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SixGe1-x is a promising alloy semiconductor material that is gaining im-
portance in the semiconductor industry primarily due to the fact that silicon
and germanium form a binary isomorphous system and hence its properties
can be adapted to suit the needs of a particular application. Liquid phase
di�usion (LPD) is a solution growth technique which has been successfully
used to grow single crystals of SixGe1-x. The �rst part of this thesis discusses
the development of a �xed grid solver to simulate the LPD growth under zero
gravity condition. Initial melting is modeled in order to compute the shape
of the initial growth interface along with temperature and concentration dis-
tribution. This information is then used by the solidi�cation solver which
in turn predicts the onset of solidi�cation, evolution of the growth interface,
and temperature and concentration �elds as the solidi�cation proceeds. The
results are compared with the previous numerical study conducted using the
dynamic grid approach as well as with the earth based experimental results.
The predicted results are found to be in good qualitative agreement although
certain noticeable di�erences are also observed owing to the absence of con-
vective e�ects in the �xed grid model. The second part investigates the
e�ects of crucible translation on the LPD technique using the dynamic grid
approach. The case of constant pulling is examined �rst and compared with
the available experimental results. Then a dynamic pulling pro�le obtained
as a part of simulation process is used to achieve the goal of nearly uniform
composition crystal. The e�ect of crucible translation on the interface shape,
growth rate, and on the transport process is investigated. Finally, the e�ect
of magnetic �eld on the LPD growth is examined.
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Chapter 1

Introduction

1.1 Motivation and Goals

The interest in alloy semiconductor material SixGe1-x stems primarily from
the fact that it forms a binary isomorphous system indicating complete solid
and liquid state miscibility. From an application's perspective, this means
that by selecting an appropriate alloying ratio it can meet the requirements
of a diverse set of applications. It is useful both in epitaxial and bulk crystal
form. However, an inherent di�culty with this alloy system is the wide gap
between solidus and liquidus lines in its phase diagram. The large di�erence
in the melting points of silicon and germanium makes the solidus and liquidus
lines extremely temperature sensitive and any temperature variation during
the melt growth of the bulk crystals of this material can lead to signi�cant
compositional variation [1]. Moreover, the solid state solubility of silicon in
germanium is greater than the liquid state solubility, which means silicon
moves from the melt to the solidifying crystal across the interface, thereby
depleting the melt of silicon as growth proceeds and thus the melt needs to
be fed with silicon in order to obtain uniform composition crystal [1]. Due to
these di�culties in using the melt growth techniques to grow uniform com-
position bulk SixGe1-x, there is a need to look into other growth techniques.
One such technique is the liquid phase di�usion (LPD) growth, originally
developed in reference [2] as a variant of the multicomponent zone melting
technique. This technique belongs to the family of solution growth techniques
and works on the principle of saturation and precipitation. It has been suc-
cessfully used to produce graded composition SixGe1-x single crystals [3] and
its numerical analysis is the subject of this thesis.

Numerical simulations play a crucial role in developing deeper understand-
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ing of various physical processes occurring during crystal growth. The in-
sights gained with numerical studies can help in better design of experiments
and can ultimately lead to better quality of grown crystals. It can be im-
mensely useful in bringing down the costs associated with experimentation
as it reduces the dependence on the trial and error approach often resorted
to, in most experimental work. Further, it can signi�cantly speed up the
process development cycle. With the advent of modern computers and enor-
mous amount of computing power available even on an ordinary desktop,
the reliance on computational approach to solve complex engineering and
science problems is on the rise. However, this approach comes with its own
set of limitations and obtaining reliable results can still be quite challenging.
From a numerical modeling perspective, one of the major issues associated
with simulating crystal growth is that of the moving boundary. The �rst
part of this thesis addresses this problem by developing a computationally
e�cient and accurate simulation methodology based on a �xed grid approach
to simulate the LPD growth method under zero gravity condition. The sec-
ond major thrust area of this research work is to numerically determine the
crystal pulling pro�le to grow nearly uniform composition SixGe1-x crystals
unlike its original version which produces graded composition crystals. Fi-
nally, the e�ect of magnetic �eld on the LPD growth is explored numerically.
Speci�c aims and objectives of this study along with the relevant previous
work are discussed next.

1.1.1 To develop a �xed grid numerical simulation methodol-

ogy for single crystal growth of SixGe1-x using the LPD

growth technique under zero gravity condition

� Previous work- The �xed grid approach is one of the most widely used
computational techniques for solidi�cation/melting problems. The enthalpy-
porosity technique [4] is based on the �xed grid approach and has been
successfully used to simulate various melt growth techniques [5�9] .
However, the conventional enthalpy method cannot be used to model
solidi�cation in the LPD growth because it is a solution growth tech-
nique in which solidi�cation is driven by saturation and precipitation
unlike melt growth technique where solidi�cation is achieved by cool-
ing the melt below its liquidus temperature. A numerical model was
developed in reference [10] for the LPD process based on continuum
theory. A moving grid approach was employed to carry out the numer-
ical simulation and the results were presented in terms of evolution of
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the growth interface shape and temperature, concentration, and �ow
�elds in the melt. Further, the suitability of using the smoothed par-
ticle hydrodynamics numerical technique to simulate the LPD process
was explored in references [11,12] .

� Speci�c objectives

� Develop a �xed grid numerical solution methodology to simulate
the complete LPD process under zero gravity condition.

� Obtain useful information from simulation results such as crystal
composition in radial and axial direction.

� Compare the simulation results with the previous numerical (car-
ried out using a moving grid approach) and experimental work.

� Signi�cance

� The developed numerical procedure can be used to obtain the
numerical solution for the LPD technique in a relatively simple and
quick way, avoiding the complexities of a moving grid approach
such as the need to create a boundary conforming mesh.

� The �xed grid approach allows for longer simulation time thereby
allowing the simulation of the complete crystal growth process.

1.1.2 To numerically investigate the e�ects of crucible transla-

tion in the LPD growth of SixGe1-x

� Previous work- In order to produce compositionally uniform crystals
in the LPD growth technique, the interface should be maintained at
a constant temperature during growth. This can be accomplished by
translating the sample at a speed synchronized with the growth rate.
Originally, the LPD technique was developed as a variant of multicom-
ponent zone melting and sample translation rate was determined empir-
ically [2]. In reference [13], an in situ monitoring system was developed
and used to observe and control the temperature of the crystal-melt
interface. This arrangement was used to study the e�ect of constant
translation rate which was determined by monitoring the growth rate
with no sample translation. Subsequently, in reference [14], a feedback
control system was developed to keep the interface at a �xed position
with the objective of growing uniform composition crystals and pull
rate was corrected dynamically in order to maintain constant inter-
face temperature thereby addressing the needs of a situation in which
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growth does not become constant but varies dynamically. Experimen-
tal investigation of the e�ect of constant translation rate on the LPD
growth was conducted in reference [15]. A complete melt back of seed
was observed due to disturbance in the thermal conditions caused by
the inclusion of a translation mechanism in the system and led to poly-
crystalline growth but relatively �atter axial composition pro�les were
obtained after an initial graded region in comparison to the case of no
translation [15].

� Speci�c objectives

� Numerically study the e�ect of crucible translation on crystal com-
position, average interface temperature, and its shape.

� Study the role of natural convection under crucible translation
condition.

� Determine the dynamic pulling pro�le which can result in nearly
uniform crystal composition.

� E�ect of crucible translation on growth rate.

� Signi�cance

� The numerical results can help in better design of LPD exper-
iments with crucible translation by giving useful information to
the experimentalist such as optimum pull rate, pull initiation time
and total growth time. The dynamic pulling pro�le thus obtained
can be used in experiments to grow nearly uniform composition
crystals.

1.1.3 To numerically simulate the LPD growth tech-
nique under the combined in�uence of crucible
translation and static magnetic �eld

� Previous work-Static magnetic �eld is used in semiconductor crys-
tal growth applications for suppressing natural convection and hence
improving the quality of the grown crystals [16, 17]. Numerical exam-
ination of the e�ects of static magnetic �eld on an earth based LPD
growth system was carried out in references [18, 19] and it was found
that static �eld was e�ective in suppressing the natural convection but
did not alter the growth interface shape signi�cantly. This was fol-
lowed by experimental work [20], in which magnetic �eld e�ects were
examined experimentally and it was observed that the application of
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a static magnetic �eld reduced the mass transport of silicon due to
altered thermal �eld and also due to suppression of natural convection.

� Speci�c objectives

� Time evolution of the growth interface for the LPD process sub-
jected to static magnetic �eld and crucible translation.

� E�ect of the combination of crucible translation and static mag-
netic �eld on the transport process, crystal composition, and growth
rate.

� Signi�cance

� Usage of static magnetic �eld can suppress the natural convection
and can be helpful in growing uniform composition crystals of low
silicon concentration by allowing the dynamic crucible pulling to
be initiated during the early hours of growth.

1.1.4 To numerically examine the e�ects of rotating mag-
netic �eld on the LPD growth technique

� Previous work-Rotating magnetic �eld (RMF) is routinely used in
the material processing industry for stirring application [21]. In the
area of crystal growth, the usage of RMF improves the uniformity of
thermal and concentration �elds without introducing any mechanical
contact and on a practical level it is much easier to implement than
the static magnetic �eld [22]. Numerical examination of the e�ects
of RMF on an earth based LPD growth system was carried out in
references [18, 19]. RMF was found to be e�ective in �attening the
growth interface shape. Experimental investigation of these e�ects was
carried out in reference [23] and it was shown that application of RMF
signi�cantly enhanced the silicon transport.

� Speci�c objectives

� E�ect of RMF on the distribution of thermal and concentration
�elds.

� In�uence of RMF on the growth rate.

� Signi�cance

� Application of RMF can speed up the growth process in the LPD
technique to produce graded composition crystals from which the
seed crystals of appropriate composition can be extracted.



6

1.2 Thesis structure

This work uses numerical simulation on a continuum scale as a tool to ad-
dress a crystal growth problem. Accordingly, chapter 2 starts o� by giving
some grounding on the material science basics pertinent to this study. The
discussion has been kept brief and the reader is referred to appropriate ref-
erences for further details. Finite volume discretization is described next as
this technique is used both in OpenFOAM and Ansys Fluent which have been
used to carry out the numerical simulation. Chapter 3 discusses in detail, the
simulation methodology developed to simulate the LPD process under zero
gravity condition using a �xed grid approach. Modeling procedure for both
melting and solidi�cation are discussed at length. The results obtained using
a �xed grid approach are compared with the previously obtained numerical
results using a moving grid approach as well as with the experimental re-
sults. The next chapter delves into the investigation of the e�ects of crucible
translation on the LPD technique. First, the e�ect of constant pull rate is
examined followed by the investigation of dynamic pulling pro�le. Results
are presented next in terms of radial, axial compositional plots, interface
evolution plot as well as concentration, thermal and �ow �elds. The e�ect of
static and rotating magnetic �elds on the LPD growth method is examined
next in chapter 5. Finally, chapter 6 summarizes the thesis, highlighting the
key contributions of this work and closes by giving some pointers for the
future work.
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Chapter 2

Fundamentals

2.1 Relevant material science preliminaries

Material science basics related to crystal growth are discussed brie�y. This
section largely follows the text [24] and the reader is referred to it for further
details.

2.1.1 Unit cell representation of crystal structure

Solid materials may be broadly grouped into two categories namely crys-
talline and amorphous. This classi�cation is done on the basis of the reg-
ularity displayed in their atomic arrangement. Crystalline solids exhibit an
orderly atomic arrangement whereas in amorphous solids such an order is
absent. The actual spatial arrangement of atoms is known as the crystal
structure and it in�uences the properties of that material. Crystal struc-
ture can be considered to be made up of a small repetitive entity called the
unit cell. In connection with the crystal structure two other commonly used
terms are the coordination number and the atomic packing factor. Coordi-
nation number indicates the number of nearest neighbouring atoms. Atomic
packing factor as the name says, describes how closely the atoms are packed
in a given unit cell. It is de�ned as the volume of the atoms in a unit cell
per unit volume of that unit cell. Following are the commonly found crystal
structures in most metallic materials:

1. Face centred cubic (FCC)- The unit cell for this crystal structure is
cubical in shape and has atoms at the corners and also at the face
centres. The corner atom is shared by eight unit cells and the face



8

Figure 2.1: Various types of unit cells a) FCC b) BCC c) HCP

centre atom is shared amongst two unit cells. Thus the e�ective number
of atoms per unit cell is four (8 X 1/8 + 6 X1/2). Copper, silver, and
gold are some of the common examples of the FCC crystal structure.

2. Body centred cubic (BCC)- In this case the atoms are located at the
eight corners of the unit cell and one at the centre of the cube. Thus
the e�ective number of atoms per unit cell is two ((8 X 1/8 +1). Iron
(α), tungsten, and chromium display the BCC crystal structure.

