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  ABSTRACT 

Hengenius, James B. Ph.D., Purdue University, December 2014. Quantitative Modeling 
of Spatiotemporal Systems: Simulation of Biological Systems and Analysis of Error 
Metric Effects on Model Fitting. Major Professor: Michael Gribskov. 
 
 
Understanding the biophysical processes underlying biological and biotechnological 

processes is a prerequisite for therapeutic treatments and technological innovation. With 

the exponential growth of computational processing speed, experimental findings in these 

fields have been complemented by dynamic simulations of developmental signaling and 

genetic interactions

sometimes inaccessible by reductionist approaches, making them test beds for biological 

inference and technological refinement. 

 

The complexity and interconnectedness of biological processes pose special challenges to 

modelers; biological models typically possess a large number of unknown parameters 

relative to their counterparts in other physical sciences.  Estimating these parameter 

values requires iterative testing of parameter values to find values that produce low error 

between model and data. This is a task whose length grows exponentially with the 

number of unknown parameters.  Many biological systems require spatial representation 

(i.e., they are not well-mixed systems and change over space and time).  Adding spatial 

dimensions complicates parameter estimation by increasing computational time for each
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model evaluation.  Defining error for model-data comparison is also complicated on 

spatial domains.  Different metrics compare different features of data and simulation, and 

the desired features are dependent on the underlying research question. 

 

This dissertation documents the modeling, parameter estimation, and simulation of two 

spatiotemporal modeling studies.  Each study addresses an unanswered research question 

in the respective experimental system.  The former is a 3D model of a nanoscale 

for 

improved sensitivity to glucose.  The latter is a 3D model of the developmental gap gene 

system that helps establish the bodyplan of Drosophila melanogaster; I wished to 

observed spatial 

distributions of gap gene products and to infer feasible genetic regulatory networks 

(GRNs) via parameter estimation of the GRN interaction terms.  Simulation of the 

biosensor successfully predicted an optimal electrode density on the biosensor surface, 

allowing us to fabricate improved biosensors.  Simulation of the gap gene system on 1D 

and 3D embryonic demonstrated that geometric effects were insufficient to produce 

observed distributions when simulated with previously reported GRNs.  Noting the 

effects of the error definition on the outcome of parameter estimation, I conclude with a 

characterization of assorted error definitions (objective functions), describe data 

characteristics to which they are sensitive, and end with a suggested procedure for 

objective function selection.  Choice of objective function is important in parameter 

estimation of spatiotemporal system models in varied biological and biotechnological 

disciplines.  
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CHAPTER 1. INTRODUCTION 

1.1 Introduction and Scope 

Spatiotemporal models of biological systems provide insights in life science, bio-

engineering, and other disciplines.  Biological models are unique in the large numbers  

and uncertainty in the values  of physiochemical parameters. All parameters in a model 

are a parameter set ( ) and all parameter set values must be estimated to produce realistic 

model behavior.  Estimation requires a search of an abstract parameter space.  The 

number of dimensions of the space corresponds to the number of parameters, so the size 

(and difficulty) of the estimation problem grows exponentially with the numbers of 

unknown parameters.  To discover superior parameter sets, modelers must choose 

objective functions to quantify error between experimental data and the model output of 

different parameter sets.  The objective is typically a variant of the sum of squared error 

although the effects of objective selection on biological parameter estimation has not 

been well studied. 

 

This work documents the modeling, parameter estimation, and simulation of two 

spatiotemporal modeling studies.  Each study addresses an unanswered research question 

in the respective experimental system.  The former is a 3D model of a nanoscale 

amperometric glucose biosensor; the  design for
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improved sensitivity to glucose.  The latter is a 3D model of the developmental gap gene 

system that helps establish the bodyplan of Drosophila melanogaster; we wished to 

determine if the embryo  geometry alone was capable of accounting for the spatial 

distributions of gap gene products and to infer feasible genetic regulatory networks 

(GRNs) via parameter estimation of the GRN interaction terms.  

 

Motivated by the successes and failures of these modeling studies, we noted a 

relationship between the objective function and the parameter estimation.  As with 

preceding studies, we used Euclidian distance (a variant of the sum of squared error) as 

our objective function.  For the biosensor model, which required quantitative agreement 

between model and data to properly address the design optimization problem, the 

Euclidean distance was appropriate to minimize the quantitative error between observed 

and simulated current.  However, the estimation of Drosophila GRN parameters depends 

on - immunofluorescence data that cannot be absolutely calibrated to 

protein concentration. As such, only qualitative agreement between the shape and relative 

position of embryonic protein expression bands can be used to compute error.  The 

choice of objective must account for this.  The Euclidean distance

quantitative summation of errors made it a poor choice in this case. It assigned high 

errors to qualitatively similar model output (e.g., similar experimental and simulated 

protein distributions with differing magnitudes).  In response, this work presents an initial 

characterization of the effects of objective function choice on qualitative spatial error 

calculations.  Though we apply it to the Drosophila gap gene system, this study is 

applicable to spatial and spatiotemporal models relying on spatial distributions with 
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ratiometric rather than defined, absolute measures  a common situation in biological 

models with spatial dimensions. 

 

1.2 Computational Systems Biology: Promise and Challenges 

In contrast to the traditionally reductionist approaches to biological research, some recent 

scholars , a 

popular but poorly defined catchphrase for holistic and integrative approaches to 

biological understanding.  Various attempts to define the phrase have been offered by 

biologists and philosophers, though tension remains as to whether it refers to 

computational simulation of biological systems or bioinformatics, the analysis of high-

- e.g., genomics, transcriptomics, proteomics, etc.)[1-7]. 

 

Prototypical systems biology concepts are found as early as the 1940s, when Norbert 

Weiner applied aspects of control theory to biology in his seminal Cybernetics, or 

Control and Communication in the Animal and in the Machine[8]. The discipline was 

further developed in 1968 when 

of the Third Systems Symposium at the Case Institute of Technology[9].  In the 1960s 

and 1970s, Michael Savageau and contemporaries developed biochemical systems theory 

to simulate and analyze metabolic networks [10-12]. The term bioinformatics , referring 

to information flow through biological systems, was also coined in 1970[13]. The 1980s 

saw the introduction and growth of flux balance analysis, a computationally efficient 

method for approximating steady-state chemical flux through metabolic networks[14]. 

The focus expanded from computational analysis to include bioinformatics in the 1990s. 



4 
 

 

This decade marked several milestones in DNA sequencing, from the initiation of 

sequencing for the Human Genome Project[15] to the first complete genome 

(Haemophilus influenzae)[16], and decreases in the time and cost required to collect 

genomic data[17].  The accumulation of sequence data required processing and analysis, 

and the field of bioinformatics expanded to apply computational approaches to sequence 

assembly, phylogenetic alignment, network analysis, molecular structure 

simulation/prediction, and data mining techniques to extract novel biological associations 

among genomic and other high-throughput data[18,19].  From the 1990s to today, 

computational biologists and bioinformaticists have applied modeling and data analyses 

toward an integrative understanding of biological systems. In this work, we focus on 

mathematical modeling and computational simulation within the larger framework of 

systems biology.  Specifically, we will describe the benefits and challenges of using 

mathematical models to predict biological outcomes and to infer physiologically 

meaningful relationships among simulated biochemical species. 

 

Mathematical models of varying complexity are used to represent diverse dynamic 

phenomena in the biological sciences.  A dynamic model describes change in the system 

state variable(s) over a time course of interest; it contains explicit mechanistic 

descriptions of the system and rules for updating the state of the system in time [20].  

Independent of the mechanistic description, the behavior of the model depends on the 

initial conditions of the system (e.g., simulated molecular concentrations at time zero).  

Developmental models often simulate spatially heterogeneous systems; in these cases the 

shape of the spatial domain also affects outcome. Mechanistic dynamic models are 
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parametric[21]. In addition to the state of the system and the shape of its domain, 

parameters are constant values that define the behavior of the system and often have 

biophysical interpretations (e.g., binding rate constants are parameters of receptor binding 

models) [22,23].  To determine the applicability of a model, parameter estimation must 

be used to bring the model into agreement with data[24].  This involves iteratively 

simulating the model with different parameter values and comparing the resultant output 

to data. Parameters that yield simulated values minimally different (or maximally similar) 

to data are retained[24-26].  The difficulty of this parameter search depends on the range 

each parameter is allowed to assume, the number of parameters to be estimated, the 

covariance of parameters with model output, and the number of local minima where 

search algorithms may become trapped[27]. The specific type of model determines both 

the type of data needed to inform the model and the parameter estimation methods that 

relate the model to the data. 

 

Even after parameters are estimated, mathematical models of complex biological and 

biotechnological systems 

almost like the natural systems they are designed to simulate, but they display 

imperfections that make their predictions suspect.  The disparity between a model result 

and the actual system vior may be a small-yet-systemic mismatch or a complete 

absence of a frequently observed experimental feature.  

might suggest that modeling is a distraction that interferes with experimental discovery 

because models attempt to show how the system works in quantitative detail, yet they are 

typically simplified relative to the system under study.  Among mathematical biologists it 
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is understood that simulations will always be simplifications incapable of reproducing all 

experimental behaviors; however, imperfect models still promote greater understanding 

of biological behaviors.  More recently, they have been informing experimental design 

and testing assumptions when experiments are infeasible. 

 

Central to modeling is the need to quantify how well a model agrees with experimental 

data and identify where it might disagree. Because model output depends on the model 

parameters, parameter estimation (i.e., parameter optimization) algorithms must be able 

to quantitatively score and sort parameter sets according to how well their corresponding 

outputs agrees with data. This quantification of model-to-data agreement is determined 

by an objective function that measures the model error with respect to data; however, 

there are many objective functions to measure model-data error and the choice of 

objective depends on the type of data, the type of model, and the research question(s) 

being asked.  In Chapter 4 we compare diverse objectives for the calculation of model-

developmental pattern formation by morphogens. 

 

The quality of a parameterized model  output, the uncertainty of its predictions, and the 

proper choice of objective function all depend on the type and quality of the data used for 

the training and optimization of the model. Data collected from biosensor experiments 

comes in the form of total device amperage; this current represents the aggregate of redox 

reactions occurring at the sub-micron scale[28-30].   Meanwhile, experimental data 

common in the analysis of morphogen signaling systems may take several forms 
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depending on the nature of the assays used. Broadly, this data may be separated into 

qualitative, semi-quantitative, and quantitative data.  Specifically, qualitative data 

encodes nonnumeric descriptors of the morphogen and targets of interest; semi-

quantitative data is predominantly ratiometric such as the relative intensity of a stained 

biomolecule or intensity of a band in a western blot; and quantitative data provides 

information of specific, measured quantities with associated uncertainty such as absolute 

concentrations.  As the quantitative content of the data increases, the associated 

uncertainties typically decrease providing more stringent constraints that improve the 

resulting model (see Pargett and Umulis, 2013 and Pargett, 2013 for further details 

[31,32]). 

 

Once mechanistic model parameters are optimized to maximize model-data agreement, 

they can be used to address a number of important questions.  They can include explicitly 

defined biochemical species and reactions, thus encoding hypotheses and allowing 

researchers to determine if a given hypothesis (model formulation) is sufficient to 

recapitulate experimental observations[33,34].  Multiple models (hypotheses) may also 

be compared to discover which best fits data. Rather than encoding a single hypothesis, a 

model may have many unknown interactions (e.g., genetic regulatory interactions) 

represented by parameters; estimating parameters that fit simulations to observations 

generates biologically interpretable inferences (e.g., feasible GRNs) which may direct 

further experimental work[35]. With sufficient confidence in a model, researchers may 

make qualitative and quantitative predications regarding the dynamics of experimentally 

observable and unobservable chemical species simulated by the model. These models 
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urrogate experiments are 

unavailable or too costly to probe the dynamics of species relevant to research questions. 

Finally, techniques of sensitivity analysis (SA) may be used in design of experiments and 

the control of biological systems. 

 

Mechanistic models should not be confused with statistical models (sometimes known as 

phenomenological models).  Statistical models (e.g., linear or logarithmic regression) 

quantify correlation among observable data.  This knowledge often proves invaluable in 

within the range of existing data [36].  Conversely, mechanistic models enc

suppositions about the nature of the underlying system.  As such, they may be used to 

extrapolate beyond the range of current data and provide predictions given that the 

modeled mechanism is accurate. 

 

To illustrate this difficulty, consider a simple combinatorial experimental design.  A 

researcher desires to sample three experimental variables, each at two different levels.  A 

complete set of experiments would contain 23 (8) experiments.  Now consider a similar 

design that contains ten experimental variables.  A combinatorial design would involve 

210 (1024) separate experiments.   In parameter estimation, the number of unknown 

parameters ( ) is analogous to the number of experimental variables.  The resolution of 

the search increases with the number of levels ( ) at which parameters are sampled. 

A combinatorial search of the parameter space requires  samples. While 

computers may simulate hours of biological activity in less than a second, the sheer 
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number of simulations requires nontrivial amounts of time. Biological models may 

contain as few as one or two parameters (e.g., Michaelis-Menten kinetic simulations) and 

as many as dozens or hundreds of parameters.  Further, the sensitivity of biological 

models to small changes in parameter values means that high resolution is required to 

sufficiently cover the parameter space.   In a low resolution search (  = 100) of a 

forty parameter model (  = 40) requiring 0.1 seconds (t = 0.1s) per simulation, the total 

time required is equal to  = 1×1079 seconds or 3.2×1071 years.  By comparison, 

the age of the universe is only thought to be 1.5×1010 years[37]! 

 

There are several means by which computational biologists may reduce the total time 

(also known as computation cost) required for large-scale parameter space searches.  One 

method is to parallelize the task over many central processing units (CPUs).  For the 

combinatorial example above, in which each simulation in the parameter space is 

completely independent, the  simulations may be parceled out to c individual 

processors.  This leads to a total time of  and a time reduction proportional to 

1/c.  This represents the maximum reduction for completely independent simulations; 

many search algorithms are not completely parallelizable and exhibit a more modest 

reduction.  Regardless, the numerator grows exponentially with  but only decreases 

proportional to 1/c, often leaving an unacceptable computational cost.  Another avenue 

for cost reduction involves decreasing the individual simulation time t.  Investigators may 

optimize simulation software to improve its efficiency, though this approach is problem-

specific and may not be possible with all models.  Finally, algorithmic alternatives to 
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exhaustive searches (e.g., factorial screens) may be implemented to decrease the number 

of model evaluations. 

 

These optimization approaches use different criteria to sample subsets of the parameter 

space, but they proceed from a common starting point: The unknown parameter have 

biologically feasible ranges assigned to them (e.g., a kinetic constant or diffusion 

constant cannot be negative).Then an incomplete search is performed within this 

constrained feasible region of the parameter space while ignoring biologically impossible 

parameter value combinations.  Sampled parameter sets are ranked according to the 

objective function values of their output. Finally, investigator-established criteria are used 

to decide whether the fi the algorithm terminates; if not, it may 

be restarted or allowed to continue until a user-specified time limit is reached. 
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Figure 1.1 A Cost Function Landscape 

  
When parameter values are mapped to error values via an objective function, a high-
dimensional cost surface is revealed.  This plot represents model error as one parameter is 
changed. Maxima (red circles) and minima (blue circles) dot the cost surface; parameter 
estimation seeks the global minimum (filled blue circle), or best fit, though this is not 
always attainable.  Each local minimum (empty blue circle) has an associated basin of 
attraction bounded by adjacent maxima; local searches must start within the global 

use basins may be small and 
local methods would need to start within the basin, global searches are used to survey the 
cost surface for low-error points from which to launch local searches.
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The mapping of objective function error values to feasible parameter combinations 

(points in the parameter space) results in a map called a cost landscape (so named 

because classical business applications sought to minimize costs; we seek to minimize 

error). See Figure 1.1 for a one-parameter cost landscape.  Optimization algorithms seek 

the parameter set corresponding to the lowest error  the global minimum or the lowest 

point of the landscape  to minimize the cost [24,25]. Broadly, optimization algorithms 

may be categorized as local and global[38]. 

on the landscape to the nearest minimum (black 

arrows, Fig. 1.1).  Because biological data is noisy and precise prior knowledge of 

biological systems is often unavailable, resear

and these methods usually lead to a local rather than global minimum. To avoid such 

local minima traps, stochastic global searches are used to sample the whole feasible 

region without completely searching the space [39]. However, the size of the space grows 

exponentially while objective function calculation proceeds linearly. Due to the curse of 

dimensionality, such global searches covers a smaller fraction of the feasible region as 

the number of parameters grows. As a result, parameters reported in the literature are 

likely to represent local rather than global minima. 

 

Search algorithms are typically run multiple times to improve coverage of the space.  

When searches return optimized parameter sets, these sets are ranked by goodness-of-fit.  

Those with the lowest objective values are retained, though investigators often inject an 
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evaluation, coupled with the probabilistic nature of the search makes independent 

reproducibility of parameter estimation and model analyses more difficult. 

 

This work focuses on three case studies of three spatiotemporal system models:  First, we 

developed a three-dimensional (3D) model of a nanoscale glucose biosensor utilizing 

glucose oxidase and electrodeposited platinum electrodes; after parameter estimation, we 

used the model to optimize the nanoscale 

glucose sensitivity. Second, we constructed a 3D embryonic model of the Drosophila 

melanogaster developmental gap gene system and attempted to infer GRNs compatible 

with observed protein expression; only one family of GRNs was recovered.  Finally, after 

noting the unexpected lack of multiple feasible GRNs, we constructed a 1D model of 

embryonic gap gene patterning and characterized the sensitivity of parameter estimation 

to the choice of model-data error functions (i.e., objective functions) used to minimize 

error; this is described in detail in Chapter 4. 

 

1.3 Three Spatiotemporal Modeling Case Studies 

Spatiotemporal dynamic models are widely used in simulations of physical systems and 

engineering. In these applications many model parameters are fixed at known values 

(e.g., materials properties such as moduli, viscosities, and heat capacities), leaving few 

unknown parameters to estimate. Such simulations may also require hours to days per 

simulation, severely limiting or completely removing the ability to perform parameter 

estimation.  However, the accurate prior knowledge of the system parameters often yields 

low error simulations.  In contrast, limited prior knowledge of biological and 
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biotechnological parameter values and the quasi-physical nature of some parameters 

(e.g. parameter 

optimization and interpretation in biological models; adding spatial dimensions further 

increases the computational expense of model evaluation.    

 

1.3.1 Optimizing Sensitivity of an Amperometric Glucose 

Biosensor via Simulation of Nanoscale Electrode 

Placement 

The increasing prevalence of insulin-dependent diabetes over the past three decades has 

increased the need for patient-operable glucose sensors[40].  These devices allow patients 

to monitor their blood glucose concentration and thus administer proper amounts of 

insulin.  Though diabetes was eighth leading cause of death worldwide and the seventh 

leading cause of death in the United States in 2011, claiming 1.4 million lives[41,42], 

patient compliance with recommended glucose monitoring practices may be as low as 

20%-50% among individuals with type 1 and 2 diabetes[43].  Poor compliance is often 

attributed to capillary glucose testing, the commonplace method used to let blood for 

glucose measurement, due to its invasive nature (a fingertip needle prick) and associated 

discomfort.   One solution to this problem is surgical implantation of closed-loop insulin 

pumps [44,45].  Such devices monitor glucose and administer 

limitations:  Firstly, 

patients discouraged by invasive blood drawing methods might be more intimidated by 

the prospect of invasive surgical procedures.  Secondly, diabetes incidence and mortality 

both correlate with lower socioeconomic status [46,47]; surgical intervention can be 
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prohibitively expensive to individuals with lower incomes and limited access to medical 

care. 

 

An alternative approach to increased compliance is reduction of patient discomfort with 

noninvasive self-testing utilizing saliva or tear samples in place of blood [48-50].  

Unfortunately, the glucose concentrations in these bodily fluids are orders of magnitude 

below blood glucose and cannot be accurately measured by current commercial home-use 

glucose monitors[48,51,52].  Improving the sensitivity and sensing range of glucose 

monitors has been a longstanding challenge in biomedical engineering.  Research efforts 

have evaluated chemical, spectroscopic, electrochemical, and other approaches to this 

problem. 

 

In Chapter 2 we describe a model-driven approach to optimization of an electrochemical 

sensor.  Modern commercial glucose monitor designs are dominated by electrochemical 

mechanisms[53].  These devices employ test strips containing electrodes and a bioactive 

reagent (typically glucose oxidase) that oxidizes glucose.  Glucose oxidation triggers a 

series of redox reactions. Glucose oxidation corresponds with the reduction of a mediator 

molecule; mediators vary from design to design[54-56].  The mediator is oxidized at the 

electrode surface to generate a measurable current[55]. 

 

The developing field of nanotechnology has provided new fabrication methods and 

miniaturization of electrical biosensors[28,57-88].  The detection limits and sensitivities 

of electrochemical biosensors are governed in part by the kinetic and diffusional 
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parameters of the biosensor system.  When diffusional mass transport rates are much 

greater than enzyme kinetic rates, diffusion replenishes glucose as it is consumed at the 

biosensor surface.  As a result, the micro-environment of the electrode experiences 

glucose concentrations similar to the bulk solution.  In this regime, enzyme kinetics 

dominate. Observed current is proportional to the bulk glucose concentrations below the 

saturation regime of the enzyme. In the diffusion-limited regime, enzyme kinetics 

outpace mass transport. This leads to a depletion of glucose around the electrode, 

especially when the concentrations are low and the small glucose concentration gradient 

slows mass transport to the electrode.  This phenomenon prevents linear calibration of 

glucose concentration with current and raises the lower detection limit.  Finally, enzyme 

kinetic parameters affect linear sensing at decreased glucose concentrations. Apparent 

Michaelis-Menten parameter (KM) values represent the half-saturation concentration of 

the enzyme about which the concentration response is approximately linear.  Lower 

effective KM values correspond to linear response at lower concentrations. 

 

Nanoscale electrochemical studies have demonstrated improvements in the sensitivity 

and accuracy of glucose biosensors. Approaches include spectroscopic methods [89-93], 

novel materials for nanoscale electrodes and glucose oxidase scaffolding [94-98], and 

geometrically novel nanoelectrodes [82,99-104].  Though some attempts have been made 

to model biosensor designs via computational simulation [105-108], most design 

optimization approaches rely on experimental trial-and-error tuning of fabrication 

variables. In Chapter 2, we evaluate a previously-published novel biosensor design in 

which sub-micron spherical platinum electrodes were deposited upon single-walled 
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carbon nanotube (swCNT) conductors [29,30].  The fabrication process of this device 

allowed tuning of platinum nanosphere density along the length of the swCNTs.  The 

goal of our research was to determine whether simulations of a dynamic model of the 

sensor could be used in place of experiments to find the optimal nanosphere density for 

maximal sensitivity and sensing range of the device [28].  

 

1.3.2 Gap GRN Inference with a 3D Model of the Drosophila 

melanogaster Embryonic Blastoderm 

The fruit fly Drosophila melanogaster has been a model organism in genetic studies for 

over one hundred years[109].  With the expansion of molecular methods over the past 

thirty years, Drosophila has become a popular organism for molecular dissection of early 

developmental processes [110-136]. Early embryonic development, during which 

morphogen (transcription factor) transport occurs in a syncytial cytoplasm, has proven 

amenable to mathematical modeling [137-140].  One developmental system active during 

this syncytial phase of blastoderm growth is the gap ge

or missing body segments seen in mutants in later embryonic stages.  The gap genes 

morphogen expression patterns along 

the anterior-posterior (AP) axis of the embryo; these patterns govern later body plan 

development. 

 

Initial gap gene expression takes positional cues from anisotropic maternal mRNAs and 

their resultant protein products (transcription factors)[141]. The maternal anterior 

determinant, Bicoid (Bcd), is expressed from anteriorly distributed mRNA and forms a 
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decreasing concentration gradient from the anterior to posterior of the embryo [113]. 

Though Bcd has been studied since the 1980s[113,114,117,126,142-145], mathematical 

modeling of its gradient formation is a more recent enterprise [126,137,142,146,147].  

