
ABSTRACT

LI, YUJIN. Mobility and Traffic Correlations in Device-to-Device (D2D) Communication
Networks. (Under the direction of Wenye Wang.)

The development of wireless networking technologies has brought tremendous changes to

people’s everyday life, such as cellular and WiFi Internet access. It empowers users to commu-

nicate through different wireless access technologies, and also enables new applications in new

paradigm, such as vehicular ad hoc networks (VANETs) and mobile cloud computing (MCC).

Wireless communication can be achieved through not only infrastructure wireless networks

(i.e., cellular and WiFi networks) but also opportunistic device-to-device (D2D) communica-

tions. One of the major features of D2D communication networks is user mobility, which affects

network connectivity and the design of network protocols. Another important feature of D2D

communication networks is complex traffic flow due to dynamic network topology and the dou-

ble communication opportunities (i.e., infrastructure or infrastructureless wireless networks).

In this dissertation, we aim at understanding the mobility and traffic correlation in D2D

communication networks, especially the emerging wireless applications such as VANETs and

MCC. We first characterize node mobility and mobility correlation among users so that we

can identify the autonomous ad hoc networks. Based on observations from real mobility traces,

we define a metric, namely Dual-Locality Ratio, to quantify mobility correlation and evaluate

group structures. As correlated mobility leads to presence of groups in which nodes have unequal

abilities to relay data to other parts of the network, we further study how the information

propagates in VANETs, which have highly dynamic and correlated vehicle mobility due to road

layout and speed limit. We derive the farthest distance that message dissemination reaches

at time t and the first time that message reaches distance d from the original source location

under different dissemination strategies. Our analytical bounds provide not only spatial and

temporal limits of message dissemination but also guidelines for design of message dissemination

algorithms. Recently, D2D communication network is also used to accommodate mobile cloud

computing. Besides access remote cloud through cellular or WiFi networks, users can employ

nearby mobile devices for mobile cloudlet computing. In order to find out whether the traffic

of computation offloading goes to the remote cloud or mobile cloudlet, we address the issue

of whether/when mobile cloudlet can provide mobile application services by investigating its

properties and computing performance. Finally, we investigate the content delivery in the D2D

communication networks such as to accommodate the explosive mobile traffic. We find out how

likely D2D communications can deliver contents to mobile users through discovering content

distribution in network. The work in this dissertation advances our understanding of mobility

and traffic correlation and offers guidance into the design of D2D communication networks.
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Chapter 1

Introduction

1.1 Motivation

The development of wireless networking technologies has brought tremendous changes to peo-

ple’s everyday life. For example, cellular network, one of the most large-scale wireless networks,

can provide not only phone-call services, but also various data services, such as video chat,

mobile web and gaming. At the same time, the WiFi networks have become more flexible and

configurable to provide ubiquitous and high-speed wireless access to the Internet. Moreover,

mobile ad hoc networks (MANETs) that do not rely on a pre-existing fixed infrastructure, such

as a wired line backbone network or base stations, have received lots of attentions in the past

decade. For examples, nearby mobile users can use Bluetooth for direct file transfer services

with low power consumption; handheld devices can also form a autonomous ad hoc network

to allow communication in disaster areas (i.e., pocket switched networking) when networking

infrastructure is destroyed. Opportunistic communication between mobile devices underlay-

ing infrastructure wireless networks depict the blueprint of ubiquitous device-to-device (D2D)

communication networks.

In D2D communication networks, devices can communicate with each other through both

infrastructure wireless networks (e.g., cellular and WiFi) and mobile ad hoc networks. D2D

communications underlaying a cellular infrastructure [1] have been proposed to take advantage

of the physical proximity of communicating devices, offloading the cellular system, increasing

bit-rate, and improving cellular coverage and robustness to infrastructure failures. For instance,

an iPhone can be set up as a personal hotspot so that nearby devices can access the Internet

through the iPhone’s cellular data connection. Vehicular Ad Hoc Networks (VANETs) can use

vehicle-to-vehicle communications as well as vehicle-to-roadside unit communications to achieve

safe and efficient driving environment.

One of the major features of D2D communication networks, in contrast to a traditional
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public switched telephone network, is user mobility. In cellular network, when a user moves from

one cell to another, the call in progress has to be handed off from one base station to another to

ensure continuity of service [2]. Similarly, WiFi networks perform handovers between adjacent

WiFi access points in order to follow users’ movements and provide seamless continuing service.

Moreover, intelligent mobility management techniques [3] are expected to achieve global roaming

among various access technologies, whenever the mobile host is moving across different access

network domains. Last but not least, the impact of mobility on the link and route lifetimes in

MANETs is of major importance for the design of efficient MAC and network layer protocols [4].

When two nodes move outside of each other’s transmission zone, link and path breakage requires

routing protocols to discover and update route information, resulting in long transmission delay,

high overhead and energy consumption, which can dramatically degrade network performance

and deteriorate the utilization of valuable network resources.

Another important feature of D2D communication networks, in contrast to pure infrastruc-

ture or infrastructureless wireless networks, is complex traffic flow. Recent developments in

communication technologies, implemented in the latest smart mobile devices (including Google

Nexus, iPhone, and iPad), make bulk data transfers between users in proximity a reality. Peer-

to-peer assisted forwarding through Bluetooth is demonstrated to be feasible to deliver infor-

mation originally scheduled for transmission over the cellular networks so as to offload cellular

traffic [5]. An individual user can make a probabilistic decision whether to download contents

through cellular networks or opportunistic communications with other users [6]. Exploring the

double opportunities of peer-to-peer communication and mobile device to infrastructure com-

munication can improve user throughput [7] and offload cellular traffic [8], but may also lead to

redundant traffic and waste of network resources. In order to overcome the challenges induced

by node mobility and complex traffic flow in D2D communication networks, we are dedicated

to study mobility and traffic characteristics of mobile users and how they affect network per-

formance in this dissertation.

As user mobility greatly affects opportunistic communication between nodes, there have

been many studies on mobility, including mobility modeling [9–11], mobility impact analysis [12],

and mobility-assisted schemes design [13, 14]. Most of existing studies have assumed random

uncorrelated node mobility or simple group mobility because of its simplicity for analysis and

simulation. However, in real life, mobility of wireless devices, which are associated with mobile

human (e.g., pedestrians or drivers), exhibits significant degree of correlation [15, 16] due to

geographic constraints or social correlations of human beings. Actually, such correlated human

mobility leads to node groups providing communication opportunities for information delivery.

The correlated mobility may invalidate or undermine existing results and insights on mobility

in wireless communication networks. Therefore, we examine mobility correlation between users

so that we can identify node groups (i.e., autonomous ad hoc networks). We characterize node
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mobility using real traces and quantify mobility correlation in both spatial and temporal locality

domains. Moreover, we use quantified mobility correlation to identify on-the-fly group structures

and group evolutions, assist network topology management and data forwarding.

Presence of groups due to correlated mobility means that nodes have unequal abilities to

relay data to other parts of the network, thus affecting network traffic flows and information

propagation. Message dissemination for D2D communication networks is one of the most im-

portant applications to distribute and share information among a group of mobile users. In

particular, VANETs as part of the intelligent transportation system have received lots of at-

tention not only from the academia but also from industry [17,18]. Many VANET applications

are heavily dependent on message dissemination under highly dynamic and correlated vehicle

mobility. In order to improve road safety, traffic efficiency, and driving convenience, emergency

or entertainment information, such as collision warning and advertising, is disseminated to users

that are affected by the incident or interested in the information. Different from multicasting

in other wireless communication networks that targets specific destinations, message dissemi-

nation in VANETs mainly targets nodes in specific geographic regions, which is referred to as

geocast. For example, two cars involved in an accident initiate a broadcast message about this

collision to inform all vehicles in a region that geographically surrounds the original location

of the accident. Because of vehicle mobility, geocast in VANET faces challenges of dynamic

destinations as well as intermittent connectivity. Our current understanding of dissemination

latency and information propagation speed for pre-defined destination nodes [19–22] may no

longer be valid for geocast in VANET. To bridge the gap of our understanding on correlated

mobility and message dissemination, we will study the performance of geocast in 2-Dimensional

(2D) VANET with realistic vehicle mobility.

Besides the goal of information distribution, D2D communication network is also used to

accommodate a new computing paradigm—mobile cloud computing (MCC) [23, 24]. In MCC,

remote cloud provides data storage and computing service while mobile devices are clients

to access the services through wireless communication networks, mainly cellular network and

WLAN (Wireless Local Area Network). In light of the increasing memory and computational

power of mobile devices [25], a peer-to-peer MCC (referred to as mobile cloudlet) [26–29] is

also proposed in order to speedup computing and conserve energy. When cellular or WiFi

connections are unavailable or costly, clustered mobile devices can share their resources in

order to compute a common task. Mobile cloudlet is appealing to users with correlated mobility

that pursue a common goal in group activities, such as multimedia sharing for audience at an

event and language translation for a group of tourists in a foreign country. In mobile cloud

computing, users have the double opportunities of utilizing remote cloud and local mobile

cloudlet, introducing both traffic flows between mobile devices and cloud servers and among

peer devices. Consequently, we are motivated to investigate whether or when the traffic of
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transferring computational tasks should go to cloud or mobile devices, i.e., whether and under

what conditions mobile cloudlet is feasible for providing mobile application services.

At last, with the proliferation of mobile handheld devices and the explosion of mobile ap-

plications, mobile traffic volume, especially multimedia traffic, is increasing dramatically, which

leads wireless communication networks to be likely overloaded [30]. Cisco forecasts that global

mobile data traffic grew 70 percent and mobile video traffic exceeded 50 percent in 2012 [31].

How users can efficiently fetch and share contents emerges as an important issue such as to

satisfy users’ enormous demand with limited network resources. Users can directly fetch data

from cloud servers through cellular/WiFi networks, and users can also cache content for content

sharing among one another through peer-to-peer communications. Such multi-choice content

fetching together with node mobility produce complicated contents distribution and mobile data

traffic in D2D communication networks, which challenge the design of efficient content delivery

mechanisms. Motivated by such emerging mobile traffic volume and its threats to overload cur-

rent wireless communication networks, we are interested in finding the distribution of contents

in a network to facilitate content delivery networks (CDN) based on D2D communications.

In summary, our study of the mobility and traffic correlations deepens our understanding

on network topology, information propagation, mobile cloud computing, and content sharing.

Our study greatly expands our knowledge on the challenges and benefits of mobility and traffic

patterns in D2D communication networks, and meanwhile provides instrumental guidelines for

the efficient design of D2D communication networks (e.g., dissemination strategy and content

delivery mechanism).

1.2 Objectives

In line with the four problems identied above, we aim to achieve the following objectives in

this Ph.D. study that contribute to understandings of mobility and traffic correlations in D2D

communication networks for emerging applications (e.g., VANETs, MCC, and CDN).

