

An Analysis of Accurate, Real-Time Reproduction of 3D Acoustics in Virtual Environments

A Dissertation

Presented to the

Graduate Faculty of the

University of Louisiana at Lafayette

In Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Scott McDermott

Fall 2014

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3687696

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

UMI Number: 3687696

© Scott McDermott

2014

All Rights Reserved

An Analysis of Accurate, Real-Time Reproduction of 3D Acoustics in Virtual Environments

Scott David McDermott

APPROVED:

C.-H. Henry Chu, Chair Christoph Borst
Professor of Computer Science Associate Professor of Computer Science
The Center for Advanced Computer Studies The Center for Advanced Computer Studies

Anthony Maida Mary Farmer-Kaiser
Associate Professor of Computer Science Interim Dean of the Graduate School
The Center for Advanced Computer Studies

Acknowledgments

I would like to acknowledge the many people, both friends and family, who have

supported me (or patiently sat by and watched me toil) through the many, many years that it

took to get to this point. You are too numerous to list here, but your collective strength and

encouragement was the foundation of my efforts. We are nothing without those near us.

Thank you all!

To my wife Diana, who, through the countless years of trials and chaos has learned

how to be patient and yet constant, consistent and yet not insistent. Simply put, there would

have been no possibility of conclusion without your love and encouragement. Thanks are

simply not sufficient.

I would be remiss not to mention my daughter and son, who make my life complete. I

had every intention to complete this before each of your births so that you would not need to

suffer through my distraction. Thank you as well for being patient and understanding. I hope

that you have learned perseverance and resolve from this experience.

Finally, to my advisor, Dr. Henry Chu, others probably cannot comprehend how

patient and helpful you have been through all of these years. Simply put, I would not have

finished this document, many times over, except for your understanding and backing.

Table of Contents

Acknowledgments.. iv

Table of Figures ... ix

Table of Tables ..x

Table of Equations ...11

Introduction ..12
Abstract ..12
What is 3D Sound? ..13
Goals ..15
Objectives ..16

Algorithms ...18
Previous Work ...20

Geometrical vs. Wave Equation Based Methods ...21
Beam Trees (2004) ...22
Accelerated Beam Tracing (2009) ...22
Precomputed Wave Simulation (2010) ..23
Augmented Reality (2011) ...24
Reverberation Shading (2011) ...25
Beam Tracing with Refraction (2012) ...25
Precomputed Acoustic Transfer Operators (2012) ..26
Spatial Sound and Visual Fidelity (2013) ..27
Hybrid Approach - Acoustic Radiance Transfer (2013)28
Wave-Based Sound in Open Scenes (2013) ..29

Current Work ...30
Direct Paths Algorithm ..31
Brute Force Algorithm ...33
Reflected Paths Algorithm ...34
Bouncing Reflections Algorithm ...36
Wall Dispersion Algorithm ..41
Matrices of Impulses Algorithm ..42
Physics Algorithm ..43
Stochastic Algorithm ...44

Design and Implementation ...45
Implementation Overview ...45

Algorithmic Goal ...46
Latency ...47

vi

Object-Oriented Design ...48
The TDS Simulator and Algorithms ..48

The TDS Simulator ..49
Scene3D Data Structure ...52

Environment3D Hierarchy ...52
Structure Data File ...53
Structure Objects ..57
Room Objects ...58
Faces Objects ...58
Wall Openings Objects ..58
Acoustic Materials ...59

Sound3D Data Structure ..59
AcousticsAlgorithm Hierarchy ..60

SoundPlaySimple Algorithm Object..60
SoundPlayDirectX Algorithm Object ..61
SoundPlayAlg Object...62
SoundPlayDirectPaths Algorithm Object ..63
SoundPlayBouncingReflections Algorithm Object64

Reverberations Data Structure ...64
Impulse Response Data Structure ..66
Attenuation Algorithm ...67
Sound Storage ..72

Sound File Storage ...73
Sound Sample Storage ...75

Convolution Algorithm ..77
Integrated Libraries ..80

OpenGL® Library ...82
DirectSound® Library ...83
FFTW Library ..84

Experiment Structure ...89
Testing Modes ..89
Experimental Testing Data Structure ...90

Portability ...90

Research Methods ..93
Introduction ..93
Hypotheses ...95
Experimental Environment ..97
Experimental Procedure ...99
Testing Details ...99

Data and Data Collection ...100
Data Analysis ...100

vii

Results ..102
Introduction ..102
Assumptions ...102

Algorithm Complexity ...102
Sound Files...103
Virtual Environment ..104

Validity ..104
Efficiency Validity ...104
Logical Validity ...107

Experiment Analysis ..109
Testing with Feedback ...110
Testing with Selection ..110
Experiment Setup and Data ...110
Scoring Questions for Statistical Analysis ...111

Statistical Analysis ...113
Data Structure Analysis ...113

Repeated Measures ..114
Distribution ..115

Friedman Test (Non-Parametric, Repeated Measures)116
Limitations ...118
Analysis..120
Post-Hoc Analysis ..121

ANOVA Test (Parametric, Repeated Measures) ...123
Sphericity ...123
Normal Distribution ...124

Kruskal-Wallis H Test (Non-Parametric, Independent)124
Analysis..125
Post-Hoc Analysis ..126

Analytical Analysis ..128
Evaluation ..130

Direct Paths Algorithm Evaluation ..130
Bouncing Reflections Algorithm Evaluation ...131
DirectX Algorithm Evaluation ...131

Hypothesis One Evaluation..133
Hypothesis Two Evaluation ...134
Hypothesis Three Evaluation ...136

Future Work ...140
Acoustic Assumptions ...140
Algorithm Optimizations ...140
Direct Paths Algorithm Expansion ..140
Alternative Algorithm Development ...141
Orientation and Location Thresholds...141

viii

Complicated Rooms and Structures ...141
Experiment Redesign ...142

Conclusion ...143

Appendix ..145
Concept Overview ...145
3D Sound Propagation ...145

Reflection ...145
Refraction ...146
Absorption & Dispersion ...146
Attenuation ...147

3D Sound Perception ...148
Interaural Delay Time ..149
Head Shadow ...150
Pinna Response ..150
Shoulder Response ...151
Head Motion ..151
Vision ...151
Early Echo Response & Reverberation ..152

Computational Issues ...153
Sound API’s ...153
3D Sound Cards ...154
Software vs. Hardware ...156
Surround Sound ...156
Head Related Transfer Function (HRTF) ..157

Experiment Documents ..158
Data File Examples ..158

References ..167

Abstract ..173
Keywords ...174

Biographical Sketch ...175

Table of Figures

Figure 1: Immersive 3D Virtual Environment .. 14
Figure 2: Zero-Order Reflections.. 17
Figure 3: Adding First-Order Reflections ... 17
Figure 4: Up to Second-Order Reflections ... 17
Figure 5: Finite Impulse Response ... 17
Figure 6: Sound Cones (Volume Loss) ... 17
Figure 7: Direct Paths Algorithm .. 30
Figure 8: TDS Running the Reflected Paths Algorithm ... 33
Figure 9: TDS Running the Bouncing Reflections Algorithm ... 36
Figure 10: Dispersion Due to Microscopic Effects on Reflections .. 41
Figure 11: Division into Possible Locations ... 41
Figure 12: TDS Simulator Algorithm Pipeline ... 46
Figure 13: Screenshot of the TDS Application ... 49
Figure 14: TDS Data Structure ... 51
Figure 15: Structure 1.3 Data File Example: An Example House Structure 55
Figure 16: Calculating Attenuation Example ... 72
Figure 17: Initial Results for Testing with Feedback .. 93
Figure 18: Initial Results for Testing without Feedback .. 93
Figure 19: Sennheiser® HD 280 Pro Headphones ... 98
Figure 20: Picture of Experiment Environment .. 98
Figure 21: Waveform for 'dogbark.wav' ... 104
Figure 22: Waveform for 'bounce.wav' ... 104
Figure 23: FIR A (300 reflections, 1,000 paths) ... 108
Figure 24: FIR B (300 reflections, 1,000 paths) ... 108
Figure 25: FIR C (10,000 reflections, 10,000 paths) .. 108
Figure 26: FIR D (10,000 reflections, 10,000 paths) .. 108
Figure 27: TDS Running in Testing Mode with Feedback ... 109
Figure 28: Linear Histograms for Datasets ... 116
Figure 29: Comparable Analytical Analysis of Algorithms ... 128
Figure 30: Comparable Analytical Analysis of Algorithms over Time 129
Figure 31: Interaural Delay Time due to Avatar Orientation ... 149
Figure 32: The Anatomy of the Ear .. 149
Figure 33: Echo vs. Reverberation.. 152
Figure 34: Generated Impulse Response .. 152
Figure 35: Dolby 5.1 Speaker Placement (Hull, 1999) ... 155
Figure 36: The Neumann KU 100 Dummy Head (Neumann, 2007) 155

Table of Tables

Table 1: Direct Paths Algorithm Pseudo-Code ... 32
Table 2: Reflected Paths Complexity Levels .. 34
Table 3: Reflected Paths Algorithm Pseudo-Code ... 35
Table 4: Code for Generating Directions in Bouncing Reflections Algorithm 39
Table 5: Bouncing Reflections Algorithm Pseudo-Code .. 40
Table 6: Structure 1.3 Data File Example: An Example House Structure 57
Table 7: Calculating Attenuation Pseudo-Code and Example Calculations 71
Table 8: Sound Storage Data Types and Conversion Functions ... 76
Table 9: Convolution Algorithm Pseudo-Code .. 78
Table 10: Multiplication in the Frequency Domain Pseudo-Code ... 79
Table 11: FFTW Loading Process .. 88
Table 12: Experimental Data Storage Format .. 89
Table 13: Experimental Hypotheses ... 95
Table 14: Computer Specifications Used in Experiments .. 97
Table 15: Testing Modes for the Experiment ... 100
Table 16: Bouncing Reflections Complexity Increments ... 103
Table 17: Average Algorithm Runtime (ms) for the Bouncing Reflections Algorithm 105
Table 18: Average Runtime (ms) Breakdown for the Bouncing Reflections Algorithm 106
Table 19: Example Score Calculations ... 112
Table 20: Breakdown of Experiment Data Variables ... 114
Table 21: Data Transformation for Friedman Test ... 117
Table 22: Assumptions and Justifications for Statistical Tests ... 119
Table 23: Freidman Test P Value Summary ... 120
Table 24: Wilcoxon Signed-Rank Test P Value Summary .. 122
Table 25: Kruskal-Wallis H Test P Value Summary .. 126
Table 26: Mann-Whitney U Test P Value Summary .. 127
Table 27: Average Scores for Algorithms by Complexity Level ... 139
Table 28: Sound Attenuation (dB/km) (Bacon & Jarvis, 2007) (ISO 9613-1, 1993) 147
Table 29: Experiment Instructions Transcript .. 159
Table 30: Experiment Consent Form Example ... 160
Table 31: Avatar 1.0 and SoundSource 1.2 Data File Examples .. 161
Table 32: Scene 1.2 Data File Example: A Large-Scale Environment Configuration 163
Table 33: Structure 1.3 Data File Example: A Simple House Structure 164
Table 34: Structure 1.3 Data File Example: A Complicated Warehouse Structure 166

Table of Equations

Equation 1: Convolution of Impulse Responses ... 17
Equation 2: Convolution of Sound [X] with Impulse [i] .. 78
Equation 3: Accuracy Score for Testing WITH Feedback ... 111
Equation 4: The Intensity of a Spherical Wave at Radius [r] ... 148
Equation 5: The Decibel (dB) Level of a Spherical Wave ... 148

Introduction

Abstract

Many of the applications, virtual environments, and video games available to average

computer users integrate stunning three-dimensional (3D) graphics and real-world

visualizations. Developers spend an extraordinary amount of time and effort creating these

immersive, realistic virtual environments, primarily focusing on the graphics components.

Within these virtual realities, the user should easily perceive the locations of sound sources

accurately, as well as the acoustic nature of the environment. However, for reasons of

economy and simplicity, most developers apply readily available industry standards for

generating pseudo-3D sounds in their applications. This research explores the shortcomings

of these standards, proposes an effective alternative, and provides a detailed analysis of the

various possible approaches.

This project includes a number of computationally efficient, physics-based 3D

acoustics simulations, each of which will produce realistic aural reproductions. The primary

goal is to evaluate and compare these algorithms against each other, non-3D sound

reproduction, and the current industry standards (e.g. Microsoft's DirectX® pseudo-3D

algorithm). We will test three hypotheses. First, users will find that physics-based 3D

algorithms will render improved auralization reproductions compared against industry

standards like DirectX® and/or OpenAL. Second, localization and spatialization will

improve with user training when using these algorithms. Finally, we should discover an

unambiguous ranking system for the quality of each tested algorithm.

13

What is 3D Sound?

Of the five human senses, society generally regards vision as the most significant to

survival. People constantly depend on sight for daily activities in order to navigate through

their surroundings without accident or injury. Next in line of importance to survival would

easily be the sense of sound. When one suddenly loses the ability to hear, he is almost as

vulnerable as if he were blind. Audio cues constantly give volumes of information about

what happens in proximity to the listener. These cues allow individuals to avoid collisions

with other objects, know the relative location of something or someone, and especially

facilitate communication. Keeping this in mind, to create effectively a convincing virtual 3D

environment we must include sound and noise in any reproduction. Without accurate

acoustics, a virtual 3D experience could easily become as frustrating as watching TV without

the sound. Yet, is it enough simply to play the appropriate sounds for the environment? How

accurately must we represent the 3D sound reproduction?

In order to answer this question, one must first understand the final product of what a

3D virtual environment, or virtual reality, attempts to accomplish. Concisely, a user should

find himself in a completely immersive simulated experience in which it becomes difficult, if

not impossible, to distinguish between reality and illusion. Ideally, this would look similar to

the "holodeck" portrayed in the science fiction genre (Weinberger, 2007) where the actors, or

avatars, actually walk into a generated virtual environment and completely interact with the

characters and the surroundings. However, the current level of technology in computer

graphics, processor speed and bandwidth, haptic responses, and audio synchronization do not

allow for this level of experience, so we must approximate it. Presently, some of the more

advanced 3D environments use multiple screens surrounding the user, displaying in two-

14

dimensions a computed 3D virtual environment (Courchesne, 2007). This gives a rough, but

convincing sense of visual 3D immersion. As graphical and general processing speeds

increase, these simulations will become even more impressive. However, most of these

applications employ decades old sound processing techniques and algorithms or simply use

none at all! It is uncertain why sound has taken a backburner to visual development

(Flaherty, 1998), but we see some evidence that sound processing has become more

important to these immersive virtual environments. Many programming libraries currently

available include at least a nod, if only trivial, to 3D sound algorithms (see “Sound API’s” on

page 153).

This paper approaches the concepts and dilemmas associated with 3D virtual sound

calculations. We first explore the current state of the art and industry standards for dealing

with sound and 3D sound on computers. Additionally, we provide an analysis of past and

current research dealing with 3D sound calculations, followed by a detailed breakdown of the

algorithms used in this research. Next, a discussion of the actual implementation includes

details about the simulator, computation considerations, data structure designs, and

programming issues. We then employ this simulator in a formal experiment to determine the

Figure 1: Immersive 3D Virtual Environment

15

best algorithm and methods to ascertain our conclusions. A detailed examination of the

experiment and research methods follows, as well as formal analysis of the results and the

effectiveness of the simulator and the algorithms investigated. Finally, we provide an

appendix that includes an examination of the physical and physiological aspects of sound

within the real world, and how they apply to virtual 3D sound. The appendix also contains

technical aspects appropriate to the topic that might otherwise distract from the discourse at

hand.

Goals

This research intends to provide a better understanding of the implementation and

importance of 3D sound in virtual environments. Undeniably, both industry and academic

environments have historically undervalued 3D sound. Focusing resources on this topic will

encourage the devolvement of truly immersive virtual worlds which society can benefit from

in uncountable ways. As always, the fundamental difficulty lies in the implementation.

Algorithms for 3D visualization have evolved over decades from slow offline techniques

such as ray tracing to real-time libraries and hardware realization (see “Computational

Issues” on page 153) to blazing fast hardware supported libraries that can generate complex

graphics in real-time. Creating analogous algorithms and eventually libraries and hardware

for 3D sound will certainly lag behind what end-users will desire once the industry adopts

proper standards for 3D acoustics. In a sense, the cliché “If you build it, they will come”

could easily apply to 3D sound algorithms, as we can make arguments that more realistic

acoustics will only improve the overall experience in any virtual environment.

16

Objectives

The two most important aspects of this research are the design, development, and

implementation of specific 3D sound algorithms and thereafter the determination of methods

for assessing and comparing the effectiveness of such algorithms. This manuscript includes a

thorough description of the algorithms created for this research as well as design choices

made in the process of development. We will provide pseudo code and data structure

abstractions to convey the nature of the formal source code of the research. In order to

analyze the appropriateness and effectiveness of these algorithms, we have developed a

prescribed study involving test subjects and included a detailed explanation of this

experiment. An analysis of the experiment follows this, complete with conclusions and

considerations for further development.

17

Figure 2: Zero-Order Reflections Figure 3: Adding First-Order Reflections

Figure 4: Up to Second-Order
Reflections

Figure 6: Sound Cones (Volume Loss)

Figure 5: Finite Impulse Response

τττ

τττ

dtxhty

dtxhty

RR

LL

)()()(

)()()(

0

0

−=

−=

∞

∞

Equation 1: Convolution of Impulse
Responses

Algorithms

At the heart of any approach to the problem of providing realistic 3D sound in virtual

environments will be the creation and evolution of effective algorithms. The purpose of any

3D acoustic algorithm is simple and specific. Regardless of the methods used, any valid and

effective algorithm will most likely need to generate a finite impulse response, or FIR

(Figure 5) that represents the acoustic relationship between the sound source, the virtual

geometry and spatialization, and the listening avatar (see “3D Sound Perception” on page

148). Since we store most digital sound in basic mono or stereo formats, reproductions must

determine, generate, and apply all acoustic spatial properties. For this research, we begin

with only 8-bit or 16-bit monophonic PCM audio files (see “Sound Storage” on page 72) and

transform the audio stream to stereo with a 3D nature.

Consider a geometrically simple virtual space (Figure 2 through Figure 4) and sound

emanating out from a source equally in all directions. Sound will reach the listener avatar in

three manners. First, sound can travel line-of-sight straight to the listener. This direct path

sound is the most obvious path and the most important acoustically. Also called the zero-

order path (Figure 2), the direct path is almost always the loudest, first to arrive, and the

clearest. It gives the listener the most relevant information about the nature of the sound,

including clear content, initial directionality and distance, and many other cues (see “3D

Sound Perception” on page 148). The next type of sound the avatar perceives consists of the

early echoes, or initial reflections. As detailed in the appendix, an approximate point in time

exists when sound changes from early echoes to reverberation. The acoustic nature of the two

has significant impact on sound localization and especially spatialization and therefore we

consider important to the algorithms. Figure 3 and Figure 4 illustrate some of the first-order

19

and second-order paths, respectively. These diagrams, by no means, present all appropriate

paths emanating from the sound source.

Implementation and the formal data structure design may vary between approaches,

but the concept and how to utilize a FIR typically remains constant. When each path, from

zero-order to second-order and beyond, reaches the listener from the sound source, we record

a hit, or impulse, at the appropriate time and volume level. Since sound travels at perceptible

speeds and the volume depreciates as it propagates through air, the resulting set of pings

produces an array of impulses that to some extent can describe the room. Figure 5 diagrams

an example of a FIR, graphed volume versus time. The y-axis in the example represents the

volume of the impulse, but we can invert it to determine the volume level loss of the original

sound for playback (see “Early Echo Response & Reverberation” on page 152). With this

FIR in hand, we simply replay the original sound file repeatedly at the proper times and

according to the calculated (generally exponentially decreasing) volume levels. Discussion of

both our design and implementation follows as well as consideration of the acoustic engine

design and algorithms.

For the purposes of virtual environments, we can assume the sound sources exist as

generally infinitely small points in space with sound radiating out in all directions equally

(Stephenson, 2013) and without a physical dimensional sound field based on the shape of the

object. Initially, we treat a person talking in the same manner as a dog barking or a door

closing: just a point in space, centered on or in the object, radiating sound outward. Our

approach can compensate some for these assumptions by considering the direction and

orientation of the sound source within the algorithm. Furthermore, we can, in effect, apply

some of the spatial interference from the mass and shape of the object through directional

20

volume level cones. These cones consist of three encompassing regions where we can

dampen the sound volume depending on direction emanating from the source (Figure 6) from

full volume in front of the object to none or almost no sound behind the object. These

assumptions significantly simplify calculations while still allowing directionality of the

sound source.

In the next section, we describe and analyze other proposed approaches to the

problem of creating virtual environments with 3D sound. This will include both academic

and industrial approaches. Subsequently, we will illustrate in depth the various approaches

we have taken and then investigate and compare the results of these implementations.

Previous Work

Though relatively little direct development (Vorländer, 2011) (Stephenson, 2013) has

occurred in this specific field, a number of related works have contributed to 3D sound

generation. In the appendix of this paper (see “Computational Issues” on page 153), we will

explore the industrial technical developments that have supplemented this research.

Effectively though, the computer industry has contributed little to nothing appreciable to this

field in the past few decades. Programming libraries such as Microsoft’s DirectX

DirectSound® and Creative Lab’s OpenAL® have demonstrated an aspiration toward 3D

sound enrichment. However, industrial follow-through, investments, and development in

these utilities have truly fallen short of inspirational.

Despite the direction (or lack thereof) of industry development in this field, a small

set of dedicated researchers have applied some degree of effort in developing true 3D sound

algorithms. Here we discuss some academic enhancements and consider their impact on the

field of 3D sound reproduction.

21

Geometrical vs. Wave Equation Based Methods

Fundamentally, almost all development in this field boils down to one of two

approaches, or some hybrid thereof (Antani, Chandak, Savioja, & Manocha, 2012)

(Raghuvanshi, Snyder, Mehra, Lin, & Govindaraju, 2010). Relatively visually and

computationally simple, geometrical models attempt to treat sound as particles, emanating

from a sound source in all directions. This approach includes ray-tracing, image source

reflections, and beam trees as well as the algorithms developed in this research. Though the

specifics of design and efficacy might vary dramatically between systems, geometric models

typically suffer from the same concerns. Since they are not frequency dependent, geometrical

models by nature do not provide refraction or phase control and generally remain accurate

only for higher frequency signals. Geometrical techniques can generate low-ordered

reflections extremely fast and accurately, but have questionable performance with respect to

reverberation and other sophisticated acoustical properties.

On the other hand, true wave equations methods theoretically avoid these issues. This

set of solutions treats sound from a physics-based perspective, attempting to solve second-

order partial differential equations, in real-time. Algorithms utilizing finite-element and

boundary-element methods as well as finite-difference time-domain comprise this group.

Wave equation methods do not suffer from frequency related constraints and should offer a

superior, generalized solution to 3D virtual acoustics. However, they do so at a dramatic cost

of extreme processing and storage requirements, rendering them almost impractical for real-

time implementation on modern processors.

A small, third set of research includes statistical models. These approaches generally

produce efficient, but inferior results compared to geometric or wave equation methods.

22

We make note that, regardless of the approach, almost all research in this field begins

with the fundamental premise of the goal to calculate a finite impulse response (see

“Algorithmic Goal” on page 46) in some form. After calculation, the research uniformly

agrees that the system should convolve the FIR with a monaural sound signal to produce a

3D acoustic effect. Unsurprisingly, the difference lies in computing this impulse response.

Beam Trees (2004)

A group of researchers at Princeton (led by Thomas A. Funkhouser) historically were

some of the very few who have spent any amount of time on this topic. They have

approached this challenge from a data structure point-of-view. By using beam trees to

optimize retrieval, they have created a system that pre-computes direct paths of what they

call beam tracing. Their system is generally efficient with real-time results but makes some

major assumptions. First, they assume that beam tracing will produce accurate results, even

though they state early on that similar algorithms are subject to “aliasing and errors in

predicted room” (Funkhouser, Carlbom, Elko, Pingali, & Sondhi, A Beam Tracing Approach

to Acoustic Modeling for Interactive Virtual Environments, 1998). It is still not evident that

the use of beam trees alleviates this. Second, the algorithm they designed is dependent on the

environment not changing. Though this is a logical assumption, it would be nice to have a

dynamic algorithm. Finally, the sound source and listener locations must be stationary.

Unfortunately, this research group has published nothing for this topic since 2004. However,

other groups have attempted to extend this approach.

Accelerated Beam Tracing (2009)

The developers of this approach (Laine, Siltanen, Lokki, & Savioja, 2009)

significantly enhanced the previously described beam tracing method by incorporating

23

common sense algorithm optimizations. This new system reorganizes and simplifies the

precalculation data structure, making considered and logical assumptions on the required

data. Additionally, they have dramatically optimized the run-time algorithm by eliminating

unnecessary beam propagations. The authors have even included predictive methods (buckets

of path nodes to skip) to further scale processing requirements.

Unfortunately, this method still suffers from speed and resource limitations. The

authors attempt to allow movement of the listener by forcing updates to the “precalculations”

as the listener moves. Assuming the system can process these calculations fast enough, this

approach has merit. However, results show that it can only handle spaces with “moderate

model complexity” in real-time. Finally, the article does not include any evaluation of the

efficacy, subjective or objective, of this research.

Precomputed Wave Simulation (2010)

Though a wave equation approach should produce far superior results than a

geometrical model, this research (Raghuvanshi, Snyder, Mehra, Lin, & Govindaraju, 2010)

lies more in the realm of proof of concept than a potential solution. The researchers have

attempted to produce a purely wave equation based solution that runs in real-time. To make

this extremely complicated solution run in real-time, the main contribution of this approach is

to divide the space into a grid and interpolate FIRs at run-time.

To be fair, the final product does in fact run extremely fast. However, the many major

assumptions call into question the correctness of the solution. Most notable of these

assumptions include interpolating impulse response over a 2D grid, locking the listener to a

2D plane, employing a “frequency trend representation” for impulse responses, and the

confusing statement that “in many applications, the listener’s position is more constrained

24

than the sources’.” Even anecdotal review of the simulation supports these concerns, as the

reverberation often becomes distracting, if not disturbing. In fairness, to date, this research

constitutes the first and possibly only wave equation based real-time approach and certainly

begs for future development.

Augmented Reality (2011)

In Finland, the Department of Media Technology at Aalto University School of

Science has come across a unique approach to immersive virtual environments. They have

brought together the critical aspects of virtual reality, both visual and audio, into one research

group. Ostensibly, this could afford a more balanced and enhanced virtual experience.

Unfortunately their primary focus resides in virtualization (3D sound reproduction) or as they

describe it, augmented reality.

The approach in their audio augmented reality research has applicable similarities but

does not directly address the dilemmas put forth in this paper. They are primarily concerned

with the “cocktail party effect” (Gamper & Lokki, 2011) and virtually placing sound sources

relative to a listener in a virtualized acoustic space. A listener using proprietary earphones is

able to virtually position multiple audio streams in order to separate and distinguish

conversations. He accomplishes this by snapping his fingers in front of him, causing a sound

source to appear to originate from that location.

Though impressive and potentially useful, the main portion of the research resides in

stereoscopic reproduction. However, the manner of determining the relative locations of the

snapping somewhat parallels the research in this paper. The specially designed earphones

include small microphones that allow a mixer to find the snapping sound. Using various

audio processing techniques, the system generates an impulse response of the physical room

25

from the location of the snap. The system then convolves a monaural audio signal with the

processed response to create a convincing virtualization in a physical space. In a sense, this

research lies somewhere between HRTF refinement and true 3D virtualization.

Reverberation Shading (2011)

Though the authors of this paper (Cowan & Kapralos, A GPU-Based Method to

Approximate Acoustical Reflectivity, 2011) do not address the problem of sound localization

in 3D virtual environments, they provide a unique approach to 3D sound spatialization. This

research falls into the statistical category with respect to algorithm approach. Instead of

calculating numerous mathematically intensive sound paths from sources, they use readily

available graphics shading algorithms to estimate the global reverberation effect of the room.

The system analyzes the relative distance and orientation of each surface, while considering

reflection/absorption values, and computes an overall room reverberation factor. Clearly, this

heuristic model cannot accurately account for all properties of a given space, but when

dealing with only the reverberation portion of sound virtualization, the approximation may

have merit. Given the relative simplicity of this approach, it is certainly tempting to include it

in future research. Unfortunately, the authors do not offer any formal analysis of the efficacy

of this procedure.

Beam Tracing with Refraction (2012)

This research extends the previously described beam tree algorithm by focusing on

refraction. Ray tracing approaches such as beam trees, image reflections, and those presented

in this document suffer from lack of refraction because they do not consider phase and

frequencies of the source signal and propagation through diverse boundary conditions. The

authors of this paper (Sikora, Mateljan, & Bogunović, 2012) attempt to address this

26

deficiency by creating a complicated, robust data structure and algorithm sensitive to these

concerns. The primary difference between this research and generic beam trees lies in the

subdivision of beams when the algorithm encounters boundary surfaces between two media.

While ostensibly effective, this algorithm does not run in real-time and requires extensive

resources. However, future refinement and optimizations could lead to practical hybrid

applications. Unfortunately, the authors do not offer any formal analysis of the efficacy of

this procedure other than numerically comparing to other known models.

Precomputed Acoustic Transfer Operators (2012)

This relatively new approach (Antani, Chandak, Savioja, & Manocha, 2012) to 3D

sound in virtual environments has incredible potential for future implementation.

Precomputed Radiance Transfer method encodes light propagations between surfaces in a

scene, which allows for quick estimation of diffuse lighting during rendering. Based initially

on this method, this approach attempts to predetermine the effects and impact of

reverberation from the virtual surfaces on the listener and sound source configuration.

Though the designers have made quite a number of assumptions to optimize the efficiency of

the algorithm, since they only intend to use this method to calculate reverberation, the results

may be sufficient. Even in extremely complex environments and allowing common ray-

tracing approach to determine low-ordered reflections, this method clearly runs at very close

to real-time. The authors clearly have exerted much effort in carefully considered

optimization of precalculations and data storage routines. Regardless, the demands on

processor and storage outside of run-time are substantial.

Unfortunately, this paper only describes the technical merit of this approach. Though

extremely detailed in the mathematics and rationalization behind the algorithm design, the

27

authors neglect to examine the effectiveness of the algorithm. Does this produce superior or

even effective results? How would altering the allowed variables formally affect the

auralization? The researchers indicate that the system can scale to processor load, but leave

the analysis in the mathematical realm only. Finally, as the authors note, this approach still

suffers from the same dilemmas that plague all geometric designs. Informal evaluation of the

video demonstration provided by the authors leads us to believe this approach has strong

potential and merits further exploration.

Spatial Sound and Visual Fidelity (2013)

The authors of this recently published paper (Cowan, Rojas, Kapralos, Collins, &

Dubrowski, 2013) fully acknowledge the importance of proper 3D acoustics in virtual

environments and yet have only recently begun to explore implementation and efficacy. They

repeatedly state that the audio component must “go far beyond traditional stereo and

surround sound techniques.”

