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 Introduction 1.

1.1. Collaborative Computing 

As the paradigm of collaborative computing has matured, its requirements began to 

affect the architecture of server rooms, or “data centers” on a large scale. Companies, once 

forced to buy hardware for their individual data-processing needs, were now provided with 

a new alternative—virtual computing. Enabled by the development of software, such as 

Xen and VMWare, and the Linux-based Kernel Virtual Machine [4] [44] [62], virtual 

computing allows the components of an entire computer to be emulated or “virtualized,” so 

that operating systems and applications are no longer beholden to the hardware on which 

they were installed. Instead, a hosting piece of software or “hypervisor” could provide the 

hardware emulation required, thus reducing an entire computer to little more than a 

collection of data within a file-system. In the virtual computing sphere, this collection of 

data is termed a Virtual Machine (VM). With this new capability came new possibilities; 

since the VM “computers” were little more than software, they could now be sent from 

machine to machine, using the same inter-networking protocols as the applications they ran 

would use. This allowed these VMs to “migrate” whenever the need arose, e.g. if hosting 

hardware became overloaded or potentially faulty [18]. With the advent of clever 

management systems to intelligently shuffle VMs around to respond to various needs, the 

data center became ever more efficient and flexible. Essentially, a new dimension was 

added to the original concept of shared computing, since now a business could rent out its 

processors and storage for use by other companies. Termed “cloud computing,” this became 

a very successful business model for companies like Amazon, Google and Microsoft [3] 
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[17] [71] [91]. Additionally, open-source tools such as AppScale [15] and Eucalyptus [64] 

were also developed to create applications in these new virtual environments. 

At the same time as cluster computing was evolving into the virtual space, another 

concept was being developed by researchers—the idea of an abstracted general-purpose 

computing space where the entire environment for computational problem-solving was 

stratified into a “middleware” layer, removed from the idiosyncrasies of the underlying 

operating systems and hardware. First coined by Ian Foster, the term “Grid computing” [29] 

[31] was used to describe this collection of software, dubbed Globus [22], that enabled even 

diverse and heterogeneously-created computers to contribute resources to a computational 

solving space in a homogeneous and comparable manner. Within the Globus framework, 

researchers were presented with a unified space of both processing power and storage, 

vastly simplifying application development. This idea did not go unnoticed in the business 

world, where companies like Yahoo created unified storage infrastructures such as Sherpa 

[19] and in collaboration with the Apache Foundation created the Hadoop clustering 

environment [87] [92]. General file-systems and even database servers could now be 

abstracted into these environments, which freed computational clusters from the previous 

requirements of homogenous participating hardware, to allow virtually any computer that 

could meet certain basic software requirements to be utilized in large-scale simulation. This 

level of abstraction enabled the modern implementations of what we would consider the 

“Cloud computing” networks of today. 

1.2. Virtual Machine Deployment Strategies 

While large-scale computing with virtual machines opened up new capabilities to 

businesses and individuals, the management of these VMs posed new challenges for data 
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center operators. The traditional scenario of operating systems running natively on 

computers no longer applied, effectively shrinking the time-frame in which computational 

resources could be constructed and deployed. However, this compression of the time-scale 

for deployment of both individual machines and clusters of servers exposes the issue of 

data movement. In other words, although the hardware specifications were virtualized 

(allowing near-instantaneous hardware “creation” within hosting hypervisors), the file-

systems which comprise the operating systems and applications of these virtualized 

machines must still be transported from the location of their creation to the hypervisor, 

sometimes between distant data-centers [88]. Adding to this complexity is the concept of 

VM migration, where the VM is moved from one hypervisor to another, as resource or 

failure conditions dictate [18]. [18] As the data sets which make up each VM can be very 

large, techniques for rapid VM deployment and migration became more prevalent [14] [15] 

[47], thus enabling the automated deployment and management of extremely large numbers 

of VMs for both research and business-oriented end-users. 

1.3. Cloud Computing and Data Management 

The idea of utility-based cloud computing [30] began to show up in the large-scale 

computational arena in the mid-2000s, with the launch of dynamically-shared computation 

services such as Amazon Web Services [2] and Eucalyptus [64]. While encompassing many 

definitions [3] [30], the phrase “cloud computing” can be broadly described as an 

environment in which the actual storage and processing of data are deliberately abstracted 

from the end-user. In other words, a user does not need to know exactly on which servers or 

data centers his/her information is stored, just that it is stored somewhere accessible. In 

network architectural nomenclature, a cloud is used to symbolize an area of a network or 
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data storage facility which, while some of its function may be known, is otherwise the 

equivalent to a “black box” to the end-user. However, what is important to the end-user is 

the perceived availability of these consumed services. In the case of businesses which may 

be dependent on the cloud computing architecture to function properly, certain guarantees 

of data availability, computational power, data security and a host of other requirements 

must be met by the cloud provider. These requirements, often codified as Service Level 

Agreements (SLAs) [12], impose particular challenges to the hosting provider. 

To help meet these needs, hosting providers utilize the range of aforementioned 

technologies to ensure that the data which they host and the computational resources 

needed to process the data could be made rapidly available to their clients, whenever the 

need arose. In addition, client data should be preserved for as long duration as possible, 

even in the face of multiple hardware or software-related failures. Originally, this was 

achieved using off-site backup utilities, generally copying the actively used data to a more 

robust (but generally slower medium) such as magnetic tape [26]. However, users now 

require that their data must not only be safe, but must also be readily available, often at a 

short notice. While multi-level backups can alleviate some of the inherent performance 

disadvantages of tape backup, a more readily acceptable method makes multiple live copies 

(or replicas) of the same data and distributes it to different machines, sometimes in 

different data centers or even multiple states or countries [1] [48]. In this approach, the 

probability of multiple hardware failures affecting all the disparate machines 

simultaneously is very low, thereby improving the reliability of data storage and retrieval. 

An additional advantage of this approach is that if the physical location of a client can be 

determined, then the data can be copied to a data center closer to them, thus reducing the 
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amount of time taken for the client to access their data (termed “access latency”). Modern 

Content Distribution Networks (CDNs) run by companies such as Akamai [65] use this 

technique to improve the performance of hosted high-demand data items, such as streaming 

media. 

1.4. Management of Replicated Data 

While data replication among multiple data centers solves some data reliability issues, it 

simultaneously creates new problems. For instance, if a data set is replicated among several 

computers and a client wishes to change the data at one access point, the changes on the 

other machines must be made simultaneously, or the other locations will contain different 

versions of the original data. This essential requirement of ensuring that all the accessing 

machines have the same “view” of the data, no matter which machine is used to access and 

change the data, is termed “mutual consistency” [24]. Unfortunately, maintaining this 

consistency, especially when combined with a client’s requirements for ready availability 

and modifications, creates many challenges (but also opportunities for the development of 

novel solutions), especially in environments where hardware or communications failures 

are common.  

Thus if machines hosting copies of the same data cannot communicate fully with each 

other, they will find it difficult, if not impossible to consistently register any changes to the 

shared data. This problem was crystallized by Eric Brewer as the CAP issue [10], where 

CAP is an acronym for Consistency and Availability in the face of Network Partitions. This 

occurs when a communication failure causes one section of a network to become 

disconnected from the rest, forming a partition which severs communications between 

storage networks. Given a solution to this problem which satisfies all three requirements 
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(data access, modification, consistency) was found to be mathematically impossible [34] 

[35], Brewer reasoned that by temporarily relaxing at least one of the CAP requirements, 

the other requirements could be more readily met. For instance, if an end-user can tolerate 

not being able to access their data for short periods of time, then the replicated data-hosting 

system could temporarily make the data unavailable to the user, while the consistency 

between copies is enforced. This arrangement is warranted in environments where 

consistency is the over-arching requirement, superseding all other conditions, such as in 

banking data networks. Since a loss of consistency could potentially cause major monetary 

losses for either the bank or their customers, every effort must be made to prevent this 

occurrence, even at the cost of temporary unavailability. Under these conditions, customers 

may be denied temporary access to their money during periods of communication failure 

among various bank branches. This is considered a case of enforcement of strong 

consistency [10]. 

On the other hand, data availability can be improved if the end-user tolerates some 

measure of inconsistency. For example, Amazon utilizes this relaxed consistency in their 

online shopping carts, where their shoppers were found to tolerate temporarily inconsistent 

contents in the carts, rather than the cart being completely unavailable. Using this relaxation 

in consistency, Amazon was able to increase the availability of carts for shoppers by 

establishing a write-always policy for their shopping carts. This policy ensures that a 

customer is always able to add an item even if the shopping cart data are temporarily 

unavailable, as may happen when a partition is caused by a temporary loss in 

communications between the client’s machine and Amazon’s servers. However, once the 

network issue has been corrected and the partition is resolved, the shopping cart is 
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automatically merged with the added items, to give a consistent result to the customer [90]. 

Since this model assumes that there will be some temporary data inconsistencies which can 

be resolved within a short time interval, it is considered to be a form of weak or eventual 

consistency [10]. Using such eventual consistency, the data objects may change 

dynamically during acknowledged inconsistency periods, but will have consistency 

enforced at specific and well-defined points in time. Allowing consistency to lapse 

temporarily allows the components of a replicated system to make their (potentially out-of-

date) data available to the client even in the face of network partitions. This is dependent on 

the client users’ ability to tolerate the inconsistency periods and that the system can 

eventually resolve the consistency issues, once network connectivity has been restored. 

However, the assumption that the end users simply accept and cope with an 

inconsistency (even a temporary one) in their operational data is too narrow an approach to 

take, especially if a data provider is expected to serve a wide and varied clientele. 

Traditionally, the approaches to solving these distributed concurrency issues have involved 

forms of locking protocols [6]. Using locking, a client accessing shared data sets a special 

flag associated with the data, indicating to other clients that the data are in the process of 

being modified. Once the client has completed its required operations to the shared data, it 

resets the flag to allow other clients to gain access to the data. 

Unfortunately, this approach comes with several attendant issues, such as deadlocks, 

starvation, priority inversion and convoying conditions. While the exact details of the 

problems will be covered in more detail in Chapter 2, any concurrent-access system which 

uses traditional locking protocols is subject to additional complexity to deal with the 

aforementioned problems. In addition, traditional locking imposes a performance penalty in 
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highly concurrent systems. As the overhead required to serialize accesses to the shared data 

resources lengthens the execution time, the various client programs attempting to read from, 

or write to the data may have to wait for long periods of time before being granted access, 

thereby delaying their completion times. 

1.5. Transactional Synchronization 

Herlihy et al. [37] proposed an alternative to these issues in the form of transactional 

data access. Using techniques gleaned from the database world [8], a system was proposed 

where a program’s access to shared data was presented in the form of transactions, each of 

which could be aborted and/or restarted as needed to achieve transactional synchronization 

among concurrent operations on shared data. Therefore, programs were no longer restricted 

by locking protocols to access the shared data—each program simply accesses the data as if 

it was the only client, with the understanding that any section of code which was couched 

as a transaction could be aborted and restarted at any time. This form of optimistic shared 

data access via transactional synchronization frees up the programs from the possibility of 

deadlocks and other associated lock-based problems, while incurring only moderate costs in 

programmatic management and overhead costs. Transaction synchronization serves as the 

basis of our data replication management strategy to be detailed in Chapter 4. 

1.6. Motivation and Dissertation Outline 

While the trend of collaborative computing moves towards large-scale data 

management and abstracted virtual computing, current large-scale implementations of this 

technology are dependent on the infrastructure of large consolidated data centers, such as 

those operated by Google, Akamai or Microsoft [88]. However, the majority of operational 

server rooms are less than 5000 sq. ft. [56] and this has encouraged the development of 
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integrated data storage and virtual computing frameworks. These frameworks combine the 

resources of smaller data centers and server rooms into a single addressable infrastructure, 

to overcome issues of low bandwidth, high latency and/or unpredictable network reliability 

between smaller data centers. The function of such an integrated system would be to allow 

a client to dynamically deploy virtual computational resources within any participating data 

center in the system, while simultaneously providing a shared space for the storage of very 

large data sets. Essentially, each participating smaller data center would become part of a 

widely distributed large-scale “data center.” This can leverage the advantages of disaster 

mitigation via geographic site separation, while minimizing the bandwidth and latency 

associated costs. Therefore, it would serve as an attractive alternative to customers who are 

seeking to enhance the reliability, storage or computational capability of their existing data 

centers. This is especially important for customers who are being forced to undertake 

expensive data center expansions or to consolidate their data and machines within a foreign 

cloud-enabled data center. To this end, this research proposes a Peer-to-Peer (P2P) based 

overlay for storing and retrieving large replicated data items from widely-spaced collections 

of computers. Using techniques gleaned from distributed CDNs and Distributed Hash Table 

(DHT) based search networks, the distribution of and search for replicated data within a 

decentralized network overlay are investigated as both a distribution system for virtual 

clusters and a more general transaction-based data workspace. The focus of the research 

revolves around the application of performance-enhancing techniques for data retrieval and 

manipulation under both loose and tight replication conditions, while maintaining 

acceptable limits over both the reliability of the overlay and controllable consistency of the 

replicated data it is designed to store. 
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Our proposed system described in this dissertation consists of two major components. 

The first component, named the Peer-to-Peer Virtual Cluster Deployment System (PVC-

DS), combines and extends improvements to existing virtual machine data structures, 

paving the way for more enhanced search and retrieval of loosely-replicated VMs. This 

PVC-DS component has been designed to augment existing virtual hosting environments, 

thus reducing the deployment time of VMs. In a simulated network environment, PVC-DS 

is compared to existing virtual machine replication and distribution topologies, to determine 

what performance advantages it offers. Using the same underlying communications 

infrastructure as PVC-DS, the second component adds transactional support to enable the 

replicated storage of general data objects. As replication is also employed in the proposed 

overlay for the purposes of reliability and performance improvement in data retrieval and 

manipulation, mutual consistency techniques for concurrent data accesses are investigated. 

We investigate the trade-offs between maintaining serializable consistency in replicated 

data and reducing the delays incurred by clients attempting to use the shared data items. To 

this end, a particular form of fault-tolerant replication managed by transactional 

synchronization, utilizing soft-state [73] replication is developed and evaluated. Soft-state 

registration was another important component of the eventual consistency scheme 

envisioned by Brewer [10], and is discussed in more detail in Section 2.2. While no prior 

work in this exact context is aware to us, we will nevertheless attempt to provide measures 

of comparison between our proposed mechanisms and existing general file dissemination 

and replication consistency enforcement schemes. 

Following an extensive literature search on data replication, search and dissemination 

architectures within P2P networks, our primary objectives of this research are: 
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 The integration and enhancement of multiple existing P2P-based overlays into a 

single cohesive system, with the specific aims of (i) improving the search 

capabilities of replicated VM data-repositories; (ii) the performance of 

deploying the VM-data to end-point clients; (iii) providing a replicated data-

storage space for use by applications operating within the deployed VMs. 

 The development of a multi-layered storage architecture within the P2P overlay, 

along with the creation of new publishing and querying algorithms which 

leverage this architecture. 

 The development of a fault-tolerant P2P-based architecture for low-latency 

distributed transactional data storage, designed to operate as part of the cohesive 

P2P-based system. 

 The design of a simplified transactional algorithm for operating both in concert 

with, and taking advantage of the specific features of the underlying fault-

tolerant architecture. 

To verify the correctness and performance of these new approaches, we have also 

implemented a scalable event-driven simulation environment. This environment has been 

designed to be as flexible as possible, to allow the testing of any number of extreme end-

user requirements and network topologies, and yet to be reasonably representative of real-

world communications architectures. 

In the following chapter, we will elaborate on prior research aimed at improvements in 

VM deployment time and provide technical explanations of the network infrastructures 

used for the underlying communications fabric of our proposed work. This is followed by 

an in-depth exploration into different forms of consistency management of both single-
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instance and replicated data objects. Explanations will be provided for the rationale for 

selecting and modifying certain algorithms and architectures and how these augmented 

mechanisms are specifically applied to our research.



 

 Foundational Concepts and Prior Research 2.

2.1 Virtual Clusters 

As new uses for virtually created and managed servers in both corporate environments 

and research communities were created, the requirement for ever larger computing clusters 

necessitates the use of scalable software tools to assist with the creation and management of 

these large groups of VMs [78]. Many large VM providers such as Amazon and Microsoft 

house these VMs in multiple data centers spread geographically across countries or even 

continents [88]. Despite the increase in bandwidth into these data centers, the large 

distances between the VM-hosting facilities complicate the deployment of the VMs to their 

hosting hardware, especially as the size of the operating systems running within these VMs 

have become larger over time. The demand in automation for the creation, deployment & 

management of virtual machines have led to the development of several deployment 

frameworks for virtual servers and grouped computing clusters. Foster et al. [32] first 

described a framework for creating and distributing VMs, using an implementation of Web 

Service Resource Framework (WSRF) metadata, called workspaces. Their framework 

largely covered the description of VM clusters, assuming that the workspace nodes were 

capable of accessing a centralized repository, to download the fully configured VM images. 

Unfortunately, as the virtual cluster sizes were increased, the download times increased 

significantly as well, due to the repository having to service multiple download requests, 

resulting in network links becoming saturated. Moreover, as virtual cluster deployments 

were being co-opted for use in cloud computing systems such as Eucalyptus [64], the issue 

of VM data propagation continued to be a pressing issue. Schmidt et al. [84]  acknowledged 

this problem and outlined possible alternatives to the centralized systems. They concluded 
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that a P2P distribution system such as BitTorrent [70] would be the most efficient method 

for distributing VM images and software, compared to unicast, multicast or tree-based 

distribution architectures. While this approach does improve the VM download times, it 

still relies on the transfer of fully configured VM images from the repository. While this 

can be compensated for by the use of local client-based caching, as done in the Schmidt 

approach, or in Eucalyptus which employs some form of VM data caching, the client nodes 

still required large amounts of local disk space to hold the multiple cached VM images. 

In an attempt to alleviate some of the issues inherent in earlier implementations [32], 

Nishimura et al. [63] applied individual application-specific packages from the base 

Operating System (OS) image and downloaded them separately. Subsequent use of a 

dendrogram tree-based package caching strategy resulted in a reduction in deployment 

time. However, such an approach had major shortcomings, since their simulation assumed 

that only a single OS type and architecture is applicable. However, in large-scale 

heterogeneous Virtual Cluster (VC) networks, the hypervisors would host many different 

types, versions and architectures of operating systems. Given that many applications and 

packages are OS- and version-dependent (e.g. compilers tend to rely on kernel and system 

library versions), the client or local VC site manager would have to cache multiple versions 

of each package. This situation is aggravated by the fact that many OS distributions use far 

more than the 180 different package combinations tested in Nishimura’s evaluation. As a 

result, the caching site managers would either require Virtual Disk (VD) caches or employ 

very aggressive cache-clearing policies to make the system work. 

