
Demand Response in Smart Grid

by

Kan Zhou

B.Sc., Southeast University, 2008

M.Sc., Southeast University, 2011

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Electrical and Computer Engineering

c⃝ Kan Zhou, 2015

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.



ii

Demand Response in Smart Grid

by

Kan Zhou

B.Sc., Southeast University, 2008

M.Sc., Southeast University, 2011

Supervisory Committee

Dr. Lin Cai, Supervisor

(Department of Electrical and Computer Engineering)

Dr. Xiaodai Dong, Departmental Member

(Department of Electrical and Computer Engineering)

Dr. Kui Wu, Outside Member

(Department of Computer Science)



iii

Supervisory Committee

Dr. Lin Cai, Supervisor

(Department of Electrical and Computer Engineering)

Dr. Xiaodai Dong, Departmental Member

(Department of Electrical and Computer Engineering)

Dr. Kui Wu, Outside Member

(Department of Computer Science)

ABSTRACT

Conventionally, to support varying power demand, the utility company must pre-

pare to supply more electricity than actually needed, which causes inefficiency and

waste. With the increasing penetration of renewable energy which is intermittent

and stochastic, how to balance the power generation and demand becomes even more

challenging. Demand response, which reschedules part of the elastic load in users’

side, is a promising technology to increase power generation efficiency and reduce

costs. However, how to coordinate all the distributed heterogeneous elastic loads

efficiently is a major challenge and sparks numerous research efforts. In this thesis,

we investigate different methods to provide demand response and improve power grid

efficiency.

First, we consider how to schedule the charging process of all the Plugged-in Hy-

brid Electrical Vehicles (PHEVs) so that demand peaks caused by PHEV charging

are flattened. Existing solutions are either centralized which may not be scalable,

or decentralized based on real-time pricing (RTP) which may not be applicable im-

mediately for many markets. Our proposed PHEV charging approach does not need

complicated, centralized control and can be executed online in a distributed manner.

In addition, we extend our approach and apply it to the distribution grid to solve

the bus congestion and voltage drop problems by controlling the access probability
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of PHEVs. One of the advantages of our algorithm is that it does not need accurate

predictions on base load and future users’ behaviors. Furthermore, it is deployable

even when the grid size is large.

Different from PHEVs, whose future arrivals are hard to predict, there is another

category of elastic load, such as Heating Ventilation and Air-Conditioning (HVAC)

systems, whose future status can be predicted based on the current status and control

actions. How to minimize the power generation cost using this kind of elastic load is

also an interesting topic to the power companies. Existing work usually used HVAC

to do the load following or load shaping based on given control signals or objectives.

However, optimal external control signals may not always be available. Without such

control signals, how to make a tradeoff between the fluctuation of non-renewable pow-

er generation and the limited demand response potential of the elastic load, and to

guarantee user comfort level, is still an open problem. To solve this problem, we first

model the temperature evolution process of a room and propose an approach to esti-

mate the key parameters of the model. Then, based on the model predictive control,

a centralized and a distributed algorithm are proposed to minimize the fluctuation

and maximize the user comfort level. In addition, we propose a dynamic water level

adjustment algorithm to make the demand response always available in two direc-

tions. Extensive simulations based on practical data sets show that the proposed

algorithms can effectively reduce the load fluctuation.

Both randomized PHEV charging and HVAC control algorithms discussed above

belong to direct or centralized load shaping, which has been heavily investigated.

However, it is usually not clear how the users are compensated by providing load

shaping services. In the last part of this thesis, we investigate indirect load shaping

in a distributed manner. On one hand, we aim to reduce the users’ energy cost by

investigating how to fully utilize the battery pack and the water tank for the Combined

Heat and Power (CHP) systems. We first formulate the queueing models for the

CHP systems, and then propose an algorithm based on the Lyapunov optimization

technique which does not need any statistical information about the system dynamics.

The optimal control actions can be obtained by solving a non-convex optimization

problem. We then discuss when it can be converted into a convex optimization

problem. On the other hand, based on the users’ reaction model, we propose an

algorithm, with a time complexity of O(log n), to determine the RTP for the power

company to effectively coordinate all the CHP systems and provide distributed load

shaping services.
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Chapter 1

Introduction

1.1 Background

In the past decades, electricity power generation from fossil fuel, including oil,

coal, and natural gas, produces a lot of pollution to the environment all around the

world. To reduce these harmful emissions and replace them by clean energy, people

are trying to find alternative energy resources which are sustainable and environment

friendly. The existing renewable sources include wind, solar and etc. However, the

power generation from these renewable sources are usually intermittent and thus

cannot be integrated into the current system easily. In addition, the current power

system which has severed us for decades is becoming insufficient and inefficient to

meet the increasing electricity demand. As a result, voltage sags, blackouts, and

overloads are more frequent during the past decades around the world. All of these

call for a revolution in the current power grid.

With the help of communication and information technologies, the next-generation

electricity power system, called Smart Grid, incorporates diversified renewable energy,

and is featured with automated and intelligent management to help users and utility

companies save cost [94, 62, 39, 40, 38]. Unlike conventional power plants which

adjust the power supply according to the change of load, load adjustment is one of

the most important new feature in Smart Grid. With smoother load variation, spin

reservation can be reduced to save cost and improve efficiency.

Demand response (DR), which allows power generation and load to interact in an

automated fashion based on information technology, is the most important method

to coordinate demand and flatten load spikes. The main idea of DR is to manage
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customers’ electricity consumption in response to supply conditions or market prices.

This is beneficial to both power companies and users because users can cut their

energy bills by delaying elastic load to the time slots when the electricity price is low.

However, the application of demand response also introduces fundamental chal-

lenges. Without a good control algorithm, inappropriately controlled devices may

lead to new peaks and affect users’ comfortableness.

This dissertation is to study different demand response control strategies from

various perspectives in Smart Grid. Specifically, we focus on the DR scheduling of

Plug-in Hybrid Electric Vehicles (PHEV), Heating Ventilation and Air-Conditioning

(HVAC) systems and Combined Heat and Power (CHP) systems from the perspective

of both the power company and the end users. The reason we choose them is that

they are the most typical elastic loads which are heavily investigated in recent research

papers.

1.2 Research Problems

1.2.1 PHEV Charging Scheduling to Flatten Load Peaks

To reduce the dependence on fossil fuel and eliminate harmful emissions to the

environment, PHEV has attracted more and more attention. Most vehicle companies

have introduced new PHEV models to the market in recent years. In addition to

its environment-friendliness, PHEV brings both challenges (due to its high electricity

demand) and opportunities (thanks to the elasticity of its demand) to future Smart

Grid. Without proper control, the charging of PHEV will create new peaks which

are a heavy burden to the power grid.

How to manage the charging of PHEVs so the negative impacts caused by uncon-

trolled charging can be minimized has become an active research topic [94]. Generally

speaking, the existing approaches can be classified into two categories: centralized and

decentralized. By using the centralized approach, optimal charging schemes can be

obtained through solving optimization problems. It has several disadvantages though.

First, centralized optimization needs several critical information, such as the

schedule of arrival and departure of PHEVs, future inelastic electricity demand and

power supply information, etc., which is difficult to obtain, particularly if the pow-

er supply includes renewable energy. Second, the complexity to solve optimization

problems with many variables and constrains can be too high to be scalable. Third,
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centralized control is not robust due to the single-point failure problem. Finally, cen-

tralized management may affect users’ privacy, and it may not be acceptable to some

customers.

Decentralized approaches usually rely on real-time pricing (RTP) to coordinate

the distributed smart agents. In order to use RTP, the power plants need to broadcast

the RTP for the next period of time before the demand scheduling decisions made

by the smart agents, which may lead to harmful demand oscillations. For example,

if the price is set too low, a large amount of elastic load will be turned on and causes

peaks, and vice versa.

The above challenges motivate us to propose a decentralized access algorithm,

which can efficiently coordinate all the distributed smart agents to avoid harmful

peaks caused by PHEV charging on the high-voltage power grid. However, in this

part, we do not consider the impact of PHEV charging on the distribution grid, such

as bus congestion and voltage drop. In the next part, we will extend the proposed

algorithm to the distribution grid so that both bus congestion and large voltage drop

can be avoided even with a large PHEV population.

1.2.2 Randomized PHEV Charging Under Distribution Grid

Constraints

For the decentralized PHEV charging algorithm, the previous work mainly focused

on the grid constraints at the transport and high-voltage transmission grid [37, 97].

Recent research started to pay attention to the distribution grid. The two most

common problems in the distribution grid are bus congestion and voltage drop. As we

will discuss in Chapter 3, existing approaches mainly focus on centralized optimization

technologies which need accurate predictions and may be difficult to solve within a

short time period given a large grid size. In the low voltage grid, some centralized

light-weight control algorithms were proposed, but they may not be easily extended

to the whole distribution grid with a large population and high PHEV penetration.

According to our literature survey, there still lacks of a distributed scheduling

approach for supporting a high PHEV penetration rate and considering the common

distribution grid constraints. Therefore, we are motivated to propose a framework

to regulate PHEV charging by considering the bus load congestion and voltage drop

problems in the distribution grid. Different from the existing algorithms, our algo-

rithm should be decentralized with a low complexity and can be executed in real
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time. In addition, it should not rely on any accurate prediction on the load or PHEV

arrival time.

In the above two parts, we mainly discuss the application of PHEV in DR. How-

ever, there is another category of elastic load, such as HVAC, which is also widely

used to provide DR. The main difference between PHEV and HVAC is that the future

electricity demand of PHEV is hard to predict as new PHEV will arrive at any time.

However, given the number of HVACs and their current states, the future states of

HVACs can be predicted based on our control actions and HVAC thermal model.

We’ll investigate the application of HVAC in the next part.

1.2.3 A Dynamic Water-filling Method for Real-Time HVAC

Load Control

Due to its intermittent characteristics, integrating renewable energy into the power

grid is challenging. To ensure power grid’s stability, the generators need to standby

to provide capacity reserve to meet the time-varying demand, which results in a low

efficiency.

Demand response, aided by the current information and communication technolo-

gies, is anticipated to improve the grid stability and efficiency by interacting with the

elastic load at users’ side. By changing the elastic load w.r.t. both renewable energy

generation and inelastic load variation, demand response can reduce the fluctuation

of the non-renewable power generation and thus cut down the power generation cost.

To achieve this goal, existing works can be classified into two categories. In the

first category, the authors assumed that how much demand response needed in each

time slot is already known. Therefore, the aim of the algorithms is to use demand

response to do a load following or load shaping according to a given control signal

or control objective [43, 45]. However, in practice, it may be difficult to obtain the

optimal control signal, in other words, to know exactly how much demand response is

needed for each time slot in the future. As a result, the work in the second category

usually assume the availability of some prediction information to help decide how

much demand response may be needed. The key problem is that the amount of

elastic load that can be adjusted at certain time (we call it “elastic load potential”)

may be limited. If we use too much elastic load to flatten the non-renewable power

generation at the beginning, there may not be enough elastic load to use at a later

time. Therefore, a tradeoff must be made between the fluctuation of non-renewable
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power generation and elastic load potential.

Existing work, such as [77], usually needs accurate long-term load and renewable

energy generation information to obtain the optimal non-renewable energy generation,

which is called the water level, for each time slot. So how much elastic load is allowed

in each time slot in the future can be obtained by simply calculating the difference

between the water level and the predicted non-elastic load. The traditional water

filling approach is to make the elastic load in each time slot as close to this difference

as possible so that the non-renewable energy generation can reach the optimal value.

However, without such accurate long-term estimation, we do not know the optimal

water level and thus do not know how much elastic load should be adjusted in each

time slot.

To overcome these challenges, we are motivated to propose a novel algorithm which

aims to reduce non-renewable energy generation fluctuations while still guarantee user

comfort level. To make the problem more practical, we assume only limited amount of

elastic load and short-term renewable energy generation prediction are available. The

main challenge of the problem is to make a tradeoff between non-renewable energy

generation fluctuations and elastic load potential.

Up to now, both randomized PHEV charging and HVAC control algorithms dis-

cussed above belong to direct or centralized load shaping. However, it is usually not

clear how the users are compensated by providing load shaping services. In the next

part of this thesis, we will investigate indirect load shaping based on RTP.

1.2.4 The Scheduling of Combined Heat and Power Systems

in Demand Response

Extensive research has been done aiming to reduce the users’ electricity bill by

taking the advantage of the RTP and the elasticity of certain appliances. However,

it has been argued that without an appropriate RTP to coordinate all the elastic

loads, these algorithms may lead to new peaks which are undesirable [1]. In order

to solve the problem, one approach is to control the elastic load directly by a central

controller. For example, in [44, 46] the HVACs can provide load shaping services

if the ON/OFF states of each HVAC can be controlled by a control center directly.

Others discussed how to determine the RTP to provide indirect load shaping mainly

from a game theory perspective. In these papers, the authors usually assumed that

the users make decisions according to a certain utility function. However, how to
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design appropriate utility functions is still an open problem.

In this thesis, we are motivated to design an indirect load shaping service frame-

work through RTP, which can help both the users and the power companies save

cost. Different from the existing game theory approach, the user’s reaction model is

obtained by minimizing the long-term average cost. In addition, we propose a fast

algorithm to determine the optimal real-time price which can effectively coordinate

all the CHP system for load shaping services.

1.3 Dissertation Organization

The proposed thesis work is intended to discuss different control algorithms to

provide demand response from the perspectives of power companies, customers and

micro grid, respectively. In each chapter, we will present the introduction and moti-

vation of the research topic, related works and our proposed methods, including the

performance evaluation and future work.

The rest of this thesis is organized as follows. Chapter 2 discusses our research

work on how to flatten load peaks in high voltage transmission grids. The design

objective is to maximize the power utilization while guarantee that all the PHEVs’

batteries are fully charged before their departure.

Chapter 3 considers the PHEV charging problem in a distribution grid, where

more practical grid constrains like bus congestion and voltage drop for all the critical

buses are restricted to a certain range.

In Chapter 4, we try to reduce the electricity load variation for the conventional

power plants by controlling the amount of energy consumed by HVAC systems in each

time slot. We first model the temperature evolution process of a room and propose an

approach to estimate the key parameters of the model. Second, based on the model

predictive control, a centralized and a distributed algorithm are proposed to minimize

the fluctuation and maximize user comfort level. In addition, we propose a dynamic

water level adjustment algorithm to make the demand response always available in

two directions.

In Chapter 5, motivated by the queueing analysis and buffer management solutions

in data communication systems, we investigate how to use a battery pack and a water

tank to optimize the average cost for the CHP systems by jointly considering the real-

time electricity price, renewable energy generation, energy buffer states, etc. On the

other hand, based on the users reaction model, we propose an algorithm, with a time
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complexity of O(log n), to determine the RTP for the power company to effectively

coordinate all the CHP systems and provide distributed load shaping services.

1.4 Bibliographic Notes

Most of the works reported in this dissertation have appeared in research papers.

The works in Chapter 2 have been published in [102]. The works in Chapter 3 have

been published in [104]. The works in Chapter 4 have been published in [103], and

those in Chapter 5 have been published in [105] and [106].
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Chapter 2

PHEV Charging Scheduling to

Flatten Load Peaks

2.1 Introduction

The development of PHEV is considered as a promising solution to the worldwide

energy and environmental problems [7, 85]. Many automobile manufactures are in-

troducing new models of PHEVs into the market. According to the estimation by

the Department of Energy in US, about 1 million PHEVs will be sold by 2015 [36].

The impact of PHEVs on electric power systems, considering its relatively large pop-

ulation and charging load, cannot be ignored. Several studies [97, 17, 66, 75] have

shown that, without proper control, the charging of a large number of PHEVs will

cause huge peaks on the demand, which is dangerous to the power grid.

How to control users’ elastic demand to reduce demand peaks and effectively

use renewable energy despite its stochastic characteristics are key objects for smart

grids. Existing solutions are either centralized which require accurate future predicted

information and have a high computation complexity, or decentralized based on real

time pricing (RTP) which may not be deployable immediately.

In this chapter, we introduce a new distributed approach based on a decentralized

access technology, which can efficiently coordinate all the distributed smart agents to

avoid harmful peaks caused by PHEV charging using the history information only.

In addition, our algorithm can provide fast and automatic demand response, taking

users’ preferences and habits into consideration, and explore the potential of renew-

able energy despite its stochastic characteristic. Most importantly, it is simple to
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deploy without the need to do accurate predictions on future demand and supply.

The main contributions of this chapter are threefold. First, we propose an on-

line decentralized access algorithm for PHEV charging, which can effectively flatten

peaks during PHEV charging at night. Meanwhile it can provide demand response

intelligently when it is needed during peak hours. Our algorithm is simple and suit-

able to be executed on embedded systems like smart meters. Second, we determine

the values of the control parameters and analyze the performance of the proposed

algorithm. Finally, extensive trace-driven simulations using the real data obtained

from National Household Travel Survey (NHTS) 2009 [1] and the load of the Electric

Reliability Council of Texas (ERCOT) [18] have been conducted to evaluate the per-

formance of the proposed algorithm for PHEV charging and demand response. The

results demonstrate the advantages of our proposed solution.

2.2 Related Work

Centralized charging management typically assumed the knowledge of current

and/or future demand and supply information [99, 48], the schedule of users [84],

or the real-time electricity price [6]. These kinds of information may be difficult to

obtain or predict accurately, which motivates the distributed approach.

Recent research [97] showed that, a deterministic on-/mid-/off-peak pricing policy

may create new peaks because a large percentage of PHEV owners will choose to

charge their vehicles during the off-peak time at a lower price. It was concluded that

RTP is necessary with the popularity of PHEV and smart agent who controls the

load in each house (include PHEV charging) intelligently [95, 61]. How to schedule

the load of PHEV or other elastic load to minimize the overall cost based on the RTP

model has been heavily investigated [95, 61, 93, 9]. For example, Vytelingum et al.

illustrated an agent-based technology to manage micro-storage devices [93]. Wei et

al. extended this approach by using machine learning in [95]. [61] used Q-learning

to predict future electricity price and made a tradeoff between cost and waiting time

of users. Chen et al. proposed an RTP-based power scheduling scheme to control

residential load in [9].

However, if a large portion of Electrical Vehicles (EVs) and smart agents simply

shift their load to the low-cost time slots (even with RTP, electricity price can be

known beforehand or through prediction [52, 101, 68]), new peaks will appear [66, 67]

and lead to undesirable oscillating effects. It is found that, by applying the RTP
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mechanism only, demand peaks may not be flattened [66], and a Widrow-Hoff learning

mechanism was proposed to gradually adapt the elastic load based on the predicted

market prices to the peaks to a certain extent. It still requires a good price prediction,

and the time to converge is long. [48] suggested that the smart agents need to report

the tentative schedules to the central node back and forth a few times to find a

suitable solution. Iordanis et al. aimed to minimize the long-term average power grid

operation cost using dynamic programming in [34]. In their model, the variations

of base load and renewable energy were not considered. [78] tried to reduce the

power generation cost by flattening the overall load assuming that each device can

be delayed arbitrarily. Briel et al. used the accurate future information to shift

the elastic loads to specified time periods with different probabilities in [47]. [104]

proposed a random access algorithm for PHEV charging focused on the constrains in

the distribution grid, while this chapter aims to flatten the charging peaks. In [56],

the authors proposed a game theory based algorithm to minimize the peak-to-average

ratio of the aggregate load using distributed large batteries. Overall, how to develop

a distributed PHEV charging solution without a complicated pricing strategy is still

an open issue and motivates this work. The proposed algorithm in this chapter uses

historical grid information to coordinate all the PHEVs. It has a low computational

complexity and can achieve a performance close to its upper bound.

On the other hand, renewable energy is a promising solution for the shortage of

fossil fuel and pollution. A key disadvantage of renewable energy sources is that they

are stochastic and not stable. We are also motivated to use the elastic demand of

PHEV charging to provide demand response, so the total load can follow the variation

of renewable energy supply in real time without accurate predictions.

2.3 System Model and Problem Formulation

There are four main entities in the system: the power company, control center,

smart agents and PHEVs.

Power Company: At time t, the power company has a capacity S(t) to generate

electricity with relatively low price which may include renewable energy that varies

from time to time. If the demand exceeds this capacity, it may be expensive to

generate or purchase the additional power (e.g., from gas turbines or import from

other power companies). S(t) is above the average electricity load and may be below

the peak load when PHEVs are charged without control.
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Control Center: Since the higher the load is, the fewer PHEVs have to wait and

the less compensation power company should pay, the objective of the control center

is to keep the instantaneous load below S(t) while maximize the power utilization

at any time t. The corresponding centralized optimization problem is formulated as

follows:

max
LPHEV ,ω(k)

u(t) =
Lbase(t) + LPHEV (t)

S(t)
(2.1)

subject to:

Lbase(t) + LPHEV (t) ≤ S(t) (2.2)

ω(k) ≤ ωm(k) (2.3)

where ω(k) is the waited time of PHEV k, ωm(k) is the maximum tolerable delay

of PHEV k, Lbase(t) and LPHEV (t) represent the base load without PHEV and the

load of charging PHEVs at time t, respectively. To solve this optimization problem

we need to know the base load information and the arriving, departure process of

PHEVs in the future which are usually unavailable.

For decentralized control without such information, we assume that a proper s-

mart grid communication infrastructure is available between the control center and all

smart agents, and the communication delay and packets losses are negligible. The w-

hole communication infrastructure contains three main communication sub-networks:

Home Area Networks (HAN), Neighborhood Area Network (NAN), and Wide Area

Network (WAN). Each PHEV (and other home devices) is controlled by a smart a-

gent (which is assumed a smart meter) who manages the power supply of the HAN

and makes scheduling decisions for elastic-load devices. Several smart meters in a

community can form a NAN through either wired or wireless communication. Each

data collector manages the bidirectional communication between the control center

and a group of homes, collecting smart meter data and transferring information such

as the total demand and supply of the last few minutes, control commands and etc.

We consider the system covered by one control center for simplicity. The control

center collects two types of information, the current power generation capacity S(t),

including non-renewable and renewable energy, and the current demand, including

both elastic and inelastic load. In each time slot (in the following, we use a minute

as the duration of the time slot), the control center will calculate the ratio of total

electricity demand over the total generation capacity of the last slot, γ, and then

broadcast this ratio to all the smart agents. Meanwhile, it will monitor the condition
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of the whole power grid and adjust some control parameters to assist the scheduling

decisions of smart agents if necessary.

