
Abstract

CRAVER, MATTHEW DAVID. Mobile Robot Homing Control Based on Odor Sensing. (Under the
direction of Edward Grant.)

As robotic systems transition fully out of the laboratory environment and into the real world, they

will need to be more robust and autonomous in order to deal with different environmental conditions and

increasing complex tasks. Many developers have attempted to solve this problem by using increasingly

more sensors and computational resources to provide the control system with more information. Others

have tried to more explicitly define the environment and task being performed. However, there are many

relatively simple biological organisms that exhibit complex behaviors using limited resources. This

dissertation reports on the use of a biologically-based solution to develop a robotic platform and control

system that allow for emergent intelligence and robustness.

A new robotic platform, the EvBot III, was developed with ubiquitous modularity in software, hard-

ware, and control systems as a goal. The EvBot III is comprised of (1) a differential drive base with

an attached turret and sensor shield, (2) a StackableUSB™ single board PC-104 computer, (3) a gen-

eral purpose data acquisition system (CRIM-Daq), (4) a modular control architecture [1], and (5) a 3D

physics-enabled simulation environment [2]. The driving portion of the base is designed such that dif-

ferent drive systems (legged system, ackerman drive, etc.) can be used without needing to change the

main controller. Additionally, the sensor shield allows different configurations and sensing modalities

to be switched out based upon the desired application. Therefore, the EvBot III is expected to decrease

development time and accelerate the progress of robotic and computational intelligence research.

A flat, homogeneous sensorimotor control architecture was developed for the EvBot III. This net-

work was developed in LabVIEW and run on a Windows 7 (64-bit) PC. Chemical sensing was selected

as a test application because it is the most widespread sensing modality among living organisms. Here,

six MQ-3 were used to sense the chemical signal that marked the EvBot III charging location. A simple

alcohol homing algorithm was developed that normalized for sensor variation. This homing algorithm

was used during training for the sensorimotor network, and produced a zigzag navigational strategy that

is similar to ones found in nature. The sensorimotor network was developed to fully connect all sensori-

motor elements, which included olfactory, power, and motor modalities. The sensorimotor experiments

were conducted using various experimental methodologies to build the correct correlations between

increased alcohol concentration and increased charge. Although the sensorimotor network developed

correlations using this approach, it did not build sufficient correlation relating increased alcohol concen-

tration with charging. Future work includes revisiting the experimental methodology employed, using

more accurate alcohol sensors, and incorporating sensing modalities with a similar layout and response

to the alcohol sensors.
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Chapter 1

Motivation for Research

Mobile robots have shown great promise for aiding humans in dangerous situations such as search

and rescue at disaster sites [4–7], industrial applications [8, 9], security monitoring [10, 11], and for

performing tasks remotely in a natural environment [12, 13]. While these applications are dynamic in

nature, many robotic systems require a constrained environment [14]. Due to the lack of hard constraints

in real-world applications, it can be difficult to plan and program such systems for all eventualities.

In order to provide robots with more information so that appropriate control decisions can be made,

many groups have increased the number of sensors on their mobile platforms [15–17]. For example,

the winner of the DARPA Grand Challenge used 5 SICK laser range finders, 1 color camera, 2 24GHz

RADAR sensors, a GPS positioning system, a GPS compass, and a 6-axis IMU to navigate an off-

road course [15]. While the technology that has come out of the DARPA Grand Challenge has shown

significant leaps in autonomous vehicle navigation [15–17], its extreme cost and complexity limits its

use [18, 19]. Additionally, it is impractical to use large numbers of sensors on mobile robots due to

the significant processing demands. For example, the vehicle that won the DARPA Grand Challenge

required 6 Pentium M computers (2 executed the race software, 1 performed vision processing, 1 logged

the race data, and 2 were idle) [15]. The power demands of these sensors also render them infeasible for

use on small mobile platforms relying on limited battery power.

Other groups have attempted to constrain the robotic system by explicitly choosing the base behav-

iors that the robot will need to perform a task in a given environment [3, 20–23]. This can lead to a

system that is overly constrained by experimenter bias [3]. Problems can arise if all eventualities are not

taken into account. For example, obstacle avoidance is often presumed to be a base behavior in robotics.

Conversely, it has been shown that obstacle avoidance can be considered to be an emergent or derivative

behavior of homing [24, 25].

The goal of the research reported on in this dissertation was to develop a mobile robot platform

(EvBot III) that could operate robustly in a dynamic environment by limiting sensor complexity and

experimenter bias. The EvBot III (Evolutionary Robot) improves upon previous versions of the EvBot
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platform [26, 27], which suffered from limited battery life, drive train slippage, etc. The new EvBot III

also has enhanced modularity and scalability. In order to reduce sensor complexity, only chemical sen-

sors were used. Olfaction was selected over other modalities (vision, touch, etc.) because the response to

chemical stimuli was the first sense developed by primordial life [28]. Additionally, although olfaction

is the most widespread sensory modality found in nature, it is the least often implemented in robotic sys-

tems despite its potential for widespread application in the field of robotics [28]. Robotic olfaction can

be used to find chemical leaks, explosives, or disaster victims [28]. In order to reduce experimenter bias

and “provide stable even if non-optimal solutions in the face of uncertainty, noise or incomplete input,

or unpredictable changes in context [3]”, the main robotic controller was implemented using a senso-

rimotor integration architecture. This sensorimotor architecture is a flat, homogeneous architecture that

fully connects all sensor and motor elements without internal distinction between the two. Throughout

the training of the sensorimotor network, correlations in activities are built between all nodes. After

training, these correlations are used to drive the robot. In order to test the EvBot III’s performance, the

robot was evaluated based upon its ability to autonomously navigate up an alcohol plume to a charging

station.

This dissertation focuses on the use of odor sensing as a strategy for navigation and homing for

mobile robots in a dynamic environment. In order to aid in the understanding of mobile robots, an

overview of previous methods and architectures for robotic sensor fusion is provided in Chapter 2. The

re-designed EvBot III, including the hardware and software used to implement the controller based on

olfactory sensing, is outlined in Chapter 3. This chapter also describes the CRIM-Daq, which is an ex-

tensible data acquisition solution. Chapter 4 reviews different odor sensing strategies that are used by

mobile robots, as well as the platforms used to implement them. The challenges and limitations asso-

ciated with olfactory sensor systems are discussed, and the algorithm and testbed used in this research

are described and evaluated. The sensorimotor architecture implemented on the EvBot III is outlined

in Chapter 5. This chapter also compares the performance of the trained sensorimotor network to other

learned controllers that were developed from the training data. The final chapter summarizes the research

and findings reported on in this dissertation, as well as conclusions, suggestions for improvement, and

future work.
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Chapter 2

An Overview of Sensor Fusion
Methods and Architectures

2.1 Abstract

Robotic systems are currently being used to perform increasingly complex tasks. This has resulted in an

abundance of data that is available to the control system, and consequently a growing need for methods

to pick out and combine the most appropriate data. Sensor fusion methods are a common method used

for fusing the output of sensors with different modalities. This reduces the amount of data that the

control system needs to process. There are also sensor fusion architectures that incorporate mission

management functions to help the system intelligently use the fused data. Additionally, biologically-

inspired sensorimotor networks offer the ability to autonomously fuse the various sensor data and apply

the fused data to generate emergent behavior. Given the complexity and variety of sensors in the natural

realm, these biologically inspired sensorimotor networks are poised to truly launch autonomous systems

out of the laboratory and into the real world. This chapter provides an overview of the various methods

used for reducing the amount and complexity data.

2.2 Introduction

Current robotic systems require more and increasingly detailed information about their environment in

order to perform a given task(s). As applications need faster and more accurate responses, more precise

measurement, understanding, and situational awareness are needed for control [15–18,29]. Systems now

include heterogeneous and multiple homogeneous sensors for environmental monitoring and mapping.

For example, the top three vehicles in the DARPA Grand Challenge used a large number of highly

specialized sensors to navigate an off-road course (Table 2.1) [15–17]. Furthermore, as more sensor

data becomes available to the system, decisions must be made concerning how to analyze and interpret
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Table 2.1: DARPA Grand Challenge Winners [15–17]

Team Sensors Computation
1st Place
Stanford Racing Team,
Stanley
(Stanford University)

5 SICK laser range finders, 1 color camera,
2 24GHz RADAR sensors, GPS positioning
system, GPS Compass, 6-axis IMU

6 Pentium M comput-
ers (2 executed race
software, 1 performed
vision processing, 1
logged race data, and 2
were idle

2nd Place
Red Team, Sandstorm
(Carnegie Mellon Univ.)

1 Riegal Q140i scanning laser range finder,
3 SICK LMS laser scanners, 1 high speed
stereo vision system, 1 NavTech DS2000
Continuous Wave Frequency Modulated
radar, 1 Applaniz POS-LV pose estima-
tion system (Inertia measurement, GPS,
odometry)

1 quad processor Ita-
nium II, 3 dual proces-
sor Xeon, 4 Pentium III
class PC-104s

3rd Place
Red Team, H1ghlander
(Carnegie Mellon Univ.)

1 Riegal Q140i scanning laser range finder, 6
laser scanners, 1 Applaniz POS-LV pose es-
timation system (Inertia measurement, GPS,
odometry), 1 high speed stereo vision system

7 Pentium M computers

that data so that intelligent control decisions can be made. As a result of this “information overload”,

it is becoming more difficult for the designers to explicitly describe the correlations between the many

different sensory and mechanical components of the system [30].

Conversely, biological systems are capable of efficiently using data from a variety of sensing modali-

ties (vision, auditory, tactile, etc.) to make intelligent control decisions [31]. The sensorimotor system of

these organisms is integral in the coordination of sensory and motor activities, giving rise to bodily sta-

bility [32]. These systems remain flexible and adaptive to different environments and situations through

complementary relationships between the static and dynamic components at the system level [33].

In order to create stable mobile robotic platforms that can efficiently perform complex tasks, devel-

opers should look to incorporating strategies from biologically-based sensorimotor systems. This will

require the coordination of multiple sensors with multiple modalities to give a complete and accurate

representation of the surrounding environment. In order to avoid the problem of “information over-

load” [30], data fusion methods should be applied to the sensor outputs to reduce the complexity of the

raw data. The remainder of this chapter discusses methods of sensor fusion, which includes techniques

for preprocessing sensor data by estimating their error characteristics (Section 2.3), as well as ways of

combining information from multiple sensors using data fusion techniques (Section 2.3). In order to

effectively use this fused sensor information to create a system model (Section 2.5), global management
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architectures are needed, and these are presented (Section 2.4). Finally, guidance for managing the sys-

tem models and applying sensor fusion techniques to the control of mobile robots is provided (Section

2.6). Particular attention is paid to sensorimotor integration.

2.3 Methods of Sensor Fusion

The most comprehensive definition of data fusion is given by Abidi and Gonzales as “the synergistic

combination of information made available by various knowledge sources such as sensors, in order to

provide a better understanding of a given scene” [34]. Methods of sensor fusion range from using the

sensor with the modality best suited for each particular type of measurement (i.e., using pulsed radar

to determine an aircraft’s range, and using forward-looking infrared imaging to determine its angular

direction [31]) to using fuzzy techniques to combine the sensor outputs, or to creating “virtual sensors”

by combining and processing the output of multiple sensors.

Multi-Sensor Data Fusion (MSDF) encompasses the detection, association, correlation, estimation,

and combination of data from a multitude of sensors. MSDF can be used to overcome sensor uncertainty,

increase reliability, and provide better resolution. This technique involves data preprocessing, sensor

modeling and estimation, data association, and data fusion [35, 36]. The result of this process is an

optimal estimate of a particular state vector that relates to a specific component of the observed system

(i.e., a state vector for the vision system, for the tactile system, etc.) [35]. Because MSDF systems also

account for both spatial and temporal resolution with regard to the rated resolution of each element,

they can be used to create a system that can gracefully deal with the gradual degradation or failure of its

components [35].

In order to accurately model a system, a dynamic working description of its constituent sensors

must first be constructed [35]. This process involves converting all of the raw sensor data into a “com-

mon language” [37]. This is accomplished by modeling the sensor’s error characteristics that classify

and describe a given measurement [38]. Then, an estimator or tracker must be found that can provide an

acceptable estimate of sensor uncertainty. Conventionally, a Bayesian approach is used [39–41]. This is

often implemented using an extended Kalman filter, although a more effective method utilizes informa-

tion metric-based estimators [35].

The Kalman filter is a recursive algorithm that is used for statistically estimating the surrounding

environment using a set of uncertainty observations. The standard approaches for deriving Kalman filters

assume that the observed states are jointly distributed random variables. If the observed states are not

jointly distributed, then orthogonality can be used to give a least squares estimate [42]. With a Kalman

filter, each step’s initial state and corresponding noise vectors are assumed to be mutually independent.

Because Kalman filters are designed to be used in the presence of noise, their approximate fit is typically

“close enough” to be useful [35, 36, 42–44].
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Information metrics can also be used to evaluate and compare the available information in any

multi-sensor system [42].The Fisher information metric is a particular type of information metric that

can be used to characterize the statistical difference between observations. This measurement is found

by calculating the moments of the observed data. For non-random parameters, the Fisher information

matrix is defined in terms of likelihood; it holds true for both single and random variables [42].

In systems with multiple sensors and sensing modalities, the performance of the system can often

be improved by combining the incoming data in a meaningful and productive manner. Towards this end,

many different sensor fusion techniques have been proposed that combine, relate, and correlate the raw

sensor data. Following are descriptions of the more widely used sensor fusion techniques.

Isolation fusers are among the most important fusing methods. They introduced the isolation prop-

erty, which is used as a metric to compare and contrast nearly all other fusing methodologies [45–47].

The isolation property ensures that the information gained by fusing the data from the individual sen-

sors is at least as complete and correct as the information available from each of the best individual

sensors [45–47]. If this property is not fulfilled, then fusing the data is of limited to no benefit.

The linear fuser is one of the most basic sensor fusion methods. Here, the sensor’s outputs are

simply summed; this action satisfies the isolation property. The optimal linear fuser improves upon the

linear fuser by minimizing the expected error. However, the optimal linear combination fuser requires

that the sensors be equally distributed around certain global values; this is often difficult to realize in

actual systems [44,45]. The projective fuser is another expansion of the linear fuser. The projective fuser

computes the error regressions of the sensors and transfers the output of the sensor to correspond to the

lower envelope of regressions for every point [45, 48].

In addition to these individual sensor fusion methods, metafusers can be used to combine multiple

individual techniques into one homogeneous system. Metafusers are often implemented as configura-

tions of different linear and projective fusers. They guarantee that the result is at least as good as the

best sensor and the best fuser [45]. An example of one such metafuser is the sample-based projective

fuser. Similar to the projection fuser, the sample-based projective fuser uses the lower envelope of re-

gression curves for the sensors. The sample-based projection fuser then determines the sensor with the

least error at each point on the feature space. Whereas the projective fuser projects the output of one

optimal sensor onto all points in the feature space, the sample-based projection fuser allows for each

point in the feature space to be described by a different sensor. As a result, the optimization determined

by the sample-based projection fuser is the most optimal with respect to all of the projective fusers [45].

One of the drawbacks to using this method is that complete knowledge of the sensor distributions is

required for exact computation. In most engineering and robotic systems, this is difficult to obtain due

to the variety and complexity of the available sensors [45].
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2.4 Information Management

In order to efficiently apply the fused sensor information for learning new behaviors and accomplishing

specific tasks, a global management architecture is needed. This architecture also allows the behaviors

and actions of the system to be correlated with the environment (as represented by the sensory system).

Information request prioritization is one of the most common methods of information-oriented man-

agement. Implementation of this method requires that certain sensors be given a higher priority when

making control decisions for a unique set of conditions. This priority is determined from current mission

and situational awareness, as gleaned from previous sensor readings and evaluations [49–52]. The sens-

ing actions selection method extends upon the information request prioritization method by prioritizing

the resources that are allocated to each sensing action. By limiting sensor resource allocation in addition

to data selection, informational gain is maximized and resource allocation is minimized with respect to

all levels of information acquisition [53–56].

The descriptively named method of adding sensing resources for added quality of fused information

deploys additional sensing resources with the hope that the quality of the fused information will be

enhanced [53]. Systems using this method typically operate in dynamic environments because more

sensors are needed to adequately represent changes in the surrounding conditions [57–59]. However,

more resources are needed to allow for the use of this increased set of sensing capabilities.

The focus of attention strategy also provides a good option in terms of resource utilization and

performance. This strategy attempts to reduce the quantity of the data processed by the sensory system

while increasing its informational value. This is accomplished by providing the system with the correctly

associated sensor measurements (versus providing the system with all available information, correlating

it all, and later using the measurements that are correctly correlated) [42]. One specific instance of the

focus of attention strategy is view selection. Although view selection is best suited for vision search

applications, it can also be applied to other “concrete” sensing modalities (i.e., acoustic and tactile

modalities). The view selection technique chooses viewing locations and directions in order to improve

the utility of the information gained from the sensing resources [53,60]. It also decreases the number of

resources that are required from the operating system by utilizing a narrower, more specifically focused

view of the environment.