Nishimura’s system also assumed that the cached packages do not change over time 

with respect to their underlying OS. However, this assumption does not hold true in 
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general, since application packages associated with a specific OS may evolve at a very 

rapid pace, calling for re-deployment of the same packages multiple times, sometimes 

within a very short period of time. For example, consider a graphics research group which 

is developing and testing a parallel ray-tracing engine using virtual clusters, with each 

updated version of the software being re-deployed into the VM repository. As a result, the 

client nodes hosting the virtual cluster would have to repeatedly resynchronize new 

packages with the centralized repository, with the potential for overloading, as described by 

Foster [32]. What was needed to help solve this issue was an effective way to distribute the 

VM repository data among multiple nodes, such that data were no longer tied to a single 

node on a network. Distributing the task of serving the VM repository would alleviate 

issues of overloading repositories, along with providing resistance to failure of hosting 

nodes, via the replication of the VM data. In order to facilitate the distribution of the data 

among nodes, P2P overlay networks provide a solid basis for building distribution and 

retrieval systems for clusters of virtual machines. 

2.2 Peer-to-Peer Networks 

To meet the needs of network communications for clients, many forms of Peer-to-Peer 

(P2P) networks have been developed and can be broadly categorized as either unstructured 

or structured networks [52]. Unstructured P2P networks include the Gnutella [79] and 

Kazaa [51] file-sharing networks, where nodes locate each other by simple expanding-ring 

broadcasts. To do so, a node searching for a data item will simply broadcast its search terms 

to its nearest neighbors, which will in turn forward the request to their neighbors, up to a 

maximum number of hops. While this architecture is extremely simple to implement and is 
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fairly resistant to network failures, it does suffer from the drawback of searches generating 

extremely large traffic volumes.  

A more efficient alternative is the structured P2P network, whereby each node 

maintains internal data structures which have the end-effect of organizing the network of 

nodes into more effective communication topologies. These networks are conducive to 

more rapid searches, more efficient lookups for rarer items, searches which produce less 

generated traffic overhead, or any combination of these desired features. Unfortunately, 

these capabilities have the disadvantages of slower and less efficient structured network 

operations during times of high network churn, when a very large number of nodes either 

enter or leave the network during a relatively short period of time [76]. Nevertheless, 

overall structured P2P networks exhibit properties which make them desirable for use in 

either data storage or data advertising systems. For example, the BitTorrent [70] P2P file-

sharing application uses a type of internal structure called a Distributed Hash Table (DHT) 

to advertise items which data-hosting nodes wish to make available for download. DHT-

based structured P2P networks include Chord, Pastry and the Content-Addressable Network 

[74] [82] [89]. For the purposes of this dissertation, the focus will be on the Chord network, 

since each of the other DHT-based networks operates in a broadly similar fashion. 

Chord [89] is a distributed lookup protocol which provides a simple, relatively robust 

way for individual nodes to store and retrieve information in a de-centralized manner. 

Chord uses a consistent hashing [59] mechanism based on the Secure Hash Algorithm 

(SHA-1) [28] to map both stored data and network nodes to unique hashed binary keys of 

fixed length m. Each node is assigned a hash based on its network address, whereas each 

item of data to be stored is similarly processed via the hashing function, to produce a 
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Chord-suitable key. The data-key is stored on the node whose node-key is either equal to or 

immediately follows (or succeeds) the data-key. By using a consistent hashing function to 

map the data-keys to the nodes, the data-keys are usually evenly distributed and rarely need 

to be redistributed to new nodes, even if a large number of nodes join or leave the network. 

The Chord network is arranged as a ring, with nodes in the ring being arranged in 

increasing order of hash-values. The node with the largest hash-key value in the system 

simply precedes the node with the smallest hash-key in the Chord network, thereby 

completing the circle. Each node maintains at minimum a pair of predecessor and successor 

links, pointing to the nodes with the next-lowest and next-highest hash-keys, respectively. 

In addition to these two links, each Chord node with hash n also maintains a fixed-size 

finger table of node hash-keys, where a node at line k in the finger-table immediately 

succeeds the value of (n + 2
k-1

) mod 2
m
; the mod 2

m
 component keeps the calculated finger 

within the hash-key limits of the network. These links provide shortcuts to reduce the 

number of nodes which a Chord search would need to traverse in order to find a particular 

data-key. An example of a Chord network with stored keys is shown in Figure 1. In this 

example, a data-key 95 is stored at node 99, as the node-key 99 immediately follows the 

data-key 95. The search for the key from node 15 is also shown, as it traverses the finger-

link shortcuts to reach the key-hosting node. The finger table for each node involved in the 

search is shown as F = {f1, f2, f3, f4, f5, f6}. As shown by the arrows, search is performed in a 

series of hops from each node, with each node along the path choosing the largest finger 

which precedes the search-key. If the last hop in the search does not fall directly on the 

hosting-node, the search simply continues sequentially from successor to successor until the 

key-hosting node is found. In this manner, the finger tables serve simply as a performance 
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improvement, allowing a sequential next-successor search to “skip” nodes along the search 

path, thereby reducing the hop count and resulting search time. 

 

Figure 1. Chord network example. 

With these structures, a Chord node is normally able to complete a search within 

Olog(n) node hops. Whenever a node needs to join the Chord network, it simply inserts 

itself into the ring at the appropriate point determined by its assigned hash-key. Then, after 

informing the relevant predecessor and successor nodes, it creates its new finger-table links 

via searches for the appropriate calculated keys. Similarly, upon the event of a node leaving 

the network (whether intentionally or by network failure), the remaining nodes can use the 

existing data in their predecessor/successor links and finger tables to reconstruct any broken 

links which may have arisen as a consequence of the node loss. This gives the Chord 

network a degree of resilience against network failure and provides a basis upon which to 
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build a fault-tolerant data storage and/or dissemination network. An important characteristic 

of Chord (and indeed other DHT-based networks) is that searches for a particular data item 

are done in a series of hops from the requesting node, towards the data-hosting node. For 

each search, the path traced from the requester to the hosting-node traverses links common 

to those used by other searching nodes for the same key, with increasing probability of 

common links being traversed as the search nears the hosting-node. Therefore, the nodes 

whose hashes closely precede those of a particular data-hosting node will be included in 

searches for that particular data-key. This has the net effect of producing a “tree” of search 

paths for each data-key, with the data-hosting node being the “root” of the tree. This 

particular property can be utilized when dealing with replicated data, to assist in choosing 

viable replica nodes, as the paths of various nodes which lie along the search path can be 

mapped to determine which chosen replicas will reduce data transfer time between nodes. 

Even in the absence of replication, nodes which lie along the search path for a particular 

data-key can cache the search information locally. Subsequent queries for that key can then 

be intercepted by the node, improving query response time, but with the potential for 

querying clients to receive query responses which may contain inconsistent or out-of-date 

information. As DHT networks traditionally store immutable data, the issue of outdated 

information is not a concern. However, if a DHT-based storage network is to incorporate 

mutable data storage capability, then it must be modified to provide this capability. As 

envisioned by Brewer [10], soft-state data (or soft-state registration) provides some of the 

capability for dynamically changing data storage. A node which stores a copy of a data item 

in the soft state adds a timed condition to the item, which is deleted upon expiration of the 

timer, unless the original owner of the data periodically sends a refresh signal to the storing 
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node. This signal “re-registers” the data, resetting the timer and informing the storing node 

of any changes made by the data owner to the item. In this fashion, the data-storing node 

can still make the data available to other clients without requiring continuous 

communication with the data-owner, but will eventually remove the stale data item in the 

event of the loss of the original owner. In addition, the periodic updates ensure that the 

stored data are kept up-to-date within the bounds of the refresh interval. Even when the 

data-storing and data-owning nodes may become inconsistent between refreshes (e.g. if the 

owner changes the original data item, while another client is reading the soft-state copy), 

this inconsistency is eventually resolved with the refresh. This technique is used in 

Chunkcast [16], a Content Distribution Network (CDN) built on top of a distributed hash 

table. Chunkcast is described in more detail in the following section. 

The assignment and searching of data-keys in the Chord network are performed simply 

by virtue of the hashing function, and the overlay contains no information about the 

underlying network, with node-keys being assigned without regard for location suitability. 

Therefore, a client node may be searching for a data-key which is stored on a node very 

close to the client, but the search may still traverse many other network-distant nodes, 

thereby increasing search time. As stated above, soft-state caching of the data-key at 

intermediate-hop nodes may reduce such search times, but at the expense of the client 

retrieving out-of-date data, particularly if the values referenced by the data-key are updated 

frequently. Thus in the absence of caching, all data-key searches are routed to the single 

hosting-node, which may overload it if the requested data-key is extremely popular and/or 

if the hosting node is connected to the network by a low-bandwidth link. Consequently, to 

allow the DHT to be used as a hosting medium for higher-demand storage networks, such 
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as for hosting large volumes of data with many widely distributed clients, improvements 

have been made, by building upon the base DHT and by adding new search, storage and 

caching functionality. Some of these techniques are described in the following section. 

2.3  ChunkCast 

One of the storage systems developed out of structured P2P networks was ChunkCast 

[16], intended as a decentralized storage and search medium for hosting frequently accessed 

immutable data items, such as large multimedia files. Each item to be published is 

referenced in the Content Distribution Network or CDN, by a tuple {o, n, l, a}, where o is 

the Object Identifier (OID); n is the network address of the hosting node; l refers to the 

network location (such as a co-ordinate system of the hosting node provided by Vivaldi 

[23], or the distributed binning algorithm of Ratnasamy et al. [74]); a is a bit array 

representing the object data divided into equally sized chunks. In ChunkCast, the DHT 

data-key is used to represent the OID. Accordingly, a provider may only possess a subset of 

all the chunks in a given object, while the bit array reflects which of these chunks it can 

provide. An illustration of the publish/query operations of ChunkCast is shown in Figure 2, 

of the tree structure created for an object (OID = 7) in ChunkCast. Using the underlying 

DHT, each object host of Nodes 2, 3 and 5 sends a publication message towards the OID-

root, which resides on the node whose DHT-generated Node-ID (NID) is bit-wise closest to 

the OID. In addition to the meta-data describing the actual stored data on the publishing 

node, the publish and query messages also contain network locality information for each 

node n (indicated by loc(n)), provided by a location service such as Vivaldi. As the message 

is routed via the DHT from node to node on its way to the root, the intermediate nodes 

cache this publish information as well. Since subsequent queries for this OID (such as the 
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one from Node 4) are routed in the same fashion towards the root, they can be intercepted 

and replied to by an intermediate node (in this case, Node 3), thus improving query 

response times. 

 

Figure 2. ChunkCast publish and query example. 

Although soft-state registration is used in the caching of the object metadata, the design 

of ChunkCast is oriented towards static data objects such as video files. Soft-state 

registration, while ensuring eventual consistency between the data-storing nodes and the 

metadata-caching nodes, is not used to convey any changes in the actual content or values 

of the data itself, merely its availability. Therefore, ChunkCast assumes that once defined, 

each OID-represented object is immutable and will not be subsequently modified. 

Consequently, publish-messages are sent from all data-storing nodes in a unidirectional 

fashion, propagating solely towards the root. Therefore, even if multiple data-storing nodes 
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publish their availability of the same data item, the root node does not have to deal with 

inconsistent publication information about the data-item, as the immutability condition 

precludes this scenario. As a result, only the OID-root would contain the most recent 

version of the object structure. Unfortunately, this limitation forces all search queries to be 

bottlenecked at the OID-root and prohibits the modification of existing published objects. 

Given that the first stage of our research focused on developing a CDN which could 

serve dynamically-changing application installations to virtual clusters, incorporation of the 

ChunkCast architecture requires modification to allow for mutable data items. This is 

primarily realized via the addition of bi-directional publication mechanisms, described 

more fully in Chapter 3. In addition to the restriction of data immutability, each ChunkCast 

query is limited to queries for single OID at a time. To provide range query capabilities, the 

ChunkCast network was additionally augmented by the addition of Prefix Hash Trees 

(PHTs). 

2.4  Prefix Hash Trees 

 A Prefix Hash Tree, or PHT, is a data structure built on top of a DHT, arranged in the 

form of a retrieval tree, or trie [72]. In a PHT, a data attribute (e.g. OS version) is indexed 

by a binary string of fixed length. Each node is assigned a prefix, which indicates its 

position in the PHT-trie. To function within the underlying DHT, each attribute prefix is 

treated as a key to be searched and thus has an equivalent DHT-key representation as well. 

Each non-leaf node in a binary PHT has exactly two children. Only the leaf nodes in the 

PHT-trie store the indexed data, or keys, each leaf holding a certain number of keys. 

However; if a leaf is tasked to store more keys than its store capacity, it must perform a 

split and become a branch node. 
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Every leaf node thus maintains a set of traversal links, which enable a search to traverse 

the tree within a chosen prefix range. An example of a basic PHT trie is shown in Figure 3, 

with a range query illustrated. In essence, a range query allows a querying client to search 

for a full range of data values, as compared to just a single data-key (such as in a DHT, like 

Chord). For example, while a Chord query would only be able to cover the query “Is the 

installation package for application version X present?”, a PHT-based range query could be 

formulated to answer the query “find me all versions of the application installation package 

which fall between versions X1 and X2.” However, while the PHT provides the required 

range-query abilities, it does not account for any extended attributes possessed by packaged 

applications (such as compiled options), known as application-specific packages. For 

example, two ray-tracing applications with the same version number could have been built 

with different compilation options specifying different features, such as parallelization or 

debugging support. Therefore, PVC-DS uses an enhanced two-stage query mechanism to 

better adapt the system to cluster creation scenarios, where package choice and deployment 

impact the functionality of the deployed VMs. In this manner, the PHT structure is used to 

augment a modified ChunkCast overlay to provide support for mutable objects, extended 

object attributes and range-query capability. Further modifications are made to the metadata 

structure describing both VM-image and associated applications to suit the range-query 

functions of the PHT for use in deploying virtual clusters. The details of this adapted range-

query mechanism are provided under Searching in Section 3.5.2. 
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Figure 3. Prefix Hash Tree range query example. 

2.5  Mutable Replicated Data 

While the adaptations within PVC-DS enhance its capability as a virtual cluster 

deployment framework, it remains a relatively specialized overlay. Being a purpose-driven 

design, it provides a specific means to an end—namely, rapid search and dissemination of 

virtual cluster data—rather than the more general-purpose role of storing information for 

use in computational clusters. The metadata structure and format within PVC-DS are 

oriented around VM-image and application data, whereas general purpose computational 

jobs require a more flexible representation to suit their varied needs (e.g. fluid simulation or 

statistical analysis data). Moreover, the rather specific requirements of PVC-DS allow it to 

follow a more relaxed consistency role; if the metadata describing a newly created 

application package has not fully propagated through the overlay due to publishing delays, 

it does not invalidate searches conducted during this period. The lack of the updated 

package description in the search results may simply result in a delay in the deployment of 

dependent virtual cluster installations, as the deploying client waits for the package to 
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become available. Given that the assembly of a virtual cluster (both VM-images and 

applications) is a slow process compared to the time taken for the publishing metadata to 

propagate throughout PVC-DS, the time-bounds and consistency requirements of the 

publishing and querying are not particularly stringent. 

In contrast, within the context of a fluid simulation or similar distributed computation, 

long inconsistency periods or delays would adversely affect the computation time, or even 

the correctness of the results. In virtual cluster deployment, the transfer of VM-image and 

package information may take minutes to complete, while the data items being both read 

and written to in the course of a fluid simulation may be accessed by multiple processes in 

rapid succession within periods of only seconds or even fractions of a second. Clearly, a 

more stringent consistency model is required to facilitate these kinds of computations. 

Consequently, while PVC-DS provides a useful search capability for established data items, 

additional functionality is necessary to maintain more strict bounds on mutual consistency. 

Such functionality is incorporated in the second part of our research. In addition, the 

consistency framework is designed to accommodate the more generalized data structures 

and primitives required for general-purpose computation. Before delving into the 

mechanisms we have developed, we will briefly cover some of the core aspects of data 

consistency, followed by an examination of the current techniques used to ensure 

consistency in replicated data. 

For the purposes of our research, the operations requested by clients attempting to 

access shared resources can be described using database terminology as a sequence of 

transactions acting to modify data. In database parlance, data is considered a set of items 

which support read or write operations, while a transaction is a program or process which 
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applies either read, write or read/write operations to the data items, which transform the 

data from one state to another. For a data item, a state corresponds to a particular value 

assigned to it. For example, a transaction T1 could apply a write operation to integer data 

items d1 and d2, which assigns a value of 5 to item d1 and a value of 10 to item d2. In this 

example, d1 and d2 would constitute the write-set of T1 [7]. Similarly, if transaction T2 

accessed d1 without modifying it, then d1 would be the read-set of T2. Although this 

terminology originated in the database sphere, it is applicable to general data storage and 

manipulation contexts as well. 

2.6 Single-copy Serializability 

As mentioned in Section 1.4, mutual consistency describes the requirement that 

multiple transactions that access the same data must agree on the “current value” of the data 

item [24]. While there are many models for consistency [60], for the purposes of this 

research we will focus on a strict form of consistency assurance known as single-copy 

serializability (1CS) [8] [24]. A set of a multiple interleaved transactions on a replicated 

database is said to conform to 1CS requirements, if they result in equivalence of the same 

set of transactions executing serially (i.e., one at a time) on a single non-replicated copy of 

the database in the order of their arrival times. In the absence of replicas, there are no 

synchronization issues to deal with in the single-copy scenario and the arrival times of 

transactions dictate their execution order. Furthermore, no more than one transaction is 

attempting to access the database at any point in time, so mutual consistency is guaranteed. 

This equivalency can be expressed by the following two requirements or Conditions: 

1. Operations against replicated data items are ordered as if they were acting on single 

un-replicated items. 
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2. Parallel interleaved transactional operations acting on shared data items produce the 

same final item state as the same operations applied in a serial fashion. 

Let us examine these two conditions separately. For a moment, we will assume that 

Condition 2 is satisfied and focus instead on the requirements for Condition 1. A trivial 

approach to fulfilling this requirement would be to designate a single node hosting one copy 

of the data to be a master and force any clients attempting to access the data to only use this 

master node. As all requests are channeled through this single node, they can be ordered 

according to arrival time, forcing a serial order and fulfilling Condition 1. However, this 

forces all inbound read/write requests to be funneled through that single node, which in the 

case of high request rates may become overloaded. Also, a failure of this node would result 

in the data becoming unavailable, unless some form of failure-recovery algorithm was 

incorporated into the system. At the other end of the spectrum, we can allow any replica 

node which is hosting the data item to answer read or write requests. However, allowing 

multiple nodes to process simultaneous writes would very quickly result in inconsistencies 

between replicated copies. While these inconsistencies could potentially be resolved, in the 

face of asynchronous (and potentially unreliable) communications between nodes and no 

global clock to determine order of arrival of the transactions at each node, determining the 

order of write operations becomes an extremely difficult problem to solve. 