1.2.1 Identifying Network Structures of MANETs

In order to understand node grouping for opportunistic communications in D2D communication

networks, we examine how node mobility is correlated in both temporal and spatial domains

using three real traces. Based on our observations, we define a metric, namely dual-locality

ratio (DLR), to quantify mobility correlation among nodes. We use both simulations and real

traces to validate that DLR characterizes mobility correlation and can be used to identify

mobile group structures in dynamic network environments. We also investigate stability and

evolutions of groups that are identified by DLR. We derive conditions for group stability and
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network evolution. In addition, we incorporate DLR in assisting network topology management

and data forwarding, which increase cluster stability and packet delivery ratio, respectively.

Our objectives are summarized as follows.

• We will highlight the correlation of node mobility in both spatial locality and temporal

locality by observing on-the-fly groups in real traces.

• Similarities of spatial and temporal localities of nodes are measured and a metric, DLR,

will be defined to quantify mobility correlation.

• We will show that comparing with existing community detection metrics, DLR can effec-

tively identify on-the-fly groups using simulations and real traces.

• DLR will also be used to evaluate group stability and evolutions, assist clustering and

data forwarding.

1.2.2 Analyzing Performance of Message Dissemination in VANETs

Correlated user mobility leads to node groups, providing opportunities for information propa-

gation by opportunistic communications. To study the performance of message dissemination

in VANETs with highly dynamic vehicle mobility, we consider the constrained vehicle mobility

model as movements of vehicles are limited by both geometric and speed limits. Because of

the crucial impact of dissemination mechanisms on geocast performance, we define a general

L-copy (L ≥ 1) direction-invariant and geographic-assisted message dissemination in which one

or multiple nodes are actively spreading the message at the same time and disseminators are

chosen direction-invariantly or based on node’s geographic information, respectively. In order

to shroud dynamic destination nodes of geocast, we introduce message mobility that includes

movements of active message carriers (i.e., disseminators) and jumps incurred by transmissions

from proceeding disseminators to succeeding disseminators. Message mobility enables us to

study message dissemination without specifying relay nodes on information propagation path.

Based on message mobility, we derive lower and upper bounds for the farthest distance that

active messages reach at time t (denoted as dissemination distance |D(t)|) and the first time

that active messages reach distance d from the original source location (denoted as hitting time

τ(d)) under different message dissemination strategies. We validate our analytical bounds using

simulation results of several well known dissemination algorithms. Guidelines are provided for

message dissemination strategy design in two realistic scenarios of VANETs. Our objectives are

summarized as follows.

• Message mobility is formulated in order to study message dissemination in VANETs with

dynamic node mobility and intermittent connectivity. Message mobility empowers us to

5



focus on where the dissemination (i.e., information propagation traffic) is rather than who

carries the message.

• We will derive lower and upper bounds for dissemination distance and hitting time using

message mobility, providing temporal and spatial limits of message dissemination perfor-

mance.

• We will use simulations to validate our analytical bounds, which combining with two real

VANET applications provide guidelines on dissemination mechanism design.

1.2.3 Evaluating Feasibility of Mobile Cloudlet in MCC

In mobile cloud computing, mobile users can offload computational tasks to either remote

cloud through infrastructure networks, or local mobile cloudlet that includes groups of nearby

mobile devices. We start with studying the performance of mobile cloud computing when users

access cloud servers through cloudlet infrastructure located at different community sites (e.g.,

computers at coffee shop and office). When mobile devices form mobile cloudlet and share their

computing resources for a common task, we address the issue of when mobile cloudlet can

provide mobile application services through investigating the properties of a mobile cloudlet

with respect to cloudlet size, cloudlet node’s lifetime and reachable time. Cloudlet size is defined

as the number of mobile devices that a mobile initiator encounters within time τ . A cloudlet

node’s lifetime is from its first contact to its last contact with an initiator before the task

expires, reflecting a node’s maximum time to perform computation for an initiator. Reachable

time is the total contact duration between a cloudlet node and the initiator within time τ ,

indicating the cloudlet node’s connection likelihood for task dissemination and retrieval. These

properties not only determine how much computing resource a mobile cloudlet can provide

but also implicate how reliable a mobile cloudlet is. We use both traces and analysis to derive

distribution of the mobile cloudlet size, expected lifetime, and expected reachable time. Based

on the properties of mobile cloudlet, we further derive upper and lower bounds of computing

capacity and long-term computing speed of mobile cloudlet, which can be used by an initiator

to decide whether to execute a task in mobile cloudlet. Our objectives are as follows.

• When mobile users access the cloud through cloudlet, we will study the performance of

cloudlet computing, such as cloudlet access probability and task success rate.

• We will examine the mobile cloudlet properties, which are determined by the contact and

inter-contact between mobile devices, using contact-based mobility traces.

• We will derive the distribution of cloudlet size, the expectations of node’s lifetime and

reachable time based on mathematical analysis of the alternating contact and inter-contact
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process between two mobile users.

• The upper and lower bounds of mobile cloudlet computing capacity and long-term com-

puting speed are derived based on cloudlet size, the lifetime and reachable time of cloudlet

nodes. These bounds are used by mobile users to decide whether to offload mobile appli-

cations to mobile cloudlet.

1.2.4 Assessing Content Sharing Opportunities through D2D Communica-

tions

As emerging mobile traffic volume threats to overload current wireless communication networks,

it is important to efficiently delivery contents to users. In order to do so, we investigate where

copies of a content are in a network, i.e., the distribution of contents in network hosts including

cloud servers and mobile devices. Because content distribution is affected by characteristics

of contents and user request patterns, we examine content distribution in 3 key dimensions:

i) popularity and diversity of contents, ii) users’ behaviors of content fetching, and iii) the

storage of contents on servers using real YouTube video traces. Mathematical models are further

developed to characterize distributions of contents among mobile devices as time varies. In

addition, we analyze the performance of content sharing through D2D communications. Our

objectives are as follows.

• Using real YouTube traces, we examine content popularity, user’s request pattern, and

content transmission time.

• Mathematical modeling and analysis are developed to capture content distribution, i.e.,

who carries a content during what time.

• Based on characteristics of content distribution, we analyze the performance of content

sharing through D2D communication, such as hit rate.

1.3 Outline and Organization

The rest of this report is organized as follows. Chapter 2 presents our observations of correlated

node mobility and a metric to measure mobility correlation, which is used for identifying node

groups and network structure as well as evaluating link and group stability and assisting data

forwarding. Chapter 3 presents our analysis on performance of message dissemination in in-

termittently connected VANETs, including upper and lower bounds on dissemination distance

and hitting time. Chapter 4 presents how we extract and analyze mobile cloudlet properties to

derive computing capacity and speed of mobile cloudlet. Chapter 5 presents our discovery of
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practical opportunities that exist for content sharing through D2D communication. Finally, we

conclude our research results and discuss the possible extension directions in Chapter 6.
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Chapter 2

Measuring Mobility Correlation and

Identifying Network Structures

Recent studies on mobility-assisted schemes for routing and topology control, as well as on

mobility-induced link dynamics have presented significant finding on the properties of a pair

of nodes (e.g., the inter-meeting time and link life time), or a group of nodes (e.g., network

connectivity and partitions). In contrast to the study on the properties of a set of nodes rather

than individuals, many works share a common ground with respect to node mobility, that

is, independent mobility in multi-hop wireless networks. Nonetheless, in D2D communication

networks, mobile devices installed on vehicles or held by human are not isolated, yet dependent

to each other. For example, speed of a vehicle is influenced by its close-by vehicles and vehicles

on the same road move at similar speeds. Therefore, the gap between our understanding of the

impact of independent mobility and our interest in the properties of correlated mobility, along

with the real systems altogether declare an interesting question: how we can measure the inter-

node mobility correlation such as to uncover the node groups and network components, and

explore their impact on link dynamics and network connectivity. Bear this question in mind, we

first examine several traces and find that node mobility exhibits spatial locality and temporal

locality correlations, which are closely related to node grouping. In order to study the properties

of such groups on-the-fly, we introduce a new metric, dual-locality ratio (DLR), which quantifies

mobility correlation of nodes. In light of taking spatial and temporal locality dimensions into

account, the DLR can be used to effectively identify stable user groups and evaluate group

stability and evolutions, which in turn can be used for network performance enhancement.

9



2.1 Motivation and Related Work

In contrast with the random mobility modeled by popular mobility models (such as random

walk), the moving behaviors of mobile users usually follow some mobility patterns and exhibit

significant degree of correlations, which leads to overlapping movement trajectories of nodes [32].

As observed in corporate/campus WLAN traces [15,16], mobile users spend most of their time

at their home locations, where nodes gathering yields connected components. Traces in [33] show

that nodes belonging to one community have frequent contacts and long contact durations. The

correlated user mobility (also called group mobility) clearly leads to node grouping on the road

or at community sites where human perform tasks or social activities.

As a result, many research works have been elaborated upon the impact of group mobility.

Particularly, simulations in [12] show that routing protocols (i.e., DSR, DSDV and AODV)

achieve the highest throughput and the least overhead with RPGM comparing to Freeway and

Manhattan models. Authors in paper [32] observe a significantly reduced packet delivery ratio

when employing the realistic trace simulator to control mobility of nodes. Ciullo et al. [34]

reveal that correlated node movements have huge impact on asymptotic throughput and delay,

and can sometimes lead to better performance than the one achievable under independent node

movements. Huang and Chen [35] exploit the group mobility (RPGM) in replica allocation

scheme to improve the data accessibility.

Existing studies on correlated mobility rely heavily on group mobility models with simplified

nodes grouping behaviors, such as RPGM [36] and Virtual Track model [37]. It is commonly

assumed that nodes are partitioned into several groups beforehand and group memberships

either never change (e.g., RPGM) or evolve according to certain stochastic process. For instance,

the virtual track model [37] for vehicular network scenario binds nodes’ group movements on

edges in a graph and group split and merge only happen at vertices. On the other hand,

paper [38] assumes that groups of nodes merge or split according to a Markov chain process.

Nevertheless, in a spontaneously deployed ad hoc network with no pre-configurations, mobile

nodes have no prior knowledge about the mobility groups and their memberships. Moreover,

rather than the simplified nodes grouping behaviors in existing group mobility models, node

groups in reality evolve not only in various ways (such as growth, contraction, combination and

split) but also according to complex mechanisms due to the autonomous human mobility and

complicated social behaviors of mobile users. The dynamic movement behaviors of nodes mean

that group mobility is not a prior knowledge in wireless networks, nor does group structures,

which makes the insights and benefits of group mobility claimed by applications based on pre-

defined group mobility and structure questionable.

In a spontaneously deployed adhoc network with no pre-configurations, mobile nodes have

no prior knowledge about the mobility groups and their memberships. In other words, there is a
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need to identify where and how nodes form ad hoc networks to enable D2D communication. Few

works have been done on group identification in mobile network environments. B. Li et al [39]

firstly pointed this problem that mobile users are unable to acquire information about group

structure beforehand, and proposed a sequential clustering (SC) group identification algorithm

based on speed similarity among nodes for predicting network partition. In paper [40], B. Li et

al proposed two entropy metrics for mobility identification, namely speed entropy and relation

entropy, which cluster nodes with same movement properties, such as speed level, into mobile

groups. However, metrics in papers [39] and [40] fail to consider the underlying social dimension

of mobile hosts, which may undermine their effectiveness in identifying meaningful and strongly

connected node groups.

