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Abstract

Light possesses no mass but can transfer momentum to matter and thus

can exert forces. This thesis explores these optical forces, focusing on two surprising

discoveries: optical forces arising from the spin angular momentum of light and

beams of light that can pull, as well as push.

In the first case, we show that non-uniform beams of light can exert a

force proportional to the curl of the spin angular momentum density. To show

this we have developed a framework for expressing optical momentum in terms of

experimentally controlled parameters. This framework makes clear that the curl

of the spin angular momentum density contributes to the optical linear momen-

tum. Surprisingly, we find that this contribution does not lead to spin-dependent

optical forces at the electric dipole level. Experimentally, however, we find that

spin-dependent optical forces do indeed act on isotropic microspheres in focused

circularly-polarized beams of light. Theoretically, we confirm that spin-dependent

forces appear at higher order in multipole scattering, which explains the experi-

mental results.

Using the same theoretical framework, we show that beams of light can act

as tractor beams that pull illuminated objects upstream against the direction of
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propagation. We demonstrate this extraordinary effect experimentally with optical

conveyor beams. These experiments achieve long-range bidirectional transport of

colloidal microparticles along propagation invariant beams of light. They show

moreover that optical conveyors can move multiple particles simultaneously thanks

to the self-healing properties of these modes of light. Not only do optical conveyors

constitute practical realizations of tractor beams, but they also act as stronger

traps than conventional optical traps and are less sensitive to particle composition.

Axial interference endows optical conveyors with these superb trapping properties,

which in turn gives them greater range than conventional optical traps. Our work

provides a jumping off point towards future work on long-range optical tractor

beams and other novel optical micromanipulation.
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Introduction

Light carries momentum. With every scattering, emission or absorption

event, therefore, light exerts forces on matter. In simple beams of light, described

as plane waves, these forces take the form of radiation pressure that blows objects

downstream. In more complicated beams of light, optical force fields can have

surprising properties. A prime example of the counterintuitive nature of optical

forces was provided by Ashkin in 1986, when he and his coworkers at Bell Labora-

tories discovered that it was possible to trap and hold a small bead with a focused

beam of light, making a laser tweezers [14]. This discovery kick-started the field

of optical manipulation [15–17], in which complex optical fields are designed to

exert arbitrary forces on small objects. In this thesis, we explore how the local

properties of complex beams of light can give rise to nontrivial force fields.

Optical forces are not simply proportional to light’s momentum density.

In this sense optical forces are an emergent property of the light-matter interaction.

Much of the research in optical manipulation relies on classical electromagnetism,

which rests on the solid foundation created by Maxwell in the 1870’s. Maxwell,

however, never suggested that a focused beam of light can act as a trap for small

particles, and much less that a beam of light can possess both spin and orbital
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angular momentum [18] and can exert torque on matter [19]. This may seem

surprising because complex beams can always be expressed as a sum of plane

waves, which Maxwell and his contemporaries understood. However it is hard

to find the specific superposition of plane waves needed to create beams with

interesting force fields. This challenge opens up plenty of room for new discoveries

in optical manipulation.

Studying the local properties of beams of light offers useful insights into

the origin of optical forces. For instance, the radiation pressure exerted by light

on a particle can be understood in terms of the Poynting vector, which describes

the local flux of energy. This optical energy flux is proportional to its momentum

density, which the particle redirects by scattering the light. From conservation

of momentum, this scattering leads to the radiation pressure. Optical trapping

of dielectric particles also relies on forces that depend on local properties of the

beam, in this case the gradient of the intensity [14]. Describing the forces in this

way explains the need for tightly focused beams in optical trapping. Only large

gradients of intensity can create a force strong enough to counteract the radiation

pressure. Understanding optical forces in terms of the beam’s properties provides

intuition for designing new and interesting optical force fields.

The first part of this thesis focuses on the relationship between the optical

spin angular momentum density and optical forces. Each photon of light carries

±� of spin angular momentum, which Beth verified experimentally in 1936 [20].

Recent experiments suggest that beams with non-uniform polarization not only

can exert torques on birefringent particles, but also can exert linear forces even

on isotropic particles [7, 21]. Other work has suggested an interesting coupling
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between the spin and orbital angular momentum of light [22–25], but this has not

yet been definitively settled [26–28]. Further progress in this area could open up a

whole new channel for implementing optical manipulation.

This thesis aims to clarify the nature of polarization-dependent optical

forces. Chapter 2 presents a theoretical framework for understanding the optical

momentum density in terms of local characteristics of the beam. This allows us

to relate the spin angular momentum density of the light to its linear momentum

density. Intuitively this relationship should lead to spin-dependent optical forces,

a proposal that we test experimentally in Chapter 4 by observing the motion of

colloidal microspheres in beams of light with non-uniform polarization [8]. These

measurements provide strong evidence for the influence of optical forces arising

from the spin angular momentum of light. We qualitatively explain these spin-

dependent optical forces acting on particles with induced multipole moments in

Chapter 5.

In the second part of this thesis we focus on how beams of light can pull

illuminated objects back to their source. Such beams of light act as tractor beams

that have long been a topic for science fiction stories. Since its initial demonstration

in 2010 [29] this surprising effect has captured the interest of a growing number of

researchers [30–34]. Physically a beam can exert a pulling force on an object that

scatters the wave in the forward direction. Because the beam consequently carries

more momentum in the forward direction after scattering, the object must recoil

in the opposite direction to conserve momentum. This principle was first proposed

by Marston in 2006 for acoustic waves [35].

We set Marston’s principle to work in optical conveyors beams [36–38], and
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demonstrate that they act as active tractor beams [12]. Chapter 6 describes how

these beams can be projected using holographic methods and how they can pull

colloidal microspheres against the direction of propagation. The interferometric

structure of these beams leads to excellent trapping properties as is discussed in

Chapter 7 [13]. The trapping properties in turn allow them to work at longer range

than conventional optical traps and other proposed tractor beams.

Both spin-dependent optical forces and the pulling force of optical tractor

beams are examples of counterintuitive optical forces. They are not obvious from

the properties of the plane waves that make up these beams. We provide a more

physical understanding of these forces by elucidating how they arise from the local

variations of spin angular momentum density and intensity, respectively.
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Chapter 1

History of Optical Forces and

Torques

Serendipitous discoveries characterize the history of the study of optical

forces. Although their effects are very small in daily life, optical forces are based

on interesting physics and have many applications. In this chapter we will describe

some of the coincidences and breakthroughs that created this rapidly developing

field, and how our research fits into the story.

Optical forces were first discovered because of the passing of a comet.

Halley’s comet visits Earth every 75 years. During its return in 1531, it was

carefully observed by Petrus Apianus who reported that its tail always points away

from the sun [39]. In 1607 Kepler witnessed Halley’s comet’s next return [40], and

he proposed that the the tail is extended by radiation pressure [41]. As early as

1746, Euler used Huygens’ wave model for light to place Kepler’s conjecture on a

firmer footing by demonstrating that waves can exert forces [42]. In this report,
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Figure 1.1: The 1066 A.D. appearance of Halley’s Comet depicted in the Bayeux

Tapestry. Source: Wikimedia Commons [1].

Euler proposed that the visible tail consists of particles liberated from the comet’s

surface [42].

With each return, Halley’s comet continued to influence the understand-

ing of radiation pressure. Referring specifically to the phenomenon of comet tails,

Maxwell studied the radiation pressure of light in his seminal Treatise on Elec-

tricity and Magnetism, published in 1873 [43]. In this work he computed the

momentum density carried by a plane electromagnetic wave, and used these calcu-

lations to determine the radiation pressure that light can exert on reflecting and

absorbing surfaces. Maxwell’s predictions were confirmed experimentally by Lebe-

dev in 1901 [44] using a method proposed by Maxwell himself. Any doubt about

this experiment was removed in 1903, when Nichols and Hull measured radiation
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Figure 1.2: Kepler (left) conjectures there is radiation pressure from observing

comets. Euler (right) demonstrates waves can exerts forces. Source: Wikimedia

Commons [2, 3].

pressure with a more sensitive technique [4]. Interestingly, Nichols and Hull also

attempted to verify Kepler’s conjecture about comet tails [45].

The possibility that circularly polarized light might exert torque on op-

tically anisotropic objects was not proposed until 1914 [46], and was not demon-

strated until Beth’s landmark experiments on optically driven torsion oscillators in

the 1930’s [20,47]. Quantitative agreement with theory provided direct mechanical

evidence for the equivalence of circular polarization in classical field theory with

photon spin in quantum electrodynamics.

Once established theoretically and experimentally, optical forces and torques

received comparatively little attention for several decades, probably because they

are too feeble to perceptibly influence most macroscopic systems. Optical forces
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Figure 1.3: Schematic of the experimental apparatus used by Nichols and Hull to

measure the radiation pressure of light. Figure from Ref. [4].

scale as P/c, where P is the optical power and c is the speed of light. Since the

speed of light is great, optical forces are correspondingly weak. Even such diminu-

tive forces, however, may have a substantial influence on the dynamics of micro-

scopic systems, as Ashkin demonstrated in 1970 by levitating micrometer-scale

colloidal spheres against gravity with a collimated laser beam [5]. This break-

through founded the field of optical micromanipulation.

Ashkin’s report included a second crucial innovation. Whereas Lebedev,
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Figure 1.4: Schematic of the experimental apparatus used by Ashkin in the first

optical micromanipulation experiments. Reprinted with permission from Ref. [5].

Copyright (1970) by the American Physical Society.

Nichols and Hull relied on reflection to transduce light’s momentum into a measur-

able force, the radiation pressure in Ashkin’s experiments resulted from a combi-

nation of reflection and refraction at the small particles’ surfaces [5,14,48]. An illu-

minated object redirects the momentum in a beam of light by scattering the light

away from its direction of propagation, and then recoils to conserve momentum.

Even transparent objects, therefore, can be moved by light, without the ill effects

of heating that stymied 19th century attempts to measure radiation pressure. The

rich phenomenology of light scattering, moreover, can yield opto-mechanical effects

that are both surprising and useful.

A ray-optics description of light’s interaction with a dielectric sphere il-
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lustrates some interesting features of optical forces. Light scattering by refraction

can redirect more optical momentum down the optical axis than would have been

present in the unscattered beam. This happens, for instance, when a small dielec-

tric sphere is placed just downstream of the focus in a converging Gaussian beam.

The sphere acts as a lens that tends to converge the initially diverging beam toward

the optical axis. The resulting recoil force therefore pulls the particle upstream

against the radiation pressure due to absorption, reflection and surface scattering.

The particle can be trapped by the beam if there is a point in the beam where the

recoil force balances radiation pressure. This is the principle behind the optical

tweezers that Ashkin and his coworkers discovered in 1986 [14].

The realization that light scattering can usefully harness the momentum

density in a beam of light for controlling the motion of microscopic objects sparked

a revolution in optical micromanipulation. Applications for optical traps soon

were identified in such areas as cellular [49–51] and molecular biology [52–57], in

atomic [58] and condensed matter physics [59,60], and in materials science [61,62].

Once optical micromanipulation gained widespread acceptance, researchers

from around the world began to investigate in more detail how the properties of a

light wave might be harnessed to refine and extend the capabilities of optical traps.

Optical tweezers created from circularly polarized light, for example, were demon-

strated in 1998 to exert torques on birefringent particles [63, 64]. A landmark

article from 1992 proposed that beams of light with helical wavefront structure

would carry not only linear momentum and spin angular momentum, but also or-

bital angular momentum [18] that could be transferred even to optically isotropic

objects. This prediction was confirmed experimentally through observations of
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Figure 1.5: An optical vortex, with a helical phase profile. The optical orbital

angular momentum of this beam induces colloidal particles to orbit around the

beam. Reprinted with permission from Ref. [6]. Copyright (2003) by the American

Physical Society.

micrometer-diameter colloidal particles circulating in optical traps created from

helical Laguerre-Gaussian modes [19, 65, 66].

Helical modes that carry orbital angular momentum often are created from

conventional Gaussian modes by imposing azimuthal phase gradients on the light’s

wavefronts [67,68]. Such phase gradients introduce orbital angular momentum by

redirecting the light’s linear momentum flux into a spiral that winds around the

optical axis. The idea of using phase gradients to redirect radiation pressure has
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Figure 1.6: Diagram showing optical forces arising from polarization gradients.

Figure reprinted with permission from Ref. [7].

been harnessed to create single-beam optical traps that apply specified forces along

specified paths in three dimensions [11,69]. These extended optical traps generalize

the point-like trap formed by optical tweezers into programmed optical force fields

that have been implemented though holographic mode shaping [15,68,70].

Most efforts to design and harness optical force and torque fields have

relied on the scalar theory of light propagation, in which the polarization is assumed

to be uniform throughout the beam. Recently, however, spatial variations in the

polarization have been shown to contribute to both the linear forces and also the

torques that light can exert [7, 8, 21]. The scalar theory does not account for the

vector nature of light and so fails to address potentially valuable opportunities for

optical micromanipulation. These opportunities are very promising, particularly

given the development of experimental techniques for projecting beams of light

with specified amplitude [71], phase [69], and polarization profiles [72].
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Spatial control over the polarization of the light can create beams with

non-uniform optical spin angular angular momentum, whose properties are not

well understood. The nature of the spin angular momentum carried by a beam

of light and its relationship to the orbital angular momentum have been subjects

of ongoing investigation [73–75]. Spin angular momentum, for example, has been

shown to contribute to the orbital angular momentum carried by a beam of light

through a process called spin-to-orbit conversion [8, 24, 76]. There is a need for

deeper understanding of how this conversion works and how it can be applied.

To address these questions, we explore how optical forces arise in beams

with non-uniform spin angular momentum. In Chapter 2, we investigate how non-

uniform spin-angular momentum leads to spin-dependent linear momentum. A

key step is to write the linear momentum in terms of experimentally accessible pa-

rameters, which allows easier comparison to experiment and gives physical insight.

These theoretical results indicate the existence spin-dependent optical forces. We

describe our experiments that measure these forces in Chapter 4. Then in Chapter

5 we calculate how these forces arise from the light’s interaction with the multipole

moments of the illuminated particles.

In the second part of this thesis, we study how to extend optical traps over

long axial ranges and how to pull particles with light. The limited range of optical

tweezers is a major drawback for optical micromanipulation, and has been a sub-

ject of intense study. Researchers have made incremental gains in increasing optical

trap range by using optical vortices [66], spatially filtered beams of light [48,77,78],

and beams of light with spatially varying polarization [79, 80]. Alternatively, the

trapping particle can be engineered to improve its trapping properties [81], al-
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though this solution is not ideal since it limits generality. Finally, more radical

approaches use another force to counter the radiation pressure of the light. For

example, counterpropagating traps use another beam of light to balance the radi-

ation pressure from the first beam [82]. This approach allows for optical trapping

over long range, but at the cost of additional complexity [83]. Despite substantial

advances, the problem of long range optical trapping remains unsolved.

Beams with strong enough diffraction gradients to form optical traps tend

to diffract strongly and, consequently, have a very limited range. Counter to this

conventional thinking, Durnin created hope for long range optical traps in 1987

with the discovery of nondiffracting modes of light [84]. These optical modes are

beams of light whose transverse profile does not change along the axis of propaga-

tion. Although, the uncertainty principle dictates that all bounded beams diffract,

it is possible for a beam of light to have a finite region where its profile remains

almost unchanged with propagation. Durnin experimentally demonstrated such a

beam with the profile of a Bessel function, a so-called Bessel beam [85]. Indeed

Bessel beams have proved to be useful for trapping colloidal microparticles [86].

These beams can manipulate colloidal microparticles over an impressive range of

3mm, although in this experiment the colloidal microparticles were not trapped in

three dimensions but pressed against the sample chamber by the radiation pressure

of the beam [87].

The promise of nondiffracting modes of light opened up the possibility

of practical tractor beams. Long features of science fiction stories [88], tractor

beams are traveling waves of light that can transport illuminated objects back to

their source. The principle for practical implementations of tractor beams was first
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articulated by Marston in the case of nondiffracting acoustic Bessel beams [35]. The

first experimental demonstration of a real-world tractor beam was by Lee et al. who

used optical solenoid beams to pull colloidal microspheres over a range of 8 �m [29].

This proof of concept demonstration inspired a surge of research activity [30–34,89].

Existing implementations are based on non-diffracting modes of light, most often

Bessel beams or superpositions of Bessel beams. It was suggested that the non-

diffracting nature of these beams allows them to work over long distances [30].

This prediction has yet to be realized experimentally.

Behind the excitement of tractor beams, there is an unanswered question:

What makes a tractor beam fundamentally different than optical tweezers? In

fact, optical tweezers have already been called tractor beams [90]. Holographic

techniques allow for the creation and movement of optical tweezers in three di-

mensions. These moving optical traps can pull and transport trapped particles

along with them, and have been demonstrated to work over a 40 �m range, greater

than that of the optical solenoid beam [91]. In addition, the proposed optical trac-

tor beams based on Bessel beams were predicted to be very sensitive to particle

composition, which limits their applicability [31]. In order for the field of tractor

beams to move forward, evidence is needed of fundamental advantages of tractor

beams over conventional optical traps.

We attacked this problem using optical conveyors as an archetype for op-

tical tractor beams [36–38]. These beams form a series of intensity maxima along

the optical axis, which create traps for microparticles. We demonstrate that par-

ticles can be pulled by shifting the intensity maxima [12]. This work, described in

Chapter 6, suggests optical conveyors have trapping properties superior to con-
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ventional optical tweezers. The experiments described in Chapter 7 confirm this

prediction, by showing that axial interference endows these beams with excellent

trapping properties compared to conventional optical tweezers [13]. These exper-

iments also demonstrate that optical conveyors have longer range than optical

tweezers. This provides some of the first evidence that optical tractor beams can

lead to qualitative and quantitative improvements in long range optical trapping.
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Chapter 2

Photokinetics I

2.1 Optical momentum

The momentum carried by a beam of light is unambiguously described by

the Poynting vector which was introduced by John Henry Poynting in 1884 [92].

