
Accelerated, Collaborative & Extended BlobTree Modelling

by

Herbert Grasberger

Bakk. tech., Vienna University of Technology, 2006

Dipl. Ing., Vienna University of Technology, 2009

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

c© Herbert Grasberger, 2015

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Accelerated, Collaborative & Extended BlobTree Modelling

by

Herbert Grasberger

Bakk. tech., Vienna University of Technology, 2006

Dipl. Ing., Vienna University of Technology, 2009

Supervisory Committee

Dr. Brian Wyvill, Supervisor

(Department of Computer Science)

Dr. Melanie Tory, Departmental Member

(Department of Computer Science)

Dr. Ryan Budney, Outside Member

(Department of Mathematics and Statistics)

iii

Supervisory Committee

Dr. Brian Wyvill, Supervisor

(Department of Computer Science)

Dr. Melanie Tory, Departmental Member

(Department of Computer Science)

Dr. Ryan Budney, Outside Member

(Department of Mathematics and Statistics)

ABSTRACT

BlobTree modelling has been used in several solid modelling packages to rapidly

prototype models by making use of boolean and sketch-based modelling. Using these

two techniques, a user can quickly create complex models as combinations of simple

primitives and sketched objects. Because the BlobTree is based on continuous field-

values, it offers a lot of possibilities to create and control smooth transitions between

surfaces, something more complicated in other modelling approaches. In addition,

the data required to describe a BlobTree is very compact. Despite these advantages,

the BlobTree has not yet been integrated into state of the art industrial workflows

to create models. This thesis identifies some shortcomings of the BlobTree, presents

potential solutions to those problems and demonstrates an application that makes

use of the BlobTree’s compact representation.

A main criticism is that the evaluation of a large BlobTree can be quite expensive,

and, therefore, many applications are limited in the complexity of models that can be

created interactively. This work presents an alternative way of traversing a BlobTree

that lowers the time to calculate field-values by at least an order of magnitude. As a

result, the limit of model complexity is raised for interactive modelling applications.

In some domains, certain models need more than one designer or engineer to be

created. Often, several iterations of a model are shared between multiple participants

iv

until it is finalized. Because the description of a BlobTree is very compact, it can be

synchronized efficiently in a collaborative modelling environment. This work presents

CollabBlob, an approach to collaborative modelling based on the BlobTree. Collab-

Blob is lock-free, and provides interactive feedback for all the participants, which

helps with a fast iteration in the modelling process.

In order to extend the range of models that can be created within CollabBlob,

two areas of BlobTree modelling are improved in the context of this thesis. CAD

modelling often makes use of a feature called filleting to add additional surface fea-

tures, which could be caused by a manufacturing process. Filleting in general creates

smooth transitions between surfaces, something that the BlobTree can do with less

mathematical complexity than approaches needed in Constructive Solid Geometry

(CSG), in the case of fillets between primitives. However, little research has been

done on the construction of fillets between surfaces of a single BlobTree primitive.

This work outlines Angle-Based Filleting and the Surface Fillet Curve, two solutions

to improve the specification of fillets in the BlobTree.

Sketch-based implicit modelling generates 3D shapes from 2D sketches by sam-

pling the drawn shape and using the samples to create the implicit field via variational

interpolation. Additional samples inside and outside the sketched shape are needed to

generate a field compatible with BlobTree modelling and state of the art approaches

use offset curves of the sketch to generate these samples. The approach presented in

this work reduces the number of sample points, thus accelerating the interpolation

time and improving the resulting implicit field.

v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables x

List of Figures xi

Acknowledgements xvii

Dedication xviii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.2.1 Accelerated BlobTree Traversal 3

1.2.2 Collaborative BlobTree Modelling Environment 4

1.2.3 Extended BlobTree Modelling 4

1.3 Combining the Contributions . 6

1.4 Outline . 7

2 The BlobTree 8

2.1 Constructive Solid Geometry (CSG) 8

2.2 Skeletal Implicit Surfaces . 9

2.3 Sketching using the BlobTree . 12

2.4 Blend Operators . 14

2.5 WarpCurves . 16

2.5.1 Variational Warping . 17

vi

2.5.2 WarpCurve User Interface . 18

2.5.3 Creating the WarpCurve Deformation Field 20

2.5.4 Bound the Displacement Field using a Convolution Surface . . 21

2.6 Gradient Based Blend . 23

2.7 Rendering the BlobTree . 26

2.8 Summary . 27

3 Efficient Data-Parallel Tree-Traversal for BlobTrees 28

3.1 Introduction . 28

3.1.1 Motivation . 28

3.1.2 The BlobTree . 29

3.1.3 Contributions . 30

3.1.4 Outline . 31

3.2 Related Work . 31

3.2.1 The SPMD programming model 31

3.2.2 Accelerating BlobTree rendering 32

3.2.3 Accelerating CSG rendering 33

3.3 Methods to accelerate CSG tree traversal 34

3.4 Techniques applicable to the BlobTree 35

3.4.1 Hardware Considerations . 36

3.4.2 Linearizing a BlobTree . 37

3.4.3 Eliminating the need for a traversal stack 40

3.4.4 Optimize the tree to require less temporary storage 42

3.5 Incorporating Non-Affine Transformations 45

3.6 Implementation . 48

3.7 Results . 50

3.7.1 Synthetic scene . 50

3.7.2 Models . 59

3.7.3 Non-Affine Transformations 62

3.8 Conclusion and Future Work . 63

4 CollabBlob: A Data-Efficient Collaborative Modelling Method us-

ing Websockets and the BlobTree for Over-the-Air Networks 65

4.1 Introduction . 66

4.1.1 Motivation . 66

vii

4.1.2 Collaborative Modelling . 67

4.1.3 Contributions . 67

4.1.4 Outline . 68

4.2 Related work . 68

4.3 Implementation . 72

4.3.1 Network Message Layers . 72

4.4 Synchronization . 76

4.5 A Collaborative User Interface . 77

4.5.1 Transformation Gizmos . 79

4.6 Access Control . 82

4.7 Results . 84

4.7.1 Construction History . 86

4.8 Conclusion . 88

4.9 Future Work . 89

5 Angle-Based Filleting : Adding CSG-like control to BlobTree prim-

itives 91

5.1 Introduction . 91

5.1.1 Motivation . 91

5.1.2 Approaches to Filleting . 92

5.1.3 Contributions . 93

5.1.4 Outline . 93

5.2 Related Work . 94

5.3 Mathematical Problems . 97

5.4 Fixed Radius Filleting along one Edge 99

5.4.1 Cylinder Circular Edge . 102

5.4.2 Cone Circular Edge . 103

5.4.3 Cone Tip . 105

5.5 Creating a Surface Fillet Curve . 106

5.5.1 Calculating a Surface Fillet Curve Frame 107

5.5.2 Calculating the Surface Fillet Curve Object Field 110

5.5.3 Combining the Surface Fillet Curve Primitive with the Base

Model . 113

5.6 Variable Radius Filleting along one Edge 113

5.7 Interactive User-Interface to Specify a Fillet 115

viii

5.8 Example Models . 117

5.8.1 Tap Model . 117

5.8.2 Car Bonnet Model . 119

5.9 Conclusion . 120

5.10 Future Work . 120

5.10.1 Filleting a Corner . 121

6 Improvements in BlobTree Sketch-based Modelling 123

6.1 Introduction . 123

6.1.1 Motivation . 123

6.1.2 Implicit Sketch-based Modelling 124

6.1.3 Contributions . 124

6.1.4 Outline . 124

6.2 Problem Statement . 124

6.3 Finding the Exterior Control Points 126

6.4 Finding the Interior Control Points 127

6.5 Finding the Interior Control Point Weights 129

6.6 Results . 130

6.7 Conclusion . 134

7 Conclusion 136

7.1 Accelerated BlobTree Modelling . 136

7.2 Collaborative BlobTree Modelling . 137

7.3 Extended BlobTree Modelling . 138

7.3.1 Filleting . 138

7.3.2 Sketching . 139

Bibliography 140

A Performance Evaluation of Traversal Algorithm 152

A.1 Average Traversal Time . 153

A.2 Traversal Memory Usage . 154

B Skeleton Distance Functions 156

B.1 Point Skeleton . 156

B.2 Line Skeleton . 156

B.3 Cube Skeleton . 157

ix

B.4 Circle Skeleton . 157

B.5 Disc Skeleton . 157

B.6 Cylinder Skeleton . 158

B.7 Cone Skeleton . 158

C Blobtree Operations 159

C.1 Union . 159

C.2 Intersection . 159

C.3 Difference . 160

C.4 Summation Blend . 160

C.5 Ricci Blend . 160

D Contributions of Other Researchers 161

D.1 Efficient Data-Parallel Tree-Traversal for BlobTrees 161

D.2 CollabBlob: A Data-Efficient Collaborative Modelling Method using

Websockets and the BlobTree for Over-the Air Networks 162

D.3 Angle-Based Filleting : Adding CSG-like control to BlobTree primitives 162

D.4 Improvements in BlobTree Sketch-based Modelling 162

x

List of Tables

Table 3.1 The performance numbers in µs, stating the average time for a

single field-value calculation in µs for the test cases for BlobTrees

that include various numbers of warp-curves. 63

Table A.1 Legend of the abbreviations used in the following performance

and memory related tables . 152

Table A.2 The performance numbers for all Top-Down traversal variants,

applied to the 3 distinct artificial tree cases. 153

Table A.3 The performance numbers for all Bottom-Up traversal variants,

applied to the 3 distinct artificial tree cases. 153

Table A.4 The memory usage for the Top-Down traversal variants, applied

to the 3 distinct artificial tree cases. 154

Table A.5 The memory usage for the Bottom-Up traversal variants, applied

to the 3 distinct artificial tree cases. 155

xi

List of Figures

Figure 2.1 The most common used BlobTree skeletal primitives. (Image

from [Grasberger, 2009]) . 10

Figure 2.2 The commonly used Wyvill field function. The black line marks

the iso value c = 27/64 to place the surface at d = 0.5. 11

Figure 2.3 The summation blend between two spheres using the Wyvill

Field function. (Image from [Grasberger, 2009]) 14

Figure 2.4 An example of a BlobTree with all the transformation nodes

shown. Image courtesy of Erwin de Groot [de Groot, 2008] . . . 15

Figure 2.5 Propagation of the warp vector to neighbouring control points. 19

Figure 2.6 Off curve constraints (blue for top/bottom, green for left/right)

are of varying distance to the displacement curve (original in

grey, displaced in red). 21

Figure 2.7 The relation between displaced line (orange), the convolution

primitive (green) and the field created by the variational inter-

polation (black dashed line and + and − regions). 22

Figure 2.8 Comparison between max union (left) and clean union (right) in

the I2 space. Images from [Gourmel et al., 2013]. 24

(a) max union . 24

(b) clean union . 24

Figure 2.9 The implicit extrusion field I2 on the left and the corresponding

blend between two implicit fields f1, f2 in R3 on the right. Image

from [Barthe et al., 2002]. 24

Figure 2.10Comparison between max union (left) and clean union (right).

Top row: the context of the model (the same on both sides) and

outside field (different) Bottom row: shows the field inside the

surface. Surface boundary marked red. 25

(c) max union . 25

(d) clean union . 25

xii

Figure 3.1 A simple example of a BlobTree building a mug. − describes a

difference operator and + a blend. 30

Figure 3.2 The order of the tree nodes in memory. The numbers describe

the order of memory reads when the full tree is traversed. Top

arrows: reads going deeper in the tree; numbers are closer to

arrow head. Bottom arrows: reads going back up in the tree;

numbers closer to arrow base. 38

Figure 3.3 The order of the tree nodes in memory. The numbers describe

the order of memory reads when the tree is traversed using a

threaded tree approach. Top arrows: reads going deeper in the

tree; numbers are closer to arrow head. Bottom arrows: reads

going back up in the tree; numbers closer to arrow base. 41

Figure 3.4 The order of how the tree nodes are stored in memory. The

numbers describe the order of memory reads when the full tree

is traversed. The only reads are going bottom up in the tree.

It results in: less memory reads, memory is only read in one

direction and only once. 42

Figure 3.5 The three different extreme structures for a tree with n leaf nodes. 43

(a) Left-Heavy . 43

(b) Balanced . 43

(c) Right-Heavy . 43

Figure 3.6 Conversion to left-heavy tree. Nodes N and F have to be com-

patible for allowing the rotation. Dashed lines represent either

subtrees or nodes with operator types supporting the pivot. . . 45

(a) Before Rotation . 45

(b) After step 1 . 45

(c) After step 2 . 45

(d) After step 3 . 45

Figure 3.7 A BlobTree including non-affine transformations shown in blue.

Stippled lines show the connections for each node to its parent

non-affine transformations. Stippling with line-dots connect the

non-affine transformations . 46

Figure 3.8 Separation of tree from Figure 3.7 into Transformation Tree and

the BlobTree nodes, including their corresponding memory lay-

out and access patterns. 48

xiii

Figure 3.9 A sample test scene with several cylinders chained together. . . 51

Figure 3.10The running times for the computer-generated test scenes, tra-

versed with the top down approach. Note that the “Left” and

“Right” cases overlap. 51

Figure 3.11Number of temporary storage array entries for the three tree

types and different numbers of leaf nodes. Note that the “Left”

and “Right” cases overlap. 52

Figure 3.12The running times for the bottom-up traversal algorithm, com-

pared to the best top-down case as a reference. 53

Figure 3.13The memory usage for the bottom-up traversal algorithm, com-

pared to the best top-down case. “Right Bottom-Up” and “Bal-

anced Top-Down” overlap. 54

Figure 3.14The running times for the bottom-up traversal algorithm, com-

pared to the best top-down case, as run on an AMD Radeon HD

5870 GPU. 55

Figure 3.15A comparison of the best case running times. 57

Figure 3.16A comparison of the worst case running times. 57

Figure 3.17A comparison of the best case memory usage. Adding an ac-

celeration structure does not change the memory usage for both

traversal algorithms . 58

Figure 3.18A comparison of the worst case memory usage. The two Top-

Down cases and the unaccelerated Bottom-Up case have the same

memory usage . 58

Figure 3.19Three of the four real world models. 60

(a) Donkey (7 leaf nodes) . 60

(b) Monkey (21 leaf nodes) . 60

(c) Robot (37 leaf nodes) . 60

(d) Engine Block (149 leaf nodes) 60

Figure 3.20Average run times of a single field-value calculation using the

algorithm variations for the four models, in µs. 61

Figure 3.21Intermediate storage entries for the four models. 61

Figure 3.22The warp-curve test scene. Notice the top-most three displaced

points in red. 62

Figure 4.1 An example modelling session between two users. 65

xiv

Figure 4.2 An example modelling session between three users. Both, the

iPad (left) and the desktop (right) application show the users,

and the modification about to happen (initiated on the desktop). 75

(a) iPad . 75

(b) OSX . 75

Figure 4.3 The translation gizmo used, providing interactive feedback. . . 80

Figure 4.4 The scale gizmo used, providing interactive feedback. 81

Figure 4.5 The rotation gizmo used, providing interactive feedback. 82

Figure 4.6 Comparison between the number of actions transmitted in the

BlobTree case and the Mesh case. 84

Figure 4.7 Comparison between the total size of memory transmitted in the

BlobTree case and the Mesh case. The y axis is in log scale. . . 84

Figure 4.8 The total time spent transmitting the data. The y axis is in log

scale. 85

Figure 4.9 The average time spent transmitting a single action. The y axis

is in log scale. 86

Figure 4.10The four models used for the performance comparisons. 87

(a) Coffeemaker (41 nodes) . 87

(b) Monkey (64 nodes) . 87

(c) Robot (119 nodes) . 87

(d) Airplane (810 nodes) . 87

Figure 5.1 Interpolation between a straight edge along a cylinder top cap

(right) and its filleted version (left). 92

Figure 5.2 Bounded Blending showing how a blend can transition into a

straight edge. (Image from [Pasko et al., 2005]). 95

Figure 5.3 Cross-section of the discontinuous inside field (red) to calculate

a straight edge (Image from [Grasberger et al., 2010]). 96

Figure 5.4 The straight edge shown during the interpolation (Image from

[Grasberger et al., 2010]). 97

Figure 5.5 Comparison of a fillet defined using a rolling ball and the open-

ing angles as defined in [Gourmel et al., 2013]. Radius, opening

angle and fillet shape are colour coordinated. 99

(a) Fillet defined using ball radius 99

(b) Fillet defined using opening angle 99

xv

Figure 5.6 Quarter of cylinder’s field cross-section. Everything apart from

the edge case is faded, to highlight the area of interest. Red

illustrates the cylinder surface. 102

Figure 5.7 Cone field cross-section. Everything apart from the edge case is

faded to highlight the area of interest. Red illustrates the surface. 103

Figure 5.8 Transforming the euclidean coordinates for a point p into I2 at

the cone circular edge, based on the polar coordinates p = (l, α). 104

Figure 5.9 Transforming the euclidean coordinates for a point p into I2 at a

cone tip, based on the polar coordinates p = (l, α). 105

Figure 5.10The coordinate system within a Surface Fillet Curve frame (left)

and I2 (right). 107

Figure 5.11Field of a Surface Fillet Curve frame, shown with the straight

edge tip. 109

Figure 5.12Field of a Surface Fillet Curve frame, shown with the opening

angle fully open. 109

Figure 5.13Placements of the off-curve constants. 111

Figure 5.14Comparison of different fillets along a Surface Fillet Curve and

the corresponding slices through the field: top row: opening

angle of 45, middle row: opening angle of 22.5 and bottom row:

opening angle of 0. 112

Figure 5.15The different origins o1 & o2 of different filleting radii shown in

2D. 114

Figure 5.16Cylinder showing a transition between a sharp edge and a filleted

version with a larger opening angle/ radius. 115

Figure 5.17Cylinder showing the widget to control the opening angle along

the edge. 116

Figure 5.18The filleting gizmo used, providing interactive feedback. 116

Figure 5.19The water tap, with three sections of the image showing distinct

fillets implemented. 118

Figure 5.20The bonnet, demonstrating the use of straight-edge warping. . . 119

Figure 5.21Illustration how a corner merging three different radii could be

constructed. 122

Figure 6.1 Exterior (blue) and interior (green) sample points, displaced by

the control polygon normals of equal length. 126

xvi

Figure 6.2 Exterior samples (blue) that are too close (top of polygon) and

properly spaced samples (bottom of polygon). 126

Figure 6.3 Control Polygon and Convex Decomposition. 128

Figure 6.4 The final sample points used to build the thin-plate spline. The

original points are black, and the outside displaced ones are blue

and the inside sample points are red. 128

Figure 6.5 The implicit field created using a thin plate spline multiplied by

a cosine function. 129

Figure 6.6 Monkey model. 130

Figure 6.7 The convex decomposition of the hand, including the sample

control points (black), interior control points (red) and exterior

control points (blue). 131

Figure 6.8 The sampled control points for the hand shape. 132

(a) Centroid control points . 132

(b) The field formed by the centroid control points. 132

(c) Offset control points . 132

(d) The field formed by offsetting the control points. 132

Figure 6.9 Comparison of the cross-like shape created using offset curves or

this centroid based method. See the difference in the shape on

the right. 133

(a) Centroid-based field . 133

(b) The resulting inflated model. 133

(c) Offset-based field . 133

(d) The resulting inflated model. 133

xvii

ACKNOWLEDGEMENTS

I would like to thank:

Brian Wyvill, for all his support, guidance and encouragement for me to research

what I was interested in.

GRAND and NSERC, for funding my research.

my parents, Elfriede and Herbert, for accepting my decision to pursue a PhD.

my wife, Marlies, for tolerating my moods, supporting me and proofreading this

thesis.

everyone else who helped me further my research, for all our fruitful discus-

sions. You know who you are.

xviii

DEDICATION

To my parents, for all their support.

Chapter 1

Introduction

1.1 Motivation

The BlobTree by [Wyvill et al., 1999] is a hierarchical approach to solid modelling

based on Skeletal Implicit surfaces. Complex models can be created by combining

Skeletal Implicit primitives or sketched shapes using a set of operators. These op-

erators include all Boolean operations found in Constructive Solid Geometry (CSG)

[Sabin, 1968] and more advanced and controllable blending operators to create smooth

transitions between primitives. While Skeletal Implicit primitives provide a user with

standard shapes to create a complex model, the incorporation of sketch-based mod-

elling extends the modelling possibilities significantly. Consequently, it is very easy

to prototype shapes of arbitrary topology. In addition to the modelling capabilities,

a very important property of the BlobTree is that its description is very compact,

resulting in a small memory footprint of a model, even when there are a lot of details.

The BlobTree needs very little memory, and changes to the model can be described

incrementally. For these reasons, the BlobTree has been used in research for many

years, but due to some disadvantages the industry has not widely adopted it in their

products.

Solid modelling based on CSG, on the other hand, is the standard methodology

in the industry, despite some of the disadvantages resulting from its Boolean nature.

Standard CSG only provides a limited set of operators to combine primitives, all

of which are also present within the BlobTree-environment. Filleting, the process

of “rounding” an edge, has to be realized using, for example, medial axis surfaces

[Whited and Rossignac, 2009]. The BlobTree, in comparison, provides this function-

2

ality based on its continuous field-values and, as a result, additional surfaces are not

necessary to create smooth transitions between objects. Therefore, the BlobTree is

capable of recreating a standard CSG-tree using Boolean operators, whereas a CSG-

tree cannot build the same model as a BlobTree including blend operators. Some

BlobTree models can be built in CSG, using additional filleting surfaces, but at addi-

tional computation cost. Consequently, CSG can be considered inferior to BlobTrees

in terms of fully integrated modelling capabilities, but it can be visualized faster than

BlobTrees .

The work documented in this thesis is motivated by the desire to improve BlobTree

modelling and to reduce the number of disadvantages compared to CSG which prevent

its usage in state-of-the-art applications. Three properties of BlobTree modelling are

addressed, which can be divided into three areas.

Firstly, the BlobTree is known to be slower at rendering (using polygonization

and ray-tracing) than traditional modelling methods. With the improvement in com-

puting power in recent years, the BlobTree can now be rendered at interactive frame

rates, depending on the overall scene complexity (e.g. [Shirazian et al., 2012]). So

far, the BlobTree has not really made use of the raw computing power GPUs provide,

due to the complexity of the algorithms and the underlying structure of the BlobTree.

In order to provide an OpenCL-based, interactive working experience for the user,

even with models of high complexity, the algorithms traversing the BlobTree and

calculating field-values have to be adapted to a GPU’s unique hardware constraints.

Secondly, the underlying mathematical description of Skeletal Implicit Surfaces

can make it harder for users to build the object they want. While user interfaces that

hide the math from the usere have been created (e.g. [Schmidt et al., 2005a]), the ad-

vantage that the BlobTree is a very compact description of a model [Bloomenthal, 1997]

has not yet been utilized fully. Collaborative user interfaces require instant transmis-

sion of model changes and interactive user feedback, something a compact model

description can provide.

Thirdly, the BlobTree is known to create “blobby” shapes due to a lack of pre-

cise modelling tools. For example, a lot of different methods for blending exist,

but most of them are hard to control and create undesired surface changes, e.g.

blending at distance. These problems were solved when blend methods got revis-

ited by [Bernhardt et al., 2010] and improved by [Gourmel et al., 2013]. Blending,

however, only solves the first half, smooth transition between objects, of the so

called filleting problem. The second half of this problem relates to smooth tran-

3

sitions between surfaces within an object. A first attempt at solving this problem

by [Grasberger et al., 2010] does not create fillets of the required continuity. Sketch-

based modelling on the other hand extends the BlobTree with non-standard shapes

that are based on hand drawings. It is important for precise modelling that the im-

plicit field of such shapes is well-formed, something achieved by post-processing of

the drawn shape by [Schmidt and Wyvill, 2005b].

This work improves each of the aforementioned issues in BlobTree modelling. The

next few sections outline the contributions of this thesis and show how BlobTree

modelling can be accelerated, how it can be used in a collaborative modelling envi-

ronment(CollabBlob) and how the BlobTree can be extended to give the user better

tools to create models.

1.2 Contributions

1.2.1 Accelerated BlobTree Traversal

Most of the previous work on accelerating BlobTree visualization focussed on the op-

timization of the rendering and/or mesh generation algorithm. Methods to accelerate

those algorithms are based on the reduction of the number of BlobTree traversals that

calculate the field values, normals and colours at certain points in space.

Little work, however, has been done on speeding up a single tree traversal to

calculate such a field-value. There has been research on accelerating the tree traver-

sal of Constructive Solid Geometry (CSG) trees (e.g. [Hable and Rossignac, 2005],

[Romeiro et al., 2006] and [Hable and Rossignac, 2007]), but, only parts of these ap-

proaches can be used when traversing BlobTrees . This work shows which parts of

the CSG traversal improvements can be applied to the BlobTree and how to make

BlobTree traversal more efficient.

On modern hardware, memory bandwidth and lack of locality are often the limit-

ing factors of algorithm performance. By changing the storage layout of the BlobTree,

memory transfers during the tree traversal can be reduced and the traversal perfor-

mance improved.

This work enables the execution of many BlobTree traversals in parallel on modern

GPUs and CPUs. The traversal algorithm presented in this thesis makes use of the

floating point vector architecture during the field-value calculation, so no processing

power is wasted. While OpenCL is not available on current mobile devices, the

4

optimized traversal algorithm still shows significant performance improvements so

that BlobTree modelling is possible on modern mobile devices.

1.2.2 Collaborative BlobTree Modelling Environment

Since the BlobTree is a very compact representation of a model, even when the actual

model is fairly complex, it lends itself to be used in an application where data needs to

be transmitted. Even though modern networks are increasing in speed, having a small

representation of a complex model can be an advantage when trying to synchronize

this model between devices connected via wireless networks. An application can

utilize the small memory footprint of the BlobTree to synchronize models between

several users in a collaborative modelling environment. As a result, many users can

work on a single model at the same time, and there is no need to lock parts of

the model during editing. Moreover, every participant involved receives immediate

feedback on what every other user is attempting to do, which is rendered interactively

by making use of the accelerated BlobTree traversal described above.

CollabBlob makes use of WebSockets [W3C, 2013] to transmit the data between

the participants and shows that a simple, time-stamp-based mechanism is sufficient

to synchronize the work of many users on one single model.

The approach presented separates the communication between the devices in-

volved in several layers of varying importance. Communication modifying the model

is separated from communication providing interactive feedback on the actions of

other users. Depending on the desired granularity, a user can even choose to use

the stored communication messages, in order to re-play or recreate the model at any

time. Due to the minimal memory usage of the BlobTree, storing the whole mod-

elling history needs a lot less memory than a comparable approach transmitting mesh

changes.

1.2.3 Extended BlobTree Modelling

Once many people can work together, the complexity of the resulting models increases.

In order to provide the users with greater control over the resulting shapes, two areas

of BlobTree modelling are extended by this work.

5

Filleting

The creation of controllable smooth transitions between surfaces (sometimes also re-

ferred to as the rounding of a corner) is known as filleting. While some modelling

packages refer to the result of a filleting operation as bevel or chamfer, fillet is the more

general term and used throughout this work. Extensive work has been done on fillet-

ing in the context of traditional CSG modelling (e.g. [Middleditch and Sears, 1985],

[Adzhiev et al., 1999] and [Pasko et al., 2005]), where creating smooth transitions be-

tween surfaces of a model is desired for example for artistic reasons or to mimic the

result of a manufacturing process. In many cases a fillet is built by inserting a separate

surface, often being of high polynomial order.

Unlike more conventional solid modelling methods, creating fillets in the Blob-

Tree does not require the placement of additional objects or surfaces. Fillets be-

tween objects resulting from blend operators that provide a lot of control to the

user on the resulting shape has been heavily researched by [Barthe et al., 2004],

[Bernhardt et al., 2010] and [Gourmel et al., 2013]. On the other hand, little work

has been done on fillets between surfaces within one BlobTree primitive.

This thesis presents Angle-Based Filleting , a solution to this problem based on

an existing controllable blend operator by [Gourmel et al., 2013] and that allows the

creation of fillets within BlobTree primitives. These fillets extend the modelling ca-

pabilities so that a designer has more control over the final object.

Warping a BlobTree, as presented by [Sugihara et al., 2010], has been a large im-

provement in the context of sketch-based modelling. This work proposes the Surface

Fillet Curve approach, an extension to the BlobTree that makes it possible to create

arbitrary fillets on any BlobTree surface by drawing on top of the model.

Sketching

Sketch-based modelling is a more recent addition to BlobTree modelling and enables

users to quickly prototype shapes. The main premise of sketch-based modelling in the

context of the BlobTree is that drawn shapes need to be sampled at discreet points.

The the samples are then used as control points of a variational interpolation method.

For the implicit field to be generated properly, additional control point samples need

to be generated inside and outside the drawn shapes. While previous approaches (e.g

[Schmidt and Wyvill, 2005b]) used offset curves for these additional control points,

this new improved method reduces the number of points to interpolate by altering

6

the placement of the interior sample points. This approach also positively affects the

generated implicit field because there are no regions of field compression where the

change in the field values doesn’t correlate with the change in distance to the sketched

shape.

1.3 Combining the Contributions

To summarize, the four contributions of this thesis are:

• A more efficient BlobTree traversal algorithm (see Chapter 3)

• A method to use the BlobTree in a collaborative modelling environment (Chap-

ter 4)

• A method to specify fillets on BlobTree primitives (see Chapter 5) and

• An improvement to the algorithm generating implicit field from drawn shapes

(Chapter 6).

By combining these main contributions a BlobTree modelling application that

runs on both MacOS and iOS was created. Mobile devices running iOS have limited

processing power compared to laptops or desktop devices that can offload intensive

work to the CPU. However, the efficient traversal algorithm also improves running

times on mobile device CPUs. This makes it possible to include mobile devices into

the collaborative BlobTree modelling system.

In addition, being able to add surface detail through filleting without actually

increasing the BlobTree complexity of a model, improves the performance on mobile

devices. Without the capabilities to control filleting, fillets would have to be created

by a number of additional primitives that are added and/or subtracted from the

BlobTree.

Finally, sketch based modelling lends itself to usage on touch screen devices. The

improved method to generate BlobTrees from sketched shapes needs fewer control

points to generate a better implicit field. While this improves visualization times on

mobile devices, every model benefits from the improved implicit field.

7

1.4 Outline

This work is structured as follows: In Chapter 2 the state of the art in BlobTree

modelling, including recent developments, such as better blend operators and the

inclusion of sketch-based modelling approaches, is discussed. In Chapter 3, a unique

BlobTree traversal algorithm that provides significant speed-ups compared to previous

approaches is presented. Chapter 4 discusses a collaborative modelling environment

based on the BlobTree. The extension of the BlobTree to have more control on fillets is

shown in Chapter 5, while the improvements in sketch-based modelling are described

in Chapter 6. An overall conclusion of this work is given in Chapter 7.

8

Chapter 2

The BlobTree

This chapter gives an in-depth look at the modelling paradigm known as the BlobTree.

As a hierarchical solid modelling technique it is very similar to Constructive Solid

Geometry (CSG) which is briefly introduced below. The BlobTree is based on Skeletal

Implicit Surfaces and Sketched Objects, which can be combined using a large set of

Blend Operators. Additional sketch-based methods for Warping are also part of

the BlobTree’s modelling features. The models created using the BlobTree can be

visualized using mesh-generation or ray-tracing techniques.

2.1 Constructive Solid Geometry (CSG)

Constructive Solid Geometry (CSG), as first described by [Sabin, 1968] and later

applied to implicit modelling by [Ricci, 1973], is often considered a solid modelling

technique that the BlobTree by [Wyvill et al., 1999] is related to, while in reality

the BlobTree is a more general and powerful approach. In CSG, the basic building

blocks are simple primitive objects that partition space into inside and outside re-

gions, with the surface lying at their borders. Because of this binary classification of

surfaces, the evaluation of CSG models can be reduced to Boolean true/false (e.g.

[Rossignac, 1999]). More complex models are created in CSG by combining these

simple primitives (e.g. sphere, cube, cylinder, etc.) using the Boolean operators

(notation as per [Rossignac, 2012]) :

• union, using Boolean or (“+”)

• intersection, using Boolean and (“•”)

9

• difference, using a combination of Boolean and and the complement (“•!”).