Recently, there has been a growing body of work on the detection of dynamic communities

and their evolution, such as [41, 42] and references inside. Most of these studies are two-stage

approaches that extract clusters at consecutive timestamps of the network and then identify

evolution of communities by comparing the group structures at different times. all centralized

algorithms which are only useful for offline data analysis on mobility traces. For self-organized

mobile ad hoc networks, it’s desirable for the mobile devices sensing and detecting their local

community structures in real time instead of relying on a centralized server. Community detec-

tion mechanisms usually are centralized and assume a prior knowledge of connections among all

pairs of nodes. However, in mobile networks, correlations between pairs of nodes are not prior-

knowledge, and are dynamically changing due to nodes movements. It’s desirable for the mobile

devices sensing and detecting their local community structures in real time instead of relying

on a centralized server. The first study of distributed community detection without assuming

prior-knowledge of inter-node correlation was carried out by Hui et al. [43], who proposed three

distributed algorithms, that categorize nodes into familiar sets and local communities based on

their contact durations and number of contacts. These algorithms can satisfactorily approximate

the centralized mechanisms, but may be unable to capture the dynamically evolving network

group structures due to the essential hysteresis in contact information.

In summary, current group identification methods and community detection algorithms are

insufficient to capture the dynamic node grouping due to correlated user mobility, which is

under-explored in existing studies. Therefore, in this chapter, we try to identify dynamic node

groups that are induced by correlated mobility of wireless users, which are dynamically chang-

ing and evolving due to the autonomous human mobility and social behaviors. We achieve this

by describing mobility correlation between any two nodes through a novel metric, dual-locality

ratio, which incorporates mobility correlations of nodes in both spatial and temporal domains.

The effectiveness of DLR is evaluated using traces as well as simulations. In addition, we demon-

strate how DLR can be leveraged to assist data forwarding and clustering. Our contributions

are three-fold.
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1. Using three real traces, we identify mobility correlation in both spatial locality (i.e., loca-

tions and speed) and temporal locality (i.e., mobility patterns over time). A new metric,

DLR, is defined to measure mobility correlation by incorporating similarity measure of

two nodes’ movements in both spatial and temporal locality domains.

2. We validate the effectiveness of DLR via simulations and traces. We find that DLR can

not only properly measure the spatial locality similarities among nodes, such as distance,

relative speed and direction, but also effectively identify groups in which nodes have same

mobility pattern (i.e., traveling route). Compared with clustering geographically nearby

nodes into groups, groups identified by DLR are more stable and meaningful because DLR

can capture the grouping movements, destination of mobile users, as well as their current

spatial locality similarities.

3. Besides measuring mobility correlation and identifying group structures, we further show

that DLR can be used to evaluate link and group stability, manage network topology

and assist data forwarding. DLR is shown to be a good indicator of link lifetime and link

stability. We apply DLR to rigorously analyze the group coherence degree and find out

conditions for stable groups and their evolutions (e.g., node switching and group merg-

ing). Simulation results show that choosing relays based on node mobility correlation can

increase packet delivery ratio of data forwarding, and compared with lowest-ID clustering

algorithm [44], choosing a node that has high DLR with its neighbors as cluster-head can

increase cluster stability (i.e., lifetime).

The rest of this chapter is organized as follows. In Section 2.2, we use three real traces

to identify how node mobility are correlated in spatial and temporal domains. In Section 2.3,

we present our main results of the DLR for measuring mobility correlation by quantifying

mobility similarities in spatial and temporal domains. In Section 2.4, we show that DLR can

identify stable and meaningful groups via simulations and traces. In Section 2.5, we utilize DLR

to evaluate group stability and evolutions, assist data forwarding and clustering. Finally, we

conclude in Section 2.6.

2.2 Observations of Correlated Mobility

In wireless networks, mobile devices are mostly carried by pedestrians, vehicles, actuators, and

even animals. The mobility of these carriers, in contrast to random i.i.d. mobility model, is

restricted by geographic surroundings and dependent to each other due to social interactions.

In this section, we highlight the spatial and temporal locality in node mobility by observing

on-the-fly groups in real traces.
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Figure 2.1: Geographical grouping in SFCAB.

2.2.1 Spatial Locality

To find out whether there exist correlations among mobile users in real world, we start with a

taxicab trace in San Francisco (SF) from Cabspotting project [45]. This trace is chosen for our

study because the customers may have quite different destinations and independent movements,

which do not show obvious mobility patterns. The SF cab trace (SFCAB) contains GPS logs of

536 yellow cabs for over 30 days. Cab location is updated almost every minute if the cab stays

online. We extract locations of 40 cabs running at 01:27 on 2008/05/21, shown in Figure 2.1.

Although cabs are likely moving independently since their destinations span a broad area, we

still observe several cab clusters with different sizes, i.e., there exist mobility correlations among

cabs. For instance, in Figure 2.1, there are two larger groups (in red and green) and two smaller

groups (in blue and pink), along with six individual nodes in the space domain at a specific

time. In the largest group (in red circle), 22 cabs locate in downtown San Francisco, which

means these 22 users have similar geographic properties (i.e., adjacent locations and possible

similar speeds). Such grouping phenomenon is probably caused by road layout, attraction of hot

spots (such as airport, shopping center), and neighborhood distribution, thus demonstrating

the spatial locality of user groups.

Remark 1 The spatial locality of user groups observed in the cab trace above tells that mobile

users are correlated in geographic dimension (e.g., locations and speeds). The more similar the

spatial locality properties of nodes, such as adjacent locations and similar speeds, the higher

their mobility correlations are and the more likely they form a group.
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2.2.2 Temporal Locality

In addition to the observation of spatial locality in node mobility, we turn to another trace, a

bus trace in Seattle from Ad-Hoc City project [46], to explore the temporal locality incurred

by daily moving schedules of mobile users. This trace is considered because the movements of

buses are not independent as the cab-based trace, serving people who may share similar stops

and timing patterns. The Seattle bus trace (STBUS) contains GPS logs of more than 1200

buses running 239 routes for around 20 days. Bus location is updated about every 2 minutes

while the bus is running. Since there are frequent holes in STBUS trace, we observe 17 buses

running 6 routes at 11:30 am on 2001/10/31, shown in Figure 2.2. The curves are trajectories

of bus routes, and the points are current locations of buses.

17 buses runing 6 routes at 2001/10/31 11:30

Route 007

Route 136

Route 200

Route 238

Route 240

Route 245

Figure 2.2: Social grouping in STBUS.

Figure 2.2 shows that over time buses running same or overlapping routes tend to meet more

frequently (e.g., buses running red route 007). Clearly, buses on the same route have identical

movement trajectory, thus likely meet frequently (e.g., the three black dots on the lower part of

Route 007). In other words, buses can be grouped with respect to stops for different purposes,

like shopping center, industry park, which are related to social behavior. Notice that buses

running the same route do not always locate near to each other at specific times, e.g., the four

buses (in red spots) on Route 245 are almost evenly distributed enroute. That reveals that the

temporal locality in user groups is different from spatial locality of groups as it is induced by

social behavior over time rather than geographic limitations. The correlations of the temporal

locality properties of nodes are reflected in similar mobility patterns and overlapping moving

routes, which are essentially due to the social correlations among mobile users.
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Remark 2 Besides the correlation of mobile users with geographic constraints, social behaviors

or duties also have impact on mobility patterns and grouping of nodes, i.e., the temporal locality

of node mobility. This adds another modality to explore the inter-node correlation.

In order to properly interpret the temporal locality properties of vehicles, we further use

a data set of students daily trace collected during a three-month period. The recorded trips

include car trips and bus trips. Note that as the GPS receiver carried in a car requires a line

of sight (LoS) from satellites, it cannot log short trips in a building complex area, which is

a shortcoming for almost every trace file collected by GPS receiver. Since our trace has lots

of detailed information of individually visited locations and driving paths, it is preferred over

other large scale data sets, such as city wide transport system traces, which do not have such

detailed information of each vehicle.

Figure 2.3 illustrates an example of one day car moving trace of a student. From the figure,

there are total 4 trips during that day. Upon the time sequence, the student visits four places:

home → lab → class → church → home. This moving trace shows that a vehicle changes its

movement path over time because the driver has different destinations at different time in order

to execute various social activities. For instance, in the morning, the vehicular node moves on

the roads from home to lab (trip 1); during the daytime, it moves around campus (trip 2); and in

the evening, it travels from church back to home (trip 4). As its driver targets different places

to execute different activities, a vehicle accordingly changes movement paths, i.e., vehicle’s

location preferences are time-varying.
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Figure 2.3: An example of one day car moving traces.

In addition, the aggregated locations visited by students within one week, shown in Figure
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2.4, demonstrate that the majority community sites students daily visited are within 2-km-wide

campus area. Vehicular nodes in this trace frequent several communities sites around campus

and mostly move on roads among these places. In other words, vehicles frequently travel to

preferred locations, i.e., vehicle mobility shows temporal locality.
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Figure 2.4: Aggregated visiting locations of students.

More interestingly, given the collected GPS traces, we have found that there are many

overlapping trajectories among car trips of students. That’s probably because similar social

duties and life schedules of students induce similar temporal locality. This observation reveals

that vehicles with similar temporal locality likely meet and have potential to move as groups.

Remark 3 The vehicular mobility exhibits temporal locality, i.e., vehicles show different pref-

erences to different community sites over time. Similarity in temporal locality of vehicles, i.e.,

preference of same/adjacent locations, leads to overlapping moving paths and grouping phenom-

ena.

2.2.3 Groups on-the-fly

Being aware of mobility correlations among nodes, group mobility models, such as RPGM

[36] and its variances [47, 48], have been proposed to characterize such correlation by pre-

configuring group membership of nodes and group movement behaviors. For instance, a group

leader determines movement paths and moving speeds for its group members. To find out

whether existing group mobility models can sufficiently capture inter-node mobility correlation,

we compare two snapshots of STBUS trace to observe how network structures change over time.
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Figure 2.5: Group evolutions in STBUS: split, combination, and contraction.

Figure 2.5 shows the locations of 7 buses (2 buses on Route 238 and 5 buses on Route 007)

at time t1 and t2, respectively. Group structures change dramatically as group A splits into

A1 and A2 on the top, while groups B1 and B2 merge into a larger group B, and C1 with 3

members contracts to a smaller group C2 with 2 members on the bottom over the time period

of 11:30am to 12:00pm. On-the-fly groups in Figure 2.5 implies that

• mobility correlations among nodes are dynamically changing due to autonomous mobility

and social behaviors of mobile users [41];

• pre-configured group mobility (e.g., RPGM) fails to capture evolving correlations among

nodes in real world (or non-mission oriented services).

Hence, a new metric is needed for measuring mobility correlation and exploring its impact on

network properties, such as link dynamics and network connectivity.

In addition, it is necessary to point out that mobility correlations in both spatial and tempo-

ral dimensions have their implications on properties of a pair or a group of nodes. For instance,

a group of nodes that locate near to each other and move closely (high spatial locality similar-

ity), would form a stable group. In another example, a pair of nodes with high temporal locality

similarity, having similar mobility patterns, are likely to meet frequently and stay together for

a long period of time resulting in short inter-meeting time and long contact duration.

