follow and which areas to explore in the solution space. Although 

the ants collaborate in a decentralized manner, this does not conflict with the possibility 

of them sharing additional information that can be useful in the exploration of the 

solution space without affecting the general guidelines of artificial ants’ behavior in ACO 

algorithms. The information sharing among the agents is taken a step further in the 

presented dynamic models by allowing the ants to pass a message to the other ants about 

which edges have been crossed and exploited so far.  

There are different approaches to describe how an ant can pass this information in the 

system to subsequent agents, but in the presented models the information sharing must 

comply with three goals: 

1. Allow the artificial ants to share more information among them about the paths 

that have been explored and thus support the exploration of the other 

undiscovered paths. 

2. Maintain the role of trust in the pheromone initialization process that has been 

achieved by the localized T-BAR models so that the initial pheromone levels on 

edges within WOTx would reflect the different trust levels on those edges. 

3. The ants must utilize the information shared in a way that can contribute to 

enhancing the performance of the system. 

 
To attain the first goal in the new models, the ants will commit the initial pheromone 

level only on the edge that will be crossed while discarding the other initializations. This 
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is closely related to the second goal though because if the initial pheromone level is 

calculated in a manner similar to the way it is done T-BAR (Equation 8.5), then the 

probability of crossing undiscovered edges would still be relatively unaffected (and 

possibly low) especially if the crossed edges keep accumulating pheromone on them 

which would discourage other ants from exploring new paths. Thus, the initial 

pheromone level in the new models is calculated in a way similar to how it is done in the 

localized T-BAR models to reflect the trust assigned to each edge within a dynamic 

WOTx (DWOTx). 

However, sharing the information about which edges have been crossed alone is not 

useful for the ants unless it affects the probability of selecting edges in the path 

construction process. If the ants keep initializing the remaining edges within a 

neighborhood using the same information upon each encounter then the models will not 

be any different from the ones presented so far. Therefore, the third goal is achieved in 

the new models by dynamically updating the information within a neighborhood to 

exclude trust information from the initialized edges and thus only use the uninitialized 

edges’ information whenever an ant needs to calculate the initial pheromone level for 

those uncrossed edges. 

 

13.3 PHEROMONE INITIALIZATION MECHANISM IN DYNAMIC MODELS 

The models presented so far in this dissertation initialize the pheromone level of 

edges within a neighborhood upon their first encounter. The dynamic T-BAR models’ 

major difference from T-BAR and the localized T-BAR models is evident in the 

pheromone initialization step; instead of calculating the initial pheromone level τ0
xy for 
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all edges xy within WOTx in a single step (when the edges are encountered for the first 

time), the presented dynamic T-BAR models allow an ant ki to commit the pheromone 

initialization only on the edge that yields the highest probability pki
xy of being crossed. In 

this manner, a maximum of one pheromone initialization is permitted by an ant ki in each 

encountered neighborhood and a maximum of d pheromone initializations is allowed per 

ant per iteration.  

Committing the initialization only on the crossed edges serves as a message to 

subsequent ants about which edges have been explored and thus after each initialization 

the neighborhood information used in the pheromone initialization process is dynamically 

updated in DWOTx to exclude the trust information associated with the recently 

initialized and crossed edge. The dynamically updated neighborhood DWOTx is only used 

in the pheromone initialization process; the calculation of pki
xy considers the whole WOTx 

to determine the path to be followed by an ant ki.  

Two dynamic T-BAR models are presented in this research: Dynamic Localized T-

BAR (DLT-BAR) which applies the same pheromone initialization technique used in 

SLT-BAR (Equation 12.1), and Dynamic Averaged Localized T-BAR (DALT-BAR) that 

uses the averaged pheromone initialization approach applied in ALT-BAR  

(Equation 12.2). Figure 13.1 is an example that demonstrates the DLT-BAR’s pheromone 

initialization process. Just like in the localized T-BAR models, the changes in the 

pheromone initialization process in the dynamic T-BAR models will affect the 

probability pki
xy and the local pheromone update of τxy, which will eventually affect the 

exploration of the solution space. 
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13.4 EXPERIMENTAL RESULTS 

The dynamic T-BAR models were tested on the Epinions dataset against Massa’s CF 

algorithm [92][93], the MoleTrust algorithm (MT) [94], and the trust-based ant 

recommender (T-BAR). All algorithms were tested using a search depth of 10, which is 

equivalent to MoleTrust’s search depth of 1 since it follows a breadth-wise search 

approach. 