2.5 Models of Sensor Fusion

Sensory system models provide specific focus to the controlled system. This view of the external en-

vironment is then used by the system to create a personalized, internal representation of the space that

it is operating in. This section describes the components that can be used to form the base architecture

through which all other sensing components will interact.
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The probability distributions of the sensors themselves can be used to relate the sensor’s output to a

desired feature in the external environment [45]. For example, the data of fused sensors is often grouped

based upon the modalities that they can most accurately measure individually. Therefore, knowledge

of the probability distributions allow the system to generate an effective internal representation of the

external environment [45].

Another technique for reducing dataset complexity is Principle Component Analysis (PCA). PCA

involves transforming the set of possible correlated variables into a smaller set of uncorrelated variables

(i.e., principle components). Once these principle components are isolated, any redundant data is no

longer considered for the computation of control. This allows the dataset to be greatly simplified and

reduces the resources necessary for computation and control [61].

The Adaptive Spline Modeling (ASMOD) algorithm is an example of a model that includes the

provision for adaptation. In order to allow for adaptive behavior, the ASMOD algorithm creates a set

of different models, each of which correspond to a certain specific set of “candidate refinements” [35].

These candidate refinements can be categorized as either model building or model pruning. Then, the

candidate model that produces the largest improvement in when approximating the external environment

is selected [35].

There are three categories of model building refinements that are associated with the ASMOD al-

gorithm: univariate addition, sensor multiplication, and knot insertion. Univariate addition simply in-

corporates a new, one-dimensional submodel with a new input variable into the existing ASMOD al-

gorithm [35]. The incorporation of this submodel allows the updated algorithm to additively model the

new variable and its correlations to the external environment [35]. Sensor multiplication replaces the

current ASMOD algorithm with a new algorithm whose result is dependent upon the addition of at least

one new input variable; this contrasts with univariate addition, which simply inserts a new input variable

into the current algorithm. As a result, the sensor multiplication model can describe the coupled depen-

dencies between combined input variables [35]. The knot insertion model is the most computationally

intensive of the building refinements. It inserts a new basis function(s), or equivalent rule(s), in order to

increase the flexibility of the ASMOD submodel [35].

The model pruning refinements share many similarities with the model building refinements. How-

ever, model pruning removes components from the existing model instead of re-building or adding to the

existing model. There are three categories of model pruning refinements associated with the ASMOD

algorithm: submodel deletion, tensor splitting, and knot deletion. Submodel deletion removes the cur-

rent ASMOD algorithm so that the updated algorithm is no longer dependent upon its inputs [35]. The

tensor splitting refinement creates more models with increased input simplicity. It does this by splitting

a submodel with more than two inputs into submodels that depend of fewer combinations of inputs [35].

The final method of model pruning, knot deletion, is essentially the opposite of the knot insertion refine-

ment. The knot deletion refinement reduces submodel flexibility by removing existing basis function(s)

or equivalent rule(s). One benefit of using this method is that it reduces computational complexity [35].
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2.6 Techniques for Data Management

Similar methods of data management are also used with sensor fusion models. However, these tech-

niques represent higher-level management that must combine the information available from a number

of sensors (both real and virtual) or modalities. Many of these models use dynamic coupling, which

finds its roots in the field of Embodied AI. Dynamic coupling allows the “external” environment to be

expanded to include, not only those features outside of the control system’s physical realization, but also

the system’s internal representation of itself and associated states [62].

In addition to the typical physical sensors and detectors that make up sensory systems, virtual sen-

sors can be constructed to expand the sensing capabilities of a system. Virtual sensors add a layer of

software abstraction that allows for computationally-constructed data to be treated as if it came from a

real device. This provides for a simple and consistent view of the various input devices. Software and

data filters are common examples of virtual sensors. With respect to sensor fusion, the data from two or

more detectors can be combined to create phantom device data. Phantom device data consists of data

from a real device’s inputs that are shaped by a set of constraints [43, 63].

The cross modal map combines many of the aforementioned models and methods of sensor fusion.

The cross modal map describes the correlative mapping between different modalities of input (i.e.,

physical sensors, virtual sensors, and otherwise) and highlights issues related to evaluating the data

from different sensory sources. These evaluations are necessary if any worthwhile correlations between

the different data are to be found.

McIntyre and Hintz developed another model for sensor fusion systems that expands on the idea

of information-oriented management (Figure 2.1) [64]. In their model, a mission manager mediates

requests made by a human operator. At the most basic level, the mission manager functions as a feed-

back control system that continually monitors the state of the sensors in order to ensure optimal perfor-

mance [65]. The mission manager also maintains the mission goals and objectives, which are determined

a priori and offline, although they can be modified in real-time and stored. Put simply, the mission man-

ager only cares that goals are accomplished and measurements are made relative to a set of priority and

temporal constraints; the mission manager does not care which specific sensor(s) or measurement meth-

ods are used [30,52,64,65]. In this model’s hierarchy, the fusion space is simply where the sensor fusion

takes place using the prescribed technique(s). The information space contains the sensor manager and

mission manager. It also converts the sensor data, which is related to the current state of the observed

environment, into to its internal, mathematical representation [30].

In order to implement information-oriented management techniques, it may be preferable to use a

hybrid implementation of the different sensor management models that are under the direction of one

mission manager. One such hybrid model, the Sensor Rich Environment Sensor Management System,

was proposed by Schaefer and Hintz [30]; an example implementation of this approach is shown in

Figure 2.2. This model was created to solve a new class of problems that arose from the continual ad-
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Figure 2.1: GMU Sensor Management and Scheduling Model [64]

dition of sensors without provisions for processing this information (i.e., “data overload”) [30]. Here,

the mission and sensor managers operate independently, with the sensor manager serving to convert the

mission goals to information needs on an as-needed basis [30]. Furthermore, depending upon the scien-

tific nature of the environment or situation, simply implementing a sensor manager without a mission

manager may be sufficient [64].

Sensorimotor integration offers a different approach to creating a control architecture where the in-

teractions between all of the sensory and motor elements in the system are connected together. Here,

correlations are continuously updated with changes in the environment or sensorimotor elements them-

selves. Sensorimotor integration has the advantage of creating predictions independently and “on the fly”

versus requiring that the model be determined beforehand by the experimenter. Bovet and Pfeifer [3,66]

developed a sensorimotor architecture that uses neurons which are modified by Hebbian Learning. These

Hebbian neurons are used to construct a base sensorimotor neuronal interface (Fig. 2.4). This interface

consists of five distinct components: a current state, a delayed state, a state change, a virtual state, and a

virtual state change. All of the sensors and motors (i.e., sensorimotor elements) are fully connected (Fig.

2.3). Through the use of a single common weight matrix, the virtual state tends towards a prediction of

the actual state and state change [3, 66].
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Figure 2.2: Sensor Rich Environment Sensor Management System [30]

Figure 2.3: General Controller Architecture [3]

2.7 Discussion

As we continue to push the limits of robotic systems, increasing numbers and modalities of sensors will

be required to accurately and efficiently perform a task. In the absence of intelligent methods for fusing

this information together into concise units of data, computational demands will become increasingly

unreasonable. As system complexity grows, intelligent architectures for mission management will be

needed to effectively utilize the huge amounts of data available for efficiently accomplishing goal-driven

tasks.
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Figure 2.4: Sensorimotor Neuronal Interface [3]

This chapter has summarized many different sensor fusion methods for combining distinct modali-

ties of data to present a more complete, accurate, and reliable estimation of the surrounding environment.

This process begins by first converting the sensor data into a “common language” and finding an esti-

mator or tracker that can be used to model the sensor uncertainty [37,39–41]. This can be accomplished

using a Kalman filter [35, 36, 42–44], linear fuser [44, 45], or sample-based projective fuser [45, 48].

Multisensor data fusion systems are optimal for combining data from various sensors to give informa-

tion and correlations that cannot be gained from a single sensor. However, they suffer from problems

related to the accuracy of the model of sensor uncertainty. For example, sensors are often characterized

in a mathematically convenient way, such as assuming it is static, Gaussian, or has a zero-mean proba-

bility distribution. However, this is not realistic, and leads to failures of the sensor fusion methods and

models [67]. These assumptions also do not account for changing sensor models and performance due

to environmental conditions [67].
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This chapter has also reviewed some of the available architectures for sensor fusion mission manage-

ment such as the information-oriented management developed by McIntyre and Hintz [64], the Sensor

Rich Environment Sensor Management System proposed by Schaefer and Hintz [30], and the Sensori-

motor Integration architecture developed by Bovet and Pfeifer [3, 66]. The main advantage of mission

management architectures is that they operate as a feedback control mechanism between the mission

goals and objectives, and the actual sensors and systems. They provide an up-to-date internal mathe-

matical representation of the system and its performance. However, this also highlights one potential

disadvantage, namely that they must have an accurate model of the internal and external environments.

This is often difficult, if not impossible, to obtain in all but the simplest environments.

2.8 Conclusion

Many of the systems and methods described in the review require extensive knowledge of the physical

sensors and environments in which they are operating. Often, this is not feasible in dynamic environ-

ments that require continual updating of internal models. Additionally, sensor loss or degradation can

become an issue. In order to limit the chance of incorrect characterizations that can overly constrain the

system and provide additional sources of error, architectures such as the sensorimotor system described

by Bovet and Pfeifer [3, 66] should be used.

Sensorimotor systems automatically build and maintain the sensor correlations between themselves

and the environment. In order to incorporate a sensorimotor integration architecture into a robotic sys-

tem, sensor selection and experimental design are very important. For example, the amount of informa-

tion provided by the sensor should be balanced with the data processing demands and how rapidly the

environment is changing. Although this concern is not new to sensorimotor integration architectures,

any difference will be exacerbated due to the size and number of fully interconnected weight matrices

that must be updated. For this reason, virtual sensors should be used whenever possible to limit the

number of sensor values that must be correlated while maintaining informational quality. Additionally,

experimental design is important to minimize biasing the learned correlations. In order to reduce the

chances of the system learning incorrect rules, all experimental protocols for training and testing should

be kept as open and simple as possible.
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Chapter 3

A General-Purpose Mobile Robotic
Platform: EvBot III Hardware and
Software Architecture Design

3.1 Abstract

This chapter describes the design of the EvBot (Evolutionary Robot) III general purpose robotic re-

search platform. The EvBot III was designed around the idea of ubiquitous modularity in software,

hardware, and control systems. The EvBot III research platform is comprised of (1) a differential drive

base with an attached turret and sensor shield, (2) a StackableUSB™ single board PC-104 computer, (3)

a general purpose data acquisition system (CRIM-Daq), (4) a modular control architecture [1], and (5)

a modular 3-D physics-enabled simulation environment [2]. The EvBot III has the potential to decrease

development time and accelerate the progress of robotic and computational intelligence research.

3.2 Introduction

Mobile robot bases can be broadly characterized as (1) small and inexpensive with limited computa-

tional resources or (2) large and expensive with advanced computational resources. The most common

inexpensive mobile robots are listed in Table 3.1. Because some of these platforms (i.e., EV3, VEX,

VEX IQ, and TETRIX) are packaged as general purpose kits that can be used to construct a variety of

robots, they have the advantage of being easily reconfigurable. The main disadvantage of these systems

is their limited computational resources. Of the smaller, more inexpensive platforms, the Turtlebot 2

holds the most promise as a research tool because it comes with a netbook and a Microsoft Kinect.

The Khepera, Koala, and Pioneer P3-DX are more commonly used for conducting robotic research.

Although they are more capable, these platforms cost substantially more than those previously dis-
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Table 3.1: Inexpensive Robotic Platforms [68, 69]

Lego Mindstorms EV3 $350

Mobsya Thymio II $190

iRobot Create $130

Turtlebot 2 $1995
(Built on the iRobot Create)
Vex Robotics VEX IQ $250

Vex Robotics VEX $400

TETRIX $380

Surveyor SRV-1 $495

Table 3.2: Common Research Robotic Platforms [68, 69]

Khepera $3200

Koala $8400

Pioneer P3-DX $4000

cussed. The prices provided in Table 3.2 reflect those for the base and the basic computing power needed

to drive the robot [68, 69]. The overall cost of these platforms quickly rises with the addition of an on-

board computer and peripheral sensors. For example, Jeanne Dietsch of MobileRobots noted that the

actual cost of the Pioneer P3-DX is around $19000 when the advanced laser mapping and autonomous

navigation software, laser bumpers, gyros, and wireless communication hardware are added [70].

3.3 The EvBot Platform

The EvBot (Evolutionary Robot) platform was created at the Center for Robotics and Intelligent Ma-

chines (CRIM) (North Carolina State University) in 2002 [26] as a tool for conducting general-purpose

robotic research. It was designed as an inexpensive alternative to many of the more common research

platforms at the time and used off-the-shelf components [26, 27]. The EvBot platform consists of a mo-

bile base, intelligent control architecture, and Matlab simulation environment. The EvBot I, II, and III

are shown in Figure 3.1.
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(a) EvBot I (b) EvBot II (c) EvBot III

Figure 3.1: EvBot Platform

3.3.1 EvBot I and EvBot II

The EvBot I [26] and EvBot II [27] have been used to complete a number of different projects that

have displayed the platform’s versatility. These projects have included: (1) evaluating evolved neural

controllers [14,71–77], (2) using an acoustic array to test UAV control algorithms for passively detecting

and locating a variety of radar sources [78,79], (3) using an omnidirectional vision system for formation

control [80], (4) serving as a test bed for optical robotic communications [81], (5) testing algorithms for

smart sensor networks [82–84], and (6) repairing randomly distributed sensor networks [85].

Despite the flexibility of the EvBot I and II, there remain limitations common to both platforms.

Some of the shortcomings of the EvBot I were addressed in the re-design of the EvBot II. For example,

the EvBot I needed additional sensing capabilities to improve position and velocity control, as well as

an easier method to add additional sensory systems. These changes were incorporated into the EvBot

II with the addition of motor encoders and a 4-port USB hub [27]. However, both bases suffer from

significant slippage in the tread-driven steering system, making accurate control difficult (especially

for complicated movement patterns) [26, 27]. The EvBot I and II also suffer from problems related

to decreasing battery life. Over time, the effective capacity of the batteries has decreased from >2.5

hours [26] to approximately 20 minutes. This can be attributed to the memory characteristics of the

selected NiMh batteries (i.e., voltage depression). Additionally, the EvBots have to be taken off-line to

recharge their batteries, rendering more time-intensive experiments impossible. There is also a notice-

able shortage in computational power inherent to both bases (i.e., both bases used a PC-104 Pentium/586

class motherboard [26, 27]). This becomes problematic when running real-time, computationally inten-

sive controllers and/or algorithms. For example, this short-coming was highlighted during experiments

involving control of the EvBot II using a 360◦ camera setup, which required complex vision algorithms

to be run in real-time [80]. Similarly, there was a significant degradation in computational performance

when higher-level programming environments (i.e., Matlab) were run on the base.
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Although immensely important for training and testing, the Matlab simulation environment is also

limited. The simulation environment was not created with modularity as its primary goal. For example,

it was limited to the 2-D maze environment, which confined the EvBot to lab use only. The addition

of new sensor modalities (i.e., the acoustic array) was also unfeasible. The simulation environment was

further limited by the lack of a governing physics model.

3.3.2 EvBot III

In order to address the issues outlined above, the EvBot III has been designed to be more modular both

in terms of hardware and software. Other improvements include increased computational resources and

more powerful batteries that have the ability to self-monitor and recharge autonomously.

In order to incorporate these features into the new EvBot III, a custom base was designed and built.

Similar to the EvBot I and II, the EvBot III has continued to embrace the use of the USB standard

for device data connections. This standard has shown good support for increased hardware modularity,

and is used in the new general-purpose data acquisition system (CRIM-Daq) and embedded computer

(StackableUSB™, Micro/sys, Inc.). The improvements to the EvBot III base are discussed more fully

in Section 3.4, with rationale and recommendations provided in terms of design decisions, material

selection, manufacturing, and assembly. Upgrades to the hardware, including a discussion of the CRIM-

Daq and associated daughter boards, are detailed in Section 3.5.

In addition to these hardware improvements, the software has also been updated. These upgrades

include a modular object-oriented control architecture, custom recompilable Linux build tree [1], and

a new 3-D modular simulation environment [2]. The system’s increased software modularity provides

more efficient lower-level interfaces and controller components. The new reconfigurable/recompilable

custom Linux operating system excludes all unnecessary components from the rolled-out distribution,

and supports real-time scheduling and processing components [1]. A brief discussion of the new Linux

build tree and modular simulation environment is provided in Section 3.6.

3.4 Base and Charging Station Design

The motivating factors driving the redesign of the EvBot platform include the full embrace of both hard-

ware and software modularity, as well as precise measurement, control, and modeling of autonomous

robotic systems. These factors, along with the overarching goal for use as a general-purpose research

platform, have guided the design of the EvBot III base.