3. Hexagonal closed packed (HCP)- As the name says, its unit cell is
hexagonal in shape. The top and bottom face which are regular hexagons,
have atoms located at the corner and at the centre. In addition there
are three atoms in the mid-plane. The e�ective number of atoms per
unit cell in this case is six (12 X 1/6 + 2 X 1/2 + 3). Materials ex-
hibiting this kind of crystal structure include cadmium, magnesium,
and zinc.

The various types of unit cell discussed above are shown in �gure 2.1. Crystal
systems can be also be classi�ed on the basis of geometry of the unit cell.
The geometrical parameters of the unit cell which include the edge lengths
and inter-axial angles are termed as lattice parameters. For instance, a cubic
crystal system has all the three edges of equal length and all three inter-axial
angles as 90◦.

2.1.2 Crystallographic points, directions and planes

In order to refer to a point, direction or a plane within a unit cell standard
rules have been developed which are discussed brie�y below for the cubic
crystal system and are shown in �gure 2.2.
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Figure 2.2: Crystallographic a) points b) vector c) plane

2.1.2.1 Crystallographic points

The position of a point within a unit cell is expressed in terms of coordinates
which are the fraction of total length of the edge in that direction.

2.1.2.2 Crystallographic direction

It is speci�ed by a vector joining the origin and a point in the unit cell.
The length of the projection of this vector along three axes is expressed in
terms of edge lengths in the three directions. The resulting three numbers
are reduced to the smallest possible set of integers and enclosed in square
brackets. Negative direction is indicated by an over-bar.

2.1.2.3 Crystallographic planes

A set of three numbers enclosed in parentheses known as the Miller indices
is used to represent a crystallographic plane. When calculating the Miller
indices for a plane it should be ensured that it does not pass through the
origin, if it does then either the origin is shifted or another plane parallel
to the original plane should be considered. The reciprocal of the intercepts
of the plane along the three axes reduced to the smallest set of integers
determines the Miller indices for that plane. Similar to the crystallographic
directions negative intercepts are speci�ed with the over-bar.
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Figure 2.3: Close pack representation of crystal structure a) HCP b)FCC

2.1.3 Close packed representation of crystal structure

As can be seen in �gure 2.3, another way of visualizing FCC and HCP crystal
structures is to consider them to be made up of layers of close packed planes.
To illustrate, consider a layer of close packed atoms which can be thought
of as spheres. In this layer there are two kinds of triangular inter-sites, one
with vertex pointing upwards and the other pointing downwards. The second
layer of close packed atoms can be placed on either of the two. Placement of
the third layer is what di�erentiates HCP from FCC. In the case of HCP, the
third layer is placed such that the atoms of this layer lie exactly above the
atoms of the �rst layer and is thus represented by ABAB... which indicates
the piling arrangement of layers. However in the case of FCC, the third layer
is placed in such a way that it covers the previously uncovered triangular
inter-sites of the �rst layer and hence is represented by piling sequence of
ABCABC... .

2.1.4 Defects in crystalline solids

Deviation from the idealized crystal structure is termed as crystal defect.
This deviation can occur in a number of di�erent ways and accordingly there
are di�erent crystal defects which are brie�y discussed below and are illus-
trated in �gure 2.4 :

2.1.4.1 Point defects

� Vacancies and self interstitial- If an atom is missing from its regular
position in the lattice then it is called a vacancy. A self interstitial is
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Figure 2.4: Various types of point defects

created if an atom instead of occupying its regular position is found at
an inter-site created due to the close packed arrangement of atoms.

� Impurities- This represents the presence of foreign atoms in the crystal
structure. When the crystal structure of the parent material is retained
upon the addition of the foreign material then a solid solution is formed.
Depending upon the position occupied by these foreign atoms in the
parent crystal lattice there can be two types of solid solutions:

� Substitutional solid solution in which the solute atom replaces the
solvent atom in the crystal lattice.

� Interstitial solid solution in which the solute atom occupies the
inter-site in the solvent crystal lattice.

2.1.4.2 Linear defects

Dislocation refers to the irregular arrangement of the atoms along a line in
a crystal structure. It is of the following types: (see �gure 2.5) :

� Edge dislocation-When an extra half plane of atoms is introduced into
the lattice then it results in an edge dislocation and it introduces re-
gional distortion in the crystal structure. It is denoted by the symbol
⊥.
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Figure 2.5: Linear defects a) Edge dislocation b) Screw dislocation

� Screw dislocation- This can be interpreted as a consequence of the
application of shear stress to the crystal structure. As a result, mis-
alignment occurs along a line due to relative motion between atomic
planes. � is used to represent the screw dislocation.

� Mixed dislocation- In actual crystalline solids, dislocations mostly occur
as a combination of the edge and screw rather than being a pure edge
or screw.

2.1.4.3 Two dimensional defects

These defects demarcate two di�erent regions of the crystal structure. They
are of the following types:

� External surfaces- As the name says, it represents the discontinuity of
the crystal structure and the atoms lying in this region are at a higher
state of energy compared to the atoms lying in the interior since the
surface atoms are not bonded in all directions.

� Grain boundaries- These separate the regions of di�erent crystallo-
graphic orientations (see �gure 2.6 a ).

� Twin boundaries- In this case a mirror image symmetry exists across
the boundary (see �gure 2.6 b ).
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Figure 2.6: Two dimensional defects a) Grain boundary b) Twin boundary

� Stacking faults- As discussed earlier, the FCC crystal structure can be
visualized with the help of layers of close packed planes. When there
is deviation from this standard stacking sequence of atomic planes,
it results in a stacking fault. For instance, the regular sequence of
ABCABC... may be disrupted as ABABC... .

2.1.5 Solid solution

To understand the concept of solid solution we �rst need to understand the
idea of phase. Phase is that region of a system under consideration which is
characterized by distinct physical and/or chemical properties. For example,
ice, water, and water vapour represent di�erent phases since they have dis-
tinct physical properties even though their chemical composition is the same.
Similarly every pure substance represents a di�erent phase. When addition
of one solid component to the other does not result in the formation of a
new phase but the crystal structure of the parent material is retained then
it is termed as solid solution. Whether two components would form a solid
solution or not depends upon a number of factors such as their atomic radii,
crystal structure etc . In connection with solutions, a commonly encountered
term is the solubility limit which represents the maximum amount of solute
that can be dissolved at a given temperature without the formation of an
additional phase.
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2.1.6 Phase diagram

These diagrams provide information about di�erent equilibrium phases present
at various combinations of temperature, pressure, and composition in a
graphical form. Two of the commonly found phase diagrams are brie�y
discussed below:

� Unary-When there is only one component involved, then the phase
diagram is said to be unary. These are basically pressure-temperature
plots depicting various phases in which a pure substance can exist at
various possible combinations of temperature and pressure.

� Binary- In this case there are two variables namely temperature and
composition while pressure is held constant. Binary phase diagram
provides the following information:

� Number and type of phases present at a given temperature and
composition.

� Equilibrium composition of each phase- To determine the equi-
librium composition of each phase at a given temperature, the
intersection of the isotherm with the phase boundary is located
and composition is then read corresponding to these intersection
points (points A and C in �gure 2.7).

� Relative amounts of each phase- This is determined from the lever
rule. Similar to the previous case, �rst an isotherm is drawn and
the intersection with the phase boundaries is noted. The relative
amount of a particular phase is obtained by dividing the compo-
sition di�erence between the other phase (whose relative amount
is not being determined) and the given composition and the com-
position di�erence between the intersection points of the given
isotherm and the phase boundaries. For instance to determine the
composition of the solid phase in �gure 2.7 , subtract the compo-
sition corresponding to A from B and divide it by the di�erence
in the composition corresponding to C and A.

In the context of phase diagrams, a phase boundary above which there exists
only liquid phase is called the liquidus line and below which there exists only
solid phase is known as the solidus line.
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Figure 2.7: Illustration of the information conveyed by a binary phase dia-
gram

2.1.7 Electrical properties of solids

Solid materials may be classi�ed based on the response of the material when
subjected to an external electrical �eld. Depending upon the material in
question, there may be �ow of electric current, limited �ow or no �ow at all.
This behaviour is quanti�ed by a property called the electrical conductivity.
For conductors, conductivity is around 107 mho/m, for semiconductors its
value lies in between 10-6 to 104 mho/m and for insulators it is in between
10-10 to 10-20 mho/m. This di�erent behaviour can be explained on the basis
of availability of free charge carriers responsible for the �ow of current under
the action of an applied electric �eld. The most common form of charge
carriers are free electrons.

2.1.7.1 Band structure

For a single atom there exists a number of discrete energy levels correspond-
ing to di�erent shells and sub-shells. Electrons are �lled in these shells and
sub-shells in the ascending order of energy level represented by them. When
millions of such atoms are brought together and are arranged in an orderly
manner to form a crystalline solid, the discrete nature of the energy levels
associated with a single atom is lost and it gives rise to continuous energy
bands. At absolute zero, all the valence electrons are present in an energy
band called the valence band. For a valence electron to participate in the
conduction process, it must cross a threshold energy level barrier so that it
is freed from the atom and can move in the lattice under the in�uence of an
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Figure 2.8: Band diagram a) Metals b) Semi conductors c) Insulators

applied electric �eld. When a valence electron is elevated to a energy level
where it can participate in the conduction process, it is said to be in the con-
duction band. The di�erence between the highest energy level in the valence
band and lowest energy level in the conduction band is called the band gap.
There is no permissible energy level within the band-gap. For conductors,
the valence band and the conduction band overlap, hence a large number of
valence electrons get easily promoted to the conduction band which explains
the �ow of electric current under the action of an electric �eld. However,
in insulators this band gap is too wide(>2eV) which prevents the valence
electrons from moving into the conduction band. Finally, in semiconductors,
the band-gap is relatively narrow (< 2eV) which is responsible for limited
�ow of current through these materials. The various types of band diagram
are illustrated in �gure 2.8.

2.1.7.2 Drift velocity

Under the action of an applied electric �eld, electrons in the conduction
band accelerate but also experience resistance due to various crystal defects
and atomic vibrations. However, there is net movement of electrons and the
average velocity with which electrons move in the direction of the applied
electric �eld is directly proportional to this �eld. It is given as follows:

v = µeE (2.1)
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The electron mobility µe is the measure of the ease with which electrons
�ow in the lattice under the action of the applied electric �eld. The electrical
conductivity is related to the mobility as follows:

σ = n|e|µe (2.2)

2.1.8 Semiconductors

As discussed previously, semiconductors represent a class of materials whose
electrical conductivity lies in between that of conductors and insulators due
to their band structure. The extreme sensitivity of their electrical properties
on the presence of impurities makes them particularly attractive for a wide
range of applications.

2.1.8.1 Intrinsic semiconductors

The electrical properties of intrinsic semiconductors are controlled by the
charge carriers of the pure material and not the impurities. An important
term used in the context of semiconductors is hole. When an electron is
elevated to the conduction band from the valence band it leaves behind a
vacancy in the valence band which is �lled by a nearby electron. We can
think of the motion of these valence electrons in terms of charge carriers
called holes having the same charge as that of an electron but opposite in
sign. Thus, under the action of an electric �eld the �ow of electric current
can be attributed to the motion of free electrons in the conduction band and
motion of holes in the valence band. The electrical conductivity for intrinsic
semiconductors is given as:

σ = ni|e|(µe + µh) (2.3)

For intrinsic semiconductors the number of free electrons is equal to the
number of holes. Atomic bonding for intrinsic silicon is shown in �gure 2.9.

2.1.8.2 Extrinsic semiconductors

In these materials, impurities are added intentionally so as to alter the mate-
rial's electrical properties. Depending upon the nature of the impurity they
can be of two types:
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Figure 2.9: Atomic bonding in an intrinsic semiconductor

� n-type- In this type of semiconductors, the donor type of impurity is
added. Donor atoms form a substitutional solid solution. Donor atoms
contain excess valence electrons than required to form a covalent bond
with other host atoms and this results in the creation of additional free
electrons apart from the ones already present due to parent semicon-
ductor material. In terms of band model, this can be viewed as creation
of a new donor energy level very near to the conduction band thereby
requiring very little energy to promote valence electrons belonging to
donor atoms to the conduction band (see �gure 2.10 b). The contribu-
tion of holes to the electrical conductivity is negligible in comparison to
free electrons in this type of semiconductor. n type indicates the sign of
the majority charge carriers which are electrons while holes are minor-
ity charge carriers in this case. Phosphorous, Arsenic, and Antimony
are some of the examples of donor type of impurity for silicon.

σ ∼= ne|e|µe (2.4)

� p-type- In this case an acceptor type impurity is the doping material.
The acceptor impurity atom forms a substitutional solid solution and
contains fewer valence electrons than required to form the covalent
bond with other host atoms leading to the creation of an excess hole in
the valence band. As mentioned before, holes in the valence band also
participate in the conduction process under the action of an applied
electric �eld. This can also be viewed as a consequence of the creation
of an additional acceptor energy level very close to the conduction band
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Figure 2.10: Extrinsic semiconductor (n type) a) Atomic bonding b) Band
diagram

of the parent material (see �gure 2.11b). As a result, valence electrons
in the valence band get easily promoted to the newly created acceptor
energy level leaving behind a hole in the valence band. These are the
additional holes created apart from the ones created due to promotion
of electrons from valence to conduction band. In this case holes are the
majority charge carriers and hence the name p type.