Considering how the MAE is calculated, Table 13.1 and 13.2 show how the overall 

MAE does not reflect the results for the majority of users in the dataset (i.e. cold start 

users) but is rather affected by the ones for heavy raters due to the big difference in the 

accuracy between the two user categories. However, the DLT-BAR model does not suffer 

from this problem because it achieves almost similar MAE for both cold start users and 

heavy raters, which results in the overall MAE not being misleading as it is in the case of 

the other algorithms, including T-BAR. Table 13.1 shows that DLT-BAR achieves a 

MAE of ~ 0.7 for cold start users, heavy raters and all users in the dataset in general, 

which indicates that DLT-BAR has a consistent performance for all major user 

categories. However, DALT-BAR does not achieve a similar consistency across the user 

categories. Of course the results in Table 13.3 support this observation even further since 

the results are weighed by the number of users in each user/item category. 

Despite DLT-BAR’s consistent performance, its recommendation accuracy is not as 

good as T-BAR’s or ALT-BAR’s. T-BAR’s success for heavy raters is credited to the 

model’s approach of depending on both trust values and rated items among the users 

resulting in better exploitation of explored paths, while ALT-BAR’s superior 

performance for cold start users is attributed to increasing the role of trust in the model to 
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Table 13.1: MAE of dynamic T-BAR models against the basic algorithms. 

Algorithm 
Views Massa’s 

CF MT T-BAR DLT-BAR DALT-BAR 

All 0.843 0.832 0.298 0.723 0.683 

Cold Start Users 1.094 0.674 1.459 0.714 0.864 

Heavy Raters 0.850 0.873 0.212 0.778 0.618 
Controversial 
Items 1.515 1.425 1.995 1.629 1.97 

Niche Items 0.822 0.734 0.572 0.222 0.643 

Opinionated Users 1.2 1.02 1.308 0.411 0.948 

Black Sheep 1.235 1.152 1.973 0.812 1.103 
 

Table 13.2: RC of dynamic T-BAR models against the basic algorithms. 

Algorithm 
Views Massa’s 

CF MT T-BAR DLT-BAR DALT-BAR 

All 51% 28% 93% 84% 90% 

Cold Start Users 3% 11% 91% 55% 37% 

Heavy Raters 58% 31% 93% 87% 91% 
Controversial 
Items 45% 25% 59% 39% 53% 

Niche Items 12% 8% 48% 84% 60% 

Opinionated Users 50% 23% 94% 34% 22% 

Black Sheep 56% 24% 77% 37% 43% 
 

 

compensate for the lack of item ratings and thus allowing for better exploration of the 

solution space. However, DLT-BAR’s approach to exploring the solution space caused a 

constant increase in the initial pheromone level on unexplored edges, which prevented 

the ants from properly exploiting the discovered paths in addition to not allowing proper 

exploration of the solution space due to the rapid increases in the initial pheromone 

levels. In other words, DLT-BAR did not explore the solution space well enough to reach 



	
   159	
  

 

 

 

 

 

 

 

 

 
Figure 13.2: MAE of dynamic T-BAR models against the basic algorithms. 

 

 

 

 

 

 

 

 

 
Figure 13.3: RC of dynamic T-BAR models against the basic algorithms. 

 

ALT-BAR’s performance for cold start users, and it did not adequately exploit the 
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Table 13.3: MAUE of dynamic T-BAR models against the basic algorithms. 

Algorithm 
Views Massa’s 

CF MT T-BAR DLT-BAR DALT-BAR 

All 0.938 0.790 1.203 0.79 0.783 

Cold Start Users 1.173 0.674 1.581 0.784 0.874 

Heavy Raters 0.903 0.834 0.282 0.806 0.73 
Controversial 
Items 1.503 1.326 1.967 1.75 1.86 

Niche Items 0.854 0.671 0.896 0.323 0.78 

Opinionated Users 1.316 0.938 1.262 0.498 0.948 

Black Sheep 1.407 1.075 1.973 0.895 1.39 
 

Table 13.4: UC of dynamic T-BAR models against the basic algorithms. 