3.4.1 EvBot III Base

Many of the problems associated with the previous versions of the EvBot stemmed from deficiencies

in the off-the-shelf bases used. The new EvBot III base (Fig. 3.2) was completely custom-built using
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Figure 3.2: EvBot III base design model

Ultra-high-molecular-weight polyethylene (UHMW), laser-cut acrylic, 3D printed ABS thermoplastic,

aluminum, and styrene. The UHMW was used for the majority of the base because it is easy to machine.

The top and bottom were made using laser cut acrylic so that a person could easily see into the base.

Aluminum was used for support elements and the center shaft of the slip-ring, and the 3D printed ABS

thermoplastic was used in the brackets that attached the sensor shield to the base.

Drive train slippage was a major problem noted with the EvBot I and II bases [26, 27]. In order to

address this in the redesign of the EvBot III, a differential drive system was used in combination with an

actuated rotational platform. This new base allows for “pseudo-holonomic” movement, where pseudo-

holonomic is meant to indicate a system that appears holonomic to an outside observer, although the

underlying hardware is non-holonomic. A pseudo-holonomic design was chosen over a truly holonomic

one in order to minimize design and development time, as well as keep future maintenance and upgrades

as easy as possible. Pseudo-holonomic behavior is achieved using a turret in concert with an integrated

slip-ring. The slip-ring allows for the transmission of DC power through the base using a standard 24-

pin ATX power connector. Control signals from the base control system (located in the bottom portion

of the base) are sent via USB or RS-232.

The new EvBot III was also designed with all of the hardware and processing resources needed to

drive the robot isolated to the bottom half of the base. Therefore, the computer in the top part of the

base only needs to provide high-level movement commands, and the bottom of the base can be easily

switched out. Not only does this remove the computational load of driving from the main controller, but

it allows for one controller to be reused with many different types of bases.
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The EvBot III platform also allows new sensors to be added through the use of an outer shield that is

attached to the actuated rotational platform (Fig. 3.2). The shield was made from styrene, which is both

lightweight and inexpensive. External sensors can be mounted to the shield such that they remain in

constant relative position regardless of the orientation of the rotating platform. Furthermore, the shield

allows for easier implementation of the “focus of attention” method of sensor fusion [42]. The shield

also makes the EvBot platform easier to simulate because it contains the entire base, including the drive

wheels, and gives the EvBot a uniform circular outline.

3.4.2 OceanServer Power Solution

In order to address the power limitations present in the EvBot I and II, an OceanServer™ Intelligent Bat-

tery and Power System (IBPS™) was used in the new EvBot III. The IBPS™ includes a MP-04SR/FR

battery management module, a DC123SR DC-DC power supply module, and a BA-95HC Li-Ion smart

battery pack. An EVAL233R USB-Serial module from FTDI was also added for monitoring and config-

uring the battery system from the central computer.

The MP-04SR/FR battery management module can charge, discharge, and monitor up to four Li-Ion

battery packs. It uses an RS-232 port to provide complete information about all connected battery packs.

The information available for each connected battery includes, but is not limited to, current, voltage,

amp-hours, run time to empty, and time to full charge. The MP-04SR/FR also seamlessly connects and

delivers unregulated power to the DC123SR DC-DC converter module [86].

The DC123SR ultra high efficiency ATX DC-DC converter module supplies the following regulated

DC voltages: +3.3V at 10A, +5V at 10A, +12V at 12A, and -12V at 12A. All of these conversions are

done with greater than 95% efficiency [87]. Since each ring of the slip-ring in the EvBot III was only

rated to 5A, it was not feasible to provide all of the regulated voltages to the top of the rotating platform.

With 18 total rings available in the EvBot III slip-ring, 2 rings were used in parallel to provide +5V at

10A, and 3 rings were provided for each +12V at 12A and -12V at 12A to the top of the EvBot platform.

The final IBPS™ component is the BA-95HC Li-Ion battery pack. Each battery pack has a 6.6Ah

capacity with an unregulated output of 14.4V nominal [87]. The EvBot III base contains a removable

compartment that can hold up to two of the BA-95HC batteries. If only one battery is installed, a place

holder is used where the second battery would go.

3.4.3 Portable Charging Station

The previous EvBots had to be taken offline to recharge. In order to address this limitation, a portable

charging station (Fig. 3.3a) was created. The charging station is modeled after one used for the Cyber-

Motion K2A mobile security robot (CyberMotion, Inc.). The EvBot III can autonomously recharge by

aligning the plug on the charging station (Fig. 3.3b) with the charging port (Fig. 3.3d) located on the

front of the EvBot III base (Fig. 3.3c). In order to aid with alignment of the EvBot III with the charging
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station, the shield of the charging station contains a hole with an LED that is at the same height as the

camera hole of the EvBot, When the EvBot is aligned with the charging station, the LED is centered.

The recharging process is monitored and controlled by the IBPS™ (Section 3.4.2).

(a) EvBot III Charging Station (b) EvBot III Charging Station’s Plug

(c) EvBot III (d) EvBot III Charging Receptacle

Figure 3.3: EvBot III Portable Charging Components

3.5 Hardware Design (CRIM-Daq)

To further aid in hardware cross-compatibility, a modular control system was developed and assembled.

This system is based around a multipurpose USB data acquisition board (CRIM-Daq) and associated

peripherals (i.e., CRIM-Daq motor-driver board and CRIM-Daq inertial measurement unit). The CRIM-

Daq connects to the EvBot’s StackableUSB™ on-board computer via USB, and relays the sensor and

motor data from the base. It also converts the high-level motion commands from the computer to the
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low-level motor commands required to drive the base. In addition to robotics applications, the CRIM-

Daq can be used for any project that requires data collection from one or more sensors; this is expected

to reduce the production cost per board, and subsequently the cost of each new EvBot III.

The CRIM-Daq (Fig. 3.4) consists of a modified CRIM-Mote [88], an integrated ex430-f2013 pro-

grammer/debugger (Texas Instruments), an integrated 4-port USB hub, and pass-through headers to

allow for stackable expansion boards. The onboard CRIM-Mote circuit was modified to allow access

to all of the I/O and signal pins from the msp430 using the pass-through headers. These headers give

peripheral sensor boards access to 29 of the 32 possible general purpose I/O pins including two config-

urable on-chip operational amplifiers, a 10-bit A/D converter, one UART, one IR communication port,

one I2C port, and two SPI ports. A maximum of 112 individual nodes can be used on the I2C port,

and a maximum of 22 nodes can be connected to the SPI port. Therefore, many different sensor boards

can be connected to and used with the same Daq by stacking each on top of the pass-through head-

ers. Then, once the msp430 is programmed with the application-specific code, all of the data from the

attached sensor boards is accessible through the msp430 on the same USB port. The integrated ez430

programmer/debugger allows any code to be easily updated without any external hardware.

Figure 3.4: CRIM-Daq with labeled components

The CRIM-Daq can be either self-powered (i.e., an optional external power connection is included)

or bus-powered. The board also includes circuitry to provide +3.3V, +5V, and ±12V to any connected

sensor boards. The circuitry to provide ±12V was included to allow for use of differential input signals.

3.5.1 CRIM-Daq Daughter Boards

A motor control board (Fig. 3.5a) was the first daughter board developed for the CRIM-Daq. The motor

driver board contains four H-bridges (MC33887, Freescale Semiconductor) with back EMF protection,
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the circuitry required to interface with the shaft encoders of four motors, and the circuitry required to

monitor the current sense output of each of the H-bridges.

The motors used to drive the EvBot III base (GHM-04, Lynxmotion) [89] have a 2.5A stall current,

and the H-bridges are rated to handle DC load currents up to 5.0A [90]. However, after weeks of use,

the CRIM-Daq motor driver board failed. The cause of these failures was later traced to the motors,

which actually drew >20A when starting or changing directions. As a result the RoboClaw 2x30A

motor controller (Fig. 3.6) was used to drive the base. The next revision of the CRIM-Daq motor driver

will be updated to handle the increased current load.

The Inertial Measurement Unit (IMU) was the second daughter board (Fig. 3.5b). This board

is comprised of a 3-axis, ±3G accelerometer (ADXL330, Analog Devices) and a Z-axis gyroscope

(ADXRS613, Analog Devices). In order to simplify the interface to the CRIM-Daq and ensure the tem-

poral accuracy of the measurements, all of the sensor readings are transmitted to the CRIM-Daq through

five serially-linked SPI ADCs with simultaneous sampling. Also, in order to increase the accuracy of

the gyroscope, one of the ADCs is used to read in a temperature offset value so that the gyroscope can

be calibrated.

The final daughter board is an 8-channel, 16-bit, 250 ksps A/D board (Fig. 3.5c). This board simul-

taneously samples all 8 A/D channels and sequentially passes the data to the CRIM-Daq using SPI.

In the future, additional daughter boards will be developed and include (1) a servo control board,

(2) a signal generation board, (3) a pressure sensing and control board, (4) an LCD board, (5) a screw

terminal signal access board, (6) a power control board, and (7) a switch inputs board.
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(a) Motor Control Board

(b) IMU Board (c) 8-Channel 16-Bit A/D Board

Figure 3.5: CRIM-Daq Daughter Boards

Figure 3.6: RoboClaw 2x30A Motor Controller
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3.6 Software Design

3.6.1 Linux Build Tree

To begin the modularization of the software aspects of the control architecture, a new in-house Linux

build tree [1] has been created that allows components to be added/removed before each new build. This

enables greater flexibility when choosing new hardware components because the necessary drivers are

included into the build tree, and the distribution rebuilt to suit the needs of any new mission scenario.

This build system also allows for easier system upgrades when the Linux operating system kernel gets

updated. Additionally, developers can continually incorporate new sensors, actuators, and other periph-

eral devices as they are released and ported to Linux through kernel updates [1].

An object-oriented, modular control architecture [1] has also been developed. This architecture en-

ables use by multiple developers and make the addition of new control structures more transparent (i.e.,

only small, hardware-specific adjustments will be needed). Also, because the architecture is object-

oriented and modular, only minimal software modifications is needed to transfer it between different

robotic platforms [1].

Currently, base objects are being created that will allow for the rapid development of controllers

without the need to code modules to interface with the base hardware. Furthermore, controller interop-

erability is possible because the base objects use a common language and framework. All of the code

is being written in C and C++ so that the control architecture will not be a computational bottleneck,

as was experienced in the current Matlab structure. However, the system will continue to support con-

trollers designed using Matlab and Simulink for quicker, proof-of-concept development. Working within

a C/C++ framework will also allow for parallel program execution. These improvements are expected

to make development easier and code more reusable, as well as speed up program execution [1].

3.6.2 EvBot III Firmware

The CRIM-Daq firmware includes all of the necessary drive functions to train a controller. Currently,

PID control is used to control the motors on the EvBot III. A four character instruction set is used

for communication between the main controller (laptop computer) and the base. This instruction set

can be easily extended. Current instructions are first broken into the component they are targeting (i.e.,

motors, encoders, accelerometer/gyroscope, ADC, and EvBot base drive). Then, the specific instance

of that component is specified. The last part of the instruction is the requested command and value

(i.e., return the motor PWM value, set the motor direction, set the PWM value, set the motor velocity

in radians/second, set the base velocity, move the motor a specified distance, reset the encoder, get the

encoder value, get the gyroscope data, get the accelerometer data, or request the board identification

string).
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3.6.3 Simulation Environment

The EvBot Simulation Environment is meant to reduce the time needed for performing repetitive experi-

ments by speeding up the gathering of preliminary data. The new EvBot III Simulation Environment [2]

was designed to interface with the modular control architecture so that new sensors or actuators could be

incorporated into the simulator. The new simulator also uses a dynamics simulation engine and collision

detection engine to render physical movement and interaction of the robots, their moving parts, and the

environment. The physical construction of the robots and environments is specified using configuration

files. Visual sensor support is provided by a simple 3D graphics engine. These provisions make possible

the rapid development and evaluation of new controllers, sensor configurations, or platforms. Further-

more, due its modular nature, more stable and accepted controllers such as the Robot Operating System

(ROS) [91, 92] can be easily incorporated and used as a comparison for new algorithms.

3.7 Discussion

Nature has, at its core, modularity. While all individual organisms are unique, they share a majority of

common elements related to form and function. In order for robotics and computational intelligence

to progress to true autonomy, this notion of ubiquitous modularity of hardware, software, and control

systems needs to be fully embraced. The EvBot III platform was designed with this as its primary goal.

The EvBot III base was custom-built to allow for new methods of actuation (i.e., the “pseudo-

holonomic” base uses simple control to generate complex movements) and the easy addition of new

sensors through and outer shield. Because the shield was circular, simulation was simplified in both

2D and 3D. Additionally, the shield reduced concerns related to sensor obstruction, and enabled rapid

sensor reconfiguration. This proved helpful when experimenting with different alcohol sensor setups

(Chapter 4).

Many of the problems associated with the previous versions of the EvBot were also addressed in

the re-designed system. For example, the current base was implemented with a differential drive sys-

tem, which eliminated the problem of drive-train slippage that was associated with the previous track

designs. Additionally, the EvBot III has an improved power management system (OceanServer™ Intel-

ligent Battery and Power System), which removed battery life as a concern for any of the experiments

undertaken thus far. The provision for self-charging was also implemented.

There were a few complications noted with the current EvBot III. For example, the size and weight

of the base are a concern. The base itself weighs ≈7.25 kg without the laptop. Although no problems

were noted with the motors (GHM-04) during experimentation, the shaft is only rated for 1.0 kg-cm load

at 7.2 V. For this reason, the EvBot III was stored with its wheels elevated to prevent excessive loading

of the motor shafts when not in use. To lessen the weight of the base, the next version will be made

using a majority of laser-cut acrylic versus UHMW. This will also reduce production time and cost.
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The next version of the EvBot III base will also use a different slip-ring. In the current version,

DC power was transmitted using a standard 24-pin ATX power connector, and control signals were

sent via USB or RS-232. . However, there was a problem with movement-induced noise in the signal

lines. In order to remedy this in future versions of the base, the slip-ring will be used solely for power

transmission (±12 V), and communication through the center of the base will be achieved using an

infrared (IR) link. This will reduce the size of the slip-ring from 18 rings to 6 rings. Additionally, the

shaft of the slip-ring will need to be implemented as a hollow tube to accommodate the data IR link.

3.8 Conclusion

The EvBot III’s integrated development of modular hardware and software has the potential to decrease

development time and increase the output and progress of robotic and computational intelligence re-

search. The EvBot III platform includes (1) a mobile base, (2) control software, and (3) a simulation

environment that incorporates a dynamics simulation engine and collision detection engine to render

physical movement and interaction of the robots. The current base is relatively low-cost and can be eas-

ily customized through the use of outer sensor shields. Additionally, because the higher-level controller

is separated from and does not need knowledge of the lower-level base kinematics, algorithms can be

easily ported to different platforms. Using the in-house Linux build tree, software updates and new sen-

sor, actuator, etc. drivers can be easily added as they are released and ported to Linux through kernel

updates. The simulation environment allows for new base designs and control algorithms to be easily

and realistically tested.
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Chapter 4

Chemical Sensing for Mobile Robots:
An Improved Method for
Implementation in Dynamic Indoor
Environments

4.1 Abstract

When considering biologically-inspired robotics, chemical sensing provides a logical starting point be-

cause it is the most widely represented sensing modality among living creatures [28]. Chemical sensing

has applications in detecting leaks, explosives, or disaster victims, as well as coordinating activities

within a swarm of robots [28]. Current robotic chemical sensing is implemented using one of three

approaches: (1) using only passively-sampled chemical sensors, (2) using wind direction sensors along

with passively sampled chemical sensors, and (3) using actively sampled chemical sensors. While the

later two approaches are more efficient, they can be inaccurate in indoor environments with lower and/or

variable wind speeds. However, relying solely on chemical sensors presents its own set of difficulties,

as the majority of the airborne chemical sensors that are appropriate for use in robotics suffer from poor

response time (i.e. 10-150 s). This chapter reports on a novel homing algorithm and sensor configura-

tion that can be used with any mobile platform to navigate to a chemical source. This was tested in an

indoor maze environment using the EvBot III platform. Here, the average error between the actual and

calculated angle to the source was found to be 21.18°, which was accurate enough to allow the robot to

repeatedly home to the source from a distance of approximately 2.75 m.
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4.2 Introduction

Chemical sensing has potential for widespread application in the field of robotics. Robotic olfaction

can be used to find chemical leaks, explosives, or disaster victims [28]. When working with swarms

of robots, olfaction can also be used to navigate or coordinate cooperating actions. For example, a

robot can release a volatile chemical to signal a breakdown and notify the other robots that it needed

assistance [28]. A similar method can be used to coordinate searches by indicating previously searched

locations, as well as helping to identify promising locations to search more fully [28].

When considering biologically-inspired robotics, chemical sensing provides a good starting point

because it is the most widespread sensory modality among living creatures [28]. Simple organisms use

this basic mechanism to navigate towards a food source, etc. This allows researchers to study emergent

intelligence and determine the robotic architectural features that allow for a particular behavior. Later,

this information can be used to create self-adaptive and intelligent robots [93].