Unfortunately, this experiment has numerous fundamental flaws. First, the authors set

the stage in a virtual operating room, asking the user to perform knee arthroplasty.

Unquestionably, the average computer user could find this type of task intimidating and

unapproachable. Second, the experiment allowed for variation of shading levels—distracting

the focus from the auditory aspect. Third, the 3D acoustic portion of the experiment

incorporated a generic HRTF approximation on an actual drill sound. Finally, the experiment

task was incredibly simple, the focus group too small (ten people), and evaluation was based

on a user inputted ranking system. The authors unsurprisingly did not find a correlation

between sound spatialization and visual fidelity.

28

Hybrid Approach - Acoustic Radiance Transfer (2013)

This very recent paper (Southern & Siltanen, 2013) discusses the inherent problems

with 3D acoustics in virtual environments. Though the authors do not offer any substantial

evaluation or analysis of their proposal, the concepts brought forth certainly require further

examination. The paper asserts that, due to the frequency dependent nature of sound

propagation and reflections, one algorithm for computing an impulse response is insufficient.

Rather, the authors propose a combination of three divergent models. By exploiting the

strengths of three different methods, this approach has the potential to generate superior

acoustic realizations. This research group suggests using beam trees, or some geometric

propagation model for early, general reflections. The Finite Difference Time Domain

(FDTD) algorithm handles lower frequencies since it approximates pure wave equations.

Finally, the Acoustic Radiance Transfer (ART) takes over for higher frequencies caused by

later reflections, or reverberation. The latter method uses an energy-based boundary element

algorithm that lies somewhere between ray-based and wave equation approaches (Siltanen,

Lokki, & Savioja, Rays or Waves - Understanding the Strengths and Weaknesses of

Computational Room Acoustics Modeling Techniques, 2010).

The authors acknowledge the inherent awkwardness of combining multiple

approaches into one FIR for convolution purposes. They do offer an “empirically derived”

modifier to mitigate this issue. However, the research offers no evaluation or analysis to

justify this approach. In fact, reviewing the numerous publications regarding the Acoustic

Radiance Transfer method, it is apparent that this algorithm cannot solve the problem alone

as the authors repeatedly offer hybrid approaches that seem to mitigate the shortcomings of

29

ART. Once again, we find no formal or even subjective analysis of the efficacy of this

approach.

Wave-Based Sound in Open Scenes (2013)

Recently, the research group at UNC has put forth another solution based on wave

equations. This paper (Mehra, et al., 2013) in some sense compliments the 2010 approach by

focusing on spatialization in large, open spaced scenes instead of smaller, enclosed spaces.

The mathematics and physics inherent to the different spatial environments require

significantly different approaches to solving wave equations efficiently. In this case, the

designers have divided the scene into objects and enclosed each object in boundary areas.

They then generate transfer functions to predict the “acoustic behavior” of objects with

respect to each other and the source and listener objects. At runtime, the system parses and

combines these transfer functions to generate meaningful sound spatialization.

Due to the extremely complicated math involved, most of the calculations occur

offline. Even using a 64-node CPU cluster, precomputations require on the order of hours to

process. However, storage requirements fall in the more reasonable range of tens of

megabytes. Unfortunately, mostly due to the nature of the processing requirements, the

system has quite a few significant limitations. Either sources or listeners must remain static

and it requires static scenes in general. Furthermore, the algorithm cannot model Doppler

effects and larger scale outdoor scenes (larger than kilometers) require too much memory.

Yet, the system does run smoothly, apparently in real-time. However, the authors only

provide mathematical analysis of validity and offer no evaluation of efficacy. Anecdotally,

the provided simulations in the video suggest that the approach works sufficiently, but these

have limited scope of content. Unlike the previous wave equation model for enclosed spaces,

30

we generally find the spatialization enhances perception, with some exceptions. Often,

though, the simulator actually exaggerates some effects to the point of distraction.

Current Work

The primary goal of this research is to develop our own 3D sound algorithms and

measure them against each other and at least one industry standard algorithm. To do this, we

have developed a robust 3D virtual environment simulator (see “The TDS Simulator” on

page 49) from the ground up. This simulator allows us to implement any number of 3D

sound routines and even design an experiment to evaluate the effectiveness of each.

This work has many avenues for further development. Future work may include

adding and refining algorithms, calculations over multiple rooms and multiple structures,

taking into effect other acoustical properties or cues, and allowing for run-time virtual

environment changes. Though the simulator and algorithms run on a Windows® platform,

the basic code remains strictly portable (see “Portability” on page 90) to other programming

environments. Furthermore, we plan enhance methods of objectively comparing the results of

concurrent algorithms. Because the simulator allows for analysis of multiple algorithms

simultaneously, the logical next step would include development and investigation other

Figure 7: Direct Paths Algorithm

31

methods of generating 3D sound. Below we describe our algorithms, both implemented and

proposed.

Direct Paths Algorithm

The first algorithm we developed specifically compares to those used by industry

standards such as Microsoft’s DirectX DirectSound® and Creative Lab’s OpenAL®. This

routine calculates only the zero-order path (see Figure 2 on page 17) where sound travels

directly from the source to the listener. We actually consider two paths separately, one for

each ear. This innately allows for stereoscopic auralization based on interaural delay time,

head shadow, and head motion (see “3D Sound Perception” on page 148). Sound will

naturally arrive at one ear a few milliseconds before it reaches the other ear, depending on

the proximity between the listener and sound source and the orientation of the listener

relative to the source. See Figure 7 for an illustration.

This approach consists of only the most basic requirement for generating 3D sound. It

does not take into account any aspects of the virtual environment except the locations and

orientations of the generating sound source and the listening avatar. The algorithm ignores

room geometry, surface properties, and all other forms of interference and obstructions. We

include this algorithm in our development and experiments for one reason: comparison to

industry standard algorithms. Both Microsoft’s DirectX DirectSound® and Creative Lab’s

OpenAL® only consider the zero-order path. Any effects of reverberation, echoes, or other

acoustic enhancements come from uncorrelated filters. The current OpenAL® specification

[http://connect.creativelabs.com/openal/Documentation/OpenAL%201.1%20Specification.htm] states:

32

OpenAL (for "Open Audio Library") is a software interface to audio
hardware. The interface consists of a number of functions that allow a
programmer to specify the objects and operations in producing high-quality
audio output, specifically multichannel output of 3D arrangements of sound
sources around a listener…

OpenAL does include extensions compatible with the IA-SIG 3D Level 1 and
Level 2 rendering guidelines to handle sound-source directivity and distance-
related attenuation and Doppler effects, as well as environmental effects such
as reflection, obstruction, transmission, and reverberation.

Note that OpenAL® treats important acoustic information such as reverberation and

reflections as secondary “effects” and makes no formal effort to calculate them. We explore

these shortcomings in more detail in the appendix “Sound API’s” on page 153.

startTimeCheck();

setVariables();

locateListenerEars();

getDistanceToEars();

getTimeToEars(); // (distance/SOUND_SPEED)

getDelayToEars(); // (SamplesPerSec*Time)

getOrientationToEars(); // (SourceOrientation-VectorFromSource)

getOrientationWeights(); // (1-OrientationWeight)+(orientation*OrientationWeight)

getAttenuatedSignals();

endTimeCheck();

Table 1: Direct Paths Algorithm Pseudo-Code

Computationally and conceptually, our algorithm contains no significant challenges.

It does not require loops or nested functions and therefore runs linearly and extremely fast,

with practically no delay. All calculations such as dot products and cross products use basic

trigonometry and other straightforward math. The pseudo-code follows in Table 1 above and

we describe the implementation later (see “SoundPlayDirectPaths Algorithm Object” on page

63). Our initial impression and assessment of this algorithm shows promise, despite its

inherent simplicity. Unlike other potential algorithms, the direct paths algorithm does not

suffer from aliasing or other artifacts directly because of the uncomplicated nature of the

33

method. For this reason as well as the logical comparison with industry standards, we have

chosen to implement this algorithm in the experimental test (see “Testing Details” on page

99). Notably, this algorithm does not generate a formal finite impulse response like most

other approaches. In effect, though, the two calculated paths comprise the most basic of

possible FIR’s.

Brute Force Algorithm

The most simple and obvious starting point to more complicated algorithms would be

a basic brute force algorithm. This technique would consist of calculating an almost infinite

number of acoustic paths emanating out from the sound source. Not all paths would reach the

listener, making this algorithm extremely inefficient. Furthermore, the complexity and sheer

number of calculations required would make this approach impractical at best. Run time on

this type of method certainly would not fall within acceptable requirements for our purposes,

so we chose not to pursue this methodology. However, we can consider modifying a brute

force algorithm with common-sense optimizations to create effective and exploitable

routines.

Figure 8: TDS Running the Reflected Paths Algorithm

34

Reflected Paths Algorithm

Another algorithm we developed for this research, the reflected paths algorithm,

begins as more or less a brute force approach to the problem. We limited consideration to

only sound paths that traverse from the source to the listener. Figure 2, Figure 3, and Figure 4

(page 17) diagram these for the zero-order, first-order, and second-order reflection paths

respectively for a room with just four walls. This algorithm calculates these paths via simple,

semi-optimized mathematical techniques. Simple trigonometry and algebra dominate the

math required for this algorithm.

The depth complexity level setting for this algorithm controls how many reflections,

or level of order, to parse. As the order of reflections increases, the calculations needed to

determine the sound paths also become exponentially more complex, approximately bounded

by O(4n), requiring dramatically more processor time. Table 2 shows an example of this

progression.

d rp np p(w=4) rt nt

0 0 1 1 0 1

1 1 2 4 4 8 d - Order of reflections (depth)

2 2 3 12 12 36 w - Number of walls (e.g. {w = 4})

3 3 4 36 108 144 rp - Total reflections/path [rp(d) = d]

4 4 5 108 432 540 np - Total segments/path [np(d) = rp(d) + 1]

5 5 6 324 1620 1944 p - Total paths [p(d) = p(d - 1) * (w - 1)]

6 6 7 972 5832 6804 rt - Total reflections [rt(d) = p(d) * rp(d)]

7 7 8 2916 20412 23328 nt - Total segments [nt(d) = p(d) * np(d)]

8 8 9 8748 69984 78732

9 9 10 26244 236196 262440

Table 2: Reflected Paths Complexity Levels

Currently, this algorithm only works well when both the sound source and the avatar

reside in the same room of the same building. Expanding the algorithm to handle multiple

rooms should not prove difficult. However, it will dramatically increase the algorithmic

complexity, and consequentially computation time, thus making it impractical without further

35

serious optimizations. Additionally, we account for sound source direction by gain-weighting

sound paths emanating from directions closest to its orientation vector.

We list the pseudo-code for the initial algorithm in Table 3. Most of the algorithm

uses simple proportions to find reflection points. Because of this, and the fact that the

algorithm does not currently allow for breadth complexities, the code runs almost instantly

with the present limited functionality.

Due to the finite nature of the number of paths to utilize and non-random character of

these paths, this algorithm suffers from severe aliasing artifacts during sound reproduction.

The fabricated signals tend to sound choppy and uneven when the avatar moves around, even

slightly. To be sure, we could overcome some of this by significantly increasing the depth

(number of paths) or other optimizations and considerations. However, the increase in

complexity and loss of elegance would render the algorithm ineffective, not to mention

inefficient. Therefore, for the purposes of the experimental study, we elected to leave this

algorithm out and focus on the other two that we developed.

startTimeCheck();

setVariables();

for w...walls {

 findWallGeometry();

 closestPtSource = findClosestPointOnWall(source);

 closestPtAvatar = findClosestPointOnWall(avatar);

 D = distance(closestPtSource, closestPtAvatar);

 L = (avatar_wall_dist * D) / (source_wall_dist + avatar_wall_dist);

 bouncepoint = closestPtAvatar + L * wall_direction;

 checkIfIsOpening(bouncepoint);

}

endTimeCheck();

Table 3: Reflected Paths Algorithm Pseudo-Code

36

Bouncing Reflections Algorithm

This algorithm differs from reflected paths algorithm above in that it calculates paths

that do not necessarily reach the source. In this sense, it is more random and inefficient than

the direct paths algorithm; however this makes it easier to optimize and eventually more

accurate. The concept is simple enough. When a source generates a sound in the 3D

environment, the algorithm calculates the paths emanating from the source in all cardinal

directions and some or many random directions and then determines consequential

reflections off the walls. Think of a large number of ping-pong balls shot out from the sound

source in all directions. These balls bounce around the room (or rooms), unaffected by

gravity. They eventually stop by either hitting the listener or traveling past a certain threshold

distance. This maximum distance traveled corresponds to the dissipation of sound traveling

through air. In fact, each path generally travels much less than the predetermined threshold

distance since some dissipation occurs at each bounce, or reflection point on the walls and

objects in the room. Most offline architectural acoustic modelers use this same concept, with

a few key differences. First, none of these modeling programs run in real-time. For their

purposes, architectural modelers have no need to run on the fly. Rather, they sacrifice speed

Figure 9: TDS Running the Bouncing Reflections Algorithm

37

for detailed accuracy, computing significantly more rays paths than our system could allow.

Second, the process for offline architectural acoustic modelers effectively performs the

reverse of what we try to accomplish. These programs intend to minimize undesirable

acoustic properties of a given virtual space by analyzing how samples will sound throughout.

Our system looks to estimate and determine all acoustic properties of a space and reproduce

sound using this data. We attempt to reproduce even undesirable acoustic properties of a

given virtual space. Moreover, we care about sound reproduction in only one location. The

distinctions might seem subtle, but they are important.

The depth complexity level determines the number of reflections in a path to allow.

On the other hand, the breadth controls how many directions emanating from the source to

parse (i.e. 1, 6, 14, 22, etc.). We can initially set directions as strict cardinal vectors (x, y, z)

or determine them based of the sound source orientation. The current algorithm uses the

initial directions (ahead, back, left, right, up, and down) to further granulate the depth via

subdivision of the vector spaces. Furthermore, we can select an almost infinite depth of

randomly generated directions. Table 4 diagrams the first three sets of orientation-based

vectors (on the right) and includes the actual code for determining these rays. Our present

implementation begins with the sound source orientation and calculates 22 directions before

randomly selecting directions.

Table 5 also contains the pseudo-code for the remainder of this algorithm and the

formal implementation follows (see “SoundPlayBouncingReflections Algorithm Object” on

page 65). See Figure 9 for an example run screenshot. With proper control of the breadth and

depth of this algorithm, we can generate an intuitive, logical, and hopefully accurate impulse

response. Since we currently calculate the direction vectors by uniformly dividing the space

38

geometrically, sampling artifacts can certainly occur. The combination of structured

calculations and randomized directions might mitigate some of these hot spots or empty

spaces. Given enough depth and/or breadth, we should generate reproductions of the desired

acoustic signals even more accurately. We will randomize these variables in the experiment

(see “Research Methods” on page 93) in order to, hopefully, determine an effective cutoff

point for complexity of the algorithm with respect to performance. Future research could

show that employing an even more randomized distribution pattern would obtain better

results and avoid possible anticipated sampling artifacts.

We should note that we determine intersection with the avatar by checking each path

against two parallel bounded planes, one at each ear. Assuming these faces are properly sized

this should catch almost all paths that the avatar would hear. We would only miss segments

that run parallel or almost parallel to the planes or that hit the head, between the planes. If

necessary, we can add a third plane through the head, between and perpendicular to the ear

planes, and test against intersection for a more accurate model. However, this adds another

degree of computational complexity to the algorithm, which we do not desire. Another

possible method would test each path against the two perpendicular planes centered in the

middle of the head. This could receive a more accurate set of path hits, but at the expense of

the stereoscopic nature inherent in testing ear planes.

39

i=0;

dirs[i++] = sourceDir; // 0->Forward (already calculated recorded)

dirs[0].cleanVector();

dirs[i++] = -dirs[0]; // 1->Behind

dirs[i++] = crossProduct(dirs[0],UP); // 2->Left

dirs[i++] = -dirs[2]; // 3->Right

dirs[i++] = crossProduct(dirs[2],dirs[0]); // 4->Up

dirs[i++] = -dirs[4]; // 5->Down

dirs[i++] = (dirs[0]+dirs[2]).normalize(); // 6->Angle between forward & left

dirs[i++] = (dirs[0]+dirs[3]).normalize(); // 7->Angle between forward & right

dirs[i++] = (dirs[0]+dirs[4]).normalize(); // 8->Angle between forward & up

dirs[i++] = (dirs[0]+dirs[5]).normalize(); // 9->Angle between forward & down

dirs[i++] = -dirs[6]; // 10->Angle between behind & right

dirs[i++] = -dirs[7]; // 11->Angle between behind & left

dirs[i++] = -dirs[8]; // 12->Angle between behind & down

dirs[i++] = -dirs[9]; // 13->Angle between behind & up

dirs[i++] = (dirs[0]+dirs[2]+dirs[4]).normalize(); // 14->AB forward & left & up

dirs[i++] = (dirs[0]+dirs[2]+dirs[5]).normalize(); // 15->AB forward & left & down

dirs[i++] = (dirs[0]+dirs[3]+dirs[4]).normalize(); // 16->AB forward & right & up.

dirs[i++] = (dirs[0]+dirs[3]+dirs[5]).normalize(); // 17->AB forward & right & down

dirs[i++] = -dirs[14]; // 18->Angle between behind & left & up

dirs[i++] = -dirs[15]; // 19->Angle between behind & left & down

dirs[i++] = -dirs[16]; // 20->Angle between behind & right & up

dirs[i++] = -dirs[17]; // 21->Angle between behind & right & down

// Now, add some random orientations... //

for(d=i; d<NUM_DIRECTIONS; d++) // 22 through NUM_DIRECTIONS->Random

 dirs[i++].randomNomalized();

// First set the breadth (number of directions) //

if(env->m_iBreadth <= 1) i = 4;

else if(env->m_iBreadth <= 2) i = 6;

else if(env->m_iBreadth <= 3) i = 14;

else if(env->m_iBreadth <= 4) i = 22;

else i = NUM_DIRECTIONS;

// Next set the depth (num reflection points to parse for each direction) //

if(env->m_iDepth <= 1) totalreflections = 1;

else if(env->m_iDepth <= 2) totalreflections = 10;

else if(env->m_iDepth <= 3) totalreflections = 20;

else if(env->m_iDepth <= 4) totalreflections = 40;

else if(env->m_iDepth <= 5) totalreflections = 80;

else if(env->m_iDepth <= 6) totalreflections = 160;

else totalreflections = MAX_REVERB_SEGMENTS - 2;

Table 4: Code for Generating Directions in Bouncing Reflections Algorithm

n

-n

v

-v

-u

u

n+u

n-un+v

n-v
-n-u

-n-v-n+u

-n+v

40

startTimeCheck();

setVariables();

calculateDirectPaths();

calculateDirections();

for dir...breadth {

 resetVariables();

 setInitialPoint();

 for ref...depth {

 if(checkListenerPlanesHits()) addImpulseToData();

 for w...all_walls_in_room {

 if(checkWallHit(w)) {

 addIntersectionPoint();

 getNextDirectionFromIntersectionTest();

 }

 }

 }

}

endTimeCheck();

Table 5: Bouncing Reflections Algorithm Pseudo-Code

While the section “Efficiency Validity” on page 104 investigates the actual running

times for this algorithm, here we consider the theoretical intricacy of our model. Both the

breadth and depth settings within the simulator dramatically affect the complexity of this

algorithm. Since the directional determinations based off the breadth setting compute linearly

and in exactly the same quantity for each run, we do not consider this in our analysis. The

same goes for setting the number of reflections to parse via the depth setting. The true impact

from this algorithm comes from how we use these variables. The algorithm contains two

main loops. We traverse each path, via breadth, and within each path, we work out a

maximum number of reflections, via depth. Within these nested loops, we currently check

two intersections of planes against line segments and all wall intersections. Like the reflected

paths algorithm, we presently only allow for a geometrically simple room with four walls.

However, we must also consider the floors and ceilings as reflection points. Assuming we

have a small, limited number of faces this gives an order of complexity bounded by O(n3).

41

Wall Dispersion Algorithm

Derived from the Bouncing Reflections algorithm, this method takes into account that

sound does not always directly reflect off of walls (Schroder & Pohl, 2013), but rather some

energy randomly disperses at each hit. When a sound wave encounters a barrier, much of its

energy reflects geometrically as expected and described above. However, some power

transmits into the medium while the remainder disperses in almost every possible direction.

This typically derives from the fact that surfaces on a microscopic level are not completely

smooth (Figure 10) relative to the wavelength of the sound. Statistically speaking, this

dispersion looks practically random and therefore we can consider it uniform over a

hemisphere radiating out from the wall (Kinsler, Frey, Coppens, & Sanders, 2000). For the

purpose of the algorithm, we regard each surface as another sound source, starting at a lower

volume. Obviously, this will geometrically increase the complexity of the computations if we

do not consider further refinements and optimizations. We could additionally use the breadth

complexity level to determine how many dispersion paths at each reflection point to pursue.

The absorption coefficient of the material surface property at the reflection points could also

influence or controlled the dispersal complexity.

Figure 11: Division into Possible Locations

Figure 10:
Dispersion Due to

Microscopic Effects
on Reflections

42

Due to the intuitive nature of this algorithm with respect to how sound transmits and

reflects off surfaces it would seem that this algorithm would easily fall within the purview of

this research. Extending the currently implemented Bouncing Reflections algorithm to

include this approach would not overly complicate matters and should take relatively minor

effort and time. However, for the initial experiment and analysis of the subsequent data, we

decided to leave this approach for future development. With the limited subject pool and

number of tests dictated by the experiment (see “Testing Details” on page 99), including

another algorithm with more variables would significantly diminish from the statistical

validity we desire.

Matrices of Impulses Algorithm

This algorithm would use a specified combination of the above routines to perform

calculations at runtime. Ideally, it would accurately produce a matrix of matrices of sound

impulse arrays from all possible sound source locations to any potential listener position.

Because of the extremely computationally expensive nature of this algorithm, it would

require a very complex structure and large amounts of data storage and memory. We

cursorily address these issues below. The simulator must first divide the virtual environment

into a set of evenly spaced points (Figure 11) based off user-specified granularity. Then, for

every possible (sound source) location within the grid, we calculate the impulse response for

every (listener) point in the grid. When it comes time to play the sound, it is simply a matter

of a quick lookup of the current locations in the matrices and applying the pre-generated

impulse response to reproduce the sound. For locations not exactly matching the grid, we

might select or interpolate between nearby points and the subsequent impulse responses.

43

If the algorithm uses a granularity of gx, gy, and gz, we must compute and store

approximately (gx×gy×gz)2 impulse arrays. This is an enormous amount of data. Computing it

every time the simulator initializes might take minutes, hours, or even days. We therefore

propose caching the previously generated results and running calculations only when the

geometry of the environment has changed.

In order to account for orientations of the sound source and listener, we must store the

impulse in a modified form. Specifically, we need to know for each impulse that reaches the

potential listener the distance or time traveled, the original orientation from the sound source,

the arriving orientation, and any attenuation loss incurred from absorption. With these

details, reconstructing the final impulse at run-time should require minimal effort.

To expand this algorithm so it can handle multiple rooms, we expect to employ

solutions discussed in the previous sections for the basic algorithms and simply expand the

grid to cover the entire structure. This same approach should also allow the merging of

multiple structures. Clearly, this approach capstones any and all other algorithm

developments. When we finish evaluations and refinements of our other works, we can

pursue this technique in earnest.

Physics Algorithm

Some previous works (Stephenson, 2013) (Southern & Siltanen, 2013) (Raghuvanshi,

Snyder, Mehra, Lin, & Govindaraju, 2010) have alluded to the potential of using physics-

based wave equations to solve the 3D sound challenge. Though no solution has yet come

forth using this approach, it has the potential as an effective, if not efficient solution.

Problems involved with this track include converting complex generalized differential

equations into practical run-time computer algorithms. We intend to explore this option in

44

future work. Many recent articles concerning 3D acoustics in virtual environments have

suggested some form of a hybrid approach to the problem. This generally entails using a

geometric model for lower-ordered reflections and employing wave equations for higher-

ordered reflections, or reverberations. The trend toward this combination presently dominates

academic journals for this topic.

Stochastic Algorithm

Another (Stephenson, 2013) (Cowan & Kapralos, A GPU-Based Method to

Approximate Acoustical Reflectivity, 2011) approach employs a statistical method. This

solution, though extremely complex in nature, could possibly closest approximate our

understanding of how sound actually propagates. We perceive sound microscopically and

macroscopically, measuring the transmission of pressure variant waves. These waves formed

by particles in spaces move in a general direction pushing neighboring particles in a wave-

like manner. Since these particles always move in an unpredictable chaotic fashion,

physicists often analyze the statistical nature of the movements. Our simulator could employ

simplified mathematics to calculate the movement of sound on an atomic level. We leave this

and the physics-based approaches for future consideration.

Design and Implementation

Implementation Overview

In order to explore and evaluate the algorithms described in this research, we

developed an extensive virtual 3D environment that allows for quick and easy design of

dynamic 3D virtual worlds, complete with structures containing rooms with walls and other

objects. Avatars and sound sources have unencumbered movement throughout the space. The

virtual environment application, or TDS Simulator (short for Three Dimensional Sound

Simulator), can play sounds via any number of acoustic algorithms and even includes testing

modes for subject experimentation (see “Testing Modes” on page 89). For further details

about how the simulator runs and loads information, see the section “The TDS Simulator” on

page 49.

When reproducing acoustic virtualizations, the application must first read and then

interpret the geometrical information of the current environment, structures, and rooms. The

simulator uses this same information to produce the 3D visualization via the OpenGL®

programming library. The TDS Simulator then exploits this information to determine the

acoustic nature (see “Early Echo Response & Reverberation” and Figure 34 on page 152 and

“Objectives” on page 16) of the environment and feeds this data into the audio engine for

playback. The audio engine then convolves (see “Convolution Algorithm” on page 77) the

finite impulse response with the original monaural sound file and plays the generated sound

reproduction. In the case of running off-the-shelf algorithms (such as Microsoft’s DirectX

DirectSound®), the simulator simply skips the intermediate steps and sends the sound file

straight to the audio engine for appropriate reproduction. Otherwise, the simulator uses

standard audio processing algorithms such as convolution and fast Fourier transform to

46

produce the desired auralization. Figure 12 highlights an extremely simplified overview of

the basic flow of data within the simulator and the relationship between the core components.

Since we modularized the various workings of the system, we can easily maintain portability

and compatibility on multiple platforms.

Algorithmic Goal

Our goal for this project is to generate the impulse response (Figure 5 on page 17)

between the sound source and the listener for any set of locations in the entire room or

environment, and do this efficiently. The response will consist of an array of echo volume

losses that we can use to play back the sound. As mentioned previously, the sound can travel

numerous paths, reflecting off of walls and other objects, finally reaching the listener at

various times and strengths. After we calculate a set of these impulses, the chosen API (see

Figure 12: TDS Simulator Algorithm Pipeline

Audio Engine

Acoustic
Algorithm

Sound File
(WAV)

TDS
Simulator

Audio Output
Device

(Headphones)

Visual Output
Device (Screen)

Impulse
Response

User Action
(Play Sound)

Simulator
(Play Sound)

Virtual
Geometry

47

“Sound API’s” on page 153) will replay the original sound multiple times while applying the

appropriate attenuation and other desired effects based on the impulse response. Impulse data

handling and audio processing can occur either by the hardware mixing multiple instances of

the specific sound or convolving it at the software level (see “Convolution Algorithm” on

page 77).

One question overrides all others: how do we calculate an impulse response

efficiently and accurately? Inherent difficulties include the depth or order of reflections to

compute, allowing for dynamic listener and sound source locations and orientations,

multiple-roomed or complicated structures, dynamic changes in the virtual environment,

object interference, open-spaced environments, material absorption and dispersion,

refraction, and latency. We will address all of these challenges below, but it is worthwhile

now to delve into latency and its impact.

Latency

We consider latency, or the amount of delay incurred due to the computations before

sound begins playback, the primary determining evaluation of the correctness of an

algorithm. Presently, offline applications (e.g. EASE [http://www.auralisation.com/], CATT

Acoustic [http://www.catt.se/], and Odeon [http://www.odeon.dk/]) which developers did not

design to run in real-time situations can analyze spaces such as concert halls and sound

rooms for acoustic anomalies. The algorithms used in these programs, though considered

comprehensive, run far too slow for real-time applications such as virtual environments. The

human ear can tolerate up to a 150 ms delay (Wu, Duh, Ouhyoung, & Wu, 1997) from the

visual or perceived initiation of a sound to the actual time that the user first hears it. Thus,

any valid algorithm must have a maximum latency below this threshold. We demonstrated in

48

the Brute Force algorithm above the impracticality of generating an impulse response in real-

time using techniques standard in offline architectural applications without significant

optimizations and considerations. Therefore, we must develop alternative solutions to this

problem and any viable approach must fall within a low latency threshold, ideally running

with something close to no latency. We will revisit latency in a formal setting with the

analysis of the experiment results (see “Efficiency Validity” on page 104). Next, we will

detail some of the data structures and algorithms common to almost any solution to this

problem, considering their impact on efficiency and latency.

Object-Oriented Design

As mentioned previously, the TDS Simulator is an extensive application that manages

data flow and information, 3D visual data and rendering, 3D audio pipeline, simulation and

subject testing, and more. We chose to employ an object-oriented, hierarchical design to the

simulator’s libraries. This decision allows for easy encapsulation, modularization, and

portability. Written with Microsoft’s Visual Studio® 2008 C++ programming environment,

the code consists of approximately 25,000 lines of code for the entire project, so we will only

highlight basic design and functionality here. The following sections describe the workings

of the simulator and a few of the more relevant objects designed for this application.

The TDS Simulator and Algorithms

Fundamentally, for the algorithms developed for this research, we treat sound as a

spherical wave increasing in diameter from the source. We consider sound to radiate out

equally in all directions from the sound source and use this to calculate the various orders of

reflections. Assuming that we have the geometry of the scene readily available, these

computations generally break down to simple trigonometry. Even when traversing through

49

different rooms, the math, if properly considered, does not become overly complicated. We

also allow the flexibility to compute only the depth of reflections that the processor can

handle which eventually we will dynamically set, presumably to account for speed and

processor load. Furthermore, we can set the breadth to limit computation complexity by

modifying the number of directions, granularity, stereo vs. mono, cut-off level, or any aspect

specific to the desired algorithm.

Currently, the simulator includes limited executions of the two algorithms: the Direct

Paths algorithm and the Reflected Paths algorithm (see pages 31 and 34, respectively). Future

development should include other algorithms such as the physics and stochastic models.

The TDS Simulator

The TDS Simulator (short for Three Dimensional Sound) runs as an OpenGL®

virtual environment application. Figure 8, Figure 9, and Figure 13 show screenshots of the

simulator in action. We developed the simulator to allow for easy specification of almost any

hierarchical building or structure. These structures can contain numerous rooms, each with

walls, doors, windows, and other objects in almost any conceivable geometry. Parsed during

Figure 13: Screenshot of the TDS Application

50

the initialization of the application, we store the environment details, including structures,

sound sources, and avatars in local text files. The hierarchical design of the environment

affords quick and simple expandability and efficient access to the virtual landscape. For

example, user-specified materials compose each surface. We have expanded these materials

not only to include graphical information (e.g. color, texture, light reflection level, etc.), but

also acoustic properties like absorption and dispersion. We make these properties available

for any of the acoustic algorithms to utilize in the form of coefficients variables.