This results in a solid model tree structure, with the primitives being the leaves of

the tree, and the operators the interior nodes. CSG models can be visualized with a

variety of approaches, of which ray-tracing and mesh-generation (polygonization) are

the most common. Other approaches like [Hable and Rossignac, 2005] rely on depth-

peeling or use Graphics Processing Units (GPUs) (e.g. [Hanniel and Haller, 2011]

and [Romeiro et al., 2006]) to improve visualization times on modern hardware.

Despite appearing to be a very simple and restricted modelling environment, CSG

has become a de-facto standard for solid modelling in the industry and much work has

been done to accelerate visualization (e.g. [Rossignac, 1999], [Hable and Rossignac, 2007]

and [Rossignac, 2012]) and extend the resulting surfaces, such as [Elber and Cohen, 1997],

[Elber, 2005] and [Whited and Rossignac, 2009].

2.2 Skeletal Implicit Surfaces

BlobTree modelling from a user’s perspective is very close to CSG in that models are

built by combining primitives using operators. While both approaches fall into the

category of solid modelling, the basic building blocks of the BlobTree are based on

continuous field-values as opposed to Booleans in CSG. This fundamental difference

allows the BlobTree to use additional combination operators, resulting in a wider va-

riety of transitions between surfaces, some of which are emulated in CSG using math-

ematically complex surface descriptions as shown in [Whited and Rossignac, 2009].

Compared to the binary space classification, the basic building block of the Blob-

Trees parametric modelling approach are so called Skeletal Implicit Surfaces described

in [Bloomenthal, 1997]. These Skeletal Implicit Surfaces can be found in a variety

of available modelling packages, such as BlobTree.net [de Groot, 2008] or ShapeShop

[Schmidt et al., 2005b], which are often used to prototype shapes of arbitrary topol-

ogy (see [Bloomenthal, 1997]). In general these works conclude that the use of skeletal

primitives can lead to a simple and intuitive user modelling methodology.

The basic building block of a skeletal primitive is a skeleton S. Usually the

skeleton itself is a very simple shape such as a point or a line, but also more complex

skeletons can be used as described by [Grasberger et al., 2010]. Figure 2.1 shows the

most common used BlobTree primitives.

To create a skeletal primitive, the distance-field has to be computed as described

10

Figure 2.1: The most common used BlobTree skeletal primitives. (Image from
[Grasberger, 2009])

by [Barbier and Galin, 2004]. This is done by calculating the distance to the skeleton

for each point in the volume encapsulating the final shape. The distance function is

defined as dS : R3 → R. As a result, the distance field is a volume of scalar values,

which is not bounded as a distance can be infinitely large. In most cases, the euclidean

distance to the skeleton is used, creating a smooth distance field surrounding every

skeleton. However some approaches (partly) rely on other distance metrics to create

non-continuous distance fields in order to introduce sharp surface features. Having

a non-continuous distance field can, however, result in significant problems when

combining objects, as will be discussed in Section 2.4.

In the next step, the distance field dS has to be modified by a filter fall-off function

(often called field function) (see [Shirley and Marschner, 2009] for an in-depth discus-

sion) to bound the field to a finite range. This field function is defined as g : R→ R,

and the final skeletal implicit primitive is formed by applying this function to the

given distance ds. Usually the function maps the distances from the range [0, r] to

[1, 0], where points having field values of 1 are on the skeleton and points having field

values of 0 have distances d ≥ r. In most cases r is chosen to be 1.

In general, the implicit function of one skeletal primitive is:

f(p) = g(dS(p))

The Wyvill field function [Shirley and Marschner, 2009], was developed as a simpli-

11

fication of the original Soft Objects field function [Wyvill et al., 1986], which is more

complex to compute and not C2 continuous. It maps a distance d to the field value

g(d) using the following formula

g(d) =

(
1− d2

r2

)3

(see Figure 2.2 for a plot of the function). In this formula, r is a constant value that

states the distance where the field value equals zero. The main advantage of this field

function is that it is C2 continuous. A discussion of different field functions appears

in [Shirley and Marschner, 2009].

0.2 0.4 0.6 0.8 1.0
d

0.2

0.4

0.6

0.8

1.0
g(d)

c

r

Figure 2.2: The commonly used Wyvill field function. The black line marks the iso
value c = 27/64 to place the surface at d = 0.5.

After applying the field function to the distance field the resulting field is called

the potential field. The surface is defined as the locus of points that have a field-value

equal to the chosen iso-value. By defining an iso-value c, it is possible to construct the

surface of the shape and classify the surrounding space into points inside (f(p) > c)

and outside (f(p) < c) the surface. The chosen iso-value depends on the exact form

of G(d), for example c = 0.5 ([Bloomenthal, 1997]). Since the Wyvill field-function is

not symmetrical (G(0.5) 6= 0.5), it can be an advantage to choose c = G−1(0.5) as the

iso-value c. With this chosen iso-value, the resulting surface lies at distance d = 0.5

to the skeleton, which helps with precise modelling.

A Skeletal Implicit Primitive is formed by the surface along the given iso-value

within the continuous implicit field. This differs from the Boolean inside and outside

regions that define CSG primitives. These field-values decrease with the distance to

12

the original skeleton, a property that is the main advantage over CSG. Blends between

surfaces can be created with little computational cost, compared to the expensive

solutions found in standard CSG which cause problems in some blend situations (e.g.

a blend of blend comes to mind as described in [Middleditch and Sears, 1985]). In

CSG, the Boolean inside/outside classification is done at every primitive and passed

to each operator, whereas the BlobTree uses the continuous field-values until the root

node of the tree is reached. Only then the surface is created based on the iso-value c.

2.3 Sketching using the BlobTree

Traditional sketch-based modelling differs from CSG based modelling, since it does

not combine primitives together using boolean logic. Moreover, it does not rely on

primitives at all, but requires the user to draw (parts of) the models. As a drawing

is only two dimensional, there are several ways to interpret the contour the user has

drawn:

• surface of revolution

• extrusion along a spline

• inflation

Some more advanced sketching approaches, such as demonstrated by iLoveSketch

[Bae et al., 2008], even allow for sketching in multiple planes, but only create curve

data.

Several approaches to sketch based modelling exist, some of them working with

meshes [Igarashi et al., 2007], others using implicit surfaces [O’Brien and Turk, 2002],

with both approaches having advantages and disadvantages. Mesh-based methods

usually have difficulties supporting blending between objects, which, however, is

very easy to do using implicit surfaces. A BlobTree-based sketching system, such

as ShapeShop [Schmidt and Wyvill, 2005a], on the other hand supports all opera-

tions of the BlobTree, including blending, warping and tapering, even precise contact

modelling (PCM), as shown by [Cani, 1993]. This is done by creating BlobTree com-

patible shapes, using the three interpretations of a curve outlines above, that can

be integrated as primitives into the exiting BlobTree. The interface of ShapeShop is

based on the same paradigms as Teddy [Igarashi et al., 2007], which allows the cre-

13

ation of complex sketched shapes that can be combined with others using the BlobTree

operations.

The workflow of such a sketch based modelling interface can be divided into the

following stages, which will be described below:

1. query hand drawn shape

2. compute flattened curve from drawings

3. generate field values for the resulting shape

4. save this 2D field and modify it to create a 3D volume.

Since the complete dataset of the drawn shape can be fuzzy due to input lag

and human motion, the data has to be filtered. Usually, it is sufficient to filter the

positions to reduce high frequency motion, but in some cases, it is desired to detect

overlapping curves or a beginning and end that are parallel to some extent. In the

latter case, only connecting the start and end point to create a closed shape, which is

necessary to properly create the field values, can lead to undesired shapes as shown

by [Schmidt et al., 2005a].

In the sketch-based modelling method by [Schmidt et al., 2005a], the shape sketched

by the user is sampled at a lower resolution, and an implicit approximation is created

from the sample points. This is done by fitting a thin-plate spline to the sampled

points using variational interpolation as demonstrated by [Turk and O’Brien, 1999a].

A continuous 2D scalar field is created from several samples (pi, vi), where pi describes

the position of the sample and vi its field-value.

If the sample points are on the control polygon the field-value is the set iso-value.

The thin-plate spline used to create the variational implicit field f(p) is defined in

terms of these points weighted by corresponding coefficients wi combined with a

polynomial P (p) = c1px + c2py + c3.

f(p) =
∑
i∈N

wi(‖p− pi‖)2ln(‖p− pi‖) + P (p) (2.1)

One advantage of creating the base shape using variational interpolation is that

the resulting implicit field is C2 continuous, a property needed when the shape is

involved in several blending operations [Barthe et al., 2004].

14

A thin plate spline, created by sampling the sketched shape and setting the vi

values to the desired iso-value, will return the iso-value for every interpolation re-

sult. In order to create a thin-plate spline which returns values in the range of

[0, 1] (and to avoid the interpolation-overshoot), additional points pi with their field-

values vi have to be computed, both inside and outside the base shape. Chapter 6

presents methods to determine the placement of these additional sample points. The

field-values vi assigned to these sample points are proportional to the displacement

along the normal. This can lead to problems in cases involving concave polygons,

since the displaced polygon could intersect at a polygon notch (a non-convex fea-

ture [Lien and Amato, 2006]), thus producing sample points with wrong polygon dis-

tances. In addition, it is possible that the inside displaced points actually lie outside

the original polygon. A solution to this problem is presented in Chapter 6.

2.4 Blend Operators

Figure 2.3: The summation blend between two spheres using the Wyvill Field func-
tion. (Image from [Grasberger, 2009])

In BlobTree modelling, primitives are combined to form complex models, similar

15

to CSG. Instead of doing Boolean operations on the binary space classification found

in CSG primitives, BlobTree operators use the continuous field-values f generated by

the Skeletal Implicit Primitives. This makes it possible to go beyond the classical

Boolean operators, and define general blend operators that e.g. create smooth transi-

tions between shapes, in addition to the operators found in CSG (as per [Ricci, 1973]):

• union: the max of a set of n field-values fn

• intersection: the min of a set of n field-values fn

• difference: defined as a binary operator min(f1, 1− f2).

The most common blend operator that creates a smooth transition between several

values is called the summation blend [Bloomenthal, 1997]

fR(p) =
∑
n∈N

fn(p)

where the resulting field-value at a point p in space fR(p) is the sum of the field-values

of all the objects involved.

Figure 2.4: An example of a BlobTree with all the transformation nodes shown. Image
courtesy of Erwin de Groot [de Groot, 2008]

16

Other complex operators, such as those described in [Barthe et al., 2003] and

[Barthe et al., 2004], or the blending functions that are based on R-functions (e.g.

[Shapiro, 1994] and [Pasko et al., 1995]), allow for a fine control on the resulting blend

shape. By using them, it is possible to create complex blended shapes similar to the

ones proposed for CSG in [Elber, 2005].

Figure 2.3 shows a blend between pairs of spheres with decreasing distance. It can

be seen, that the two objects start to bulge towards each other at a certain distance

before actually touching each other. This may not be desired and has been a problem

in BlobTree-modelling for a long time. It was solved by extending the simple sum to

a more complex and controllable operator that also takes the gradients of the objects

at each point into account when calculating the new field-value after the operator by

[Gourmel et al., 2013].

2.5 WarpCurves

WarpCurves [Sugihara et al., 2010] is the current state-of-the-art approach to Free-

form Deformation (FFD) [Sederberg and Parry, 1986], first introduced to the Blob-

Tree in [Sugihara et al., 2008]. Whereas traditional modelling can only influence the

object surfaces by placing primitives and combining these primitives with various op-

erators, FFD enables the user to alter any object without using the traditional CSG

approach. Instead, the user can “grab” a part of an object and modify it by hand.

In the first approach by [Sugihara et al., 2008], surface features are selected by

drawing a small line on them. The line is then used as a “hook” to move the surface

around. In order to comply with a very popular peeling [Igarashi et al., 2005] tech-

nique of deforming surfaces, the farther the curve is moved, the bigger the Region of

Influence (ROI) of the deformation is. Two underlying techniques are used to deform

the model, and the whole implicit field:

• coarse voxelization to interactively approximate the deformation of the model

• variational warping, a more complex deformation algorithm that properly de-

forms the whole implicit field.

In the voxelization approach, a coarse voxelgrid is placed around the object to

be deformed. When the deformation curve is drawn on the underlying shape, the

voxels closest to the curve are calculated. Once the curve is moved, the closest

17

voxels are deformed accordingly (and the deformation is propagated to neighbouring

voxels). As a result, a deformation vector for every voxel can be calculated, and used

to approximate the exact deformation when regenerating the mesh of the deformed

model. This, however, creates discontinuities in the resulting implicit field, as the field

is defined outside the surface boundaries. The voxel grid is only built as long as voxels

intersect the BlobTrees . Creating the proper deformation field is mathematically more

complex and takes longer to compute, thus the approach using the voxel grid allows

for faster interactive feedback, while the final deformation is calculated.

A proper deformation of the whole implicit field is very important for any tech-

nique to work properly within the BlobTree modelling system, as any deformed surface

can be used in blending situations later on. For these blending situations, a proper

continuous field is needed, as otherwise cracks and undefined surface behaviour could

occur. Variational warping is the basis for the WarpCurves approach, which largely

influenced the work on the Straight-Edge-Warp technique presented later and, for

this reason, it is explained in more detail below.

2.5.1 Variational Warping

Variational Warping is a technique based on variational implicit surfaces, as used in

the sketch based approach described in Section 2.3. For the sketching case, the outline

of the sketched shape is sampled, and additional sample points are taken outside and

inside the shape. Each of these points are assigned a weight based on their location:

• samples on the shape have weight corresponding to the iso-value v = c

• samples inside have weights 1 > v > c

• sample outside have weights 0 < v < c.

The samples are then used to fit a thin-plate spline to the sample points using varia-

tional interpolation [Turk and O’Brien, 1999a], which then creates a 2D field.

Variational warping extends the above R2 → R approach to work in R3 → R3,

where 3D points in space interpolate 3D displacement vectors. The formula to achieve

this approach as given by [Sugihara et al., 2008] is very similar to the 2D case pre-

sented earlier:

df (p) =
∑
i∈N

wi(‖p− pi‖)3 + P (p) (2.2)

18

where

P (p) = c1px + c2py + c3pz + c4 (2.3)

and wi, pi, p and ci ∈ R3.

In order to calculate the weights wi and the coefficient c1, c2, c3 and c4, the linear

system has to be solved at any known solution. These known solution are taken from

the grid points of the voxel grid, with their corresponding displacement vectors used

as vi. Once the coefficients of the polynomial and the general weights are calculated,

this function maps any p ∈ R3 to a corresponding displacement vector, with C2 con-

tinuity. This variational warp can be used as a unary node in the BlobTree hierarchy,

placed above any node, similar to any affine transformation. In order to evaluate

the variational warp operator at a point p, the displacement vector df (p) has to be

calculated. Then, p has to be modified by df (p) before the result of this modification

is then passed on to the child node of the variational warp for further calculations.

Since this node cannot be represented by a 4x4 matrix, it prevents an impor-

tant optimization method, which is normally used in many applications to accelerate

the evaluations. Affine invariant transformations, represented using 4x4 matrices on

arbitrary locations within the BlobTree, can be pushed to the leaf nodes in a prepro-

cessing step. As a result the aggregated transformations are available at every leaf

node, avoiding multiple matrix - matrix multiplications when the tree needs to be

traversed multiple times to calculate field-values. In the case of the variational warp,

this is not possible, but a potential solution to this problem is outlined in Section 3.5.

2.5.2 WarpCurve User Interface

The Free Form Deformation (FFD) approach described in [Sugihara et al., 2008] dif-

fers from the WarpCurves approach [Sugihara et al., 2010] in the interface provided

to the user to describe the deformation. In WarpCurves, the shape of the deforma-

tion is controlled by a curve drawn on the surface. This curve can have any shape

along the model’s surface, and provides a certain number of control points to the user.

Compared to only having one handle to control the deformation field, WarpCurves are

able to use any of these control points as deformation handles. Each of these control

points can be moved in different directions, with the restriction, that neighbouring

control points can be influenced depending on the length of the deformation added.

Using the Wyvill function to control influence fall-off [Shirley and Marschner, 2009]

19

Figure 2.5: Propagation of the warp vector to neighbouring control points.

g(d) = (1− d2

r2
)3, any non deformed control point of the curve ci, is altered by

vi =
v

|v|
∗ g
(
di
v

)
(2.4)

where di denotes the distance of the undeformed control point ci to the currently

modified control point along the warp curve, and v is the current deformation vector

at this control point.

Figure 2.5 shows how the displacement at the selected point (original position rep-

resented through grey widget, current position represented through coloured widget)

is propagated to the neighbouring control points (grey and yellow). The continuity

of the displacement is preserved, while still allowing every control point being moved

in different directions. It helps the user when only a smooth bump is desired, since

only one control point needs to be moved to achieve this effect. In case more control

is desired, several control points can be moved instead. This provides a very simple

and efficient way to customize deformations along complex surfaces.

20

2.5.3 Creating the WarpCurve Deformation Field

Given the difference in the UI control, WarpCurves construct the deformation field

differently than the previous voxel-grid based approach. It still uses the same varia-

tional implicit interpolation approach; however, the samples used to create the linear

system are calculated in a different way. There is already a set of points and dis-

placements defined using the curve control points, where the displaced control points

should map to the original points before the transformation. In addition, a region

surrounding these control points has to be defined, which bounds the displacement

field to 0. In order to do this, so called off-curve constraints oci have to be added

to the given displacements. The displacements at these oci values have to be set to

0 to ensure the amount of displacement decreases from the WarpCurve. However,

this doesn’t create a displacement field of local support, a property desired in the

BlobTree modelling context. An approach to convert the displacement field to enable

local support is described below in Section 2.5.4.

Every control point along the WarpCurve defines four additional off-curve con-

straints. Two of these control points are aligned with the normalized deformation

vector d̂i at each control point ci, while the other two are in line with the normal of

the plane at the point defined by the displacement vector and the tangent at cii.

oci =

{
ci ±4li ∗ d̂i
ci ±4li ∗ (d̂i × T (ci))

(2.5)

In this case,4li is the distance between the off curve constraint oci and the control

point ci, which according to [Sugihara et al., 2010] is defined as 2||di||, resulting in

the oci values being closer or farther away from the control curve depending on the

displaced distance, effectively controlling the ROI of the deformation this way, as

shown in Figure 2.6. Because the WarpCurve can be approximated by a 3D polyline,

T (ci) can be calculated using

T (ci) = ci+1 − ci−1 (2.6)

and normalizing the result.

21

Figure 2.6: Off curve constraints (blue for top/bottom, green for left/right) are of
varying distance to the displacement curve (original in grey, displaced in red).

2.5.4 Bound the Displacement Field using a Convolution Sur-

face

The variational implicit interpolation is not bounded outside the off curve constraints

but returns values other than zero instead (see areas marked − in Figure 2.7). The

black dashed shape in Figure 2.7 is created by the off curve constraints of the orange

displacement curve and illustrates where the displacement weights are set to zero.

22

+

+

+

+

+ +
+

-

-
-

-

- -

- -

Figure 2.7: The relation between displaced line (orange), the convolution primitive
(green) and the field created by the variational interpolation (black dashed line and
+ and − regions).

Within this shape, the displacement weights are “positive”, whereas in the region

outside the shape, the displacement weights are “negative”. Because the BlobTree is

based on bounded fields, the displacement field requires an additional modifer, which

has a maximum value of one at the deformed curve, and decreases to zero at a finite

distance. For this reason, a function that takes a sample point as an input and returns

values in the range [0, 1], depending on the distance to the deformed WarpCurve is

needed. A convolution surface, with the WarpCurve as a skeleton, avoids the problems

of other line based approaches that create bulges at joints [Bloomenthal, 1997]. The

green region in Figure 2.7 illustrates the region f > 0 of the convolution field generated

by the displacement curve.

In general, a convolution field is generated by convolving a skeleton S with a

kernel function h (as per [Sugihara et al., 2010]):

f(p) =

∫
S
h(p,S)dS (2.7)

WarpCurves uses the Cauchy kernel [McCormack and Sherstyuk, 1998] to create

the bounded field from the given polylines. Depending on the maximum displacement

length along the WarpCurve, the kernel width is adjusted in order to create a convo-

lution field of the right size, spanning the extents of the deformation. During these

calculations, the field-values at the polylines can be greater than one, a property not

desired in the BlobTree context. As a result, the maximum field value vone within

23

the convolution field is calculated, and the final convolution field is modified by the

Wyvill function:

fbounding(p) = g(d) = (1− f(p)2

v2one
)3 (2.8)

The full warp within the WarpCurve approach is then calculated as follows.

dwarp = fbounding(p) ∗ df (p) (2.9)

To calculate the field-value of the WarpCurve node’s child value, the new warped

position pwarp = p− dwarp is used.

2.6 Gradient Based Blend

One major improvement in BlobTree modelling, and the foundation of Chapter 5,

is the Gradient Based Blend (GBB) by [Gourmel et al., 2013] that includes a blend

operator for a “continuous” union. Moreover, GBB defines a continuous operator

function that smoothly interpolates between the standard summation blend

fR(p) =
∑
n∈N

fn(p)

and the union operator. The latter is parametrized using an opening angle α, which

defines the influence region of the blend. At an opening angle of α = 0, the blend

has a similar result as the standard summation blend and at an opening angle of

α = 45 the operator creates the clean union. Normally, the union operator is defined

as max(f1, f2), which produces a straight edge on the surface where the two objects

meet. This is the desired behaviour of a union operator at f = ciso, however the rest

of the field (f 6= ciso) is discontinuous, which is not desired.

Any binary implicit operator can be defined in the so-called implicit extrusion field

I2 [Barthe et al., 2001] (see Figure 2.9), where the fields of both operands are mapped

to the x, y axes of the graph. The origin of the graph is the region, where both of

the operands are bounded in 3D space. The surface of the operands are defined by

the iso value along the operands axis in I2. An operator in I2 defines a function

that calculates a resulting field-value for any pair (x, y) = (f1, f2). For example, the

standard summation blend connects the two iso-value points along each axis with a

quarter arc of a circle. By altering the function combining f1 and f2, new operators

24

(a) max union (b) clean union

Figure 2.8: Comparison between max union (left) and clean union (right) in the I2
space. Images from [Gourmel et al., 2013].

Figure 2.9: The implicit extrusion field I2 on the left and the corresponding blend
between two implicit fields f1, f2 in R3 on the right. Image from [Barthe et al., 2002].

can be designed. Figure 2.8 shows how the standard max(f1, f2) union differs from

the gbb(f1, f2) union when looked at in implicit space.

In general, implicit fields should be continuous in order to maintain the capability

to blend properly, even after repeated combination through operators. A discontin-

uous field, as produced by the standard union max (or the intersection min), can

produce undesired surface features when used in consecutive blend situations.

25

(c) max union (d) clean union

Figure 2.10: Comparison between max union (left) and clean union (right).
Top row: the context of the model (the same on both sides) and outside field (differ-
ent)
Bottom row: shows the field inside the surface. Surface boundary marked red.

This problem has been first addressed by [Barthe et al., 2004], which defines a

clean union operator based on complex numbers in I2. GBB simplifies this operator,

while improving continuity from C1 to C∞, and provides a framework for precise

user control to create blends of arbitrary “radius” between fR = f1 + f2 and union

fR = f1 ∨ f2.
Figure 2.10 compares the fields of the standard union operator with the clean

union presented, and also shows the context of the surrounding field. It can clearly

be seen how the field is different inside/outside the objects in both solutions. The

clean union closely resembles a standard blend on the inside and outside, with the

26

transition being continuous.

The full Gradient Based Blend operator uses an additional control curve to cus-

tomize the blending behaviour based on the angle of the gradients at both operands

(thus the “gradient based” blend name). This, together with an optional shape func-

tion, solves a wide variety of problems (blending at distance, blend control, deforma-

tion at contact) within one unique framework. For example, by carefully choosing the

the control curve (also called shape function s(ϕ)), blending of objects at distance can

be removed. The same control curve also removes the problem that a blend between

a large and a small object will not show the fine features of the small one.

2.7 Rendering the BlobTree

A BlobTree model can be visualized using two distinct approaches:

• ray-tracing [Bloomenthal, 1997] for high quality offline rendered images

• polygonization [Wyvill et al., 1986] for rendering the mode at interactive frame

rates.

Both approaches rely on calculating the field-values (“evaluation of the tree”) on

multiple points p in space. A desired point can be the corner of a cube used in one

of the common polygonization approaches or it can be the current point along a ray

when ray-marching is used to render an image.

Both algorithms require traversing the full BlobTree and evaluating the distance

functions of each skeletal primitive at p or the given range. Since all the Blob-

Tree primitives are bounded, points outside the primitive boundaries can be omitted

and BlobTrees can be rebuilt to avoid unnecessary field-value evaluations of nodes

within the tree, as partly demonstrated by de Groots Turbo Charged BlobTree in

[de Groot, 2008].

There is a long history of polygonization algorithms (the conversion of a BlobTree

to a mesh) accelerating and improving the method by [Wyvill et al., 1986]. Bloomen-

thal [Bloomenthal, 1994] published a popular implementation of this uniform grid

method , which overcomes ambiguities using tetrahedral decomposition. A more effi-

cient algorithm was published in [Akkouche and Galin, 2001]. Various adaptive meth-

ods have been proposed, e.g. [Bloomenthal, 1988] and [van Overveld and Wyvill, 2004],

27

which convert an implicit surface into a triangle-mesh that has an optimized, non-

uniform triangle distribution. ShapeShop [Schmidt et al., 2005a] (a sketch-based sys-

tem) stores cache nodes in the BlobTree [Schmidt et al., 2005b] to allow for interactive

feedback in his modelling system

In Ray-tracing the BlobTree is evaluated along a ray segment using interval anal-

ysis as described by [Mitchell, 1990] and [Snyder, 1992]. Alternatively, Lipschitz ap-

proaches, as demonstrated by [Kalra and Barr, 1989], can be used for faster ray-

tracing. RaySkip [de Groot and Wyvill, 2005] builds on these ray-tracing approaches

with an intelligent way to reuse rays for faster visualization times.

2.8 Summary

The BlobTree is the combination of the Skeletal Implicit Primitives with the blend op-

erators described above, stored as a unified tree structure. In this tree, interior nodes

can represent arbitrary blends between objects, as well as Boolean operations and

warps at a local and global level (see Figure 2.4). The Skeletal Implicit Primitives or

any Sketch-based shape, on the other hand, are stored in the leaves. Furthermore, the

BlobTree stores transformations within the tree structure. When the tree is traversed,

all operations, including visualization of the final BlobTree, depend on the field-value

and a gradient (usually calculated using central differencing [Yagel et al., 1994]) re-

turned for an arbitrary point in space.

28

Chapter 3

Efficient Data-Parallel

Tree-Traversal for BlobTrees

Implicit modelling has several advantages over other solid modelling systems, but un-

fortunately, complex implicit models are often slow to render. While previous acceler-

ation approaches reduce the number of field-value calculations (BlobTree traversals)

and employ multi-threading to parallelize the visualization problem, little work has

gone into accelerating the tree traversal itself.

Despite BlobTrees being seemingly similar to Constructive Solid Geometry (CSG)

trees, as both store hierarchical models, some CSG tree traversal optimizations do not

apply to the BlobTree due to the underlying differences. This chapter demonstrates

how to optimize the BlobTree traversal by re-interpreting the tree as a mathematical

expression in reverse polish notation. The performance impact due to memory use on

modern Single Program Multiple Data (SPMD) devices is investigated and options

to minimize it are proposed. The conclusion is that tree traversal is done faster

bottom-up, resulting in an order of magnitude speed up for large trees.

3.1 Introduction

3.1.1 Motivation

Despite its unique and advanced features, the BlobTree by [Wyvill et al., 1999] as a

data structure for implicit models is often considered too slow for interactive modelling

purposes. Several researchers, such as [Schmidt, 2006] and [Shirazian et al., 2012],

have shown that visualization methods can indeed be fast enough to re-create a new

29

mesh object from a BlobTree at interactive frame-rates. Other approaches have shown

that ray-tracing times can be reduced, for example, by using interval-arithmetic(see

[Knoll et al., 2009]) to find the intersection of a ray with the BlobTree surface. A

main commonality of all these approaches is that they speed up the visualization by

reducing the number of implicit (BlobTree) evaluations at points in space. Moreover,

many acceleration approaches also rely on the fact that both ray-tracing and poly-

gonization can be done in parallel, since each field-value calculation is independent.

Thus the problem lends itself to an application that makes use of the Single Program

Multiple Data (SPMD) paradigm as described by [Darema et al., 1988].

Nevertheless, little work has been done to actually improve the time a single tree

evaluation takes, despite recent advances in BlobTree-modeling that introduced more

complex operators to expand the capabilities of the BlobTree by [Bernhardt et al., 2010]

and [Gourmel et al., 2013] and offer greater control to the user. Since every accelera-

tion approach is based on these tree evaluation calculations, all of them would benefit

from improving the time it takes to evaluate the BlobTree at a point in space.

3.1.2 The BlobTree

A BlobTree is a representation of the syntactic parse tree Φ of the evaluation of a

scalar value f(R,P) at a query point P , where R is the root of Φ. The leaves of Φ

represent shapes. For a leaf, L, f(L, P) is a scalar value calculated by taking the

distance d(P) of P to a skeleton L.S, that then is modified by a filter-fall-off function

g. An internal (non-leaf) node, N , may have one or more children in Φ. When N

has a single child N.C, the value f(N,P) returned by N is N.f(N.C, t−1(P)) where

N.t is a transformation associated with N that may define an affine transformation

(translation, rotation, scale, shear), a bending or twist, or other space warps. When

N has several children N.Ci, the value it returns is N.g(f(N.C0, P), f(N.C1, P) . . .),

where function N.g combines scalars and may be used to implement certain forms of

blends that smoothly join surfaces. Figure 3.1 illustrates how a model is built using

this concept.

BlobTree modelling is related to Constructive Solid Geometry (CSG) [Sabin, 1968],

where much work has been done to accelerate tree traversal (e.g. [Jansen, 1991],

[Hable and Rossignac, 2005] and [Rossignac, 2012]), as well as novel rendering tech-

niques (e.g. [Romeiro et al., 2006]). Unfortunately, approaches improving tree traver-

sal for CSG are not necessarily applicable in this case, due to the different mathemat-

30

Figure 3.1: A simple example of a BlobTree building a mug. − describes a difference
operator and + a blend.

ical formulation of the BlobTree compared with pure Boolean CSG trees. Depending

on the application, CSG evaluation algorithms classify points, line segments, or sur-

faces, but always return point sets (possibly augmented with set membership maps

for their neighbourhood), while BlobTree evaluation algorithms return a scalar value

at a query point. Direct CSG classification algorithms classify (i.e., trim) these can-

didate sets against the leaves of the CSG tree (i.e., the primitive solids) and then

merge the classified subsets up-the-tree, according to the Boolean operations (see

[Mäntylä, 1987]). CSG trees that support such algorithms are limited to have nodes

that represent regularized Boolean set operators (Union, Intersection, Difference) and

affine transformations. Offsetting, blending, and Minkowski operations require eval-

uating a boundary representation of the solids associated with the argument nodes

of such operations and hence do not lend themselves to a direct CSG evaluation. In

contrast, BlobTrees evaluate scalar values at the query point, one per BlobTree leaf

(primitive) and then blend, filter and combine these values according to various for-

mulae (e.g. [Barthe et al., 2004] and [Gourmel et al., 2013]), which may reproduce

Boolean operations and also their blended versions.

3.1.3 Contributions

In this chapter the tree structures of CSG trees will be compared with BlobTrees , and

why the acceleration methods for CSG tree traversal are not applicable is explained.

31

It is shown how to accelerate the tree traversal for the BlobTree by traversing bottom-

up that results in an O(n) traversal time. This results in predictable memory access

patterns which are important for performance on modern SIMD architectures, such

as GPUs using OpenCL, or using vector instructions on CPUs. In this approach the

tree information is stored in a linear memory pattern and can improve traversal speed

by as much as an order of magnitude, compared to previous approaches running on

an SPMD architecture.

3.1.4 Outline

The remainder of this chapter is structured as follows. Section 3.2 discusses related

work in SPMD programming, as well as BlobTree and CSG acceleration. A sum-

mary of the most efficient CSG traversal accelerations is given in Section 3.3 and

Section 3.4 describes how some of these changes can be applied to the BlobTree. The

BlobTree supports non-affine transformation within the tree structure, which need

special care in this traversal approach, outlined in Section 3.5. Section 3.6 introduces

the implementation, the results are discussed in Section 3.7 and future work is stated

in Section 3.8.