Robotic airborne chemical sensing is commonly implemented using one of three approaches: (1)

using only passively-sampled chemical sensors, (2) using wind direction sensors along with passively

sampled chemical sensors, and (3) using actively sampled chemical sensors. These approaches, includ-

ing the algorithms, sensors, and test setups are summarized in Table 4.1 and arediscussed in detail in the

following sections.

4.2.1 Passively-Sampled Chemical Sensors

The E. Coli Algorithm, Gradient-Based Control Algorithm, Modified Bombyx Mori Algorithm, and

Multi-Layer Feedfoward Neural Network use only passively-sampled chemical sensors to locate an odor

source. Passively-sampled setups have the advantage of being simpler than actively-sampled setups or

those requiring additional wind directions sensors, but suffer from problems related to accuracy.

The E. Coli algorithm [94] is the simplest algorithm, and uses only one sensor to determine the

gas concentration. Here, the robot randomly rotates and moves ±0.50 m depending upon if the current

alcohol value is higher or lower than the previous alcohol value (i.e., if the current value is higher, the

robot rotates ±5°, and if it is lower, the robot rotates ±180°) [94].

The Gradient-Based Control algorithm [94] is more complex than the E. Coli algorithm. It uses two

sensors to achieve a more iterative set of control steps that are based on the type 2 vehicle described

in the Braitenbergs book “Vehicles: Experiments in Synthetic Psychology” [22]. For this algorithm,

the robot determines which sensor is reading the highest concentration of gas. Then, the robot turns in

the direction of higher concentration at an angle that is proportional to the difference between the two

sensors (limited to ±16°). The robot then moves forward 0.02 m and repeats this sequence [94].

The Modified Bombyx Mori algorithm [95] is based on the search strategy used by the male silkworm

moth (Bombyx Mori) when it detects the particular conspecific female pheromones. The male silkworm

moth uses wind direction to estimate the direction of the pheromone source [95]. A modified version of
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Table 4.1: Summary of Approaches to Robotic Airborne Chemical Sensing
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this strategy [94] was developed for robots working in an indoor environment without strong unidirec-

tional airflow. Here, the robot performs an initial random search until it is triggered by the presence of

gas. The random search is implemented by instructing the robot to drive in straight paths until it en-

ters the clearance area around an obstacle. Once this occurs, the robot randomly rotates and proceeds

on a straight path. When the robot detects the presence of gas, it starts a zigzag movement pattern by

turning ≈ 65° to the side of highest sensed concentration. After this initial turn, the robot performs six

zigzag turns followed by straight movements of the following lengths (in order): 0.20 m, 0.30 m, 0.50 m,

0.70 m, 0.90 m, and 0.55 m. After these zigzag movements, the robots turns in a circular motion with a

radius of ≈0.50 m. If the robot loses the gas plume during the zigzag motion, the robot reinitiates the

search motion at the initial ≈65° turn [94].

Both the E. Coli and Gradient-Based Control algorithms were tested using the reactive autonomous

testbed (RAT; Fig. 4.1) [28]. The RAT robotic platform [96] has two bilateral polymer gas sensors

(treated as one sensor when using the E. Coli algorithm). The robot also includes a wind sensor that can

be used to determine wind speed and direction, as well as two collision detection whiskers [94]. In order

to test the success of these algorithms, a uniform airflow speed of ≈1.5 m/s was used. When the E. Coli

algorithm was tested, the robot was not able to locate the alcohol source [94]. However, the robot was

able to find the alcohol source from a distance of ≈2 m when the Gradient-Based Control algorithm was

used [94].

The Modified Bombyx Mori algorithm was implemented and tested on the model ATRV-Jr. Robotic

base from iRobot. This base has two sets of three gas sensors that are located on either side of the robot

at the front corners. In order to correct for differences in the gas sensors, the readings were normalized.

Because the Modified Bombyx Mori algorithm was developed for indoor environments, no wind direc-

tion or speed sensing was used [94]. During testing, the SICK laser range scanner on the base was used

to correct the position data obtained from the robot’s odometer, as well as to detect if the robot was in

the clearance zone of obstacles. For this experiment the gas source was placed an average of 1.96 m

from the robot’s starting position in an unventilated environment. The robot was not able to successfully

locate the gas source [94].

The Multi-Layer Feedfoward Neural Network was implemented by Farah and Ducket [97] on a

Koala mobile robot fitted with an Örebro Mark II mobile nose [97]. The Örebro Mark II mobile nose

contains two sets of metal oxide gas sensors that are placed inside of two separate tubes. These tubes

are separated by a wall and face towards opposite sides of the robot (Fig. 4.2). In order to train and

test the robot’s ability to determine the direction of the alcohol source, the robot was driven in seven

different directions (85°, 55°, 25°, 0°, -25°, -55°, and -85°) from each of four different starting locations

(alcohol source was 0.80 m from the robot). These experiments were conducted in an air-conditioned

environment (i.e., no/weak directed airflow). 75% of the data collected was used for training, and 25%

was used for testing. Using this multi-layer feedforward neural network, the robot was able to locate the

alcohol source from a distance of ≈0.80 m [97].
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Figure 4.1: Reactive Autonomous Testbed (RAT) [94]

Figure 4.2: Örebro Mark II Mobile Nose [97]

4.2.2 Wind Direction Sensor with Passively-Sampled Chemical Sensors

The Step-by-Step Progress Method, Zigzag Approach, Dung Beetle Algorithm, Plume-Centered Upwind

Search Algorithm, Bombyx Mori Algorithm, Spiral Surge Algorithm, and Multiphase Tracing Algorithm

all use a wind sensor in concert with chemical sensor(s) to locate an odor source. Although the addition

of a wind sensor adds to the complexity of the control system, robots using both are more efficient

and effective at locating an alcohol source, even at a greater distance. For example, robots using one
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of these seven algorithms were always able to locate an odor source at distances up to 6 m. When only

chemical sensors were used (Section 4.2.1), the robot failed to locate the source for two out of four cases

at distances of only 2 m.

The Step-by-Step Progress Method [98] uses gas sensors to track the concentration gradient to the

center of the plume, as well as an anemometric sensor to move upwind (wind speed: 0.20 m/s). The

wind direction is estimated to an accuracy of 90° by selecting the anemometric sensor with the lowest

value. The robot rotates so that the gas sensors are perpendicular to the wind direction in order to achieve

the largest gradient. The direction of the alcohol source is determined by calculating the intermediate

angle between the wind direction sensor and the gas sensor with the largest response. The robot is then

instructed to drive 0.02 m in that direction [98].

Similar to the Step-by-Step Progress Method, the Zigzag Approach [98] uses wind direction to locate

the alcohol source. The robot first turns 60° with respect to the upwind direction, and drives in a straight

line until it reaches the near edge of the plume. Then, the robot continues driving straight until it reaches

the far edge of the plume. From here, the robot rotates back to a preset angle (with respect to the upwind

direction) and drives straight until it reaches the near edge of the plume. This process continues, with

the sign of the turn angle alternating at each edge. In order to test this algorithm, the rotation angle

was preset to ±60° and a simple threshold value used to determine if the robot was in the plume.

Additionally, a method was implemented to correct for erroneous movements that resulted in the robot

driving out of the plume. When this occurred, the robot simply backtracked until the alcohol values fell

below the fixed threshold.

Implementation of the Dung Beetle Algorithm [94] is similar to the Zigzag Approach after the robot

has located the plume. In order to find the plume, the Dung Beetle Algorithm requires the robot to turn

90° counter-clockwise (relative to the wind direction) and drive 0.50 m until alcohol is detected (i.e., as

determined by a predefined threshold value) [28, 94, 99].

The Plume-Centered Upwind Search Algorithm [98] navigates to the odor source more directly

compared to the Zigzag Approach. Using this algorithm, the robot first locates the center of the plume

by driving tangent to the wind. It continues to drive at a tangent until the edge of the plume is reached

(determined by a preset threshold value) before returning to the center of the plume. The robot then

continues to drive upwind, using gas sensors to ensure that it is staying centered in the plume by checking

the concentration gradient.

The Bombyx Mori (Silkwork Moth) Algorithm [94] builds on the modified approach (Section 4.2.1)

by first orienting the robot to face the wind (i.e., versus randomly driving around). The robot then waits

for the airborne chemical to be detected before starting its search. Once the chemical is detected, the

robot drives forward 0.10 m. The robot then checks to see if the chemical is still being detected, and if it

is, this process of facing upwind and driving forward 0.10 m is repeated. If the chemical is not detected,

the robot turns 60° in the direction of the sensor that initially detected the chemical, drives forward

0.10 m, and repeats the check. If the chemical is still not detected, the robot turns 120° away from the
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direction of the initial sensor, moves forward 0.20 m, and rechecks for the presence of the chemical. If

the chemical scent is still not detected, the robot turns to face upwind and drives in two circles; the first

circle is in the direction of the initial sensor, and the second is in the opposite direction. If the chemical

scent is lost, the robot turns to face into the wind and waits until the chemical is detected [94].

The Spiral Surge Algorithm [100] is similar in principle to Bombyx Mori Algorithm. It uses three

different strategies to find the odor source. The first of these, which is used to locate the odor plume,

involves a large outward spiral search. If the odor is detected, the robot drives upwind by a set distance;

this “surge” distance is reset as long as the odor is present. If the sensors fail to detect the odor at the

end of the surge, the robot performs a small outward spiral search [100].

The Multiphase Tracing Algorithm [98, 101, 102] differs from the previously mentioned algorithms

insofar as it was designed for use in environments with non-uniform airflow. The algorithm is composed

of five phases: (1) waiting for gas detection, (2) searching for the plume along the concentration gradient,

(3) retreating, (4) tracking the plume, and (5) searching for the plume across the wind (Fig. 4.3) [101].

In phase 1, the robot waits for the sensor readings to exceed a threshold value in order to indicate the

presence of gas. Then, phase 2 of the algorithm is initiated, and the robot begins searching for the plume

along a concentration gradient, neglecting wind information. Assuming that there is a step change in

the concentration gradient across the boundary of the plume, the algorithm relies on a threshold to

determine if the robot has entered the plume. If the robot is not successful in finding the plume, phase

3 of the algorithm is initiated and the robot retreats/backtracks. During this time, the sensors continue

to check for the target gas, and if it is detected, phase 2 is re-initiated. If the checks continue to fail to

detect the presence of gas (i.e., indicated by the minimum value being achieved for the four averaged

gas sensors), phase 1 is re-instated. However, if during phase 2 the robot is successful in finding and

entering the plume, it moves to phase 4 of the algorithm. Here, the robot tracks the plume using an

upwind search (i.e., it is instructed to move at a constant angle relative to the wind direction). It also

uses the concentration gradient to stay near the center of the plume. If the robot loses the plume in phase

4, it enters phase 5 of the algorithm. This phase includes searching for the plume across the direction of

the wind by expanding the margins of the search. If the “plume detection threshold” is not reached after

twice searching across the wind direction, the plume is considered lost and phase 2 is re-entered [101].

The Step-by-Step Progress Method and Zigzag Approach were both tested using the setup designed

by Ishida et al. [98]. The robotic platform (Fig. 4.4a)includes four gas sensors and four thermistor

anemometric sensors. The gas sensors are spaced 40 mm apart and at 90° to each other (Fig. 4.4b).

The anemometric sensors are located directly below the gas sensors and are separated by a square pillar

(Figure 4.4b). The odor plume was created by introducing a gas source at one end of a small wind tunnel

(0.70 m x 0.80 m x 0.35 m), and a fan pulled air through the opposite end. For the Step-by-Step Progress

Method, a uniform airflow of ≈0.20 m/s was used and the robot was able to locate the ethanol source at a

distance of 0.80 m within 234-240 s [98]. For the Zigzag Approach, a uniform airflow of ≈0.12 m/s was

used and the robot was able to locate the ethanol source at a distance of 0.80 m within 678-868 s [98].
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Figure 4.3: Robot Testbed used by Ishida et al. [102]

(a) Robotic Platform (b) Sensor Probe

Figure 4.4: Testbed used by Ishida et al. [102]

The Multiphase Tracing Algorithm also uses the setup designed by Ishida et al. [98]. However, as

this algorithm was designed for environments with non-uniform airflow, the testing was completed in

a clean room. Airflow was generated by air movement between two supply openings in the ceiling and

two exhaust openings near the floor. Ethanol was released near one of the supply openings. For this

setup, the wind speed near the source was ≈0.30 m/s, and dropped to ≈0.10-0.30 m/s throughout the

search area. The robot was able to locate the alcohol source from a distance of ≈1.5 m [101].
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The Bombyx Mori and Dung Beetle algorithms were tested on the RAT platform [94] using a uniform

airflow plume with an air speed of ≈1.5 m/s. For both algorithms, the robot was able to find the alcohol

source from a distance of ≈2 m [94].

The Plume-Centered Upwind Search Algorithm was tested on a robotic platform that included a wind

vane (for determining wind direction) and a single quartz micro balance gas sensor that was located at

the front of the base. The algorithm was tested using a uniform airflow plume with an airflow speed of

≈0.30 m/s. The robot was able to locate the alcohol source from a distance of ≈1 m [98].

The Spiral Surge Algorithm was tested on a modified Moorebot robot platform [103]. This platform

contains four infra-red range sensors for collision avoidance, a single polymer odor sensor (located in

the front center of the robot), and a hot wire anemometer (placed in a tube) for wind speed and direction

sensing. The direction of the wind was calculated by sampling the anemometer while the robot was

slowly rotated 360° [100]. The algorithm was tested using a uniform air plume with an airflow speed of

≈1 m/s. The robot was able to find the alcohol source from a distance of ≈6 m [100].

4.2.3 Actively-Sampled Chemical Sensors

Chemical/odor source detection is commonly needed in indoor environments without strong unidirec-

tional airflow [94]. In these situations, wind speed and direction sensors are of no benefit. Therefore, in

order to improve upon the effectiveness of source location as seen with passive setups (Section 4.2.1),

the Gas Sensitive Braitenberg Vehicle and 2D Odor Compass employ active airborne chemical sam-

pling setups. Here, fans onboard the robot create local airflow patterns that can be used to determine the

location of the odor source.

The Gas Sensitive Braitenberg Vehicle uses a Mark III mobile nose and Koala mobile robot (Fig.

4.5 and Fig. 4.6) [102, 104, 105]. The Mark III nose is very similar to the Mark II nose (Section 4.2.1),

except it uses two fans in the center of the robot to pull air in through the tubes. The outputs of each set

of alcohol sensors are connected directly to the motors using the “Permanent Love” or “Exploring Love”

inhibitory Braitenberg vehicle connections [22, 102]. For the “exploration and hill-climbing” strategy,

the “Permanent Love” coupling was used, where the right sensor is connected to the right motor and

the left sensor is connected to the left motor [22, 104]. For the “exploration and concentration peak

avoidance” strategy, the “Exploring Love” coupling was used, where the left sensor was connected the

right motor and vice versa [22, 104]. In order to test the robot’s ability to locate the odor source, it

was placed in an unventilated room at a random position that was at least 1 m from the center of the

gas source. The robot was able to consistently locate the source from a distance of ≈1-4 m using either

strategy. However, the source could be located from twice the distance when the uncrossed, “exploration

and concentration peak avoidance” strategy was used [104].

The 2D Odor Compass [106] is implemented using rotating stand with a fan and two alcohol sen-

sors that are separated by a plate (note: while this method was not tested on a robotic base, it could be
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Figure 4.5: Mark III Mobile Nose on a Koala Robot [102]

Figure 4.6: Mark III Mobile Nose Schematic [105]

incorporated into a mobile platform). It is meant to behave similarly to a magnetic compass and point to-

wards the odor source. The fan is used to amplify the sensor output when it is aligned with the odorant’s

airflow. In this way, the stand can be fully rotated in order to estimate the direction to the odor source.

Therefore, if the compass is positioned relatively far away from the source, it tends to point towards

the plume’s center [102, 106]. If, however, the compass is positioned in the plume, it points towards the

source [102,106]. In order to test the compass’s ability to locate the odor source, the setup was placed in

a clean room environment with non-uniform airflow. Airflow was generated by air movement between

36



two air supply openings in the ceiling and two exhaust openings near the floor. Ethanol was released near

one of the air supply openings [101]. When the direction to the source was determined with the compass

in a fixed position, the reading would fluctuate up to 30°. If the odor compass was moved manually

in the direction indicated by its reading (in increments of 0.20-0.30 m), it could successfully track the

alcohol source. When starting outside of the odorant plume, the compass could locate the source from a

distance of ≈1.25 m; this distance was increased to ≈1.7 m when the compass was initially positioned

inside of the plume [102, 106].