σ ∼= pe|e|µh (2.5)

2.1.9 Silicon and Germanium

Silicon and germanium are the two most important semiconductor materials
from an application's point of view. Silicon has an atomic number of 14
while that of germanium is 32. Both of them have 4 valence electrons and
are consequently placed in group IVA of the periodic table. They crystallize
with the diamond lattice structure. The phase diagram of silicon germanium
belongs to the category of binary isomorphous system which means that they
exhibit complete solid and liquid state miscibility. This is on expected lines
as both have nearly the same atomic radii , similar crystal structure, and four
valence electrons. The complete miscibility of silicon in germanium makes it
useful for various applications as the alloying ratio can be chosen as per the
requirement. Another noteworthy feature of this phase diagram is the wide
gap between the solidus and the liquidus line. The band gap of silicon is
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Figure 2.11: Extrinsic semiconductor (p type) a) Atomic bonding b) Band
diagram

1.11 eV and that of germanium is 0.67 eV, which explains the higher intrinsic
carrier concentration of germanium than silicon at a given temperature. The
silicon-germanium phase diagram is depicted in �gure 2.12.

2.2 Single crystal growth techniques

Depending upon the extent of the regularity exhibited in the atomic arrange-
ment, crystalline solids can be classi�ed as polycrystalline and single crystals.
In the single crystal solids, the atomic orderliness extends throughout the ma-
terial. The majority of the crystalline solids exist in polycrystalline form [24].
However, solids in single crystal form can be useful for various applications
because of their properties. In particular, semiconductor single crystal ma-
terial forms the backbone of the the modern electronics industry [24].

Based on the size of the grown single crystal, single crystal growth tech-
niques are categorized as bulk and epitaxial growth techniques. In the former
family of growth techniques, the size of the grown crystal is on the order
of millimeters while in the latter it is on the order of sub-millimeters [15].
SixGe1-x �nds application both as an epitaxial layer and in the bulk crystal
form. Some of its applications are hetero-junction bipolar transistors, photo-
detectors, thermo generator, and solar cell [26�30]. For semiconductors, two
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Figure 2.12: Phase diagram of silicon germanium [25]

commonly used single crystal growth methods are described below:

� Melt growth method- In this method, crystal growth is achieved by
cooling the molten material below its melting point. Most of the semi-
conductor single crystals are grown by this method. Some of the com-
monly employed melt growth techniques are discussed very brie�y be-
low:

� Czochralski- Named after its inventor, this is the most established
and widely used growth technique for elemental semiconductors.
A seed crystal is dipped into the melt contained in a crucible and
then gradually pulled upwards at a controlled rate leading to single
crystal growth. The diameter of the grown crystal is controlled by
pull speed and temperature of the melt. Both seed and melt are
rotated in opposite directions (�gure 2.13) . Chief merits of this
technique include [15]:

* Growing crystal does not come in contact with crucible

* High growth rates

* Large diameter crystals

� Vertical Bridgman- This technique uses a crucible in which the
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Figure 2.13: Schematic diagram of Czochralski crystal growth

entire charge is melted by subjecting it to a temperature gradi-
ent. The crucible is moved relative to the temperature gradient
thereby leading to crystal growth through directional solidi�ca-
tion. A schematic diagram of this technique is shown in �gure
2.14 .

� Vertical Gradient Freeze- It works on a similar principle as that
of vertical Bridgman with the only di�erence that the crucible is
kept stationary and the temperature gradient is moved to achieve
the directional solidi�cation.

� Zone Melting- This technique involves the creation of a localized
molten zone unlike other techniques discussed before in which the
entire charge is melted [31] . This localized zone is moved through
the entire charge with melting taking place at the leading edge
and growth at the trailing edge.

� Solution Growth Method- In this method, a solution is prepared by
dissolving the material which is to be crystallized in a suitable solvent
which may or may not be part of the �nal crystal [32]. Crystal growth
occurs due to the saturation and precipitation of the solution which in
turn is accomplished in di�erent ways depending upon the particular
technique used. An inherent advantage of solution growth over melt
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Figure 2.14: Schematic diagram of Vertical Bridgman and its temperature
pro�le

growth is that by choosing an appropriate solvent, signi�cant reduction
in the growth temperature can be accomplished as it relies on dissolu-
tion rather than melting [32]. This method can be especially useful in
case the crystal material has properties such as in-congruent melting,
high vapour pressure, and high volatile contents but it su�ers from dis-
advantages like slower growth rates compared to melt growth, solvent
inclusion etc [32]. Some of the solution growth techniques are brie�y
discussed below [33]:

� LPD- Since this work is based on the numerical simulation of LPD,
this technique is described in detail in the section 2.4.

� Travelling Heater Method (THM)-This technique is the solution
growth counterpart of the zone melting technique. It involves
the creation of a localized solution zone by using a temperature
jump in that region which is then moved relative to the sample
to move the zone. Dissolution takes place at the leading edge and
precipitation takes place at the trailing edge due to saturation
caused by the transport of solute across the zone from leading to
trailing edge. Although the growth rate is quite small, on the order
of 2mm/day, still this technique is used on a commercial scale to
produce cadmium telluride crystals as melt growth technique is
unsuitable to grow its crystals because of its high vapour pressure
[15]. A schematic diagram of THM is shown in �gure 2.16.

� Liquid Phase Epitaxy (LPE) and Liquid Phase Electro Epitaxy
(LPEE)- The LPE technique relies on saturating the solution by
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Figure 2.15: Schematic diagram of LPD growth technique ( left half domain
shown) and its temperature pro�le

decreasing its temperature whereas in LPEE electric current is
passed through the solution to induce localized cooling in the form
of Peltier cooling and also results in electromigration. Peltier cool-
ing and electromigration are the principal mechanisms responsi-
ble for saturation and precipitation in LPEE. However, passing
of electric current also results in Joule heating throughout the
con�guration and Peltier heating at the source- solution interface
in case current passes through the source material. Peltier heat-
ing can be avoided by bypassing the electric current through the
source material.

2.3 Issues with established melt growth tech-

niques for growing SixGe1-x

Various melt growth techniques have been used to grow SixGe1-x . How-
ever, growing uniform composition SixGe1-x crystals with the established melt
growth techniques continues to be a challenge. The melting point of silicon
is around 1414 ºC while that of germanium is around 938 ºC. Due to this
wide disparity in the melting points, the liquidus and the solidus lines are
extremely temperature sensitive and minor changes in the temperature can
result in relatively large changes in the composition of the growing crys-
tal [1]. Secondly, the solid state solubility of silicon in germanium is greater
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Figure 2.16: Schematic diagram of THM and its temperature pro�le

than the liquid state solubility and during the solidi�cation process the melt
is depleted in silicon due to its movement into the crystal across the growth
interface and requires a silicon feeding mechanism to grow uniform composi-
tion crystals [1].

2.4 Liquid Phase Di�usion growth technique

This technique was originally developed as a variant of multicomponent zone
melting growth and was utilized to grow bulk SixGe1-x crystals comprising
of a graded region (from x=0 to x=0.02) followed by a uniform composi-
tion region with x=0.02 [2]. Subsequently this technique, was named as
�LPD� [3] and was used to grow graded bulk crystals from the germanium
rich side . LPD, being a solution growth technique, is based on the principle
of saturation and precipitation, unlike the melt growth technique in which
solidi�cation is achieved by cooling the melt below its melting point. The
growth crucible in this technique consists of a stack of three regions (�gure
2.15 ): a single crystal seed material (germanium) at the bottom, a poly-
crystalline source material (silicon) at the top, and a polycrystalline solvent
material (germanium) sandwiched between the seed and the source. This
con�guration is then subjected to an axial temperature gradient in such a
way that the solvent material (germanium) melts completely and the seed
(germanium) melts partially and establishes the initial growth interface. The
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source material (silicon) remains solid because of its higher melting point,
and its contact surface with the silicon-germanium solution (initially the
germanium melt) forms the dissolution interface. The dissolved silicon, ac-
cording to the phase diagram, is transported in the solution by di�usion
towards the melt-crystal interface (growth interface). The solubility in the
melt is controlled by the local temperature. Under the applied axial tem-
perature gradient, the temperature in the immediate vicinity of the growth
interface is the lowest and accordingly the solubility is the lowest in this re-
gion. Due to the incorporation of silicon into the melt, the melt becomes
a silicon-germanium solution and supersaturates near the growth interface,
and growth of silicon-germanium crystal with a graded silicon composition
begins. The growth continues with time with increasing silicon composition
until the process is terminated.

To illustrate the LPD growth process consider the schematic phase di-
agram of silicon germanium shown in �gure 2.17. The temperature of the
initial growth interface corresponds to the melting point of germanium. The
solution region in the immediate vicinity of the initial growth interface will
correspond to point A. As silicon dissolves and is transported to the growth
interface, the local silicon concentration starts increasing. Since the tem-
perature is the lowest in this region in comparison to the rest of the melt,
the solubility is lowest in this region indicated by point B. As the solution
gets saturated in this region precipitation starts in the presence of the seed
crystal which results in crystal growth. The applied temperature gradient
results in directional solidi�cation with the growth commencing near the seed
crystal and proceeding in the upward direction. As the growth proceeds in
the upward direction, it requires much higher amount of silicon (for instance
corresponding to point E for a particular region in the solution) to saturate
the solution. Another important aspect that can be observed from �gure
2.17 is the signi�cant di�erence in the silicon solid state and liquid state
solubility. This means that as the growth proceeds silicon moves from the
solution into the growing crystal across the growth interface. This depletion
of silicon in the solution is compensated by continuous source of silicon sup-
ply at the dissolution interface. It has been shown experimentally [3] as well
as numerically [10] that the interface shape is initially concave and its curva-
ture increases as the growth proceeds and then �attens out. From a practical
point of view, one of the major challenges associated with this technique is
imposing the correct temperature pro�le so that the seed material does not
melt completely and it can require a fair number of experiments before a
perfect temperature pro�le can be obtained [3].

A signi�cant amount of experimental and numerical work has been done
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on LPD at the Crystal Growth Laboratory, University of Victoria. As already
mentioned this technique was used in the work [3] to grow graded SixGe1-x
single crystals and a numerical model was developed in reference [10] to ex-
amine the role of natural convection in this growth technique. It was found
that the natural convection was really strong during the early hours of growth
after which the transport of silicon was di�usion dominated. Motivated by
this �nding, a numerical study was undertaken in reference [18] to inves-
tigate the e�ectiveness of a static magnetic �eld in suppressing the natural
convection. It was found that a static magnetic �eld of 0.3 T was su�cient
to suppress the natural convection currents but did not alter the shape of
the growth interface dramatically. In the same work, the e�ect of rotating
magnetic �eld (RMF) was investigated and it was found that RMF improved
the radial compositional uniformity and a magnitude of 3 mT was su�cient
to make the interface shape �at. This was followed by the numerical study of
the combined in�uence of rotating and static magnetic �elds on LPD [19] and
it was shown that this combination resulted in essentially di�usive transport
with homogeneous composition in the radial direction. The suitability study
of the smoothed particle hydrodynamics (SPH) method to model the LPD
process was carried out in the work [11]. Although some promising results
were obtained, it was found that incorporating �uid �ow in the SPH model
would make it extremely computationally demanding. Further e�orts were
made to improve the ability of SPH to model the LPD process by using an
implicit time stepping scheme which allowed the usage of much larger time
steps thereby making it possible to carry out the simulations for much longer
time periods [12]. Based on the numerical �ndings of the e�ect of magnetic
�eld on the LPD growth technique, an experimental study was carried out in
references [20,23] examining the in�uence of static, rotating, and combined
magnetic �eld on this growth process. It was found that the static magnetic
�eld reduced the mass transport signi�cantly and also had an impact on the
temperature distribution [20]. Application of RMF had a bene�cial e�ect
on this growth method in terms of improving the growth rate considerably
and it was found that the application of RMF alone was a better choice than
using a combined �eld [23].

The dissolution process of silicon into germanium melt is an important
part of the LPD growth technique and has been studied extensively both
experimentally and numerically [34�41]. The e�ect of the position of the
silicon source w.r.t. gravity as well as the role of the free surface was studied
experimentally [34]. It was found that with the silicon source at the bottom
signi�cantly higher amount of silicon was dissolved in comparison to the case
when the source was at top due to the solutal buoyancy e�ects [34]. A dis-
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Figure 2.17: Illustration of LPD growth technique

solution study was carried out in slender crucibles to restrict the transport
mechanism to di�usion in [35] and the temperature dependence of dissolved
height was investigated. It was concluded that the di�usion coe�cient was in-
dependent of the temperature for the investigated range of temperature [35].
A �nite element based numerical simulation study was carried out in refer-
ence [36] and it was found that for the con�guration of the silicon source at
the top, transport was di�usion dominated and was in line with the previous
experimental �ndings. The e�ect of a static magnetic �eld on dissolution
with the silicon source positioned at the bottom was investigated experimen-
tally [37] and it was discovered that the applied static �eld enhanced the
silicon dissolution rate due to the modi�ed �ow structure in the melt. In an-
other experimental work [38], the e�ect of static magnetic �eld on dissolution
with source at top (similar con�guration to that of LPD) was studied and
the key �nding was that dissolution interface shaped changed dramatically
from being �at (without magnetic �eld) to curved into the source near the
crucible wall (with magnetic �eld) which in turn was reasoned due to change
in �ow structure in the presence of magnetic �eld. Numerical studies on the
e�ect of a static magnetic �eld on dissolution were performed in references
[40,41] and its e�ect on concentration �eld was examined.