Smart Agent: The smart agent (or, the smart meter) can schedule and manage

the power usage in a house. All the elastic load, like washing machine, PHEV, dish

washer and thermal loads, can be managed by this smart agent. It can also receive

information and instructions from the control center, and use this information to

make decisions according to the algorithm described in Section 2.4. All the houses

which adopt our algorithms are called volunteers. These volunteers will be compen-

sated by the electricity company depending on the contributions they made. (How

to determine the contribution and design the incentive mechanism is an interesting

problem for future research.)

PHEV: We assume that a PHEV is plugged-in when it arrives home. Meanwhile,

the departure time of the PHEV is set either by the user or by the smart agent

according to historical departure time. Then the maximum tolerable delay for PHEV

charging is calculated based on the current battery status, charging power and the

total parking time. The delay time for PHEV charging should be guaranteed to be

less than the maximum tolerable delay time.

2.4 Proposed Random Access Scheme

The design objective of our algorithm can be summarized as follows. First of

all, to ensure low power generation cost, the total power load should be no larger

than S(t). Besides, the power utilization u(t) should be maximized. Second, all

the PHEVs should be charged within the maximum tolerable delay. Third, users’

preferences can be considered. Fourth, providing demand response so the stochastic

renewable energy can be efficiently utilized. Finally, the algorithm should not rely on

accurate predictions and should be simple enough for real-time control.

Here, we first present a brief overview of the proposed design as shown in Fig. 3.2,

and the detailed design and the parameter settings will be discussed in the following

subsections. To meet the first and most important design objective, when the current

ratio γ is relatively high (larger than threshold one), access by elastic load should be

restricted; when γ is even larger than threshold two, demand response should take

effect to terminate some charging PHEVs to maintain the load within a safe level.

Therefore, when a user plugged the PHEV in, the smart agent will check the recent

γ received from the control center. If γ is less than threshold one (denoted by ts1,
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(a) Schedule PHEV charging

(b) Demand Response

Figure 2.1: The flow chart for smart agent



14

with the value of ν1), it will allow the PHEV start charging immediately; otherwise,

it will use a back-off algorithm as follows. When ν1 ≤ γ < ν2, with probability p1 the

PHEV will start charging immediately. With probability 1 − p1, the request will be

delayed by td.

Once γ is greater than threshold two (denoted by ts2, with the value of ν2), none

of the PHEVs is allowed to start charging unless one reaches the maximum tolerable

delay time. The reason is that ts2 represents a level that the demand is very close

to S(t) and if the demand keeps increasing, the power generation cost may increase

tremendously. In this case, in each slot when γ ≥ ν2, a charging PHEV will terminate

its charging with a probability p2 and wait for td slots to try again, until γ falls below

ν2 again. By eliminating a part of the PHEV charging load each slot probabilistically,

a fast demand response can be achieved.

Notice that the user can always let the smart agent start charging the PHEV

immediately, in this case, the PHEV becomes inelastic load and the user will not be

compensated by the power company.

Design of the access probability, p1

Considering the design objectives, p1 is designed to be a function of the current

demand/supply ratio, γ, the value of ts1, ν1, a parameter δ1 to reflect the user’s

preference, and a global parameter κ1 used by the control center for global adjustment

if needed as follows.

p1(γ) =

κ1e
−α(γ−ν1) + δ1, if ω < ωm;

1, if ω = ωm,
(2.4)

where ω is the current waited time for a PHEV, and ωm is the maximum tolerable

delay time.

In the above design, p1 decreases exponentially when γ exceeds ν1, so fewer PHEVs

will be allowed to start charging to keep demand below S(t). The global parameter

κ1 can be set by the control center through notification messages, and it is the same

for all the users. By increasing κ1, the control center can increase the probability to

admit more PHEV charging load, and vice versa. By default, this value is set to 1

and usually does not need to be changed frequently.

α is the parameter denoting how fast p1 will become 0 when the current ratio γ

is greater than ts1. To ensure p1(ν1) = 1 and p1(ν2) = ε when ω < ωm, where ε is a
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small positive number, α can be determined as follows:

α =
lnε

ν1 − ν2
. (2.5)

On the other hand, if this PHEV charging request is delayed (with probability

1 − p1), the delay time td can be calculated as follows: if ωm − ω > tm, then td is

randomly selected from [0, tm], where tm is the upper bound for the delay; otherwise,

td is set as ωm − ω.

Design of the charging suspend probability, p2

p2 represents the probability to suspend the charging of a PHEV when the total

load is larger than threshold two, and the demand response mechanism is triggered.

Obviously, p2 should be small when γ is only slightly larger than ν2 to avoid suspend-

ing too many charging PHEVs which may be unpleasant to users. Also, p2 should

increase rapidly when γ is close to 1. Therefore, we also use an exponential function

to design p2:

p2(γ) =

κ2e
ϕ(γ−1) + δ2, if ω < ωm;

0, if ω = ωm,
(2.6)

where κ2 is a global parameter set by the control center to adjust the speed of sus-

pending charging PHEVs, δ2 is a parameter which represents the preferences of each

user, similar to what δ1 does, and ϕ represents how fast p2(γ) will reach 1. To calcu-

late ϕ, let p2(ν2) = ε and p2(1) = 1, where ε is a very small positive number, and we

have

ϕ =
lnε

ν2 − 1
. (2.7)

If a PHEV suspends charging, after waiting td, the smart agent will determine

whether to let it resume charging or continue keeping it suspended. Similarly, if

γ < ν1, the smart agent will start charging the PHEV immediately; if γ is between ν1

and ν2, this PHEV will start charging with a probability p1 or be delayed by td with

probability 1− p1; else if γ > ν2, the smart agent will suspend the PHEV for another

td, unless it reaches its maximum tolerable delay. Note that if the demand response

is not fast enough, the control center can adjust the global parameter κ2 to increase

the probability to suspend the PHEV charging.

We will describe how to determine ν1 and ν2 in the next section.
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2.4.1 Other Design Objectives

The main behavior of the smart agent is illustrated in Fig.3.2. Note that, to

ensure the maximum tolerable delay of each PHEV, when ω = ωm, the PHEV will

start or continue its charging whatever γ is, assuming there are enough elastic load

to be controlled.

From the above description, the schedules of all the tasks for each house are

adjusted automatically and in a distributed manner. A fast response to the power

supply change can be achieved. For example, if the wind farm produces more energy,

then γ decreases, and more PHEV elastic load can be turned on within a short time.

If the base demand (which is the inelastic load) keeps increasing while the generated

renewable energy is not sufficient, demand response will take effect when γ > ν2

to decrease the total load by terminating some elastic load to avoid sharp peaks.

Therefore, the last three design objectives are also met.

2.4.2 Further Discussion

Usually, the charging period for the PHEVs in the residential area is at night. In

the daytime, there may not be enough PHEVs to provide demand response. How-

ever, although our algorithm is designed for PHEV charging, it can also be used to

manage other elastic loads used during the daytime, such as water heater, wash ma-

chine, etc., to provide demand response. The main difference is that the maximum

tolerable delay may be different for different appliances, and the amount of the load

is also heterogeneous. For example, the maximum tolerable delay for water heater is

determined by the current water temperature, environment temperature, and water

quantity, etc. In this case, the smart agent can either use artificial intelligence to

predict this value or just simply delay the water heater until the water temperature

is lower than a predefined threshold. Besides, each appliance can have its own pref-

erence values of δ1 and δ2 described in (5.11) and (2.6). These parameters can also

be adjusted dynamically so different priorities of appliances can be achieved.

For example, the user might prefer the wash machine to be terminated first rather

than the water heater. In this case, δ2 for the water heater might be negative before

the wash machine is stopped. Although we can adjust different preferences for differ-

ent appliances within a house, how to coordinate heterogenous appliances in different

places is left for future research.
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2.5 Performance Analysis

The proposed algorithm has two main performance metrics: the power utilization

at time t and the probability of the total load exceeding S(t). Since the slot duration

is short, we assume S(t) has a constant value during one time slot. Similar to [2, 3, 86],

we also assume the arrival of PHEV follows a poisson distribution with a maximum

arrival rate λ, and the time needed to charge a PHEV is exponentially distributed

with parameter µ.

2.5.1 Power Utilization

State n represents that there are n PHEVs charging in this power system. In this

part, we use queuing theory to obtain the probability of each state. To simplify the

analysis, we assume that the ratio γ is broadcasted in real time and the maximum

tolerable delay time for each PHEV is infinity. Therefore LPHEV can be considered

as a continuous-time Markov chain. Since the charging power of one PHEV is very

small compared to the total power supply, the transition rate from state n to n + 1

can be approximated as λp1(n). We have

p1(n) =


1, Pcn < ν1S;

p1(γ), ν1S ≤ γS = Pcn < ν2S;

0, ν2S ≤ Pcn ≤ S,

(2.8)

where Pc is the average charging power of PHEV, n is in the range of [0, N), N is

the maximum number of PHEVs the power system can support, and S is the value

of S(t) in the considered time slot.

The transition rate from state n + 1 to n is (n + 1)µ. The balance equation for

the steady state situations is:

λp1(n)Pn = (n+ 1)µPn+1 (2.9)

After algebraic manipulation, we have

Pn =
1

n!

(
λ

µ

)n n∏
k=0

p1(k)P0. (2.10)
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With the condition
N∑

n=0

P (n) = 1, (2.11)

we can obtain the probability of each state. Then the expected power utilization can

be calculated as follows:

E(u) =
1

S

N∑
n=0

P (n) · Pcn. (2.12)

2.5.2 The Probability of Total Demand Exceeding S(t)

Theorem 1: When the ratio γ is broadcasted in real time, the probability that

power demand will exceed S is bounded.

Proof: When the real-time information is available, the arrival/departure of PHEVs

can be considered as a continuous Markov chain. Since the charging probability when

γ > ν2 equals zero, the only situation that the power load increases is that one of the

waiting PHEVs reaches its maximum tolerable delay time. According to our proposed

algorithm, once γ is larger than ν2, all the charging PHEVs will stop with a probabil-

ity to provide demand response. There are K1 states below ν2 and K2 states between

ν2 and S, and the upper bound of the probability that the demand will exceed S is

Pu =

K2∏
i=1

(1− p2(γK1+i))
N , (2.13)

where γK1+i is the ratio when the system is in state K1 + i.

However, the broadcasted ratio γ may not be available in real-time in practice.

During a broadcast interval t, there is always a probability that more than the expect-

ed number of PHEVs arrive, and thus the power demand may exceed the low-price

power generation capacity S(t). This probability is strongly related to ν1, ν2 and the

PHEV arrival rate. Assume that the maximum arrival rate the system can support

is λ, the maximum allowed probability to exceed S(t) during interval t is τs, and we

can use these criteria to determine ν1 and ν2.

Given γ, the number of new PHEVs the system can support without exceeding S

is

m1 =

⌊
S · (1− γ)

Pc

⌋
. (2.14)

The probability that the demand will exceed S can be obtained using the following
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equation

Ps =
+∞∑

k=m1+1

e−λt(λt)k

k!
·
( k∑

i=m1+1

(
k

i

)
p(γ)i(1− p(γ))k−i

)
, (2.15)

where p(γ) is the charging probability when the ratio equals γ.

Let Ps < τs, from (2.15) we can obtain the value of p(γ) for each γ. According

to our algorithm, ν1 can be set to the largest γ when p(γ) = 1. Since the charging

probability when γ = ν1 equals 1, to determine ν2, let γ = ν1, and the probability

that the ratio will exceed a certain γt > ν1 after slot duration t can be represented as

follows:

Pe(n > m2) = 1−
m2∑
k=0

e−λt(λt)k

k!
, (2.16)

where

m2 =

⌊
S · (γt − γ)

Pc

⌋
, γ < ν2. (2.17)

Let Pe < τe, where τe is a threshold set by control center and τe > τs, we can

obtain the smallest γt which is set as ν2.

On the other hand, given ν1 and ν2 we can calculate the maximum PHEV arrival

rate λm the system can support with Proposition 1.

Proposition 1 : If the probability to exceed ν2 and S is less than τe and τs respec-

tively after the slot duration t when γ = ν1, the probability to exceed ν2 and S is

always less than τe and τs respectively with any other γ not equal to ν1.

Proof: To prove it, we only have to prove that the power system can support

fewest number of arrivals per slot when γ = ν1. We consider the following three

situations:

(1) γ < ν1. PHEVs will begin to charge with probability 1. Therefore the number

of arrivals in a slot t that the power grid can support is

nm1 =

⌊
C

Pc

⌋
=

⌊
S

Pc

(ν2 − γ)

⌋
>

⌊
S

Pc

(ν2 − ν1)

⌋
, (2.18)

where C is the available power for new PHEVs and Pc is the standard charging power

per PHEV.

(2) ν1 ≤ γ < ν2. PHEVs will begin to charge with probability p1. Therefore the

expected number of PHEVs (denoted as n) the power grid can support is:

n · Pc · p1 ≤ C. (2.19)
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After algebraic manipulation, we have

n ≤ S

Pc

(ν2 − γ)eα(γ−ν1). (2.20)

Let f(γ) = S
Pc
(ν2 − γ)eα(γ−ν1). In order to find out the system capacity nm, we

calculate the gradient of f(γ):

∇f(γ) = S

Pc

(αν2 − αγ − 1)eα(γ−ν1). (2.21)

Substituting (3.12) into (2.21), we have

∇f(γ) = − S

Pc

(1 +
γ − ν2
ν1 − ν2

ln ε)eα(γ−ν1). (2.22)

Because ε is a very small positive number, ∇f(γ) > 0 when ν1 ≤ γ < ν2. Thus f(γ)

is an increasing function in the range [ν1, ν2). Hence the number of arrivals that the

power grid can support is

nm2 = min(⌊f(γ)⌋) =
⌊
S

Pc

(ν2 − ν1)

⌋
. (2.23)

(3) γ ≥ ν2. In this case, none of the PHEVs will begin to charge, so no matter

how many PHEVs arrive, the load will not be affected. Therefore nm3 → +∞.

Among the above three situations, we can find that the power system can support

the fewest number of arriving PHEVs when γ equals ν1. The proof is complete.

In other words, the calculation of λm is greatly simplified because we only have

to ensure that the probability to exceed ν2 and S is less than τe and τs respectively

with λm when γ = ν1.

In the above analysis, we assume that the base load profile and power generation

capacity S(t) do not change. To be more practical, we can further consider the maxi-

mum increased loadDm caused by other devices and the maximum reduction in power

supply Rm caused by stochastic renewable energy in a slot obtained from historical

statistic data, and subtract them from S when calculating ν1 and ν2. Therefore, the

smaller the interval t is, the smaller Dm and Rm will be, and the system will be more

efficient.

In addition, from (2.15) we can find with larger interval time t and fixed Ps, γ,

the charging probability p(γ) is smaller. Hence ν1 and ν2 will also be smaller which
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Table 2.1: PHEV types and their key parameters

PHEV Types Battery Capacity Max Range Market Share
Auto 24 kWh 73 miles 49.9%
SUV 37.6 kWh 80 miles 19.4%
Pickup 30 kWh 55 miles 17.8%

Van (and others) 36 kWh 60 miles 12.9%

reduces the power utilization. As a result, a tradeoff must be made between the

communication overhead and power utilization.

2.6 Simulation

The objectives of the simulation are twofold: (a) to evaluate the performance of

our algorithm on PHEV charging, and (b) to study whether the proposed algorithm

can adapt to the change of energy supply by providing automatic demand response.

2.6.1 PHEV Charging

In our simulation, the vehicle data are obtained from National Household Travel

Survey (NHTS) in 2009 [1], which gave the travel patterns of light-duty vehicle (LDV)

fleet in USA. In highway travel, LDV accounts for 92% of the vehicle miles traveled

(VMT) [90], 76% of the energy consumed [59], and 74% of the emitted carbon dioxide

[60]. We assume that the PHEV owners’ preferences to vehicle types and their driving

behaviors will be similar to those of the conventional vehicle owners.

PHEV Type

The charging power and battery capacity are determined by the PHEV type.

From the NHTS report, vehicles can be classified into 4 categories, auto, sport utility

vehicle (SUV), pick-up trucks and van. To model their charging loads, we use the

battery capacity for the 4 EV prototypes in [25], as shown in Table 2.1.

According to the NHTS report, the average daily traveling miles for male and

female drivers are 41 miles and 32 miles respectively. The state of the battery for

different types of PHEV when they arrive home and begin to charge is different.

Assume the numbers of male and female drivers are equal, so the average daily miles

are 36.5 miles, corresponding to 50%, 45.6%, 66.3% and 60.8% of the batteries for each
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kind of PHEVs respectively. In our simulation, the initial state of the battery follows

a truncated normal distribution with the mean described above and the standard

deviation equal to 10% of its capacity for simplicity.

The charging power standard is obtained from [23]. Similar to [97], we use a linear

battery model in our simulation. According to the charging power standard [23] in

the residential area, for a typical household, we set the PHEV charging power to be

2 kW. The time needed to charge a PHEV (Tc) is calculated as follows:

Tc =
Battery Capacity − Battery Remaining Energy

Charging Power
. (2.24)

Number of Vehicles

The number of PHEVs in a certain community depends on the population size,

the ownership ratio of vehicles, and the PHEV penetration ratio. From the data of

Major Travel Indicators of 2009 in USA [1], there are on average 2.50 persons per

household while the number of vehicles per household is 1.86, so the vehicle ownership

ratio is 1.86/2.5 = 0.744 per person. Considering the population size of 4000 of the

simulated community, the number of vehicles is about 3000. If the PHEV penetration

ratio is 0.2, the number of PHEV is 600.

Driving Habits

The start time of charging and the maximum tolerable delay time have a strong

relationship with the habits of drivers. Assume that all the PHEVs are connected

to the power grid immediately when they arrive home, and the maximum delay is

set by the users (or by the smart agent which makes prediction based on history

data). According to the analysis of National Household Travel survey [1], the vehicle

arriving home time (plug-in time for PHEVs) can be approximated by a truncated

normal distribution. In addition, since most of PHEVs begin to charge at night,

we assume the arrival and departure time of PHEVs both follow a truncated normal

distribution with the mean of 7 pm and 7 am respectively, and the standard deviation

of one hour. The charging hours include peaks of electricity base demand, so our

simulation can also capture the behaviors of our algorithm in reacting to the peak

hours. These assumptions are adopted in others work on the grid integration of

PHEVs, such as [75].
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Grid Load Profile

The electricity load profile for the base demand is obtained from the real load

measurements in the Reliability Council of Texas (ERCOT) [18]. ERCOT is an

isolated and independent electrical system supplier which provides electricity power

to 23-million people in Texas. We choose the hourly load profile on March 15th and

16th in 2011 and interpolate the 24 hour data into a curve which consists of 1440

minutes’ data of a day.

In our simulation, we scale down the population by considering a community of

4000 people only. The total electricity load from [18] is scaled down correspondingly,

and the load from PHEV charging is superimposed into the base load. Each house is

equipped with a smart agent which can schedule the elastic load in the house.

Simulation Results

Since the system model and the design objective of this chapter are difference from

the existing work, we compare the performance of the proposed decentralized access

(DA) algorithm with that of exhaustive search (ES). We first set the power generation

capacity S(t) to be a constant S. The base load, power supply and PHEV arrival

process are assumed available to solve the optimization problem (3.2) using exhaustive

search. To maximize the power utilization, we also assume that the charging PHEVs

can always be stopped at arbitrary time instance which is different from our proposed

algorithm that does not allow PHEV charging to stop in the middle unless the ratio

is larger than threshold two to protect the battery. The default parameter settings in

our algorithm are as follows: κ1 = κ2 = 1, δ1 and δ2 is uniformly distributed between

−0.05 and 0.05, tm = 30 minutes, td follows a uniform distribution in the range [0, tm],

ν1 = 0.98, and ν2 = 0.99.

First, the number of PHEVs is set to 600. As shown in Fig. 2.2(a), PHEV charging

using exhaustive search can utilize all the available power to charge PHEVs. The

power utilization is close to 1 at peak time as expected. However, some information

used in exhaustive search is not available in practice. From the curve representing the

aggregated load using our algorithm, it is effectively flattened during the peak hours.

The load is restricted between ν1 and ν2. With a quite small performance gap from

the exhaustive search result, our algorithm does not need the base load value in the

future and PHEV arrival information beforehand and is implemented in a distributed

manner which provides both scalability and simplicity. The variation of the number
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of charging PHEVs (the number of those starting to charge minus those stopping to

charge) in each minute is shown in Fig.2.2 (b).

From the figures, when the base load is below ν1, all the arriving PHEVs begin

to charge immediately, so the aggregated loads with or without the proposed control

overlap. Once the demand exceeds ν1, a portion of the arrival PHEVs are delayed.

During this time, once a PHEV begins to charge, it will continue charging until finish.

Thus, the load under control keeps increasing. Once the load meets ν2, charging

PHEVs begin to be suspended which quickly decreases the aggregated load to the

base load.

In the peak time period from minute 400 to 690, when there are PHEVs waiting

to be charged, the average power utilization for ES and DA are 99.99% and 98.69%,

respectively.

Second, we increase the PHEV number to 800, and the results are shown in

Figs. 2.3 (a) and (b). From the figures, our algorithm keeps the total demand below

ν2 quite well during peak time although the PHEV number has been increased by

33.3%. During the peak time from minute 400 to 1000, the average power utilization

of DA reaches 98.37%, which is only about 1.48% lower than that using exhaustive

search. However, at the end of the charging period, the power demand of the proposed

algorithm exceeds ν2 slightly. From Fig. 2.3 (b) we can notice that when the load

exceeds ν2, some PHEVs stopped to provide demand response, but since most PHEVs

have finished charging, the number of available PHEVs which can provide demand

response is very small, and that is why when the base load increases, the total load is

still above ν2. One possible solution is to allow some charging PHEVs to stop in the

middle and provide a chance for other waiting PHEVs to start charging, and giving a

higher charging priority to the PHEVs which have shorter remaining tolerable delay

time. However, whether stopping charging PHEVs during the charging process very

often is harmful to the battery is debatable. A tradeoff must be made between the

average number of times a PHEV can be stopped and the available elastic number

of PHEVs based on different system states, which is left for future research. Never-

theless, the proposed solution can ensure that the total load is below S for the whole

simulation time.
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2.6.2 Demand Response by Other Elastic Load

Next, we investigate how our algorithm can make fast and automatic demand

response to adapt to the change of renewable energy supply.