4.2.4 Problems with Robotic Chemical Sensors

As discussed in the previous sections, there are many approaches that can be used for robotic airborne

chemical sensing [28, 94, 96, 98, 101, 102, 107]. While adding a wind direction sensor can increase

the effectiveness and efficiency of source determination, it may be unreliable in a dynamic indoor en-

vironment. For example, the wind speeds used in these experiments were somewhat high for indoor

environments (up to ≈1.5 m/s). For lower and/or variable wind speeds, it may be difficult to determine

the direction of the source. Relying solely on chemical sensors presents its own set of difficulties, as

the majority of the airborne chemical sensors that are appropriate for use in robotics suffer from poor

response time (i.e. 10-150 s). While response time and effectiveness can be improved by using a fan in

concert with chemical sensors, the added power requirements and weight must be considered for mobile

platforms.

Ideally, a more efficient and reliable method of passive chemical sensing could be developed for

dynamic indoor environments. The alcohol homing algorithm developed for the EvBot III attempts to

solve this problem. It does not rely on a wind direction sensor to determine the location of the plume, nor

does it require an on-board fan. Additionally, there was an effort made to remove hard-coded threshold,

turn angle, and drive distance values wherever possible. The remainder of this chapter discusses the

design and evaluation of the testbed used to implement the new alcohol homing algorithm.

4.3 Desecription of EvBot III Testbed

4.3.1 Robotic Platform

The EvBot III mobile robotic platform (Chapter 3)was used for testing. Two custom olfactory sensor

shields were designed for the EvBot III (Fig. 4.7). The olfactory sensor shields contained six MQ-3

resistive alcohol sensors that are sampled using the National Instruments USB-6009 Daq with onboard

14-bit ADC. In Configuration 1 (Fig. 4.7a), the six alcohol sensors were evenly spaced in 60° increments

and mounted flush with the sensor shield 1 inch from the floor. Sensor 0 was centered at the front of the

shield, and sensor numbering continued counter-clockwise (looking down on the EvBot). In Configura-

tion 2 (Fig. 4.7b), the alcohol sensors were moved to the top of the EvBot base and positioned to face
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(a) Sensor Configuration 1 (side view) (b) Sensor Configuration 2 (top view)

Figure 4.7: EvBot III Olfactory Sensor Shields

up from the floor (i.e., at 90° to the alcohol plume). Additionally, in order to increase differentiation, the

alcohol sensors were positioned further apart using “fingers” to hold the sensors in a ring that was twice

the diameter of the EvBot.

4.3.2 Testing Arena

The experiments were conducted in an indoor arena with very low airflow (Fig. 4.8 and Fig. 4.9). The

arena measured 3.9 m x 3.9 m, and was framed by a 0.25 m high wooden barrier. The walls of the arena

were formed from a 1.6 m high PVC pipe frame from which blue plastic curtains were hung.

The alcohol source was placed in one corner of the maze (Fig. 4.10). The alcohol plume was formed

by using a fan to continuously blow air over a ≈188 ml circular reservoir of alcohol. The alcohol reser-

voir was placed inside of a tube/tunnel that directed the air over it so that the top of the reservoir was flush

with the testing platform (Fig. 4.10). When tests were performed using sensor Configuration 2 (Section

4.3.1), the alcohol source was raised up to sit level with the top of the EvBot. For all experiments, 75.5%

grain alcohol was used.

Plume Formation

Three different fans were tested in order to ensure robust plume formation. Initially, a 3 inch DC com-

puter case fan was used, but this fan did not move a sufficient volume of air with enough force to

generate a distinct plume in the far half of the arena.
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(a) Arena Schematic (wind speeds measured using
a Kestrel 4000nv Pocket Weather Tracker)

(b) Plume Overlayed on Arena

Figure 4.8: Arena with Alcohol Plume

Next, a 2 inch electric ducted fan (MP-EPF200) was used. This fan was rated to have a maximum

thrust of 73 g at 7.2 V. The strength of the fan (with regard to plume robustness) was tested by moving

the EvBot in 0.50 m increments from directly in front of the alcohol source to the far edge of the arena

(directly opposite the alcohol source) and measuring the alcohol strength using the EvBot’s onboard

sensors. After testing the fan at different speeds by varying the supply voltage, a level of 3.3 V was

found to produce the largest gradient of alcohol values along the plume. However, the speed of the

MP-EPF200 fan became unreliable over time, which affected the airflow of the plume.

The ducted fan was finally replaced with a simple small room fan (Honeywell HT-800). Again,

plume robustness was tested in 0.50 m increments along the center of the alcohol plume. The lowest fan

setting was found to produce the best gradient, which is described by Equation 4.1:

y = 0.4096x2 − 2.8722x+ 5 (4.1)

4.4 Experiment 1

4.4.1 Methods

The sensor shield was setup using Configuration 1 (Section 4.3.1). The alcohol sensors were tuned using

a potentiometer so that their “no alcohol” voltage was approximately the same. In order to navigate to the

alcohol source, a reading was taken from each of the six alcohol sensors. Then, the x- and y-components
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Figure 4.9: Simulation of Alcohol Plume

Figure 4.10: Alcohol Plume Source
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for each sensor were determined with respect to the alcohol source, and those components summed to

determine the resultant vector to the alcohol source. The accuracy of this setup was tested in nine trials

where the EvBot was initially placed at Position 2 (i.e., in the center of the arena; Fig. 5.6), and facing

directly toward the alcohol source.

4.4.2 Results

The results of the nine trials are summarized in Table 4.2. This algorithm and setup were found to be

inaccurate, with the calculated angle to the alcohol source and the actual angle to the alcohol source

differing by an average error of 87.01°.

Table 4.2: Sensor Configuration 1 with Vector Summing Homing Algorithm

Run Number Calculated Angle
1 81.51°
2 67.63°
3 76.47°
4 74.10°
5 31.99°
6 65.34°
7 108.26°
8 135.12°
9 142.71°

4.5 Experiment 2

4.5.1 Methods

It was hypothesized that increasing the distance between the alcohol sensors would lead to greater dif-

ferentiation between the measurements. This would, in turn, increase the accuracy of the resultant vector

by increasing the weight given to those sensors closest to the source. In order to test this, Experiment 1

was repeated using sensor Configuration 2 (Section 4.3.1).

4.5.2 Results

The results of the nine trials are summarized in Table 4.3. Although the error between the actual and

calculated angle was less (i.e., 71.99°), this algorithm and setup were still found to be too inaccurate for

acceptable navigation and homing.
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Table 4.3: Sensor Configuration 2 with Vector Summing Homing Algorithm

Run Number Calculated Angle
1 70.29°
2 30.11°
3 95.23°
4 94.26°
5 68.17°
6 78.22°
7 18.21°
8 91.42°
9 101.86°

4.6 Experiment 3

4.6.1 Methods

It was hypothesized that a more complex homing algorithm would result in further navigational im-

provements. Therefore, the homing algorithm was modified to use four readings from each of the six

alcohol sensors. The first reading was taken at the initial orientation of the EvBot. The base was then

rotated 90°, and another reading taken after 100 s in order to allow the alcohol sensors to stabilize.

This process was repeated two more times until the EvBot was rotated back to its initial orientation.

The readings were normalized for each sensor using the individual maximum value recorded during

the movement sequence (i.e., the readings for Sensor 0 were normalized using the maximum value for

Sensor 0, the readings for Sensor 1 were normalized using the maximum value for Sensor 1, etc.). This

step was necessary in order to account for differences in the responses of each alcohol sensor at the

same concentration. After normalizing the data, the resultant vectors from each of the readings were

computed, and the four vectors for each sensor averaged. This resulted in six vectors that described each

sensor’s estimate as to where the alcohol source was located. The resultant vectors were then averaged

in order to determine the final angle to the alcohol source.

This algorithm was tested using Configuration 2 because it proved to be more accurate compared to

Configuration 1. Nine trials were again conducted with the EvBot starting at Position 2 (Fig. 5.6), and

facing directly toward the alcohol source.
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4.6.2 Results

The results of the nine trials are summarized in Table 4.4. This algorithm and setup proved to be much

more accurate than the previous two, with an average error of 21.18° between the calculated and actual

angle. Using this algorithm, the EvBot was able to repeatably navigate to the alcohol source.

Table 4.4: Sensor Configuration 2 with Sensor Normalization and Vector Summing Homing Algorithm

Run Number Calculated Angle
1 9.22°
2 29.30°
3 25.38°
4 28.78°
5 36.96°
6 3.10°
7 0.50°
8 9.64°
9 47.78°

4.7 Discussion

Chemical sensing can be used for leak and explosive detection, to locate disaster victims, and to coor-

dinate actions between multiple robots. Robotic airborne chemical sensing is commonly implemented

using one of three approaches: (1) using only passively-sampled chemical sensors, (2) using wind direc-

tion sensors along with passively sampled chemical sensors, and (3) using actively sampled chemical

sensors [28,94,96,98,101,102,107]. Passively-sampled techniques have the advantage of being simple,

but suffer from problems related to accuracy. Furthermore, relying solely on chemical sensors presents

challenges insofar as the majority of sensors that are well-suited for mobile robot applications suffer

from over-specialization and poor response times. While adding a wind direction sensor can help to

overcome some of these problems, it may be unreliable in an indoor environment with low airflow.

The EvBot III Alcohol Homing Algorithm was presented as a more efficient and reliable method of

passive chemical sensing for mobile robots operating in dynamic environments. Here, the readings from

six MQ-3 resistive alcohol sensors are taken with the robot rotated in four positions. The readings for

each sensor are normalized, and a vector calculated to the alcohol source for each. These vectors are

then averaged to determine the angle to the source. The drive distance is determined by an equation

describing the alcohol gradient (Equ. 4.1). The EvBot III Alcohol Homing Algorithm is an improvement
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Figure 4.11: Training 7-1-5 EvBot Alcohol Homing Movement

over other algorithms [28, 94, 96, 98, 101, 102, 107] for indoor environments with low airflow because

it does not rely on a wind direction sensors, nor does it require an onboard fan. Furthermore, an effort

made to remove hard-coded threshold, turn angle, and drive distance values wherever possible in order

to make the algorithm more well-suited for dynamic situations.

Two sensor configurations were tested using the EvBot III Alcohol Homing Algorithm. In Config-

uration 1, the alcohol sensors were evenly spaced in 60° increments and mounted flush with the sensor

shield 1 inch from the floor. In Configuration 2, the alcohol sensors were moved to the top of the base

on and turned to face upwards (i.e., at 90° to the alcohol plume) on “fingers” that formed a ring that was

twice the diameter of the EvBot. Both experiments were conducted in an indoor arena with very low

airflow.

When Configuration 1 was tested, the EvBot was unable to home to the alcohol source. With this

setup, the sensor that was in the plume and directly pointed to the alcohol source would often have

a lower value than the sensors to either side. Because the alcohol sensors were facing directly out
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from the shield, the metal oxide sensor was directly in the path of the air flow. This air movement

aided in evaporation of alcohol from the sensor, thus reducing its sensed value. Additionally, the sensor

opposite the alcohol source (and out of the direct air flow) would occasionally read the highest value.

This observation further supports the conclusion that the air movement within the plume was causing

alcohol evaporation from the metal oxide.

When Configuration 2 was tested, the EvBot was consistently able to home to the alcohol source

from ≈2.75 m. Here, the EvBot would first home to the center of the alcohol plume, and then pendulate

to the alcohol source. It was noted that the equation used to determine drive distance (Eqn. 4.1) often

produced larger distances than were actually needed to efficiently drive to the alcohol source. Although

this did not negatively affect the EvBot’s ability to locate the alcohol source, homing could be made

more effective by collecting more data to validate this equation.
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Chapter 5

Odor Sensorimotor Control Software
Implementation, Testing, and
Analysis

5.1 Abstract

Many of the current robotic systems are application-specific and have difficulty if the environment

changes. These controllers often do not scale well with increased task complexity. However, biolog-

ical systems often exhibit impressive adaptability. Therefore, self-organizing architectures should be

incorporated into robotic systems to allow for emergent intelligence and robustness. Towards this end, a

flat, fully-connected sensorimotor architecture was developed on the EvBot III platform. Chemical sens-

ing was used as the test application for this network, although it could be included to use any sensing

modality. The network was trained to associate an increase in alcohol concentration with an increase in

battery charge; it was intended that the robot would learn to navigate up an alcohol plume to the source

when it needed to be charged. Although the sensorimotor network was shown to be a good initial step

towards robotic reflex behavior, the robot was unable to successfully learn to home to the alcohol source.

5.2 Introduction

Many developers design and program robots with a specific use in mind. While this works well for

simple tasks, robots will eventually need to be more adaptable so that they can work on complex projects

and remove humans from dangerous environments [7,28,100,107–109]. Robots may also serve to reduce

the error that is normally associated with human exhaustion. In order to achieve a robotic system that

is both reliable and adaptable, developers must look to nature for solutions that will allow for emergent
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intelligence and robustness. This will also help to limit human bias so that the system does not become

artificially constrained [3].

The effects of human bias are often overlooked from both a development and experimental stand-

point. For example, obstacle avoidance is often considered to be a robotic base behavior. However, it has

been shown that obstacle avoidance can be considered as a derivative behavior of homing [24,25]. Also,

by reducing experimenter bias, the performance of robotic systems can more easily be quantified and

compared. For example, the performance of the EvBot I was compared against a rule-based controller

for the tasks of navigating a maze and playing the game Capture The Flag [14, 71, 73–75, 110, 111].

Later, the researchers expressed interest in having a human compete with the learned robotic controllers

by using the same range data that was supplied to the EvBots [71]. Although this experiment would

provide useful information in terms of the performance of the EvBots, a direct comparison cannot be

made because: (1) the computational and memory resources of humans cannot be quantified in the same

manner as a robotic controller and (2) a human operator has pre-existing knowledge of what a maze is,

and most likely has at least a passing knowledge of the game Capture The Flag.

In order to limit developer and experimenter bias, the EvBot III used a sensorimotor network that

was trained solely through environmental interaction. The sensorimotor network was implemented and

tested for the task of navigating up an “odorant plume” to a “food source” (i.e., an alcohol concentration

gradient to a charging station). Olfaction (chemical sensing) was selected because chemical sensing

was the first sense to be evolved by primordial life [28]. For example, the main sensorimotor modality

of many computationally- and resource-limited biological systems is chemical sensing [28]. Therefore,

these organisms can be more easily compared to a robot versus comparing a robot to a human. Later,

once a good correlation base is established for the sensorimotor network, the system can be expanded

to include more complex sensorimotor elements.

5.3 Design

The sensorimotor network used for the EvBot III was modeled after one created by Bovet, et. al. at the

AI Lab, University of Zurich [3, 66, 93]. The goal of this sensorimotor network is to create a parallel,

virtual network that controls the sensorimotor system using weighted connections that reflect correla-

tions between the actual sensorimotor states. Here, each of the sensorimotor elements is connected to a

sensorimotor node (Fig. 5.1). This allows the network to develop predictions about the actual state by

using correlations between its virtual states and measured states.

The sensorimotor nodes are described by a current state, previous state, current virtual state, state

change, and virtual state change. The current state represents the current measurement output of the

sensorimotor element, and the previous state is simply the current stated delayed by one cycle. The

current virtual state is the anticipated current state of the sensorimotor element. It is calculated by

averaging the weighted virtual state changes of all other sensorimotor nodes, and serves as an input to
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Figure 5.1: Sensorimotor Network

48



the sensorimotor element. The state change represents the difference between the previous state and

the current state; for more complex cases, the difference is more involved (i.e., optical flow for vision

applications). The virtual state change is the difference between the current state and the current virtual

state. The virtual state change is passed to the other sensorimotor nodes through weighted links. The

weights in these links are updated using the state change and the virtual state change from the source

node and the current state of the destination node (see Appendix A). This allows the link to determine

and maintain the correlations between the different sensorimotor elements and correctly anticipate the

other nodes’ virtual current states. Eventually, the weighted inputs from the other sensorimotor nodes

will result in the virtual state mirroring the current state for a particular sensorimotor element. Then,

the current virtual state can be used to predict the current state using the changes in the state of other

sensorimotor nodes.

5.3.1 Overview of the EvBot III Sensorimotor Network

The sensorimotor elements for the EvBot III platform are movement, olfaction, and power. These modal-

ities, as well as their properties, are summarized in Table 5.1.

Table 5.1: Sensorimotor Modalities and Their Components

Name Properties
Motor Turn angle

Drive distance (m)
Power Current charge

Needs charge (true/false)
Is charging (true/false)

Olfaction Calculated distance to alcohol source
Calculated angle to alcohol source
Max alcohol sensor value
Normalized 0° Sensor 0 value
Normalized 0° Sensor 1 value
Normalized 0° Sensor 2 value
Normalized 0° Sensor 3 value
Normalized 0° Sensor 4 value
Normalized 0° Sensor 5 value

The movement modality was composed of a turn angle and a straight drive distance. In order to

simplify the movement commands, the EvBot was first instructed to turn, and then to drive straight. The
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RoboClaw motor driver board (Section 3.5.1) used different PID values for both turning and forward

movement for each motor.