Despite its familiarity, the Poynting vector can have unexpected properties in non-

uniform optical fields. Such fields are characterized by spatially varying amplitude,

phase, and polarization, all of which are local and experimentally accessible pa-

rameters. One surprise is that the optical momentum flux, written in terms of

these parameters, includes two terms accounting for light’s angular momentum:

one arising from the photon’s intrinsic spin angular momentum and another aris-

ing from the topology of the beam’s wavefronts. Streamlines of the momentum flux

define a generalized wave vector, whose behavior can differ from intuition based

on geometrical optics.
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2.1.1 Optical field in experimental parameters

A monochromatic beam of light with frequency ω may be described with

its vector potential,

A (r, t) = u (r) e−iωt ε̂ (r) , (2.1)

where the real-valued amplitude u (r) and the complex-valued polarization ε̂ (r)

both may vary with position r. Each vector component of the polarization

εj (r) = aj (r) e
iϕj(r), (2.2)

has a real-valued magnitude aj (r) and phase ϕj (r). The polarization’s normaliza-

tion then requires
3∑

j=1

a2j (r) = 1. (2.3)

If the polarization’s components have fixed relative phases, ϕj, the com-

mon phase may be factored out,

ε̂ (r) = eiϕ(r)
3∑

j=1

aj (r) e
iϕj êj. (2.4)

This is the case, for example, in linearly polarized beams of light, for which ϕj = 0.

One non-standard consequence of adopting Eq. (2.2), is that the polar-

ization of linearly polarized light no longer is real-valued. This notation has the

benefit, however, of reflecting typical experimental implementations in which the

relevant phases and amplitudes are controlled independently. Moreover, it lends

itself to physical interpretation.
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In the Coulomb or radiation gauge, the light’s electric and magnetic fields

are expressed in terms of the vector potential as

E(r, t) = −∂tA (r, t) and (2.5)

H(r, t) =
1

μ
∇×A (r, t) , (2.6)

where μ is the magnetic permeability of the medium.

The forces and torques experienced by illuminated objects depend on the

local intensity of the light, specifically the radiative flux,

I (r) =
cnmε0
2

|E (r, t)|2 = cnmε0ω
2

2
|A (r, t)|2 = cnmε0ω

2

2
u2(r), (2.7)

where c is the speed of light, nm is the refractive index of the medium, and ε0 is the

permittivity of free space. The radiative flux depends only on the local amplitude,

u (r), and not on the polarization or the phase. For convenience, we introduce the

spectral action density,

I (r) = 1

nωc
I (r) , (2.8)

which has the units of an angular momentum density and usefully scales the fre-

quency dependence out of our formulation of optical forces and torques.
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2.1.2 Momentum from the curl of the spin angular mo-

mentum density

The time-averaged linear momentum density carried by a beam of light is

given by Poynting’s theorem as

g (r) =
1

2c2
�{E∗ (r, t)×H(r, t)} (2.9)

=
ω

2μc2
�{A∗ (r, t)× [∇×A (r, t)]} . (2.10)

The momentum density can be decomposed into two terms with the identity a×
(∇× b) = ai∇bi − (a · ∇)b, which eliminates the cross products,

g (r) =
ω

2c2μ
�{A∗i (r)∇Ai (r)− [A∗ (r) · ∇]A (r)} . (2.11)

The divergence of the vector potential is zero in our gauge, which allows us to add

another term to the momentum density,

g (r) =
ω

2c2μ
�{A∗i (r)∇Ai (r)− [A∗ (r) · ∇]A (r) + [∇ ·A (r)]A∗ (r)} , (2.12)

and apply another identity, ∇× (a×b) = a(∇·b)−b(∇·a)+(b ·∇)a− (a ·∇)b),

to obtain

g (r) =
ω

2c2μ
�{iAi(r)∇A∗i (r)}+

ω

2cμ

1

2i
∇× [A∗(r)×A(r)]. (2.13)

References [93] and [25] identify the first term as arising from the orbital angular

momentum density and the second from the spin angular momentum density. This
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fascinating result implies the linear momentum in a beam of light is not indepen-

dent of the spin or orbital angular momentum; they are intimately connected. The

physical meaning of this decomposition, however, is not immediately apparent.

It becomes more clear when these results are expressed in terms of experimental

parameters.

Rewriting Eq. (2.13) in terms of Eq. (2.1) yields

g (r) = −i I (r)
3∑

j=1

ε∗j (r) ∇εj (r) +
i

2
∇× [I (r) ε̂ (r)× ε̂∗ (r)] . (2.14)

Normalization of ε̂ (r) implies ∇ [ε̂∗ (r) · ε̂ (r)] = 0 and therefore that the first term

in Eq. (2.14) is real-valued. Similarly, the dimensionless quantity

σσσ (r) = i ε̂ (r)× ε̂∗ (r) (2.15)

is manifestly real-valued. Components of σσσ (r) written in terms of the field com-

ponents using the Levi-Civita antisymmetric tensor εijk,

σi (r) = i
3∑

j=1

3∑
k=1

εijk aj (r) ak (r) e
i[ϕj(r)−ϕk(r)], (2.16)

depend only on differences in relative phases rather than on their absolute values.

Because σσσ (r) has unit magnitude for circularly polarized light and vanishes for

linearly polarized light, we identify it as the helicity of the beam. Dimensional

analysis then suggests that

s (r) = I (r) σσσ (r) (2.17)

is the spin angular momentum density carried by a beam of light. This interpre-
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tation of s (r) will be placed on a firmer footing in Sec. 2.3.

The first term in Eq. (2.14) is most usefully expressed in terms of the

magnitudes and phases of the polarization. The second term is the curl of the spin

density. The result [8],

g (r) = I (r)
3∑

j=1

a2j (r) ∇ϕj (r) +
1

2
∇× s (r) (2.18)

is a general expression for the linear momentum density in a beam of light.

For the special case of linearly polarized light, the second term on the

right-hand side of Eq. (2.18) vanishes, and the remaining term reduces to the

remarkably simple form,

g (r) = I (r) ∇ϕ (r) , (2.19)

which implies that the momentum density is directed by gradients of the phase.

The phase gradient is perpendicular to the wavefronts of the beam, and it points in

the direction of wavefront motion. Consequently the momentum density also points

in this direction. It seems reasonable to expect that small particles illuminated

by the beam scatter some of this momentum, and thus experience a force in the

direction of the phase gradient [69]. In a plane wave, the phase gradient force

reduces to the force from the radiation pressure. In more complex beams the

phase gradient force has been used successfully to design three-dimensional force

fields for small objects [29, 69, 94,95].

The first term in Eq. (2.18) generalizes the phase gradient contribution to

the momentum density. Each component of the polarization defined by Eq. (2.2)

has its own phase. These phases have different spatial dependence in beams of
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Figure 2.1: Schematic of the momentum flux from the curl of optical spin angular

momentum. (a) Cross section of a beam of light with uniform circular polarization,

where the small squares represent the optical spin angular momentum at each point

in the beam. The red arrows represent the resulting circulation of momentum flux

around the beam perimeter. (b) Non-uniform optical spin angular momentum

represented by the size of the arrows and the color of the squares creates a flux of

optical momentum given by the red arrow.

light with spatially varying elliptical polarization. Therefore each component can

carry momentum in independent directions, which is described by the sum in

the first term of Eq. (2.18). Although this contribution to the momentum density

depends on the polarization, it is not otherwise deeply connected with the quantum

mechanical spin of the light’s photons [25]. Rather, it is a contribution to the

momentum density directed by phase gradients.

The spin-curl term [8] in Eq. (2.18) arises only in elliptically or circularly

polarized beams of light and is intimately connected with photon spin, as will be

made clear in Sec. 2.3. It arises both for spatially varying helicity in non-uniformly

polarized beams and, more commonly, for intensity variations in beams with non-
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zero helicity. This resulting non-uniform spin angular momentum density creates

a bound current of optical momentum as is shown in Fig. 2.1(a). Fig. 2.1(b) shows

how this bound current is created from incomplete cancellation of optical spin

angular momentum.

2.2 The generalized wave vector

The streamlines of optical momentum density provide powerful visualiza-

tion of the spin-curl contribution to the optical momentum density. The trajec-

tories of these streamlines follow the generalized wave vector, which is related by

definition [25] to the time-averaged momentum density,

q (r) =
g (r)

I (r) . (2.20)

The streamlines in Fig. 2.2 are plotted for a focused beam of circularly polarized

light. The spin angular momentum density in such a beam twists the streamlines

around the optical axis as they converge to the focus.

The curved trajectories of these streamlines indicate that they are not rays

defined by a conventional wave vector. This observation prompts us to investigate

the properties of the generalized wave vector. Interestingly, this classical quantity

can be understood quantum mechanically. In addition, the generalized wave vec-

tor provides insight into how energy flows through interferometrically structured

beams. Results from this analysis have practical applications in optical trapping

and in particle tracking.
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Figure 2.2: Streamlines of the momentum flux in a strongly focused circularly

polarized optical tweezers. Figure from Ref. [8].

In the associated quantum-mechanical description, p (r) = �q (r) is the

expectation value of the photon momentum measured at position r [25, 96] using

a weak measurement [97]. Recently this quantity has been measured in a single-

photon interference pattern by Kocsis et al. who interpreted it as the average

trajectory of the photons [98]. Bliokh et al. connected that experiment to the

classical quantities that we are discussing here [99]. The quantum mechanical

definition of the generalized wave vector provides context to understand some of

its other unusual properties.

The magnitude of the generalized wave vector can vary with position, and

vanishes altogether in standing waves. The variability of q (r) = |q (r)| is crucial for
the performance of single-beam optical traps since it can lead to an optical pulling

force. A converging or diverging beam can have some momentum transverse to the

optical axis, making q (r) less than ω/c. A scatterer can redirect this momentum
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along the optical axis and thus recoil in the opposite direction, or be pulled by the

light. This effect is harnessed most dramatically in the operation of the tractor

beams described in Chapter 6.

The wave vector in a general beam of light need not be transverse to the

polarization. The transversality condition q (r)· ε̂ (r) = 0 is not satisfied in general;

the light in a non-uniform beam may have some degree of longitudinal polarization.

Although this notion does not arise in discussions of uniformly polarized paraxial

beams, it is well studied in the context of radially-polarized [100] and strongly

focused [101] beams of light.

These considerations suggest that quite extraordinary effects should be

expected in beams of light whose amplitude, phase, and polarization profiles are

chosen suitably. The vector potential describing a freely propagating beam of light

must satisfy Maxwell’s wave equation,

∇2A (r, t) =
1

c2
∂2

∂t2
A (r, t) . (2.21)

Substituting Eq. (2.1) into Eq. (2.21) and gathering the real-valued terms yields

3∑
j=1

a2j (r)

[
|∇ϕj (r)|2 − ∇

2aj (r)

aj (r)
− ∇

2u (r)

u (r)

]
=

ω2

c2
, (2.22)

which constrains variations in the constituent amplitudes and phases.

For linearly polarized light, the wave vector reduces to q (r) = ∇ϕ (r) and

Eq. (2.22) reduces to

q2 (r)− ∇
2u (r)

u (r)
=

ω2

c2
. (2.23)
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Whereas q (r) describes a propagating wave, the second term on the left-hand

side of Eq. (2.23) describes a standing-wave component of the beam that carries

no momentum. This term vanishes for plane waves and may be ignored in the

paraxial approximation, in which case Eq. (2.23) reduces to the familiar dispersion

relation for plane waves, q2 = ω2/c2.

The fact that Eq. (2.22) is different from the familiar dispersion relation is

related to the uncertainty principle. The dispersion relation connects the energy of

a wave to its momentum. More precisely, the wave equation connects the expected

value of the squared energy of the wave with the expected value of the squared

momentum,

〈
p̂2
〉
=

〈
Ê2

〉
c2

, (2.24)

where p̂ is the momentum operator, Ê is the energy operator, and the brackets

indicate the time-averaged expectation value. Dividing by �, assuming monochro-

matic light, and using the definition of the variance, we arrive at

q2 + σ2
q =

ω2

c2
, (2.25)

where q is the expectation value of the wave vector and σ2
q is its variance. Conse-

quently for linearly polarized light, we see from Eq. (2.23) that σ2
q = −∇2u (r) /u (r).

This quantity is the uncertainty in the photon momentum and is related to the spa-

tial variations of the beam. This relationship between localization and momentum

uncertainty is intimately connected to the uncertainty principle [102].

The generalized dispersion relation can be applied practically toward esti-
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Figure 2.3: (a) Schematic of holographic imaging setup. A laser illuminates a

sample containing a colloidal microparticle. (b) The objective captures the incident

and scattered light which form a raw hologram. (c) This raw hologram can be

normalized by a background image. Figure from Ref. [9]
.

mating the axial position of a microsphere in digital holographic microscopy [9,103],

using the setup shown schematically in Fig. (2.3). A collimated laser illuminates

a colloidal microparticle, and the resulting interference pattern is imaged by a

camera. This technique will be described in more detail in Chapter 3. The gen-

eralized dispersion relation provides a way to understand the interference pattern

in terms of the uncertainty of the photon momentum. According to Eq. (2.25),

uncertainty in the momentum of the observed photons corresponds to fluctuations

in the intensity.

In the case of scattering from a small particle, the photons can have mo-

mentum either in the direction of the unscattered wave or else pointed away from

the scatterer. This choice creates uncertainty and causes an interference pattern.

The interference is locally a sinusoidal pattern with a spatial frequency that is pro-

portional to the angle between the incident and the scattered light. Consequently

the local curvature of the interference pattern determines the uncertainty in the
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photon momentum according to Eq. (2.25). The direction of the scattered light

can then be deduced since the direction of incident light is known. Propagating

these scattered rays back to their source provides an estimate of the position of

the scatterer.

The imaginary terms from the wave equation, Eq. (2.21), yield a continuity

condition

q (r) · ∇ ln I (r) = −∇ · q (r) , (2.26)

which shows that the intensity in a beam of light cannot change along the direction

of propagation unless the wave vector diverges or converges. This behavior implies

∇ · g(r) = 0, (2.27)

which ensures that the time averaged energy is locally conserved. The optical en-

ergy is thus transported along q̂ (r) along with its momentum. This same result

also reveals that streamlines of q (r) can follow curved paths. They differ in this

respect from the linear light rays of geometric optics. Whereas individual photons

still propagate on average along straight lines, streamlines of q (r) track the expec-

tation value of their propagation direction and can follow more general trajectories

that satisfy Eq. (2.26).
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2.3 Derivation of the separation between optical

spin and orbital angular momentum

The generalized wave vector gives insight into the behavior of the momen-

tum flux in a beam of light, but it does not provide the reason for identifying the

terms in Eq. (2.18) as related to the spin and the orbital angular momentum. The

source of this splitting can be found in the conservation of angular momentum in

the optical field. In this section we derive this result using the electromagnetic

stress-energy tensor.

The stress-energy tensor describes the conservation of both energy and

momentum. It is derived from the Lagrangian of the electromagnetic field [104],

L = − 1

4μ0

FμνF
μν , (2.28)

where F μν = ∂μAν − ∂νAμ, and Aμ is the vector potential. We will drop the

spatial and time dependence in this section for clarity, and we will employ Einstein

summation notation with indices running from 0 to 4 with time being the 0th

dimension. The electric and magnetic fields are then Ei/c = −F 0i and εijkBk =

−F jk. The canonical stress energy tensor for a vector field φk is

T μν
c =

∂L
∂ (∂μ φλ)

∂νφλ − gμνL, (2.29)

where gαβ is the metric of the space. One of the main properties of the canonical
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stress-energy tensor is that it satisfies the local momentum conservation equation,

∂μT
μν
c = 0. (2.30)

To calculate this tensor for the electromagnetic field we will use Aμ as the

field. Written in terms of the vector potential, the Lagrangian becomes

L = − 1

2μ0

(∂μAν∂μAν − ∂μAν∂νAμ) , (2.31)

and so the derivative of the Lagrangian is

∂L
∂(∂μAλ)

= − 1

μ0

F μλ. (2.32)

In turn, the canonical stress-energy tensor for the electromagnetic field is

T μν
c =

1

μ0

(
−F μλ ∂νAλ +

gμν

4
F αβFαβ

)
. (2.33)

We separate this into a symmetric and an antisymmetric part by using the fact

that ∂νAλ = F ν
λ + ∂λA

ν so that

T μν
c =

1

μ0

(
F μλ Fλ

ν +
gμν

4
F αβFαβ

)
− 1

μ0

F μλ ∂λA
ν . (2.34)

At this point, the stress-energy tensor is not unique because a term that is a total

derivative could be added to it without affecting the conservation condition. It will

turn out that we will need a symmetric stress-energy tensor to conserve angular

momentum, and that this constraint will define to a unique energy momentum
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tensor.

The generalized angular momentum tensor can be written in covariant

form,

Mμνγ =
1

c
(T μν

c xγ − T μγ
c xν) . (2.35)

Then the generalized angular momentum density is M0μν = pμxν − pνxμ, where

pμ = T 0μ/c is the momentum density. The generalized angular momentum must

be defined in a plane μν since there is not a unique axis that is perpendicular to a

plane in space time. Following Barnett [93], we note that in three dimensions the

angular momentum density is

ji =
1

2
εijkM

0jk. (2.36)

In addition, we can define a flux in the l direction of the angular momentum’s ith

component to be,

M l
i =

1

2
εijkM

ljk. (2.37)

Because angular momentum must be conserved, the angular momentum

flux must also satisfy a conservation law,

∂μM
μνγ =

1

c
∂μ (T

μν
c xγ − T μγ

c xν) (2.38)

=
1

c
(∂μT

μν
c xγ + T γν

c − ∂μT
μγ
c − T νγ

c ) (2.39)

=
1

c
(T γν

c − T νγ
c ) . (2.40)

Conservation of angular momentum requires the last expression to vanish. There-

fore, the stress-energy tensor must be symmetric. However, the canonical stress-
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energy tensor is not symmetric and so must be symmetrized. Following Jack-

son [104], we add a divergenceless term,

T μν
S =

1

μ0

∂λ(F
μλAν) =

1

μ0

F μλ ∂λA
ν , (2.41)

to the canonical stress-energy tensor, now denoted as T μν
O . The resulting stress-

energy tensor,

T μν = T μν
O + T μν

S (2.42)

=
1

μ0

(
F μλ Fλ

ν +
gμν

4
F μνFμν

)
, (2.43)

is symmetric so its angular momentum is conserved as needed.