Elastic Load Modeling

In this simulation, we use the load profile on March 15th 2011 of ERCOT. Instead

of PHEV, we here use some elastic appliances typically operating during daytime.

Similar as PHEV, these appliances will not be suspended once they are started unless

γ exceeds ν2. There are 600 elastic appliances, the power of which is chosen from

1 kW, 1.5 kW and 2 kW with equal probability. To generate the ON time periods

for these elastic loads, we assume that the probability for each appliance to turn ON

follows a Poisson distribution at each half-hour period, with the mean of 2 times

during the 13 hours from 6 am to 7 pm. After 7pm, they are turned on with a

probability of 0.08 every 30 minutes. Each appliance will run 30 to 90 minutes,

and the maximum tolerable delay ranges from 3 to 4 hours. The load of the elastic

appliances is superimposed with the base load profile.

Renewable Energy

The model of the renewable energy in our simulation is obtained from Wind

Integration Study [14]. We used the raw data of a typical daily wind generation,

scaled it down, and then added it to the original power supply.

Simulation Results

The objective of this simulation is to test whether our proposed algorithm can

follow the changes in renewable energy supply to provide effective demand response.

The renewable energy penetration in our simulation is only 3.3%, given the relatively

small amount of the elastic load considered. In practice, the base load from real data

should also contain the load from elastic appliances, and by adjusting them, a higher

renewable energy penetration ratio can be supported.

The simulated power demand with renewable energy is shown in Fig. 2.4 (a). As

shown in Fig. 2.4 (a), the controlled load curve can follow the changes in energy supply

nicely, while the uncontrolled load exceeds power supply twice. Fig. 2.4 (b) shows

the number of elastic appliances being operating in each minute. As expected, when
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the load exceeds ν2, most of the appliances are delayed or shut down automatically

to provide demand response for the grid. Therefore, two valleys appears in Fig. 2.4

(b), corresponding to the time when demand response is provided to bring down the

aggregated load below the supply.

On the other hand, when the renewable energy supply is above the average, our

algorithm will turn some delayed appliances ON to efficiently utilize the renewable

energy. Unlike other centralized or decentralized algorithms discussed in the liter-

ature, our algorithm can provide fast response in a distributed manner and do not

need to have an accurate prediction on renewable energy supply.

2.7 Conclusion

In this chapter, we have proposed a decentralized control algorithm for PHEV

charging in smart grid to avoid severe new power demand peaks, and it can provide

automatic demand response when needed. We have further discussed how to fine tune

the algorithm and system parameters, and analyzed the performance bound of the

proposed algorithm. By real data trace driven simulations, we have shown that, using

the proposed distributed algorithm, without real-time pricing or accurate prediction

on power demand and supply, peaks caused by PHEV charging can be controlled to

be below the power generation capacity, stochastic renewable energy can be efficiently

utilized, and users’ preference can be considered. This work has suggested a promising

direction on coordinating decentralized smart agents in smart grid.

However, in this chapter, we only consider the influence of PHEV on the high-

voltage power grid. Without proper control, the charging of PHEV may also have

high impact on the distribution grid, such as bus congestion and voltage drop. In the

next chapter, we are going to extend the proposed algorithm to the distribution grid

so that both bus congestion and large voltage drop can be avoided even with a large

PHEV population.
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Chapter 3

Randomized PHEV Charging

Under Distribution Grid

Constraints

3.1 Introduction

PHEVs are becoming increasingly popular. The energy department of USA es-

timates that more than one million PHEVs will be sold by the end of 2015 [36]. In

addition to its environment friendliness, the adoption of a large number of PHEVs

will exert great pressure on the current power grid due to its high power demand [97].

As a result, appropriate actions are needed to eliminate any possible harmful impact,

which sparks numerous research efforts.

The previous work mainly focused on the grid constraints at the transport and

high-voltage transmission power grid [37, 97]. However, with a high PHEV penetra-

tion rate, the existing distribution grids which are built decades ago are more likely to

face bus congestion and voltage drop problems. Without proper control, the charging

of PHEVs will cause harmful impact on the power distribution grid.

In this chapter, we propose a framework to regulate PHEV charging by considering

the bus load congestion and voltage drop problems in the distribution grid. Different

from the existing algorithms, our algorithm is decentralized with a low complexity.

No complex optimization problem needs to be solved. And it does not rely on any

accurate prediction on load or PHEV arrival time and can be executed in real-time.

In addition, our approach takes the delay constraints of PHEV charging into consider-



31

ation. Finally, it can be extended to include other elastic loads to provide automatic

demand response to protect the power grid and improve its efficiency.

The main contributions of this chapter are three-fold. First, a decentralized al-

gorithm is introduced, which can efficiently avoid bus congestion and large voltage

drop in the distribution grid with charging PHEVs. The smart agents schedule the

PHEV charging independently based on the received information of the current grid

status from a control center. Second, we analyze the performance of our algorithm

and derive the system capacity. Finally, extensive simulation with real data from

National House Hold Travel Survey 2009 [1] and the RELOAD database [13] from

national energy modeling system are conducted to evaluate the performance of the

proposed algorithm on a typical resident area distribution grid [65].

3.2 Related Work

J. Taylor et. al demonstrated that a high PHEV penetration rate would result in

loads exceeding current bus capacity through simulation based on a real data model

[88]. In [32], the authors used load flow analysis to show the impact of PHEV on the

distribution grid. J. A. et. al investigated the impact of PHEV charging on medium

voltage grid, considering the bus load congestion, and voltage drop problems [65].

To solve the problems listed above in the distribution grid, O. Sundstrom et. al

proposed a centralized approach aiming to reach minimum charging cost using an

optimization technology. Their model concerns both bus congestion and voltage drop

problems in the medium voltage grid [84, 83]. Richardson et. al formulated and

solved an optimization problem to maximize the energy delivered to all electrical

vehicles (EVs) within a certain period of time [71]. Transformer overload and voltage

drop of a low-voltage transmission grid are considered, assuming the charging rate

of each EV can be adjusted continuously. M. D. Galus et. al proposed a hierarchic

PHEV scheduling algorithm based on model predictive control and game theory in

[19], aiming to avoid transformer overload. In [70], the PHEV charging process can

respond to frequency and voltage deviations detected locally. [11] uses stochastic

programming to minimize the power losses of the distribution grid. Sortomme et al

discussed a method to reduce computation time of minimizing the impacts of PHEV

charging on the distribution system’s losses in [81]. In [74], each house is assigned

an upper bound for power consumption. After reaching this bound, a centralized

controller will shut down some devices according to a predefined priority. In [75],
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a dynamic upper bound for all the houses based on the rule that the original peak

demand without PHEV charging is maintained.

The centralized control used in the previous work may not be easily extended

to a large-scale distribution grid with high PHEV penetration, as perfect prediction

information may not be available, and the computation time to obtain the control

actions by solving complex optimization problems may be long. Also, some users may

not want their applications being controlled by others due to privacy reasons. These

issues motivate us to design a distributed algorithm which does not need accurate

prediction on users’ behavior and future load information, and it can be executed

online to solve common distribution grid problems.

3.3 System Model

In this section, the topology of the distribution grid, the load profile and PHEV

charging patterns are introduced. The PHEV charging profile is modeled based on

the data from National House Hold Travel Survey 2009 using a stochastic approach.

3.3.1 Medium Voltage Grid in Our Case Study

Fig. 3.1 shows a typical residential area distribution grid in Portugal [65], corre-

sponding to a semi-urban 15 kV medium voltage grid in a residential area. The tri-

angular shapes in this figure represent the Medium Voltage to Low Voltage (MV/LV)

transformers. Each transformer serves 4 neighborhoods including 10 people on aver-

age. 1

Similar to [65, 84, 83], this medium voltage grid is explored using a radial configu-

ration. All the dashed branches are considered to be open. The two round shapes in

Fig. 3.1 represent the feeding points. As discussed in [65], this grid may experience

two main problems: the buses near the feeding points may reach a high congestion

level while the far away ones may encounter the voltage drop problem. 2

1Our algorithm can be scalable to support more people. However the simulation time of the
bench-mark algorithm using exhaustive search will be much longer.

2Note that the load used in [65] is different from that in this chapter although the same grid
topology is used.
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Figure 3.1: Grid Architecture [65]
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Table 3.1: PHEV types and their key parameters

PHEV Types Battery Capacity Max Range Market Share
Auto 24 kWh 73 miles 49.9%
SUV 37.6 kWh 80 miles 19.4%
Pickup 30 kWh 55 miles 17.8%

Van (and others) 36 kWh 60 miles 12.9%

3.3.2 Distribution Grid Load

The total load profile for the medium voltage grid used is from [76] which is based

on the hourly residential load curves of an average household from the RELOAD

database [13] and interpolated using the approach described in [73]. The hourly data

is interpolated into the load curve which consists of 1440 minutes of a day.

The load curve consists of 2 different types of residential loads, including both

critical loads and elastic loads. Critical loads refer to those that cannot be delayed,

such as for cooking and lighting. Elastic loads can be delayed, like for cooling/heating.

In this chapter, we assume all the loads except PHEV charging to be critical loads

for simplicity. In other words, only PHEV charging is controllable and delayable,

although, if needed, other elastic loads can also take part in the demand response

process using the proposed framework.

3.3.3 PHEV Charging Modeling

To obtain the PHEV charging profile, we need to know the driving habits, PHEV

types and etc. We use the data from National Household Travel Survey (NHTS)

2009 under the assumption that PHEV owners’ preferences to vehicle types and their

driving behaviors will be similar to the conventional vehicle owners’. From the NHTS

report, vehicles can be classified into Auto, Sport Utility Vehicle (SUV), Pick-up

trucks and Van.

Their key parameters including the estimated market share are shown in Table

3.1.

In this chapter, the Monte Carlo method is used to simulate the daily driving dis-

tance for each PHEV by using the driving data from [91], so the state of charge (SOC)

of each vehicle can be determined when they arrive home based on the battery profile

and the maximum driving range of that PHEV. Similar to [95], we further assume

that the arriving and departure time of PHEVs follows a normal distribution with
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the mean of 6pm and 7am respectively and a standard deviation of 1hr, respectively.

As our focus is to deal with the impact of PHEV charging during peak time on a

residential distribution grid, peak hours are included in the charging period.

In addition to the driving patterns, charging power from [97, 23, 98] is also used

to build the PHEV charging model. In this chapter, the charging power of 1.4 kW,

2 kW and 6 kW are chosen with probability 0.45, 0.45 and 0.1, respectively.

Since there are 207 MV/LV transformers in the target grid and each transformer

severs 10 people, the population size is 2070. From the data of Major Travel Indicators

of 2009 [1], the vehicle ownership ratio is 74.4%. Therefore, the number of vehicles is

1540.

3.4 Problem Formulation

We consider a discrete-time system, i.e., time is divided into slots with a constant

duration. We also set the slot duration small enough that the number of PHEVs

accessing or leaving the tagged distribution grid per slot is typically no larger than

one. The objective of the problem is to maximize the total number of PHEVs that can

be charged under the given system capacity by optimizing the charging scheduling

vectors

X(t) = [X1(t), X2(t), ..., XN(t)], ∀t = 1, 2, ..., T, (3.1)

where Xk(t) ∈ {0, 1}, ∀k = 1, 2, ..., N , N is the total number of PHEVs and T is

the total time slots.

The scheduling needs to consider three constraints. First, each PHEV cannot

wait longer than the maximum tolerable delay. Second, the load of each bus cannot

exceeds its capacity. Third, the voltage drop of any bus cannot be larger than the

maximum allowed voltage drop at any time. This problem can be formulated as

follows:

max N (3.2)

subject to: ω(k) ≤ ωm(k), (3.3)

fi(X(t), Li
base(t)) ≤ 1, ∀i = 1, 2, ...,M, (3.4)

fv(X(t), Li
base(t)) ≤ Vmi, ∀i = 1, 2, ...,M, (3.5)

where M is the number of buses in the distribution grid; ω(k) is the total waiting
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time of PHEV k; ωm(k) is the maximum tolerable delay time of PHEV k; Vmi is

the maximum allowed voltage drop of bus i; Li
base is the base load on bus i; fi is the

mapping function that calculates the loading rate from all the load; fv is the mapping

function that calculates the voltage drop from all the load.

Since it is an integer optimization problem, which is difficult to obtain the op-

timal solution in polynomial time, and constraints (3.4) and (3.5) are not linear, in

this chapter, we aim to obtain a sub-optimal solution in a distributed and real-time

manner and compare its performance with the best results using exhaustive search in

simulation.

3.5 Proposed Framework

The proposed framework includes three entities: a control center covering one or

more medium voltage grids, one smart agent per house, and PHEVs. It is important

to note that although our proposed framework is used for PHEV charging, other

elastic load such as washing machine, water heater, and air conditioner may also be

applicable under this framework to provide demand response.

3.5.1 Control Center

The control center in the grid will monitor two kinds of information: load and

voltage drop. All the information can be obtained from sensors distributed in the

grid. In this chapter, we assume that an existing smart grid communication infras-

tructure is available to connect the control center, sensors and smart agents, and the

communication delay and packet losses are negligible. We assume that the data from

all the sensors are updated in real-time. The influence of grid information update

delay on system performance will be discussed in Section 3.8.

From both the historical data and grid topology information, the control center is

able to determine which buses are more likely to experience the congestion or voltage

drop problems.These are called critical buses, which constitute the congested bus set

Sc and voltage drop bus set Sv.

When a PHEV is plugged in, the smart agent which makes scheduling decisions

for the PHEV will request a data set from the control center including parameters

relevant to the critical buses. The data set contains the loading rate of the most

easy-to-congest bus affected by that PHEV (denoted as γc), and a voltage ratio γv.
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At time slot t, the loading rate of bus i is defined as follows (to simplify the

notation, we drop t in the following equations):

γc(i) =
current load of bus i

maximum allowed load of bus i
. (3.6)

Then γc is obtained by choosing the maximum rate of the bus from Sc, which is the

most vulnerable to the congestion problem:

γc = max γc(i), i ∈ Sc. (3.7)

Similarly γv is obtained from all affected buses:

γv(i) =
current voltage drop of bus i

maximum tolerable voltage drop of bus i
. (3.8)

γv = max γv(i), i ∈ Sv. (3.9)

For example, from [65], for charging load under all the MV/LV transformers, bus

A in Fig. 3.1 suffers the severest congestion problem and bus 1 may experience the

largest voltage drop. If a PHEV at location L is plugged in, the smart agent at L will

request the grid information from the control center which will put γc(A) as γc and

γv(1) as γv into a data set and then deliver it to the smart agent.

Meanwhile, the control center will keep monitoring the status of the whole power

grid and send instructions to the smart agents to adjust some control parameters

which will affect their scheduling decisions if necessary. We will discuss these param-

eters and actions in Section 3.6.

3.5.2 Smart Agents

The smart agents (or the smart meters) can schedule PHEVs charging. The

scheduling decisions are made based on the data sets received from the control center

and the algorithms described in Section 3.6.

All the houses adopting our algorithms will receive incentive from the electricity

company depending on the contributions they make. (How to determine the contri-

bution and design an incentive mechanism is left for future research.)

It is worth to notice that the user can always let the smart agent charge the PHEV

without waiting, in this case the PHEV becomes critical load and the user will not
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receive compensation from the power company.

3.5.3 PHEV

In this chapter, we assume that the PHEVs are plugged in as soon as they arrive

home. The departure time can either be set by the user or by the smart agent

according to the historical data. Then the smart agent can calculate the maximum

tolerable delay time (ωm) for PHEV charging based on the total parking time (the

time between the departure and arrival, denoted by ωt), state of charge (SOC) and

charging power (Pc). Specifically, ωm = ωt−(1−SOC)PB/Pc, where PB is the battery

capacity. Here we use a linear battery model which is the same as the model used

in [97, 74]. In a real system, the PHEV charging behavior can be more complicated.

Our algorithm is still applicable so long as the smart agent knows how much time is

needed to charge the PHEV and the total parking time of the PHEV.

To satisfy users’ requirements, the smart agent should guarantee that the total

delay is always less than the maximum tolerable delay time. In addition, to maintain

fairness, some charging PHEVs may terminate charging in the middle to yield the

charging opportunity to other waiting ones. The smart agents will also assign a higher

priority to those PHEVs which have waited for a longer time.

3.6 Random Access Algorithm Design

The design objective of our algorithm can be summarized as follows. First of all,

to avoid bus congestion and voltage drop problems in the distribution power grid,

(3.4) and (3.5) should be satisfied. Second, fairness should be maintained among all

the PHEVs. Third, users’ preferences should be taken into consideration. Fourth,

(3.3) should be satisfied so that all the PHEVs can be fully charged before their

departure. Finally, this algorithm should not rely on future load prediction and is

simple enough to be executed online.

The flow chart of our proposed algorithm is presented in Fig. 3.2. Fig. 3.2 (a)

describes how the smart agent schedules PHEV charging based on the received infor-

mation, while Fig. 3.2 (b) shows the process of providing demand response to protect

the distribution grid. We will cover the design details in the following subsections.

To meet the first design objective, when a PHEV is plugged in, the smart agent will

calculate all the access probabilities based on the data set received from the control
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(a) Schedule PHEV charging

(b) Demand Response

Figure 3.2: Flow chart for smart agent
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center and choose the minimum one to decide the charging probability.

Specifically, from γc, and γv, the access probability p1(γc) and p1(γv) can be ob-

tained using the algorithm described below respectively. Then p1 is set to be the

minimum one to decide the charging probability of the PHEV.

p1 = min{p1(γc), p1(γv)}. (3.10)

The access probability is calculated as follows. If both of the received ratios γc

and γv are below the corresponding threshold one (ts1), the PHEV will start charging

with probability one; otherwise, if any of these ratios is higher than its corresponding

ts1, the charging of the PHEV is restricted based on a back-off algorithm: with

probability p1, this PHEV will start charging immediately; with probability 1− p1, it

will be delayed by td and then try again. If any of the ratios is even higher than the

corresponding threshold two (ts2), the charging probability p1 is set to zero unless

the PHEV reaches its maximum tolerable delay time. In addition, in each time slot,

the control center will broadcast the ratio when it is larger than the corresponding

ts2, to notify all the relevant smart agents until this ratio falls below ts2 again. These

smart agents, upon receiving the notification, will suspend the charging PHEVs with

a probability p2 to protect the distribution grid. By stopping charging PHEVs every

time slot based on a probability, a fast demand response can be achieved.

To provide an equal chance for each PHEV, every smart agent will acquire the

data sets from the control center again after the PHEV has been charged for a period

of time and then decide whether to let it continue charging or to suspend it based on

the updated probability calculated again from the received ratios. This will provide

an opportunity for other waiting PHEVs to start charging. All the waiting PHEVs

will obtain a higher priority to charge with a larger waiting time. A suitable charging

period is selected to protect the batteries.

However, when a PHEV reaches its maximum tolerable delay time, the smart

agent will let it start charging immediately to meet the design objective four.

In the following part, we describe how to design the access probability p1 and

the suspending probability p2 considering bus congestion and voltage drop in the

distribution grid.
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3.6.1 Bus Load Congestion

Obviously, the access probability p1(γc) should be close to 1 if the ratio γc only

exceeds ts1 slightly and it must decrease fast when γc approaches ts2. Therefore,

p1(γc) is designed as an exponential function:

p1(γc) =

κ1e
−αc(γc−νc1)+βcω/ωm + δ1, if ω < ωm,

1, if ω = ωm,
(3.11)

where ω is the current waited time of the tagged PHEV, ωm represents its maximum

tolerable delay, νc1 is the value of threshold one for bus congestion, the parameter δ1

is used to reflect user’s preference, and the global parameter κ1 is used by the control

center for global adjustment if needed.

In the above design, p1(γc) decreases exponentially when γc increases, which will

restrict the number of PHEVs start charging when the bus congestion level is high.

Since the smart agent will use the largest γc(i) to calculate the access probability, all

the critical buses can be protected.

The global parameter κ1 can be set by the control center through notification

messages and it is the same for all the smart agents. By decreasing κ1, the probability

to start charging is decreased, so the demand caused by PHEV charging is reduced

when γc is between ts1 and ts2, and vice versa. By default, κ1 is set to 1.

The parameter αc determines how fast p1(γc) will decrease when the current load-

ing rate γc approaches threshold two for bus congestion (with value νc2). Considering

the design objective, we define p1(νc1) = 1 and p1(νc2) = ε when ω < ωm where ε is

a very small positive number. Then, αc can be expressed as follows:

αc =
lnε

νc1 − νc2
. (3.12)

On the other hand, this PHEV charging request may also be delayed with proba-

bility 1− p1. If ωm−ω > tm, then the delay time td is randomly selected from [0, tm],

where tm is the upper bound for the delay; otherwise, td is set as ωm − ω.

From (3.11), PHEVs with the waiting time closer to ωm have a higher probability

to access the grid. This will maintain delay and fairness among all the PHEVs. The

maximum tolerable waiting time ωm can be set by the user or by the smart agent

based on the historical data. Here we assume that an incentive mechanism is used so

all the users set an appropriate ωm according to their real needs. The parameter βc
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is used to determine the weight of the waiting time on the charging probability. The

value for βc can be defined as follows: let p1(νc2) = ρ, κ1 = 1 and δ1 = 0 in (3.11),

and we have: p1(νc2) = e−αc(νc2−νc1)+βc = ρ⇒ βc = lnρ+ αc(νc2 − νc1).

To fully utilize PHEV’s delay time, ρ should be less than 1; otherwise, every

PHEV will get a high probability to start charging before it can be delayed to its

maximum tolerable delay time even when γc is high. According to our simulation, ρ

can be set between 0.3 and 0.6 empirically.

When γc is greater than ts2, demand response mechanism will take place. The

probability to suspend a charging PHEV is denoted as p2(γc). Similarly, p2(γc) is also

designed as an exponential function:

p2(γc) =

κ2e
λc(γc−1) + δ2, if ω < ωm,

0, if ω = ωm,
(3.13)

where κ2 is another global parameter set by the control center to adjust demand

response speed. δ2 is used to represent users’ preferences, similar to δ1. Both δ1 and

δ2 can be set by the user or learnt by the smart agent. Of course, they will be included

into the incentive mechanism aimed to determine users’ contributions.