The power modality consisted of the current charge percentage and two Boolean values to indicate

the charge state (i.e., “needs charge” and “is charging”). The current charge percentage was dictated by a

virtual power system. The virtual power system was necessary because the capacity of the OceanServer

power system (Section 3.4.2) was too large to discharge during training experiments. The virtual power

system was programmed to start at an initial charge level that was determined by the number of random

movement steps for a given training experiment (Section 5.4.1). The charge level was decreased by

0.5% with every step when not at the charging station, and increased by 1% when at the charging

station. Threshold percentages were used to indicate that the robot needed to be charged, as well as

that the robot was done charging (Table 5.2). The experimental/charge state (i.e., starting, stopping, and

needs charge) was visually indicated to the user through a top-mounted LED array.

The olfactory modality was composed of a calculated distance to the alcohol source, a calculated

angle to the alcohol source, an overall maximum alcohol sensor value (0-5V), and normalized sensor

values for the initial base orientation of each of the six sensors. The alcohol sensors were sampled using

the 14-bit ADC onboard the USB-6009 Daq (National Instruments). An alcohol homing algorithm was

used to determine the distance and angle to the alcohol source (Section 4.6.1).

5.3.2 Implementation of the EvBot III Sensorimotor Network

The sensorimotor network for the EvBot III was initially implemented in a Linux environment using

C++. The code was later ported to LabVIEW and implemented using a Sony VAIO laptop running

Windows 7-64bit. This was done in order to speed up the development process in terms of hardware and

software integration, as well as make training/testing to be more straightforward in terms of selecting the

appropriate options. In the LabVIEW programming environment, all user-defined inputs and selected

outputs (Fig. 5.2) are tied to an element on a user interface (referred to as the front panel). The front

panel of the sensorimotor network program included all of the necessary inputs for configuring and

running the EvBot’s sensorimotor network (Fig. 5.3 and Fig. 5.4).
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Figure 5.2: EvBot Sensorimotor Network LabVIEW Block Diagram
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Figure 5.3: Complete EvBot Sensorimotor Network LabVIEW Front Panel

Initializations

The commonly used inputs to the LabVIEW sensorimotor network are described in Table 5.2 (for a

complete listing all the inputs, see Appendix B). In order to indicate the current state of the EvBot’s

sensorimotor network to the developer/experimenter, the front panel outputs described in Table 5.3 were

used.

Main Loop

The steps taken in the main loop of the sensorimotor network program were the same regardless of

whether it was a training or a testing run. First, the simulated power modality was sampled. If the EvBot

was at the charging station, the percent charge was increased by 1%, otherwise the percent charge was

decreased by 0.5%. The olfactory sensory system was sampled next. After sampling was complete, the

next movement command (distance and turn angle) was determined. If the EvBot was training and the

charge level was adequate, the movement command was selected from the Matlab-generated random

point (Section 5.4.1) corresponding to the current loop number. If the EvBot was training and the charge

level was not adequate, then the next movement command was calculated using the alcohol homing

algorithm (Section 4.6.1). Finally, if the network was being tested, then the output of the virtual state of

the motor modality’s sensorimotor node was used. After the movement command was determined, the

EvBot completed the move, and the network was updated.
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Figure 5.4: Commonly Used Portion of LabVIEW Sensorimotor Network Front Panel

Updating the Sensorimotor Network

As previously mentioned, each sensorimotor node can be described by five components: the delayed

state, the current state, the virtual state, the state change, and the virtual state change (Fig. 5.1). These

states are updated once per cycle (Fig. 5.5). After the EvBot has executed a movement command, the

movement command is set to the current state of the motor element, and the previous current state is

moved to the delayed state. Then, the current state of each sensorimotor node is set to the current value

of the corresponding element, and the previous current state is moved to the delayed state. The virtual

state is then determined by averaging the weighted values of the other sensorimotor nodes. After this, the

state change and the virtual state change are calculated. Finally, the virtual state is used as the command

to the sensorimotor element.
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Table 5.2: EvBot Sensorimotor Network LabVIEW Commonly Used Inputs

Name Type Training Testing Description
Stop boolean FALSE FALSE TRUE to stop main VI xecuation
Training boolean TRUE FALSE TRUE if training experiment
Base Comm Port VISA COM4 COM4 Comm port used to control base movement
Charge Step Distance double 0.65 0.65 Largest step (m) robot makes to charging

station when “needs charge”
Start Charge Station boolean – – TRUE if start at charging station
Adjust Initial Charge boolean – – TRUE if initial charge adjusted for # of ran-

dom steps and added charge from starting
at charging station

Save Raw Data boolean TRUE TRUE TRUE if raw alcohol values saved to disk
Stop Alcohol Source boolean FALSE FALSE TRUE if robot stops at alcohol source
N Steps After Stop int32 10 10 # of cycles to wait at alcohol source before

stopping experiment
Stop Done Charging boolean TRUE TRUE TRUE to stop VI when “Done Need Charge

Level” is reached
Pause boolean FALSE FALSE Pauses VI execution
At Charging Station boolean – – TRUE if robot is at charging station
N Alcohol Readings int16 15 15 # of alcohol readings to average
Wait Time double 100 100 Time (s) to wait after each movement be-

fore sampling
N Random Moves int32 25 25 # of random moves before needing charge
Reinitialize Weights boolean – – TRUE on 1st training run to set weights to

initial zero value
Initial Charge double – – % initial charge for simulated battery
Decrement Charge double – – % that charge will decrease after each non-

charging cycle
Increment Charge double – – % that charge will increase after each

charging cycle
Need Charge Level double – – Level (%) at which “Needs Charge” is

TRUE
Done Need Charge
Level

double – – Level (%) at which battery is considered
fully charged

Time Step (ms) uint32 0 0 Specify cycle time step (ms) (un-used)
Movement File string – – Pre-generated random movements file
Training Run # int32 n n Run # or movement file
Drive Method enum Read

move-
ment
file

Testing
drive

Selection determines if a pre-generated
movement file is used for training or if sen-
sorimotor network is used for testing
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Table 5.3: EvBot Sensorimotor Network LabVIEW Outputs

Name Type Description
Current Charge % double The current charge percentage of the simulated battery
Initial Charge % double The initial charge of the simulated battery
N Loop Cycles int32 The current cycle number
Angle (degrees) double The currently commanded angle movement
Distance (m) double The currently commanded distance movement
Needs Charge boolean TRUE if the current charge is below the “Needs Charge

Level %”
Charging boolean TRUE if “At Charging Station” is TRUE
At Alcohol Source STOP boolean TRUE if the VI is stopping due to being at the alcohol

source (determined by the measured max alcohol value)
NAN Stop boolean TRUE if the VI is stopping due to a sensorimotor value

being NAN
Done Charging STOP boolean TRUE if the VI is stopping due to beind done charging
Modality Outputs cluster Holds the final values of all the modality values

Figure 5.5: Sensorimotor Network Flow Chart

Determining the Weighted Values

The EvBot III network has three nodes corresponding to the movement, olfaction, and power modalities.

Each node is described by five states (Fig. 5.1). By designating one node as a destination node and all

others as source nodes, the virtual state of the destination node is connected to the virtual state changes

of the source nodes using weighted links (Fig. 5.1). The virtual state of the destination node is calculated

by averaging the weighted virtual state changes of the source nodes that it is connected to.
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Table 5.4: Sensorimotor Link Weight Sizes

Destination Node
Motor Power Olfactory

Source Node
Motor 2x3 2x9
Power 3x2 3x9

Olfactory 9x2 9x3

The weights associated with each link are described by a matrix (Table 5.4) whose dimensions

correspond to number of properties (Table 5.1) for each modality. The link weights are updated using the

state change of the source node and the current state of the destination node. The weights are initialized

to zero, and their values increased/decreased based upon correlations between the connected elements

(i.e., if two connected elements are active at the same time, then the weight is increased). For complete

mathematical description of the weight updates see Appendix A.

5.4 Training and Testing the EvBot III Sensorimotor Network

The sensorimotor network was trained by learning correlations between all of the sensorimotor elements

when: (1) the EvBot did not need to be charged and was moving randomly about an arena and (2)

the EvBot needed to be charged and was navigating to the alcohol source charging station. Eight sets

of training and testing experiments were conducted. For Experiments 1-4, a look-up table was used

to command drive angle and distance. Due to problems with drift, PID control was implemented for

the remaining experiments. The alcohol sensors were set up using Configuration 1 (Section 4.3.1) for

Experiments 1-6, and Configuration 2 (Section 4.3.1) for Experiments 7-8.

The experiments were conducted in the testing arena described in Section 4.3.2. The arena was

modified to include a charging area, which was indicated by a circle on the floor that was twice the

diameter of the EvBot III (Fig. 5.6). At the beginning of each training or testing run, the reservoir

was refilled with fresh alcohol and any remaining alcohol was discarded. Additionally, the reservoir

was refilled with alcohol throughout a training or testing run whenever the laptop battery needed to

be replaced. A camera with a fisheye lens was centered above the testing arena lens and used to take

pictures of the EvBot to track its movement during training and testing.

5.4.1 Random Movement Generation

For Experiments 5-7, the EvBot was commanded to drive randomly for 25 steps. These random move-

ments were calculated offline using Matlab, and read from a file by the EvBot during its random move-
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Figure 5.6: Training/Testing Arena

ment portion of training. The Matlab program included the dimensions of the arena and coordinates of

the charging station (i.e., the origin of the arena and initial position of the robot) as inputs. Each random

movement was calculated and tested to make sure that it did not enter a user-defined buffer zone. If the

point was located within the buffer zone, it was simply re-generated. The buffer zone was included to

ensure that the accumulated error resulting from the actual EvBot movements did not cause it to run into

the arena walls.

5.5 Experiment 1

The random movement correlation building method used by Bovet and Pfeifer for the AMouse project

was implemented for the current experiment [3, 66, 93].
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5.5.1 Methods

For Experiment 1, the EvBot started at Position 1 (Fig. 5.6), and was pointed directly away from the

alcohol source. The initial charge was set to 30%, and the EvBot was driven randomly until a battery

charge level of 20% was reached (i.e., 10 steps after the “needs charge” level was achieved). These

random movements were calculated on-board the EvBot (Note: the Matlab random movement generator

was not used). Eight training cycles were performed.

5.5.2 Results

During testing phase of Experiment 1, the EvBot did not progress towards the alcohol source regardless

of whether it needed charge or not. Although the EvBot appeared to pendulate across the alcohol plume

when it needed charge (Fig. 5.7), the sensorimotor weight plots (Fig. 5.8) do not show an obvious

correlation that would lead to this action.

5.6 Experiment 2

A more tightly controlled training protocol was employed for Experiment 2 in order to encourage the

formation of a higher correlation between the EvBot needing charge and driving towards an area of

higher alcohol concentration.

5.6.1 Methods

For Experiment 2, the EvBot started at Position 2 (Fig. 5.6), and was pointed directly towards the alcohol

source (note: in early experiments, a different motor control strategy was used and the EvBot tended to

drift left; it was rotated ≈7° to the right of center to accommodate for this so that it would drive straight

to the charging circle). The initial charge was set to 25% (i.e., “needs charge” was set to TRUE), and

the EvBot was programmed to drive straight to the alcohol source. Once at the charging location, the

EvBot was programmed to wait 10 cycles. Ten training runs were performed using this setup. Then, the

initial charge was set to 30%, and the EvBot was programmed to remain at the starting position until the

charge level had depleted to 25% (i.e., “needs charge”). Once the “needs charge” level was achieved,

the EvBot was again programmed to drive straight to the alcohol source in one step and remain there for

10 cycles. Ten training runs were performed using this setup.

5.6.2 Results

During the testing phases of this experiment, the EvBot appeared to drive randomly regardless of

whether it needed to be charged or not, and was unable to successfully navigate to the alcohol source

Fig. 5.9). Looking at the weights (Fig. 5.10) and comparing them to those from Experiment 1 (Fig 5.8),
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the Power-to-Olfactory and Olfactory-to-Power weights were larger due to increased number of training

runs. Also, the Motor-to-Power and the Power-to-Motor weights were smaller and had reversed signs.

However, these differences did not result in the EvBot learning to navigate to the alcohol source when

charge was needed.

5.7 Experiments 3 and 4

It was hypothesized that navigation would be improved by increasing the range of alcohol values en-

countered during training. For Experiments 1 and 2, the EvBot started in the center of the arena (Position

2; Fig. 5.6); this produced a measured range of alcohol values from 2.085V to 2.295V, for a difference

of 0.210V. For Experiments 3 and 4, the EvBot started at the farthest corner of the arena from the alco-

hol source (Position 3; Fig. 5.6); this produced a range of alcohol values from 2.085V to 2.586V, for a

difference of 0.501V. This increased the measured range of alcohol values over two-fold.

5.7.1 Methods

For Experiment 3, the EvBot started at Position 3 (Fig. 5.6), and was pointed directly towards the alcohol

source (note: because the EvBot tended to drift left when driving straight, it had to be moved ≈15° to

the right of center so that it would end in the charging circle). This position was selected in order to

create a large difference between the starting and ending alcohol concentration (i.e., to increase the

correlation between alcohol concentration and “Is Charging”). The initial charge was set to 30%, and

the EvBot was programmed to remain at the starting position until the charge level had depleted to 25%

(i.e., “Needs Charge”). Once this level was achieved, the EvBot was again programmed to drive straight

to the alcohol source in one step and remain there for 10 cycles. Ten training runs were performed.

With Experiment 4, turning was incorporated into the training in order to build correlations between

the alcohol concentration and the direction of movement. The same setup and protocol were used as for

Experiment 3, except the EvBot was pointed at different orientations to start the training run: +45°, -45°,

+90°, -90°, and 180°. Again, the initial charge was set to 30%, and the EvBot was programmed to remain

at the starting position until the charge level had depleted to 25%. Then, the EvBot was programmed

to rotate to face the alcohol source, and drive straight to the source in one step and remain there for 10

cycles. Ten training runs were performed.

5.7.2 Results

During the testing phases of Experiments 3 and 4, the EvBot proved unable to successfully home to

the alcohol source. Figures 5.11-5.13 show the EvBot’s movement pattern when tested from Position

3 and (1) pointing directly towards the alcohol source (Fig 5.11), (2) pointing ≈45° from the alcohol
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source (Fig 5.12), and (3) ≈1m closer to the alcohol source (from position 3) and pointing 180° from

the alcohol source (Fig 5.13).

For Experiment 3, the EvBot waited until it needed to be charged, and then drove straight regardless

of where it was in relation to the the alcohol source. Looking at the sensorimotor weights for Experiment

3 (Fig 5.14), the weights for Power-to-Motor and Olfactory-to-Motor were nearly zero. Additionally, the

Power-to-Olfactory and Olfactory-to-Power show similar amplitude and distribution compared to those

from Experiments 1 and 2.

Turning was added to the protocol for Experiment 4 in order to avoid biasing the network to build

correlations relating driving straight to needing charge. However, during the testing phase of Experiment

4, the EvBot continued to drive straight regardless of where the alcohol source was whenever it needed

to be charged. Looking at the sensorimotor weights for Experiment 4 (Fig 5.15), similar distributions

of Power-to-Olfactory and Olfactory-to-Power are seen across Experiments 1-4. The amplitude of the

Power-to-Olfactory and Olfactory-to-Power weights is larger than Experiments 1 and 3, but similar to

Experiment 2. This is likely related to the fact that twice as many training runs were used in Experiments

2 and 4 compared to Experiments 1 and 3. Additionally, the Power-to-Motor and Olfactory-to-Motor

weights did not increase significantly from Experiment 3. Taking these observations into consideration,

the behavior observed in the testing phase of Experiment 4 can be explained, although it is puzzling

that the strongest drive correlation is seen in the Motor-to-Power weights and not in either the Power-

to-Motor or Olfactory-to-Motor weights.

5.8 Experiment 5 and 6

The protocol adopted for Experiments 5 and 6 incorporates the random movements used in Experiment

1 with the directed movements used in Experiments 2-4. It was hypothesized that more generalizable

correlations could be built if the robot moved randomly about the maze environment before needing

charge versus limiting the robot to one location. However, directed movement was used once the robot

needed to be charged in order to guide correlations for alcohol homing.

5.8.1 Methods

For Experiment 5, the EvBot started at Position 1 (Fig. 5.6), and was pointed directly away from the

alcohol source. The EvBot was programmed to move randomly for 25 steps (Section 5.4.1), and the

initial charge adjusted so that the “needs charge” level would be achieved after these 25 steps. Due to

the movement error accumulated during these 25 steps, the LabVIEW VI execution was paused and

the desired turn angle and distance measured and entered. The EvBot was then programmed to orient

to face towards the alcohol source and drive straight for 5 equi-spaced steps. Three training runs were

performed before the experiment was halted due to errors in the pre-generated movements (i.e., the
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buffer zone was not large enough, causing it to run into the arena wall; it was later increased to 2x the

diameter of the EvBot).

The same setup was used for Experiment 6, except the random movements were corrected to prevent

the EvBot from hitting the wall of the arena. Ten training runs were performed using this setup.