Both avatars and sound sources have complete autonomy and freedom of motion

within the virtual world. As well, we permit multiple instances of either. The user sees the

world through the eyes of any of the avatars and controls the locations, orientations, and

playback of the various sound sources. Presently, scene geometry remains static for each

time we start the simulator, but this limitation strictly resides with the simulator, and

eventually we will not require it. Neither algorithm currently uses precompiled information

based on the run-time environment geometry beyond common properties or calculations.

The simulator can run any number of algorithms to achieve the desired results: an

impulse response of the sound (Figure 34). Each algorithm must generate the impulse

response and the simulator instructs it to take care of mixing and playing the result. At

playback of a sound source, the simulator, using the currently selected algorithm, performs

the desired calculations on the original sound file and plays the generated result. Since

Microsoft’s DirectX DirectSound® API gives near low-level access to the sound mixing

hardware, we have chosen it to handle the mixing and playback (see “DirectSound® Library”

on page 83). However, as mentioned earlier, the algorithms remain completely independent

of this exploited API, so future iterations could employ other audio engines.

51

We should note that while we do allow the movement of both sound sources and

avatars, the environmental geometry remains fixed from the initialization of the simulator.

Some algorithm optimizations used in this research require basic pre-computations based off

the environmental data like plane locations and normal vectors. Future algorithms such as the

Matrices of Impulses algorithm (see page 42), would certainly benefit from this assumption

of precompiled values. However, we are certain we can overcome this assumption with

further refinements to the algorithms and simulator. Furthermore, we currently only allow the

relative speed between the avatar and sound source to remain far less than the speed of

sound. Thus, we do not contend with the Doppler Effect or other advanced acoustical

concepts. When a sound source or listener moves, the simulator simply reruns the algorithm

with the new geometry.

Figure 14: TDS Data Structure

52

Scene3D Data Structure

The Scene3D data structure entirely describes the complex organization of the

environmental geometry. Used for the three-dimensional visualization as well as the acoustic

realization fundamental to this research, this library of objects must allow sufficiently rapid

storage, manipulation, and retrieval of virtual geographical information. Essential to the TDS

Simulator, we require a data structure that accurately and efficiently stores the virtual

geometry and design of the buildings and other objects of the environment. We need this data

structure robust enough to handle almost any conceivable building layout while still allowing

for adaptation to unforeseen elements and future developments. It must handle large sets of

data with numerous rooms and structures while still offering efficient access to specific

elements at a moment’s notice by any part of the simulator. Furthermore, it should easily

expand to numerous rooms and structures, possibly allowing for dynamic changes while the

simulator runs. Clearly, the graphical API (in our case OpenGL®) must swiftly read this data

to generate the visuals, but the design should generically allow for any choice of API on any

platform. The same should hold for the sound API (in our case currently Microsoft’s DirectX

DirectSound® library). As we will describe in the sections below, the data structure will

incorporate drawing and other routines specific to each object it contains, but these functions

must allow for easy adaptation to alternative environments. Clearly, we will choose a specific

programming language and environment as well as various API’s, but the Scene3D design

should follow standard, cross-platform programming techniques and conventions.

Environment3D Hierarchy

Central to the Scene3D library system, the Environment3D object stores all

objects within the scene. Figure 14 illustrates the basic design flow of the objects within the

53

simulator, including the Environment3D object and subsequent entities. Within the

Scene3D object, we store a single instance of this data structure as well as the audio engine,

Sound3D. Through this parent object, these two divisions of the simulator have some degree

of access to each other via C++ pointers and friendly functions.

The Environment3D object contains an array of Structure objects, which in

turn hold the rooms, walls, and all other components (see “Structure Objects” on page 57) of

a building. This encompassing Environment3D object also stores the grounds and sky for

the entire simulator. The sky simply consists of an enormous cloud-textured sphere bisected

by the ground, or terrain objects.

Finally, the Environment3D object includes the Avatar3D and

SoundSource3D object arrays. Both of these objects function in a similar manner except

that one originates the sound while the other listens to it. They both can freely move through

the environment and draw representations within the simulator. An avatar, however, also

incorporates all camera functionality within the simulator. The Avatar3D objects have the

responsibility of presenting everything the user sees on the screen based on the location and

orientation of its eyes. On the other hand, the SoundSource3D objects do little more than

draw and maintain the locations of the sound sources. The audio engine, Sound3D takes

care of all sound processing and generation, as we will describe shortly.

Structure Data File

The TDS Simulator, when initialized, reads and parses a set of user-editable text data

files that contain the design and layout of the virtual geometry of the environment, including

the Structure object and all ensuing components. Initially, the simulator looks for the

scene data file that lists all of the subsequent data files to load as well as the initial positions

54

of each object. The scene file specifies all buildings, avatars, sound sources (including sound

sources for the experiment), and the grounds and the sky universal to the environment. We

have included an example of a scene file at the end of this document in Table 32 on page

163. The simulator, specifically the Scene3D object, parses this file creating appropriate

objects that it instructs to load the necessary data. Each child object handles reading and

storing information from the various data files. The simulator can use a data file multiple

times to create separate objects of the same type.

The text data files follow an extremely simple specification. The Avatar3D and

SoundSource3D objects exemplify this (see Table 31 on page 161) and require no further

explanation. However, the Structure object and the associated data file have a much

more complicated blueprint. Table 6 on page 57 lists a simplified example of a structure data

file that illustrates various aspects of this multifaceted design. The simulator incorporates a

common robust text file reading library that tokenizes data as it delves into it. This library

ignores comments, denoted by anything following two forward slashes, as well as ignores

white space. It also reads and converts text into appropriate storable data formats. We force

data to follow a prearranged bracketed flow, embedding objects within objects.

When it encounters a structure data file, the simulator fist checks that the version

number of the files matches up with what it expects. Next, it requires certain global variables

such as units of measurements and geometrical offsets. It then will read any materials used

by objects within the building as well as any ground plains that the structure rests upon.

Finally, it loads all rooms contained within the construction. In Table 6, we have designed a

structure with only one room, but clearly, it could manage many more. This room, however,

55

contains a unique dividing wall that effectively separates it into two spaces. We included this

only to illustrate the different manners of specifying faces.

When the simulator loads a Room object, it can load it via a one of two methods. The

simplest technique assumes that the space follows a typical rectangular flow. Within the

parsed data file, the user specifies the room dimensions and then labels the Face objects as

either StandardWall or ceiling or floor. The library parses these and automatically

initializes and locates the appropriate Face objects. No geometry needs setting for these

standard objects with the exception of which wall to create (negahead or negy or south;

ahead or posy or north; negside or negx or west; side or posx or east).

Custom faces have the label wall and the user must specify dimensions, location, and

orientation. This allows for easy design of standard rooms and buildings, while still accepting

complicated models. The splitWall in Table 6 demonstrates this by subdividing the room

with a large opening in the middle. Figure 15 is a screenshot of the structure described above.

Figure 15: Structure 1.3 Data File Example: An Example House Structure

56

Structure 1.3 Thickness 0.5

// examplehouse.txt, Dimensions -30 330 -30 590

// Created for TDS Simulator Offset -1.0

// Measurements are in meters, feet, etc Material Grass

 Units inches }

// The thickness of the walls NumRooms 1

// and ceilings are counted or not Room MainRoom

 Measurements outside {

// Move entire structure from (0,0,0) Offset 0.0 0.0 0.0

 Offset 0.0 0.0 0.0 Dimensions 300.0 550.0 120.0

// Rotation of the whole structure Rotation 0 0 0

// around axis's (after translation) NumFaces 7

 Rotation 0 0 0 Face StandardWall

NumMaterials 4 {

Material Floor Name farWall

{ Thickness 3.0

 Color BROWN Side ahead

// Lower value makes perfect reflection Material WallTextured

 Absorption 0.0005 NumWallOpenings 0

 Dispersion 0.0001 }

} Face StandardWall

Material WallTextured {

{ Name rightWall

 File Textures\Wood5.tga Thickness 3.0

 RepresentedSize 20.0 20.0 20.0 Side side

 Absorption 0.10 Material WallTextured

 Dispersion 0.05 NumWallOpenings 0

} }

Material Ceiling Face StandardWall

{ {

 Color CYAN Name leftWall

 Absorption 0.0005 Thickness 3.0

 Dispersion 0.0020 Side negside

} Material WallTextured

Material Grass NumWallOpenings 0

{ }

 File Textures\Ground.tga Face StandardWall

 RepresentedSize 1.0 1.0 0.1 {

 Absorption 0.50 Name entranceWall

 Dispersion 0.40 Thickness 3.0

} Side negahead

NumGrounds 1 Material WallTextured

Ground Grass NumWallOpenings 1

{ WallOpening FramedNormalDoor

57

 { }

 Type FramedNormalDoor Face Wall

 Offset 8.5 0.0 {

 Dimensions 36.0 80.0 Name splitWall

 Material Ceiling Thickness 0.5

 TrimMaterial Floor Height 0.0 120.0

 } Length 0.0 300.0

 } Rotation 0

 Face ceiling Offset 0.0 300.0 0.0

 { Material WallTextured

 Name theCeiling NumWallOpenings 1

 Thickness 3.0 WallOpening FramedEmptyDoor

 Material Ceiling {

 NumWallOpenings 0 Type FramedEmptyDoor

 } Offset 105.0 0.0

 Face floor Dimensions 90.0 100.0

 { Material Ceiling

 Name theFloor TrimMaterial Floor

 Thickness 3.0 }

 Material Floor }

 NumWallOpenings 0 }

Table 6: Structure 1.3 Data File Example: An Example House Structure

Structure Objects

Contained as an array within the Enviroment3D object, the Structure objects

abstract buildings. Each building can include one or more rooms and each room typically has

six faces. As with all Enviroment3D objects, this object maintains its location and

orientation, which the graphics engine uses as a starting point for the rooms within the

Structure. However, the Structure object does not technically draw anything. Rather,

it propagates drawing commands to the Room objects that it possesses. We should note that

the Structure object stores all materials (see “Acoustic Materials” on page 59) used by

the objects within its scope. When the simulator initializes, it reads and loads these materials

and sends them as pointers to subsequent objects.

58

Room Objects

Room objects only exist as an array within the Structure objects. Certainly, a

Structure can contain just one Room object, but this does not occur to frequently.

Typically, a Structure will load multiple rooms, side-by-side. Just like the Structure

objects, Room objects do not actually draw anything through the graphics library. Instead,

they pass on the drawing commands to all Face objects contained within the data structure.

A Room object can contain a large number of Face objects, but typically only has six

faces—four walls, a ceiling, and the floor. However, a Room object has the ability to store

any number of faces, in about any conceivable configuration.

Faces Objects

Using a common C++ programming convention, we do not formally create instances

of the Face objects at any time. Rather, this virtual class will abstract to a Wall, Ceiling,

or Floor object. Unlike its parent objects Room and Structure, children of the Face

object include formal drawing routines. Floor and Ceiling objects do not contain any

openings and have extremely basic drawing routines. On the other hand, a Wall object must

progressively draw itself from one side to the other, leaving space for the various openings.

Wall Openings Objects

Like the Face objects, a WallOpening object exists only as virtual class that must

substantiate in the form of an EmptyWindow, FramedEmptyWindow,

FramedEmptyDoor, FramedNormalDoor, or FramedFrenchDoor object. See

Figure 14 on page 51 for the hierarchal design of these objects. With the exception of the

EmptyWindow object, these classes include functions for drawing appropriate

59

representations. An algorithm has the option of ignoring reflections that bounce off a face but

fall within these possibly empty intervals. The WallOpening objects can even influence

this decision based on its physical nature or current state. For instance, an empty window

should allow no reflections, while a closed door might.

Acoustic Materials

Each substantial object contained within Structure uses one or more acoustic

materials. The AcousticMaterial object derives from the Material object that

integrates drawing of either simple flat colors or visually stimulating textured patterns. The

difference between the two is that the AcousticMaterial object stores the two variables

absorption_coefficient and dispersion_coefficient (see “Absorption &

Dispersion” on page 146). The acoustic algorithms can include these variables in their

calculations.

Sound3D Data Structure

We isolated the audio engine and all acoustic manipulation routines into Sound3D

data structure. The TDS application need only create one instance of this object. We send all

audio events to the Sound3D object for it to process and manage. Though we do store some

information (e.g. breadth and depth settings) in the Enviroment3D object to allow for

global access, all manipulations and modifications occur through this library. Most

importantly, we store a virtual array of AcousticsAlgorithm objects through which the

Sound3D object can instantiate objects in the form of any of the current possible algorithm

classes. These algorithms each have the responsibility to load and play the sound when

prompted in a manner appropriate to the algorithm. We should note that each algorithm may

60

independently employ its own audio engine (MCI, DirectX, OpenAL) to reproduce the

sound.

AcousticsAlgorithm Hierarchy

Nested within the Sound3D hierarchy, the design and structure of the acoustic

algorithms code begs for further explanation. Fundamental to this research, this construction

integrates intensive and important core programming in the form of the various acoustic

algorithms. Presently, the algorithms include SoundPlaySimple (or no algorithm),

SoundPlayDirectX, SoundPlayAlg_DP (the Direct Paths algorithm), and

SoundPlayAlg_BR (the Bouncing Reflections algorithm). See Figure 14 on page 51 for

the hierarchal design of these objects. With minimal effort, we can quickly expand the list of

available algorithms by deriving new objects from the parent virtual SoundPlay class. The

only complication lies in the formal implementation of the algorithm and not the integration

within the simulator. The virtual SoundPlay class serves mostly as a focal point for the

subclasses and includes little functionality other than checking if sound files exist and

managing generally useful variables like the type of algorithm of the child class and the

algorithm’s current playback state. All capabilities of the algorithms reside in the derived

subclasses.

SoundPlaySimple Algorithm Object

The SoundPlaySimple algorithm object does nothing more than playback the

sound file. It considers no 3D geometry or acoustic properties at all. Rather, it merely

exploits Microsoft Windows® standard Media Control Interface, or MCI, routines to read

and playback an audio file. It plays the sound straight from the indicated sound file, not even

61

bothering to preload any information. Understandably, this “algorithm” runs in real-time

without any delay or lag. We call this and include this as an algorithm for baseline

comparisons and controls within the experiment. Cleary, in any experiment, all proper 3D

sound algorithms must perform significantly better than the Simple algorithm with respect to

3D virtualization and localization.

SoundPlayDirectX Algorithm Object

Parent to the two developed algorithms in this research, the SoundPlayDirectX

algorithm object utilizes Microsoft’s DirectX DirectSound® library for reading and playing

sounds. This library offers us somewhat low-level access to the hardware while still

maintaining a higher level of programming abstraction (see “DirectSound® Library” on page

83). Both currently implemented research algorithms, Direct Paths and Bouncing

Reflections, inherit from this class in order to take advantage of the ease of efficient access to

the audio hardware. The DirectX algorithm itself executes the 3D acoustic algorithm in

Microsoft’s DirectX DirectSound® library. This algorithm decidedly compares with the

Direct Paths algorithm in that it only considers the relative distance and orientations between

the sound source and the listener and ignores the room geometry entirely. In fact, the version

used for this research (DirectX® 9.0) includes major undocumented flaws and bugs, which

required significant effort to overcome. For instance, the library cannot handle listener

objects moving through the environment. Rather, we must mathematically reposition the

listener to the origin and rotate everything around it. Despite this and other bugs,

unquestionably and depressingly so, this library still sits at the top of available API’s for

sound processing and 3D auralization. Simply put, no (viable) alternative presently exists.

62

The DirectX algorithm loads and stores the sound files into memory. It can process

almost any format, but currently we only allow 16-bit monaural PCM WAVE files for the

sake of simplicity. We certainly could include capability for reading 8-bit sound files and

convert them to 16-bit for processing, but the resolution and quality of higher fidelity original

sound files should prove worthwhile. However, we must require single channel files to begin

with since we wish to translate them to stereo signals using convolution and the calculated

impulse response for our algorithms. This logical constraint holds as well for the

DirectSound® library, which can only apply 3D effects on monaural data.

We should note that the DirectX algorithm and thus succeeding objects retain the

previous locations and orientations of the avatar and sound source objects. When the

Sound3D object calls the algorithm to run, the library quickly compares these variables

against the current environment and can opt to use old, previously calculated results. Not

presently implemented, we could set a threshold for change of orientations and locations in

which to force the algorithm to recalculate (see “Orientation and Location Thresholds” on

page 141).

SoundPlayAlg Object

The DirectX algorithm includes extra functionality not required by the DirectSound®

3D algorithm. It can store sound data in a number of extra secondary and mixing buffers for

processing. The DirectX algorithm can play directly from the secondary buffer while it

allows unregulated access to the mixing buffers. Through the virtual class SoundPlayAlg

(child object of the SoundPlayDirectX algorithm object), our algorithms use these

buffers and can send them back to the DirectX® engine for sound generation. In this aspect,

the algorithms we developed do depend on a specific API library, but at some point, we

63

cannot avoid this anchor. Therefore, we have decided to work with the already reliant

DirectX® object and bridge the proper algorithms through this intermediary object. All

derived algorithms in this research (currently only two) inherit directly from this virtual class

to obtain this functionality.

The SoundPlayAlg object uses the parent DirectX algorithm to parse and load the

sound file, then reads and copies the data into accessible buffers. It stores the sound data as

arrays of individual samples (see “Sound Sample Storage” on page 75). This object also

creates left and right channel buffers to mix the impulse responses and the original data into

for the final product of the algorithm. Finally, when it loads a sound file, it also normalizes

the original sound signal globally so that convolving it will not produce excessively loud

samples or popping noises.

SoundPlayDirectPaths Algorithm Object

Implementing the Direct Paths algorithm (page 31), the SoundPlayAlg_DP object

contains nothing of considerable note other than the algorithm. This algorithm is analogous

to the DirectX algorithm in that it only takes into account the orientations and distance

between the sound source and the listener objects. It does not bounce the sound off the walls

or otherwise consider the environment. We intend to extend this algorithm to account for the

walls possibly even consider a few orders of direct reflections like the Reflected Paths

algorithm on page 34, but we leave this for future work (see “Direct Paths Algorithm

Expansion” on page 140). For now, this object simply runs the algorithm described in the

pseudo code in Table 1 on page 32.

64

SoundPlayBouncingReflections Algorithm Object

Significantly more complicated than the previous algorithm object, the

SoundPlayAlg_BR object runs the algorithm represented in the pseudo code in Table 5 on

page 40. Since this algorithm must track numerous reflection paths in addition to the zero-

order direct path from the sound source to the listener, we require two additional complex

data structures: the ImpulseResponse object (see “Impulse Response Data Structure” on

page 66) and the reverberationsTracker object (see “Reverberations Data Structure”

on page 64). We store all paths emanating from the sound source in the

reverberationsTracker object, while the ImpulseResponse object only

maintains the times and volume levels of the paths that actually hit the listener’s ears. The

algorithm stores both of these data structures as single instances and keeps them as separate,

external objects to allow other potential algorithms to include them.

Furthermore, in order to merge the generated finite impulse responses with the

original sound signal, the algorithm must perform Fourier transforms and therefore we link it

to the third party FFTW libraries (see “FFTW Library” on page 84). Linking and utilizing

these libraries necessitates storage and manipulation of library specific variables such as

“plans” and arrays of complex numbers with imaginary components. With one exception

(wisdoms), this algorithm object and the embedded impulse response object manage all of

the FFT functionality. We will describe, in detail, the incorporation of the FFTW libraries

below.

Reverberations Data Structure

Though only currently utilized by one algorithm, the reverberationsTracker

object has the flexibility to enhance the implementation of many algorithms and applications.

65

This object employs a hierarchal, object-oriented design that allows the program to track

numerous acoustic paths of varying lengths. The reverberationsTracker object

contains and array of reverberationPath objects each of which in turn manages an

array of attenuatedSegment objects. The attenuatedSegment objects inherit from

the parent segment object, which simply stores the start-point and end-point of a segment

along with the calculated length. The attenuatedSegment object also preserves the

strength, timestamp, and reference distances for the beginning and ending of the segment as

well as variables for animation. See Figure 14 on page 51 for an illustration of the hierarchal

relationship of these objects.

Consider a large number of ping-pong balls exploding out in all directions from the

sound source. The Bouncing Reflections algorithm must determine and set these initial

directions (see “Table 4” on page 39) of the ping-pong balls and has the responsibility of

calculating all subsequent reflection directions, or bounce paths. It then enters each ball’s

path into the tracker by adding more end-points. Initially, the application makes a call to the

addPoint function, sending the start-point and setting the appropriate path index number.

It then calls this function again with the next point and the tracker establishes a line, or

segment. Each subsequent call to this function adds another segment that begins where the

previous one ended. We can include multiple ball paths by setting the path index variable as

appropriate. So far, though, we have described few aspects of any acoustical nature in this

data structure.

Before we add any paths, we must set two important acoustic variables. The

initialReferenceDistance and initialReferenceStrength help determine

the acoustic properties, specifically the attenuation, of the set of paths. When adding a point,

66

we send the attenuation coefficient variable, calculatedCoefficient—defined as the

volume loss for the sound due to its bouncing off a surface. Currently, we compute this value

by simply adding the two variables absorption_coefficient and

dispersion_coefficient from the acoustic material of the object. The tracker then

multiplies the inverse of this value to determine the starting volume level of the next path.

We reconsider this simplification for future expansion (see “Acoustic Assumptions” on page

140). See Table 7 and Figure 16 for an example use and breakdown of this variable and

attenuation calculations.

The reverberationsTracker data structure includes a complex and powerful

drawing routine that uses the C++ built in <time.h> library to animate the object. The

SoundPlayAlg_BR object sends out many spheres, or ping-pong balls, emanating from

the sound source, all traveling the same speed. Some paths will certainly end earlier than

other paths, due to the extra volume loss from wall reflections and collisions with

environmental objects. A path that reaches the active listener automatically ends and the

reverberationsTracker highlights it with a different color. Finally, the tracker

represents the strength of the signal by proportionally decreasing the size of the traveling

spheres as they drop in volume. Through the simulator’s powerful interface, the user has the

option of showing the full animation or even just separate parts like the spheres, lines,

highlights, and/or bounce points.

Impulse Response Data Structure

Like the reverberationsTracker object, we embed the ImpulseResponse

object in the Bouncing Reflections algorithm. We can employ this data structure in any

future algorithm due to its portable and utilitarian nature. This data structure links to the

67

FFTW libraries (see “FFTW Library” on page 84) in order to initialize and store data. In fact,

almost all interaction, including formal calls to run the discrete Fourier transform functions

ensues through this data structure. This logically flows from the natural relationship of the

impulse response and Fourier analysis. However, we maintain portability to other platforms

and libraries by noting that the third-party FFTW libraries already run on almost any system.

This data structure has a number of important arrays of data. The left and right

impulse response arrays contain the strength values of the all hits sent to the

reverberationsTracker object. Similarly, the left and right impulse time stamp arrays

store the time of each processed hit. We need not make calls to the addStereoImpulse

function in the order the hits transpire temporally. Rather, we allow the algorithms to parse

an entire path before proceeding to the next one and call the hit function when required. Most

importantly, though, the reverberationsTracker object shelves two arrays of the

fftw_complex variables, one for each ear. This variable type, which the FFTW library

defines simply as a “struct” of two floating-point variables, abstracts the real and

imaginary components of complex numbers. The ImpulseResponse object stores the

reorganized response data into the real component of these arrays in order to facilitate speedy

convolution with the sound source by the algorithm. After the algorithm sends all of the

appropriate data to the ImpulseResponse object, it calls the function postCalculate

which simply sorts the previously sent impulse data in order of time and puts the results into

these complex number arrays for use in the convolution process.

Attenuation Algorithm

Central to the algorithms in this research, the simulator includes procedures for

determining the attenuation of sound propagating through the environment (see

68

“Attenuation” on page 147 for extended definitions and explanations). We consider only the

most common environmental situations and constrain sound to travel at 344 meters per

second. Certainly, factors such as air temperature, humidity, wind, and altitude can affect

sound speed, but since the simulator currently does not allow changes to these controls, our

algorithm does not account for them. We also simplify matters by embracing the

approximation of the inverse-square law that states that sound level loses about 6dB for every

doubling of distance from the source. This approximately means that the perceived volume

level drops by half each time the distance doubles. Furthermore, we do not consider the

effect of non-uniform volume loss at different frequencies that can occur primarily due to

humidity levels in the atmosphere. These assumptions allow us to design an extremely

efficient library for processing acoustics. Implementation of some of these simplifications

could significantly influence the effectiveness of our methods. However, we opted to focus

on developing algorithms comparable with industry standards. However, the simulator

requires none of these assumptions and we leave them for future expansion and analysis (see

“Acoustic Assumptions” on page 140).

Together, Table 7 and Figure 16 thoroughly illustrate the implementation of

attenuation in our project. The attenuatedSegment object (part of

reverberationsTracker) calls the attenuation function frequently during the course of

each path. After the simulator determines the length of any segment, it immediately

calculates the attenuation for that segment. These computations occur at each intersection

point, whether the path bounces off a wall or hits the listener. Attenuation effect compounds

as sound propagates further through the environment, so we calculate it on the fly with each

path. Since we know the approximate volume level of a path at any given point, we can

69

easily apply a cutoff threshold (the depth of the algorithm) to force a path to end prematurely

when it becomes irrelevant due to it becoming too quiet. The reverberationsTracker

data structure tracks the volume level loss in terms of strength of the signal. At full strength,

or 1.0, the sound has not decreased in volume. As sound traverses space and loses volume,

the strength variable decreases accordingly to zero. When appropriate, the impulse response

data structure stores this variable and then the algorithm can use it to convolve the impulse

response with the original sound data.

In effect, we consider two conditions that influence the sound path with respect to

attenuation. First, we use the inverse-square law to determine volume loss. This law,

common to physics and basic acoustics, states that as the distance doubles, the sound signal

loses approximately half of its perceived volume (see “Attenuation” on page 147). In order to

utilize this axiom, we must first know the initial distance traveled, or reference distance.

Since each sound file has an approximate or average initial volume level, we must assume

that all sounds playing without any acoustic manipulations start at a specific distance from

the listener. We can call this length the “base reference distance” and we arbitrarily set it to

2.0 meters. This assumption holds for all sound files globally, regardless of the perceived

initial volume level of the original data, as we must have some starting point to upon which

to base our calculations. When we establish a set of reverberation paths, the acoustic

algorithm must first examine the direct or zero-order path from the sound source to the

listener. The algorithm has the responsibility of calculating the distance from the source to

each ear of the listener. It sets the shortest distance as the initial reference distance (DIR in

Figure 16). With the initial reference distance, the base reference distance, and the strength of

the signal from the sound source to the base reference distance (1.0, or full strength), the

70

algorithm can send these factors to the attenuation function to find the initial reference

strength level (SIR in Figure 16). The algorithm then has a starting point to pursue all other

attenuation calls. Table 7 and Figure 16 give a clear example of this confusing mathematical

process.

The second aspect of attenuation to consider, reflection loss, occurs only as a path

bounces off a wall. When a path encounters a wall, the reverberationsTracker data

structure first uses the general attenuation function to find the strength before the hit. The

path will lose a certain amount of strength from the interaction—some due to absorption and

some from dispersion (see “Absorption & Dispersion” on page 146). The

calculatedCoefficient variable combines the two acoustic properties

absorption_coefficient and dispersion_coefficient for each material by

simply adding them together (see “Acoustic Assumptions” on page 140). The tracker then

calculates the resulting strength (S2 in Figure 16) by multiplying the pre-reflection strength

(S1) with the inverse of the calculated coefficient variable. Again, Table 7 and Figure 16 give

a clear example of this process. The combination of these two aspects of attenuation creates

an effective and efficient approach to 3D acoustics.

The simulator does not have an object directly associated with attenuation. Rather, we

chose to employ a globally available function to perform these calculations. We store most of

these functions, along with routines and data structures for convolution and sound file storage

in a general global library called SoundAlgorithms.

71

Attenuation Pseudo-Code:

ATTENUATION = 0.5 // The amount of volume loss for doubling of distance

atten(distance, startStrength, referenceDistance) {

 if(distance <= referenceDistance) return startStrength;

 real endStrength = startStrength;

 // Don't forget to travel the referenceDistance first!!!

 distanceTraveled = referenceDistance;

 i = 0;

 while(true) {

 // distanceTraveled=distanceTraveled+(referenceDistance*2i)

 pow2 = referenceDistance * pow(2.0, i);

 distanceTraveled += pow2;

 if(distanceTraveled > distance) break;

 endStrength *= ATTENUATION;

 i++;

 }

 real remainder = distance - (distanceTraveled - pow2);

 endStrength *= 1.0 - (ATTENUATION * (remainder / pow2));

} // The line above is an approximation for efficiency!

To calculate SIR:

Given: distance=4.0 [=DIR], startStrength=1.0 [=S0], referenceDistance=2.0

After traveling the first referenceDistance:

 distanceTraveled=2.0, endStrength=startStrength=1.0

After traveling referenceDistance again:

 distanceTraveled=4.0, endStrength=startStrength*ATTENUATION=0.5

After traveling referenceDistance again:

 distanceTraveled=8.0, endStrength=startStrength*ATTENUATION*ATTENUATION=0.25

To calculate S1:

Given: distance=6.0 [=D1], startStrength=0.5 [=SIR], referenceDistance=4.0 [=DIR]

After traveling the first referenceDistance:

 distanceTraveled=4.0, endStrength=startStrength=0.5

After traveling remainder=2.0:

 distanceTraveled=6.0,

 endStrength=startStrength*(1-(ATTENUATION*remainder/distanceTraveled))=0.416̄

After traveling referenceDistance again:

 distanceTraveled=8.0, endStrength=startStrength*ATTENUATION=0.25

After traveling referenceDistance again:

 distanceTraveled=16.0, endStrength=startStrength*ATTENUATION*ATTENUATION=0.125

To calculate S2:

Given: startStrength=0.416̄ [=S1], referenceDistance=4.0 [=DIR],

 absorption_coefficient=0.006, dispersion_coefficient=0.004

calculatedCoefficient=absorption_coefficient+dispersion_coefficient=0.01

endStrength=startStrength*(1.0-calculatedCoefficient)=0.4125

Table 7: Calculating Attenuation Pseudo-Code and Example Calculations

72

Sound Storage

We must consider two aspects with respect to sound data: permanent and temporary

storage. Digital sound typically begins as a stable file located on an accessible portion of a

hard drive. It generally has one of a number of standard formats applied to it. An application,

in our case the TDS Simulator, then reads and interprets this audio data and consigns it into

temporary memory storage. Since we have little control over standards involving the

persistent sound file storage, we will focus mainly on transient sound data stored in computer

memory. First, though, we must cover some of the basics of local storage.

Figure 16: Calculating Attenuation

73

Sound File Storage

In order to keep the simulator generic and universally portable, it must conform to

industry standards when reading sound data stored locally on a hard drive or other media.