The parameter λc determines the increasing speed of p2(γc) when γc is above ts2.

If we let p2(νc2) = ε and p2(1) = 1, where ε is a very small positive number, then λc

can be expressed as:

λc =
lnε

νc2 − 1
. (3.14)

If a PHEV is delayed or suspended, it will try to access the grid again after td

slots. Whether its charging request will be approved depends on the ratio at that

time.

3.6.2 Voltage Drop

The influence of a charging PHEV on the voltage of a bus is related to the location

of that PHEV. For example, in Fig. 3.1, the voltage drop of bus 1 is related to every

charging PHEV connected to the buses from the feeder point to bus 1. With the same

charging power, the closer the PHEV is to bus 1, the higher the influence it will be.

Therefore, the PHEV at location L has a higher effect on the voltage drop of bus 1

than that at location Y. Consequently, we add a weight of location, ϕ, to design the
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access probability function:

p1(γv) =

κ3

ϕ
e−αv(γv−νv1)+βvω/ωm + δ3, if ω < ωm,

1, if ω = ωm,
(3.15)

where κ3, αv, βv and δ3 are set similar to κ1, αc, βc and δ1 respectively. In practice,

it is difficult to define an optimal ϕ as it needs perfect grid information. It can be

approximated as the ratio of the distance between the PHEV and the feeding point

over the distance between the considered critical bus and the feeding point. We will

further discuss it in Section 3.8.

Similarly, the suspending probability p2(γv) can be designed as follows:

p2(γv) =

κ4ϕe
λv(γv−1) + δ4, if ω < ωm,

0, if ω = ωm,
(3.16)

where κ4, λv and δ4 are set similar to κ2, λc and δ2 respectively. Therefore, PHEVs

closer to the feeding point have a smaller suspending probability for providing demand

response.

From the descriptions above, PHEVs are scheduled and charged in a distributed

manner, and no prediction is needed. Therefore, the last design objective is met.

Finally, since the smart agent will choose the charging probability calculated from

the received data set based on (3.10) to charge the connected PHEV, all the distri-

bution grid components affected by that PHEV are protected.

3.7 Performance Analysis

In this section, the capacity of the proposed algorithm on bus congestion is an-

alyzed using a probabilistic method. The performance analysis on voltage drop is

similar and omitted due to the space limitation. To simplify the analysis, we as-

sume the maximum tolerable delay of any PHEV is infinity, and the global control

parameters κ1, κ2 are set to one. Since Poisson process is an acceptable model if the

occurrences are uniformly and independently distributed on an interval of time, the

PHEV arriving process is assumed as a Poisson process with an average arrival rate

of λ.

In the first part, we will analyze the performance of the proposed algorithm with
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real-time grid information, and then we will consider the situation when real-time

grid information is not available.

3.7.1 Control Center with Real-time Grid Information

According to the assumption that real-time grid information is available and the

slot duration is sufficiently small in Section 3.4, the number of charging PHEVs will

increase or decrease at most by one in each slot. Let us consider a certain critical bus

A, assume that the maximum loading rate increase caused by one PHEV on bus A

is ∆m. From (3.11), the maximum probability that the loading rate will exceed ts2

caused by one arrival PHEV is

p1(νc2 −∆m) = e−αc(νc2−∆m−νc1). (3.17)

Since demand response will start when γc > νc2, this probability should be smaller

than a threshold pe, where pe is defined by the control center. Let p1(νc2−∆m) ≤ pe,

we can obtain the minimum value of the gap between νc1 and νc2:

νc2 − νc1 ≥ −
1

αc

lnpe +∆m. (3.18)

Define Dm the maximum loading rate increase caused by the variation of the base

load in one slot. Since the charging probability equals 0 when γc > νc2, to prevent

the loading rate from exceeding one, the gap between νc2 and one should be greater

than Dm plus ∆m. Then we have

νc2 ≤ 1−Dm −∆m. (3.19)

Besides, once the loading rate exceeds ts2, the probability to suspend charging

PHEVs should be less than a pre-defined threshold pt so that only a small number of

PHEVs are suspended. pt is set by the control center based on the estimated number

of charging PHEVs in the system.

pt ≥ p2(νc2 +∆m +Dm) = eλc(νc2+∆m+Dm−1). (3.20)
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After manipulation, we can obtain another bound for νc2.

νc2 ≤
1

λc

lnpt + 1−∆m −Dm. (3.21)

From (3.18), (3.19) and (3.21), we can obtain the upper bounds of νc1 and νc2.

3.7.2 Control Center Without Real-time Grid Information

However, there is always a time interval between the information update from

sensors to the control center in practice. To analyze the performance of the proposed

algorithm in a more practical situation, we assume the grid information is updated

every t seconds, and the maximum PHEV arrival rate does not exceed λ during the

following t seconds.

The expected number of new PHEVs bus A can support without exceeding ts2 is:

m1 =

⌊
νc2 − γc

Ic

⌋
, (3.22)

where Ic is the average loading rate increase caused by one PHEV. We further consider

the following three situations.

(1) γc is below ts1. All the arrival PHEVs will start charging with probability 1.

The probability that the number of arriving PHEVs does not exceed m1 during t is:

P (n ≤ m1) =

m1∑
k=0

e−λt(λt)k

k!
. (3.23)

(2) γc is between νc1 and νc2. The probability for each arriving PHEV to start charging

is

p1(i) = e−αc(γc−νc1). (3.24)

The probability that the number of arriving PHEVs is less than or equal to m1 is

Pa =

m1∑
k=0

e−λt(λt)k

k!
. (3.25)

The probability that the number of PHEVs starting charging is less than m1, given



46

the number of arriving PHEV is larger than m1, is

Pb =
+∞∑

k=m1+1

e−λt(λt)k

k!
·
( m1∑

i=0

(
k

i

)
p1

i(1− p1)
k−i

)
. (3.26)

The probability that the total new charging PHEVs’ number does not exceed m1 is

P (n ≤ m1) = Pa + Pb. (3.27)

(3) γc is larger than or equal to νc2. In this case, all the arriving PHEVs will not start

charging, so their arrivals will not affect the bus load.

From (3.23) and (3.27) we can obtain the probability to exceed νc2 for any γc < νc2.

Similarly, the number of new PHEVs this bus can support without exceeding the bus

capacity is

m2 =

⌊
1− γc
Ic

⌋
, (3.28)

Substituting m1 by m2 in (3.23), (3.25), (3.26), (3.27), we obtain the probability that

the loading rate does not exceed one.

Given λ and that the probability to exceed ts2 and one should below pe and

ps respectively, we can obtain the upper bound for ts1 and ts2 by using a reversed

process. We omit the details due to the space limitation.

It is worth to mention that νc1 and νc2 can be set dynamically through broadcasting

instructions from the control center to all the users according to the changing PHEV

arriving rate in different time periods.

On the other hand, given νc1, νc2, pe, ps, we can obtain the maximum arrival rate

λ that the distribution grid can support using the proposed algorithm, which is the

capacity of the system.

3.8 Performance Evaluation

The objective of this simulation is to verify the impact of the proposed control

algorithm on bus congestion, and bus voltage drop. The simulation is mainly based

on real data with an approximated maximum average arriving rate of 30 PHEVs per

minute. The maximum tolerable probabilities to exceed threshold two and bus loading

rate one/maximum allowed voltage drop are set to 10−2 and 10−6, respectively. pt is

set to 0.05. Whenever the ratio of a critical bus exceeds ts2, the specific ratio of the
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bus is multicasted to all relevant smart agents every time slot. The situation when

the grid information is updated every 60 seconds is also considered in Section 3.8.3.

In the following subsections, we only consider one problem at one time under the

proposed framework, and assume p1 equals p1(γc) and p1(γv) in Section 3.8.1 and

Section 3.8.2 respectively. We compare the performance of the proposed random

access (RA) algorithm with that obtained from exhaustive search (ES). For exhaus-

tive search, we choose the one with the minimum average PHEV waiting time so it

can result in the maximum number of PHEVs being supported without violating the

constraints. In the exhaustive search, we assume that PHEVs’ charging can be inter-

rupted at any time and any frequency; therefore, ES result can also be considered as

the performance upper bound. Similar to [71], we do not consider reactive power or

grid losses as they will make the simulation time much longer. On the other hand, in

a real system, as the smart agents use the measured data, which reflects the reactive

power and grid losses, etc., to calculate the access probabilities, our algorithm can

still be applicable.

3.8.1 Bus Load Congestion

According to the simulation results in [65], bus A suffers the severest congestion

problem so its loading rate is delivered to the downstream smart agents when required.

In this simulation, νc1 and νc2 are set to 0.96 and 0.98 respectively according to the

analysis in Section 3.7.

Fig. 3.3 (a) illustrates the loading rate of bus A with 742 PHEVs. To view the

curves more clearly, the most critical time period is zoomed in and shown in Fig. 3.3

(b). This can be considered as the capacity of the proposed algorithm because the

loading rate reaches ts2 at the end of the charging period. As shown in the figure, our

proposed algorithm can flatten the bus loading rate quite well while the uncontrolled

loading rate exceeds one by about 70%.

Fig. 3.4 shows the situation when there are 765 PHEVs which is also the maximum

number of PHEVs this distribution grid can support using exhaustive search. Since

PHEVs begin to charge immediately whenever they reach their maximum tolerable

delay time, the loading rate of RA algorithm exceeds one at the end. Through

multiple simulations with different PHEV arriving/departure time, exhaustive search

with perfect future information can support about 3% more PHEVs than the proposed

algorithm on average in the scenario described in Section 3.3. In other words, the
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Figure 3.3: Loading rate of bus A with 742 PHEVs
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Figure 3.4: Loading rate of bus A with 765 PHEVs



50

600 700 800 900 1000 1100
0.95

0.955

0.96

Time (minutes )

Vo
lta

ge
 o

f b
us

 1

 

 
base voltage drop
voltage drop w/ E S
voltage drop w/ R A

ts1 ts2

Figure 3.5: Voltage drop of bus 1 with grid topology information
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Figure 3.6: Voltage drop of bus 1 without grid topology information

performance of the RA algorithm is very close to the performance upper bound,

meanwhile satisfying all the design objectives.

3.8.2 Voltage Drop

In [65], bus 1 has the largest voltage drop, so its voltage ratio is passed down to

all the relevant users whenever required. In this simulation, the maximum tolerable

voltage drop is 5%, νv1 and νv2 are set to 0.90 and 0.95, respectively.

Figs. 3.5 and 3.6 show the zoomed in simulation results with and without the grid

topology information, respectively. The maximum number of PHEVs the distribution

system can support are 730 and 727 on average, respectively. Both of the two cases

can restrict the voltage drop near ts2. Therefore, we may find that the performance

of the random access algorithm is not sensitive to the weight ϕ in (3.15).
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Figure 3.7: Loading rate of bus A with 717 PHEVs: non-real time

3.8.3 Non-real-time Data

In this part, we explore the performance of our algorithm considering that all the

data received at the control center is updated every minute. The value for ts1 is

decreased to 0.95 based on the algorithm in Section 3.7.

Fig. 3.7 shows the main part of the loading rate of bus A with 717 PHEVs when

non-real-time bus loading rate is delivered to smart agents. This can be considered

as the capacity of the distribution grid using the RA algorithm with non-real time

information. Obviously, the controlled loading rate using the RA algorithm fluctuates

more severely. The loading rate even exceeds ts2 several times after minute 700. The

reason is that the number of arrival PHEVs varies greatly during the one-minute time

interval, and many PHEVs become critical load when reach their maximum tolerable

delay time. Nevertheless, the demand response mechanism suspends some charging

PHEVs when the loading rate is over νc2 and keeps the loading rate under one all

the time. The situation for voltage drop is similar and is omitted due to the space

limitation.

3.9 Conclusion

In this chapter, a random access framework has been proposed to coordinate

PHEV charging to maximize the number of PHEVs that can be supported consider-

ing bus load congestion and voltage drop constraints. Through the simulation on a

residential area distribution grid, it has been demonstrated that our algorithm can

achieve the performance with a small gap to the best solution. Besides, it can pro-

vide demand response efficiently. We also tested our algorithm when real-time grid

information is not available, and the result is only about 6% worse than the best one.

In addition to regulating PHEV charging, the proposed solution can also be applied
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to other elastic devices.

In Chapter 2 and Chapter 3, we use PHEV as the elastic load to provide demand

response. One important feature of PHEV is that we do not know the number of

future arrivals, nor do we know their future demand or deadline. There is another

category of elastic load whose future status can be predicted based on the current

status. The utilization of this kind of elastic load to provide demand response can be

different. We will cover it in the next chapter.
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Chapter 4

A Dynamic Water-filling Method

for Real-Time HVAC Load Control

4.1 Introduction

In the current power grid, one area of inefficiency arises from the variation of the

power consumption in each day. Generally speaking, in a residential area, the power

consumption is typically the lowest early in the morning and the highest when people

go to or return from work. In order to make the whole power grid stable, we need

to take great effort to make the power generation follow these demand peaks and

valleys, which keeps the power generation cost at a high level. If we can flatten the

peaks and meanwhile fill the load valleys, the overall power generation efficiency can

be improved significantly.

However, we do not know the load in the future, nor do we know how many elastic

appliances are available for control and their states during the remaining time of the

day. Without such information, it is very challenging to minimize the overall cost

from the perspective of the power company. Of course, we can formulate and solve

optimization problems using the information from prediction, as what the previous

works have done. However, it is still an open issue to find an effective way to predict

the future load for a long time with good accuracy. Nevertheless, with the help of

energy buffer, such as batteries, the performance of load prediction for a short term

is possible and feasible. How to use short-term prediction results of both load and

renewable energy generation to guide the control of elastic load scheduling, given

limited number of elastic appliances, is the focus of our proposed work. The design
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objective will include both user comfortable level constrains and the power generation

cost.

The main idea we use is based on Model Predictive Control (MPC). Different from

existing works which only use homogeneous load, in this chapter, we will consider

heterogeneous loads with different parameters. Besides, we will propose an online

learning method for the control center to estimate different parameters for different

loads. Furthermore, we extend the centralized algorithm to a distributed one with

local controllers. In this way, the computation load of the central controller can be

reduced and the system can be more scalable and robust.

The main contributions of this chapter can be summarized as follows. First, we

propose a centralized algorithm to control heterogeneous HVACs in a micro-grid. The

objective of this algorithm is to reduce non-renewable energy generation fluctuation-

s while still guarantee user comfort level. An approach to estimate heterogeneous

HVAC model parameters is also proposed. Second, we extend the centralized algo-

rithm to a distributed one, which has a much lower computational complexity and is

more scalable. Third, we further extend the proposed algorithms to support HVAC

ON/OFF control modes other than adjusting the HVAC power level. Fourth, since

the elastic load potential provided by HVACs is limited compared to the unlimited

control time, a dynamic water level adjustment algorithm is proposed to reserve this

elastic load potential for future demand response. Finally, extensive simulations using

practical data sets obtained from Eirgrid [16] have been conducted to evaluate the

performance of the proposed algorithms. The results demonstrate the advantages of

the proposed algorithms comparing to existing ones.

4.2 Related Work

Since load fluctuation usually adds cost to power generation and raises require-

ments on frequency control [80], smoothing or flatting the non-renewable power gen-

eration using demand response is one of the most important objectives.

For centralized demand response control, [77] proposed a water-filling approach

to flatten the overall load assuming that perfect future load information is available.

In [35], Koutsopoulos et. al introduced two online demand scheduling policies based

on dynamic programming to minimize the long-term average power grid operation

cost, without considering the variation of base load and renewable energy. He et. al

proposed a PHEV scheduling algorithm to minimize the total cost of electrical vehicles
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using a sliding window algorithm in [35]. In their algorithms, all the local controllers

were coordinated by the same predicted base load model with accurate prediction in

the whole time scale. [64] is similar to our work in that it aimed to smooth non-

renewable electricity supply by controlling the set point and ON/OFF states of all

HVACs. The algorithms proposed above try to avoid or minimize fluctuations, so

they all need accurate long-term prediction information to make control decisions.

They also assumed the availability of enough elastic load to perform the demand

response. On the other hand, there are also some existing works which make control

decisions after the power imbalance happens, so no future prediction information is

needed. For example, [63, 5, 30] used an energy storage system to provide primary

frequency control to the power grid based on the current requirement or historical

data. Although the capacity of the primary frequency control system is limited,

the secondary frequency control system will help reduce their burden in time. The

proposed MPC based algorithms belong to the first group. Taking one step further,

our work considers the situation of limited elastic load, and only short-term prediction

information is needed.

Thermostatically controlled appliances, such as HVACs have been widely used for

demand response in smart grid. In [57, 87], HVAC is used to minimize the economic

cost by scheduling its operation time. The application of MPC to HVACs can be

found in [100], with an objective to minimize the user discomfort level while keeping

the economic cost within a given budget. Karmakar et. al introduced an online

algorithm which maintained the thermal comfort-bands while keeping the total HVAC

load under peak energy consumption constraint [31]. In [43, 45], HVAC is used to

provide intra-hour load balancing or load following according to given control signals.

Different from the existing work, our control objective is to minimize the fluctuation

of the non-renewable power generation without external control signals, which is more

challenging.

MPC has been used to solve various control problems in smart grid. [28] pro-

posed an economic MPC algorithm to minimize the total cost of distributed power

generation plants. The control actions are adjusting the amount of power generation

from each plant. In [20], an aggregator utilizes MPC strategy to track a secondary

frequency control signal by controlling heterogenous elastic loads. Different from the

previous approaches, the proposed dynamic water level adjustment algorithm will

make a tradeoff between the fluctuation of non-renewable power generation and elas-

tic load potential reservation.
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4.3 System Model

4.3.1 System Architecture

The investigated system represents a micro-grid with a high renewable energy

penetration. It consists of a control center, customers with HVAC installed, and a

communication network that connects them together.

The electricity power supply comes from two types of sources: conventional power

generators and renewable power generators. Due to its stochastic feature, instan-

taneous renewable power generation is time-varying, while a good prediction over

a short time period is possible [22], especially with the help of large energy buffers

(batteries).

The relationship between load and power supply is shown in (4.1), where Sn(t) is

the power generation from conventional power plants at time t, Sr is the renewable

energy generation, Lb is the non-HVAC load (also called base load), and Lh is the

load from all HVACs.

Sn(t) = Lb(t)− Sr(t) + Lh(t). (4.1)

In (4.1), Lh(t) is the elastic load at time t which can be changed in each time slot;

Lb(t) − Sr(t) is the non-elastic load minus renewable energy generation (we call it

“remaining load”). Due to the intermittent nature of renewable energy, the renew-

able power generation always contains a lot of fluctuations which directly affect the

remaining load. As a result, the conventional power companies will need high spin-

ning reserve or buy extra frequency regulation service to do the frequency control in

the micro-grid which usually has a high cost [80]. Therefore, in this chapter, we are

motivated to make Sn(t) change slowly and smoothly by controlling the elastic load

in each time slot so the conventional power companies can save cost and improve the

system efficiency.

To determine the optimal HVAC load, we also need to know the future base load.

Although there is no long-term load prediction algorithm with good accuracy, short-

term load prediction algorithms do exist[41]. In this work, we assume that inelastic

load can be predicted in a short-term.
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Figure 4.1: HVAC model[69]

4.3.2 HVAC Model

In this chapter, the HVAC model is obtained from [69] and is briefly reviewed as

follows.

A simple HVAC model is illustrated in Fig. 4.1. In this model, Ph represents

the power consumed by the HVAC in the unit of W ; Pl represents the amount of

heat transferred outdoors through the house boundaries in the unit of W ; T and

To represent the indoor and outdoor temperature respectively in the unit of K; C

represents the effective heat capacity, which is the product of air heat capacity and

air quantity in a house, in the unit of J/K; G represents the thermal insulation level

of a house and is in the unit of W/K.

In this chapter, time is divided into slots with a fixed duration of t. Define Ti(k) as

the indoor temperature of the house with HVAC i at the k-th time slot, and P i
h, Gi, Ci

as the corresponding parameters for this specific house. Then the indoor temperature

evolves according to the following equation [69]:

Ti(k + 1) =

(
Ti(k)−

P i
h(k)

Gi

− To(k)

)
e
−Gi

Ci
t
+

P i
h(k)

Gi

+ To(k). (4.2)

The parameters Ti, P
i
h, Gi, Ci, Qi in this subsection are all related to the specific

house with HVAC i, and in the following, we drop the subscription or superscription

of i to simplify the notation.

Since G/C is very small (usually < 10−5[69]) and the indoor temperature changes

during one slot is typically less than 0.5 degree, we approximate the above nonlinear



58

model w.r.t. slot duration t by a linear one using Taylor’s equations:

T (k + 1) = T (k)−∆Toff (k) +QPh(k), (4.3)

where

∆Toff (k) =
Gt

C
(T (k)− To(k)), (4.4)

and

Q =
t

C
. (4.5)

Q is the conversion coefficient from power to temperature in a time slot for a specific

room with the unit of K/J.

Since the tolerable indoor temperature variation is relatively small compared to

the difference of T (k) and To, ∆Toff can be approximated as a constant:

∆Toff (k) =
Gt

C
(Tr − To(k)) (4.6)

where Tr is the set point temperature of an HVAC.

In this work, we consider houses and HVACs with different parameters. That is,

the parameters C and G for each house may be different, and each HVAC can have

a different set point Tr and a different maximum power. In addition, although our

HVAC model may not be fully accurate, since the rooms’ actual temperatures will be

updated in each time slot, error will not be accumulated.

4.4 Centralized Dynamic Water-filling Algorithm

The design objective of the centralized dynamic water-filling algorithm is to reduce

the fluctuation of the power demand for conventional power plants by controlling the

load of HVACs while guaranteeing HVAC user comfortable requirements.

To give a clear description of the proposed algorithm, we first present the existing

MPC framework, then we show the design process of each part.

4.4.1 MPC Framework

Fig. 4.2 shows a typical Model Predictive Control framework. In this figure,

the block MPC represents the designed controller, and the block Plant represents

the plant model of the specific problem. The variable v represents the measured
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Figure 4.2: Block Diagram of Model Predictive Control Framework [50]
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disturbance, r is the set point to the controller, u represents the control actions

calculated by the controller, and y is the output of the plant model.