These early models represented the AP axis of the embryo as a 1D line.  The anterior end 

of the line was a point source for Bcd production and expressed protein would diffuse 

toward the posterior.  To avoid saturation of the AP axis with accumulating Bcd, Bcd 

degradation was modeled by a first order decay term[126,142].  Collectively, these 

source-diffusion-decay (SDD) models were numerically easy to calculate and contained 

parameters with explicit biophysical meanings (e.g., diffusion constants). The models 

replicated the stationary Bcd gradient observed in data, though the time required to reach 

this state did not agree with comparable experimental time course observations.  These 

discrepancies prompted further model development. Ibanez and Belmonte provide an 

excellent review of these SDD modeling approaches [148]. 

 

Recent experimental and modeling work has discarded the passive and stationary mRNA 

hypothesis and considers the simultaneous behaviors of both RNA and morphogen [149].  

Spirov et al. consider a number of mechanisms by which bcd mRNA may be degraded 

and transported so as to modify the Bcd gradient [150].  In a complementary study, 

Cheung et al. consider the dependency of Bcd production on the embryonic volume 

(hence, the absolute mRNA amounts) at points along the AP axis [151].  These models 

are capable of replicating a greater range of behaviors found in experiments, but at the 

cost of greater model complexity and difficulty matching model behavior to biological 

activity. 
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Though Bcd is relatively simple to model, it is vital for the establishment of the gap gene 

patterning.  The gap genes require considerably more complex modeling approaches and 

are discussed in Chapters 3 and 4. 

 

Modeling has played a large role in the evaluation of the Drosophila melanogaster gap 

gene system.  Driven in part by maternal genes such as Bcd, this system of genetically 

anterior-posterior axis [141]. First experimentally characterized in the 1980s, decades of 

experimental work have resulted in a wealth of data with which to fuel model-driven 

discovery [118,122,152-156].  Varied modeling approaches have been applied to this 

system in the last two decades, each presenting different challenges to model fitting.  

Early models (e.g., Sanchez and Thierry [125]) incorporated pre-defined GRNs inferred 

from expert interpretation of mutant data rather than using parameter estimation to infer 

GRNs.  To compensate for contemporary computational limitations, these simulations 

frequently incorporated simplifying assumptions such as discrete protein levels, discrete 

spatial domains, and discrete time updates.  The qualitative nature of the model output 

limited error calculations; protein data might be classified as high, low, or absent and 

compared to similar model output. 

 

The work of Jaeger et al.[138,139] initiated quantitative modeling for the purpose of 

GRN inference via parameter estimation.  This approach led to numerous analyses 

[140,157-163], but also brought new challenges to model fitting and parameter 

identification. Building on the partial differential equation simulation methods of 
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Mjolsness and Reinitz[137], these models moved gap genes from discrete time and 

concentration simplifications to simulation of continuous concentrations and time on a 

1D domain.  Rather than building a model with assumptions about the nature of GRN 

interactions, Jaeger et al. built a general model framework in which every gene had the 

potential to enhance or inhibit the expression of every other gap gene. By minimizing the 

unscaled sum of squared error between model, they then fit the model to 

immunofluorescence expression data and observed which optimized GRNs replicated the 

observations most closely.  This approach generated a set of similar GRNs that 

recapitulated expression patterns and agreed with genetic interactions previously 

proposed from mutant data.  While the computationally inferred GRNs are consistent 

with expectations, a major shortcoming remains:  When gap genes were knocked out in 

simulations of published gap gene models, the resulting protein distributions did not 

match available mutant data.   

 

In conjunction with GRN inference studies, this model framework has been used to 

determine the sufficiency of proposed biological mechanisms.  Proposed by Waddington 

in 1942, the canalization model refers to the reduction of cell potency (i.e., from 

totipotency to unipotency) over the course of development [164].  To determine whether 

the gap gene interactions could account for this behavior, Manu et al. applied the 

mathematical formalism 

[161].  Much as physical objects are attracted to the stable position at the bottom of a 

gravity well, this analysis identifies stable equilibria to which dynamic models are 

[20]. Their findings and experimental data suggest that canalization did occur 
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in the system; the interaction of gap genes led to protein band expression regions with 

less spatial variability than their upstream maternal regulators [161].  Bieler et al. 

constructed a model on a 3D domain [165].  Unlike the Jaeger family of models, their 

model included explicit representations of mRNAs and a transcription factor dimerization 

mechanism.  This model also served to confirm the prevailing GRN inferences predicting 

mutual inhibition among gap genes.  Like previous 1D models, both 3D models are 

insufficient to recover mutant phenotypes.  This may be indicative of a missing 

component (or components) in the current models/hypotheses. 

 

All of the preceding models (except the early discrete variants) attempt to fit 25+ 

parameters; this high-dimensional parameter space may lead to two related problems: 

over fitting and non-unique solutions.  In statistical models, over fitting refers to overly 

parameterized models which predict noise rather than underlying trends [36].  Similarly, 

over fitting of dynamic models involves the distribution of error among many parameters 

during fitting; this may lead to spurious inferences from parameter estimation.  While 

parameter estimation seeks the global optimal point  the best possible fit in the 

parameter space  high dimensional parameter spaces may contain many local optimal 

parameter sets which produce equivalent fits (Fig. 1.1).  Indeed, when two parameters 

affect the same model output (e.g., when two genes A and B enhance a target gene C), 

the parameters regulating A C and B C are said to be correlated and unique parameter 

values will not be identifiable [39,166].  Because Jaeger et al.

proteins to interact (thus estimating 36+ regulatory parameters), there is no guarantee of 

the uniqueness of estimated parameters and over fitting may occur. Fomekong-Nanfack 
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et al. found that it was impossible to distinguish between activator or repressor activity in 

fitting results because of parameter correlation [157,160].  The sensitivity analysis of 

Bieler et al. also indicates correlation among model parameters, limiting the scope of 

model inference [165].  
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Figure 1.2 Dorsal-Ventral Patterning Asymmetries in the Drosophila Embryo 

 
A-C present lateral views of the Drosophila 
represented in A; expression bands are closer together on the dorsal surface and farther 
on the dorsal surface.  Giant (blue) is highlighted as an example.  B illustrates the 
difference in mass transport path lengths.  Diffusion is limited to a thin layer along the 
embryo surface, which creates a longer ventral path relative to the dorsal path (B). DV 
asymmetric inputs (C) and initial conditions may also contribute to asymmetries in 
expression patterns.  (Generated using the PointCloudXplore software[167].) 
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Extant gap gene models, as with all dynamic models, are necessarily incomplete 

abstractions of reality. Although it determines the AP axis of the fruit fly embryo, gap 

genes also show differences in patterning along the dorsal-ventral (DV) axis, notably 

distancing of protein bands toward the ventral side of the embryos (Fig. 

1.2a).  In Chapter 3, we built upon Jaeger et al. create a 3D 

model domain.  We sought to determine whether embryo shape (Fig. 1.2b) and DV-

asymmetric inputs (Fig. 1.2c) were sufficient to induce observed DV asymmetries and 

whether the additional 3D data could further constrain GRN estimation and allow 

estimation of new parameter sets[162].  We found embryonic geometry insufficient to 

explain DV gap patterns, and additional GRN inference proved inconclusive.  

 

1.3.3 Characterizing the Effects of Objective 

Function Choice on Estimated Parameters 

As noted above, parameter estimation via optimization algorithms requires an objective 

function to assign quantitative output error values to parameter sets.  These quantitative 

error values allow parameter sets to be sorted according to their goodness-of-fit.  

constitute a good fit is dependent on how the research question is posed. For example, a 

medical model built to predict optimal drug delivery must reduce errors to safe, clinically 

acceptable levels.  A good fit for a model built to capture qualitative aspects of a system 

(e.g., the presence or absence of a protein expression band at a particular position along a 

Drosophila embryo) is less constrained; however, this scenario requires selection of an 
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.  Despite the context-dependence of goodness-of-fit, much of 

the biological modeling literature reports use of the sum of squared error (SSE, summing 

the squared value of error between each datum and its simulation) or its variants.  In the 

case of Drosophila gap gene patterning  and more widely in models where a good fit 

depends on qualitative spatial trends  s may cause 

it to miss good qualitative fits that have poor numerical agreement (e.g., matching spatial 

patterns of different magnitudes). 

 

A large body of work is devoted to the selection and development of procedures for 

parameter optimization[38].  Though these procedures depend upon an objective function 

to rank parameter sets, few computational biologists have characterized the effects of 

objective function choice when precise quantitative agreement is not a criterion for a 

good fit. 

 

It should be noted that the preceding two case studies have utilized or variants of the SSE 

measure (e.g., root-mean-square-error or weighted SSE).  This proved adequate in the 

case of biosensor design optimization, but may have been insufficient to recover new 

parameter sets in the gap gene patterning study.  In particular, we observed qualitatively 

bad fits (simulated gap gene distributions that were dissimilar to data distributions) that 

had SSE error values on par with previously determined good fits.  This indicated that 

objectives which sum individual errors might be inappropriate to capture the important 

qualitative features of the data. The limitations of these measures in fitting relative spatial 

positioning data (such as adjacent gap genes) will be discussed in Chapter 4. 
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1.4 Brief Outline  

In the Chapter 2, I expand on a prior publication in which we develop a model of a 

glucose-detecting nanoscale biosensor and use the model to optimize the biosensor 

design for increased glucose sensitivity[28]. I set out to determine whether a dynamic 

model of the biosensor, once fit to data via parameter estimation, could successfully 

suggest optimized sensor designs.  I evaluated the success of this process by fabricating 

the optimized designs and evaluating their glucose sensitivity relative to the original 

sensor.  I 

biosensor architecture.  I found an increase in sensor sensitivity and agreement with the 

simulated optimized sensor. 

 

In Chapter 3, I discuss a three dimensional (3D) reaction diffusion model of gap gene 

patterning in the syncytial embryo of the fruit fly Drosophila melanogaster.  The gap 

genes are so named because gap mutants 

development.  The gap genes are spatially heterogeneous, early-expressing transcription 

the anterior-posterior (AP) axis of the embryo, though some dorsal ventral (DV) 

asymmetries are present. [141]. Experimental observations have been insufficient to 

completely characterize the GRN governing gap gene interactions.  Jaeger et al. 

pioneered a 1D model-based GRN inference approach that assigned parameters to all 

possible interactions and optimized those parameters to bring the model into agreement 

with data. Building on this body of work, I 

geometry and asked whether geometry and/or DV-asymmetric initial conditions are 
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sufficient to explain observed final DV asymmetries.  I also constrained Jaeger et al.

inferential parameter estimation with additional spatial data.  I found that neither realistic 

geometry nor 3D initial conditions were sufficient to explain the DV gap gene patterns.  

Counterintuitively, the additional data did not lead to inference of new GRNs.  Inferred 

GRNs were qualitatively similar (i.e., having the same enhancing and inhibiting 

interactions) to those reported by Jaeger et al. The successful parameter estimation for the 

biosensor and the poor estimation for the gap gene model led us to consider the effects of 

the error metric used to measure the goodness-of-fit between model and data; these are 

outlined in Chapter 4. 

 

Chapter 4 describes another study of the gap gene system.  Here, I reduced the model to 

one spatial dimension, the AP axis.  Because parameter estimation is a form of 

optimization that minimizes error between data and model, I asked how the choice of 

objective function (quantifying error) affects the optimization process and the final 

estimated parameter set.  I consider traditional objectives such as sum of squared error, 

intrinsic scaling metrics such as cosine distance, and metrics typically applied to 

probability distributions.  I also suggest a workflow for improved parameter estimation of 

semi-quantitative spatial data and choice of objective function. 

 

In Chapter 5, I review the key findings from the preceding case studies.  In light of our 

inability to recover qualitatively novel GRNs (those with new patterns of inhibition and 

enhancement) during parameter estimation of the Drosophila gap gene system, the wide 

variety of inferred GRNs reported by others, and the inability of reported GRNs to 
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duplicate mutant phenotypes, I address the current lack of model validation in the gap 

gene modeling literature.  To address the computational bottleneck of searching the high-

dimensional GRN search space, I propose a time- and space-discretized model with a 

discrete parameter space.  This model framework avoids several computational 

challenges described in this text: it has a smaller, completely-searchable parameter space 

and is easier to interpret. However, it is further removed from biological reality and must 

be further evaluated for computational artifacts arising from the discretization.  I 

conclude with preliminary simulated data from this discrete framework.
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CHAPTER 2. OPTIMIZATION OF A NANO-STRUCTURED GLUCOSE 
BIOSENSOR DESIGN TO MAXIMIZE GLUCOSE SENSITIVITY   
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ABSTRACT 

Nascent nanofabrication approaches are being applied to reduce electrode feature 

dimensions from the microscale to the nanoscale creating biosensors that are capable of 

working more efficiently at the biomolecular level.  The development of nanoscale 

biosensors has been driven largely by experimental empiricism to date; consequently, the 

precise positioning of nanoscale electrode elements is typically neglected, and its impact 

on biosensor performance is subsequently overlooked.  Herein we present a bottom-up 

nanoelectrode array fabrication approach that utilizes low-density and horizontally 

oriented single-walled carbon nanotubes (SWCNTs) as a template for the growth and 

precise positioning of Pt nanospheres. We further develop a computational model to 

optimize the nanosphere spatial arrangement and elucidate the tradeoffs among kinetics, 

mass transport, and charge transport in an enzymatic biosensing scenario.  Optimized 

model variables and experimental results confirm that tightly packed Pt 

nanosphere/SWCNT nanobands outperform low-density Pt nanosphere/SWCNT arrays in 

enzymatic glucose sensing. These computational and experimental results demonstrate 

the profound impact of nanoparticle placement on biosensor performance.  This 

integration of bottom-up nanoelectrode array templating with analysis-informed design 

produces a foundation for controlling and optimizing nanotechnology-based 

electrochemical biosensor performance. 

KEYWORDS: multi-scale modeling, simulation, carbon nanotubes, Pt nanospheres, 

nanoelectrode arrays, biosensor 
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1.  Introduction 

The application of nanotechnology to nanoscale electrode design has been widely 

practiced across numerous biological and chemical disciplines.[168-172] Characteristics 

of nanoelectrodes including favorable Faradic-to-capacitive current ratios, fast response 

times, and high current densities have significantly enhanced the detection limit and 

resolution of electrochemical biosensors.[74,173,174] In general, these findings can be 

attributed to improved catalytic and mass transport properties associated with the 

electrode material, surface structure, and geometry.[59,175,176] Noble metals commonly 

used in nanoelectrode fabrication (e.g., Pt, Pd, and Au) act as excellent heterogeneous 

catalysts and are resistant to corrosion and oxidation.[177]  The catalytic nature of these 

bulk materials are enhanced at the nanoscale, as decreasing size increases the reactive 

surface area and qualitatively changes the electronic structure by quantum 

confinement.[178] Nanoelectrodes also experience enhanced mass transport of target 

species by radial diffusion, further contributing to their favorable electrochemical 

response.[179] However, nanoscale electrodes for sensing have been developed primarily 

through experimental empiricism, and a pressing need exists to improve both the 

controllability of nanoscale morphologies and the associated analysis-driven design 

procedures to optimize performance.  

 

A major drawback to nanoelectrodes is the reduction in current due to overall low 

electroactive surface area. Large, high-density arrays of conducting nanoelectrodes 

separated by non-conducting oxide are often employed to overcome this drawback, 

substantially increasing the total generated electrode current.[180,181]  Consequently, 
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biosensor performance is intimately affected by the packing density of these 

nanoelectrode arrays. Overlapping diffusion fields from tightly packed neighboring 

nanoelectrodes can impede incident transport of electroactive species, while low 

electroactive surface area in loosely packed arrays can reduce heterogeneous charge 

transport.[182] Hence, a balance between electrode spacing and electroactive surface area 

must be achieved for optimal nanoelectrode array design. 

 

Precise positioning of metal nanoparticles on electrode surfaces to produce nanoelectrode 

arrays is challenging. Many techniques have been employed to create various types of 

ordered and random arrays of nanoelectrodes.  Ordered nanoelectrode arrays often utilize 

e-beam lithography or ion-beam milling to expose nanosized metallic disks embedded 

under non-conducting oxide.[63,183,184] However, these techniques typically are 

expensive, usually restricted to specific material systems, and limited to serial 

processing.[185] Likewise, securing random arrays of metal nanoparticles to electrodes 

involves several formidable challenges.  Current strategies such as physiochemical 

adsorption and covalent bonding have been developed to randomly cast premade 

nanoparticles onto electrode surfaces for biosensor applications.[186,187] However these 

top-down nanoparticle/electrode fabrication strategies generally offer little control over 

nanoparticle placement while requiring extensive chemical processing steps. 

 

Perhaps the most promising methods of securing metal nanoparticles to electrode 

surfaces is through deposition on carbon nanomaterial substrates.  Recently carbon 

nanomaterial-based electrodes from carbon nanotubes (CNT)[29,188,189]  to exfoliated 
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graphite nanoplatelets[190] and graphene composites[191] have been used as highly 

conductive templates for metallic nanoparticle immobilization and subsequent biosensing 

applications.  In this report, we build upon this work by developing glucose biosensors 

from networks of single-walled carbon nanotubes (SWCNTs) and platinum nanospheres 

with the assistance of computational modeling. We seek to understand the relationship 

between nanoparticle density and biosensor sensitivity. 

 

Herein, we present an entirely bottom-up approach for nanoelectrode array fabrication in 

which single-walled carbon nanotubes (SWCNTs) grown from the surface of the 

electrode act as support structures for subsequent Pt nanosphere growth through 

electrodeposition obviating the need for expensive lithographic techniques and 

laborious chemical processing steps.  The Pt nanospheres act both as sites for 

heterogeneous charge transport and as docking points for biorecognition agents, while the 

SWCNTs act as highly conductive electrical wires that connect in parallel the network of 

Pt nanospheres.  The nanoelectrodes are transformed into glucose biosensors by forming 

alkanethiol self-assembled monolayers (SAMs) on the nanospheres for subsequent 

conjugation with the enzyme glucose oxidase (GOx).  These Pt nanosphere/SWCNT 

biosensors build upon previous electrode designs involving electrodeposited Pd 

nanocubes[192] and Au coated Pd nanocubes[29] on SWCNTs, however in this study, we 

demonstrate both the ability to alter the packing density of Pt nanospheres along each 

SWCNT and to correlate the effects of nanosphere density on amperometric biosensing 

through computational and experimental results. 
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Though nano-electrodes have found application in a variety of fields, the quantitative 

understanding of enzymatic kinetics and spatial effects of nano-electrode placement 

remains incomplete. Previous work has explored analytical solutions to mass transport 

equations for  arrays of micro or nanoelectrode arrays.[179,193]  Others have built 

numerical models of oxidation and mass transport with enzymatic conversion of analytes 

to an electrically active form for electrodes of various sizes.[194-197]  We build upon 

this body of work to  develop a multiscale numerical reaction-diffusion model that 

utilizes enzymatic and transport principles to predict the biosensor current response based 

upon the spatial arrangement of the nanoparticles immobilized on the biosensor surface.   

 

Several key features distinguish our model from those previously mentioned in the 

literature, notably a probabilistic spatial distribution of random nanoelectrode arrays and 

the coupling of enzyme kinetics with mass transport.  The probabilistic spatial 

distribution of nanospheres along SWCNTs creates unique diffusional 

microenvironments defined by glucose competition with neighboring nanospheres.   Thus 

nanosphere current is dependent on microenvironment; we simulate total biosensor 

current by integrating nanosphere current over this spatial distribution to acquire 

biosensor scale properties from the cumulative contributions of nanoscale phenomena.  

This reaction-diffusion model is subsequently used to optimize the Pt nanosphere packing 

density along individual SWCNT strands by analyzing the mass transport of analyte, 

enzymatic reaction kinetics, and electrochemistry within the nanosphere domain. The 

simulated biosensor current displayed by the model is fit to experimental glucose sensing 

data and utilized to predict a more favorable nanosphere packing density for glucose 
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sensing. This prompted the development of arrays with closely packed Pt nanospheres a 

device with regularly spaced SWCNTs coated with spherical Pt segments that promotes 

optimal signaling capability in terms of both sensitivity and linear sensing range. 

2.  Experimental Section 

2.1. Reagents.    Glucose oxidase (GOx, Aspergillus niger lyophilized powder, 100,000-

250,000 units/g without added oxygen, stored at 4 ºC, 50KU, G7141 ), 11-

mercaptoundecanoic acid (MUA, 95%, 450561),  2-(N-Morpholino)ethanesulfonic acid 

(MES N-Hydroxysuccinimide (NHS, 98%, 25G, 130672), 

1-[3-(Dimethylamino)propyl]-3-ethylcarbodiimide methiodide (EDC,10G, 165344), 

hydrogen peroxide (H2O2 30% (w/w) in H2O, stored at 4ºC), chloroplatinic acid 

hexahydrate (H2PtCl6 2O Na2SO4

trace metal basis, 10G, 204447) were obtained from Sigma Aldrich.  Phosphate buffered 

saline (PBS, 0.1 M, pH 7.4, 10010072) was obtained from Invitrogen Corporation. Oxalic 

acid dihydrate (ACS, 99.5  102.5%, 250g, 33262) and sulfuric acid (H2SO4, 93  98%, 

500mL, 38751) was obtained from Alfa Aesar.   

 

2.2. SWCNT Template Fabrication. By following our previous fabrication protocols, a 

porous anodic alumina (PAA) substrate is developed for subsequent SWCNT 

synthesis.[29,192,198]  In order to create the PAA template, a thin film metal stack [Ti 

(100 nm), Al (100 nm), Fe (1 nm), and Al (400 nm)] is e-beam evaporated on an oxidized 

silicon wafer [P <100> Si (5 m), SiO2 (500 nm)] at a base pressure of 5.0  10-7 Torr.  

The metalized substrate is subsequently anodized by immersion in 0.3 M oxalic acid 
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(1.5ºC) while being biased with 40 V versus a Pt gauze auxiliary electrode.  The 

anodization process creates semi-ordered pores (20nm dia.) that extend through the 

Al/Fe/Al layers to the Ti layer (the bottom electrical contact for the electrode) and 

converts the Al layers into the dielectric Al2O3.  Additionally, an electrically conductive 

contact pad comprised of the evaporated metals is created for subsequent electrochemical 

processing and biosensing by leaving a portion of the sample un-anodized.   

 

2.3. SWCNT Synthesis.  Arrays of SWCNTs are grown from the Fe catalyst embedded 

within the pores of the PAA by a microwave plasma chemical vapor deposition 

(MPCVD) technique that utilizes a SEKI AX5200S MPCVD reactor.  The anodized 

substrate is placed in the reactor on a 5.1 cm diameter molybdenum puck and heated by a 

3.5 kW radio-

hydrogen plasma is generated over the sample via a 5 kW ASTeX AX2100 microwave 

generator, and methane (CH4) gas, the acting precursor for carbon nanotube (CNT) 

growth, is introduced into the chamber for 10 minutes.  The hydrogen plasma 

decomposes the methane gas to permit CNT growth and penetrates the oxide layer at the 

base of the pores of the PAA.  The 10 minute plasma/methane reaction creates SWCNTs, 

10  50 m in length, that extend vertically from the pores of the PAA and eventually 

come to rest horizontally on the PAA surface. 

 

2.4. Pt Nanosphere Formation.  A 3-electrode set-up (BASi Epsilon Cell Stand) is 

utilized to electrodeposit Pt nanospheres at the defects sites of SWCNTs. The SWCNT 

electrodes act as the working electrode, Ag/AgCl as the reference electrode, and Pt gauze 
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as the auxiliary electrode. The three electrodes are submersed within a 20ml metal salt 

bath consisting of 4 mM H2PtCl6 6H2O in 0.5 M Na2SO4. In order to create the low-

density Pt nanosphere/SWCNT electrodes, pulsed electrical currents of 2 mA/cm2 (Pt 

electrodeposition) with a frequency of 500 ms were applied between the working and 

auxiliary electrodes for 250 cycles. The high-density Pt nanosphere/SWCNT electrodes 

were created in exactly the same manner with one exception, the pulsed electrical current 

was changed to 8 mA/cm2.  These Pt electrodepositions create an electrical back contact 

to the SWCNTs by partially filling the pores of the PAA and electrically connecting the 

Ti bottom layer and the SWCNTs, while Pt nanospheres (150 nm dia.) grow 

concentrically around the exposed SWCNTs (Fig. 1).  