However, we do make certain assumptions about the format of the original permanent sound

data in order to facilitate simplicity. First, the simulator only accepts WAVE data stored as

PCM files. Developed and standardized by Microsoft™ in the early 1990’s, the WAVE

format (denoted by the “.wav” extension) describes a subset of the RIFF (Resource

Interchange File Format) specification that typically contains sound data in a bitstream

format [https://ccrma.stanford.edu/courses/422/projects/WaveFormat/]. We further require the

bitstream data to follow a pulse-code modulation (PCM) form and only consider 16-bit,

monaural data. We certainly could enhance the simulator to parse 8-bit data files; however,

the loss in fidelity could have a dramatic impact on the results. Presently, this research does

not explore this assumption, but logic dictates that starting with higher quality data will

provide better results.

As well, the simulator cannot handle stereo sound files since it must eventually

generate its own stereoscopic rendering of the original data. It uses the basic, signal-channel

sound and eventually convolves it to produce a stereo effect (see “Convolution Algorithm”

on page 77) so ability to read stereo sound files becomes irrelevant. This again follows

simple logic and, in fact, industry standard 3D sound API’s also make this assumption. The

simulator could read only one channel of a stereo sound or in some manner merge two

channels together, but this would defeat the purpose of generating a realistic 3D sound.

Finally, the simulator only reads WAVE PCM files. Files of this format best represent

sampled analog signals. Furthermore, we do not read streamed data or allow losslessly and

74

compressed designs like MP3 sound files. We must assume that we have the entire data at

our disposal for convolution, so we cannot accept streamed or similarly formatted sound

data. In order to execute the convolution algorithms, the simulator absolutely must know the

maximum size of the signal data. As well, for the sake of elegance and simplicity the

simulator only reads WAV files. Certainly, a digital sound can reside in any number of

formats. The most popular format, MP3 files, countenances a losslessly storage model. This

means that each time a user saves a file in this format, the data changes and actually

effectively loses some aspect of the original source. In our research, technically, this would

not directly affect the results, as we do not resave the generated stereo sounds. However, the

simulator would have to convert the data into samples for processing which adds another

level of undesired complications. As well, the MP3 format uses compression algorithms to

read and store the data. Though this obstacle is not insurmountable, we can find no reason to

clutter the simulator with this capability.

Instead, the simulator uses standard DirectX® routines based off sample libraries to

read and process the stored WAVE files. This procedure breaks down to two complicated

elements: reading the header and reading the data. Fortunately, Microsoft® has standardized

and surprisingly simplified the reading of the header data. The simulator encapsulates all of

the necessary code for this in the WaveFile object which uses the Windows MMIO

functions for parsing the data [http://msdn.microsoft.com/en-

us/library/windows/desktop/ee418775(v=vs.85).aspx]:

WAV files are in the Resource Interchange File Format (RIFF), which
consists of a variable number of named chunks containing either header
information (for example, the format of sound samples) or data (the samples
themselves). The Win32 API supplies functions for opening and closing RIFF
files, seeking to chunks, and so on. The names of these functions all start with
"mmio”.

75

Though most of this follows standard conventions, the WaveFile object does check

the “AudioFormat” portion of the “fmt ” of the header to force only PCM data.

The most difficult part in reading a WAVE PCM sound file lies in parsing the actual

data. For incomprehensible or possibly just archaic reasons, the WAVE format specifies that

the data reside as little-endian bytes. Furthermore, 8-bit samples start as single unsigned

bytes from 0 to 255. However, we read 16-bit samples as pairs of bytes, 2's-complement

signed integers, ranging from -32768 to 32767. See Table 8 for the way the simulator handles

these differing data types. Our parsing algorithm must convert the two-byte little-endian 16-

bit data to something useful to the simulator (see “Sound Sample Storage” on page 75).

Fortunately, the processor can ignore complexity arising from stereo channels, but if

required, we note that samples simply alternate back and form from right to left in the data.

Sound Sample Storage

Before examining how the simulator stores sound data in memory, we must first

further consider the details of the data stored in the original sound file. By convention, the

data in most WAVE files exists as pulse-code modulation (PCM) samples. This design

corresponds appropriately to the manner in which we perceive and create sound. Consider a

speaker reproducing digitized sound. The speaker has a configuration of magnets and coils

that upon receiving an electrical impulse moves a membrane a subtle distance. This

membrane movement pushes air molecules, causing pressure differentials, and thus

perceivable sound. The amount of the distance moved directly corresponds to power or

strength of the electrical impulse as well as the volume of the perceived sound. Running the

process in reverse, using the membrane to detect small movements in the air, the system can

record transmitted sounds. A PCM sound file simply stores these electrical impulses as

76

discrete digitized samples. Clearly, this explanation oversimplifies a complicated process and

does not address issues such as fidelity, aliasing, quantization, and sampling rates (Nyquist

theorem). However, for the purposes of this research, we can assume we have access to

properly sampled sound files that already factor these details. Individual samples in the sound

file correspond to separate impulses for a speaker. We consider this data as stored in the time

domain since playing the sound file means reading the data in a linearly temporal manner.

typedef signed char samp8; // -128 to 127 (8b samples originally

 // stored unsigned bytes)

 typedef signed short samp16; // -32768 to 32767 (16b samples stored

 // as 2's-complement signed integers)

typedef unsigned char sampData; // 0 to 255

typedef float sampScaled; // -1.0 to 1.0

void sample16ToReversedString(samp16 num, sampData &data1, sampData &data2) {

 data2 = (sampData)(num/256); // data2 is the high byte, data1 is the low byte

 data1 = (sampData)(num-(256*data1));

 if((num <= 0 && (data2 != 0 || data1 != 0)) && (data1 != 0)) data2 -= 1;

}

samp16 reversedStringToSample16(sampData data1, sampData data2) {

 samp16 result = 0;

 int tmp;

 bool neg = false;

 tmp = (int)data2;

 if(tmp >= 128) {

 tmp -= 128;

 neg = true;

 }

 result = tmp*256.0;

 tmp = (int)data1;

 result += tmp;

 if(neg) result -= 32768;

}

Table 8: Sound Storage Data Types and Conversion Functions

The WAVE sound file uses a complicated design to store audio information. Data

points in the WAVE file start out as unsigned character bytes (ranging from 0 to 255), which

the simulator reads in as the data type sampData. A sample consists of one or two of these

77

unformatted bytes. Depending on the bit-rate, the SoundPlayAlg object then converts this

data to standard, meaningful information using the functions listed in Table 8. In memory, a

sample can exist as either a signed byte ranging from -127 to 128 (8-bit) or a signed integer

from -32768 to 32767 (16-bit). The simulator must convert these variations to something

standard and useful, in this case the defined data type sampScaled. Variables of this type

can range as floating-point numbers from -1.0 to 1.0.

Once in the sampScaled format, the SoundPlayAlg object stores the sample

data into arrays for later manipulation. It retains a copy of the original sample data in a non-

modifiable array and allocates memory for two mixing arrays, one for each ear. These arrays

must each have at least twice the memory allocated as the original data in order to facilitate

convolution.

Convolution Algorithm

As mentioned previously, the sound API ideally would have the option to apply the

computed impulse response on the original sound file through accelerated hardware

components of the sound card. Indeed this has an analogous case in 3D graphics. In the

visual realm, the API effectively sends the geometrical information to the 3D graphics card,

which has specialized processors to handle and manipulate the data and complex

calculations. While some sound cards do boast some 3D acceleration, the reality of current

technology dictates only accelerated HRTF processing (see “Head Related Transfer Function

(HRTF)” on page 157). For the time being, the simulator must convolve the sounds at the

software level (see Table 9 and Equation 2). The methods used in this step are common

sound processing techniques, implemented throughout the computer music field for decades.

78

After the system processes the sound, the resulting signal passes through the DirectX® sound

API without any further manipulations.

For purposes of modularity and simplicity, we keep the convolution algorithm in the

generic global library SoundAlgorithms. This short algorithm needs no further

explanation. However, the algorithms in the simulator do not currently run this code.

Executing this process proves exceedingly inefficient because of the increasingly large

number of additions and subtractions required. According to common understanding (Smith,

1997), convolution in the time domain does not work for real-time applications. However, we

have a simple alternative: multiplication in the frequency domain.

)(...)3()2()1()()(3210 knXinXinXinXinXinY k −∗++−∗+−∗+−∗+∗=
Equation 2: Convolution of Sound [X] with Impulse [i]

for n=impulse_size...sample_size {
 output[n-impulse_size] = 0.0;
 for k...impulse_size
 output[n-impulse_size] += impulseResponse[k]*waveForm[n-k];
}

Table 9: Convolution Algorithm Pseudo-Code

Initially, the data for a sound file resides as pulse code modulation in the time

domain. This means that data stores the pulses according to increasing time at specified

sample rates. We can convert this discrete information into the frequency domain by a

common process call Fourier transform. Once we have both the original signal and the

impulse responses in the frequency domain, we quickly multiply the signals and transform

the result back to the time domain for playback. Clearly, the cost of converting back and

forth between the domains and the necessary math in the frequency domain must offset the

expense of convolution in the time domain. Unquestionably, we far surpass this threshold

because of three factors. First, the simulator can covert the original data samples into the

frequency domain when it first loads the sound files at application initialization. This means

79

that this part of the process occurs only once, regardless of how many times the simulator

runs the algorithm. Second, we use the same data, in the same loop (see Table 10) for both

channels, thereby minimizing processing cycles. Finally, instead of “reinventing the wheel”

we have linked to a set of third party libraries to perform fast Fourier transforms (FFT). The

FFTW library (see “FFTW Library” on page 84) operates these transforms tremendously

fast, far more efficiently than we could program within the scope of this research.

We can confirm the efficiency of this process by comparing the two developed

algorithms in this research. The computational differences between the Direct Paths

algorithm (page 31) and the Bouncing Reflections algorithm (page 36) dwell in the process

of calculating the reverberation paths and impulse responses and primarily the convolution

aspect of the latter algorithm. We examine this in detail in the section “Validity” on page

104, but for now note that the convolution portion of the algorithm runs in real-time but does

principally influence the speed of the acoustic algorithm.

MAXSAMPLES = numberOfOriginalSamples * BUFFER_SIZE_MULTIPLIER;

SoundPlayAlg_BR::convertAlgorithmToSamples() {

// The FFTs have been calculated. Multiply each sample in FFTs together linearly.

 for(n=0; n<MAXSAMPLES; n++) {

 outLeft[n][R]=inOriginal[n][R]*FIR_Left[n][R] - inOriginal[n][I]*FIR_Left[n][I];

 outLeft[n][I]=inOriginal[n][I]*FIR_Left[n][R] + inOriginal[n][R]*FIR_Left[n][I];

 outRight[n][R]=inOriginal[n][R]*FIR_Right[n][R] - inOriginal[n][I]*FIR_Right[n][I];

 outRight[n][I]=inOriginal[n][I]*FIR_Right[n][R] + inOriginal[n][R]*FIR_Right[n][I];

 }

 // Finally, now multiply each to get the data back...

 fftw_execute(planOutLeftREV);

 fftw_execute(planOutRightREV);

 // Copy the data back into the buffers.

 for(n=0; n<numberOfOriginalSamples*2; n++) {

 modifiedDataSamplesLeft[n] = outLeft[n][R] / MAXSAMPLES;

 modifiedDataSamplesRight[n] = outRight[n][R] / MAXSAMPLES;

 }

} // end SoundPlayAlg_BR::convertAlgorithmToSamples() //

Table 10: Multiplication in the Frequency Domain Pseudo-Code

80

Table 10 shows the pseudo-code for performing these operations. Multiplication in

the frequency domain actually requires two operations per channel. It must contend with both

the real and imaginary components of the complex number. The FFTW library predefines

this data type as simply a “struct” of two floating-point variables. Reconstructing the

resulting data into something meaningful does warrant further scrutiny. In order to avoid

circular convolution, the algorithm simply pads the number of samples to parse with a

multiplier. This multiplier indicates the proportional amount of extra space to allocate larger

than the number of sound samples. For example, if set to 3.5, the simulator will set the size of

the sound buffer and subsequent FIR buffers to 3.5 times the number of samples from the

original. The algorithm must finally divide the results stored in the real component of the

outputs by the number of samples parsed (multiplier and number of samples from the

original) to return to the sampScaled data type. See (Smith, 1997) for a detailed

explanation of the FFT process.

Currently, the simulator does not generically store the code for multiplication in the

frequency domain with the convolution algorithm in the SoundAlgorithms library.

Rather, since presently only the Bouncing Reflections algorithm (see page 36) incorporates

it, the code remains in the SoundPlayAlg_BR object. This avoids the messiness of

sending arrays by reference to a generic function that we only call from one location in the

code.

Integrated Libraries

Eventually, the goal of this research is to produce a fully functional integrated library,

or API, that will provide true 3D audio for any application. For design and simplicity

purposes, the simulator currently exploits a number of off-the-shelf API’s to handle the more

81

mundane aspects of the program. First, the Microsoft Foundation Class® handles the front-

end graphical user interface. This API manages all of the basic functionality of the actual

simulator application such as window creation and keyboard and mouse event handling. Just

behind and integrated with MFC, the graphics library OpenGL® controls the entire visual 3D

graphical pipeline. The simulator sends the data in the Environment3D object to the

OpenGL® API, via various function calls, which then renders the graphics on the display

screen. One can readily find both of these libraries commonly implemented in a multitude of

settings and applications and thorough documentation of their workings and design.

Buried within the hierarchy of the Sound3D object, Microsoft’s DirectX® library

offers audio reproduction support through its DirectSound® interface. Presently, all audio

feedback tunnels through this library. The simulator does not depend on the specifics of this

API. It would not take much effort to utilize a completely different audio or graphical

interface, and we have incorporated this feature, or ability, in the current state of the

application by segmenting the dependent code with processor directives. The programmer

need only provide support for an alternative API, embedding the instructions in appropriate

locations, and then switch off any undesired API code with preprocessor definitions.

However, for the present, Microsoft’s DirectX DirectSound® provides sufficient low-

level support for the algorithms while allowing the simulator to compare them against

DirectSound® 3D reproduction. As well, OpenGL® offers strong graphical hardware

rendering support and unquestionable platform portability (see “Portability” on page 90).

Below, we will explore the inclusion, advantages, and any shortcomings of these Application

Programming Interfaces.

82

OpenGL® Library

Integral to the simulator and the experiment, the OpenGL® library allows us to

provide a complex and accurate visual reproduction of the environment. The main hypothesis

of this research, to approach the concepts and dilemmas associated with 3D virtual sound

calculations, would have no meaning without an immersive 3D virtual environment that

properly represents the expected visuals. In fairness, the visual component of Microsoft’s

DirectX® library, Direct3D®, does compare with if not outperform OpenGL® and we

certainly could have programmed the simulator with this API. As well, we seriously

considered several more sophisticated, high-level environments such as the Unreal® Engine

[http://www.unrealengine.com/]. Three points led to the implementation of the OpenGL® library

over alternatives.

First, the final version of this research contains approximately 25,000 lines of code.

During previous research, we had developed generic libraries for reading files, loading and

applying visual textures, enumerating three-dimensional math, and other non-trivial

functions. Incorporating and extending these existing libraries seemed natural as well as

continuing with the familiarity of a known environment. Furthermore, the learning curve

associated with a different system undoubtedly outweighs any other possible benefits.

Second, OpenGL® has a proven reputation to programmers as a stable and easy to

understand library. It profits from extensive global support with examples and instructions

across a wide variety of applications. Considering the issues that we encountered using

Microsoft’s DirectX DirectSound® API and the incredible lack of acknowledgement of

(needless to say, support of) these serious bugs, we feel quite justified in our choice.

Furthermore, Microsoft® has a deserved reputation of imposing dramatic changes to their

83

libraries that depreciate previous versions and disregard backwards compatibility. Other

libraries, such as the Unreal® Engine have better reputations then DirectX®, however we

considered a prebuilt engine based off gaming environments to have too high level of

programming abstraction. With OpenGL®, we could create a generic environmental system

not only usable by the graphics library, but also available to the audio portion of the system.

The third reason we selected the OpenGL® API above others possibilities, GLUT

(OpenGL Utility Toolkit [http://www.opengl.org/resources/libraries/glut/]), considerably extends

the OpenGL® library with easy to use functions and characteristics. These tools vary from

simple, portable functions for drawing basic shapes like boxes and spheres to sophisticated

windowing and callback routines.

DirectSound® Library

Previously described in a number of sections, the simulator employs Microsoft’s

DirectX DirectSound® API for loading and reproducing most sounds. Along with common

runtime libraries for end-users to appropriate, Microsoft® regularly provides updated

software development kits that include programming components such as libraries, symbols,

and header files required by the compiler for coding and linking to the API. During the

course of this research, Microsoft® has updated DirectSound® a number of times and we

have attempted to maintain concurrency with these changes. However, at some point, we

found it necessary to settle on a specific version for the remaining development. The version

used for this research, DirectX® 9.0 works with “Microsoft DirectX SDK (November

2007)”. Presently, Microsoft offers DirectX® 11.0 which links to “June 2010 DirectX SDK”

[http://msdn.microsoft.com/directx/].

84

As mentioned previously, Microsoft has a tendency to make sweeping changes to

their libraries that depreciate previous versions. The current version of DirectX® does not

even include DirectSound®. Rather, Microsoft® has chosen to completely rewrite the audio

stack and put the 3D sound portion in a sub-library of the new XAudio2 called X3DAudio.

According to Microsoft® [http://msdn.microsoft.com/en-us/library/ee415813(v=vs.85).aspx]:

XAudio2 is a low-level audio API. It provides a signal processing and mixing
foundation for games that is similar to its predecessors, DirectSound and
XAudio. XAudio2 is the long-awaited replacement for DirectSound. It
addresses several outstanding issues and feature requests.

Despite this change in nomenclature, the X3DAudio library still does little more than

account for the direct path between the sound source and the listener, “to position sound in

3D space to create the illusion of sound coming from a point in space relative to the position

of the camera” [http://msdn.microsoft.com/en-us/library/windows/apps/ee415717.aspx].

As with the graphics library, we did have options other than DirectSound®.

Considering the historical obstacles with DirectX® and DirectSound®

[http://www.gamedev.net/page/resources/_/technical/directx-and-xna/directsound3d-r593], other

sound libraries might have held certain appeal. Historically, alternatives included OpenAL

[http://www.openal.org/], Environmental Audio Extensions (or EAX), or Aureal 3-Dimensional

(A3D) [http://www.soundblaster.com/eax/]. All of these, Creative Technology Ltd. has acquired

over the past decade and either no longer supports or has significantly less functionality than

DirectSound®.

FFTW Library

Critical to the core of the sound processing algorithms, the simulator must perform

computationally intensive Fourier transforms and reverse transforms frequently and therefore

85

efficiently. Fourier transforms provide an alternative to the impractical convolution process

by converting two large data sets into the frequency domain, allowing the program to

multiply the streams linearly, and translating the result back into the time domain for

consumption. A basic Fourier transform would have an unacceptable time complexity of

O(n2) while fast Fourier transform (FFT) algorithms have computational complexity as little

as O(n log n). Some derivations such as fast cosine transform (FCT), Cooley–Tukey FFT, or

other specialized discrete cosine transform (DCT) algorithms can execute even faster in

controlled circumstances.

Programmers have used these techniques for decades, so formulas and even direct

code examples abound for our use. Since the speed of the algorithms in the simulator

depends so heavily on the efficiency of this segment of code, we carefully considered

available options. It quickly became apparent that the FFTW library [http://www.fftw.org/]

would perfectly suit the needs of the simulator. By all accounts, this library runs as quick, if

not significantly faster than its competition. Moreover, FFTW boasts the added features of

being easy to use, well-documented, extremely portable, processor optimized, and most

importantly free. The simulator does include a version of the common FFT algorithm within

the SoundAlgorithms library; however, no process in this project employs it.

In order to exploit the FFTW library efficiently, the simulator must take a few steps to

properly setup the system. First, the library prefers to involve a set of mechanisms called

plans and wisdoms. It uses plans to store all the internal data that FFTW needs to compute a

given transform. These plans can take incredible amount of processing time to create, but

they allow the library to execute the actual FFT exceedingly fast. When creating a plan, we

must specify the input and output arrays of complex numbers, the size of these arrays, and

86

the direction of the transform. For each instance of a loaded sound file, the simulator must

manage the five plans listed in the top of Table 11. This happens each time the scene file lists

a SoundSource3D object, regardless if it occurred previously. Clearly, we could minimize

the number of plans required by recognizing this fact. However, the only significant

drawback in the current implementation occurs when the simulator first generates the

required plans. On a modern dual-core processor, this process takes up to an unacceptable six

to ten minutes! Fortunately, we have wisdoms at our disposal, which provide a process for

saving plans to the local disc and restoring them the next time simulator loads.

In the Scene3D loadScene function, before it encounters any sound files, the

simulator looks to see if a properly formed wisdom exists on the hard drive. If it does, the

loadScene function proceeds to load the sound files and restore the associated plans from

the wisdom file. This takes almost no time. Otherwise, the simulator warns the user of the

impending time-consuming process and then continues on, loading the listed sound files and

generating sets of new plans for each instance. Once it finishes loading all sound files, the

Scene3D object stores the processed plans in a new wisdom file if needed. Each time the

simulator runs on a new computer, the list of sound files in the scene changes, the compiler

switches from debug to release mode, or we utilize a different FFT method, the simulator

must rebuild the wisdom file. Otherwise, this deplorably prolonged process need only run

one time for a given scene and not each time the simulator initializes. Table 11 lists the

complicated process for loading the FFTW library.

Each time the simulator loads a sound file into the system it associates one of each of

the algorithm objects to it and these objects have the option of creating and storing plans.

Currently, only the SoundPlayAlg_BR object (see “SoundPlayBouncingReflections

87

Algorithm Object” on page 64) requires the FFT process so only it retains plans for the

different sound files. Each instance of this object also contains an ImpulseResponse

object, which in turn keeps two forward plans, one for each ear.

The simulator loads and stores these uniquely named wisdom files that dramatically

speed up the loading of plans. These wisdom files sit within the working directory and have

tags in the filename to help maintain concurrency. They depend on factors such as the

specific scene name, the mode debugging mode of the compiler, the computer name, and the

mode of the FFTW library. Since the FFTW system can run in a number of different modes,

the simulator universally hard-codes this variable for all FFT calls. It currently sets the mode

to FFTW_MEASURE that the documentation [http://www.fftw.org/fftw3_doc/Planner-

Flags.html#Planner-Flags] describes as a moderately optimized plan.

MAXSAMPLES = numberOfOriginalSamples * BUFFER_SIZE_MULTIPLIER;

// For Each Instance of a Loaded Sound File:

// For Each Algorithm that Requires FFT:

// Original Mono Sound Data FORWARD [size=MAXSAMPLES, inOriginal]

// Left Channel Impulse Response Data FORWARD [size=MAXSAMPLES, FIR_Left]

// Right Channel Impulse Response Data FORWARD [size=MAXSAMPLES, FIR_Right]

// Left Channel Modified Sound Data REVERSE [size=MAXSAMPLES, outLeft]

// Right Channel Modified Sound Data REVERSE [size=MAXSAMPLES, outRight]

Scene3D::loadScene() {

 // Load FFT Plans...

 // basename contains "TDS_" & [METHOD] & ["_D_"|"_R_"] [filename]

 bool bNeedToCreateWisdom = true;

 getUniqueFilename(uniqueName, basename, computerName, "fftplan", true);

 if(fftw_import_wisdom_from_filename(uniqueName)) bNeedToCreateWisdom = false;

 else MESSAGE("Wisdom for FFT was NOT found! This will take a LONG while...");

 // Next load all sounds! For each sound, call Sound3D::loadSound()

...

// Called within the Scene3D::loadScene() function //

int Sound3D::loadSound() {

 soundObjects[sndIndex][3DCALC_SIMPLE] = new SoundPlaySimple();

 soundObjects[sndIndex][3DCALC_DIRECTX] = new SoundPlayDirectX();

 soundObjects[sndIndex][3DCALC_DIRECT_PATHS] = new SoundPlayAlg_DP();

 soundObjects[sndIndex][3DCALC_BOUNCING_REFLECTIONS] = new SoundPlayAlg_BR();

88

 for(i=0; i<NUM_ALGORITHMS; i++) {

 soundObjects[sndIndex][i]->initialize();

 soundObjects[sndIndex][i]->env = env;

 soundObjects[sndIndex][i]->parseSoundFile();

 }

} // end Sound3D::loadSound() //

// Called within the Sound3D::loadSound() function //

SoundPlayAlg_BR::parseSoundFile() {

 // Now allocate the memory for the FFTs to come...

 inOriginal = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * MAXSAMPLES);

 outLeft = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * MAXSAMPLES);

 outRight = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * MAXSAMPLES);

 planInFWD = fftw_plan_dft_1d(MAXSAMPLES,inOriginal,inOriginal,FFTW_FORWARD,METHOD);

 planOutLeftREV = fftw_plan_dft_1d(MAXSAMPLES,outLeft, outLeft,FFTW_BACKWARD,METHOD);

 planOutRightREV = fftw_plan_dft_1d(MAXSAMPLES,outRight,outRight,FFTW_BACKWARD,METHOD);

 // Finally, put stuff into the FFT and do an initial run!

 for(n=0; n<numberOfOriginalSamples; n++)

 inOriginal[n][R] = originalDataSamples[i];

 for(n=numberOfOriginalSamples; n<MAXSAMPLES; n++)

 inOriginal[n][R] = 0.0; // Pad with the original the zeros before doing the fft...

 fftw_execute(planInFWD);

 m_FIR.setMaxSize();

} // end SoundPlayAlg_BR::parseSoundFile() //

// Called within the SoundPlayAlg_BR::parseSoundFile() function //

ImpulseResponse::setMaxSize() {

 FIR_Left = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * MAXSAMPLES);

 FIR_Right = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * MAXSAMPLES);

 planFIRLeftFWD = fftw_plan_dft_1d(MAXSAMPLES,FIR_Left,FIR_Left,FFTW_FORWARD,FFT_METHOD);

 planFIRRightFWD=fftw_plan_dft_1d(MAXSAMPLES,FIR_Right,FIR_Right,FFTW_FORWARD,FFT_METHOD);

} // end ImpulseResponse::setMaxSize() //

...

 // Finally save the FFT Plans...

 if(bNeedToCreateWisdom)

 if(!fftw_export_wisdom_to_filename(uniqueName))

 EXIT("ERROR! Unable to create the wisdom for the FFT!!!", 4523352);

} // end Scene3D::loadScene() //

Table 11: FFTW Loading Process

89

Experiment Structure

In the section “Research Methods” on page 93, we will go into much more detail

about the processes involving the experiments for this research. However, in the following

sections we briefly describe the design choices and implementations of the experiment side

of the TDS Simulator.

Data Field Example Comment

SubjectID 8396 Randomly generated (unique)

Date 11/28/2011

Time 10:16:12

Algorithm DIRECT PATHS or SIMPLE, DIRECTX, BOUNCING REFLECTIONS

Number of Sources 4 Random from 2 to 7 sources

Attempts 1 Number of attempts made before correct

Guessed Correctly T T or F

Correct Answer 2 Index of Source for the correct answer

SoundFile bounce.wav

Depth 1 Random from 1 to 10

Breadth 4 Random from 1 to 10

OrientationWeight 0.452 Random from 0.0 to 1.0

Listener LastX 3.889

Listener LastY 32.787

Listener LastZ 1.93

Listener LastT 78.5

Listener LastP 0

Source1X 1.468

Source1Y 37.237

Source1Z 2.613

Source1T 188.037 Horizontal orientation Theta, from 0 to 360

Source1P 354.056 Vertical orientation Phi, from 0 to 360

Source2X 5.404

Source2Y 33.037

... Continues through "Number of Sources"

Table 12: Experimental Data Storage Format

Testing Modes

In addition to the basic user-interface, which allows the user to control all aspects of

the simulator, the TDS Simulator also provides a testing environment for subject-based

90

experiments. As highlighted in the “Research Methods” section on page 93, the simulator

provides two methods of tests. A test subject sees the data either with or without feedback.

The simulator presents the subject with ten questions with feedback followed by ten

questions without feedback. See “Experiment Analysis” on page 109 for a thorough analysis

and comparison of the testing mode techniques.

Experimental Testing Data Structure

Stored through the TestingData object, the simulator collects and outputs a great

deal of information during the course of the experiment. Each subject runs through twenty

questions, ten with feedback and then ten without. The simulator records many variables for

each question (see Table 12). We discuss the data and analyze the results in section “Results”

on page 102. After each subject completes the experiment, the TestingData object

appends the collected data to the end of a comma delimited text file for later processing and

analysis.

Portability

Even though we have not explicitly tested this at this point, the system and designed

algorithms should retain general portability to other compilers and platforms. Addressed in

many of the previous sections, the TDS Simulator connects to a diverse set of external API

libraries, including MFC®, OpenGL®, GLUT®, DirectX®, MCI®, and FFTW®. In all

fairness, certain components of the simulator do depend on portions of these libraries and

therefore portability does not flow throughout the system universally. However, we have

made significant effort within the 25,000+ lines of code to designate and segment dependent

sections in order to facilitate easy transition to alternative libraries. Most of the functions that

require linkage to external libraries have surrounding processor directives such as

91

#ifdef GRAPHICSENGINE_OPENGL and then #endif. Before building the program,

we simply set the necessary preprocessor definition variables to tell the compiler to include

the desired sections or not. Enhancing the simulator to attach to different API libraries simply

requires copying these sections of code and modifying appropriately. This could even easily

allow for support of multiple side-by-side competing options of certain library types.

Some external libraries, however, need not have alternative options as they already

purport portability to different platforms. These include OpenGL®, GLUT®, and FFTW®.

Unfortunately, and not surprisingly, the libraries from Microsoft® do not natively afford

portability to other systems. Since no reasonable alternative audio library currently exits (see

“DirectSound® Library” on page 83), the TDS Simulator loses portability on a fundamental

and critical level. Fortunately, fault for this does not fall on the design of the simulator, but

rather lack of substitutes in the industry. Once we have alternatives to the sound API

available, the simulator will readily embrace them.

The TDS Simulator currently compiles without error or difficulty through Microsoft’s

Visual Studio® 2008 C++ programming environment. Although this is not the current

version of Visual Studio [http://www.microsoft.com/visualstudio/eng], during the course of

development of this project, we resolved to lock down and stay with this implentation.

However, nothing inherent in the program requires this specific programming choice other

than the main initial application creation process. Most of the code falls into modular,

typically object-oriented libraries, independent of the main application. Switching to another

C++ programming environment would require a significant amount of effort, but

undoubtedly, most of this would occur at the top level of the simulator application. This

research does however rely on a programming environment that uses the C++ programming

92

language. Conversion to another, even similar language would require a complete overhaul.

Happily most serious developers still work with, if not exclusively, this programming

language.