Remark 4 In order to fully understand the properties of a set of nodes, i.e., group, it is de-

sirable to capture both spatial and temporal locality similarities of node mobility.
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2.3 Mobility Correlation Measurement

Based on our observations of node mobility in real traces, we highlight the correlation of node

mobility in both spatial locality and temporal locality, which are reflected by movement prop-

erties in spatial domain (location and speed) and in temporal domain (mobility pattern over

time), respectively. Hence, we will proceed to measure the similarities of spatial and temporal

localities of nodes in order to fully evaluate nodes’ mobility correlation.

2.3.1 Spatial Locality Similarity

Intuitively, mobile users in a local group not only locate near to each other but also move more

closely with similar speeds. Hence, the distance and relative speed between a pair of nodes

reveal their similarity in spatial locality.

To proceed, let di,j(t) and vi,j(t) be the Euclidean distance and relative velocity vector

between node pair (ni, nj) at time t, As location and speed are two factors of the spatial

locality of node mobility, the distance di,j(t) and relative speed vi,j(t) provide information for

the similarity of spatial locality between two nodes at time t. The spatial locality similarity

measure SLSi,j(t) is time varying such as to capture dynamic mobility correlations. SLSi,j(t)

should increase when either the distance di,j(t) or relative speed vi,j(t) decreases. To make sure

the spatial and temporal locality similarity measures have the same order of magnitude, we also

require SLSi,j(t) to be normalized within [0, 1].

With the statistical distance measure defined in statistical analysis [49], we are able to

quantify the spatial locality similarity of two nodes with their relative movement informa-

tion. Regarding location and speed as the two attributes of the 2-dimensional spatial locality

observation for a node, the statistical distance between the two 2-dimensional observations

of two nodes (i, j) at time t is
√
w1d2i,j(t) + w2v2i,j(t), where di,j(t) and vi,j(t) are their rela-

tive distance and speed, w1 and w2 are the weight coefficients for each attribute. Note that

vi,j(t) =
√|vi(t)|2 + |vj(t)|2 − 2|vi(t)||vj(t)|cosθ, where |vi| and |vj | are magnitudes of nodes

vi and vj ’s speeds and θ is the angle between their moving directions. Let rmax denote the

maximum transmission range and vmax denote the maximum speed. Because two neighboring

nodes satisfy 0 ≤ di,j(t) ≤ rmax and 0 ≤ vi,j(t) ≤ 2vmax, we can set w1 = 1/(rmax)
2 and

w2 = 1/(2vmax)
2 so that di,j(t) and vi,j(t) can be scaled to have the same order of magnitude

(i.e., be within range [0, 1] for a neighboring node pair). Therefore,

Definition 1 The spatial locality similarity (SLS) between a neighboring node pair (i, j) is

defined as

SLSi,j(t) =
1

1 +

√(
di,j(t)
rmax

)2
+
(
vi,j(t)
2vmax

)2 ; (2.1)
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SLSi,j(t) = 0 for two non-neighboring nodes i and j as no communication link exists between

them.

Clearly, this SLS measure satisfies all our requirements. SLSi,j(t) is symmetric and 0 ≤
SLSi,j(t) ≤ 1. This definition also reflects the argument that nodes in a group move more

closely than a random node pair [36]. When di,j(t) and vi,j(t) decrease to 0, which means the

two nodes move together at the same speed, like two people sitting in the same car, we have

SLSi,j(t) approaches to 1 implying the highest spatial locality similarity. On the opposite, when

the distance and the relative speed between these two nodes, di,j(t) and vi,j(t) are large, then

the value of SLSi,j(t) becomes very small, even to 0, which indicates very little or no spatial

locality similarity between this pair of nodes. In other words, the more adjacent locations and

similar speeds of nodes, the higher SLS they have, which indicates stable communication links

and local groups.

2.3.2 Temporal Locality Similarity

Besides spatial locality similarity in the spatial domain, temporal locality similarity is also

critical for understanding mobility correlation of nodes. To characterize degree of temporal

locality similarity, we take an entropy-based approach to quantify similarity of mobility patterns.

Specifically, we present a mathematical model, cave profile, to establish the mobility pattern

of individual node with time-varying location preference. Finally, we use the idea of relative

entropy to measure the similarity of different mobility patterns.

Cave profile modeling

Existing studies on mobility patterns of mobile users [15,16,50,51] have shown that, in contrast

to the random trajectories predicted by the prevailing Levy flight and random walk models

[52], movements of mobile users show a high degree of temporal and spatial dependence. More

specifically, a mobile user spends most of its time at a few locations, while occasionally visits

other places. Different mobile users not only have different probabilities of visiting the same

community, and stay there for unequal amounts of time, but also may visit these sites at different

times. In other words, a mobile user’s mobility pattern is characterized by the frequency of its

visits to each location, the time spent there, as well as the order in which the locations are

visited [53]. Therefore, we model mobility pattern of a mobile user by characterizing the tempo-

spatial dependence in its trajectory.

Assume that N nodes move in a network with M communities, which are referred to as

“caves” because these nodes are tied to the communities. Let Ω = {c1, . . . , cM} be the set of

all possible community sites (e.g., home, office), where a node may visit frequently. Further we

assume that mobile nodes can record its location, either by GPS or other localization methods

19



[54], like the traces we have used. Let Xi(t) be the community site at which node ni presents at

time t, and Ti(t) = {Xi(1),Xi(2), . . . ,Xi(t)} denote the historic sites visited, that is, ni being

present in these sites at each time interval Δt, which can be slotted time, e.g., Δt = 10 minutes

over time. In fact, Ti(t) generalizes the data in many traces, including the three traces we used

in the earlier section. Therefore, Ti(t) includes information of ni’s visiting frequency, sojourn

time, and visiting order of community sites, thus captures mobility pattern in temporal and

spatial domains.

We also notice that prior studies on human mobility [53] find that user mobility can be

predicted with high accuracy (≥ 93%) based on its movement trajectory, because human tend

to repeat their daily schedules, such as working at office during daytime and staying at home

in the evening. Therefore, based on mobility observation Ti(t), we can estimate the probability

of ni appearing at cave cm at next time slot t+ 1, denoted as P t
i (cm).

Definition 2 The cave profile of node ni at time t is defined as Pi(t) = {P t
i (c1), P

t
i (c2), . . . ,

P t
i (cM )}, and

P t
i (cm) = P (Xt+1

i = cm|T t
i ) =

N(Ti(t− k, t)cm, Ti(t))

N(Ti(t− k, t), Ti(t))
, (2.2)

where Ti(t − k, t) = {Xi(t − k), . . . ,Xi(t)} is the substring of Ti(t), and N(s′, s) denotes the

number of times that the substring s′ occurs in s.

As N(Ti(t − k, t), Ti(t)) is proportional to the probability of finding a sequence of visited

locations Ti(t − k, t) over time, the probability Pi(t) is able to capture both temporal and

spatial dependence of mobility patterns. Since
∑M

m=1 P
t
i (cm) may not equal to 1, we rewrite

the normalized cave profile as

P̂ t
i (cm) =

P t
i (cm)∑M

j=1 P
t
i (cj)

. (2.3)

Note that in Eq. (2.2), Pi(t) depends only on the k most recent locations, thus we refer the

above definition as O(k) cave profile. If N(Ti(t−k, t), Ti(t)) = 1, to avoid P t
i (cm) = 0,∀cm ∈ Ω,

O(k) cave profile degrades to O(k − 1). If Xi(t) never occurs before, Pi(t) degrades to be

temporal-uncorrelated O(0) cave profile.

P t
i (cm) = N(cm, Ti(t))

/|Ti(t)|, (2.4)

where |Ti(t)| is the length of Ti(t).

For the simplicity of analysis and practical applications, we need to find the value of k.

To this end, we take the suggestion from an earlier work [55] that human mobility can be

well predicted depending on the 2 most recent locations. Therefore, we use O(2) cave profile

throughout this chapter. That means,
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P t+1
i (cm) =

N(Xi(t− 1)Xi(t)cm, Ti(t))

N(Xi(t− 1)Xi(t), Ti(t))
. (2.5)

With the above definition, we are able to model the temporal locality due to individualmove-

ment pattern. Next, we move on to the measurement of similarity between different mobility

patterns.

Measuring Temporal Locality Similarity

Among various similarity/distance measures that compare two probability distributions (see

survey paper [56]), Kullback-Leibler Divergence (KLD) (also relative entropy) is a well-known

method of measuring the difference between two probability distributions in information theory.

The KLD is well-defined for both discrete and continuous distributions, and is always non-

negative. However, KLD is a non-symmetric measure, and is sensitive to quantization effects in

the histogram computation. Jenson-Shannon Divergence (JSD), the symmetrized and smoothed

version of KLD, is an empirically derived divergence that is numerically stable, and also robust

in the presence of noise. Thus, we choose Jenson-Shannon Divergence to measure the similarity

between mobility patterns:

Definition 3 The JSD between P̂i(t) and P̂j(t) is defined as follows:

JSD(P̂i(t)||P̂j(t)) =
1

2

M∑
m=1

P̂ t
i (cm)log2

2P̂ t
i (cm)

P̂ t
i (cm) + P̂ t

j (cm)
+

1

2

M∑
m=1

P̂ t
j (cm)log2

2P̂ t
j (cm)

P̂ t
i (cm) + P̂ t

j (cm)
,

(2.6)

The JSD measure of temporal locality similarity is defined as

TLSi,j(t) = 1− JSD(P̂i(t)||P̂j(t)). (2.7)

0 ≤ TLSi,j(t) ≤ 1 and TLSi,j(t) = 1 if and only if P̂i(t) = P̂j(t), i.e., two users that have the

same mobility pattern have the strongest temporal locality similarity 1.

An illustrative example

To better understand the cave profile model and temporal locality similarity measure, let us

take an example to observe the temporal locality similarities among four mobile users with five-

site options, that is, M = {1, 2, 3, 4, 5}. The location history for each user is shown in Table

2.1. The historic observations although are short, mimic the temporal and spatial dependence

in mobility pattern. For instance, n1 visits communities c1 and c2 much more often than the

other three communities, while n3 mostly stays at c2 and c5. In contrast to the sequence of site

visits of n2, n1 goes to c2 after staying at c1.
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By applying Eq. (2.5) for O(2) cave profile, the probability of ni visiting cave m after

visiting caves c3 and c4 can be calculated, e.g., P1(1) = N({341}, T1)/N({34}, T1) = 1/2 while

P1(i) = N({34i}, T1)/N({34}, T1) = 0 for i = 2, 3, 4. The resulting cave profile for each user is

shown in Table 2.1.