 

2.5. Enzyme Immobilization. The formation of SAM alkanethiols on the 

electrodeposited Pt nanospheres was carried out by following similar protocols 

established for SAM formation on Au and Pt surfaces.[199,200]  The electrodes were 

electrochemically cleaned by cycling the potential from -0.5 to 1.0 V in 0.3M H2SO4 and 

subsequent washing in ethanol and nanopure water and finally drying under a gentle 

stream of N2 gas. The electrodes were exposed to H2SO4 for no longer than 10 minutes to 

avoid oxidative cutting of the SWCNTs.[201] The SAM layer was formed by immersing 

the electrodes in an ethanol solution containing 10 mM 11-mercaptoundecanoic acid 

(MUA) for 24 hours. The electrodes were subsequently rinsed thrice in ethanol to remove 

any unbound thiol. Carbodiimide chemistry was employed to activate carboxylic acid 

groups within the SAM layer for subsequent linking with enzyme by immersing the 

electrodes in a 0.1M MES acid with 15 mM NHS and 75mM EDC for 2 hours. Finally 
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the electrodes were rinsed thrice in 0.1M PBS and immersed in individual test tubes 

containing 0.1M PBS with 2mg/mL GOx and placed in a test-tube shaker for 2 hours. 

After the enzyme immobilization process the electrodes were rinsed thrice in nanopure 

water to remove unbound enzyme and subsequently stored in 0.1M PBS at 4ºC prior to 

electrochemical experimentation.  

 

2.6. Electrochemical Sensing. H2O2 concentration levels were monitored directly and via 

the enzymatic breakdown of glucose with a BASi C3 Cell Stand (3 electrode set-up). The 

low- and high-density Pt nanosphere/SWCNT biosensors were biased (600 mV) against a 

Ag/AgCl reference electrode in a phosphate buffered saline (PBS, 0.1 M pH 7.4) while a 

Pt wire acted as the auxiliary electrode. Electrical charge generated during 

electrochemical sensing flows through the Pt nanosphere/SWCNT matrix to the 

conducting Ti underlayer that is electrically wired to the cell stand. The theoretical 

detection limit was calculated by evaluating the experimental electrode current response 

three standard deviations from the arithmetic mean of the baseline signal (i.e., signal-to-

noise ratio [S/N] = 3). 

 

2.7. Imaging. An S-4800 Hitachi microscope was utilized at a power setting of 5.0 kV to 

obtain the field emission scanning electron microscopy (FESEM) micrographs. Samples 

were imaged before the immobilization of the SAM/GOx enzyme layer and without any 

additional processing steps.  
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3.  Results and Discussion 

3.1. Biosensor Fabrication.  The SWCNT networks are fabricated in situ from a porous 

anodic alumina (PAA) template embedded with a catalytic Fe layer and developed from 

an oxidized silicon wafer (Fig. 1).  The SWCNTs grow from an Fe catalyst layer 

embedded within the pores of the PAA through a microwave plasma chemical vapor 

deposition (MPCVD) process and subsequently come to rest horizontally on the surface 

of the PAA.  Pt nanospheres are subsequently electrodeposited onto the SWCNTs to 

enhance the electrocatalytic properties of the sensor[202,203] and to serve as docking 

points for enzyme immobilization through thiol linking.[200]  The average inter-

averag

biosensor fabrication are included in the Experimental Section.  
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Figure 1. (a) Tilted cross-sectional schematic illustrating the Pt nanosphere-augmented 
SWCNT electrode with (c) corresponding top-view field emission scanning electron 
microscopy (FESEM) micrograph. (b) Biofunctionalization schematic demonstrating the 
covalent linking of the enzyme glucose oxidase to the Pt nanospheres for subsequent 
glucose biosensing. Glucose binds within the GOx enzymatic pocket producing H2O2 
while consuming O2.  FESEM micrograph inset (c) portrays a magnified view of a single 
Pt nanosphere decorated SWCNT with the yellow arrow pointing to an undecorated 
portion of the SWCNT. Note: schematics are not drawn to scale.  
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3.2 Model Development.  To improve biosensor performance, reaction-diffusion models 

of the biosensor were developed to optimize the design and to understand the tradeoffs 

between transport-limited processes and reactions on the Pt nanospheres. First, a single Pt 

nanosphere electrode model simulated glucose flux to and oxidation at Pt nanospheres. 

Individual nanospheres were simulated under conditions mimicking different 

microenvironments on the biosensor surface while the total biosensor current was 

simulated by computing a weighted sum of these individual nanosphere currents.  

 

Before simulating the total biosensor current, we confirmed that the single-nanosphere 

model recapitulated theoretical predictions regarding diffusion-enhanced signal. A 

domain representing the volume around one nanosphere as it lies along a SWCNT on the 

biosensor surface simulated the biosensor environment (Fig. 2). We assumed that the 

SWCNTs were sufficiently separated so that a single nanosphere would experience bulk 

glucose solutions in all directions perpendicular to the SWCNT except at the alumina 

biosensor surface.  The curved surface of the cylinder represents the interface with the 

bulk glucose solution; this geometry allows the analyte to diffuse radially to the electrode 

from the region around the SWCNT ensuring accurate model output while reducing 

computational cost of a larger domain.  The governing equations and boundary equations 

associated with each model domain are presented as follows.  
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Figure 2.  (red 
hemicylindrical surface) along the Pt nanosphere-augmented SWCNT electrodes on the 
biosensor surface. The volume of the domain is proportional to the nanosphere footprint 
(i.e., the sum of the nanosphere diameter and the average distance to the adjacent 
nanospheres).  
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3.2.1. Glucose Oxidase (GOx) Enzyme Function.  Glucose biosensing depends on two 

chemical processes: enzymatic oxidation of glucose to gluconic acid and H2O2 and 

subsequent electrochemical oxidation of H2O2 at the electrode surface (producing 

measurable current). These two reactions (Eq. 1 & Eq. 2) couple with diffusive transport 

to describe the amperometric sensing capabilities of the biosensor. 

 

          (1) 

,                   (2) 

 

Though oxygen and oxidation byproducts play a role in these chemical 

reactions,[204,205] we assume that oxygen is in excess because the duration of glucose 

sensing experiments performed in this study is short (< 35 mins) and the solution volume 

in the testing vial (20 mL) is large compared to the size of the working electrode.  

Furthermore, the GOx enzymatic reaction is considered irreversible. We further assume 

that H2O2, generated near the nanosphere surface, undergoes near-instantaneous 

oxidation.  With these simplifying assumptions, we explicitly model the diffusion and 

enzymatic oxidation of glucose alone. 

 

3.2.2. Glucose Diffusion and Enzymatic Oxidation.  Mass transport of glucose 

throughout the domain is diffusive.  Diffusion of glucose is represented by 

 

,     (3) 
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where Dglucose is the diffusion constant for glucose.  The domain represents a transverse 

analyte solution around a single Pt nanosphere electrode (Fig. 2). We 

assume that the domain is a unit cell repeated along the length of the SWCNT where each 

nanosphere is equidistant from both adjacent neighbors on a SWCNT permitting the 

use of periodic boundary conditions for the two semicircular faces of the domain.  Zero-

flux boundary conditions are imposed on these semicircular faces and on the insulating 

anodized alumina surface (i.e., the surface on which the nanosphere rests). The glucose 

concentration is fixed at [Glucose]bulk at the outer edge of the domain (i.e., the interface 

with the bulk glucose analyte).  Finally, flux at the nanosphere surface contains several 

components. Glucose is consumed at this surface according to Michaelis-Menten enzyme 

kinetics,[195,206] 

 

,      (4) 

 

where n is a normal vector perpendicular to the surface of interest, NG =  

(i.e., the diffusive flux of glucose at that point on the surface), Vmax is the maximum 

glucose flux, and KM is the glucose concentration at half maximum glucose flux 

(Michaelis-Menten constant) for the reaction. Similarly, the H2O2 flux at the nanosphere 

surface contains a Michaelis-Menten production flux and an oxidative consumption flux 

(Jox), 

 

   (5) 
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where NH = .  On the assumption that Jox dominates over diffusion of H2O2 

away from the nanosphere, we simplify the model by making H2O2 consumption and 

production equal (i.e., all H2O2 generated at the surface is effectively oxidized). Using 

this rate-limiting assumption, we are able to neglect an explicit representation of H2O2 

within the model.   

 

3.2.3. Simulated Biosensor Current Output to a Single Nanosphere Electrode.  To 

quantify the current output of a single nanosphere electrode we computed the following 

surface integral over the nanosphere surface (denoted S):  

 

    (6) 

 

where the integrand is oxidative H2O2 flux at the nanosphere surface (mM s-1). The 

integral is multiplied by a constant that converts to units of Amperes. The factor 2 in the 

numerator represents the two moles of electrons that are produced per oxidation of one 

mole of H2O2 (Eq. 2) while NA× 10-3 d for millimolar 

concentrations.  Equation 6 quantitatively predicts the electron flux at a single 

nanosphere electrode surface (optimization metrics and parameter values are provided in 

the Supporting Information).  

 

To model the range of nanosphere behaviors in different microenvironments, fifty model 

domains of varying lengths were constructed along the SWCNT axis (e.g., Fig. 3a & 3d). 
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These variable lengths represent different inter-nanosphere spacing and by extension, 

different diffusion regimes. To generate model output for comparison to experimental 

data, the steady-state current response of all fifty domains was simulated at three 

experimentally measured glucose concentrations (10 M, 1mM, 15mM) (Fig. 3b). These 

single-nanoelectrode currents were computed for each glucose concentration according to 

Equation 6.  The result  that current increases with radial diffusion  agrees with 

previous work [57,207-209], suggesting that radial analyte diffusion improves biosensor 

sensitivity.   
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Figure 3. (a) of space along the low-
density Pt nanosphere-augmented SWCNT electrodes on the biosensor surface. The 
volume of the domain is proportional to the nanosphere footprint (i.e., the sum of the 
nanosphere diameter and the average distance to the adjacent nanospheres).  (b) The 
generated current for each nanosphere reaches a plateau during increasing inter-
nanosphere distance while current increases for increasing concentrations of glucose. (c) 
The experimentally observed distribution of the low-density Pt nanosphere spacing along 
each SWCNT strand is displayed as the histogram.  An exponential distribution (red line) 

 is fitted to the histogram. Inset 
FESEM micrograph displays spacing between nanospheres on a single SWCNT with 
yellow arrow pointing to an undecorated portion of the SWCNT.   (d) Steady-state 
glucose concentration gradients (generated in COMSOL Multiphysics®) around a single 
nanosphere and perpendicular to the SWCNT strand with initial bulk glucose 

.  Diffusion regimes change from planar to radial as distance 
between nanospheres on a SWCNT increases (see line of sight from cartoon eyeball).   
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3.2.4. Simulated Total Biosensor Current Output.  The total simulated biosensor 

current was found by integrating the individual single-nanoelectrode currents (Eq. 6).  

The contribution of each domain to the total biosensor current is proportional to the 

 

      (7) 

where Itotal is the total biosensor current, n is equal to fifty (the number of domains), the 

weights (wi) are the proportional contribution of electrodes in each microenvironment to 

the total biosensor current (i.e., the fraction of nanospheres experiencing the 

environment), and Ii are currents from the model domains.  The weight wi is the area 

under the exponential curve for the ith domain normalized to the area under the entire 

curve and is proportional to the distribution of distances between nanospheres on each 

SWCNT. The experimental inter-Pt nanosphere distance data were best fit by an 

exponential function with a nearly equivalent mean ( 366 nm) and standard deviation 

and decay constant ( ) (Fig. 3c). The distribution of defect sites along a 

finite length of SWCNT (thought to be nucleation sites for nanoparticle formation [60]) 

are Poisson distributed where the length of intervals between Poisson-distributed 

nanospheres follows an exponential distribution.[210]  

 

Total biosensor current is calculated by multiplying the right-hand side of the 

proportionality in Equation 7 to the total number of Pt nanosphere electrodes on the 

biosensor surface. The total number of Pt nanospheres is acquired by dividing the total 

SWCNT length, approximated through image-analysis techniques (see Supporting 
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Information), by the average nanosphere footprint (i.e., the length of nanotube occupied 

by each electrode, Fig. 2) 

 

                                    (8) 

 

where L is the total length of SWCNTs and  is the length of the average nanosphere 

footprint.   

 

With this approximation of the total number of Pt nanospheres, the proportionality in 

Equation 8, can be modified as follows: 

 

      (9) 

 

Though Equation 9 approximates the total biosensor current, we noted that the 

relationship between inter-nanosphere spacing and current increased in a smooth and 

monotonic manner making current amenable to continuous interpolation. Similarly, the 

weights (wi) are evaluations of the exponential distribution of inter-nanosphere spacing. 

Thus, to minimize numerical error, Equation 9 can be cast as an integral, 

 

    (10) 
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where Exp xspace is the inter-nanosphere 

spacing,  is the average inter-nanosphere spacing, and Iinterp

interpolant of simulated current performed in Matlab and shown in Fig. 3b. Using 

Equation 10 in conjunction with simulated current, we approximated the steady-state 

current of the biosensor in response to each glucose concentration. 

 

3.3. Model-based Biosensor Design.  To evaluate the relative contributions of increased 

electroactive surface area and increased diffusive flux of analyte, the model was 

implemented over a range of glucose concentrations (100 m  86 mM) to obtain 

unweighted values of domain currents.  Storing these unweighted current values, the 

shape parameter ( space
-1) of the inter-nanosphere distance exponential distribution was 

varied. The integral in Equation 6 was then updated with an exponential parameter and 

the total nanospheres (Ntotal) for each distribution and subsequently the total biosensor 

output was evaluated according to Equations 7-9. Finally, the simulated biosensor 

current outputs for average nanosphere spacing ranging from 0 to 1 m were plotted (Fig. 

4).

spacex
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Figure 4.  Simulated amperometric glucose response of the entire biosensor as a function 
of average inter-nanosphere spacing measured sphere edge to adjacent sphere edge. Total 
biosensor current monotonically increases as inter-nanosphere spacing decreases from 1 
to 0 m. 
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From these simulated results we observed that the total biosensor current is maximized 

when the Pt nanospheres are packed end-to-end along the SWCNT axis. These in 

silico findings suggest that the diminished electroactive surface area in the low-density Pt 

nanosphere/SWCNT biosensors reduces the overall biosensor current relative to the high-

density Pt nanosphere/SWCNT biosensors.  The signal reduction in the low-density Pt 

nanosphere/SWCNT biosensors occurs despite enhanced mass transport by radial 

diffusion between individual nanospheres along the axis of the SWCNTs (Fig. 3b,d). 

However the high-density SWCNT biosensors experience an enhanced signal due to both 

convergent diffusion and increased surface area.  The SWCNT networks of these high-

density Pt nanosphere/SWCNT electrodes are nearly completely coated with Pt acting 

as nanoband electrode arrays where nanoscale widths are still maintained between 

SWCNTs. The inter-

nanoelectrode array spacing parameters (e.g., 1 m spacing between nanoelectrodes or six 

[211] or ten [212] times the radius/width of the nanoparticle/nanoband) ensuring the 

enhanced mass transport of glucose by convergent diffusion between each SWCNT 

strand. Therefore the high-density Pt nanosphere/SWCNT nanoband biosensors still 

experience enhanced mass transport from directions perpendicular to the SWCNT despite 

the apparent lack of enhanced mass between adjacent nanospheres along the axis of the 

SWCNT. Thus in the simulation, the current signal is dominated by incremental changes 

in surface area while the signal penalty incurred by inter-particle interactions is 

minimized producing a biosensor current that increases monotonically with decreasing 

inter-nanosphere spacing (Fig. 4). 
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From these simulated results we observed that the total biosensor current is maximized 

when the Pt nanospheres are packed at maximal density. These in silico findings suggest 

that the lack of electroactive surface area in a low-density Pt nanosphere/SWCNT sensor, 

as compared to that of a high-density Pt nanosphere/SWCNT sensor, is sufficiently large 

to reduce the overall biosensor current despite enhanced mass transport by radial 

diffusion along the axial direction of the SWCNTs. Furthermore, the SWCNT networks 

of the high-density Pt nanosphere/SWCNT electrodes are nearly completely coated with 

Pt thus acting as nanoband electrode arrays where nanoscale widths are still maintained. 

The inter- falls above several popular 

nanoelectrode array spacing parameters (e.g., 1 m spacing between nanoelectrodes or six 

[211] or ten [212] times the radius/width of the nanoparticle/nanoband) ensuring the 

enhanced mass transport of glucose by convergent diffusion between each SWCNT 

strand. 

 

3.4. Experimental Glucose Sensing with Low-density Pt Nanosphere Decorated 

SWCNTs.  Glucose sensing was performed by using a 3-electrode arrangement (BASi 

Epsilon Cell Stand) in a test vial containing 20 mL of phosphate buffer solution (PBS, pH 

= 7.4) while a potential of 600 mV was placed between the working and auxiliary 

electrodes.  Details of the biosensor fabrication and testing protocols are provided in the 

Experimental Section.  Generated current from the electrochemical oxidation of H2O2 

(i.e., the electroactive product of GOx/glucose, see Eq. 1 & 2) was monitored while 

successive glucose aliquots were added to the test vial to increase overall glucose 

concentration.  Amperometric calibration and experimental detection limit graphs for the 
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low-density Pt nanosphere/SWCNT biosensor are illustrated in Figure 5. Two aliquots of 

PBS (0.1 M, pH 7.4) of equal volume to glucose aliquots were added to the test vial after 

glucose sensing in the detection limit plots demonstrating current response originates 

from the glucose and not the saline buffer media itself (Fig. 5b, insets). The low-density 

Pt nanosphere/SWCNT biosensor experienced a linear glucose sensing range from 300 

M to 15mM and a theoretical glucose detection limit of 74 M (S/N = 3). The glucose 

sensitivity of the entire biosensor was calculated to be 0.32 A mM-1 cm2. 

 

3.5. Experimental Glucose Sensing with High-density Pt Nanosphere Decorated 

SWCNTs.  Finally, we verified the simulated current response of a high density Pt 

nanosphere/SWCNT biosensor (i.e., where the Pt nanospheres are electrodeposited end-

to-end along each SWCNT) through experimental testing (Fig 5b).  The high-density Pt 

coated SWCNT nanoband arrays monitored glucose with a sensitivity of 0.69 A mM-1 

cm2, linear sensing range of 100 M to 20 mM, and a detection limit of 5.8 M (S/N = 

3).  This concomitance of a low detection limit and wide linear range of the Pt/SWCNT 

nanoband arrays is an improvement upon similar CNT/Pt nanoparticle hybrid biosensors 

[213-217] permitting the sensing of glucose in physiological fluids of saliva, tears, and 

blood (Fig. 5c).
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Figure 5. (a)  FESEM micrograph illustrating a Pt nanosphere-augmented SWCNT 
electrode with high density Pt nanosphere packing.  FESEM micrograph insets portray a 
magnified view of a single Pt nanosphere decorated SWCNT with the yellow arrow 
pointing to an undecorated portion of the SWCNT. (b) Experimental amperometric 
glucose calibration plots for the high-density (blue) and low-density (red) Pt 
nanosphere/SWCNT biosensors. (blue-middle) Current response for successive glucose 
concentration increases of 50 M, 100-500 M by 100 M, 1-5 mM by 1 mM and finally 
7 consecutive concentration increases of 10mM while insets show current vs. 
concentration profiles. (red-middle) Current response for successive glucose 
concentration increases of 100-500 M by 100 M, 1-5 mM by 1 mM and finally 6 
consecutive concentration increases of 10mM while insets show current vs. concentration 
profiles. (Insets) Current response for 10 successive 20 L glutamate injections resulting 
in incremental concentration increases of 100 M (blue) and 300 M (red) followed by 
two 20 L injections of PBS (0.1M, pH 7.4). (c) Glucose sensing ranges of the low-
density (red) and high-density (blue) Pt nanosphere/SWCNT biosensors as compared to 
glucose levels in three physiological fluids (blood,[51] tears,[48] and saliva[52]).
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3.6. Model Verification.  In order to test our hypothesis regarding biosensor current 

output and Pt nanosphere packing density we first optimized our computational model to 

fit the low-density Pt nanosphere/SWCNT nanoelectrode arrays (Table S1 in Supporting 

Information).  The subsequent optimized model was used to predict the generated 

current output of a high-density Pt nanosphere/SWCNT nanoband array.  To compare the 

model output against the low-density biosensor, we used image-analysis software in 

MATLAB to identify the density and distribution of distances of individual Pt 

nanospheres (Fig. S1 in Supporting Information).  Using the best-fit parameter values 

obtained from the low-density model, the high-density Pt nanosphere/SWCNT sensor 

was simulated using the single domain schema detailed previously recapturing the 

behavior of the biosensor current output (Fig. 6).    
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Figure 6.  (a) Experimental and simulated amperometric glucose calibration plots for the 
high- and low density Pt nanosphere/SWCNT biosensors.  Low-density biosensor data 
(red squares) was used to optimize model output (solid black line). The optimized 
model parameters were capable of recapitulating high-density biosensor data (blue 
triangles) shown by high density model output (dashed black line). 
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4.  Conclusions 

Networks of Pt nanospheres electrically interconnected by individual SWCNTs were 

created from a PAA template for electrochemical sensing applications.  By altering the 

fabrication protocol according to computational modeling results, we increased the 

packing density of the Pt nanospheres along each SWCNT strand to improve the 

sensitivity, detection limit, and linear sensing range of the biosensor.  The model was 

successfully used as a computational tool to improve biosensor performance, while 

reducing the excessive expenditures that are oftentimes required in ad hoc experimental 

design and fabrication.   

 

This work builds upon the foundational research presented within the last decade that 

describes the mass transport properties of nanoelectrodes of various geometries and 

spatial arrangements [59,173,175,176,211]. We add to this foundational work by 

incorporating enzyme kinetics and charge transport in addition to mass transport to create 

a model capable of describing transport and oxidation on a random array of Pt 

nanospheres.  Computational efficiency is achieved by simulating a limited number of 

nanospheres and integrating over the spatial distributions found on the biosensor array. 

This approach provides insight into the behavior of the system: where simulations 

indicate that a balance between electroactive surface area and inter-electrode spacing 

needs to be reached for maximal biosensor performance.  The resulting model-inspired 

biosensor, with a tightly packed nanosphere arrangement, converts the biosensor from a 

NEA to a nanoband array where generated electrochemical current signals are higher 

due to the increased electroactive surface area of the tightly packed Pt nanospheres and 
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fast radial transport to each nanoband due to the nanoscale widths.  Future modeling 

work will focus on a generalization of our spatial integration scheme (Eq. 10) to include 

inter-SWCNT distance distributions in addition to inter-electrode distances.  Such 

modifications to the model will be also useful in the design and development of patterned 

PAA through e-beam lithography.[184] 

 

The hybrid nature of the SWCNT/Pt nanosphere arrays creates a unique platform that is 

advantageous for electrochemical biosensing due to the geometry and morphology of the 

SWCNTs and the Pt nanoparticle constituents.  The embedded iron layer within the PAA 

matrix creates a template for the growth of low-density SWCNTs that extend horizontally 

on the surface of the PAA as opposed to high density growth of multi-walled carbon 

nanotubes.[218]  These low-density horizontal lying SWCNTs rise above the surface of 

the PAA, due to their tethered nature, and accordingly allow for the concentrically 

nanostructures presented in this work.  Near spherical Pt nanostructures enhance charge 

transport during electrochemical sensing because they  contain numerous facets with 

more interfacial surface atoms to catalyze reactions then those of other shapes (e.g., 

cubical shapes).[219]   Furthermore, the inter- ) 

within a nonconducting template allows for the creation of nanoelectrode and nanoband 

arrays electrode geometries that experience enhanced signal-to-noise ratios that are well 

suited for electrochemical biosensing. Thus the hybrid SWCNT/Pt nanosphere structures 

create a highly conductive network that is conducive towards 3D nanoparticle formation 
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and nanoelectrode/nanoband array fabrication characteristics not found in other novel 

carbon nanomaterials such as edge plane pyrolytic graphite or planar graphene.[220,221] 

 

In conclusion, this work demonstrates how nanoparticle placement on electrode surfaces 

can significantly alter the sensing capabilities of enzymatic biosensors.  The model-

inspired Pt nanosphere/SWCNT nanoband biosensors could potentially be used to 

monitor blood glucose levels where the physiological range for blood glucose is typically 

between 3.6 mM and 7.5 mM (65 mg/dL  135 mg/dL) for healthy patients and between 

1.1 mM and 16.7 mM (20 mg/dL  300 mg/dL) for diabetic patients. Additionally, the 

high-density Pt nanosphere/SWCNT biosensors are capable of submicromolar glucose 

sensing and thus could be incorporated into devices that monitor glucose concentrations 

within saliva and tears.[222-224]  These Pt nanosphere/SWCNT hybrid biosensors could 

also be potentially utilized in a self-referencing modality to monitor glucose transport 

processes -cells, where highly sensitive glucose sensing is needed to 

improve the spatial and temporal resolution of the biosensor.[225,226] Furthermore, this 

completely bottom-up approach towards sensor fabrication and biofunctionalization 

creates a biosensor that can be potentially scaled and incorporated into devices for 

numerous commercial applications.  Thus, this fusion of bottom-up nanoelectrode array 

design combined with computational analysis serves as a foundation for controlling 

nanotechnology-based electrochemical biosensor performance and functions as a design 

guideline for enzyme-based amperometric biosensors. 
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Abstract 

The axial bodyplan of Drosophila melanogaster is determined during a process called 

morphogenesis. Shortly after fertilization, maternal bicoid mRNA is translated into 

Bicoid (Bcd). This protein establishes a spatially graded morphogen distribution along 

the anterior-posterior (AP) axis of the embryo. Bcd initiates AP axis determination by 

triggering expression of gap genes that subsequently regulate each other's expression to 

form a precisely controlled spatial distribution of gene products. Reaction-diffusion 

models of gap gene expression on a 1D domain have previously been used to infer 
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complex genetic regulatory network (GRN) interactions by optimizing model parameters 

with respect to 1D gap gene expression data. Here we construct a finite element reaction-

diffusion model with a realistic 3D geometry fit to full 3D gap gene expression data. 