29

2.5 OpenFOAM and Finite Volume Discretiza-

tion

In the �rst part of this research work, an open source CFD toolbox called
OpenFOAM [42] (Field Operation and Manipulation) was utilized as it o�ers
the �exibility to develop a customized solver for a speci�c application. It is
basically a C++ class library and makes extensive use of object oriented
principles to solve problems in computational continuum mechanics and is
based on the �nite volume discretization technique [43]. This section is based
on the work [44,45] and the reader should consult it for further details.

Discretization in this context implies:

� Spatial Discretization or Mesh generation

� Temporal Discretization

� Equation Discretization

OpenFOAM uses a cell centered, co-located variable storage arrangement and
is a segregated solver which means that equations are solved one at a time
and inter-equation coupling is treated in an explicit manner. The purpose
of any discretization method is to convert the �eld equation(s) (usually one
or more partial di�erential equation) into a system of algebraic equations
whose solution gives an approximate solution to the original �eld equation(s)
at discrete locations in space and time. In FVM, Gauss identities are used
while discretizing the �eld equation(s) and are listed below:

ˆ
V

∇ � adV =

˛
∂V

dS�a (2.6)

ˆ
V

∇φdV =

˛
∂V

dSφ (2.7)

ˆ
V

∇adV =

˛
∂V

dS a (2.8)

where ∂V is the closed surface enclosing the volume V

(∇ � a)VP =
∑

f

S � af (2.9)

As per the OpenFOAM spatial discretization, cell faces can be divided
into two groups namely internal faces and boundary faces. The face area
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vector Sf is constructed in such a way that it points outwards from the cell
with lower label (called the �owner� cells) and towards the cell with higher
label (called the �neighbour� cells). In the equation 2.9, S represents the
normal surface area pointing outwards of the face. Thus, a correction has to
be applied for all the �neighbour� cells. So, the R.H.S of equation 2.9 can be
rewritten as:

∑
f

S � af =
∑
owner

Sf � af −
∑

neighbour

Sf � af (2.10)

The discretization procedure using FVM is explained with standard trans-
port equation as an example. The general transport equation can be written
as

∂ρφ

∂t︸︷︷︸
Transient term

+ ∇ � (ρUφ)︸ ︷︷ ︸
Convection term

= ∇ � (ρΓ∇φ)︸ ︷︷ ︸
Diffusion term

+ Sφ︸︷︷︸
Source term

(2.11)

As per the FVM , this equation is integrated over each control volume
and time

ˆ t+∆t

t

[ˆ
VP

∂ρφ

∂t
dV +

ˆ
VP

∇ � (ρUφ)dV

]
dt =

ˆ t+4t

t

[ˆ
VP

∇ � (Γ∇φ)dV +

ˆ
VP

SφdV

]
dt

(2.12)

2.5.1 Convection term

Using equation 2.9, the convection term can be written as

ˆ
VP

∇ � (ρUφ) =
∑
f

S�(ρUφ)f

=
∑
f

S�(ρU)fφf

=
∑
f

Fφf (2.13)

F = S�(ρU)f (2.14)
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Thus it can be seen that discretization of the convection term requires the
knowledge of mass �ux at the face centres. Usually, the �ow �eld is unknown
and it requires the solution of the Navier-Stokes equation. But even if it is
assumed to be known then also we still need to make an assumption about
the variation of φ in between the cell centres, as we need its value at the face
centres. Depending upon the speci�c pro�le function assumption, di�erent
convection di�erencing schemes exist. Two of the most common schemes are
discussed below:

� Central Di�erencing Scheme- This scheme assumes a linear variation
of the transport variable between the adjacent cell centres across each
face. It is second order accurate but can lead to spurious oscillations in
the solution in a convection dominated �ow. However, it is well suited
for low Peclet number �ow regimes.

� Upwind Di�erencing Scheme- This scheme as the name says, assumes
the value of the transport variable at the face to be same as that at
the cell centre in the upstream direction. It is �rst order accurate and
is prone to numerical di�usion

φf =

{
φP if F ≥ 0

φN if F < 0
(2.15)

2.5.2 Di�usion Term

ˆ
VP

∇ � (ρΓ∇φ)dV =
∑
f

S�(ρΓ∇φ)f

=
∑
f

(ρΓ)fS�(∇φ)f (2.16)

For orthogonal meshes, (i.e the vector joining the cell centres is parallel
to the surface area vector) the following expression can be used.

S.(∇φ)f = |S|φN − φP
|d|

(2.17)

An alternative approach is to calculate the gradient expression at the cell
centre and interpolate it
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(∇φ)P =
1

VP

∑
f

Sφf (2.18)

(∇φ)f = fx(∇φ)P + (1− fx)(∇φ)N (2.19)

where fx is the interpolation factor de�ned as
¯fN
¯PN

2.5.3 Source Term

The terms which are not part of temporal derivative, convection and di�usion
terms are placed into a generic term called the source term. Source term,
in general can be a function of the transport variable and in that case, this
relationship needs to be linearized if it is a non linear function of φ

Sφ = SIφ+ SE (2.20)

ˆ
VP

Sφ(φ)dV = SIφPVP + SEVP (2.21)

2.5.4 Temporal Discretization

Substituting equation 2.13 , 2.16, 2.21 in equation 2.12 we get,

ˆ t+4t

t

[(
∂ρφ

∂t

)
P

VP +
∑
f

Fφf −
∑
f

(ρΓ)fS.(∇φ)f

]
dt =

ˆ t+4t

t

(SIφPVP+SEVP )dt

(2.22)

((ρPφP )n−(ρPφP )n−1)VP+

ˆ t+∆t

t

[∑
f

Fφf −
∑
f

(ρΓ)fS.(∇φ)f

]
dt =

ˆ t+∆t

t

(SIφPVP+SEVP )dt

(2.23)

An assumption has to be made regarding the variation of φP w.r.t time.
Depending upon the speci�c choice of the function, di�erent discretization
schemes exist and are discussed brie�y below:
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� Explicit- In this case, the old time �eld is assumed to exist throughout
the time step except at the end. It is �rst order accurate in time and
becomes unstable if the Courant number exceeds 1 which is de�ned as
follows:

Co =
Uf � S
d � S

4t (2.24)

This puts a serious limitation on the maximum time step size even for a
moderately �ne mesh.

� Implicit( Euler Implicit)-This scheme assumes that the current time
step value exists throughout the time step except at the beginning. It
is �rst order accurate but is unconditionally stable. Using this scheme,
the discretized equation is given by:

φnP − φn−1
P

4t
VPρP +

∑
f

Fφnf−
∑
f

(ρΓφ)fS.(∇fφ
n) = (SIφ

n
PVP +SEVP ) (2.25)

� Crank-Nicholson- This scheme assigns equal weights to the current and
old time step value. It can give physically unrealistic results.

2.5.5 Solution of system of linear algebraic equations

A system of linear equations is generated by discretization of the transport
equation with one equation for each cell. It can be expressed in a general
form as follows:

aPφ
n
P +

∑
N

aNφ
n
N = RP (2.26)

and can be expressed in the matrix form as follows:

[A][X] = [R] (2.27)

Terms which are treated implicitly contribute to the matrix coe�cients
and may contribute to the source vector. On the other hand, explicit terms
contribute only to the source vector. Numerical techniques for solving system
of linear algebraic equations can broadly be classi�ed as direct and iterative
techniques. Iterative solvers are usually preferred over direct solvers because
they are computationally less demanding. However, they impose additional
requirements on the matrix structure to ensure convergence. Scarborough
criterion (i.e. matrix is diagonally dominant) is a su�cient but not necessary
condition for the convergence of iterative methods.
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Chapter 3

Numerical simulation of the LPD

growth technique using a �xed

grid approach

3.1 Introduction

Physically, bulk crystal growth is characterized by various processes occur-
ring at various scales which makes an �all inclusive� model computationally
prohibitive [46]. Based on the overall modeling objectives, models can be
classi�ed as � process� models and �defect� models which relate the crys-
tal defects to the process conditions [47]. Another frequently encountered
term in this �eld is that of the �global� models, signifying a class of models
in which furnace heat transfer is part of computation instead of relying on
boundary conditions to account for these e�ects (see for instance reference
[48]). Although signi�cant progress has been made in modeling of transport
phenomena in crystal growth, it still continues to be a challenging problem
because of various complexities involved including the issue of changing ge-
ometry inherent to the growth process [49]. There are various numerical
techniques available to tackle the moving boundary problem. Broadly these
techniques fall into two categories, namely Lagrangian which utilize an in-
terface adjusting moving grid, and Eulerian which are based on a �xed grid
approach and the interface position is obtained as part of the solution [50].
While each of these two approaches has its own pros and cons, the biggest
advantage of the �xed grid approach lies in its relative simplicity. The basic
idea of this approach is to represent the entire domain by a single set of �eld
equations.
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3.2 Model description

From a numerical simulation perspective, the LPD growth process consists
of two main steps, namely melting and solidi�cation. Models used for simu-
lating each of these two sub-processes along with the assumptions made are
discussed below:

Assumptions

� The e�ect of natural convection in the silicon-germanium melt (solu-
tion) was neglected as the simulation was carried out for zero gravity
condition.

� Enthalpy of mixing associated with the dissolution of silicon into the
silicon-germanium melt was neglected as silicon and germanium form
nearly a ideal solution.

� Local thermodynamic equilibrium was assumed at the dissolution and
growth interfaces. The dissolution interface was considered to be sta-
tionary as its velocity is very small in comparison to the growth velocity.

� The silicon-germanium solution (melt) was assumed to be dilute in
terms of the silicon concentration. Fourier's law and Fick's law were
used to describe the heat and mass �uxes respectively.

� Soret and Dufour e�ects were not taken into account.

� The coe�cients of thermal and mass di�usivities were assumed to re-
main constant with temperature.

� Mass di�usivity of silicon in solid germanium is small in comparison to
that of the germanium melt, thus was not taken into account.

� The system was considered to be axisymmetric

3.2.1 Modeling the melting process of germanium

The well known enthalpy-porosity method [4] was used to model the melting
of pure germanium. In this method, a single set of �eld equations is used
to model the entire domain(molten and solid). The interface is computed
as part of the solution rather than tracking it explicitly. To account for the
absorption of latent heat during the melting process, a sink term is added
to the energy equation. Depending upon the manner in which the liquid
fraction is updated after each time step there are two variants of this method
called the T-based and the H-based methods [50]. In the T-based method,
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the liquid fraction for each cell is updated based on its temperature but the
update expression assumes that a phase change occurs over a range of tem-
perature which is not realistic for phase change of pure components which
undergo an isothermal phase change. The H-based method uses an inverted
enthalpy-temperature relationship, i.e. it uses T=T(H) rather than H=H(T).
Since the temperature is a continuous function of the enthalpy for the phase
change process unlike the enthalpy which is a discontinuous function of the
temperature, thus it eliminates the need to make the assumption that the
phase change occurs over a range of temperature and is well suited for mod-
eling the phase change of pure components and hence was the algorithm of
choice in the present work.

3.2.2 Modeling the solidi�cation of SixGe1-x

As described earlier, solidi�cation in the LPD process occurs due to satura-
tion and precipitation. Consequently, this rules out the possibility of using
the conventional enthalpy method which is well suited to model the solidi�-
cation process in melt growth driven by cooling of the melt. However, there
exists a possibility to model the LPD growth using a virtual front tracking
model [51] developed for modeling dendritic growth since in this process like
the LPD growth, solidi�cation is considered to be driven by the di�erence
in the local solubility and the actual composition and therefore was utilized
in this work. As per this model, solidi�cation in a cell is predicted when
the actual concentration in the cell exceeds the equilibrium concentration of
silicon computed from the phase diagram corresponding to the local temper-
ature. Release of latent heat during solidi�cation is accounted for in a similar
way as in the enthalpy method i.e. by including a source term in the energy
equation. In addition, there is transport of silicon from the melt into the
crystal across the solidi�cation front because of higher solid-state solubility
of silicon in solid germanium than in liquid germanium. This decrease of
silicon concentration in the melt as solidi�cation proceeds is accounted for
by including a sink term in the mass transport equation.