Table 2.1: Example of User Cave Profiles

User Location history Ti Cave Profile

n1 111122234111122234 {1/2, 0, 0, 0, 0}
n2 222111134222111134 {0, 1/2, 0, 0, 0}
n3 555522234555522234 {0, 0, 0, 0, 1/2}
n4 111133334111133334 {1/2, 0, 0, 0, 0}

Accordingly, we can easily obtain the normalized P̂i by Eq. (2.3). Using Eqs. (2.6) and (2.7),

the temporal locality similarity between each user pair can be calculated, which is TSL1,4 =

TSL4,1 = 1, and TSLi,j = 0 otherwise. The results indicate that nodes n1 and n4 have high

temporal locality similarity, thus likely move together as both of them probably will go to Cave

1.

It is interesting to see that even n1 and n2 have the same historical probability of visiting

each cave according to Eq. (2.4), they are not likely moving together because they seldom

appear at one location at the same time. In other words, without considering the temporal

dependency in human mobility, O(0) cave profile is inadequate for modeling mobility pattern.

Remark 5 Based on mobility history, cave profile can be used to estimate the probability that

each community is chosen as a user’s next destination. By measuring the similarity of cave

profiles, temporal locality similarity shows the likelihood of two users visiting the same cave

during next time slot, thus telling the tendency of two users moving as a group.

2.3.3 Dual-Locality Ratio

By far, we have investigated spatial and temporal locality similarities, both of which are essential

in characterizing inter-node mobility correlation. From the perspective of a specific time, nodes

are mainly correlated in spatial locality, e.g., cabs in SFCAB project, which affects link stability.

From the perspective of a time period, nodes are mainly correlated in temporal locality, which

influences contact-based properties. In order to characterize inter-node mobility correlation such

as to adapt to complex node mobility as well as various network applications, we propose a new

metric, namely Dual-Locality Ratio (DLR), by introducing a tune-up parameter α to jointly
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consider above observations.

Definition 4 The Dual-Locality Ratio DLRi,j(t) between two nodes ni, nj at time t is given

by

DLRi,j(t) = (1− α)SLSi,j(t) + αTLSi,j(t), (2.8)

where 0 ≤ α ≤ 1 and 0 ≤ DLRi,j(t) ≤ 1.

Through adjusting the value of α, the weights of spatial and temporal locality similarities can

be adapted for different network scenarios. For networks that most nodes move independently,

DLR with small α can represent the mobility correlation in spatial locality; while for nodes

with clear mobility patterns, DLR with large α can manifest the similarity of nodes’ temporal

locality. DLR can also accommodate different applications by choosing different α. Large α

(even α = 1) is suitable for mobility pattern recognition or communication detection. On the

other hand, small α (even α = 0) is fit for link or path duration estimation. As we discuss groups

on-the-fly in this chapter, we omit t for simplicity, e.g., SLSi,j(t), TLSi,j(t), and DLRi,j(t) are

simplified as SLSi,j, TLSi,j, and DLRi,j, respectively.

Remark 6 Although the above definition of DLR measures the mobility correlation between a

pair of nodes, it is shown in the following sections that DLR can be used to study properties of

a group of nodes, such as group structure, stability, and evolution, as well as properties of a

pair of nodes (e.g., link lifetime).

2.4 Group Identification

A group means a number of nodes bounded together as being related in some way.

Definition 5 Let DLRth be the required grouping threshold for two users to belong to a group.

Two neighboring nodes ni, nj are in the same group, if DLRi,j ≥ DLRth.

According to this definition, nodes can identify whether encountered nodes belong to a group.

Each node vi first obtain information of cave files, locations, and speeds from its neighbors in

order to calculate DLR. When DLRi,j exceeds DLRth, vi will consider node vj as its group

member. Through further exchanging each other’s group member information among encoun-

tered nodes, group structures can be uncovered.

The main overhead of computing DLR is due to exchange of mobility information between

neighboring mobile nodes. Two types of messages are generated and periodically broadcasted

by nodes to update 1) spatial locality information and 2) temporal locality information. The

spatial locality message includes node’s location, speed, and moving direction. The temporal

locality message includes node’s cave profile (i.e., caves the nodes visited over the past t time).
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Assume that the sizes of spatial locality message and temporal locality message are Ss and St,

and the corresponding broadcast frequencies are fs and ft, respectively. The overhead at each

node is Ssfs + Stft. Clearly, spatial locality message has small Ss. The spatial locality update

frequency is related to relative velocity and transmission range r of nodes [57]. fs can be set

as r/2vmax so that the link establish or break can be captured. For example, fs approximately

equals to 1 message per 4 second when r = 250 m and vmax = 30m/s. On the other hand, ft

can be set as 1 message per 10 minutes, which is sufficient to capture the user’s visit to different

communities. Temporal locality message only needs to record visited caves over 24 hours as

human tend to repeat their daily movement schedules. The total overhead in the network is

(Ssfs + Stft)N , where N is the number of nodes in the network.

2.4.1 Trace Evaluation

In order to use DLR to identify groups, spatial and temporal locality properties need to be

extracted from traces. Since locations of nodes are logged in both datasets SFCAB and STBUS,

location and speed can be easily obtained. Hence, we focus on how we extract cave profiles for

calculating temporal locality similarity, and the results of group identification.

Group identification in SFCAB

First of all, we investigate whether there is a traceable mobility pattern in cab mobility. Since

SFCAB records whether a cab is carrying customers or not, we can extract locations where cabs

pick up or drop off customers, i.e., locations of stops. It is worthy of noting that the customers

are autonomous and take cabs without coordination, which means that there is no correlations

among their destinations. Surprisingly, the stops of 3 cabs shown in Figure 2.6 reveal spatial

dependency, i.e., locations of stops are not uniformly distributed in the city area. For instance,

Cab 1 visits the western area more often than the eastern part of the city. Cab 2, in contrast,

prefers the eastern area. This is because cab drivers prefer working in different areas or hot

spots, such as airport or downtown. In other words, cabs exhibit different mobility patterns.

To measure the similarity of mobility patterns between two cabs, we then identify hot spots,

or “caves”, where people frequently get on or off. The stops of 100 cabs are clustered to 5 caves

(hot spots) through k-means clustering algorithm in MATLAB, shown in Figure 2.7. Stop

locations of one cab in Figure 2.7 show that this cab visits caves 2, 4, 5 more frequently while

occasionally visiting caves 1 and 3. For simplicity, we use O(0) cave profile, i.e., the probability

that a cab stays in each cave. The probability of car ni at cave cm can be obtained by

Pi(cm) =
number of stops in cave cm

total number of stops of car ni
. (2.9)
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Daily trips of 3 cabs from 2008/05/21 to 2008/05/22

cab 1
cab 2
cab 3

Figure 2.6: SFCAB: temporal and spatial dependency.

By parsing the data in SFCAB trace file, we have identified three groups (1, 4, 6) with

multiple members, and other 9 groups with single node only as shown in Figure 2.8. The length

and direction of an arrow represent the speed and moving direction of a node, respectively;

the dotted line between ni and nj means that DLRi,j ≥ DLRth, where DLRth = 0.2 is the

average DLRs of all node pairs. By taking a close look, we further observe that node 5 does not

join Group 1 because node 5 is not within the transmission range of any node in this group.

Also nodes 2 and 3 cannot be clustered to a group because they move at different speeds, e.g.,

the arrow length for node 3 is much longer (faster) than that of node 2. Nodes 9 and 10 are

classified as two groups because of their opposite moving directions.

When we change 0 < α < 1 with different values, that means changing the weights of

temporal and spatial locality similarities, we have not observed much differences in identified

groups as shown in Figure 2.8. This implies that α has little impact on group structures of

cabs. One possible reason is that nodes in SFCAB mostly move independently. Thus, temporal

locality similarities among nodes are at the same level and spatial locality similarity dominates

mobility correlation and group identification in SFCAB. In other words, temporal locality has

little impact on group structures of nodes with homogeneous mobility.

Remark 7 DLR can properly measure the spatial locality similarities among nodes, such as

distance, relative speed and direction. Figure 2.8 shows that DLR can effectively identify groups

in which nodes have similar mobility features (such as location, velocity), have more connections

among them than connections with rest of the network, and form connected components.
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Figure 2.7: SFCAB: “Caves” are visible.

Group identification in STBUS

Assume that each bus stop is a “cave”, and Ω is the set of all bus stops. For simplicity of analysis,

we consider temporal-uncorrelated cave profile Pi = {Pi(c1), . . . , Pi(cM )}, where Pi(cm) is the

probability that bus running route i appears at bus stop cm. For cm on route i, Pi(cm) can be

approximated by lm/Li, where lm is the length between cm and its previous stop, and Li is

the length of route i; otherwise, Pi(cm) = 0. Using Eqs. (2.6) and (2.7), the temporal locality

similarity between two buses running routes i and j can be simplified as:

TLSi,j = 1− 1

2
log2(

Li − Li,j

Li
+

Lj − Li,j

Lj
), (2.10)

where Li,j = Li ∩ Lj is the overlapping length of two routes.

An example of two buses is illustrated in Figure 2.9. Note that for two buses running on

the same route, TLSi,j is 1, i.e., they have same mobility pattern; for buses running different

routes, TLSi,j depends on the proportion of overlapping trajectory over total route length. The

more overlapping between two routes (i.e., similar mobility patterns), the higher their temporal

locality similarity is.

Using DLR in Eq. (2.8) and setting DLRth as average of DLR over all neighboring node

pairs, group structure in STBUS is shown in Figure 2.10. Groups in dashed rectangles are ob-

tained by using α = 1, which are consistent with bus routes. Based only on spatial locality

similarity (α = 0), buses belonging to different routes may be clustered as a group (the small

solid square in the middle). By considering both spatial locality and temporal locality similari-

ties, e.g., α = 0.5, identified groups (the dashed circles) only include buses running same route

and moving closely.
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Figure 2.8: SFCAB: Identified groups with α = 0.5 and DLRth = 0.2.

Figure 2.9: Temporal locality similarity between two buses.

Remark 8 DLR can effectively detect temporal locality similarity in user groups in STBUS,

which implies a good level of measurement of temporal locality similarities among mobile nodes.

Figure 2.8 shows that DLR can effectively identify groups in which nodes have same mobility

pattern (i.e., traveling route), and have more interactions among them than interactions running

on other routes.

2.4.2 Simulation Evaluation

By examining real traces, we have observed how DLR can be used in identifying groups with

either spatial or temporal locality similarity. To the best of our knowledge, there is no trace with

both spatial and temporal locality information available for public use, we resort to simulations
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Figure 2.10: STBUS: Identified groups with α = 0, 0.5, and 1.

for a thorough evaluation under realistic human mobility as well as random mobility.

Time-Space varying Caveman Mobility

Besides the commonly used RWPmobility model, we implement a Time-Space varying Caveman

(TSC) mobility model in OMNeT++ and INET-Framework [58]. We use TSC to reproduce the

time-space dependency of human mobility.

Let Wi = {wi(c1), wi(c2) . . . wi(cM )} denote the waiting times of node ni at M caves, By

generating pause times wi(c1), . . . , wi(cM ) according to truncated power-law (TPL) distribution,

few of them can be much larger than others, i.e., people spend most of their time at few caves

and stay shortly at other caves. Accordingly, let nodes stay in different caves with certain

weights/probabilities. Node ni’s preference of cave cm, or probability of staying at cm, is given

by:

Pi(cm) =
wi(cm)∑M
j=1wi(cj)

. (2.11)

The above definition enables hierarchical location preferences, which can vary over time by

generating pause times Wi(t).