3.2 Related Work

3.2.1 The SPMD programming model

Current computer architectures provide two main paths for accelerating floating-point

heavy workloads: SIMD (Single Instruction Multiple Data) units, which evaluate the

same floating point operator on multiple (typically 4, 8, or 16) elements of data;

and GPUs (as described by [Fatahalian and Houston, 2008]), re-purposed to general

computation using a large set of SIMD-like processors, with hardware predication for

divergent control flow. This last model is better known as the Single Program Multiple

Data (SPMD) programming model described by [Darema et al., 1988]. In an SPMD

program a single execution stream is applied over a large number of independent

data elements; any dependencies between these elements cannot be expressed directly

in the model, and have to be managed outside of it. Applying the SPMD model

usually involves rethinking the algorithm with respect to optimal memory transfer

and problem blocking (e.g. [AMD, 2011]) to allow maximum data independence.

32

Architectures embodying the SPMD programming model usually also have significant

memory bandwidth compared to execution speed to allow the transfer of the many

independent data streams. In many cases recalculation can be substantially more

efficient than sharing.

Several high-level programming languages provide facilities to help the program-

mer create code to run on SPMD architectures, such as OpenCL [Munshi, 2011] for

GPUs, or ISPC [Pharr and Mark, 2012] for CPUs. OpenCL, the industry standard

for SPMD on programmable Graphics Processing Units (GPUs), currently uses a

high-level programming language derived from C, where the only custom data struc-

ture is a struct that does not support inheritance or member functions. This means

significant rethinking of the data structures used to represent a hierarchical tree struc-

ture, as used in both CSG and the BlobTree, since a naive implementation typically

makes use of the non-existent features class inheritance and virtual functions.

3.2.2 Accelerating BlobTree rendering

Previous work on improving the traversal time of BlobTrees include aggregating nodes

in the tree to reduce overall node count [Fox et al., 2001]. Furthermore, a simple ap-

proach using spatial subdivision together with pruning the tree for each subdivision

node is also suggested and explored further in [de Groot, 2008]. Caches within the

tree structure are introduced by [Schmidt et al., 2005b], in order to reduce the num-

ber of field value calculations, in favour of interpolation of field-values as soon as

enough values are found within the cache structure. This work enabled interactive

editing through polygonization but for edit operations it still relied on polygonizing

at a coarser resolution to allow for fast interactive feedback. Polygonization itself

is an algorithm that lends itself to a parallel implementation using SIMD, as shown

by [Shirazian et al., 2012], which makes use of linearizing a tree structure into contin-

uous memory and calculating multiple field-values in parallel, since each calculation

is independent.

All of the above approaches improve rendering times significantly but none of

them investigated methods to reduce the time a single tree traversal takes, while still

calculating the exact field-value. It is not obvious that improving the time taken by

the calculation of the field-values is possible. The formulas for primitives and opera-

tors are constant since they cannot be changed without changing the resulting values.

Thus, it is a very important condition that any acceleration approach does not alter

33

the results of the field-value calculation at a point in space. Throughout this chapter

it will be shown that it is still possible to accelerate the field calculations without

altering the underlying formulas by taking certain hardware properties, especially

those of modern GPUs, into account.

In another GPU approach by [Reiner et al., 2011], the model is built by altering

the GLSL shader code that renders models directly to the screen, but is less practical

than the approach presented in this Chapter, as a new shader is required whenever the

model changes. Other approaches, such as [Gourmel et al., 2010], present a method

to ray-trace meta-balls on the GPU. Neither of the above deal with tree structures

similar to the BlobTree, and are not comparable systems because they cannot produce

the model complexity of the BlobTree.

3.2.3 Accelerating CSG rendering

Most of the current state of the art GPU rendering techniques for CSG models are

based on the formulation of a CSG tree as a Boolean list (Blist) [Rossignac, 1999].

Blister [Hable and Rossignac, 2005] and subsequently [Hable and Rossignac, 2007]

use this Blist formulation of a CSG tree in a rendering technique based on depth peel-

ing. The depth peels are classified for each primitive based on stencil bit true/false

values that are then combined using the Boolean expression given by the CSG tree.

Several optimization methods are found in these approaches that eventually resulted

in the formulation of Ordered Boolean Lists [Rossignac, 2012], which shows that this

Boolean List based approach can be used in other areas other than CSG rendering

as well. The work on OBL can be considered related to earlier work on boolean

expressions, such as Reduced Ordered Binary Decision Diagrams (ROBDD) (see

[Bryant, 1986] and [Bryant, 1995]).

Other approaches to render CSG models on GPUs include [Romeiro et al., 2006],

where CSG objects are subdivided until each child is simple enough (one primitive

or boolean operator of two primitives) for rendering on the GPU. This subdivision

is done on the CPU, whereas every node that only contains one primitive is rendered

on the GPU. It is also possible to use a face representation precomputed on the

CPU to directly render the CSG objects using boundary representations as described

by [Hanniel and Haller, 2011].

Using a tree structure efficiently in an SPMD context requires linearizing the tree

into a continuous block of memory. Many approaches for linearizing tree structures

34

store the tree nodes in top down order, with offset pointers used to do the traversal

([Smits, 2005] and [Bunnell, 2005]). Some approaches insert additional offset pointers

so it is possible to directly go to the in-order predecessor or successor by one single

offset pointer (threaded tree [Wyk, 1991]) instead of reading the parent pointer again

in order to find the neighbouring child node. Linearizing and traversing trees has been

important in the context of acceleration structures (e.g. [Wald, 2004], [Smits, 2005],

[Bunnell, 2005], [Benthin, 2006] and [Popov et al., 2007]).

3.3 Methods to accelerate CSG tree traversal

For any binary tree structure Φ, the top node of the tree is called the root node. Any

interior node represents a subexpression of Φ, which for a node N is often described as

L◦R, where L and R are called the left and right children, ◦ the operator to combine

them and N is called their parent and a link is the connection between parent and

child nodes. A walk between two nodes within the tree is defined as the minimum

connected subgraph containing both nodes, with its distance being the number of

links in the walk. The height of a node is defined as its maximum distance to its

leaves and the path to a leaf is called its walk to the root node.

The most efficient methods to accelerate the traversal of CSG trees involve writ-

ing the tree as a boolean expression. In such an expression, the leaves of the tree

correspond to the literals, which at any 3D point either evaluate to true or false. The

operators (notation as per [Rossignac, 2012]) in the expression can be of the limited

set of union, expressed as a Boolean OR (“+”), intersection as AND (“•”) and the

difference operator as AND NOT (“•!”), where “!” denotes the complement. Oper-

ators that can create more complex transitions between surfaces, such as the ones

described in [Elber, 2005] and [Whited and Rossignac, 2009], are usually not consid-

ered in these approaches. Any tree only consisting of the three simple operators stated

above can be described using such a Boolean expression which can be evaluated in

parallel for any input points and classifies this point against the CSG model surface.

A CSG tree that uses only these three operators (“+”, “•”, “!”) and that has the

”!” operator pushed to the literals using the de Morgan laws is called a Positive Form

Expression (PFE). In this expression, which is the basis of the Blist wiring process

for optimization, only the + and • operators exist; the ”!”-operator is expressed as

a parameter to the actual primitives. Both operators in this PFE are commutative,

so they can often be swapped to make the tree left-heavy, which can reduce the

35

footprint of the expression (see section 3.4.2 for a discussion on left-heavy trees). The

Blist wiring process uses the metaphor of an electrical circuit, where every literal

is expressed as a switch reading its boolean value. Each switch has a top output,

representing true, and the bottom output, representing false. Depending on the value

of the literal, the incoming ”current” is directed to one of these two outputs.

Two switches, A and B, can be connected together to form either the expression

A+B or A•B by altering the connections between input and output. This allows the

introduction of connections that can skip the evaluation of nodes, e.g. in the expression

of A+B the result is already set to true as soon as A evaluates to true. There is no

need to evaluate B in this case. Similarly, for the A •B case, if A evaluates to false,

the whole expression results in false, not requiring B to be evaluated. This also is a

variation of a ROBDD wiring process [Bryant, 1986], since both approaches produce

wiring where every literal appears only once, and connections between them don’t

cross. In an Ordered Boolean List, the Blist structure is then stabilized (reducing

the nodes’ width, as defined in [Rossignac, 2012]), by continually swapping nodes to

effectively re-order the tree, resulting in the smallest memory footprint possible for

each expression. This results in OBLs that can be created from any expression and

can be evaluated in O(loglog n) space.

To summarize, many efficient CSG visualization techniques (on the GPU) rely

on the fact that any primitive can be reduced to a Boolean value. In addition, the

operators are of a limited set and allow skipping the evaluation of child nodes for

certain cases. Re-sorting the tree can reduce the upper boundary of the required

memory footprint.

3.4 Techniques applicable to the BlobTree

Optimization approaches, which rely on the simplification of boolean expressions

are not applicable to the BlobTree. Unlike boolean CSG operators, both sides of a

BlobTree operator have to be evaluated. All nodes return continuous values that are

combined as described above, potentially changing the inside/outside classification

for a point P based on its numerical value. For example, using the Ricci operations,

union is max(f1, f2). Even if f1 < c, it still has to be evaluated, as f1 may be

greater than f2. Only combining inside/outside information, such as in CSG, will

disable the mathematical foundations behind all the blend operators, which add to

the BlobTrees unique modelling features. Operators other than Ricci’s can also be

36

used in the BlobTree, such as Pasko’s [Pasko et al., 1995] R-functions, but the same

principle applies.

Pushing an invert operator to the leaf nodes of a BlobTree does not work. Given

that in the BlobTree the right child’s field-value is not just negated, but the comple-

ment is calculated using 1 − f , an inversion at the child node is not possible. This

is due to the fact that at a leaf node, the field-value returned is within f ∈ [0, 1],

but once this field-value f is part of a binary blend node, it can theoretically result

in f = 2, (i.e. when the point lies on both skeletons). In a situation where there

are more blends involved, field-values at object interiors can become bigger than 1

and, subsequently, < 1 after a difference node. An inversion compatible with the

aforementioned CSG acceleration approach, on the other hand, would calculate the

compliment by −f , resulting in a different field-value than 1 − f . For these rea-

sons, only a subset of the aforementioned CSG acceleration methods can actually be

applied to the BlobTree.

3.4.1 Hardware Considerations

Memory reads and writes can have a significant impact on the performance of modern

processors, both for CPUs and GPUs. Modern hardware accelerates the performance

of applications using prefetching mechanisms and hardware caches. In case the mem-

ory footprint of the tree is very small, it might be possible to fit a large portion or

all of it into the hardware cache, and, more importantly, keep it there for most of

the time. As a result, whenever tree information is read, the access is done from the

representation in cache, avoiding the more expensive read from main memory (that,

in addition, can produce a context switch on the hardware, etc.). Even if the whole

tree does not fit into the cache, it is possible to exploit the behaviour that memory is

read in cache lines (or equivalents on GPUs). Reading memory in cache lines means

that independent of the size of the memory read, it is read in chunks that are sized

equally to the cache line. In the case that the memory read is smaller than one cache

line, the actual memory read consists of the desired size, plus the remaining memory

until the cache line size is reached. This means that when an element is read from an

array that is a fraction of the size of a cache line, succeeding array elements are read

as well. If these elements are accessed shortly afterwards, they can still be read from

the cache, instead of doing another expensive main memory transfer.

Consequently, designing an algorithm to make the best use of these techniques can

37

result in a significant performance improvement. The Bottom-Up traversal method

relies heavily on these hardware characteristics because it produces a coherent memory

access pattern to data-structures that are stored in a way to support cache aligned

reads and writes. Two measures need to be optimized to have a well performing

traversal algorithm of BlobTrees :

• reduce the memory footprint of the tree structure as much as possible and align

it to the cache line size (see Section 3.4.2)

• reduce the reads/writes to temporary storage (see Section 3.4.3)

3.4.2 Linearizing a BlobTree

In order to use a tree data structure efficiently on modern SPMD architectures (GPUs

or CPU vector instruction sets), it is necessary to store the whole tree in contiguous

blocks of memory. The usual implementation, where links in the tree are represented

by pointers, can lead to bad performance, since memory reads are harder to predict for

the hardware, and, in many cases, the pointers won’t lead to a cache aligned memory

distribution. Previous approaches to improving tree traversal are based on linearizing

the tree structure (information about parent - child relation) and data (information on

the type of node) into arrays of contiguous memory (e.g. [Wyk, 1991], [Smits, 2005],

[Bunnell, 2005], [Wald, 2004] and [Shirazian et al., 2012]).

Algorithm 1 Recursive solid model tree traversal

1: function DataAtRecursive(Point p, TreeNode curData)
2: if n is a primitive then
3: return dataAtPrim(p, curData)
4: else
5: childResults[0] ← DataAtRecursive(p,curData.child0)
6: childResults[1] ← DataAtRecursive(p,curData.child1)
7: return dataAtOp(p,curData,childResults)
8: end if
9: end function

A simple application that traverses the tree top-down iteratively and stores child

relations only in the parent node requires that the parent node is read after visiting

the first child. More generally, any top-down traversal algorithm of a tree maintains

two stacks of temporary memory:

38

• the traversal state (information about the previous visited node), m

• the temporary results at the nodes, to be used in the parents, t

Both of these stacks depend on the number of nodes n within the BlobTree and its

structure.

Algorithm 1 illustrates the simplicity of a tree traversal approach done recursively,

especially since intermediate results and the traversal stack are provided implicitly

through the recursion stack. However, it has been proven numerous times that the

recursive approach, despite being elegant, can in some cases not perform optimally.

In such instances, rewriting the recursive traversal into an iterative approach can

improve running times significantly, in addition to allowing it to run on architectures

with limited recursion support (GPUs, IBM Cell, etc).

A

B

C D

E

F G

A B E C D F G
1 2

3

4

56

7 8

9

10

1112

Figure 3.2: The order of the tree nodes in memory. The numbers describe the order
of memory reads when the full tree is traversed. Top arrows: reads going deeper in
the tree; numbers are closer to arrow head. Bottom arrows: reads going back up in
the tree; numbers closer to arrow base.

Figure 3.2 shows how memory is read (not including the temporary storage stack)

using the approach based on Algorithm 2 (recursive traversal rewritten iteratively us-

ing stacks), resulting in 12 memory reads for the traversal, with 5 changes in the read

direction for this small example. In this case, the tree storage is already optimized

according to [Wald, 2004] that stores child nodes in neighbouring array elements, re-

moving the need to store 2 index offsets per parent node pointing to the children.

Whenever the traversal moves deeper down the tree, the current node is pushed to

the traversal stack m. In case of a primitive, the data is computed using the corre-

sponding primitive function for p and stored it in the temporary stack t for later use.

If the current node is an operator, a check if both children have been visited is needed

and if a child is still to be processed the current node is pushed to the stack and the

new current node is the child node. As soon as both children of an operator have

39

Algorithm 2 Iterative tree-structure-based traversal. Both the TraversalState m
and the TemporaryResults t are stacks

1: function DataAt(Point p, Tree Φ, TraversalState m, TemporaryResults t)
2: curNode ← Φ.root
3: while true do
4: if curNode is a Leaf then
5: curResult ← dataAtPrim(p,curNode)
6: if m not empty then
7: push curResult to t
8: curNode ← done
9: curNode ← pop from m

10: else
11: return curResult
12: end if
13: else
14: if curNode.child0 6= done then
15: push curNode to m
16: curNode ← curNode.child0
17: else if curNode.child1 6= done then
18: push curNode to m
19: curNode ← curNode.child1
20: else
21: childResults[1] ← pop from t
22: childResults[0] ← pop from t
23: curResult ← dataAtOp(p,curNode,childResults)
24: if m not empty then
25: push curResult to t
26: curNode ← done
27: curNode ← pop from m
28: else
29: return curResult
30: end if
31: end if
32: end if
33: end while
34: end function

been calculated their results stored on stack t are used to calculate the data values of

the operator. These are written to the stack t and the information in m is to move

back up the tree towards the root node.

Apart from the fact that the tree itself is read in an unpredictable way (Figure 3.2),

40

both stacks are involved in many reads and writes. Stack m has the size |m| of the

maximum height found in the tree. In order to quantify the size of stack t, the

property right-heavy-ness needs to be defined, which can be calculated recursively. If

an interior node N has two leaf nodes L, its right-heavy-ness is 2. In the case that

N ’s right child is an operator node, the right-heavy-ness is the maximum of its right-

heavy-ness of the left child and 1 plus the right-heavy-ness of the right child. The

resulting value corresponds to the size of the temporary storage stack t. Dependent

on the tree structure (see a more detailed discussion in Section 3.4.4), |t| and |m|
have certain size characteristics, but for any tree |m| ≥ |t| (n is the number of leaf

nodes in the tree):

1. left-heavy: |t| is 2, whereas |m| is n.

2. balanced: |t| and |m| are log(2n) + 1.

3. right-heavy: |t| and |m| are n.

Even though this approach based on a linearized tree is faster than a non-linearized

version, it can only be considered the performance base-line. Better traversal perfor-

mance can be achieved by optimizing the tree storage and, as a result, the number

of stacks/stack frames needed. In this method, every interior node N is visited three

times, every leaf L visited once, numbers that can be reduced for the interior node

N case, as demonstrated below.

3.4.3 Eliminating the need for a traversal stack

Much work has been done on how to represent parent child relations of a tree in

memory in order to avoid unnecessary memory reads, e.g. in theory it is not necessary

to visit the parent N node to change from child L to child R. As a result, a threaded

tree stores this none relationship directly in every child node by saving the offset to

the in-order predecessor and successor [Wyk, 1991]:

• node L stores an array offset to N and to R

• node R stores an array offset to L and N .

In cases where L or R are trees and not leaves, these offsets are to the appropriate

leaf nodes instead. Since for a BlobTree, the parent nodes combine the results of the

41

child nodes, these need to be visited after processing the right child as well, which is

not needed for the general threaded tree approach. The memory layout of the tree

and the memory access pattern of the threaded approach are shown in Figure 3.3,

where the number of memory reads are reduced to 9.

A

B

C D

E

F G

A B E C D F G
1 2

4

3 65 7

89

Figure 3.3: The order of the tree nodes in memory. The numbers describe the order
of memory reads when the tree is traversed using a threaded tree approach. Top
arrows: reads going deeper in the tree; numbers are closer to arrow head. Bottom
arrows: reads going back up in the tree; numbers closer to arrow base.

Even though the threaded tree approach already eliminates the need to keep a

traversal stack m, as presented by [Popov et al., 2007], it still relies on changing

the read direction in memory 3 times, and is not optimal for all SPMD architec-

tures [AMD, 2011].

Looking at the architecture of modern SPDM hardware, especially GPUs, non-

cached reads from main memory can often be very slow (up to 500 cycles or more).

This makes finding an approach that does not need to store offset pointers to traverse

the tree a desired goal. In fact, not having to store offsets for parent-child relations

means that only the tree data is needed.

A BlobTree can be treated as a mathematical expression, with the literals being

the leaf nodes (primitives) that are combined using operators. As a result, rewriting

the expression in the reverse polish notation is possible, as done i a Blist for CSG. In

this notation, both operands precede the corresponding operator; thus, the expression

A◦B would be rewritten as AB◦. This corresponds to a post-order / bottom-up tree

traversal, shown in Figure 3.4. Compared to a top-down approach, the memory access

pattern of the tree data is simpler, reads are only done in one memory direction,

independently of tree size and structure, and, as a result, are easier to predict for

current hardware. This results in 6 reads from memory, compared to the 12 in the

original approach, and 9 in the threaded optimization. If a certain tree node is of a

fraction of the size of a cache line, it can happen that when one node is read into

42

memory, the following node is read as well, due to the cache line size.

A

B

C D

E

F G

C D B F G E A
1 2 3 4 5 6

Figure 3.4: The order of how the tree nodes are stored in memory. The numbers
describe the order of memory reads when the full tree is traversed. The only reads
are going bottom up in the tree. It results in: less memory reads, memory is only
read in one direction and only once.

For every field-value computation, the intermediate calculation results need to be

stored in order to combine them at operator nodes. In a recursive approach, storage

for these intermediate results is implicitly given by the recursion stack, which the

bottom-up approach does not require. Since the traversal is based on the reverse

polish notation of an expression, the storage layout for the temporary results is a

stack. Every intermediate result is pushed on this stack and at an operator node the

last two results are popped from the stack (first result is the right child), so they can

be combined. This results in algorithm 3 (for a single thread/field-value calculation).

3.4.4 Optimize the tree to require less temporary storage

Given that the presented implementation targets SPMD architectures and multiple

field-values will be calculated in parallel, the temporary results stack t is needed for

every thread. The more threads are used, the more storage is needed. The maximum

size of the stack depends on the structure of the tree. There are three extreme ways

a tree with nl leaf nodes can be combined to build a solid model tree:

• left-heavy (Figure 3.5a)

• balanced (Figure 3.5b)

• right-heavy (Figure 3.5c).

Depending on this structure, trees with the same number of leaves (primitives)

can need a bigger or smaller stack to store the intermediate results. The best case is

43

Algorithm 3 bottom-up traversal

1: function DataAtLinear(Point p, TreeArray a, TemporaryResults t)
2: n← a.length
3: for i = 1→ n do
4: curData ← a[i]
5: if curData is a primitive then
6: curResult ← dataAtPrim(p, curData)
7: push curResult to t
8: else
9: childResults[1] ← pop from t

10: childResults[0] ← pop from t
11: curResult ← dataAtOp(p,curData,childResults)
12: push curResult to t
13: end if
14: end for
15: return pop from t
16: end function

(a) Left-Heavy (b) Balanced (c) Right-Heavy

Figure 3.5: The three different extreme structures for a tree with n leaf nodes.

a left-heavy tree, as shown below in Section 3.7, since the extreme left-heavy example

in Figure 3.5a can be traversed with a constant stack size of 2, independent of how

many leaf nodes n there are in the tree. Optimizing a tree so that it is as left-heavy

as possible is desired in order to reduce the size for the temporary variable stack and

thus accelerating the traversal. The basis of this optimization is that the height at

every node in the tree is computed. This can actually be done when the tree is built,

44

as shown by [Hable and Rossignac, 2005]:

1. any new primitive has height 0

2. any new node’s height is the maximum of the height of its children, plus 1

Swapping the tree nodes can be integrated into the algorithm that traverses the

tree and produces the reverse polish memory layout. If the height of the right child

is bigger than the left, the algorithm has to traverse the right child first, essentially

swapping left and right in this case. Every operator in the BlobTree apart from the

difference operator is commutative, thus no additional changes are necessary for the

traversal to still produce the same field-value. In the case of the difference operator,

the easiest way to support swapped nodes is to set a flag if the node is swapped.

When the traversal algorithm processes a flagged node, the algorithm assigns the

child results in the opposite order.

This means that the absolute worst case arrangement of nl leaf nodes, a perfectly

right-heavy tree can be transformed into the best case. When a left-heavy tree is

created from a perfectly right-heavy tree, the size of the temporary storage stack t

is reduced to a constant size of 2. In general, any right-heavy representation can be

converted to a corresponding left-heavy one, effectively making the previous average

case, a balanced tree, to the new worst-case. A perfectly balanced tree has the size

requirements of stack t (right-heavy-ness) of log(nl) + 2, where nl is the number of

leaf nodes. Any other (already left-heavy transformed) tree with nl leaves needs a

stack size that is in between and 2 and log(nl) + 2.

In some cases, the structure of the tree can be converted to a left-heavy version

by reordering parent and child relations. This does not work for all combinations of

operators, only for ones that are associative and commutative in limited arrangements.

The algorithm starts at a node N with children L and R that have been pivoted to

be left-heavy. The leaves of L and R may be primitives or roots of subtrees with

non-compatible operators. In addition, E is the left most child of R, F the parent of

E and N one child of P . To pivot the nodes, the following steps have to be applied

to the tree:

1. Replace R by E in N .

2. Replace E by N in node F .

3. In P replace N by R.

45

See Figure 3.6 for an illustration of before and after. This algorithm can only be

applied when the path between N and F only consists of the same operator type

supporting the pivot: the union, intersection and summation blend operators.

R

F

E

L

P

N

(a) Before Rotation

R

F

E

L

P

N

E

(b) After step 1

L E

R

F

N

L

P

N

E

(c) After step 2

F

N

L

P

E

R

(d) After step 3

Figure 3.6: Conversion to left-heavy tree. Nodes N and F have to be compatible for
allowing the rotation. Dashed lines represent either subtrees or nodes with operator
types supporting the pivot.

3.5 Incorporating Non-Affine Transformations

In addition to affine transformations, the BlobTree also supports a series of non-affine

transformation, such as the Barr Warps [Wyvill et al., 1999] and more recently Warp

Curves [Sugihara et al., 2010]. Like affine transformations, these non-affine transfor-

mations are represented in the BlobTree as unary nodes at any point in the tree,

transforming the whole subtree underneath. Figure 3.7 shows an example, where the

blue nodes represent non-affine transformations. These nodes apply the inverse trans-

formation to the specific input point coordinates, moving the input point according

to the non-affine transformation to its new location used for any further calcula-

tions. This behaviour is perfectly acceptable as long as the tree traversal is done top

down; however, the bottom-up approach discussed above needs more work to support

non-affine transformations.

One major property for enabling the bottom-up traversal is that all affine trans-

formations can be pushed to the BlobTrees leaf nodes during linearization. This

makes it possible that the input point coordinates can be transformed into every

leaf node’s local coordinate system with only one matrix-vector multiplication, done

46

A

B

C

D

E

F

G

1

3

2

0

Figure 3.7: A BlobTree including non-affine transformations shown in blue. Stippled
lines show the connections for each node to its parent non-affine transformations.
Stippling with line-dots connect the non-affine transformations

once at every leaf node. It has been shown by [Wald, 2004] that pushing the affine

transformations to the leaf nodes can cause a large performance improvement simply

by reducing the number of matrix-vector calculations during a tree traversal (not

limited to BlobTrees), even in other traversal situations not involving the bottom-up

approach.

As soon as one non-affine transformation is along the path from the root node

to the leaf, all the affine transformations can’t be pushed to the leaf anymore. How-

ever, pushing affine transformations and aggregating them until the first non-affine

transformation is reached is possible. Similarly, pushing and aggregating all affine

transformations below a non affine transformation is possible until either another

non-affine transformation or the leaf is reached. As a result, aggregated affine trans-

formations can still be stored as parameters to the leaf, instead of nodes within the

BlobTree, with the addition that the non-affine transformations potentially store such

47

a transformation as additional property.

In a top-down tree traversal, this optimization would result in a BlobTree that, in

addition, can contain unary non-affine transformation nodes. As mentioned above,

the inverse of these transformations is applied to the input points before the tree

traversal continues, until the leaf nodes are reached. Field values are calculated and

then combined bottom up to produce the final traversal result.

Looking at this, a full BlobTree traversal in this situation consists of two steps:

1. top-down tree traversal: transforming the input points

2. bottom-up tree traversal: combining the field-values and potentially gradients

and colour.

In both cases, the full BlobTree information is traversed.

It has already been shown, that in the case of a BlobTree only containing affine

transformation, leaving out step one can provide significant performance improve-

ments, since the full traversal can be done only within the bottom-up part. Now

that non-affine transformations are involved, a single leaf node does not have all the

information in a bottom-up traversal situation to calculate the correct values yet.

For this reason, a subset of the original BlobTree, the Transformation Tree can be

used. It only contains the non-affine transformation nodes, to simplify the top-down

traversal and transforms the input points and stores their respective results. Every

leaf node stores a reference (index, offset, etc. depending on the implementation)

to its closest non-affine parent node. The result of this non-affine transformation is

then used as the input point for the bottom-up tree traversal, done without changing

the algorithm described above. Figure 3.8 shows the tree of Figure 3.7 split into

its Transformation Tree and the corresponding BlobTree. Their memory layouts are

illustrated underneath, with memory traversals and lookups shown by arrows. The

stippling of the arrows corresponds to Figure 3.7.

In the same way, any non-affine node stores a reference to its closest non-affine

parent in order to pick the right input values in the case that several non-affine trans-

formations occur along the path to a leaf. Linearizing this reduced Transformation

Tree in depth-first-order into a contiguous array allows for a linear traversal algo-

rithm. This traversal order ensures that at any node, the previous transformation

node is already applied to the input points and the result can be read and used for the

consecutive calculation. Applying the same data layout techniques described above

for the bottom-up, field-value “gather” step, will also result in a cache-efficient data

48

1 3

2

0 A

B

C D

E

F G

0 1 2 3

C D B F G E A
1 2 3 4 5 6

Figure 3.8: Separation of tree from Figure 3.7 into Transformation Tree and the
BlobTree nodes, including their corresponding memory layout and access patterns.

layout to store the non-affine transformations, which, depending on their type, are

more (Barr warps) or less (Warp Curves) trivial. In the same way, the metrics to

optimize are memory usage, memory read direction and random memory access.

3.6 Implementation

The implementation of the algorithms use OpenCL 1.2 on MacOX 10.9.4, and the

measurements are taken on an nVidia GeForce GTX 780M GPU .

As already stated in Section 3.4.2, the BlobTree is split into its structure, contain-

ing the links (for the top-down case only), and the actual tree data, containing the

node information. The same node information data structures are used for both the

top-down and bottom-up measurements. In order to support loading the BlobTree

tree data into the current processing unit at a high speed, the size of a single cache-line

49

or the cache-line equivalent must be taken into account. To minimize the number of

cycles it takes to load the nodes into variables, it is desirable that an integer number

of tree nodes fit into a cache line.

The following data is stored for each node:

• type of the node,

• node-type specific data.

Since the node types are mutually exclusive, but are very close in size, they are

stored as a union of types to make memory allocation, cache line alignment and

array handling easier. The current size of the nodes are 64 bytes (an integer fraction

of the cache line equivalent on the GPU). When the tree is traversed, node-type

specific functions are called depending on the node type using a standard switch-case

statement.

In the case of the base-line top-down traversal, the memory is stored as suggested

by [Wald, 2004], where child nodes are stored next to each other (see Figure 3.2) to

improve node locality and cache friendliness for ray-tracing. The advantage is that

the data structure describing the tree structure only needs to store one index for the

first child, and the second child can be found by incrementing this index, resulting

in a 4 byte small value for every tree node. If needed, this approach can easily be

extended to n-ary tree nodes as well, although in this work the tree is restricted to

binary.

Because the field-value calculations are used by polygonization and ray-tracing, a

single field-value calculation also returns additional information, similar to the Tuple

Tree approach by [de Groot, 2008]:

• one float for the field value BlobTree

• two floats for gradient x and y. Assuming that gradients are normalized the z

value can be omitted, since it can be recalculated from x and y.

• the sign of the z direction of the gradient, since gradients are stored in world

space

• three bytes for storing the RGB colour values.

The main reason for this is that in general, the gradient and colour calculations rely on

the field values at each node. Thus, calculating them in a separate step would require

50

a re-calculation of the field values at every node. Furthermore, the blend operator

by [Gourmel et al., 2013] used in some of the performance cases blends based on the

gradient at the child node as well.

A set of these values, a total size of 16 bytes, is stored for every intermediate

calculation result. The number of intermediate results stored is dependent on the

input model’s tree structure (see Figure 3.5) and the chosen algorithm (top-down or

bottom-up for comparison purposes). The size of the temporary stacks are calculated

in advance (during linearization) and the required memory size is multiplied by the

number of threads is allocated. Every thread is assigned a sub-block of the stack,

so that the memory access between threads accesses parallel elements in the large

block of memory. According to GPU vendors such as [AMD, 2011], this is one of the

desired memory access patterns that increases performance. The top down approach

has access to two memory blocks, one for each stack, with the traversal stack m

having stack frames of size 4. For all the other approaches, the size of a t-stack

frame is 16 bytes. In the implementation, the input values are stored in OpenCLs

constant variable scope. Originally intermediate results (and the traversal stack when

needed) should have been stored in local scope, since this is faster memory, but for

many large BlobTrees , the local memory per thread was not big enough. As a result

of these limitations, all the cases store the stacks in global memory for consistency

reasons.