Belinfante showed in 1940 that the canonical stress energy tensor accounts

for the orbital angular momentum in a beam of light while the added term accounts

for the spin [105]. Both contributions are required for angular momentum conser-

vation. We will reproduce his calculation now in order to clarify why we associate

these terms with the spin and orbital angular momentum.

Belinfante identifies

sμνγ =
1

c
(xμT γν

S − xνT γμ
S ) (2.44)

with the spin angular momentum density arising from the light’s polarization and

mμνγ =
1

c
(xμT γν

O − xνT γμ
O ) (2.45)

with the orbital angular momentum density arising from the light’s wavefront
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structure. The spin and orbital terms combine to form the total angular momentum

density,

jμνγ =
1

c
(xμT γν − xνT γμ) . (2.46)

To verify this we integrate over the beam to obtain the total spin angular momen-

tum,

Sμν =

∫
sμν0d3x. (2.47)

Integrating by parts then yields

Sμν =
1

c

∫
xμT 0ν

S − xνT 0μ
S d3x (2.48)

=
1

cμ

∫
xμ∂λ(F

0λAν) − xν∂λ(F
0λAμ)d3x (2.49)

=
1

cμ

∫
F 0νAμ − F 0μAνd3x. (2.50)

The integrand does not depend on the choice of origin of the coordinate system,

which is a hallmark of spin angular momentum. Consequently, the spatial spin

angular momentum density is

si =
1

2c
εijk

(
1

μ0

(−F 0jAk + F 0kAj
))

(2.51)

si =
1

2c2μ
εijk2E

jAk. (2.52)

Explicitly expressing the spatial and time dependence yields,

s(r, t) =
1

c2μ
E (r, t)×A (r, t) . (2.53)
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Furthermore, the time average of this quantity,

s (r) =
1

2c2μ
�{E∗ (r, t)×A (r, t)} , (2.54)

can be expressed in terms of the quantities defined in Sec. (2.1.2) as

s (r) = I (r) σσσ (r) , (2.55)

where σσσ (r) is the local helicity defined in Eq. (2.15) and I (r) is the spectral

action density defined in Eq. (2.8). This expression matches the one we found by

analyzing the Poynting vector in Eq. (2.18). Therefore it is correct to associate

this with the spin angular momentum of the light.

We will end this section with the observation that the optical momentum

from the curl of the optical spin angular momentum is conserved, even though

the spin angular momentum itself is not. Conservation of this linear momentum

arises from the properties of the spin part of the stress-energy tensor. T μν
S di-

rectly satisfies Eq. (2.30) since the derivatives form a symmetric tensor and the

field strength tensor F μλ is anti-symmetric. Consequently both the energy and

the momentum associated with the spin part of the stress-energy tensor are locally

conserved. Because the total momentum is conserved, the same is true for energy

and momentum associated with the orbital part of the stress energy tensor. How-

ever the spin angular momentum density is not locally conserved, because both

spin and orbital contributions are needed for angular momentum conservation in

Eq. (2.38). This fact suggests that forces arising from the optical spin angular

momentum density may have surprising properties.
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Chapter 3

Experimental control of light

fields

3.1 Overview

We want to not only understand the forces that light exerts but also to

test our theory experimentally. This requires us to control the optical fields and

to have probes that are sensitive to optical forces. To control the optical fields, we

used the holographic trapping technique [68,70,106,107], in which the wavefronts

of a beam of light are modified by adjusting the phase of the light in one plane. The

light then propagates down the optical train and is focused by an objective lens

to form the desired optical field. We used colloidal microparticles as our optical

probes. These particles, which are a few micrometers in diameter, are a good size

for detecting optical forces. They are small enough to feel the effects of the optical

forces and yet large enough to be easily observed and tracked. A particle’s motion
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Figure 3.1: Schematic of holographic optical trapping setup

contains information about the optical forces acting on it, allowing us to directly

test our theory.

3.2 Holographic Optical Trapping

Holographic optical trapping allows for great control over the optical field

[108]. The hologram imparts information to the entire beam allowing complex

patterns to be projected instantaneously. This is a great advantage over scanning

techniques that use a single beam to form a time-averaged optical potential [109,

110]. Furthermore, holograms can control both the intensity of the light and also its

phase. This allows us to create dynamic beams such as optical vortices [65,66,111],

arrays of optical vortices [112,113] and optical solenoids [29]. With a few additional

optical components, we can also spatially control the polarization of the light. This

leads to full control of the light field and allows for some interesting and useful

beams of light.

Our holographic optical trapping setup is shown schematically in Fig. (3.1).
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The incoming laser beam hits the spatial light modulator (SLM) which imparts

a phase hologram to the light. The SLM consists of a liquid crystal screen each

of whose pixels can control the phase of the light. It does this by aligning liquid

crystals in that pixel with an applied voltage. The refractive index of the liquid

crystal layer depends on the molecules’ orientation. Light passing through the

oriented liquid crystal therefore picks up a phase delay proportional to the locally

applied voltage. The back plane of the SLM is reflective so that light passes twice

through the liquid crystal layer and picks up twice the phase delay. In this way, a

relatively thin layer can impose phase delays of up to 2π on visible light.

After reflection off of the SLM, the modulated beam is relayed by a pair of

lenses to the back aperture of the objective lens. The objective lens then focuses

this hologram to form the desired optical field in the focal plane. Finally, the light

passes through the transparent sample holder where it interacts with colloids that

are dispersed in water.

Our implementation of this design is shown in Fig. (3.2). We use a Co-

herent Verdi V5 as our trapping laser, which has a vacuum wavelength of 532 nm.

The beam passes through a beam expander before it hits the SLM (Holoeye Pluto)

which makes the beam more uniform. Consequently the mode structure of the light

from the laser does not negatively affect our ability to create arbitrary modes of

light. The SLM has a 1920×1080 pixel liquid crystal screen which gives it the res-

olution needed to create detailed holograms. After the light reflects off of the SLM

with the encoded hologram, it is relayed by a telescope to the objective lens. The

objective then strongly focuses the light to form the desired optical field. We use a

high numerical aperture objective (Nikon Plan-Apo 100× NA 1.4, oil immersion).
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Figure 3.2: Picture of optical trapping setup

The light then passes into the sample, which consists of colloidal micro-

particles dispersed in water. In experiments discussed in this thesis, we used

polystyrene (PS) particles (Polysciences) and silica particles (Polysciences), and

always dispersed them in deionized (DI) water (Millipore Millipak*40 0.22μm).

We make our sample chamber from a glass microscope slide and a No. 1.5 coverslip

which has a thickness of 170 μm. The glass surfaces are cleaned with acetone and

isopropanol before assembly. The chamber is sealed with optical adhesive (Nor-
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lands Optical Adhesive #68) which is cured under UV illumination. Sealing the

sample chamber helps it to last longer and prevents fluid flows, which is important

for accurately measuring optical forces.

Finally, we image the particles using either bright field illumination or

holographic imaging. In either case the imaging light passes through the sample

and is collected by the objective which passes the light through the tube lens to the

camera (NEC TI-324AII). Since the trapping laser also passes through the same

objective, we use a dichroic mirror to separate the two optical trains.

3.2.1 Projecting holograms

The power of holographic optical trapping arises from the holograms’ abil-

ity to control both the amplitude and the phase of the light in the focal plane of

the objective lens. The problem then is to compute the hologram that projects the

desired optical field. In general, this is a challenging inverse problem that can be

difficult to solve even numerically. Fortunately, scalar diffraction theory captures

much of the important physics of the problem. We will describe this here and

discuss more general theories as well.

The light field in the plane of the SLM is relayed to the back aperture of

the objective as shown schematically by Fig. (3.3). In scalar diffraction theory, the

objective acts to Fourier transform the field [114]. The complex field, Ef (r, z), in

the focal plane of the objective is given by a Fourier transform of the field of the

hologram, Eh(r, z), at the back focal plan of the objective [114],

Ef (r) =
−i
λf

∫
dρ2Eh(ρ)e

−i k
f
r·ρ (3.1)
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Figure 3.3: Schematic of focusing a hologram by the objective. Image from Fig. 1

of Ref. [10].

where f is the focal length of the objective and where ρ is the position in the

hologram plane. Eq. (3.1) neglects the boundary condition imposed by the aperture

of the microscope objective, and it also ignores the vector nature of the light.

To obtain the hologram we just inverse Fourier transform the desired field

in the focal plane. A few examples illustrate how this works. In each case, we will

consider a scalar field in the hologram plane,

Eh(ρ) = uh(ρ)e
iϕh(ρ), (3.2)

with an amplitude uh(ρ) and a phase ϕh(ρ). To displace an optical trap in the

focal plane, we deflect the light in the hologram plane, or equivalently add a linear

phase ramp [115],

ϕh(ρ) =
k

f
r0 · ρ. (3.3)

This phase profile shifts the focal point from the optical axis to a position r0 in
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the focal plane. We can also displace the field along the optical axis, although

Eq. (3.1) needs to be generalized by propagating the field using scalar diffraction

theory. The field at a height z from the focal plane is given by

Ef (r, z) =
−i
λf

∫
dρ2Eh(ρ)e

−iz k
f2

ρ2
e−i

k
f
r·ρ. (3.4)

In a similar spirit to Eq. (3.3) we can displace a trap along the optical axis by

imposing a quadratic phase profile upon the incident beam [115],

ϕh(ρ) =
k

f 2
z0ρ

2. (3.5)

Combining these two examples allows us to displace a trap anywhere in the focal

volume [108,115].

More complicated optical fields can be created by superimposing the fields

to create a displaced optical trap. Arrays of traps can be created at arbitrary

positions in this manner. Furthermore in the continuous case, we can create three-

dimensional curves of light, and control the intensity and the phase of the light

along the curve [95]. For instance it is possible to focus the light into rings [116]

and lines [11]. More exotic possibilities include optical knots [95] and beams in the

shape of a solenoid [29].

These more complex beams of light often require not only phase mod-

ulation but also amplitude modulation. This is challenging because the spatial

light modulator only controls the phase of the light. If only the intensity matters,

then there are iterative methods [107,117] to find the optimal phase pattern in the

hologram to create the desired intensity pattern in the focal plane. Alternatively
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we use the shape-phase technique to approximate amplitude modulation in the

hologram [11]. This method works by adjusting each pixel on the SLM so as to

displace light away from regions of the hologram with low intensity.

These techniques work remarkably well for projecting holographic optical

traps with desired properties. However, to obtain more quantitative results, more

complicated theories are required. The first step is to include a pupil function

in Eq. (3.1). A pupil tends to obstruct the light that is most strongly converged

by the objective lens. Without this strongly converging light, the structure of the

resulting optical field is smoothed out. The pupil also creates problems analytically

because the transform is no longer invertible, which is one of the main challenges in

calculating holograms. Finally, we should also take into account the polarization of

the light, especially when we use high numerical aperture objectives. The field at

the focus can be calculated by the Richards-Wolf integral [118,119]. Such vectorial

calculations have been applied to holographic trapping by several groups [10,120].

3.2.2 Polarization control

Polarization adds another degree of freedom to holographic optical trap-

ping, and new advances are taking advantage of beams with spatially varying

polarization. For example, cylindrical vector beams [121], beams with polarization

varying around the optical axis, have applications in communications [122], imag-

ing [123], and in optical trapping [124]. In particular radially polarized beams have

been shown to have greater axial trapping stiffness than regular linearly polarized

optical tweezers [80, 125]. As mentioned earlier, there can also be polarization

dependent forces such as in a grating of circular polarization [7], which we are
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interested in explaining.

For our experiments involving the polarization described in this thesis, we

use beams of light with uniform circular polarization. Light with this classical

polarization is quantum mechanically spin polarized. By varying the intensity we

spatially control the spin-angular momentum of the light. We control the intensity

using the holographic trapping techniques described above, and control the polar-

ization with waveplates. These waveplates transform the polarization by slowing

one component of the light relative to the other. This is accomplished with a

birefringent material, that has different indices of refractions along different direc-

tions. A quarter wave plate (QWP) circularly polarizes the beam by delaying one

component by a quarter wavelength, and a half-wave plate (HWP) similarly delays

one component by half a wavelength, which rotates the polarization. Assuming a

collimated beam, the transmitted field Et by the Jones matrix, M:

⎛
⎜⎝Et

x

Et
y

⎞
⎟⎠ = M

⎛
⎜⎝E i

x

E i
y

⎞
⎟⎠ . (3.6)

The Jones matrix for a QWP or HWP is

M(δ) =

⎛
⎜⎝1 0

0 eiδ,

⎞
⎟⎠ (3.7)

where δ is the phase delay, and the slow axis (direction with higher refractive

index) is aligned along the y direction. The phase delay is π/2 for a QWP and π

for a HWP. Our setup includes a QWP and HWP after the spatial light modulator,

which we can rotate to fully control the uniform polarization of the beam.
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3.2.3 Characterizing light fields

Experimental measurements of the projected beams provide information

necessary for accurate optical force measurements. They help us to see assess the

optical train’s alignment and to characterize aberrations. In addition, they help us

to see whether our theoretical treatment correctly predicts the intensity distribu-

tion of the holographically projected beams. We focused on two main techniques:

volumetric reconstruction for measuring the relative intensity distribution near the

focus [11], and polarimetry, which enables us the measure the polarization with

spatial resolution [126].

Volumetric imaging uses the microscope’s imaging train to collect images

of the intensity distribution as a function of axial position. We simply replace the

sample by a mirrored slide so that the projected beam is reflected back down the

imaging train, which is shown schematically in Fig. (3.4). Although the dichroic

mirror reflects most of the light back to the SLM, a fraction continues on to the

camera. This transmitted light produces a cross-sectional slice of the beam in the

focal plane. By shifting the mirror we can reflect different sections of the beam

into the focal plane, and consequently can build up a volumetric reconstruction of

the beam.

We measure the spatial polarization of the beam by measuring the Stokes

parameters [126]. These are a set four parameters that fully describe the polar-

ization state. They can be measured at each point by taking a series of pictures

of the beam with polarizers at specific angles. The parameters are defined by the
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Figure 3.4: Schematic of volumetric imaging. Figure from Ref. [11].

following relations [127],

I = Ix + Iy (3.8)

Q = Ix − Iy (3.9)

U = I45 − I−45 (3.10)

V = IL − IR (3.11)

where Ix, Iy, I45, and I−45 are the intensities measured with a linear polarizer

oriented along the x, y, x+ y, and x− y axes respectively. The IL and IR are the

left and right circular polarization intensities measured with a circular polarizer.

The polarization state can be determined from this set of parameters using the
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following relations [127],

L = Q+ iU (3.12)

A =

√
I + |L|

2
(3.13)

B =

√
I − |L|

2
(3.14)

θ =
1

2
arg(L) (3.15)

h = sng(V ) (3.16)

where A and B are the major and minor axes of the polarization ellipse respectively,

θ is the inclination angle, and h is the helicity.

Figure (3.5) shows the measured spatial polarization state of a beam imme-

diately after reflecting off of an SLM. The incident light is polarized at 45 degrees

relative to the axis of the SLM, although only its x component is phase delayed

by the pixels of the SLM. The pattern projected on the SLM is a series of rings

with phase delays alternating between 0 and π. When the phase delay is π the x

component is flipped, causing the polarization to be rotated into the -45 degree

polarization state. Experimentally, we recover this predicted behavior although

we do measure that there is some degree of circular polarization. This indicates

that the SLM also affects the y component of the light, although to a much lesser

degree.
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Figure 3.5: Creating and characterizing optical fields with spatially varying polar-

ization

3.3 Holographic imaging

We measure optical forces by observing the motion of colloidal micro-

spheres in an optical field. Extracting the optical force requires accurate measure-

ment of the particle’s trajectory over time. We use in-line holographic imaging for

this task since it has great resolution in position, works over a large field of view,

and over a large axial depth [9, 103].

In-line holographic imaging works by shining a collimated laser at the

sample and observing the interference pattern created by the particles scattering
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Figure 3.6: Schematic of digital holographic imaging portion of the setup.

the incident beam. Our setup is shown schematically in Fig. (3.6). We use a

Coherent Cube laser operating at a vacuum wavelength of 447 nm for illumination.

The interference between the incident field, Ei(r) and scattered field Es(r − rp)

creates a hologram with intensity,

I(r) = |Ei(r) + Es(r− rp)|2 (3.17)

where rp is the position of the particle. This interference pattern is collected by

the same objective used for trapping, and sent to the CCD camera. From there

we fit the hologram to predictions of Lorenz-Mie theory [128] which gives us the

position, size, and refractive index of the particle [103, 129].

Lorenz-Mie theory allows us to calculate the exact scattered field due to
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a spherical particle in a homogeneous medium. It is based on matching incident,

scattered, and internal fields at the surface of the sphere with appropriate boundary

conditions. Lorenz-Mie theory takes advantage of the spherical symmetry of the

particle by expanding the fields in a series of the vector spherical harmonics (VSHs),

M
(i)
nm(kr) and N

(i)
nm(kr), which is the natural basis for spherically symmetric fields

[128, 130, 131]. This greatly simplifies the boundary conditions at the expense of

making the description of the fields more complicated.

Plane wave illumination can be expanded in this basis as [132]

Ei (r) =
∑
n

an1M
(1)
n±1(kr) + bn1N

(1)
n±1(kr), (3.18)

where an±1 = En and bn±1 = ±iEn, with En = in
√
4π(2n+ 1)/

√
n(n+ 1) for

right (+) and left (-) circular polarization respectively. Any other polarization

state can be attained through a linear combination of left and right polarization.