3.2.3 Choice of the CFD solver

To solve the discretized governing equations, one of the options is to develop
the source code from scratch. Although this approach gives the maximum
�exibility and complete control but has a very high developmental time and
requires extensive validation studies before con�dence can be gained on the
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accuracy of the results. A second choice is to use an established commercial
CFD code such as Ansys Fluent but implementing a new solution algorithm
in these codes is not possible as the user does not have any access to the
source code. Finally, a third option is to use an open source code such as
OpenFOAM which gives complete access to the source code and has a very
large user-base in the CFD community. OpenFOAM was chosen to develop
the solver for implementing this new solution methodology as it o�ers almost
the same �exibility as that of one's own code while substantially reducing
the developmental time. Further, because of its widespread usage in the �eld
of CFD, its code has been extensively tested and hence it o�ers the accuracy
and credibility comparable to that of any of the established commercial CFD
code.

3.2.4 Numerical solution domain

The numerical solution domain consists of the solid Ge seed at the bottom,
silicon-germanium solution (initially germanium melt) in the middle, the sil-
icon solid source at the top, and the wall of the quartz ampoule. Half the
domain and the applied temperature pro�le are shown in �gure 2.15 . Open-
FOAM [42] always uses the three dimensional cartesian coordinate system,
and for simulating a two-dimensional axisymmetric case the geometry should
be speci�ed as wedge with a small angle (<50). To keep the interface thick-
ness small, a �ne mesh was employed in the melt region (10 mesh elements
per mm) whereas a relatively coarse mesh was used for source and quartz
region (5 mesh elements per mm) for computational e�ciency. This mesh
size was arrived at after performing the grid independence study.

3.2.5 Field equations

Two di�erent sets of �eld equations (comprising of the energy and the mass
transport equations) were solved corresponding to the melting and solidi�ca-
tion models. The energy equation was solved for the entire domain whereas
the mass transport equation was solved only for the melt region.

3.2.5.1 Melting Process

In the melt, the only �eld equations are the energy balance and mass trans-
port equations since the contribution of �uid �ow was neglected. As already
mentioned earlier the interfacial e�ect of absorption of latent heat of fusion is
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taken into account by adding a sink term to the energy equation.The energy
balance yields the following equation:

∂T

∂t
= α∇2T − ST (3.1)

The thermal di�usivity of a cell is computed based on the value of the
liquid fraction of that cell. Once a cell becomes completely liquid its thermal
di�usivity is changed to its liquid state value from its solid state value.

α =

{
αs if ε < 1

αl if ε = 1
(3.2)

The sink term to account for latent heat e�ects is computed as follows:

ST ≡
L

cp

∂ε

∂t
(3.3)

∂C

∂t
= D∇2C (3.4)

Mass di�usivity is updated using a similar approach used for updating the
thermal di�usivity.

D =

{
Ds if ε < 1

Dl if ε = 1
(3.5)

Enthalpy of a computational cell is calculated based on its temperature
and liquid fraction which in turn is used to compute the liquid fraction of
the cell.

Hn
P = cpT

n−1
P + εn−1L and εn =


0 if Hn

P < Hs
Hn

P−Hs

Hl−Hs
if Hs ≤ Hn

P ≤ Hl

1 if Hn
P > Hl

(3.6)
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3.2.5.2 Solidi�cation Process

As described earlier the release of latent heat is accounted by adding source
term to the energy equation and depletion of silicon in the melt during solid-
i�cation is accounted by adding sink term to the mass transport equation.

∂T

∂t
= α∇2T + S

′

T and
∂C

∂t
= D∇2 + SC (3.7)

The source and sink terms are calculated as follows:

S
′

T ≡
L

cp

∂γ

∂t
and SC ≡ C(1−K)

∂γ

∂t
(3.8)

The thermal di�usivity and mass di�usivity are updated based on the
value of solid fraction. Once a cell becomes completely solid its thermal and
mass di�usivities are changed from their liquid state values to solid state
values.

α =

{
αl if γ < 1

αs if γ = 1
and D =

{
Dl if γ < 1

Ds if γ = 1
(3.9)

Lever rule is used to calculate the mass fraction solidi�ed in a given time
step while the actual mass fraction solidi�ed is computed from a di�erent
expression as follows:

∆γlever =
CN−1 − CN−1

l

CN−1
s − CN−1

l

and ∆γN = min(∆γNlever, 1−
NT−1∑
N=1

∆γNlever)

(3.10)

The cumulative mass fraction solidi�ed is calculated as follows:

γN =
N∑
N=1

∆γN and γNT =

NT∑
N=1

∆γN = 1 (3.11)

∂T

∂t
= α∇2T (3.12)

The solidus and liquidus equilibrium composition is computed as follows:

Ceq
l (T ) = 0.072075(T − 1211.87) (3.13)
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Ceq
s (T ) = 0.336775(T − 1211.87) (3.14)

K =
Ceq
s

Ceq
l

(3.15)

−λ∇T = βσ(T 4 − T 4
amb) (3.16)

3.2.5.3 Quartz wall and solid source

During both melting and solidi�cation processes, in the quartz wall and solid
source only the heat conduction equation with appropriate thermal di�usivity
coe�cients is solved:

∂T

∂t
= α∇2T (3.17)

Property Source(Silicon) Seed (Germanium) Solution/Melt Crystal Quartz
λ (W/mK) 23.7 20 42.8 20 2
ρ (Kg/m3) 2301.6 5323 5670 5323 2200
cp (kJ/kg) 967 396.1 406 396.1 1200
D (m2/s) - - 10−8 - -
L (kJ/kg) 466.5 466.5

β 0.71 - - - 0.85
σ(1/Wm) - - 1.7 x 106

Table 3.1: Thermophysical properties of SiGe system compiled from [10, 15,
52�54]

3.2.6 Solution algorithm

3.2.6.1 Melting solver

As mentioned earlier, the melting solver utilizes the H-based enthalpy-porosity
method [50] and the solidi�cation solver uses the algorithm proposed in ref-
erence [51].

1. Initialize the concentration �eld and the liquid fraction to zero in the
melt sub-domain(seed and solvent region) and the temperature �eld to
298K in the entire domain. Also, initialize the thermal di�usivity to
an appropriate value in each sub-domain.
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2. Based on the previous time step value of the temperature and the liquid
fraction, update the enthalpy of each cell using equation 3.6 -1.

3. Compute the liquid fraction for each cell using equation 3.6 -2.

4. Update the di�usion coe�cient and the thermal di�usivity for each
cell (equation 3.2, 3.5) and compute the source term for the energy
equation ( equation 3.3) which is dependent upon the rate of change of
the liquid fraction.

5. Solve energy and mass transport equations ( equation 3.1, 3.4, 3.17).
If the melting process is complete, switch to solidi�cation solver else
increment the time and go to step 2.

3.2.6.2 Solidi�cation solver

1. Initialize the concentration and the temperature �elds to the values
obtained from the melting solver and also identify the unmelted seed
region in the melt sub domain.

2. Set the solid fraction to one in the unmelted region and to zero in the
remaining melt sub domain. Check the state of each cell in the melt
region. If it lies in the unmelted seed region or if it is a fully solidi�ed
cell (γ =1) then it does not enter the solidi�cation loop. For other cells
in the melt region (i.e. γ <1) proceed to step 3.

3. Using the latest value of temperature compute the liquid and solid state
solubility of silicon and the partition coe�cient for each cell ( equation
3.13, 3.14, 3.15).

4. For each of these cells compare the latest concentration value and the
liquid solubility. If the concentration has exceeded the liquid solubil-
ity in one or more cells adjoining the seed crystal/solidi�ed crystal,
then solidi�cation starts in these cells and proceed to step 5 for these
solidifying cells.

5. Compute the mass fraction solidi�ed in this time step from the lever
rule using equation 3.10-1 .

6. To prevent a cell from getting solidi�ed completely in one step, the
actual mass fraction is computed from equation 3.10 -2. Compute the
cumulative sum of the mass fraction solidi�ed for each solidifying cell
using equation 3.11 .

7. As soon as a cell gets solidi�ed completely (i.e.γ=1) the concentration
in a fully solidi�ed cell is set to the local solid state solubility as per
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equation 3.14.

8. Update the thermal di�usivity and the mass di�usivity in the melt
region using equation 3.9.

9. Compute the source terms from equation 3.8.

10. Solve energy and mass transport equations 3.7 , 3.17 .

11. Check if the current time exceeds the maximum simulation time. If
yes, then stop else increment the time and go to step2.

3.2.7 Numerical Solution

To solve the �eld equations, a top level code was written in OpenFOAM . It
is important to note that the mass di�usivity of silicon in solid germanium
is several orders of magnitude smaller than that in molten germanium. Also,
the thermal di�usivity is di�erent for the solid and the liquid phase. There-
fore, care must be taken while discretizing the terms involving such variable
properties. Consequently for the melt region of the domain, the mass and
the thermal di�usivities were de�ned as �eld variables and harmonic interpo-
lation [55] was used for discretizing the di�usion terms in the mass transport
and the energy equation. The �rst order accurate Euler implicit scheme was
chosen for temporal discretization. A constant time step of 2 sec was em-
ployed. The solution was considered converged when absolute residuals had
fallen below the speci�ed solver tolerance of 10-9.

3.2.7.1 Boundary and Initial condition

With reference to �gure 2.15 the following boundary conditions are used :

� Concentration �eld

1. Bottom and inner quartz walls are impermeable across which there is
no transport of mass, which leads to zero normal gradient boundary
condition.

2. On the dissolution interface, equilibrium was assumed, and the con-
centration was prescribed as a function of temperature from the phase
diagram.

3. The liquidus and solidus curves were linearized for the temperature
range of interest (1211.87-1289.12K). It is important to note that these
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relations (equations 3.13, 3.14) give the solubility in atomic percent-
age whereas in other relations the concentration is expressed in mass
fraction.

� Thermal �eld

1. Bottom- A constant temperature of 1176.87K was prescribed at the
bottom.

2. Outer quartz wall-A linear temperature gradient of 2.5K/mm was spec-
i�ed along the solution zone and a constant temperature of 1289.37K
along the source.

3. Top- The radiative heat loss from the top was taken into account by
using equation 3.16 .

The concentration �eld was initialized to zero while the temperature �eld
was initialized to a value of 298K. The values of physical properties used in
the present work are listed in table 3.1.

3.3 Results and Discussion

The simulated crystal growth is shown in �gure 3.1 (It must be noted that in
all the presented results throughout the thesis the solution domain shown in
�gure 2.15 has been mirrored around the centreline for more clarity). Figure
3.2 depicts the computed temperature and concentration �elds in the melt
and the shape of the initial growth interface after one hour of simulation
time. The computed isotherms of the present simulation are relatively in
good agreement with the simulation results obtained using a dynamic grid
approach [10]. However, the computed iso-concentration lines show slight
di�erences compared with the experimental results of reference [3]. This dif-
ference in behaviour can be explained on the basis of the di�erence in the
values of Prandtl and Schmidt numbers for the melt. Prandtl number for
the melt is 0.0075 while the Schmidt number is around 7.67 [10]. Thus for a
given Reynolds number the solutal Peclet number is greater than its thermal
counterpart. This means that the advective mass transport is signi�cant in
comparison to the di�usive mass transport while the advective heat trans-
port is negligible in comparison to the di�usive heat transport. Thus the
heat transport does not change much in the presence of convection but mass
transport is signi�cantly a�ected by the inclusion of convective e�ects. The
di�erence in the results using the �xed and dynamic grid approach is more
prominent in the evolution of the growth interface that is shown in �gure 3.3.
Although the total growth thickness for a 29hrs growth period is very close
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to those of the experiment results of reference [3], the simulation predicts
slightly faster growth during the initial stages of growth as can be seen from
�gure 3.3 and table 3.2. The present simulation (on left in �gure 3.3) under
zero gravity predicts slightly faster initial growth (enhanced mass transport)
compared with that of the simulation for the Earth-bound experiments (in
middle in �gure 3.3) in which, while the mass transport in the upper section
of the melt was mainly di�usion dominated, in the bottom region of the melt
near the growth interface there were strong convective cells. The faster initial
growth along the crucible wall in the present simulation can be attributed to
the lack of radial mixing owing to the absence of convection. This in turn
leads to relatively cooler �uid near the crucible wall than in the interior melt
in the vicinity of growth interface during the early hours of growth.