3.7 Results

3.7.1 Synthetic scene

For testing the performance of the algorithms and the improvements presented, a

variable sized computer generated test scene is created. The model is created so

that primitives will not overlap, which means that with an increasing number of leaf

nodes, the volume occupied by the whole model increases. As a result, the density of

primitives in the volume occupying the model is constant. This means that when the

BlobTree is sampled at regular intervals, there is a good distribution of valid field-

value results (f > 0) per primitive. It is expected that the distribution of BlobTree

primitives will not have an impact on unaccelerated traversal algorithms, since all the

tree branches have to be visited for the calculation. Once acceleration structures are

added to the traversal algorithm the distribution of the primitives, and the structure

51

Figure 3.9: A sample test scene with several cylinders chained together.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

à

à

à

à

à

à

à

à

à

à

2 4 8 16 32 64 128 256 512 1024

0.1

0.5

1.0

5.0

10.0

50.0

Tree Leaves HLog ScaleL

T
im

e
Μs

HL
o

g
sc

al
eL

Time per field-value computation HTop-DownL

Balanced ´ Top-Downæ

Left ´ Top-Downò

Right ´ Top-Downà

Figure 3.10: The running times for the computer-generated test scenes, traversed
with the top down approach. Note that the “Left” and “Right” cases overlap.

of the tree will have a performance impact.

The synthetic model contains nl primitives of the same type, all combined with the

same type of binary operator, arranged to form a string of objects (see Figure 3.9 for

an example with cylinders and an advanced blend operator[Gourmel et al., 2013]). To

have a test case close to a real world scenario (polygonization), the bounding volume

of this object is sampled 323 times along a regular grid, requiring the same number

of stacks. Since the main focus of this algorithm is accelerating the tree traversal,

52

the rest of the polygonization algorithm is removed from the benchmark, since this

is where previous work achieved their speed up. The same resolution is used for all

the models and algorithms so that every test case has the same constant OpenCL

scheduling overhead and the test cases between different sized trees are comparable.

Every performance result is calculated as the average run time of 32 runs to get rid

of outliers due to load spikes of other applications running or the OpenCL run-time

optimizing the kernel based on the input data.

æ
æ

æ
æ

æ æ æ æ æ æ

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

à

à

à

à

à

à

à

à

à

à

2 4 8 16 32 64 128 256 512 1024
1

5

10

50

100

500

1000

Tree Leaves HLog ScaleL

In
te

rm
ed

ia
te

S
to

ra
g

e
E

n
tr

ie
s

HL
o
g

S
ca

le
L Intermediate Storage HTop-DownL

Balanced ´ Top-Downæ

Left ´ Top-Downò

Right ´ Top-Downà

Figure 3.11: Number of temporary storage array entries for the three tree types and
different numbers of leaf nodes. Note that the “Left” and “Right” cases overlap.

Top-Down Traversal

Two different types of graphs are shown for the computer-generated test scene: with

an increasing number of leaf nodes, the average time in µs the algorithm spends

in a single field-value calculation is plotted (including the tree traversal, and the

actual evaluation of the nodes). In addition, each of the graphs is accompanied by

the memory needed (plotted as the number of array entries) for the traversal to

work. In this top-down case, this includes the emulated recursion stack frames. The

intermediate results can still be stored on a smaller stack, which is independent of

the recursion stack. See algorithm 2 for the implementation of both stacks.

Both graphs have their axes plotted using a logarithmic scale. Figure 3.10 shows

that the left-heavy tree and the right-heavy tree have similar performance charac-

teristics, with the balanced case being slightly faster. When this is compared to the

53

memory usage in Figure 3.11, it is easy to see why the performance of those two

model cases are very similar: they need the same amount of memory, whereas the

third one needs significantly less. In this case, the stack size stated is the size of the

traversal stack m, since it is larger than t. This results in the balanced tree actu-

ally being preferable to any other tree representation in terms of storage needs and

performance.

Bottom-Up Traversal

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

£

£

£

£

£

£

£

£

£

£

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

2 4 8 16 32 64 128 256 512 1024

0.1

0.5

1.0

5.0

10.0

50.0

Tree Leaves HLog ScaleL

T
im

e
Μs

HL
o

g
sc

al
eL

Time per field-value computation

HTop-Down vs. Bottom-UpL

Balanced ´ Top-Downæ

Balanced ´ Bottom-Up¢

Left ´ Bottom-Up£

Right ´ Bottom-Upæ

Figure 3.12: The running times for the bottom-up traversal algorithm, compared to
the best top-down case as a reference.

Traversing the tree bottom-up creates a better memory access pattern, since every

thread loads the tree array from start to end, potentially resulting in several memory

load multicasts if threads try to access the same node at the same time. This approach

does not require a stack for the tree-traversal recursion, as only the stack for the

temporary results is needed. In this case, the number of intermediate-data stack

frames are plotted in Figure 3.13. This is the size of stack t, as no m stack is needed

any more.

Figure 3.12 includes the best case of Figure 3.10 (balanced) as a reference, and

compares it to the run times for the bottom-up traversal. The best top-down case is

the example of the balanced tree, requiring less storage for the recursion stack than the

54

æ
æ

æ
æ

æ æ æ æ æ æ

¢
¢

¢
¢

¢
¢ ¢ ¢ ¢ ¢

£ £ £ £ £ £ £ £ £ £æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

2 4 8 16 32 64 128 256 512 1024
1

5

10

50

100

500

1000

Tree Leaves HLog ScaleL

In
te

rm
ed

ia
te

S
to

ra
g

e
E

n
tr

ie
s

HL
o
g

S
ca

le
L Intermediate Storage HBottom-UpL

Balanced ´ Top-Downæ

Balanced ´ Bottom-Up¢

Left ´ Bottom-Up£

Right ´ Bottom-Upæ

Figure 3.13: The memory usage for the bottom-up traversal algorithm, compared to
the best top-down case. “Right Bottom-Up” and “Balanced Top-Down” overlap.

right-heavy tree in the bottom-up approach. Looking at this behaviour emphasizes

that not just memory reads of the tree data are important for fast traversal, but that

it is even more important to optimize the storage needs for intermediate results. On

the other hand, the left-heavy tree case only needs a constant temporary result stack

of 2 and shows the best performance of all of them.

However, despite the right-heavy variant needing the most amount of temporary

storage entries, more specifically one storage entry for each leaf node, in this case it

actually is the second fastest. The performance characteristics of this benchmark on

different older hardware, an AMD Radeon HD 5870 (see Figure 3.14) shows that this

hardware produces the run-time result directly dependent on the storage needs. One

can assume that the newer nVidia GPU is better at predicting memory reads/writes

(or at caching) for the following memory access pattern. The whole array is filled

with temporary entries from left to right. Then, the direction changes and the array

is read right to left. It seems that as long as the reading direction is not changed, the

linear read works almost as efficiently as the case needing constant memory. In the

latter scenario, the two storage entries will stay in the cache, assuming it is not filled

by the other data involved in calculating the field-value, having repeated cheap read

and writes to these two cache locations. This leads to the conclusion that one should

favour the production of left-heavy trees for efficient traversal, as already shown for

CSG by [Hable and Rossignac, 2005]. This produces a time difference of one order of

55

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

¢

¢
¢

¢

¢

¢

¢

¢

¢

¢

£
£

£

£

£

£

£

£

£

£

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

2 4 8 16 32 64 128 256 512 1024

0.1

0.5

1.0

5.0

10.0

50.0

Tree Leaves HLog ScaleL

T
im

e
Μs

HL
o
g

sc
al

eL

Time per field-value computation

HTop-Down vs. Bottom-UpL

Balanced ´ Top-Downæ

Balanced ´ Bottom-Up¢

Left ´ Bottom-Up£

Right ´ Bottom-Upæ

Figure 3.14: The running times for the bottom-up traversal algorithm, compared to
the best top-down case, as run on an AMD Radeon HD 5870 GPU.

magnitude between the best top-down case and the best bottom-up.

Acceleration Structures

Rendering large models at interactive frame-rates on common hardware is often not

possible due to their size and fidelity. Approaches to accelerate rendering operate

on the principle of removing parts of objects that would not be seen from a current

camera position and orientation, often referred to as culling. More generally, culling

can be described as the process of removing/ignoring parts of an object that are not

relevant for the current calculation. Acceleration structures operate on the principle of

dividing the model into sub-parts. For rendering, traversing the acceleration structure

determines the sub-parts of interest, so that only a sub-set of the whole model needs

to be considered. Consequently, acceleration structures can be used to compare the

performance of the Bottom-Up traversal algorithm (with and without an acceleration

structure) to the accelerated Top-Down traversal.

Based on work by [Fox et al., 2001], the chosen acceleration structures are the

Bounding Volume Hierarchy (BVH) [Rubin and Whitted, 1980] and Binary Space

Partition (BSP) trees [Fuchs et al., 1980]. Both approaches recursively divide the

volume surrounding an object into sub-volumes until a stop criterion is met (e.g.

number of primitives in or certain size of the sub-volume). The BVH structure is

56

built from the leafs of the tree towards the root by combining the bounding volumes

of the nodes. In the Top-Down traversal case, it is very easy to add a BVH to the

traversal algorithm. The bounding boxes are already stored in world space for every

tree node, so the only thing left is to add a point-in-bounding-volume check at line 5

in Algorithm 2.

In comparison, in the Bottom-Up traversal, the early discard property of a BVH

cannot be used efficiently, since it is not possible to ignore sub-trees when traversing

from the leaves up. An acceleration structure that prunes the BlobTree for each

space subdivision leaf is the BSP Tree, which has been used widely to improve the

visualization times of mesh scenes, resulting in real-time speed for raytracing on the

CPU [Benthin, 2006]. A BSP Tree is built from the root node towards the leafs. At

every build step the bounding box of the node is split into two, based on a given split

strategy (for an evaluation of different split strategies see [Wald and Havran, 2006]).

Each BSP-node only contains the parts of the model that are located within the

node’s volume, effectively building a sub-BlobTree for every BSP-leaf.

For the performance reasoning given by [Wald, 2004], axis aligned BSP trees (kD

trees) are used, which are based on the implementation described. Since in this case

only the kD node needs to be determined for a given point in space, there is no need

to backtrack into neighbouring kD nodes, as demonstrated by [Popov et al., 2007].

To avoid storing duplicate nodes, the skip pointers from [Smits, 2005] are adapted,

and index arrays for each kD leaf are created that work on the array storing the full

linearized tree data. For the sake of simplicity only the best and worst running times

of these two methods are compared with the previous, unaccelerated cases.

Figure 3.15 compares the four best cases of each algorithm(top-down, top-down

plus BVH, bottom-up, bottom-up plus kD), showing two orders of magnitude differ-

ence between the worst of the best case algorithms and the absolute best. Adding

an acceleration structure to any of the approaches changes the overall slope of the

graph, whereas the pairs of accelerated and unaccelerated curves have approximately

a parallel slope once the node count is higher than 16.

In the worst case, the difference in running time is even bigger. Figure 3.16 shows

that the run-time of the worst case of the top-down approach for 1024 leaf nodes

is close to 100µs. On the contrary the worst run-time for the bottom-up traversal

using a kD-tree is 0.19µs, four orders of magnitude faster than top-down. Without

the acceleration structures, there is still a one order of magnitude difference.

Figure 3.17 and Figure 3.18 compare the memory usage of the aforementioned

57

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ì

ì
ì

ì
ì

ì
ì

ì ì ì

£

£

£

£

£

£

£

£

£

£

à
à à

à à à
à à à

à

2 4 8 16 32 64 128 256 512 1024

0.1

0.5

1.0

5.0

10.0

50.0

Tree Leaves HLog ScaleL

T
im

e
Μs

HL
o
g

sc
al

eL

Time per field-value computation HAll best casesL

Balanced ´ Top-Downæ

Balanced ´ Top-Down ´ BVHì

Left ´ Bottom-Up£

Left ´ Bottom-Up ´ kD-Treeà

Figure 3.15: A comparison of the best case running times.

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ò ò
ò ò ò

ò ò ò
ò

ò

2 4 8 16 32 64 128 256 512 1024

0.1

0.5

1.0

5.0

10.0

50.0

Tree Leaves HLog ScaleL

T
im

e
Μs

HL
o

g
sc

al
eL

Time per field-value computation HAll worst casesL

Right ´ Top-Downà

Right ´ Top-Down ´ BVHà

Right ´ Bottom-Upæ

Balanced ´ Bottom-Up ´ kD-Treeò

Figure 3.16: A comparison of the worst case running times.

time-based graphs. The trend here clearly is that the smaller the memory usage, the

better performing the traversal algorithm. However, due to the special memory access

pattern for a perfectly right-heavy tree, the bottom-up approach also performs almost

as well as the best case. The size of trees that can be explored is limited by GPU

memory, but one can assume that the top-down traversal will continue to increase

its run time exponentially, whereas the bottom-up version, especially when using a

kD-tree, will grow much slower. A top-down traversal of a solid model tree in SPMD

58

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

ì

ì

ì

ì

ì

ì
ì

ì
ì

ì

£ £ £ £ £ £ £ £ £ £à à à à à à à à à à

2 4 8 16 32 64 128 256 512 1024
1.0

10.0

5.0

2.0

3.0

1.5

7.0

Tree Leaves HLog ScaleL

In
te

rm
ed

ia
te

S
to

ra
g
e

E
n
tr

ie
s

HL
o
g

S
ca

le
L

Intermediate Storage HAll best casesL

Balanced ´ Top-Downæ

Balanced ´ Top-Down ´ BVHì

Left ´ Bottom-Up£

Left ´ Bottom-Up ´ kD-Treeà

Figure 3.17: A comparison of the best case memory usage. Adding an acceleration
structure does not change the memory usage for both traversal algorithms

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ò ò ò ò ò
ò ò ò ò

ò

2 4 8 16 32 64 128 256 512 1024
1

5

10

50

100

500

1000

Tree Leaves HLog ScaleL

In
te

rm
ed

ia
te

S
to

ra
g
e

E
n

tr
ie

s
HL

o
g

S
ca

le
L Intermediate Storage HAll worst casesL

Right ´ Top-Downà

Right ´ Top-Down ´ BVHà

Right ´ Bottom-Upæ

Balanced ´ Bottom-Up ´ kD-Treeò

Figure 3.18: A comparison of the worst case memory usage. The two Top-Down cases
and the unaccelerated Bottom-Up case have the same memory usage

is not the fastest. By modifying the traversal algorithm to use approaches presented

for CSG [Rossignac, 2012], the traversal now works bottom-up. This improves the

memory access pattern and usage and decreases the execution time of traversal algo-

rithms significantly. With the top-down traversal, adding a BVH is fairly easy, and

improves the algorithms run time; however, the trend of the performance still shows

59

an almost exponential slope (linear in a log graph), with increasing leaf nodes. The

slope of the graph is a lot shallower for the bottom-up and especially the accelerated

bottom-up algorithm, showing that it will lead to better performance in most cases.

3.7.2 Models

The synthetic test scenes are built so that primitives are distributed equally in space,

something very unlikely in real-world situations. While the synthetic models have

a constant distribution of primitives in the surrounding bounding box, real world

models will have their primitives clustered and distributed arbitrarily. Consequently,

four real world models (see ray-traced images in Figure 3.19) of different sizes were

used to investigate the performance of the Bottom-Up algorithm in a more realistic

modelling scenario. The models were generated with an interactive modelling system

that uses the Bottom-Up approach in the polygonizer. The two performance graphs,

as explained for the synthetic models, can be found in Figure 3.20 and Figure 3.21.

They show that the kD-tree is actually slightly slower than the basic bottom-up

algorithm. One potential reason for this behaviour could be that the median split

strategy for the kD-tree is not the best, as proven by [Wald, 2004]. Furthermore,

since there is only a limited amount of splits (same maximum recursion as with the

computer generated models), and all the objects are clustered at more or less the

same point in space, the pruned trees contained in the leaf nodes will not be much

more simplified than the original. As a result, more input data storage is needed

without benefiting from the acceleration structure. It only adds traversal overhead

to the running times.

Most of the trees used in the examples are very close to left-heavy; thus, adding this

optimization did not add a significant performance impact to the models, especially

the engine. The memory use for the left-heavy variants of the models stayed the same.

Overall, the bottom-up traversal shows similar performance improvements with real-

world models due to the reduced memory usage. Interestingly, these models don’t

benefit as much from the kD-tree as the synthetic BlobTrees .

These four models were chosen because of different distinct properties:

• The donkey model is built from a small number of nodes, but most of them

are based on sketched primitives, combined using the summation blend. While

the size of the tree is small, the sketched primitives need more time to compute

than the cylinder primitives in the synthetic models of the previous section,

60

(a) Donkey (7 leaf nodes) (b) Monkey (21 leaf nodes)

(c) Robot (37 leaf nodes) (d) Engine Block (149 leaf nodes)

Figure 3.19: Three of the four real world models.

since they are dependent on the number of control points used to create the

sketched field.

• Compared to the donkey, the monkey model is built from more sketched prim-

itives that are combined using the same Gradient Based Blend used in the

61

Donkey Robot Monkey Engine

0

1

2

3

4

5

T
im

e
Μ

s

Time per field-value computation

Top-Down

BVH

Bottom-Up

kD

Figure 3.20: Average run times of a single field-value calculation using the algorithm
variations for the four models, in µs.

Donkey Robot Monkey Engine

0

5

10

15

N
u
m

b
er

o
f

in
te

rm
ed

ia
te

n
o

d
es

Intermediate Storage

Top-Down

BVH

Bottom-Up

kD

Figure 3.21: Intermediate storage entries for the four models.

synthetic case. There is a higher distribution of primitives in space compared

to the donkey, which results in a better improvement of the accelerated test

cases.

• The robot model uses a wider variety of BlobTree primitives and operators,

with the primitives having a good distribution in space. As a result, this model

can benefit from an acceleration structure similar to the monkey.

62

• Lastly, the engine model is the largest example model. It contains four large

parts that are copies from each other, just positioned and rotated differently.

Each of the four sub-BlobTrees are largely left-heavy trees which should show

large performance improvements in the bottom-up case. Because these sub-

BlobTrees are rotated, the axis-oriented bounding boxes, used in the accelera-

tion approaches occupy larger regions of space, resulting in a non-optimal space

subdivision. The performance graph shows that the bottom-up approach is al-

most as fast as the accelerated approaches. Because of the four similar trees

the BVH case works very well at determining an early exit in the top-down

traversal, whereas the kD-Tree case cannot improve performance as efficiently.

3.7.3 Non-Affine Transformations

Figure 3.22: The warp-curve test scene. Notice the top-most three displaced points
in red.

The performance test case for the inclusion of non-affine transformations in the

tree is fairly similar to the synthetic test scene, where the different traversal meth-

ods are compared more generally. In this case, only the Top-Down traversal and the

Bottom-Up traversal are compared. The models to be used for testing are based on the

number of leaf nodes (primitives in the tree) but only for the balanced tree case. Above

every blend node within this balanced tree, a WarpCurve [Sugihara et al., 2010] span-

ning the underlying model with three control points is inserted, where the middle one

is displaced along the surface normal. The larger the number of leaf nodes, the larger

63

the number of interior operator nodes, which is equal to the number of warp curve

nodes.

leaf nodes Top-Down Bottom-Up
2 1.007 0.821
4 2.027 1.839
8 4.364 3.985
16 8.990 8.018
32 17.259 16.317
64 34.640 32.772
128 70.156 64.634
256 140.729 129.534
512 279.599 260.756
1024 563.750 518.007
2048 2536.030 2360.930

Table 3.1: The performance numbers in µs, stating the average time for a single field-
value calculation in µs for the test cases for BlobTrees that include various numbers
of warp-curves.

Given that Disc primitives (slightly less expensive than the previously used Cylin-

der primitives) are combined using the Gradient Based Blend [Gourmel et al., 2013]

(see Figure 3.22), the traversal times/calculation times for a single field value evalu-

ation are fairly similar to the cases presented above. However, since each warp-curve

has to calculate its values based on three thin plate splines, and there are n/2 warp

curves in the test object, most of the calculation time is spent on the warp calcula-

tion. The same warp-curve calculations are done in both cases, so by looking at the

difference in the traversal numbers, there is still a difference between the two traversal

methods. As the warps need to be calculated for both cases, and the overhead of the

warp calculation overshadows the traversal time in the first place, it can be seen, that

the difference between Top-Down and Bottom-Up traversal is still there. However,

most of the time is spent on calculating the warp, and not the tree traversal. Thus,

the non-affine transformation case is computation bound, not memory bound as the

previous cases were.

3.8 Conclusion and Future Work

Due to their mathematical differences, traversal of the BlobTree can’t be optimized

as much as a CSG tree. Simplifying the tree is not possible, since every tree node

64

needs to be evaluated and no short-circuit evaluation is possible for BlobTree oper-

ators. By investigating the memory usage of the traversal, and reducing its overall

memory footprint, similar optimization techniques already applied in CSG rendering

can be used to accelerate the BlobTree traversal. When reinterpreting the BlobTree

as a mathematical expression and rewriting it in the reverse polish notation, the

corresponding bottom-up tree traversal results in a performance improvement of one

order of magnitude. Depending on the structure of the tree, additional performance

improvements can be made by recursively swapping the child nodes of operators in

order to make the tree left-heavy during the tree linearization process. Accelerat-

ing the bottom-up traversal with a kD-tree can result in an almost constant time

tree-traversal.

Future work includes overcoming the memory limitations employed by current

generation GPUs by further reducing the need for intermediate storage. This could

require reordering the tree based on the operators to minimize temporary data stack

push and pop operations. All current GPUs that support OpenCL have a region of

very fast, but very small memory accessible from their compute units. Unfortunately,

this fast memory could not be used for benchmarking since the temporary data stack

does not fit into these memory regions. Once the required temporary memory size is

reduced, the fast local memory can be used during traversal, resulting in additional

performance gains.

An alternative to the presented data-drive approach would be a system similar to

[Reiner et al., 2011], where new OpenCL kernels are compiled for the specific Blob-

Tree configuration. Compiling the Bottom-Up traversal kernel needs several seconds,

which would result in noticeable delays if such approach were to be used. A proper

comparison, especially in terms of run times, is left to future work.

65

Chapter 4

CollabBlob: A Data-Efficient

Collaborative Modelling Method

using Websockets and the BlobTree

for Over-the-Air Networks

User 2

ADD Red Cylinder ADD White Cylinder
MOVE White Cylinder

MAKE Di�erence ADD Red Torus SCALE Torus
ROATE Torus
MOVE Torus

MAKE Blend

User 1

Figure 4.1: An example modelling session between two users.

Collaborative modelling has become more important in the past few years, espe-

cially now that mobile devices possess processing power to support 3D modelling in

real-time. The problem with collaborative modelling using triangle meshes is that

complex models are slow to synchronize and require large network resources, depend-

66

ing on the amount of data needed to update a model. Current mobile networks, such

as 3G and LTE, unfortunately are not as fast as traditional wired internet and have

higher latency. Synchronizing thousands of triangles wirelessly between all participat-

ing users can introduce a substantial lag between transactions, especially on wireless

networks, making fine grained and rapid updates at interactive rates hard to achieve.

In contrast, the BlobTree is based on combining skeletal primitives and sketched-

shapes using standard CSG and various blending operators. Using this methodology,

complex models can be encoded with a smaller memory footprint than mesh-based

systems, allowing for less traffic across a network to synchronize two or more work-

stations with one model. As a result, fine grained and rapid updates are possi-

ble, improving the visual communication between all participating users. CollabBlob

demonstrates the advantages in interactivity and synchronization times over mesh

modelling in a collaborative modelling environment.

4.1 Introduction

4.1.1 Motivation

CollabBlob is motivated by the desire to work collaboratively and share highly com-

plex models across the network. With the introduction of touch-based tablet devices,

a new way to share and model objects collaboratively using touch and sketch-based

input is possible.

Outsourcing on a world wide basis, as studied by [Chu et al., 2006], is a good

example of collaborative modelling in the industry. In this process companies rely on

close collaborations between their suppliers and customers, often called Collaborative

Product Development, where the protection of know-how (e.g. by hiding features) is

very important [Chu et al., 2009].

Large models are very likely to be constructed by more than one person, particu-

larly for product design where designers of different model-parts may be at different

locations. The frame of a bike, for example, is sketched by a designer, whereas the

linkages for the suspension are created by an engineer. Additional parts are added by

another designer to create a final production rendering. Since network speed can be

a limiting factor in collaborative design, one of the main criteria for CollabBlob is its

small memory footprint and reduced amount of necessary synchronization messages.

It provides the functionality to separate model features as a light-weight method for

67

access control.

4.1.2 Collaborative Modelling

In the WebGL [Parisi, 2012] strategy, the majority of the 3D geometric data shared

and transmitted on the network is a polygon mesh. Mesh compression approaches and

progressive meshes try to reduce the amount of information transferred, sometimes

by reducing the overall quality of the mesh.

In comparison, CollabBlob minimizes network loads by transmitting updates to

the hierarchical structure known as the BlobTree [Wyvill et al., 1999], where every

participant receives the most precise description of the model. CollabBlob sends the

information as typed messages with their associated parameters representing user

modifications to the model. This strategy keeps the scene structures synchronized

across multiple design stations. The BlobTree data-structure is modified by each

participant using the commands, and visualization of the model is performed locally

on each system using available processing resources.

4.1.3 Contributions

The contribution of this chapter is a synthesis of existing techniques from different

disciplines. By using a hierarchical implicit modelling system network traffic is min-

imized and a sketch-based metaphor is used to directly manipulate a model. The

implemented messaging system is server-less, does not require locks for synchroniza-

tion and is based on Websockets [W3C, 2013]. Together, these improvement create

a system contribution that can impact the way models are built in a collaborative

environment as shown in Figure 4.1.

In situations where handheld devices are connected via 3G/4G networks, this

method shows a big advantage over previous approaches: Fine grained and rapid

updates of the scene are possible due to the BlobTree’s small memory footprint,

enabling the system to be highly interactive. The approach is lock free and enables

‘simultaneous modifications’. When several users want to change the same feature of

a model in different ways, all of them can modify this feature (e.g. translate or rotate

it) at the same time.

While CollabBlob presents a unique user interface to collaborative modelling, its

main focus is to demonstrate the advantages of the BlobTree compared to mesh

approaches in the context of collaborative modelling. For this reason, the current

68

user interface has not been evaluated in a user study. Improvements to the user

interface and evaluating it are left to future work.

4.1.4 Outline

This chapter is organized as follows: The system of network messages is explained

in Section 4.3.1, with an in-depth discussion of each message layer in Section 4.3.1,

4.3.1 and 4.3.1. Synchronization issues are discussed in Section 4.4 and the unique

user interface features are explained in Section 4.5. The chapter continues with some

example objects modelled using CollabBlob, including a discussion on the of data

transmitted in Section 4.7. Finally, Section 4.8 concludes this chapter and future

work is proposed in Section 4.9.

4.2 Related work

[Mouton et al., 2011] provides an in-depth analysis of current collaborative environ-

ments, mainly targeted to handle visual data sets. New applications should try to

reduce their usage of bandwidth by using local client resources to increase an appli-

cation’s interactive performance. They advocate for a focus of new applications on

transferring less data and calculating more information. In addition, they suggest

that developers of new applications should try to use given standards instead invent-

ing their own. The approach presented conforms with this idea, because it uses low

bandwidth and uses HTML Websockets for transferring the information.

One early distributed virtual environment for engineering and manufacturing was

CollabCAD [Mishra et al., 1997]. In this system, a mesh model is shared across the

network among multiple designers. Previously designed models are imported for

further manipulation and detailed modifications. Concurrent access to a common

design is enabled for viewing and modification.

[Nishino et al., 1999] created a collaborative modelling environment to enable the

design of implicit models. Each participant in the system can log into a session

server to gain access to the part of the object being designed by other participants

on that server. All session servers are managed by a centralized world server, which

controls access rights and updates done by all participants. To make a modification

to the model each participant requests an update right which is acknowledged by the

session server. Each client holding an update right sends updated parameters to all

69

other participants connected to the same session server. Then it releases the update

right and saves the tree data to the session server, not allowing simultaneous input

from several nodes. CollabBlob uses the same basic idea of an implicit modelling

system. It improves Nishino’s system by using the BlobTree, which provides a variety

of primitives including sketch-based shapes, CSG and different types of blending and

deformations [Sugihara et al., 2010]. It avoids problems associated with having a

central session server handling update rights (e.g. when the server fails) by offering

a server-less system that allows multiple designers to make changes to the model

simultaneously.

Many mesh-based approaches employ client-server architectures, such as the ones

by [Han et al., 2003], [Ramani et al., 2003] and [Kim et al., 2006]. Meshes are trans-

ferred between the clients and the server, never between clients. All of these ap-

proaches use different ways to control access to parts of the model, all controlled by

the central server. Approaches, such as the one presented by [Chu et al., 2009], try

to compensate for the lack of synchronization speed of mesh approaches, by adding

a mesh hierarchy or a level of detail method. One of their problems is that as the

details and, therefore, the complexity of a model increase, updating the mesh hierar-

chy rapidly becomes the bottleneck in the system. This is in addition to the issues of

client-server based approaches.

CollabBlob is based on Websocket [W3C, 2013], which is a standardized protocol

to transfer messages across the internet, based on HTTP. [Marion and Jomier, 2012]

use a Websocket implementation to transfer the scientific data to and between their

clients. The data set is transferred when the program starts and only once it is

finished, the collaboration process starts. In this process users can work on the

data set concurrently, but the data set cannot be changed interactively. Marion

highlights that the Websocket implementation can achieve lower latency and a higher

synchronization rate than a comparable AJAX implementation.

Computer Supported Cooperative Work (CSCW) tries to find ways to present

information to users in a collaborative environment and to optimize workflows be-

tween many users. The work by [Morris et al., 2004] identifies problems that occur

in multi-user situations of cooperative system, especially when the number of users

increases. Social protocol, while powerful for small groups, becomes less efficient in

avoiding conflicts between a large number of participants. Sometimes actions by one

user will change settings of others, or, for example, close documents that others are

working on. Approaches, such as Lark [Tobiasz et al., 2009], try to overcome some

70

of the aforementioned issues by providing unique virtual views for every participant

in the shared space. CollabBlob, in contrast, does not provide a single shared space,

which avoids some of the issues found in co-located shared groupware systems. Social

protocol, as discussed in more detail below, is still an important factor to provide a

conflict free collaborative modelling session.

A different approach to collaborative work that is closely based on the workflow in-

troduced by version control systems is Branch-Explore-Merge [McGrath et al., 2012].

It allows users to simultaneously work on the same data-set, however, there is the

option of generating a local copy of the data (branch) to work independently from

each other. Once the work task on the branch is completed the results need to be

merged back to the shared space, in order to collaboratively finish a task. The option

to branch and merge is not part of CollabBlob on purpose because it is designed so

that all participants always see the current state of the model. Adding the capabil-

ity for branching to CollabBlob requires that all branched models are shown in the

viewport simultaneously. Visualizing all the branches at the same time poses its own

set of challenges and is left to potential future work.

Distributed sketching has been a topic of interest in the CSCW and groupware

community for a long time. While most reported systems are for simple 2D sketches,

the human and social factors underlying distributed interaction apply equally to 3D

modelling. These factors are perhaps best summarized by the mechanics of collabo-

ration that cover the basic communication and coordination operations of teamwork

- the small-scale actions and interactions that group members must carry out in order

to collaborate within a shared workspace [Pinelle et al., 2003]. In brief:

• Explicit communication occurs not only through spoken and written messages,

but by gestural messages, deictic references and actual actions that accompany

talk (e.g., indicating, demonstrating, pointing, moving a pen to initial drawing,

drawing actions).

• Information gathering includes fine-grained knowledge of what others are doing.

This includes basic awareness (who is in the workspace, what they are doing,

where they are working), feedthrough (changes to objects made by others),

consequential communication (body position and location, gaze awareness).

• Shared access describes how people access tools and drawing objects, which

covers how they reserve and obtain such resources, and how they protect their

71

work by (for example) monitoring others’ actions in an area and negotiating

access.

• Transfer covers how people physically handoff objects to others, and how they

place objects in a space so others can use them.