One popular solution to Condition 1 is via the use of a consensus algorithm such as 

Paxos [50], whereby each write attempt is preceded by all the replica-hosting nodes 

querying each other to: 1) determine which node should be the designated master for the 

duration of the request and once chosen, or 2) decide what the new value of the accessed 

data item should be. Indeed, several DHT-based data storage implementations utilize this 
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technique [5] [40] [61]. While this does provide the necessary fault-tolerance required for 

the single-master architecture to operate in a fault-tolerant manner it comes with a high 

overhead cost, as a large number of broadcast operations between replica nodes are required 

before a write is successfully completed. Given that such lengthy and expensive operations 

would adversely affect the performance of large distributed computations, this approach 

would be unsuitable for more computationally time-sensitive or demanding problems. Thus, 

it would be preferable to avoid the expensive overhead of a consensus algorithm, while still 

incorporating some form of fault-tolerance in the event of master-replica failure. Our 

research proposes one such alternative approach to this problem, the particular details of 

which are discussed in Chapter 4. 

Now if we assume that Condition 1 is satisfied instead, we are left with the requirement 

of serializing data access to a single object. Traditionally, this problem has been handled in 

shared-data systems by the use of locking [6], to ensure mutually exclusive access for each 

transaction. Using locking, a special flag is associated with each shared data item, which a 

requesting transaction can set to indicate that it is attempting to modify the item. Any other 

transactions attempting to access the data item must wait until the initial transaction has 

completed its task and unsets the flag, indicating that the data item is safely available for 

access. In this manner, the flag acts as a synchronization mechanism, allowing the 

transactions to access the data in a serial manner and enforcing Condition 2. Note that if 

multiple transactions are attempting to read from a shared item, synchronization is not 

necessary as the item state remains unchanged throughout the execution of the transactions; 

synchronization is only necessary if one or more concurrent transactions are attempting to 

write to the same data item. 
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2.7 Lock-free Transactions 

While traditional locking mechanisms have been well-established as a method of 

achieving synchronization among multiple transactions, they do exhibit several significant 

drawbacks. Herlihy et al. [37] list some of the major issues facing conventional algorithms 

which implement mutual exclusion via locking: 

 Priority inversion: This occurs when a low-priority process acquires a lock, but is 

then pre-empted by a high-priority process which requires access to the locked data. 

For example, a low priority user-level process A acquires a lock on a shared file f. 

Subsequently, a high priority kernel-level process B is activated, which preempts 

process A. Since process B requires access to f, which is still locked by the now-

preempted process A, A’s preemption by B effectively prevents it from releasing the 

lock on f. As a result, neither process can make any progress. 

 Convoying: If a process holding a lock for a data-object crashes or is suddenly 

halted, it may cause to stall multiple other processes also waiting to acquire the 

same object. For example, consider processes X1, X2 and X3, all requiring write-

access to a file. As process X1 runs first, it acquires a lock on the file. However, due 

to a run-time logic error in X1, it crashes as soon as it has acquired the lock. Once X1 

has crashed, the lock it acquired on the file is never released, which prevents both X2 

and X3 from making progress. 

 Deadlock: This occurs when two different processes both require the same set of 

data-objects in order to proceed, but each process attempts to acquire the objects in 

a different order. For example, if processes A and B both require access to objects d1 

and d2 in order to complete, but A acquires object d1 at the same time that B acquires 
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object d2, then neither process can proceed, as A is now waiting for d2, while B is 

similarly waiting on d1. 

Examination of these issues reveals a commonality among them: a failure of the 

concurrent processes to “make progress,” brought about by the requirements of maintaining 

consistency. This progress property, also referred to as liveness [49], can be roughly defined 

as “something good eventually happens,” compared to the safety requirements of 

consistency which state in similar terms that “nothing bad happens” [43]. Put another way, 

given a number of concurrently executing processes accessing one or more shared data 

items, the concurrency protocol controlling access to the data items exhibits the liveness 

property if at any point in the execution, at least one of the processes in the system is 

making progress towards completion. Similarly, the safety property states that at no time 

during execution will any of the processes encounter any inconsistent data items. 

Examination of the three aforementioned progress issues demonstrates that possession of 

the liveness property would in each case preclude them from occurring. For example, if the 

liveness property existed within the deadlock scenario, then either process A or B would be 

able to complete and release its lock on the shared data item, allowing the other process to 

complete successfully. 

Therefore the locking protocols, in their enforcement of safety, run the risk of violating 

the liveness property which leads to non-progress conditions. Addressing these problems is 

no easy task [20], especially when the liveness requirements are combined with the 

conditions of distributed and replicated data. The solutions may introduce additional 

complexity to the parallel code, which makes it more difficult to troubleshoot. This form of 

concurrency control via locking can be considered pessimistic, i.e., that a process assumes 
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that it cannot proceed unless it has obtained access to the required objects. Pessimistic 

control also becomes a performance hindrance when the number of transactions attempting 

to access the same data becomes very high [86]. It would be preferable for a distributed 

database or data storage system to implement some form of concurrency control which 

incorporates intrinsic liveness properties and so does not suffer from these issues. One such 

form of concurrency has been developed by Herlihy as an alternative, in the form of lock-

free transactional memory [37]. While this technique was initially developed for uses in the 

hardware environment, non-blocking software implementations of transactional memory 

were soon developed as well [86]. Herlihy and Fraser later independently expanded the 

concept of Software Transactional Memory (STM) to include dynamic data structures [33] 

[39]. 

These various transactional implementations can be placed into several categories [33], 

each of which defines what liveness guarantees are made by the implementations that they 

encompass. In order of increasing liveness guarantees, these categories are as follows: 

 Obstruction-freedom: If a number of processes or threads are executed in parallel, 

any single thread is guaranteed to make progress, provided that it does not compete 

(or contend) with any other threads for a shared data item. This liveness condition 

does not prevent the possibility of livelock, where two threads will repeatedly abort 

each other in their attempts to gain control of a contended resource. Therefore, 

obstruction-free implementations, such as Herlihy’s Dynamic STM (DSTM) [39] 

require an external contention manager to deal with livelock occurrences. 

 Lock-freedom: Lock-freedom includes the same guarantees as obstruction-freedom, 

but also adds the condition that a collection of parallel processing threads must 
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make progress as a whole, even if two or more of the threads are in contention with 

each other for shared resources. Implementation of a system guaranteeing lock-

freedom usually entails contending processes “helping” each other to complete 

execution, in the hope that once the “helped” thread has completed and released its 

resources, other contending threads will be able to resume progress. As a result, the 

livelock condition is also precluded. Fraser’s Object-based STM (OSTM) 

architecture [33] is an example of a lock-free transactional implementation. 

 Wait-freedom: The most difficult of all conditions to meet, wait-freedom 

incorporates all the progress guarantees of lock-freedom, with the added condition 

that every thread in the system must make progress, even in the face of contention 

for resources. In other words, no process or thread is the system will be starved for 

resources during any stage of its execution. This is the most difficult of all the 

progress guarantees to achieve without major impacts in performance. However, 

recent work by Kogan and Petrank has resulted in efficient implementations of wait-

free queues [45]. 

In contrast to locking protocols, the transactional non-blocking approach is considered 

to be optimistic, where transactions always execute as if they are operating completely 

isolated from others. Under such an assumption, a transaction will always obtain access to 

the required shared data, regardless of which other processes are also accessing the same 

data. Note that since every transaction is guaranteed data access they cannot be blocked 

from progressing, thus fulfilling the non-blocking liveness property. For each transaction, a 

record is kept of the operations being performed on the shared data object, much like the 

transactional log of a database [36]. In the event of two transactions simultaneously 
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attempting to write into each other’s read or write-sets (thus encountering a contention 

condition), either transaction can be “rolled back” to reverse any of its effects on the shared 

data. To facilitate this capability, transactions as described by Herlihy make use of atomic 

instructions [36]. As the name suggests, atomic instructions are designed so that they will 

either complete without interruption, or will be cancelled without affecting the data they 

were trying to manipulate. Implementations of these instructions include Test-and-Set and 

Compare-and-Swap [38]. When a transaction uses Test-and-Set, a value is written to a data 

item and its original value is returned to the transaction in a single uninterruptable 

operation. Similarly a transaction using Compare-and-Swap will supply an item value to 

compare against the existing data item and if the values of the two items match, swaps the 

original item value with a new value. Using atomic instructions, transactions are designed 

so that when they are initiated, only one of two outcomes is possible: 

 The operation completes successfully, or commits. Any temporary updates to the 

data during the transaction are made permanent. 

 The transaction fails, or aborts. Any temporary changes made to the data are 

discarded, leaving the data unchanged. 

Let us examine the method by which these transactions are designed to make use of the 

atomic instructions in order to facilitate both the safety and liveness properties. For 

example, the implementation of Shavit & Touitou’s software transactional memory [86] in 

Figure 4 illustrates the design and operation of the data structures. 
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Figure 4. Diagram of STM structures. 

In this lock-free implementation, the shared data items are shown in the upper part 

of Figure 4, while the transactions accessing the data are in the lower part of the diagram. 

Each transaction attempts to acquire one or more data items for processing, indicated by the 

arrows. If Transaction 1 acquires a data item for the purpose of updating it (i.e., write 

instead of read), it atomically copies the original value of the item to a local internal list and 

creates the acquisition pointer to itself. Once Transaction 1 has completed acquiring all the 

data items required, it updates the items, then atomically releases ownership of each item. 

Upon release of all ownerships, Transaction 1 has effectively committed successfully. In 

the event that one or more data items that Transaction 1 is acquiring have already been 

acquired by a contending transaction (say, Transaction 2), then Transaction 1 is forced to 

abort. It will also atomically release ownership of any items which it has managed to 

acquire up to that point, marking each of the contending data items with a flag and 
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instructing any other transactions not to attempt to acquire the item. In this manner, 

Transaction 1 “helps” the contending Transaction 2 by effectively reserving the data item 

for it. Upon reading the reserved status of the item, any other contending transactions will 

then abort and release their own acquired data items, even including items which are 

required by Transaction 2 as well, but which were not already flagged by Transaction 1. 

Those contending data items will also be summarily flagged by their respective aborted 

transactions as reserved for Transaction 2. Thus, all the contending transactions 

cooperatively assist Transaction 2 in completing which eventually serves their own 

interests, since the shared resources become available when Transaction 2 has completed 

execution. 

If contending transactions do not attempt to assist each other, a contention manager 

[83] is needed to prevent livelock situations, as the absence of transaction cooperation could 

result in contending transactions repeatedly aborting each other in an attempt to obtain each 

other’s resources. For example, consider the deadlock scenario examined earlier, but in the 

context of transactional execution instead. Two transactions A and B both require write 

access to items d1 and d2. Transaction A attempts to acquire d1 first while Transaction B 

similarly acquires d2. A then attempts to acquire d2, but observes that B has acquired it 

already. A therefore signals B to abort, resulting in item d2 being freed. Likewise, B has 

detected that A has acquired d1 and aborts it. However, both transactions immediately 

attempt to acquire items d1 and d2 again and the process repeats endlessly. 

To prevent this scenario, the contention manager would force either of the two 

transactions to wait a random period of time before attempting to run again, giving the other 

transaction time to finish. Alternately the manager could assign a higher priority to one 
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transaction and impose a rule that a lower-priority transaction cannot abort one which has a 

higher priority. The addition of the contention manager thereby removes the requirement 

that transactions need to cooperate with each other, thereby simplifying the contention 

decision-making process, but at the expense of some additional functionality being required 

by the architecture. Implementing the contention management function brings about an 

additional advantage, since a manager may be privy to scheduling and resource information 

which cannot be easily obtained by an individual transaction. This allows for more 

intelligent and better-informed decisions as to which transactions should be aborted and 

which should be allowed to complete, i.e., establishing priority of transactions. 

Furthermore, if the function of the contention manager is made modular, then multiple 

strategies for contention management can be “plugged in” to the manager to provide 

optimal contention management, depending on the types of transactions being encountered. 

This technique has been employed in the Dynamic STM (DSTM) obstruction-free 

architecture developed by Herlihy [39], the Distributed STM or DiSTM architecture of 

Kostelidis et al. [46] and by the closely related Adaptive STM architecture created by 

Marathe et al. [55]. Further analysis and testing of various contention managers interfacing 

with the DSTM infrastructure was also performed by Scherer et al. [83].  

These transactional implementations are considered eager-acquire models, where each 

transaction attempts to obtain exclusive access to the shared data-items very early on, in the 

transaction’s processing flow. Using eager-acquire, any contention issues that a transaction 

may have with competing transactions are detected and aborted early in the transaction’s 

execution lifetime. In contrast, lazy-acquire transactional mechanisms are designed to delay 

concurrency resolution between conflicting transactions to a much later stage in the 
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transaction’s executions, referred to as the commit phase. Implementations such the 

versioned-boxes approach by Cachapo et al. [13] and Fernandes et al. [27] follow this 

alternative approach and will be examined in the following section. 

2.8 Replicated Transactional Systems 

Although the aforementioned implementations solve the various issues associated with 

concurrency locking on a single computer, the scenario of running transactions in parallel 

on multiple computers poses additional challenges and opportunities. Both the eager and 

lazy acquisition approaches have been used within various distributed systems; however, as 

our research is in the area of replicated data items, we will focus on the prior work within 

this sphere and thus deal only with implementations which demonstrate specific advantages 

in replicated-data environments. A replicated transactional system can be divided into two 

main areas: 

1. The previously described transactional system, including the data structure design 

used internally within a single computer, to ensure consistency among multiple 

transactions. 

2. A cache-coherence system [95] to maintain consistency among multiple copies of 

data items hosted on separate computers. 

These two components are direct analogues to the challenges of single-copy consistency, 

with the transactional system providing the solution to multiple interleaved processes 

accessing a single copy of a shared data item (Condition 2 of the single-copy serializability 

or 1CS requirements.) In comparison, the cache-coherence system ensures that multiple 

replicated copies of a data item act as single copy, even if the copies are distributed among 

several widely-spaced computers on a network (Condition 1 of 1CS requirements). 
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Cache-coherency can be broken down further into two major data-processing 

components; namely access (or read) operations and update (or write) operations. As read 

operations do not by definition change the data item being read, any number of transactions 

which contain only read operations can be overlapped safely without causing contention. 

Thus, in the absence of write operations a cache-coherence algorithm merely has to account 

for any new data items being added, as the data is effectively immutable. The challenge 

therefore lies in the management of write operations to the replicated data. Consider the 

following scenario shown in Figure 5. 

 

Figure 5. Data replication and transaction processing example. 

In this example, data items d1, d2 and d3 are fully replicated in nodes A, B, C and D. 

Transactions T1, T2 and T3 are attempting to perform either read or write operations, as 

indicated in italics within their descriptions. The entry “loc:” refers to the node on which a 

transaction is executing. We can determine that transactions T1 and T2 are in contention 
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with each other, as T1 is attempting to update value d2 while T2 is trying read from it. 

Similarly, T1 is in contention with T3, as T3 is updating d1 while T1 is attempting to read 

from it. T2 and T3 do not contend, as they have no overlapping write operations. 

In order to resolve this contention, we must consider the order of operations, i.e., which 

transaction started first. If we assume that all the nodes in the system have the same 

synchronized clocks, then we can simply compare the timestamp of each transaction to 

determine which started first. Even with a non-zero communication delay between nodes, 

time-stamping each transaction using a synchronized global clock ensures that the 

transactions are ordered correctly. For example, if T1 arrived before T2, then T2 would 

have to wait until T1 updated d2’s value before reading the updated value. Conversely, if 

T2 arrived before T1, T1 would have to wait until T2 finished reading the old value of d2 

before updating it. As transaction T1 originated on node A, the time-stamped transaction 

would be communicated to the other nodes, where it would be compared to the timestamps 

of any existing transactions. In the case of node B transaction, T1 would be compared to T2, 

while on node C transaction T1 would be compared to the locally originating transaction 

T3. 

However, ensuring that all the nodes in a distributed system have synchronized clocks is 

not an easy condition to enforce, especially if the nodes are widely spaced on the network. 

Even assuming that some form of clock synchronization existed, the tolerance required for 

the relatively short duration of transactional read/write operations [21] [66] [80] would 

entail that the global clocks be synchronized very frequently, adding a large volume of 

traffic overhead. Any failure in synchronization communications between nodes could very 

rapidly create enough time difference between nodes to cause incorrect transaction 
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processing results. Another troublesome issue which may arise in a distributed transactional 

architecture is the possibility of multiple messages sent from one node to another arriving 

out of order, or even failing to arrive at all. Out-of-order synchronization messages could 

cause the clocks on nodes to rapidly fall out of sync with each other. A communications 

infrastructure which embodies these undesirable characteristics is referred to as an 

asynchronous system [21], codified as having the following properties: 

 There is no globally synchronized clock. Each node may have its own local clock, 

but they are not synchronized with the clocks on other nodes in the system. 

 The local clocks on each node may run at different rates, i.e., some clocks may be 

faster while others are slower. 

 Messages sent within the system may be delivered out-of-order, may be arbitrarily 

delayed, or may not arrive at their intended destination at all (infinite delay.) 

While a fully synchronous system would be ideal for a distributed transactional system, 

a more realistic assumption would be that the average communications infrastructures 

embody the characteristics listed above, thus categorizing them as asynchronous networks. 

Given that there is no global clock with which to compare the arrival times of contending 

transactions, how do we maintain a correct order of operations? 

If we assume that any node in a replicated system may process multiple update 

transactions, then the system would require a communications algorithm which would 

ensure that any messages broadcast from each of the nodes would be ordered correctly. 

Algorithms capable of broadcasting in this manner are referred to as atomic broadcast or 

total order broadcast [25], with the following properties: 
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 Validity: If a node correctly broadcasts a message, then all the recipients correctly 

receive the message. 

 Uniform Agreement: If a node receives a message, then all other intended recipients 

will eventually receive the message. 

 Uniform Integrity: Any broadcast message is received by each intended recipient at 

most once, and only if it was previously broadcast. 

 Uniform Total Order: If a recipient node receives some message A before message 

B, then every other recipient will receive B only after message A has been received. 