Present
Simulation

Experiments
[3]

Simulation
[10]

Total Growth
Thickness (29hrs
growth): centre

~19 mm ~19 mm ~17 mm

Total Growth
Thickness (29hrs
growth): near wall

~19 mm ~16 mm ~17 mm

Interface shape with
respect to experiment

Flatter at
the centre,
sharper
near the
wall

Sharper
near the
wall

Evolution of interface
with respect to
experiment

Faster
near the
wall

Better
agreement
with ex-
periment

Growth thickness at
centre after 10hrs of

growth

About 8
mm

About 7
mm

About 6
mm

Table 3.2: Comparison of growth thickness and interface evolution

For instance, as presented in table 3.2, in the simulation of the Earth-
bound experiments the growth thickness is about 6 mm after ten hours of
growth time while in the present simulation the interface reaches the position
of 8 mm during the same period. The experimental value is about 7 mm for
this period. The evolution of the growth interface presents a similar trend to
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Figure 3.1: Simulated crystal growth at a) Initial position b) t=20 hrs c)
t=40 hrs d) t=60 hrs e) t=80 hrs f) t=100hrs
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Figure 3.2: a) Isotherms at an interval of 20K and b) isoconcentration lines
at an interval of 0.002 in the melt at t=1hr

Figure 3.3: Computed evolution of the growth interface by the present sim-
ulation under zero gravity (on left, with time interval of 10hr in between
each line ). The simulation including convection [10] based on Earth-bound
experiments (in middle, time interval between each line is 3hr (total of 39hr
growth), only half zone is shown). The experimental results are shown on
right [3] .
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Figure 3.4: (a) Radial and (b) axial composition pro�les for the simulated
crystal growth at t=142hrs

Figure 3.5: Experimentally measured a) Radial and (b) axial composition
pro�les [3]
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Figure 3.6: Variation of average growth velocity with time

that observed in the experiments and also those from the previous simula-
tions, except that the �attening of the growth interface is delayed compared
with that of experiments (as seen in �gure 3.3 on left in comparison with
those in the middle and on right), and also initially faster growth along the
crucible wall. The initial concave growth interface slowly �attens as growth
progresses, and �nally becomes convex near the end of the growth process
similar to the experiments. The computed averaged growth velocity pro�le
under zero gravity is given in �gure 3.6. As predicted from the experiments,
the growth slows down as time progresses due to reduction in silicon dissolu-
tion into the growth melt since the temperature gradient is getting shallower
in the growth direction. Although a faster initial growth is predicted un-
der zero gravity, the trend of the interface evolution and the total growth
thickness after twenty nine hour of growth agree with experiments. A well-
designed LPD growth experiment (for silicon germanium) under microgravity
may shed light on these numerical predictions. The computed axial and ra-
dial silicon composition pro�les in the grown crystal are shown in �gure 3.4.
As seen in �gure 3.5, these computed composition pro�les are in qualitative
agreement with the experimental results of reference [3]. Again, this implies
that from a space experiment one may also expect a similar silicon distribu-
tion in the grown crystals; linear in the growth direction and almost uniform
in the radial direction.
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3.4 Inclusion of convective e�ects

The LPD growth system has an axially stabilizing density gradient because
of the imposed axial temperature and concentration gradients which essen-
tially means that the lighter �uid is at the top while the heavier �uid at
the bottom. The solutal Grashof number for this system is 10.7 x 107while
thermal Grashof number is 5.09 x 107, which means that the suppression
of natural convection due to solutal gradient is stronger than its thermal
counterpart [10]. However, during early hours of growth, solutal gradient is
not completely established and is unable to suppress the natural convection
near the growth interface due to radial temperature gradient [10]. Thus even
though LPD growth is a di�usion dominated process but convection is quite
strong during early hours of growth [10]. The present simulation methodol-
ogy was used to simulate earth bound LPD growth which includes convective
e�ects. However, the solidi�cation model used in the solver was originally
developed for low Peclet number transport regime in the reference [51]. So,
the usage of this solidi�cation model during early hours of growth is not valid
and reliable results could not be obtained following this methodology.

3.5 Summary

This chapter focussed on the development of a �xed grid numerical solution
procedure to simulate the LPD growth under zero gravity condition. Both
initial melting and subsequent solidi�cation were included in the simulation.
H-based enthalpy-porosity method [50] was used to simulate melting while a
model proposed in reference [51] was used to simulate solidi�cation occurring
during the LPD growth. A solver was developed in an open-source software
OpenFOAM to carry out the simulations. Although the results were found to
be in good qualitative agreement with previous numerical and experimental
work but some noticeable di�erences were also observed owing to the absence
of convective e�ects in the present numerical model. The di�erence was most
prominent in the evolution of the growth interface in which faster initial
growth interface was predicted along the crucible wall. Since a �xed grid
approach was used, so complete growth process could be simulated. The
radial and axial crystal composition plots were in line with previous numerical
and experimental �ndings. An attempt was also made to use the developed
numerical methodology to simulate earth bound LPD growth including the
e�ects of convection, but accurate results could not be obtained because of
the limitations of the solidi�cation model.
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Chapter 4

Numerical investigation of the

e�ects of crucible translation in

the LPD growth of SixGe1-x

4.1 Introduction

In its original form, LPD was developed with the aim of producing uniform
composition crystal by maintaining a constant interface temperature during
growth [2]. This was accomplished by pulling the crucible during the exper-
iment at a constant rate equal to the growth rate determined empirically.
Crucible pulling was commenced after a certain time period from the start
of growth. This duration was calculated on the basis of the desired �nal
composition and led to fractional length of graded composition followed by
uniform composition crystal. As a further re�nement of this work an in situ
monitoring system was developed and used to observe and control the tem-
perature of crystal-melt interface [13]. The growth rate was determined by
monitoring the interface in the �xed ampoule con�guration using this sys-
tem. It was found that the growth rate varies for an initial length of the
grown crystal after which it becomes constant. This observation was then
used to decide the initiation of ampoule pulling and the rate at which it is
to be pulled out. The interface was detected to be at a �xed position w.r.t
ampoule, when the ampoule pulling rate was matched with the growth rate
determined previously. A crystal having uniform composition for a length of
5.5 mm was obtained following a initial graded composition corresponding
to the time period in which ampoule pulling was not started. However, af-
ter the region of uniform composition, wide �uctuations in composition and
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poly-crystallization was observed. In continuation of these e�orts, a feed-
back control system was developed to keep the interface at a �xed position
with the objective of growing uniform composition crystals [14]. Unlike the
previous work in which ampoule was pulled at a constant rate, in this case
the pull rate was varied dynamically to keep interface at a �xed position.
Two test cases were used to demonstrate the feasibility of growing uniform
composition crystals using this feedback control system.

In this chapter, the crucible translation e�ects on LPD growth con�gura-
tion are examined both for constant and dynamic pulling rate. The constant
pull rate value was chosen to be 0.429 mm/hr based on the experimental
results of reference [15]. In the case of dynamic pull rate simulations, the
pull rate was varied so as to obtain nearly constant centreline composition.

4.2 Numerical Simulation

As discussed earlier, modeling of the LPD growth process presents a moving
boundary problem which calls for the usage of specialized numerical tech-
niques to accurately simulate the transport phenomena associated with this
growth method. The moving boundary problem such as solidi�cation can
be tackled computationally using �xed and moving grid approaches. It was
mentioned before that accurate results could not be obtained using the de-
veloped �xed grid numerical solution procedure when convective e�ects were
included because of the limitation of the adopted solidi�cation model. Hence,
a moving grid approach was chosen to simulate the translation e�ects in LPD
so as to include the e�ects of natural convection. In the dynamic grid ap-
proach, the mesh is modi�ed after each time step so as to conform the moving
and changing boundary.

4.2.1 Choice of the CFD solver

In the previous chapter it was highlighted that using OpenFOAM is particu-
larly useful in situations when a new solution procedure is to be implemented.
However, in the present chapter dynamic grid approach was adopted which
requires the development of a custom boundary condition for moving the
growth interface and a mesh motion strategy but does not require the imple-
mentation of any new algorithm unlike the previous chapter. Ansys Fluent
is one of most widely used commercial CFD solver and was used to carry out
the simulations. Although both OpenFOAM and Ansys Fluent can handle
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moving mesh problem but the latter was chosen because of its detailed docu-
mentation regarding the implementation of dynamic grid approach, excellent
mesh motion tools and the easy to use graphical user interface.

4.2.2 Numerical solution

In comparison to the �xed boundary problem, the �eld equations include
additional terms to account for grid movement which should be computed
using the space conservation law [56]. To move the boundary mesh nodes
after each time step based on a custom boundary condition along the growth
interface, various user-de�ned functions were developed in Ansys Fluent. The
position of the initial growth interface was located by means of an isotherm
corresponding to the melting point of germanium. The mesh consists of 4674,
1518, 656, 1002 quadrilateral elements in the melt, seed, source, and quartz
regions respectively and the grid size was �nalized after performing the mesh
independence study. The pressure velocity coupling was handled using the
well-known PISO algorithm [57]. A time step of 0.1s was used to carry out
the computation. The solution was considered converged when the absolute
residuals had fallen below 10-4 for the continuity and momentum equations,
and 10-6 for the energy and mass transport equations. The computational
domain, as shown in 2.15, consists of the silicon source at the top, the silicon-
germanium melt in the middle, the germanium seed below, and the vertical
wall of the quartz ampoule.

4.2.3 Assumptions

In the present numerical simulation model a number of simplifying assump-
tions were made which may be summarized as follows:

� Local thermodynamic equilibrium is assumed to exist at the dissolution
and growth interfaces.

� Silicon-germanium melt is assumed to be a Newtonian and incompress-
ible �uid.

� The melt density change is assumed to be small, and is approximated
in the momentum equation by using the well-known Boussinesq ap-
proximation in terms of the thermal and solutal expansion coe�cients.

� Due to its insigni�cant e�ect on the system parameters, the dissolution
interface velocity is taken as zero in the simulation: i.e., the dissolution
interface is �xed.
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� Latent heat of solidi�cation is neglected because of small growth rate.

� Soret and Dufour e�ects were neglected due to their negligible e�ect in
this system.

� Heat and mass �uxes are given by the well-known Fourier's and Fick's
laws, respectively.

� Variation of transport properties with temperature during growth is
neglected.

� Mass di�usivity of silicon in the grown crystal is neglected in compar-
ison to its value in the silicon-germanium (initially germanium) melt.

� The growth system is considered axisymmetric, and so are the �eld
equations of the liquid and solid phases.

� The same temperature gradient exists below the initial position of the
growth crucible.

4.2.4 Field equations in the presence of moving bound-
ary [58,59]

The Reynolds transport theorem for an arbitrary deforming control volume
is given by:

d

dt

ˆ
CV (t)

ρφdV =

ˆ
CV (t)

∂(ρφ)

∂t
dV +

˛
CS(t)

ρφUg � dS (4.1)

For material volume with each particle having velocity U, the above equa-
tion can be written as :

d

dt

ˆ
MV (t)

ρφdV =

ˆ
MV (t)

∂(ρφ)

∂t
dV +

˛
MS(t)

ρφU � dS (4.2)

If the control volume at instant t is chosen in such as way that it exactly
coincides with the material volume then the above equation can be modi�ed
as :

d

dt

ˆ
MV (t)

ρφdV =

ˆ
CV (t)

∂(ρφ)

∂t
dV +

˛
CS(t)

ρφU � dS (4.3)

Subtracting equation 4.1 from equation 4.3 we get
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d

dt

ˆ
MV (t)

ρφdV =
d

dt

ˆ
CV (t)

ρφdV +

˛
CS(t)

ρφ(U−Ug) � dS (4.4)

The general balance law for a continuum material can be written as:

d

dt

ˆ
MV (t)

ρφdV =

˛
MS(t)

ρΓφ(∇φ) � dS +

ˆ
MV (t)

SφdV (4.5)

Using equation 4.4 and also noting that for time instant t control volume
and material volume coincide, the above equation can be simpli�ed as:

d

dt

ˆ
CV (t)

ρφdV +

˛
CS(t)

ρφ(U−Ug) � dS =

˛
CS(t)

ρΓφ(∇φ) � dS +

ˆ
CV (t)

SφdV

(4.6)

Equation 4.6 represents the general transport equation for an arbitrary
control volume having a moving boundary for a scalar transport variable φ.