With the help of the plant model, the model predictive controller can calculate a

sequence of control actions by solving an optimization problem based on the current

plant state, current plant output, control objective function, etc. However, only the

control actions in the first time slot are implemented, and others are discarded. The

controller then solves the same optimization problem with updated parameters again.

This is called the receding horizon principle. More details about Model Predictive

Control can be found in [92, 49].

Next we will illustrate how to use MPC to control all the HVACs.

4.4.2 Plant Model Design

(4.3) shows the relationship between the room temperature and the amount of

power consumed by HVAC for a single house. Let the indoor temperature of each

house and the total load of HVAC be the state of the plant (X), ∆Toff for each house

be the measured disturbance (V), the input power for each HVAC be the control

actions (U), and Y be the output of the plant model. The state space model of the

plant is:

X(k + 1) = AX(k) + BuU(k) +BvV (k), (4.7)

Y (k) = CxX(k) +DuU(k) +DvV (k), (4.8)

where

X =


T1

...

Tn

Lh

 , U =


P 1
h
...

P n
h

 , V =


∆T 1

off
...

∆T n
off

 , (4.9)

A, Bu, Bv, Cx, Du, and Dv are coefficients, k is the time slot index, n is the total

number of houses with HVACs.

According to (4.3) and the definition of all the variables in this MPC model, we
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can determine the coefficients in (4.7) and (4.8) as follows.

A =



1

1 0
. . .

0 1

0


, Bu =



Q1

Q2 0
0 . . .

Qn

1 1 · · · 1


, (4.10)

Bv = −A, C = I, Du = 0, and Dv = 0. (4.11)

In the above equations, the parameters ∆T i
off and Qi for the house with HVAC i

are estimated using the algorithm described in Section 4.4.3.

4.4.3 Heterogenous HVAC Parameters Estimation

To obtain the parameters for heterogeneous HVAC models, there are sensors in

each house and a communication network exists between these sensors and the control

center.

Let Ph = 0 in (4.3), and we can estimate ∆Toff when the HVAC is turned off as

below:

∆T̂off (k) = T (k)− T (k + 1), (4.12)

where ∆T̂off is the estimated value of ∆Toff .

In practice, ∆Toff may change during different time slots, so we use the following

exponentially weighted moving average (EWMA) algorithm to update ∆Toff for an

HVAC model.

∆Toff (tj) = α ·∆T̂off (tj) + (1− α) ·∆Toff (tj−1), (4.13)

where α is the weight, and tj is the parameter update time. Note that ∆Toff (tj) is

updated based on the current estimation and its last value, rather than the average

of all the former values. The reason is that the status of the room may be different at

different time, so the last value may be more accurate. The relationship between k,

t and tj is shown in Fig. 4.3. The time duration between two parameter estimations,

tj − tj−1, is determined by the control center. For example, the control center will

choose the time slot when the HVAC is off to estimate ∆T̂off (tj).
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Similarly, from (4.3) we can estimate the value of Q as follows:

Q(tj) = β · Q̂(tj) + (1− β) ·Q(tj−1), (4.14)

where

Q̂(k + 1) =
T (k + 1)− T (k) + ∆T̂off (k)

Ph(k)
, (4.15)

and β is the weight.

Through this process, the control center is able to model heterogeneous HVACs

by estimating different ∆Toff or Q for each HVAC. In the proposed work, we assume

that these parameters are already available through estimation.

4.4.4 Controller Design

The objective of our control algorithm is to reduce the fluctuation of the conven-

tional power plants’ supply and guarantee user comfort level. Therefore, the objective

function of the controller can be formulated as follows:

Problem I (P1)

min
P i
h(k)

:
∑
k∈N

{
(Lh(k)− rw(k))

2 + λ2
∑
i∈S

(Ti(k)− ri(k))
2

}
, (4.16)

subject to: ∑
i∈S

P i
h(k) = Lh(k), (4.17)

ri(k)−∆Tl ≤ Ti(k) ≤ ri(k) + ∆Tu, ∀i ∈ S, ∀k ∈ N, (4.18)

0 ≤ P i
h(k) ≤ umax

i , ∀i ∈ S, ∀k ∈ N, (4.19)

where rw(k) is the reference value of HVAC load in slot k; P i
h(k) is the consumed

power by HVAC i assigned by the control center in slot k; ri is the temperature

set-point for HVAC i; ∆Tl and ∆Tu represent the maximum allowed temperature

decrement and increment from the set point ri in a house, respectively; Ti(k) is the

indoor temperature of the house with HVAC i in slot k; S is the set of all the HVACs;

N is the prediction horizon; umax
i is the maximum power consumption of the i-th

HVAC; λ is the weight, and is squared to make the weight always positive.

The first part of the objective function (4.16) represents the deviation of the actual

HVAC load from the reference HVAC load (rw). The second part represents the sum
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of temperature deviation from the set-point in each house, which not only represents

the influence to users’ comfortableness, but also the elastic load potential because the

HVAC can only provide one dimensional demand response if the room temperature

reaches the upper or lower bound. Of course, we would like the room temperature

be close to the set-point so the HVAC can either be turned on or off. This is quite

different from the dead band based control policy which does not consider the demand

response potential of HVACs [64]. λ is used to make a tradeoff between these two

parts. Constraints (4.18) means that the controlled indoor temperature of each house

should stay within a certain range of the set point during each time slot. (4.19)

ensures that the power of each HVAC is bounded.

By solving this optimization problem, the controller can obtain a sequence of

control actions corresponding to each time slot of the prediction horizon. Since the

plant model is not accurate and there might be unmeasured disturbance or noise in

this system, the actual indoor temperature of each house and the real load may not be

the same as predicted after implementing the obtained control actions. Therefore the

controller only executes the control actions in the first time slot, then it will update

all the parameters and solve the optimization problem again.

4.4.5 Dynamic Water level Adjustment Algorithm

To solve the convex optimization problem (P1), the reference value of HVAC load

in slot k, rw(k), is needed. If rw(k) is not set appropriately, the controller may not

be able to flatten the load effectively. Besides, the energy buffer capacity provided

by elastic HVAC load will be consumed when all the indoor temperatures reach their

upper or lower bounds. As a result, the HVACs will turn into inelastic load and lose

the function of providing demand response.

In addition, since the size of energy buffer is relatively small and limited compared

to the remaining load and unlimited control horizon, the value of rw(k) should not be

constant. Instead, rw(k) should change according to the main trend of the remaining

load so that the energy buffer will never be totally full or empty and the HVACs can

always perform demand response to reduce the remaining load fluctuation.

To adjust rw(k) appropriately, we propose a dynamic water level adjustment algo-

rithm stated as follows. In slot k, the sum of rw(k) and remaining load Lb(k)−Sr(k)

is the water level Wl(k), and then we can calculate the reference HVAC load for each
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time slot according to

rw(k) = Wl(k)− (Lb(k)− Sr(k)). (4.20)

Actually, the water level Wl(k) is the reference value for the total load of the

conventional power plants. If we can keep the water level constant, then the total load

is constant. However, due to the limited elastic capacity of HVAC, this is impossible.

Therefore, we have to change the water level slowly and smoothly to minimize load

fluctuations. Assuming a given water level for time slot k (which may not be optimal),

by solving the centralized MPC problem (P1) we can obtain the predicted system

states X(k + N) for time slot k + N , where N is the prediction horizon. Then the

water level for the next time slot Wl(k + 1) can be obtained using Algorithm 1. The

main idea is that we adjust the “water” level whenever one of the room temperature

may reach the upper or lower bound in the predicted future.

Algorithm 1 Water Level Adjustment

Require: X(k +N)
1: flag ← 0
2: for all i ∈ n do
3: if Ti(k +N) = ri(k) + ∆Tu then
4: flag ← 1
5: break
6: else if Ti(k +N) = ri(k)−∆Tl then
7: flag ← −1
8: break
9: end if
10: end for
11: if flag ̸= 0 then
12: c← µ · (rw − Ps)
13: if |c| > climit then
14: c← climit · flag
15: end if
16: Wl(k + 1)← Wl(k)− c
17: end if

In Algorithm 1, rw represents the average reference value of HVAC load for the

following N slots; Ps =
∑n

i=1

∆T i
off

Qi
is the total amount of power needed to counteract

all the houses’ temperature decrease in each time slot; c is the change to the water

level; climit is the maximum allowed water level change in each time slot, which
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is determined by the power company; µ is the water level change rate and can be

determined empirically.

The relationship of the MPC algorithm and the water level change can be sum-

marized as follows: we use the MPC to predict the system status in the future. If the

prediction results show that the total elastic load potential will be depleted in the

future, we adjust the water level slightly to avoid the occurrence of this situation. Of

course, with longer accurate prediction horizon, we can avoid unnecessary water level

adjustment and therefore reduce the fluctuation.

4.5 Distributed Dynamic Water-Filling Algorithm

The centralized dynamic water-filling algorithm described in section 4.4 relies on

a centralized controller, which may have high computational complexity when the

number of HVACs is large. To be scalable, a distributed architecture is preferable.

4.5.1 Distributed Control Architecture

Different from the centralized algorithm which has only one control center, the

distributed algorithm relies on a hierarchical architecture with one central controller

and several local controllers. The central controller tries to flatten the total load by

adjusting the amount of power used by each local controller. The local controller will

assign the amount of power designated by the central controller to each HVAC and

maximize the user comfort level. Note that if the population changes overtime, we

can simply resize the group 1, and the algorithm still works.

4.5.2 Central Controller Design

Other than flattening the total load, the central controller should guarantee that

the amount of power assigned to the local controllers in each time slot will not make

any HVAC under that local controller violate the temperature constraints. Since

there is no direct control between the central controller and the HVACs, we need a

new plant model for the hierarchical MPC problem.

1The groups can be resized at two levels. First, the number of HVACs in a group can be increased
or decreased. Second, if the number of HVACs in each group changes too much, we can reconfigure
all the groups to balance the group size.
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We consider the local controller with all the corresponding HVACs as a group.

Each group has different size of the energy buffer provided by its HVACs. The model

of a local group is shown in Fig. 4.4. The unit of all the variables in this model is J ,

and the group index j is omitted to simplify the notation. In each time slot, there is

a total amount of energy Pb leak from all the houses, and Pa is the amount of energy

assigned by the central controller to this local group. Pg represents the energy buffer

state of this group. Then the evolution process of Pg can be shown as follows:

Pg(k + 1) = Pg(k) + Pa(k)− Pb(k). (4.21)

When all the indoor temperatures in the group decrease by ∆Tl from their set-

points, the state of the energy buffer is 0; on the other hand, when all the indoor

temperatures reach their upper bounds, the state Pg equals Cap. The energy buffer

capacity can be obtained from:

Cap = (∆Tl +∆Tu)
∑
i∈m

Ci, (4.22)

where m is the group size, Ci is the effective heat capacity of the house with HVAC

i in the unit of J/K, which is described in (4.2).

The central controller must guarantee the states of all the local controllers between

0 and their Cap. In this state space model of the MPC problem, the control actions are

the amount of power assigned to all the local controllers. The measured disturbance

is the vector containing each Pb for the corresponding group, and the output is the

vector including all the group states and the load of all HVACs. The exact state space

model formulas are similar to (4.7), (4.8) and are omitted due to space limitation.

The objective function of the central controller is formulated as follows:
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Problem II (P2)

min
P j
a (k)

:
∑
k∈N

{
(Lh(k)− rw(k))

2 + λ2
∑
j∈M

(P j
g (k)−Rj(k))

2

}
, (4.23)

subject to: ∑
j∈M

P j
a (k) = Lh(k), (4.24)

0 ≤ P j
g (k) ≤ Capj, ∀j ∈M, ∀k ∈ N, (4.25)

0 ≤ P j
a (k) ≤ Umax

j , ∀j ∈M, ∀k ∈ N, (4.26)

where M is the number of groups; Rj is the reference value of the state for group j,

and we set it to half of the energy buffer capacity Capj/2; U
max
j =

∑
i∈m umax

i is the

maximum amount of power allowed to be assigned to local group j in each time slot.

The first part of the objective function (4.23) represents the deviation of the actual

HVAC load from the reference HVAC load (rw). The second part represents the sum

of the energy buffer state deviation from the reference state for each local group,

which indirectly represents the impact on users’ comfortableness. λ is used to make

a tradeoff between these two parts. Constraint (4.25) requires that the state of each

group should be bounded between 0 and Cap. (4.26) ensures that the power assigned

to each group is bounded.

Similarly, the central controller will follow the receding horizon principle and up-

date the states of all the groups after each time slot.

4.5.3 Local Controller Design

After the local controller receives the power quota Pa assigned by the central

controller for the next time slot, it assigns this amount of power to all the HVACs by

maximizing user comfort level. Note that the energy buffer state of the local group

is guaranteed to be bounded by the central controller, as a result the temperatures

of all the houses will not violate the temperature constraint (4.18).

The local controller determines the amount of power for each house by solving the

following optimization problem.

Problem III (P3)

min
P i
h(k)

:
∑
i∈Sl

(Ti(k + 1)− ri(k + 1))2, (4.27)
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subject to: ∑
i∈Sl

P i
h(k) = Pa, (4.28)

ri(k + 1)−∆Tl ≤ Ti(k + 1) ≤ ri(k + 1) + ∆Tu, ∀i ∈ Sl, (4.29)

0 ≤ P i
h(k) ≤ umax

i , ∀i ∈ Sl, (4.30)

Ti(k + 1) = Ti(k)−∆T i
off (k) +QiP

i
h(k), ∀i ∈ Sl, (4.31)

where Sl is the set of HVACs under the local controller.

Since the distributed algorithm has a hierarchical architecture, the computation

complexity of the central controller can be greatly reduced. However, the central

controller cannot control each HVAC directly, neither can it know the exact status of

each HVAC. As a result, it may lead to some fairness problems to the HVACs because

HVACs under different local controllers may be treated differently. In addition, the

control variables for the central controller are reduced (from the number of HVACs

to the number of local controllers), so the control precision may not be as good as the

centralized algorithm. We will compare the performance of the distributed algorithm

with the centralized one in Section 4.7.

4.6 HVAC ON/OFF State Control

In problemsP1, P2 andP3, we assume that the consumed power for any HVAC in

each time slot can be adjusted continuously. However, this may not be true in practice.

For instance, some HVACs can only be turned on or off. Therefore, we consider how

to change the proposed algorithms to support this kind of control actions.

For the proposed centralized MPC control algorithm, in order to support HVAC

ON/OFF control, we can simply replace (4.19) with (4.32) in P1.

P i
h(k) ∈ {0, umax

i }, ∀i ∈ S, ∀k ∈ N. (4.32)

W.r.t. the distributed MPC algorithm, we can replace (4.30) with (4.33) in P3,

and let the local controller report the total amount of energy actually used, to the

central controller which then updates the original control actions.

P i
h(k) ∈ {0, umax

i }, ∀i ∈ Sl, (4.33)
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This turns the original problems into multiple integer problems (MIP) which usu-

ally have much higher computational complexity. Therefore, we propose an heuristic

algorithm which can obtain the control actions in polynomial time.

Algorithm 2 Determine HVAC State

Require: Pa

1: PState[1, 2, · · · ,m]← OFF
2: sort PState according to the difference between room temperature and the set-

point from low to high
3: sum← 0
4: for all i ∈ m do
5: if T−

i (k + 1) ≤ ri(k)−∆Tl then
6: sum← sum+ P i

h

7: PState(i)← ON
8: end if
9: end for
10: for all i ∈ m do
11: if PState(i) = OFF and sum < Pa and T+

i (k + 1) ≤ ri(k) + ∆Tu then
12: if Pg(k) ≤ R(k) then
13: sum← sum+ P i

h

14: PState(i)← ON
15: else if sum+ P i

h < Pa then
16: sum← sum+ P i

h

17: PState(i)← ON
18: end if
19: end if
20: end for

In Algorithm 2, m is the number of HVACs in the group; PState is an vector

which stores the state of all the HVACs; T−
i (k + 1) represents the temperature of

house i in the next time slot if the state of the HVAC is OFF; T+
i (k + 1) represents

the temperature of house i in the next time slot if the state of the HVAC is ON; R(k)

is the reference value of the state in the current time slot.

Line 2 guarantees that the houses with lower temperature have a higher priority.

Lines 4 to 9 of Algorithm 2 set the state of HVAC whose house temperature is very

close to the lower bound to be ON. Line 2 guarantees that the houses with lower

temperature have a higher priority. If the current group state Pg(k) is smaller than

the reference state R(k), we allow one more HVAC to be turned on (from lines 12 to

14). In this case, the total amount of power used may be greater than Pa. Otherwise

we let sum always be smaller than Pa (from lines 15 to 17).
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After obtaining the ON/OFF states of each HVAC, the local controller will report

the actually used energy and the actual group state to the central controller. The

central controller will update the model states and move to the next time slot.

4.7 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms and com-

pare them with the algorithm in [64] (we call it “SPDW” algorithm, which is the

combination of the first letters of all the authors’ names, for easy reference) and the

uncontrolled one. To achieve a flatten overall non-renewable power generation, the

SPDW algorithm tries to minimize the difference of the load between the current and

the last time slot by adjusting the set-points of HVACs. The parameters of our algo-

rithms are tuned using the existing approaches for MPC [92], which aims to minimize

(4.34). After tuning, the values of the weights in our simulation are set to 3.3 and 0.28

for centralized MPC algorithm (CMPC) and distributed MPC algorithm (DMPC),

respectively. The control interval is set to 2 minutes. The communication latency

between the controllers and HVACs is negligible and can be ignored. For the data

gathering time delay, we assume that the users will send their states to the controller

at the beginning of each time slot. Without considering the communication latency

and the transmission error, all the data should be obtained within seconds. With

respect to the computation time of the proposed algorithms, the proposed CMPC

algorithm does need a long time. However, the proposed DMPC is much faster. For

example, To apply the DMPC algorithm to a community with 1000 HVACs, we can

divide it into 20 groups with 50 HVACs in each group. The computation of either

the central controller and the local controller for one time slot is below 0.4s. Since

the room temperature will not change significantly within several seconds, the influ-

ence of the data gathering time and the computation time of the proposed algorithm

are both tolerable. The wind energy generation data and users’ load are obtained

from Eirgrid [16]. While these data have a resolution of 15 minutes, we use shape-

preserving piecewise cubic interpolation [51] to interpolate them into a resolution of

2 minutes. Besides, we scaled them down to fit a micro-grid with a population size

of 1000 and let the wind energy penetration take about 50% of the total load.

For the HVAC and house model, we assume that each house only has one room

and one HVAC for simplicity, and the decrement of room temperature in each time

slot follows a normal distribution, with an average of 0.2 Celsius, and a standard
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Figure 4.5: Load for conventional power plants

deviation of 0.03 Celsius. The parameter Q also follows a normal distribution, with

an average value of 1.65×10−4 and a standard deviation of 0.25×10−4. The maximum

power of each HVAC is uniformly distributed between 4kW and 6kW . Note that the

HVAC power used in our simulation may be different from that in practice, but it

will not affect the effectiveness of the proposed algorithms. The parameters ∆Tl and

∆Tu are both set to one Celsius. The indoor set-point is uniformly distributed from

20 Celsius to 22 Celsius. Initially, all the indoor temperatures are scatted around

their set-points by at most 0.5 degree.

In this simulation, the prediction horizon in the proposed CMPC is set to 30 min-

utes. Due to the computation complexity of the controller, the number of controlled

HVAC in this simulation is only 40. We will show the simulation result with more

HVACs using the DMPC later, which is much faster. The reason is that DMPC has

a hierarchical architecture, so either the central controller or the local controller has

much fewer variables to optimize in each time slot.

Fig. 4.5 shows a typical time period of the power provided by conventional power
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Figure 4.6: Room temperature

plants. As illustrated in the figure, both SPDW and CMPC can make the load

smoother and flatter. Notice that the SPDW algorithm can flatten the load for a

while (from minute 750 to 770), then the load suddenly decreases and is kept flat for

another period of time (from minute 770 to 800) before another increase. The reason

is that the SPDW algorithm will keep the load as flat as possible by adjusting the

ON/OFF state of all the HVACs until the elastic capacity of all the HVACs is no

longer enough to provide further demand response. Then it will make a dramatic load

change to push the HVAC away from the temperature bound so they can continue to

provide demand response. For example, around minute 770, the majority of HVACs

have reached the temperature upper bound so they are all turned off which make

the load decrease tremendously. The opposite situation happens around minute 800.

The proposed CMPC algorithm predicts the status of all the rooms in the future and

changes the water level beforehand so that the overall load change is much smoother.

To measure the performance of different algorithms numerically, we define a crite-

rion “average fluctuation (AF)” to represent the amount of load fluctuation as follows
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(similar criterion can be found in [45]):

AF =
1

N − 1

N−1∑
i=1

|data(i+ 1)− data(i)|
data(i)

, (4.34)

where N is the total number of time slots; data(i) is the data in the i-th slot; the

denominator is used to normalize the data difference.

The average fluctuation for CMPC, SPDW and uncontrolled cases are 0.0028,

0.0123 and 0.0166, respectively. We find the proposed algorithm has a much smaller

AF value which mainly because of the following three reasons. First, if the HVAC

buffer capacity may not be enough in the future, the proposed algorithm will get

prepared by changing the water level gradually, so the average fluctuation can be

reduced. Second, the HVAC models in the proposed algorithm are assumed to use

any amount of energy during the time slot while the SPDW algorithm only controls

the ON/OFF states of the HVACs. We will discuss the performance of the proposed

distributed MPC algorithm with ON/OFF support (DMPCOF) later. Third, the

HVACs in the proposed algorithm are controlled directly by the central controller

while the SPDW algorithm only control the set-point of all HVACs which indirectly

affect the ON/OFF states of HVACs.

Fig. 4.6 (a) shows the temperature variation of a typical room using the proposed

CMPC algorithm. The set-point is not an integer because we set random set-point

for each house. As can be seen, CMPC can effectively guarantee user comfort level

by restricting room temperature’s variation within a range of the set-point. Fig. 4.6

(b) represents the set-point of all the controlled HVACs by SPDW. Note that the in-

dividual house temperature is allowed to deviate from the set-point for 0.5 Celsius, so

the temperature variation range of a house is the same as that in CMPC. Comparing

these two figures, we will find the temperature variation of the proposed algorithm is

much smoother which leads to a higher user comfort level.