Though gap gene products exhibit dorsal-ventral asymmetries, we discover that 

previously inferred gap GRNs yield qualitatively correct AP distributions on the 3D 

domain only when DV-symmetric initial conditions are employed. Model patterning 

loses qualitative agreement with experimental data when we incorporate a realistic DV-

asymmetric distribution of Bcd. Further, we find that geometry alone is insufficient to 

account for DV-asymmetries in the final gap gene distribution. Additional GRN 

optimization confirms that the 3D model remains sensitive to GRN parameter 

perturbations. Finally, we find that incorporation of 3D data in simulation and 

optimization does not constrain the search space or improve optimization results. 

 

Introduction 

Embryonic development in Drosophila melanogaster is initiated with the formation of 

spatial morphogen distributions in the early embryo. The dynamic spatial patterns of 

diffusive morphogens encode information which specifies organism-scale 

development [1], [2]. Nonuniform initial spatial distributions of maternally deposited 

morphogen mRNAs, coupled with diffusion, decay, and complex genetic regulatory 

interactions, give rise to finer patterns that subdivide the dorsal-ventral (DV) [3] [5] and 

anterior-posterior (AP) axes [2], [6] into distinct developmental regions. 

The gap gene system is one of the most widely studied morphogen systems 

in Drosophila and is involved in delineation of boundaries of gene expression within the 
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AP body plan [2]. AP patterning events begin approximately one hour post-fertilization. 

This patterning foreshadows the subsequent segmentation of the embryo [1], [2], [6] [9]. 

During early development, the embryo is a polynucleated syncytium; most nuclei are 

arrayed in a thin layer near the surface of the embryo. Due in part to a cytoplasmic 

viscosity gradient common to insect embryos [10], morphogens (here, gap gene products) 

are thought to diffuse freely through periplasm near the embryonic surface and less 

substantially through the interior. Here, they regulate transcription within the periplasmic 

nuclei [2]. The process is initiated by the gene products of maternally-deposited, 

spatially-heterogeneous bicoid (Bcd), caudal (Cad), and nanos mRNAs [2], [11],[12]. 

Maternally deposited RNA species regulate expression of the gap genes: Hunchback (Hb, 

with a maternal mRNA contribution), Giant (Gt), Tailless (Tll), Krüppel (Kr), and Knirps 

(Kni) (see Fig. 1a) [11], [13], [14]. The gap genes, in turn, regulate the pair-rule genes 

which in turn control segment-polarity genes and embryonic 

segmentation [1], [2], [6], [15].
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Figure 1. Gap gene genetic regulatory network. 

The model representation of the gap gene network. The network topology in (A) 
represents negative (black box, flat line) and positive (white box, arrowhead line) 
regulatory effects on each target gene (blue). Dashed lines represent near-zero regulatory 
inputs that may be negligible. This qualitative topology is quantified in (B) as a set of 
genetic regulatory network (GRN) weight parameters wb,a, the influence of gene b on 
gene a. From left to right, each set of seven inputs represent Cad, Gt, Hb, Kni, Kr, Tll, 
and Bcd. Each cluster of seven interactions represents a target gene Cad, Gt, Hb, Kni, Kr, 
and Tll.
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Most inferences regarding the gap genetic regulatory network (GRN) have been drawn 

from mutant and gene dosage studies in which the effects on morphology, gap, pair-rule, 

or segment polarity genes are observed [12], [16] [36]. While these experiments are 

informative, it is difficult to unambiguously derive genetic regulatory interactions from 

such data; phenotypic changes may arise via direct action of the perturbed gene or via 

downstream targets of that gene. In contrast, Reinitz, Jaeger, and others applied a reverse 

engineering approach using dynamic wild-type data. Computational studies have 

modeled gap gene patterning using 1D partial differential equation (PDE) systems or 

ordinary differential equation systems that include an implicit approximation to the 

PDE [13], [14], [37] [40] and logical rule sets [41]. These models represent the lateral 

trunk region of the Drosophila embryo along the AP axis, typically omitting the anterior 

and posterior end regions (with the exception of [40]). GRN topology is represented by a 

regulatory weight matrix and gene expression is modeled by a transfer function that sums 

the regulatory impact of each regulatory protein on expression of the others (see Fig. 

1b) [13]. Model-driven inferences about GRN topology (i.e., inferring whether and to 

what degree one morphogen regulates expression of other morphogens) have been 

obtained by inverse modeling: optimizing the regulatory weight matrix against 

 [14], [42]

[45]. Findings have been mixed. Biological systems are thought to be robust (and thus 

insensitive) to perturbations. Some GRN parameters are highly sensitive while 

considerable uncertainty is associated with others [44],[45]. 
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Previous 1D PDE models have been used effectively to infer network topology and 

investigate patterning regulation [13], [14], [42], [45], [46], but there are some questions 

that are better investigated using a full 3D spatial patterning model. Many important 3D 

effects, including variable diffusive path lengths around the embryo surface and 

optimization against 3D data, cannot be observed in a 1D model domain. DV 

asymmetries in gap gene distribution and possible interactions between the gap gene 

system and DV patterning systems are also neglected. Further, these 3D data may serve 

to constrain GRN optimization and inference. 

 

Quantitative spatiotemporal atlases of gene expression data in the Drosophila embryo 

have been published and provide the starting point for quantitative analysis. [47] [49]. 

The atlas includes measurement of gap gene expression collected from hundreds of 

individual embryos and registered onto a standardized 3D mesh of nuclei coordinates 

using pair-rule gene expression patterns as fiduciary points (mesh coordinates available 

in File S1). This composite VirtualEmbryo (VE) is a logical starting point for the 

development of 3D embryonic GRN models. It provides a ready-made embryonic 

geometry for full spatial PDE representations of the gap gene system. It also contains 

quantitative expression data against which we can optimize model parameters (and thus 

infer GRNs). 
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Table 1: Model Variants and Corresponding Optimal Parameter Sets. 
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Using the VE data, we evaluate the impact of 1D model assumptions, conversion from 

1D to 3D geometries, and incorporation of fully 3D protein distribution data in model 

simulation. Herein we reconstruct the 1D gap gene model of Jaeger et al. [13] using the 

finite element method (FEM) and extend it to the 3D VE geometry (Fig. S1). The 1D 

model of Jaeger et al. [13],  (see Table 1 for model definitions), is refit to lateral 

expression data from the VE. We then extend the 1D model PDEs to the full 3D 

embryonic geometry described by Fowlkes et al.and compare GRNs inferred from 1D 

and 3D models. Though 1D models focus on the lateral AP axis in 1D simulations, gap 

genes are not uniformly distributed along the DV axis. Coupled with the 3D geometry, 

DV asymmetries in initial conditions may encode positional information partially 

responsible for the observed AP patterning. As a preliminary exploration of asymmetric 

DV effects in an embryonic geometry, we evaluate the model using DV-asymmetric Bcd 

concentration data from thirteen embryos compiled in the VE. 

 

In addition to GRN sensitivities highlighted by previous 1D 

analyses [14], [38], [39], [44], [50], we find that the 3D model exhibits fragility with 

respect to the shape of maternal gradients: GRNs which were inferred by optimization of 

1D models showed similar gap gene patterning when applied to 3D models with DV-

symmetric Bcd. However, these GRNs gave rise to qualitatively different patterns in DV-

asymmetric models. These realistic Bcd gradient models also captured some of the DV-

asymmetries in gap gene patterning. The 3D models were also sensitive to small 

perturbations in GRNs; regulatory networks which were qualitatively similar (i.e., all 

network interactions maintained the same excitatory or inhibitory relationships and 
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differed only by small changes in magnitude) led to qualitatively different gap gene 

patterns. Refitting of the DV-asymmetric 3D model to VE data produced a GRN which 

was similar to 1D GRNs but which produced an improved fit. 

 

Another question addressed in this study is whether inclusion of 3D data improves 

optimization by the inclusion of additional constraints without increasing the degrees of 

freedom in the model. Unexpectedly, we found that the incorporation of additional 3D 

information in the form of a realistic DV-asymmetric Bcd worsened the error between 

optimized 3D models and data. This suggests the involvement of additional regulators in 

the formation of DV-asymmetries and indicates a direction for future modeling studies. 

 

Results 

One-Dimensional Model Analysis 

Before analyzing the effects of embryonic geometry and DV-asymmetric positional 

information, we reimplemented the 1D model of Jaeger et al. using the finite element 

method. In this work we denote model variants with M; superscripts represent model 

domains and subscripts signify initial conditions if multiple initial conditions are used. 

The 1D model of Jaeger et al. is called  (using a 1D domain representing a partial 

AP length of 35% 92%; full model nomenclature available in Table 1). We 

verified  against Jaeger et al. 's simulated output. Whereas the original model 

limited gene expression to a finite number of discrete nuclear coordinates along the 35

92% region of the embryonic AP axis, the FEM approximates a continuous solution to 

these equations along this domain. Discrete versus continuous model comparisons by 
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Gursky et al. suggest that embryonic patterning is not strongly coupled to nuclear 

position and that continuous models are comparable to discrete models of gene 

expression [51]. Our results agree with this finding. FEM simulations produce model 

output comparable to Jaeger et al. 's discrete 1D model (Fig. 2a, dashed line, cf. Figure 

S20 in [13]). 
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Figure 2. One-dimensional model results. 

Model output was simulated over a 0 100% AP length domain using the optimal GRN 
reported by Jaeger et al. Solid vertical lines represent the original model boundaries, not 
used in this simulation. (A)   (solid lines) shows qualitative agreement with the Jaeger 
model   (dashed lines) in the 35 92% AP range, but shows discrepancies at either end of 
the domain due to the movement of boundaries; all species displayed at t = 70 min. (B) 
The best-fit GRN from Jaeger et al. was locally optimized to improve the agreement of 
the 0 100% AP length, model   (solid lines), and the original Jaeger et al. original model 
(  dashed lines); all species displayed at t = 70 min. (C) VE protein data for Gt, Hb, Kni, 
Kr at t = 70 min; VE mRNA data for Tll at t = 70 min; protein data from Jaeger et al. for 
Cad at t = 56 min. (D) Model output ( ) was also optimized against VE data (RMSE = 
13.992); Gt, Hb, Kni, Kr, Tll at t = 70 min; Cad at t = 56 min. Despite modest 
improvements in model agreement in the 35% and 92% region (C D), the resulting 
changes in parameter values were small. (E) Optimized parameter magnitudes vary but 
signs remained the same in most cases (blue -  ; green -  ; red -  ).  
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Though  recapitulated previous results when simulated in the region from 35

92% on the AP axis, we sought to determine whether moving the boundaries to the 

embryo ends perturbed gap gene patterning in the trunk region. It is unclear a priori how 

modification of boundary conditions might impact the model output, because the 

selection of boundaries at 35% and 92% in earlier work appears to coincide with either 

maxima or minima of gap gene distributions; at these positions, spatial derivatives are 

near zero and diffusive flux may be negligible. Using no-flux boundaries at 0% and 

100% EL, coupled with the parameters and initial conditions specified in the original 

model [13], we evaluated  and  using the GRN parameters  reported by 

Jaeger et al. [13]. Herein, parameter sets are denoted Pand super- and subscripts have 

model-specific meanings. The simulated patterns from the original 35 92% AP and the 

0 100% AP domains are shown in Figure 2a's dashed and solid lines, respectively. 

 

Pronounced shifts in Tll and Kr distributions, coupled with the qualitative change in the 

anterior Gt distribution, demonstrate the role boundary conditions play in the in the 

distribution of gap gen products for a given set of parameters. Though the output 

of  qualitatively resembles the expression data collected previously when 

evaluated at  [13], these findings suggest that 's agreement with data arises 

from a combination of the inferred GRN and the domain's boundary conditions. Thus, the 

internal zero-flux boundary conditions used in previous models may bias GRN inference. 

To evaluate the impact of boundary placement on GRN inference, we performed a 

numerical gradient descent search of the parameter space to minimize the root mean 

squared error (RMSE) between  and  (represented by the dashed line 
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in Figure 2a). The search was initialized with the previously reported optimal . The 

result of this search, optimized GRN  (superscript denotes the model being 

optimized and subscript denotes data with which the model is optimized), is illustrated 

inFigure 2b. Here, the output of  represents extant models' with internal no-flux 

boundaries. 

 

Though domain boundary placement affects the banding pattern, Figure 2b suggests that 

these constraints have a limited effect on GRN inference. Optimizing the GRN 

parameters of  to fit the original model output recovered a quantitatively similar 

patterning within the 35 92% AP length of the full 1D domain. Additionally, the 

optimized GRN  was qualitatively similar to  (e.g., though optimized 

parameters underwent small changes in magnitude, all parameters maintained the same 

sign, Fig. 2e). 

 

To facilitate a direct comparison between 1D and 3D models presented herein, we first 

evaluated the goodness-of-fit between the 35 92% AP ( ) and full AP domain 

( ) 1D models using VE data. When possible, we use protein expression data from 

the VE: Gt, Hb, Kni, and Kr protein data is available across six equidistant time points 

spanning 50 minutes. Tll protein data is unavailable and we use Tll mRNA data as a 

surrogate for the protein distributions. Cad protein distributions are also unavailable in 

the VE; we substitute 1D Cad data from Jaeger et al. [13] that spans 45 minutes with 

seven time points. Because the 1D model domains represent the lateral region of the full 

embryo, we extracted expression data from this region of the VE (Fig. 2c). We performed 
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a constrained search of GRN parameters initialized at  to yield an optimized 

GRN  (subscript VE denotes VE training data). The resulting model output and a 

comparison of model parameters are shown in Figures 2d e. 

 

Though  was capable of recovering the output of  (with parameter 

set ) and VE data ( ) within the 35 92% AP axis, poor fit to VE data 

persisted outside of this region. The 0 35% and 92 100% AP regions exhibit qualitative 

disagreement with VE data in these regions consistent with the biological requirement for 

additional head and tail patterning genes (Fig. 2c d). 

 

Three-Dimensional Model Analysis 

Beginning with the GRN optimized on the full 1D domain, we extended the model to a 

3D domain using the geometry in the VE. This was performed by implementing the 

model to evaluate the effects of both model geometry and DV-asymmetric initial 

conditions on model output. 

 

To assess the effects of model geometry on patterning independent of initial conditions, 

the model was first simulated using DV-symmetric initial conditions ( ): Bcd, Hb, 

and Cad distributions at time zero were obtained from the original 1D model and 

projected around the surface of the embryo (Fig. 3a d). Evaluated at the previously 

inferred optimal 1D GRN ( ), model  yielded patterning qualitatively 
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similar to the full length 1D model output (Fig. 4a g, column 2). To confirm our 

derivation of the diffusion constants (see Methods) and rule out unintentional adjustment 

of the diffusive length constant ( ), we performed a continuation of diffusion 

constants while holding decay parameters ( a) values constant (Figs. S2, S3). While band 

overlap does vary with diffusion constants, they are quantitatively similar. Interestingly, 

symmetric Bcd models appear robust against increased diffusion (Fig. S2) while 

increased diffusion disrupted patterning in asymmetric Bcd models (Fig. S3). The pattern 

formation timecourse for Bcd-symmetric patterning is animated in Movies 

S1, S2, S3, S4, S5, S6. 
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Figure 3. 1D and 3D initial conditions. 

Initial conditions in various models. (A) 1D model initial conditions, reported by Jaeger 
et al., and used in models   and  . (B) 1D initial conditions were mapped onto the 3D 
embryonic geometry (S1). (C), 1D initial Cad protein distribution, (D) 1D initial Hb 
protein distribution. Subsequent models incorporated (E) DV-asymmetric interpolated 
[Bcd] distribution (E) or (F) smoothed DV-asymmetric interpolated [Bcd] distribution ( ) 
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Figure 4. Three-dimensional model results. 

Simulation results in the 3D model. (A H) Lateral view of VE geometry is shown in 
rowsA G (Gt, Hb, Kni, Kr, Tll at t = 70 min, Cad at t = 56 min); row H displays RMSE 
difference between model and VE data summed with all time points. Column 1 shows 
scaled VE data. Column 2 displays output from   evaluated with GRN. Column 3 
contains output from   incorporating DV-asymmetric Bcd data and GRN; Column 4 
illustrates the effect of the smoothed Bcd interpolant in   while considering the same 
GRN  . Column 5 displays output from   with reoptimized parameters. White boxes 
indicate the lateral areas where Jaeger et al. optimized their 1D model. Animations of 
pattern development are available for column 2 (Movies S1, S2, S3, S4, S5, S6) and 
column 5 (Movies S7, S8, S9, S10, S11, S12) in the supplementary material. 



84 
 

 

Though there are some DV-asymmetries present in the output (e.g., slight curvature of 

the anterior Gt stripe), 1D versus 3D domain geometry alone has only a modest impact on 

DV patterning of gap genes. This suggests that the pronounced DV-asymmetries present 

in the final distributions of the proteins at the onset of nuclear division 14 (Fig. 4, column 

1) stem from other sources. We consider the effect of spatial information encoded in 

initial DV asymmetries of protein distributions. The coupling of gap gene regulation with 

DV-patterning systems [5], [52], [53] is another possibility. 

 

Effect of Dorsal-Ventral Asymmetric Bcd 

To evaluate the impact of DV-asymmetric inputs on the model, we modified the steady-

state Bcd distribution shown in Figure 3b to incorporate a realistic DV gradient (Fig. 3e). 

Unlike other morphogens, the Bcd distribution is static over the entire time course of 

model simulation. This allowed us to create a single interpolant of VE Bcd data and use it 

as a model input for all 70 minutes of the simulation. The pattern formation timecourse 

for Bcd-asymmetric patterning is animated in Movies S7, S8, S9, S10, S11, S12. 

 

Evaluated at the optimal 1D GRN , model  produces patterning that is 

radically different from DV-symmetric 1D ( ) and 3D ( ) models (Figs. 4a

g, column 3). The most striking example of this is the Kr model output; whereas Kr forms 

a full band in vivo,  lacks full lateral expression of Kr and has an anomalous 

region of expression at the anterior end of the embryo (Fig. 4f, column 3). Similarly, the 

simulated Hb concentrations remain above observed levels (Fig. 4d, column 3). The 
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posterior Hb band also shifts to the posterior end of the embryo. Gt exhibits qualitative 

disagreement with the VE data; whereas anterior Gt expression is observed only in a 

limited dorsal region of the embryo (Fig. 4c, column 1), the anterior of the  is 

saturated with Gt (Fig. 4c, column 3). Further, though the experimentally observed 

posterior Gt band (Fig. 4c, column 1) is predicted by simulation, it exhibits unusual 

differences in width along the DV axis. As in previous versions of the model, the best 

agreement between model and data was found in the lateral 35 92% AP region (Fig. 4b

g, column 3 white boxes). 

 

The cell-to-cell variability in patterning found for many simulated proteins (e.g., Gt, Cad, 

and Kni) in  led us to consider the effect of noise in the VE Bcd distribution. 

Diffusion of Bcd may serve to smooth this variation in vivo; our use of a single static Bcd 

interpolant in  leads to an artificial persistence of the noise found in VE data (Fig. 

3e). To test for and remove this artificial condition, we created a regularized version of 

the Bcd interpolant (Fig. 3f). This was constructed by building a simple source diffusion 

decay (SDD) reaction-diffusion model of Bcd alone [18]. This SDD model was fit to VE 

data and the steady-state solution was used as the smoothed Bcd interpolant. The model 

incorporating regularized Bcd, , did not show significant improvement 

over  when evaluated with  (Fig. 4 a g, column 4). However, it did 

eliminate the cell-to-cell variability present in . The model's artificial sensitivity 

to Bcd noise was especially evident in Gt (Fig. 4c, columns 3 4). Two anterior and one 

posterior Gt bands in  changed width and AP position after smoothing of Bcd. 
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This result suggests that while diffusion may serve as a buffer against transient stochastic 

variations in protein expression and local concentration (in agreement with stochastic 

simulation [54]), sustained cell-to-cell variability has the potential to disrupt patterning. 

 

Having observed that a GRN inferred on the 1D domain (and lacking DV asymmetries) 

produces a qualitatively incorrect fit compared to 3D data, we attempted to optimize the 

GRN with Matlab's constrained search function fmincon() initialized 

at  (previously used to estimate  and ). This approach failed to 

reduce model error. Fomekong-Nanfacket al. demonstrated that 1D gap gene systems are 

amenable to optimization by evolutionary algorithms [45]. We therefore employed a 

genetic algorithm (GA) to more broadly survey the parameter space. Do to computational 

cost, we used a small population size of 20 genomes to search the GRN parameter space 

(42 parameters), the GA identified an optimal GRN for . The resulting 

GRN, , led to a reduction in model error and a modest qualitative improvement 

with respect to 3D data (Fig. 4, column 5). The lateral Kr band missing from the 1D-

inferred GRN  (Fig. 4f, columns 3 4) is restored (Fig. 4f, column 5), though it is 

not as wide as the experimentally observed band. Tll no longer shows relative over-

expression at the posterior end of the embryo (Fig. 4g, column 5). Hb continues to exhibit 

relative over-expression at the anterior end of the embryo, though its posterior band is 

shifted closer to its correct position (Fig. 4d, column 5). Similarly, the anterior 

distribution of Gt extends beyond the dorsal region observed in the VE (Fig. 4c, column 

1). However, its posterior band is now located correctly in Figure 4c, column 5 (though it 
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is wider than the observed protein band). Beyond differences in concentration of 

individual proteins, DV-asymmetric Bcd causes a notable qualitative difference in the AP 

position and emergence of protein bands. Compared to the  (Fig. 4, column 2), 

the DV-asymmetric GRNs (Fig. 4, columns 4 5) exhibit DV-asymmetries in their output. 

For example, the dorsal terminus of the anterior Gt band is posterior to its ventral 

terminus; it is splayed toward the anterior. This behavior agrees with observed data in the 

anterior half of the embryo, but the expected DV curvature is either absent (posterior 

Hb Fig. 4d, column 5) or inverted in the posterior half of the embryo. For example, Kni, 

whose dorsal terminus should exhibit posterior-splaying (Fig. 4e, column 5), is inverted. 

This DV curvature corresponds in direction to the DV asymmetry of Bcd. The absence of 

reversed splaying in the output in the posterior portion of the model (though present in 

the data) suggests that the model may be lacking additional posterior determinant(s) 

affecting the gap gene system. 