Embodying these properties, atomic broadcast systems such as Appia [57] and the 

Group Communication System [25] can be used to build replicated transactional systems. 

Therefore, each node atomically broadcasts any updates to its corresponding replicas. The 

underlying atomic broadcast ensures that any conflicting updates to a data item can be 

resolved using the order of operations, as the total order broadcast precludes the possibility 

of any updates being received out-of-order by other nodes. Using the topology displayed in 

Figure 5, we assume the creation of two new transactions: 

 T4 = {loc(A), write(d1, d2)} 

 T5 = {loc(B), write(d1,d3)} 

As their descriptions imply, Transaction T4 is located at node A and updates items d1 and 

d2. Similarly, T5 is located at node B and updates items d1 and d3. Assume that T4 arrives 

at node A first and the corresponding update is broadcast atomically. Similarly, transaction 

T5 arrives at node B next and its update is processed. Even if the update messages from A 

and B arrive at nodes C and D out of order, the atomic broadcast algorithm ensures that they 

are re-ordered correctly, so that C and D both see the updates in the correct order i.e., from 
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T4 and then T5. Total order broadcast also ensures that node B will also process transaction 

T4 before T5, even if the communications delay between A and B causes the T4 update 

from A to arrive later than the local processing of T5. In this case, the local transactional 

processing system at node B would, after determining the correct order of operations, abort 

T5 if it had already started and let T4 run to completion before running T5. 

While atomic broadcasts ensure update consistency between data replicas, the process 

of ensuring total order negatively affects performance within the system, as each node must 

wait for verification of the correct message-delivery order before proceeding. To help 

alleviate this issue, the concept of optimistic atomic broadcast has been developed, using 

both locking [41] [42] and lock-free implementations [67]. For the purposes of our 

research, we will not examine the locking implementations and focus instead on the lock-

free implementation, which has the potential to solve many of the mutual exclusion 

problems experienced in transactional processing. 

In lock-free implementations, the transactional processing systems on each node 

optimistically assume that update messages arrive in order; thus processing begins 

immediately, rather than waiting for confirmation of update order from the atomic 

broadcasting system. If the messages did indeed arrive in the correct order, then the 

transactions can commit immediately. Otherwise, the incorrectly ordered transactions are 

aborted and restarted. Therefore, the stages of transaction processing and update-ordering 

are effectively overlapped, thus decreasing the time taken for each update to complete and 

improving overall performance. In addition to their original work within this area, Palmieri 

et al. [67] subsequently added speculative execution with the goal of increasing this 

overlap, further improving performance.  
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However, there is a simpler method of ensuring update consistency, while still enjoying 

some of the advantages of replication. Referring to the example in Figure 5 again, if we 

restrict write operations to only node A, but allow read operations to occur at any of nodes 

in the group, then we can reduce the need for total order broadcast throughout the entire 

system. Using this method, node A would be designated the master node and nodes B, C 

and D would be designated as slave or replica nodes. Using this alternative arrangement 

and using the same previously described transactions T1, T2 and T3 from Figure 5, node A 

would process T1 locally, while node C would send the transaction T3 information to A to 

be processed directly, as it contains at least one write. However, node B would only need to 

notify the master A about its transaction T2, as it contains no write-operations. The 

transactions would be ordered simply by their arrival time at A, as it is the only node to 

process data updates. By restricting the updates to a single node (their master node), single-

copy serialization is enforced for contending transactions. Time stamping a transaction with 

the local clock at each replica node is rendered unnecessary, as the asynchronous 

communication model makes any local timestamps unreliable with respective to other 

nodes in the replica system. Consequently, only the local clock of A is required to order the 

transactions and maintain single-copy serialization. 

Thus, only the master node needs to ensure that the order of its broadcasted updates is 

the same at all replicas (one-to-many), as opposed to maintaining the order of updates from 

multiple sources (many-to-many) for conventional coherency enforcement under 

replication. The next step for maintaining correctness is to ensure that once A completes 

processing the write-transactions, each node correctly receives updated information. More 

importantly, any updates broadcast out from the master node must conform to the correct 
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order of operations. This step is roughly analogous to single atomic broadcast, whereby the 

master node must ensure that all the replicas have correctly received the update broadcast 

before sending any more updates. This basic requirement results in less complex ordering 

mechanisms, whereby the update ordering from the master node can be accomplished 

simply by having the master wait for confirmation from each of the replicas, before 

proceeding with the next update broadcast. Thus any replica nodes which have begun read 

operations to updated data but have not finished by the time they receive the corresponding 

update would need to abort and restart the transaction containing the contending read, 

giving the transaction the opportunity to read the updated data item. 

As our proposed research utilizes a replica-aware versioning mechanism to enforce 

transactional consistency (described in Section 4.3.2), we will take a closer look at the Java 

Versioned Software Transactional Memory (JVSTM) concurrency control system by 

Cachopo et al. [13] [27]. Each shared item in JVSTM keeps a versioned update history, 

which records any writes made to that shared item, assigning it with a version number. 

Transactional writes are stored in a linked-list, in the order that they were applied. Each 

new write is appended to the front (or head) of the list, so that a subsequent read to the data-

value can be performed with a single reference, i.e., without needing list traversal. To 

understand how concurrency control functions properly in JVSTM, let us examine each of 

the transaction types in detail: 

 Read-only transactions: A read transaction obtains the data value from the latest 

version in the update-list for the shared item. Subsequent updates to the data-item do 

not affect the read-transaction, as they append the new values to the list without 

affecting the list-entry that the read-transaction is using. Therefore a read-only 
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transaction acquires the most up-to-date value and is serialized instantaneously 

during its beginning phase and subsequently never becomes inconsistent. The read-

transaction can then safely commit at any time, as any transactions reading this data-

version are isolated from any subsequent changes. 

 Write-only transactions: As described, a write transaction simply adds the new data-

value to the version-list at the end of the transaction’s execution, during its commit-

phase. Once the new value has been added, the write-transaction has committed. 

Thus, like the read-transaction, the write-transaction essentially commits instantly 

and thus never becomes inconsistent. 

 Read/Write transactions: A read-write transactions is the only transaction type 

which does not serialize instantaneously, as its read-component acquires shared 

data-items at the beginning phase of the transaction and commits the writes at the 

end phase. During the execution of the transaction (i.e., after it has read a data-value 

but before it has committed), other transactions may apply updates to the same data-

value. In this case, when the read-write transaction is ready to commit, it must 

validate any open data-reads, by checking to see if its version number is still at the 

head of the linked-list of data-versions. If the transaction determines that a data-

value it is reading is still at the head of the list, then it can safely assume that no 

other updating transactions have updated the data value and its consistency state is 

thereby preserved. The transaction can then apply its writes and commit safely. On 

the other hand, if the transaction discovers that any data-items it is reading have 

been updated with new versions, then it must abort, as its read-state has become 

inconsistent. 
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In addition to the version-lists for each data-item, JVSTM also maintains a list of active 

transactions, which it uses to track which data-items each transaction has updated, along 

with which data-item versions are still being read by active transactions. Once it has been 

determined that a data-version has been superseded by a newer version and has no read-

transactions associated with it, the old data-version is deleted, saving storage space. 

JVSTM has also been extended for use with replicated architectures, via the addition of 

atomic broadcast mechanisms [68] [69], to ensure write-order consistency across replica 

nodes [21] [66]. In comparison, Manassiev et al. [53] used a modified version of the Paxos 

protocol [50] to enforce consensus among the distributed nodes, to enable a single node to 

perform transactional updates one at a time and so maintain serialization. Manassiev also 

proposed a centralized version of this mechanism, whereby all data-item writes are fixed at 

a single node and read-updates are distributed to replicas by a transaction scheduler. The 

read-transactions are distributed in a manner to minimize version conflicts, by sending 

read-only transactions with differing version requirements to different replicas. This 

concept of centralizing all writes to a single node removes the need for a node which 

executes update-transactions, to obtain permission from all other nodes before broadcasting 

the update, a potentially time-consuming process. This is because all the replica nodes in 

the system assume that only the master-node is authorized to update the shared data-items. 

Our replica management on transactional updates leads naturally to a similar fashion that 

updates are carried out at designated nodes (i.e., master copies of update data-sets 

determined by key-hashing) following DHT-based transaction routing. However, read 

transactions under our replica management are handled differently, with better performance 
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than achievable via the earlier centralized scheme [53], by avoiding the nodes with master 

copies of read data sets to schedule and distribute those read transactions. 

While our considered replica management provides a much simpler alternative to the 

relatively complex total order broadcast described a priori, there are still some inherent 

issues which must be addressed. First, as all write operations are centralized at the master-

node, that node will become overloaded if the number of write-transactions becomes very 

high. Additionally, the master-node introduces a single point of failure within the system, 

which would render the system unable to process updates in case of master node failure. 

The first issue can be partially alleviated by increasing the comparison granularity of 

contending transactions. As an illustrative example, consider a shared data-item D being 

simultaneously accessed by transactions T1 and T2. Let us now assume that D can be sub-

divided into five smaller sub-items, such that D = {d1, d2, d3, d4, d5}. If we examine T1 and 

find that it is attempting to write to sub-items d1 and d3, while T2 is attempting to write to d4 

and d5, then we can declare that T1 and T2 are not in contention with each other. This is 

possible, since even if T1 and T2 may be considered in contention over item D, neither 

transaction is attempting to modify the sub-items of the other. Depending on the level of 

granularity chosen, transactions can be grouped into contention classes, where a group of 

transactions in the same class is contending with a common group of specific data items 

[42]. For this reason, our proposed research adheres to applying versioning to low-level 

data primitives instead of entire data pages, to maximize data granularity and avoid 

contention situations wherever possible. As for the second issue of node loss, failure risk of 

a single master node and/or scheduler can be mitigated by replicating the data on the master 

to one or more backup nodes and using some form of failure-detection and recovery. This 
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will initiate a switch-over of master operation to a backup node in the event of master 

failure. Manassiev et al. mentioned this capability in their work [53], but did not elaborate 

on how the failure mechanism was to be implemented. 

To summarize, our research utilizes a software transactional approach, first developed 

by Herlihy et al. [39] and Shavit et al. [86] to provide consistent access to shared data items. 

As this research has been designed as an integral component operating within our PVC-DS 

infrastructure, the transactional components have been specifically tailored to operate 

within a version of the DHT-based ChunkCast CDN [16]. Following the Chunkcast 

topology, the transactional components are designed to take advantage of the centralized 

topology, with the objective of minimizing complexity of write operation contention-

management, while maintaining the performance advantages of parallel read operations. As 

our design includes replication to improve both performance and reliability, we have 

avoided the additional complications of atomic broadcast mechanisms [41] [68] [69], 

electing instead to rely on both the read-isolation properties of versioning [13] and the 

centralized  write-control afforded by the PVC-DS topology, to maintain correct read and 

write ordering. Utilizing centralized contention management also opens the door for more 

advanced contention-control techniques in the future [39]. We use some of the design 

elements evident in Manassiev’s design [53] and explicitly add a fault-recovery mechanism 

to address master-node failure. The specific details of this system can be found in Chapter 

4, although we will first elaborate on the details behind the PVC-DS infrastructure in the 

following chapter. 



 

 Data Dissemination & Search: Peer-to-Peer Virtual Cluster Deployment System 3.

 

3.1 Motivation 

Advancements in virtual machine technology have changed the paradigm of modern 

high-performance computing or HPC. In place of homogenous fixed-hardware clusters, the 

advent of hypervisors such as Xen and VMware [4] [62] has allowed the creation of 

virtualized clusters (VCs). These clusters can be created, used and destroyed dynamically, 

allowing for greater flexibility and customization of HPC clusters and server farms. Groups 

of machines can be created specifically around a particular role, prebuilt with applications 

deployed on an instance-by-instance basis. However, one of the hurdles faced by this 

desirable dynamic cluster installation is the time-consuming process of locating, 

transferring and deploying the virtual machine (VM) images and application-specific 

packages needed to kick-start the virtual cluster nodes. In this project, a Peer-to-Peer 

Virtual Cluster Deployment System (PVC-DS) is proposed as a viable alternative to the 

traditional centralized VM-repository systems. PVC-DS is an overlay network designed to 

operate on top of typical DHT-based P2P networks, such as OpenDHT, Pastry, or Chord 

[77] [82] [89], taking advantage of the inherent fault-tolerant capabilities of DHT networks, 

while conferring new search and data dissemination features. Building upon the DHT-based 

ChunkCast [16] content distribution network and implementing prefix hash tables, PVC-DS 

provides both advanced publish, search and data deployment capabilities for VCs. 

3.2 VM Deployment Challenges 

Similar to the system outlined by Nishimura [63], PVC-DS takes advantage of the fact 

that disk space used by a VM can be divided into a bootable base image (termed VM-image 

in PVC-DS) and one or more associated application-specific packages (termed VM-
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packages). For example, a deployed VM which acts as a network address assignment and 

naming-service server, could consist of a base OS image (such as 64-bit CentOS 5.5) and 

the bind and dhcpd packages. For brevity, we use the term VM-data to collectively refer to 

both VM-images and VM-packages. As depicted in Figure 7, once a hosting hypervisor 

acquires all the VM-data (i.e., both the VM-image and the VM-packages), it can mount the 

VM-image, install the VM-packages, then boot the now fully-equipped VM. Given the 

multiplicity of available packages in an average OS distribution (e.g., a fully equipped 

CentOS installation may have more than 1000 separate packages), the task of efficiently 

publishing and querying the availability of such a large variety of VM-images and VM-

packages becomes a daunting task. This task is compounded in difficulty, when VM-data 

contributing nodes wish to update their existing published packages.  

Consider the scenario of a large and widespread developer group, which is performing 

distributed cross-platform testing of a large application using VMs. The developers would 

require the hosting CDN to respond rapidly to redeploy their applications, so that the 

various platform testing VMs can be quickly powered down, rebuilt with the updated 

applications, and powered back up for the next round of application tests. The PVC-DS 

developed in this research is intended to achieve efficient and scalable VM-data (sized in 

the order of gigabytes) distribution, thereby outperforming the conventional technique of 

sourcing by one single (or small group of) repository or repositories. 
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Figure 6. PVC-DS overall layout. 

As illustrated in Figure 6 above, in order to fulfill these needs, a PVC-DS consists 

of two major functions, namely: 

 A fully distributed publishing and querying structure for advertising and locating VM-

data. This structure, described more fully in Section 3.4, is a distributed architecture 

built on top of a DHT. 

 A sequence of components to process the results of a query, with scheduled download 

of the actual VM-data from the distributed data-hosting node(s) to the querying client.  
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The proposed PVC-DS architecture supports distributed publishing of VM information 

and simultaneous query processing to select favorable downloading sources. This facilitates 

speedy VM-data transfer from VM-data hosting nodes to VM-data requestors, which 

initiate CDN queries. Participating nodes also publish their VM-data hosting updates over 

the PVC-DS CDN accordingly, in support of future CDN queries. VM-data transfer is thus 

carried out simultaneously over concurrent paths, from multiple hosting nodes to a VM-

data requester. This system was chosen, based on path latency and bandwidth amounts 

which are measured periodically in the Internet, to take into consideration real-world traffic 

contention and service bandwidth available for hosting nodes. The operational details of 

publishing and querying are provided respectively in Sections 3.5.1 and 3.5.2., while 

Section 3.5.3 outlines the decision-making process for constructing the download queues. 

3.3 Data Representation 

 

Figure 7. PVC-DS VM-image/package metadata example. 

In PVC-DS, each VM-image is represented by a unique combination of OS type, OS 

version, and OS architecture. VM-packages are similarly represented, albeit with additional 

meta-information, to assist in search operations. This representation is termed the VM-

object. An example of the metadata fields for VM-images and VM-packages is shown in 
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Figure 7. The VM Object-Identifier (VMOID) is an assigned hash for representing the VM-

object within the ChunkCast DHT. For simplicity, the proposed evaluation simulator uses a 

randomly assigned 16-bit string for the VMOID, but a real-world implementation can use a 

hashing function, such as SHA-1 [28], to provide an adequate non-colliding key-space for 

the data items. The VM PHT-Identifier (VMPID), equivalent to an attribute prefix in a PHT, 

is a string created by Z-curve “interleaving” of the bit-string representation of the three OS 

attributes [59]. 

 

Figure 8. Z-curve linearization example. 

In this project, an example of Z-curve interleaving can be seen in Figure 8, illustrating 

eight different commonly-used OS types (Windows, RedHat, SuSE, Slackware, Fedora, 

Ubuntu, Debian, and Gentoo), six OS versions (versions 1-6), and five popular server 

processor architectures (x86, x86_64, PPC, SPARC, and Itanium). Given the three 

attributes, namely OS type, OS versions and machine architecture, a Z-curve interleaving 

representation is obtained by interleaving the bit strings which denote the three attribute 

values. If the O/S type “RedHat” is represented by the sequence “001,” the version number 
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“2” by “001” and the architecture “x86” by “000,” then  the interleaved sequence for these 

bit strings of “000000110” signifies a VM with “RedHat OS, Version 2, on x86 

architecture.” Similarly, the VM with “Gentoo Linux 2 for SPARC architecture” is 

represented by “100101111.” 

Each attribute in a VMPID is represented by a string of log(n) bits, where n is the range 

of an attribute. For attributes to be interleaved, their bit strings must be of the same length, 

as listed in Figure 8. The bit ranges which have no corresponding attribute values are 

represented by zeroes. Although these attributes do not necessarily lend themselves well to 

range queries (OS versions being the exception), they are ordered to provide as much 

benefit as possible for range queries. For example, the major Linux distributions are 

grouped together, as are the major Windows releases. 

The VM package fields are represented similarly, having both Description and Bit-

Array fields. The Package-Identifier denotes a particular package type, while the Package-

Group is used to assist in searching, indicating the type of application the package used. 

Such Package-Version and Package-Options allow a package to change its version and 

compiled options, while keeping the same Package-ID and Package-Group. Use of both 

VMOID and VMPID now allows the VM-object to be referenced in both the ChunkCast 

DHT and the PHT-trie. The Provider-address represents the Internet Protocol (IP) address 

of the node hosting the VM image, while the Chunk-Array is a bit array representation of 

the available chunks of the actual VM-image data. 

3.4 PVC-DS System Architecture 

PVC-DS is a 3-layer CDN, based on the ChunkCast [16] distribution scheme. As the 

VM packages are tied to a particular VMOID, they are similarly tagged with OID metadata. 
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Like ChunkCast, PVC-DS represents the VM image or package data as an array of bits, 

with each bit representing a fixed-size chunk of data. From observation of various installed 

packages, most applications average at least 1MB in size, so the implementation maps one 

bit to a 1MB chunk. For simplicity, the 1MB-to-1bit mapping is fixed across both VM-

images and packages. Alternate implementations may map each bit to smaller chunks, 

conferring greater granularity of the data representation, but at the cost of higher metadata 

overhead, since more bits are required to represent a VM image or package. A fully 

functional VM virtual disk would thus consist of an OID-identified VM-image (e.g. 