The scattered field can similarly be expanded as [132]

Es(r− rp) =
∑
n

rn1M
(1)
n±1(kr− krp) + tn1N

(1)
n±1(kr− krp), (3.19)

where rp is the three dimensional position of the particle relative to the center of

the objective’s focal plane. The expansion coefficients, rn1 and tn1, are related to

the incident wave’s coefficients by

rn1 = −anan1 (3.20)

tn1 = −bnbn1. (3.21)
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The constants of proportionality, an and bn, are the sphere coefficients in Lorenz-

Mie theory [128]. These sphere coefficients can be written as

an =
mψn(mx)ψ′n(x)− ψn(x)ψ

′
n(mx)

mψn(mx)ξ′n(x)− ξn(x)ψ′n(mx)
(3.22)

bn =
ψn(mx)ψ′n(x)−mψn(x)ψ

′
n(mx)

ψn(mx)ξ′n(x)−mξn(x)ψ′n(mx)
, (3.23)

where x = 2πnmap/λ and m = np/nm. The functions ψn(x) = xjn(x) and ξn(x) =

xh(1)(x) are Riccati-Bessel functions, where jn(x) is a spherical Bessel function and

h(1)(x) is a spherical Hankel function. Primes denote differentiation with respect to

the function’s argument. Therefore, the sphere coefficients depend on the particle’s

radius, ap and refractive index np, and the refractive index of the medium, nm.

Once we have calculated the scattered field we can use Eq. (3.17) to cal-

culate the theoretical intensity distribution for a particle of radius ap, refractive

index np, located at rp. This allows us to compare experiment and theory. We must

first process the experimental image, Iexp (r), by subtracting off the camera’s dark

counts, Idc (r), which is the instrument’s response to the absence of light. Dust

and other imperfections along the optical train lead to interference artifacts. We

can these eliminate these artifacts by normalizing the image with a background,

Ibg (r), which is an image of the field view without the sample present. Taken

together we get a normalized hologram,

Inorm (r) =
Iexp (r)− Idc (r)

Ibg (r)− Idc (r)
. (3.24)

The normalized hologram can then be compared to the theoretical hologram. We

use the MPFIT [133] implementation of the Levenberg-Marquardt non-linear least-
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squares fitter [134] to find the parameters which best fit the experimental data.

Fitting experimental holograms with Lorenz-Mie theory returns excellent

estimates of the x, y, and z position of the particle’s center as well as its size and

refractive index. Measurements of the diffusion of a single colloid in water show

that the uncertainty in the x and y position is around a nanometer and in z is

around 10 nanometers [135]. The size and refractive index of a colloidal particle

with a radius around a micrometer can both be reliably measured with part per

hundred resolution or better [129].

In this thesis, we focus on measuring the position of the colloids, since

their trajectory gives us information about the optical forces. Holographic imag-

ing is able to give such fantastic position resolution because it uses the information

from tens of thousands of pixels in the hologram. This trajectory resolution should

not be confused with the Abbe limit for imaging resolution, which is set by diffrac-

tion [126]. Holographic tracking offers several benefits relative to other imaging

techniques including its large axial range, extending to 100 �m, and its high ac-

quisition speed [9, 103]. Speed, range, and precision all recommend holographic

microscopy for measuring optical forces.
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Chapter 4

Experimental evidence of forces

arising from light’s spin angular

momentum

4.1 Background

Optical forces arising from the polarization and polarization gradients in

vector beams of light constitute a new frontier for optical micromanipulation. Lin-

early polarized light has been used to orient birefringent objects in conventional

optical tweezers [64,72,136] and circular polarization has been used to make them

rotate [64, 72, 74, 75, 137, 138]. More recently, optically isotropic objects also have

been observed to circulate in circularly polarized optical traps [21,22,24], through

a process described as spin-to-orbit conversion [21,23,139–141]. Here, we present a

general formulation of the momentum and angular momentum densities in vector
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beams of light that clarifies how the amplitude, phase and polarization profiles

contribute to the forces and torques that such beams exert on illuminated objects.

This formulation reveals that spin-to-orbit conversion actually plays a secondary

role in circularly polarized optical tweezers. Predicted properties of polarization-

dependent optical forces are confirmed through observations of a previously un-

reported mode of Brownian vortex circulation for an isotropic sphere trapped in

elliptically polarized optical tweezers.

4.2 Momentum from the curl of the spin

Radiation pressure is closely connected to the momentum density carried

by the light. When a particle scatters light isotropically it absorbs some of the

light’s momentum and thus experiences a force. This interaction between the

scatterer and the beam of light will be considered in more detail in Chapter 5, but

here we make the ansatz that the radiation pressure coincides with the momentum

density. Using this assumption, we analyze the properties of the optical momentum

density, which allows us to make testable predictions of the optical force.

We write the optical momentum density in terms of experimental param-

eters because they can be controlled for example using holographic techniques

[15, 69, 72, 121]. With the common phase factored out of the polarization, the

momentum density from Eq. (2.18) becomes

g (r) = I (r) ∇ϕ (r)− iI (r) ε∗j (r)∇εj (r) +
1

2
∇× s (r) , (4.1)

where I (r) is the spectral action density, which is defined in Eq. (2.8) and is
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proportional to the intensity. In this equation, εj is the jth component of the

polarization and s (r) is the spin angular momentum density defined in Eq. (2.17),

which an associated local helicity, σσσ (r), defined in Eq. (2.15). The projection of

σσσ (r) onto the propagation direction k̂ (r) is related to the Stokes parameters of

the beam [126] by σσσ (r) · k̂ (r) = S3 (r) /S0 (r). It achieves extremal values of +1

and −1 for right- and left-circularly polarized light, respectively.

The first two terms in Eq. (4.1) leads to the familiar phase-gradient con-

tribution to the radiation pressure [69]. In this context, the second term accounts

for the independent phase profiles that may be imposed on the real and imaginary

components of the polarization in an elliptically polarized beam. Phase gradients

have been used to create three-dimensional optical force landscapes [69], such as

knotted force fields [95] and true tractor beams [29]. They also account for the

orbital angular momentum density,

� (r) =
ω

2μc2
I (r)

[
r× (∇ϕ− iε∗j∇εj

)]
, (4.2)

carried by helical modes of light [18,65]. In this context, the polarization-dependent

term in Eq. (4.2) vanishes identically in linearly polarized light, but manifests spin-

to-orbit conversion in elliptically polarized beams.

The third term in Eq. (4.1) describes how variations in spin angular mo-

mentum contribute to the linear momentum density in non-uniform beams of light.

Optical forces arising from spatially-varying elliptical polarization have been ob-

served experimentally [7,21,140] but were inappropriately attributed to the curl of

the polarization itself. This distinction should be emphasized because polarization-

dependent contributions to the momentum density vanish in linearly polarized
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(a)

Figure 4.1: (Color online) (a) Streamlines of the momentum density g (r) in a

right-circularly polarized optical tweezers. (b) Components of g (r) in the plane

indicated in (a), shaded by the intensity I (r). (c) Measured trajectory of one

particle in a seven-sphere cluster trapped near the focus of the beam. Discrete

points show the last three seconds of motion, colored by time. (d) Circulation

rate Ω as a function of the beam’s Stokes parameters S3/S0. Inset: snapshot of

the cluster indicating the sphere whose trajectory is plotted. (e) Three seconds

of a 3.5-minute trajectory of a single polystyrene sphere diffusing in a circularly

polarized optical tweezers, shaded by time. (f) Time-averaged probability flux j(r)

computed from the full measured trajectory. Barbs are colored by the relative

probability density p(r) computed from the same trajectory. Brownian vortex

circulation is apparent in the vorticity of j(r). (g) Dependence of the Brownian

vortex circulation rate on S3/S0. Inset: snapshot of the trapped sphere. The

color bar indicates relative intensity I (r) for (b), time for (c) and (e), and relative

probability p(r) for (f). From Ref. [8].

light, for which ε̂ (r) is real-valued and s = 0. Variations in linear polarization

have no influence on the radiation pressure experienced by optically isotropic ob-
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jects. The spin-curl contribution, by contrast, gives rise to optical force fields with

surprising properties.

Streamlines of ∇ × s loop around local extrema in the beam’s intensity.

Spin-curl forces thus tend to make illuminated objects circulate in the plane trans-

verse to the direction of propagation. Comparable circulation also can arise if

orbital angular momentum is transferred from the beam of light to the illuminated

particle. The spin-curl term, however, does not contribute to � (r). Consequently,

observations [22,24] of optically-induced circulation in spin-polarized optical traps

need not imply spin-to-orbit conversion in the light itself. For example, a uniformly

circularly polarized beam carrying no orbital angular momentum nonetheless will

cause an illuminated object to spiral around the optical axis according to Eq. (4.1).

To illustrate this point, we consider the forces exerted on an optically

isotropic colloidal sphere by elliptically polarized optical tweezers. We model the

trap as a Gaussian beam of wavenumber k brought to a focus with convergence

angle α by a lens of numerical aperture NA = nm sinα, where nm is the refractive

index of the medium. The beam’s initial polarization is

ε̂ (r) =
1√
2

(
x̂+ eiδ ŷ

)
, (4.3)

with a corresponding incident helicity σ0 = sin δ along ẑ. The focused beam’s

vector potential may be expressed in cylindrical coordinates r = (ρ, φ, z) with the
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Richards-Wolf integral formulation [118,119,141],

A(r) = −i [A0 (r) + A2 (r)]
(
cosφ+ eiδ sinφ

)
ρ̂

− i [A0 (r)− A2 (r)]
(
eiδ cosφ− sinφ

)
φ̂

− 2A1 (r)
(
cosφ+ eiδ sinφ

)
ẑ, (4.4)

with amplitudes given by the Fourier-Bessel expansion,

An (r) =
kfu0

2iω

∫ α

0

an(θ) Jn(kρ sin θ) e
izk cos θ dθ, (4.5)

with expansion coefficients [119]

a0(θ) = (1 + cos θ) sin θ
√
cos θ (4.6)

a1(θ) = sin2 θ
√
cos θ (4.7)

a2(θ) = (1− cos θ) sin θ
√
cos θ. (4.8)

Computed streamlines of g (r) in a right-circularly polarized optical tweezers (σ0 =

+1) are shown spiraling around the optical axis in Fig. 4.1(a).

A slice through the beam in the transverse plane indicated in Fig. 4.1(a)

reveals the azimuthal component of the transverse momentum density, g⊥ (r) =

g (r) · φ̂, that is plotted in Fig. (4.1b). The transverse momentum density may be

resolved into two contributions

g⊥ (r) = gO (r) + gS (r) (4.9)
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arising from the spin-to-orbital and spin-curl contributions to g (r), respectively:

gO (r) =
2ω

μc2
1

ρ

[|A1 (r)|2 + |A2 (r)|2
]
σ0 and (4.10)

gS (r) =
ω

μc2
[∂z�{A∗1 (r) (A0 (r)− A2 (r))}

− ∂r
(|A0 (r)|2 − |A2 (r)|2

)]
σ0. (4.11)

Both components of the azimuthal momentum density are proportional to the he-

licity of the incident beam, σ0. They do not, however, contribute equally to the

transverse radiation pressure. At the focus, for example, 79% of the transverse

momentum density is due to the spin-curl term gS (r) and only 21% from spin-

to-orbit conversion. More generally, both A1 (r) and A2 (r) vanish in the paraxial

approximation; there is no spin-to-orbit conversion in weakly focused beams. The

spin-curl contribution, by contrast, persists in the paraxial limit. This contribu-

tion does not correspond to orbital angular momentum of the light, but rather a

contribution to the particle’s orbital angular momentum arising from the light’s

spin angular momentum.

4.3 Observation of the spin-curl force

We probe the properties of spin-dependent optical forces by measuring

their influence on the motion of micrometer-scale colloidal spheres. Our system

consists of 1.0 �m diameter polystyrene (PS) spheres (Polysciences, Lot # 586632)

dispersed in water and trapped in optical tweezers whose helicity σ0 is controlled

with a quarter-wave plate. The isotropic dielectric spheres absorb very little light
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directly. By scattering light, however, they experience radiation pressure. Our

optical tweezers setup is powered by up to 4W of laser light at a vacuum wavelength

of λ = 532 nm (Coherent Verdi 5W). The beam’s polarization is modified with a

quarter-wave plate before being relayed with a dichroic mirror to the input pupil

of an objective lens (Nikon Plan Apo, 100×, NA 1.4), which focuses the light into

a trap. The beam’s Stokes parameters are measured in the input plane of the

objective lens. The sample is imaged using the same lens in conventional bright-

field illumination, which passes through the dichroic mirror to a video camera (NEC

TI-324AII). Digitally recorded video is analyzed frame by frame with standard

methods of digital video microscopy [142] to measure the trajectory rj = r(jτ) of

a probe particle with 10 nm resolution at τ = 29.97ms intervals.

The trajectory plotted in Fig. 4.1(c) was obtained for one of seven spheres

trapped against a glass surface by a right-circularly-polarized optical tweezers

(σ0 = +0.8) powered by 1.5W. The optically-assembled cluster, shown inset into

Fig. 4.1(d), spans the region of the beam indicated in Fig. 4.1(b), and thus rotates

about the beam axis at a rate of roughly Ω = 0.4Hz. The data in Fig. 4.1(d) con-

firm the prediction of Eqs. (4.10) and (4.11) that the rotation rate varies linearly

with the degree of circular polarization.

The colloidal cluster circulates deterministically in the elliptically polar-

ized optical tweezers because it continuously scatters light in regions where g⊥ (r) is

substantial. A single sphere diffusing in an elliptically polarized optical tweezers, by

contrast, explores the entire force landscape presented by the light. This includes

regions near the optical axis where g⊥ (r) is predicted to vanish. Figure 4.1(e)

shows the measured trajectory of one such sphere in a right-circularly-polarized
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trap (σ0 = +0.8) powered by 0.05W. Optically-induced circulation is not imme-

diately obvious in the noisy trajectory, which is shaded to indicate the passage of

time. It becomes evident when the trajectory rj is compiled into a time-averaged

estimate [143] for the steady-state probability current

j (r) =
1

N − 1

N−1∑
j=1

rj+1 − rj
τ

δσj

(
r− rj+1 + rj

2

)
, (4.12)

which is plotted in Fig. 4.1(f). Here N = 7, 000 is the number of discrete samples,

and δσ (r) is the kernel of an adaptive density estimator [143] whose width σ varies

with the sampling density. The symbols in Fig. 4.1(f) are shaded by the estimated

probability density

p (r) =
1

N

N∑
j=1

δσj
(r− rj) (4.13)

for finding the particle near r. Together, j (r) and p (r) confirm the prediction

of Eqs. (4.10) and (4.11) that circulation vanishes on the optical axis where the

particle’s probability density is greatest.

The mean circulation rate may be estimated as

Ω =

∫
ρ (r) [r× j (r)] · ẑ d2r. (4.14)

Equation (4.14) improves upon the graphical method for estimating Ω introduced

in Ref. [144] by making optimal use of discretely sampled data [143]. Because the

single particle spends most of its time in a curl-free region of the optical force field,

its circulation rate is substantially smaller than in the deterministic case. Even

so, the data in Fig. 4.1(g) again are consistent with the prediction that Ω scales

linearly with σ0.
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The single particle’s stochastic motion differs qualitatively from the clus-

ter’s deterministic circulation. Were it not for random thermal forces, the isolated

sphere would remain at mechanical equilibrium on the optical axis. Thermal forces

enable it to explore the optical force landscape, where it is advected by the spin-

dependent contribution to the radiation pressure. This system, therefore consti-

tutes an example of a Brownian vortex [145, 146], a stochastic machine that uses

noise to transduce work out of a static non-conservative force field.

Unlike previous experimental demonstrations of Brownian vortexes [144,

145] the conservative radial restoring force in this system is transverse to the non-

conservative spin-curl contribution. Consequently, the particle’s radial excursions

are described by the Boltzmann distribution [146] p (r) = exp (−βU (r)) where

β−1 = kBT is the thermal energy scale at absolute temperature T and U (r) is the

potential energy associated with the restoring force. This probability density then

is advected by the non-conservative part of the total optical force [146] to yield the

transverse probability current

j (r) =
1

ξ
p (r) [gO (r) + gS (r)] , (4.15)

where 1
ξ
is the particle’s effective mobility in the Rayleigh limit, including its scat-

tering cross-section. Because the beam carries little orbital angular momentum,

the data in Fig. 4.1(f) thus constitute a map of the spin-curl force. Moreover,

because the circulation direction is established unambiguously by the curl of the

optical force field, this system constitutes a practical realization of a so-called triv-

ial optical vortex, which has been proposed [146] but not previously demonstrated.

Formulating the optical momentum density in terms of experimentally
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accessible parameters clarifies the nature and origin of the forces that can be ap-

plied to microscopic objects using the radiation pressure in beams of light. This

formulation confirms previous reports of forces arising from phase gradients [69]

and demonstrates that phase-gradient forces act independently of the state of po-

larization. The spin-curl mechanism unifies forces arising from the curl of the

polarization and forces due to intensity gradients in elliptically polarized beams.

Because they induce circulatory motion, spin-curl forces are easily misinterpreted

as evidence for spin-to-orbit conversion. The spin-curl density, however, does not

contribute to the orbital angular momentum of the light. Spin-to-orbit conversion,

by contrast, removes spin angular momentum from a beam of light and transmutes

it into orbital angular momentum [23]. The present formulation clarifies this mech-

anism, and suggests that spin-to-orbit conversion has played a secondary role in

previous reports of optically-induced circulation. Using Eq. (4.1) as a guide, all

three mechanisms now may be optimally leveraged to improve optical microma-

nipulation and the performance of light-driven machines.
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Chapter 5

Photokinetics II

The experimental evidence for spin-dependent optical forces described in

Chapter 4 raises the question of their origin. These forces, which act on isotropic

colloidal microspheres, behave similarly to the optical momentum density. Intu-

itively, the light transfers its momentum to the particle through scattering, result-

ing in a radiation pressure proportional to the momentum density. However, this

relationship between optical momentum and optical forces depends on the prop-

erties of the particle and needs to be more rigorously considered. In this chapter,

we explore how particle properties lead to multipole scattering and how this in

turn gives rise to optical forces. These considerations prove to be critical for un-

derstanding the origin of the spin-curl force and other photokinetic effects as well.