An example with 5 communities in the network is shown in Figure 2.11. Vehicle ni at

home location generates the sojourn time in community site cm as ωcm
i (t). Using Eq. (2.11),

location profile {P cm
i (t), 1 ≤ m ≤ 5} at time t is obtained. Then, each node selects one of

the M communities as its next target with probability P cm
i (t), 1 ≤ i ≤ N, 1 ≤ m ≤ M , and

randomly chooses a destination point around cm. The node moves to its destination using
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smooth movement that first speeds up, then moves at stable speed, finally slows down before

coming to a stop (see Figure 2.11). The speed of smooth movement is proportional to the

distance between starting point and the destination [59]. When node ni reaches its destination

at cm, it stays there for ωcm
i (t) period of time with small movements around cm or short pauses.

Then, node ni repeats this process again. All N nodes in the network continue their movements

until the end of simulation.

Figure 2.11: TSC mobility: temporal locality modeling and smooth movement.

Before using time-space varying caveman (TSC) mobility for VANETs detection, we run

simulations to make sure that TSC mobility exhibits empirically observed truncated power-law

decay of inter-contact time [60]. Simulation runs for 24 hours with 20 nodes moving in a 5-

community network area as shown in Figure 2.11. The transmission range is set as 250 meters.

Figure 2.12 shows the complementary CDF (CCDF) of the inter-contact time, i.e., P{TI > t}, on
a log-log scale with simulation area ranging from 1000m×1000m to 5000m×5000m. Consistent

with the studies in [60], the inter-contact time follows a truncated power-law distribution and

for the 5000m× 5000m simulation area, the power-law behavior is dominant over up to O(104)

seconds, followed by a sharp decrease beyond that timescale.

Remark 9 TSC mobility model not only mimics time-space varying human mobility but also

yields power law and exponential decay dichotomy of inter-contact time. Therefore, we use TSC

to evaluate DLR.
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Figure 2.12: Inter-contact time under TSC mobility.

Group identification under TSC mobility

Here we first study group identification in a simple 4-cave network, then in a general network.

As a simple scenario, the network is partitioned into 4 caves {C1, C2, C3, C4}, with 10 nodes

moving for 48 hours according to TSC mobility. Nodes update their mobility observations

every 10 minutes. We introduce two mobility patterns: O(0) cave profile for {n1, . . . , n5} is

{0.85, 0.05, 0.05, 0.05}, while for {n6, . . . , n10} is {0.05, 0.05, 0.85, 0.05}.
Figure 2.13 shows that DLR identifies two groups, in which α = 0.5 and DLRth = 0.5

are used. Group 1 in C1 includes nodes {n1, n2, n3, n4, n7} and group 2 in C3 includes nodes

{n5, n6, n8, n9}. Notice that node n7 is loosely connected to other nodes in group 1 because it

has very different mobility pattern (i.e., cave file) from nodes in group 1, e.g., it has a higher

preference of cave C3, while the nodes in group 1 spend most of their time in cave C1. The

connection between node n7 and other nodes in group 1 is due to spatial locality similarity

(i.e., adjacent locations). Similarly, node n5 is connected to n8 because they locate closely,

disconnected to nodes n6 and n9 in group 2 due to different mobility patterns.

Remark 10 DLR can identify user groups in which nodes either have similar mobility patterns

or are closely located.

In spite of the effectiveness of DLR, there is still one concern: why not just borrow community

detection algorithms from social network (see review papers [61–63]) for group identification in

mobile networks? By an extensive study of community detection algorithms in the literature, we

find that 1) most of these algorithms are centralized, thus are not applicable to self-organized
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Figure 2.13: Nodes with similar mobility patterns are identified as groups.

multihop wireless networks; and 2) most of them assume a prior knowledge of correlations

among nodes, which, however, is not true in mobile networks. Some works [43] present an effort

in overcoming these problems by proposing distributed community detection algorithms in mo-

bile networks, which is shown to be unsuitable for group identification in mobile networks (i.e.,

there is a difference between community detection and group identification.) in the following.

In a more general network with 25-cave and 20-node under TSC mobility, we compare DLR

with an community detection algorithm, SIMPLE, in [43]. SIMPLE works as follows: node

ni inserts an encountered node to its familiar set if their contact duration exceeds a certain

threshold, and ni adds an encountered node nj to its community set if number of common

nodes in their familiar sets over total number of nj’s familiar members is larger than a merging

threshold.

By carefully choosing familiar and merging thresholds for SIMPLE, which have significant

impact on the results, detected communities by SIMPLE are shown in a snapshot of nodes’

positions in Figure 2.14. In this illustration, an arrow from node ni to nj means that ni considers

nj as a community member. Although SIMPLE may reveal long-term community structures,

it tells little about current user groups. In other words, this algorithm cannot capture the

dynamics of network structure, which is an intrinsic and unique feature in wireless networks,

like MANETs, VANETs, and DTNs.

By setting α = 0.8 and DLRth = 0.75, user groups identified by DLR are shown in Figure

2.15. Comparing Figures 2.14 and 2.15, we observe: i) when nodes from same community meet,

they are likely to move as a group. For example, nodes 10, 13, and 17 are connected in both

Figures 2.14 and 2.15. ii) Nodes from different communities may occasionally move together,
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Figure 2.14: Communities detected by SIMPLE under TSC mobility.

such as nodes 0 and 15. iii) Nodes with long contact durations not necessarily form group all

the time. For instance, nodes 5, 11, and 14 join a community in Figures 2.14, but they locate

at different caves in Figure 2.15.

Remark 11 DLR performs better than SIMPLE in identifying the real-time user groups in

wireless networks since it can capture the grouping movements, destination of mobile users, as

well as their current spatial locality similarities.

Group identification under RWP mobility

In this part, we apply both DLR as well as SIMPLE to nodes moving according to RWP

mobility model, as a case study, to find out whether they can identify groups or communities

under random mobility.

Since nodes are homogeneous and move randomly in RWP model, contact duration between

one pair of nodes is identical to another pair of nodes if the simulation runs for a long time.

Through simulations, we find that choosing a large or small contact duration threshold for

SIMPLE may lead to either completely partitioned or fully connected network, i.e., a node

either has no community member or joins the giant community including almost all nodes in

the network. As shown in Figure 2.16, SIMPLE is unable to identify communities for nodes

under random mobility.

By measuring the mobility correlation, we find that temporal locality similarities among

nodes are almost identical, which is consistent with the homogeneity of nodes mobility. Con-

sequently, spatial locality similarities among nodes determine the group structures. In other
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Figure 2.15: Groups identified by DLR under TSC mobility.

words, nodes are forming groups because they are located near to each other and move closely

rather than similar mobility patterns. The user groups (clusters in green ovals) in Figure 2.17

show that DLR still catches the dynamic group structures of nodes under random mobility.

Remark 12 When nodes in the network are homogeneous with approximately random mobility,

community detection algorithms fail to identify meaningful group structures, while DLR can still

identify groups in which nodes have similar movement features.

Impact of α and DLRth

This part provides guidelines on how to choose appropriate α and grouping threshold DLRth.

One important parameter in DLR is α, which can adjust the weights of spatial and temporal

locality similarities. On one hand, if mobile users have relatively stable movement habits, DLR

with large α tends to detect long-term communities that mobile users have similar mobility

patterns. Figure 2.18 shows that, by using larger α, perfect group identification is guaranteed for

a wider range of DLRth. Thus, large α is preferred for networks with well defined communities.

On the other hand, DLR with high weight of spatial locality similarity tends to cluster nodes

into closely moving groups. Without taking into account spatial locality similarity (α = 1),

the group structure may be unable to capture the dynamics of node movements. Therefore, for

network with high or random node mobility, smaller α may be preferred in order to capture

network dynamics.

Next we take a look at whether DLR is robust to changes of grouping threshold DLRth in

Definition 5. Let us define false identification as if nodes ni and nj have very different mobility

patterns, DLRi,j > DLRth, or if ni and nj have similar mobility patterns and Xi = Xj ,
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Figure 2.16: Communities identified by SIMPLE under RWP mobility.

DLRi,j < DLRth. The probability of correct identification in the 4-cave network is shown in

Figure 2.18.

When α = 0.8, we observe that 100% correct group identification holds for 0.58 ≤ DLRth <

0.81. Therefore, for identifying groups in networks where nodes have different mobility patterns,

DLR is robust to a wide range of DLRth.

Although dual-locality ratio threshold DLRth is an important parameter in identifying user

groups, an universalDLRth may be hard to determine due to the dependence of group structures

on node mobility and application requirements. An easy way to set DLRth is averaging DLRs

over all node pairs, since nodes in groups are more closely related to each other. Another possible

way to choose appropriate DLRth is adaptively changing DLRth through learning the stability

of identified groups. If nodes move in or out the group frequently, increasing DLRth can help

to identify more stable groups. To find an suitable DLRth, application requirements also need

to be considered. For reliable applications, such as sending control messages, we suggest to use

a large DLRth to ensure the stability of links and group structures; otherwise, a small DLRth

is feasible.

2.5 Applications of Mobility Correlation

The previous section shows that correlations among nodes can be used to identify group struc-

tures. Following that, an interesting question is how stable the groups or the links among nodes

are. In contrast to many prior work on link dynamics and network topology under i.i.d. mobility

(e.g., [64]), we aim to find insights of inter-node mobility correlation on properties of a pair
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Figure 2.17: Groups identified by DLR under RWP mobility.

or group of nodes. We first investigate the relationship between inter-node mobility correlation

and link lifetime. Then, we evaluate the stability of group structure, and find out the conditions

for stable groups and their evolutions. Finally, DLR is applied to assist data forwarding and

clustering algorithm.

2.5.1 Evaluating Link Lifetime

To begin with, we aim to find some insights on link lifetime, or alternatively contact time

between a pair of nodes. Specifically, we examine the average contact durations of nodes that

have different levels of DLRs. Five nodes move according to TSC mobility in a 6-cave network.

The average speeds of nodes are 10m/s, 20m/s, and 30m/s, representing low, medium, and

high mobility, respectively. The cave preferences of nodes are shown in Table 2.2, where n0 is

the reference node. Based on O(0) cave profile, we can estimate temporal locality similarities

between n0 and ni (1 ≤ i ≤ 4) using Eqs. (2.6) and (2.7), which are TLS0,1 = 1, TLS0,2 =

0.75, TLS0,3 = 0.5, TLS0,4 = 0.25. Assume that two nodes are in the transmission range of each

other or in contact if and only if they locate at the same cave. Simulation collects the contact

durations and number of contacts between n0 and ni (1 ≤ i ≤ 4), and calculates their average

contact durations under low, medium, and high mobility scenarios, respectively.

The results in Figure 2.19 are in agreement with our intuition that two nodes with high

temporal locality similarity have similar movement schedules, thus being able to maintain long

contact duration or link lifetime. Figure 2.19 shows that, regardless of mobility intensity (low,

medium, or high), average contact duration increases approximately linearly as temporal locality
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Figure 2.18: Probability of correct group identification.