RHEL5, x86) and a number of associated VM-packages.  

As mentioned above, the metadata contains other important information, such as the 

network address, bandwidth and the co-ordinates of the node hosting the VM-data. This 

information is critical for making good download scheduling decisions. It is important to 

note that the extended attributes of an associated VM-package may change dynamically 

over time, as a hosting node may choose to upgrade or recompile a particular package. 

While these package changes do not alter its VMOID state, the metadata changes may 

affect subsequent search results. Packages which change in this manner are referred to as 

mutated and must be accounted for in the implementation of PVC-DS. Our evaluation in 

Section 3.6 thus considers dynamic mutating packages common in practice and compares 

the results with those under no mutating packages, as found in video streaming, whose 

video data remain unchanged. 

Like ChunkCast, PVC-DS can run on top of most DHTs (e.g. OpenDHT, Pastry or 

Chord [77] [82] [89]), without any modifications to the underlying DHT. In this project, the 

test system was built on top of a simulated Chord DHT. As a result, quality is dependent on 
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latency and bandwidth amounts of paths from a client to those VM-data hosting nodes, 

which are in turn determined by the contention degrees of concurrent queries, which share 

links of download paths. Thus downloading decisions utilize active probes to a set of 25 

VM-hosting nodes over the Internet, to gather bandwidth and latency measurements 

periodically. This gathered real latency and bandwidth amounts of download paths 

permitted system performance to be evaluated instrumentally. 

 

Figure 9. PVC-DS publishing diagram. 

As illustrated in Figure 9, PVC-DS involves three separate levels. Any node may 

contribute and publish VM-objects to the system, regardless of the level in which it 

participates. The lowest level contains client nodes, indicated by C. These nodes contribute 

VM-data, but do not participate in the DHT and thus do not index any published 

information. The nodes are assigned to a single DHT-participating parent (lowest layer), to 

which they periodically send publish messages containing a list of VM-data which they 

host. The second (intermediate layer) consists of nodes which participate in the DHT and 

are termed index nodes, indicated by I. These index nodes may have zero or more client 
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nodes as children and participate in one or more ChunkCast trees. The third (top) level 

comprises solely the OID-root nodes of ChunkCast trees, indicated by Ir. To facilitate range 

queries, a PHT trie overlay is mapped onto these top-level participating nodes. Note that for 

clarity, the ChunkCast publication trees are shown separated from each other. In practice, 

an indexing node may participate in multiple ChunkCast trees. However, a ChunkCast 

indexing node can only act as the OID-root for a single tree. Similarly, a ChunkCast OID-

root node may host multiple PHT nodes. The arrowheads in Figure 9 indicate the directions 

of publish-traffic, as will be explained in the following section. 

3.5 PVC-DS System Operation 

3.5.1 Publishing 

Client nodes perform publish operations at fixed 5-minute intervals. They simply send 

publish-messages directly to their respective parents, but require no publish-replies. Using a 

similar 5-minute publishing interval, index nodes construct a list of parent nodes to which  

publish-messages can be sent, based on the VMOIDs of the images in their local VM 

stores. The index node can then send out a unicast publish-message via the DHT to each 

receiving parent node, thereby propagating the VM-objects towards the DHT root for each 

particular VMOID. In this manner, a publish-tree is constructed for each VMOID, using the 

DHT as the vehicle for VM information to ascend the tree towards the VMOID root. Unlike 

ChunkCast, for each DHT publish-message, the receiving parent node sends a publish-reply 

message back to the sending child and the child updates its local VM store with the new 

VM information. While this causes an increase in publish traffic, the aggregate traffic 

volume is controllable via the publish update interval and has the effect of causing the 

contents of a publish tree to be replicated to all participating nodes. This enhancement can 
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allow any changes made to a VM-object (such as the addition of new package-types) to be 

propagated automatically to all nodes, effectively “cross-pollinating” VM-objects across the 

individual OID-trees within ChunkCast. This capability is particularly useful when a 

package undergoes several mutations within a short period of time, as these changes are 

propagated quickly to all the indexing nodes within the VMOID tree. This brings a 

particular performance advantage to PVC-DS over the static tree on which ChunkCast is 

based: since any indexing node in PVC-DS can answer a VMOID query directly for a client 

node, this reduces the amount of traffic being aggregated at a particular VMOID root, thus 

lowering the query response time. Moreover, unlike Chunkcast, our proposed PVC-DS is 

not limited to the storage of immutable-only data and can tolerate changes to the structure 

(e.g. by adding or removing attributes) of hosted VM-data and propagates this revised 

information to the rest of the OID tree in a relatively short period of time. 

It should be noted that all indexed metadata VM-objects are held in soft-state, whereby 

the failure of a publishing node to send a periodic update to its parent will result in any 

VM-objects from that child being purged after a timed interval. This ensures that any stale 

publication information from failed nodes will eventually be expunged from the system, but 

the occasional dropped publish packet will not result in immediate loss of VM-object 

publication information from an indexing node. Therefore data in PVC-DS is kept up to 

date within bounded intervals, but is still relatively tolerant to interruptions in network 

communications, thus improving the reliability of the system. 

3.5.2 Searching 

In PVC-DS, a node may search for either a single VM-object PHT Identifier (PHTID) or 

a range of PHTIDs, depending on the desired attributes. An example of an executed range 
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query is given in Figure 10. In the query, a node searches for all VM images which run a 64-

bit operating system. In this simplified case, the PHTID bit-pattern corresponding to the 

machine architecture is fixed, with the bit-pattern for the OS type being allowed to vary from 

000 to 111 and the OS version ranging from 000 to 011. Therefore each bit-pattern range is 

large enough to cover the entire range of attribute values. The three attributes are z-curve 

interleaved [59] to produce two 12-bit patterns representing the range of PHTIDs. This range 

information, along with any application-specific package requirements, constitutes a range 

query. In PVC-DS, the flexibility of the extended package attributes allows for a very large 

variety of search options. Each VM-package can be identified by its Package-Identifier or 

description and is classified into exactly one group. Therefore, search criteria can include 

descriptions and/or package groups. To facilitate these query extensions, the search function 

of the system operates in two stages, separated by the dotted line, as illustrated in Figure 10. 
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Figure 10. PVC-DS search process and range query format example. 

In the first stage, the requesting node interleaves the attributes into either a point or range 

query and performs a regular PHT-type query against the top layer of the system. If the node 

is a non-indexing client, the request is proxied through its parent, with the PHT-responses 

being sent directly back to the client. The requesting node receives the PHT-query responses, 

containing a list of ChunkCast Node Identifiers (NIDs) of VM-data-hosting nodes.  

In the second stage of the query, the querying client contacts each node indicated in the 

results from the PHT-query to request the query-specific VM-objects, as depicted by those 

below the dotted line. Indexing nodes simply send the requests to their respective OID-roots 

and collect the responses. As client nodes do not participate in the DHT, they proxy the DHT 

request to their respective parent, which performs the ChunkCast query on their behalf. Since 
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the queries proxied by the parent contain the network addresses of the client, the indexing 

nodes can reply directly to the client node, thereby bypassing the proxying parent on reply 

and thus improve the query response time. These second-stage responses are aggregated to 

form the full query-response and are sent to the downloading requestor. 

3.5.3 Downloading 

Once a requester has received the query results from the system, it constructs a series of 

parallel download queues, based on chunk availability of the hosting nodes and the latency 

and bandwidth values to those nodes (from the requestor). As VM-data can be very large, 

the querying requester performs a latency and bandwidth test to each of the prospective 

VM-data hosting nodes, to determine the priority of hosting-nodes in the download queues. 

To realize the download path determination properly with real-world Internet traffic 

contention taken into consideration, a set of live bandwidth metrics was created by actively 

probing 25 Internet-connected hosts, to obtain 200 bandwidth and latency measurements 

periodically. These real-time latency and bandwidth measures of download paths were 

gathered and their performance evaluated instrumentally, driving the inter-node latencies 

within the simulator. The download procedure described above thus proceeds as follows: 

1. For each VMOID, the querying node constructs a list of VM-image and VM-package 

chunks to download. 

2. Using the latency and bandwidth measurements, hosting nodes are chosen as 

download sources for VM-data chunks. 

3. A series of download-queues are created on the querying node for each VM-data host. 

Downloads are initiated in parallel to maximize performance. 
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4. Once completing VM-data downloading, the client node updates its local VM-object 

list with new VM-data information and also publishes its updated VM-data 

availability. 

3.6 Evaluation & Results of PVC-DS Simulations 

3.6.1 Simulator Configuration 

The PVC-DS was evaluated via an event-driven simulation written in Java, fed with 

real-time latency and bandwidth values, gathered by periodically probing representative 25 

VM-data hosting nodes. The initial network topology was generated with the Inet-3.0 

generator [93]. Each topology was generated with 4000 routers and a varying number of 

client nodes. Using a script from the ModelNet package [94], the weighted topology was 

converted to an intermediate XML input file, which was used to generate the final network 

input file for the simulator. The routing tables for each participating node were pre-

computed using the Djikstra Shortest-Path-First algorithm. The VM image and package 

sizes were approximated based on existing minimal VM images for VMWare [62] and Xen 

[4] images, as well as measurements of installed packages on active file-systems. Each 

instrumental simulation was run using the following inputs, which were fed to our 

simulation modules for instrumental evaluation, as depicted in Figure 11: 

 A pre-generated network topology and routing graph. 

 A list of path latency and bandwidth metrics, generated from real-world periodic probes 

from client nodes, to various widely spaced data-hosting machines across the Internet. 

Repeated bandwidth samples were taken from each node, in order to emulate varying 

network conditions possibly present during download sessions. 
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 A list of pre-generated VMs and VM-packages randomly assigned to nodes in the 

simulation. The combination of OS types, OS versions, and machine architectures 

resulted in 138 different OS types being made available, along with 32 different 

package types. 

 A pre-generated DHT overlay, using Chord [89] for the simulation. 

 A query-input file, with a randomly generated mixture of single-OID (or point) query 

and/or range queries. The queries contained a mixture of VM-image requests, VM-

package requests, or both together in an individual query. All the simulations used the 

same query input data, regardless of configuration or size. 

To simplify message-transfer delay calculations, data fragmentation and reassembly 

costs were not considered in our evaluation. It was also assumed that the bandwidth of 

transit-transit and transit-stub connections exceeded the maximum bandwidth of any client-

stub connections. The event-driven simulator recorded and aggregated for both publish and 

query traffic from the system nodes, to determine both per-node and total system traffic for 

given system sizes. The simulator was also configured to run several comparative 

configurations, in order to compare the PVC-DS against other known CDN structures, 

which are described below. 

In the first configuration, all the VM images and packages are hosted on a single-

repository node, with all searches being conducted at the repository. In this case, the DHT 

is reduced to a single-node stub, and all stages of the search function occur locally within 

the repository node. This scenario would most commonly be seen in small single-cluster 

configurations, such as that used by Foster [32] and Nishimura [63]. In the second 

configuration, a subset of VM-hosting nodes is grouped together on the network. The DHT-
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participating index nodes are thus limited to a fixed size, regardless of overall system size. 

This scenario emulates the configurations used by data warehouses serving large numbers 

of nodes, where multiple nodes in a single location act in concert to provide VM hosting 

services in a coordinated fashion. This behavior was achieved in the simulator by running a 

cluster analysis [81] on the network topology, to locate the closest group of K nodes, where 

K is a fixed group size. All the VM images and packages were then assigned to these K 

nodes. It should be noted that for all the tested configurations, all participating nodes 

cached both VM image and package information. The caching duration of the VM packages 

was much shorter than that of the VM images, to account for frequently occurring package 

mutations. The VM images remained unchanged throughout the simulations. 

Multiple scenarios were created to test the three configurations by varying several 

inputs, as follows: 

 System size: A total of 10 system sizes were tested, ranging from 100 nodes to 1000 

nodes. Each simulation was pre-populated with a fixed set of VMs. For both PVC-DS 

and the group configuration, the VM-data were distributed randomly among the 

designated hosting nodes. The number of VMs equaled the number of system nodes, 

i.e., a 300-node system was assigned 300 VMs. 

 Query types: All three configurations were tested with both single-VMOID queries 

(called point queries) and range queries. Like the VM-data distribution, the number of 

queries assigned to each evaluation was matched to the total number of nodes within 

that particular evaluation run. As such, the total number of queries equaled the number 

of nodes and the queries were randomly distributed among the nodes within the system. 
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 Package mutations: Since unpredictability and variance of mutating packages affect 

query outcomes, each configuration was tested with both static and mutating packages. 

 
Figure 11. Components of PVC-DS instrumented evaluation. 

Upon initialization of each evaluation run, the tested system was allowed to “settle” for 

10 minutes before processing any queries, to give the publish-overlay adequate time to be 

properly established before initiating any queries. As the queries for both PVC-DS and the 

group repository configurations would potentially involve multiple sources from which to 

download VM data, upper limits were set on the number of concurrent download channels 

which each VM-data hosting node could create. Since many configuration parameters exist 
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in each evaluation scenario, some parameter values were fixed to facilitate evaluation and 

comparison, as listed below: 

 The DHT size of PVC-DS was set at 10% of the total system size. This ratio was chosen 

based on observations of the number of computational clusters and servers relative to 

the number of data-storage nodes in a medium-sized server room. As PVC-DS is 

intended to be used to link multiple smaller data-centers and server rooms together, 

compared to running within the confines of a largely homogenous cluster or within the 

closely-spaced network environment of a large data-center, this choice of ratio was 

found to produce overlays which are roughly representative of the intended real-world 

environments. 

 For group-repository evaluation, the group size was set at 4 nodes. Assuming an 

average VM image with associated packages to be approximately 1GB, each group 

node in a medium-sized network of 100-150 nodes would host some 250GB of data 

(assuming that each participating node was hosting 1-2 VMs.) Thus, a collection of 4 

nodes would serve 1TB of data, comparable to a small/medium sized CDN repository. 

 For all simulations, the delay between queries was set at 2 minutes, with a chunk size of 

1MB. This chunk size was chosen based on an average minimum package size for the 

various OS installations, while the delay was increased or decreased to simulate heavier 

or lighter workloads, with the publish-intervals varied to match, as described below. 

 The publish-interval for each node was set at 2 minutes, with soft-state checking to 

occur every 5 minutes. This publish-interval was configured based on the delay between 

queries: if the load on the system was increased by shortening the interval between 

subsequent queries, the publish-intervals had to be correspondingly shortened as well. 
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This allowed changes in node repositories to be reflected rapidly enough throughout the 

system to influence the results of subsequent searches. While this publish interval was 

varied manually within the simulator, in practice it would be adjusted automatically by 

each node, in response to varying load conditions. Consequently, provided that the 

publish-intervals were matched to the system load, the comparative results remained the 

same, with the side-effect of increased traffic overhead due to the more frequent 

publish-updates being disseminated by participating nodes. 

 Package mutations, if present, occur once in 2 minutes. This is matched to the publish 

interval, to provide a worst-case scenario for generating update-traffic. 

For PVC-DS, once a client node downloaded a VM image or package, it could cache 

that data, making it available to the rest of the system for a period of time (referred to as the 

lifetime of the data), with larger caching storage at client nodes being required for longer 

lifetimes. For this study, VM-images had lifetimes of 5-6 minutes, whereas VM packages 

were retained for 1-2 minutes. While the average time for a single-OID query to complete 

within any of the tested architectures was under 1400 milliseconds (and under 1800 

milliseconds for a range-query), in comparison the time taken to download the actual VM-

image and VM-package data was on the order of minutes, as shown in Figure 13. This 

domination of time by the download rendered the actual query-times as a relatively 

insignificant component of the total query/download time. Thus, our evaluations focused on 

the metrics of total download time and traffic overhead imposed by the publishing and 

querying mechanisms. 
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Figure 12. Single-repo and PVC-DS download times under point queries. 

3.6.2 Results 

Figure 12 illustrates the average time taken for both the single-repository configuration 

and PVC-DS to perform single-OID (i.e., non-range) queries and download the resulting 

VM-images and packages. For clarity, the output from the group-repository is not excluded 

from here and will be examined in Figure 13 instead. As seen in Figure 12, the performance 

of PVC-DS compared to the single-repository configuration is clearly superior, as the large 

number of download-requests concentrated at the single-repository results in extremely 

high congestion and slow download times. In addition, the distributed nature of the VM-

data download-sources available to a querying client, compounded with the ability for the 

client to selectively choose which nodes offer the best performance for downloading, 

results in far shorter average download-times. The relative time-savings for PVC-DS 

compared to the single-repository configuration increase as the system size increases, but 
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the average cost savings over the tested system set ranged from a 70% time-savings for the 

100-node network to a 95% reduction in download-time for the 1000-node network. 

Averaged over the 10 tested scenarios, the average time-savings of PVC-DS compared to 

the single-repository scenario was 85%. 

 

Figure 13. Group-repo and PVC-DS download times under point queries. 

Figure 13 shows the mean time taken for both PVC-DS and the group-repo 

configuration to complete single-OID (i.e., non-range) queries and download the resulting 

VM-image and package data. In this simulation, the download time involves obtaining both 

VM-images and VM-packages, with mutations enabled. While both PVC-DS and the 

group-repository configurations perform in a far more scalable manner when compared to 

the single-repository scenario, PVC-DS manages to affect better cost-savings than the 

group-repository configuration. The cost-savings for data-downloads by PVC-DS was 

calculated to be an 8% improvement over the group-repository scenario. 
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Figure 14. Group-repo and PVC-DS download times under range queries. 

VM-data distribution time versus system size under range queries is demonstrated in 

Figure 14. As the difference in download-times between the single-repository configuration 

and PVC-DS was so high as to affect the scaling in the graph, the single-repository 

download-times were not included in the graph. However, when the average download-

times for all three configurations over all the tested configurations were calculated, it was 

discovered that the mean download-times for both the group-repository and PVC-DS were 

less than 1% of the times required for the single-repository configuration. Also on average, 

PVC-DS demonstrated an average time reduction of 15% over the group-repository 

configuration for range-queries. This is due mainly to the wider dispersion of VM-data 

among the nodes under PVC-DS. This leads to a higher probability of queried VM-data 

present on nodes with large-bandwidth links, in comparison to the group repository 

configuration, with a relatively limited number of VM-data hosting nodes. 
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Figure 15. Publish-traffic for 1000 nodes. 