 

In the 3D regime,  demonstrated considerable sensitivity to small changes in 

GRN parameter values. The model was simulated after adding normally distributed noise 

scaled by each parameter value, pi, across a range of magnitudes (sample model output 

in Fig. 5). The model gives output qualitatively similar to the optimal 

GRN  only when parameter noise is low (e.g., 0.1% pi in Fig. 5, column 1). All 

other simulations, with noise terms of 1%pi and higher, yielded drastically and 

qualitatively different outputs. 
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Figure 5. Model is not robust to noise in GRN parameters. 

Parametric noise alters model output. Lateral view of VE geometry for all genes is shown 
in rows A G (all outputs at t = 70 min). Each column displays  output at t = 70 min 
evaluated with GRN  . Columns 2 5 represent randomly chosen sample output when a 
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In summary, the GRNs we inferred in this study are qualitatively similar: magnitudes of 

parameters vary by approximately 10% and parameter sign stays the same in all but a few 

low-magnitude parameters (see Table S1). A notable exception is the regulatory 

regulatory relationship) is reversed. However, we acknowledge that the treatment of Tll 

as a state variable under gap gene regulation is artificial and this biological relevance of 

this observation is questionable. Optimization leaves most regulatory parameters with the 

same sign and changes only the magnitudes, and those regulatory weights which change 

sign have small magnitudes (i.e., small regulatory effects). The use of a global search 

method (GA) to optimize  did not recover a superior GRN that differed 

qualitatively from the original P0. 

 

Discussion 

The understanding of Drosophila developmental gene regulation has benefited from 

advances in quantitative modeling of gene regulation. However, existing PDE models of 

AP patterning have been limited to 1D approximations of the 3D geometry. By extending 

a model of gap gene regulation to a 3D embryonic geometry and adding realistic DV-

asymmetry to upstream maternal Bcd, this work allows us to pose new questions about 

the effects of embryonic shape and DV gradients on gap gene patterning. Jaeger et al. 's 

2004 model has been succeeded by more recent models of gap gene development 

incorporating additional regulatory inputs[37] [39], [46], [55] [58]. However, recent 

models of AP patterning retain partial domains (e.g., 35% 92% AP) with internal no-flux 

boundary conditions and use regulatory schema similar to eqns. 1 3 (see Methods) to 
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represent GRNs. We chose the Jaeger et al. 's 2004 model as a case study in 1D vs. 3D 

modeling because it is the representative of many existing 1D models. 

 

Before comparing 1D and 3D geometries, we examined the effect of boundary position in 

PDE solutions. Though embryos do not contain physical barriers to diffusion at 35% and 

92% of the AP axis, small spatial gradients (Fig. 2a, dashed lines) at those positions 

suggested that small diffusive flux would minimize the effects of these internal 

boundaries. However, we found that the system was sensitive to boundary placement 

(cf. Fig. 2a, solid lines). Though this finding indicates the importance of using 

biologically realistic boundary conditions (i.e., no-flux boundaries at 0% and 100% AP), 

the simulations in Figure 2 also illustrate our limited representation of regulation beyond 

the 35% 92% trunk region: Omission of terminal gap genes and regulators result in 

optimized parameter sets that cannot recapitulate expression patterns from 0% 35% and 

92% 100% AP in  (Fig. 2a,c). Optimization to correct the boundary artifacts 

(  with ) likewise fail to improve agreement with data outside of the 35%

92% region (Fig. 2b). The inclusion of terminal gap genes such as Huckebein in 1D gap 

gene models [37] provides a basis for extension to full 100% AP 1D and 3D models, 

though inclusion of Huckebein in a recent 3D modeling study yielded only modest 

improvements in overall cost and qualitative agreement at the AP extrema [59]. 

 

Prior analyses demonstrated the sensitivity of gap gene models to GRN parameter 

values [14],[43], [44] and examination of boundary conditions support this finding: GRN 

parameter optimization corrected boundary artifacts with extremely small changes to 
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parameter values (Fig. 2e). Optimization against VE data produced similar small changes 

in GRN parameters (Fig. 2e). The GRN sensitivity of 1D 

models  and  was also found in 3D models. Table S1 collects all 

parameter values and reports the standard deviation for each parameter across 1D and 3D 

model optimizations. Parameter wGt,Bcd exhibits the highest deviation across models with 

a standard deviation of 0.05, but this represents only 13% of the total parameter range 

 GRN parameters do more than shift protein band 

location as observed in Figure 2; they are capable of effecting qualitative patterning 

changes (e.g., changing the number of protein bands present on the embryo). For 

example, the transition from  to  in model  leads to the loss of 

a posterior Gt band and the creation of a posterior Kr band (Fig. 4c,f, columns 4

5). Figure 5 shows randomly selected sample model outputs at t = 70 min with increasing 

levels of normally distributed noised added to the GRN parameter vector. One percent 

noise was sufficient to induce qualitatively different banding patterns on the 3D 

geometry. The qualitative changes in patterning for all but the smallest levels of noise 

confirm the observations of parameter sensitivity in 1D and 3D models. The extreme 

sensitivity of model outputs to small changes in GRN parameters challenges analyses of 

GRN evolution positing phenotypically robust fitness landscapes [60] [62]. 

Unfortunately, the computational expense of PDE models prevented an exhaustive 

exploration of the GRN parameter space and corresponding approximation of a fitness 

landscape. The fragility of the gap gene system to GRN perturbations bears further study, 

especially in its contrast to prevailing thoughts that evolution occurs on networks with 

highly-connected neutral (selectively equivalent) genotypes. 
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In addition to the parameter sensitivity and boundary conditions, our work also 

demonstrate the use of accurate 3D geometry and its effects on model predictions. We 

found that geometry alone has a limited effect on gap gene patterning: Excepting slight 

DV-asymmetry brought about by the curvature of the 3D embryo, 1D output 

from  (Fig. 2d) and 3D output from  (Fig. 4, column 2) display 

qualitatively similar band position along the AP axis. The path length from anterior to 

posterior extrema differs with DV position: For example, the distance from anterior to 

posterior extrema is shorter along the dorsal surface than the ventral surface. We thought 

that this difference in diffusion distance might account for the anterior splaying displayed 

in VE data (Fig. 4, column 1), but this was not the case. 

 

Though the 3D embryonic geometry was insufficient to explain DV-asymmetries in gap 

gene data, it allowed us to explore the effect of DV-asymmetric protein distributions on 

patterning. Notably, the 1D Bcd distribution of  (Fig. 3b) differed from the typical 

dorsal-anterior distribution [63], [64] also found in the VE (Fig. 3e). Experimental noise 

in this data led to aberrant patterning in most gap genes in  (Fig. 4, column 3), but 

a regularized version of the distribution (Fig. 3f) produced cleaner (though qualitatively 

incorrect) band appearance and position in  (Fig. 4, column 4). It also 

produced anterior-splaying in the anterior bands of Gt, Hb, Kni, and Kr. As previously 

noted, optimization of the sensitive GRN parameters improved qualitative agreement in 

model patterning with only small changes to parameter values (Table S1). 
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When considering 3D models and the data associated with them, we endeavored to 

identify any constraints on model optimization. This model has many degrees of freedom 

and additional information encoded in the DV asymmetries of gap genes might better 

guide parameter searches toward accurate GRNs. However, we observed no improvement 

in RMSE values and failed to find any novel GRNs for DV-asymmetric models. 

 

Though our ensemble of models has led to interesting findings, we acknowledge model 

limitations. Recent modeling studies recognize that Cad and Tll patterning cannot be 

completely accounted for by gap genes in existing models; maternal mRNA complicates 

Cad expression and Tll is under the regulation of additional proteins [38]. Instead, newer 

models use data interpolants to represent these proteins [38]. The absence of these 

interpolants in our models may contribute to the unrealistic sensitivity of the 3D model 

parameters and DV-information. 3D interpolating functions incorporating VE data for 

Cad and Tll are under development; we will use these to explore the behavior of more 

recent 1D models on the 3D embryonic geometry. 

 

The primary focus of this work is the comparison of 1D and 3D model 

geometries. Figures 2dand 4, column 2 reveal that differences in model geometry can be 

accommodated by relatively minor adjustments to GRN parameters. The 3D 

implementation ( ) exhibits minor DV-asymmetries but otherwise 

mirrors . However, consideration of AP patterning in three dimensions allows us 

to address the experimentally observed DV-asymmetry in maternal Bcd and downstream 

AP morphogens. The inclusion of a DV-asymmetric Bcd signal led to qualitatively 
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different patterning with  (Fig. 4, columns 2,4). This suggests that the assumption 

of DV and AP independence in previous modeling studies is violated. Parameter 

sensitivity remained high; parameter optimization made small changes to parameter 

values but led to significantly improved RMSE error (Fig. 4, columns 4,5). 

 

Finally, two cases of DV model mismatch suggest modifications that could be 

incorporated into future models. First, anterior Gt is more highly expressed on the dorsal 

side of the embryo in vivo, but posterior Gt displays posterior-splaying. This expression 

localization is not accounted for by Bcd distribution alone and should be addressed in 

future models that also include input from the DV patterning system downstream of the 

active Dorsal protein distribution [65], [66]. Second, many protein species display DV-

asymmetry in terms of anterior or posterior splaying. E.g., Cad bands anterior to the AP 

midline are anterior-splayed (Fig. 4b, column 1) while bands posterior to the AP midline 

are posterior-splayed. This pattern is observed for all modeled proteins (Fig. 4, column 

1), though it is lacking in DV-symmetric  (Fig. 4, column 2). Addition of DV-

symmetric Bcd ( ) restores anterior-splaying aligned with the DV Bcd gradient 

(Fig. 4, column 5). This suggests that a missing posterior determinant may be responsible 

for posterior-splaying. The posterior maternal morphogen Nanos is a candidate that has 

not been included in previous models. With interpolated Cad and Tll, future models will 

explore the effects of posterior determinants such as Nanos [67] and, as examined in prior 

1D models, Huckebein [37]. 
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Methods 

Model Construction 

Building on the successful 1D/3D embryonic modeling approach of Umulis et 

al., [4], [68], we reimplemented the Jaeger et al. model of gap gene regulation ( ) 

using the finite element method (FEM). This model represents six gene products as state 

variables: Cad, Gt, Hb, Kr, Kni, and Tll [13]. A seventh protein, Bcd (Bcd), is maintained 

at a constant concentration during gap gene patterning and is represented as a spatially 

heterogeneous stationary input [13], [63]. Each of the state variables is represented by a 

PDE, 

 

aaaaaaa
a cuRcD
t

c 2 ,       (1) 

 

where ca is the concentration of protein a, the first term on the right hand side represents 

diffusion, the second term represents gene expression, and the third term represents first 

order decay [13]. Da is the diffusion constant of protein a a is the first order decay 

constant of protein a. Ra is the maximal rate of gene expression of proteins a and a is a 

sigmoid function, 

 

,        (2) 
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which ranges from zero to one and accepts a regulatory argument ua: 

 

.         (3) 

 

Here, ha is a minimal regulatory threshold for expression, wb,a is an element in the 

regulatory matrix W representing the influence of protein b on the expression of 

protein a 0.2), and cb is the local concentration of protein b. There 

are six PDEs representing protein proteins a = Cad, Gt, Hb, Kr, Kni, Tll (eqn. 1). In each 

PDE, the regulatory effects of all seven proteins, b = [41 Kr, Kni, Tll, Bcd], control 

protein expression (eqns. 2 3). PDEs are numerically solved using the FEM implemented 

in the software package COMSOL Multiphysics 3.5a [69]. Except for GRN 

parameters wb,a, these parameters are fixed at values in Jaeger et al. [13] and may be 

found in Table S2. 

 

Note that previous 1D models were simulated by the spatially-discretized ordinary 

differential equations using the finite difference method: concentrations were tracked at 

uniformly-distributed nodes (nuclei) along the AP axis and diffusive fluxes across the 

x inter-node distance were modeled as a first-order differential equations. As such, 

previously reported diffusion parameters ( a) were in units of inverse time [1/t]. To 

convert these parameters to diffusion constants (Da) with units of squared-length-per-time 

[L2/t], we multiplied a x)2 x, we took into account the length of the 

original model's domain (0.57 EL) and the number of nodes where the finite difference 

x as 0.57EL/57. The 
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model spans 0.35 0.92 or 0.57 EL and is divided into 57 intervals between 58 nodes. In 

the case of the 3D geometry, we further accounted for the curvature of the embryo in our 

x. Scaling the embryo length to unity (1 EL), we observed an arc 

length of 1.14 along the lateral AP. Upon the assumption that curvature was uniformly-

x was computed as (0.57/1.14)EL/57. The approach 

slightly overestimates Da in the 3D model relative to 1D because most curvature occurs at 

the AP extrema and not the trunk, but this does not translate to a large impact on AP 

patterning versus 1D. Whereas finite difference models explicitly modify a values to 

x, the continuous FEM 

representation renders diffusion constants independent of nuclear density. It should be 

noted that this representation does not account for reduced effective diffusivity due to 

increased nuclear trapping. While nuclear density has been linked with decreased 

effective diffusivity in some simulations of Bcd diffusion [70], Grimm and Wieschaus 

found that transcription factor distributions are largely independent of nuclear 

density [71]. 3D nuclear density distributions have been published [47] and nuclear 

density-dependent diffusion is an area for further investigation. 

 

We developed two FEM meshes on which to simulate spatiotemporal gap gene evolution. 

A 1D linear domain represents the 35 92% AP axis, and replicates the domain used in 

previous models [13]. By scaling diffusion constants and choosing initial conditions, the 

1D domain also represents the 0 100% AP length ( ). A 3D mesh modified from 

the VE geometry represents a realistic embryonic geometry. Though the embryonic 

syncytium includes the yolk interior of the embryo, nuclei are located within the 
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periplasmic domain of the exterior surface[10], [49]. Cytoplasmic viscosity increases in 

the embryonic interior and is presumed to limit effective diffusion of gap gene products 

to the 2D layer in the periplasmic volume containing the nuclei. While some gap gene 

products may diffuse into yolk, this process may be considered as part of the decay terms, 

a. We took this into account when constructing the 3D domain. The reaction-diffusion 

equations (eqns. 1 3) are implemented as weak form PDEs on a 2D manifold (Fig. S1); 

implementations( , , ). 

 

Though the 3D domain is a closed surface without AP flux boundaries, the partial 

( ) and full ( ) 1D domains are bounded at both termini by zero-flux 

conditions. These internal boundaries are unrealistic in the case of the partial AP length 

domain as there are no such physical barriers in the embryo; they were introduced in 

previous gap gene models to help account for artifacts in previously inferred 

GRNs [14], [42] [44]. In full length 1D models the anterior and posterior ends of the 

embryo are realistically represented by zero-flux boundaries. 

 

Numerical integration of PDEs requires specification of initial conditions as well as 

boundary conditions. For purposes of model comparison, we chose initial conditions 

specified in previous models [13]. On both 1D and 3D domains, the proteins Gt, Kni, Kr, 

and Tll have initial uniform concentrations of zero. Jaeger et al. provide initial non-

uniform 1D distributions for Cad and Hb (Fig. 3a) [13]. These distributions span the 

entire AP length and provide initial conditions for both the partial and full length 
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domains. Jaeger et al. also provide a constant exponential 1D Bcd distribution for the full 

AP length. These 1D distributions were used as initial conditions in the 1D models 

(  and ). They were projected onto the 3D domain to approximate full 3D 

initial conditions ( , Fig. 3b d). This projection was performed using built-in 

interpolation tools in the Comsol package. Provided AP-coordinates and corresponding 

concentration values, Comsol created a linear interpolant of DV-symmetric concentration 

values along the AP-axis of the 3D geometry. 

 

While the Bcd data provided by Jaeger et al. describes the lateral AP distribution of Bcd, 

it fails to capture the observed DV asymmetry found in embryonic Bcd. Though 

sufficient for a 1D model (Fig. 3a), the resulting 3D distribution (Fig. 3b) qualitatively 

disagrees with VE data (Fig. 3e). We therefore built an interpolating function from the 

VE Bcd data and used this interpolant when simulating the model ( ). Again, we 

used Comsol's interpolation functionality. However, this interpolant required full 3D 

specification of coordinates. We used the coordinates of nuclei and corresponding Bcd 

concentration values provided in the VE. Because the software does not support 

interpolation on a 2D boundary (the periplasmic space) in a 3D geometry, we used 

nearest-neighbor interpolation (Fig. 3e). Because this Bcd distribution is represented in 

the model as a static interpolant, noise in the data (and hence the interpolant) is not 

smoothed by diffusion and decay. Initial attempts at directly importing VE Bcd data 

resulted in persistent asymmetries and mottled distributions inconsistent with data (Fig. 4, 

column 3). In an ideal situation, inter-embryo variability would be averaged out of VE 

data. However, the data set was generated with few replicates (13 embryos for Bcd [49]) 
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and spatial noise remained. To remove this noise from the interpolant, we first fit a 

steady-state source-diffusion-decay (SDD) model of Bcd production [18] to VE Bcd data 

on the 3D domain (Fig. 4a, column 1). Once we had obtained agreement between this 

regularized Bcd distribution and the data, we used the solution of the SDD model to 

create a new interpolant. This smoothed interpolant shown in Figure 3f and 's 

output (Fig. 4b g, columns 4 5) compares favorably with the results  (Fig. 4b g, 

columns 3). 

 

Spatiotemporal regulation of gap gene expression spans the mitotic nuclear division 

between nuclear cycle 13 and 14a. For purposes of comparison, we chose to simulate the 

same time-course as previous models. We begin by simulating the conclusion of cycle 13 

for sixteen minutes, mitosis for five minutes, and continue to simulate cycle 14a for the 

remaining forty-nine minutes [13]. The reaction-diffusion equations (eqn. 1 3) describe 

the model during interphase. During mitosis, gene expression (the second term in eqn. 1) 

is set to zero. Molecules may diffuse and decay, but they are not transcribed or translated 

while the chromatin is compacted for mitotic division. 
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This set of initial and boundary conditions, coupled with the reaction-diffusion equations 

and a geometric domain, constitutes a numerically soluble model. To calculate model 

error, we used a straightforward root mean squared error cost function: 

 

6
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.     (5) 

 n is the number of data points in the 35% 92% EL 

region of the embryo, a is the index of protein species, i is the index of n nuclear 

coordinates, and t is the time index. This function sums the root squared error between 

model output from a given GRN, ca,mod( i,t), and experimental data, cx,exp(i,t), over data 

points i, model proteins a, and time t. 

 

 was originally fit to immunofluorescence data in Jaeger et al. [13]. As a result, 

both the model's concentration units and GRN parameters are scaled to reflect observed 

relative intensity ranges of those data. To facilitate fitting between models utilizing 

Jaeger et al. 's parameters and VE data, we pre-scaled the VE data to agree with the initial 

conditions reported by Jaeger et al. This was performed by optimizing scaling 

factors Aa and offsets ba such that the difference between Jaeger et al.'s initial conditions 

and the VE data was minimized, 

 

2
,,,

min aJaegeraaVEabA
cbcA

.       (6) 
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The resulting scaling was applied to the VE data, allowing for direct comparison of 

model outputs. VE protein data is unavailable for Cad and Tll. For the former, we 

substituted expression data used by Jaeger et al. to fit the original model [13]. For the 

latter, we substituted Tll mRNA data from the VE and scaled it according to eqn. 6. 

 

Optimization 

Using the cost function (eqn. 5), we optimized the full 1D and 3D models against scaled 

VE data using the Optimization Toolbox in MATLAB R2009a [72]. We began with local 

searches of the GRN weight matrix W (containing 42 parameters) using the constrained 

nonlinear minimization function fmincon(). We initialized these searches at the best-fit 

inferred GRN parameter set of the original modeling study and bounded all parameters 

 [13]. Parameter and cost function tolerances for stopping 

criteria were set to zero and the search was allowed to progress for 4200 model 

evaluations (100 evaluations per parameter), resulting in arrival at local minima. In the 

case of the DV-asymmetric Bcd model ( ), we subsequently included this locally 

optimal GRN in the initial population of a global search using genetic algorithms (GAs).  

 

We used the GA as implemented in MATLAB. The population of size twenty genomes 

(parameter sets) was initialized with nineteen randomized parameter sets and the locally-

optimized parameter set found for . Stopping criteria were specified as a 

maximum of 100 generations or failure to improve cost function values above a tolerance 

of 10

improve the score, ending the GA when the counter reaches fifty [72]. This algorithm 
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was used to search the parameter space while fitting the 3D model incorporating DV-

asymmetric Bcd ( ). 
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Supplemental Movies available at: 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0026797 

Supplemental Figures below. 
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Figure S1. The VirtualEmbryo geometry. 

A three-quarters view of the embryonic geometry with anterior (A), posterior (P), dorsal 
(D) and ventral (V) poles indicated.
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Figure S2. Scaled diffusion constants in DV-symmetric Bcd model .  

The model is insensitive to small changes in the diffusion constant. (A G) Lateral view 
of VE geometry is shown in rows A G (Gt, Hb, Kni, Kr, Tll at t  t
min); Column 1 displays output from  evaluated with GRN  and diffusion 
constants Da scaled by 0.1; Column 2 displays output from  evaluated with 
GRN  and diffusion constants Da scaled by 0.5; Column 3 displays output 
from  evaluated with GRN and diffusion constants Da scaled by 1; 
Column 4 displays output from  evaluated with GRN  and diffusion 
constants Da scaled by 2; Column 5 displays output from  evaluated with 
GRN  and diffusion constants Da scaled by 10.
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Figure S3. Scaled diffusion constants in DV-asymmetric Bcd model .  

The model is insensitive to small changes in the diffusion constant. (A G) Lateral view 
of VE geometry is shown in rows A G (Gt, Hb, Kni, Kr, Tll at t  t
min); Column 1 displays output from  evaluated with GRN  and 
diffusion constants Da scaled by 0.1; Column displays output from  evaluated 
with GRN  and diffusion constants Da scaled by 0.5; Column 3 displays output 
from  evaluated with GRN  and diffusion constants Da scaled by 1; 
Column 4 displays output from  evaluated with GRN  and diffusion 
constants Da scaled by 2; Column 5 displays output from  evaluated with 
GRN  and diffusion constants Da scaled by 10.
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CHAPTER 4. THE IMPORTANCE OF CHOOSING PROPER OBJECTIVE 
FUNCTIONS FOR SPATIOTEMPORAL MODEL OPTIMIZATION 

4.1 A Note About this Article 

The introductory material in Chapter 1 contains an expanded version of Sections 1-2 of 

this publication. 
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Abstract 

Mathematical modeling of developmental signaling networks has played an increasingly 

important role in the identification of regulatory mechanisms by providing a sandbox for 

hypothesis testing and experiment design.  Whether these models consist of an equation 

with a few parameters or dozens of equations with hundreds of parameters, a prerequisite 

to model-based discovery is to bring simulated behavior into agreement with observed 

data via parameter estimation. These parameters provide insight into the system (e.g., 

enzymatic rate constants describe enzyme properties). Depending on the nature of the 

model fit desired - from qualitative (relative spatial positions of phosphorylation) to

                                                 
1Bcd  Bicoid; Gt  Giant; Kni  Knirps; AP  anterior-posterior; SDD  source diffusion decay; GRN  
genetic regulatory network; DV  dorsal ventral; RMSE  root mean square error; SSE  sum of square 
error; OLS  least squares error; MSE  mean square error; MAE  mean absolute error; PCC  Pearson 
correlation coefficient; PDF  probability density function; K-S statistic  Kolmogorov-Smirnov statistic;  
CDF  cumulative density function; RE  relative entropy; K-L divergence  Kullbeck-Leibler divergence; 
wSSE  weighted sum of square error; nRMSE  normalized root mean square error; DSW (DTW)  
dynamic space (time) warping; SA  sensitivity analysis; LHS  Latin hypercube sampling; MB-ODE  
model based optimal design of experiments 
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quantitative (exact agreement of spatial position and concentration of gene products) - 

different measures of data-model mismatch are used to estimate different parameter 

values, which contain different levels of usable information and/or uncertainty.  To 

facilitate the adoption of modeling as a tool for discovery alongside other tools such as 

genetics, immunostaining, and biochemistry, careful consideration needs to be given to 

how well a model fits the available data, what the optimized parameter values mean in a 

biological context, and how the uncertainty in model parameters and predictions plays 

into experiment design.  The core discussion herein pertains to the quantification of 

model-to-

and future utility to the problem at hand.  Integration of this experimental data and the 

appropriate choice of objective measures of data-model agreement will continue to drive 

modeling forward as a tool that contributes to experimental discovery. The Drosophila 

melanogaster gap gene system, in which model parameters are optimized against in situ 

immunofluorescence intensities, demonstrates the importance of error quantification, 

which is applicable to a wide array of developmental modeling studies. 