Research Methods

Introduction

Through this study, we intend to provide a better understanding of how we perceive

sound. We wish to explore virtual 3D perceptions, concentrating on the relationship between

aural awareness and visual interpretation. We have developed a virtual 3D simulator (see

“The TDS Simulator” on page 49) that allows a user to move through a graphical setting

while listening to sounds from objects positioned throughout the virtual environment. The

simulator reproduces these sounds using a variety of techniques including simple playback

(i.e. no 3D virtualization), implementation of the Microsoft’s DirectX DirectSound® library,

or utilization of the 3D acoustic algorithms developed in this research. Table 13 lists the three

primary hypotheses for this experiment. In the sections below, we will provide further

explanation and analysis of the testing details.

In order to examine the issues of generating 3D sound, we mandated an experiment to

assess a reasonably large population sample. See “Experimental Environment” on page 97

and “Experimental Procedure” on page 99 for an extensive breakdown of the final

experiment. After receiving approval from The Institutional Review Board, we commenced

this set of experiments involving college student subjects in controlled settings. Initially, in

Figure 17: Initial Results for Testing with
Feedback

Figure 18: Initial Results for Testing without
Feedback

94

July of 2008, we ran the experiment with a small set of test subjects to obtain a proof-of-

concept for the basis of the project. This portion of the experiment simply demonstrated that

we could establish that the DirectX DirectSound® industry standard 3D sound algorithm

performs better than reproducing the same sounds with no 3D acoustic algorithm at all (the

Simple algorithm). Running this preliminary experiment also allowed us to evaluate and

refine the testing procedure and analysis techniques for future experiments. Figure 17 and

Figure 18 show the results of this prototype experiment. The experiment included just four

test subjects and transpired in a small room on the campus of University of Louisiana,

Lafayette. Since we covered this small pseudo-experiment in past research, we simply

highlight the results. The methods of analysis of the data have not changed dramatically and

so we leave further explanation for other sections.

After competition of the initial proof-of-concept experiment and having concluded

the validity of the simulator and testing procedures, we pursued the design and development

proprietary algorithms for comparison. Through this process, we developed two strong

candidates for consideration. The Direct Paths algorithm (see page 31) correlates to the

industry standard DirectX DirectSound® method in many ways while the Reflected Paths

algorithm (see page 34) significantly extends these two relatively simple approaches. The

final experiment design compares these three methodologies with each other and again

incorporates the control of generating sound with no 3D acoustic algorithm.

After some trial and error, in October of 2012, we concluded a formal round of

experimental tests involving over one-hundred student test subjects. Described in detail in the

following sections, this experiment took place on the campus of Southeastern Louisiana

University in the College of Business. The test subject pool comprised mostly of college

95

students from this department, with varying degrees of technical experience and

backgrounds.

Hypotheses

The theories and premises behind this research maintain that current algorithms and

techniques for producing 3D sound in virtual environments fall measurably short of more

advanced potential practices. Table 13 lists the three primary hypotheses for this experiment.

Hyp1
While DirectX DirectSound® will perform better than Simple playback, the
3D algorithms from the research will produce more accurate sound
reproduction than DirectX DirectSound®.

Hyp2
Over time, with training, a test subject’s performance with the research
algorithms will improve, while training with the other algorithms will not
show improvement.

Hyp3
One of the algorithms developed in this research will produce superior
results than the others. We anticipate the more complicated Bouncing
Reflections algorithm to outperform all others.

Table 13: Experimental Hypotheses

Methods employed in the research algorithms fundamentally derive from procedures

developed in off-line architectural analysis applications (e.g. EASE

[http://www.auralisation.com/], CATT Acoustic [http://www.catt.se/], and Odeon

[http://www.odeon.dk/]). These techniques applied in non-real-time applications provide

acousticians somewhat accurate models and predictions of the sonic nature of conceptual or

real buildings and spaces. This research takes the basic concepts of these applications and, in

effect, extends the process. Instead of predicting the nature of the virtual space via these

algorithms, the simulator recreates the acoustics based on the results. Most acousticians using

the available modeling software attempt to eliminate or minimize the natural and undesirable

properties of the environment. In a truly virtual world, the goal is exactly the opposite. We

wish to reproduce these artifacts and deficiencies completely. With the reproduction of

96

accurately modeled 3D sound, the simulator should generate superior localization to that of

the industry standard techniques.

The first part of the first hypothesis, that DirectX DirectSound® should engender

superior results over simple playback, we proved in the preliminary experiment and illustrate

in Figure 17 and Figure 18. We take this conclusion as the basis for further hypothetical

consideration. We will additionally establish that the 3D algorithms developed in this

research (see “Current Work” on page 29) will produce improved sound reproduction over

the current industry standard DirectX DirectSound®.

Secondly, we consider the impact of training, or experience of the test subject, in the

experiment results. As the test subject proceeds with the experiment, accuracy should

noticeably improve. Since we ask each subject only 20 questions and the experiment design

breaks these into two groups, we may find this trend difficult to detect in the data. In order to

prove this hypothesis conclusively we may require future experimentation. However, subtle

analysis of the data might highlight meaningful inclinations.

Finally, and probably most obvious, we anticipate a conclusive ranking of the

algorithms according to accuracy. One algorithm, presumably one of the research algorithms,

should stand above the others. Because of the complexity compared to the others, we predict

the Bouncing Reflections algorithm (see page 36) to outperform the Reflected Paths

algorithm (see page 34) and DirectX DirectSound® algorithm, not to mention the Simple

algorithm. Furthermore, we expect Reflected Paths algorithm to work better than or at least

equivalent to the DirectX DirectSound® algorithm. Both of these algorithms use only basic

3D information from the environment and neither considers the virtual geometry in any

substantial manner.

97

Experimental Environment

The simulator combines both the visual and aural reproduction of a virtual 3D

environment. A subject can move avatars and sound sources throughout the virtual world

represented on the display of a computer. On command, a sound source object will play from

a set of pre-specified sounds, utilizing one of the various algorithms to enhance playback.

Through the simulator, the user can select the playback method from Simple algorithm (i.e.

normal playback or no 3D algorithm), the ubiquitous Microsoft DirectX® DirectSound®

interface, or one of a number of 3D algorithms developed in this research. Most of the

research algorithms can take into account the geometrical and acoustic properties of the

virtual environment while off-the-shelf algorithms (i.e. Microsoft’s DirectX DirectSound®)

only concern themselves with distance and orientation between the source and the listener.

For the actual experiment, subjects sit in front of a standard computer that has

conventional 3D graphics processing capabilities and no specialized 3D audio hardware. A

traditional wireless mouse and laptop keyboard allow movement of the avatar and selection

of the test question answers. Table 14 lists the computer setup used in the formal experiment.

For the most part, this consisted of an off-the-shelf common system

[http://store.sony.com/webapp/wcs/stores/servlet/ProductDisplay?&productId=8198552921666441731]. Additionally, we utilized the

built-in soundboard on this computer, incorporating no specialized sound processing or

reproduction abilities.

Model Sony® VAIOTM T Series Ultrabook (SVT13118FXS)

Processor Intel® Core i7 1.90Ghz processor

Storage 6GB memory, 128GB SSD hard drive

Video 13.3" wide screen (1920 x 1200),

 Intel® HD Graphics 4000 with shared memory

Audio Realtek® High Definition Audio,

 Sennheiser® HD 280 Pro headphones

Table 14: Computer Specifications Used in Experiments

98

Finally, the simulator generates sound feedback through a provided pair of

circumaural (over the ear) Sennheiser® HD 280 Pro headphones

[http://www.sennheiserusa.com/professional-dj-headphones-HD-280-PRO_004974]. This specific

model and brand of headphones allows freedom of head motion while offering an

uncorrupted flat response for uniform playback. They also, according to product

specifications, provide “aggressive isolation from noise by design”, meaning that the

headphones comfortably encompass the entire ear and therefore effectively segregate noise

from the external environment without the use of artificial filters. Anecdotal evidence

supports this and even cursory Internet searches uniformly review these headphones as flat or

neutral sound with excellent passive noise attenuation. Figure 19 shows a picture of the

specific device used in this research.

The testing entirely took place in a secluded room in the College of Business at

Southeastern Louisiana University [http://www.selu.edu/acad_research/colleges/bus/index.html].

The image in Figure 20 shows the room and configuration arrangement. Measurements from

a variety of sensors confirmed the quiet nature of the space at an average of about 54dB,

sufficient for use with this experiment.

Figure 19: Sennheiser® HD 280 Pro
Headphones

Figure 20: Picture of Experiment
Environment

99

Experimental Procedure

Table 29 on page 159 exhibits a typical transcript of the procedure used to setup the

experiment for each test subject. When the student enters the room, the researcher initially

asks him to familiarize himself with the simulator by exploring the virtual world. After a

brief introduction and basic training on moving through the environment, the simulator

switches to the first question in the initial testing mode. The simulator places the avatar in a

virtual room with two to seven, visually identical sound source objects, only one of which

will produce sound. Of these randomly labeled, located, and oriented sound source objects,

the TDS Simulator randomly selects one to playback sound through a randomly selected

algorithm. The subject then must determine which object is producing the sound according to

what he sees and hears. This process repeats for a series of twenty questions for each test

subject. Upon conclusion of the experiment, the simulator presents the results and

performance of the test subject and digitally records the generated data. The entire process

then repeats for the next subject attending.

Testing Details

This study exposes the subjects to minimal/nominal risk. We ask test subjects to sit in

front of a standard computer, wear a pair of off-the-shelf circumaural headphones

(encompassing the entire ear), and move an avatar through the virtual environment with the

keyboard and mouse. The simulator allows for two methods of questioning. We ask each test

subject to go through ten questions with feedback and then ten questions without feedback.

Each question should take less than thirty seconds, so we estimate the entire test period per

subject to last no more than fifteen minutes.

100

Data and Data Collection

For each test subject, we assign a randomly generated, unique number and store this

with the recorded data for each question. The simulator automatically outputs the data into a

comma-separated value text file for later analysis. Data stored includes the time and date of

the test, which algorithm generated the sound, the number of guesses, and the accuracy of the

selection (correct or incorrect), and virtual geographical data of the simulation. The simulator

also stores internal variables appropriate to the question. The geographical data consists of

the location and orientation of the avatar and all sound sources present in the specific test.

Since the subject can actually move the listener avatar during the test, we record only the

final (i.e. when the specific question concludes) coordinates. Table 12 in the section

“Experimental Testing Data Structure” (see page 90) lists the set of variables stored by the

simulator and even provides a real example from the experiment.

With
Feedback

• The simulator immediately informs the subject if their guess
is correct.

• If incorrect, the simulator prompts the subject to try again.

• The simulator records each conjecture until the subject
chooses correctly.

Without
Feedback

• The simulator does not inform the subject of the accuracy of
each choice.

• After each selection, the simulator moves immediately to the
next question.

Table 15: Testing Modes for the Experiment

Data Analysis

After we test a statistically appropriate number of subjects, we will analyze the data

for algorithm effectiveness and possible future refinement of multiple aspects of the research

and algorithms. Specifically, the study follows trends in accuracy across algorithm type,

number and/or coordinates of sound sources, proximity of listener to correct sound source,

and improvement of subject response accuracy over time. The analysis will explore, to the

101

best that statistical accuracy will allow the three hypotheses listed in Table 13 on page 95.

We will consider both a pragmatic and statistical (Spiegel, Schiller, & Srinivasan, 2009)

approaches to analysis of this data.

Results

Introduction

In any experiment and associated study, one must consider and analyze multiple

components of the topic. Below, we will separate these elements, evaluate their impact and

effectiveness, and finally assemble the results into a cohesive conclusion. The following

sections include an analysis of the assumptions made in the experiment, justification of the

validity of the design and implementation, outline of the algorithms, a detailed investigation

of the experiment data, and finally a summary of the application of the three hypotheses

listed previously.

Assumptions

Algorithm Complexity

For reasons of efficiency and simplicity, we chose to limit the fidelity, or complexity

of the Bouncing Reflections algorithm. Two variables control the different parts of the

complexity of this algorithm. First, breadth determines the number of paths or directions

that the algorithm should generate and traverse. As listed in Table 4 on page 39, the first 22

directions subdivide the spherical space around the sound source object based on its

orientation. After this, the algorithm randomly generates any remaining needed paths. Both

the breadth and depth variables range from integers 1 to 10 and the simulator randomly

assigns these values for each question in the experiment. The depth variable controls the

number of segments, or bounce reflections each path in the algorithm must navigate. Clearly,

the combination of these two variables directly contributes to the complexity, and therefore

103

the speed of the algorithm. Running the algorithm with a high depth and low breadth or vice

versa will result in an almost instantaneous return.

For the purposes of the experiment, we limited not only the fidelity, but also the

resolution of the algorithm in the extreme cases. Table 16 lists the values and results for the

complexity variables used in this experiment and the speed test. Subsequent to the

experiment, we pushed a large number of algorithm executions through the simulator to

evaluate speed, not accuracy, of the algorithms at different complexity levels. In order to

maintain acceptable processing times in the experiment, we primarily focused on the faster,

low complexity level settings. The speed tests allow for more granulation and higher

complexities levels. At higher breadth and depth in the experiment, the simulator clumps the

resolution to the values listed in Table 16. Shaded areas in the table indicate values not

employed in the formal experiment.

Paths or Directions

Breadth: 1 2 3 4 5 6 7 8 9 10

 For Experiment 4 6 14 22 1,000 1,000 1,000 1,000 1,000 1,000

 Speed Test 4 6 14 22 50 100 300 1,000 5,000 10,000

Segments or Reflections

Depth: 1 2 3 4 5 6 7 8 9 10

 For Experiment 1 10 20 40 80 160 300 300 300 300

 Speed Test 1 10 20 40 80 160 300 1,000 5,000 10,000

Table 16: Bouncing Reflections Complexity Increments

Sound Files

Keeping with the concept of design simplicity compelling analyzable results, we

limited the sound files in the experiment to only two options. Both originating from the

public domain and stored in monaural 16-bit PCM format, these sound files represent audio

that one could typically find in any 3D environment. The file “dogbark.wav” lasts

approximately 1.5 seconds with 32,240 samples and consists of a natural sounding dog

104

barking twice. Sound file “bounce.wav” has a synthetic disposition with 6,712 samples in 0.6

seconds. Figure 21 and Figure 22 depict the waveforms for these sound files.

Virtual Environment

Though the TDS Simulator boasts the capability of processing complicated structures

and non-rectangular spaces, we limited the experiment to a simple case. In order to provide

control for this element of the experiment, all questions occurred in a building with a single

room measuring about 8 x 14 x 3 meters (exactly 300 x 550 x 120 inches). This room has just

one door and no windows. Furthermore, all of the walls have absorption and dispersion

coefficients of 0.10 and 0.05, respectively. The ceiling and floor both have values of 0.05 and

0.01. During the experiment, we did not vary these factors.

Validity

In this section, we detail the various methods for judging the general validity of the

algorithms designed for this experiment. For the most part, these analyses follow

straightforward and objective measurements. For now, we do not consider formal experiment

results.

Efficiency Validity

Without question, the simplest measurement of the effectiveness of an algorithm is

the speed at which it performs. As these routines ideally should run in real-time, this

Figure 21: Waveform for 'dogbark.wav' Figure 22: Waveform for 'bounce.wav'

105

threshold necessitates that it takes no more than 150ms (see “Latency” on page 47) from

initialization of the sound to the actual auralization. Without proper specialized hardware

(see “Software vs. Hardware” on page 156), the algorithms in this research must run

completely in the software realm. Therefore, we must give some allowance to efficiency and

still consider algorithms that fall outside this threshold. However, speed results should

remain within a reasonable range (e.g. somewhere under or around two seconds). Table 17

lists some of the efficiency results for the Bouncing Reflections algorithm. After completion

of the experiment, we designed a simple routine to run the simulator while repeatedly playing

sounds through the Bouncing Reflections algorithm. This simulation randomly places the

sound objects and the listener in the same space and in the same manner as the formal

experiment. Each cell in the table represents the average from over twenty thousand random

trial runs. The same computer system used in the experiment generated these results. We did

not run this process for the other algorithms since the Simple, DirectX, and Direct Paths

algorithms all ran almost instantly or at least undetectably for the time precision of the

computer.

D
e
p
t
h
:

4

p
a
t
h
s

6

p
a
t
h
s

1
4

p
a
t
h
s

2
2

p
a
t
h
s

5
0

p
a
t
h
s

1
0
0

p
a
t
h
s

3
0
0

p
a
t
h
s

1
,
0
0
0

p
a
t
h
s

5
,
0
0
0

p
a
t
h
s

1
0
,
0
0
0

p
a
t
h
s

Breadth: 1 2 3 4 5 6 7 8 9 10

1 reflection 1 3.04 2.48 2.26 2.88 3.18 3.95 7.16 19.19 118 248

10 reflections 2 2.11 2.57 3.10 3.03 3.57 3.10 7.41 20.00 124 280

20 reflections 3 2.00 2.56 3.06 3.19 2.76 4.16 6.96 20.31 121 273

40 reflections 4 2.49 2.90 2.49 2.97 3.09 4.54 7.42 20.88 125 277

80 reflections 5 2.73 2.37 2.83 3.04 3.23 3.70 7.88 21.37 125 290

160 reflections 6 2.46 2.55 2.54 2.93 3.95 4.45 8.33 22.67 134 295

300 reflections 7 3.06 2.89 2.58 2.81 4.02 4.51 8.37 25.00 145 313

1,000 reflections 8 2.68 2.87 3.41 3.47 4.07 5.84 12.13 35.68 197 416

5,000 reflections 9 2.40 2.69 3.76 4.55 6.02 11.13 30.00 98.91 495 1018

10,000 reflections 10 2.83 3.01 4.35 5.67 10.25 18.66 52.27 170 883 1772

Table 17: Average Algorithm Runtime (ms) for the Bouncing Reflections Algorithm

106

Shaded cells again denote groups of data that we did not allow in the formal

experiment (see Table 16). Close inspection of these speed results reveal that the increase of

both the depth and breadth for the algorithm most significantly determines the impact on

speed. However, even at extreme computations, where the algorithm must compute 1000

directions (breadth of 5 or more) and 300 reflections per path (depth of 7 or more), the

algorithm still runs in far less time than the 150ms required by the latency threshold.

 Sound File = bounce.wav Sound File = dogbark.wav

c
o
m
p
l
e
x
i
t
y

=

d
e
p
t
h

+

b
r
e
a
d
t
h

C
o
m
p
l
e
x
i
t
y

A
l
g
o
r
i
t
h
m

C
o
n
v
e
r
s
i
o
n

U
p
d
a
t
e

T
o
t
a
l

A
l
g
o
r
i
t
h
m

C
o
n
v
e
r
s
i
o
n

U
p
d
a
t
e

T
o
t
a
l

2 3.39 15.09 0.71 68.84 2.65 3.92 0.20 66.08

3 2.63 15.26 0.72 64.91 2.02 4.26 0.22 60.37

4 2.27 15.31 0.78 66.17 2.27 3.94 0.14 62.06

5 2.87 15.12 0.62 58.99 2.59 3.97 0.16 57.89

6 2.81 15.11 0.68 68.92 3.04 3.83 0.15 51.41

7 2.76 15.50 0.59 62.20 2.52 3.73 0.15 56.43

8 2.85 15.18 0.62 68.61 2.84 3.92 0.07 45.92

9 6.83 15.20 0.50 68.29 6.54 3.73 0.22 59.31

10 7.84 15.58 0.72 69.11 9.46 3.34 0.22 42.87

11 11.31 15.46 0.63 73.47 11.54 3.23 0.00 62.14

12 20.65 16.13 0.97 83.98 21.07 3.61 0.16 69.84

13 20.22 15.59 0.22 83.55 22.47 4.12 0.21 78.04

14 21.94 15.20 0.31 74.91 23.44 4.19 0.11 83.23

15 24.14 16.31 0.00 79.46 25.88 4.50 0.09 74.78

13 3.90 14.96 0.86 62.10 4.27 3.48 0.11 60.13

14 5.72 14.50 0.81 79.82 6.15 4.33 0.10 65.53

15 9.78 15.26 0.58 77.91 12.75 3.50 0.08 62.08

16 20.56 14.86 0.55 85.70 27.24 3.52 0.05 76.80

17 113 14.82 0.60 163 137 3.89 0.10 182

18 397 15.26 0.87 448 507 4.14 0.24 565

19 794 14.58 0.30 849 1106 4.30 0.20 1158

20 1451 14.69 0.61 1508 2080 4.12 0.00 2134

Table 18: Average Runtime (ms) Breakdown for the Bouncing Reflections Algorithm

Table 18, originates from the same data as Table 17 and highlights the speed impact

from the different portions of the Bouncing Reflections algorithm. To simplify analysis, we

107

combined the depth and breadth variables by adding them into a single factor: complexity.

Again, the shaded area underscores data corresponding to depth and/or breadth not allowed

in the experiment. In addition, we note that a complexity of say 13 could consist of a number

of combinations of the depth and breadth variables. Certainly, based on the results of the

previous table, adding 10 and 3 (or 3 and 10) would produce notably different results than

adding 6 and 7 (or 7 and 6). However, clear trends still appear in the data in this format.

Finally, we also separated the data by sound file.

In conclusion, one can easily see, except in extreme fidelity cases, that the conversion

segment of the routine requires the most time. We do not find this surprising, as this portion

bundles the (linear) multiplication of the signals, the inverse FFT of the results, and finally

scaling of the samples. The final section, updating, takes very little time, as it merely moves

the data from the conversion portion into structures readable by the sound engine for output.

Both conversion and update portions maintain an approximately static limit, regardless of

simple or extreme fidelity or complexity. Most importantly though the algorithm section

takes very little time to run. This supports the previous assertion that the computational

differences between the Direct Paths algorithm and the Bouncing Reflections algorithm

dwell in the process of calculating the reverberation paths and impulse responses and

primarily the convolution aspect of the latter algorithm.

Logical Validity

On a somewhat more subjective level, logical validity analysis considers whether the

resulting data seems appropriate given the environmental factors. A proper impulse response

should contain hundreds and maybe even thousands of hits (see Figure 33 and Figure 34).

Clearly, the results will depend proportionally on the depth and breadth, or complexity, of the

108

algorithm. Additionally, we expect the impulse response to behave in what amounts to a

commonly perceived manner, exponentially decaying with time.

Figure 23 through Figure 26 illustrate actual impulse responses from the simulator

using the Bouncing Reflections algorithm. Datasets “A” and “B” show results from running

the simulator at the maximum resolution (depth and breadth) used in the experiment. These

two FIR’s typically consisted of ten to twenty hits, sparsely distributed over the duration of

the calculations. Both datasets “C” and “D” have far more dense dispersal of impulses due to

the dramatically larger number of paths and reflections traversed. Running the simulator at

this level generates an average of 150 impulse hits but requires well over one second of

algorithm processing time. Clearly, all examples have the expected exponentially decaying

nature and therefore pass logical validity.

 Figure 23: FIR A (300 reflections, 1,000
paths)

Figure 24: FIR B (300 reflections, 1,000
paths)

Figure 25: FIR C (10,000 reflections, 10,000
paths)

Figure 26: FIR D (10,000 reflections, 10,000
paths)

109

Experiment Analysis

Resolving the validity of the algorithms, though important, certainly does not

constitute a sufficient analysis alone. We must also consider the objective effectiveness of

each algorithm method compared to the others. In order to analyze this, the simulator

contains a set of testing modes for subject-based experiments.

Regardless of the mode for the experiment, the simulator presents the test subject

with between two and seven sound sources all located within a room. The scenario randomly

places and orients the sound sources so that they all lie within a certain tolerance away from

any walls and each other. Each sound source uses the same visual representation of a sphere

and cone, which helps distinguish the placement and direction of the object. We also place an

associated letter above each sound object. Figure 27 illustrates the experiment in action. The

simulator randomly selects one of the objects to play the sound through one of the randomly

selected algorithms. A test subject must to select which object is playing the sound, based on

Figure 27: TDS Running in Testing Mode with Feedback

110

what he hears by pressing the appropriate key that corresponds to the object. The section

“Research Methods” on page 93 details this procedure extensively and the appendix

“Experiment Documents” on page 158 includes a typical transcript used in the experiment.

Testing with Feedback

As mentioned earlier, the simulator provides a testing mode with feedback (see

Figure 27). In this mode, the test subject must eventually select the correct sound source from

the available visible objects. The subject may guess as often as he wishes. After each guess,

the simulator politely informs the subject if correct or not. If the student wrongly guessed, the

simulator provides another attempt at the question.

Testing with Selection

Additionally, the simulator can perform testing on subjects without providing

feedback. This is just a simplified version of the previous testing technique, except that the

subject has only one attempt at each question and the simulator does not inform him of how

he performed. Once answered, whether correct or not, the simulator moves directly on to the

next question in the experiment.

Experiment Setup and Data

As explained previously the simulator provides two methods of testing: with feedback

and without feedback. We ask each subject to sit through ten scenarios, or questions of each

mode, first with and then without feedback (see “Testing Details” on page 99). The simulator

then records the results and the stores the data for later analysis. We must emphasized that

the testing environment should be considerable comfortable, quiet, and free of external

distractions, with a base sound level of 70dB or less.

111

We tested 110 students in the course of eight days. All tests occurred in the same

room, using the same computer system and setup described preciously (see Table 14 on page

97), and with consistent instructions and procedures. All care and effort ensued to maintain a

consistent environment for the duration of the experiment.

Scoring Questions for Statistical Analysis

Analysis of the portion of the experiment with feedback proves a bit trickier than the

data without feedback. This assertion follows from the fact that each question consists of

more than just a correct or incorrect guess. Rather, the subject eventually must select the

correct answer and can take many guesses to do so. The principal component variables are

how many attempts he took to arrive at the correct result as well as the number of sound

sources from which to select.

 −+=
][

][
*

][

][][1

cesMaxNumSour

NumSources

cesMaxNumSour

sNumAttemptNumSources
Score

Equation 3: Accuracy Score for Testing WITH Feedback

For example, consider a test that has six sound sources and the subject selects

correctly on the second try. He should score better compared to someone guessing correctly

on the fifth attempt, with the same number of sources. Furthermore, if a subject succeeds on

the second try with four sound sources, he should score lower than a subject that also

answered correctly on the second guess but with only three sound sources.

Our experiment allowed for two to seven sound objects per question. Equation 3

shows how we calculated the accuracy score for Figure 17 and Figure 18 as well as the data

from the final experiment. The left portion of the formula computes the relative difference

between the number of sources and the number of attempts, while the right side simply scales

the score based on the number of sources.

112

NumAttempts NumSources Score NumAttempts NumSources Score

1 2 0.082 7 7 0.143

1 3 0.184 6 7 0.286

1 4 0.327 5 7 0.429

1 5 0.510 4 7 0.571

1 6 0.735 3 7 0.714

1 7 1.000 2 7 0.857

2 2 0.041 1 7 1.000

2 3 0.122 6 6 0.122

2 4 0.245 5 6 0.245

2 5 0.408 4 6 0.367

2 6 0.612 3 6 0.490

2 7 0.857 2 6 0.612

3 3 0.061 1 6 0.735

3 4 0.163 5 5 0.102

3 5 0.306 4 5 0.204

3 6 0.490 3 5 0.306

3 7 0.714 2 5 0.408

7 7 0.143 1 5 0.510

6 6 0.122 4 4 0.082

5 5 0.102 3 4 0.163

4 4 0.082 2 4 0.245

3 3 0.061 1 4 0.327

2 2 0.041 3 3 0.061

3 2 0.000 2 3 0.122

7 2 0.000 1 3 0.184

7 6 0.000 2 2 0.041

10 7 0.000 1 2 0.082

Table 19: Example Score Calculations

Table 19 illustrates some of the extreme example results using this same equation

with a maximum number of sources set to seven. Note that if the subject takes the same

number of attempts as the number of sources, he will score the lowest possible computed

value, in this case 0.041 for two attempts with two sound sources. Not expressed in Equation

3, we reserve the option to allow only a minimum score of zero; thereby normalizing

questions where the subject took more attempts than the number of sources. This accounts

for questions where the subject was possibly confused or disoriented. Finally, we can easily

generalize Equation 3 by multiplying the final score by one if the subject eventually

113

answered the question correctly or by zero otherwise. This modification allows us to use the

same formula for questions with or without feedback. The scores for questions without

feedback will always be zero or come from the first group in Table 19 since that mode only

allows one attempt per question.

Statistical Analysis

Due to the complicated nature of the experiment design, common statistical analysis

methods fail to provide meaningful feedback and results. Therefore, we have chosen to

provide an extensive examination utilizing multiple approaches in the statistical analysis of

the data. We include justifications, assumptions, shortcomings, and detailed analyses for each

methodology. Unless otherwise noted, we parsed the data through IBM® SPSS® Statistics

22 (64bit) on the same machine used in the experiment. We also divided the data into three

groups for analysis separately: Data With Feedback, Data With Feedback (minzero), and

Data Without Feedback.

Data Structure Analysis

In order to analyze data from any experiment, one must always carefully consider the

data with respect to both meaning and conformity. Many statistical analysis procedures

require restructuring, consolidation, grouping, weighting, and often the elimination of

portions of the initial data. These requirements can dramatically vary depending on the

statistical procedure and the types of variables involved.

In an attempt to keep some portion of this analysis simple and straightforward, we

have limited the conversation to only the variables directly relevant to the three hypotheses

for this experiment. Table 20 lists the primary variables recorded during subject testing. We

use just the first three variables (ALGORITHM versus SCORE or ALGORITHM versus

114

SCOREMINZERO) in our analysis. Most of the remaining variables directly factor into

SCORE or SCOREMINZERO or do not have meaning for the questions derived from the

three hypotheses. Furthermore, as appropriate, we reserve the option to remove the scores for

the SIMPLE ALGORITHM (or no 3D acoustic algorithm). These samples account for only

about 6% of the data and generally lend nothing valuable to the discussion. We will expound

on any further modifications to the original dataset during the analysis.

Variable Type Range of Values

ALGORITHM Categorical SIMPLE, DIRECTX, DIRECTPATHS, BOUNCINGREFLECTIONS (1 to 4)

SCORE Interval 0.0 to 1.0 (possibly less than 0.0)

SCOREMINZERO Interval 0.0 to 1.0

DEPTH Ordinal 1 to 10 (only affects complexity of BOUNCINGREFLECTIONS)

BREADTH Ordinal 1 to 10 (only affects complexity of BOUNCINGREFLECTIONS)

SOUNDFILE Categorical "bounce.wav" or "dogbark.wav" (1 or 2 respectively)

NUMBER_OF_SOURCES Ordinal 1 to 7 (score directly takes this variable into account)

ATTEMPTS Interval 1 to 7+ (score directly takes this variable into account)

GUESSEDCORRECTLY Categorical T/F (only affects the data with no feedback)

ORIENTATIONWEIGHT Ordinal 0.0 to 1.0 (affects the proportional directionality)

Table 20: Breakdown of Experiment Data Variables

Repeated Measures

One of the two chief complications to properly analyzing the data of this experiment

results directly from a dilemma of the experiment design. In order to optimize time and

resources, we asked each subject, or student, to answer multiple versions of the same

questions. In statistical terms, we can call this a “repeated measures” model. As we shall see,

this can bias the analysis due to individual preference weighting. Consider an extraneous

example for illustration purposes. One can ask ten subjects a single simple question, such as

a list of their three favorite colors. Alternatively, one could also ask ten subjects to rank three

specific colors with respect to their preference. In each case, we have thirty data points. We

would have to analyze the data differently, however. In the second dataset, for each subject,

115

the score becomes weighted or biased due to the comparative nature of the question. One

subject might rate the three colors with a range from 7 to 10, while another might allow for a

wider spread, say from 2 to 8. We cannot simply list all 30 answers and analyze them linearly

as we would with the data for a single question per user (top three colors). Rather, we must

group each subject’s responses together and examine the relative rankings of data groups.