4.2.4.1 Liquid Phase

The �eld equations for thermo-solutal buoyancy driven �ow modeled using
the Boussinesq approximation in the melt. As already mentioned before
when dealing with dynamic grid approach, an additional term appears in the
transport equations to account for mesh motion. The equations are given as
follows:

� Continuity

˛
CS(t)

ρ(n � U)dS = 0 (4.7)

� Momentum

d

dt

ˆ
CV (t)

ρUdV +

˛
CS(t)

ρ[n�(U−Ug)]UdS =

˛
CS(t)

µ[n �∇U]dS −
ˆ
CV (t)

∇pdV

−
ˆ
CV (t)

ρgβT (T − Tref )dV

−
ˆ
CV (t)

ρgβC(C − Cref )dV
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(4.8)

� Energy
d

dt

ˆ
CV (t)

ρTdV +

˛
CS(t)

ρT [n � (U−Ug)]dS =

˛
CS(t)

ρα[n �∇T ]dS (4.9)

� Mass
d

dt

ˆ
CV (t)

ρCdV +

˛
CS(t)

ρC[n � (U−Ug)]dS =

˛
CS(t)

ρD[n�∇C] � dS (4.10)

4.2.4.2 Solid Phase

In the solid phases of the computational domain, the only �eld equation is the
energy balance. In the grown crystal, the energy balance takes the following
form:

d

dt

ˆ
CV (t)

ρTdV −
˛
CS(t)

ρT [n � Ug)]dS =

˛
CS(t)

ρα[n �∇T ]dS (4.11)

For the domains of the quartz wall and silicon solid source, which do not
have any moving boundaries, the energy balance is given by:

d

dt

ˆ
CV (t)

ρTdV =

˛
CS(t)

ρα[n �∇T ]dS (4.12)

4.2.5 Computational aspects related to moving grid ap-
proach

4.2.5.1 Space conservation law [58,60]

The discretized form of equation 4.6 can be written as:

(ρPφPVP )n − (ρPφPVP )n−1

∆t
+
∑
f

ρf (F−Fs)φf =
∑
f

(ρΓ)fSf •(∇φ)f +SφVP

(4.13)

As can be observed from the above equation the grid motion introduces
an additional �ux term in comparison to the case when the control volume
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is not deforming and a temporal derivative term which involves a change in
cell volume. The space conservation law provides a relation between these
two and can be obtained by setting φ = 1 and considering the density to be
constant in equation 4.1

d

dt

ˆ
CV (t)

dV −
ˆ
CS(t)

dS •Ug = 0 (4.14)

In the discretized form the above equation reads as :

V n
P − V n−1

P

∆t
−
∑
f

Fs = 0 (4.15)

It has been shown in reference [56] that the mesh motion �ux should
be computed from the space conservation law rather than directly using
the grid velocity otherwise a direct usage of grid velocity can result in the
introduction of numerical errors (arti�cial mass sources) which can be avoided
by limiting the time-step size, thereby introducing an additional constraint
on the maximum time step apart from the temporal accuracy.

4.2.6 Boundary conditions

4.2.6.1 Concentration Field

∂C

∂n
= 0 (4.16)

On the dissolution and growth interfaces, local thermodynamic equilib-
rium was assumed to exist and the liquid equilibrium concentration was pre-
scribed as a function of temperature using the phase diagram of the silicon-
germanium system by the following polynomial:

Ceq
l = al4T + bl4T 2 + cl4T 3 + dl4T 4 + el4T 5 (4.17)

where4T was calculated at the growth interface by4T = Tgrowth−938.72
, and at the dissolution interface by 4T = Tdis − 938.72 . The coe�cients
in Eq.(9) were estimated by curve �tting from the silicon-germanium phase
diagram for equilibrium (values are given in table 4.1). The solid equilibrium
concentration at the growth interface was also estimated similarly by curve
�tting the solidus curve in the silicon-germanium phase diagram by using:
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Coe�cient al bl cl dl el

Value 5.72 x 10-2 1.49 x 10-4 7.48 x 10-7 -1.84 x 10-9 2.21 x 10-12

Coe�cient as bs cs ds es
Value 3.82 x 10-1 -6.25 x 10-4 5.95 x 10-7 -2.93 x 10-10 4.45 x 10-13

Table 4.1: Coe�cients used to compute equilibrium composition

Ceq
s = as4T + bs4T 2 + cs4T 3 + ds4T 4 + es4T 5 (4.18)

Initially, the concentration �eld was set to zero. In order to move the
mesh, the grid velocity was computed from the following expression [10]:

ρsUg(C
growth,eq
s − Cgrowth,eq

s ) = ρlDl
∂C

∂n
(4.19)

4.2.6.2 Thermal �eld

At the bottom of ampoule:

T = 1146.87− 4000d (4.20)

Along the outer wall of the quartz ampoule adjoining the seed and melt
region:

T = 1146.87 + 4000(y − d) (4.21)

Along the outer wall adjoining the source region, before translation com-
mences:

T = 1326.87 (4.22)

After translation commences:

T = 1146.87 + 4000(y − d) (4.23)

−λ∇T = βσ(T 4 − T 4
amb) (4.24)

Tamb = Ttop − 5 (4.25)
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The translated distance in the above equations is computed by:

d = p4t (4.26)

As the latent heat of solidi�cation was neglected due to slow growth, the
energy balance at the growth interface leads to the condition of continuous
heat �ux:

λs
∂Ts
∂n

= λl
∂Tl
∂n

(4.27)

The above condition was also used for all inner boundaries.

4.2.6.3 Flow �eld

A no-slip boundary condition was used for the �ow �eld along the boundaries
of the melt. Initially, the velocities were set to zero.

4.3 Results and Discussion

Numerical simulations were carried out for three cases namely a) station-
ary, b) at a constant rate of 0.429 mm/h , and c) dynamic translation. The
dynamic translation pro�le was determined to keep the axial silicon composi-
tion along the center-line almost constant. The predicted silicon composition
from the numerical simulations for all three cases are presented in �gures 4.3
and 4.4. First of all, as seen from �gures 4.1 and 4.3, for the �rst two cases
(stationary and at a constant translation rate) the numerically predicted
axial silicon composition variations agree qualitatively with those of the ex-
periments ( the case of zero translation is referred to as baseline in �gure 4.1).
Similarly, in these two cases, comparison of �gures 4.2 and 4.4 shows that the
numerically predicted radial silicon composition is also in qualitative agree-
ment with experiments. Figures 4.3 and 4.4 show the numerically predicted
axial and radial silicon composition variations under a dynamic translation
pro�le. As seen, the simulation predicts nearly uniform composition both
axially and radially. The predicted uniform crystal composition under the
dynamic pulling can be attributed to the relatively constant average interface
temperature shown in �gure 4.5. The dynamic pull rate pro�le (see �gure
4.6) was determined numerically. The simulation was run for small simu-
lation time intervals (around 1 minute) and then the crystal composition
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value along the centreline was checked. Depending on whether the composi-
tion was tending to increase/decrease/remain constant, the pulling rate was
increased/decreased/kept unchanged. The pulling rate values and the cor-
responding simulation time intervals were recorded and used for obtaining
the complete pro�le. In this way, nearly constant centreline composition and
corresponding pulling rate pro�le were obtained.

Figure 4.1: Experimental centreline composition pro�les of the translated (at
0.429mm/h) and stationary (at 0 mm/h) LPD [15] .

Figure 4.2: Experimental radial composition pro�les of the translated (at
0.429mm/h) and stationary (at 0 mm/h) LPD [15]

During the early stages of the growth process, the growth rate is higher
thereby requiring higher pulling rates to maintain a constant center-line com-
position. As the growth proceeds, to achieve a nearly constant composition,
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Figure 4.3: Computed axial silicon composition pro�les along the centreline
of the crystal at a translation rate of 0 mm/hr (stationary), at a constant
rate of 0.429 mm/h, and using a dynamic translation (pulling) pro�le

Figure 4.4: Computed radial silicon composition pro�les of the crystal at a
translation rate of 0 mm/hr (stationary), at a constant rate of 0.429 mm/h,
and using a dynamic translation (pulling) pro�le
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Figure 4.5: Computed average interface temperature at a translation rate
of 0 mm/hr (stationary), at a constant rate of 0.429 mm/h, and using a
dynamic translation (pulling)pro�le

Figure 4.6: Dynamic translation (pulling) pro�le used in the numerical sim-
ulation
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Figure 4.7: Computed interface evolution (contours at 4 hr intervals) for a
growth period of 20 hours at the translation rates of a) 0 mm/h, b) 0.429
mm/h, and c) dynamic

Figure 4.8: Velocity magnitude in the melt after a) 4 hr b) 12 hr, and c) 20
hr of growth time with no translation
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Figure 4.9: Velocity magnitude in the melt after a) 4 hr b) 12 hr, and c) 20
hr of growth time with a translation rate of 0.429 mm/h

Figure 4.10: Velocity magnitude in the melt after a) 4 hr, b) 12 hr, and c)
20 hr of growth time with dynamic translation
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Figure 4.11: Thermal �eld in the complete domain after a) 4 hr b) 12 hr,
and c) 20 hr of growth time with no translation

Figure 4.12: Thermal �eld in the complete domain after a) 4 hr b) 12 hr,
and c) 20 hr of growth time with a translation rate of 0.429 mm/h
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Figure 4.13: Thermal �eld in the complete domain after a) 4 hr b) 12 hr,
and c) 20 hr of growth time with dynamic translation

Figure 4.14: Concentration �eld in the melt after a) 4 hr b) 12 hr, and c) 20
hr of growth time with no translation
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Figure 4.15: Concentration �eld in the melt after a) 4 hr b) 12 hr, and c) 20
hr of growth time with a translation rate of 0.429 mm/h

Figure 4.16: Concentration �eld in the melt after a) 4 hr b) 12 hr, and c) 20
hr of growth time with dynamic translation
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much lower pulling rates are needed. As also seen from the computed re-
sults presented in �gure 4.7, another major advantage of dynamic crucible
translation is the signi�cant increase in the growth rate, which leads to faster
growth in the given growth time due to the higher pulling rates used . In
the stationary LPD growth process (without crucible translation) the solute
transport is di�usion dominated except in early stages of growth [10]. As can
be seen from �gure 4.8, in the later hours of growth, convection is negligible
in the entire domain except near the top. This nature of transport practically
remains unaltered with crucible translation. This is evident from �gures 4.9
and 4.10, which clearly show, the lack of convection near the growth inter-
face for the case of translation with a constant rate and dynamic pulling,
respectively. In the case of dynamic pulling, however, the numerical simula-
tion predicts stronger convection (in comparison with the case of stationary
and constant translation) with a noticeable increase in the size of the con-
vection cell in the region near the source. This may be attributed to the
disturbance in the thermal �eld caused by the time-dependent pulling rate.
However, despite the disturbance in thermal �eld due to dynamic crucible
translation, the presence of stabilizing temperature, concentration and hence
density gradients in LPD ensures di�usion continues to remain the dominant
mechanism of transport in later hours of growth. This is also re�ected in
thermal and concentration �eld distribution (see �gures 4.11 to 4.16 ) which
continues to be di�usion dominated despite the introduction of constant and
dynamic crucible translation.

4.4 Summary

In this chapter, crucible translation e�ects in the LPD growth of SixGe1-xwere
investigated numerically. A moving grid approach was adopted so as to in-
clude the e�ects of convection in the numerical model and implementation
was carried out in Ansys Fluent. A custom boundary condition was de-
veloped to move the growth interface by writing user de�ned functions in
Ansys Fluent. To simulate the crucible translation e�ects, dynamic temper-
ature boundary condition was prescribed. First, the e�ect of constant pull
rate was examined and compared with the available experimental results and
were found to be in good qualitative agreement. Next, the dynamic trans-
lation e�ects were studied by obtaining a dynamic pull pro�le by running
the simulation in small intervals and correcting the pull rate so as to main-
tain a constant centreline composition. It was shown that it is possible to
grow nearly uniform composition crystal by pulling the crucible in a dynamic
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fashion. Further, it was also shown that crucible translation has only a very
minor impact on transport mechanism of the LPD growth and it continues
to be di�usion dominated.
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Chapter 5

Numerical simulation of the LPD

growth technique subjected to

magnetic �eld

5.1 Static magnetic �eld

5.1.1 Introduction

The quality of semiconductor crystals can be signi�cantly improved by apply-
ing a static magnetic �eld during the growth process as it helps in minimizing
natural convection currents [16, 17]. Natural convection can be e�ectively
suppressed using a static magnetic �eld in the LPD growth as was shown
in the numerical studies [18, 19]. In the experimental work [20, 23], it was
found that application of a static magnetic �eld can slow down the growth
rate which in turn was attributed to the suppression of natural convection
and a modi�ed thermal �eld. In order to grow uniform composition with
very low silicon content it is necessary to initiate dynamic crucible pulling
during early hours of growth. However, it has already been shown in ref-
erence [10] that during the early growth hours, convection is quite strong
and initiating crucible pulling during this time might not lead to the desired
outcome of uniform composition. A static magnetic �eld can be useful in this
situation i.e. when the target silicon composition is quite low and requires
early initiation of crucible pulling. This section explores this idea numeri-
cally and assesses its e�ectiveness in producing uniform composition crystal
of low silicon content.
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5.1.2 Assumptions

Apart from the assumptions listed in section 4.2.3 additional assumptions
related to static magnetic �eld are listed below:

� Vertical magnetic �eld is aligned with the symmetry axis.

� Contribution of electric potential is neglected as its inclusion has neg-
ligible e�ect [18].

� E�ect of static magnetic �eld on initial melting of germanium is not
considered as it is assumed that the static magnetic �eld is turned on
after melting is complete.