 

Key words: Developmental biology, mathematical modeling, dynamic modeling, 

objective functions, parameter estimation, morphogens 

 

 

1. Introduction 

many models look and behave almost like the natural systems they are designed to 
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simulate, but they display imperfections that make their predictions suspect.  The 

disparity between a model result and the actual system may be a small yet systematic 

mismatch, the complete absence of frequently observed experimental features, or the 

prediction of unviable conditions (e.g., fatal pH) despite good agreement with 

experimental data. 

distraction that interferes with experimental discovery because the model attempts to 

show how the system works in quantitative detail, yet models are always deficient.  

Among model-builders it is understood that simulations will always be simplifications 

incapable of reproducing all experimental behaviors; however, imperfect models still 

promote greater understanding and have, more recently, been informing experimental 

design and testing assumptions when experiments are infeasible[35]. 

 

Central to modeling are the needs to quantify how well a model agrees with experimental 

data and to identify where it might disagree. Quantification of model-data agreement is 

there are many ways to measure the error and the choice of objective to measure model-

data differences depends on the type of data, the type of model, and the question being 

asked.  Herein we review diverse objective functions for the calculation of model-data 

developmental pattern formation by morphogens. 

Mathematical models of varying complexity are used to represent diverse dynamic 

phenomena in the biological sciences.  The specific type of model determines both the 

type of data needed to inform the model and the optimal objective functions to relate the 
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model to the data. A dynamic model describes change in the system state over a time 

course of interest; it contains explicit mechanistic descriptions of the system and rules for 

updating the state of the system in time [20].  Independent of the mechanistic description, 

the behavior of the model depends on the initial conditions of the system (e.g., simulated 

molecular concentrations at time zero).  Developmental models often simulate spatially 

heterogeneous systems; in these cases the shape of the spatial domain also affects 

outcome. Mechanistic dynamic models are parametric[21]. The parameters are constant 

values that define the behavior of the system and often have biophysical interpretations.  

For example, binding rate constants are parameters of receptor binding models[22,23].  

To determine the validity of a model, parameter estimation must be used to bring the 

model into agreement with data[24].  This often involves iteratively simulating the model 

with different parameter values and comparing the resultant simulation to data. 

Parameters that yield simulated values minimally different (or maximally similar) to data 

are retained[24-26].  The difficulty of this parameter search depends on the range each 

parameter is allowed to assume, the number of parameters to be estimated, and the 

covariance of parameters with model output[27]. 

 

Mechanistic models should not be confused with statistical models (sometimes known as 

phenomenological models).  Statistical models (e.g., linear or logistic regression) 

quantify correlation among observable data.  This knowledge often proves useful in 

hypothesis generation, but the predictive power of statistical models is limited to 

interpolation within the range of existing data [36].  Conversely, mechanistic models 

encode suppositions about the nature of the underlying system.  As such, they may be 
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used to extrapolate beyond the range of current data and provide predictions given that 

the modeled mechanism is accurate. Mechanistic models are the primary context for the 

comparison of fitness metrics herein. 

 

The quality of the model and the uncertainty of its predictions depend on the type and 

quality of the data used for the training and optimization of the model. Experimental data 

common in the analysis of morphogen signaling systems may take several forms 

depending on the nature of the assays used. Specifically, qualitative data encodes 

nonnumeric descriptors of the morphogen and targets of interest; semi-quantitative data is 

predominantly ratiometric such as the relative intensity of a stained molecule or intensity 

of a western blot; and quantitative data provides information of specific, measured 

quantities with associated uncertainty.  As the quantitative content of the data increases, 

the associated uncertainties typically decrease. This provides more stringent constraints 

that improve the resulting model (see Pargett et al., 2013 for further details[31]). 

 

Once mechanistic models are trained or optimized to the supporting data, they can be 

used to address a number of important questions.  Specifically, a parameterized model 

can be used to infer the behavior of hard-to-observe molecules, perform quantitative 

simulations of qualitative hypotheses, or generate new hypotheses based on model 

behavior. In Section 2 we focus on the challenges that exist in most model optimization 

problems and then utilize a specific example in the Drosophila gap gene network as an 

illustrative case study. 
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2. Model complexity and parameter estimation  

optimized physiochemical parameter values. Several challenges stand between a newly 

defined mechanistic model and the parameter values that make it biologically relevant.  

This parameter estimation problem grows exponentially as the number of modeled (and 

parameterized) biochemical interactions grows. 

 

Model and objective function in hand, optimization proceeds in several steps.  First, the 

unknown parameter values are enumerated and constrained to biologically feasible ranges 

(e.g., a kinetic constant or diffusion constant cannot be negative). Second, a stochastic 

and incomplete search is performed within this feasible region of the parameter space 

while ignoring biologically impossible parameter value combinations.  Third, resultant 

parameter sets are ranked according to the chosen objective function. Finally, 

; if not, they repeat 

the above search. 

 

The magnitude of these difficulties grows with the size of the model and the increasing 

number of unknown parameters.  As the number of parameters increase linearly, the 

feasible region grows exponentially. This is known as the curse of dimensionality. When 

an objective function is mapped to feasible parameter combinations, the resulting map is 

called a cost landscape (see Fig. 1A for a one-parameter landscape).  Searches seek the 

lowest point  the global minimum  to minimize the cost [24,25]. Local search methods 

nimum (black 
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arrows, Fig. 1A).  Because parameter values are uncertain, these methods usually lead to 

a local rather than the global minimum. To avoid such traps, randomized and incomplete 

global searches are used to sample the whole feasible region[39]. However, the curse of 

dimensionality means that smaller proportion of the space is covered. Parameter 

estimation scales poorly with model complexity. As a result, parameters reported in the 

literature almost always represent local rather than global minima.  Multiple global 

searches are sometimes run to sample multiple local minima.  



121 
 

 

 
Figure 1. Objective choice affects the cost landscape and parameter estimation 
efficiency. 
When objective functions are mapped to parameter values, a high-dimensional cost 
surface is revealed. (A) Plots a simple 1D surface. Maxima (red) and minima (blue) dot 
its surface; parameter estimation seeks the global minimum, or best fit, though this is not 
always possible.  Each minimum has an associated basin of attraction; local search must 

may be narrow and difficult to reach, global searches are used to survey the cost surface 
for low-cost points from which to launch local searches.  In the full version of the 
Drosophila gap gene model, different objectives produce different landscapes (B-D), 
though all shared a similar minimal value near a predetermined local minimum (-0.034) 
of the Kr Kni interaction parameter. Excepting Chebyshev, all of the pairwise measures 
(B) share qualitative trends.  Whole dataset measures (C) also share a characteristic 
landscape.  Information-theoretic measures (D) produced two qualitatively different 
landscapes when applied to this model.   
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When searches return optimized parameter sets, these sets are ranked by their objective 

values.  Those with the lowest objective values are retained, though investigators often 

inject an element of subjectivity by ranking the l

expert evaluation, coupled with the probabilistic nature of the search makes replicability 

of model analyses more difficult. 

 

2.1.Bicoid gradient formation models 

In Drosophila melanogaster, initial expression of gap genes takes positional cues from 

heterogeneously deposited maternal mRNAs and their resulting transcription factors 

[141].The anterior determinant, Bicoid (Bcd), is expressed from anteriorly distributed 

mRNA and forms a decreasing concentration gradient from the anterior to posterior of 

the embryo [113].Though Bcd has been studied since the 1980s[113,114,117,126,142-

145], mathematical modeling of its gradient formation is a more recent enterprise 

[126,137,142,146,147].  These models represent the anterior-posterior (AP) axis of the 

embryo as a 1D spatial domain.  In these early models, the anterior end of the line was a 

point source for Bcd production and expressed protein would diffuse toward the 

posterior.  To avoid saturation of the AP axis by accumulating Bcd, Bcd degradation was 

modeled by a first order decay term [126,142].  Collectively, these source-diffusion-

decay (SDD) models were numerically easy to calculate and contained parameters with 

explicit biophysical meanings (e.g., diffusion constants). The models replicated the 

stationary Bcd gradient observed in data, though the time required to reach this state did 

not agree with comparable experimental time course observations.  These discrepancies 

prompted further model development, demonstrating the utility of imperfect model 
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results. Ibanez and Belmonte provide an excellent review of these SDD modeling 

approaches [148]. 

 

Though Bcd is relatively simple to model, it is vital for the establishment of the gap gene 

patterning.  The gap genes represent considerably more complex modeling approaches 

and are discussed in Section 2.2. 

 

2.2.Gap gene patterning 

Modeling has played a large role in the evaluation of the Drosophila melanogaster gap 

gene system.  Driven in part by maternal mRNAs such as Bcd, this system of genetically 

interacting transcription factors forms increasingly specific expression bands along the 

-posterior axis [141]. First experimentally characterized in the 

1980s, decades of experimental work have gathered a wealth of data with which to fuel 

model-driven discovery [118,122,152-156].  Varied modeling approaches have been 

applied to this system over the last two decades, each presenting different challenges to 

model fitting.  Early models (e.g., Sanchez and Thierry [125]) incorporated pre-defined 

genetic regulatory networks (GRNs) inferred from expert interpretation of mutant data 

rather than using parameter estimation to infer GRNs.  To compensate for contemporary 

computational limitations, these simulations frequently incorporated simplifying 

assumptions such as discrete protein levels, discrete spatial domains, and discrete time 

updates.  The qualitative nature of the model output limited error calculations; protein 

data might be classified as high, low, or absent and compared to similar model output. 
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The work of Jaeger et al.[138,139] initiated quantitative modeling for the purpose of 

GRN inference via parameter estimation.  This approach led to numerous analyses 

[140,157-163], but also brought new challenges to model fitting and parameter 

identification. Building on the partial differential equation simulation methods of 

Mjolsness and Reinitz[137], these models moved gap genes from discrete time and 

concentration simplifications to simulation of continuous concentrations and time on a 

1D domain.  Rather than building a model with ad hoc assumptions about the nature of 

GRN interactions, Jaeger et al. built a general model framework in which every gene had 

the potential to enhance or inhibit the expression of every other gap gene; they then fit the 

model to immunofluorescence expression data and observed which optimized GRNs 

minimized the unscaled sum of squared error between model and data.  This approach 

generated a set of similar GRNs that recapitulated expression patterns and agreed with 

genetic interactions previously proposed from mutant data.  While the computationally 

inferred GRNs are consistent with expectations, a major shortcoming remains:  When gap 

genes were knocked out in simulations, the resulting protein distributions did not match 

available mutant data. This suggests that additional regulatory genes may be missing 

from the model, that the large number of parameters is causing overfitting, and provides 

further avenues for study. 

 

All of the preceding models (except the early discrete variants) attempt to fit 25+ 

parameters; this high-dimensional parameter space may lead to two related problems: 

overfitting and non-unique solutions.  In statistical models, overfitting refers to overly 

parameterized models which predict noise rather than underlying trends [36].  Similarly, 
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overfitting of dynamic models involves the distribution of error among many parameters 

during fitting; this may lead to spurious inferences from parameter estimation.  While 

parameter estimation seeks the global optimal point  the best possible fit in the 

parameter space  high dimensional parameter spaces may contain many locally optimal 

parameter sets that produce equivalent fits (Fig. 1A).  Indeed, when two parameters affect 

the same model output (e.g., when two genes A and B enhance expression of a target 

gene C), the parameters regulating A C and B C are said to be correlated and unique 

parameter values will not be identifiable [39,166].  Because the approach of Jaeger et al. 

allows all gap proteins to interact (thus estimating 36+ interaction parameters), there is no 

guarantee of the uniqueness of estimated parameters and overfitting is likely. Fomekong-

Nanfack et al. found that it was impossible to distinguish between enhancer and repressor 

activity in fitting results because of parameter correlation [157,160].  The sensitivity 

analysis of Bieler et al. also indicates correlation among model parameters, limiting the 

scope of model inference [165].  

 

Finally, it must be noted that all of the preceding studies have utilized either qualitative 

fits (in the case of discrete models) or variants of the sum of squared error measure (e.g., 

MSE, SSE, RMSE, and weighted SSE).  The limitations of these measures in fitting 

relative spatial positioning data (such as adjacent gap genes) will be discussed in Section 

3. 
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3. Objective functions 

Objective functions compare model and data to produce lower residual scores for data-

model agreement. In concrete terms, different objective functions compare different 

features of the model and experimental data.  Two different metrics may produce 

conflicting rankings for the same sets of param

cost landscape is determined by the choice of metric leading to different possible 

outcomes depending on the initial design choice.  To demonstrate how each objective 

function responds to different types of model-data mismatches, data of the Drosophila 

gap gene Knirps (Figs. 2-4, brown diamonds) is compared against a set of artificially 

prepared erroneous distributions (Figs. 2A-4A, blue and red lines). To allow for ready 

production of the different types of mismatches, these distributions were generated from 

Gaussian distributions as a proxy for models described in Section 2.2.  This enabled 

manipulation of spatial positioning (Figs. 2A-4A), width (Figs. 2B-4B), and aspects of 

magnitude (Figs. 2CD-4CD). 
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Figure 2.  Response of pairwise objective functions to common spatial errors. 
Each column represents a type of model-data mismatch; row A represents spatial 
distributions of the gap gene Knirps (Kni); rows B-F represent the responses of pairwise 
objective functions to each type of error. The Knirps (Kni) expression data in row A 
(brown diamonds) is from the lateral AP axis of embryonic Drosophila melanogaster. 
Relative to the data, the protein expression peak may be shifted anteriorly (A1, blue line) 
or posteriorly (A1, red line), it may narrow (A2, blue line) or widen (A2, red line), it may 
reach a uniform spatial distribution at varying concentrations (A3, blue line-red line), or 
it may decrease (A4, blue line)  or increase (A4, red line) in concentration. Black lines in 
row A represent optimal model fits. Blue-to-red graded arrows in row A each represent a 
sweep across the range of erroneous models, with blue lines (E0) at the beginning and red 
lines at the end (E1) of each sweep.  Rows B-F plot the response of each objective 
function as the sweep progresses.  
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3.1. Pairwise measures 

The most commonly used cost functions are drawn from a class of pairwise measures. 

These objectives are computed by comparing corresponding pairs of experimental and 

simulated data.  The final objective is calculated using an aggregate of the individual 

pairwise residuals (or a subset of those residuals).  Example equations for pairwise 

objectives are provided in Box 1.  
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The sum of squared error (SSE), its square root the Euclidean distance, and its sample-

normalized variant the root mean squared error (RMSE) are the most frequently used 

error measures in biological modeling studies.  As its name implies, the SSE (also called 

ordinary least squares, OLS) is the summation of each squared pairwise residual.  

Squaring the pairwise residuals serves two purposes. It prevents positive and negative 

residuals from partially canceling in the summation (thus underestimating the model-data 

mismatch).  It also emphasizes larger residuals due to the super-linear growth of the 

square function.  This intrinsic weighting translates to an error measure that is more 

tolerant of small residuals (e.g., experimental noise at the optimal fit, Fig. 2B,1-4, data vs. 

optimal fit), while penalizing larger model-data disagreement with a weight proportional 

to the square of the mismatch (extrema of Fig. 2B,1-4).  For global parameter searches 

landscape (cf. Figs. 1B,SSE and 1D,K-S).  In ideal situations, this smoothing may 

improve convergence toward minima, whether local or global. The data-averaged variant 

is the mean square error (MSE), calculated by dividing the SSE by the number of data 

points. 

 

The square root of the SSE is the intuitive Euclidean distance metric (also known as the 

norm and straight line distance). In everyday contexts, this is the familiar quadrature 

sum used to calculate the distance between points in space.  Unlike the SSE, the 

Euclidean distance does not incorporate intrinsic residual-dependent weighting.  This is 

exemplified in the one-parameter landscapes displayed in Fig. 1.  SSE has lower relative 

costs corresponding to negative parameter values; the relative cost increases in Euclidean 
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distance (cf. Fig. 1B,SSE and 1B,Euclidean).  Because the SSE is always nonnegative in 

practice, the cost landscape of the Euclidean distance will always share a global 

minimum with the SSE. However, the contours of the cost landscape will differ in that 

small errors are not smoothed from the landscape.  This is shown in Fig. 1A,1,4 in which 

SSE ignores the low shoulders of the widened peak whereas Euclidean error takes them 

into account.  Once global search algorithms have converged on the neighborhood of a 

minimum, the Euclidean metric provides a more stringent criterion by which local 

optimization homes in on the exact minimum value.  A common normalization of the 

Euclidean distance is the root mean squared error (RMSE).  The RMSE is computed by 

dividing the SSE by the number of data points before taking the square root. As 

demonstrated by Fig. 2A,C, this scalar normalization leads to identical landscapes for 

RMSE and Euclidean distance. 

 

Though calculation time of the objective function is often negligible compared to the 

evaluation time of complex models, efficient objective calculations are sometimes called 

for.  One such measure is the Manhattan distance (also known as the  norm, absolute 

distance, city block distance, and taxi cab distance), so named because it represents the 

(see Box 1 for an illustrated example).  As such, the Manhattan distance is always greater 

than or equal to the corresponding Euclidean distance.  In practice, this objective is 

computed by summing the absolute values of each pairwise error.  This serves the same 

purpose as squaring in the SSE; it prevents partial cancelation of positive and negative 

errors in the final distance value. The mean absolute error (MAE), the related per-datum 
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error, is computed by dividing the Manhattan distance by the number of data points.  The 

Manhattan distance and MAE are not without drawbacks.  They are not differentiable, 

making it impossible to analytically determine which direction on the cost landscape 

In practice, the derivatives of these error measures must be numerically estimated by 

evaluating the model multiple times.  When using these algorithms, this numerical 

estimation may negate the increased efficiency derived by use of the Manhattan distance.  

The Manhattan distance has landscape behavior qualitatively similar to that of Euclidean 

and RMSE; this is demonstrated in Figs. 1B and 2F,1-4. 

 

In practice, any  norm may be computed for real numbers by summing the absolute 

residuals raised to the jth power and then taking the jth root of the result (see Box 1).  As 

indicated in discussion of the SSE and Euclidean distances, larger values of j place larger 

intrinsic weights on larger residuals.  The logical conclusion of this trend is the  norm, 

or Chebyshev distance.  This objective places all the weight on the largest residual and no 

weight on lesser residuals. The Chebyshev distance is computed by calculating the 

absolute residuals and then returning the largest residual.  The objective shares the 

-differentiability. Determining the maximum 

residual is also computationally expensive for large datasets.  The resulting cost 

landscape is often extremely flat, making optimization difficult.  However, the 

Chebyshev distance is useful for mini-max optimization strategies.  This entails 

minimization of the maximum residual between simulation and data, effectively finding 

-case parameter set and is reflected in a landscape that differs 
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qualitatively from other pairwise measures (Figs. 1B, extrema of 2E,1, overall shape of 

2E,2-4). 

 

In each of the preceding error measures, weighted and/or normalized variants are also in 

use. These are described in Section 3.5. 

 

3.2.Whole-dataset measures 

Pairwise error measures incorporate transformations and summations of residuals to 

report a scalar error value.  In contrast, whole-dataset measures are computed using 

properties of the entire experimental and simulated data sets such as arithmetic mean and 

variance.  These measures are most commonly encountered in statistical contexts (e.g., 

the Pearson correlation coefficient) and machine learning and bioinformatics applications 

(the cosine similarity), but are rarely seen in dynamic model fitting.  Implemented in 

isolation, these methods have limitations that restrict their use.  These measures 

sometimes produce qualitatively similar landscapes (Fig. 1C), indicating that they share 

some of the same limitations. 

 

The Pearson correlation coefficient (PCC) is often associated with linear regression.  It is 

computed as the covariance of model and experimental data divided by the product of 

their standard deviations (see Box 2).  This objective quantifies the variability of paired 

(experimental, model) data points relative to the least squares linear regression of the 

data; a value of one represents perfect correlation while negative one indicates perfect 

inverse correlation.  As such, a large positive value of this metric might indicate a linear 
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relationship between the experiment and model (Fig. 3C,4) while the slope of the 

regression line provides a measure of linear scaling between the two sets.  The chief 

limitation of this objective is its dependence on a linear relationship between simulated 

and experimental data.  The variability measured by this objective may represent 

normally distributed residuals about the regression line.  However, nonlinear errors may 

still produce relatively large correlation coefficients (Fig. 3C,2).  Anscombe presented 

[227]; his results 

are reproduced in Box 2.  Due to this limitation, correlation measures provide additional 

information about variability when used in conjunction with other measures. Used in 

isolation, PCC may lead to unrealistic parameter estimation.  
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Figure 3.  Response of whole-dataset objective functions to common spatial errors. 
Each column represents a type of model-data mismatch; row A represents spatial 
distributions of the gap gene Knirps (Kni); rows B-C represent the responses of whole-
dataset objective functions to each type of error. The Knirps (Kni) expression data in row 
A (brown diamonds) is from the lateral AP axis of embryos. Relative to the data, the 
protein expression peak may be shifted anteriorly (A1, blue line) or posteriorly (A1, red 
line), it may narrow (A2, blue line) or widen (A2, red line), it may reach a uniform spatial 
distribution at varying concentrations (A3, blue line-red line), or it may decrease (A4, 
blue line) or increase (A4, red line) in concentration. Black lines in row A represent 
optimal model fits. Blue-to-red graded arrows in row A each represent a sweep across the 
range of erroneous models, with blue lines (E0) at the beginning and red lines at the end 
(E1) of each sweep.  Rows B-C plot the response of each objective function as the sweep 
progresses.  
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The cosine (or angular) distance and its relative the cosine similarity provide another 

means of comparing two datasets.  It is often used in machine learning and clustering 

algorithms as a means of measuring distances between vectors of features used for 

classification; it is not often used to fit biological dynamic models.  Rather than pairwise 

comparisons in two dimensions (model and experimental data), this objective considers 

each of the n paired data to represent a dimension in an n-dimensional data space.  The 

model and experimental data are represented by two respective vectors in this space and 

the angle between these vectors is computed.  The cosine of this angle will be one if the 

vectors point in the same direction and negative one if they point in the opposite 

direction, though this cosine similarity disregards scaling.  It thus compares the overall 

shape of spatial morphogen distributions while lessening penalties for differences in total 

concentrations (Fig. 3B,2-4).  Because cost functions represent poor fits with larger 

objective values, cosine similarity is often normalized from (-1,1) to (0,1) and then 

subtracted from one (see Box 2).  This produces a measure that is one when the data 

vectors point in opposite directions of the data space and zero when the vector point in 

the same direction.  The main shortcoming of this measure is its blindness to the relative 

magnitudes of model and experimental data.  If a parameter set leads to a simulated 

dataset in which all morphogen concentrations are near zero, computational rounding 

errors and limited machine precision create varied objective results, which may be 

erroneously low  representing a good fit where none exists. 
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3.3. Information-theoretic measures 

While the whole-dataset objectives are used to compare data vectors (albeit not always in 

the context of biology), this next class of information-theoretic objectives is used for 

comparison of probability density functions (PDFs). Here, we treat morphogen 

experimental or simulated sampling provides data to estimate the PDF(s) of interest.  

When the information measures are used as objective functions for model and 

experimental data, the intermediate sampling step and PDF estimation are not necessary.  

In place of sampling, the model and experimental data are treated as morphogen 

concentration density functions over the spatial domain of the.  With these PDF 

analogues in hand, the information measures may be brought to bear, though the PDF 

analogues do not always meet conditions for a robust information-theoretic interpretation. 