Furthermore calculations from this perspective are naturally compatible with ex-

act theories of light scattering such as generalized Lorenz-Mie theory [131]. The

resulting theory, therefore, lends itself to comparison with experiment.
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5.1 Force in Rayleigh approximation: no spin de-

pendence

We first consider the simplest scatterer, the electric dipolar particle, which

captures much of the physics of optical forces, but still yields some counterintuitive

results. The electric dipole moment of an electrically neutral particle responds to

the light’s electromagnetic fields through the time-averaged Lorentz force [147]

F(r) =
1

2
�{(p(r, t) · ∇)E∗(r, t) + μ ∂tp(r, t)×H∗(r, t)} , (5.1)

where p(r, t) = αeE (r, t), and αe is the electric polarizability of the particle.

For the present discussion, it is important to note that the polarizability can be

complex. The imaginary part of the polarizability accounts for any phase lag

between the incident field and the particle’s induced polarization. We may express

the force in terms of components of the vector potential as [148]

F(r) =
ω2

2
�
{
αe

3∑
j=1

Aj(r, t)∇A∗j(r, t)

}
. (5.2)

Interestingly this expression has a similar form to the first term in Eq. (2.12),

which had to do with momentum arising from the orbital part of the momentum

density.

In terms of experimentally accessible parameters, the time-averaged force
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on a dipole-polarizable particle is [149]

F(r) =
μc

2
α′e∇I(r) + μcα′′e I(r)

3∑
j=1

a2j(r)∇ϕj(r). (5.3)

The first term in Eq. (5.3) is the manifestly conservative intensity-gradient force

that is responsible for trapping by single-beam optical traps [14]. The second

describes a non-conservative force [69] proportional to the phase-gradient term in

g(r) and induces the radiation pressure experienced by a small illuminated particle.

Surprisingly, the spin angular momentum plays no role in Eq. (5.3). This

may be appreciated by considering the time-averaged spin angular momentum

density

s(r) = I (r) σσσ (r) = i
ω

2μc2
u2(r) ε̂(r)× ε̂∗(r). (5.4)

The cross-product involves cross-terms of the Cartesian components of the po-

larization. Eq. (5.3), by contrast, involves only diagonal terms. The optically-

mediated force therefore does not depend on the spin angular momentum density

or on its derivatives.

It is surprising that electric dipolar particles do not experience an optical

force from the curl of the spin angular momentum even though the light’s mo-

mentum density includes a spin-curl contribution. This means that the radiation

pressure acting on a particle can point in a different direction from the optical

momentum. However, the experimental evidence indicates that larger colloidal

microparticles, with size of the order of the wavelength of the light, do experience

spin-dependent forces. This raises a question: what properties of the particle al-

low it to interact with the spin angular momentum in the light? We address this

66



problem in the following sections.

5.2 Connection between scattering and local E&M

forces

In the previous section we described the optical force acting on a particle

in terms of the local fields exerting forces on the induced electric dipole moment.

Although this familiar formulation might seem reasonable for a small dielectric par-

ticle, it does not account for observed behavior including that reported in Chapter

4. More generally, we can consider optical forces arising from a scattering process

which transfers momentum to the particle. This perspective allows us to calculate

additional contributions to the optical force beyond the electric dipole contribution.

The connection between optical force and light scattering is established

by calculating the force in terms of the Maxwell stress tensor,

Fi =

∮
S

Tijnjdσ, (5.5)

where S is a surface enclosing the particle, n̂ is the unit normal, and Tij is the

Maxwell stress tensor, which is given by

Tij = ε0

[
EiEj + c2BiBj − δij

2

(
E · E+ c2B ·B)]

. (5.6)

This is still a local calculation performed around the particle, but now the proper-

ties of the particle are encoded in the fields, which are a sum of the incident field
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and the scattered field,

E = Ei + Es, B = Bi +Bs, (5.7)

where Ei and Es are the incident and scattered field and similarly for the magnetic

field.

If the medium is lossless then electromagnetic momentum is conserved.

It is possible, therefore, to extend the integration to a surface at infinity. Then

we only have to consider the radiative scattered fields, which have the following

properties,

Bs =
ks × Es

ck
, Es · ks = Bs · ks = 0, (5.8)

where ks is the local wavevector of the scattered fields. The stress tensor is

quadratic in the fields so we can write it as a sum of scattered, incident and

mixed terms,

Tij = T i
ij + T s

ij + Tmix
ij , (5.9)

where T i
ij and T s

ij are just the same stress tensor for the incident and scattered

fields respectively, and

Tmix
ij = ε0

[
E i

iE
s
j + Es

iE
i
j + c2Bi

iB
s
j + c2Bs

iB
i
j − δij

(
Ei · Es + c2Bi ·Bs

)]
. (5.10)

We are integrating over a sphere of infinite radius centered on the scat-

tering particle. Therefore, ni = ks
i/k

s where ks is the scattered field’s wavevector.
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Considering first the mixed term, the projection onto the outward normal is

Tmix
ij nj = Tmix

ij ks
j/k

s

= ε0

[
Es

i

(Ei · ks)

ks
+ c2Bs

i

(Bi · ks)

ks
− ks

i

ks

(
Ei · Es + c2Bi ·Bs

)]
, (5.11)

where we used the fact that the scattered fields are transverse. Using the BAC-

CAB rule we can simplify this result,

Tmix
ij ks

j/k
s = ε0

[
Ei × (Es × ks)

ks
+ c2Bi × (Bs × ks)

ks

]
. (5.12)

Then using the fact that the electromagnetic fields are related through Eq. (5.8),

we can write,

Tmix
ij ks

j/k
s = −cgmix

i , (5.13)

where gmix
i is the ith component of the momentum density, gmix

i = c2(Ei × Bs +

Es ×Bi)/μ0, attributed to the mixed fields.

Next we consider the scattering term again using the fact that the scattered

fields are transverse,

T s
ijk

s
j/k

s = ε0

[
0− ks

i

2k
(|Es|2 + c2|Bs|2)

]
. (5.14)

This is just the energy density of the scattered fields in the opposite direction of

propagation, or equivalently,

T s
ijk

s
j = −cgsi , (5.15)

where gsi is the ith component of the momentum density attributed to the scattered
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fields. Thus the force on the particle can be written as [31],

F = −c
∮
S∞

[
gmix + gs

]
dσ, (5.16)

The incident field does not contribute because of momentum conservation. The

particle experiences a force equal and opposite to the momentum flux that arises

from scattering.

5.3 Forces from multipole scattering: extinction

forces

The incident and scattered fields determine the optical force described by

Eq. (5.15). The incident field we assume to be given. The main problem then is to

describe the scattered field. The most natural way to do this is to expand it in a

series of multipoles. The scattered field from each multipole field interacts with the

incident field creating an optical force. These forces are described by the mixing

term in Eq. (5.15), and are referred to in the literature as extinction forces [128].

For the case of small particles in the Rayleigh regime, we can explicitly

relate the force from scattering momentum in the fields and the force exerted by

the local electromagnetic fields. For an electric or magnetic dipole the scattered
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electric and magnetic fields are given by

Es(r) =
k2

4πε0

eikr

r

[
(n̂× p)× n̂− 1

c
n̂×m

]
and (5.17)

Hs(r) =
ck2

4π

eikr

r

[
1

c
(n̂×m)× n̂− n̂× p

]
, (5.18)

where n̂ is a unit vector pointing away from the particle, p is the electric dipole

moment, andm is the magnetic dipole moment. The interference of these scattered

fields with an arbitrary incident field leads to the following optical force on the

particle [31, 150,151],

Fmix = −1

c

∮
S∞
〈Smix〉dσ (5.19)

=
1

2
�{p∗j∇E i

j +m∗
j∇Bi

j

}
, (5.20)

where E i
j and Bi

j are the j
th components of the incident electric and magnetic fields

at the particle’s position.

We can write the force entirely in terms of the incident field and the

polarizabilities, which depend on particle properties. The electric and magnetic

dipole moments are give by, p = αeE and m = αmB, where αe and αm are the

electric and magnetic polarizabilities respectively. With these expressions, the

total force becomes [150,151]

F =
1

2
�{α∗eE∗j∇Ej

}
+

1

2
�{α∗mB∗j∇Bj

}
, (5.21)

Which is expressed entirely in terms of the incident fields. This expression is very

useful because computing the scattered field can be very difficult in general. The
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first term in Eq. (5.21) is equivalent to the force on an electric dipolar particle as

in Eq. (5.3). The second term describes the contribution from dipole scattering of

the magnetic field. Because it has the same form as the first term, we posit that

it also does not contribute to a spin-curl force.

The force from the electric quadrupole can similarly be identified [31],

FQ
i =

1

8
�{Qij∂i∂nE

∗
j

}
, (5.22)

where Qij is the electric quadrupole polarizability, which for an optically isotropic

particle is given by

Qij =
γe
2
(∂iEj + ∂jEi) . (5.23)

This expression for the quadrupole polarizability works for dielectric spheres, be-

cause a uniform field only creates a dipole moment. So gradients of the field are

necessary to induce a quadrupole moment. Furthermore we symmetrize the electric

field gradient tensor because the quadrupole should be symmetric. Consequently,

the quadrupole contribution to the optical force is

FQ
i =

1

8
�
{γe
2
(∂nEj + ∂jEn) ∂i∂nE

∗
j

}
. (5.24)

We can interpret this by expanding,

FQ
i =

1

8
�{γe}�

{
(∂nEj + ∂jEn) ∂i∂nE

∗
j

}− 1

8
�{γe}�

{
(∂nEj + ∂jEn) ∂i∂nE

∗
j

}
.

(5.25)
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The first term on the right hand side of Eq. (5.25) turns out to be a gradient term,

FQ1 =
1

16
�{γe}∇

[
(∂nEj + ∂jEn) ∂nE

∗
j

]
. (5.26)

In contrast to the electric dipole, this gradient is not of the intensity but of a

more complicated quantity that itself depends on field gradients. Nevertheless, it

represents a conservative force and so can be used for trapping. The second term

in Eq. (5.25) is,

FQ2 = −1

8
�{γe}�

{
(∂nEj + ∂jEn)∇∂nE

∗
j

}
. (5.27)

This has the the same form as the phase gradient force for an electric dipole except

that the gradient acts on ∂nEj instead of Ej. So it seems that it also can be thought

of as a phase gradient force. The quadrupole force definitely does not lead to a

spin curl force because there are no cross terms linking different components of the

electric field.

It seems likely that higher-order multipole terms will continue this pattern

of contributing intensity-gradient force terms and phase-gradient force terms, but

not more exotic polarization-dependent forces. To explain polarization-dependent

effects, we have to look deeper.
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5.4 Spin-curl force and more from multipole in-

terference

In addition to interacting with the incident field, scattered multipole fields

can interfere with other multipole fields to create a scattering force. The forces

from this interference account not only for the spin-curl force but also for additional

unconventional contributions to optical forces. We show this by expressing these

contributions to the optical force in terms of experimentally accessible quantities.

The interference of the electric and magnetic dipole terms leads to a force

[31, 150,151],

Fp-m = − k4

12πcε0
�{p×m∗}. (5.28)

where ε0 is the permittivity of free space. Equation (5.28) can be written as

Fp-m = −k4cμ0

12πε0
�{αeα

∗
m}g +

k4c

12πε0
�{αeα

∗
m}�{E×B∗}, (5.29)

where we have identified part of this term as a force in the direction of the mo-

mentum density, g. The momentum density in turn contains the spin-curl term as

we saw in Eq. (2.18). Consequently there is a spin-curl force as long as no other

term cancels it, as was the case for the electric dipole term [149].

The second term on the right hand side of Eq. (5.29) is less straightforward

to interpret. Applying vector identities yields,

�{E×B∗} = 1

ω
�{iE× (∇× E∗)} (5.30)

=
1

2ω
∇E2 − 1

ω
�{(E · ∇)E∗}. (5.31)
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The first term in Eq. (5.31) is the gradient of the intensity. The second part is

not familiar. It has the form of a covariant derivative, describing streamlines of

the electric field. Like the gradient of intensity, the (E · ∇)E∗ contribution points

toward regions of highest intensity. However, this term is polarization-dependent.

Consequently, the difference between the intensity gradient and the (E ·∇)E∗ term

represents only the polarization-dependent forces. The difference points toward

high intensity regions. This is different than the spin-curl force and represents a

distinct spin-dependent force.

Decomposing the force into its real and imaginary parts in Eq. (5.29),

shows that spin-curl forces and other polarization-dependent forces have different

coefficients, �{αeα
∗
m} and �{αeα

∗
m} respectively. Their associated force contribu-

tions therefore should not cancel in general.

A similar analysis of the force from the interference of the electric dipole

and the electric quadrupole also yields spin-dependent forces. The expression for

the force [31],

FQp = − k5

40πε0
�{Q · p∗} , (5.32)

can be expanded using the definition of the electric quadrupole polarizability,

Eq. (5.23),

FQp = − k5

40πε0
(�{γeα∗e(∂nEj + ∂jEn) · E∗n}) . (5.33)

Further expansion yields

FQp = − k5

40πε0
(�{γeα∗e}�{(E∗ · ∇)E}+ �{γeα∗e}�{E∗n∇En}

+�{γeα∗e}� {(E∗ · ∇)E}+ �{γeα∗e}� {E∗n∇En}) , (5.34)
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where each of the four terms have been identified previously. The first term is

the covariant derivative-like term that leads to a polarization-dependent force that

points towards regions of higher intensity. The second gives rise to a conventional

intensity gradient force. The third leads to a spin-curl force, and the last one

contributes to the phase-gradient force. Again these spin-dependent contributions

to the optical force do not cancel out because of their distinctive dependence on

the polarizabilities.

Spin-dependent forces thus arise from interference between different orders

of multipole scattering. We have shown that this is true up to electric quadrupole

order. Continuation to higher order seems likely.

5.5 Induced magnetization in non-magnetic ma-

terials

From the previous section, the spin-curl force requires not only an in-

duced electric dipole moment, but also another induced multipole moment. The

electric quadrupole polarizability of a dielectric sphere typically is much smaller

than the electric dipole polarizability. One might expect, furthermore, that dielec-

tric spheres would have no magnetic response. The spin-curl force therefore ought

to be very small indeed, contrary to the experimental results reported in Chapter

4. In fact, the electric and magnetic response turn out to be coupled in colloidal

spheres. The oscillating electric fields of the light polarizes the dielectric mate-

rial. In turn, this time varying polarization acts as a source current for magnetic

multipole moments. In this way, dielectric spheres can experience strong magnetic
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Figure 5.1: Polarizability versus radius, ap, for polystyrene colloidal spheres in

water.

forces due to Mie scattering.

Lorenz-Mie theory provides a way to exactly determine the strength of the

electric and magnetic response at dipole order and beyond. Matching the boundary

conditions at a particle’s surface involves relating the incident and scattered fields

by the an and bn Mie coefficients. The first of these coefficients yield the electric

and magnetic polarizability of the sphere [31],

αe = i
6πε0n

2
m

k3
a1 and αm = i

6π

μ0k3
b1, (5.35)

where a1 and b1 are the electric and magnetic Mie sphere coefficients at dipole

order.
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The behavior of these polarizabilities depends sensitively on particle size,

and can have surprising properties. Fig. (5.1) shows the polarizability of polystyrene

(PS) spheres as a function of sphere radius. There are large oscillations in both the

electric and magnetic polarizability along with smaller more rapidly varying oscil-

lations. The imaginary part of both polarizabilities is always nonnegative. This is

reasonable since according to Eq. (5.21), the imaginary part of the polarizability

is responsible for radiation pressure. Naturally, radiation pressure can only push.

However the intensity gradient force can change sign because the real part of the

polarizability can change sign. For some range of sizes, therefore, particles will be

repelled from the region with the highest intensity. Such particles cannot easily be

trapped by conventional optical traps.

The direction of Fp-m (r) in Eq. (5.29) can flip for certain values of the

electric and magnetic polarizabilities. This effect was utilized by Chen et al. to

predict the onset of an optical pulling force [31]. The dependence on the polariz-

abilities implies that this surprising pulling force should be very sensitive to the

size of the particle. Recently Zemanek [152] showed experimentally that it is pos-

sible to pull dielectric spheres in crossed plane waves, and that this force is indeed

very sensitive to particle size.
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5.6 Generalized Lorenz-Mie theory

Although the previous sections give a good qualitative understanding of

where each part of the optical force comes from, we need a more complete theory

to obtain quantitative results for spheres in the Mie regime. This is clear from

the perspective of the induced multipoles. For small spheres, only the first few

induced multipoles moments are important, and the previous expressions for the

optical force are accurate. For larger spheres, which we use experimentally, we

need to take many multipole orders into consideration.

Generalized Lorenz-Mie theory [31, 38, 153–155] is a framework for ana-

lyzing the optical force while including all of the multipole orders. The idea is to

decompose the incident field into a spherically symmetric basis that is centered on

the particle. This allows the boundary conditions to be easily matched, which then

determines the scattered and interior fields. The incident and scattered field can

then be used to extract the optical force on the sphere. Although it is relatively

easy to describe conceptually, it can be cumbersome to implement. Here we will

describe the steps we use to calculate the optical force.

The first step is to expand the incident field as a series,

E(r) = E0

∞∑
n=1

n∑
m=−n

[
amn(θj)M

(1)
nm(kr) + bmn(θj)N

(1)
nm(kr)

]
, (5.36)

in the vector spherical harmonics, M
(1)
nm(kr) and N

(1)
nm(kr), that constitute the

natural basis for transverse electric (TE) and transverse magnetic (TM) waves,

respectively [132]. Finding the expansion coefficients, amn(θj) and bmn(θj) is a

non-trivial task, but many useful examples have been reported already. These
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coefficients, called the beam shape coefficients (BSCs), can be determined by the

following integral [104],

amn = i

√
4π

2n+ 1

(n+m)!

(n−m)!

∫ 2π

0

∫ π

0
E ·M(1)

nm(kr)∗ sin θdθdφ′∫ 2π

0

∫ π

0
|M(1)

nm(kr)|2 sin θdθdφ′
, (5.37)

And a similar one for bmn with N
(1)
nm(kr) replacing M

(1)
nm(kr). Mackowski deter-

mined the coefficients for an arbitrary plane wave [156], which can be added up to

create more complicated beams.