Figure 15 depicts traffic overhead (in terms of the number of packets) over the elapsed 

time interval for publish operations under PVC-DS and the group-repository configuration 

with 1000 nodes. The results include overhead messages among all the system nodes upon 

range queries with mutating packages. As all the VM-data in the single-repository 

configuration are stored on one node, no other nodes in the single-repository configuration 

hold any VM-data to publish. Since the single repository node does not publish data to 

itself, the single repository configuration produces no publish-traffic and is hence excluded 

from the publish-traffic graph. 

When averaged over the entire evaluation interval, the publish-traffic overhead of PVC-

DS is observed to be about 17% lower than that of its group-repository counterpart, 

averaged over the entire evaluation interval. Also PVC-DS generated approximately 150-

200 publish-messages per second in order to maintain the PHT/DHT structures and to 

account for any mutated or added packages. However, the publish packet-count for PVC-
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DS rarely exceeded 3000 packets per 10-second interval during its publish-periods. In 

comparison, the group-repository configuration exhibited very large spikes of at least 5000 

packets/interval, coinciding with its publish-periods. For a large configuration such as that 

illustrated, there are many changes in the VM-packages, due to both downloads of new 

VMs and mutations of existing ones in the repositories. In PVC-DS, these changes are 

filtered and spread across nodes, thereby lessening their impact at the publish windows. 

Figure 16 shows the range-query traffic produced by all three configurations for the 

1000-node scenario, where the traffic pattern for the single-repository configuration is very 

similar to that of the group-repository or PVC-DS. The measured traffic for the single-OID 

queries follows a very similar profile, but is only about 30% that of the range-queries. That 

is, the traffic graph for single-OID queries is scaled to 1800 packets/interval, compared to 

6000 packets/interval for the range-query traffic. While the query-traffic overhead for PVC-

DS is marginally higher than that of the group-repository scenario, we believe that this 

small increase in query-traffic is compensated for by the reduction in publish-traffic from 

PVC-DS and is worth the gain in VM-data download performance. 

As mentioned earlier, the load on the system was varied via a reduction of the interval 

between queries. In order for the queries within PVC-DS and the group-repository 

configurations to receive up-to-date information within the now-compressed timeframes, 

the publish-intervals for the nodes needed to be reduced correspondingly. Although this 

measure functioned to keep both configurations competitive compared to the single-

repository scenario, the side-effect of this change was a large increase in publish-traffic. 

However, PVC-DS spreads this traffic among more nodes, instead of concentrating the 
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updates at a small number of nodes, thus lessening the network load felt by individual 

nodes. 

 

Figure 16. Range-query traffic for 1000 nodes. 

Nevertheless, even with the increased download performance afforded by PVC-DS, the 

average download-time for large system scenarios can be very large compared to the query-

time. For example, while the average time for a single-OID query in the 600-node scenario 

is no more than 1.5 seconds for any tested configuration, the mean download time for that 

query is approximately 25 minutes. As a querying node can only publish any newly 

acquired VM-data once its download has completed, at least 25 minutes must elapse before 

the new VM-data can be published to the rest of the system. Consequently, decreasing the 

interval between queries also adds additional publish-traffic to both PVC-DS and the group-

repository configurations, with little benefit to the download-times. Fortunately, the wider 

distribution of publish-traffic by PVC-DS means that even in unfavorable load-conditions, 

the publish-traffic cost is still lower than the group-repository configuration. While the 

single-repository configuration is relatively unaffected by the load-increase, its overall 
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download-time requirements render it uncompetitive compared either PVC-DS or the 

group-repository configuration. 

3.6.3 Contributions & Conclusions 

PVC-DS extends the mechanism of ChunkCast and applies its added capabilities to the 

search and dissemination of virtual machines. It implements a new multi-layered 

architecture to provide advanced VM metadata publishing and querying capability not 

previously possible with ChunkCast. In addition, the modification of the publishing 

mechanism to include bi-directional communication overcomes the immutability 

shortcoming of the original ChunkCast design, allowing dynamically-changing published 

metadata to be effectively disseminated throughout the architecture. The unique two-stage 

query algorithm complements the new data-format, enabling both range-query capability 

and just-in-time collection of dynamic application information, thereby assisting in more 

rapid deployment of VM-images and associated applications to querying clients. 

Overall, our PVC-DS has demonstrated a viable VM search and distribution mechanism 

built on top of a loosely replicated overlay network, with demonstrated advantages in 

reducing deployment-time for virtual clusters in multiple query scenarios. While there a 

moderate traffic overhead and query-response cost associated with PVC-DS, the subsequent 

gains in download-time allow the architecture to compare favorably to existing VM-

distribution scenarios. While the other advantages with PVC-DS such as the inherent fault-

tolerance of the underlying ChunkCast and Chord networks were not evaluated within the 

bounds of this dissertation, they serve to reinforce the strengths of replicated data storage 

architectures, even ones with relatively loose consistency parameters. 
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Instead, the second half of our research will focus on the application of these replication 

concepts to storage scenarios with more stringent consistency requirements, and outlines 

the approach we take to solve the subsequent issues which arise. 



 

 Transactional Operations on Replicated Objects (TORO) 4.

4.1 Motivation and Assumptions 

The second phase of our research next considers adding functionality to the topology 

underpinning PVC-DS, which was created as a mechanism for the discovery and 

distribution of virtual machine and related package data. While PVC-DS serves the more 

focused role of augmenting virtual cluster deployment architectures, this research 

component augments the virtual clusters created via PVC-DS. This is done by creating a 

generalized medium upon which applications executing within PVC-DS-deployed 

computational nodes can store and manipulate VM images and application packages as well 

as input data. As replication is a key facet of the underlying CDN, this added functionality 

realized by Transactional Operations on Replicated Objects (dubbed TORO) introduces 

transactional read/write operations to the existing overlay, allowing data items stored within 

the system to be both accessed and manipulated in a lock-free manner. Consequently, 

applications can be rapidly developed and/or deployed within virtual machines using the 

PVC-DS architecture, whereupon they will have access to a large shared data space for 

computations. While this has previously only been realized within the realms of large 

consolidated data centers, the combination of PVC-DS and TORO bring this capability to 

smaller-tier data centers and server rooms. 

As described in Chapter 2, the underlying network infrastructure on which the TORO 

overlay operates is assumed to be asynchronous, with variable (and possibly infinite) delays 

between nodes, resulting in possible out-of-order message arrivals. Nodes are expected to 

have local clocks for timing, but the clocks are not synchronized with each other and may 

run at variable rates. Therefore, as read or write ordering cannot be guaranteed by message 
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arrival order, TORO must rely on alternative methods for ensuring correct transactional 

ordering. As the transaction management in TORO is focusing on very fine-grained 

operations directly against data primitives, the duration of the transactions become much 

shorter when compared to conventional transactions on replicated databases [66] [80]. 

Therefore, the performance of individual transactions becomes much more important. Any 

time advantages to be gained, even small ones, will have a pronounced cumulative effect on 

the overall performance of the entire system. 

Unfortunately, the distributed and replicated nature of the data items complicates these 

efforts to save time, potentially adding unwanted delays to transaction operations. However, 

by taking advantage of the existing overlay structure, TORO simplifies the mechanisms 

required for maintaining coherency between the replicated data items. It also uses the 

underlying CDN features to assist in the reduction in time required for transaction decision-

making. Like comparable replication architectures such as those by Jiang et al. [40] and 

Etna [61], we assume that node failures in TORO are of the fail-stop category, whereby a 

failed node always restarts in a “clean” state, with no memory of its previous role prior to 

failure. In other words, the TORO network does not account for Byzantine or malicious 

node failures. 

The overall goal of TORO is to provide: 

 replicated and reliable data storage via an underlying DHT-based CDN, and 

 high-performance read access via parallel transactional operations, with tunable 

consistent write access to shared data items. 
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In order to achieve the goal, TORO involves several separate components, each fulfilling a 

specific function towards the aforementioned goal. These components are described in the 

next subsection. 

4.2 System Design of TORO 

4.2.1 Component Overview 

As TORO and PVC-DS were designed to operate as integrated components of a single 

cohesive architecture, they share major underlying components, specifically the 

ChunkCast-based CDN [16] and its underlying DHT, which were previously described in 

both Chapters 2 and 3. Thus, each participating node in the TORO architecture is 

referenced by a node-key, assigned via the DHT hashing function. As with PVC-DS, any 

DHT topology can be used for inter-node communication, but for the purposes of 

simulation, the Chord DHT is used. Like ChunkCast, the topology layout of TORO 

revolves around the tree-based structure created by the routing of DHT packets towards a 

closest-prefix destination. The major components of TORO can be seen in Figure 17 below. 
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Figure 17. TORO components within a single node. 

The CDN components within each TORO node communicate with the DHT network 

overlay via the Messaging I/O module. The I/O module forms the link between the DHT 

network and the inner transactional components of TORO. Inbound read/write requests for 

shared data items arrive in the form of Transaction Requests, which are queued by the 

Client Transaction Interface (CTI). The counterparts to the CTI are the Transactional 

Storage (TS) modules, of which there may be more than one (or none at all) on a single 

TORO node. Each Transactional Storage or TS module corresponds to a single DHT-key 

and is referenced accordingly by the CDN components. This is analogous to the VMOID 

used in PVC-DS, where each data DHT-key in TORO represents a set of related data items. 

In the case of PVC-DS, these data items were the binary chunks which constituted an 

individual VM image. In contrast, each DHT-referenced set of data consists of individual 

data primitives that are computationally related to one another, i.e., all the items in the set 

hold some significance to one or more processes. For example, a data-set may consist of all 
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the working inputs and outputs of a single fluid-dynamics simulation. A data-set could also 

represent all the account holdings of a single customer at a bank, with the corresponding 

transactions attempting to either read from or modify the customer’s financial information. 

This grouping allows a client transaction to conveniently address an entire set of closely 

related data with a single DHT-key, rather than a series of individual data-item requests. 

It should be noted that although the DHT-key associated with each TS module is 

generated by the DHT hashing algorithm, one or more TS modules hosted by a TORO 

module may not necessarily have assigned DHT-keys which are immediately succeeded by 

the node-key of the hosting node. In other words, while a TORO node may host TS 

modules whose DHT-keys it immediately succeeds (as per the normal DHT-key storage 

algorithm described in Chapter 2), the node may also host TS modules whose DHT-keys it 

does not immediately succeed. To explain why a TORO node would do this by design, we 

must examine the roles which a TS module may play. A TS module may operate in one of 

two roles: 

 Data-set master TS: These modules are hosting the master copy of the data-set. As 

per the DHT protocol, the TS module for the master copy is stored on a TORO node 

whose node-key does immediately succeed the DHT-key of the TS module. For 

example, if the TS module referenced by DHT-key i in Figure 17 contains the 

master copy of a data-set, then the TORO node-key k immediately succeeds DHT-

key i. 

 Data-set replica TS: These nodes are hosting either entire or partial copies of the 

data-set, dynamically assigned by the master node. In order to facilitate off-node 

replication, a TORO node must replicate copies of data items stored in its local TS 
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modules to other nodes with correspondingly different node-keys. Therefore, if the 

TS module j in Figure 17 was a designated replica, then j would not be immediately 

succeeded by k. 

The replication algorithms used in existing DHT-based storage architectures such as 

FamDHT, Etna and Scalaris [40] [61] [85] are derived from the route taken by DHT 

messages through the overlay on their way to their addressed destinations and the resulting 

routing tables created on each node. For example, if a data-storage message with key 959 is 

being transmitted through a Chord DHT and is routed through nodes 350, 601, then finally 

node 854 on its way to its destination at node 981, then the first three nodes could be used 

as replicas for storing DHT-key 959. Therefore, any data-search messages for key 959 

would have a high probability of being routed through at least one of the replicas on their 

way to node 981. As a result, any of the replicas could intercept the data-search messages 

intended for node 981 and answer them directly, thus improving data-search performance. 

ChunkCast uses this technique for improving search performance, although ChunkCast 

replication is more akin to opportunistic soft-state caching, rather than the explicitly 

assigned replica nodes of Scalaris or Etna. Regardless of how the replication is performed, 

each of the aforementioned systems is merely choosing the replica nodes, as a result of the 

routing paths directed by the DHT algorithm. 

A drawback to these replication techniques is that since the node-keys for DHT-

participating nodes are chosen via a hashing function [28], the route which the replication 

messages follow is determined by the matching of the DHT-keys with little regard to the 

actual network path that the messages may take. Therefore, these replication algorithms are 

said to be topologically unaware, which contributes to excessive communications delays 
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between replicas. Using the prior example, if nodes 350, 601 or 854 were network-distant 

from node 981 then using them as replica-nodes will result in lengthy replication times. 

This shortcoming becomes a significant problem when combined with the small durations 

of transactions commands, as the inter-node communications delays are proportionally 

much larger. 

An alternative to these route independent replication techniques is to explicitly assign 

replicas in a manner which is sensitive to the underlying routing path topology. That is, if 

replicas could be chosen which only have to traverse short distances to reach each other, 

then the time taken for data synchronization between nodes would be correspondingly 

reduced. This is the alternative approach chosen for TORO. A result of this non key-

dependent assignment is that any TS modules within a TORO node which are classed as 

replicas are not located by the DHT-key for their stored data-sets. Instead, they are instead 

located directly by the master node, using the node-key of the hosting TORO node for that 

replica. The replica-assignment procedure is covered in Section 4.2.2 and is implemented 

by the Replication and Fault Recovery module in Figure 17. 
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4.2.2 Replica Assignment 

 

Figure 18. TORO replica-assignment procedure. 

The replica-assignment procedure in TORO follows a 4-step procedure, illustrated by 

Figure 18. Replica-assignment on a TORO node is triggered whenever a new data-set is 

created on a node, causing the creation of a new TS module to store the data-items (Step 1). 

As this is the master-copy of the data-set, the node-key for the hosting TORO node 

immediately succeeds that of the new TS module. In Step 2, the TS module begins by 
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creating a number of Replica-Discovery messages, each of which has a randomly generated 

DHT-key as the destination. These discovery messages are routed to their destination 

TORO nodes via the DHT. When a discovery message arrives at a destination node, it 

creates a Replica-Reply message tagged with the DHT-key of the originating TS module 

and sends back through the DHT network (Step 3). As these reply-messages traverse the 

DHT, each intermediate node adds a record of itself to the reply-message along with the 

network latency of the intermediate hop to the intermediate node. Once all the reply 

messages have been received by the master-copy TS module, it can construct a candidate 

list of nodes with which it can choose viable replica nodes (Step 4). In the example in 

Figure 18, the path-information gleaned by M would be: 

 M → 1 → 3 → 6 

 M → 2 → 5 

Each hop (represented by the “→” symbol) in the DHT-routed path has a recorded 

latency attached to it. From these discovery responses, M can determine the aggregate 

distances to nodes 1, 2, 3, 5, and 6. M may repeat this discovery process as many times as 

needed to procure a sufficiently large pool of candidate nodes, depending on the number of 

replicas M is trying to create for itself. The discovery process can even be repeated, in order 

to discover as many nodes as possible whose distances from M fall under a specified 

latency threshold. In this manner, the distances between M and its replicas are no longer a 

random choice, dependent on the matched prefix of the destination node, but one which 

takes the inter-node latency into account. This provides a significant advantage, given the 

time-sensitive operations of the transactional components of TORO. In Step 4, M has 
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chosen nodes 1, 2 and 5 as viable replicas and sends Replica-Assignment messages to each 

node. 

However, there are a few issues which must be managed using this technique. As new 

nodes enter or exit the system, the aggregate latency to each replica may change, as the new 

nodes are inserted or removed along the DHT-routed path between M and its replicas. In 

TORO, M can pro-actively take action, by periodically polling the network with Replica-

Discovery messages to discover any new paths and potentially more viable replicas to co-

opt for its own use. If a candidate node with better communications latency than any of the 

existing replicas is discovered, M can assign it to its replica-group and simultaneously drop 

the slowest replica from its group. M can also increase or reduce the size of its replica 

group, as client demands or network conditions dictate. Therefore, the quality of network 

latency can be monitored and compensated for by the master-copy TS module, thereby 

providing a superior replica environment for time-sensitive transactions to operate within. 

The other major issue to deal with is fault-tolerance, covered in the next sub-section. 

4.2.3 Fault-Tolerance 

Like the eventual consistency mechanism used by PVC-DS, TORO master-nodes use 

soft-state registration by their respective replicas to determine if there have been any node 

failures. Each member within the group of replicas periodically sends a keep-alive message 

to the master-node; this also serves to update the latency information between the replica 

and master. This latency information is compiled at the master-node along with any new 

replica-candidates discovered via periodic polling by the master-node itself. The actively 

ongoing nature of the replica-assignment algorithm ensures that in the event of a replica 

failure, the master-copy transaction storage module has a ready supply of viable 



 

87 
 

replacement candidates with which to create new replicas. As a master-node can forcibly 

demote a replica and remove it from the group for performance purposes, any nodes which 

“fail” due to temporary network failures (as compared to node crashes) can be signaled to 

remove themselves from the replica-group upon the restoration of their network links. This 

prevents the rejoining node from attempting to send updates to a replica-group to which it 

no longer belongs, effectively enforcing the fail-stop conditions of the network. 

However, a more problematic situation must still be resolved: what happens if the 

TORO node hosting the master-copy TS module fails? This problem can be broken down 

into two basic stages: detection and recovery. To facilitate the fault-detection component, 

each replica-node periodically sends “heartbeat check” messages to the master-node, which 

fulfils two purposes. First, the master-node sends a response to each received heartbeat-

message, acknowledging the continued existence of the replica-node in the group. Thus, 

this bidirectional messaging ensures that each node in the replica group is aware of the 

master and vice-versa. Second, as the heartbeat messages are routed through the DHT from 

the replica nodes to the master-node, they store the latency information of the intervening 

hops. Thus, the health of both the replica nodes and the connecting DHT network is 

monitored regularly, which the master-node can use to determine whether or not to add or 

remove replicas from the group. Each replica-node has an onboard clock which monitors 

the time taken for each heartbeat-reply to be sent from the master to itself—effectively a 

round-trip timer. It can compare the time taken for each heartbeat against an averaged 

timeout of heartbeat-response times, which is updated with each heartbeat. If the replica 

does not receive a heartbeat-response within the expected timeout, it can assume that the 

master-node has failed and can begin recovery procedures. 