5.8.2 Results

During the testing phases of Experiment 6, the EvBot proved unable to successfully home to the alcohol

source. In this case, the EvBot would drive backwards until it needed to be charged, and then it would

drive straight (i.e., the test was started with an initial charge of 26.5%, resulting in two movements before

the EvBot would need to be charged). This movement was independent of the presence or direction of

alcohol. Two test runs were performed with the EvBot pointing towards the charging circle, one with

alcohol (Fig 5.16) and one without alcohol (Fig 5.17). Another test run (with alcohol) was performed

with the EvBot pointing 90° away from the charging circle (Fig 5.18). The testing runs were stopped

when the EvBot made contact with the arena wall.

Looking at the weights from Experiment 6 (Fig 5.19), the correlations that motivate the desire to

drive are Power-to-Motor and Olfactory-to-Motor. Within those, “drive distance” was the most highly

correlated with “needs charge”. While this would not be a factor when the EvBot’s power was sufficient

(“needs charge” is 0), it would be the dominant factor when the EvBot needed to be charged (“needs

charge” is 1). This observation would explain whey the EvBot drove straight regardless of its orientation

to the alcohol source when it needed to be charged.

5.9 Experiment 7

As manually driving the EvBot straight toward the alcohol source had not proven to be successful,

an alcohol homing algorithm (Section 4.6.1) was developed and used during training when the EvBot

needed to be charged. It was hypothesized that this would enable meaningful correlations to be built for

homing if the EvBot actively used the alcohol sensors to navigate to the alcohol source.

5.9.1 Methods

For Experiment 7, the EvBot started at Position 1 (Fig. 5.6), and was pointed directly away from the

alcohol source. The EvBot was programmed to move randomly for 25 steps (Section 5.4.1), and the

initial charge adjusted so that the “needs charge” level would be achieved after these 25 steps. After

these 25 steps, the EvBot III Alcohol Homing Algorithm (Section 4.6.1) was used to guide the EvBot

to the alcohol source. The drive distance was calculated by scaling a user-defined allowable driving

range (i.e., 0.20-0.65 m) by the estimated distance to the alcohol source. This estimated distance was

expressed as a percent, with 100% representing the furthest point from the alcohol source. The estimated
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distance was determined from a curve fit of the alcohol concentration gradient (Equation 4.1, Section

4.3.2). When the EvBot reached the charging station, it was programmed to remain there for 10 cycles.

Seven training runs were performed.

5.9.2 Results

Although the EvBot could successfully navigate to the alcohol source when explicitly told to use the

EvBot III Alcohol Homing Algorithm, the EvBot was unable to successfully home to the alcohol source

when driven using the learned correlation weights. The testing phase of Experiment 7 was conducted

with the EvBot starting from Position 2 (Fig. 5.6). The results are summarized in Figures 5.20-5.23, with

the EvBot pointing directly toward the charging circle when alcohol was present (Fig. 5.20) and when

alcohol was not present (Fig. 5.21), as well as pointing directly away from the source when alcohol was

present (Fig 5.22) and when it was not present (Fig. 5.23). In all cases, the EvBot initially drove straight,

and then continued to drive straight after it needed to be charged regardless of the presence or location

of alcohol.

Looking at the weights from Experiment 7 (Fig 5.24), the correlations that motivate the desire to

drive are Power-to-Motor and Olfactory-to-Motor. Within those, “drive distance” was the most highly

correlated with “alcohol sensor 2”. With this high Olfactory-to-Motor weight, any value received from

alcohol sensor 2 would overpower any other weights that directly connect to the motor sensorimotor

element (i.e. the EvBot base) and drive the base. Also, the weights seen in Motor-to-Power, where

“needs charge” and “drive angle” have a high positive correlation, and in Power-to-Motor, where “needs

charge” and “drive angle” have a strong negative correlation, could be explained by the zigzag approach

exhibited by the EvBot III alcohol homing algorithm.
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5.10 Experiment 8

5.10.1 Methods

The EvBot started at Position 2 (Fig. 5.6), and was pointed directly toward the alcohol source. The

initial charge was set to 25% (i.e., “needs charge” was set to TRUE), and the EvBot III Alcohol Homing

Algorithm (Section 4.6.1) was used to guide the EvBot to the alcohol source. When the EvBot reached

the charging station, it was programmed to remain there for 10 cycles. Six training runs were performed.

5.10.2 Results

The testing phase of Experiment 8 was conducted with the EvBot starting from Position 2 (Fig. 5.6). The

results of these tests when the EvBot was (1) pointing directly toward the alcohol source with alcohol

present (Fig. 5.25), (2) pointing directly away from the source when no alcohol was present (Fig 5.26),

(3) and pointing 90° away from the charging location when no alcohol was present (Fig 5.27). In all

testing cases, the EvBot initially drove straight, and then continued to drive straight after it needed to be

charged regardless of the location or presence of alcohol.

Looking at the weights from Experiment 8 (Fig 5.28), they are very similar to those for experiment

7. Again the correlations that motivate the desire to drive are Power-to-Motor and Olfactory-to-Motor.

Within those, “drive distance” was the most highly correlated with “alcohol sensor 2”. With this high

Olfactory-to-Motor weight, any value received from alcohol sensor 2 would overpower any of the other

weights that directly connect to the motor node and drive the base. Also, the weights seen in Motor-to-

Power, where “needs charge” and “drive angle” have a high positive correlation, and in Power-to-Motor,

where “needs charge” and “drive angle” have a strong negative correlation, could be explained by the

zigzag approach exhibited by the EvBot II alcohol homing algorithm.
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5.11 WEKA

The WEKA Data Mining and Machine Learning software [112, 113] was used to generate a compar-

ison of the information quality as it related to the ability to learn the direction to the alcohol source

from the recorded sensor data with the sensorimotor network. In order to perform this analysis, all of

the sensor data was saved for each of the runs. Then, the actual angle to the alcohol source was man-

ually determined from the visual recordings of the experiment. The measured angles to the alcohol

source at each location were partitioned into 12 sectors: north, north-north-east, east-north-east, east,

east-south-east, south-south-east, south, south-south-west, west-south-west, west, west-north-west, and

north-north-west. The training data was obtained from the time periods when the EvBot was actively

tracking to the alcohol source. Although the J48 decision tree was the most accurate method of deter-

mining the direction to the alcohol source using only the normalized alcohol sensor values, it was only

able to successfully locate the source 25% of the time.
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Figure 5.7: Testing 1-7 EvBot movement
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Figure 5.8: Training 1-7 Sensorimotor Weights
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Figure 5.9: Testing 2-1 EvBot movement
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Figure 5.10: Training 2-2-19 Sensorimotor Weights
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Figure 5.11: Testing 4-3-19, run 0, EvBot movement
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Figure 5.12: Testing 4-3-19, run 1, EvBot movement
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Figure 5.13: Testing 4-3-19, run 2, EvBot movement
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Figure 5.14: Training 3-3-9 Sensorimotor Weights

72



Figure 5.15: Training 4-3-19 Sensorimotor Weights
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Figure 5.16: Testing 6-1-9, run 0, EvBot movement
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Figure 5.17: Testing 6-1-9, run 0 no alcohol, EvBot movement
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Figure 5.18: Testing 6-1-9, run 1, EvBot movement
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Figure 5.19: Training 6-1-9 Sensorimotor Weights
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Figure 5.20: Testing 7-1-5, run 0, EvBot movement
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Figure 5.21: Testing 7-1-5, run 0 no alcohol, EvBot movement
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Figure 5.22: Testing 7-1-5, run 1, EvBot movement
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Figure 5.23: Testing 7-1-5, run 1 no alcohol, EvBot movement
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Figure 5.24: Training 7-1-5 Sensorimotor Weights
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Figure 5.25: Testing 8-1-5, run 0, EvBot movement
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Figure 5.26: Testing 8-1-5, run 1, EvBot movement
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Figure 5.27: Testing 8-1-5, run 2, EvBot movement
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Figure 5.28: Training 8-1-5 Sensorimotor Weights
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5.12 Discussion

Sensorimotor networks have the potential to increase the effectiveness of robots that are operating in

dynamic environments on complex tasks. A fully interconnected sensorimotor network that was based

on the work of Bovet, et. al. at the AI Lab, University of Zurich [3, 66, 93] was implemented on the

EvBot III platform. Originally, the sensorimotor network was designed to be executed in C++ and run

in a Linux environment. However, the decision was made to implement the final network in LabVIEW

on a Windows 7 PC to speed up the development process.

The network contained motor, power, and olfactory node modalities. The motor modality consisted

of the commanded EvBot turn angle and drive distance. The power modality consisted of the current

charge percentage, a flag to indicated that the EvBot needed to be recharged, and a flag to indicate

that the EvBot was charging. The olfactory modality consisted of the calculated distance to the alcohol

source, the calculated angle to the alcohol source, the maximum alcohol sensor value, and the normal-

ized sensor readings for each of the six alcohol sensors at the zero degree orientation.

Training experiments were conducted in order to build the sensorimotor weights to correlate in-

creased alcohol concentration with increased charge. It was intended that this would result in the EvBot

learning to autonomously navigate up an alcohol plume to the source when it needed to be re-charged.

The experiments were designed with the main goal of limiting experimenter bias.

For Experiment 1, only random movements were used because it was hypothesized that this would

give the sensorimotor network the best chance of developing novel, emergent behaviors for homing.

During the testing phase of Experiment 1, the EvBot showed some interesting behavior by pendulating

across the alcohol plume when it needed to be charged; however, it did not progress toward the alcohol

source.

For the next series of experiments, the training phase included the EvBot remaining at the starting

location until it needed charge before being instructed to drive towards the charging station. In Experi-

ment 2, the EvBot was actively driven down the alcohol plume to the charging station in order to help

build a correlation between charge and an increasing alcohol gradient. During testing, the EvBot per-

formed worse than in the first run, and simply moved randomly without regard for the alcohol gradient

or its charging state. For Experiment 3, the same protocol was used as compared with Experiment 2,

except the EvBot started at Position 2 versus Position 3 (Fig. 5.6). This was done in order to increase

the difference in values for the gradient from 0.291V for Experiment 2, to 0.501V for Experiment 3.

It was anticipated that the larger gradient would further build correlations between increasing alcohol

concentration and the charging location. However, when testing these trained sensorimotor weights, the

EvBot drove straight when it needed to be charged regardless its orientation to the alcohol source. In

order to correct this behavior, which was seen as a result of poor experimental design, the EvBot was

positioned at different starting angles to the alcohol source. Therefore, the EvBot had to turn towards the

alcohol source before driving forward versus simply driving forward whenever it needed to be charged.
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Unfortunately, this more rigorous training protocol did not effect the behavior of the EvBot during test-

ing, although there was a slight increase in weight values due to the increase in the number of training

runs needed to include all straight training runs and the angled training runs.

For Experiments 5 and 6, the random movement setup from the first training run was included with

the directed training from Experiments 2-4. In order to do this, the training run was started with the

EvBot at the charging circle (i.e., location 1; Fig. 5.6), and then the EvBot was driven randomly with

movements that were generated offline using Matlab in order to eliminate real-world collisions. Once

the EvBot had performed 25 random movements, the charge level was depleted so that it would need

to be charged, and the EvBot was commanded to turn and drive straight towards the charging circle

in 0.5m steps. Due to larger than expected movement error in Experiment 5, the EvBot experienced

collisions with the arena walls. In order to address this, the safety margins were increased in the Matlab

random movement generation code, and the experiment was run again without collisions (Experiment

6). Although the results for Experiment 6 were slightly different from those seen with Experiments 3

and 4 (i.e., the EvBot drove backwards until it needed to be charged before driving straight, regardless

of the location of the alcohol source), it was still unable to navigate to the alcohol source.

As manually driving the EvBot to the alcohol source had not proven successful, an alcohol homing

algorithm that used the actual values of the alcohol sensors was developed (Section 4.6.1) and used

during training for Experiments 7 and 8. It was hypothesized that this would build more accurate sen-

sorimotor correlations because the actual sensor values would be used in the training movements. For

Experiment 7, the EvBot performed random movements until it needed to be charged, and in Experi-

ment 8, the EvBot was started needing charge. The results of testing for both of these experiments was

identical; the EvBot drove forward immediately regardless of whether it needed to be charged or of the

presence of alcohol.

Although the EvBot was unable to successfully navigate to the alcohol source, it did demonstrate

some interesting behavior. For example, in some of the early experiments where the EvBot was turned

15° off-center, the Olfactory-to-Power weights for sensors 0 and 1 showed substantially higher values

than for the other alcohol sensors (i.e., in this position, sensors 0 and 1 were the closest two sensors

pointing toward the alcohol source). Additionally, the Power-to-Olfactory weights for sensors 0 and 3

had the highest values; these sensors were at the front-center and rear-center of the robot, and would

seem likely sensors for a user-defined rule-based controller.

The EvBot III Sensorimotor Network’s ability to navigate to the alcohol source may be improved if

better sensors were used. This is supported by the fact that the WEKA software could only determine

the location of the alcohol source with, at best, 25% accuracy. Although the MQ-3 metal oxide alcohol

sensors are inexpensive and easy to use, they are difficult to calibrate, suffer from long settling delays,

and exhibit drift. Also, they are not sensitive enough to exhibit the needed contrast from the far edge of

the plume to the source location. This lack of alcohol information quality was an additional cause of the

sensorimotor network’s poor performance.
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In addition to improved alcohol sensors, more sensing modalities with a similar layout and response

to the alcohol sensors should be used. Bovet et. al. found that cross-modal correlations emerged from a

partial overlap of sensory modalities that were based on different physical processes. This partial sensory

overlap is captured by the redundancy principle [93]. For this application, wind direction or wind speed

sensors could be used to support the alcohol sensor modality. If redundant sensing modalities were used,

the correlations may better reflect the true analog nature of then environment versus trying to encode

gradient information with binary sensors.

The training experimental setup could have also been improved. For example, in experiments where

the EvBot was commanded to drive forward when it needed to be charged, a reciprocal “learned action”

might easily be described by driving away from the alcohol source when not needing charge, and then

driving forward when needing charge. Even though random movements were eventually used when the

EvBot did not need to be charged, the location of the alcohol source may have also affected the results.

For example, because the alcohol source was positioned in the far corner of the arena near two walls,

the chance of the EvBot driving near the alcohol source / charging area were greatly reduced compared

to if it was positioned in a more central location [93].
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Chapter 6

Summary of Findings

As robotic systems continue to transition from the laboratory to real world environments, it is becom-

ing increasingly difficult to fully prepare for all possible conditions and task challenges. Traditionally,

developers have outfitted mobile platforms with more sensors in order to provide control system with

more information so that appropriate decisions can be made [15–17]. Others have attempted to con-

strain robotic systems by explicitly choosing the base behaviors that the robot will need in order to

perform a task [3,20–23]. Both approaches limit the usefulness of the robot either through “information

overload” [30] or by introducing experimenter bias [3]. However, control architectures that allow for

embodied emergent intelligent behaviors can provide stable, although possibly non-optimal, solutions

to the unpredictable real-world environment [3]. Toward this end, a modular mobile robotic platform

(EvBot III) was developed that could learn and operate autonomously in a dynamic environment with

limited sensor complexity and experimenter bias. Using alcohol sensing as an example application, the

goal of this research was to demonstrate the implementation of a sensorimotor architecture on the EvBot

III base.

The EvBot platform was originally created at the Center for Robotics and Intelligent Machines as

an inexpensive tool for conducting general-purpose robotic research [26]. While versatile, the EvBot

I [26] and II [27] suffer from problems related to slippage in the tread-driven steering system, decreas-

ing battery life, and a noticeable shortage in computational power. The EvBot III was created for this

research to address these problems, as well as increase the modularity and robustness of the platform as

a whole. The EvBot III base has three main parts: (1) the main controller, which is located at the top of

the platform, (2) the circuitry required to drive and power the base, which is located in the bottom of the

platform, and (3) the sensor shield. The main controller is tasked with implementing the higher-level

base commands (i.e., move forward, move backward, turn right, etc.). Currently, the main controller is

implemented in LabVIEW on a laptop running Windows 7 (64-bit). The circuitry required to drive the

base is separate from the main controller; it is responsible for interpreting the higher level commands

into those needed to actually move the base. In the current setup, a differential drive base has been im-
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plemented with the ability to fully rotate the top controller and sensor shield together. Turn angle and

drive distance are sent to the base controller, and those commands are converted to PID-controlled PWM

outputs for each motor. This arrangement allows the drive component to be easily switched out with-

out changing the top, main controller. Finally, the sensor shield is made from lightweight styrene and

encircles the entire robot base. Again, the sensor shield can be easily replaced to change the available

sensor suite. Power to the top controller and sensors is provided and monitored by the OceanServer™

Intelligent Battery and Power System (IBPS™).

A sensorimotor network was implemented on the EvBot III in order to provide the opportunity to

autonomously learn to operate in a dynamic environment with minimal experimenter bias. The sensori-

motor network viewed all of the components as sensorimotor elements, without distinguishing between

sensor elements or actuation elements. A flat organization was achieved by interconnecting all of the

sensorimotor elements and allowing the correlations to build over time; this allowed for the controller

to be shaped by the environmental interactions.