Next we write the associated expansion of the scattered field,

Es(r, t) = E0 e
−iωt

∞∑
n=1

n∑
m=−n

{[
rmn(θ1) + eiϕ(t)rmn(θ2)

]
M(3)

nm(kr)

+
[
smn(θ1) + eiϕ(t)smn(θ2)

]
N(3)

nm(kr)
}
, (5.38)

by matching the boundary conditions for the electric and magnetic fields at the

sphere’s surface [31, 128,131,154,155,157]. The expansion coefficients,

rmn(θj) = −an amn(θj) and (5.39a)

smn(θj) = −bn bmn(θj), (5.39b)

are related to the expansion coefficients of the incident field by the standard Mie

coefficients, an and bn, [128], which depend on the radius and refractive index of

the sphere. The ease of determining the scattered field at this stage provides the

justification for taking the effort to write the incident field in terms of the vector

spherical harmonics.

80



The final step is to calculate the force from the incident and and scattered

fields, E(r, t) + Es(r, t). They contribute to the Maxwell stress tensor, T(r, t),

whose integral over a closed surface provides an estimate for the optically-induced

force on a sphere centered at r:

F(r, t) =

∮
S

n̂ ·T(r′, t) dr′, (5.40)

where n̂ is the unit normal to the surface S enclosing the sphere. In practice,

the integral is computed directly from the combined expansion coefficients using

established techniques [10,120,158,159]. The expansion coefficients are calculated

centered on the sphere, so we recalculate them as the sphere moves through the

optical field.

Although we assume that the particle is a sphere, this is not necessary in

generalized Lorenz-Mie theory. For non-spherical particles, the only difference is in

the boundary conditions. Instead of the relation given by Eq. (5.39), the scattered

field coefficients are determined by multiplying the incident field coefficients by the

T-matrix that encapsulates the scattering properties of the particle (or cluster of

particles) [130, 132]. Once we have the incident and scattered field then we can

still apply Eq. (5.40) using the methods referenced above.
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Figure 5.2: Cross section of focused circularly polarized Gaussian beam in the x−z

plane.

5.7 Calculation of spin curl force in circularly

polarized beam

In the experiments described in Chapter 4, we found that isotropic dielec-

tric spheres circulate around the axis of a circularly polarized beam. This evidence

for a spin-curl force remains to be verified against theory. We saw in section 5.4

that a combination of electric and magnetic induced dipole moments can lead to

spin-curl forces. However our experiments were done in the Mie regime and so

should be interpreted with generalized Lorenz-Mie theory.
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Figure 5.3: Cross section of focused circularly polarized Gaussian beam in the x−y

plane.

We model our circularly polarized optical tweezers as a focused vector

Gaussian beam. We determine the BSCs for this beam from a superposition of

Bessel beams, each with beam coefficients given by [153],

amn (r) = E0
4πin

n(n+ 1)
eikz cos θ0

[
π̃mn(cos θ0) I

+(ρ, φ) + τ̃mn(cos θ0) I
−(ρ, φ)

]
(5.41)

where ρ =
√
x2 + y2 is the distance from the beam axis, and φ = arctan(−y/x)−

π/2 is the azimuthal angle. We calculate bmn similarly by exchanging the τ̃mn with

the π̃mn in Eq. (5.41). The angular functions may be expressed in terms of the
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Figure 5.4: Force as a function of position in a circularly polarized optical tweezers

at the beam waist. Fx, in red, represents the radial force, Fy, in blue, shows the

azimuthal force, and Fz, in green, points along the optical axis. The azimuthal

force arises from the curl of the optical spin angular momentum.

modified Legendre polynomials, Pm
n ,

π̃mn(cos θ0) =

√
2n+ 1

4π

(n−m)!

(n+m)!

m

sin θ0
Pm
n (cos θ0), (5.42)

τ̃mn(cos θ0) =

√
2n+ 1

4π

(n−m)!

(n+m)!

d

dθ0
Pm
n (cos θ0), (5.43)

and finally the integrals,

I±(ρ, φ) = π
[
ei(m−1)φJ1−m(k sin θ0ρ) ± ei(m+1)φJ−1−m(k sin θ0ρ)

]
. (5.44)

The BSCs for the Bessel beam are complicated, however this form is much more
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useful than the integral in Eq. (5.37). All one has to do to calculate the BSCs is

to evaluate Bessel functions and associated Legendre polynomials. The Gaussian

beam can then be created from the superposition of these BSCs of the Bessel

beams,

amn = Un

∫ θ0

0

E ′(θ)[τ̃mn(cos θ0)I
+(ρ, φ) + π̃mn(cos θ0)I

−(ρ, φ)] sin θdθ, (5.45)

where E ′(θ) = (E0k
2w2

0/4π)
√
cos θe−(γ sin θ)2eikz cos θ and θ0 is the half-angle sub-

tended by the objective at the beam focus. Additionally, w0 is the width of the

beam at the focus, and γ describes the width of the beam before it is focused by

the objective.

The transverse and axial cross sections of the beam are shown in Fig. (5.3)

and in Fig. (5.2) respectively. The transverse cross section is circularly symmetric

because of the circular polarization. The force on a colloid in the tweezers is shown

in Fig. (5.4), and we see that there is a non-zero azimuthal force. This is the spin-

curl force. Furthermore, it is much smaller in magnitude than the gradient force

in the radial direction, which is consistent with the low values for the circulation

rate that we reported in our experiments.
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Chapter 6

Experimental Demonstration of

Conveyor Tractor Beams

6.1 Introduction to tractor beams

Tractor beams are traveling waves that transport illuminated objects back

to their sources, opposite to the direction of energy flow. By this definition, optical

tweezers [14] are not tractor beams because of their inherently limited range. Nor

is an optical conveyor belt [37, 38], which is created from a standing wave rather

than a traveling wave. A one-sided variant of the optical conveyor belt created

from coaxial Bessel beams has been demonstrated, but relies on auxiliary forces to

achieve retrograde motion [38]. Here, we demonstrate one-sided optical conveyors

that act as tractor beams without requiring outside assistance. The same tech-

nique we use to project a single optical conveyor also can project arrays of optical

conveyors each with independently controlled transport properties.
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Most beams of light do not act as tractor beams because radiation pressure

tends to drive illuminated objects downstream. Recently, however two categories of

tractor beams have been described, both of which exploit properties of propagation-

invariant or non-diffracting traveling waves [85], and thus have promise for long-

range material transport. Both rely on the recoil force that an illuminated object

experiences if it scatters transverse components of the beam’s linear momentum

density into the axial direction. The first is based on multipole scattering in Bessel

beams, which has been predicted to drive retrograde motion in both acoustic [35]

and optical [31] waves. Because this mechanism relies on scattering by high-order

induced multipole moments, however, the direction of induced transport depends

sensitively on the properties of the illuminated object; tractor beams based on

pure Bessel modes have not yet been demonstrated experimentally. However this

mechanism has been confirmed experimentally in a related system using interfering

plane waves, and did exhibit sensitivity to particle size [152]. The other approach

utilizes periodic axial intensity gradients in beams with discrete propagation invari-

ance [85] to achieve forward scattering from the interference between the incident

field and the dipole radiation field of an illuminated object. Such tractor beams

have been realized experimentally with solenoidal waves, which have transported

micrometer-scale colloidal spheres over an axial range of 10 �m [29].

6.2 Optical conveyor field

Here, we describe another category of tractor beams derived from the

optical conveyor belts introduced in Refs. [36–38] that can be projected from a

single source and can transport material bidirectionally without the aid of outside
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forces. A one-sided optical conveyor is formed by projecting two or more coherent

Bessel beams along the same axis and systematically varying their relative phase.

The vector potential for a two-component optical conveyor of frequency ω and

polarization ε̂ may be written in cylindrical coordinates r = (r, θ, z) as

Am(r, t) = Am

{
Jm

([
1− η21

] 1
2 kr

)
ei η1kz

+ ξ eiϕ(t) Jm

([
1− η22

] 1
2 kr

)
ei η2kz

}
eimθ e−iωt ε̂, (6.1)

where k = nmω/c is the wavenumber of light in a medium with refractive index nm

and Jm(·) is a Bessel function of the first kind of order m. The two beams differ

in their axial wavenumbers, η1k and η2k, which are reduced from k by factors

η1, η2 ∈ (0, 1). They also differ in their relative phase ϕ(t), whose time variation

makes the conveyor work. The prefactor Am is the beam’s amplitude. Setting

the relative amplitude to unity, ξ = 1, maximizes the conveyor’s axial intensity

gradients and thus optimizes its performance for optical manipulation.

In the special case m = 0, ξ = 1, the component Bessel beams have unit

amplitude along the optical axis, r = 0, and the conveyor’s axial intensity is

lim
r→0

I(r, t) =
1

2
cnmε0ω

2 lim
r→0

|A0(r, t)|2 (6.2)

= I0 cos2
(
1

2
[(η1 − η2) kz − ϕ(t)]

)
, (6.3)

where I0 = 2A2
0cnmε0ω

2. The beam thus has intensity maxima at axial positions

zj(t) =

[
j +

ϕ(t)

2π

]
Δz (6.4)
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that are evenly spaced by multiples, Δz = λ/(η1−η2), of the wavelength λ = 2π/k

in the medium, and thus can be indexed by the integer j.

Objects trapped along I(z, t) can be displaced either up or down the axis

by appropriately varying the relative phase ϕ(t). Continuous variations translate

trapped objects deterministically along ẑ with axial velocity

v(t) = Δz
∂tϕ(t)

2π
(6.5)

regardless of their size, shape, or optical properties. This differs from the action

of Bessel-based tractor beams [35] in which even the sign of the induced motion

depends on each object’s properties. It differs also from the motion induced by

solenoidal tractor beams [29] which is unidirectional but not uniformly fast.

6.3 Demonstration of optical conveyor tractor

beam

6.3.1 Implementing the beam

We implemented optical conveyors using the holographic optical trapping

technique [15, 70] in which a computer-designed phase profile is imprinted onto

the wavefronts of a Gaussian beam, which then is projected into the sample with

a high-numerical-aperture objective lens of focal length f . In practice, the trap-

forming hologram is implemented with a computer-addressable spatial light mod-

ulator (SLM) (Hamamatsu X8267-16) that imposes a selected phase shift at each
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Figure 6.1: (a) Schematic representation of holographic projection of a Bessel

beam with axial wavenumber η1k by a lens of focal length f . Shaded region

indicates volume of invariant propagation. (b) Volumetric reconstruction of a

holographically projected Bessel beam. (c) Phase hologram encoding an optical

conveyor. Diagonal blazing tilts the projected conveyor away from the optical axis.

(d) Volumetric reconstruction of the beam projected by the hologram in (c). The

color bar indicates relative intensities in (b) and (d). Figure from Ref. [12].

pixel in a 768 × 768 array. If the field described by Eq. (6.1) is to be projected

into the objective’s focal plane, the field in the plane of the hologram is given in

the scalar diffraction approximation [114] by its Fourier transform,

Ãm(r, t) = im+1 f

k
Am eimθ e−iωt

[
1

rη1
δ (r − rη1) + ξ eiϕ(t)

1

rη2
δ (r − rη2)

]
ε̂, (6.6)

where δ(·) is the Dirac delta function, rη1 = f (1− η21)
1
2 and rη2 = f (1− η22)

1
2 , The

ideal hologram for each Bessel beam comprising the conveyor thus is a thin ring in

the plane of the SLM, as indicated schematically in Fig. 6.1(a). A holographically

projected Bessel beam then propagates without diffraction over the range indicated

by the shaded region. Increasing the transverse wave number increases the radius

of the hologram and therefore reduces the non-diffracting range.
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Figure 6.1(b) shows a volumetric reconstruction [160] of a Bessel beam

projected with a ring-like hologram. Increasing the ring’s thickness of the ring by

±Δr increases diffraction efficiency, but is equivalent to superposing Bessel beams

with a range of axial wavenumbers, Δη1 = rη1Δrη1/(η1f
2). This superposition

contributes an overall axial envelope to the projected Bessel beam, limiting its

axial range to Rη1 = 2λ/Δη1. The axial range in Fig. 6.1(b) is consistent with this

estimate and so is smaller than the ray-optics estimate suggested by the overlap

volume in Fig. 6.1(a).

Figure 6.1(c) shows the two-ringed phase-only hologram that encodes an

optical conveyor with an overall cone angle of cos−1([η1 + η2]/2) = 19◦. This

function corresponds to the phase of the beam’s vector potential, which the SLM

imprints on an incident Gaussian plane wave. The relative phase offset between the

two rings determines ϕ(t). The relative widths of the two phase rings can be used

to establish the components’ relative amplitudes through ξ = r2η2 Δrη2/(r
2
η1
Δrη1),

the range of the projected conveyor then being the smaller of Rη1 and Rη2 .

The large featureless regions in Fig. 6.1(c) do not contribute to the desired

optical conveyor. Light passing through these regions is not diffracted and therefore

converges at the focal point of the optical train. To prevent interference between

the diffracted and undiffracted beams, the two phase rings contributing to the

conveyor are offset and blazed with a linear phase gradient. This phase gradient

deflects the diffracted light [115] causing the projected Bessel beams to focus 24�m

from the optical axis.

The volumetric reconstruction in Fig. 6.1(d) shows the three-dimensional

intensity distribution projected by the hologram in Fig. 6.1(c), with ẑ oriented
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along the diffracted beam’s direction of propagation. This beam clearly dis-

plays the pattern of periodically alternating bright and dark regions predicted

by Eqs. (6.1) through (6.4).

The unused regions of the hologram need not go to waste. They can be

used to project additional independent conveyors, much as has been demonstrated

for spatially multiplexed optical traps of other types [11,113,161]. An appropriately

designed array of conveyors therefore can make full use of the light falling on the

SLM and thus can be projected with very high diffraction efficiency. Each conveyor,

moreover, can be operated independently of the others by selectively offsetting the

phase in appropriate regions of the multiplexed hologram.

6.3.2 Bi-directional tractor action

The data in Fig. 6.2 were obtained with two separate optical conveyors

projected simultaneously with equal intensity and equal axial period by a single

hologram. The conveyors’ phases were ramped at the same rate, but with opposite

sign. This single structured beam of light therefore should transport material in

opposite directions simultaneously. To demonstrate this, we projected the pair

of conveyors into a sample of 1.5 �m diameter colloidal silica spheres dispersed in

water (Polysciences, Lot # 600424). The sample is contained in the 100�m deep

gap between a clean glass microscope slide and a cover-slip that was formed by and

sealed with UV-curing optical adhesive (Norland 68). The slide was mounted on

the stage of a Nikon TE-2000U optical microscope outfitted with a custom-built

holographic optical trapping system [162] operating at a vacuum wavelength of

λ0 = 532 nm. An estimated 17 mW of linearly polarized light were projected into
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(a) (b)

Figure 6.2: (a) Trajectories of two 1.5 �m diameter colloidal silica spheres moving

along a pair of optical conveyors, superimposed with a holographic snapshot of the

two spheres. Colored orbs indicate the spheres’ positions in the hologram, and are

plotted at the same scale as the actual spheres. Rings are added for emphasis. (b)

Measured time dependence of the spheres’ axial positions as one moves downstream

(+ẑ) along its conveyor and the other moves upstream (−ẑ). Figure adapted from

Ref. [12].

each conveyor with a 100× numerical aperture 1.4 oil-immersion objective lens

(Nikon Plan-Apo DIC H) at an overall efficiency of 0.5 percent.

To facilitate tracking the spheres as they move along the optical axis, the

microscope’s conventional illuminator was replaced with a 10 mW 3 mm-diameter

collimated laser beam at a vacuum wavelength of 447 nm . Interference between

light scattered by the spheres and the rest of the illumination forms a hologram of

the spheres in the focal plane of the objective lens that is magnified and recorded at

30 frames per second with a conventional greyscale video camera (NEC TI-324A-

II). A typical holographic snapshot is reproduced in Fig. 6.2(a). These holograms
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then can be analyzed [9,163,164] to obtain the spheres’ three-dimensional positions

with nanometer-scale resolution. The traces in Fig. 6.2(a) show the full trajectories

of both spheres over the course of the experiment. Colored orbs indicate the

measured positions of the spheres at the instant of the holographic snapshot and are

scaled to represent the actual sizes of the spheres. Starting from the configuration

in Fig. 6.2(a), the two conveyors were run through total phase ramps of ±10π
in steps of π/4 , yielding the axial trajectories plotted in Fig. 6.2(b). Reversing

the phase ramps reverses the process. These measurements confirm that arrays

of optical conveyors can selectively induce bidirectional transport over their entire

lengths.

6.3.3 Self-healing

The self-healing nature of Bessel beams [85,87] furthermore suggests that

multiple objects can be trapped and moved by a single optical conveyor despite

light scattering by each of the trapped objects [37, 38, 38]. This is confirmed by

Fig. 6.2(c), which shows a volumetric reconstruction [9, 103] of the light scat-

tered by two colloidal spheres simultaneously trapped on an optical conveyor. The

plotted intensity distribution was computed from the inset hologram by Rayleigh-

Sommerfeld back-propagation. Maxima representing the positions of the spheres

are separated by two periods of the underlying optical conveyor.
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Figure 6.3: Three-dimensional reconstruction of a holographic snapshot of two

colloidal spheres moving along a single optical conveyor. Figure adapted from

Ref. [12].