 

A common measure for PDF comparison is the Kolmogorov-Smirnov D-statistic (K-S 

statistic).  The procedure for calculating the K-S statistic is similar to that of the 

Chebyshev distance (Section 3.1).  Though the Chebyshev distance corresponds to the 

maximum absolute residual of the model and experimental data, the K-S first transforms 

the data- and model-sets y and  to the cumulative density functions (CDFs) Fy and F  

(Box 3). The K-S statistic is the maximum absolute residual between these CDFs. Unlike 

the Chebyshev distance, K-S incorporates an implicit linear scaling.  Regardless of 

relative magnitudes of the model and experimental data, transformation to CDFs bounds 

the functions from zero at one end of the spatial domain to one at the other.  Like cosine 

distance (Section 3.2), the scaling emphasizes the overall shape of the data while relaxing 
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the requirement that concentration values match exactly.  This statistic still has 

limitations.  As indicated in Figs. 2E, 3B and 4B, Chebyshev and cosine distances 

penalize common errors differently.  The intrinsic scaling in the K-S objective function 

should penalizes mismatches in absolute concentration less harshly, though the 

estimation of CDFs Fy and F  is very sensitive to experimental noise.  Figure 4B,1-2 

demonstrates the effect of noisy data: the minimal K-S values do not even align with the 

best-fit distribution.  Objectives like cosine emphasize the overall shape of the model and 

experimental distributions.  Meanwhile, mini-max strategies like Chebyshev reduce the 

largest error  sometimes at the expense of an overall consistent fit.  
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Figure 4.  Response of information-theoretic objective functions to common spatial 
errors. 
Each column represents a type of model-data mismatch; row A represents spatial 
distributions of the gap gene Knirps (Kni); rows B-C represent the responses of 
information objective functions to each type of error. The Knirps (Kni) expression data in 
row A (brown diamonds) is from the lateral AP axis of embryos. Relative to the data, the 
protein expression peak may be shifted anteriorly (A1, blue line) or posteriorly (A1, red 
line), it may narrow (A2, blue line) or widen (A2, red line), it may reach a uniform spatial 
distribution at varying concentrations (A3, blue line-red line), or it may decrease (A4, 
blue line)  or increase (A4, red line) in concentration. Black lines in row A represent 
optimal model fits. Blue-to-red graded arrows in row A each represent a sweep across the 
range of erroneous models, with blue lines (E0) at the beginning and red lines at the end 
(E1) of each sweep.  Rows B-C plot the response of each objective function as the sweep 
progresses.  
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Every distance measure discussed so far has been symmetric  the distance from y to  is 

identical to the distance from  to y.  However, the relative entropy (also known as the 

Kullback Leibler divergence) is asymmetric; these two distances are unequal.  In the 

context of information theory, entropy is a measure of information.  The relative entropy 

may be considered the amount of information lost if the model data  is used to approximate 

the true experimental distribution y[228].  To compute the relative entropy, the two data 

sets are each normalized so that the data in each distribution sum to one (satisfying the 

criteria for a discrete probability distribution).  Rather than using residuals, each 

comparison between experimental and model datum i (i n) is performed by 

multiplying yi by the logarithmic ratio of yi over i.  The summation of these values yields 

the relative entropy.  A visualization of this measure is found in Box 3. 

 

This method is not without limitations; it is only defined if both  and y each sum to one 

(hence the normalization) and if yi equals zero for any i where i equals zero.  This limits 

parameter estimation: If the model dataset predicts no morphogen at a point in space that 

has nonzero experimental data, the relative entropy will be undefined due to division-by-

zero in the log ratio.  This means that some parameter sets (which cannot be identified in 

advance) will not have an associated error value. If yi and i equal zero, the comparison 

becomes 0 ln(0/0).  If yi is zero and i is not, 0 ln(0) appear in the calculation. These two 

values are normally considered to be undefined. For the purpose of relative entropy 

calculation, both are considered to be zero; in each case, the limit of xln(x) and xln(x/x) is 

zero as x goes to zero. 
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3.4. Composite cost functions 

Pairwise, whole-dataset, and information-theoretic error measures all have strengths and 

weaknesses.  It is common for computational biologists to assemble ad hoc combinations 

of objectives into a single composite cost function.  These functions are tailored to 

emphasize the data features pertinent to the current research or to combine models and/or 

experiments.  For example, we may wish to combine the qualitative shape matching of 

cosine distance with the residual-dependent weighting of SSE.  The resulting composite 

function may appear as follows. 

 

   (1) 

 

For a given parameter set, Cosine Error and SSE represent the two objective functions.  

Each is weighted by positive constant values w1 and w2.  These weights serve multiple 

purposes.  Consider that the cosine distance ranges from zero to one while SSE values are 

dependent on the magnitude of the data.  If weights are not applied within the composite 

function, the either objective may dominate the composite value.  Depending on the 

magnitude of the data, one must choose a ratio of w1 tow2 to give each component objective 

comparable contributions to the final error. 

 

Conversely, weights may be chosen to emphasize one component objective over another.  

Perhaps the foremost interest is in finding a qualitative shape match between experimental 

and simulated morphogen distributions.  At the same time, we wish to avoid the 

 differences.  We 
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may choose weights w1 and w2 such that the cosine distance contributes more to the 

composite cost than SSE.  The exact ratio is difficult to identify in advance of parameter 

estimation.  Often, we generate a set of synthetic experimental data (model data generated 

by a known parameter set), and weight ratios are tested to determine which ratio recovers 

the known parameter set most efficiently. 

 

3.5. The importance of transformation and normalization 

A common transformation of data is unit conversion.  For example, immunofluorescent 

intensities are assumed to correlate with the concentration of the antibody targets.  When a 

model simulates concentration and experimental data is recorded in intensity, we might 

perform a linear transformation (c = ax-b) on data.  Here, c is the estimated concentration, 

a is a linear scaling factor, x is the intensity data, and b accounts for background 

fluorescence in the micrograph.  This simple example assumes uniform background 

intensity.  This assumption is not always satisfied in practice due to varied experimental 

limitations. Though we limit our discussion to linear transformations, the transformation is 

assay-dependent and may involve more complex functions. 

 

Experimental data does not always require linear or nonlinear transformation.  Some 

computational biologists design their models and parameter ranges such that the simulated 

morphogen values are directly comparable to data.  This approach precludes the need for 

mapping experimental units to simulated units; instead, subtraction of a uniform or 

nonuniform background value is the only modification to experimental data. 
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-D.  Some optimization 

[229], and transformations may 

be used to reduce the magnitudes of the peaks in the landscape.  Often, a logarithmic 

transform is applied to the objective function values; it acts to compress error values, which 

may be orders of magnitude apart before transformation, to the same magnitude. 

 

The weighted SSE (wSSE) scheme calls for division of each residual by the replicate 

standard deviation of its experimental data point.  Formulaically, the ith squared residual 

has a weight wi i i is the standard deviation of experimental datum yi. When 

the replicate values for a given experimental datum are highly variable, the residual is 

divided by a large standard deviation and the contribution of the uncertain data to the error 

is minimized.  Other ad hoc weighting schemes may be used depending on our needs. 

Normalization methods are also employed is problem-specific contexts.  For example, 

fractional or normalized RMSE (nRMSE) divides the RMSE by the range of predicted 

values; w = max  min.  The resulting weighted residuals may be interpreted as a fractional 

or percentage errors in each simulated datum. 

 

A special case of weighting addresses the comparison of model and experimental data 

spanning several types of chemical species.  Intercellular morphogens and intracellular 

signaling molecules may have respective molarities differing by several orders of 

magnitude.  In cases of pairwise measures without implicit linear scaling, this may lead to 

unequal contributions from each chemical species to the final cost value.  For example, 
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errors in a morphogen profile spanning a 100 nM range could completely mask fluctuating 

error contributions from a protein distribution with a 10 nM range.  Similarly, comparison 

of untransformed immunofluorescence or histochemical data with compatible models may 

be hindered by differences in antibody affinity among measured species.  Different 

problem has been noted above.  The nRMSE uses fractional residuals. Each residual is 

weighted by the range of the simulated chemical species.  For morphogen M1, each residual 

is multiplied by a weight wM1 = M1,max  M1,min. Likewise, all residuals for morphogen M2 

are weighted wM2 = M2,max  M2,min, and so on for each addition chemical species.  

Substituting fractional residuals in place of residuals, thus ensuring that they contribute 

equally to the overall error. 

 

When sampling a large parameter space, it can be difficult even to find qualitatively useful 

features like peaks, let alone peaks that align with experimental data. Though some 

objectives tolerate spatial changes better than others, all surveyed objectives save the 

Kolmogorov-Smirnoff statistic have similar responses to spatially shifted peaks (Figs. 2C-

F, 3B-C, and 4B-C). Dynamic space warping (DSW) provides a means of protecting 

qualitative agreement from positional mismatch.   DSW is a nonlinear distortion of model 

values rather than a linear transform.  It is an alignment algorithm that warps the spatial 

coordinates of two signals (such as immunofluorescence intensities) to minimize mismatch 

between the signals; this allows slightly offset peaks to be aligned before the objective is 

calculated and reduces penalties when evaluating distribution shapes.  To demonstrate how 

the procedure, consider data and slightly offset model output (Fig 5A).  DSW traverses the 
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length of the domain and calculates the residual of each model-datum pair in spatial order 

(an unwarped path would be the diagonal of Fig. 5B).  It iteratively calculates the residuals 

of the residuals at spatially adjacent points and then moves to the smallest residual value 

(Fig. 5C).  This results in an alignment (white line in Fig. 5B) that minimizes errors of 

position (but not errors of magnitude) between model and data (Fig. 5D).  To prevent 

drastic warping, the method is often constrained to a fraction of the total domain length.  A 

[230], which 

describes the mathematically analogous technique of dynamic space warping. 
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Figure 5.  Schematic explanation of dynamic space warping. 

 
Dynamic space warping is a spatial alignment of two signals to minimize the 
disagreement between them.  Consider a dataset (A, blue line) and model simulation that 
is partially misaligned (A, red line).  A pointwise array of the two signals
formed and traversed from beginning to end of each sequence (B, white arrows and line).  
At the ith, jth position on the grid, the residual values are computed for the next model-
datum pair at i+1, j+1, but the model is also compared to spatially adjacent data points 
i+1, j and i, j+1.  The traversal iterates by choosing the lowest of the three residual errors 
at each step (C).  The mismatch between each model-datum pair is shown in B, with 
darker regions representing lower errors.  The result is a warping that minimizes spatial 
translation and peak width errors.  
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Finally, a more flexible solution to the above problem is to employ a composite cost 

function.  Rather than incorporating different measures of the same data, we may partition 

the data and compute the same objective function for each species.  The weight ratios noted 

in Eqn.1 may simply equalize the contributions (equivalent to the nRMSE approach) or 

may be further modified to preferentially penalize some species if the research question 

calls for it. 

 

4. Strategies for improved parameter estimation  

-the-

These objectives are not always appropriate for the biological question being addressed.  

Here, we provide a brief schema to screen objectives before committing computational 

resources and time to a large-scale search of the parameter space. 

 

4.1. Identify appropriate error measures  

The selection of appropriate error measures depends upon the type of data available (here 

assumed to be semi-quantitative), whether unit rescaling or normalization matters for the 

research problem, and the type of fit required (exact fit, shape matching, relative 

positioning, etc.). 

 

The assumption of semi-quantitative data provides two important considerations.  The data 

do not contain absolute concentrations of the values of interest, but rather recordings of 

some observable signal (immunofluorescent image intensity). Further, this implies that 

model outputs, if designed to accurately represent the underlying units of interest, may 
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differ in units and by orders of magnitude relative to experimental observables.  In some 

cases, this will necessitate transformation/scaling to bring the 

agreement. 

 

In the Drosophila gap gene case study above, the model parameters were scaled such that 

model output was bounded between 0 and 255 arbitrary concentration units.  This was 

decided so that model output could be compared directly to experimental image intensity 

data; in 8-

type of model does not require transformation of data because the model was designed to 

avoid issues of unit and magnitude mismatch.  This is not always straightforward in model 

design.  The construction of large models often involves surveying the literature of 

chemical rate constants  typically incorporating units of molarity  resulting in molar 

outputs.  As noted in Section 3.5, a linear transformation is used to convert intensity to 

molarity.  In the absence of calibration standards, the choice of linear transformation 

parameters must be optimized before each comparison of model and experimental data.  

An alternative method renders both datasets unitless by dividing each set by its maximum 

value; this also scales the data range from zero to one.  Finally, this pre-processing step 

may be avoided by use of implicitly-scaled error measures such as cosine distance or the 

information measures.  In addition, if the relative spatial positions of biochemical species 

are an important criterion for optimization, data pre-preprocessing via dynamic time 

warping may serve to align spatially offset data before objectives are applied.  A schema 

for objective function selection is shown in Table 1.  Note the many more objective 
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functions exist than are listed here; the Encyclopedia of Distance Measures provides brief 

descriptions of a greater number than can be discussed here [231].  
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Table 1. Criteria for selecting appropriate objective functions 

Cost function criteria   
Error selection criteria Objective function(s) Scaling or normalization 
Exact fit of concentrations SSE, MSE, Euclidean , 

RMSE, Manhattan, MAE, 
norm 

Transformation to bring 
units and magnitudes into 
agreement 

Emphasis on  spatial 

distributions 

Cosine distance, relative 
entropy 

Rescaling is implicit in 
these functions; Dynamic 
space warping may be 
required 

Relative spatial positioning 
with exact concentrations 

SSE, MSE, Euclidean , 
RMSE, Manhattan, MAE, 

norm with DSW 

Transformation to bring 
units and magnitudes into 
agreement; DSW to align 
spatial offsets  

Relative spatial positioning 
 

Relative entropy, pairwise 
or whole-dataset method 
with DSW 

Rescaling is implicit in 
these functions; DSW to 
align spatial offsets 

Mini-max strategy for 
concentration fitting 

Chebyshev Transformation  to bring 
units and magnitudes into 
agreement 

Abbreviations: DSW, Dynamic space warping; MAE, Mean average error; MSE, 
Mean square error; RMSE, Root mean squared error; SSE, Sum of squared error  
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4.2. Perform a basic global sensitivity analysis 

To choose a well-behaved measure for the objective function, we first carry out a sensitivity 

analysis.  Sensitivity analyses (SA) systematically perturb parameters to characterize a 

 of a morphogen 

changes drastically in response to perturbation of its diffusion constant D, the morphogen 

is said to be sensitive to changes in D[232].  Rather than determining the sensitivities of 

biochemical species to parameter perturbations, we suggest a simple SA to determine the 

sensitivity of cost functions to parameters.  

 

Global sensitivity analyses reveal trends in objective values over the entire parameter 

search space (e.g., parameter regions where objective values are lower), but more 

informative analyses require additional model simulations.  To save time, we recommend 

using an extremely simple global sensitivity approach: Randomly sample the parameter 

space and visually compare changing objective values versus each parameter.  This will 

reveal direct effects of parameters on objectives, but not parameter interactions.   

 

We recommend the Latin Hypercube Sampling (LHS) algorithm for fast sample selection.  

It is quasi-random and guarantees more uniform sampling of the parameter space than 

uniform random sampling [232].  The number of points in the sample will vary depending 

on the computational cost of the model and the size of the space.  This method serves a 

preliminary screen before time-intensive parameter estimation, so we err on the side of 

efficiency rather than completeness: We use a heuristic of at least 1000d sampled parameter 

sets, where d is the number of parameters.  (For the 1D Drosophila gap gene model, 42,000 
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evaluations take approximately six hours.) When the model in question is particularly fast, 

we may choose to increase the number.  For models that require hundreds of seconds to 

evaluate, we may omit this step. 

 

After sample parameter sets are selected and the model is evaluated, we compute all the 

objective functions chosen in Section 4.1 at each sample point.  This creates a list of 

objective values that corresponds to each parameter set.   With this information, we plot 

the each objective value against each model parameter.  Because objective values are only 

plotted against one parameter at a time, the variability of other parameters adds noise to 

the plot; visible trends in these plots indicate global trends in objective sensitivity.  

 

Regions of distinct high and low objective values are indicative of promising search areas 

(low cost regions) within the parameter space.  These objective functions should be 

retained.  Conversely, some objectives may produce only uncorrelated scatterplots; while 

This may present difficulties during optimization[233]. 

 

4.3. Choose an objective or objectives 

Using the above information, we may make an informed choice of objective functions 

rather than defaulting to SSE or RMSE.  If visual analysis yields cost functions with global 

trends these are recommended for use in parameter optimization. 
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Scatterplots without any global trends do not indicate that the selected cost functions are 

inappropriate for parameter estimation.  The sampling performed by random or LHS 

sampling is incredibly sparse when compared to the full-factorial sample.  There may not 

be enough coverage to identify global trends.  While it is not necessary to exclude objective 

functions without global trends, we consider removing them from subsequent steps unless 

(a) all objectives are uncorrelated or (b) objectives showing global trends fail in subsequent 

steps. Here we may choose to retain at least one stringent cost (i.e., a magnitude matching 

function) and an error tolerant (shape matching) function. 

 

4.4. Parameter optimization by sequential optimization 

With objectives in hand, it is now possible to search for optimal parameter estimates.  This 

step costs the most in terms of computation terms and we have undertaken the previous 

steps to identify maximally effective objective functions used in this step. We recommend 

a three-step process: It begins with another stochastic sampling to screen for promising 

parameter sets.  Then these initial sampled points are used with a stochastic global search 

method (e.g., genetic algorithms (GAs) or simulated annealing (SA))[234].  Finally, the 

best point(s) are locally optimized. 

 

For the first task, choose the least stringent objective function you have retained from 

previous steps.  The purpose of this global screen is to generate candidate parameter sets 

for further refinement. To do so, repeat the stochastic sampling discussed in Section 4.2.  

The number of points required is dependent on the global search algorithm you choose.  

The choice of a lenient objective ensures that promising minima and basins of attraction 
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are not discarded prematurely. Dynamic space warping (DSW), normally used in face- and 

handwriting-recognition may also be used if appropriate to the research goals[235].  From 

the results of the screen, identify the lowest-error point(s) as required for your chosen 

global search algorithm (such as the initial population of a GA or the starting point of SA). 

 

The second task is the time-intensive parameter estimation step that would typically begin 

with a pre-chosen objective such as SSE or RMSE.  Here, the promising parameter 

dataset(s) from the previous screen are used to initialize the stochastic search of the 

parameter space.  Depending on available resources, this may be run once or multiple times 

to generate one or more optimal parameter sets for analysis. 

 

For the third task, screen the resulting point(s) with a follow-up local search.  The stopping 

criteria of global optimization methods generally stop the search short of the minimum of 

a basin.  The purpose of the subsequent local search is to obtain the nearest minimum in 

the region of the solution found by the global search.  We recommend switching to a more 

stringent objective for this task.  The retained parameter sets should already be in the basins 

of the minima we wish to reach, so the risk of entrapment in another local minimum is 

lessened.  The more stringent objective will enforce a closer fit between model and data. 

 

5. Conclusions 

Models that have been rigorously constrained to the available data can be used in a number 

of ways that complement the existing tools for experimental discovery. 
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Two- primary motivations for using modeling as part of the repertoire of experimental 

methods are to test new hypotheses with the model or to use the data obtained to reverse 

engineer the networks and/or parameters of signal regulation. For instance, while many 

mechanisms are testable in principle and may serve as inspiration for further 

experimentation, technical limitations such as the lack of appropriate antibodies, lack of 

equipment, and reagent costs sometimes make testing impractical. Using parameter 

estimation, mechanistic models may act as surrogate systems for interrogation when direct 

experiments are impractical.  These surrogates might indicate an informative subset of 

possible experiments on which to expend limited resources. 

 

Whereas hypothesis testing typically proceeds from identification of falsification criteria 

to experiment, dynamic models permit alternative approaches.  When multiple 

explanations for observed behavior are under consideration and it is impractical to measure 

key concentration or kinetic values, each mechanism may be encoded in a separate model 

structure.  So long as models simulate overlapping observable concentrations and kinetics, 

they may be fit to previously collected data.  The hypotheses (models) are then ranked 

according to agreement with data [236].  Because these models each describe a single 

hypothesis, this surrogate approach is most useful for testing the sufficiency of proposed 

model mechanism(s) to explain observations.  However, its scope is limited compared to 

direct experimentation. Simulated results may be used to rule out insufficient mechanisms 

but are only valid assuming the model is true.  Experiments provide new data about the 

system even if they lead to falsification of prevailing hypotheses. 
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After models are ranked according to their ability to recapitulate existing data, analysis can 

proceed in two directions.  If none of the hypotheses produce agreement with data, further 

hypothesis generation is called for.  If one or more models are consistent with available 

data, the results can suggest additional experimental falsification criteria to discriminate 

between consistent models. For example, the competing viable models may predict 

distinguishable dynamics for observable but unmeasured molecular species.  In this case, 

models drive experimental design by identifying the experiments that will have the greatest 

discriminatory power to resolve differences in the data-consistent networks, a process 

known in engineering as Model-Based Optimal Design of Experiments (MB-ODE) 

[35,237]. 

 

When parameter estimation is used to fit multiple models to data, it allows us to judge the 

sufficiency of competing mechanisms to explain observations.  When investigators are 

confident in a particular mechanism, parameter estimation provides a framework to make 

holistic inferences about the underlying biology.  The last decade has evidenced increasing 

enthusiasm for systems biology with over 15000 instances present in the NCBI PubMed 

database (8500 published since 2010)[238].Despite the promise of whole-system analysis, 

the cost of comprehensive data collection and bottlenecks in data analysis present 

challenges to its implementation.  Here again, models may serve as surrogates for costly 

batteries of high-throughput perturbation experiments. 

 

Once estimated parameter values are selected that approximate observed data, sensitivity 

analyses are used to test the fragility and robustness of the system to parameter changes 
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and state perturbations.  Clinically, fragile parameters may suggest targets for therapeutic 

intervention in signaling models of disease [239].  Conversely, robustness may be a design 

criterion in synthetic biology [240].  In developmental biology, robustness is related to the 

concept of canalization [164]. More generally, these predictions may inform experimental 

design for hypothesis falsification: Models predict which experimentally observable 

species are sensitive to small experimental perturbations to suggest experimental targets 

for model (hypothesis) discrimination. 

 

Beyond model discrimination and inference about system behavior, parameter estimation 

may be used to infer the structure of biological pathways and genetic regulatory networks 

[128,138-140,158,241].  Reverse engineering of the gap gene network in Drosophila 

demonstrates both the utility and the challenges of inferring gene regulatory networks from 

image databases and a mathematical model.  The richness of the existing data and tools 

available to acquire new data to inform models, and the evolution of algorithmic 

approaches to include diverse data in model optimization continue to drive the systems 

biology of development forward.  Looking forward, our hope is that mechanistic models 

integrate more closely with experimental inquiry, and that they are more widely used 
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CHAPTER 5. THE STATE OF THE ART AND FUTURE DIRECTIONS 

The gap genes of D. melanogaster are an attractive model system for the study of 

developmental genetic regulatory networks.  They represent a relatively small and 

tractable GRN with almost three decades of experimental 

literature[110,113,114,116,117,152-156]. Before modeling approaches were brought to 

bear, experimental data consisted of primarily mutant phenotypes.  Using these data, 

developmental biologists were able draw conclusions about genetic interactions.  

However, studies were often limited to examining regulatory interactions between pairs 

of genes[114,116,153,155].  The ability to quantify the gap gene products with increasing 

-based 

inference .  In addition to predicting 

GRNs[128,138,139,157,158,160], these models have been interrogated as surrogate 

systems for testing t

developmental patterning[126,142,242-244].   

 

Many open questions remain regarding the specific regulatory interactions of the gap 

gene system and the genetic, physical, and evolutionary properties of pattern formation 

during development.  Part of my future work will be implementation of a discrete-state 

dynamic model of the gap gene network.  This type of simplified model loses a degree of
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quantitative information (proteins are either absent or present) and biological realism, but 

can d

space is also discretized to a finite number of GRNs; this reduces the size of the search 

and will allow complete screen of the parameter space via parallelized computing.  The 

study will serve multiple functions.  It will allow identification of the set of GRNs 

capable of generating observed gene expression data, though the coarse-grained nature of 

the discrete parameters may prevent some continuous solutions from being reported.  The 

mapping of genotypic GRN structures to phenotypic morphological outcomes will 

 common patterns of connectivity that generate 

similar phenotypic outcomes or regulatory strategies (e.g., lateral inhibition[245]).  

Finally, the ongoing publication of several Drosophilae genomes now allows for 

prediction of the cis-regulatory elements in different Drosophila species[246-248].  