Both the Friedman Test and ANOVA test handle repeated measures data.

This question now follows. Does the design of this experiment require a repeated

measures test? Unfortunately, we cannot concretely answer this. Since we ask each student

the same question ten times (and then ten times again for questions without feedback), we

must at least contemplate the data in repeated measures terms. We can certainly see an

argument for using a repeated measures analysis method. However, we must also consider,

do we ask the same question repeatedly? Each question has many randomized variables that

can affect the uniformity of the question. We widely vary the number of sources, locations

and orientations of source, sound file played, complexity level of the algorithm, and

especially algorithm used to produce the sound. Even the number of questions for each

algorithm per subject varies dramatically. Thus, we must ponder if one student’s score, on

average, differs from another student’s with respect to both range and performance. We will

further explore this later, but it is difficult, if not impossible to verify this deterministically.

Therefore, we reserve the option to analyze the data using both repeated measures and

standard methods and compare the approaches.

Distribution

In addition to the repeated nature of the data, we must carefully consider distribution

in our analysis. Statisticians consider data normally distributed when a normal bell curve

116

bounds the majority of data points. Ideally, we would hope the data conforms to a normal, or

Gaussian distribution model. Since the most common and numerous statistical analysis

procedures assume a normal distribution of the data, evaluation would follow a much simpler

and straightforward manner if our data does not break this rule. Unfortunately, as often is the

case with real-life data, initial assessment and expanded analysis of normality shows a non-

Gaussian tendency, across all datasets. If the data does not have a normal distribution, we

must use non-parametric test models for analysis. Figure 28 visually illustrates the

histograms of the scores in the three sets of data. We must keep in mind that these

calculations do not factor in the repeated measures nature of the experiment. Therefore, the

data might still have a normal distribution, contrary to the given analysis. We will expand on

this later.

Friedman Test (Non-Parametric, Repeated Measures)

Perhaps the most obvious choice for analysis, we start with the Friedman test

(Friedman, 1937). Developed by Milton Friedman in the 1930’s, this test analyzes data trends

by comparing the rankings across groups instead of the actual scores. In measuring rankings,

this approach compensates for the natural bias encountered when presenting the same

Figure 28: Linear Histograms for Datasets

117

question multiple times to each subject. At first glance, the Friedman test should manage all

concerns with the experiment data. It allows for data that does not conform to a Gaussian

distribution and specifically aims for repeated measures. However, in order to run the test,

we must transform the data into symmetrical tables grouped by subject. To do this, we can

average the scores per algorithm per subject. Table 21 illustrates this transformation for a

portion of the data for questions without feedback.

Original Data Transformed Data

Subject Score Algorithm Subject Alg1 Alg2 Alg3 Alg4

1 0.3265 4 1 0.082 0.173 0.082 0.082

1 0.1837 2 2 0.000 0.109 0.327 0.033

1 0.0000 2 3 0.027 0.551 0.082

1 0.0000 4 4 0.000 0.054 0.755 0.046

1 0.0816 1 5 0.000 0.170 0.082

1 0.0816 3 6 0.000 0.027 0.073

1 0.0000 4 8 0.000 0.433 0.510

1 0.0000 2 9 0.000 0.510 0.118 0.245

1 0.5102 2 10 0.000 0.066 0.000

1 0.0000 4 11 0.046 0.054 0.109

2 0.0000 4 12 0.337 0.109 0.361

2 0.0000 2 13 0.041 0.306 0.212

2 0.0000 2 14 0.000 0.000 0.066

2 0.3265 2 15 0.041 0.314 0.082

2 0.0000 4 16 0.111 0.000

2 0.0000 4 17 0.128 0.020 0.041

2 0.0816 4 18 0.000 0.255 0.184

2 0.3265 3 19 0.255 0.000 0.000 0.291

2 0.0000 1 20 0.000 0.027 0.418 0.088

2 0.0816 4

3 0.0000 2

3 0.0000 2

3 1.0000 3

3 0.3265 3

3 0.0816 2

3 0.0000 2

3 0.3265 3

3 0.0816 4

3 0.0816 2

3 0.0000 2

Table 21: Data Transformation for Friedman Test

118

The left side of Table 21 portrays the original data from the first three subjects. Using

pivot tables in Excel, we transform the data into the right side by calculating the average

score for each algorithm presented to each subject. This tactic essentially allows us to employ

the Friedman test on the data, with some further refinements and assumptions, detailed

subsequently.

Limitations

Table 22 lists the assumptions and limitations for each of the various approaches

discussed below. With respect to the Friedman test, we must first address the maneuver of

taking averages in the transformation. Most statisticians would consider this approach

somewhat questionable for multiple reasons. By definition, an average naturally suffers from

errors (i.e. the mean-squared error), thus the basis for these more advance statistical methods.

Blindly taking averages before a statistical analysis does not conform to best practices.

Therefore, we proceed with careful consideration. If each subject answered the same number

of questions per algorithm, then we might justify using averages without much concern.

Unfortunately, with the given dataset, in order to conform to this statistical test, we must

group by averages of varying quantities. Fortunately, in terms of the number of tests per

subject per algorithm, the variance of quantity does not contrast significantly relative to the

number of algorithms.

Next, we must consider that the experiment did not force the same number of

questions for each algorithm per subject. Before each question, the simulator randomly

selects which of the four algorithms to employ. In fact, during this selection, if it picks

SIMPLE, the simulator will try again, thus reducing the probability of SIMPLE from about

25% to 6.25% (p = 0.252). Even removing these samples from the data (which we do) it is

119

still very common for subject to have different numbers of questions for the various

algorithms. Since we only effectively ask ten questions per subject, obtaining meaningful

commonality by number of algorithms per user within the data proves almost impossible.

Test Assumptions/Limitations Justification/Test Effects/Results/Concerns

Non-Parametric, Repeated Measures Tests:

 Friedman

 Grouping by averages Small variations Questionable method

 Removal of SIMPLE samples
SIMPLE has no meaning
to hypotheses 6.25% of the questions

Remove subjects with
missing data Data integrity 7.8% data lost

 Omnibus test (non-specific results)

 Wilcoxon Signed-Rank

 Same as Friedman

 Type I errors Bonferroni adjustment
Possibly overly sensitive
(too restrictive)

 Post-hoc for Friedman tests

Parametric, Repeated Measures Test:

 ANOVA

 Sphericity Mauchly's Test
All data passed
sphericity test

 Gausian distribution Shapiro-Wilk Test
Residual data failed
normality test

Parametric, Independent Tests:

 Kruskal-Wallis H

 Non-repeated measures data Dissimilar questions Questionable data

Only positive scores
allowed Inherent to test

Remove "Data With
Feedback"

 Omnibus test (non-specific results)

 Mann-Whitney U

 Same as Kruskal-Wallis H

Independence of
observations Distinct questions

Technically repeating
participants

 Similar distribution shapes Visual inspection
Compare mean ranks vs.
medians

 Type I errors Bonferroni adjustment
Possibly overly sensitive
(too restrictive)

 Post-hoc for Kruskal-Wallis H tests

Table 22: Assumptions and Justifications for Statistical Tests

120

Subsequently, with such a limited number of questions per topic relative to the

number of possible algorithms, the simulator did not expose some subjects to one or more

algorithms. This poses a similar problem to the previous discussion. The Friedman test

requires data in each cell and we cannot simply replace null values with zeros and maintain

data integrity. In Table 21, subjects 6 and 16 did not encounter the fourth algorithm;

therefore, we remove them entirely from this analysis. Fortunately, these aberrations account

for less than 8% of the data, so we feel reasonably justified in subtracting these records.

Analysis

The Friedman test allows us to determine if a significant difference exists in the mean

ranks of scores between the various algorithms. It will not formally rank the performance of

the algorithms. Rather, it falls in the category of an “omnibus test” and only tells us if groups

differ significantly.

Hypothesis: Alg2=Alg3=Alg4 Alg2=Alg3 Alg3=Alg4 Alg2=Alg4 Conclusion:

Dataset p χ2 p χ2 p χ2 p χ2

With Feedback 0.007 9.789 0.001 11.89 0.170 1.885 0.626 0.238
Alg2 does not
equal Alg3

With Feedback
(minzero)

0.026 7.303 0.003 8.824 0.239 1.385 0.626 0.238
Alg2 does not
equal Alg3

Without
Feedback

0.043 6.309 0.017 5.688 0.753 0.099 0.099 2.723
Alg2 does not
equal Alg3

Table 23: Freidman Test P Value Summary

We will begin with the null hypotheses that the mean rank of ALGORITHM 2 equals

the mean rank of ALGORITHM 3, which also equals the mean rank of ALGORITHM 4. We

will use the level of significance of p < 0.05 to evaluate our results. If we end up with a test

statistic of a P value less than 0.05, we will reject the null hypothesis and conclude that the

data has significant differences of the mean scores between the tested groups. This will allow

us to proceed with a post-hoc analysis for pairwise comparisons. Otherwise, we will accept

121

the null hypothesis and say that we found no measurable difference over the tested

algorithms.

For an initial pot hoc analysis, we will again run the Friedman test between the paired

combinations of the algorithm groups. This, again, will allow us to find significant

differences in the rank means of the scores by algorithms. Table 23 summarizes the results of

the various tests. Cells shaded gray indicate P values of less than 0.05, thus allowing us to

reject the null hypothesis with a 95% confidence interval. We can then preliminarily

conclude that a statistical difference exists between ALGORITHM 2 and ALGORITHM 3.

Post-Hoc Analysis

The Friedman test showed us that a significant difference exists between the mean

scores of the algorithms, and more specifically that ALGORITHM 2 and ALGORITHM 3

notably differ. We cannot conclude anything more about the other algorithm combinations

and more importantly, we do not know which algorithm performed better. For this, we must

run a post-hoc test. In order to perform a proper post-hoc analysis for non-normal, repeated

measures data, we will use the Wilcoxon signed-rank test. This test is the non-parametric

version of the dependent t-test for related groups.

We will run the Wilcoxon signed-rank test for all algorithm score combinations

(ALGORITHM’s 2 vs. 3, 3 vs. 4, and 2 vs. 4), for the moment ignoring the preliminary post-

hoc Friedman tests above. To avoid Type I errors that would arise because we are making

multiple comparisons between data groups, we use the Bonferroni adjustment. To do this, we

simply find a new significance level by dividing the previous level (p = 0.05) by the number

of combinations (df = 3). This gives us a stricter significance level of p < 0.017. This

122

adjustment can lead to an overly sensitive test, proportional to the number of between-groups

compared, but it remains sufficient for the small degrees of freedom in this analysis.

Hypothesis: Alg2=Alg3 Alg3=Alg4 Alg2=Alg4 Median Scores

Dataset p Z p Z p Z Alg2 Alg3 Alg4

With Feedback 0.0003 -3.556 0.1132 -1.584 0.2465 -1.159 0.2313 0.2857 0.2755

With Feedback
(minzero)

0.0010 -3.282 0.1894 -1.312 0.1830 -1.331 0.2449 0.2925 0.2755

Without
Feedback

0.0026 -3.008 0.2156 -1.238 0.1176 -1.565 0.0816 0.2031 0.1327

Table 24: Wilcoxon Signed-Rank Test P Value Summary

Table 24 lists the statistical result values for the different datasets. We again find the

same general results across the three datasets. ALGORITHM 3 scored significantly higher

than ALGORITHM 2 globally. Specifically, we conclude the following.

We found a statistically significant difference between algorithm scores using the

Friedman test: With Feedback χ2(2) = 9.79, p = 0.007; With Feedback (minzero) χ2(2) = 7.30,

p = 0.026; Without Feedback χ2(2) = 6.31, p = 0.043. Table 24 lists the mean scores for the

algorithms by dataset. We conducted a post-hoc analysis using Wilcoxon signed-rank tests

with a Bonferroni correction applied. After modifying the significance level to p < 0.017, we

found no significant differences between ALGORITHMS 3 and 4 (With Feedback, Z = -1.58,

p = 0.113; With Feedback (minzero), Z = -1.31, p = 0.189; Without Feedback, Z = -1.24,

p = 0.216). We also found no significant differences between ALGORITHMS 2 and 4 (With

Feedback, Z = -1.16, p = 0.247; With Feedback (minzero), Z = -1.33, p = 0.183; Without

Feedback, Z = -1.57, p = 0.118). However, we did find that ALGORITHM 3 scored

significantly higher than ALGORITHM 2 for the three datasets (With Feedback, Z = -3.56,

p = 0.000; With Feedback (minzero), Z = -3.28, p = 0.001; Without Feedback, Z = -3.01,

p = 0.003).

123

ANOVA Test (Parametric, Repeated Measures)

Similar to the previously described Freidman test, we can also consider one-way

repeated measures ANOVA tests on the datasets. For this test, we must again evaluate the

data in the condensed model describe in Table 21. We perform this test as well as the non-

parametric repeated measures test above because we did not conclusively prove that the data

in the condensed form does not violate the normality assumption required for ANOVA. In

order to use this test, though, we must first analyze the datasets for violations of three

assumptions: normal distribution, no significant outliers, and sphericity.

Sphericity

As one of the primary assumptions for running one-way repeated measures ANOVA

tests, we must check for sphericity in the data. Sphericity is defined as the “the condition

where the variances of the differences between all combinations of related groups are equal”

(Lund & Lund, 2014). Fortunately, the test for sphericity is far less complicated than the

definition. We simply run Mauchly's Test of Sphericity while probing for the ANOVA

results. The null hypothesis in this case holds that the variances of the differences are equal,

or the data does not violate the sphericity rule. Therefore, P values greater than or equal to

0.05 allow us to assume sphericity.

Mauchly's Test of Sphericity shows the data did not violate the assumption of

sphericity for all three datasets: With Feedback χ2(2) = 4.60, p = 0.100; With Feedback

(minzero) χ2(2) = 2.31, p = 0.315; Without Feedback χ2(2) = 0.167, p = 0.920. Therefore, we

may proceed with the ANOVA test with respect to the sphericity assumption.

124

Normal Distribution

In an attempt at thoroughness, we again consider the distribution of the data. Figure

11 shows histograms of the original, unmodified datasets. It does not describe the condensed,

combined dataset used in the repeated measures analyses. In order to determine normality,

we run the ANOVA tests in SPSS and examine the standardized residuals of each factor for

normality. In all three datasets, for each of the three algorithm groups, the residual data failed

the Shapiro-Wilk test for normality. Given this, and our previous analysis, we conclude that

we cannot reliably employ the one-way repeated measures ANOVA test for the given

datasets.

Kruskal-Wallis H Test (Non-Parametric, Independent)

Previously, we alluded to the idea that the experiment design and subsequent data

might not maintain an entirely repeated measures nature. The simulator presented each

subject with two sets of ten questions. These tasks each had a notable random and

inconsistent nature that forces us to consider the data through a standard, linear model.

Therefore, in addition to the preceding repeated measures tests we performed, we also

include this short analysis using simple, non-grouping statistical measures. The final analysis

must include all considerations, shortcomings, and limitations addressed in this document.

Table 22 summarizes the different tests and issues encountered with each model.

We have discussed at length the non-Gaussian nature of the data, both in repeated

measures and linear (Figure 11) terms. In no form does the data portray any hint of a

Gaussian, or normal distribution natures, so we will not evaluate the data using simple

parametric statistical tests. Rather, we will employ the Kruskal-Wallis H test in a similar

125

fashion as the Friedman test above, then, if results permit, utilize the post-hoc Mann-Whitney

U test for further refinement.

As it turns out, the Kruskal-Wallis H test in SPSS does not allow negative values of

scores. In the three datasets, only the With Feedback set allows for negative scores. This

aberration occurs when a subject guesses more times than the number of sound sources in the

environment. We generally attribute this to extreme confusion of the subject and consider the

question having a failing answer. To better account for this, we created the third dataset,

With Feedback (minzero), which simply sets the negative values to zero. We could certainly

transform or normalize the data of all sets (for all tests) to remove the negative values,

however this could unnecessarily weaken the intention of the scoring formula. Instead, we

simply remove the offending dataset from this part of our analysis and allow the dataset With

Feedback (minzero) to stand alone.

Analysis

Like the Friedman test, the Kruskal-Wallis H test allows us to determine if a

significant difference exists in the mean ranks of scores between the various algorithms. It

will not formally rank the performance of the algorithms. Rather, it is an “omnibus test” and

only tells us if groups differ significantly.

We will begin with the null hypotheses that the mean rank of ALGORITHM 2 equals

the mean rank of ALGORITHM 3, which also equals the mean rank of ALGORITHM 4. We

will use the level of significance of p < 0.05 to evaluate our results. If we end up with a test

statistic of a P value less than 0.05, we will reject the null hypothesis and conclude that the

data has significant differences of the mean scores between the tested groups. This will allow

us to proceed with a post-hoc analysis for pairwise comparisons. Otherwise, we will accept

126

the null hypothesis and say that we found no measurable difference over the tested

algorithms.

Hypothesis: Alg2=Alg3=Alg4 Alg2=Alg3 Alg3=Alg4 Alg2=Alg4 Conclusion:

Dataset p χ2 p χ2 p χ2 p χ2

With Feedback
(minzero)

0.019 7.959 0.006 7.640 0.297 1.090 0.078 3.098 Alg2 ≠ Alg3

Without
Feedback

0.000 24.808 0.000 24.123 0.049 3.864 0.002 9.568
Alg2 ≠ Alg3,
Alg2 ≠ Alg4

Table 25: Kruskal-Wallis H Test P Value Summary

For an initial pot hoc analysis, we will again run the Kruskal-Wallis H test between

the paired combinations of the algorithm groups. This, again, will allow us to find significant

differences in the rank means of the scores by algorithms. Table 25 summarizes the results of

the various tests. Cells shaded gray indicate P values of less than 0.05, thus allowing us to

reject the null hypothesis with a 95% confidence interval. We can then preliminarily

conclude that a statistical difference exists between ALGORITHM 2 and ALGORITHM 3 in

both datasets. We will further evaluate the comparisons in the post-hoc analysis, paying

careful attention to the results for the Without Feedback dataset.

Post-Hoc Analysis

The Kruskal-Wallis H test showed us that a significant difference exists between the

mean scores of the algorithms, and more specifically that ALGORITHM 2 and

ALGORITHM 3 notably differ. For the Without Feedback dataset we noted significant

differences in each algorithm combination. We cannot conclude anything more about the

other algorithm combinations and more importantly, we do not know which algorithm

performed better. For this, we must run a post-hoc test. In order to perform a proper post-hoc

analysis for non-normal, repeated measures data, we will use the Mann-Whitney U test. This

test is the non-parametric version of the independent-samples t-test.

127

We will run the Mann-Whitney U test for all algorithm score combinations

(ALGORITHM’s 2 vs. 3, 3 vs. 4, and 2 vs. 4), for the moment ignoring the preliminary post-

hoc Kruskal-Wallis H tests above. To avoid Type I errors that would arise because we are

making multiple comparisons between data groups, we use the Bonferroni adjustment. To do

this, we simply find a new significance level by dividing the previous level (p = 0.05) by the

number of combinations (df = 3). This gives us a stricter significance level of p < 0.017. This

adjustment can lead to an overly sensitive test, proportional to the number of between-groups

compared, but it remains sufficient for the small degrees of freedom in this analysis.

Hypothesis: Alg2=Alg3 Alg3=Alg4 Alg2=Alg4 Median Ranks

Dataset p Z p Z p Z Alg2=Alg3 Alg3=Alg4 Alg2=Alg4

With Feedback
(minzero)

0.006 -2.76 0.297 -1.04 0.078 -1.76 331 < 374 333 ≈ 341 370 ≈ 343

Without
Feedback

0.000 -4.91 0.049 -1.97 0.002 -3.09 312 < 380 349 ≈ 322 327 < 369

Table 26: Mann-Whitney U Test P Value Summary

Table 26 lists the statistical result values for the two datasets. ALGORITHM 3 scored

significantly higher than ALGORITHM 2 globally. In the Without Feedback dataset,

ALGORITHM 4 scored notably better than ALGORITHM 2. Specifically, we conclude the

following.

We found a statistically significant difference between algorithm scores using the

Kruskal-Wallis H test: With Feedback (minzero) χ2(2) = 7.96, p = 0.019; Without Feedback

χ2(2) = 24.81, p = 0.000. Table 26 lists the comparable mean ranks for the algorithm

combinations by dataset. We conducted a post-hoc analysis using Mann-Whitney U tests

with a Bonferroni correction applied. After modifying the significance level to p < 0.017, we

found no significant differences between ALGORITHMS 3 and 4 (With Feedback (minzero),

Z = -1.04, p = 0.297; Without Feedback, Z = -1.97, p = 0.059). We also found no significant

differences between ALGORITHM 2 and ALGORITHM 4 for the With Feedback (minzero)

128

dataset, Z = -1.76, p = 0.078. Conversely, the dataset Without Feedback showed a notable

difference between ALGORITHM 2 and ALGORITHM 4, Z = -3.09, p = 0.002.

Furthermore, we found that ALGORITHM 3 scored significantly higher than ALGORITHM

2 for both datasets (With Feedback (minzero), Z = -2.76, p = 0.006; Without Feedback,

Z = -4.91, p = 0.000).

Analytical Analysis

Though not as meaningful technically as the statistical analyses in the previous

sections, we can also consider a more mundane and aesthetically analytical approach to

understanding the data. Figure 29 illustrates this tactic. Here, we simply graph the average of

the scores for each algorithm using Equation 3, breaking them down by question type. This

chart incorporates no statistical refinement except for general averages. Clearly, we cannot

directly compare questions with feedback to those without feedback as they have different

proportions and population numbers. However, previously predicated trends become quickly

apparent and unambiguous. We will further consider the analysis of this breakdown in the

next section.

Figure 29: Comparable Analytical Analysis of Algorithms

129

Additional evaluation in this manner can also characterize the temporal nature of the

experiment. According to our second hypotheses (see Table 13 on page 95), we anticipate

that over time as a student becomes more familiar with the simulator and the algorithms,

performance should correspondingly improve. There is nothing revolutionary about this

assertion, but the real question remains, how much time would this process take? Figure 30

illustrates a basic and initial analysis of this question using the approach just described.

Without performing overly complex and extensive statistical calculations that would

certainly require a third-party analysis program and possibly innovative statistical techniques

therein, we have generated a snapshot of the algorithm performance over time for the

experiment. This chart dissects the average score for each algorithm during the course of the

experiments.

We expect to see increasing trends in some or all of the six groups in Figure 30.

Unfortunately, arguably, this is not the case and therefore we cannot conclude that training

improves performance for the limited number of questions per subject in this experiment.

Considering we only ask 20 questions per student and each of these can be any of the four

Figure 30: Comparable Analytical Analysis of Algorithms over Time

130

algorithm possibilities the inconclusiveness of this result does seem reasonable. We will

discuss this further in the following section. However, we tentatively assert that we will need

to design future experiments in which we ask more questions of each student with fewer

variables at play.

Evaluation

To a great extent, from the explanations in the previous sections, we can rank the four

algorithms in order of effectiveness for this experiment. In every instance, whether with

feedback or without, allowing negative scores, or employing a scoring function or not, we

can unquestionably say that the Direct Paths algorithm algorithms developed for this research

outperformed the DirectX® (and Simple) algorithm. Notably, the Direct Paths achieved

significantly better results than the Bouncing Reflections algorithm in many facets of the

earlier analyses. In the following subsections, we will look at each algorithm and then

consider the three hypotheses for this experiment listed in Table 13 on page 95.

Direct Paths Algorithm Evaluation

Unquestionably, and even somewhat surprisingly, the Direct Paths algorithm came

out the clear winner in this experiment. Insofar as our analysis provided, against the control,

or the Simple Algorithm, the Direct Paths algorithm maintained superior results, as one

would expect. Not surprisingly, we also see that this algorithm as well as the other research

algorithm performed much better than the industry standard DirectX algorithm. We further

consider this when we evaluate the DirectX algorithm.

Notably, though, the Direct Paths algorithm scored significantly better than the other

research algorithm, Bouncing Reflections. As the Direct Paths algorithm mainly consists of a

dramatically simpler subset of the more robust Bouncing Reflections algorithm, we expected

131

the opposite result. The Direct Paths algorithm, as exemplified in Table 1 on page 32, simply

computes the zero-order reflection paths, or the two straight paths from the sound source to

the ears. Expanding this, the Bouncing Reflections algorithm listed in Table 5 on page 40

initially uses this same code for the first paths in the list of impulses it retains. Therefore, we

logically expected the more completed Bouncing Reflections algorithm to outperform the

basic Direct Paths algorithm. We further consider this and the implications in the section

“Hypothesis Three Evaluation” on page 136.

Bouncing Reflections Algorithm Evaluation

For the same reasons as the Direct Paths algorithm, the Bouncing Reflections

algorithm arguably surpassed both DirectX and Simple. With the exception of the repeated

measures statistical analysis we noted significant performance distinctions. Though we did

not find the numbers as dramatically supportive in for this case, they still left little room for

question about the relative execution.

With a somewhat loose level of confidence, we can statistically conclude that the

Direct Paths algorithm performed better in this experiment than the Bouncing Reflections

algorithm. We must however, emphasize that this level of confidence falls in the 90%

certainty range and will require further analysis and experimentation to evaluate properly.

However, the simple fact that the results seem so one-sided, regardless of the question type

or analysis method, gives us pause to consider why. We will further consider these

implications in the section “Hypothesis Three Evaluation” on page 136.

DirectX Algorithm Evaluation

Generally, we should find that including no 3D algorithm as we did with the Simple

algorithm should return statistically inferior results than any algorithm with some 3D

132

virtualization nature. The only exception to this would be when the 3D sound algorithm in

question generates misleading or blatantly incorrect acoustic reproductions. Clearly,

considering the data from the experiment, we have cause to have some trepidation about the

efficacy of the DirectX algorithm. As we discuss in sections “SoundPlayDirectX Algorithm

Object” on page 61 and “DirectSound® Library” on page 83, this library from Microsoft®

has numerous flaws and deficiencies. Our system attempted to overcome these issues, but it

could only compensate so much. We have no statistical basis to say that DirectX is much

better than no algorithm at all. To be sure, based on this experiment we cannot state the

inverse, as the numbers do not lead to any certainty. However, we find this ambiguity

concerning to say the least.

Clearly, though, the experimental algorithms both overwhelmed the DirectX

algorithm with respect to accuracy. We can say this in both cases with an extremely high

level of statistical certainty. As programmers, we appreciate the low-level access to the sound

card that this library provides. Yet does this merit the promotion and institution of this

algorithm as the present industry standard? Even the most comparable of our algorithms,

Direct Paths, spectacularly surpassed this library’s capabilities. Both the Direct Paths

algorithm and the DirectX algorithm only calculate zero-order reflection paths and ignore all

room and other environmental geometry. So how could the Direct Paths algorithm perform

so much better than the DirectX algorithm? Arguably, the difference resides in the poor

implementation of DirectX by Microsoft® and the industry’s lack of focus on development

of any proper 3D sound virtualization algorithm.

133

Hypothesis One Evaluation

The first hypothesis of this research states (from Table 13 on page 95): “While

DirectX DirectSound® will perform better than Simple playback, the 3D algorithms from the

research will produce more accurate sound reproduction than DirectX DirectSound®.”

In the previous section, we demonstrated the second part of this statement, while

rejecting the first half. Based on the statistical analyses and even anecdotal evidence, the

DirectX DirectSound® library has major flaws. Simply stated, we have no evidence to

support that the DirectX algorithm conclusively performs better than the Simple algorithm

(which uses no 3D acoustic virtualization). In some cases, though not with any statistical

significance, the Simple algorithm actually did better than the DirectX algorithm!

Undeniably, however, the Direct Paths algorithm and the Bouncing Reflections

algorithm readily outstripped the DirectX algorithm in terms of acoustic reproduction

performance. This, again, we do not find surprising given the notable flaws inherent in the

DirectSound DirectX® library (see “DirectSound® Library” on page 83).

As with any good hypothesis, this evaluation brings up more questions than answers.

While DirectX DirectSound® did not perform better than Simple playback, the 3D

algorithms from the research did produce more accurate sound reproduction. So, is the next

step to improve DirectX DirectSound® (now called X3DAudio®) or further develop one of

our algorithms? Should we analyze what components of the algorithm led to this substantial

failure or leave this to the industry to self-correct? Does the Microsoft® algorithm truly fall

so short than no 3D algorithm, even considering that anecdotally it seems to improve

virtualization to some degree in simple 3D spaces? How would performance for the DirectX

134

DirectSound® library change in more complicate or even open-space environments?

Unfortunately, we must leave these considerations for future experiments and analysis.

Hypothesis Two Evaluation

The second experimental hypothesis states: “Over time, with training, a test subject’s

performance with the research algorithms will improve, while training with the other

algorithms will not show improvement.”

In section “Analytical Analysis” on page 128, we loosely considered this concept via

Figure 30. This chart, though not purely statistical in nature effectively allows us to visualize

the impact of question about accuracy over time. In fairness, the temporal nature of the

chart’s data derives only from the fact that each subject answers the twenty questions in a

numerical order. The data used to create this graph does not consider the actual time the

subject spent determining each answer. During the experiment, we did record the time of

each correct answer and, if we ignore the first question, we can easily calculate the

differential time per question. Since we did not record the experiment start time, we cannot

factor in the first question for analysis of time taken. Furthermore, we must keep separate the

analysis of the times for question with feedback versus without feedback, since the two

question types have such different characteristics.

Given any method of determining the temporal nature of the questions with respect to

scores, we quickly realized two significant flaws in analyzing this aspect of the data. First,

and paramount, we simply do not have enough data to analyze properly. With only twenty

questions per subject, each of which can be one of the four algorithm scenarios, we have far

too many variables to consider in a limited dataset. Clearly, we need more than ten questions

for each type to see trends or we must limit the algorithm choices. To be sure, the simulator

135

only allows about 6% of the questions to use the Simple algorithm. However, this limitation

still does not give us anywhere close to a large enough population data for statistical analysis.

Additionally, the experiment randomized many other variables, including depth and breadth,

number of sources, and source locations and orientations. Correlating this many variables in

a temporal analysis requires a much larger dataset. Secondly, we would need to use a formal

(and expensive) statistical analysis package, assuming we had enough data. Presently, this

lies outside the scope of this document, but we propose future refinement and analysis of this

concept.

Though we hesitate to directly compare P values across separate datasets, generally

we note a differential trend between the two types of questions. Questions without feedback

gave us typically much lower P value and therefore superior confidence levels in our

assertions than the data from questions with feedback. We ostensibly could attribute this to

the fact that the questions without feedback followed the questions with feedback. This could

illustrate a trend of improvement over time, between the two groups. However, we could just

as easily rationalize this based off the definitive and unambiguous nature of the later

questions. We have intentionally kept analysis of the two question types separate throughout

this document simply because they differ so completely in disposition. Alternatively, this

differential trend could simply stem from lack of a comparable statistical nature of the two

data sets. Therefore, we still cannot determine the validity of hypothesis two, with any degree

of certainty.