Technically, CollabBlob require a few factors for the above to work in a real-time

collaborative situation. Firstly, people need to communicate through words. This

means a rich communication channel is necessary: in CollabBlob’s case, people are

expected to use existing systems (e.g., telephones, VOIP, video conferencing) along-

side while modelling. Secondly, people need to see rapid and fine-grained updates

of the 3D sketch as it evolves, including transitional states that accompany object

addition, deletion, movement, transformation, and so on. If delays are excessive, or

if objects just ‘shift’ from one state to another without displaying in-between states,

people have difficulty tracking what is going on, and have problems coordinating their

talk with their sketching actions. This is the main motivation of CollabBlob: by using

and transmitting only a small set of parameters, fine-grained and rapid updates are

possible. Thirdly, people need to be embodied in the system in a way that others can

see where they are, and what they are about to do. As common in most groupware,

CollabBlob dos this through multiple cursors, implemented as arrows in 3D space and

camera items implemented to show a miniature of the remote user’s view of the scene.

One side effect of CollabBlob is that the construction history of the whole model is

implicitly saved and can be used to replay the design process. Once the full history of

a model is available, it can be used for demonstration purposes and even as a learning

tool. MeshFlow [Denning et al., 2011] is a system that visualizes the construction of

large mesh model. The history is filtered using a process which clusters operations

within the construction history, and parts of the model can be a highlighted and

annotated. As a result, MeshFlow can provide a good overview on the construction

process and to focus important parts of the modelling process automatically. Because

their approach is based on storing the full mesh at every step, the size of the history,

while not stated explicitly, is likely to be bigger than in CollabBlob.

MixT [Chi et al., 2012] is a newer approach to generate tutorials automatically

from a stored construction history. MixT is not limited to geometric modelling

because it uses screen captures and input logs to generate the tutorial. By post-

processing the videos, it generates hybrid tutorials that contain videos and static

content (text and images). The reason for combining both types of tutorials is that

72

while video tutorials effectively describe interactions with the program, they are hard

to navigate. Static tutorials, on the other hand, are the opposite in those respects.

Consequently, MixT combines the advantages of both.

Another approach that uses the modelling history by [Chen et al., 2014] analyses

the workflow to detect important regions of the model. These regions are then used as

the highlights and focus regions of an interactive summary of the modelling process.

Similar to MeshFlow, the system stores the model at discrete intervals, requiring

significant amount of memory.

4.3 Implementation

Other groupware systems, as discussed in [Greenberg and Roseman, 1999], have dealt

with the ‘large model’ problem in several ways. One common approach is screen shar-

ing of single user applications: instead of sending the model, only the screen visuals

are transmitted. Key limitations are that users have to take turns (simultaneous

input does not really work as shown by [Nishino et al., 1999]), and that the model

is not available at all sites for offline use. Another approach discussed by Greenberg

et. al. transmits only user input, such as mouse movements, to keep the model syn-

chronized, since as long as the input across applications remains synchronized, the

models constructed at each site are the same. Such synchronization can be difficult in

practice, and introduces the ‘latecomer’ problem. If a model has already been created

ahead of time, either the entire model or the input stream up to that point have to be

transmitted to bring the late entrant up to date. CollabBlob’s underlying data struc-

ture, the BlobTree, on the other hand has the advantage of a compact representation,

even for a large model (see the airplane model in Figure 4.10d), so even sending the

whole history does not involve a lot of data transfer.

4.3.1 Network Message Layers

To satisfy the aforementioned properties for efficient collaborative systems, CollabBlob

maintains a true copy of the model(s) across all clients. For these cases CollabBlob

is based on a parameterized approach that includes a protocol, which can be cate-

gorized into several layers, each of them dealing with separate parts of the required

communication:

• system messages, described in Section 4.3.1

73

• actions described, described in Section 4.3.1

• user interface messages, described in Section 4.3.1

CollabBlob is a synthesis of techniques from different disciplines as the basis to

overcome problems present in several existing distributed modelling environments. In

this system, no node is a dedicated server, so the need for an election algorithm in

case the server loses connection is not present. Every node connects to every other

node and all messages are sent via multicast to all participating members. Each

message apart from a system message contains its sending time stamp relative to

the start time of the modelling session. These time stamps are mainly needed for

synchronization, but they also directly provide one of the additional benefits of the

message system, described in Section 4.7.1.

Message types differ in the way they are applied:

• System messages are executed right away when they are read by each host.

• Actions and user interface messages are buffered in between the rendered frames.

The buffers are updated at the start of each frame to avoid unnecessary work

between frames, and potentially not having the data changed while rendering

is in progress. This reduces the computation workload, since the program poly-

gonizes at maximum once every frame.

System Messages

CollabBlob uses Lamport timestamps [Lamport, 1978] to provide concurrency be-

tween all nodes, as described in Section 4.4. One main objective of the system mes-

sages is that all users use the same time base in the messages sent. These time

stamps are in coordinated universal time (UTC) and every node in the system myst

be synchronized to a local time server.

When a new node A connects to one of the nodes B currently in the modelling

session, B sends the start time of the session to A. In case node A already has

modelled something, the local model is reset and the remote one is loaded. The other

main objective of the system messages are handling of all connected users. After A

connects to B, B gathers the IP addresses of all its connected nodes and forwards

them to A. A starts connections with all the nodes whose data it receives, and

confirms to B when this is achieved. Then A receives the action history (see below)

of the current modelling session from B to create the model and participate in the

74

session. If one single node loses connection to the system and reconnects, the same

procedure applies. The reconnection is handled as if it is a new node connecting,

discarding the old information on the reconnected node.

Actions

In CollabBlob, the term action is used for any network message that changes the

current shared model. This means that after an action is received and applied, the

actual model is changed. A user interface message, on the other hand, is used for

immediate feedback and only shows an approximation of the future change.

Since actions modify the actual model, the following different types of BlobTree

data objects are defined:

• primitive objects with their parameters (e.g. colour),

• sketched objects with the parameters (as above) plus the sample points,

• operator objects with optional parameters e.g. the Ricci Blend Operator and

• transformations (standard affine transformation or warps, bends and taper

nodes).

Primitive objects and sketch objects are leaf nodes in the BlobTree, whereby trans-

formations have one child node and operators usually have two child nodes. For

primitives, sketched objects and operators, there is only a limited set of potential

values (e.g. a sphere or a cube primitive, etc.), so the main information is given by

setting the exact data objects using its explicit type information. If needed, a limited

set of additional unique parameters (such as transformation values) is transmitted as

well. Every action creating a new node in the BlobTree gets a unique time stamp,

which is part of the message, and actions operating on the existing nodes (operators

and transformations) take these IDs as parameters as well. This information can be

seen as the minimal representation needed to describe an arbitrary BlobTree in the

system: node type information, IDs and additional parameters.

When a model is created, it can be thought of as a series of semantically different

tasks:

• add primitive and set its parameters,

• sketch object based on a given control polygon,

75

• add operator combining several nodes of the tree that have parameters de-

pending on the operator,

• move, scale, rotate and delete a BlobTree node and all its underlying children

if present,

• undo and redo of any action

The actions defined above are independent of their actual implementation in a

user interface. For example the delete action can be either triggered by a button

click in an application having a CAD like interface or it can be triggered by the user

directly using a gesture, in this case crossing out the object in a sketch interface (as

in [Schmidt and Wyvill, 2005a]).

User Interface Messages

(a) iPad (b) OSX

Figure 4.2: An example modelling session between three users. Both, the iPad (left)
and the desktop (right) application show the users, and the modification about to
happen (initiated on the desktop).

A major advantage of CollabBlob is that the BlobTree data structures transmitted

are small, enabling fine-grained and rapid updates of the scene. This approach also

allows to transmit what the users are doing when they are not applying changes to

the BlobTree. In order to achieve this immediate feedback of what is going to happen

after the remote user finishes his current task, several messages to describe user input

are incorporated into the system. CollabBlob uses these messages to update several

distinct, non -BlobTree- related data:

76

• camera parameters to have information about everybody’s point of view,

• cursor positions to show where remote users are pointing at in 3D space and

• immediate feedback showing the result of a geometric transformation

To avoid unnecessary immediate steps, the BlobTree itself is only changed and re-

polygonized when the action for the final modification is sent.

Without these messages, changes to the model would just appear at every partic-

ipant’s computer when they are applied to the tree, without any previous feedback.

An example of this behaviour would be an object being transported from one location

to another. This feedback is needed to communicate changes between all participants

in the modelling session. When a user adds a new shape to the scene using sketch-

ing, the control points of the sketched shape are transmitted as they are drawn, so

the other users are informed at every stage of the drawing process. The information

transmitted in the user interface messages does not modify the final tree, because

the necessary transformation data is sent separately. This is done so it is possible to

discard all the user interface messages when saving the final model actions, and still

have all the necessary data to reconstruct the model.

4.4 Synchronization

CollabBlob’s synchronization approach is based on optimistic time stamp ordering, as

described by [Kung and Robinson, 1981]. The timestamps are transferred in relative

time in microseconds since the session’s start time, assuming that all the participating

users have working clocks that are synchronized via their operating systems. Every

action is assigned a time stamp by the originating host system and applied at every

participant ordered by the time stamps. In case a latecomer message arrives and

messages with a later timestamp have already been applied, the latter are rolled

back, the latecomer message is inserted and all following ones are reapplied.

As defined in optimistic time stamp ordering, there is a chance of actions conflict-

ing, which in this case can be:

• A node that is already a child node in the tree cannot be made a child node

again, as it would have two parent nodes. If such an action occurs, it will be

ignored and the originating user informed about it.

77

• A node that has been deleted cannot be altered. Similar to the above scenario,

such a message will be ignored and reported too.

• In case different users modify the same part of the model, the messaging system

decides if a potential collision has occurred. A global parameter to the modelling

session is the minimum time between actions on the same node by different

users. In case actions are too close, they are chosen on a first-come-first-served

basis, and others are discarded. In CollabBlob’s implementation, a time frame of

one second has proved to work well, since it can be assumed that an action will

be applied at all the other nodes within this time and can be visually registered

by all participants.

Every new node is assigned a unique ID using the standard UNIX uuid generator.

This generator uses a combination of the local mac address and the timestamp to

generate a 128bit wide ID that is considered unique [ISO, 1996]. An action creating

a new node contains this ID and, as a result, it is easy to identify the same nodes

across the network.

Messages in CollabBlob do not need to be acknowledged, but when they need to be

ignored as a result of a conflict, a message is sent to make sure all other nodes ignore

this action too. In these cases, changes are not applied to the model as requested,

and users see the model automatically roll back the conflict.

It is expected that the number of conflicting actions can increase with the number

of participants in one small modelling session. In such a situation it is very likely

that people try to modify objects at the same time. A solution to this problem in a

more sophisticated production system would be the capability to actively lock parts

of the model, or implement a similar approach as Branch-Explore-Merge. In the latter

case, users could branch parts of the model, and modify them without other people’s

interference. The branching results can be shared and demonstrated in the common

workspace and voting mechanisms can be used to decide if a branch can be merged

back for everybody to continue.

4.5 A Collaborative User Interface

The three types of user interface messages (camera parameters, cursor positions,

intermediate transformations) are:

78

• Camera parameters are used to present the model from the point of view of

the other users. These parameters are used to render the scene as seen by

the other users into a texture. It is then used as the interactive avatar for the

specific user, displayed as a screen aligned quad at the 3D position of the remote

camera. If the remote user’s camera is outside the current viewing frustum, the

screen aligned quad is clipped to the frustum borders, so it is always present.

If necessary, the virtual camera view can be enlarged by clicking on the avatar.

This approach has also proven useful if multiple views of the same model are

required.

• The 3D cursor positions of the users are visualized within the scene. If the user is

not pointing at any object in the scene, the 3D position is at a constant distance

along the view ray of the remote user. An arrow is used to visualize this 3D

cursor, with the tip of the arrow being the position transmitted. Its orientation

corresponds to the remote camera. In case the remote user is currently sketching

a new shape, the transmitted 3D sketch control points are visualized, describing

the control polygon of the part of the sketch already drawn. When the message

to end the sketch action is received, the control polygon is removed from the

screen, since it will soon be replaced by the actual sketched object.

• The intermediate transformation results are displayed using the same visuals

that are used for transformations done by the local user. Depending on the type

of transformations, certain widgets are displayed at the centre of the current

BlobTree node. Widgets used locally display an active transformation mode

depending on the chosen motion. Since the desired motion for incoming remote

transformations is set by the remote user, only a shadow of the widget is dis-

played to illustrate that the current user has no control over the motion. A

shadow of the node is also displayed when it is moved to convey the current

position of the object to every participant. Otherwise, the object would simply

be ported from one spot to another without actually illustrating who did it, and

when the transformation was started.

Figure 4.2 illustrates the above mentioned features, shown for both the desktop and

the mobile application. There are two additional users present in the modelling

session. On the desktop, both the yellow and the green users look at the scene from

their viewpoints, the mouse cursors hidden from the model in the main view. The

desktop user interacts with the rotation widget (circles in grey), transforming the

79

rotation of the highlighted object. On the main display of the mobile device, the

feedback of the translation of the main part of the coffeemaker (highlighted in pink)

is transformed via the translation widget (original position in grey, the actual position

shown in colour).

The main design mantra when the User Interface of CollabBlob was created was

that it should be familiar to any user of CAD or other CSG-like modellers. Only

modelling actions that are not yet known in standard modelling applications should

use their already known sketch-based modelling method of input. This results in

standard modelling behaviour, unless sketched shapes are involved. Normal primi-

tives are placed by mouse click/finger tap, whereas any primitive or operator that is

sketched is created by drawing the desired shape.

4.5.1 Transformation Gizmos

In general, the gizmos support modifying the transformation state of the selected

sub-BlobTree and show interactive feedback to the user, with the option of restricting

the transformation to the three main axes. Additionally, combinations of two of the

axes, and a “free” transformation along all three is possible as well, in case it makes

sense (ie. this is possible for the translation and scale, but not for rotation). On the

other hand, the rotation widget also supports rotation within the current view plane,

as defined through the camera orientation.

For every gizmo, two visual representations are used to visually highlight the

change in the transformation:

• the current state (in colour)

• the origin state, when moving (in grey).

In addition, when the gizmo is static, immediate feedback about the potential trans-

formation direction is highlighted, if the user would start the transformation based

on the current cursor input. For example, when it is within a certain epsilon of the

translation gizmo’s origin, the whole gizmo is highlighted to indicate a movement

along all three axes, whereby the highlighted region between two axes indicates the

movement along both axes. If only one axis is highlighted, only this movement will

be executed as soon as the movement is started.

In order for the gizmos to work on touchscreen devices, there is a certain epsilon

region around the arrow tips or the handles of the other transformation gizmos, to

80

simplify usage. Since the touchscreen API on iOS devices already filters the input

to provide an accurate “finger” position, the epsilon region size is the same as in the

desktop case. It has to be mentioned that the pre-movement “hover” feedback found

on the desktop is not shown on touchscreen devices due to a lack of reliable hovering

capabilities on touchscreens.

The gizmos are also used to illustrate the interactions of the other participants.

Depending on wether the gizmo represents a local or remote user, it is rendered in a

different colour. While a local gizmo shows both the current state (in colours) and the

origin state (in grey), the remote gizmo only shows the current state, and is rendered

in grey to help differentiating.

Translation

Figure 4.3: The translation gizmo used, providing interactive feedback.

The translation gizmo, as shown in Figure 4.3, is mainly built from three arrows for

each main axis, with each of them colour coded as in any other well known modelling

package (3ds Max, Maya, blender, etc.). By clicking the area surrounding the origin,

the object is moved along all three axes, parallel to the view plane, whereby clicking

on the arrow tips starts movement in on of the main directions. When hovering

in the area between two axes, motion orthogonal to the third axis can be chosen.

Independent from the object’s rotation, the three axes are always displayed in world

81

orientation.

Scale

Figure 4.4: The scale gizmo used, providing interactive feedback.

Similar to the translation gizmo, the scale gizmo consists of three main axes, with

handles at each end. To differentiate them from the arrows of the translation gizmo,

the handles in this case are cubes to conform with some known modelling packages,

such as Maya. The decision on which axes are transformed is done in the same way

as in the case of the translation gizmo. In order to apply a uniform scale, the gizmo

movement has to be initialized around the gizmo’s origin.

Whereas the translation gizmo uses absolute movement, in the scale case, the

amount of scale is based on the scale gizmo size change. This means that if an axis

is elongated to twice the original length, the object’s scale is doubled along this axis.

In the opposite case, when the scale is done so that the handle is at half the original

length, the applied scale factor is 0.5. Once the scale is applied to the object, the

gizmo reverts back to its original measurements, whereby the object’s size stays the

same. The reason for this is that the gizmo is aways displayed at the same absolute

size, independent of the actual scale of the object. In addition, as in Figure 4.4, the

interactive feedback only shows the moving part of the gizmo, and the axes that do

not change the object’s scale do not render any feedback.

82

Rotation

Figure 4.5: The rotation gizmo used, providing interactive feedback.

When controlling the rotation of an object through the gizmo, the rotation is

applied in the same relative way as it is done with the translation gizmo. The rotation

axis is determined via the three coloured circles, or in the case of a rotation within the

view plane, the white outer circle. By moving the mouse cursor or the finger along

the chosen circle, the rotation is applied to the model. If the mouse cursor is only

moved from left to right, a half rotation around the given axis can be applied. For a

full rotation, the full circle has to be “drawn” using the input methodology of choice.

in case of a moving gizmo, the rotation axis is shown in white, with the remaining

axes rendered in their specific colour based on the interactive motion feedback. This

shows that the other two axes are transformed according to the selected motion. Once

the user input has ended, the axes are again rendered in world space, not the object

space.

4.6 Access Control

Building a complex model, such as a car, often involves creating several disjoint parts

that might be built by different specialists. In some cases, it is desirable to have both

of the models displayed together to see if they fit. For this reason, CollabBlob supports

83

several BlobTrees . The same unique identifiers as for tree nodes (see Section 4.4) are

used to identify the trees in the system. In order to assign each action to the proper

tree, these IDs are transmitted with each action. If no tree with the given ID is found

in the local modelling session, a new one is created and gets assigned this ID. Each

user chooses his current active tree and is allowed to switch at any time in the session.

Any action the user takes can only apply to the current selected BlobTree, resulting

in a lightweight access control system.

Assuming a working communication channel is in place, the designers and engi-

neers can coordinate which BlobTree can be altered by whom. New BlobTrees can

be added as needed and are displayed as half transparent until selected by the local

user. This is done so that they don’t obstruct the view of the current active BlobTree

and to illustrate clearly which objects can be altered.

This lightweight access control system can be extended if needed by introducing

formal access control based on users and user groups, similar to the systems described

in Section 4.2. Every node in the BlobTree stores ownership information that can be

used to restrict access to the specific node or subtree in the BlobTree to either a single

user or a group.

Whereas the previous work described (e.g. [Han et al., 2003]) uses a central server

managing access control, a similar mechanism could potentially cause problems if

used in CollabBlob. If, for example, a user/group locks specific parts of the scene,

and disconnects, the locked part will remain locked. Potentially, this problem can be

solved by introducing timeouts to every lock, but this means that locks would have to

be renewed regularly, resulting in potentially unnecessary communication overhead.

Because of this problem CollabBlob does not use centralized locking and leaves a

better locking mechanism for future work.

As mentioned above, a lightweight access control mechanism is implemented by

splitting the whole scene into several smaller BlobTrees , which results in decreased

visualization time, since a change requires repolygonization of only the changed Blob-

Tree. If the same scene consisted of a single BlobTree with disjoint parts, a change

in one disjoint part would require repolygonization all other disjoint parts. This spe-

cific problem has been solved by [Schmidt et al., 2005b], so a combination of both

approaches can still result in fast visualization times. This forms another example of

the advantage of maintaining a true copy of the BlobTree.

84

4.7 Results

Number of Actions Transmitted

0

350

700

1050

1400

Mug Monkey Robot Coffeemaker Airplane
BlobTree Mesh

Figure 4.6: Comparison between the number of actions transmitted in the BlobTree
case and the Mesh case.

Total Size Transmitted [kbyte] - log scale

1E+00

1E+03

1E+06

Mug Monkey Robot Coffeemaker Airplane
BlobTree Mesh

Figure 4.7: Comparison between the total size of memory transmitted in the BlobTree
case and the Mesh case. The y axis is in log scale.

To provide quantitative data of CollabBlob, the modelling characteristics are com-

pared against a mesh based synchronization method. The latter method sends the

85

mesh at every modelling step that requires the model to be changed to each par-

ticipant. Several modelling sessions with results of different complexity (shown in

Figure 4.10) are compared. This evaluation does not include user interface messages,

which are assumed to be the same in both approaches. As a result, more actions are

transmitted for the BlobTree case than for the mesh case, as shown in Figure 4.6.

In addition to the number of actions, the total size of data transferred (Figure 4.7),

time spent transferring this data (latency) (Figure 4.8), and the average time to send

a message updating the model (Figure 4.9) are measured. In the test an average

speed 3G network, with 420 kbps uplink and 850 kbps downlink, is simulated.

Total Transmission Time [ms] - log scale

1E+00

1E+04

1E+08

Mug Monkey Robot Coffeemaker Airplane
BlobTree Mesh time ms

Figure 4.8: The total time spent transmitting the data. The y axis is in log scale.

For the mesh case, there are usually less messages sent, since the mesh will be

regenerated at maximum once per frame, reflecting the changes of several BlobTree

actions. Nevertheless, the mesh approach uses a significantly higher amount of data,

resulting in longer transfer times between the participants. As a result, interactivity

slows down significantly, since the average time for a mesh action lies in the 100 second

range. The BlobTree approach, on the other hand, has an worst case action time of

5 milliseconds. The larger the model, the greater the size of the mesh, increasing the

average transfer time. In the case of the BlobTree, the message size is independent

of the size of the model, as it encodes only the changes in the tree. Sketched objects

have a larger message sizes due to the variable number of control points (e.g. the

monkey model, which has many sketch actions and fewer geometric primitives).

86

Avg Time per Action [ms] - log scale

1E+00

1E+03

1E+06

Mug Monkey Robot Coffeemaker Airplane
BlobTree Mesh

Figure 4.9: The average time spent transmitting a single action. The y axis is in log
scale.

4.7.1 Construction History

There are several advantages of storing the whole construction history instead of

storing only the final model. First of all, by saving the construction history of the

different parts of the model on hand, the model can be recreated at each step. If

a model is highly complex, or in case unnecessary parts were inserted, the actions

building certain parts can be filtered out, to simplify the model. The full history is

relatively small for BlobTrees and keeping it does not degrade the system.

Since CollabBlob also transmits user input and time stamps, it is possible to

playback the whole construction of the model, either in real time, or similar to a

video player, with changed speed. Several modelling communities teach modelling by

using video tutorials that usually require considerable storage space and bandwidth.

Compared to videos, CollabBlob needs significantly less storage, even if accompanied

by an audio stream, commenting the construction history. If the producer of such a

tutorial realizes that something undesired was done during the recording process, a

video editing software is needed to alter the recording. If, in comparison, CollabBlob

is used, the undesired messages can be removed using a text editor.

If errors or undesired changes in the final model are found, CollabBlob provides a

simple way to determine the user responsible for that part of the model. Since every

87

(a) Coffeemaker (41 nodes) (b) Monkey (64 nodes)

(c) Robot (119 nodes) (d) Airplane (810 nodes)

Figure 4.10: The four models used for the performance comparisons.

88

message can be traced to its origin, all that needs to be done is to find the message

causing the undesired model in the history and determine its sender.

Similar methods as MeshFlow [Denning et al., 2011] and MixT [Chi et al., 2012]

can be based on the BlobTree construction history. The tutorials/construction se-

quences generated by such approaches are more advanced than a simple replay of

the construction history. By using a history generated by CollabBlob, however, the

storage requirements of these sequences can be significantly smaller than their mesh

or video based versions. As a result, distributing the tutorials becomes more efficient.

4.8 Conclusion

CollabBlob is a system based on the BlobTree that allows collaborative sketch-based

modelling across a network. The network traffic is minimized by using a hierarchical

implicit modelling system. A sketch based metaphor is used for direct manipulation

of a model, and a layered server-less messaging system that does not require locks for

synchronization. This distributed system uses different layers of messages to distin-

guish between synchronization and setup (system messages), immediate user interface

feedback (Ui messages) and messages that alter the model(s) under construction (ac-

tions).

The CollabBlob application was used to build the four models presented in Fig-

ure 4.10, and to illustrate the advantages of CollabBlob: reduced size of transmitted

data between all users and optimistic time stamp ordering to avoid a lock-based

synchronization approach. Future work will explore the relationship between model

complexity and the use of the message system as described, as well as a detailed com-

parison with a mesh approach. No collaborative approach in the literature was found

that only transfers the change in the mesh. Although this idea would reduce the

bandwidth for communications, a large BlobTree can more efficiently encode details

that would require far more data even in the incremental mesh case.

Actions can be recorded for training purposes and also for reviewing the steps that

have been done to design a part of an object. To control access, a light weight system

where disjoint parts of the model can be separated is integrated, and every person

can only work on one tree, not several at the same time. This reduces the chance

of people adding model information to the wrong parts during the session. Apart

from the ability to allow for fine grained and rapid updates between all users in the

current modelling session CollabBlob has several other advantages. It improves on the

89

most similar system from [Nishino et al., 1999], in that CollabBlob includes a wider

variety of primitives and operators. Moreover, there is no need for a centralized server

managing the scene and access rights and as a result does not have the problems

related to this approach. This enables all users to simultaneously access a variety

of alternative shape modifications and collaboratively choose the most appropriate

result.

4.9 Future Work

The future work targets a more complex access control mechanism, similar to the

one described by [Han et al., 2003], where the amount of details revealed for each

participant can be controlled by roles defined in the system. Potentially, such a

system can be built by extending the access control system presented to configure if

messages per model section will be transmitted to other participants. In case the need

arises to share models at a later stage, the history of the sub part can be manually

sent to the collaborator.

Another topic for future work is improved handling of conflicting actions. Collab-

Blob does not allow conflicting actions within a certain time frame and as a result

there will always be one ground truth of the model shared between all collaborators.

Other approaches, such as [McGrath et al., 2012], have shown that often users like to

apply their own set of modifications to the task on hand, without other people inter-

fering. In the case of collaborative modelling this can happen when different solutions

are desired by different participants. While CollabBlob provides methods to do this

when only one incremental modification is done differently by several participants, it

does not support the same for a series of changes. Being able to branch the model

in the shared workspace will create additional challenges related to the visualization

of the branched models. Additionally, this approach requires a form of merging the

changes based on social protocols [Morris et al., 2004].

The approach to embodiment implemented using the 3D arrows as cursors, and

the remote views will clutter the whole workspace once many users are involved in the

modelling session. In addition, rendering many views on current mobile devices can

have a performance impact resulting in a non responsive interface. Adding the option

to turn off the remote views (or the widgets/gizmos) of other users will declutter such

a situation, and potentially improve render times on mobile devices. Additionally,

the 3D cursor might be replaced by the modelling mode currently selected by the

90

users, in order to extend the deictic pointing metaphor based on the research by

[Wong and Gutwin, 2014].

CollabBlob uses coloured borders of the remote views to distinguish the remote

users participating in the current modelling session. While in theory this allows a

large number of users having unique colours, in practice this is limited by human

vision. Consequently, future work should include an alternative way to distinguish

between users.

Finally, future work includes a proper evaluation of the user interface. CollabBlob’s

main objective is to demonstrate the advantages of using the compact description the

BlobTree provides for large models over meshes. As a result the main focus of this

work is the underlying transmission and synchronization system. The current user

interface of CollabBlob is largely based on a non-collaborative BlobTree modelling

system, and the models presented were built by people familiar with both BlobTree

modelling and the application. In order to evaluate the user interface with its avatars

and cursors, additional people need to use CollabBlob to finish given tasks. The users

evaluating the system should be from two groups, familiar with BlobTree modelling

and unfamiliar with Collaborative work, and vice versa. Each group will be introduced

to the topic they are unfamiliar with, so that the objectives can be completed. Because

CollabBlob runs on desktop and mobile devices, there will be tasks on each platform.

The collection of the user data is already present, when the user-interface messages

are stored within the scene. Consequently, different metrics can be extracted from the

history, e.g. the number of conflicts or which type of actions often lead to conflicts.

Another metric especially interesting for the modelling workflow is how often similar

transformations (e.g. translations) are applied to the model in quick succession,

since this can provide information on how easy it is to specify a desired operation. In

addition to the metrics, direct feedback from the study participants will be important

too.

91

Chapter 5

Angle-Based Filleting : Adding

CSG-like control to BlobTree

primitives

5.1 Introduction

5.1.1 Motivation

Filleting in the context of solid modelling describes the process of creating a con-

trollable and smooth transition between surfaces. Often, the result of such a filleting

operator (a fillet) is also called a bevel or a chamfer, however, fillet is the more general

term for the resulting rounded edge. Figure 5.1 shows the different appearances of a

cylinder top cap, depending on whether the surrounding edge is straight or filleted.

Many CAD applications contain this feature because there are several reasons why

an artist or an engineer might want to model a fillet:

• functional constraints: An example for this would be the region where the

bonnet of a car transitions into the fender.

• aesthetic needs of a designer: For example, the regions between the inlets and

the main cartridge housing of a water tap.

• the side-effects of a manufacturing process: For example, the drill size of

a CNC mill or a weld bead.

92

Figure 5.1: Interpolation between a straight edge along a cylinder top cap (right) and
its filleted version (left).

It has been shown in the past that smooth transitions between surfaces can be

created with little effort in the BlobTree. Additionally, transitions between surfaces in

the BlobTree are smooth per default, so compared to problem of rounding an edge in

CSG, the BlobTree lacks the control over straightening an already round corner while

preserving the field continuity. This chapter discusses how filleting in the BlobTree

context can be improved by giving the user control over the resulting surface.

5.1.2 Approaches to Filleting

Many different approaches to create these transition surfaces exist, often involv-

ing complex mathematical equations that insert surfaces into a CSG tree, such as

the canal surfaces, described in detail by [Peternell and Pottmann, 1997], rolling-

ball solutions (e.g. [Whited and Rossignac, 2009]), or surfaces described by sweeping

spline-based cross sections [Elber, 2005]. These approaches have in common that

additional surfaces are inserted into the CSG tree, replacing primitive boundaries

created through the standard CSG operators. This is needed, as it is not possible

to directly define such a surface using a “filleting operator” within the CSG tree due

to the “binary” space classification every CSG primitive is based on. The BlobTree

already provides limited capabilities to define smooth transitions between surfaces,

especially of different primitives (known as blending), using the methods described

by [Barthe et al., 2004], [Bernhardt et al., 2010] and[Gourmel et al., 2013], which all

93

use the implicit field to define such a surface, thereby fitting seamlessly into the

BlobTree modelling paradigm. Little work has been done to introduce controllable

filleting for surfaces defined within the BlobTree-primitives [Grasberger et al., 2010].

Whereas this approach based on modifying the difference calculation that the sin-

gle primitives are based on tries to control the range between sharp edges and the

standard BlobTree representation using interpolation, a scheme based on the filleting

angle would be more desirable for the user, as this corresponds to the methodologies

already available to CSG users.

5.1.3 Contributions

The main contribution of this chapter is Angle-Based Filleting , an extension to the

BlobTree to support the specification of fillets using an opening angle. Angle-Based

Filleting also gives a user the same tools to specify fillets that are already known

from CAD programs. Compared to CSG approaches, Angle-Based Filleting pro-

vides a simpler mathematical formulation of the fillets. As a result of the generated

field’s C2 continuity, the filleting of fillets is supported and will not cause the is-

sues found in other solid modelling approaches [Middleditch and Sears, 1985]. The

approach is based on the blending operators published in [Barthe et al., 2004] and

[Gourmel et al., 2013] and, consequently, it seamlessly integrates with already exist-

ing BlobTree operations.

5.1.4 Outline

After giving an overview of related work in Section 5.2, the problems involved in

filleting of primitive surfaces are outlined in Section 5.3. The user is guided through

applying an extended implicit field calculation to the known skeleton primitives. Sec-

tion 5.4 starts with the simplest case, where a single radius fillet is applied to one

edge of a primitive. An approach called Surface Fillet Curve, where arbitrary edges

can be drawn onto shapes to be used as the basis for filleting is demonstrated in Sec-

tion 5.5 and a method for variable filleting along one edge in Section 5.6. Section 5.8

shows how filleting can be used to improve models without adding to their BlobTree

complexity. Angle-Based Filleting is summarized in the Conclusion of this chapter,

found in Section 5.9, and potential improvements are suggested in Section 5.10.