5.1.3 Field equations in the presence of static magnetic
�eld

From a numerical simulation point of view, a static magnetic �eld introduces
an additional Lorentz force term in the momentum equation whose com-
putation requires the solution of the electric potential equation apart from
the Navier-stokes equations discussed earlier. It has been shown that the
contribution of electric potential can be neglected without introducing any
signi�cant error [18]. With the above listed assumptions a static magnetic
�eld introduces a radial Lorentz force which can be computed as follows [61]
:

Fr = −σB2vr (5.1)

5.1.4 Results and discussion

Simulations were carried out for two cases a) LPD growth under the action of
an applied static magnetic �eld b) LPD growth under the combined in�uence
of static magnetic �eld and dynamic translation. A value of 0.4 T was chosen
so as to match the value used in the experimental work [20]. As can be seen by
comparing �gure 5.1 and 5.2, the usage of a static magnetic �eld completely
suppresses convection near the growth interface. It marginally �attens the
growth interface especially after 6 hours of growth as can observed from �gure
5.3 . In addition, �gure 5.3 also shows that the growth rate is not signi�cantly
in�uenced by the application of a static magnetic �eld. This is in contrast to
the experimental observations of reference [20] in which it was found that a
static magnetic �eld considerably reduces the mass transport of silicon due



71

Figure 5.1: Velocity magnitude in the melt after a) 1 hr b) 2 hr, and c) 3 hr
of growth time

to the modi�ed thermal �eld which in turn was attributed to heat loss at top
and bottom. As LPD is a di�usion dominated process and suppression of
natural convection (which is strong only during early stages of growth) should
not slow down the growth rate signi�cantly. A more comprehensive LPD
numerical simulation model incorporating furnace heat transfer computation
can possibly make a more accurate prediction about this reduction in growth
rate. A second important observation in reference [20] was that the extent to
which the germanium seed melts under the in�uence of a static magnetic �eld
was signi�cantly lesser than without the magnetic �eld. This is most likely
due to the suppression of natural convection during the melting of germanium
resulting in much lower melt back of the seed. In the present simulations, it
was assumed that the static magnetic �eld is applied after initial melting of
germanium is complete and hence the initial growth interface is identical for
both cases.

Next, the e�ects of dynamic translation were examined with early ini-
tiation of crucible pulling in order to grow low silicon composition crystal.
The usage of a static magnetic �eld ensures that natural convection is sup-
pressed and early initiation of crucible does not present any problem. Figure
5.4 shows the computed axial composition pro�le with and without dynamic
translation e�ects. As expected, the case without dynamic translation yields
a graded axial composition while dynamic translation results in nearly uni-
form silicon composition crystal (approximately 1.1 % atomic ). A compar-
ison of �gures 4.6 and 5.5 indicates that signi�cantly higher pull rates are
required to produce low silicon composition crystal. Numerical simulation
for the case of dynamic translation could not be continued for the entire
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Figure 5.2: Velocity magnitude in the melt after a) 1 hr b) 2 hr, and c) 3 hr
of growth time under the action of applied static magnetic �eld of 0.4 T

Figure 5.3: Interface evolution for a growth period of 36 hours (6 hour in-
terval) a) without static magnetic �eld b) with static magnetic �eld of 0.4
T
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Figure 5.4: Computed axial silicon composition pro�les along the centreline
of the crystal under the action of applied static magnetic �eld of 0.4 T at
a translation rate of 0 mm/hr (stationary) and using a dynamic translation
(pulling) pro�le

Figure 5.5: Dynamic translation (pulling) pro�le for producing low silicon
composition (1.1 % atm) crystal under the action of applied static magnetic
�eld of 0.4 T
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Figure 5.6: Interface displacement after growth period of 5.5 hours and ap-
plied static magnetic �eld of 0.4 T a) without translation b) with dynamic
translation

growth period because of mesh quality issues associated with the interface
shape which in turn could possibly be attributed to signi�cantly higher pull
rates used in this case. Nevertheless, the possibility of growing low composi-
tion silicon crystal by initiating early crucible translation was shown by these
simulations. Further, a signi�cant improvement in growth rate by employing
dynamic translation can be clearly seen from �gure 5.6.

5.2 Rotating magnetic �eld

5.2.1 Introduction

The usage of RMF is quite common in the casting industry to induce melt
motion [21]. It is being increasingly used in crystal growth applications
as it can improve the quality of grown crystal by making the thermal and
concentration �eld more uniform [22]. It was found in reference [18] that
RMF was e�ective in �attening the growth interface in the LPD growth.
Further, in the experimental work [23] it was observed that application of
RMF signi�cantly increased the silicon transport. Motivated by the positive
numerical and experimental �ndings related to the application of RMF to the
LPD growth this section builds upon the numerical work [18] and simulates
the e�ect of RMF on the LPD technique .
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5.2.2 Assumptions

� Local thermodynamic equilibrium is assumed to exist at the dissolution
and growth interfaces.

� Silicon-germanium melt is assumed to be a Newtonian and incompress-
ible �uid.

� The melt density change is assumed to be small, and is approximated
in the momentum equation by using the well-known Boussinesq ap-
proximation in terms of the thermal and solutal expansion coe�cients.

� Due to its insigni�cant e�ect on the system parameters, the dissolution
interface velocity is taken as zero in the simulation: i.e., the dissolution
interface is �xed.

� Latent heat of solidi�cation is neglected because of small growth rate.

� Soret and Dufour e�ects were neglected due to their negligible e�ect in
this system.

� Heat and mass �uxes are given by the well-known Fourier's and Fick's
laws, respectively.

� Variation of transport properties with temperature during growth is
neglected.

� Mass di�usivity of silicon in the grown crystal is neglected in compar-
ison to its value in the silicon-germanium (initially germanium) melt.

� The �ow is considered to be axisymmetric with swirl .

� As the non dimensional frequency K<�<1, skin e�ect is negligible which
means that rotating magnetic �eld distribution remains unaltered in
the presence of melt.

5.2.3 Field equations in the presence of rotating mag-
netic �eld

From a computational perspective, RMF introduces an additional Lorentz
force term in the momentum equations whose computation requires the solu-
tion of the electric potential equations apart from the Navier-stokes equations
discussed earlier. Under the assumptions listed above the momentum and
electric potential equations take the following form [62].

B(r, ϕ, t) = B [r̂sin(ϕ− ωt) + ϕ̂cos(ϕ− ωt)] (5.2)
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d

dt
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∂r
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It is imperative to mention an important di�erence in the momentum
equation with and without RMF. In the former case, the �eld equations are
for axisymmetric �ow whereas in the latter case the �ow is axisymmetric with
swirl which essentially means that gradients in the tangential direction are
zero but tangential velocity is non zero. It was shown in reference [18] that
neglecting the electric potential equations can lead to signi�cant di�erences
in the computation of �ow �eld in comparison to the case when electric
potential is taken into account. Hence, in the present research work the
computations were performed including the electric potential equations.
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Figure 5.7: Simulation results after 1 hr of growth time in the presence of
RMF a) Velocity magnitude b) Temperature �eld c) Concentration �eld

5.2.4 Results and discussion

The numerical simulations were carried out for a RMF of 1 mT rotating at
40 Hz which is lower than the value of 5 mT employed in the experimental
work [23]. Interface instabilities were observed, possibly due to numerical
reasons. RMF induces mixing in the melt and this can be readily observed
from �gure 5.7 which shows much more uniform distribution of temperature
and concentration �elds unlike the di�usion dominated distribution observed
in LPD without RMF ( see �gures 4.11 and 4.14 ). Apart from changing the
distribution of �eld variables, the induced mixing also improves the silicon
transport rate signi�cantly as can be seen from 5.8 . However as pointed out
earlier due to numerical di�culties complete simulations could not be carried
out.

5.3 Summary

This chapter examined the in�uence of static and rotating magnetic �eld on
the LPD growth numerically. It was shown that static magnetic �eld can be
useful in a situation when a very low silicon composition crystal is required
to be grown by the LPD growth. This is because in this situation dynamic
crucible pulling should be initiated during early hours of growth when natu-
ral convection is quite strong, and it can be e�ectively suppressed by using
static magnetic �eld. Signi�cantly higher dynamic pull rates were predicted
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Figure 5.8: Computed axial composition pro�le with and without RMF

in the simulation than in the previous chapter to grow such low silicon com-
position crystals and also a substantial improvement in the growth rate was
observed. However, complete simulations could not be carried out because of
the numerical di�culties. Next, the e�ect of RMF on the LPD growth sys-
tem was examined. It was shown that the application of RMF improves the
uniformity in the temperature and concentration �elds in the melt. Numer-
ical di�culties were encountered in this case as well and simulations could
not be completed.
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Chapter 6

Conclusion

6.1 Contributions

This dissertation analyzed the LPD growth process using numerical simula-
tion. A �xed grid numerical solver was developed in OpenFOAM to simulate
the melting and solidi�cation process. Melt convection was not taken into
account as simulation was carried out for zero gravity condition. Results were
obtained in the form of interface evolution plot, melt isotherms, and isocon-
centration lines, axial and radial composition pro�les of the simulated crystal
growth and growth velocity plots. These results were compared with the nu-
merical results obtained using a moving grid approach including convective
e�ects and earth based experimental results. Good qualitative agreement was
observed with some di�erences due to the fact that convection was neglected
in the developed solver.

� The �rst major contribution of this work is the development of a novel
numerical simulation solver in OpenFOAM based on a �xed grid ap-
proach for the LPD growth process. As discussed earlier, this simula-
tion methodology has the following advantages over the moving grid
approach:

� It avoids the need to re-mesh and thus o�ers a faster and easier
way of simulating the LPD process.

� The mesh quality does not deteriorate with the changing shape of
the interface as the interface is represented by the computational
cells.

� As the mesh is �xed, longer simulation times are possible without
any mesh quality issues thereby allowing the simulation of the
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complete crystal growth process.

In the second part of this thesis, crucible translation e�ects on LPD growth
system were investigated numerically. The e�ect of both constant and dy-
namic pull rate was examined with the overall objective of producing uniform
composition crystals. A dynamic grid approach was employed so as to include
the convective e�ects and simulation was carried out using Ansys Fluent. Re-
sults were presented in the form of velocity, temperature and concentration
plots, axial and radial composition pro�les of the simulated crystal growth,
interface evolution, and average interface temperature plots. In addition, a
dynamic pull rate pro�le was obtained as a part of the simulation process
to achieve nearly uniform centreline composition crystal. Numerical results
for the constant pull rate were compared with the experimental results and
they agreed well qualitatively. Furthermore, nearly uniform centreline crys-
tal composition was predicted with the dynamic pull rate pro�le. The key
contributions of this part of the present study are as follows:

� Investigation of the e�ect of constant and dynamic pull rate on crystal
composition, interface shape, and growth rate.

� Examination of the impact of constant and dynamic translation on the
transport phenomena associated with LPD.

� Dynamic pull rate pro�le to obtain uniform centreline composition.

Next, LPD growth under the in�uence of static magnetic �eld was exam-
ined. Unlike the experimental �ndings [20], the numerical simulations did
not predict any appreciable reduction in the growth rate due to the static
magnetic �eld. The predominant mechanism of silicon transport in LPD is
di�usion [10] and inhibition of natural convection by using a static magnetic
�eld should not alter the transport rate signi�cantly. It indicates that the
altered thermal pro�le [20] due to a static magnetic �eld is most likely the
cause of reduced transport and might require a more comprehensive numer-
ical model incorporating furnace heat transfer computation to predict the
reduction in the growth rate. The numerical simulations revealed the e�ec-
tiveness of static magnetic �elds in suppressing natural convection during
the early hours of growth which can be exploited in producing uniform com-
position crystals of low silicon content as it requires early pull initiation.
The dynamic crucible translation combined with static magnetic �eld was
used to simulate uniform composition crystal growth (1.1 % atomic silicon).
A signi�cant improvement in growth rate was also predicted which should
be able to compensate for the experimentally observed reduction in growth
rate due to static magnetic �eld. Another possible alternative is to turn o�
the static magnetic �eld after initial growth period (around 4 -5 hours). In
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this way, the early initiation of crucible translation can still be carried out
in a convection free environment while avoiding the adverse e�ects of static
magnetic �eld on growth rate.

Finally, the e�ect of RMF on LPD was explored. It was shown that RMF
leads to signi�cant improvement in the growth rate and was in line with
the experimental �ndings [23]. The usage of RMF can signi�cantly reduce
the total growth time in LPD to produce graded silicon composition crystals
from which the desired composition seed crystals can be obtained. This can
be followed by the LPD growth with dynamic translation to produce uniform
composition crystals.

6.2 Future work

This research work was numerical in nature and should be followed by some
experimental work to validate the numerical �ndings. Speci�cally, the results
obtained for the LPD growth process under zero gravity condition should
be compared with LPD space experiments. On the numerical front, other
�xed grid techniques such as level set and phase �eld method can also be
applied to simulate the LPD process and results can be compared with the
�xed grid approach employed in this work. In addition, the suitability of
using the lattice Boltzmann method to model LPD can also be explored.
The dynamic pull rate pro�les presented earlier should be utilized to carry
out the translation LPD experiments to check its e�ectiveness in obtaining
uniform composition crystals. A series of new dynamic pull rate pro�les can
be obtained through the numerical simulation procedure discussed in this
thesis for various pull initiation times to grow uniform composition crystals
of various silicon composition. In this way, a set of dynamic pull rate pro�les
can be made available to the experimentalist from which an appropriate pull
rate pro�le can be selected depending upon the desired silicon composition.
Numerical models can be further re�ned by carrying out a three dimensional
simulation study and incorporating radiative heat transfer to account for
furnace heat transfer.
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