When considering biologically-inspired robotics, chemical sensing provides a good starting point

for basic sensorimotor integration because it is the most widespread sensory modality among living

creatures [28]. Therefore, in order to test the EvBot III’s ability to operate and learn in a dynamic envi-

ronment, an alcohol sensor shield was developed for the robot, and a maze environment retrofitted with

an alcohol source that was positioned at the robot’s charging location. The goal was to implement a

basic hunger mechanism whereby the EvBot III would learn to associate an increase in alcohol concen-

tration with increasing charge. This would result in the EvBot III learning to autonomously navigate to

an alcohol source when it needed to be charged. This is akin to the chemical sensing mechanisms used

by simple organisms to navigate up an odorant plume to a food source [28]. With this base behavior,

increasing complex behaviors could later be added to evolve a robotic control system that could robustly

deal with a dynamic environment.

A series of experiments was developed that included a “learning” phase and a “testing” phase.

Initially, alcohol homing was not explicitly defined, and was left to be learned through sensorimotor

correlations. However, it was found that an alcohol homing mechanism was needed for training, and so

an algorithm was developed that dealt with the inherent variability of the alcohol sensors. This lead to a

further investigation of chemical sensing techniques.

Robotic airborne chemical sensing is commonly implemented using one of three approaches: (1)

using only passively-sampled chemical sensors, (2) using wind direction sensors along with passively-

sampled chemical sensors, and (3) using actively-sampled chemical sensors [28,94,96,98,101,102,107].

While actively-sampled chemical sensors can be more effective, the added power requirements and

weight must be considered for mobile platforms. On the other hand, passively-sampled chemical sensors

are simpler and more efficient, they do not perform as well when the wind speeds are low and/or variable

(i.e., a typical indoor environment).
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In order to address these challenges, a new alcohol homing algorithm was developed for the EvBot

III. A passively-sampled approach was used with six MQ-3 metal oxide alcohol sensors. Two different

sensor configurations were investigated, and two different algorithms were tested. In the first configu-

ration, the alcohol sensors were positioned at the bottom of the robot and facing tangent to the plume.

The sensors were evenly-spaced around the circumference of the robot. In the second configuration, the

sensors were positioned at the top of the robot and facing perpendicular to the plume. The sensors were

evenly-spaced around the robot at twice its diameter. Using the same algorithm, the second configuration

was found to be more accurate and produced a greater differentiation in sensor readings.

With respect to the sensor algorithms, the first approach used a reading from each of the six alco-

hol sensors to calculate the x- and y-components (based off of concentration strength) to the alcohol

source. Those components were summed to determine the resultant vector. For the second algorithm,

four readings from each sensor were taken (i.e., at the initial orientation, and then rotated in three, 90°

increments). The readings were normalized for each sensor with respect to itself, and the resultant vec-

tors from each of the readings were computed and averaged. Then, the resultant six vectors (i.e., one

for each sensor) were averaged in order to determine the final angle to the alcohol source. When imple-

mented, this algorithm produced an emergent zigzag homing approach similar to the Modified Bombyx

Mori algorithm [95], the Zigzag Approach [98], and the Dung Beetle Algorithm [94]. Here, the EvBot

III would drive to the center of the alcohol plume, and then pendulate back-and-forth across the plume

until it reached the charging location. Although the EvBot III could successfully navigate to the alcohol

source when this homing algorithm was used, navigation may be improved with better alcohol sensors.

For example, although the MQ-3 metal oxide alcohol sensors were inexpensive and easy to use, they

were difficult to calibrate, suffered from long settling delays, and exhibited drift. Also, they are not

sensitive enough to exhibit the needed contrast from the far edge of the plume to the source location.

The custom alcohol homing algorithm was incorporated into the “learning” phase of the sensorimo-

tor experiments such that the EvBot III was instructed to move randomly until it needed to be charged,

and then use the alcohol homing algorithm to navigate to the source. Although the sensorimotor network

developed correlations using this approach, it still did not build sufficient correlation relating increased

alcohol concentration with charging. Therefore, in addition to improved alcohol sensors, sensing modal-

ities with a similar layout and response to the alcohol sensors should be used. Sensory overlap is the

driving force behind the redundancy principle, which strengthens the development of more relevant,

cross-modal correlations [93]. For example, the addition of wind direction or wind speed sensors could

have supported the information available from the alcohol sensors and strengthened these correlations.

This redundancy would have better reflected the true analog nature of the environment compared to try-

ing to encode gradient information using binary sensors. Additionally, the wind direction sensors could

be used to activate the appropriate sensors on the base that faced up the alcohol plume. This would

help better tune the weights for the alcohol sensors by increasing the difference between their readings.

An accurate mathematical model of the various plume detection sensors could also be used to give an

92



additional virtual sensor to increase the effectiveness of the alcohol homing algorithm and the learned

sensorimotor network. An accurate mathematical model would also help in the analysis of the homing

algorithm and learned sensorimotor network.

The training experimental setup could have also been improved. For example, in experiments where

the EvBot III was commanded to drive forward when it needed to be charged, a reciprocal “learned

action” might easily be described by driving away from the alcohol source when not needing charge,

and then driving forward when needing charge. Even though random movements were eventually used

when the EvBot III did not need to be charged, the location of the alcohol source may have also affected

the results. For example, because the alcohol source was positioned in the far corner of the arena near two

walls, the chance of the EvBot III driving near the alcohol source / charging area were greatly reduced

compared to if it was positioned in a more central location [93]. The use of tall walls surrounding the

alcohol plume could have also led to a more artificial and complex plume, making the training more

difficult. In addition to removing the walls surrounding the arena, adding a fan at the far side of the

arena to draw the plume across the arena could make the alcohol plume more realistic. Using a fan to

pull the plume across the arena would also help the formation of the plume’s streamlines.

This dissertation reported on the use of a flat, homogeneous sensorimotor network for autonomously

learning to navigate up an alcohol plume to a charging area. A new modular and highly reconfigurable

mobile robot platform was designed and built to serve as the testbed. Two alcohol sensor configurations,

along with two alcohol homing algorithms, were tested, with one combination exhibiting a zigzag navi-

gational approach that resembled those observed when using previously developed biologically-inspired

algorithms. This algorithm was incorporated into the training phase of the sensorimotor experiments

where it was hoped that the EvBot III would learn to associate a higher concentration of alcohol with

increasing charge. Although there was evidence to suggest that the sensorimotor network could eventu-

ally learn this correlation, the EvBot III was unable to successfully home to the alcohol source during

the testing phase of the sensorimotor experiments. Future work includes using more sensitive alcohol

sensors, incorporating additional sensors that could provide overlapping information (i.e., wind direc-

tion and speed), and improving the experimental setup to increase the information quality exhibited by

the cross-modal correlations built during training. Ultimately, the incorporation of sensorimotor net-

works in robotic systems will lead to emergent intelligence and robust behavior through autonomous

robotic reflexes. This will enable experimenters and designers to focus on higher-level tasks, and push

the lower-level actions to the controller to allow for more complex behavior.
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[38] J. W. M. Van Dam, B. J. A. Kröse, and F. C. A. Groen, “Neural network applications in sensor

fusion for an autonomous mobile robot,” in Reasoning withUncertainty in Robotics., Proceedings

of the International Workshop on, (London, UK), pp. 263–278, Springer-Verlag, 1996.

[39] B. Siciliano and O. Khatib, eds., Springer Handbook of Robotics. Springer Berlin, 2008.

[40] D. Hall and J. Llinas, “An introduction to multisensor data fusion,” Proceedings of the IEEE,

vol. 85, no. 1, pp. 6–23, 1997.

[41] T. L. Griffiths and A. Yuille, “Technical introduction: A primer on probabilistic inference,” Trends

in Cognitive Sciences, vol. 10, no. 7, 2006.

[42] J. Manyika and H. F. Durrant-Whyte, Data Fusion and Sensor Management: A Decentralized

Information-Theoretic Approach. Robotics: Vision, Manipulation and Sensors, Upper Saddle

River, NJ, USA: Prentice Hall PTR, 1995.

[43] D. L. Hall and J. Llinas, Handbook of Multisensor Data Fusion. The Electrical Engineering and

Applied Signal Processing Series, CRC Press, 2001.

[44] Y. Zhu, Multisensor Decision and Estimation Fusion. The Kulwer International Series on Asian

Studies in Computer and Information Sciences, Kluwer Academic Publishers, 2003.

[45] N. S. V. Rao, “Projective method for generic sensor fusion problem,” in Multi-SensorFusion

and Integration for Intelligent Systems., Proceedings of 1999 IEEE International Conference on,

(Taipei, Taiwan), R.O.C., August 1999.

[46] N. S. Rao, E. Oblow, C. Glover, and G. Liepins, “N-learners problem: Fusion of concepts,” in

System, Man and Cybernetics., IEEE Transactions on, vol. 24, pp. 319–327, IEEE, 1994.

[47] N. Rao, “Fusion methods for multiple sensor systems with unknown error densities,” Journal of

Franklin Institute, vol. 331B, no. 5, pp. 509–530, 1994.

98



[48] N. S. Rao, “A generic sensor fusion problem: Classification and function estimation,” workshop

presentation, Oak Ridge National Laboratory, Cagliari, Italy, June 2004. Sponsered by the Office

of Naval Research.

[49] K. J. Hintz, “Gmugle: A goal lattice constructor,” in Signal Processing,Sensor Fusion, and Target

Recognition X., Proceedings of the SPIE International Symposium on (I. Kadar, ed.), vol. 4380,

(Orlando, USA), pp. 324–327, SPIE, April 2001.

[50] W. Komorniczak and J. Pietrasinski, “Selected problems of mfr resource management,” in Infor-

mation Fusion., Proceedings, 3rd International Conference on, pp. WeC1–3–WeC1–8, 2000.

[51] J. Lopez, F. Rodriguez, and J. Corredera, “Symbolic processing for coordinated task management

in multiradar surveillance networks,” in Information Fusion., Proceedings of the International

Conference on, (Las Vegas), pp. 725–732, 1998. Fusion ‘98 conference.

[52] G. A. McIntyre and K. J. Hintz, “A comprehensive approach to sensor management, part iii: Goal

lattices,” in Systems, Man, and Cybernetics (SMC)., IEEE Transactions on, IEEE, April 1999.

[53] L. Johansson, R. M., and N. Xiong, “Perception management - an emerging concept for informa-

tion fusion,” Information Fusion, vol. 4, no. 3, pp. 231–234,231, 2003.

[54] V. Caglioti, “An entropic criterion for minimum uncertainty sensing in recognition and localiza-

tion part ii: A case study on directional distance measurements,” Systems, Man and Cybernetics,

Part B., IEEE Transactions on, vol. 31, pp. 197–214, April 2001.

[55] P. Dodin, J. Verliac, and V. Nimier, “Analysis of the multisensor multitarget tracking resource

allocation problem,” in Information Fusion., Proceedings, 3rd International Conference on,

pp. WeC1–17–WeC1–22, 2000.

[56] W. Schmaedeke and K. Kastella, “Information based sensor management and immkf,” in Signal

and Data Processing of Small Targets., Proceedings of the SPIE International Conference on,

pp. 390–401, SPIE, 1998.

99
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Appendix A

Sensorimotor Network Mathematical
description [3,66,93]

For sensorimotor modality M the current state vector is xM = (xM1 , x
M
2 , . . .), where each component

is defined as the current state of one sensorimotor element, and the current state change vector is the

function of the current state vector and the delayed state vector.

x̆M (t) := xM (t− τ) (A.1)

yM (t) := δM (x̆M (t), xM (t)) (A.2)

Where τ > 0 is the time delay and δM (., .) is the function that computes the change between two states,

typically:

δM (a,b) := b − a (A.3)

Similarly, their virtual state change is a function of the current state and the virtual state, where the

current virtual state vector is x̃M = (x̃M1 , x̃
M
2 , . . .), where each component is defined as the current

virtual state of one sensorimotor element.

ỹM (t) := δM (xM (t), x̃M (t)) (A.4)

One very important detail of their implementation is that, although the outputs from the interface are

output separately and in parallel, they use a common synapse and single synaptic weight matrix WMN =

(WMN
ij ). This weight matrix is initially set to zero and is updated via a Hebbian learning rule, with the

learning rate η > 0 (typically η = 0.01):

WMN (0) := 0 (A.5)
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δWMN
ij (t) := η · xMi (t) · yMj (t) (A.6)

WMN (t+ 1) := WMN (t) + δWMN (t) (A.7)

This feature results in the virtual state being correlated to the current state such that it tends towards

an accurate prediction of what the next state will actually be. In the model there is a forgetting term ε,

where ε ≥ 0 (typically ε = 0). Using this common synaptic weight matrix the updated current state and

updated virtual state are:

xM (t+ 1) :=
∑
N 6=M

WNM (t) · yN (t) (A.8)

x̃M (t+ 1) :=
∑
N 6=M

WNM (t) · ỹN (t) (A.9)
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Appendix B

All LabVIEW Sensorimotor Inputs

Table B.1: All EvBot Sensorimotor Network LabVIEW Inputs

Name Type Training Testing Description
Stop boolean FALSE FALSE TRUE to stop main VI xecuation

Training boolean TRUE FALSE TRUE if training experiment

Base Comm Port VISA

resource

COM4 COM4 Comm port used to control base

movement

Charge Step Distance double 0.65 0.65 Largest step (m) robot makes

to charging station when “needs

charge”

Start Charge Station boolean – – TRUE if start at charging station

Adjust Initial Charge boolean – – TRUE if initial charge adjusted for

# of random steps and added charge

from starting at charging station

Save Raw Data boolean TRUE TRUE TRUE if raw alcohol values saved to

disk

Stop Alcohol Source boolean FALSE FALSE TRUE if robot stops at alcohol source

N Steps After Stop int32 10 10 # of cycles to wait at alcohol source

before stopping experiment (if “Stop

at Alcohol Source” is TRUE)

Stop Done Charging boolean TRUE TRUE TRUE to stop VI when “Done Need

Charge Level” is reached

Pause boolean FALSE FALSE Pauses VI execution

At Charging Station boolean – – TRUE if robot is at charging station

110



Table B.1 – continued from previous page

Name Type Training Testing Description
N Alcohol Readings int16 15 15 # of alcohol readings to average

Wait Time double 100 100 Time (s) to wait after each movement

before sampling

N Random Moves int32 25 25 # of random moves before needing

charge

Reinitialize Weights boolean – – TRUE on 1st training run to set

weights to initial zero value

Initial Charge double – – % initial charge for simulated battery

Decrement Charge double – – % that charge will decrease after each

non-charging cycle

Increment Charge double – – % that charge will increase after each

charging cycle

Need Charge Level double – – Level (%) at which “Needs Charge”

is TRUE

Done Need Charge

Level

double – – Level (%) at which battery is consid-

ered fully charged

Time Step (ms) uint32 0 0 Specify cycle time step (ms) (un-

used)

Movement

File Name

string – – File containing pre-generated ran-

dom movements

Training Run # int32 n n Run # or movement file

Drive Method enum Read

move-

ment

file

Testing

drive

Selection determines if a pre-

generated movement file is used for

training or if sensorimotor network

is used for testing

Learning Rate double 0.01 0.01 The positive scaling factor for deter-

mining the weight change for the in-

dicated link

Forgetting Rate double 0 0 The regressive scaling factor for de-

termining the weight change for the

indicated link

Modality Inputs cluster An empty structure used to specify

the container for the various modal-

ity inputs
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Table B.1 – continued from previous page

Name Type Training Testing Description
Modality Sizes cluster An empty structure used to specify

the container for the various modal-

ity sizes

Power Modality enum power power Enum used to link “Power Size” to

the power modality

Power Size (x) int32 3 3 Number of columns in the power

modality values matrix

Power Size (y) int32 1 1 Number of rows in the power modal-

ity values matrix

Motor Modality enum motor motor Enum used to link “Motor Size” to

the motor modality

Motor Size (x) int32 2 2 Number of columns in the motor

modality values matrix

Motor Size (y) int32 1 1 Number of rows in the motor modal-

ity values matrix

Olfactory Modality enum olfactory olfactory Enum used to link “Olfactory Size”

to the olfactory modality

Olfactory Size (x) int32 9 9 Number of columns in the olfactory

modality values matrix

Olfactory Size (y) int32 1 1 Number of rows in the olfactory

modality values matrix
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Appendix C

CRIM-Daq
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C.1 CRIM-Daq Schematic
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Appendix D

CRIM-Daq Motor Control Board
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D.1 CRIM-Daq Motor Control Board Schematic
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D.2 CRIM-Daq Motor Control Board Layout
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Appendix E

CRIM-Daq Inertial Measurement Unit
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E.1 CRIM-Daq Inertial Measurement Unit Schematic
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E.2 CRIM-Daq Inertial Measurement Unit Board Layout
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Appendix F

CRIM-Daq Serial Analog to Digital
Converter Board
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F.1 CRIM-Daq Serial Analog to Digital Converter Board Schematic
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F.2 CRIM-Daq Serial Analog to Digital Converter Board Layout
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