94

5.2 Related Work

According to [Middleditch and Sears, 1985] filletings of two surfaces have to satisfy

three important properties:

1. tangency with the base surface to be blended

2. curves of tangency with the base surfaces which are a constant distant (sic)

from the alternate base surface

3. cross section profiles defined and controlled by the ‘shape’ of the profile curve

and the distance of the tangency curves from the alternate base surface.

For some surface configurations, the resulting polynomial filleting surface based on

the above conditions can have an order of up to 23 [Middleditch and Sears, 1985].

This restricts the approach to be used in non-interactive modelling environments

only. Mathematically simpler filleting operators have been developed as a result (see

below), but the three aforementioned properties are still important.

The approach by [Elber, 2005], despite being fundamentally different, as it is

based on defining the filleting surfaces’ cross section using parametric curves, still

tries to satisfy the above-mentioned conditions by allowing continuity up to C2. This

tangency is required to provide smooth shading along the surface boundaries between

the surfaces to be filleted and the fillet itself. Given that this approach allows for

any transition that can be described by the polynomial cross section, the constant

distance requirement mentioned above is not satisfied.

Within the domain of implicit modelling, approaches based on functional repre-

sentations (“F-Reps”) attempt to solve the filleting problem (e.g. [Pasko et al., 1995]

and [Adzhiev et al., 1999]). These approaches allow (controllable) blending between

all objects and can control the influence region of blends [Pasko et al., 2005]. In the

case of two F-Rep planes, the radius of the blend can be controlled, creating a fillet

that matches the results of CAD approaches, as shown in Figure 5.2.

Both [Rossignac and Requicha, 1984] and [Hoffmann and Hopcroft, 1985] advo-

cate blends/fillets with circular cross sections and provide methods to create them.

These blends are very much related to canal surfaces [Peternell and Pottmann, 1997]

and their surface boundaries. Canal surfaces are created by rolling a ball that remains

in tangential contact with the adjacent surfaces. [Chen and Hoffmann, 1993] present

an approach where the ball has constant radius, while [Whited and Rossignac, 2009]

95

Figure 5.2: Bounded Blending showing how a blend can transition into a straight
edge. (Image from [Pasko et al., 2005]).

incorporate varying radii for the ball used. Despite these surfaces being of lower

complexity than [Middleditch and Sears, 1985], they can still have a high order. This

complicates their evaluation in an interactive modelling environment or renderer, as

there can be numerical stability issues and the interval arithmetic methods used to

evaluate them are also costly.

In the case of BlobTree modelling, filleting can be split up into two domains:

• filleting between primitives (usually called “blending” in the BlobTree context)

• filleting between surfaces of a single primitive.

[Grasberger et al., 2010] proposed filleting the edges of BlobTree primitives by

blending between a straight edge implementation of a BlobTree primitive and the

standard BlobTree representation. This, however, creates two problems. First of all,

the field of the straight edge primitive is discontinuous in the inside region of the

primitives involved, as illustrated by Figure 5.3. Secondly the straight edge is also

present in the interpolated versions (see Figure 5.4), and does not resemble an increase

in the sphere/filleting radius when compared to a rolling ball solution in CSG. Ideally,

the straight edge would stop immediately once the fillet has a radius r > 0.

Angle-Based Filleting is based on the controllable blend operators defined by

[Barthe et al., 2004] and [Gourmel et al., 2013]. In [Barthe et al., 2004], blending is

done based on the arc of an ellipse, which would actually allow for filleting based

96

Figure 5.3: Cross-section of the discontinuous inside field (red) to calculate a straight
edge (Image from [Grasberger et al., 2010]).

on a rolling ellipsoid. The problem with the ellipsoid-based blend approach, how-

ever, is that the so-called clean union has to be calculated using complex numbers.

[Gourmel et al., 2013] restrict these operators to be based on a function close to the

arc of a circle, which is symmetric and close to a rolling ball. This results in a clean

union operator that is significantly less complex to compute.

For these reasons, Angle-Based Filleting ’s method of filleting within primitives

is based on the math described in [Gourmel et al., 2013], as it is the most powerful

blending operator and C2 continuous. In addition Angle-Based Filleting is used in

conjunction with the Gradient Based Blend operator (see Section 2.6), so that the

fields generated by fillets and blends are similar. A sophisticated implementation, as

a result, can be transparent to the user whether a fillet is created between the surfaces

of a BlobTree primitive (outlined in this chapter) or between the BlobTree primitives

(shown in related work on blending in Section 2.4 and 2.6).

97

Figure 5.4: The straight edge shown during the interpolation (Image from
[Grasberger et al., 2010]).

5.3 Mathematical Problems

All BlobTree primitives, due to their formulation as Skeletal Implicit primitives, are

defined by a distance function to a given skeleton. For the point skeleton, the distance

function to create the resulting sphere is uniform for the whole skeleton:

d(p(x,y,z)) = ‖o(x,y,z) − p(x,y,z)‖

In contrast, other primitives have a piece-wise distance function, such as the cube

skeleton (other skeleton distance functions are stated in Appendix B), centered at

o(x,y,z), which is defined ([de Groot, 2008]) by:

98

d(p(x,y,z)) =
√
↑ (0, dx − ‖ax‖)2+ ↑ (0, dy − ‖ay‖)2+ ↑ (0, dz − ‖az‖)2

dx =
ax(o− p)
‖ax‖

dy =
ay(o− p)
‖ay‖

dz =
az(o− p)
‖az‖

The ↑ denotes the max operator. dx, dy and dz are the distances between p(x,y,z)

and the projection of o onto the three perpendicular arms ax, ay and az. They are

normalized to the length of ax, ay and az. Assuming that ax, ay and az are actually

axis aligned and a rotated cube is created using the affine transformation property of

the primitive, this formulation can be simplified and split into distinct branches:

d(p(x,y,z)) =



dx if dx ≥ 0 ∧ dy < 0 ∧ dz < 0

dy if dx < 0 ∧ dy ≥ 0 ∧ dz < 0

dz if dx < 0 ∧ dy < 0 ∧ dz ≥ 0√
d2x + d2y if dx ≥ 0 ∧ dy ≥ 0 ∧ dz < 0√
d2x + d2z if dx ≥ 0 ∧ dy < 0 ∧ dz ≥ 0√
d2y + d2z if dx < 0 ∧ dy ≥ 0 ∧ dz ≥ 0√
d2x + d2y + d2z if dx ≥ 0 ∧ dy ≥ 0 ∧ dz ≥ 0

(5.1)

dx = |px| − |ax| (5.2)

dy = |py| − |ay| (5.3)

dz = |pz| − |az| (5.4)

In these cases, a single coordinate is used for the distance calculation at the flat

plane of a cube side and two coordinates are used at the edge (the edge is along the

missing axis in the calculation, i.e. the field along z is calculated by
√
d2x + d2y). The

distance in a corner case is calculated with all three coordinates. The other skeletal

primitives, potentially supporting filleting of edges, can have their distance functions

separated into similar branches, such as the cylinder and the cone.

In the case of filleting two or more surfaces, the branch of the overall skeleton

distance function defining the edge between the two (or three) planes adjacent to

99

the edge (or corner) has to be replaced. The sections below demonstrate, how this

replacement can be done in the case of a single radius along a single edge (see Sec-

tion 5.4), filleting along a Surface Fillet Curve (Section 5.5) and variable radius along

one edge (Section 5.6).

5.4 Fixed Radius Filleting along one Edge

Previous CSG related work defines a fillet and its shape based on the radius of a

rolling ball [Whited and Rossignac, 2009], which is used to create a canal surface.

An implicit approach compatible with the BlobTree needs an implicit field of at least

C2 continuity. In addition, to create a modelling experience that gives the users

familiar tools to specify fillets, Angle-Based Filleting also needs to to define a fillet

using a rolling ball radius.

(a) Fillet defined using ball radius (b) Fillet defined using opening angle

Figure 5.5: Comparison of a fillet defined using a rolling ball and the opening angles
as defined in [Gourmel et al., 2013]. Radius, opening angle and fillet shape are colour
coordinated.

[Gourmel et al., 2013] present a methodology to create a smooth blend between

two fields of varying shape. This methodology defines a blend within the implicit space

I2 (see [Barthe et al., 2003] and Section 2.4 for an in-depth discussion), by specifying

100

a so called opening angle within the first quadrant of I2 to define the smooth portion

of the blend. The larger the opening angle θ, the smaller the smooth portion. The

part of I2 that is within θ and π
2
− θ defines the the smooth blend and approaches a

circular curve.

As a result, it is possible to formulate how to transform the radius of the rolling ball

into the opening angle. The mathematical formula defined by [Gourmel et al., 2013]

can be used to calculate a new (close to circular) distance field, which is based on the

opening angle θ as defined in [Barthe et al., 2004]:

Yp0 = Cptan(θ) (5.5)

where Cp defines the iso-distance and YP0 the y value of the intersection point

between the two lines x = Cp, y = tan(θ). In this implicit space I2, the radius rfil is

then defined as

rfil = Cp − YP0 (5.6)

rfil = Cp − Cptan(θ) (5.7)

Given that θ needs to be expressed using the given filleting radius, the formula

results in:

θ = atan((rfil − Cp)/Cp) (5.8)

For any distance-based skeleton, the euclidean distance d =
√
d21 + d22 (see Equa-

tion 5.1) along a single edge can be replaced by g(f1, f2) [Gourmel et al., 2013]:

g(f1, f2) =


max(f1, f2) if f1 ≤ kθ(f2) or f2 ≤ kθ(f1)

{C : h̄C(f1, f2) = 1} otherwise

(5.9)

h̄C is defined as:

101

h̄C(f1, f2) =

√
(f1 − kθ(C))2 + (f2 − kθ(C))2

s̄(ϕ)(C − kθ(C))
(5.10)

where (5.11)

kθ(f) =
tan(θ)

2

(
4

1 + tan(θ)
λθ(f)

)2

(5.12)

λθ(f) =

{
f if f ≤ tan(θ)

2
1−tan(θ)

4
Φ(22f−tan(θ)

1−tan(θ)) + tan(θ)
2

otherwise
(5.13)

v(x) = exp(exp(exp(1)− exp(1)x)− 1)− 1 (5.14)

In this case, the shape function s̄(ϕ) can be set to the identity, since only a “circular”

fillet shape is desired (similar what has been done by [Vaillant et al., 2013]).

In these formulas Φ ensures C∞ continuity of λθ. It can’t be calculated directly,

but has to be computed using binary search based on Φ−1 (see [Gourmel et al., 2013]

for more details):

Φ−1(x) = x+
1

exp(1)
log

(
log

(
1

v(x)
+ 1

)
+ 1

)
(5.15)

Even though the original formula is used to apply a blend to two field-values f1

and f2, it can also be used to combine two distance values. There is a difference in

how these formulas are used in the original paper compared to the usage within the

filleting context. In the original paper, C corresponds to the iso-value, whereas in

Angle-Based Filleting , the iso-distance is used instead. In order to accelerate the

calculation of g(f1, f2), the authors in [Gourmel et al., 2013] propose precomputing

the results at regular intervals for the range of opening values θ ∈ [0, π
4
]. Any triplet

of (f1, f2, θ) is then used to look up and interpolate the corresponding results using

the method described in the original work.

Only the cylinder and the cone primitive have the capability to create fillets be-

tween two surfaces along one edge. Their unmodified distance calculations are stated

in Appendix B. Both of these primitives have circular edges, due to their symmetric

definition around the main axis. The fields in both cases are two dimensional fields

that are rotated, and an edge in these fields is defined as a 2D corner, combining two

distances, such as described above.

102

5.4.1 Cylinder Circular Edge

Figure 5.6 shows a quarter of the field of a cylinder’s cross section. The skeleton itself

is highlighted in faded green and the parts of the field that are only defined by the

distance to the side or the top are faded too. This highlights the upper left corner

section of the field that can be controlled through filleting.

Figure 5.6: Quarter of cylinder’s field cross-section. Everything apart from the edge
case is faded, to highlight the area of interest. Red illustrates the cylinder surface.

For the 90◦ corner, the distances to the skeleton in the y axis and the xz plane,

defined dxz =
√
x2 + z2, can be used as the input for the above mentioned formulas,

either the clean-union variant for a straight edge, or the blend variant with the desired

opening angle/fillet radius as a parameter. This replaces the
√
y2 + d2xz branch of the

skeletal distance formula, creating the following cylinder skeleton distance formula:

d(p(x,y,z)) =


dxz − r if |y| < h

2

|y| − h
2

if |y| ≥ h
2
and dxz < r

g(dxz − r, |y| − h
2
) otherwise

(5.16)

103

5.4.2 Cone Circular Edge

Given the geometry of a cone skeleton, the edge regions and the tip don’t always

have 90◦ field arrangements, but the angle between the two fields depends on the two

parameters of the cone skeleton:

• height hcone and

• radius rcone.

Figure 5.7 illustrates the field region of interest for the cone, in the same way

as Figure 5.6 did for the cylinder. In this case, though to show the arrangement at

the tip, the whole cross section is displayed, despite the symmetric field along the

height/main axis.

Figure 5.7: Cone field cross-section. Everything apart from the edge case is faded to
highlight the area of interest. Red illustrates the surface.

Zooming in on the circular edge, the two mirrored corners in the two dimensional

slice, Figure 5.8 shows that it is possible to define a local coordinate system going

through the corner point of the skeleton. Assuming that the cone skeleton is defined

so the skeleton’s tip is the origin, the two axes, y and dxz meet at their origin oc =

104

(rcone, hcone). One axis of this coordinate system is y, the other one along the x value

within the slice, which is dxz.

α

y

dxz

ns
p

l oc

Figure 5.8: Transforming the euclidean coordinates for a point p into I2 at the cone
circular edge, based on the polar coordinates p = (l, α).

The whole region of the corner is within y and ns, where ns is the normal of the

cone skeleton side, calculated by

ns =
−hcone
rcone

(5.17)

Calculating the angle αns between y and ns provides the range of values that need to

be mapped into the 90◦I2 region using polar coordinates for p = (l, α). (Note that y

in this case is to be treated as the x coordinate in standard atan calculations, as the

coordinate system is rotated by 90◦).

n̂s = ns − oc (5.18)

αns = atan(
n̂sx
n̂sy

) (5.19)

Similarly the angle between y and p is:

α = atan(
pdxz
py

) (5.20)

l =
√
p2dxz + p2y (5.21)

105

To map α into the orthogonal I2 space, it needs to be scaled:

απ
2

= α
π

2αns
(5.22)

resulting in adjusted polar coordinates pπ
2

for p.

pπ
2

= (l, απ
2
) (5.23)

The polar representation of pπ
2

needs to be transformed back into euclidean coordi-

nates:

pπ
2

= (l cosαπ
2
, l sinαπ

2
(5.24)

This results in the two input values (pπ
2 x
, pπ

2 y
) for g(f1, f2) (Equation 5.9).

5.4.3 Cone Tip

Calculating the combined distance for the cone tip is very similar to the case of

the circular edge. Figure 5.9 illustrates the local coordinate system(s) involved in

transforming a point p within the cone tip region into I2. Note that there are two

vectors orthogonal to the cone skeleton sides: ns = −hcone
rcone

and ǹs = hcone
rcone

.

α

y

dxz

ns p

ot

l ǹs

Figure 5.9: Transforming the euclidean coordinates for a point p into I2 at a cone tip,
based on the polar coordinates p = (l, α).

In this case, ot = (0, 0). Thus, p is already defined in the local coordinate space

once it is transformed into the two-dimensional space within the field’s cross section.

106

While it would be possible to calculate the coordinates with the method of the circular

corner, by using polar coordinates and projecting the angle α into the coordinate

system spanned by ns and ǹs, a computationally easier method is available. Assuming

ns and ǹs are of length 1, all that is needed for g(f1, f2) are the coordinates of p with

regards to the two axes ns and ǹs. These coordinates can be obtained by projecting

p onto ns and ǹs respectively, creating pns :

pns = (p · ns, p · ǹs)

In this formula, a · b denotes the vector dot product of two vectors a and b.

5.5 Creating a Surface Fillet Curve

A Surface Fillet Curve describes the creation of a warped surface, similar to what

can be created with the WarpCurves approach. The main difference to WarpCurves

is that a Surface Fillet Curve produces a fillet able edge along the curve, with a

continuous field surrounding it. A sharp edge is produced, when the opening angle

of the corresponding fillet is set to θ = 45◦. In the cases of smaller opening angles,

a fillet analog to the fillets described above is produced. This means that for fillets

smaller than the straight edge case, the control points of the WarpCurve only attract

the surface, without the surface actually touching the control points. As a result the

Surface Fillet Curve cannot create the same surface as the WarpCurve.

Another difference to WarpCurves is that the Surface Fillet Curve’s surface is

not created by warping the underlying object, but instead a second BlobTree object

is created based on the deformation which is blended with the underlying object to

create the final surface. The object can be thought of as a sweep surface, where

a “tear” shape is swept along the drawn line. This tear shape has the tip at the

deformation curve, and the barycenter close to the original, undeformed, control

curve. Section 5.5.1 describes how the field is calculated within the swept frame

along the curve and Section 5.5.2 describes how this swept frame is calculated with

C2 continuity for any point in space surrounding the curve.

107

5.5.1 Calculating a Surface Fillet Curve Frame

A Surface Fillet Curve frame is built by transforming a 2D field (orthogonal to the

drawn curve) into I2 (for an illustration of I2 see Figure 2.9). This transformation

is similar to the cone primitive fillets described above; however, in this case it can

be simplified, given that the area of the field to be filleted is always of the same

size. The 2D coordinate system of a Surface Fillet Curve frame is built based on

the displacement vector d between the original curve and the deformed curve, with

the original curve being the origin within a frame and d the y coordinate. The x

coordinate within this frame is orthogonal to the y coordinate, in 3D defined by the

vector s (and the opposite vector s′), where s ⊥ d and s ⊥ t (t describes the tangent

vector to the curve in 3D). Both coordinate axes are sized relative to the deformation

vector:

• y has the length of the deformation vector d; however, in I2 it is actually mapped

to the vector along the 45◦ medial axis. Thus, its length corresponds to
√

2 in

I2.

• |x| = |d|,

d

ss’

d

s

s’

Figure 5.10: The coordinate system within a Surface Fillet Curve frame (left) and I2
(right).

Figure 5.10 illustrates how the vectors within a frame correspond Surface Fillet

Curve to the coordinate system in I2. For any point p2D within the coordinate frame,

where p2Dy < 0, the distance to calculate the field value is based on the euclidean

distance to the displacement origin.

108

In order to calculate the distance within the coordinate frame, point p has to be

transformed into p2D (assuming â specifies the normalized vector of a):

p2Dx = (p · x̂)/|x| (5.25)

p2Dy = pyproj (5.26)

where (5.27)

pyproj = (p · ŷ)/|y| ∗
√

2 (5.28)

The resulting point p2D is used to calculate the local distance value, needed for

the field-value calculation. In this 2D coordinate system, the half-space, where y ≥ 0,

is used to create the fillet, whereas the opposite half-space (y < 0) creates a closed

object. Since I2 and g(p), as defined in Equation 5.9, only provide a definition for the

first coordinate quadrant, a 90◦ opening, p2D needs to be transformed into p2Dπ
2
:

l =
√
p2Dx

2 + p2Dy
2 (5.29)

απ
2

= atan(
p2Dy
p2Dx

/0.5) (5.30)

p2Dπ
2

= (l cosαπ
2
, l sinαπ

2
) (5.31)

Assuming p2Dπ
2

as pl, the resulting distance function is then:

dres =

{ √
plx

2 + ply
2 if plx < 0 ∧ ply < 0

g(pl) otherwise
(5.32)

Figure 5.11 shows the resulting field within the cross section of the Surface Fillet

Curve primitive. Red shows the location of the surface (an epsilon is used to colour

the pixels, so the line becomes thicker where the field is less dense), and it can be seen

that the field on the bottom shows the compressed euclidean distance field without

the tip. While this image shows the field in the case that a sharp edge is displayed,

Figure 5.12 shows the field for the same frame through the same displacement curve,

but with the opening angle set to fully open (θ = 0). Again, since the lower half is

compressed, the frame itself is asymmetric.

109

Figure 5.11: Field of a Surface Fillet Curve frame, shown with the straight edge tip.

Figure 5.12: Field of a Surface Fillet Curve frame, shown with the opening angle
fully open.

110

5.5.2 Calculating the Surface Fillet Curve Object Field

In order to generate the primitive representing the Surface Fillet Curve, the single

frame described in the previous section has to be swept along the displaced curve.

Generating a C2 continuous sweep of an implicit surface along a continuous curve

creates several problems, mostly related to finding the closest point on the curve to a

given point in 3D space. Luckily, alternative approaches exist, where the parameters

to generate such a frame can be interpolated within a given 3D volume at the de-

sired continuity. The thin-plate spline (or variational implicit surface) interpolation

[Turk and O’Brien, 1999b] forms the basis for the Surface Fillet Curve object.

In order to create a coordinate frame for a specific point in space, the location

of the displacement origin o, the displacement vector d and the normal to the dis-

placement curve s are needed. The variational interpolation has to be set up, so that

any point in space p surrounding the displaced curve returns the triplet (o, d, s) of

the point on the displaced curve closest to p. Each vector contained in this triplet

is defined in 3D and as a result the whole triplet interpolation is the result of nine

piece-wise variational interpolations.

Additional control points for the variational interpolation similar to the off-curve

constraints in [Sugihara et al., 2010] need to be specified. These additional control

points need to have a minimum distance from each other so that the variational

interpolation does not return incorrect values. Thus the minimum distance constraint

according to [Sugihara et al., 2010] for new variational interpolation control points

pnew applies to already added points pcontrol (where vcontrol specifies the corresponding

value to be interpolated at pcontrol):

(|pnew − pcontrol|)/|vcontrol| >
2

3
(5.33)

The off-curve constants are placed in the same way as outlined in the WarpCurves

approach [Sugihara et al., 2010]: For every point along the curve, four off-curve con-

stants are defined, as can be seen in Figure 5.13. The image shows the original control

points along the curve in green, the displaced control points in orange, and the off-

curve constants in blue. The second from the left off-curve constant below the curve

is discarded due to it being too close to the second one. Contrary to the WarpCurve

approach, where the weight at the off curve constants is 0 (to bound the field) the

Surface Fillet Curve assigns the four off curve constants the same weights as the

points along the displacement curve to create a region of constant values around the

111

Figure 5.13: Placements of the off-curve constants.

curve.

The four off curve constants pnew to the control-points cp, the displacement d and

curve normal n to interpolate are:

pnew =

{
cp ± 2|d|d̂
cp ± |d|n̂

(5.34)

Generate the End Caps of the Surface Fillet Curve Primitive

In order to bound the field at the start and end of the Surface Fillet Curve, the

variational interpolation has to be modified at the start and end of the curve. These

regions are defined using planes built from the start/ end points and their respective

plane normals (defined using the second and second last displaced control point loca-

tions). The constraint that the start and end point of the curve must not be displaced

has to be enforced, in order to create a well formed implicit field. By having the zero

displacement constraint, the Surface Fillet Curve starts and ends in a single point.

112

Figure 5.14: Comparison of different fillets along a Surface Fillet Curve and the
corresponding slices through the field:
top row: opening angle of 45,
middle row: opening angle of 22.5 and
bottom row: opening angle of 0.

113

The field on the opposite sides of the start/end planes is calculated based on the point

p projected onto the closest plane, pproj. In addition, this field value is multiplied by

the distance ¯pprojP , modified by the Wyvill field-function (see Chapter 2).

5.5.3 Combining the Surface Fillet Curve Primitive with the

Base Model

When the tear shaped Surface Fillet Curve primitive is blended with the underlying

object it creates additional surface detail. Depending on the set opening angle when

creating the Surface Fillet Curve frame, either a sharp edge or a round fillet is created.

See Figure 5.14 for an example of different filletings along the Surface Fillet Curve.

5.6 Variable Radius Filleting along one Edge

Similar to the rolling ball solutions, such as [Whited and Rossignac, 2009], Angle-

Based Filleting supports changing the radius of the “rolling ball” along the filleted

edge. In Angle-Based Filleting , the variable fillet is done by changing the opening

angle along the edge. The cylinder and the cone are the only primitives that have a

single, circular edge. As a result, the filleting angle along the edge can be parametrized

based on the angle within the xz plane. Theoretically, this parameterization would

also be possible for the cone’s tip, but it doesn’t make sense to have a variable opening

angle at only one point. As a result, the fillet at the cone tip can be considered

constant, and only the circular edge requires a variable filleting radius.

In the canal surface context, [Xu et al., 2006] and [Peternell and Pottmann, 1997]

discuss the maximum change r(t) the radius can have. It depends on the formula

defining the edge m(t):

|m′(t)|2 > r′(t)2 (5.35)

In this case, m(t) describes the curve formed by the filleting origins around the

main axis of a cylinder or cone. If the radius of the fillet is constant for the whole

edge, m(t) describes a circle surrounding the cylinder or cone base, parametrized by

the rotation angle α around the center axis with radius rcone:

m(α) = (rcone ∗ cos(α))2 + (rcone ∗ sin(α))2 − r2cone (5.36)

114

o1

o2

Figure 5.15: The different origins o1 & o2 of different filleting radii shown in 2D.

However, as m′(t) would evaluate to 0 for the constant angle case, using it to define

the upper boundary of radius changes can’t be done in this case.

When looking at this issue more closely, the curve defined as m(t) in the canal

surface case actually describes the so called spine of the canal surface. The ball

center follows this curve when rolling so it keeps tangency with the two surfaces to

be filleted. In this case, an opening angle of α = 0 will place the curve center at

the circular boundary of the skeleton, but, once 0 < α < 45◦, the actual center of

the sphere moves away from the skeleton. As a result, m(t) ends up being more

complex than the example in Equation 5.36. See Figure 5.15 for an outline of the

different positions of the fillet origins o1 and o2 for different radii. For varying radii,

m(t) depends on the chosen radius control points, creating a different curve for any

filleting radius combination. For this reason, an alternative way to parametrize a

variable filleting radius is proposed below.

Given that the fillets are created using an implicit representation, it is important

that the field is C2 continuous. It can be guaranteed by choosing an appropriate

interpolation method between the set opening angles. For example, interpolating

between two opening angles along the circular edge around the given skeletons can

be done using a combination of the first and the third basis function of cubic Hermite

splines [Hearn and Baker, 2003]:

h00(t) = (1 + 2t)(1− t)2

h01(t) = t2(3− 2t)

115

Figure 5.16: Cylinder showing a transition between a sharp edge and a filleted version
with a larger opening angle/ radius.

Assuming that two opening angles α1 and α2 are defined along the circular edge (for

example using the angle around y), h01 can be used to interpolate between α1 and

α2, whereas h00 can be used for the reverse interpolation between α2 and α1. As long

as the method is C2 continuous, any other interpolation function could be used to

calculate a variable number of set opening angles around the circle.

Figure 5.16 shows the results of different opening angles set along the cylinder

edge circle. In the case of four or more angles set (the first and last angle are the

same at t = 0 = 1), a Catmul-Rom spline interpolation [Hearn and Baker, 2003] is

used to calculate the opening angle at any point around the circle. In Figure 5.17,

the widget to change the opening angle is shown, with the angle at transformation

start highlighted using the grey lines, and the new values in white.

5.7 Interactive User-Interface to Specify a Fillet

Filleting in itself is a slightly different than the three operations discussed in 4.5,

because filleting changes a local property of an object, and the other transformations

116

Figure 5.17: Cylinder showing the widget to control the opening angle along the edge.

n1

n2

o

Figure 5.18: The filleting gizmo used, providing interactive feedback.

change a global object property. The main method of interaction, consisting of grab-

bing a gizmo handle and moving the mouse/finger into a specified direction, is the

117

same as the one used for the other gizmos. For this reason, the user interface to mod-

ify filleting is implemented in a similar fashion as the three standard transformation

gizmos.

The filleting gizmo in itself is fairly simple, as it displays the local coordinate

system along an edge based on the edge’s curvature. It shows the origin point o (the

location within the local coordinate frame along the edge, where the distance to the

skeleton is 0) of the current position along the edge and the two surface normals n1,

n2 going outwards from the origin point. In the example shown in Figure 5.18, the

two surfaces filleted are orthogonal to each other, and the orientation of the gizmo is

based on the angle of the gizmo’s location around the cylinders main axis. The two

lines in grey illustrate the current opening angle of the filleting, whereas the white

section describes the new, modified opening angle. This is used to specify the new

fillet at the gizmo location along the (circular) edge.

5.8 Example Models

The usage of the filleting techniques presented in this chapter is demonstrated on the

example of two models:

• water tap/faucet,

• simplified model of car bonnet/hood.

Both of these models consist of shapes with variable fillet radii depending on their

location, and often show smooth transitions between the primitives they are built

from.

5.8.1 Tap Model

Figure 5.19 shows the water tap, with certain parts of the model highlighted to

demonstrate different filleting (and blending) features, as discussed above. Highlight

one shows the varying radius on the upper part of the tap handle, and proper blending

of the tap handle and the vertical “head”. In addition, the lower parts of the handle

and the “head” demonstrate the straight edge.

Another straight edge between faces of the model is shown in highlight two, where

the pipe inlet to the tap and the section connecting both pipes meet. On the back,

118

1

2

3

Figure 5.19: The water tap, with three sections of the image showing distinct fillets
implemented.

the pipe section built from a cylinder (with the straight edge in the front) smoothly

blends into the inlet base, modelled using an additional cone primitive.

In highlight three, the model shows how the straight edge of the stretched cube

connecting the two inlet cylinder primitives smoothly blends into the shape of the

central cylinder. There is a nice transition between the straight edge and a smooth

corner, without having discontinuities in the underlying field because the function

used to create the straight edge is C2 continuous.

The model itself is built similar to the tap model found in [Grasberger et al., 2010],

outlining comparable features. However, in the older approach, blends involving

straight edges needed special care, since otherwise, a discontinuous field would be

119

created. On the contrary, Angle-Based Filleting creates cleaner looking models by

having more control over the fillets, while being easier to build.

5.8.2 Car Bonnet Model

Figure 5.20: The bonnet, demonstrating the use of straight-edge warping.

The main features of the bonnet shown in Figure 5.20 are the two filleted curve

accents on the bonnet itself, applied using the Surface Fillet Curve approach. These

Surface Fillet Curve primitives are blended with the base shape of the bonnet using

the Gradient Based Blend [Gourmel et al., 2013], so that the detailed features are not

lost in the blending process, and the blend itself can be controlled.

In addition, the transition between the bonnet and the fenders is modelled using

a variable fillet. Since the base shape of the bonnet with the adjoining fenders is

a non-uniformly scaled cylinder, the implementation of the primitive enabled the

variable radius fillet shown. The fender flares consist of additional cylinders, with

120

smaller filleting radii that are blended to the basic shape. Overall, this model shows

that previous blend operators [Gourmel et al., 2013], Angle-Based Filleting and the

Surface Fillet Curve approach can be used within one BlobTree and generate a C2

continuous field.

5.9 Conclusion

In this Chapter, Angle-Based Filleting is proposed to extend the filleting capabilities

of the BlobTree. The resulting field created by Angle-Based Filleting is of better

continuity than fields created by previous approaches. With Angle-Based Filleting ,

even fillets resulting in sharp edges will not produce a discontinuous implicit field

when used in a blending situation. Moreover, by allowing the user to specify the fillet

based on a filleting radius (represented via an opening angle, analog to the Gradient

Based Blend), the user can directly control the resulting shape. This extends the set

of possible shapes that can be created using the BlobTree without adding additional

shapes to the existing model to create certain fillets. Since the filleting operator has

the same mathematical foundation as the Gradient Based Blend operator, the implicit

fields of blends and fillets have similar properties. Having a more homogeneous field

ensures that the visual distinction between blends and fillets is minimal, which means

that user interfaces where the distinction between blends or fillets is made transparent

to the user can be created.

The second contribution of this work, the Surface Fillet Curve, allows a user to

draw unique contours onto a BlobTree model to create additional surface details. Since

these surface details are based on the same mathematical foundation as the fillets,

they will not destroy the continuous implicit field when blended with the model.