Algorithm 
Views Massa’s 

CF MT T-BAR DLT-BAR DALT-BAR 

All 41% 47% 96% 68% 90% 

Cold Start Users 3% 18% 97% 50% 71% 

Heavy Raters 86% 80% 93% 90% 93% 
Controversial 
Items 16% 12% 92% 73% 89% 

Niche Items 11% 10% 74% 85% 61% 

Opinionated Users 61% 61% 94% 39% 59% 

Black Sheep 68% 61% 81% 43% 32% 
 

 

advantage over all other algorithms when it comes to niche items for that it dropped the 

MAE and the MAUE to 0.22 and 0.32 respectively. Niche items did not attract a lot of 

attention in the literature but they can be as challenging to deal with in RS just like cold 

start users due to the scarcity of ratings available for those items. 
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Figure 13.4: MAUE of dynamic T-BAR models against the basic algorithms. 

 

 

 

 

 

 

 

 

 

 
Figure 13.5: UC of dynamic T-BAR models against the basic algorithms. 

 

Although the model did not achieve good results for users with a limited number of 

rated items (cold start users) but it performs well for items with few available ratings 
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Despite the fact that T-BAR and ALT-BAR are the obvious algorithm choices for 

certain situations, DLT-BAR may be considered as a more suitable option when the 

distribution of user categories in the dataset is unknown since it delivers an acceptable 

consistent performance across the different discussed views. Another case where DLT-

BAR should be considered is when a RS consists of a substantial number of niche items 

whose accuracy of predictions could affect a user’s confidence in the system’s 

performance. 

 

13.5 SUMMARY OF RESULTS 

In addition to the models presented in this dissertation, two dynamic models are 

presented as part of this research to demonstrate the effect of increased information 

sharing among the ants on the prediction accuracy in TBRS. One of the presented 

dynamic T-BAR models, DLT-BAR, can achieve a consistent performance for the two 

major user categories in RS: cold start users and heavy raters but at the expense of a 

lower prediction accuracy when compared to ALT-BAR and T-BAR respectively. 

Proposed algorithms in the literature can only deliver good results for one user category 

at the expense of the other, but DLT-BAR manages to balance the performance with a 

consistent acceptable accuracy levels across the two categories. This is achieved by 

allowing the artificial ants to share information about the explored edges and by 

initializing the pheromone level on edges to values proportional to their corresponding 

trust level. The models permit each ant to commit the initialization of at most one edge 

upon each neighborhood encounter, which is the edge with the highest probability to be 

crossed in that neighborhood. Since subsequent ants use the dynamically updated 
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neighborhood information to calculate the initial pheromone level on uninitialized edges, 

the initial pheromone level on those edges tends to rapidly increase upon each 

neighborhood update, which could increase their probability of being crossed. This 

behavior explains DLT-BAR’s prediction accuracy levels for the two major user 

categories since it does not allow the artificial ants to properly explore the solution space 

or adequately exploit the explored solutions. 
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CHAPTER 14 

CONCLUSION 
 

 

The goal of this dissertation was to show that the application of algorithms borrowed 

from the family of swarm intelligence to trust-based recommender systems can enhance 

the accuracy of recommendations by improving the exploration and exploitation of the 

solution space.  

The major contributions of this research are: 

1. Formalizing a bio-inspired model to enhance the accuracy of predictions in 

trust-based recommender systems by improving the search criteria in the 

solution space. The success of the presented model can be attributed to 

considering: 

• All encountered ratings for the target item along a path  

• Not neglecting the importance of global trust (popularity) 

• Enforcing a threshold on the overall trust on a solution path rather than 

on trust between users. 

2. Presenting a set of enhanced models, based on the formalized model, with the 

goal of enhancing the recommendation accuracy for a certain group of users, 

mainly cold start users and heavy raters. 

3. Presenting a pioneer local pheromone initialization approach that can be 

applicable to any ant colony algorithm.  
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This dissertation has been presented in a way that shows the detailed flow of how 

ideas were analyzed and formed during the work on this research, which resulted in the 

presented models and algorithms.   

The dissertation presented an ant colony-inspired algorithm that belongs to the family 

of Ant Colony Optimization algorithms. The algorithm was applied to trust-based 

recommender systems and was named T-BAR, Trust-Based Ant Recommender. The goal 

was to increase the accuracy of the ratings’ prediction and system coverage. One of the 

major advantages of T-BAR is that unlike other algorithms it considers all the item 

ratings that it encounters along the path rather than just using the final item rating that is 

reached. In addition, T-BAR considers both local trust and global trust in its search 

process based on the belief that the popularity of users can strengthen the confidence in 

their item ratings. Also, most recommender systems chose to enforce a threshold on trust 

between users while building the solution path which could result in the exclusion of 

good users, however T-BAR avoids that by imposing a threshold on the overall trust on 

the constructed path.  