For the DMPC and DMPCOF algorithms, we set the number of local controllers

to be 4, and each local controller manages 8 to 12 HVACs, with a total number of

40. The prediction horizon is also 30 minutes.

Fig. 4.7 illustrates the zoomed-in load of SPDW, CMPC, DMPC and DMPCOF

algorithms. The load of CMPC is slightly below the others due to different water

levels. Since the control actions and system model are a bit different, the water level

of CPMC and DMPC may not be the same all the time. The curve of DMPCOF
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Figure 4.7: Load comparison of proposed three algorithms
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Table 4.1: Average fluctuation

Prediction
Horizon

DMPC
with 40 HVACS

DMPCOF
with 40 HVACS

DMPCOF
with 80 HVACS

10min 0.0032 0.0058 0.0052
20min 0.0030 0.0052 0.0048
30min 0.0029 0.0050 0.0046

contains more fluctuations because the load change is discrete rather than continuous.

However, the fluctuation is still much smaller than that of SPDW.

The AF of DMPC and DMPCOF are 0.0029 and 0.0050 respectively, and slightly

larger than that of CMPC but still much smaller than that of SPDW and the uncon-

trolled cases. The reason why the AF of CMPC is smaller may be that DMPC has

fewer control variables for the central controller.

In addition, we define the user comfortable influence factor (UIF) as the root mean

square of all the room temperature deviation from the set-point.

We find the UIF of DMPC and DMPCOF are about 8.23% and 72.4% larger than

that of CMPC. The reason is that CMPC minimizes UIF directly while DCMP and

DCMPOF minimize it indirectly by controlling the energy buffer state for each local

controller. Besides, the HVACs of DCMPOF can only be turned ON or OFF which

makes its UIF even larger.

With a different prediction horizon, the total load for the conventional power

plants is anticipated to be different. Fig. 4.8 shows the situation when the prediction

horizon is 10 minutes and 30 minutes, respectively. The total number of HVACs are

both 40.

From Fig. 4.8, the curve DMPC-30 (corresponding to 30-minute prediction hori-

zon) is smoother than that of DMPC-10 (corresponding to 10-minute prediction hori-

zon) because it contains fewer ups and downs. The reason is that with a longer

prediction horizon, the controller has more information about the future load change

and thus can get prepared earlier.

Table 4.1 shows the average fluctuation for DMPC, DMPCOF with 40 HVACs and

DMPCOF with 80 HVACs (4 groups, each group has 16 to 24 HVACs). Obviously,

the average fluctuation of DMPCOF is larger than that of DMPC with the same

prediction horizon, and with a longer prediction horizon the average fluctuation is

smaller. We also notice that with more HVACs, the average fluctuation of DMPCOF

is smaller under the same prediction horizon too. The reason is that with more
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HVACs to be controlled in a group, the amount of actual HVAC load can have a

better chance to be closer to the reference HVAC load value.

4.8 Conclusion

In this chapter, we have proposed two algorithms to control HVACs for demand

response based on MPC. The centralized approach directly controls all the HVACs

while the distributed approach uses a hierarchical architecture. Both of them can

effectively reduce load fluctuations while keeping all the room temperature within

a range of the set-point. Moreover, the proposed distributed algorithm has been

extended under a more practical assumption that each HAVC can only support ON

and OFF.
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Chapter 5

Optimal Combined Heat and

Power System Scheduling

5.1 Introduction

CHP systems can generate both electricity and thermal energy simultaneously

from a single fuel source, and can achieve a much higher energy efficiency than gen-

erating electricity and heat separately.

In this chapter, we will consider the CHP system scheduling problem from the

perspective of both the users and the power company, assuming that the electricity

price changes in real time. On one hand, the users can reduce their energy bill by

using the battery pack and the water tank of the CHP system as the energy buffer.

We first formulate the queueing models for the CHP systems, and then propose an

algorithm based on the Lyapunov optimization technique which does not need any

statistical information about the system dynamics. Different from existing works

which only consider the electricity flow, the system we considered includes both the

electricity flow and the thermal flow. The main challenge is that these two flows are

coupled by the CHP system, and can inter-play with each other.

On the other hand, given the scheduling policy of the CHP systems at the users’

side. How to set an appropriate RTP so that all the CHP systems can be coordinated

to provide load shaping service is a big challenge. In order to determine the desired

RTP, we need to solve a nested optimization problem which is very challenging.

However, based on the feature of the specific problem, we propose a binary search

algorithm which can find the optimal RTP in O(log n) time.
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The contributions of this chapter are three-fold. First, we propose a comprehen-

sive model from the perspective of a commercial customer, which incorporates both

the electricity and thermal energy queues. We investigate the relationship of these

two queues to minimize the average cost. Second, we propose an algorithm to ap-

proximately achieve the optimal average cost, considering the limited capacities of

the battery pack and the water tank. The algorithm does not require any statistical

information of the system dynamics such as electricity and hot water demands, etc.

To obtain the optimal scheduling decision, we discuss when we can use the specific

features of the problem to turn a non-convex optimization problem into a convex one

which can be solved in real time. Third, we discuss how to set the appropriate RTP

to coordinate all the CHP systems indirectly to provide load shaping services. The

time complexity of the proposed searching algorithm is O(log n).

5.2 Related Work

Thanks to the ubiquitous communications technologies, it is possible to optimize

the provisioning and delivery of various energy sources to achieve a higher efficien-

cy [87, 21]. To provide both electricity and heat economically, the design and opera-

tion strategies of CHP systems have been well investigated. [26] discussed operating

strategies, such as heat and electricity load following, for three micro-CHP technolo-

gies. [53] evaluated four typical operation modes in a hotel based on measured electric

and heating loads. [15] analyzed the utilization of micro-CHP systems in conjunc-

tion with domestic household appliances. [42] analyzed the cost for different fuel-cell

systems. These works tried to find the most cost-effective strategies from a system

view, and do not consider the detailed control policies. The Combined Heat and

Power Economic Dispatch (CHPED) problem, first raised in [72], aimed to find the

optimal operation point of CHP with minimum energy cost such that both electricity

and heat demands were met. A two-level strategy to separate the objective function

and constraints was adopted in [72]. Besides the traditional mathematical approach-

es, evolutionary computation techniques were used to improve the performance [82].

However, in the CHPED problems, optimization was performed to minimize the cost

in each time slot. No energy buffer was used to minimize the long-term cost. In

addition, it did not consider the stochastic nature of energy demand.

Various optimization technologies have been used to optimize the cost of a smart

grid system with energy buffers. T. Chang et al. used the dynamic programming and
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decomposition approach to minimize the total cost from the perspective of each user

and the whole micro-grid, respectively [8]. In their work, the distributions of all the

stochastic variables such as the load and real-time price information were assumed

to be available from historical data. [33] proposed a threshold based energy storage

control policy that minimizes the long-term average grid operational cost based on

dynamic programming. Model predictive control (MPC) has also been applied to

obtain the optimal control policies. For example, T. G. Hovgaard et al. proposed an

economic MPC algorithm to minimize the total cost of distributed power generation

plants by using large cold rooms as the energy buffer. Different from these approaches,

our proposed algorithm tries to minimize the long-term average cost without the need

to estimate the statistical system dynamics from historical data.

There are also several works which use the Lyapunov optimization technique to

construct low complexity energy storage management policies. M. J. Neely et al.

minimized the time average cost from the perspective of one user, and guaranteed the

worst-case delay for each elastic load in [55]. In [89], the authors used uninterruptible

power systems (UPS) in the data center to reduce the electricity bill in a real-time

price environment. Their model did not consider renewable energy sources. Guo et al.

investigated how to use a household battery to minimize the average electricity cost,

considering both inelastic and elastic load in [24]. Instead of guaranteeing the worst-

case delay, [29] guaranteed that the percentage of the delayed elastic load was less

than a threshold. These works discussed above only considered one energy buffer,

however, the system model discussed in our work includes two energy buffers, the

battery pack and the water tank, which are correlated by the CHP system. With

two dependent queues, the system model is more complicated and we need to solve a

non-convex optimization problem to obtain the optimal control policy. In addition,

we illustrate the relationship between the capacity of these two energy buffers and the

minimum required capacity to achieve the optimal performance. This chapter focuses

on the problems closely related to the unique features of the CHP systems. Some

well-studied applications of Lyapunov optimization in smart grid, such as elastic load

queue, worst-case delay, etc, are not discussed here due to the space limitation.

How to determine an appropriate real-time price to coordinate all the “selfish”

users is also a challenging task. [96] proposed a pricing scheme to stimulate a large

group of electrical vehicle users to provide frequency regulation based on game theory.

Y. Gao extended their work by considering different users’ preferences under the

presence of information asymmetry using contract theory [21]. One problem in the
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above work is that the users’ preferences may keep changing over time, and are

highly related to the state-of-charge of the electrical vehicles’ battery. Therefore, the

performance gain of the above user preference learning algorithm may be limited. In

order to obtain a better user reaction model to price signals, C. Chen et al. proposed

an iterative methods based on a leader and follower level game theory that need

frequent information exchange, which may lead to a high communication overhead

[10]. In this chapter, different from the game theory approach, we propose a fast

algorithm to determine the optimal real-time price which can effectively coordinate

all the CHP system for load shaping services.

5.3 System Model

We consider how to minimize the average energy cost using the CHP device and

energy buffers. The mathematical models of this system are discussed in this section.

5.3.1 System Architecture

Fig. 5.1 gives an overview of the CHP system, such as the one used in a hotel. Le(t)

and Lw(t) represent the electricity and hot water demands from users in each time

slot, respectively, which are stochastic. Le(t) can be met by the electricity discharged

from the battery D(t) or bought from the power grid Gl(t). Lw(t) is met by the hot

water stored in the water tank.

In each time slot, the CHP device can generate electricity, in the amount of

ηcePc(t), to charge the battery and hot water, in the amount of ηcgPc(t), to fill the

water tank, where Pc(t) is the amount of the natural gas consumed by the CHP, ηce

is the conversion efficiency from natural gas to the amount of the electricity charged

to the battery, and ηcg is the conversion efficiency from natural gas to the amount of

hot water. Meanwhile, if the battery is full or the grid electricity price is high, the

electricity generated from the CHP, in the amount of ηcoPc(t), can be sold back to

the grid with the conversion efficiency ηco. The parameter r(t), ranging from 0 to 1 is

used to make a tradeoff between the amount of electricity used to charge the battery

and that sold to the grid.

Note that we did not let the power generated from the CHP supply the user’s

electricity demand Le(t) directly in the above model to simplify the analysis. The

reason is that we assume the electricity price bought from and sold to the power grid
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Figure 5.1: The CHP system uses natural gas
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are the same, so whether the electricity is used to supply the user’s demand directly

or sold back to the grid does not affect the total energy cost (if we do not sell the

electricity, less electricity is bought from the grid).

Since the electricity price in the real-time electricity market changes according

to the supply and demand, in this chapter we assume the real-time electricity price

Ce(t) for the next time slot is known ahead of time. Ce(t) is bounded in the range

[Ce,min,Ce,max]. On the other hand, the price of the natural gas does not change

frequently and the percentage of the change is usually not large, so we assume it is

constant in each time slot. However, the proposed algorithm is still applicable if we

also consider the real-time gas price because the control decisions of the proposed

algorithm are made upon the current system states in each time slot, including the

natural gas price.

To minimize the average energy cost in the long term, in each time slot the con-

troller determines the amount of electricity Gl(t) and Gs(t) bought from the grid to

supply the electricity demand and charge the battery, the amount of the natural gas

Pc(t) consumed by the CHP and the amount of the natural gas Pa(t) consumed by

the boiler. It also needs to determine the value of r(t) which specifies the dispatch of

the generated electricity from the CHP to the battery. The parameter ηs in Fig. 5.1

represents the battery charging efficiency, and ηag represents the conversion efficiency

from natural gas to the amount of hot water using the boiler.

The intuition is that the controller discharges the battery and makes the CHP

generate more electricity to meet the high electricity demand or sell to the grid to

earn profit when the electricity price is high. On the contrary, the controller charges

the battery using the electricity from the grid when the electricity price is low. This

problem is challenging because we do not know the distribution of the electricity

and hot water demand, nor do we know the distribution of the real-time electricity

price. Of course, we can use dynamic programming to estimate the distribution of

these stochastic variables, but it is usually computationally complex and may have

the “curse of dimensionality” problem [4].

5.3.2 Electricity Queueing Model

In practice, although the lifetime of the battery may be influenced by the charging

and discharging process, etc, we do not take them into account. Besides, we assume

that the state of charge (SOC) of the battery, viewed as the energy queue of the
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battery, is linear to simplify our analysis. However, the proposed algorithm will not

be largely affected if we incorporate more complicated battery models because the

proposed algorithm only needs to know the current battery status to make control

decisions.

The SOC level of the battery B(t) evolves according to the following equation:

B(t+ 1) = B(t)−D(t) + ηsGs(t) + r(t)ηcePc(t). (5.1)

Obviously, in any slot t, the battery needs to have the following capacity and

charge/discharge constraints.

0 ≤ B(t) ≤ Bmax, (5.2)

0 ≤ D(t) ≤ Dmax, (5.3)

0 ≤ ηsGs(t) + r(t)ηcePc(t) ≤ Cchar, (5.4)

where Bmax is the capacity of the battery, Dmax is the maximum discharge rate of the

battery, and Cchar is the maximum charge rate of the battery.

The amount of electricity drawn from the grid in one time slot is also bounded by

Pe,max:

0 ≤ Gl(t) +Gs(t) ≤ Pe,max, (5.5)

0 ≤ Gl(t) ≤ Gl,max, 0 ≤ Gs(t) ≤ Gs,max, (5.6)

where Gl,max and Gs,max are the upper bound of Gl(t) and Gs(t), respectively. Since

the grid can meet the commercial power demand most of the time, we assume Pe,max ≥
Le,max where Le,max is the upper bound of Le(t).

5.3.3 Water Queueing Model

The water tank discussed here is assumed an ideal one, so we do not consider

heat leakage. A more practical water tank model can easily be applied as we can

consider the amount of the heat needed to reheat the water tank as the additional

heat demand in the form of hot water from the users.

The amount of hot water stored in the water tank, which is the queue length of
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the water tank, evolves according to the following equation:

W (t+ 1) = W (t)− Lw(t) + ηcgPc(t) + ηagPa(t), (5.7)

where W (t) is the water level in the water tank in slot t.

Since the amount of the water stored in the water tank should always be bounded

by the size of the water tank, we have: 0 ≤ W (t) ≤ Wmax, where Wmax is the capacity

of the water tank. In addition, since we assume the hot water demand in each time

slot will not exceed Lw,max, to make sure that users’ demand can always be met even

in the worst-case situation, i.e., the hot water demand is always Lw,max, we assume

the following constraint holds:

Lw,max ≤ ηagPa,max, (5.8)

where Pa,max is the maximum amount of the natural gas used by the boiler in each

time slot, and Lw,max is the upper bound of the hot water demand in each time slot.

5.3.4 Control Objective

In each time slot, the total energy cost for the CHP system is the sum of the

electricity and natural gas cost minus the amount of the electricity sold to the grid:

f(t) = Ce(t){Gl(t) +Gs(t)− (1− r(t))ηcoPc}+ Cg{Pc + Pa}, (5.9)

where Cg is the natural gas price.

The control objective is to find a control policy determining the amount of the

electricity and natural gas dispatched in each time slot, so as to minimize the long-

term average energy cost.

favg = lim
T→∞

1

T

T−1∑
i=0

E{f(i)}. (5.10)

5.4 The CHP System Scheduling Algorithm

In this section, we assume the electricity and hot water demands in each time slot

Le(t), Lw(t) are independent. The proposed algorithm in this section will solve the

following problems. First, given the current states of the CHP system, including the
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electricity and hot water demand, battery and water tank storage level, electricity

price in the current time slot, etc, how to obtain the optimal control decisions with

a low computational complexity and can adapt to the stochastic system dynamics

while still provide a good performance? Second, what is the minimum capacity of

the battery pack and water tank we should have to achieve a given performance

requirement? Third, since the CHP can generate both electricity and heat, the battery

pack and water tank queues specified in (5.1) and (5.7) are dependent. What is the

relationship between the capacity of the battery pack and that of the water tank?

According to the system architecture and control objective described in Sec-

tion 5.3, the problem can be formulated as the following stochastic optimization

problem.

Problem One (P-I)

min
D(t),r(t),Gl(t),Gs(t),Pc(t),Pa(t)

P1 = lim
T→∞

1

T

T−1∑
t=0

E{f(t)}, (5.11)

subject to

B(t+ 1) = B(t)−D(t) + ηsGs(t) + r(t)ηcePc(t), (5.12)

W (t+ 1) = W (t)− Lw(t) + ηcgPc(t) + ηagPa(t), (5.13)

0 ≤ B(t) ≤ Bmax, (5.14)

0 ≤ W (t) ≤ Wmax, (5.15)

Le(t) = Gl(t) +D(t), (5.16)

0 ≤ ηsGs(t) + r(t)ηcePc(t) ≤ Cchar, (5.17)

0 ≤ r(t) ≤ 1, Pc(t), Gl(t), Gs(t) ≥ 0, (5.18)

0 ≤ D(t) ≤ Dmax. (5.19)

The above problem cannot fit into the stochastic optimization framework directly

mainly because of the battery and water tank capacity constraints (5.14) and (5.15).

Specifically, stochastic optimization can only guarantee the average energy generation

equals the average consumption in the long term, but cannot provide a hard bound

on the difference between the generation and consumption in any time slot. To solve

this problem, we take the expectation on the two sides of (5.12) and (5.13), which

leads to the following relaxed problem:
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Problem Two (P-II)

min
D(t),r(t),Gl(t),Gs(t),Pc(t),Pa(t)

P1 = lim
T→∞

1

T

T−1∑
t=0

E{f(t)}, (5.20)

subject to

D(t) = ηsGs(t) + ηcer(t)Pc(t), (5.21)

Lw(t) = ηcgPc(t) + ηagPa(t), (5.22)

and (5.16), (5.17), (5.18), (5.19).

P-II fits the stochastic optimization framework, so we can solve it using existing

algorithms [54, 10]. Obviously, only when the solutions to P-II can meet the con-

straints (5.14) and (5.15) for ∀t ∈ T , they are also feasible to P-I. To reach this

objective, we define two constants θ and ε. The intuition is that by adjusting these

two constants appropriately, we can make the solutions to P-II also be feasible to P-I.

To start, we define two queues E(t) and X(t):

E(t) = B(t)− θ, (5.23)

X(t) = W (t)− ε. (5.24)

The constants θ and ε are two queue offsets, which are used to guarantee that the

two queues B(t) and W (t) are bounded.

From (5.12) and (5.13), we can obtain the queueing dynamics:

E(t+ 1) = E(t)−D(t) + ηsGs(t) + r(t)ηcePc(t), (5.25)

X(t+ 1) = X(t)− Lw(t) + ηcgPc(t) + ηagPa(t). (5.26)

We then define the Lyapunov function Q(t) = 1
2
E(t)2 + 1

2
X(t)2. The conditional

one-slot Lyapunov drift is:

∆(t) = E{Q(t+ 1)−Q(t)|E(t), X(t)}. (5.27)

Here, the battery queue and the water tank queue are of equal weight. Our algorithm

can be extended if we assign different weights to them.
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According to (5.25) and (5.26), by squaring both sides, we have:

∆(t) ≤0.5max[(ηsGs,max + ηcePc,max)
2, D2

max]

− E(t)[D(t)− ηsGs(t)− r(t)ηcePc(t)

+ 0.5max[(ηcgPc,max + ηagPa,max)
2, L2

w,max]

−X(t)[Lw(t)− ηcgPc(t)− ηagPa(t)]

=B − E(t)[D(t)− ηsGs(t)− r(t)ηcePc(t)]

−X(t)[Lw(t)− ηcgPc(t)− ηagPa(t)],

where Pc,max is the maximum amount of the natural gas that can be used by the CHP

in each time slot, and B is a constant and defined as

B =0.5max[(ηsGs,max + ηcePc,max)
2, D2

max]

+0.5max[(ηcgPc,max + ηagPa,max)
2, L2

w,max].
(5.28)

According to the stochastic optimization framework, in order to make the two

queues E(t) and X(t) mean rate stable, we must minimize the drift ∆(t). In addition,

our control objective is to minimize the average cost. So we use a constant V to

represent the tradeoff between these two objectives. Then the drift plus penalty

function can be written as follows.

∆(t) + V E{f(t)}

≤ B − E(t)E{D(t)− ηsGs(t)− r(t)ηcePc(t)|E(t)}

−X(t)E{Lw(t)− ηcgPc(t)− ηagPa(t)|X(t)}

+ V E{Ce(t){Gl(t) +Gs(t)− (1− r(t))ηcoPc}

+ Cg{Pc + Pa}}.

(5.29)

We then substitute Gl(t) in (5.29) according to (5.16), and after some manipula-
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tion we can obtain:

∆(t) + V E{f(t)}

≤ B + V E{Ce(t)Le(t)|E(t)} − E{Lw(t)X(t)|X(t)}

− E{D(t)[E(t) + V Ce(t)]|E(t)}

+ E{Gs(t)[ηsE(t) + V Ce(t)]|E(t)}

+ E{Pc(t)[r(t)ηceE(t) + ηcgX(t)

− (1− r(t))ηcoV Ce(t) + CgV ]|E(t), X(t)}

+ E{Pa(t)[ηagX(t) + V Cg]|X(t)}.

(5.30)

Based on the “min-drift” principle of the Lyapunov optimization approach, the

main idea of the proposed algorithm is to minimize the right-hand side (RHS) of

(5.30) over all the feasible control policies in each time slot. In other words, at the

beginning of each time slot, we observe the system states B(t), W (t), Le(t), Lw(t),

Ce(t), determine the value of B + V E{Ce(t)Le(t)|E(t)} − E{Lw(t)X(t)|X(t)}, and
then solve the following problem:

Problem Three (P-III)

min
D(t),r(t),Gl(t),Gs(t),Pc(t),Pa(t)

Gs(t)Hs(t) + Pc(t)Hc(r(t)) + Pa(t)Ha(t)−D(t)Hd(t),

(5.31)

subject to

Le(t) = Gl(t) +D(t), (5.32)

0 ≤ ηsGs(t) + r(t)ηcePc(t) ≤ Cchar, (5.33)

0 ≤ r(t) ≤ 1, Pc(t), Gl(t), Gs(t) ≥ 0. (5.34)

0 ≤ D(t) ≤ Dmax, (5.35)

where
Hs(t) =ηsE(t) + V Ce(t), Ha(t) = ηagX(t) + V Cg,

Hd(t) =E(t) + V Ce(t), Hc(r(t)) = Hr(t)r(t) +Hb(t),

Hr(t) =ηceE(t) + ηcoV Ce(t),

Hb(t) =ηcgX(t)− ηcoV Ce(t) + CgV.