 

88 
 

The second component of fault-tolerance is the recovery phase. While the detection 

mechanism allows the replicas to determine whether or not the master-node has 

unexpectedly failed, it can only detect the issue, but not resolve it. To assist in the 

resolution, the structure of the replicas is augmented with the notion of ranked recovery 

nodes. Using ranked recovery, during the replica-assignment phase of operation, the 

master-node assigns a recovery rank to each replica, from the highest to lowest. For 

example, using the replica group in Figure 18, the master-node can recovery-rank the nodes 

in order 1, 2, 5 (with 1 being the highest rank and 5 being the lowest). This recovery rank 

information is disseminated to all the replica nodes piggy-backed on the heartbeat-response 

messages sent from the master-node to the replicas. The mechanism for recovery ranking 

operates as follows: if a replica-node suspects that its master has failed, it sends out a 

Master-Rebuild signal to the next highest-ranking replica in the group. 

Continuing the example given above, if replica 5 suspected a failure of the master-node 

M, it would send the Master-Rebuild signal to node 2. If node 2 has also detected the failure 

of M, it acknowledges the message sent from 5 and forwards the Master-Rebuild message 

up to the next-highest rank (node 1). Node 1, being the highest-ranking recovery node, has 

the final decision on whether or not M has really failed. If Node 1 determines that M has 

indeed failed, then it constructs a Master-Rebuild message which includes a copy of the 

items in the data-set and is tagged with the DHT-key of the data-set as its destination. 

Assuming that the integrated fault-recovery features of the underlying DHT are operational, 

the Master-Rebuild message sent out by node 1 should be routed to the TORO node in the 

network whose node-key is the next-closest prefix-match to the DHT-key for the data-set. 
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Upon receiving the Master-Rebuild message, the TORO node assumes responsibility as 

the host for the new master-copy Transactional Storage (TS) module. It creates the TS 

module anew and copies the data-items in the Master-Rebuild message into the TS module. 

If the new master-node does not have a full copy of the entire data-set, it can query the 

other nodes in the original replica-group to obtain the requisite missing data-items. At this 

point, the new master-node has no replicas of its own, so it begins a replica-search for new 

candidates. While it is conducting its search, it can notify the old replica nodes that the 

master-node recovery process is complete. The old replicas can then demote themselves 

from the now-defunct replica group, freeing the space taken up by the replica TS modules. 

Alternately, the master can be configured to wait until it has chosen the new replicas before 

demoting the old ones. If any members of the original replica group also turn out to be 

viable candidates for the new replica-group, this strategy saves the master-node the time 

and bandwidth needed to resynchronize with all the replicas, as they will still have the data-

items from the original group stored in their TS module. These nodes would only have to 

reconfigure their TS modules to point at the new master-node instead, thus reducing both 

the synchronization traffic and recovery delay. 

4.2.4 Data Structures 

We will now provide a more precise description of the data structures used within each 

Transactional Storage module and examine how they facilitate transactional operations on 

the stored data-items. As described, the sets of data-items stored within TORO are located 

using DHT-keys. Like the VM-info objects in PVC-DS which represent an array of 

operating system data-chunks, the data-items in TORO are grouped into data-sets 

referenced by a DHT-key, hereby referred to as the Data-Set-Identifier. 
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As the aim of TORO is to provide transactional support for very large data sets, full 

data replication may become very costly in both time and network resources. To reduce 

such costs, data to be stored in the TORO network were sub-divided into individual 

“chunks,” referred to as data-objects, as outlined in PVC-DS. This sub-division into data-

objects enables partial replication of large sets and reduces traffic overhead. Each data-

object in the system represents a single typed data primitive (such as a string or integer 

value), but the data-object can be used to represent items such as binary data-blobs as well, 

at the cost of transactional granularity (as described in Chapter 3.) The data-object consists 

of a wrapper around the value containing the necessary meta-information required for both 

replication and transactional operations, such as the current transactional state. Each data-

object contains the following fields: 

 dataSetID: A DHT data-key which identifies the data-set to which the data-object 

belongs. 

 dataOffset: The index into the data-set at which the data-object is stored. It is 

analogous to a memory offset or array index. 

 dataType: The type of data primitive being stored within the object (e.g. integer, 

float, etc.) 

 dataValues: The update history of the data-object, ordered from newest updates to 

oldest, e.g. for a data-object with 2 versions, the item at index 1 represents an earlier 

version, while the later version is stored at index 0. Each item in the list consists of 

the following items: 

o dataValue: The actual value of the data primitive. 
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o dataWriter: The identifier of the node/transaction which applied this update. 

This field is in the form of the tuple {writerNode,writerTrans}, indicating the 

originating node and transaction number for that writer. 

o currentReaders: A list of read-transactions which are currently accessing 

this data-object. Similar to the dataWriter field, each currentReader entry 

consists of the tuple {readerNode,readerTrans}. If this list is empty and 

there exists another dataValue newer than this one, i.e., this entry is no 

longer at the top of the list, then this dataValue entry is safe to delete to save 

storage space (see Section 4.3). 

These fields provide the necessary structures to implement versioned transactional 

memory storage, similar to the Java Versioned Software Transactional Memory (JVSTM) 

implementation [27]. We have elected to modify the internal data structures from that of the 

original JVSTM implementation, by adding reader-lists to each data-item version; in doing 

so, we no longer need to maintain a separate data structure for the active transactions, as 

each data-object now carries enough information internally for TORO to determine when it 

needs to remove outdated data-item versions. Each data-object in in the list is uniquely 

located via the {dataSetID, dataOffset} tuple, in a similar manner to the multi-key location 

tuple employed by PVC-DS. As the data-objects in our data-set implementation are 

represented via a vector-list as opposed to a simple array, data-objects which are absent 

from the set do not consume any extra storage. This minimizes the volume of data used to 

store a data-set and reduces the time and/or bandwidth required to transfer the data-set 

between nodes. While the absolute size of the data-set is essentially fixed to simplify 
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replica offset assignments, it would be relatively straightforward to allow dynamically 

variable-sized data-sets, at the cost of some complexity of replication. 

 

Figure 19. Structure of a TORO data-set and associated transactions. 

Figure 19 illustrates the structure of a data-set of data-objects, along with a number of 

associated transactions. Given the hardware-based history of transactional memory [39], the 

data-objects are also referred to interchangeably as offsets. The node-type field indicates 

whether or not the Transactional Storage module containing the data-set is the master-copy 

or a replica. As this example illustrates a master-copy, a list of replica-nodes is shown, 

including the various necessary attributes required for each replica. The attributes are: 

 Replica-ID: This is the DHT node-key of the replica-node, obtained via the replica-

discovery/assignment mechanism outlined in Section 4.2.2. 
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 Latency: This is the measured round-trip latency between the master-node and the 

replica. The information is updated with each replica heart-beat. 

 Rank: The replica-rank indicates the priority that each replica follows in the event 

that a replica detects the loss of a master-node. This information is replicated to all 

replicas and is updated with the addition/removal of replica nodes. 

 Offset-range: This is the range of data-objects (or offsets) for which the referenced 

replica is responsible. For example, replica node 24 stores copies of offsets 0-3. 

As illustrated, the data-set is primarily referenced by the data-set ID, which is the DHT-

assigned key. Using this key, any node in the TORO network can locate the entire data-set 

via a DHT-query. The hosting-node ID is the node-key of the hosting node, and the node-

type indicates whether or not this data-set is the master-copy or a partial replica. As this 

example shows a data-set master-copy, the assigned replica nodes for this set are also 

shown, along with a list of the offsets which each replica is hosting. In the interest of space, 

only the first three of ten offsets are shown in Figure 19 (specifically offsets 0-2). 

In Figure 19, the assigned-offsets are non-overlapping, although the master-node can 

overlap the assigned offsets to increase redundancy, but at the potential cost of increased 

replication data being sent between nodes. For example, the master-node could assign 

offsets 0-8 to replica 24 while replica 137 hosts offsets 5-11. Thus offsets 5-8 would be 

hosted by both replicas, thereby increasing redundancy in the event that both the master and 

a replica fail simultaneously. Alternately, the master-node may direct all 4 replica-nodes to 

host the entire offset-range, maximizing the redundancy at the cost of replication overhead. 

Therefore, TORO provides a form of tunable redundancy and query response, whereby a 
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master-node can chose the level of replication desired, to balance redundancy against 

replication traffic overhead.  

Each of the data-objects within the set is referenced by their offset, analogous to 

indexing into an array. The objects may represent varying data-types, such as integers, 

characters, or float values (for clarity, the other meta-data used by the underlying DHT and 

replication mechanisms are not shown). This provides the flexibility for querying clients to 

reference multiple objects of varying data-types within a single transaction, unlike 

traditional transactions which are limited to a single typed data-object. For example, a 

parallelized computational fluid dynamics simulation may require a computational node to 

query the values of multiple points within a simulation data-set, within a single time-step of 

the simulation. The computational node can reference the required objects in the data-set 

via a single transaction, by simply listing each requested offset along with type of data-

access required (read or write). The version history of each data-object is also shown, as 

originally described; each offset has been updated three times in Figure 19. Each entry in 

the update-list of a data-object refers to a specific update of the data-object, including the 

new value, writing transaction and a list of readers which are currently accessing that 

particular version of the data-object. The format of each entry is described in the following 

paragraph. 

Three write/read-write transactions associated with the data-set are also shown in Figure 

19. Each transaction can be located via the tuple (Client-node, Transaction-ID); in the 

figure, transactions (14, 4), (8, 9) and (11, 1) are shown, along with the associated object-

accesses. For example, transaction (14, 4) indicates that it originated at node with DHT 

node-key 14, with transaction number 4. This tuple-format is required, as there is no central 
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authority assigning global transaction numbers in TORO. Instead, the combination of 

client-node and transaction-ID allows the contention manager to uniquely address any 

transaction within TORO. In practice, each participating node in TORO has an 

incrementing local counter with which to create transaction IDs. Transaction (14, 4) is 

indicated to be of the read/write type, which is shown in its access-list: it is attempting to 

write into offsets 0 and 1, while reading from offset 2. The value field shows the new value 

which is to be written into the data-object. The updates are also reflected in the offset-list of 

the data-set, illustrated as the second update at offsets 0 and 1 and the third reader-

transaction entry at offset 2. In this example, the transaction would read value ‘y’ from the 

data-object, indicating that transaction (14, 4) requested read-access to offset 2 after it was 

updated by transaction (8, 9) with this value. 

4.3 Data management and Transaction Concurrency Control 

4.3.1 Data-set Creation and Deletion 

Data management in TORO is performed on-demand, with the assumption that the 

internal layout of each pre-defined DHT-located data-set is shared by the transactions 

accessing it. For example, if defined data-set D consists of a 1000-size array, where the first 

500 data-objects are integers and the second half consists of double-precision numbers, 

each transaction which will access D is implicitly aware of this layout. We believe this 

assumption to be reasonable, as we envision TORO being used as a writeable data-space for 

multiple co-operating processes to share computational data. For example, a large-scale 

parallel chip simulation package would consist of a pre-defined set of values representing a 

microprocessor topology, while the transactions accessing that topology would already be 

intimately aware of the structure of that topology, in order for them to conduct the 
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simulation. However, in the event that a process needs to access data stored in TORO 

without any prior knowledge of its structure, the system could be readily augmented with a 

structure-query command which simply returns a metadata message describing the internal 

structure of the data-set. 

Although the structure of a data-set is pre-defined in advance, the data-objects within 

that data-set are created on-demand, in order to save storage space. To that end, the offset-

list is implemented as a dynamically-sized vector list which is resized as required. In a 

further effort to save space, only the offsets which are accessed by transactions are created 

within the offset-list. For example, if offset 1 in Figure 19 was never accessed by any 

transactions, then the offset-listing would be shown as {0, 2,…}. Removal of data-sets is 

also handled on-demand via the DHT-key deletion commands specific to the underlying 

DHT; in our implementation, data-set removal would be facilitated by the delete-data-key 

function in Chord [89]. However, the Transactional Storage module on a TORO master-

node performs a safety check before deleting a data-set, via the following procedure: 

 As a sanity-check, only a master-node is authorized to delete a data-set, which the 

node will verify. 

 Once the node verifies that it is indeed the master, it broadcasts a query to all the 

replicas in this group with an intent-to-delete message. 

 Each replica that receives this message will check its own copy of the data-set and 

verify that there are no transactions which are accessing any of the data-offsets. If 

there are no such transactions, then the replica-node sets an internal reject-

transactions flag indicating that it will accept no further transactions for the 
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referenced data-set and replies to the master-node with an affirmative delete-OK 

message. Otherwise, it returns a cannot-delete message to the master-node. 

 Once the master-node has received affirmative messages from each replica, it 

performs the same transaction-check on its own data-set. If there are no active 

transactions operating on the master-copy of the data-set, the master-node deletes 

the data-set and signals its replicas to do the same. Otherwise, it sends a delete-

cancel message to the replicas. 

 If a replica receives a delete-cancel message from the master-node, it unsets the flag 

which prohibits acceptance of new transactions. Note that a timeout period is 

appended to a replica’s reject-transactions flag, which ensures that in the event of 

the loss of the delete-cancel message from the master-node, the data-set will resume 

normal operation. This two-step procedure defers on the side of safety, ensuring that 

a data-set is not mistakenly deleted from a replica due to network interruption. In 

this case, it is preferable for a replica to defer to saving the data instead of deleting 

it, as we consider this an important component of fault-tolerant data storage. 

Once a data-set has been defined, the client managing the data-set can be afforded a 

great deal of control over the replication characteristics of the data-set. In addition to the 

regular add/delete functions inherited from the underlying DHT, TORO is also planned to 

include commands which direct the master-node to adjust the size of a replica-group and to 

specify the replication level of each data-object in the data-set. This will allow a master-

node to specify whether or not it requires full replication of all offsets to all replicas, partial 

replication or no replication at all. For example, a client which manages a particular data-set 

may choose to explicitly disallow replication of a small portion of the data-set for security 
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reasons, or a number of the offsets within a data-set refer to data-items which cannot be 

replicated at all, such as direct references to external hardware attached to one of the 

computational nodes. However, some of these planned functions may come at a cost, as a 

replica-node may be forced to temporarily disallow transactional access to its data-set while 

it reconfigures itself. While the current implementation of TORO does not include these on-

the-fly modification functions, a client can still control the data-set replication 

characteristics during the data-set definition phase. Nevertheless, further enhancements can 

provide this capability to the implemented system in the near future. Thus, the flexibility of 

the replication system within TORO allows clients to essentially “dial in” the level of 

replication desired for any individual data-object within the data-set, in order to balance 

reliability against network overhead or security/hardware constraints. 

4.3.2 Concurrency Control 

TORO’s transactional control operates in a manner very similar to the JVSTM 

versioning scheme developed by Cachapo et al. [13] [27] and the Distributed 

Multiversioning (DMV) mechanism of Massiniev et al. [53]. Any transaction which 

contains write-operations is processed only at the master-node in the replica group, in order 

to enforce write-order serialization. Thus, if a write or read/write transaction is created on a 

replica-node, the transaction is immediately forwarded to its master-node via the DHT for 

processing. Additionally, as TORO can utilize partial replication to save on replication 

and/or data-storage overhead, the Transactional Storage module must also check to see if it 

hosts the offsets requested by the transaction. For example, if a replica-node for a 0-20 size 

data-set has been assigned offsets 0-10 by the master-node and it receives a read-only 

transaction which references offsets 0-15, then it will be forced to forward the transaction to 
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the master-node, as it does not host all of the data-objects which the transaction is 

requesting. The behavior and conflict management of the transactions is described as 

follows: 

 If a read-only transaction arrives at a replica node and if the replica can service the 

transaction, it locates the relevant offsets and appends the (client-node/transaction-

ID) tuple to the reader-list of the newest offset version. Once it has completed 

appending the reader-entries, the replica-node sends a notification to the master-

node to inform it of the read. The notification message includes the list offsets being 

accessed by the transaction, along with the observed versions of each data-object 

which the transaction is reading. The read-transaction will continue to access this 

entry for the duration of its execution, independent of any subsequent updates which 

are appended to the update-list of the offset. Therefore the read-transaction is 

essentially executing in isolation, as none of the referenced data-values for that 

version changes during the transaction’s life, thereby preserving consistency. 

 Upon arrival of a write-only transaction at the master-node, TORO examines the list 

of offsets which the transaction is attempting to update. If the offsets do not exist, 

they are created on the fly, but the updates specified within the write-transaction are 

not applied to any of the offsets. When all missing offsets have been created, the 

master-node then broadcasts a list of offset updates to the relevant nodes within its 

replica-group. Each replica which receives the update-notification initially responds 

to the master-node with an affirmative synchronization message. It then appends the 

write-update to the relevant offset’s version list, allowing existing read-transactions 

to continue executing without being affected by the new data. Once the master-node 
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receives confirmation of the accepted updates from each replica, it commits the 

write-transaction by appending to each relevant offset a new entry to the dataValues 

list of the offset, populating it with the necessary value/writer entries. 

 If the master-node receives a read-write transaction, it locates the relevant offsets 

and appends the relevant node/transaction tuples to the reader-list of the most up-to-

date offset version, in the same manner as the replica. It must then wait until the 

transaction is ready to commit its write-updates, then it must perform a transactional 

validation, whereby each offset in the read-list of the transaction is checked to 

determine that the transaction’s node/transaction tuple is still appended to the 

reader-list of the latest version of the offset. If any node/transaction tuples are no 

longer appended to the reader-list of the latest offset version, this indicates that 

another writing transaction has updated the offset with a new version after the read-

write transaction began. As continuing with this condition would violate mutual 

consistency, the read-write transaction is aborted and restarted. Otherwise, the read-

write transaction is still valid and is thus immediately committed, using the write-

commit mechanism as described above. 

Figure 20 illustrates the transaction-processing logic used by TORO. In the interest of 

clarity, the write-transaction response logic between the master-node and replicas is not 

shown, although the expected responses are included as part of the transactional path logic. 

The centralized-write mechanism provides the scalability of allowing any replica to service 

read-only transactions with little delay, while retaining a relatively simple method of 

enforcing write serialization. TORO’s replica optimization and ranked failure-recovery 
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mechanism thus mitigates the performance penalty and risk associated with centralized 

transactional control. 

 

Figure 20. TORO transaction request flow. 

4.4 Evaluation Environment 

As TORO was designed as a distributed transactional workspace, our primary interest 

lies in the following metrics: 

 Transaction execution time 

 Transaction abort rate 
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 Traffic overhead 

These metrics are the same factors shared by most existing research evaluations of 

distributed and replicated transactional architectures. Given the primary contribution aims 

of TORO, we tested the concurrency components by comparing them to traditional locking 

scenarios, in both replicated and non-replicated environments. The locking architecture 

implemented for comparison closely resembles both the DHT-based Etna architecture [61] 

and the Chubby locking service developed by Google [11]. Both of these systems depend 

on a centralized manager to control serialization and to enforce read and write access to 

shared objects via this central manager. This gives us several configurations to test, namely: 

 Non-replicated data with traditional locking for concurrency 

 Replicated data with traditional locking for concurrency 

 Non-replicated data with lock-free transactional access 

 Replicated data with lock-free transactional access (the TORO configuration) 

Each of the listed configurations was subjected to multiple tests, varying both the topology 

size and the types of transactional inputs. The different types of transactional inputs are 

discussed below. 