Table 2.2: O(0) cave profiles of 5 nodes in a 6-cave network

c0 c1 c2 c3 c4 c5

n0 0.25 0.25 0.25 0.25 0 0

n1 0.25 0.25 0.25 0.25 0 0

n2 0.25 0.25 0.25 0 0.25 0

n3 0.25 0.25 0 0 0.5 0

n4 0.25 0 0 0 0 0.75

similarity increases. Moreover, more closely two nodes move together, more stable the link

between them is, i.e., spatial locality similarity implies link stability. Therefore, DLR could be

a good indicator of link lifetime and link stability, which can help us to establish reliable routes

in routing protocol.

2.5.2 Evaluating Stability and Evolution of Groups

In mobile networks, the groups may change remarkably over time due to the dynamic move-

ments of mobile users. Thus, group stability is essential to characterize the correlation degree

of group mobility and predict group evolution [41,42], which has an immediate impact on rout-

ing and system performance in multi-hop wireless networks. Since DLR has direct impact on

link stability and link lifetime, as discussed earlier, we further explore how it affects network

connectivity. In what follows, we first apply DLR to rigorously analyze the group coherence

degree, and then find out conditions for stable groups and their evolutions.
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Figure 2.19: Link lifetime or contact duration versus DLR.

Group cohesiveness

Group structure in a network has many equivalent features to what a cluster structure has in

a graph. To properly describe and specify group structure, we consider graph G consisting of

group member set V (G), which has the associated link connection set E(G). Let h(i, j) denote

the i, j-path with the minimum hop length (number of hops). If node ni is a neighbor of node

nj, h(i, j) = 1, i.e., h(i, j) = 1 is equivalent to ei,j ∈ E. Let Ni be node ni’s neighbors set and

Δi be the degree of ni, then Ni = {nj|ei,j ∈ E} and Δi = |Ni|.
In graph theory, local clustering coefficient has been widely used to measure the local group

cohesiveness. Basically, the local clustering coefficient Ci of a vertex ni in a graph quantifies

how close ni and its neighbors are to form a complete graph [65]. Given a group G = (V,E),

the local clustering coefficient of ni is

Ci =
2|{ej,k}|

Δi(Δi − 1)
, nj, nk ∈ Ni, ej,k ∈ E. (2.12)

From Eq. (2.12), 0 ≤ Ci ≤ 1. It is clear that high local clustering coefficient of a vertex

implies a well interconnected neighborhood. But this claim may not be true for estimating

group coherence in a weighted graph, which is equivalent to a network in which correlations

among nodes are different.

To explain this discrepancy, we present two examples for calculating a unweighted and

weighted node local clustering coefficient in Figure 2.20. There are six nodes in a group with

levels of DLRs (DLR = {0.2, 0.5, 0.8}) among them. Weighted clustering coefficient for each

vertex in both case 1 and case 2 in Figure 2.20.

In Case 1, Eq. (2.12) gives the unweighted local clustering coefficient of node A, CA = 0.6,
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Figure 2.20: Unweighted and weighted local clustering coefficients.

which means a well interconnected neighborhood of node A. However, the weights of edges

forming the interconnected triangle vertices (A,D,E), or correlations among (A,D,E), are com-

parably larger than those forming the interconnected triangle vertices (A,B,C). This indicates

that the triangle (A,D,E) plays more important role in determining the local group cohesiveness

than triangle (A,B,C). Furthermore, among all A’s neighbors, though F has the strongest cor-

relation with A, it has no direct connection with A’s other neighbors. It further indicates that

A’s clustering properties may be overestimated by simply considering the physical topological

information.

Based on above observations, DLRs among nodes must be taken into account in order to

accurately estimate the local group coherence. In analogy with the weighted clustering coefficient

defined in [66], which however only considers the weights of the edges connected to ni, we

explicitly take into account weights of all edges in triangle (ni, nj, nk), and define the weighted

local clustering coefficient of node ni as

Cω
i =

∑
j,k∈Ni

DLRi,j+DLRi,k+DLRj,k

3 · 1{h(j,k)=1}∑
j,k∈Ni

DLRi,j+DLRi,k

2

, (2.13)

where 1{·} is the indicator function.

Distinguished from Eq. (2.12), Eq. (2.13) takes into account the correlations between ni and

its neighbors. When correlations among nodes are the same, Cω
i = Ci. By applying Eq. (2.13)

to recalculate Cω
A for Case 1 in Figure 2.20, as we expected, Cω

A ≈ 0.43 < CA. Furthermore,

although the physically interconnected neighbors in Case 2 is less than Case 1 (CA(2) = 0.5 <

CA(1) = 0.6), Cω
A(2) ≈ 0.59 > Cω

A(1) due to the strong DLRs of triangle pairs (A,B,C) and

(A,D,E) incident to node A in Case 2.

Remark 13 For node ni in a group, it either has Cω
i > Ci or Cω

i ≤ Ci. In the former case, ni

has strong correlations with its neighbors. In contrast, for the latter case, the group is generated

by the nodes connected with weak correlations. Therefore, ni can show even strong local group
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coherence when it has high clustering coefficient Ci and Cω
i > Ci, which is the reverse case

when showing very weak group coherence.

Definition 6 Given the weighted local clustering coefficient for each node in a group, we can

easily find the coherence level of entire group. Define group coherence as

CG =
1

V (G)

∑
i∈V (G)

Cω
i . (2.14)

With the same example in Figure 2.20, we observe that the group coherence in Case 2 is higher

than Case 1, even though there are more direct connections among group members in Case

1. Therefore, similar to the property of Cω
i , a high value of CG implies an overall strongly

connected group structure, which is due to stable link connections among mobile nodes.

Conditions for stable groups

Basically, stable group means that its composition remains unchanged over time. In other words,

the internal connections among nodes within a group are stronger than the external ones. To

proceed, let Δi denote the degree of node ni. Define Δi = Δin
i (G)+Δout

i (G), where Δin
i (G) and

Δout
i (G) represent the number of links between ni and its neighbors inside and outside of the

group G, respectively. Then, Δin
i (G), along with the sum of DLRs of node ni with its neighbors

inside group G, indicate the strength of ni with group G.

Theorem 1 A group G = (V (G), E(G)) is stable in a strong sense if ∀i ∈ V (G)∑
j∈N in

i

DLRi,j >
∑

k∈Nout
i

DLRi,k, and Δin
i (G) > Δout

i (G). (2.15)

And it is stable in a weak sense if∑
j∈N in

i

DLRi,j >
∑

k∈Nout
i

DLRi,k,
∑

i∈V (G)

Δin
i (G) >

∑
i∈V (G)

Δout
i (G), (2.16)

where N in
i and Nout

i are sets of ni’s neighbors inside and outside group G, respectively.

For a stable group in a strong sense, each node has more connections within the group than

outside the group. For a stable group in a weak sense, the sum of all connections within the

group is greater than the total connections toward the nodes outside the group. It is clear that

the condition of Eq. (2.15) satisfies Eq. (2.16), but the reverse is not true. More importantly,

in Theorem 1, a stable group in both strong and weak sense must satisfy the condition that for

each node, sum of correlations with its neighbors inside the group is stronger than that with
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Figure 2.21: Stable Groups and Network
Topology: Switching Groups.

Figure 2.22: Stable Groups and Network
Topology: Groups Merging.

neighbors outside the group. Otherwise, the group is unstable and the node may switch to other

groups.

In wireless networks, stable groups mean less dynamics in network topology. In other words,

unstable groups, such as node switching among groups and a large group splitting into several

small groups, can lead to broken links, even to network partitions. Conditions for stable groups

can assist evaluating network dynamics, according to which different routing strategies may be

applied for better performance.

Conditions for group evolution

Group evolutions frequently happen in mobile networks, such as group contraction, split, and

combination in Figure 2.5. Therefore, we investigate the conditions for group evolution, which

are beneficial for predicting network connectivity and partitions. We focus on two common

group evolution phenomena, that are node switching from one group to another and two groups

merging into one group.

Based on Theorem 1, a group is reluctant to change its structure when the condition of Eq.

(2.15) is satisfied. Otherwise, a node probably can switch from one group to another. Hence, ni

will switch from G1 to G2 when ∑
k∈N

G2
i

DLRi,k >
∑

j∈N
G1
i

DLRi,j. (2.17)

In an example shown in Figure 2.21, node ni has 3 neighbors in G1 and 5 neighbors

in G2, we can calculate values of both sides of Eq. (2.17). As
∑

j∈N
G1
i

DLRi,j = 2.1, and∑
k∈N

G2
i

DLRi,k = 3.4, node ni is likely to switch from G1 to G2.

Note that two groups can communicate when there exists at least one link between two

users from different groups. Intuitively, the correlation strength of the inter-group edge ei,j is

proportional to the number of their common neighbors. In graph theory, a common neighbor
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nk implies that there is a triangle connection among node tuple (ni, nj, nk). Accordingly, the

more triangles the edge ei,j is attached, the stronger tie groups Gi and Gj has. Therefore, the

weighted edge clustering coefficient ECω
i,j can be used to represent betweenness of groups in

social networks [66]. Specifically, ECω
i,j is defined as the ratio of the number of triangles that

edge ei,j is currently attached to over the maximum number of triangles that can be potentially

included:

ECω
i,j =

∑
k∈Ni∪Nj ,k �=i,j(DLRi,k +DLRj,k) · 1{h(i,k)=h(j,k)=1}∑

k∈Ni,k �=j εi +
∑

k∈Nj ,k �=i εj
, (2.18)

where εi = DLRi,k · 1{h(j,k)=1} +1{h(j,k)�=1} for ni, and εj = DLRj,k · 1{h(i,k)=1} +1{h(i,k)�=1} for

nj. They represent the total possible weighted edge contribution in forming the triangles in the

neighborhood of ni or nj.

To observe the betweenness of two groups, we present an example in Figure 2.22. Many

common neighbors and stronger correlations between ni and nj result in high weighted edge

clustering coefficient, that is ECω
i,j = 0.89. There exists a higher chance that two groups can

merge to be a larger single group.

In multihop adhoc networks, node switching means that some links may break while new

links may establish, i.e., changes of network topology; while groups merging implies that nodes

in these groups are well connected, i.e., quality of network connectivity is good. Therefore,

conditions for group evolutions can help us to predict network connectivity.

In addition, we need to point out that the inter-node correlation can be helpful in many

applications in addition to our analysis of link dynamics and network topology. For example, in

mobility-aware routing, two nodes with high DLR move closely and probably maintain a stable

link, and thus are more suitable for establishing routes with high stability. In data forwarding

in DTNs, if a node currently carrying a message sends a copy to a node with different mobility

patterns, i.e., low temporal locality similarity between them, the chance of at least one of them

meeting destination could be increased. In mobility-aware clustering, since the node with high

weighted clustering coefficient in Eq. (2.13) is much less likely to be disconnected from its

neighbors, therefore communication overhead for changing clusterhead can be reduced if it is

selected as clusterhead.