(5.36)

Note that (5.31) contains the product of Pc(t) and functions of r(t), so P-III is a

non-convex optimization problem because its Hessian matrix is not always positive
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definite. When looking into the structure of P-III, we can find that D(t) and Pa(t)

can be easily obtained according to the value of Hd(t) and Ha(t). If Hd(t) ≥ 0, then

D(t) = min{Dmax, Le(t)}; otherwise D(t) = 0. If Ha(t) ≤ 0, then Pa(t) = Pa,max;

otherwise Pa(t) = 0. Therefore, we only have to solve the following subproblem:

min
D(t),r(t),Gl(t),Gs(t),Pc(t),Pa(t)

: Gs(t)Hs(t) + Pc(t)[Hr(t)r(t) +Hb(t)], (5.37)

subject to: (5.33) and (5.34).

Suppose (5.33) is not active and 0 < r(t) < 1. Since Hc(r(t)) is a linear function of

r(t), then we can always increase or decrease r(t) to make (5.37) smaller. Therefore,

either (5.33) is active or r(t) equals 0 or 1.

Suppose (5.33) is active. We can replace Gs(t) using (5.33) in (5.37) and get:

min
D(t),r(t),Gl(t),Pc(t),Pa(t)

: (ηco −
ηce
ηs

)V Ce(t)Pc(t)r(t)

+
Cchar

ηs
[ηsE(t) + V Ce(t)] + Pc(t)Hb(t).

(5.38)

Obviously, since Ce(t), Pc(t) ≥ 0, if ηco ≥ ηce
ηs
, then r(t) = 0; otherwise r(t) should

be as large as possible. If ηcePc,max ≤ Cchar, then r(t) can be 1 and we can use this

fact to convert P-III to a linear optimization problem by substituting r(t) = 0 and

r(t) = 1 into P-III, respectively, and choose the minimum value. Otherwise, r(t)

should be in the range of [Cchar/ηcePc,max, 1], and since this range is not too large, we

can use a search algorithm to obtain the optimal solution.

Next we need to prove that the solutions to P-III are also feasible to P-I. In other

words, the solutions to P-III can meet constraints (5.14) and (5.15) for ∀t ∈ T .

Theorem 1: Suppose θ and ε are defined in (5.39) and (5.40), respectively,

θ =
V Ce,max

ηs
+min{Dmax, Le,max}, (5.39)

ε =
V Cg

ηag
+ Lw,max. (5.40)

Then through minimizing P-III, we can have the following results:

0 ≤ B(t) ≤ θ + Cchar, ∀t ∈ T, (5.41)
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0 ≤ W (t) ≤max{ε+ ηceθ − V Cg

ηcg
+ ηcgPc,max,

ε+
ηcoV Ce,max − V Cg

ηcg
+ ηcgPc,max,

ε+ ηcgPc,max + ηagPa,max}, ∀t ∈ T,

(5.42)

given that the above relationships are satisfied at t = 0.

Proof. First, we use induction to prove the upper bound of B(t) and W (t). Since it

holds when t = 0, we assume it also holds at time slot t.

1) Suppose B(t) ≤ θ. Since 0 ≤ ηsGs(t) + r(t)ηcePc(t) ≤ Cchar, we can have

B(t+ 1) ≤ θ + Cchar.

2) Suppose B(t) > θ. According to (5.23), E(t) > 0. So we have Hs(t) >

0, Hd(t) > 0. To minimize P-III, it must beGs(t) = 0 andD(t) = min{Dmax, Le(t)}.
Besides, we can find thatHc(r(t)) is an increasing function with r(t), so Pc(t)Hc(r(t))

reaches its minimum value when r(t) = 0. From all the above we can see

whenever B(t) > θ, the battery will discharge and do not charge. Therefore

B(t+ 1) ≤ B(t) ≤ θ + Cchar.

3) Suppose W (t) ≤ ε, it is obvious that W (t+ 1) ≤ ε+ ηcgPc,max + ηagPa,max.

4) Suppose W (t) > ε, then X(t) > 0 according to (5.24), and Ha(t) > 0. To

minimize P-III, Pa(t) must be 0. Next we consider the following two cases. For

the first case, if ηceE(t) + ηcoV Ce(t) < 0, Hc(r(t)) reaches its minimum value

−ηceθ + ηcg[W (t) − ε] + V Cg when r(t) = 1 and B(t) = 0. Therefore, when

W (t) > ε + ηceθ−V Cg

ηcg
, Hc(r(t)) > 0 and Pc(t) is set to 0 to minimize P-III. In

this case, W (t+1) ≤ W (t). On the other hand, W (t+1) ≤ W (t)+ ηcgPc,max ≤
ε+ ηceθ−V Cg

ηcg
+ ηcgPc,max.

For the second case, if ηceE(t) + ηcoV Ce(t) ≥ 0, Hc(r(t)) reaches its minimum

value −ηcoV Ce,max + ηcg[W (t) − ε] + V Cg when r(t) = 0. Therefore, when

W (t) > ε+ ηcoV Ce,max−V Cg

ηcg
, Hc(r(t)) > 0 and Pc(t) is set to 0 to minimize P-III.

In this case, W (t+1) ≤ W (t). On the other hand, W (t+1) ≤ W (t)+ηcgPc,max ≤
ε+ ηcoV Ce,max−V Cg

ηcg
+ ηcgPc,max.

From the above analysis, we can find that both B(t) and W (t) are upper bounded.

So we can determine the capacity of the battery Bmax and the capacity of the water

tank Wmax according to these upper bounds. Note that both Bmax and Wmax are
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functions of the parameter V , so we can make a tradeoff between the energy buffer

capacity and the average cost. On the other hand, with a given battery pack or water

tank capacity, we can obtain the corresponding parameter V .

Second, we also use induction to prove the lower bound of the battery and the

water tank.

5) Suppose B(t) ≥ min{Dmax, Le,max}, obviously B(t+ 1) ≥ 0.

6) Suppose 0 ≤ B(t) < min{Dmax, Le,max}, substitute (5.39), (5.23) and (5.24) in

(5.36) we can have Hd(t) < 0,Hs(t) < 0. In order to minimize P-III, we must

have D(t) = 0 and Gs(t) ≥ 0. Since Pc(t) ≥ 0, B(t+ 1) ≥ B(t) ≥ 0.

7) Suppose W (t) ≥ Le,max, obviously W (t+ 1) ≥ 0.

8) Suppose W (t) < Le,max, substitute (5.39), (5.23) and (5.24) in (5.36) we can

have Ha(t) < 0. In order to minimize P-III, we must have Pa(t) = Pa,max.

According to (5.8), we have Lw(t+ 1) ≥ Lw(t) ≥ 0.

Since both the SOC of the battery pack and the water level in the water tank are

bounded, the solution to P-III is also feasible to P-I.

Theorem 2: If Ce(t), Le(t), Lw(t) are independent over slots, then the expected

cost using the proposed algorithm over time is within bound B/V of the optimal cost.

In other words

lim
T→∞

1

T

T−1∑
t=0

E{f ′
(t)} ≤ P ∗

1 +B/V, (5.43)

where f
′
(t) represents the energy cost in one time slot using the proposed algorithm,

and P ∗
1 is the optimal solution to P-I.

To achieve P ∗
1 , we need to know the distributions of the stochastic variables Ce(t),

Le(t), and Lw(t), which are difficult to obtain. Therefore, the proposed algorithm can

provide a low-complexity approach to achieve a performance deviated no more than

O(1/V ) from the optimal one.

Proof. Assume (D∗(t), r∗(t), G∗
l (t), G

∗
s(t), P

∗
c (t), P

∗
a (t)) is the optimal policy to achieve

P ∗
1 . Since the proposed algorithm is obtained by minimizing the RHS of (5.29), the

value of the RHS of (5.29) should be no larger than that using the optimal policy.
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Then we have:

∆(t) + V E{f ′
(t)}

≤ B + V E{Ce(t)Le(t)|E(t)} − E{Lw(t)X(t)|X(t)}

− E{D∗(t)[E(t) + V Ce(t)]|E(t)}

+ E{G∗
s(t)[ηsE(t) + V Ce(t)]|E(t)}

+ E{P ∗
c (t)[r

∗(t)ηceE(t) + ηcgX(t)

− (1− r∗(t))ηcoV Ce(t) + CgV ]|E(t), X(t)}

+ E{P ∗
a (t)[ηagX(t) + V Cg]|X(t)}

≤B + V P ∗
1 .

(5.44)

Taking the expectation on both sides, and summing over t ∈ {0, 1, 2, · · · , T − 1},
then we obtain

E{Q(T )−Q(0)}+
T−1∑
t=0

V E{f ′
(t)} ≤ TB + TV P ∗

1 . (5.45)

Dividing both sides by TV , letting T → ∞, and using the fact that both Q(T ) and

Q(0) are finite, we have:

lim
T→∞

1

T

T−1∑
t=0

E{f ′
(t)} ≤ P ∗

1 +
B

V
. (5.46)

5.5 CHP Using Renewable Energy

In the previous section, we discussed the CHP system using the natural gas as the

fuel. However, environmental concerns and the rising cost of fossil fuels make people to

consider using renewable energy. Fortunately, some new CHP technologies can make

use of certain renewable energy sources, such as Biomass and geothermal energy to

generate both electricity and heat. In addition, as discussed in the CHPED problems,

we can also adjust the ratio of generated electricity and heat in each time slot to

optimize the energy cost. For example, we can use more geothermal energy to generate

electricity and less to boil water if the electricity price is high, and vice versa. In this

section, we discuss how to adjust the CHP generation ratio to minimize the average
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Figure 5.2: CHP using renewable energy
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energy cost without the knowledge of the distribution of renewable energy generation,

electricity and heat demands by using the Lyapunov optimization technique.

The system architecture is shown in Fig. 5.2. The electricity generation ratio

from renewable energy is α(t), which ranges from αmin to αmax, and the hot water

generation ratio is a function of α(t), i.e., f(α(t)), where f is a decreasing function.

r1(t) and r2(t), ranging from 0 to 1, are used to avoid battery and water tank over-

flow. Since the renewable energy in a household is typically very limited, we assume

Smaxαmax ≤ Cchar, where Smax is the maximum renewable energy available in one time

slot. We will discuss the situation without this constraint later. We use a similar bat-

tery and water tank model as those in Section 5.3, and the optimization problem can

be formulated as follows:

Problem Four (P-IV)

min
D(t),r(t),Gl(t),Gs(t),α(t),Pa(t)

: P4 =
1

T

T−1∑
t=0

E{Ce(t)[Gs(t) +Gl(t)] + CgPa(t)} (5.47)

subject to

B(t+ 1) = B(t) + ηsGs(t) + r1(t)S(t)α(t)−D(t), (5.48)

W (t+ 1) = W (t) + r2(t)S(t)f(α(t)) + ηagPa(t)− Lw(t), (5.49)

0 ≤ B(t) ≤ Bmax, (5.50)

0 ≤ W (t) ≤ Wmax, (5.51)

Le(t) = Gl(t) +D(t), (5.52)

0 ≤ ηsGs(t) + r1(t)S(t)α(t) ≤ Cchar, (5.53)

Smaxαmax ≤ Cchar, (5.54)

0 ≤ Gl(t) +Gs(t) ≤ Pe,max, (5.55)

0 ≤ r1(t), r2(t) ≤ 1, Gl(t), Gs(t) ≥ 0, (5.56)

0 ≤ D(t) ≤ Dmax, (5.57)

αmin ≤ α ≤ αmax. (5.58)

After we relax P-IV, the drift plus penalty function after manipulation can be



97

written as follows:

∆(t) + V E{Ce(t)[Gs(t) +Gl(t)] + CgPa(t)}

≤ B′ + V E{Ce(t)Le(t)|E(t)} − E{Lw(t)X(t)|X(t)}

− E{D(t)[E(t) + V Ce(t)]|E(t)}

+ E{Gs(t)[ηsE(t) + V Ce(t)]|E(t)}

+ E{α(t)[E(t)r1(t)S(t)]|E(t)}

+ E{f(α(t))[X(t)r2(t)S(t)|X(t)]}

+ E{Pa(t)[ηagX(t) + V Cg]|X(t)},

(5.59)

where B′ is a constant and defined as

B′ =
1

2
max[(ηsGs,max + αmaxSmax)

2, D2
max]

+
1

2
max[(ηcgPc,max + f(αmin)Smax)

2, L2
w,max].

(5.60)

Our algorithm is to minimize the RHS of (5.59), i.e., to solve P-V.

Problem V (P-V)

min
D(t),r(t),Gl(t),Gs(t),α(t),Pa(t)

Gs(t)Hs(t) + α(t)Hh(r1(t)) + f(α(t))Hf (r2(t))

+Pa(t)Ha(t)−D(t)Hd(t),
(5.61)

subject to (5.52) (5.53) (5.54) (5.55) (5.56) (5.57) (5.58),

where Hh(r1(t)) = E(t)r1(t)S(t) and Hf (r2(t)) = X(t)r2(t)S(t).

Notice that P-V is also a non-convex optimization problem. However, r1(t) and

r2(t) must be 0 or 1. To prove it, let’s consider the following situations:

1) Suppose E(t) ≥ 0, then both Gs(t) and r1(t) should be 0 to minimize P-V and

avoid battery overflow.

2) Suppose E(t) < 0 but Hs(t) ≥ 0. We must have Gs(t) = 0 and r1(t) = 1 to

minimize P-V, and constraint (5.53) will not be violated due to (5.54).

3) Suppose Hs(t) < 0, we have E(t) < 0. Then constraint (5.53) is active or

r1(t) = 1, otherwise we can increase r1(t) to further minimize P-V. Substituting
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Gs(t) with (Cchar − r1(t)S(t)α(t))/ηs, and expanding Hs(t) in (5.61), we have:

min : − V Ce(t)/ηsS(t)α(t)r1(t)

+f(α(t))Hf (r2(t))Pa(t)Ha(t)−D(t)Hd(t),
(5.62)

Since (5.54) guarantees that (5.53) will not be violated when r1(t) = 1, we have

r1(t) = 1 to minimize (5.62).

4) Suppose X(t) ≥ 0. Since S(t) ≥ 0 and 0 ≤ r2(t) ≤ 1, we have Hf (t) ≥ 0.

Because f(α(t)) ≥ 0, r2(t) must be 0 to minimize P-V.

5) Suppose X(t) < 0. Since S(t) ≥ 0 and 0 ≤ r1(t) ≤ 1, we have Hf (t) < 0.

Because f(α(t)) ≥ 0, r2(t) must be 1 to minimize P-V.

By determining the values of r1(t) and r2(t) based on E(t) and X(t), we can

convert P-V to a linear optimization problem with five variables which can be easily

solved in real time. Note that constraint (5.54) is critical to make this problem convex.

Without this constraint, we have to search r1(t) in the range of [Cchar/S(t)/αmax, 1]

to obtain the optimal solution.

Theorem 3: Suppose θ and ε are defined in (5.39) and (5.40), respectively. Then

through minimizing P-V, we can have the following results:

0 ≤ B(t) ≤ θ + Cchar, ∀t ∈ T, (5.63)

0 ≤ W (t) ≤ε+ ηagPa,max + Smaxf(αmin), ∀t ∈ T. (5.64)

given that the above relationships are satisfied at t = 0, and

1

T

T−1∑
t=0

E{f ′′
(t)} ≤ P ∗

4 +B′/V, (5.65)

where f
′′
(t) represents the energy cost in one time slot using the proposed algorithm

to minimize P-V, and P ∗
4 is the optimal solution to P-IV. The proof of Theorem 3 is

similar to that of Theorems 1 and 2 and thus is omitted due to space limitation.
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Figure 5.3: Simplified Battery System

5.6 Determine the Real-time Price

From Section 5.4, we notice that the CHP systems make charging or discharging

decisions based on the current battery SOC and water tank level, the power and hot

water demand in the current time slot, and the current real-time electricity price.

Therefore, by setting appropriate real-time price, the power company can control the

charging and discharging process of all the CHP systems and make them provide load

shaping service. In this section, we aim to design an algorithm to determine this real-

time price to coordinate all the CHP systems. The following assumptions are made.

First, the control center in the power company can obtain the status of all the CHP

systems, including the current battery SOC and water tank level, the power and hot

water demand in the next time slot through two-way communications. Second, there

is a sufficient number of CHP systems to provide the load shaping service.

To get some insights into the CHP system reaction model w.r.t. different electricity

price and system status, we first consider a simplified system as shown in Fig. 5.3(a).



100

By using a similar approach as that in Section 5.4, the charging or discharging

process of the simplified system is determined by solving the following optimization

problem.

min
D(t),Gs(t)

Gs(t)[ηsE(t) + V Ce(t)]−D(t)[E(t) + V Ce(t)], (5.66)

subject to:

0 ≤ B(t) ≤ θ + Cchar, (5.67)

where

θ =
V Ce,max

ηs
+min{Dmax, Le,max}, (5.68)

E(t) = B(t)− θ, 0 < ηs ≤ 1. (5.69)

To obtain the behavior of this simplified system, we consider the following cases.

1) B(t) ≥ θ. To minimize (5.66), we have Gs(t) = 0, and D(t) = Dmax. In other

words, the battery will always discharge.

2) B(t) ≤ min{Dmax, Le,max}. To minimize (5.66), we have Gs(t) = Cchar, and

D(t) = 0. In other words, the battery will always charge.

3) θ − V Ce(t)/ηs ≤ B(t) ≤ θ − V Ce(t). To minimize (5.66), we have Gs(t) = 0,

and D(t) = 0. In other words, the battery will remain idle. i.e., neither charge

nor discharge.

4) θ−V Ce(t) ≤ B(t) < θ. To minimize (5.66), we have Gs(t) = 0. In other words,

the battery will discharge or remain idle.

5) min{Dmax, Le,max} < B(t) ≤ θ − V Ce,min(t)/ηs. To minimize (5.66), we have

D(t) = 0. In other words, the battery will charge or remain idle.

Notice that Gs(t) and D(t) cannot be positive at the same time. We can prove

it by contradiction. If Gs(t) and D(t) are both greater than 0, from (5.66) we have

ηsE(t)+V Ce(t) < 0 and E(t)+V Ce(t) > 0. Therefore, it must be ηsE(t) < E(t) < 0.

Since 0 < ηs ≤ 1, we know it is impossible.

Fig. 5.3(b) illustrates the physical meaning of the above cases. The whole battery

can be divided into five regions. In the upper two regions, the battery will not

charge, while in the lower two regions, the battery will not discharge. If the SOC

of the battery stays in the middle region, we can control the charging or discharging
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process of the simplified system by setting an appropriate electricity price between

Ce,min and Ce,max.

We use superscript i to represent the i-th user. In each time slot, the amount of

electricity bought from the grid for user i isGi
l(t)+Gi

s(t) = Li
e(t)−Di(t)+Gi

s(t). Then,

the total electricity load in that time slot is
∑

Li
e(t) −

∑
Di(t) +

∑
Gi

s(t). Assume

that the target load of the load shaping service is Lt(t), at the beginning of each

time slot, the control center obtains the total electricity demand of all users
∑

Li
e(t)

through two-way communications. The amount of load shaping service should be

Lt(t)−
∑

Li
e(t). Our objective is to set an appropriate real-time price Ce(t) so that

the amount of demand response from the simplified battery system in time slot t

(
∑

Gi
s(t)−

∑
Di(t)) should be as close to the amount of load shaping service needed

(Lt(t)−
∑

Li
e(t)) as possible. Therefore, we can formulate the following optimization

problem:

min
Di(t),Gi

s(t)
|
∑

Li
e(t)−

∑
Di(t) +

∑
Gi

s(t)− Lt(t)|, (5.70)

where Li
e(t), Lt(t) are already known, and Di(t) and Gi

s(t) are determined by solving

the optimization problem (5.66).

This is a nested optimization problem. Since the objective function of the CHP

system is non-convex, we cannot use the existing bilevel programming to solve it.

However, we can utilize some unique features of this problem to obtain the solution

with a time complexity of O(log(n)), where n is the number of real-time prices Ce(t)

can be chosen from.

Notice thatGs(t) is a non-increasing function of Ce(t), andD(t) is a non-decreasing

function of Ce(t), thus −
∑

Di(t) +
∑

Gi
s(t) in (5.70) is a non-increasing function of

Ce(t). To prove it, we first look at (5.66). If Ce(t) increases, since V > 0, both

ηsE(t) + V Ce(t) and E(t) + V Ce(t) will increase. Therefore, to minimize the objec-

tive function, Gs(t) will remain the same when ηsE(t) + V Ce(t) ≤ 0 or Gs(t) = Cchar

when ηsE(t) + V Ce(t) > 0, D(t) will remain the same when E(t) + V Ce(t) ≤ 0, and

D(t) = 0 when E(t) + V Ce(t) > 0.

Since
∑

Li
e(t)−Lt(t) in (5.70) is already known at the beginning of each time slot,∑

Li
e(t) −

∑
Di(t) +

∑
Gi

s(t) − Lt(t) in (5.70) is a non-increasing function of Ce(t)

in each time slot. Therefore, we can find the appropriate real-time price by using a

binary search. Let g(Ce(t)) =
∑

Li
e(t)−

∑
Di(t)+

∑
Gi

s(t)−Lt(t) when the current

electricity price is Ce(t), the searching algorithm is described in Algorithm 3.