6.4 Discussion

To characterize and optimize the transport properties of optical conveyors,

we model the forces they exert in the Rayleigh approximation, which is appropri-

ate for objects smaller than the wavelength of light. This provides a qualitative

description of the physics of optical conveyors even though the colloidal micropar-

ticles in our experiment are technically too large to satisfy the Rayleigh approx-

imation. Considering both induced-dipole attraction and radiation pressure, the

axial component of the force is

F (z, t) = a ∂zI(r, t) + b I(r, t), (6.7)
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where the coefficients a = �{αe} /(4ε0c) and b = �{αe} (η1+η2)k/(4ε0c) parametrize

the light-matter interaction for a particle with electric polarizability αe. As de-

scribed in Section 5.1, this approximation omits contributions due to the curl of the

spin density [8], and thus is appropriate for linearly polarized light. Further assum-

ing a conveyor of the form described by Eq. (6.2) with continuously ramped phase,

ϕ(t) = Ωt, the equation of motion for a colloidal particle with drag coefficient γ is

ż(t)

u0

=
√
1 + ξ2 sin

(
2π

z(t)

Δz
+ Ωt− cot−1 ξ

)
+ 1, (6.8)

where u0 = I0b/(2γ) is the downstream drift speed due to radiation pressure,

and where ξ = 2πa/(bΔz) describes the relative axial trapping strength. Particles

that are trapped by intensity gradients are translated upstream with the conveyor’s

phase velocity, ż(t) = −v0 = −ΔzΩ/(2π). From Eq. (6.8), the maximum upstream

transport speed is then limited by viscous drag to

v0 ≤ u0

√
1 + ξ2 − u0 =

I0b

2γ

⎡
⎣
√
1 +

(
2πa

bΔz

)2

− 1

⎤
⎦ . (6.9)

This remarkable result suggests that an optical conveyor can act as a tractor beam

for any particle with |a| > 0 provided that it is not run too fast. Both light-seeking

(a > 0) and dark-seeking (a < 0) particles should move in the same direction with

the same speed, though the dark-seeking particles will sit in the beam’s minima.

Optical conveyors thus have the potential to out-perform optical tweezers, which

cannot always achieve stable axial trapping even in the Rayleigh regime.

Equation (6.9) also suggests straightforward optimization strategies for

optical conveyors. Brighter conveyors can run faster. Reducing the conveyor’s
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spatial period Δz proportionately increases the maximum transport rate at the

cost of reducing the maximum range.

Higher-order conveyors with m > 0 also have intensity maxima at posi-

tions zj given by Eq. (6.4). They differ from zero-order conveyors in that their

principal maxima are displaced from r = 0 to transverse radii that depend on m,

η1, and η2. This larger transverse range may be useful for conveying irregular or

asymmetrically shaped objects, or objects with inhomogeneous optical properties.

Higher-order conveyors also carry orbital angular momentum and so will exert

torques on trapped objects.

The transport direction predicted by Eq. (6.8) reverses sign in the limit of

large Ω, illuminated objects then traveling steadily downstream at the drift speed

u0. The crossover between upstream and downstream transport is marked by a

dynamical state in which the particle alternately is transported upstream and slips

back downstream. The transition to this state is established by Eq. (6.9) in the

deterministic case described by Eq. (6.8). It will be strongly affected by thermal

fluctuations, however, and may feature anomalous velocity fluctuations. Still other

dynamical states are possible if the relative phase ϕ(t) varies discontinuously, for

example in a Brownian ratchet protocol [165–167]. Even more complicated behav-

ior may be expected for optical conveyor transport in underdamped systems for

which inertia plays a role.
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Chapter 7

Trapping properties of optical

conveyors

7.1 Introduction: optical conveyors

Chapter 6 introduces optical conveyors and demonstrates their utility as

practical realizations of tractor beams. Among the more surprising proposals aris-

ing from these initial studies is that optical conveyors might act as universal tractor

beams, transporting small objects at uniform speed regardless of their composi-

tion [8]. This contrasts with the performance of conventional optical tweezers,

which can only trap bright-seeking objects over a limited domain of size, shape

and composition [10, 120, 158]. Another surprising suggestion is that optical con-

veyors might exceed the trapping stiffness even of diffraction-limited optical tweez-

ers because their intensity actually vanishes at regular intervals along the optical

axis [8].
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Here we use the theory of photokinetics developed in Chapters 2 and 5

to look more closely at the trapping characteristics of these interesting modes of

light. We report the results of a head-to-head comparison between the trapping

characteristics of optical tweezers and optical conveyors involving both experimen-

tal measurements on micrometer-scale spheres and also numerical evaluations of

optical forces using the generalized Lorenz-Mie theory. In confirming the superior

performance of optical conveyors, these studies also enable us to establish the axial

range over which optical conveyors can usefully transport material, and provide

guidance for developing long-ranged tractor beams.

The electric field of a monochromatic optical conveyor of angular frequency

ω, linearly polarized along x̂ and propagating along ẑ through a medium of refrac-

tive index nm, is the superposition of two Bessel beams [8, 37, 38],

E(r, t) =
1

2
E0e

−iωt [b1(kr) + eiϕ(t)b2(kr)
]
, (7.1)

each of which may be described as a conical superposition of plane waves [38],

bj(kr) =

∫ 2π

0

ε̂(θj, φ) e
ik(θj ,φ)·r dφ, (7.2a)

where

ε̂(θ, φ) = cosφ θ̂ + sinφ φ̂ (7.2b)

is the polarization of a plane wave incident on the optical axis at polar angle θ and

azimuthal angle φ, and where

k(θ, φ) = k(sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ) (7.2c)
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is the corresponding wave vector. In the paraxial approximation, which is appro-

priate for long-range tractor beams, Eq. (7.2) reduces to

bj(kr) ≈ J0

(√
1− η2jkr

)
eiηjkz x̂, (7.3)

where ηj is related to the Bessel beam’s cone angle by ηj = cos θj. This is consistent

with Eq. (6.1) used previously to qualitatively explain the properties of the optical

conveyor beam. The approximate expression in Eq. (7.3) differs from the exact

expression in Eq. (7.2) by terms involving higher-order Bessel functions [31, 168],

which vanish on the optical axis. The numerical results developed in Sec. 5.6 are

based on Eq. (7.2). Analytical results developed in Sec. 7.2.2 are more readily

obtained from the approximation in Eq. (7.3).

The two Bessel beams comprising an optical conveyor share the same

amplitude E0, frequency ω and polarization along x̂, but differ in their relative

phase, ϕ(t), and also in their axial wave numbers, ηjk, which are reduced from the

plane wave value, k = nmω/c, by the dimensionless factor ηj ∈ (0, 1]. Here, c is

the speed of light in vacuum. The superposition is usefully characterized by the

mean convergence factor η = (η1 + η2)/2 and the difference Δη = |η1 − η2|. The

upper limit of an optical conveyor’s range, R, is set by the non-diffracting range

of the most strongly converging Bessel beam [85],

R ≤ A cot θ1 = A
η1√
1− η21

(7.4)

where A is the radius of the beam’s aperture. Longer ranges can be achieved with

values of η approaching 1.
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Figure 7.1: (a) Experimental reconstruction of an optical conveyor η = 0.8, Δη =

0.04, and (b) η = 0.8, Δη = 0.086. (c) Measured trajectory of a 1.5 m-diameter

silica sphere trapped in one of the intensity maxima in (b). (d) Trajectory of the

same particle trapped in a conventional optical tweezers projected by the same

instrument with the same peak intensity. Figure adapted from Ref. [13].

Figures 7.1(a) and 7.1(b) show the measured [160] three-dimensional in-

tensity distribution of optical conveyors with equal values of η and differing values

of Δη that were projected with the holographic optical trapping technique [8, 15],

which is described in general in section 3.2 and in particular for optical conveyors

in section 6.3. These beams were powered by a linearly polarized diode-pumped

solid-state laser (Coherent Verdi) operating at a vacuum wavelength of λ = 532 nm

that was shaped by a liquid crystal spatial light modulator (Holoeye Pluto) before

being projected with a microscope objective lens (Nikon Plan-Apo, 100×, numer-

ical aperture 1.4, oil immersion). The mode projected by this method is not the

simple superposition of Bessel beams, but rather incorporates contributions from
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Figure 7.2: (a) Measured transverse and axial stiffness as a function Δη. (b)

Stiffness ratio, kz/kr, as a function of Δη. Solid curves in (a) and (b) represent

predictions of the Lorenz-Mie theory. Shaded bands represent uncertainty in the

measured size and refractive index of the trapped silica sphere. Highlighted plot

symbols represent results from Fig. 7.1(c) and (d). Dotted horizontal lines repre-

sent the measured performance of the optical tweezers. The dashed horizontal line

in (b) shows the theoretical limit for optical tweezers performance. The shaded

region above this line represents the optical conveyor’s superior performance for

optical micromanipulation. Figure adapted from Ref. [13].

small range of axial wave numbers around ηjk [8]. Equation (7.1) therefore should

be considered an idealized model for the actual beam.

The intensity distribution, I(r, t) = 1
2
nmε0c |E(r, t)|2, has maxima at axial

positions

zn(t) =
2πn+ ϕ(t)

Δη k
, (7.5)

each of which can act as an optical trap for a small object. Here, ε0 is the per-

mittivity of space. Varying ϕ(t) as a function of time moves these extrema, and

thus conveys trapped objects along the beam. Increasing Δη reduces the spacing

between maxima, as shown in Figs. 7.1(a) and 7.1(b), and so provides control over
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the optical force profile.

7.2 Trap stiffness

We previously proposed, in Chapter 6, that optical conveyors should make

better traps than conventional optical tweezers because their intensity vanishes

altogether between maxima. The data in Figs. 7.1(c) and 7.1(d) demonstrate

this to be true. Figure 7.1(c) shows the measured trajectory of a colloidal silica

sphere diffusing through water in one of the potential energy wells of the static

optical conveyor from Fig. 7.1(b). The optical conveyor has a peak intensity of

79mW �m−2, as measured with imaging photometry. Holographic characterization

[129, 135, 163], described in Section 3.3, reveals the sphere’s radius to be ap =

0.730± 0.005 �m, and its refractive index to be np = 1.424± 0.005. Holographic

tracking [163, 169] yields the sphere’s position with 1 nm precision in-plane and

3 nm resolution axially [135,170] at 16.7ms intervals. Figure 7.1(d) shows the same

sphere diffusing in a conventional optical tweezers with the same peak intensity

projected by the same instrument.

In both cases, the trapped particle explores the optical force landscape

under the influence of random thermal forces. The optical conveyor restricts the

particle’s axial excursions to less than half the range of the optical tweezers, result-

ing in a nearly isotropic trajectory. This suggests that an optical conveyor makes

a substantially stiffer trap, even though the 2.8:1 aspect ratio of the optical tweez-

ers’ trajectory approaches the theoretical limit for a diffraction-limited Gaussian

trap [171].
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Modeling the traps as cylindrically symmetric harmonic potential energy

wells,

U(r) =
1

2
krr

2 +
1

2
kzz

2, (7.6)

we may estimate the transverse and axial trap stiffness, kr and kz from the parti-

cle’s trajectory using thermal fluctuation analysis [162,172]. These measurements

are performed for fixed values of the relative phase, ϕ(t), so that the optical traps

do not move during the measurement. For the trajectory in Fig. 7.1(c), we ob-

tain kr = 2.2± 0.1 pN �m−1 and kz = 0.89± 0.03 pN �m−1, and an anisotropy

of
√
kr/kz = 1.57± 0.04. The equivalent results for the optical tweezers are

kr = 2.8± 0.4 pN �m−1, kz = 0.41± 0.08 pN �m−1 and
√
kr/kz = 2.6± 0.4. The

optical conveyor performs as well as the optical tweezers in the transverse direction

and is nearly twice as stiff along the axis.

The performance of single beam optical traps typically is limited by their

axial trapping ability. Figure 7.1(e) shows how the optical conveyor’s stiffness

varies with Δη for fixed η, and compares this with the performance of a diffraction-

limited optical tweezers. Highlighted points correspond to the data from Figs. 7.1(c)

and 7.1(d). The optical conveyor’s axial stiffness exceeds that of a diffraction-

limited optical tweezers by as much as a factor of two. This advantage is em-

phasized by the ratio between axial and transverse stiffness plotted in Fig. 7.1(f).

Dashed horizontal dashed lines represent the measured and theoretical maximum

performance of a Gaussian optical tweezers. Optical conveyors exceed this perfor-

mance for Δη > 0.06, which corresponds to an axial period less than 6.7 �m.
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7.2.1 Generalized Lorenz-Mie theory

Optical conveyors’ superior trapping performance is consistent with pre-

dictions of generalized Lorenz-Mie theory [31, 38, 153–155], which are plotted as

continuous curves in Figs. 7.1(e) and 7.1(f). For these calculations, each Bessel

beam is expanded as a series,

bj(r) =
∞∑
n=1

n∑
m=−n

[
amn(θj)M

(1)
nm(kr) + bmn(θj)N

(1)
nm(kr)

]
, (7.7)

in the vector spherical harmonics, M
(1)
nm(kr) and N

(1)
nm(kr), that constitute the

natural basis for transverse electric (TE) and transverse magnetic (TM) waves,

respectively [132]. The expansion coefficients, amn(θj) and bmn(θj), have been

reported previously for individual Bessel beams [153], and their functional form is

described in Eq. (5.41).

The BSCs can be superimposed according to Eq. (7.1) to create an optical

conveyor with specified values of η, Δη and relative phase ϕ(t). The force on the

particle is then calculated according to established techniques [10, 120, 158, 159]

described in Section 5.6. This calculation must also be repeated for each value of

the relative phase ϕ(t).

A trap’s position, r0(t), for a given value of ϕ(t) is calculated numerically

as a solution of F(r0(t), t) = 0. The trap’s effective stiffness along r̂ν then is

calculated as

kν = − ∂νFν(r, t)|r=r0(t)
. (7.8)

Results for the predicted transverse and axial stiffness are plotted in Fig. 7.1(e)
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for conveyor beams with η = 0.8 and Δη ranging up to 0.13, and for values of

the sphere’s radius and refractive index obtained with holographic microscopy.

The curves are scaled to a maximum intensity of 41mW �m−2, which is less than

the measured value presumably because holographically projected Bessel beams

are not uniformly bright. This discrepancy does not affect the computed ratio of

stiffnesses in Fig. 7.1(f), which also agree well with experimental results, with no

adjustable parameters.

7.2.2 Dipole approximation

Generalized Lorenz-Mie theory is useful for computing the forces on spe-

cific particles in particular traps. To assess trends in optical traps’ capabilities, we

invoke the dipole approximation in which the time-averaged force [147,148],

F(r, t) =
1

2
�
{
αe

3∑
ν=1

Eν(r, t)∇E∗ν(r, t)

}
, (7.9)

is proportional to the object’s polarizability αe = α′e + iα′′e . This is equivalent to

Eq. (5.2), which was written in terms of the vector potential. The polarizability

of a dielectric sphere is related to its size and refractive index by the Clausius-

Mossotti-Draine relation [173]

αe =
4πε0n

2
mK a3p

1− i2
3
Kk3a3p

, (7.10)

where K = (n2
p − n2

m)/(n
2
p + 2n2

m) is the Lorentz-Lorenz factor. Absorptivity

increases the imaginary part of αe. Conductivity contributes an imaginary part to

K. The dipole approximation typically applies in the Rayleigh limit, for particles
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much smaller than the wavelength of light.

An object near the axis of an optical conveyor experiences an axial force

Fz(r, t)

E2
0

≈ −1

4
α′eΔη sin

(
Φ(z, t)

)
+ α′′e η cos2

(
1

2
Φ(z, t)

)
(7.11)

and a transverse force

Fr(r, t)

E2
0

≈ α′e
1

2

(
1− η2 − 1

4
Δη2

)
kr cos2

(
1

2
Φ(z, t)

)
+

1

4
α′′e ηΔη kr sin

(
Φ(z, t)

)
,

(7.12)

where Φ(z, t) = Δη kz − ϕ(t), and where we have assumed kr � 1. These results

are obtained by averaging over times long compared with the optical cycle but

short compared with variations in ϕ(t). The particle is trapped where the force

vanishes, which occurs at axial positions Zn(t) that are displaced from the intensity

maxima by an amount that depends on the particle’s light-scattering properties,

Zn(t)− zn(t) =
2

Δηk
tan−1

(
α′′e
α′e

2η

Δη

)
. (7.13)

Equations (7.8) and (7.14) then yield the traps’ axial stiffness,

kz =
1

4
|α′e| kE2

0 Δη2, (7.14)

which is strictly positive. An optical conveyor thus can trap and transport any

dipolar particle, regardless of its light-scattering characteristics. This universal,

material-independent trapping capability does not require feedback [32] or fine

tuning of the beam’s properties [34]. Decreasing the inter-trap separation by in-

creasing Δη enhances intensity gradients and thus increases trap stiffness.
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Figure 7.3: (a) Trap stiffness as a function of particle size for silica spheres in

the optical conveyor from Fig. 7.1(b). Predictions from Lorenz-Mie theory are

plotted as solid curves, and the corresponding results in the dipole approximation

are plotted as dashed curves. Discrete points show experimental results obtained

from the data in Fig. 7.1(c). Figure from Ref. [13].

Picking the largest possible value of Δη to optimize axial trapping is not

necessarily the best strategy. An optical conveyor’s transverse stiffness,

kr = kz
α′e

2
(
1− η2 − 1

4
Δη2

)− 2α′′e
2η2

1
2
α′e

2Δη2 + 2α′′e
2η2

, (7.15)

can vanish or even change sign as Δη increases.

The dependence of trap stiffness on particle size predicted by Eqs. (7.10),

(7.14) and (7.15) is plotted as dashed curves in Fig. 7.3 for silica spheres in an opti-

cal conveyor with η = 0.8 and Δη = 0.086. Results from the dipole approximation

agree well with the Lorenz-Mie results that are plotted as solid curves in Fig. 7.3,
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at least for kap ≤ 1. The Lorenz-Mie predictions, in turn, agree quantitatively

with results from Fig. 7.1, which are plotted as discrete points.

The dipole approximation severely underestimates the optical conveyor’s

stiffness for kap > 1, and suggests that the particle studied in Fig. 7.1 would not

have been stably trapped in the transverse direction. Rather than displaying a

single crossover to instability, the generalized Lorenz-Mie result displays limited

domains of instability for particles in particular size ranges. Results from the

dipole approximation therefore are useful for establishing strict lower bounds on

the performance of optical conveyors.

For example, requiring stable transverse trapping (kr > 0) according to

Eq. (7.15) establishes an upper bound on Δη and, through Eq. (7.4), a lower bound

on the range over which an optical conveyor can transport small objects:

R⊥ ≤ A

2

(
α′e
α′′e
− α′′e

α′e

)
< R. (7.16)

The practically accessible range of transport may be substantially greater than R⊥

for particles larger than the wavelength of light.