136

Hypothesis Three Evaluation

According to Table 13 on page 95, the third hypothesis states: “One of the algorithms

developed in this research will produce superior results than the others. We anticipate the

more complicated Bouncing Reflections algorithm to outperform all others.”

Across the board, both Direct Paths and Bouncing Reflections algorithms beat out the

DirectX algorithm and, not surprisingly the Simple algorithm. Yet, now we must consider

how they compared to each other. We can see from the repeated measures tests and to a

lesser extent the non-parametric independent tests that the two algorithms do not significantly

differ in mean scores. Most likely, this proximity is only a coincidence since, do to

convoluted nature of the analysis and the many assumptions take. However, we can say with

at least a loose degree of certainty (90%) that the Direct Paths algorithm outperformed the

Bouncing Reflections algorithm in the independent tests model. Obviously, the first part of

hypothesis three holds true, regardless of which of the two scored better. For the latter half,

though, we find, at best, exactly the opposite results than we expected.

So we must ask the obvious question: why would the Direct Paths algorithm score

higher than the Bouncing Reflections algorithm? Another way to view this same issue: why

did we assume the Bouncing Reflections algorithm would perform better in the first place?

Finally, we should consider, since our hypothesis turned out exactly opposite of what we

expected, was our analysis or experiment flawed in some way? We will address these three

questions in reverse order.

First, though we cannot absolutely prove the validity of the statistical analysis

covered in the previous section, we can say with relative certainty that the techniques used

employed processes are common to any statistical research. Furthermore, the non-statistical

137

analysis provided strongly supports the same conclusions. Even cursory parsing of the data

supported this. Finally, anecdotal evidence supports the conclusion that the Direct Paths

algorithm would surpass the Bouncing Reflections algorithm. After parsing the data, we

resurrected the simulator and reevaluated our initial assessment of the algorithms. Upon

careful aural consideration, aesthetically and subjectively we found that we could agree with

the ranking conclusion. The Direct Paths algorithm simply sounds better than the Bouncing

Reflections algorithm. We will consider why later in this section.

Now we must consider why we predicted that the Bouncing Reflections algorithm

would perform better in the first place. As indicated in the evaluations of the algorithms

earlier, the Bouncing Reflections algorithm actually expands directly on the Direct Paths

algorithm. One of the first things the Bouncing Reflections algorithm does is to run the

simpler algorithm and store these results for the zero-order reflection paths. It then enhances

this data by bouncing some to many reflections off the environment walls to generate a finite

impulse response for the room. This clearly should give us not only the direct line-of-sight

information, but also more extensive audio cues. In the appendix, we elucidate that audio

cues such as interaural delay time, head shadow, and head motion contribute primarily to the

lower order reflections. Other audio cues like pinna and shoulder response more heavily

depend on higher frequencies and upper order reflections or even reverberation. Clearly,

though, providing more audio information to the listener should logically enhance

perception. Therefore, we must finally question why the Direct Paths algorithm scored higher

than the Bouncing Reflections algorithm.

We have two theories about this conundrum. First, we must remember that early echo

response and reverberation provide audio hints as to the nature of the sound source, its

138

location, and properties of the room. We designed this experiment to test strictly localization

and not spatialization. The difference is key. If we designed an experiment to test, say, the

reflective properties of the walls and the room, arguably, the Bouncing Reflections algorithm

should prove far superior. Considering this, we do not find it surprising that the Direct Paths

algorithm scored higher than the Bouncing Reflections algorithm. This is not to say that the

Direct Paths algorithm is better than the Bouncing Reflections algorithm. Rather, it simply

performed better on a localization scale. We can further say this about all of the algorithm

comparison conclusions. Considering DirectX DirectSound® promotes no spatialization and

only localization like our Direct Paths algorithm, our conclusions for general superiority still

hold.

Finally, we can also theorize that the Bouncing Reflections algorithm could have

performed better given much higher complexity. On the flip side, and probably could go

without mention, the Bouncing Reflections algorithm reduces almost to the Direct Paths

algorithm at the lowest complexity level and therefore should perform better for this

experiment at low levels. In fact, the data in Table 27 superficially supports this as we see a

spike for the score for the Bouncing Reflections algorithm at a complexity of two. However,

we cannot conclusively analyze this since, statistically speaking, we do not have enough data

points due to probability distribution of combining the breadth and complexity variables

versus the number of algorithms and question types. The same holds for the spikes at the

upper end of the average values for the Bouncing Reflections algorithm in Table 27.

Furthermore, considering the clumping of resolution listed in Table 16 and the example finite

impulse responses in Figure 23 through Figure 26, we can make the argument that the

experiment did not allow a high enough level of fidelity for the Bouncing Reflections

139

algorithm. Clearly, given faster processor times or dramatically better-optimized algorithms,

we could have allowed this algorithm enhanced performance. However, the limits of this

experiment constrained this algorithm. We believe that the limited fidelity of this algorithm

actually distracted from the localization. The subject had just enough spatialization

information to distract him from the localization component.

C
o
m
p
l
e
x
i
t
y

Without Feedback With Feedback

BOUNCING
REFLECTIONS

DIRECT
PATHS DIRECTX SIMPLE

BOUNCING
REFLECTIONS

DIRECT
PATHS DIRECTX SIMPLE

avg
score num

avg
score num

avg
score num

avg
score num

avg
score num

avg
score num

avg
score num

avg
score num

2 0.50 2 0.04 5 0.13 4 0.00 1 0.52 4 0.41 6 0.48 3

3 0.28 9 0.40 5 0.05 7 0.00 1 0.32 6 0.45 7 0.26 10 0.24 4

4 0.12 5 0.38 5 0.03 11 0.35 16 0.39 6 0.28 9 0.80 4

5 0.25 13 0.29 10 0.16 13 0.03 6 0.38 17 0.24 17 0.42 16 0.11 2

6 0.06 19 0.23 18 0.20 19 0.12 7 0.21 15 0.29 13 0.35 17 0.09 3

7 0.31 21 0.20 30 0.22 24 0.06 3 0.29 14 0.30 21 0.35 16 0.20 3

8 0.24 25 0.22 19 0.14 28 0.04 7 0.39 20 0.39 30 0.23 26 0.34 4

9 0.12 38 0.16 23 0.06 31 0.18 6 0.30 24 0.31 27 0.24 19 0.27 5

10 0.19 39 0.27 29 0.16 33 0.09 6 0.26 29 0.33 35 0.32 39 0.21 5

11 0.13 37 0.27 38 0.12 32 0.07 9 0.27 40 0.38 37 0.26 40 0.36 7

12 0.20 21 0.17 32 0.10 38 0.02 4 0.31 36 0.30 26 0.25 39 0.47 4

13 0.19 13 0.18 31 0.14 27 0.05 11 0.24 20 0.33 27 0.16 28 0.18 2

14 0.14 25 0.22 20 0.15 19 0.05 6 0.21 21 0.33 17 0.22 27 0.21 2

15 0.16 13 0.20 18 0.16 18 0.09 4 0.28 15 0.32 17 0.14 14 0.19 5

16 0.12 25 0.20 19 0.12 13 0.51 1 0.22 14 0.38 19 0.27 21 0.20 2

17 0.14 14 0.30 11 0.20 16 0.20 18 0.25 15 0.17 15 0.18 2

18 0.33 10 0.23 11 0.19 16 0.00 1 0.38 18 0.19 8 0.09 8 -0.52 2

19 0.26 8 0.30 4 0.20 4 0.00 1 0.41 7 0.61 3 0.31 18

20 0.23 5 0.00 3 0.24 7 0.34 2 0.43 4 0.41 1

Table 27: Average Scores for Algorithms by Complexity Level

Future Work

Acoustic Assumptions

For this experiment, we have intentionally limited the simulator to constrain certain

global acoustic properties. This allowed us to evaluate other variables without distraction.

However, future experiments should include these as enhancements and promote the testing

of these assumptions. The easiest of these assumptions to next implement are those made

while calculating reverberation paths. Specifically, we dramatically simplified the formulas

for attenuation and absorption/reflection for acoustic paths. We would also like future

iterations to include frequency distribution for attenuation. Another easy improvement would

refine the method of material absorption and dispersion (the calculatedCoefficient).

Algorithm Optimizations

Within the Bouncing Reflections algorithm, we blindly test each wall for an

intersection with each reflected path. Clearly, we could easily optimize this algorithm by

simply attempting to predict the first face to test in the next segment when we find a

reflection. This is only one of many optimizations we could consider to speed up this

algorithm to run in extreme cases.

Direct Paths Algorithm Expansion

In previous developments of the Direct Paths algorithm, we designed an algorithm

called Reflected Paths that could quickly calculate the first-order and even second-order

reflection paths for a basic rectangular room. This used optimized trigonometric formulas

that ran practically in real-time. Figure 9 on page 36 illustrates this approach. However, we

excluded this functionality because it only worked in limited, geometrically simple spaces.

141

This algorithm, though, if we could generalize it, has potential to provide exceptional

localization, if not spatialization.

Alternative Algorithm Development

In the section “Current Work” on page 29, we described a number of alternate

algorithms for future development. Expansion on this level could provide further insight

about how we consume 3D sound and methods to exploit acoustic properties in virtual

environments. We would especially like to develop the Matrix algorithm (see “Matrices of

Impulses Algorithm” on page 42), as this has potential to make slower, powerful algorithms

run in real-time.

Orientation and Location Thresholds

Currently, every movement of the avatar or sound source automatically causes the

simulator to recalculate the current algorithm. However, we could possibly employ

thresholds to minimize this burden on the processor. It is unclear to what degree a listener

will tolerate the resulting lack of fidelity, but we can easily design an experiment to test and

evaluate threshold updates.

Complicated Rooms and Structures

Though the simulator allows for complicated, even non-rectangular rooms and

structures, we did not account for this in the current experiment. The experiment limited

questions to a simple, unified space clear of objects and obstructions. We advise further

research and consideration of complex rooms, multi-room structures, spaces and with

objects, and/or areas of varying sizes and shapes. We also would like to pursue

implementation of the algorithms in large-scaled spaces or outside environments. The

142

Bouncing Reflections algorithm, with significant optimizations, has the potential to manage

some or all of these enhancements.

Experiment Redesign

During the analysis of this experiment, we realized design shortcomings that did not

allow for certain considerations. Due to the large number of variables, small set of questions

per student, and limited number of student subjects we could not properly analyze hypothesis

two. Future experiments could easily focus on providing the ability to analyze improvement

over time due to learning. We also intend to submit the data from the current experiment into

a third-party statistical package and process the results.

Conclusion

We began this research well aware that the current industry standard for 3D sound,

Microsoft's DirectX DirectSound®, contained flaws and significant shortcomings. Over the

past few decades, many users have patiently waited for the market to correct itself and

provide serviceable virtual acoustics, to no avail. With that in mind, we strove to develop

comparable and ideally superior 3D acoustic algorithms that might eventually replace or

enhance what is currently available. To accomplish this task, we built a robust virtual

environment simulator that not only presents dynamic and sophisticated 3D visuals, but also

has the potential to reproduce acoustics from any number of 3D sound algorithms. We

enhanced the Three Dimensional Sound (or TDS) Simulator with the flexibility to run

experiments that compare and evaluate these acoustic algorithms and eventually incorporated

two of our own 3D sound algorithms for comparison with commercial approaches.

Evaluation of the experiment data strongly supports the assertion that the two

algorithms designed for this research dramatically outperform Microsoft's DirectX

DirectSound®. In fact, we discovered clear ranking with respect to acoustical localization for

the algorithms in this experiment. The Direct Paths algorithm outstripped all others, followed

by the Bouncing Paths algorithm. The undisputable loser, the DirectX algorithm performed

only marginally better than sound reproduction with no 3D algorithm at all!

Since the algorithms developed in this research purport independence of platform,

programming language, and even application, the potential practical applications of this

research are limitless. These algorithms could easily enhance common virtual environments

from video games to dynamic movie story telling. Even the government or military could

deploy these algorithms to enhance virtual simulators, significantly reducing expense and

144

risks from training. With further development and refinement, this research has the profound

potential to influence any 3D virtual environment application.

Appendix

Concept Overview

In order to better comprehend the concepts in this research, in this section we provide

material for a basic understanding of acoustics and related topics. The following includes a

simple primer on acoustics and the physical aspects of sound and perception. We do not

assume knowledge of physics and psychology. Other sections follow that further support the

research presented in the main part of this document. The reader may skip the following

sections.

3D Sound Propagation

Reflection

In typical atmospheric conditions, sound uniformly spherically propagates out from a

source at a rate of approximately 344 m/s. As it gets further from the source, it loses power,

or volume proportional to the inverse square of the distance traversed. Furthermore, sound

does not simply travel in a straight line from the source to the listener. Instead, it emanates

out in all directions, bouncing off some surfaces, bending around others, and even partially

absorbs into boundaries such as carpets or rugs. Within any given space, a listener receives

audio cues about the surroundings through these reflections, refractions, absorptions, and

attenuations. Depending on the environment and circumstances, certain aural interactions

become more important than others do. When outside or in a large space, attenuation, or

volume decay prevails most, since few surfaces interact with the sound. For the purposes of

enclosed environments such as rooms and buildings, which primarily concerns this research,

initial reflections give the listener the most information about the sound source. These cues

146

can include the relative location, condition, and physical properties about the space occupied

by the sound source. We can group reflection paths into categories of order (Figure 2, Figure

3, and Figure 4 on page 17) based on the complexity or number of bounces off the walls.

Sound that travels directly from the source to the listener we define as the zero-order

reflections group. Paths that bounce off only one wall, we call first-order reflections, while

those making two bounces are second-order, and so on. See “Reflected Paths Algorithm” on

page 34 for a brief analysis of some equations involved in generating these reflections.

Refraction

Sound does not always travel in a straight line from the source. Typically, it bends

around or through objects and surfaces. For instance, one can hear an approaching siren

around a corner from far away or somebody speaking in a completely different room.

Sometimes refraction occurs due to the sound waves actually bending around objects. Other

times, the sound travels through the medium and will distort perceivably. For example, when

a person puts his head underwater and hears somebody speaking the voice seems unclear.

These effects depend highly on frequency. Unfortunately, our algorithms do not currently

take into account refraction for calculations. We hope to employ this in future models.

Absorption & Dispersion

When sound wave hits a surface, not all of its energy reflects off the boundary.

Depending on the medium and surface properties of the material, some energy might gets

absorbed into the object, while some will disperse in multiple directions. For more details

about this aspect of sound propagation and how our algorithms can manage it, see “Wall

Dispersion Algorithm” on page 41.

147

Frequency Relative Humidity %

(Hz) 10% 20% 30% 40% 50% 60% 70% 80% 90%

1,000 14.0 6.5 5.0 4.7 4.7 4.8 5.0 5.1 5.3

1,250 21.0 9.4 6.7 5.9 5.7 5.7 5.9 6.1 6.3

1,600 32.0 14.0 9.8 8.1 7.5 7.2 7.2 7.4 7.5

2,000 45.0 22.0 14.0 11.0 9.9 9.3 9.0 9.0 9.1

2,500 63.0 32.0 21.0 16.0 14.0 12.0 12.0 11.0 11.0

3,150 85.0 49.0 32.0 24.0 20.0 17.0 16.0 15.0 15.0

4,000 110.0 75.0 49.0 36.0 30.0 26.0 23.0 21.0 20.0

5,000 130.0 110.0 74.0 55.0 44.0 38.0 33.0 31.0 28.0

6,300 160.0 160.0 110.0 84.0 68.0 57.0 50.0 45.0 42.0

8,000 180.0 220.0 170.0 130.0 110.0 89.0 78.0 69.0 63.0

10,000 190.0 280.0 240.0 190.0 160.0 130.0 120.0 100.0 95.0

12,500 210.0 360.0 340.0 280.0 240.0 200.0 180.0 160.0 140.0

16,000 230.0 430.0 470.0 420.0 360.0 320.0 280.0 250.0 230.0

20,000 260.0 510.0 600.0 580.0 520.0 470.0 420.0 380.0 350.0

25,000 300.0 580.0 740.0 770.0 730.0 680.0 620.0 570.0 520.0

31,500 360.0 670.0 890.0 990.0 1000.0 960.0 900.0 840.0 790.0

40,000 460.0 780.0 1100.0 1200.0 1300.0 1300.0 1300.0 1200.0 1200.0

50,000 600.0 940.0 1300.0 1500.0 1700.0 1700.0 1700.0 1700.0 1700.0

63,000 840.0 1200.0 1500.0 1800.0 2100.0 2200.0 2300.0 2300.0 2300.0

80,000 1200.0 1600.0 2000.0 2300.0 2600.0 2800.0 3000.0 3100.0 3100.0

100,000 1800.0 2200.0 2500.0 2900.0 3300.0 3600.0 3800.0 4000.0 4100.0

Table 28: Sound Attenuation (dB/km) (Bacon & Jarvis, 2007) (ISO 9613-1, 1993)

Attenuation

As sound travels, it loses power, or intensity, and thus decreases in volume. In air,

under typical circumstances, perceived volume decreases approximately according to the

inverse square of the distance traveled. See Equation 4 and Equation 5 for the basic formulas

to calculate the decreased decibel value of mono-frequency spherical waves emanating out

from a source with a power of P watts (Resnick, Halliday, & Krane, 1992) (Kinsler, Frey,

Coppens, & Sanders, 2000). Generally, this loss depends on environmental conditions such

as ambient temperature, relative humidity, atmospheric pressure, and even the frequency of

the signal (ISO 9613-1, 1993). Thus, when a reflection path reaches an observer from a

sound source, we must take into account the distance traveled to calculate the resulting

148

volume of that reflection. Table 28 summarizes the attenuation of sound source due to

humidity.

Functionally, employing attenuation breaks down to simply applying a filter spectrum

envelope to the original signal. This envelope will accentuate certain frequencies, while

moderating others, according to the table and the distance the reflection has traveled.

Initially, however, the simulation will treat all frequencies the same, attenuating according to

the formulas below. We consider the volume of original sound file as the reference level after

traveling a direct path from the sound source to the listener. See “Attenuation Algorithm” on

page 67 for how the TDS Simulator currently factors and manages attenuation.

24 r

P
I

π
=

Equation 4: The Intensity of a Spherical Wave at Radius [r]

2
00 4

log10log10
rI

P

I

I
SL

π
==

Equation 5: The Decibel (dB) Level of a Spherical Wave

3D Sound Perception

After we have an understanding of the physical properties and the equations involved

in calculating sound paths, it is also necessary to consider how human physiology and

psychology come into play. In order to appreciate this, we will further clarify the distinction

between sound spatialization and sound localization. We define sound localization as the

listener’s ability to determine, via acoustic information, the physical position of a sound

source. For instance, one can find a sound source in a space without actually seeing it. On the

other hand, sound spatialization encompasses the overall 3D sound effect, including sound

localization, perception of the environment, condition of the sound source, and any other

information given by auditory assessment. Specifically, we consider least eight cues (Blauert,

149

1997) (Burgress, 1992) of sound localization and spatialization, each of which we describe

below.

Interaural Delay Time

Interaural Delay Time (IDT) is the delay between when a sound signal arrives at each

ear. This can range from no delay if the source sits directly in front, behind, above, or below

the source to up to approximately 0.63 ms (Blauert, 1997) (Burgress, 1992) if the sound

comes from either side of the listener. In other words, IDT is simply the difference in time it

takes sound to travel to the ears. Variable λ in Figure 31 illustrates this measurement.

Primarily, this cue gives the listener a sense of horizontal direction to the sound source, and it

is only important to the very low order, initial reflection paths. However, this audio cue does

have a significant impact on complexity of the sound path calculations, as it requires twice as

many reflection computations (one for each ear).

As a possible method for avoiding this doubling of computations, we could determine

the monaural sound path to the center of the head and estimate the offset for each ear,

factoring in the relative orientation and frequency of the signal (Figure 31). We can even

Figure 31: Interaural Delay Time due to
Avatar Orientation Figure 32: The Anatomy of the Ear

150

further simplify this calculation by determining the stereo effect on just the last segment of

the sound path. This approximation should intuitively hold for cases where the avatar does

not sit in extreme proximity to the wall. As the distance from the wall increases relative to de,

the angles ΩR and ΩL approach zero, while the distance difference λ between the final stereo

segments remains acoustically significant.

Head Shadow

Next, we define Head Shadow as the difference in volume between one ear and the

other caused by sound traveling the added distance. Similar to the interaural delay time, we

find this audio cue at its apex when the sound source sits to the side of the listener and

nothing when in front, behind, above, or below. At most, head shadow accounts for about 9

dB of sound loss (Blauert, 1997) (Burgress, 1992), and it only truly affects zero-order

reflection paths. More complex reflection paths will effectively cancel each other out with

respect to this cue because they reach either ear at approximately the same time and volume.

Head shadow influences both direction and distance localization cues. If calculating two

paths for interaural delay time and compensating for attenuation in general, we incorporate

this factor by default.

Pinna Response

Pinna Response takes into account the ability of the outer ear to filter sound. The

actual shape of the human ear and the ability of the brain to compare the filtered signals sent

by the two ears both cause this audio cue. Due to the physiology of the pinna, this cue helps

the listener determine both direction and elevation of the sound source. For the purpose of

sound path calculations and our algorithms specifically, we deal with this cue within the

speaker abstraction layer that the system utilizes (see “Computational Issues” on page 153).

151

Shoulder Response

Sound reflections off the upper body of the listener provide a spatialization cue called

Shoulder Response. These typically limit to frequencies in the signal of around 1-3 kHz

(Blauert, 1997) (Burgress, 1992) and can enhance elevation and directional localization. Our

algorithm does not currently account for this cue, as it does not have a significant impact on

spatialization and localization in small, enclosed environments. However, further expansions

might include calculations for shoulder response.

Head Motion

A more abstract audio cue, Head Motion, occurs when the listener moves his head to

re-evaluate the other filters. Since the head of the virtual avatar represents the head of the

listener (or the area surrounding the virtual camera), the physical head motion of the listener,

or end user, does not affect this cue. Rather, the avatar must turn its head in the virtual world.

An ideal virtual environment would rotate the avatar’s orientation when the user physically

turns his head in the real world. Turning the avatar’s orientation simply forces the

reevaluation of the algorithm’s calculations, so by nature of the simulator we have included

implementation of this audio cue.

Vision

Vision can significantly influence any received audio cues, causing the listener to

ignore what he hears if it differs from what he sees. Human tendency emphasizes visual input

over audio information. However, vision could also reinforce the effectiveness of sound

spatialization (or vice versa) if the two correspond. For this reason, we have developed a

sophisticated 3D virtual environment through which users can navigate (see “The TDS

Simulator” on page 49).

152

Early Echo Response & Reverberation

Finally, the two most significant audio cues to this project, Early Echo Response and

Reverberation, give the user dramatic hints as to the nature of the sound source, its location,

and properties of the room. These cues do not help localization in large open environments,

but have substantial influence in enclosed spaces. Effectively, they are both part of the same

physical concept; however, they have distinct effects on the listener’s perception. Early echo

response (EER) includes the reflections that reach the listener up to 50 or 100 ms after the

sound begins. Depending on the room dimensions and properties, these usually consist of the

zero, first, and sometimes second-order reflections (Blauert, 1997) (Burgress, 1992).

Reverberation includes the group of dense reflections that follow the EER. Figure 33 shows a

standard impulse response for a room. In the real world, we can measure this by playing a

high-powered impulse from a speaker and recording the results. There exists a point in time

when the echoes begin to function as reverberation. We define this variable as approximately

the time that the sound pressure takes to decay 60 dB after the source has ceased transmitting

(Resnick, Halliday, & Krane, 1992) (Kinsler, Frey, Coppens, & Sanders, 2000). Arguably,

reverberations do not directly affect sound localization; however, they do significantly

influence sound spatialization.

Figure 34: Generated Impulse
Response

Figure 33: Echo vs. Reverberation

153

Reverberation and especially EER computations must take into account other audio

cues, such as attenuation, absorption, and IDT. The depth, or order, to calculate is somewhat

subjective within the reverberation range, as the ear at some point fails to notice the

separation between the impulses.

We note that we can diagram and store an impulse response in a number of ways.

Figure 34 shows a typical rendering of the strength of the echo in decibels versus time. Since

the sound API (DirectSound DirectX®) which we use describes (Microsoft, 2007) volume

for playback as an integer from 0 to -10,000, or hundredths of a decibel loss from the original

sound volume (it cannot play a sound louder than the original source), we can store the

impulse response in the format of Figure 34. This diagram presents the conceptual inverse of

the data in Figure 33. It is also possible, and sometimes useful, to store the impulse as an

array of the path lengths from the original source (see “Reverberations Data Structure” on

page 64 and “Impulse Response Data Structure” on page 66).

Computational Issues

Sound API’s

Most of the computers that end-users find available today come with sound cards and

methods of accessing these cards. The industry calls these methods, which generally reside

deep in the operating system, application programming interfaces (or APIs). A computer

program such as a 3D environment, 3D game, or CAD program must go through these types

of interfaces, or abstraction layers, to access physical devices. An API can allow an

application to process and then represent graphics, interpret network data, or even play and

possibly manipulate sounds. We refer to an API as an abstraction layer because it provides a

common standardized software interface to any number of different hardware configurations,

154

so that the programmer does not need to focus on low-level, system dependent aspects of

programming.

Discussed in the section “DirectSound® Library” (see page 83), some common

examples of the API’s available for sound include Microsoft’s DirectX DirectSound® (now

called XAudio2 and X3DAudio), OpenAl, fmod, EAX, and a few other more antiquated

interfaces. Typically, the choice of which API to employ resides with designer of the

application, though frequently he will allow the end user the choice between a select few.

Many of these API’s tout the ability to generate 3D sound for virtual environments.

However, they all fall dramatically short on the algorithmic side and use the shortcuts listed

in the sections below such as HRTF or incorporating limited or no geometrical data.

In addition to analyzing the relationship between the sound API and the sound card,

we must also look at how the speaker configuration factors into the product. Sometimes

called the speaker abstraction level, or also the auditory display, the speaker types and

locations can dramatically affect the overall experience of the end user. On most systems, the

user tells sound API, via the operating system, which auditory display configuration connects

to the system. The API then applies this information to modify slightly the algorithm or

filters it will use to generate the 3D sound. In order to simplify the analysis of our algorithms,

we assume the use of only simple headphones. This allows for a uniform and standard

speaker abstraction model, regardless of user, user-physiology, speaker design and location,

or room acoustics.

3D Sound Cards

Presently, on most computer systems, the sound cards frequently advertise as having

the capability of generating 3D sound. Manufactures such as Creative Labs, Crystal Sound,

155

EAS, TurtleBeach, have offered many 3D sound cards over the past years. The basic, low-

end PC's available from Gateway, DELL, Compaq, most game consoles, and even some

Macintosh computers typically include one of these cards, often integrated into the system.

In fairness, some of the more formidable sound cards do perform basic hardware

accelerated 3D sound calculations. They provide a faster method of performing the

algorithms requested by the API via specialized processing hardware. However, like the API

designers, the manufacturers of each of these devices make major, unjustified assumptions

about how best to handle 3D sound. The industry standard tends to exploit the common

surround sound algorithms such as those found in most home audio systems in combination

with abstract and unfounded algorithms to make sound seem like it comes from a 3D

location. This essentially fools the user into thinking he is experiencing a realistically

calculated 3D sound. Without the visual 3D environment to reinforce the sound

virtualization, the average listener might not even be able to guess the actual sound location.

Figure 35: Dolby 5.1 Speaker Placement
(Hull, 1999)

Figure 36: The Neumann KU 100 Dummy
Head (Neumann, 2007)

156

Software vs. Hardware

Ideally, in order to produce a proper 3D effect, an application would send basic 3D

information to the sound card through the installed API and the API has the responsibility to

use the processing hardware on the sound card to generate effective 3D sound. The API

would take the environmental information, run it through a set of algorithms, and then use

the hardware available to it to mix and filter the sounds to get the desired effect. The 3D

component of many of the currently available sound cards amounts to little more than

hardware accelerated mixing and the application of built-in (HTRF) filters made available to

the API. On systems without this hardware or when specified by the application, the API

should have the option of performing its calculations at the software level which would

obviously run much slower.

Surround Sound

Surround sound defines as the specific placement of speakers around a listener to

achieve the illusion of sound coming from any or all directions (Hull, 1999). It also typically

describes the method of dispersing the sound signal to these speakers and any filter effects

placed on the original source to achieve the desired 3D spatialization results. Some examples

of surround sound include a "wide stereo" effect using two speakers or headphones, DTS

(Digital Theater Systems), THX, or most commonly Dolby 5.1, as well as 6.1 and 7.1,

(Figure 35) which the average home stereo system typically includes. Some even more

sophisticated auditory display systems [http://paw.princeton.edu/issues/2012/02/08/pages/7041/index.xml]

have potential widespread commercial applications. In this paper, we do not propose to

replace or modify these systems. They are ubiquitous and even standardized. Rather, we wish

to send better or more accurate information to the surround sound speakers via the API layer

157

of the computer system. The computer’s sound API will still need to know the speaker

placement configuration. However, our algorithms should always generate the same output

for a given virtual situation regardless of the speaker setup, and then let the sound API

express the results through the speaker system as it sees fit.

Head Related Transfer Function (HRTF)

An intuitive approach to designing sound synthesis systems derives from the

consideration of how one would perceive the sound given a particular environment. The

Head Related Transfer Function (HRTF) converts the signal a listener might receive through

his aural system to all assorted external acoustic factors. In practice, it is little more than an

organically designed set of filters performed on a sound to make it seem to come from a

specific direction (Burgress, 1992). The filters typically have careful design and engineers

base them on good acoustic and physiological assumptions. Yet, they have many limitations.

The concept of HRTF follows rather simply. An engineer uses an accurate model

(Figure 36) of a typical ear, head, and sometimes even upper body to “listen” to a variety of

sounds from a range of locations and orientations around the avatar. The model can even be a

living person. Deep in the ear, near the eardrums, the designer places microphones to capture

the signals, representing how the human ear receives sounds. These signals go through

intense analysis to engineer, in reverse, a series of filters that a system can applied to sounds

in order to replicate perceived spatialization.

Though the results seem efficient and even somewhat convincing, HRTF

implementations have several well-known inadequacies. First, the generated filters only

match accurately to the model used in development. Since every human differs anatomically,

we cannot inherently generalize this approach. Furthermore, the generated filters are

158

expensive to create and typically tightly tuned to a specific playback environment, such as an

auditorium or a padded room. Though some assumptions can generalize the surroundings,

HRTF fundamentally only produces effective results in the specific controlled circumstances.

Experiment Documents

Below we have included documents relevant to the experiment explained in this

research. Table 29 shows an example transcript of the instructions provided by the researcher

to start the experiment for each subject. Table 30 exhibits the IRB approved consent form

that each subject must sign.

Data File Examples

We have included below some examples of the data files used by the simulator. See

the section “Scene3D Data Structure” on page 52 for a detailed explanation of design and

implementation.