T-BAR was tested on a real-world dataset and the empirical evaluation and 

comparison of results against some known algorithms in the literature showed T-BAR’s 

ability in greatly improving the results in terms of both accuracy and coverage especially 

for heavy raters. Based on T-BAR’s success, several other algorithms were presented 

where each aims to solve a specific problem. 

The localized T-BAR models focused on reinforcing the importance of trust between 

users to compensate for the lack of item ratings for cold start users. The localized models 

incorporated the differences in trust between users within a neighborhood in the 
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pheromone initialization process. In this manner, the models were able to deal with cold 

start users by expanding the scope of the explored solution space as a result of reflecting 

the individual trust on the edges’ initial pheromone levels. The presented models’ 

approach impacted the performance for heavy raters (compared to  

T-BAR) however in comparison with other algorithms, the localized models achieved 

good results for both cold start users and heavy raters in terms of prediction accuracy and 

coverage. In general though, the Averaged Localized T-BAR model (ALT-BAR) had 

better results than the Simple Localized T-BAR model (SLT-BAR) since ALT-BAR 

averages the initial pheromone levels by the number of users within a neighborhood to 

avoid possible system fluctuations due to substantial differences in trust levels. 

The dissertation presented a set of dynamic T-BAR models to illustrate the effect of 

increasing the level of information sharing among the artificial ants on the accuracy of 

results in trust-based recommendations. To achieve that, the dynamic models only 

committed the pheromone initialization on the edges to be crossed and updated the local 

information available for subsequent ants by excluding information about the recently 

crossed edge. This approach caused the initial pheromone level on the remaining edges to 

rapidly increase (until committed), which increased their overall probability of being 

crossed while building the solution paths. The dynamic models showed consistent 

performance for cold start users and heavy raters, which can be useful in situations where 

the distribution of users in the dataset is unknown. Although the models did not perform 

well for cold start users or heavy raters when compared to ALT-BAR and T-BAR 

respectively, but their results matched the average performance of the other compared 

algorithms.  
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The novelty of the different T-BAR models lies in the fact that it is the first successful 

application of an algorithm from the family of swarm intelligence to the area of trust-

based recommender systems. The presented results prove that employing different agents 

to explore the solution space can enhance the prediction accuracy even for problematic 

users such as cold start users. The differences between the presented models highlight 

different ways for the agents to behave while constructing their solutions. In general, the 

presented T-BAR models always provided results that balance the tradeoff between 

accuracy and coverage when compared to other popular algorithms in the literature. 
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CHAPTER 15 

FUTURE WORK 
 

 

There are many ways in which the work presented in this dissertation can be 

extended. For example, the promising results of the presented local pheromone 

initialization approach in enhancing the performance of ACO algorithms is just the first 

step in the path of exploring other possible ways to perform local pheromone 

initialization especially since the initial pheromone level has a major influence on the 

performance of ACO algorithms in general.  

Another idea that can be experimented with is the effect of stigmergy between ants on 

enhancing the performance of the system. Although the presented dynamic models are 

based on enhancing information sharing during the pheromone initialization step but 

additional experiments can be performed to study information sharing at different steps in 

the algorithm such as during the solution construction step or at the end of each iteration. 

Also, the choice of dataset was restricted by the availability of one that allows access 

to both item ratings and trust between users. However, the presented T-BAR models can 

be tested on other datasets that do not necessarily consider trust between users. To 

experiment with such datasets, an extra preprocessing step has to be added in which a 

value has to be calculated to replace trust in the models. This value can be a function of 

different aspects of user profiles, such as similarity, item ratings, number of co-rated 

items, etc. 
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Another major extension to this dissertation would be the study of the application of 

other swarm intelligence algorithms to recommender systems. Some of the algorithms 

that are currently being considered and can be envisioned to be applicable to TBRS 

include the Firefly algorithm, Cuckoo search, and Bee algorithms. 

Also it has been noticed that there is a lot of attention on the application of matrix 

factorization in RS such as Zhang et al.’s work in [157] and Ning’s et al.’s approach in 

[108] where they treat the system as a regularized optimization problem that can be 

solved using a factorization model. Since ACO algorithms proved their success in the 

literature in solving optimization problems, a deeper understanding of the application of 

matrix factorization can lead to exploring factorization models and its possible 

incorporation into T-BAR. 
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