7.2.3 Comparison with optical tweezers

Conventional optical tweezers do not share optical conveyors’ universal

trapping ability. To show this, we model an optical tweezers as a focused Gaussian

beam whose axial electric field profile is [14, 174]

EG(z, t) = E0
zR√

z2 + z2R
eikzeiζ(z)e−iωt ε̂, (7.17)
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where zR ≈ 2R2/(kA2) is the Rayleigh range of a Gaussian beam converging at

distance R from an aperture of radius A, and where ζ(z) = tan−1(z/zR) is the

Gouy phase. Because we are interested in long-ranged axial transport, we assume

R > A. The axial component of the associated force,

FG(z)

E2
0

= −1

2
z2R

zα′e − k (z2 − z2R)α
′′
e

(z2 + z2R)
2 , (7.18)

forms a trap only for particles satisfying

(
α′e
α′′e

)2

> 4kzR(kzR − 1). (7.19)

This condition is most easily satisfied in strongly converging beams for which zR

is small. The condition on αe is qualitatively consistent with numerical studies

[10, 120, 158] which describe the difficulty of trapping high index or absorbing

particles with laser tweezers.

7.3 Transport range

The ultimate rate of an optical conveyor is limited by the non-diffracting

range of the constituent Bessel beams. Equation (7.19), by contrast, establishes

an inherent upper limit on an optical tweezers’ range

RG =
A

2

√√√√
1 +

√
1 +

(
α′e
α′′e

)2

. (7.20)
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Figure 7.4: (a) Experimental reconstruction of an optical conveyor with η = 0.96

and Δη = 0.04. (b) Trajectory of a 1.5 �m silica sphere transported by the same

optical conveyor over a range of 66 �m. (c) Axial stiffness as a function of transport

range. Solid curves show Lorenz-Mie predictions for optical conveyors transporting

large (1.5 �m-diameter) and small (0.036 �m-diameter, kap = 0.5) silica spheres

through water. Dashed curves show corresponding results for optical tweezers.

Discrete symbols show results for the optical tweezers in Fig. 7.1(c) and the optical

conveyors in Figs. 7.1(d) and 7.4(a). Figure from Ref. [13].

At ranges R beyond RG, radiation pressure overwhelms trapping forces due to

axial intensity gradients and ejects the particle. The upper bound of an optical

tweezers’ range therefore is smaller than the lower bound of an optical conveyor’s.

This means that optical conveyors can transport objects over substantially longer

axial ranges, and at much lower numerical apertures. The price for long-ranged

transport is paid in the strength of an optical conveyor’s traps.

Figure 7.4(a) is a volumetric reconstruction of an optical conveyor with η =
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0.96 and Δη = 0.04 that was projected with a 60× objective lens (Nikon Plan-Apo,

numerical aperture 1.4 oil immersion). Holographic projection limits the conveyor’s

range to R = 70 �m, and thus suggests an effective numerical aperture of 0.43

given the convergence angle of θ = 19�. The holographically measured trajectory

plotted in Fig. 7.4(b) shows this optical conveyor trapping and transporting a

1.5 �m-diameter silica sphere over 66 �m. The hologram at the bottom of this

figure was recorded when the sphere was located at the position indicated by the

sphere in Fig. 7.4(b). This measurement demonstrates that an optical conveyor

can transport objects along its entire length, even at low numerical aperture.

Figure 7.4(c) shows how the traps’ stiffness falls off with range. The solid

and dashed curves are Lorenz-Mie calculations of the axial trap stiffness of optical

conveyors and optical tweezers, respectively, and are scaled for a peak intensity of

41mW �m−2. One set of curves is calculated for a 1.5 �m silica sphere, and agrees

reasonably well with experimental results for the optical tweezers in Fig. 7.1(c), the

optical conveyor in Fig. 7.1(d) and the optical conveyor in Fig. 7.4(a). The other

set is calculated in the Rayleigh regime at kap = 0.5, and agrees quantitatively

with the dipole result from Eq. (7.18).

Despite the dipole prediction from Eq. (7.11), the force experienced by

a large particle in an optical conveyor can be purely repulsive. Lorenz-Mie cal-

culations reveal that additional radiation pressure due to off-axis scattering can

overwhelm trapping forces due to axial intensity gradients for particles larger than

the wavelength of light. Although a conveyor can be projected with a range ex-

ceeding this limit, it will not be able to transport large particles in the retrograde

direction, and so will not act as a tractor beam.
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The dependence of the trapping force on range for small particles shows

no such crossover from stable trapping to repulsion. While the optical tweezers

is inherently limited to R/A < 9 the optical conveyor extends indefinitely, albeit

with a stiffness that falls off as R−4. The maximum trapping force in this regime

falls off as R−2. Both the force and the stiffness scale with the intensity of the

beam, and therefore with the laser power. These considerations demonstrate that

optical conveyors are viable candidates for long-ranged tractor beams, particularly

for objects that are smaller than the wavelength of light.

7.4 Conclusions

Interference endows optical conveyors with trapping characteristics sur-

passing those of conventional single-beam optical traps. Most notably, optical

conveyors are universal traps that can hold and transport small objects regardless

of their light scattering properties. Under conditions where optical tweezers also

are effective, moreover, optical conveyors make stiffer traps, particularly in the

axial direction.

Optical conveyors act as universal traps because their intensity vanishes

at points along the optical axis [8,37,38]. This ensures that retrograde forces aris-

ing from intensity gradients can counteract radiation pressure to hold illuminated

objects in place. These traps can be positioned any placed along the propagation-

invariant range of the conveyor by varying the relative phase of the constituent

Bessel beams. As a consequence, optical conveyors can transport objects over sub-

stantially larger axial distances than conventional optical traps [8, 37, 38], which
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are inherently limited by radiation pressure.

Further improvements in performance almost certainly can be realized by

appropriately structuring the intensity and phase gradients [69, 78, 175] along the

projected beam. The range and trapping strength also should improve in optical

conveyors created with radially polarized light [79, 125, 176]. These insights apply

also to other interferometrically structured beams of light, such as solenoidal waves

[29]. Both as tractor beams, and also as ordinary optical traps, interferometrically

structured beams of light offer clear benefits for optical micromanipulation.
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Chapter 8

Conclusion

Spin-dependent and retrograde optical forces are both examples of how

light can interact with matter in unexpected ways. This thesis has examined these

topics, theoretically and experimentally, in the context of optical forces in general

beams of light. We have developed a framework for understanding optical forces

in terms of local and experimentally accessible quantities. This view point has

allowed us to clarify how optical spin angular momentum contributes to optical

forces. It also has provided direction to our experiments with optical pulling force

in optical conveyors that have opened up new possibilities in long range optical

trapping. In both cases, our work highlights the interesting physics possible with

optical forces in a beam of light.

In Chapter 2, we wrote down the momentum density carried by a beam of

light in terms of experimentally accessible quantities [8]. The approach revealed a

some interesting properties of the momentum density, in particular a contribution

to the linear momentum density from the curl of the spin angular momentum
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density. This result extended previous work that had identified contributions to the

linear momentum in a beam of light from its spin and orbital angular momentum

[25,93]. We explored this connection between light’s linear and angular momentum

by connecting our results to calculations by Belinfante on the origin of optical spin

angular momentum [105]. This exploration contributes to the discussion of the

paradoxes surrounding spin and orbital angular momentum in light [177, 178].

In strongly focused beams of light, spin and orbital angular momentum are not

separately conserved [23], and there are still open questions about the mechanism

of conversion between the spin and orbital angular momentum in light [27].

To address these questions, we measured spin dependent optical forces

experimentally as describe in Chapter 4. We found that isotropic colloidal mi-

crospheres experience spin dependent optical forces in circularly polarized optical

traps and that this force arises from the curl of the spin angular momentum den-

sity [8]. This result agreed with previous measurements circulation of metallic

particles in circularly polarized optical tweezers [22,24], however our work clarified

the spin-curl force makes a larger contribution than the spin-to-orbital conversion.

This distinction was confirmed by experiments revealing circulation even in beams

of light with low convergence [26]. The physical effects of non-uniform optical spin

angular momentum continue to be explored [179].

Although we had measured these spin-dependent forces, their origin was

not clear. In Chapter 5, we considered the origin of these forces through an anal-

ysis of multipole scattering. Surprisingly, at electric dipole level the spin angular

momentum density plays no role in optical forces due to an exact cancellation [13].

This result clarified some confusion in the literature that had previously suggested
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that electric dipolar particles do experience spin curl forces [180]. To find the origin

of spin curl force, we considered forces from multipole scattering, which had been

shown to create interesting optical forces [150, 151] and allow for optical pulling

forces [31]. We found that the interference between multipoles leads to a spin-curl

force, but it also leads to another polarization dependent force. This new force

seems to act like an intensity gradient except that it is polarization dependent.

We used generalized Lorenz-Mie theory to calculate the force on colloidal micro-

spheres so that we can compare to experiment. This quantitative results confirm

the existence of spin dependent optical forces in the direction of the spin-curl.

One of the interesting results of this analysis of optical forces was the sensi-

tive dependence on particle properties. We describe how dielectric colloidal micro-

spheres in the Mie regime can develop magnetic multipole moments through their

interaction with optical fields. This surprising effect is crucial for spin-dependent

optical forces and optical pulling forces [31,152]. There has been growing interest

in these magnetic properties of particles [181], which not only could be useful for

tailoring optical forces, but also for creating new metamaterials [182, 183].

Next, we applied these insights in optical forces to the interesting case of

optical tractor beams. We demonstrated in Chapter 6 that optical conveyor beams

can act as practical realizations of tractor beams [12]. In this work, we showed

optical conveyors transport colloidal microparticles bidirectionally over 60 �m using

holographic techniques. In addition, optical conveyors are easier to project than

optical solenoid beams [29], and their interferometric structure allows them to work

for a greater variety of particles than Bessel beam based tractor beams [31, 152].

One disadvantage with optical conveyors is that they need modulation in
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order to pull, compared to other nonconservative tractor beams [32]. However,

this makes them active tractor beams which pull all objects at the same speed

over a very wide range of particle properties. Recently, much longer range tractor

beams have been demonstrated that take advantage of photophoretic forces [184].

Optical conveyors on the other hand only rely on the light’s interaction with the

particle and so could work in a vacuum.

Questions about the relative merits of various tractor beams spurred us

to study the trapping properties of optical conveyors as described in Chapter 7.

The underlying unresolved question surrounding all of these tractor beams was

how they performed relative to conventional optical traps. Many of these tractor

beams consisted of non-diffracting modes of light [84], and were suggested therefore

to have potential for long range trapping [30]. However, physical realizations of

these modes were known to have limited range [85] so the advantage of tractor

beams was not clear.

Our experiments showed that the axial interference in optical conveyor

beams granted them exceptional trapping in the axial direction, which typically is

the weak point in optical trapping [13]. In turn, these superior trapping properties

suggest that optical conveyors can work over a larger range than conventional

optical traps with an especially large advantage for small particles. Our results

show that optical tractor beams have the potential to considerably extend the

range of optical trapping. Further research is needed to find the optimal beam

structure for long-range optical trapping.

Our insights into in optical forces have possible applications not only with

optical phenomena but also in acoustics and other wave phenomena. Micromanipu-

118



lation has long been possible in acoustics through levitation in standing waves [185].

Single-beam gradient force acoustical tweezers have been demonstrated [186]. In

addition, demonstrations of acoustic pulling force indicate that tractor beams could

be created with to sound waves [187]. Similar pulling forces are possible for float-

ing objects interacting with water waves [188]. These alternative waves can exert

much stronger forces than is possible with light since they travel much slower than

the speed of light. This property greatly extends the possibilities for micromanip-

ulation.

Throughout this thesis we have analyzed optical forces in terms of the

local and experimentally accessible properties of complex beams of light, which has

helped us to understand the physically relevant forces. This viewpoint has allowed

us to uncover surprising properties of spin dependent forces and to apply this

knowledge towards making practical tractor beams with optical conveyor beams.

These advances open up possibilities in new spin-dependent forces, in optical meta-

materials, and in long-ranged optical trapping. It is not clear what else is possible

with light, but this thesis suggests that a better question might be, what is not

possible?
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Appendix A

Vector Spherical Harmonics

The vector spherical harmonics can be used to decompose a vector field

in spherical polar coordinates. When the field is in this form, we can more easily

calculate the scattering off of spherical particles. In fact each component of the

incident field contributes to the scattered field by an amount that depends on the

Lorenz-Mie scattering coefficients [128]. Each textbook uses its own notation so

it is hard to compare different formulations. Here we present the calculations of

Jackson [104] and Gouesbet [132] in detail to clarify these differences.

Jackson begins with the scalar wave equation,

∇2ψ − 1

c2
∂2ψ

∂t2
= 0. (A.1)

Solutions can be written as an expansion in multipole terms,

ψ(r) =
∑
l,m

[Almzl(kr) + Blmzl(kr)]Ylm(θ, φ), (A.2)
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where Ylm are the spherical harmonics, defined by

Ylm(θ, φ) = P̃m
l (cos θ)eimθ (A.3)

and where P̃m
l (cos θ) are the normalized associated Legendre polynomials, which

are defined by,

P̃m
l (x) = Np(−1)m(1− x2)m/2 dm

dxm
Pl(x). (A.4)

The Pl(x) are the Legendre polynomials defined by Rodrigues’ formula and the

normalization is Np =
√

(2l+1)(l−m)!
4π(l+m)!

. The radial factors zl(kr) in Eq. (A.2) are

spherical Bessel functions, for instance

jl(x) =

√
π

2x
Jl+1/2(x), (A.5)

where Jl(x) is a Bessel function of the first kind of order l.

Next, Jackson points out that Maxwell’s equations can be written in the

form of the Helmholtz equation and a divergence condition,

(∇2 + k2)E = 0 and ∇ · E = 0 (A.6)

with H given by

H =
−i
kZ0

∇× E, (A.7)

where Z0 =
1
cε0

is the impedance of free space. Instead of working with this set of

vector equations, we can transform them into a set of scalar equations. The scalar

quantities r ·E and r ·H each satisfy the scalar Helmholtz equation, which can be
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shown by using the vector identity,

∇2(r ·A) = r · ∇2A+ 2∇ ·A. (A.8)

Consequently we can expand r · E and r · H in terms of Eq. (A.2). The two

expansions lead to two families of vector spherical harmonics. Although light is a

vector field with three components, only two scalar fields are necessary to describe

a general field of light. This interesting fact arises from the transverse nature of

the fields.

To extract the electric an magnetic fields from the scalar fields we need to

use the angular momentum operator, L, defined by

L = −ir×∇. (A.9)

Jackson shows that

r ·H(M)
lm =

l(l + 1)

k
zl(kr)Ylm(θ, φ), (A.10)

and the electric field corresponding to this magnetic multipole of order l,m is

E
(M)
lm = Z0zl(kr)LYlm(θ, φ). (A.11)

Similarly for an electric multipole field,

E
(E)
lm =

iZ0

k
∇× (zl(kr)LYlm(θ, φ)). (A.12)
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These two sets of functions are the vector spherical harmonics (VSHs), which are

orthogonal functions that form a basis for a general field of light. Such a field can

be written as a sum of the VSHs,

E =
∑
l,m

{
i

k
aE(l,m)∇× [zl(kr)LYlm(θ, φ)] + aM(l,m)LYlm(θ, φ)

}
. (A.13)

Here we depart slightly from Jackson who defines his vector spherical harmonic

function Xlm with a factor of 1/
√

l(l + 1) that we omit for consistency with other

formulations.

We can write these functions in spherical coordinates to facilitate compar-

ison. Considering the magnetic term first,

jl(kr)LYlm(θ, φ) = −ijl(kr)r×∇Ylm(θ, φ) (A.14)

= −φ̂iψl(kr)

kr
∂θYlm(θ, φ) (A.15)

−θ̂ψl(kr)

kr

mYlm(θ, φ)

sin θ
, (A.16)

where ψl(kr) = krzl(kr). Next we evaluate the electric term,

−i
k
∇× jl(kr)LYlm(θ, φ) =

−i
k
∇× L(jl(kr)Ylm(θ, φ)) (A.17)

=r̂
l(l + 1)

(kr)2
ψl(kr)Ylm(θ, φ) (A.18)

+θ̂
1

kr
ψ′l(kr)∂θYlm(θ, φ) (A.19)

+φ̂
im

kr
ψ′l(kr)

Ylm(θ, φ)

sin θ
. (A.20)

There are a number of steps in evaluating this term. We used the fact that the
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angular momentum operator only operates on the angular variables. We also

used Eq. (9.125) in Jackson and Eq. (8) in Gouesbet [132]. This yields the same

result as Eq. (1) and Eq. (2) in Gouesbet for the magnetic and the electric VSHs

respectively, except for a factor of (−1)m.

For a circularly polarized plane wave traveling along the z axis, the coef-

ficients are

aM(l,m)± = il

√
4π(2l + 1)

l(l + 1)
δm,±1 and (A.21)

aE(l,m)± = ±iaM(l,m)±. (A.22)

These differ from the corresponding coefficients defined in Bohren and Huffman

[128] by the square root.

The series in Eq. (A.13) tends to be numerically unstable when the angular

dependence is computed in terms of the Legendre polynomials directly. More

reliable results are obtained by expressing the angular dependence in terms of the

normalized angular functions π̃mn and τ̃mn [128,189], which are defined by,

π̃mn(cos θ) = m
P̃m
n (cos θ)

sin θ
(A.23)

and

τ̃mn(cos θ) = ∂θP̃
m
n (cos θ). (A.24)

This gives us an improved expression for the vector spherical harmonics,

jl(kr)LYlm(θ, φ) = −φ̂iψl(kr)

kr
τ̃mn(cos θ)e

imφ − θ̂
ψl(kr)

kr
π̃mn(cos θ)e

imφ, (A.25)

124



and,

−i
k
∇× jl(kr)LYlm(θ, φ) = r̂

l(l + 1)

(kr)2
ψl(kr)Ylm(θ, φ)

+ θ̂
1

kr
ψ′l(kr)τ̃mn(cos θ)e

imφ

+ φ̂
i

kr
ψ′l(kr)π̃mn(cos θ)e

imφ. (A.26)

These are the forms that were used for the numerical calculations in this thesis.
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