5.10 Future Work

The Surface Fillet Curve approach can be improved by supporting displacements

that are directed towards the inside of the underlying primitive. Potentially, this

could be realized by altering the blend function used to combine the Surface Fillet

Curve primitive and the underlying object. Depending on the angle between the

displacement vector and the base surface’s normal, either normal blending or a variant

of subtractive blending can be used to combine the base surface with the Surface

Fillet Curve. In addition, better control on the slope of the Surface Fillet Curve

121

would help a designer to extend the potential shapes that can be created with this

approach. Having methods to manually specify some of the off-curve constants could

achieve this. The main challenge with the extended Surface Fillet Curve approach is

to make sure the field continuity is preserved.

Angle-Based Filleting in its current form cannot properly fillet a corner where three

edges meet and and create fillets in a controlled manner with preserved continuity.

While this problem hasn’t been solved yet, the following chapter explains how a

potential solution to this problem may be found.

5.10.1 Filleting a Corner

While a corner in general can be defined by n edges originating at the same location,

in the case of skeletal implicit surfaces, the only common primitive having a corner

is the cube, where three orthogonal edges meet at every corner . Non-orthogonal

edges at a cube primitive only appear once the cube primitive is sheared. This can be

done by adding a shear transformation on top of the cube primitive in the BlobTree,

leaving the primitive itself with orthogonal edges.

In many current modelling applications, there is no ground truth how the resulting

surface of a fillet of three (or more) edges should look like. Often, it depends on

the filleting order of the edges meeting at the corner. In other cases, the shape is

dependent on the radius used, ie. if two edges have the same radius, the corner is

defined as the transition between the two matching edges along the fillet radius of the

third. In the case of the BlobTree, the main concern is to create a smooth continuous

field. For this reason, the definition of the corner case is directly dependent on creating

the continuous field. One way to implement this would be to have a common “corner

radius/angle” and every edge interpolates between its opening angles and the corner

angle. However, this results in a corner where all of the edges potentially need to

interpolate the radius along their length. If the user wants to have three edges of

fixed, but different radii, this might not be the desired solution. As a result, there

should be a continuous interpolation between the three different opening angles to

create the corner case.

A different approach could combine the fillet distances of the three neighbouring

edges. The [0, 1] range of an edge can be defined so it starts and ends at the region

where the distance is influenced by another edge. As a result, the region of a corner

is limited either by a parameter t along the edge of value 0, or value 1. In order

122

Figure 5.21: Illustration how a corner merging three different radii could be con-
structed.

to calculate the single distance of a point within the corner region, it is projected

onto the start/end of each edge involved. Since the cube sides are axis aligned, only

coordinate pairs of a point p = (x, y, z) need to be taken into account. To calculate

the points local to the edge fillet frames, the edge origin oe = (x0, y0, z0) needs to be

subtracted from p, resulting in pe = p− oe. The result needs to be projected onto the

three edges: px = (pey , pez), py = (pex , pez), pz = (pey , pez).

Based on these three points and their respective parameters t at the the corner

boundaries, the base distances for each frame can be calculated. These three distances

can be combined using the max(dx, dy, dz) operator, which, however, doesn’t create

a continuous field, and thus is not usable within the BlobTree context. Figure 5.21

shows a schematic of how the continuous corner shape can look like, including the

three edge coordinate frames at the corner boundaries. The desired shape smoothly

increases the opening angles along a circular arc, so that the closest opening angles of

the three distinct edges are connected by an imaginary line. It line is also continuous

with the opening angle interpolation along each edge, in order to produce a smooth

field at any point within the corner.

123

Chapter 6

Improvements in BlobTree

Sketch-based Modelling

Sketch-based BlobTree modelling is often used to rapidly prototype models. By draw-

ing the outlines of the desired shape(s) and being able to combine the resulting objects

using BlobTree operators, it is possible to create a complex model within a very short

timeframe. Applications, such as Teddy [Igarashi et al., 2007], introduced sketch-

based modelling to mesh approaches, and applications based on the BlobTree were

introduced by [Schmidt and Wyvill, 2005a]. This implicit approach forms the basis

for the research presented in this chapter.

6.1 Introduction

6.1.1 Motivation

Sketch-based modelling provides the user with tools to generate models based on a

drawn shape’s outline. This outline generates a 2D implicit field, which forms the

basis of several transformations into 3D:

• sweep

• surface of revolution and

• inflation.

The challenge in these approaches, as with any implicit modelling approach, is to

create objects that have a C2 continuous field. It is equally important that the

124

process to generate the 2D field is fast and that the resulting implicit field is well

formed without any significant field compressions.

6.1.2 Implicit Sketch-based Modelling

Some implicit sketch-based modelling approaches, such as [Alexe et al., 2005] and

[Alexe et al., 2007], use variants of a distance calculation followed by a medial-axis

calculation to extract the skeleton of the drawn shape. In order to convert the

skeleton into a 3D object with a continuous field, a convolution surface is created.

[Schmidt and Wyvill, 2005a] describe the problem of using the distance-field directly

to create 3D implicit objects. As a result, a variational implicit interpolation ap-

proach using sample points on and around the drawn shape to generate the 2D field

is proposed.

6.1.3 Contributions

The work presented in this chapter is an improvement of the variational approach to

sketching introduced in [Schmidt and Wyvill, 2005a]. It shows how the placement of

the points the variational implicit field is based on can be optimized, so that fewer

points are used to generate an implicit field of equal accuracy. The interpolated im-

plicit field-values are improved and the number of variational interpolation coefficients

is reduced.

6.1.4 Outline

Section 6.2 outlines how the state of the art approach (see Chapter 2) can be improved

and Section 6.3 shows how to find non intersecting exterior control points. Section 6.4

describes how to reduce the number of interior control points and Section 6.5 defines

which weights to choose for these interior control points to improve the resulting

implicit field. Results are shown in Section 6.6 and the chapter is concluded in

Section 6.7.

6.2 Problem Statement

The variational interpolation-based approach by [Turk and O’Brien, 1999b] uses a

set of 2D points pi combined with a weight vi to generate the necessary matrices

125

to calculate a weight for an arbitrary input point. These weights vi need to be set

to the iso-value for each pi, so that the variational interpolation returns the correct

field-value for any point in the 2D plane defined by the sketched shape.

The number of terms of the variational interpolation function is directly related

to the number of input points:

f(p) =
∑
i∈N

ai(‖p− pi‖)2ln(‖p− pi‖) + P (p) (6.1)

where

P (p) = c1px + c2py + c3 (6.2)

For any input point added, an additional coefficient ai needs to be calculated

and used in the evaluation of the polynomial above. Reducing the number of in-

put points also reduces the number of ai’s, resulting in faster field-value calcula-

tions. This enables direct calculation of field-values, while the previous approach by

[Schmidt and Wyvill, 2005a] needs to precompute and interpolate them.

The original approach by [Schmidt and Wyvill, 2005a] uses several iso contours of

the sketched shape to generate an implicit field. In this approach, the density of the

implicit values corresponds to the distance values of the shape’s skeleton. One iso

contour is placed outside the sketched shape, whereas the other one is placed inside.

However, finding these iso contours is computationally expensive and thus a distance

transform based on sampling the field at a regular grid is used [Jain, 1989].

The iso contour outside the shape can be calculated using an offset curve, created

by displacing every sample point along the polygon normal. Using the same approach

for an interior curve, however, can cause some sampling issues inside the object.

Figure 6.1 shows how interior sample points can overlap and be too close to others,

which potentially can result in undesired interpolated values. An easy approach would

be to discard sample points that are too close, but this still creates more sample points

than needed. Additionally, when an interior offset curve is used for the variational

interpolation, the resulting field might not reach a field-value of f = 1 due to the

interpolation function. As a result of the field not using the full range ([0, 1]), the

calculations in a blend or intersection situation might not produce the desired shape.

For these reasons, this chapter describes an improved approach to finding interior

control points for the variational interpolation in Section 6.4 and the corresponding

weights in Section 6.5.

126

Figure 6.1: Exterior (blue) and interior (green) sample points, displaced by the control
polygon normals of equal length.

6.3 Finding the Exterior Control Points

Figure 6.2: Exterior samples (blue) that are too close (top of polygon) and properly
spaced samples (bottom of polygon).

In order to support base shapes of very high concave detail (e.g. sketching the

127

tentacles of an octopus, or branches of a tree), it is necessary to compute the max-

imum distance the sample points can be displaced outwards without producing self

intersections. To calculate this maximum distance, the minimum distance dmin be-

tween all pairs of vertices of the original polygon can be computed. Assuming that

neighbouring vertices cannot be part of two notches at once, the direct neighbourhood

of each vertex can be ignored in the distance computation. Although this algorithm

is O(n2), the number of points is relatively small and there is no loss in interactivity.

The outside offset curve is now produced by displacing each control point along its

normal (Figure 6.1):

pio = pi + ni ∗
dmin

2
(6.3)

The displacement is half of dmin to avoid a self intersecting polygon formed by the

displaced points. Adding a minimum distance between the offset points avoids inter-

polation issues when control points are too close. Moreover, it reduces the number of

points used in the interpolation algorithm. Figure 6.2 shows an example of exterior

control points being too close.

One criterion for BlobTree primitives is that they are bounded, meaning the im-

plicit field reaches 0 at a given distance (in most cases d = 1) from the skeleton. To

satisfy this criterion, additional control points are placed on the border of the sketch

area that have distances d > 1. These distances will then be bounded by the field

function g(d).

6.4 Finding the Interior Control Points

Depending on the shape of the polygon formed by the sampled input sketch, different

strategies need to be used to find interior control points used for the variational

interpolation. If the input polygon is convex, it is sufficient in most cases, to calculate

the centroid point pC of the polygon and use it as the only interior control point, where

pC is defined as:

pC =
1

N

N∑
i=1

pi

It is not guaranteed that the centre point of a concave polygon lies within the polygon

boundaries, so it is not a candidate for a sample point. Furthermore, if only an offset

curve is used for sampling the interior of the polygon, it is not guaranteed that the

resulting field contains field-values of f = 1. Consequently, concave polygons need an

128

Figure 6.3: Control Polygon and Convex Decomposition.

Figure 6.4: The final sample points used to build the thin-plate spline. The original
points are black, and the outside displaced ones are blue and the inside sample points
are red.

additional step to find the interior samples.

The medial axis [Blum, 1967] of a polygon describes a set of points, that can be

interpreted as the skeleton of the control polygon. For standard Skeletal Implicit

129

Primitives, the distance on the skeleton is d = 0, resulting in a field-value f(d) = 1.

It is not easy to directly find points along the medial axis of a concave polygon. The

medial axis can be approximated by creating the polygon’s Approximate Convex De-

composition as described by [Lien and Amato, 2006], which can be seen in Figure 6.3.

For each of the convex sub-polygons of the Approximate Convex Decomposition, the

Figure 6.5: The implicit field created using a thin plate spline multiplied by a cosine
function.

centroid can be used to approximate the medial axis of the shape.

6.5 Finding the Interior Control Point Weights

The standard Skeletal Implicit Primitives yield a field value f(d) = 1 on the skeleton

and drop to zero at the limit of their influence range (commonly at a distance of

d = 1 to the skeleton). This means that the straight-forward approach to assigning

weights to the interior control point samples is to assign vi = 1 for each of the convex

decomposition polygon centroids.

Given that not every centroid will have the same distance to the polygon boundary,

this will effectively produce an implicit field where the variation in field-value does

not directly correspond to the variation in the distance to the control polygon. If a

centroid is close to the polygon boundary (see the upper left convex polygon of the

130

upper right notch in Figure 6.3), the field will be compressed. On the other hand, if

the centroid has a large distance to the polygon, the field will change less than the

change in distances.

For this reason a better solution is to calculate the minimum distance of each

centroid to the polygon boundary. The centroid with the largest minimum distance

dmax corresponds to the “on skeleton” control point, whereas all the other centroids

have their distances normalized by dmax to bring them into the [0, 0.5] range (0.5 since

the interior only describes half the implicit field):

dicorr =
di
dmax

∗ 0.5 (6.4)

This ensures that there is at least one sample point produces the field-value f = 1.

Figure 6.4 shows all sample points: on the control polygon in black, outside in blue

and inside in red, and Figure 6.5 shows the resulting 2D field.

6.6 Results

Figure 6.6: Monkey model.

131

Every sketched shape benefits from the approach presented in this chapter since

the implicit field can be generated using less variational sample points compared to

the approach presented in [Schmidt and Wyvill, 2005a]. Because the interior control

points are created using the convex decomposition, concave sketched polygons will

gain a more correct interior field.

Figure 6.7: The convex decomposition of the hand, including the sample control
points (black), interior control points (red) and exterior control points (blue).

The monkey model in Chapter 4 (also see Figure 6.6), is partially built from

concave shapes. For example, the main body and the hands as well as the feet of the

monkey are concave shapes. Even though these shapes are drawn so that the single

centroid would be sufficient as the only interior control point, the field of the sketched

shapes still benefits from the convex decomposition and the additional interior control

points.

Figure 6.8a shows the world space control points of the front hand in context of

the whole model. These sample points form the control polygon shown in Figure 6.7.

The convex decomposition of this polygon results in several sub-polygons and their

centroids. Some of these centroids are fairly close to the control polygon itself, but

due to the weighting algorithm described in Section 6.5, a proper implicit field is

generated inside and outside the polygon.

132

(a) Centroid control points (b) The field formed by the centroid control points.

(c) Offset control points (d) The field formed by offsetting the control
points.

Figure 6.8: The sampled control points for the hand shape.

The field created by the control points is shown in Figure 6.8b. It can be seen

that the centroid with the maximum distance to the polygon is mapped to the largest

field value, and the others create field-values corresponding to the weighted distance

values. In comparison, the field shown in Figure 6.8d is built using control points

133

(a) Centroid-based field (b) The resulting inflated
model.

(c) Offset-based field (d) The resulting inflated
model.

Figure 6.9: Comparison of the cross-like shape created using offset curves or this
centroid based method. See the difference in the shape on the right.

calculated by using offset curves. The interior, while at first looking more uniform,

has regions where the change in field-values does not correspond to the change in

distance from them drawn shape. Compared to the presented sketching approach,

134

there is also a difference in the field outside the shape.

Another example of the difference between the centroid based approach and the

offset curve based approach is demonstrated in Figure 6.9. A cross-like shape is drawn

and used to create an inflated 3D object. The inflation is implemented according to

[Schmidt et al., 2005a] and is based on the sketched field multiplied by a modified

distance (using the Wyvill function) to the object’s center. When Figure 6.9b is

compared to Figure 6.9d, the interior region, having constant value of one, can be

seen on the object’s surface. Additionally, the difference in the field density results

in a different shape.

6.7 Conclusion

The main contribution of this chapter is an alternative approach to calculating sample

points for sketched shapes based on variational interpolation. Control points outside

the drawn shape are calculated by displacing the shape along the normals. The

length of the displacement is dependent on the shape itself to avoid a self intersecting

polygon if the exterior control points are connected. In addition, reducing the number

of interior control points is a goal of this approach as well. Convex polygons can be

built using the polygon’s centroid as the only control point.

Concave polygons, on the other hand, can’t rely on the centroid being inside the

polygon. For this reason, the proposed approach makes use of a convex decomposition

algorithm to split the concave polygon into multiple convex polygons. The centroids

of each convex sub-polygon are used as a variational interpolation sample that is

weighted based on the maximum distance a centroid has to the polygon boundary.

This approach results in an implicit field, where the field-value variation corre-

sponds to the variation in distance and doesn’t create any regions where the field is

compressed. Lastly, the number of variational interpolation sample points is reduced,

resulting in a faster calculation of field-values.

One downside of the algorithm is the need to calculate dmin using an O(n2) algo-

rithm in addition to the run time of the Approximate Convex Decomposition, which

is stated as O(nr), where n is the number of vertices and r the number of notches.

Once the Approximate Convex Decomposition is created, the centroids have to be

calculated and their distances to the sketch have to be determined. The larger the

sketched shape, the longer it will take to create the resulting object, which, as a result,

impacts the modelling experience negatively. Additionally, Figure 6.8a shows, that

135

dmin is very little, due to the neighbouring vertices being close. A more sophisticated

approach, left for future work, could attempt to reduce the number of exterior con-

trol points, by choosing a larger value for dmin, and removing parts of the resulting

polygon that self-intersect.

136

Chapter 7

Conclusion

Throughout this thesis several distinct improvements to BlobTree modelling are pre-

sented:

• Traversing the BlobTree can be accelerated when done linearly (Chapter 3).

• The BlobTree can be used for collaborative modelling on mobile devices (Chap-

ter 4).

• The modelling capabilities are extended by Angle-Based Filleting , Surface Fillet

Curve (Chapter 5) and improved sketching (Chapter 6).

7.1 Accelerated BlobTree Modelling

The accelerated BlobTree traversal method shows that a modified BlobTree traversal

algorithm can improve visualization times by at least one order of magnitude. These

visualization time improvements were achieved on GPUs and CPUs (on desktop and

mobile variants). In fact, the original motivation of the accelerated traversal was to

utilize a GPU for the field-value calculations needed in visualizing the BlobTree. Only

later it turned out that other processing devices also benefited from the change in the

traversal approach. For any hardware, the algorithm raises the BlobTree complexity

that can still be visualized at interactive frame-rates. While this means for desktop

hardware that very large BlobTrees can be edited while still having a responsive

application, for mobile devices, this enables interactive modelling in the first place.

To sum up, changing a BlobTree traversal method to use the bottom-up approach

presented solves two distinct issues. On desktop devices, it allows a BlobTree imple-

137

mentation to make use of the available GPU processing power and it enables modelling

on lower power mobile CPUs as well.

While the approach presented to BlobTree traversal shows large improvements

in the time a field-value calculation takes, one might argue that it is still not fast

enough. Polygonization benefits most from this approach and the performance use

case demonstrated closely follows a naive polygonization method. Ray-tracing, on

the other hand, requires a lot more field-value calculations per image. The number

of rays is at least 2073600 for a a HD-resolution image of 1920× 1080 pixels (one ray

per pixel). Unfortunately, the BlobTree has to be evaluated multiple times along a

ray until the surface location can be determined. Assuming a very optimistic average

of 10 field-value calculations per ray, and the synthetic test scene with 1024 leaf

nodes accelerated using the kD-Tree, only the field value calculation part would take

2 seconds. This neither includes the time needed to transfer the data to the GPU,

nor time spent shading and there are no secondary shadow rays casted in this case.

Another problem with current GPUs is the code complexity possible in OpenCL.

During implementing the algorithms as OpenCL kernels, one reason for doing some

of the optimizations related to warp curves, was that the compiler could not create a

running binary, if an algorithm was implemented in the most straight-forward fashion.

This limitation is likely to disappear within the next couple of GPU generations, but

it shows that the hardware is not yet as versatile as CPUs in some respect.

7.2 Collaborative BlobTree Modelling

CollabBlob shows that the small memory footprint of BlobTree models can be used

to transmit changes in the model between several users. A protocol can be derived

from a BlobTree definition that allows many users to work on the same model at the

same time. Every user is allowed to modify the model and immediate feedback can be

given to each participant because of the fast transmission of BlobTree model changes.

In the case that the participants try to apply conflicting BlobTree changes, the

proposed action system includes an algorithm to determine and solve conflicts. Since

every action is time-stamped and provides methods to undo and redo them, actions

can be sorted and latecomer messages can be properly inserted.. Conflicting actions

can be handled during this process as well.

Due to CollabBlob’s user interface the number of people who can realistically

collaborate in a scene is limited. As already mentioned, every participant in the scene

138

is represented using a miniature of the current view point placed in the 3D space,

or, if outside the current view frustum, along the window border. Additionally, each

participant is represented by their own unique color. When the number of users in the

current modelling session increases, the number of remote views will start to clutter

the scene, up to the point where, especially on small screens, more screen real-estate

will be occupied by these views, than the actual model. Moreover, the more users are

participating, the harder it becomes to distinguish between the automatically assigned

colours. Overall, CollabBlob lacks the capabilities to deal with a large number of users

in the scene, and it would, additionally, benefit from something similar to the Branch-

explore-merge [McGrath et al., 2012] approach.

7.3 Extended BlobTree Modelling

7.3.1 Filleting

Fillets can increase a user’s control on the resulting shape. When fillets can be added

to the model by altering a skeleton’s distance function the complexity of a BlobTree

stays the same, while altering the appearance of the resulting model. Angle-Based

Filleting , the algorithm to introduce C2 continuous fillets into Skeletal Implicit Prim-

itives is based on a controllable C2 blend operator. It is possible, that an application

implementing Angle-Based Filleting has an interface, that does not have the distinc-

tion between fillet and blend. Instead the user can place smooth transitions between

surfaces, and the underlying application decides whether a blend or a fillet has to be

created. The added mathematical complexity of the BlobTree skeleton increases vi-

sualization time. On the other hand, if the same surface shapes were to be generated

by adding and subtracting several BlobTree primitives, visualization times would be

increased even more.

The Surface Fillet Curve approach presented provides additional tools to add

surface details to an existing model. It is based on the same mathematical foundation

as Angle-Based Filleting , but it creates additional BlobTree nodes. By drawing,

displacing and filleting a curve, that is blended with the underlying BlobTree, novel

shapes can be created in the BlobTree context.

The main disadvantage of the filleting approach presented is the lack of C2 con-

tinuous handling of the corner case. While filleting along edges can be done in CSG

using additional surfaces, blending between several fillets can still lead to problems,

139

especially when automatically generated. Once this is solved within the BlobTree

framework, and the shape of the corner result can be controlled using a small set of

parameters, there will be a large advantage over solutions with CSG. Surface Fillet

Curve, on the other hand, lacks the capability to work with deformations directed into

the original surface, which is possible and widely used in the WarpCurves approach.

Additionally it could benefit from better control over the slope of the added shape,

either by controlling the outline of the blend region, e.g. through a drawn outline

or blend parameters, or by controlling the surface normals. Only then Surface Fillet

Curve can provide a similar set of modelling operators than WarpCurves, which were

the original inspiration.

7.3.2 Sketching

In general, sketch-based modelling within the BlobTree domain is based on the gen-

eration of an implicit field from a sketched shape using variational interpolation.

This work shows how the variational interpolation can be improved by an alterna-

tive method to generate the control points used in the variational interpolation. For

convex sketched polygons, the number of control points can be reduced significantly.

Concave-sketched polygons can be split into convex sub-polygons, which, in the next

step, can be used to generate the interior control points for the variational interpola-

tion.

The implicit field generated by this sketch-based approach is generated without

any significant undesired field compressions. This improves the usage of these implicit

sketched shapes later on in additional modelling situations.

While this improvement to sketching reduces the number of control points needed

to create the variational interpolation, only work has been done on optimizing the

sketch interior. In fact, a similar approach using a convex decomposition and the

centroids could be applied to the outside region as well, if it were interpreted as a

rectangular polygon uses the sketched shape as a hole. The convex decomposition

algorithm used for the interior can be used in this case as well. As a result, the O(n2)

step of calculating the minimum distance between two sketch control points could

be removed from the algorithm. In theory, the resulting field should show similar

improvements over offset curves, as already demonstrated for the interior.

140

Bibliography

[Adzhiev et al., 1999] Adzhiev, V., Cartwright, R., Fausett, E., Ossipov, A., Pasko,

A. A., and Savchenko, V. (1999). HyperFun project: a framework for collab-

orative multidimensional F-rep modeling. Proceedings of Eurographics & ACM

SIGGRAPH Workshop ”Implicit Surfaces’99”, pages 59–69.

[Akkouche and Galin, 2001] Akkouche, S. and Galin, E. (2001). Adaptive Implicit

Surface Polygonization Using Marching Triangles. Computer Graphics Forum,

20(2):67–80.

[Alexe et al., 2005] Alexe, A., Barthe, L., Cani, M.-P., and Gaildrat, V. (2005). A

Sketch-Based Modelling system using Convolution Surfaces. Pacific Graphics.

[Alexe et al., 2007] Alexe, A., Barthe, L., Cani, M.-P., and Gaildrat, V. (2007). Shape

modeling by sketching using convolution surfaces. ACM SIGGRAPH 2007 courses,

page 39.

[AMD, 2011] AMD (2011). OpenCL Programming Guide. Advanced Micro Devices,

Inc., 1.3f edition.

[Bae et al., 2008] Bae, S.-H., Balakrishnan, R., and Singh, K. (2008). ILoveSketch:

as-natural-as-possible sketching system for creating 3d curve models. In UIST ’08:

Proceedings of the 21st annual ACM symposium on User interface software and

technology. ACM Request Permissions.

[Barbier and Galin, 2004] Barbier, A. and Galin, E. (2004). Fast Distance Computa-

tion Between a Point and Cylinders, Cones, Line-Swept Spheres and Cone-Spheres.

Journal of Graphics, GPU, and Game Tools, 9(2):11–19.

[Barthe et al., 2002] Barthe, L., Dodgson, N. A., Sabin, M. A., Wyvill, B., and Gail-

drat, V. (2002). Different Applications of Two-Dimensional Potential Fields for

Volume Modeling. Technical Report 541, University of Cambridge.

141

[Barthe et al., 2003] Barthe, L., Dodgson, N. A., Sabin, M. A., Wyvill, B., and Gail-

drat, V. (2003). Two-dimensional potential fields for advanced implicit modeling

operators. Computer Graphics Forum, 22(1):23–33.

[Barthe et al., 2001] Barthe, L., Gaildrat, V., and Caubet, R. (2001). Extrusion of

1D Implicit Profiles: Theory and First Application. International Journal of Shape

Modeling.

[Barthe et al., 2004] Barthe, L., Wyvill, B., and de Groot, E. (2004). Controllable

binary csg operators for soft objects. International Journal of Shape Modeling.

[Benthin, 2006] Benthin, C. (2006). Realtime ray tracing on current CPU archi-

tectures. PhD thesis, Saarländische Universitäts- und Landesbibliothek, Postfach

151141, 66041 Saarbrücken.

[Bernhardt et al., 2010] Bernhardt, A., Barthe, L., Cani, M.-P., and Wyvill, B.

(2010). Implicit Blending Revisited. Computer Graphics Forum, 29(2):367–375.

[Bloomenthal, 1988] Bloomenthal, J. (1988). Polygonization of Implicit Surfaces.

Computer Aided Geometric Design, 5(4):341–355.

[Bloomenthal, 1994] Bloomenthal, J. (1994). An implicit surface polygonizer. In

Heckbert, P. S., editor, Graphics Gems IV, pages 324–349. Academic Press Profes-

sional, Inc., San Diego, CA, USA.

[Bloomenthal, 1997] Bloomenthal, J. (1997). Introduction to Implicit surfaces. Mor-

gan Kaufmann.

[Blum, 1967] Blum, H. (1967). A Transformation for Extracting New Descriptors of

Shape. In Wathen-Dunn, W., editor, Models for the perception of speech and vi-

sual form, pages 362–380, Cambridge. Air Force Cambridge Research Laboratories

(U.S.). Data Sciences Laboratory, MIT Press.

[Bryant, 1986] Bryant, R. E. (1986). Graph-Based Algorithms for Boolean Function

Manipulation. Computers, IEEE Transactions on, C-35(8):677–691.

[Bryant, 1995] Bryant, R. E. (1995). Binary decision diagrams and beyond: enabling

technologies for formal verification. In Computer-Aided Design, 1995. ICCAD-95.

Digest of Technical Papers., 1995 IEEE/ACM International Conference on, pages

236–243.

142

[Bunnell, 2005] Bunnell, M. (2005). Dynamic Ambient Occlusion and Indirect Light-

ing. In Pharr, M. and Fernando, R., editors, GPU Gems 2: Programming

Techniques for High-Performance Graphics and General-Purpose Computation.

Addison-Wesley Professional.

[Cani, 1993] Cani, M.-P. (1993). An implicit formulation for precise contact modeling

between flexible solids. SIGGRAPH ’93: Proceedings of the 20th annual conference

on Computer graphics and interactive techniques.

[Chen et al., 2014] Chen, H.-T., Grossman, T., Wei, L.-Y., Schmidt, R. M., Hart-

mann, B. o. r., Fitzmaurice, G., and Agrawala, M. (2014). History Assisted View

Authoring for 3D Models. In Proceedings of the 32Nd Annual ACM Conference

on Human Factors in Computing Systems, pages 2027–2036, New York, NY, USA.

ACM.

[Chen and Hoffmann, 1993] Chen, X. and Hoffmann, C. (1993). Trimming and clo-

sure of constrained surfaces. cs.purdue.edu.

[Chi et al., 2012] Chi, P.-Y., Ahn, S., Ren, A., Hartmann, B., Dontcheva, M., and Li,

W. (2012). MixT: automatic generation of step-by-step mixed media tutorials. In

Konstan, J. A., Chi, E. H., and Höök, K., editors, CHI Extended Abstracts, pages

1499–1504. ACM.

[Chu et al., 2006] Chu, C.-H., Chang, C.-J., and Cheng, H.-C. (2006). Empirical

Studies on Inter-Organizational Collaborative Product Development. Transactions

of the ASME. Journal of Computing and Information Science in Engineering, Vol-

ume 6(Issue 2):Pages 179–187.

[Chu et al., 2009] Chu, C.-H., Wu, P.-H., and Hsu, Y.-C. (2009). Multi-agent collab-

orative 3D design with geometric model at different levels of detail. Robotics and

Computer-Integrated Manufacturing, 25(2):334–347.

[Darema et al., 1988] Darema, F., George, D. A., Norton, V. A., and Pfis-

ter, G. F. (1988). A single-program-multiple-data computational model for

EPEX/FORTRAN. Parallel Computing, 7(1):11–24.

[de Groot, 2008] de Groot, E. (2008). BlobTree Modelling. PhD thesis, The University

of Calgary, University of Calgary.

143

[de Groot and Wyvill, 2005] de Groot, E. and Wyvill, B. (2005). Rayskip: faster

ray tracing of implicit surface animations. GRAPHITE ’05: Proceedings of the

3rd international conference on Computer graphics and interactive techniques in

Australasia and South East Asia.

[Denning et al., 2011] Denning, J. D., Kerr, W. B., and Pellacini, F. (2011). Mesh-

Flow: Interactive Visualization of Mesh Construction Sequences. ACM Trans.

Graph., 30(4):66:1–66:8.

[Elber, 2005] Elber, G. (2005). Generalized filleting and blending operations toward

functional and decorative applications. Graphical Models, 67(3):189–203.

[Elber and Cohen, 1997] Elber, G. and Cohen, E. (1997). Filleting and rounding

using trimmed tensor product surfaces. Proceedings of the fourth ACM symposium

on Solid modeling and applications, pages 206–216.

[Fatahalian and Houston, 2008] Fatahalian, K. and Houston, M. (2008). A Closer

Look at GPUs. Communications of the ACM, 51(10).

[Fox et al., 2001] Fox, M., Galbraith, C., and Wyvill, B. (2001). Efficient Implemen-

tation of the BlobTree for Rendering Purposes. In Shape Modeling and Applications,

SMI 2001 International Conference on., pages 306–314. IEEE.

[Fuchs et al., 1980] Fuchs, H., Kedem, Z. M., and Naylor, B. F. (1980). On Visible

Surface Generation by A Priori Tree Structures. SIGGRAPH ’80 Proceedings of

the 7th annual conference on Computer graphics and interactive techniques, 14:124–

133.

[Gourmel et al., 2013] Gourmel, O., Barthe, L., Cani, M.-P., Wyvill, B., Bernhardt,

A., and Grasberger, H. (2013). A Gradient-Based Implicit Blend. Transactions on

Graphics (SIGGRAPH 2013), 32(2).

[Gourmel et al., 2010] Gourmel, O., Pajot, A., Paulin, M., Barthe, L., and Poulin, P.

(2010). Fitted BVH for Fast Raytracing of Metaballs. Computer Graphics Forum,

29(2):281–288.

[Grasberger, 2009] Grasberger, H. (2009). CSB: Combining traditional CSG with

Blobs . Master’s thesis, Vienna University of Technology, Vienna.

144

[Grasberger et al., 2010] Grasberger, H., Weidlich, A., Wilkie, A., and Wyvill, B.

(2010). Precise Construction and Control of Implicit Fillets in the BlobTree. Shape

Modeling and Applications, International Conference on, 0:151–162.

[Greenberg and Roseman, 1999] Greenberg, S. and Roseman, M. (1999). Group-

ware Toolkits for Synchronous Work. In Beaudouin-Lafon, M., editor, Computer-

Supported Cooperative Work (Trends in Software 7), pages 135–168. John Wiley &

Sons Ltd.