Using genomic knowledge to focus on subsets of the complete GRN-to-phenotype 

mapping, I will determine which, if any, of each species genome-compatible GRNs give 

rise to species-specific patterning.  Whereas the GRN-to-phenotype map may identify 

patterns of regulation, this species-specific analysis can provide knowledge of 

developmental GRN evolution. 

 

My analysis of the gap gene system brought to light several shortcomings of current 

modeling approaches.  The imposition of internal domain boundaries  a practice widely 

adopted in the 1D gap gene modeling literature[128,138,140,158,160,161,163]  

artificially constrains protein concentrations at these boundaries and has the potential to 

add systemic errors near the domain boundaries.  I avoided this source of error by 
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modeling proteins of the entire embryonic domain (Chapter 3).  Analysis of the 1D 

models in Chapter 3 revealed the shortcomings of common error quantification methods 

and led me to characterize several classes of objective functions (Chapter 4).  Comparing 

these objective functions led to the development of objective function selection criteria 

for optimal research-specific objectives. The most concerning limitation of existing 

models is the lack of precautions to avoid overfitting.  This phenomenon occurs when 

many unknown parameters must be estimated; estimation may be inaccurate because 

many parameter values are altered to partially account for noise in data.  The resulting 

GRNs reproduce the data to which they were fit, but are unrealistic in that they make 

poor predictions of new data[36].  The parameter estimation problem emphasizes the 

challenge of simultaneously searching for many unknown parameters in any high-

dimensional (here, 28+ parameter) spaces.  Despite the large number of unknown 

parameters, other gap gene modeling studies report alternative GRNs obtained via 

comparable parameter estimation methods (sometimes searching 40+ 

parameter)[128,138,139,158].  The striking disparity between these wildtype-consistent 

optimization and my GRN optimization outcomes has led me to consider current 

modeling approaches in the field and highlights underlying shortfalls of many biological 

modeling studies. 

 

Since the early models of the 2000s, gap gene modelers have become increasingly 

ambitious, attempting to incorporate additional genes and biological interactions into 

their simulations[140,161]. The goal seems to be the construction of more comprehensive 

Drosophila gap gene models 
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tested.  This type of integrative modeling may foster greater understanding of so-called 

emergent behaviors unattainable by reductionist approaches, but model interpretability 

and predictive reliability suffer as the number of parameters grows.  As the meaning of 

model behavior is obscured, the concept of what constitutes a successful modeling study 

becomes unclear.  To date, the implicit criteria for a successful gap gene model have been 

its ability to recapitulate the expression data to which model parameters were fit and, 

sometimes, subsequent evaluation of model robustness to parameter 

perturbations[157,160].  The latter criterion is based on the evolutionary-developmental 

assumption that robustness protects embryonic development from environmental 

perturbations and is a trait subjected to positive selection[245].  This approach to model 

assessment fails to evaluate the crucial feature of dynamic models  their ability to 

predict new data.  This model validation is performed by generating new test data against 

which the model error is computed or, when generation of additional data is infeasible, 

partitioning of the available data into training and test sets (cross-validation)[249]. 

 

In gap gene modeling, the effect of neglecting validation is best illustrated by the failure 

of reported GRNs to correctly predict the behavior of mutant phenotypes when the 

e.g., is set to zero to represent a 

knockout mutant).  The only model to date capable of reproducing a Krüppel mutant 

phenotype was fit using mutant data[163]; as such, it did not predict the phenotype 

independent of training.  The model incorporated artificial internal boundary conditions 

that further render the biological GRN inferences suspect.  With this exception, inferred 
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GRNs are not yet capable of predicting mutant test data, strongly indicating overfitting of 

the model. 

 

Overfitting occurs when data-model error itself is predicted by fitting 

 parameters which may not correspond to any true biological 

interaction[250]. This leads to unrealistic parameter values (e.g., a gap gene regulatory 

parameter wa b may take a promoting or repressing value to compensate for error even 

though genes a and be b do not interact in vivo).  When new data are predicted with these 

unrealistic GRNs, the results are unlikely to agree with test data. 

 

This characteristic failure of model-inferred GRNs to predict new data demands 

reevaluation of existing work and incorporation of measures to counter overfitting in 

future studies.  Until overfitting is accounted for, the simulation of complex biological 

systems will grow harder to interpret as many parameter values are modified to account 

for residuals between model and data.  In this chapter, I discuss two approaches, used 

frequently in regression and statistical models[36,251], to reduce overfitting in the gap 

gene system.  Finally, I present preliminary work on a simplified discrete -space, -time, -

concentration, and -parameter model that allows a full search of the GRN parameter 

space. 

 

5.1 Overfitting and Its Implications 

The problem of overfitting arises from a fundamental tradeoff between 

to exactly fit a particular dataset (referred to as bias in statistical literature) and its 
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residual error (referred to as variance)[252].  Too much variance is equivalent to a poor 

model fit using error metrics, but too much bias toward particular data sometimes 

prevents a model from making generalizable biological predictions. 

 

To demonstrate this tradeoff, consider the following empirical model fitting. Unlike 

mechanistic models that are constrained by assumptions about the systems under study, 

these models attempt to fit various functions to data without mechanistic interpretation. 

The black points of Figure 5.1A represent data generated from a linear function with 

normally distributed noise , 

 

         (5.1a) 

 

.         (5.1b) 

 

The blue and red lines of Figure 5.1A represent fits to the training data for a linear model 

with 2 parameters, 

 

,         (5.2) 

 

and a sum of sines model with 24 parameters,  

 

,  (5.4) 
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respectively.  To compare the quality of each fit, the Euclidean distance between the 

model predictions (  values) and training data (y values).is computed: 

 

.         (5.5) 

 

Here, there are n training data.  Values  and yi are the ith prediction and datum, 

respectively.  It is clear from visual comparison of Fig. 5.1A that the distance between 

training data (black points) and the sum of sines predictions (red line) is less than the 

distance between training data and the linear fit (blue line).  The sum of sines fit has a 

Euclidean distance of 0.711 when fit to the training data, but it exhibits multiple maxima 

and minima absent from the linear function used to generate data. However, the true  

linear model that originally generated the training data has a larger error (Euclidean 

distance = 3.52) when compared to the training data.  Without further analysis, these 

results might suggest that the sum of sines is a preferable model.
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Figure 5.1 Overfitting and Model Complexity 
 

Comparison of two empirical fits to synthetic training data (A, black points).  Red lines 
represent an eight-term sum of signs function with 24 parameters (amplitude a, frequency 
b, and phase c for each term) fit to the training data in A. Blue lines represent a linear 
function with two parameters (slope and intercept) fit to training data in A.  The sine 
function fits training data with a Euclidean error of 0.711 and the linear function fits 
training data with a Euclidean error of 3.52.  Additional test data (B, green points) is used 
to evaluate sine and linear fits.  The sine function fits test data with a Euclidean error of 
17.58 and the linear function fits test data with a Euclidean error of 3.71.  
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However, the above fits are based solely on the training data (Fig. 5.1A, black points).  

Without a secondary test dataset, the bias-variance tradeoff of the two fits cannot be 

to predict these data is compared.  Consider a new test dataset drawn from the same 

distribution as the training data (eqn. 5.1) in Figure 5.1B (green points).  The linear fit 

demonstrates a modest increase in Euclidean error (from 3.52 to 3.71) when predicting 

the test data, but the sine function Euclidean error increases from 0.711 to 17.58.  As the 

optimal tradeoff of bias and variance.  The more complex sum of sines model produces a 

better fit to the training data, but it is biased; it fits the normally distributed noise in 

addition to the underlying linear signal. 

 

Overfitting behavior is also observed in dynamic modeling constrained by mechanistic 

assumptions (encoded into the system of differential equations)[253].  One of the 

assumptions underlying the current gap gene modeling paradigm is that fitting an entirely 

interconnected GRN with 28+ potential interactions will result in GRNs with realistic 

biological interactions. As seen in the empirical sum of sines model, the inclusion of 

many parameters creates the possibility that some of these parameters assume unrealistic 

values to reduce error between the model and training data.  Because no standard 

reference exists for the true genetic interactions in the gap gene system, it is not possible 

to directly assay overfitting by comparing GRNs to the reference.  Even without a direct 

test, current results suggest that overfitting is occurring.  Existing models perform poorly 

when used to predict additional mutant test data.  This result may be attributable to other 
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causes such as incorrect or incomplete model structures (hypothesized mechanisms), but 

it is consistent with bias due to overfitting.   Theoretical work and empirical findings 

suggest that GRNs tend to be sparsely connected[254-257].  However, the simulation-

inferred GRNs exhibit many genetic interactions[127,140,157,158,160,161,163] with 

relatively few low magnitude, near-zero edges (e.g., see low magnitude regulatory 

parameters wKr,Hb, wTll,Hb, wKni,Gt, wBcd,Tll, wTll,Tll in Chapter 3, Figure 1).  Together, the 

discrepancy between the expected sparsity of the true network and the highly 

interconnected inferred network, coupled with the poor predictive power of extant 

models, suggests that key findings reported from modeling studies have been based on 

overfit and unrealistic models.   

 

There are steps that can be implemented to reduce the effects of overfitting in gap gene 

simulations.  One method is model validation.  As discussed, this involves comparison of 

the parameterized model output to new test data.  A general test of a model s power is to 

predict additional data, but good fits to training data coupled with poor predictions of 

training data are indicative of overfitting[258]. Validation depends on the ability to 

generate new test data or set aside data as a test set.  In situations where all available data 

must be used for training and generation of new data is infeasible, cross-validation 

techniques iteratively withhold subsets of data for model testing.  The resulting 

parameters sets are evaluated by how well they predict the withheld data.  Finally, the 

requirement for GRN sparsity can be enforced during parameter estimation by inclusion 

of a regularizer in the objective function. This is a term that penalizes the non-zero 

parameter values, countering the decrease in residual error that occurs when error is 
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compensated for by many parameters[259].  Using these methods in combination with 

model-based gap gene GRN inference may increase the realism of predicted GRNs 

(assuming the underlying model is sufficient), and will reduce effects of overfitting. 

 

5.2 Countering Overfitting 

Extant gap gene models behave in ways that are consistent with biological observations 

and intuition  when simulating wildtype data.  Some model dynamics have proven 

robust to perturbations, which is thought to ensure healthy growth of developmental 

systems[260-279].  Jaeger et al

consistent with experimental evidence.  However, the lack of compensation for 

overfitting makes extrapolations suspect.  Reevaluating the parameter-estimation-as-

inference approach while controlling for overfitting is a logical step to advancing model-

driven studies of the gap gene system.  To do this, I propose regularization of objective 

functions during parameter estimation and cross-

the estimated GRNs. 

 

Validation of the gap gene system seems straightforward. Generate new data against 

which model can be tested, then discard GRNs that cannot predict the new data within a 

user-specified margin of error.  However, generation of new data is not always a viable 

option, especially when a model is constructed and its parameters are estimated using 

previously published datasets.  When data generation is not an option, another option is to 

withhold some data from training and use it as a test set.  In this case, there is tension 

between how much data should be used to train a model and how much should be 
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retained for testing.  For example, inclusion of mutant data in the training set for a gap 

gene model should lead to parameter estimates (GRNs) capable of accounting for both 

wildtype and mutant data[163], but this approach prevents the use of mutant data for 

testing.  Mutant data is often reported qualitatively, further complicating comparison with 

qualitative model output[32].  this research area is that data is 

wasted when it is withheld from testing; GRN parameters are typically trained on all 

available data and analyze the resulting GRNs without further validation. 

 

To address the lack of validation in current models r 

training, I propose use of cross-validation to test GRN performance.  This resampling 

approach involves iteratively (i) partitioning available data into training and test sets, (ii) 

estimating parameters using the training partition, (iii) evaluating performance on the test 

partition, and then repeating the process after repartitioning data into new training and 

test sets[249].  Though some overfitting will occur in any dataset containing noise, cross-

validation has been shown to reduce the effects of overfitting.  In this approach, GRNs 

with the best performance during testing can be ranked according to their test set 

residuals.   

 

Using the steps outlined above, cross-validation reduces the waste of testing data  all of 

the data are used as training and test data in in different partitions  while countering the 

effects of overfitting. In the simplest - but most costly - version of cross-validation, leave-

one-out cross-validation, one point of n data is retained for testing and n  1 data are used 

for training.  Iteratively, each of the n points is withheld, the parameters are estimated, 
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and the testing error computed[249].  However, the computational cost of parameter 

estimation makes this approach infeasible.  Parameter estimation for the 3D gap gene 

model, discussed in Chapter 3, requires approximately 180 seconds per model evaluation 

and may take weeks to estimate a single parameter set.  With a 3D dataset of 

approximately n =  2.4×104  points, repeating parameter estimation n times is not a 

realistic possibility.  Even 1D model variants, which require approximately half a second 

per evaluation and use less numerous 1D data, may need hours to days for parameter 

estimation.   

 

K-fold cross-validation avoids this computational bottleneck by sacrificing the number of 

training data for computation efficiency. Available data are divided into k randomly 

chosen partitions.  In each iteration of parameter estimation, one partition is withheld as 

test data while k  1 partitions are used for training. Parameter estimation is performed k 

times, where k is smaller and more tractable than n.  (Leave-one-out cross-validation 

occurs when k is equal to n.)  This method never trains GRNs on more than k  1 

partitions, meaning that 

propose reevaluating key model findings including Jaeger et al. -gene 

model[138], Manu et al [161], and the Ashyraliyev et al.

inclusion of the protein Huckebein[140] to see how their inferred GRNs compare to 

cross-validated variants. 

 

Cross-validation provides one way to control for overfitting; regularization provides 

another.  Regularization is commonly used in regression to minimize the number of 
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predictors  and therefore parameters  in a model[251].  Consider a regression problem 

in which a dependent variable y may be predicted by independent variables x1 through xp, 

 

.        (5.6) 

 

Parameters b0 through bp may all be assigned nonzero values during parameter 

estimation, but this is likely to result in overfitting of the model to account for both signal 

and noise in y.  Suppose the objective function used in parameter estimation is the sum of 

squared error (SSE),  

 

,        (5.7) 

 

where b is the parameter vector containing b0 through bp, is the model prediction of 

the ith data point,  is the ith data point.  When minimized, this formulation of the 

objective function will minimize overall training error, but not the number of nonzero 

parameters.  When an L1-norm regularizer is included,  

 

,       (5.8a) 

 

where  is a scaling term and  is the L1-norm of b, 

 

,         (5.8b) 
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the second term acts as a penalty as the magnitudes of the parameter values increase. The 

 factor scales this penalty so that it is of the same magnitude as the SSE error metric.  

The L1-norm regularizer acts to concentrate model error into fewer nonzero parameters 

rather than selecting for the overall lowest training error[251].  Though eqn. 5.7 might 

return a lower overall error, eqn. 5.8 penalizes overfitting. In the context of the gap gene 

system, the regularizer should produce sparse GRNs consistent with theoretical 

evolutionary models[255,256]. 

 

Together, these measures against overfitting may lead to radically different  and 

possibly more biologically realistic  GRNs than have been previously inferred.  

measure of overfitting and GRN error, reevaluation of prior predictions in light of these 

additional constraints is a crucial initial step for further model-driven studies of the gap 

gene system. 

 

The issue of overfitting arises in part from the large number of unknown free parameters 

that are optimized.  Without using prior knowledge to constrain and fix parameter values 

in advance, more parameters are available to compensate for error.  The large number of 

continuous parameters also limits the coverage of any search algorithms used during 

parameter estimation.  Trading biological detail for computational efficiency, I am 

developing a time-, space-, and state-discrete model of the gap gene system. 
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5.3 A Complete Search of the Gap Gene Parameter Space 

Though the continuous models of the gap gene system provide quantitative protein 

expression values and near-continuous time resolution, the large parameter spaces 

associated with them prevent exhaustive searches for possible GRNs.  Due to the sheer 

size of the space, there is no guarantee that GRNs capable of simulating biological data 

will be found in a particular search. To increase the coverage of possible GRNs, I am 

designing an efficient discretized version of the 1D gap gene model using discrete 

concentration states (c = 0 or 1, present or absent), spatial positions (x = 1 to length l), 

times (t wa,b = -1, 0, or 1, inhibitory, neutral, promoting).  

This last discretization changes the parameter search from one performed on a 

continuously searchable 28+ dimensional space to one performed on 324 to 328 (

 to 2.29  depending on the model variant) discrete possible GRNs.  These 

numbers are within the upper range of model evaluations that may feasibly be computed 

with efficient software and access to sufficient CPUs.  

 

This model approximates the PDEs of the 1D model of Manu et al[161]. Only four gap 

gene products are simulated in this system: Gt, Hb, Kni, and Kr.  Cad and Tll are treated 

as inputs that vary over time, but their dynamics are interpolated from data and are 

independent of the simulated transcription factors (Fig. 5.2).  This PDE system is similar 

to 

concentrations are modeled by a differential equation, 

 

,        (5.9) 
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where a represents each of the four simulated species.  The first term, containing the 

diffusion constant Da times the spatial gradient of transcription factor a, represents 

diffusion.  The last term models first degree decay with the kinetic constant , and the 

middle term controls gene expression. Ra is the maximum expression for protein a and 

 is a sigmoidal function, 

 

,         (5.10) 

 

that acts as a switch  gene expression is repressed when  is negative and enhanced 

when  is positive.  The argument  is evaluated across the spatial domain and sums 

positive and negative regulatory effects of all genes present at each position, 

 

.         (5.11) 

 

The ha term is positive or negative, representing intrinsic expression or inhibition, 

respectively. Index b represents each of the seven total simulated and independent 

proteins, Bcd, Cad, Gt, Hb, Kni, Kr, and Tll.  Regulatory parameters (GRN edges)  

are positive or negative, representing enhancement or inhibition of protein a by protein b, 

respectively.
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Figure 5.2 Reduced Four-Species Gap Gene Model 

 
This reduced GRN represents genetic regulatory interactions between four simulated 
proteins, Gt, Hb, Kni, and Kr.  Regulation of these proteins are subject to three 
independent inputs with spatiotemporal dynamics independent of the simulated proteins 
(i.e., interpolated from data).  Each arrow represents a regulatory parameter dictating the 
effect of a regulatory protein on its target.  Negative parameters indicate repressor 
activity and positive parameters indicate promoter activity.  Parameters with magnitudes 
of zero indicate absence of regulatory interactions.
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This continuous spatiotemporal system has been converted into a discrete model with the 

following simplifications.  The 1D domain has been divided into l segments with 

reflective boundary conditions at either AP extreme.  Proteins are either present or absent 

at each segment.  More importantly, time has been treated as a series of updates of the 

system states.  This is a notable departure from the continuous case because the solver no 

longer chooses intervals to minimize error; rather, the time interval is effectively scaled 

to the slowest biochemical or physical process occurring in the system (usually protein 

degradation).  Faster processes are assumed to occur during the duration of the interval, 

and this method sometimes leads to unrealistic behavior of the system.  To account for 

these change in space, state, and time representations, update method 

differs substantially from the PDE solver approach.  For each position segment x, the 

binary system state indicates the presence (1) or absence (0) of protein a is determined as 

follows: 

 

.     (5.12a-b) 

 

Note that explicit diffusion and decay terms have been removed in this formulation.  

Transport is now accounted for in the regulatory term , and decay is implicit in the 

discrete time update rule.  In the absence of regulation, or when repressors and promoters 

cancel out  (  in eqn. 5.12b), proteins are assumed to degrade to zero before 

the next time update.  The structure of   is also modified in this model.  Notably, it 

is now a function of the spatial coordinate x due to the incorporation of mass transport: 
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.    (5.13a-c) 

 

This modified function now accounts for diffusion and gene expression.  The first term in 

this summation is similar to the original regulatory function in eqn. 5.11; it sums the 

regulatory weights  of each transcription factor present at position x.  However, each 

transcription factor b now takes a value of one or zero and regulatory weights   take 

values of negative one, zero, or one depending on the GRN.  The second term of the 

summation implicitly represents diffusion.  Because each time step is deemed sufficiently 

long to allow all biophysical processes to occur before the next iteration, regulation is 

updated assuming transcription factors have diffused from adjacent spatial segments (at 

).  In the cases of the AP extrema (x = 1 or l), the form of ua is modified 

remove contributions from nonexistent segments (i.e., x = 0 or l + 1, eqns. 13b-c) and the 

remaining term is doubled to approximate conservation of mass.  Finally, the constitutive 

expression term ha is removed to reduce the parameter space to a more tractable size of 

324.  A more complicated model variant can incorporate constitutive expression into eqn. 

5.12 to form, 

 

,    (5.14a-b) 

 

but this variant increases the GRN search space to 328 networks, pushing the limits of 

computational resources. 
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In either model variant, the same starting information required for PDEs is needed for 

model evaluation.  The initial states at the first time point are required; the discretized 

versions (thresholds set to ½ maximum for each protein species) are shown in Figure 

5.3A.  A GRN parameter set is also required, with each edge in Figure 5.2 assigned a 

value of negative one, zero, or one.  The error between model and data is calculated by 

summing the residuals between model output and discretized data (Fig. 5.3A).  Lack of 

standardized conversion methods for transforming qualitative mutant data to the discrete 

representations in Figure 5.3 may limit available training data (and there are few data 

points that may be withheld for training).  Regularization of the discretized parameter sets 

remains an option to control for overfitting. 

 

Currently, the model is implemented in Matlab and conversion to more efficient C code 

is in progress.  This will allow for efficient memory management and faster evaluation 

times, making complete surveys of the GRN search space less computationally 

expensive.  Even the relatively slow Matlab implementation has recovered near-matches 

(Fig. 5.3B) to the training data in Figure 5.3A. These GRNs were obtained using only 

random sampling of the GRN space. 

 

Taking into account the potential artifacts caused by the time discretization and the loss 

of time, space, and concentration resolution, these discrete models are not replacements 

for continuous PDE simulations. Rather, they will serve as a screening tool for 

identification of coarse integer-valued GRNs that reproduce model data.  Discrete GRNs 
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producing good fits to data may be used as starting points for parameter estimation in 

continuous models, reducing the overall computational expense of gap gene modeling. 

 

5.4 Concluding Remarks 

This two-pronged approach  critically reevaluating past models after reducing 

widespread overfitting and completely evaluating the space of possible GRNs  has the 

potential to improve systemically inaccurate GRN inferences and provide new insights 

into the working of realistic gap gene GRNs under theoretical evolutionary constraints. It 

also stands to inform evolutionary-developmental biology.  Analysis of common patterns 

in the complete survey of possible GRNs may reveal regulatory motifs capable of giving 

rise to spatial patterning; combined with comparative genomics of twelve Drosophila 

genomes, this map of motifs to patterning properties can demonstrate how different 

Drosophila 

both the physical processes underlying development and the evolutionary pathways 

bodyplans. 

 

The biological focus of this work is the elucidation of poorly understood genetic 

regulatory networks via modeling and parameter estimation. Dynamic modeling studies 

in biology are frequently limited by low temporal and/or spatial data resolution, meaning 

that parameter estimation is often underdetermined. Because data are often insufficient to 

reveal a single optimal parameter set, our proposed approach will identify the minimally 

connected GRN(s) in the efficient discrete framework and subsequently optimize 

parameters on those GRN edges in the quantitative continuous framework. The first step 
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takes advantage of the fast discrete model simulation and reduced discrete parameter 

space to allow identification of the smallest GRNs capable of reproducing qualitative 

expression data. The second step takes advantage of the quantitative accuracy of 

continuous PDE simulation to determine whether those GRNs can fit quantitative data. In 

each step of the process, careful selection of objective functions will enhance parameter 

optimization, while selection of test data for cross-validation will reduce over-fitting, 

respectively.  Once this approach is tested and refined, it may serve as a valuable asset for 

researchers reverse-engineering complex genetic regulatory systems. 
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Figure 5.3 Discretized Gap Gene Data and Sample Model Output 
 
(A) Independent transcription factor model inputs and discretized immunofluorescent 
training data (used to fit simulated transcription factors) were derived from 3D 
Drosophila blastoderm expression data[280].  The AP domain is divided into ten 
segments.  Grayed out areas of the domain represent regions of the embryo where 
confidence in the model is low; data in these regions are not used for fitting and are 
omitted from the image.  Random searches of the GRN parameter space for the 24-
parameter model variant (eqn. 5.12) have yielded no perfect matches with data, but have 
returned two networks capable of producing model results (B) with errors of two (out of a 
total of twenty). 
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