4.4.1 Simulator Configuration 

Like PVC-DS, TORO has been developed inside an event-driven simulator, utilizing 

similar network conditions to PVC-DS. The simulated network was generated using Inet-

3.0 by Winick [93], processed through a ModelNet-supplied script [94] to produce the 

initial network topology. To provide realistic and variable network latencies, measurements 

were taken of real-time latency tests between randomly-chosen network hosts and used to 

provide realistic variances in inter-node latency within the simulator. Given the 
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aforementioned purpose of TORO, the transactional inputs for initial testing were 

synthetically generated, as so to produce worst-case contention scenarios. These generated 

inputs thus provided us with a method of verifying the correctness of the concurrency 

control mechanisms, as well as giving us initial performance results which assisted in 

tuning the various parameters (e.g. replication timers) of the replication components. At the 

same time, the comparison architectures were tested with comparable inputs and parameter 

settings, in order to provide an unbiased comparison between them and TORO. To provide 

parity between the comparison systems and TORO, the replication group size was set to 5 

replicas with full replication, to match the replication factor of Chubby [11]. 

Once it was determined that both TORO and the comparison systems were functioning 

correctly and producing consistent results, the simulations were provided with inputs taken 

from real-world benchmarks. The Princeton Application Repository for Shared-Memory 

Computers (PARSEC) benchmarking tool [9] was chosen as an input source, as it provides 

a wide range of test scenarios, which were adapted to our simulations in a relatively 

straightforward manner. The PARSEC benchmarks also cover a wide range of data-set 

sizes and include workloads with both low and high read-to-write ratios. The input sets 

which we have chosen from the PARSEC suite are the BlackScholes financial analysis 

benchmark which is dominated by read-only transactions, and the Canneal engineering 

benchmark which contains large numbers of writes to shared data-spaces. Both benchmarks 

have an emphasis in data-parallelism, making them ideally suited for testing the distributed 

architectures of both TORO and the comparison architectures. It can be reasonably assumed 

that the majority of large-scale jobs submitted to a transactional architecture such as TORO 

would fall under this classification of highly-parallelized applications. However, in practice 
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it was discovered that neither the BlackScholes nor Canneal benchmarks actually generated 

much contention in the evaluations: the Canneal benchmark only generated sporadic 

contention due to the sparse nature of its write-commands within data-sets, while 

BlackScholes contained no overlapping data-write commands at all. 

 

Figure 21. TORO instrumental evaluation. 

Therefore, we generated a special high-contention data-benchmark to test both TORO 

and its comparison locking configuration. This benchmark contains a large number of 

overlapping data-reads and data-writes from differing clients to a relatively small number of 

data-sets which increases the probability of aborts occurring within the evaluation. Thus, 

TORO and the comparative systems were subjected to scenarios which range from 
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conditions of little/no contention, to input sets which may trigger high contention and/or 

abort rates during operation. 

A diagram of the evaluation setup is shown in Figure 21. As illustrated, a very large 

number of the testing components from the PVS-DS simulator have been re-purposed for 

use in testing TORO. As the original network topology was designed to be both very 

flexible and representative of real-world network conditions, we have elected to re-use it 

completely intact. The event-driven nature of the simulator allows for out-of-order message 

arrivals, thus creating asynchronous network conditions within which to test TORO. While 

we are not using the same multi-layered architecture as PVC-DS, TORO was designed to 

take advantage of a fully decentralized communications overlay. Thus adding a lower layer 

of non-DHT nodes would provide little benefit to the system, or would give TORO an 

unfair advantage over comparison systems. However, it would be a relatively 

straightforward task to add this functionality into the existing TORO architecture in the 

future. 

Like PVC-DS, TORO and its comparison architectures were tested with varying 

network sizes, ranging from 100 nodes to 1000 nodes, in increments of 100 nodes. As the 

query-inputs were derived from real-world benchmark calculations, the inputs were 

processed by each configuration in sequential order with no delay between transactions. 

This corresponds to the real-world equivalent programs accessing the data items needed for 

execution in serial order. As both BlackScholes and Canneal were designed to operate in a 

multi-threaded capacity, each execution thread within the inputs was assigned to a different 

node, corresponding to the parallel execution of a program on a shared data-set by multiple 

nodes within a cluster. Scenarios like this are how we envision virtual clusters, similar to 
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those deployed by PVC-DS, would be utilized. Once deployed by PVC-DS, each cluster 

node would begin execution of its sub-task on a large shared data set, while relying on 

TORO to maintain the consistency of shared data objects used by the executing worker-

processes on each virtual cluster node. Like PVC-DS, the size of the system load was 

varied to match the system size. 

In the case of BlackScholes and Canneal, the total number of transactions input into the 

evaluation was set as a fraction of a single static input set. For example, as the 

BlackScholes benchmark corresponded to 12800 total data-access requests, the 100-node 

evaluation was made to execute the first 1280 transactions, the 200-node evaluation the first 

2560 transactions, and so forth, with the 1000-node evaluation receiving the full 

BlackScholes transaction-input set. This ensured that every evaluation was directly 

comparable to each other, as each successively larger input-load included the same 

transactions as its smaller preceding evaluation load. 

4.5 Results 

The execution times for the BlackScholes benchmark are shown in Figure 22 and 

Figure 23. The non-replicated configuration in Figure 22 exhibits a modest decrease in 

execution time of 5.5% over the traditional locking implementation. However, the benefits 

of transactional memory become clear when combined with replication, as illustrated in 

Figure 23, where TORO exhibits a decrease of approximately 83% over the locking 

configuration. This is due to the BlackScholes benchmark being comprised of Read-Only 

(RO) and Write-Only (WO) transactions, where the transactional components of TORO 

allow any RO or WO transaction to be serialized and committed immediately. 
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Figure 22. Execution times for non-replicated BlackScholes benchmark. 

In comparison, the locking implementation requires that any shared object being opened 

in RO-mode must acquire at least a non-exclusive lock by the reading process (denying any 

other process from writing to the object), while WO access demands an exclusive access 

(denying other processes access to the shared object entirely). Transactional access removes 

both of these limitations, thus allowing processes to either read from or write to shared 

objects without waiting for other processes to release the shared object. 



 

108 
 

 

Figure 23. Execution times for BlackScholes benchmark with replication enabled. 

While both the non-replicated (Figure 22) and replicated (Figure 23) configurations 

benefit from transactional data access, the replicated data configuration allows multiple 

copies of the object to be made available for read-access. Write access to the replicated 

objects requires more time, as the writes in TORO are serialized through the master-node. 

However, as the majority of the transactions in the BlackScholes benchmark are RO-access 

requests, the replica-nodes can intercept and service these read-requests from remote clients 

without having to wait for synchronization from the master-node. In contrast, as all read-

access requests must be serialized through the master-node in the locking configuration, the 

master-node becomes a bottleneck for the read-requests, thereby inducing performance loss. 
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Figure 24. Execution times for non-replicated Canneal benchmark. 

Like BlackScholes, the Canneal benchmark also exhibits decreases in execution time 

under TORO. Figure 24 shows the execution of Canneal under non-replicated 

configurations. In this case, the performance gain is approximately the same as that shown 

by the BlackScholes benchmark, with an approximate decrease in execution time of 5.7% 

compared to the locking configuration. Similarly, with replication enabled, the execution 

time decreases by 22.5%. The performance gain provided by TORO, while significant, is 

somewhat mitigated under Canneal by the large number of write-access requests to shared 

objects within the benchmark. This is due to each write-access having to be serialized 

through the master-node to maintain consistency. Nevertheless, write-access requests are a 

relative minority in Canneal, allowing TORO to provide performance gains across the 

majority of the benchmark. 
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Figure 25. Execution times for Canneal benchmark with replication enabled. 

In addition, WO transactions also benefit from instant serialization, allowing any such 

transactions in Canneal to enjoy this performance gain, with the only loss in performance 

due to the replica-synchronization requirement imposed by TORO for write-access 

requests. However, as the replica-nodes in TORO are chosen with network link-delay in 

mind, the loss of performance due to inter-node communications latency is minimized, thus 

allowing enhanced synchronization performance between the master-node and replicas. 

The high-contention scenario was the final evaluation run against the tested 

architectures. Although this evaluation contains a much higher incidence of contending 

read/write transactions than would normally be encountered by most parallel applications, it 

serves to demonstrate how well TORO can deal with these worst-case scenarios, compared 
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to the traditional locking architecture. Figure 26 and Figure 27 illustrate the performance of 

non-replicated architectures with and without transactional support respectively. 

 

Figure 26. Execution Times for high-contention evaluation without replication. 

The transactional components enable about 37% better execution times than the 

traditional locking scenario, which suffers from the high wait-times associated with such 

severe contention scenarios. While the contention instances did result in some transactions 

being forced to abort, the number was relatively low compared to the over transaction 

count; in the worst-case scenario, approximately 50 transactions per evaluation were forced 

to restart, with none being permanently aborted. As a result, the overall time for TORO to 

complete the evaluation was only moderately affected, compared to the locking scenario. 
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Figure 27. Execution times for high-contention scenario with replication enabled. 

This difference in performance is even more marked when replication is introduced, as 

shown in Figure 27. In a replicated scenario, TORO is much better able to take advantage 

of the transactional components to provide performance gains to the non-contending 

components within the evaluation. Like the non-replicated configuration, contention can 

only occur during the serial validation and execution of Read-Write (RW) transactions at 

the master-node. As a result, the average number of transaction-aborts within TORO is 

approximately the same as for the non-replicated architecture. However, the instant-

serialization of both read-only and write-only transactions allows even heavily contending 

transactions to execute without waiting for mutual exclusion, unlike the locking scenario. 

As a result, the execution of the high-contention scenario is almost 90% faster in TORO 

than with locking. 
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The effects of larger or smaller sized replica groups were also investigated. Although 

the evaluations showed little difference in benchmark execution times for TORO, largely 

due to the additional time required for write-synchronization being offset by the decreased 

time required for a portion of read-only requests, they are intercepted and answered by 

replica-nodes in lieu of the master node. In practice, increasing replica nodes may have a 

beneficial effect when executing RO-dominant jobs, albeit at the cost of additional replica-

group initiation time and increased traffic overhead required to maintain the soft-state status 

of each group replica. 

 

Figure 28. Query traffic generated by the BlackScholes benchmark over 1000 nodes. 

Finally we examine the traffic generated by TORO and the comparison architectures for 

both the BlackScholes and Canneal benchmark evaluations. Figure 28 shows the query 

traffic generated by each of the architectures as they evaluated the BlackScholes benchmark 

over 1000 nodes. As the query traffic comprised the vast majority of the overhead 
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generated by the tested systems, it was omitted from the graph. It should be noted that the 

synchronization communication between the master-node and its replicas was considered as 

part of the query traffic and is thus included in the overall traffic calculations. The other 

traffic which we have chosen to omit is related to initial replication-group construction and 

associated keep-alive messages, which is very infrequent and is not considered significant 

in this evaluation. 

 

Figure 29. Query traffic generated by the Canneal benchmark over 1000 nodes. 

As Figure 28 shows, TORO generates a moderate amount of additional traffic compared 

to the alternate systems, but the reward associated with this additional overhead is worth the 

additional performance in a replicated scenario. Even under the relatively contention-free 

conditions of the BlackScholes benchmark, the locking architecture generates its traffic 

over a much longer period of time, indicating much lengthier transaction durations. Traffic-
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wise, TORO is only slightly more expensive than the traditional centralized locking 

architecture. 

In comparison, under the Canneal evaluation (Figure 29), the TORO traffic overhead is 

lower than the traditional locking architecture in both replicated and non-replicated 

configurations. Traffic-wise, TORO produces about the same volume of traffic as its non-

replicated STM-enabled counterpart, with similar execution times. As the graph illustrates, 

both locking architectures continue to produce traffic well after both the non-replicated 

Software Transactional Memory (STM) and TORO have completed, indicating longer 

execution times. 

4.6 Contributions & Conclusions on TORO 

Our research demonstrates a new mechanism for storing and replicating data in a 

distributed Peer-to-Peer overlay architecture. In contrast to existing replicated storage 

architectures which rely on existing overlay constructs or configurations, TORO’s replica-

discovery mechanism enables dynamic data replication with a strong focus on the reduction 

of access time, thus improving the performance of applications utilizing the replicated data. 

Our modifications to the transactional algorithm simplify contention management, yet 

retain performance gains matched to the increase in replica-group size, thereby increasing 

the scalability of the architecture. 

Overall, TORO has demonstrated significant improvements over traditional locking 

architectures in the execution of several well-established benchmarks and test scenarios. 

While the improvements made in some areas have been moderate, they illustrate that as a 

replicated storage system, TORO can at least remain on par with traditional storage 

architectures whilst providing the increased redundancy afforded by replicated data. In 
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conjunction with PVC-DS, a user can now rapidly deploy applications over a decentralized 

communications overlay and perform computational work on those distributed applications 

with little to no performance loss, compared to a monolithic computational architecture. 

Both PVC-DS and TORO, by use of various replication and data-synchronization 

techniques, combine to form an integrated framework for the discovery, dissemination and 

manipulation of shared data, even if it is stored on widely-spaced computational resources. 

Thus, the PVC-DS/TORO pair serves to bring many smaller data storage & computation 

resources together to create a unified large resource for users who wish to perform either 

parallel or serial computation on large shared data items. This combination of mechanism 

avoids the additional costs, potential security implications or site disaster risks associated 

with consolidated data-center solutions. 



 

 Conclusions and Recommendations for Further Work 5.

5.1 Conclusions 

The PVC-DS and TORO systems developed in this project demonstrated two major 

components which together, formed (i) an integrated system for the rapid deployment of 

virtual machines (VMs) and applications and (ii) a fault-tolerant distributed storage 

architecture which enables high-performance concurrent access to large data sets. Built 

upon Peer-to-Peer overlay architectures, each component incorporated new features and 

modifications of existing mechanisms to provide such capabilities. 

PVC-DS featured a ChunkCast-based multi-layered architecture which, in concert with 

a new two-stage query system, allows the publishing of dynamic VM-image and package 

data, coupled with the advanced range-query search of this published metadata. 

Modifications to the existing publishing mechanisms within ChunkCast enable contributing 

nodes within PVC-DS to dynamically change the content of their published information 

while allowing these changes to propagate throughout the system. 

Our evaluations of PVC-DS have demonstrated an 85% average reduction in single-VM 

deployment times compared to a single-node repository configuration and an 8% 

improvement over a grouped multiple-node repository configuration. PVC-DS performed 

even more favorably when subjected to multiple-VM range queries, demonstrating a 99% 

and 15% improvement over single-node and group-node repository configurations, 

respectively. In all cases, PVC-DS exhibited only minor increases in query overhead traffic 

and reduced the publish-traffic by about 17% compared to the grouped-node repository 

configuration. 
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TORO uses the routing features of the Chord distributed hash table (DHT) architecture 

to build data-set based replica groups of nodes. Unlike existing DHT-based replication 

approaches, TORO replica groups accommodate network latency during both construction 

and maintenance. This allows replication groups to be dynamically modified to improve 

reliability and/or performance, as required by the end-user. Our modified form of 

transactional data access provides rapid access to shared data items within the replica 

group, while the read-write policy used by TORO simplifies the concurrency mechanism 

and avoids the expensive consensus algorithms of comparative storage architectures. 

Evaluations of TORO with various parallel benchmarks compared favorably to 

traditional non-locking concurrency mechanisms under replicated configurations. Under 

evaluations with a high percentage of read-requests, TORO demonstrated an average 

improvement in benchmark execution time of 83% over traditional locking mechanisms. 

When evaluated using inputs with a moderate number of read-inputs, TORO showed a 22% 

improvement over locking, while a scenario with an extremely high volume of contending 

inputs resulted in TORO gaining a 90% improvement in execution time over traditional 

locking. 

Together, PVC-DS and TORO create an architecture which an end-user can utilize to 

connect multiple small data-centers together to produce a single, unified computational 

resource. This capability provides a viable alternative to either expensive data-center 

upgrades or consolidation of data and computational resources into foreign large-scale data-

centers. 
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5.2 Recommendations for Further Work 

Since our evaluations of PVC-DS and TORO were conducted instrumented simulation 

environments, actual implementations of PVC-DS should be created to fully test the 

integrated components, using actual computational and network conditions. In addition, the 

use of TORO should be investigated as a mechanism for creating scalable variable-accuracy 

computation algorithms will be investigated in the future. By inserting selective termination 

conditions into the transaction abort/restart controls of TORO, end-users will be able to 

control the precision of specific classes of large-scale and long-term computations, 

simultaneously controlling execution time and overhead. 
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ABSTRACT 

Despite the push towards consolidation of both data and computational resources into 

increasingly larger data centers, a majority of companies and organizations still rely on 

multiple small server rooms whose sizes do not exceed 5000 sq. ft. Our research proposes a 

Peer-to-Peer based architecture that provides two of the major services offered by 

consolidated data center systems, namely rapid deployment of large virtual machine (VM) 

images and applications and high-performance distributed storage. Our VM dissemination 

approach uses a new multi-layered design combined with a two-stage query mechanism. 

These enable the publishing and querying of dynamically-changing VM information, 

thereby reducing the deployment time of virtual machines and applications to clients. The 

opportunistic replication of VM data afforded by such dissemination mechanisms was 

further coupled with the replicated transactional mechanisms demonstrated within our Peer-

to-Peer (P2P) based storage scheme. Such combined systems provide the deployed virtual 

machines and applications with a fault-tolerant, high-performance computational space 

upon which to concurrently store and retrieve large volumes of data in a mutually consistent 

manner. Our deployment architecture has been evaluated against existing VM-

dissemination mechanisms and demonstrated significant improvements in VM deployment 

time, with at least an 8% improvement over existing high-performance content-distribution 

designs. Similarly, our data-storage architecture improves the performance of established 



 

128 
 

computational benchmarks by at least 22% over existing replicated storage mechanisms. 

Our developed approaches were also able to facilitate these improvements without a 

corresponding major increase in traffic overhead, even as the size of the evaluated systems 

increased. This demonstrated the scalability of our designs and their suitability for use in 

connecting large numbers of widely distributed data centers.
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