159

Please have a seat. If you wouldn't mind, please take a moment and read through
this consent form and sign it at the bottom. Also, put your name and student number
on this sheet to get extra credit.

[Subject reads the consent form and signs and fills out extra credit sheet.
Researcher resets the simulator and cleans the keyboard, mouse, and headphones.]

You are going to be moving the avatar, or you, through this virtual environment.
I'll explain the experiment in a moment, but first let me show you how to move
around and use the controls. [While the researcher demonstrates.] You can use the
cursor keys to look left or right and move forward or backward. You can also use
the mouse. Left-click and drag looks left, right, up, or down, but it does not
actually move the avatar. Right-click and drag also lets you look left and right,
but it will allow you to move forward and backward. As you can see, the mouse can
be a little sensitive, so it is best to use slow, short movements. It is more
efficient then the keyboard, but can be erratic if you are not careful. The
keyboard is slower to use, but you have more control. You are welcome to use
either, both, switch back and forth, or use them in combination. You can also use
the mouse pad on the keyboard. Use whatever is comfortable for you.

In order to familiarize yourself with the controls, I am going to have your go
through a short training exercise. [Researcher initiates training mode of the
simulator.] Here you are asked to go up to each object, "A", "B", "C", and "D" in
turn and get right in front it. Then just step through it as if it were a door. You
can use the keyboard or mouse or switch between them. [Researcher observes and
verbally assists while subject moves though the training. Researcher will almost
certainly have to instruct the subject to move through the first object and then
point out that "D" is to the right (off screen initially). Subject completes the
training.]

Now the actual experiment will consist of twenty questions, each of which will have
two to ten of those sound objects randomly scattered throughout the room. Your job
is to pick which one is playing the sound based on what you are hearing and seeing.
The first ten questions will be with feedback. This means that if you see, say
objects "A", "B", "C", "D", and "E" and you think it is "C", you type "C" to select
it. You do not have to move through the object at this point. Just type it to
select. But moving around might help you decide. If you are correct, you will be
told "Correct Answer" and it will automatically move you to the next question. If
you are wrong, it will say "Incorrect Answer, Please Try Again" and will keep
asking until you get it right. Obviously, you can get it right by process of
elimination, if nothing else.

Questions eleven through twenty are without feedback. If you think it is "D", you
type the letter "D" and it will move you on to the next question without letting
you know one way or the other if you are correct until the experiment is done.

When each question starts, it will automatically play the sound for you. You will
almost certainly want to replay the sound as you are moving around to hear it from
different perspectives. Just hit the "Space Bar" to replay anytime and as often as
you would like. Occasionally, if you replay the sound to soon after it just
finished playing, the simulator is not ready to play. Just wait half a moment and
replay the sound again. And remember to select the sound you think is playing, just
hit the key. If you think "C" is playing, just hit "C". If you think "D" is
playing, just hit "D". You do not have to move through the sound like before.
However, it might help to move around to hear it from different locations.

One last thing. Sometimes, no matter how much you move around you will not be able
to tell. That is okay. It is okay to guess. Do not get frustrated, as this is part
of the experiment. Any questions?

[Researcher hands the subject the headphones and makes sure they are on properly.
Researcher starts the experiment and moves away.]

Table 29: Experiment Instructions Transcript

160

Consent form

You are being invited to participate in a research project by Dr. Chee-Hung Henry Chu and
Student Researcher Scott McDermott from the University of Louisiana at Lafayette. This study will
be conducted to determine the accuracy and effectiveness of virtual 3D acoustic algorithms and
sound reproduction.

You will be asked to sit in front of a standard computer, wearing a pair of off-the-shelf
circumaural headphones (encompassing the entire ear), and initially explore the simulator to get a
feel for manipulation and movement within the virtual environment. Actual testing will pursue with
your selecting from a possible list of candidate objects, one of which is actually playing the sound. It
will take you about 30 minutes.

You are under no obligation to participate in this research, it is your choice whether to be a
part of the study or not. You may decide not to be a part of the study at any point before, during,
or after the study. There will be no bias or penalty from this agency, the State of Louisiana or the
University of Louisiana at Lafayette or Southeastern Louisiana University if you decide not to
participate or if you decide to stop participating in the research.

There is no particular benefit to you if you participate, but the project may allow research to
be done to further explore the benefits and implementation of acoustics in simulations and real-
world settings. The major risk to you is of taking up your time.

The results of this research will be published in a professional journal after it has been
completed but no personal information about any of the people who were included will be part of
any of the reports. The form you are filling out today will be destroyed after all the data has been
entered into analysis. There will be a unique number given to each test subject that the simulator
will assign. These numbers will be used to keep the data sets separate from each other. No
association with your personal information will be stored in this test. If you have any questions
about this research or your participation in the study you are welcome to call Dr. Chu at 337-482-
6309 and/or Mr. McDermott at 337-482-6338 at UL at Lafayette. You may also contact the Chair of
the ULL IRB, Dr. Mueller, 337-482-6489, for general concerns. You may also contact the
Management department head, Dr. Toni Phillips (985) 549-2051. We will make every effort to
answer your questions.

CONSENT
I understand that I am participating in research and that the research has been explained to me so
that I understand what I am doing. I understand that I may stop participating at any time. I
understand that minors are not included in this research.

Signed Date

Witness Relationship if any

Reason for witnessing the form (ex: unable to read, signs with Ax@)

Table 30: Experiment Consent Form Example

161

Avatar 1.0 SoundSource 1.2
// avatar1.txt, Created for TDS // ss speaker.txt, Created for TDS

//Measurements are in meters, feet, Units meters
Units inches Location 3.0 4.0 2.0
 Rotation 10 10 0
Location 150.0 150.0 48.0
Rotation 90 0 1.0 // The loss (in dB) for the source
 DirLoss 6.0
 File bounce.wav

Table 31: Avatar 1.0 and SoundSource 1.2 Data File Examples

162

Scene 1.2 Structure house1
// scene.txt, Created for TDS Simulator }
Units inches ////////////////////
/////////////////// // Test Sounds... //
// Structures... // ////////////////////
/////////////////// NumFeedbackTests 10
NumStructures 7 NumSelectionTests 10
Structure house0a NumTestSounds 8
{ SoundSource A
 File simplehouse.txt {
 Location 10.0 1210.0 10.0 File ss dog.txt
} }
Structure house0b SoundSource B
{ {
 File simplehouse.txt File ss speaker.txt
 Location 600.0 1210.0 10.0 }
} SoundSource C
Structure house1 {
{ File ss dog.txt
 File house.txt }
 Location 0.0 0.0 10.0 SoundSource D
} {
Structure house2 File ss speaker.txt
{ }
 File house.txt SoundSource E
 Location 500.0 0.0 10.0 {
} File ss dog.txt
Structure warehouse1 }
{ SoundSource F
 File warehouse.txt {
 Location 1250.0 0.0 0.0 File ss speaker.txt
} }
Structure warehouse2 SoundSource G
{ {
 File warehouse.txt File ss dog.txt
 Location 1250.0 480.0 0.0 }
} SoundSource H
Structure examplehouse {
{ File ss speaker.txt
 File examplehouse.txt }
 Location 1250.0 1300.0 0.0 ////////////////
} // Grounds... //
//////////////// ////////////////
// Avatars... // NumGrounds 16
//////////////// Ground Pavement
NumAvatars 2 {
Avatar her File Textures\Ground1.tga
{ RepresentedSize 300.0 300.0 1.0
 File avatar2.txt Thickness 0.5
 Structure house0a Dimensions 0.0 4000 0.0 4000
} Offset -3.0
Avatar me }
{ Ground AheadRoad 1
 File avatar1.txt {
 Structure house1 File Textures\Road3.tga
} RepresentedSize 100.0 20.0 1.0
 Thickness 0.5
////////////////////// Dimensions 1000 1200 0.0 4000
// Sound Sources... // Offset -2.0
////////////////////// }
NumSoundSources 2 Ground AheadRoad 2
SoundSource Speaker {
{ File Textures\Road3.tga
 File ss speaker.txt RepresentedSize 100.0 20.0 1.0
 Structure house0a Thickness 0.5
} Dimensions 2000 2200 0.0 4000
SoundSource Dog Offset -2.0
{ }
 File ss dog.txt Ground AheadRoad 3

163

{ Ground IntersectionRoad 2 1
 File Textures\Road3.tga {
 RepresentedSize 100.0 20.0 1.0 File Textures\Road5.tga
 Thickness 0.5 RepresentedSize 100.0 100.0 1.0
 Dimensions 3000 3200 0.0 4000 Thickness 0.5
 Offset -2.0 Dimensions 2000 2200 1000 1200
} Offset -1.9
Ground SideRoad 1 }
{ Ground IntersectionRoad 2 2
 File Textures\Road4.tga {
 RepresentedSize 20.0 100.0 1.0 File Textures\Road5.tga
 Thickness 0.5 RepresentedSize 100.0 100.0 1.0
 Dimensions 0.0 4000 1000 1200 Thickness 0.5
 Offset -2.0 Dimensions 2000 2200 2000 2200
} Offset -1.9
Ground SideRoad 2 }
{ Ground IntersectionRoad 2 3
 File Textures\Road4.tga {
 RepresentedSize 20.0 100.0 1.0 File Textures\Road5.tga
 Thickness 0.5 RepresentedSize 100.0 100.0 1.0
 Dimensions 0.0 4000 2000 2200 Thickness 0.5
 Offset -2.0 Dimensions 2000 2200 3000 3200
} Offset -1.9
Ground SideRoad 3 }
{ Ground IntersectionRoad 3 1
 File Textures\Road4.tga {
 RepresentedSize 20.0 100.0 1.0 File Textures\Road5.tga
 Thickness 0.5 RepresentedSize 100.0 100.0 1.0
 Dimensions 0.0 4000 3000 3200 Thickness 0.5
 Offset -2.0 Dimensions 3000 3200 1000 1200
} Offset -1.9
Ground IntersectionRoad 1 1 }
{ Ground IntersectionRoad 3 2
 File Textures\Road5.tga {
 RepresentedSize 100.0 100.0 1.0 File Textures\Road5.tga
 Thickness 0.5 RepresentedSize 100.0 100.0 1.0
 Dimensions 1000 1200 1000 1200 Thickness 0.5
 Offset -1.9 Dimensions 3000 3200 2000 2200
} Offset -1.9
Ground IntersectionRoad 1 2 }
{ Ground IntersectionRoad 3 3
 File Textures\Road5.tga {
 RepresentedSize 100.0 100.0 1.0 File Textures\Road5.tga
 Thickness 0.5 RepresentedSize 100.0 100.0 1.0
 Dimensions 1000 1200 2000 2200 Thickness 0.5
 Offset -1.9 Dimensions 3000 3200 3000 3200
} Offset -1.9
Ground IntersectionRoad 1 3 }
{ ////////////
 File Textures\Road5.tga // Sky... //
 RepresentedSize 100.0 100.0 1.0 ////////////
 Thickness 0.5 Sky clouds
 Dimensions 1000 1200 3000 3200 {
 Offset -1.9 File Textures\Sky1.tga
} }

Table 32: Scene 1.2 Data File Example: A Large-Scale Environment Configuration

164

Structure 1.3 Material Grass
// simplehouse.txt, Created for TDS Simulator }
//Measurements are in meters, feet, etc... //Rooms in the structure
Units inches NumRooms 1
// The thickness of faces are counted or not Room MainRoom
Measurements outside {
// Move the entire structure from (0,0,0) Offset 0.0 0.0 0.0
Offset 0.0 0.0 0.0 Dimensions 300.0 550.0 120.0
//Rotation around axis's (after translation) Rotation 0 0 0
Rotation 0 0 0 NumFaces 6
NumMaterials 7 Face StandardWall
Material Floor {
{ Name PocketDoors
 Color BROWN Thickness 3.0
// Lower value makes a perfect reflection. Side ahead
 Absorption 0.0005 Material WallTextured
// Lower value makes a perfect reflection. NumWallOpenings 0
 Dispersion 0.0001 }
} Face StandardWall
Material Wall {
{ Name Outside
 Color RED Thickness 3.0
 Absorption 0.0010 Side side
 Dispersion 0.0005 Material WallTextured
} NumWallOpenings 0
Material Ceiling }
{ Face StandardWall
 Color CYAN {
 Absorption 0.0005 Name Inside
 Dispersion 0.0020 Thickness 3.0
} Side negside
Material Grass Material WallTextured
{ NumWallOpenings 0
 File \Textures\Ground4.tga }
 RepresentedSize 1.0 1.0 0.1 Face StandardWall
 Absorption 0.50 {
 Dispersion 0.40 Name Entrance
} Thickness 3.0
Material WallTextured Side negahead
{ Material WallTextured
 File Textures\WallPnt2b.tga NumWallOpenings 1
 RepresentedSize 25.0 25.0 0.1 WallOpening FramedFrenchDoor
 Absorption 0.10 // Arbitrary {
 Dispersion 0.05 // Arbitrary Type FramedNormalDoor
} Offset 8.5 0.0
Material WoodFloor Dimensions 36.0 80.0
{ Material Ceiling
 File Textures\Wood4.tga TrimMaterial Floor
 RepresentedSize 10.0 50.0 1.0 }
 Absorption 0.05 }
 Dispersion 0.01 Face ceiling
} {
Material CeilingTextured Name theCeiling
{ Thickness 3.0
 ColorF 0.8 1.0 0.8 Material CeilingTextured
 Absorption 0.05 NumWallOpenings 0
 Dispersion 0.01 }
} Face floor
//Ground faces in the structure {
NumGrounds 1 Name theFloor
Ground Grass Thickness 3.0
{ Material WoodFloor
 Thickness 0.5 NumWallOpenings 0
// Floor coverage (xmin xmax ymin ymax) }
 Dimensions -10.0 310 -10.0 560 }
 Offset -1.0

Table 33: Structure 1.3 Data File Example: A Simple House Structure

165

Structure 1.3 Material Grass
// warehouse.txt, Created for TDS Simulator }
Units feet //Rooms in the structure
Measurements outside NumRooms 1
Offset 0.0 0.5 1.0 Room MainRoom
Rotation 0 0 0 {
NumMaterials 8 Offset 0.0 0.0 0.0
Material MainRoomWalls Dimensions 60.0 40.0 30.0
{ Rotation 0 0 0
 File Textures\Metal4.tga NumFaces 9
 RepresentedSize 5.0 0.1 5.0 Face ceiling
 Absorption 0.10 {
 Dispersion 0.05 Name theCeiling
} Thickness 0.5
Material ConcreteFloor Material Ceiling
{ NumWallOpenings 0
 File Textures\Concrete1.tga }
 RepresentedSize 5.0 5.0 0.1 Face floor
 Absorption 0.10 {
 Dispersion 0.05 Name theFloor
} Thickness 0.5
Material Ceiling Material ConcreteFloor
{ NumWallOpenings 0
 File Textures\Metal1.tga }
 RepresentedSize 5.0 5.0 0.1 Face StandardWall
 Absorption 0.10 {
 Dispersion 0.05 Name southwall
} Thickness 0.5
Material RoomWalls Side negahead
{ Material MainRoomWalls
 File Textures\WallPnt1.tga NumWallOpenings 3
 RepresentedSize 3.0 3.0 3.0 WallOpening FramedEmptyWindow
 Absorption 0.10 {
 Dispersion 0.05 Type FramedEmptyWindow
} Offset 46.0 15.0
Material Doors Dimensions 5.0 5.0
{ Material Doors
 File Textures\Wood2.tga TrimMaterial Trim
 RepresentedSize 3.0 3.0 3.0 }
 Absorption 0.10 WallOpening FramedEmptyWindow
 Dispersion 0.05 {
} Type FramedEmptyWindow
Material Trim Offset 11.0 15.0
{ Dimensions 5.0 5.0
 File Textures\Metal2.tga Material Doors
 RepresentedSize 3.0 3.0 0.1 TrimMaterial Trim
 Absorption 0.10 }
 Dispersion 0.05 WallOpening FramedNormalDoor
} {
Material RoomTrim Type FramedNormalDoor
{ Offset 5.0 0.0
 ColorF 0.9 0.65 0.3 Dimensions 5.0 10.0
 Absorption 0.10 Material Doors
 Dispersion 0.05 TrimMaterial Trim
} }
Material Grass }
{ Face StandardWall
 File Textures\Ground4.tga {
 RepresentedSize 1.0 1.0 0.1 Name sidewall
 Absorption 0.10 Thickness 0.5
 Dispersion 0.05 Side side
} Material MainRoomWalls
NumGrounds 1 NumWallOpenings 1
Ground Grass WallOpening FramedEmptyDoor
{ {
 Thickness 0.01 Type FramedEmptyDoor
 Dimensions -3.0 63.0 0.0 40.0 Offset 15.0 0.0
 Offset -0.8 Dimensions 10.0 15.0

166

 Material Doors Material RoomWalls
 TrimMaterial Trim // Add Doors and Windows to the Wall...
 } NumWallOpenings 2
 } WallOpening FramedNormalDoor
 Face StandardWall {
 { Type FramedNormalDoor
 Name aheadwall Offset 1.0 0.0
 Thickness 0.5 Dimensions 3.0 6.5
 Side ahead Material Doors
 Material MainRoomWalls TrimMaterial RoomTrim
 NumWallOpenings 3 }
 WallOpening FramedEmptyWindow WallOpening FramedEmptyWindow
 { {
 Type FramedEmptyWindow Type FramedEmptyWindow
 Offset 10.0 15.0 Offset 8.0 3.0
 Dimensions 5.0 5.0 Dimensions 4.0 4.5
 Material Doors Material Doors
 TrimMaterial Trim TrimMaterial RoomTrim
 } }
 WallOpening FramedEmptyWindow }
 { Face Wall
 Type FramedEmptyWindow {
 Offset 45.0 15.0 Name RoomWall
 Dimensions 5.0 5.0 Thickness 0.5
 Material Doors Height 0.0 11.0
 TrimMaterial Trim Length 0.0 10.0
 } Rotation 270.0
 WallOpening FramedEmptyDoor Offset 15.0 0.0 0.0
 { Material RoomWalls
 Type FramedEmptyDoor NumWallOpenings 1
 Offset 51.0 0.0 WallOpening FramedEmptyWindow
 Dimensions 5.0 10.0 {
 Material Doors Type FramedEmptyWindow
 TrimMaterial Trim Offset 4.0 3.0
 } Dimensions 4.0 4.5
 } Material Doors
 Face StandardWall TrimMaterial RoomTrim
 { }
 Name negsidewall }
 Thickness 0.5 Face ceiling
 Side negside {
 Material MainRoomWalls Name roomCeiling
 NumWallOpenings 0 Thickness 0.5
 } // Floor coverage (xmin xmax ymin ymax,
 Face Wall // Non-standard
 { Dimensions 0.0 15 0.0 10
 Name RoomEntrance // Height of ceiling relative to typical
 Thickness 0.5 // Non-standard!!!
 Height 0.0 11.0 Offset 19.0
 Length 0.0 15.0 Material RoomWalls
 Rotation 0 NumWallOpenings 0
// Location of the wall, after rotation }
 Offset 0.0 10.0 0.0 }

Table 34: Structure 1.3 Data File Example: A Complicated Warehouse Structure

References

Antani, L., Chandak, A., Savioja, L., & Manocha, D. (2012, January). Interactive sound

propagation using compact acoustic transfer operators. ACM Transactions on

Graphics, 31(1), 7:1-7:12. doi:10.1145/2077341.2077348

Bacon, D., & Jarvis, D. (2007). The speed and attenuation of sound. Retrieved October 2007,

from http://www.kayelaby.npl.co.uk/general_physics/2_4/2_4_1.html

Begault, D. R. (1994). 3-D sound for virtual reality and multimedia. San Diego, CA:

Academic Press Professional, Inc.

Blauert, J. (1997). Spatial Hearing: The Psychophysics of Human Sound Localization. MIT

Press. doi:http://dx.doi.org/10.1121/1.392109

Burgress, D. (1992). Techniques for Low Cost Spatial Audio. UIST '92 Proceedings of the

5th annual ACM symposium on User interface software and technology (pp. 53-59).

New York, NY: ACM UIST. doi:10.1145/142621.142628

Courchesne, L. (2007). Panoscope 360. Retrieved October 2007, from

http://www.panoscope360.com/

Cowan, B., & Kapralos, B. (2011, November). A GPU-Based Method to Approximate

Acoustical Reflectivity. Journal of Graphics, GPU, and Game Tools, 15(4), 210-215.

doi:10.1080/2151237X.2011.619888

Cowan, B., Rojas, D., Kapralos, B., Collins, K., & Dubrowski, A. (2013, June). Spatial sound

and its effect on visual quality perception and task performance within a virtual

environment. POMA, 19, 050126. doi:10.1121/1.4798377

Flaherty, N. (1998). 3D audio: new directions in rendering realistic sound. Electronic

Engineering, 49, 52, 55, 56.

168

Friedman, M. (1937, December). The use of ranks to avoid the assumption of normality

implicit in the analysis of variance. Journal of the American Statistical Association,

32, 675–701. doi:10.2307/2279372

Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., & Sondhi, M. (1998, July). A Beam

Tracing Approach to Acoustic Modeling for Interactive Virtual Environments.

Computer Graphics (SIGGRAPH 98), 21-32.

Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., & Sondhi, M. (1999). Interactive Acoustic

Modeling of Complex Environments. The Joint Meeting of the 137th Regular

Meeting of the Acoustical Society of America and the 2nd Convention of the

European Acoustics Association: Forum Acusticum `99, Journal of the Acoustical

Society of America, 105(2).

Funkhouser, T., Jot, J.-M., & Tsingos, N. (2002, July). Sounds Good to Me! Computational

Sound for Graphics, Virtual Reality, and Interactive Systems. SIGGRAPH 2002,

Course Notes #45.

Funkhouser, T., Min, P., & Carlbom, I. (1999). Real-time Acoustic Modeling for Distributed

Virtual Environments. Computer Graphics (SIGGRAPH 99), 365-374.

Funkhouser, T., Tsingos, N., & Jot, J.-M. (2004). Survey of Methods for Modeling Sound

Propagation in Interactive Virtual Environment Systems. Presence.

Funkhouser, T., Tsingos, N., Carlbom, I., Elko, G., & Sondhi, M. (2002, September).

Modeling Sound Reflection and Diffraction in Architectural Environments with

Beam Tracing. Forum Acusticum.

169

Funkhouser, T., Tsingos, N., Carlbom, I., Elko, G., & Sondhi, M. (2004, February). A Beam

Tracing Method for Interactive Architectural Acoustics. Journal of the Acoustical

Society of America, 115(2), 739-756.

Gamper, H., & Lokki, T. (2011). Spatialisation in audio augmented reality using finger

snaps. Principles and Applications of Spatial Hearing, 383–392.

Hammershøi, D. (2009). Localization Capacity of Human Listeners. Principles and

Applications of Spatial Hearing, 3-13.

Hiipakka, J., Ilmonen, T., Lokki, T., Gröhn, M., & Savioja, L. (2001). Implementation issues

of 3D audio in a virtual room. Stereoscopic Displays and Virtual Reality Systems

VIII, 4297, 486-495. doi:0277-786X/01

Hull, J. (1999). Surround Sound Past, Present, and Future. Dolby Laboratories Inc.

ISO 9613-1. (1993). Acoustics - Attenuation of sound during propagation outdoors - Part 1-

Calculation of the absorption of sound by the atmosphere. International Organization

for Standardization. Retrieved from

http://www.iso.org/iso/catalogue_detail.htm?csnumber=20649

Jin, C., Best, V., Lin, G., & Carlile, S. (2011). Spatial Unmasking of Speech Based on Near-

Field Distance Cues. In Biomedical Engineering (pp. 3-20). Rijeka, Croatia: InTech

Open Access Publishers.

Kahrs, M., & Brandenburg, K. (2002). Applications of Digital Signal Processing to Audio

and Acoustics. (M. Kahrs, & K. Brandenburg, Eds.) New York, NY: Kluwer

Academic Publishers.

Kinsler, L., Frey, A., Coppens, A., & Sanders, J. (2000). Fundamentals of Acoustics (4th

ed.). New York, NY: John Wiley and Sons, Inc.

170

Laine, S., Siltanen, S., Lokki, T., & Savioja, L. (2009). Accelerated Beam Tracing

Algorithm. Applied Acoustics, 70(1), 172–181. Retrieved from

https://mediatech.aalto.fi/~samuli/

Lund, A., & Lund, M. (2014). Retrieved February 2014, from Laerd Statistics:

https://statistics.laerd.com/

Martin, A., Jin, C., & Schaik, A. V. (2009, December). Psychoacoustic Evaluation of

Systems for Delivering Spatialized Augmented-Reality Audio. Journal of the Audio

Engineering Society, 57(12), 1016-1027. Retrieved from http://www.aes.org/e-

lib/browse.cfm?elib=15234

Mehra, R., Raghuvanshi, N., Antani, L., Chandak, A., Curtis, S., & Manocha, D. (2013,

April). Wave-Based Sound Propagation in Large Open Scenes using an Equivalent

Source Formulation. ACM Transactions on Graphics, 32(2), 19:1-19:13.

doi:10.1145/2451236.2451245

Microsoft. (2007). Microsoft DirectSound - SetVolume. Retrieved October 2007, from

http://msdn.microsoft.com/archive/default.asp?url=/archive/en-

us/directx9_c/directx/htm/idirectsoundbuffer8setvolume.asp

Neumann, G. (2007). Georg Neumann GmbH Products. Retrieved October 2007, from

http://www.neumann.com/

Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M., & Govindaraju, N. (2010, July).

Precomputed Wave Simulation for Real-Time Sound Propagation of Dynamic

Sources in Complex Scenes. ACM Transactions on Graphics, 29(4), 68:1-68:11.

doi:10.1145/1778765.1778805

Resnick, R., Halliday, D., & Krane, K. (1992). Physics (4th ed.). John Wiley and Sons, Inc.

171

Schroder, D., & Pohl, A. (2013). Modeling (Non-)uniform scattering distributions in

geometrical acoustics. POMA, 19, 015112. doi:10.1121/1.4800288

Sikora, M., Mateljan, I., & Bogunović, N. (2012). Beam Tracing with Refraction. Archives of

Acoustics, 37(3), 301–316. doi:10.2478/v10168-012-0039-y

Siltanen, S. (2010). Efficient Physics-Based Room-Acoustics Modeling and Auralization.

PhD thesis, Aalto University, Department of Media Technology. Retrieved from

https://mediatech.aalto.fi/~saasilta/

Siltanen, S., Lokk, T., & Savioja, L. (2010, August). Room Acoustics Modeling with

Acoustic Radiance Transfer. International Symposium on Room Acoustics, 376-381.

Siltanen, S., Lokki, T., & Savioja, L. (2006). Geometry Reduction in Room Acoustics

Modeling. Sixth International Conference on Auditorium Acoustics. Retrieved from

https://mediatech.aalto.fi/~ktlokki/Publs/59geom.pdf

Siltanen, S., Lokki, T., & Savioja, L. (2010, August). Rays or Waves - Understanding the

Strengths and Weaknesses of Computational Room Acoustics Modeling Techniques.

Proceedings of the International Symposium on Room Acoustics, 382-387.

Siltanen, S., Lokki, T., Kiminki, S., & Savioja, L. (2007). The Room Acoustic Rendering

Equation. Journal of the Acoustical Society of America, 122. Retrieved from

http://lib.tkk.fi/Diss/2010/isbn9789522482655/article3.pdf

Smith, S. W. (1997). The Scientist and Engineer's Guide to Digital Signal Processing. San

Diego: California Technical Publishing. Retrieved from http://www.dspguide.com/

Southern, A., & Siltanen, S. (2013). A hybrid acoustic model for room impulse response

synthesis. POMA, 19, 015113. doi:10.1121/1.4800212

172

Spiegel, M. R., Schiller, J. J., & Srinivasan, R. A. (2009). Probability and Statistics (3rd ed.).

New York: McGraw-Hill.

Stephenson, U. M. (2013, June). The differences and though the equivalence in the detection

methods of particle, ray and beam tracing. POMA, 16, 015111.

doi:10.1121/1.4799952

Vorländer, M. (2011, November). Models and Algorithms for Computer Simulations in

Room Acoustics. International Seminar on Virtual Acoustics, 72-82. Retrieved from

http://www.upv.es/contenidos/ACUSVIRT/info/U0568398.pdf

Weinberger, S. (2007). Opening Soon: Military Holodeck. Retrieved August 2007, from

http://blog.wired.com/defense/2007/08/building-a-mili.html

Wu, J.-R., Duh, C.-D., Ouhyoung, M., & Wu, J.-T. (1997). Head Motion and Latency

Compensation on Localization of 3D Sound in Virtual Reality. VRST 97 Proceedings

of the ACM symposium on Virtual reality software and technology, 15-20.

doi:10.1145/261135.261140

McDermott, Scott D. Bachelor of Arts, University of Washington, Spring 1997; Master of
Science, University of Louisiana at Lafayette, Fall 2001; Doctor of Philosophy,
University of Louisiana at Lafayette, Fall 2014

Major: Computer Science
Title of Dissertation: An Analysis of Accurate, Real-Time Reproduction of 3D Acoustics in

Virtual Environments
Dissertation Director: C.-H. Henry Chu
Pages in Dissertation: 175; Words in Abstract: 210

ABSTRACT

Many of the applications, virtual environments, and video games available to average

computer users integrate stunning three-dimensional (3D) graphics and real-world

visualizations. Developers spend an extraordinary amount of time and effort creating these

immersive, realistic virtual environments, primarily focusing on the graphics components.

Within these virtual realities, the user should easily perceive the locations of sound sources

accurately, as well as the acoustic nature of the environment. However, for reasons of

economy and simplicity, most developers apply readily available industry standards for

generating pseudo-3D sounds in their applications. This research explores the shortcomings

of these standards, proposes an effective alternative, and provides a detailed analysis of the

various possible approaches.

This project includes a number of computationally efficient, physics-based 3D

acoustics simulations, each of which will produce realistic aural reproductions. The primary

goal is to evaluate and compare these algorithms against each other, non-3D sound

reproduction, and the current industry standards (e.g. Microsoft's DirectX® pseudo-3D

algorithm). We will test three hypotheses. First, users will find that physics-based 3D

algorithms will render improved auralization reproductions compared against industry

standards like DirectX® and/or OpenAL. Second, localization and spatialization will

174

improve with user training when using these algorithms. Finally, we should discover an

unambiguous ranking system for the quality of each tested algorithm.

Keywords

Acoustics, real-time, 3D sound, virtual environments, spatialization, virtualization,

auralization, localization.

175

Biographical Sketch

Scott McDermott grew up in the Pacific Northwest and attended University of

Washington, earning a Bachelor of Arts in Music Technology. He relocated to Louisiana and

earned a Master of Science in Computer Science at the University of Louisiana at Lafayette.

While pursuing his Doctor of Philosophy in Computer Science at UL Lafayette, he has been

an Instructor in the College of Business, Southeastern Louisiana University.

Mr. McDermott received the Louisiana Board of Regents Fellowship and a Research

Assistantship during his PhD studies. He published in journals such as the Acoustical Society

of America and the Association for Computer Machinery.