[Hable and Rossignac, 2005] Hable, J. and Rossignac, J. (2005). Blister: GPU-based

rendering of Boolean combinations of free-form triangulated shapes. In ACM SIG-

GRAPH 2005 Papers, pages 1024–1031, New York, NY, USA. ACM.

[Hable and Rossignac, 2007] Hable, J. and Rossignac, J. (2007). CST: Constructive

Solid Trimming for Rendering BReps and CSG. IEEE Transactions on Visualiza-

tion and Computer Graphics, 13(5):1004–1014.

[Han et al., 2003] Han, J. H., Kim, T., Cera, C., and Regli, W. (2003). Multi-

resolution modeling in collaborative design. Computer and Information Science-

sISCIS 2003, pages 397–404.

[Hanniel and Haller, 2011] Hanniel, I. and Haller, K. (2011). Direct Rendering of

Solid CAD Models on the GPU. In 2011 12th International Conference on

Computer-Aided Design and Computer Graphics (CAD/Graphics), pages 25–32.

IEEE.

[Hearn and Baker, 2003] Hearn, D. D. and Baker, M. P. (2003). Computer Graphics

with OpenGL. Prentice Hall Professional Technical Reference, 3 edition.

[Hoffmann and Hopcroft, 1985] Hoffmann, C. and Hopcroft, J. (1985). The potential

method for blending surfaces and corners. Technical report.

[Igarashi et al., 2007] Igarashi, T., Matsuoka, S., and Tanaka, H. (2007). Teddy: a

sketching interface for 3D freeform design. In ACM SIGGRAPH 2007 courses, New

York, NY, USA. ACM.

[Igarashi et al., 2005] Igarashi, T., Moscovich, T., and Hughes, J. F. (2005). As-

rigid-as-possible shape manipulation. In ACM SIGGRAPH 2005 Papers, pages

1134–1141, New York, NY, USA. ACM.

145

[ISO, 1996] ISO (1996). Information technology – Open Systems Interconnection

– Remote Procedure Call (RPC). Internatioal Organization of Standardization,

ISO/IEC 11578.

[Jain, 1989] Jain, A. K. (1989). Fundamentals of Digital Image Processing. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA.

[Jansen, 1991] Jansen, F. W. (1991). Depth-order point classification techniques for

CSG display algorithms. ACM Trans. Graph., 10(1):40–70.

[Kalra and Barr, 1989] Kalra, D. and Barr, A. (1989). Guaranteed ray intersections

with implicit surfaces. SIGGRAPH ’89: Proceedings of the 16th annual conference

on Computer graphics and interactive techniques.

[Kim et al., 2006] Kim, T., Cera, C. D., Regli, W. C., Choo, H., and Han, J. (2006).

Multi-Level modeling and access control for data sharing in collaborative design.

Adv. Eng. Inform., 20(1):47–57.

[Knoll et al., 2009] Knoll, A., Hijazi, Y., Kensler, A., Schott, M., Hansen, C., and

Hagen, H. (2009). Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval

and Affine Arithmetic. Computer Graphics Forum, 28(1):26–40.

[Kung and Robinson, 1981] Kung, H. T. and Robinson, J. T. (1981). On Opti-

mistic Methods for Concurrency Control. ACM Transactions on Database Systems,

6(2):213–226.

[Lamport, 1978] Lamport, L. (1978). Time, clocks, and the ordering of events in a

distributed system. Communications of the ACM, 21:558–565.

[Lien and Amato, 2006] Lien, J.-M. and Amato, N. M. (2006). Approximate convex

decomposition of polygons. Computational Geometry, 35(1-2):100–123.

[Mäntylä, 1987] Mäntylä, M. (1987). An introduction to solid modeling. Computer

Science Press, Inc., New York, NY, USA.

[Marion and Jomier, 2012] Marion, C. and Jomier, J. (2012). Real-time collaborative

scientific WebGL visualization with WebSocket. In Proceedings of the 17th Inter-

national Conference on 3D Web Technology, pages 47–50, New York, NY, USA.

ACM.

146

[McCormack and Sherstyuk, 1998] McCormack, J. and Sherstyuk, A. (1998). Creat-

ing and Rendering Convolution Surfaces. Computer Graphics Forum, 17(2):113–

120.

[McGrath et al., 2012] McGrath, W., Bowman, B., McCallum, D., Hincapié-Ramos,

J. D., Elmqvist, N., and Irani, P. (2012). Branch-explore-merge: Facilitating Real-

time Revision Control in Collaborative Visual Exploration. In Proceedings of the

2012 ACM International Conference on Interactive Tabletops and Surfaces, pages

235–244, New York, NY, USA. ACM.

[Middleditch and Sears, 1985] Middleditch, A. and Sears, K. (1985). Blend surfaces

for set theoretic volume modelling systems. SIGGRAPH ’85: Proceedings of the

12th annual conference on Computer graphics and interactive techniques.

[Mishra et al., 1997] Mishra, P., Varshney, A., and Kaufman, A. (1997). CollabCAD:

A Toolkit for Integrated Synchronous and Asynchronous Sharing of CAD Applica-

tions. In Proceedings TeamCAD: GVU/NIST Workshop on Collaborative Design,

Atlanta, GA, USA. State University of New York at Stony Brook.

[Mitchell, 1990] Mitchell, D. P. (1990). Robust ray intersection with interval arith-

metic. In Proceedings on Graphics interface’90, pages 68–74, Halifax, Nova Scotia.

AT&T Bell Laboratories Murray Hill, NJ 07974.

[Morris et al., 2004] Morris, M. R., Ryall, K., Shen, C., Forlines, C., and Vernier, F.

(2004). Beyond ”Social Protocols”: Multi-user Coordination Policies for Co-located

Groupware. In Proceedings of the 2004 ACM Conference on Computer Supported

Cooperative Work, pages 262–265, New York, NY, USA. ACM.

[Mouton et al., 2011] Mouton, C., Sons, K., and Grimstead, I. (2011). Collaborative

visualization: current systems and future trends. In Proceedings of the 16th Inter-

national Conference on 3D Web Technology, pages 101–110, New York, NY, USA.

ACM.

[Munshi, 2011] Munshi, A. (2011). The OpenCL Specification. Khronos.

[Nishino et al., 1999] Nishino, H., Utsumiya, K., Korida, K., Sakamoto, A., and

Yoshida, K. (1999). A method for sharing interactive deformations in collaborative

3D modeling. In Proceedings of the ACM symposium on Virtual reality software

and technology, pages 116–123, New York, NY, USA. ACM.

147

[O’Brien and Turk, 2002] O’Brien, J. F. and Turk, G. (2002). Modelling with Implicit

Surfaces that Interpolate. ACM Transactions on Graphics, 21(4).

[Parisi, 2012] Parisi, T. (2012). WebGL: Up and Running. O’Reilly Media, Inc., 1st

edition.

[Pasko et al., 1995] Pasko, A. A., Adzhiev, V., Sourin, A., and Savchenko, V. (1995).

Function Representation in Geometric Modeling: Concepts, Implementation and

Applications. The Visual Computer, 11(8):429–446.

[Pasko et al., 2005] Pasko, G. I., Pasko, A. A., and Kunli, T. L. (2005). Bounded

blending for function-based shape modeling. IEEE Computer Graphics and Appli-

cations, 25(2):36–45.

[Peternell and Pottmann, 1997] Peternell, M. and Pottmann, H. (1997). Computing

rational parametrizations of canal surfaces. Journal of Symbolic Computation,

23:255–266.

[Pharr and Mark, 2012] Pharr, M. and Mark, W. R. (2012). ispc: A SPMD Com-

piler for High-Performance CPU Programming. In Innovative Parallel Computing

Conference, pages 1–13.

[Pinelle et al., 2003] Pinelle, D., Gutwin, C., and Greenberg, S. (2003). Task analy-

sis for groupware usability evaluation: Modeling shared-workspace tasks with the

mechanics of collaboration. ACM Trans. Comput.-Hum. Interact., 10:281–311.

[Popov et al., 2007] Popov, S., Günther, J., Seidel, H.-P., and Slusallek, P. (2007).

Stackless KD-Tree Traversal for High Performance GPU Ray Tracing. Computer

Graphics Forum, 26(3):415–424.

[Ramani et al., 2003] Ramani, K., Agrawal, A., Babu, M., and Hoffmann, C. (2003).

CADDAC: Multi-Client Collaborative Shape Design System with Server-based Ge-

ometry Kernel. Journal of Computing and Information Science in Engineering,

3(2):170–173.

[Reiner et al., 2011] Reiner, T., Mückl, G., and Dachsbacher, C. (2011). Interactive

modeling of implicit surfaces using a direct visualization approach with signed

distance functions. Computers and Graphics, 35(3):596–603.

148

[Ricci, 1973] Ricci, A. (1973). A constructive geometry for computer graphics. The

Computer Journal, 16(2):157–160.

[Romeiro et al., 2006] Romeiro, F., Velho, L., and De Figueiredo, L. (2006).

Hardware-assisted Rendering of CSG Models. In 2011 12th International Confer-

ence on Computer-Aided Design and Computer Graphics (CAD/Graphics), pages

139–146. IEEE.

[Rossignac, 1999] Rossignac, J. (1999). Blist: A Boolean List Formulation of CSG

Trees. Technical Report GIT-GVU-99-04.

[Rossignac, 2012] Rossignac, J. (2012). Ordered Boolean List (OBL): Reducing the

Footprint for Evaluating Boolean Expressions. IEEE Transactions on Visualization

and Computer Graphics, 17(9):1337–1351.

[Rossignac and Requicha, 1984] Rossignac, J. and Requicha, A. (1984). Constant-

Radius Blending in Solid Modeling. ASME Computers In Mechanical Engineering

(CIME), 3:65–73.

[Rubin and Whitted, 1980] Rubin, S. M. and Whitted, T. (1980). A 3-dimensional

representation for fast rendering of complex scenes. In Proceedings of the 7th annual

conference on Computer graphics and interactive techniques, pages 110–116, New

York, NY, USA. ACM.

[Sabin, 1968] Sabin, M. (1968). The Use of Potential Surfaces for Numerical Geome-

try. British Aircraft Corporation, Dynamics and Mathematical Services, Weybridge

Division, UK. VTO/MS/153.

[Schmidt, 2006] Schmidt, R. (2006). Interactive Modeling with Implicit Surfaces. PhD

thesis, University of Calgary, University of Calgary.

[Schmidt and Wyvill, 2005a] Schmidt, R. and Wyvill, B. (2005a). Generalized sweep

templates for implicit modeling. In Proceedings of the 3rd international conference

on Computer graphics and interactive techniques in Australasia and South East

Asia, pages 187–196, New York, NY, USA. ACM.

[Schmidt and Wyvill, 2005b] Schmidt, R. and Wyvill, B. (2005b). Implicit Sweep

Surfaces. Technical Report Tech. Rep. 2005-778-09, University of Calgary.

149

[Schmidt et al., 2005a] Schmidt, R., Wyvill, B., Costa-Sousa, M., and Jorge, J. A.

(2005a). ShapeShop: Sketch-Based Solid Modeling with the BlobTree. In Proc.

2nd Eurographics Workshop on Sketch-based Interfaces and Modeling, pages 53–62.

Eurographics, Eurographics.

[Schmidt et al., 2005b] Schmidt, R., Wyvill, B., and Galin, E. (2005b). Interactive

implicit modeling with hierarchical spatial caching. SMI ’05: Proceedings of the

International Conference on Shape Modeling and Applications 2005, pages 104–113.

[Sederberg and Parry, 1986] Sederberg, T. W. and Parry, S. R. (1986). Free-form

deformation of solid geometric models. SIGGRAPH Comput. Graph., 20(4):151–

160.

[Shapiro, 1994] Shapiro, V. (1994). Real Functions for Representation of Rigid Solids.

Computer Aided Geometric Design, 11(2).

[Shirazian et al., 2012] Shirazian, P., Wyvill, B., and Duprat, J.-L. (2012). Polygo-

nization of implicit surfaces on Multi-Core Architectures with SIMD instructions.

In Childs, H. and Kuhlen, T., editors, Eurographics Symposium on Parallel Graph-

ics and Visualization (EGPGV), pages 89–98.

[Shirley and Marschner, 2009] Shirley, P. and Marschner, S. (2009). Fundamentals of

Computer Graphics. A. K. Peters, Ltd., Natick, MA, USA.

[Smits, 2005] Smits, B. (2005). Efficiency issues for ray tracing. In ACM SIGGRAPH

2005 Courses, New York, NY, USA. ACM.

[Snyder, 1992] Snyder, J. (1992). Interval Analysis for Computer Graphics. SIG-

GRAPH ’92: Proceedings of the 19th annual conference on Computer graphics and

interactive techniques, pages 121–130.

[Sugihara et al., 2008] Sugihara, M., de Groot, E., Wyvill, B., and Schmidt, R.

(2008). A Sketch-Based Method to Control Deformation in a Skeletal Implicit Sur-

face Modeler. In Proceedings of the 5th Eurographics Workshop on Sketch-Based

Interfaces and Modeling, pages 65–72.

[Sugihara et al., 2010] Sugihara, M., Wyvill, B., and Schmidt, R. (2010).

WarpCurves: A tool for explicit manipulation of implicit surfaces. Computers

and Graphics, 34(3).

150

[Tobiasz et al., 2009] Tobiasz, M., Isenberg, P., and Carpendale, S. (2009). Lark: Co-

ordinating Co-located Collaboration with Information Visualization. IEEE Trans-

actions on Visualization and Computer Graphics, 15(6):1065–1072.

[Turk and O’Brien, 1999a] Turk, G. and O’Brien, J. F. (1999a). Shape transforma-

tion using variational implicit functions. In Proceedings of the 26th annual confer-

ence on Computer graphics and interactive techniques, pages 335–342, New York,

NY, USA. ACM Press/Addison-Wesley Publishing Co.

[Turk and O’Brien, 1999b] Turk, G. and O’Brien, J. F. (1999b). Variational Implicit

Surfaces. Technical report, Georgia Institute of Technology.

[Vaillant et al., 2013] Vaillant, R., Barthe, L. i. c., Guennebaud, G. e. l., Cani, M.-

P., Rohmer, D., Wyvill, B., Gourmel, O., and Paulin, M. (2013). Implicit skin-

ning: real-time skin deformation with contact modeling. ACM Trans. Graph.,

32(4):125:1–125:12.

[van Overveld and Wyvill, 2004] van Overveld, K. and Wyvill, B. (2004).

Shrinkwrap: An efficient adaptive algorithm for triangulating an iso-surface. The

Visual Computer, 20(6):362–379.

[W3C, 2013] W3C (2013). Websockets API specification. W3C.

[Wald, 2004] Wald, I. (2004). Realtime Ray Tracing and Interactive Global Illumina-

tion. PhD thesis, Computer Graphics Group, Saarland University.

[Wald and Havran, 2006] Wald, I. and Havran, V. (2006). On building fast kd-trees

for ray tracing, and on doing that in O(N log N). In Proceedings of the 2006 IEEE

Symposium on Interactive Ray Tracing, pages 61–69. SCI Institute, University of

Utah, Salt Lake City, UT.

[Whited and Rossignac, 2009] Whited, B. and Rossignac, J. (2009). Relative blend-

ing. Computer-Aided Design, 41(6):456–462.

[Wong and Gutwin, 2014] Wong, N. and Gutwin, C. (2014). Support for Deictic

Pointing in CVEs: Still Fragmented After All These Years’. In Proceedings of the

17th ACM Conference on Computer Supported Cooperative Work & Social Com-

puting, pages 1377–1387, New York, NY, USA. ACM.

151

[Wyk, 1991] Wyk, C. J. V. (1991). Data Structures and C Programs, 2nd Ed.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition.

[Wyvill et al., 1999] Wyvill, B., Guy, A., and Galin, E. (1999). Extending the CSG

tree. Warping, blending and Boolean operations in an implicit surface modeling

system. Computer Graphics Forum, 18(2):149–158.

[Wyvill et al., 1986] Wyvill, G., McPheeters, C., and Wyvill, B. (1986). Data struc-

ture for soft objects. The Visual Computer, 2(4):227–234.

[Xu et al., 2006] Xu, Z., Feng, R., and Sun, J. (2006). Analytic and algebraic proper-

ties of canal surfaces. Journal of Computational and Applied Mathematics, 195(1-

2):220–228.

[Yagel et al., 1994] Yagel, R., Cohen, D., and Kaufman, A. (1994). Normal Estima-

tion in 3D Discrete Space.

152

Appendix A

Performance Evaluation of

Traversal Algorithm

While the performance graphs for the comparison between Top-Down tree traversals

(with and without a Bounding-Volume-Hierarchy) and the Bottom-Up tree traver-

sal(with and without a KD-Tree built with the Median-Split strategy) are shown in

Chapter 3, the underlying values are given below. The tables for time are stated in µs,

and show the average time per field-value evaluation (ie traversal and distance/blend

calculations). Due to size constraints on the page, the columns are marked with sev-

eral abbreviations describing the test case for which the numbers are stated. The

meaning of these abbreviations is explained in Table A.1.

TD Top-Down Traversal
BU Bottom-Up Traversal
B Balanced Tree
LH Left-Heavy Tree
RH Right-Heavy Tree
BVH Bounding-Volume-Hierarchy Acceleration
KDM KD-Tree Median Split Acceleration

Table A.1: Legend of the abbreviations used in the following performance and memory
related tables

153

TD B TD LH TD RH TD B BVH TD LH BVH TD RH BVH
2 0.13 0.063 0.061 0.137 0.072 0.071
4 0.264 0.14 0.14 0.241 0.172 0.169
8 0.471 0.294 0.302 0.331 0.334 0.325
16 0.931 0.708 0.806 0.398 0.667 0.674
32 1.802 1.88 2.003 0.526 1.436 1.489
64 3.593 4.964 5.11 0.683 2.973 3.228
128 7.976 9.328 9.897 0.854 5.913 6.073
256 17.733 18.947 20.319 1.011 11.74 11.752
512 33.05 40.443 41.67 1.136 23.608 24.305
1024 94.537 77.634 82.688 1.281 48.858 47.823
2048 139.31 157.192 172.426 1.426 95.7 95.876

Table A.2: The performance numbers for all Top-Down traversal variants, applied to
the 3 distinct artificial tree cases.

A.1 Average Traversal Time

While the graphs in chapter 3 are only printed until the number of leaf nodes reached

1024, the performance numbers here also include the case for 2048. The reason, why

the last case wasn’t plotted before is, that the last case is not entirely comparable

to the rest. The iterative Top-Down approach needs to store the traversal state and

BU B BU LH BU RH BU KDM B BU KDM LH BU KDM RH
2 0.068 0.046 0.049 0.066 0.05 0.051
4 0.115 0.07 0.073 0.071 0.06 0.068
8 0.189 0.099 0.12 0.095 0.059 0.066
16 0.331 0.161 0.221 0.098 0.069 0.081
32 0.621 0.276 0.409 0.1 0.08 0.093
64 1.256 0.509 0.81 0.13 0.083 0.093
128 2.418 0.947 1.759 0.141 0.107 0.127
256 4.83 1.824 3.236 0.141 0.117 0.135
512 9.534 3.589 6.445 0.19 0.136 0.19
1024 19.651 7.093 12.739 0.285 0.175 0.21
2048 39.877 14.085 25.271 0.728 0.382 0.457

Table A.3: The performance numbers for all Bottom-Up traversal variants, applied
to the 3 distinct artificial tree cases.

the temporary memory for the result stack. The problem is that for large BlobTrees

the storage requirement is bigger than the maximum buffer size that can be allocated

using OpenCL on the device.

154

As a result, the implementation of Top-Down traversal reverts to a multi-pass

approach, which reuses the temporary memory. This requires additional kernel-runs

to be enqueued on the device, potentially altering the performance behaviour. Ta-

ble A.2 shows, that there is a clear trend for the average field-value evaluation time.

However, since only kernel time on the GPU is measured for this case, the additional

time spent enqueuing the kernel multiple times for each pass, can influence these

numbers as well.

The Bottom-Up approach on the other hand does not require a multi-pass ap-

proach for 2048 leaf nodes. For 2048 nodes, ie. twice the tree size, Bottom-Up

traversal takes twice as long as for 1024, highlighting the trend of execution times

already shown in Chapter 3.

A.2 Traversal Memory Usage

In order to properly analyze the aforementioned performance numbers, their memory

usage has to be taken into account, since it directly affects the performance. The more

temporary memory is needed, the longer the tree-traversal takes. This is especially

true for the Top-Down traversal approach. It can also be seen that it doesn’t matter

that much for the Top-Down traversal compared to the Bottom-Up case, because the

Top-Down traversal accesses the memory in a less predictable pattern The Bottom-Up

TD B TD LH TD RH TD B BVH TD LH BVH TD RH BVH
2 3 2 2 3 2 2
4 4 4 4 4 4 4
8 5 8 8 5 8 8
16 6 16 16 6 16 16
32 7 32 32 7 32 32
64 8 64 64 8 64 64
128 9 128 128 9 128 128
256 10 256 256 10 256 256
512 11 512 512 11 512 512
1024 12 1024 1024 12 1024 1024
2048 13 2048 2048 13 2048 2048

Table A.4: The memory usage for the Top-Down traversal variants, applied to the 3
distinct artificial tree cases.

can be reduced to two distinct memory access patterns:

155

• linear (including one direction change at the array end)

• accessing the same few memory blocks multiple times (the smaller the number

of memory blocks, the better the performance)

This can be seen in Table A.5. The “BU B” case requires the medium memory size

and the locations are read multiple times, resulting in the worst performance. The

left-heavy tree variant needs constant memory, independent of the tree size. It uses

the same two locations of memory repeatedly, and as a result they are likely to stay

in the cache, resulting in the best performance. The right-heavy case, on the other

hand, fills the whole array front to back and then reads the array back to front,

resulting in performance that lies in between the two other cases. The performance

of the right-heavy tree, however, depends on the underlying GPU. Running it on an

older GPU from a different vendor (AMD Radeon HD 5870), this case is the slowest,

possibly because the hardware has a worse performing predictor for memory reads.

BU B BU LH BU RH BU KDM B BU KDM LH BU KDM RH
2 3 2 2 3 2 2
4 4 2 4 3 2 3
8 5 2 8 3 2 3
16 6 2 16 3 2 4
32 7 2 32 3 2 4
64 8 2 64 4 2 4
128 9 2 128 4 2 5
256 10 2 256 4 2 5
512 11 2 512 4 2 5
1024 12 2 1024 5 2 7
2048 13 2 2048 6 2 11

Table A.5: The memory usage for the Bottom-Up traversal variants, applied to the
3 distinct artificial tree cases.

156

Appendix B

Skeleton Distance Functions

Below is a list of the skeleton distance functions for the most common BlobTree

skeletons.

B.1 Point Skeleton

For a point skeleton Spoint the distance at p is defined as:

DSpoint(p) = ‖p− q‖

B.2 Line Skeleton

For a line skeleton Sline, defined using the points q0 and q1, the distance is:

DSline(p) =


t ≤ 0 → ‖p− q0‖
0 < t < 1 → ‖(q0 − p)− t q0−q1

‖q0−q1‖‖
1 ≤ t → ‖p− q1‖

The distance t between q0 and the projection of p onto the line is normalized to the

length of the line:

t =
(q0 − p)(q0 − q1)
‖q0 − q1‖

157

B.3 Cube Skeleton

For a cube skeleton Scube, centred at p with three perpendicular arms ax, ay and az,

the distance is defined as:

DScube(p) =
√
↑ (0, dx − ‖ax‖)2+ ↑ (0, dy − ‖ay‖)2+ ↑ (0, dz − ‖az‖)2

dx =
ax(p− q)
‖ax‖

dy =
ay(p− q)
‖ay‖

dz =
az(p− q)
‖az‖

This formula uses the max operator, represented by the ↑ symbol. The normalized

distances dx, dy and dz are calculated between q and the projection of p onto ax, ay

and az.

B.4 Circle Skeleton

For a circle skeleton Scircle, with radius r, centred at q and having the normal n, the

distance function is defined as:

DScircle(p) =

√
(
√
‖p− q‖ − ((p− q)n)2 − r)2 + ((p− q)n)2

B.5 Disc Skeleton

For a disc skeleton Sdisc with radius r, centred at q and having the normal n the

distance is (↑ is the max operator):

DSdisc(p) =

√
↑ (0,

√
‖p− q‖ − ((p− q)n)2 − r)2 + ((p− q)n)2

158

B.6 Cylinder Skeleton

For a cylinder skeleton Scylinder, with radius r, centred at q having the normal n and

height h, the distance is:

DScylinder(p) =

√
↑ (0,

√
‖p− q‖ − ((p− q)n)2 − r)2+ ↑ (0, (p− q)n− h

2
)2

This formula uses the max operator, represented by the ↑ symbol.

B.7 Cone Skeleton

For a cone skeleton Scone, with the tip at point q, having normal n, height h and

radius r at the base, the distance is:

DScone(p) =


s ≤ 0 → ‖p− q‖
0 < s < 1 → ‖st+ q − p‖
1 ≤ s → ‖p− q − s‖

s =
(p− q)t
‖t‖2

t = hn+
ru

‖u‖
u = (p− q)− n((p− q)n)

159

Appendix C

Blobtree Operations

Below is a list of the formulation of the most basic blend operators used in the

BlobTree.

C.1 Union

The union recreates the corresponding CSG-or operator. It uses the maximum ↑
operator to return the maximum value of the sub-BlobTrees found at p.

fR(p) =↑n∈N fn(p)

This operator causes discontinuities in the resulting potential field.

C.2 Intersection

The intersection recreates the corresponding CSG-and operator. It uses the minimum

↓ operator to return the minimum value of the sub-BlobTrees found at the p.

fR(p) =↓n∈N fn(p)

The ↓ operator causes discontinuities in the resulting potential field.

160

C.3 Difference

To recreate the CSG difference operator the potential fields of the BlobTrees that are

subtracted need to be inverted. This means subtracting the field value from 1. The

equation

fR(p) =↓
(
{fB(p)}

⋃
{1− fn(p)|n ∈ N}

)
describes the difference of several BlobTrees N from the BlobTree B. The operator

results in a discontinuous field.

C.4 Summation Blend

The summation blend is defined as

fR(p) =
∑
n∈N

fn(p)

and produces a continuous potential field when the sub-BlobTrees N are continuous.

C.5 Ricci Blend

The Ricci blend [Ricci, 1973] extends the summation blend by an additional param-

eter r to control the shape of the blend. Depending on the values of r it creates a

blend operation or a union operation, and variants in between. The Ricci blend for

BlobTrees N is defined as:

fR(p) = r

√∑
n∈N

fn(p)r

161

Appendix D

Contributions of Other Researchers

Parts of this work are the results of contributions with various other researchers.

While my supervisor Brian Wyvill has been involved in every single topic through

discussions about potential solutions to the stated problems and by suggesting textual

improvements, the involvement of other researchers were more specific. This chapter

outlines the roles other researchers had during the course of the projects.

D.1 Efficient Data-Parallel Tree-Traversal for Blob-

Trees

The work described in Chapter 3 is the result of collaboration with:

• Jean-Luc Duprat (University of Victoria) was involved in many discussions

regarding the algorithm and pushed me to find a different approach than the

original, stack-based top-down traversal. He also helped with the text and wrote

the Mathematica script to generate the performance graphs from the benchmark

application output.

• Paul Lalonde (University of Victoria) helped understanding hardware specifics

that are important when porting a general purpose algorithm to SPMD hard-

ware. He also helped with the text of the paper based on the thesis chapter.

• Jaroslaw Rossignac (Georgia Tech) has published several papers regarding

CSG traversal and helped to refocus the paper with regards to his previous work

on accelerating CSG. In addition, he helped writing the mathematical formula-

162

tions of the BlobTree traversal and improved the sections about reordering the

BlobTree to improve performance.

D.2 CollabBlob: A Data-Efficient Collaborative

Modelling Method using Websockets and the

BlobTree for Over-the Air Networks

The following authors collaborated with me on the work presented in Chapter 4:

• Pourya Shirazian (University of Victoria) was involved in the implementation

of the first prototype, that only included actions, but not yet the whole user

interface related communication. He also helped with a first draft of the related

work section and did research on the publications related to this project.

• Saul Greenberg (University of Calgary) helped improve the overall user expe-

rience of the final applications by suggesting the extension of the communication

between participants to involve the immediate feedback system. He also pro-

vided the basic text about how collaboration between users should be and which

communication channels can be used.

D.3 Angle-Based Filleting : Adding CSG-like con-

trol to BlobTree primitives

The work presented in Chapter 5 involved several discussions with Löıc Barthe (Uni-

versité Paul Sabatier of Toulouse). He suggested several mathematical approaches to

solving the corner case and in general helped with applying the GBB formulas to this

use case.

D.4 Improvements in BlobTree Sketch-based Mod-

elling

No significant collaborations with another researcher happened on this topic. Jyh-

Ming Lien (George Mason University) provided the source code of his Approximate

Convex Decomposition algorithm.

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Contributions
	Accelerated BlobTree Traversal
	Collaborative BlobTree Modelling Environment
	Extended BlobTree Modelling

	Combining the Contributions
	Outline

	The BlobTree
	Constructive Solid Geometry (CSG)
	Skeletal Implicit Surfaces
	Sketching using the BlobTree
	Blend Operators
	WarpCurves
	Variational Warping
	WarpCurve User Interface
	Creating the WarpCurve Deformation Field
	Bound the Displacement Field using a Convolution Surface

	Gradient Based Blend
	Rendering the BlobTree
	Summary

	Efficient Data-Parallel Tree-Traversal for BlobTrees
	Introduction
	Motivation
	The BlobTree
	Contributions
	Outline

	Related Work
	The SPMD programming model
	Accelerating BlobTree rendering
	Accelerating CSG rendering

	Methods to accelerate CSG tree traversal
	Techniques applicable to the BlobTree
	Hardware Considerations
	Linearizing a BlobTree
	Eliminating the need for a traversal stack
	Optimize the tree to require less temporary storage

	Incorporating Non-Affine Transformations
	Implementation
	Results
	Synthetic scene
	Models
	Non-Affine Transformations

	Conclusion and Future Work

	CollabBlob: A Data-Efficient Collaborative Modelling Method using Websockets and the BlobTree for Over-the-Air Networks
	Introduction
	Motivation
	Collaborative Modelling
	Contributions
	Outline

	Related work
	Implementation
	Network Message Layers

	Synchronization
	A Collaborative User Interface
	Transformation Gizmos

	Access Control
	Results
	Construction History

	Conclusion
	Future Work

	Angle-Based Filleting: Adding CSG-like control to BlobTree primitives
	Introduction
	Motivation
	Approaches to Filleting
	Contributions
	Outline

	Related Work
	Mathematical Problems
	Fixed Radius Filleting along one Edge
	Cylinder Circular Edge
	Cone Circular Edge
	Cone Tip

	Creating a Surface Fillet Curve
	Calculating a Surface Fillet Curve Frame
	Calculating the Surface Fillet Curve Object Field
	Combining the Surface Fillet Curve Primitive with the Base Model

	Variable Radius Filleting along one Edge
	Interactive User-Interface to Specify a Fillet
	Example Models
	Tap Model
	Car Bonnet Model

	Conclusion
	Future Work
	Filleting a Corner

	Improvements in BlobTree Sketch-based Modelling
	Introduction
	Motivation
	Implicit Sketch-based Modelling
	Contributions
	Outline

	Problem Statement
	Finding the Exterior Control Points
	Finding the Interior Control Points
	Finding the Interior Control Point Weights
	Results
	Conclusion

	Conclusion
	Accelerated BlobTree Modelling
	Collaborative BlobTree Modelling
	Extended BlobTree Modelling
	Filleting
	Sketching

	Bibliography
	Performance Evaluation of Traversal Algorithm
	Average Traversal Time
	Traversal Memory Usage

	Skeleton Distance Functions
	Point Skeleton
	Line Skeleton
	Cube Skeleton
	Circle Skeleton
	Disc Skeleton
	Cylinder Skeleton
	Cone Skeleton

	Blobtree Operations
	Union
	Intersection
	Difference
	Summation Blend
	Ricci Blend

	Contributions of Other Researchers
	Efficient Data-Parallel Tree-Traversal for BlobTrees
	CollabBlob: A Data-Efficient Collaborative Modelling Method using Websockets and the BlobTree for Over-the Air Networks
	Angle-Based Filleting: Adding CSG-like control to BlobTree primitives
	Improvements in BlobTree Sketch-based Modelling