The parameter τ represents the minimum price resolution in our search. Lines
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Algorithm 3 Searching the electricity price

Require: Ce,min, Ce,max

1: Ce,high = Ce,max

2: Ce,low = Ce,min

3: Ce,mid = (Ce,high + Ce,low)/2
4: while Ce,mid − Ce,min > τ OR Ce,max − Ce,mid > τ do
5: if g(Ce,min) = g(Ce,max) then
6: return Ce,low and Ce,high

7: end if
8: if g(Ce,mid) < 0 then
9: Ce,high = Ce,mid

10: else
11: Ce,low = Ce,mid

12: end if
13: Ce,mid = (Ce,high + Ce,low)/2
14: end while
15: return min{g(Ce,max), g(Ce,mid), g(Ce,min)} and the corresponding Ce
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5 to 7 mean that we return the price range if g(Ce(t)) does not change within that

range.

There are three points we need to notice. First, since the amount of charging

or discharging of each simplified system is discrete, we cannot guarantee that the

total load will be exactly the same as the target load. Second, the electrical price

Ce(t) obtained from Algorithm 3 may not be the only solution, because the value of∑
Li

e(t)−
∑

Di(t)+
∑

Gi
s(t)−Lt(t) in (5.70) may remain the same even with different

electricity price. For example, assuming there is only one simplified system, and we

need it to discharge. Any electricity price which can make E(t) + V Ce(t) > 0 will

reach this goal. Therefore, Algorithm 3 will also return the price range if found. This

may lead to another problem: the utility company may always choose the highest

price to maximize its profit. However, how to design an appropriate mechanism to

effectively restrict the behavior of the utility company is an interesting problem left

for future research. Third, there are some tricks to simplify the calculation of g(Ce(t)).

From the previous discussion of the behavior of the simplified system, the battery will

remain idle if θ − V Ce(t)/ηs ≤ B(t) ≤ θ − V Ce(t). In other words, given B(t), the

battery will remain idle if Ce(t) changes between a certain range [Ce,l(t), Ce,h(t)]. If

Ce(t) < Ce,l(t), the battery will charge by Cchar. On the other hand, if Ce(t) > Ce,h(t),

the battery will discharge by Dmax. Therefore, with the value of Ce,l(t) and Ce,h(t)

calculated beforehand, we can obtain the value of −Di(t) +Gi
s(t) in O(1) time.

With respect to the CHP system, we have a more complicated model with a

dependent hot water flow queue. However, the fundamental idea to find the real-

time price to coordinate all the CHP systems is similar. The higher the price is, the

more likely the CHP system will sell the electricity to the grid and use the electricity

stored in the battery. Let V (Ce(t)) =
∑

[Gi
s(t) + Gi

l(t) − (1 − ri(t))ηcoP
i
c(t)] − Lt(t)

represent the difference between the total electricity demand and the target load.

Then V (Ce(t)) is a non-increasing function of the real-time price Ce(t). The proof is

straightforward and is omitted due to the space limitation. Therefore, we can use a

similar binary search algorithm to find the appropriate real-time price. The algorithm

is exactly the same as Algorithm 3 by replacing g(Ce(t)) with V (Ce(t)).

Notice that Le(t), Lw(t), Gl(t) are not needed to solve P-III. Therefore, instead of

solving the optimization problem for each CHP system in every time slot, we can build

a look up table with only three input parameters Ce(t), E(t), X(t) and five outputs

Gs(t), Pc(t), Pa(t), r(t), D(t) for quick search, assuming homogeneous CHP systems.
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5.7 Performance Evaluation

We evaluate the performance of the proposed algorithms using real data. We

consider a small hotel with 20 rooms equipped with a battery pack and a water tank.

Their capacity are calculated based on the results in Theorem 1. In addition, we

assume ηcoηs >= ηce and Smaxαmax ≤ Cchar, so both P-III and P-IV can be solved by

convex optimization. If these conditions are not met, we can simply search within a

small region to obtain the optimal result.

5.7.1 Simulation Setup

The real-time electricity price data we used in this simulation are obtained from

[58]. The electricity sell-back price is assumed to be the same as the purchase price.

The natural gas price is assumed to be a constant, $5.5/MMBtu, which is obtained

from [27]. Meanwhile we used the wind-power generation data from [105] which has

a time resolution of 15 minutes as the renewable energy source for the CHP system.

The wind power is scaled down so that the maximum wind power generation equals

12kWh per hour. The time slot duration is set to be 15 minutes too. We assume that

the original water temperature is 20 Celsius, so it need 111.11Btu to heat one liter of

water to 70 Celsius. The charging efficiency ηs is set to 0.95, and the boiler efficiency

ηag is set to 0.8. The default efficiency of the CHP is assumed to be 75% with 30% to

generate electricity and 45% to generate heat. Since 1kWh = 3.41kBtu, we can have

ηco = 0.088kWh/kBtu and ηce = 0.0836kWh/kBtu. For the CHP with a variable

generation ratio, we assume the total CHP efficiency is still 75%, and the efficiency to

generate electricity ranges from 20% to 40%. Since the average power consumption is

about 0.8kWh per hour per user [12], we assume the electricity demand in one hour

is uniformly distributed between 0 and Le,max = 32kWh, while the hot water demand

is also assumed to have a uniform distribution between 0 and Lw,max = 200L/h. We

fix the other parameters as follows (per hour): Dmax = 30kWh, Cchar = 20kWh,

Gl,max = Gs,max = 32kWh, Pc,max = 0.05MMBtu, and Pa,max = 0.01MMBtu.

5.7.2 Benchmark Algorithm

We compare the performance of our algorithms with the situation without energy

buffer, which is similar to the CHPED problem [72]. However, since the electricity and

gas price model in the CHPED problem is different from ours, we did some changes to
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make them comparable. In each time slot, the controller chooses the control actions

by solving the following optimization problem.

Benchmark Algorithm I (B-I)

min
Gl(t),Pc(t),Pa(t)

Ce(t)Gl(t) + Cg[Pc(t) + Pa(t)], (5.71)

subject to

Gl(t) + ηcePc(t) ≥ Le(t), (5.72)

ηcgPc(t) + ηagPa(t) ≥ Lw(t), (5.73)

Gl(t), Pc(t), Pa(t) ≥ 0. (5.74)

The objective of the optimization problem is to minimize the total cost in each time

slot. Constraints (5.72) and (5.73) mean the electricity and heat generation in each

time slot should be no less than the electricity and heat demand.

For the CHP using renewable energy, we have another corresponding benchmark

algorithm.

Benchmark Algorithm II (B-II)

min
Gl(t),Pa(t),α(t)

Ce(t)Gl(t) + CgPa(t), (5.75)

subject to

Gl(t) + α(t)S(t) ≥ Le(t), (5.76)

f(α(t))S(t) + ηagPa(t) ≥ Lw(t), (5.77)

αmin ≤ α ≤ αmax, (5.78)

Gl(t), Pa(t) ≥ 0. (5.79)

The objective and constraints of B-II are similar as those of B-I, with the difference

that we have different control actions and include renewable energy into the problem

formulation.

5.7.3 Cost Saving using CHP

Fig. 5.4 shows the average cost in one time slot for different parameter V . Due

to the inherent exponential convergence property [79], the average cost decreases
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Figure 5.5: The relationship between battery capacity and V

exponentially. The average cost of Benchmark Algorithm I and II in one time slot

are $0.2227 and $0.2088, respectively. We can see the CHP system using natural gas

can save up to 26.54% while the CHP system using renewable energy can save up to

28.63%. In other words, with the help of energy buffers, the saving of using either

CHP system can reach approximately $2, 000 annually. The saving mainly dues to the

following reasons. First, with an energy buffer, the controller can use the electricity

stored in the battery and make the CHP generate more electricity or even sell to the

grid to make a profit when the electricity price is high and purchase electricity to

charge the battery when the electricity price is low. Second, if the renewable energy

source can generate more electricity and heat than required, we can store them in the

energy buffer for future use.

In Fig. 5.4, the optimal average cost in one time slot for the CHP using natural

gas (Opt-gas) and renewable energy (Opt-renew) are about $0.1584 and $0.1479,

respectively. To obtain these results, we assume that the battery pack and water

tank capacities are infinite and we can charge/discharge as much energy as possible

to/from the battery when the electricity price is low/high. However, in practice,

due to constraints (5.3) and (5.4), these values may not be achievable and are just

provided here to show the possible bounds.

Fig. 5.5 shows the relationship between the required battery capacity pack and

the parameter V. As was discussed in Theorem 1, the required battery capacity

increases linearly with the increase of V. The capacity of the water tank has a similar

relationship and is omitted due to the space limitation. With V = 200, the battery

pack and water tank capacity are 34kWh and 419L, respectively. These values are

quite reasonable for a small hotel with about 20 rooms.
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5.7.4 Load Shaping by Setting RTP

With battery packs and water tanks, CHP systems can be considered as energy

buffers to provide load shaping services. In this simulation, we consider a scenario

with 50 homogeneous CHP systems aiming to provide a five-hour load shaping service,

consisting 20 time slots with a 15-minute slot duration. The electricity and hot water

demands in each time slot for each CHP system are uniformly distributed between

0 and its corresponding maximum value. We set the target load as a constant value

which is 30KW below the average electricity demand. The real-time electricity price

used to coordinate all the CHP systems is obtained using the algorithm described in

Section 5.6. The load using CHP systems but with a constant electricity price, which

is set to the middle of the maximum and minimum electricity price, is also simulated.

Fig. 5.6 shows the performance of the load shaping service. Since the CHP systems

will generate electricity using natural gas, the average load using a fixed price is lower

than the average load without CHP systems. Although CHP systems can help users
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Table 5.1: The relationship of dt and sdt with PLR

PLR 0% 2% 4% 6% 8% 10%
average dt 3.6725 4.0220 5.0241 6.0691 6.3459 7.1039
max dt 6.7312 8.5417 15.7296 17.4501 24.3477 37.6074

average sdt 4.7918 5.2102 6.1082 6.7285 7.3751 8.4507

save money, the fluctuation of the total load with CHP systems and a fixed electricity

price is higher than that without using CHP systems. This will add extra cost to the

power company as more frequency regulation or spinning reservation services may be

needed. By setting the real-time price according to the proposed algorithm, we can

reduce the fluctuation of the total load with CHP systems and make the total load

close to the target load. Therefore, the combination of CHP systems and the RTP

searching algorithm can help both users and the utility company reduce their cost.

5.7.5 Influence of Communication Packet Loss

Each CHP system needs the RTP information at the beginning of every time slot

to determine its operation. However, the communication links between the power

company and the users may not be reliable, and can lead to packet losses. In this

section, we are going to explore the relationship between the performance of the

proposed algorithm and the packet loss rate (PLR). We assume that if the user does

not receive the RTP information for any time slot, it will use the RTP of the last time

slot to determine the operation of the CHP system. In order to measure the influence

of the communication packet losses on the performance of our algorithm, we define

the average deviation and standard deviation of the total load to the target load as

dt and sdt respectively.

dt =
1

T

T∑
t=0

|La(t)− Lt(t)|, (5.80)

sdt =

√√√√ 1

T

T∑
t=0

(La(t)− Lt(t))2, (5.81)

where T is the total number of time slots, and La(t) and Lt(t) represent the total

electricity load and target load at time slot t, respectively.

Table. 5.1 shows the average of 50 runs’ deviation, standard deviation and maxi-

mum deviation of the total load to the target load. As we can see, all the three cri-
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terions increase with the increase of the PLR. Therefore, the power company should

keep the PLR as low as possible.

5.8 Conclusions

In this chapter, motivated by the queueing analysis and buffer management so-

lutions in data communication systems, we have proposed an approach to minimize

the average energy cost for two different types of CHP systems. Our system mod-

el includes renewable energy, real-time price, stochastic energy demand and energy

buffers with finite capacity. Since the battery queue and the water tank queue are de-

pendent, we need to solve a non-convex optimization problem to obtain the optimal

control actions. By using the Lyapunov optimization techniques, our schemes can

achieve a near-optimal performance, which will deviate no more than O(1/V ) from

the optimal solution.

On the other hand, we discussed how to set an appropriate real-time price to

coordinate all the CHP systems to provide load shaping service. Different from the

existing works which mainly determine the RTP from the perspective of game theories,

the proposed algorithm uses binary search to find the optimal RTP with a time

complexity of O(log n). Extensive simulation shows that the use of CHP systems can

reduce the cost of both users and the utility company with the proposed scheduling

and pricing algorithms.
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Chapter 6

Contributions and Future Work

6.1 Contributions

In this dissertation, we have discussed and analyzed four demand response ap-

plication scenarios from the perspective of both users and the power company. The

following outlines the contributions we have achieved.

• In Chapter 2, we have proposed an online decentralized access algorithm for

PHEV charging, which can effectively flatten load peaks during PHEV charging

process. The main idea is that when the current electricity load is higher than a

certain threshold, we will restrict the access of elastic load, such as the charging

of PHEV; when the electricity load is even higher, some elastic load is turned

off automatically with a probability so that the total load can decrease to a safe

region. The simulation results show that the stochastic renewable energy can

be efficiently utilized even without prediction.

• In Chapter 3, we have introduced a decentralized random access algorithm,

which can efficiently avoid bus congestion and large voltage drop in the distri-

bution grid with charging PHEVs. The smart agent in each house makes PHEV

charging scheduling decisions independently based on the received information

of the current distribution grid status from a control center. The proposed algo-

rithm does not require any prediction information about users’ future actions.

We have also analyzed the performance of our algorithm and derive the system

capacity.

• In Chapter 4, we have proposed a centralized algorithm to control heteroge-
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neous HVACs in a micro-grid. The objective of this algorithm is to reduce

non-renewable energy generation fluctuations while still guarantee user comfort

level. We then extend the centralized algorithm to a distributed one, which has

a much lower computational complexity and is more scalable. We have also

extended the proposed algorithms to support HVAC ON/OFF control modes

other than adjusting the HVAC power level. Finally, since the elastic load po-

tential provided by HVACs is limited compared to the unlimited control time,

a dynamic water level adjustment algorithm is proposed to reserve this elastic

load potential for future demand response.

• In Chapter 5, we first proposed a comprehensive economic model using CHP

systems from the perspective of a commercial customer, which incorporates

both the electricity and thermal energy queues. We investigate the relationship

of these two queues to minimize the average cost. Second, we proposed an

algorithm to approximately achieve the optimal average cost, considering the

limited capacities of the battery pack and the water tank. The algorithm does

not require any statistical information of the system dynamics such as electricity

and hot water demands, etc. To obtain the optimal scheduling decision, we

discussed when we can use the specific features of the problem to turn a non-

convex optimization problem into a convex one which can be solved in real time.

Finally, we discussed how to set the appropriate RTP to coordinate all the CHP

systems indirectly to provide load shaping services for the power company. The

time complexity of the proposed searching algorithm is O(log n).

6.2 Future Work

Some of the further research issues are listed as follows.

• In Chapter 2, we did not consider the communication delay and packet loss. On

one hand, if the PHEVs do not receive the broadcasted information for that time

slot, they have to keep their current charging status. On the other hand, if the

received information is always delayed by one or more time slots, the behavior

of the PHEVs will also be delayed. As a result, the total electricity load may

not be the same as expected. To guarantee the effectiveness of the proposed

algorithm, we need to investigate the relationship between the percentage of

packet loss and communication delay and the performance of the decentralized
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access algorithm. To achieve this goal, we need to include the estimated packet

loss rate and percentage of communication delay into our analytical model and

assume these PHEVs operate differently as we expected to guarantee the worst

case performance. This is an important issue needs further investigation before

the proposed algorithm can be used in practice.

• In Chapter 3, the locations of customers will lead to different levels of conges-

tions to the network and thus affect the access probabilities of their PHEVs.

This may lead to a fairness problem and requires further study together with

other pricing and economic policies. In addition, the distribution grid in this

chapter has a radial topology, for a meshed distribution grid, things are much

more complicated. However, the main idea of the proposed algorithm is still

useful to control the PHEV access if the critical bus is congested. These are

important further research issues. In practice, several other problems in the

distribution grid should be considered, such as medium voltage to low voltage

(MV/LV) transformer overload. Finally, how to make a tradeoff between the

complexity of the control algorithm and the distribution grid efficiency is left

for future research.

• In Chapter 4, there are several open issues left behind. First, how to extend the

current MPC algorithms to control other types of elastic load requires further

investigation. The key difference is that the initial states of HVACs are already

known, while for other types of elastic load, such as PHEV, the arrival time

and departure time in the future may not be available. Second, the water level

change rate µ in Algorithm 1 is determined empirically and is a constant in this

chapter. If we can adjust µ w.r.t. history statistic information, such as peak

time etc., we may achieve an even better performance. Third, the computational

complexity will increase with more control variables. Therefore, how to make a

tradeoff between the number of groups, the size of each group, load fluctuation,

and the influence to user comfort level is also an important problem left to

future research.

• In Chapter 5, although the proposed searching algorithm can help to find the

optimal RTP, there may be multiple RTPs which can achieve the same effect.

Therefore, it is possible that the utility company will always choose the max-

imum RTP to maximize its profit. How to effectively regulate the actions of
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the utility company is a problem left for future research. Second, since the

target load will affect the RTP for all the CHP systems, and thus affect the

profit of the utility company, how to select an appropriate target load is also

an interesting problem needs further investigation. Finally, in this chapter, we

assume that there are enough CHP systems to provide load shaping services.

However, in the real world, we cannot make a finite number of CHP systems

provide infinite load shaping services. Once all the batteries of CHP systems

are low or high, they can no longer provide demand response. Therefore, we

need to monitor the status of all the CHP systems and change the target load

accordingly. This is also an important issue left for future research.
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Appendix A

Notations

For easy reference, the symbols used in this thesis are summarized in Table A.1.

Table A.1: Notations

Symbol Description

B(t) the SOC level of the battery

Bmax the capacity of the battery

c the change to the water level

C the effective heat capacity in a house

Cap the energy buffer capacity of the local controller

Ce(t) electricity price at time t

Cchar the maximum charge rate of the battery

climit the maximum allowed water level

change in each time slot

D(t) the amount of electricity discharged from the battery

Cg the natural gas price

Dmax the maximum discharge rate of the battery

G the thermal insulation level of a house

Gl(t) the amount of electricity bought to supply the user demand

Gs(t) the amount of electricity bought to charge the battery

Iki the loading rate brought by PHEV k on bus i

I ibase the loading rate brought by base load on bus i

k the index of time slot

Lb the non-HVAC load
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Table A.1: (continued)

Symbol Description

Lh the total load of HVAC

Lbase(t) the base load without PHEV

LPHEV (t) the load of charging PHEVs at time t

Le(t) the electricity demands from users

Lt(t) the target load of load shaping service

Lw(t) the hot water demands from users

Lw,max the upper bound of the hot water demand

m number of HVACs under a local controller

M the number of local controller or

the number of buses in the distribution grid

N the prediction horizon in terms of slot

Nu total number of users

Ns total number of slots

Pa the amount of power assigned from

the central controller to the local group

Pa(t) the amount of the natural gas consumed by the boiler

Pb the amount of power of a local group

leak to the outside environment

Pc(t) the amount of natural gas consumed by the CHP

Pa,max the maximum amount of the natural gas used by the boiler

Pg the state of the local group

Ph the power consumed by the HVAC

PState an vector used to store the state of all the HVACs

p1 charging probability obtained based on γ

p1c charging probability obtained based on γi

p1v charging probability obtained based on γv

p2 charging suspend probability obtained based on γ

p2c charging suspend probability obtained based on γi

p2v charging suspend probability obtained based on γv

Pc(t) the amount of the natural gas consumed by the CHP

Q the conversion coefficient from power to temperature

for a specific room with the unit of k/J
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Table A.1: (continued)

Symbol Description

ri the ideal temperature set by the user for HVAC i

Ri the set-point of a local group

rw the reference HVAC load

r(t) a tradeoff between the amount of electricity used

to charge the battery and that sold to the grid

S the set of all the HVACs

Sl the set of HVACs under the local controller

Sn the power generation from non-renewable power plants

Sr the renewable energy generation

S(t) power generation capacity

td the PHEV delay time after the failure of each random access attempt

tm the maximum value of td,

t time slot duration

∆t one-slot Lyapunov drift

T the number of time slots

T−
i (k + 1) the temperature of house i in the next

time slot if the state of the HVAC is OFF

T+
i (k + 1) the temperature of house i in the next

time slot if the state of the HVAC is ON

∆Tl the maximum allowed temperature

decrement from the set point in a house

∆Tu the maximum allowed temperature

increment from the set point in a house

∆Toff the decreased temperature for

an HVAC during one time slot

To the outdoor temperature

Ti the indoor temperature of house i

umax
i maximum amount of power allowed to be

assigned to an HVAC in each time slot

U the manipulated input variable of the MPC model

Umax
i maximum amount of power allowed to be

assigned to local controller in each time slot
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Table A.1: (continued)

Symbol Description

U(t) power utilization at time t

Vki the voltage drop brought by PHEV k on bus i

Vmi the maximum allowed voltage drop of bus i

V i
base the voltage drop brought by base load on bus i

V the measured input disturbance of the MPC model

Wl water level

W (t) the water level in the water tank in slot t

X(k) the state of the MPC model at time slot k

Y (k) the output of the MPC model at time slot k

λ the weight of uers’ comfort level

σ standard deviation of the prediction error

η the ratio of σ and the maximum remain load

change during the prediction horizon

ν1 the value of threshold one for power utilization

ν1i the value of threshold one for bus congestion

ν1v the value of threshold one for voltage drop

ν2 the value of threshold two for power utilization

ν2i the value of threshold two for bus congestion

ν2v the value of threshold two for voltage drop

δ1,δ2,δ3,δ4 parameters represent users’ preference

κ1,κ2,κ3,κ4 global control parameters to adjust charging or suspend probability

α a parameter denotes the changing rate of p1

α(t) the electricity generation ratio from renewable energy

ϕ a parameter denotes the changing rate of p2

ω the weight between the battery queue and

the water tank queue

ω(k) waited time of PHEV k

ωm(k) the maximum tolerable delay of PHEV k

γ the current power usage ratio

γi the current bus load ratio

γv the current bus voltage drop ratio

γi(k) the loading rate of bus k
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Table A.1: (continued)

Symbol Description

γv(k) the voltage drop ratio of bus k

ηce the conversion efficiency from natural gas to

electricity charged to the battery

ηcg the conversion efficiency from natural gas to hot water

ηco the electricity conversion efficiency sold back to the grid

ηag the conversion efficiency from natural gas to hot water

ηs the battery charging efficiency
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