2.5.3 Assisting Data Forwarding

As an application, we develop a TLS based data forwarding mechanism for information dis-

semination in delay tolerant networks (DTNs). The relays are selected among the neighbors of

message carrier based on their DLR with destination, to ensure that the delay of delivery and

number of relays can be reduced.

Assume neighboring nodes in DTNs can exchange their cave profiles, and the data source
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has knowledge about the destination D’s O(0) cave profile PD = {PD(c1), . . . , PD(cM )} (refer

to Eq. (2.4)), which is the long-term cave preference probability set. Suppose the neighbors set

of data source S is NS = {n1, . . . , nk}, which can be selected as relays. We assume D is not

in the set NS , otherwise S can simply transmit the data to D immediately. A relay is selected

according to the following steps:

• S collects the O(k) cave profiles of its neighbors ni ∈ NS by exchanging messages.

• S estimates the TLS between its neighbor ni and D by calculating TLSi,D through Eq.

(2.6) and (2.7), which use D’s O(0) and ni’s O(k) cave profiles.

• S selects relay node R1 that has the strongest TLS with D, i.e., TLSR1,D = max{TLSi,D,

ni ∈ {NS ∪ S}}.

• R1 forwards to another relay R2 if TLSR2,D = max{TLSi,D, ni ∈ {NR1 ∪R1}}.

• The message is forwarded to D by the selected relay nodes set R = {R1, R2, . . . , Rk}.
Because the temporal locality similarity is based on mobility pattern similarity, a node is

selected as a relay if it has the highest probability to appear at the same community site with D

among all the neighbors of the message carrier. Since node’s O(k) cave profile is time-varying,

we can only estimate the temporal locality similarity between a node and the destination by

using D’s O(0) cave profile. As O(0) cave profile represents the probability/preference of a node

being each cave, estimation of TLSi,D indicates the possibility that node ni will appear at same

location with D. Therefore, TLS assisted strategy should be able to disseminate information

to destination through fewer relay nodes within shorter time than random forwarding that

randomly chooses a neighbor as relay.

We implement TLS-assisted data forwarding in OMNeT++ and INET-Framework [58].

Figure 2.23 shows TLS-assisted algorithm’s delivery ratio comparing with random forwarding

in both random mobility and time-space varying caveman (TSC) mobility scenarios. Under

RWP mobility, TLS-assisted forwarding outperforms random forwarding by 10% in delivery

ratio, while it performs much better performance than random forwarding under TSC mobility

because nodes can take its advantages of node mobility patterns to assist data forwarding.

2.5.4 Assisting Clustering

We further utilize dual locality ratio in mobility-aware clustering, which is one of the most

general applications of topology control, and show its benefit of lower clusterhead changing

rate comparing with lowest-ID algorithm [44].

In lowest-ID clustering algorithm, each node is randomly assigned an ID, and the node with

smallest ID among its neighbors acts as clusterhead. Because mobile users may move at high
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Figure 2.23: Delivery ratio: TLS-assisted versus random forwarding.

speed and travel different routes to their destinations, a node may be frequently disconnected

with its randomly selected clusterhead, i.e., clusters based on lowest-ID are unstable. The

stability of clusters could be improved by selecting clusterhead based on average DLRs of nodes

with their neighbors.
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Figure 2.24: DLR assists clustering under TSV mobility.

Using the same simulation setting as in Section 2.4.2, the average clusterhead changing time

is measured to indicate cluster stability. Figure 2.24 shows that under various node speeds,

changing interval of clusterhead that is selected base on DLR is much longer than that based
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on lowest-ID. A node with higher average DLRs not only moves closely with its neighbors,

but also may share overlapping paths, therefore is much less likely to be disconnected from its

cluster members if being selected as the clusterhead, i.e., changing rate of clusterhead is reduced.

Therefore, DLR can be used to obtain stable clustering for topology control of vehicle-to-vehicle

network.

2.6 Summary

In this chapter, we present our observations, measurements, and applications of mobility cor-

relation in both spatial and temporal locality. In spatial domain, mobility of a node depends

on its location and mobility correlation of two nodes exhibits in relative distance, speed, and

moving direction. In temporal domain, mobility of a node shows difference preferences over

different locations over time and the mobility correlation of two nodes is indicated by simi-

larity in mobility patterns. By measuring the similarity in both spatial and temporal domains

of mobility between two nodes, we propose a dual-locality ratio (DLR) metric to quantify the

inter-node mobility correlation. DLR is shown to effectively identify node groups in real traces

as well as in simulations. Furthermore, DLR is shown to have implications on link lifetime and

group stability, and is utilized for evaluating group stability, providing conditions for group

evolutions, assisting data forwarding and clustering in topology control.
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Chapter 3

Analyzing Performance of Geocast

Message Dissemination in

Intermittently Connected VANETs

Vehicular ad hoc network (VANET) is one of the most promising large-scale applications of

mobile ad hoc networks, which can facilitate the design of intelligent transportation systems

(ITS). Many VANET applications, such as traffic collision warning, require message dissemina-

tion in certain geographic regions (i.e., area of interest), which is referred to as Geocast. The

challenges of geocast come from highly dynamic environments on the road. Destination nodes

in geocast are dynamic over time due to vehicle mobility, which undermines our existing results

of dissemination latency and information propagation speed with pre-determined destinations.

Moreover, the area affected by the dissemination is vital in geocast as it determines the dissem-

ination latency for spreading the message to nodes located at certain places inside of the area

of interest (AOI).

In this chapter, we study new questions presented by geocast: how far the dissemination

can reach by time t (referred as dissemination distance) and how long the dissemination takes

to inform nodes located at certain locations (referred as hitting time). As only nodes actively

spreading a message contributes to dissemination (referred as disseminator), we first model mes-

sage mobility that includes movement of disseminator and transmission between disseminators

in order to shroud dynamic destination nodes of geocast. Then, analytic bounds of dissemina-

tion distance and hitting time are derived based on message mobility, which serve as the spatial

and temporal limits of geocast. Analytic results are further validated by simulation results of

several dissemination algorithms. Putting together, two application scenarios are provided to

illustrate how our results serve as guidelines to choose or design appropriate dissemination

methods for different vehicle-to-vehicle network applications.
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3.1 Motivation and Related Work

Vehicular Ad hoc Networks (VANETs) have emerged as a radically new paradigm and served as

a cornerstone to the design of the Intelligent Transportation System (ITS), which has attracted

much attention from the government, car manufacturers, and researchers. In the US, FCC (Fed-

eral Communications Commission) assigned 75 MHz of spectrum for Dedicated Short Range

Communications (DSRC) [67] in 2003. In Europe, national governments, car manufacturers,

and the European Commission are pushing for a new research effort in this area in order to

develop a network system assisting the drivers. More recently, IEEE also formed the new IEEE

802.11p task group [17] that focuses on providing wireless access for the vehicular environ-

ments to improve road safety, traffic efficiency, and driving convenience. A list of applications

of VANETs can be found in Car2Car Communication Consortium (C2CCC) [18], which aims

to standardize inter-vehicle communication. For instance, CarTalk2000 [68] promotes a driver

assistance system based on inter-vehicle communication; FleetNet [69] focuses on developing

vehicular ad hoc networks that satisfy the drivers’ and passengers’ needs for local dependent

information and services.

Many VANET applications are heavily dependent on the message dissemination in specific

geographic regions, i.e., geocast. Many researchers have studied the performance of message

dissemination in various application scenarios, such as MANETs and VANETs. Essentially,

most researchers are interested in: (i) how fast the information can be spread, and (ii) how far

the dissemination can propagate. Hence, the metrics of message dissemination performance can

be in time domain (e.g., dissemination latency and propagation speed), and space domain (e.g.,

propagation distance) [70].

In the time domain, message dissemination latency and information propagation speed

have been studied in MANETs [19–22,71,72] as well as in VANETs [73–78]. Zheng [19] derived

fundamental limits of the broadcast capacity and information diffusion rate of information

dissemination in power-constrained large-scale wireless networks. Zheng showed that there is

a constant upper bound on the information diffusion rate in large wireless networks. Xu and

Wang [20] investigated the speed limit of information propagation in large wireless networks and

showed that there exists a unified speed upper bound for broadcast and unicast communications.

Paper [71] presented a graph based model to characterize connectivity properties and derived

a scaling law for message delay in large scale disconnected ad hoc networks. Kong and Yeh [22]

found that delay scales linearly with the Euclidean distance between the sender and the receiver

when the network is in the subcritical phase, and the delay scales sub-linearly with the distance

if the network is in the supercritical phase. Paper [21] analyzed the information propagation

speed limits in large scale mobile and intermittently connected networks (i.e., Delay Tolerant

Networks (DTNs)). Jacquet et al. [72] derived the asymptotic capacity and delay in large scale
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mobile networks and showed a practical throughput-delay trade-off.

Because real D2D communication network has finite size and number of nodes, nonasymp-

totic results on performance of message dissemination are also needed. Specially, the latency

and speed of message dissemination in VANETs have received lots of attention. Fracchia and

Meo [77] analyzed the average delay, the probability that a vehicle is informed, and the average

number of duplicate messages received by a vehicle within a area of interest in a 1-D highway

scenario. Similarly, paper [74] developed upper and lower bounds for the time of information

propagation between two nodes in a 1-D network and showed that more vehicles on the road

does not necessarily promote the fast propagation of information. The relationship between

latency and reliability is studied in [78]. Jacquet et al. [75] analyzed information propagation

in bidirectional vehicular DTNs. The authors proved and computed a threshold of vehicle den-

sity, above which information speed increases dramatically over vehicle speed, and below which

information propagation speed is on average equal to vehicle speed.

On the contrary, the space metric domain receives less attention [73, 76, 79, 80]. Paper [73]

derived spatial propagation of information in a 1-D vehicle-to-vehicle ad-hoc network. Both

analysis and simulation show that information propagation depends on vehicle traffic charac-

teristics, such as vehicle density, average vehicle speed, and relative speed among vehicles. Resta

et al. [79] derived lower bounds on the probability that a car at distance d from the source of

the emergency message correctly receives the message within time t. In a 1-D static network

scenario, the authors showed that besides d and t, this probability depends also on 1-hop chan-

nel reliability and the message dissemination strategy. Further considering node mobility, [80]

analyzed the propagation distance in 1-D VANETs with constrained vehicle mobility. Jacquet

et al. [76] showed that when the vehicle density is smaller than a threshold, routing using bidi-

rectional traffic in bidirectional vehicular DTNs provides a gain in the propagation distance,

which follows a sublinear power law as time elapses.

In addition to the least attention on spatial propagation [70], research on spatial propagation

is mainly performed in 1-D VANETs with static or simple node mobility (e.g., constant speed

or moving direction). Nonetheless, spatial propagation is an important performance metric as

many D2D applications target information delivery in geographic regions (i.e., geocast), such

as collision warning, traffic congestion warning, and regional weather forecast. By limiting des-

tinations only to vehicles in AOI, geocast helps to avoid the broadcast storm problem [81] and

enables the coexistence of multiple VANET applications. At the same time, geocast introduces

challenges to algorithm and protocol design, system evaluation, and even performance metrics

of VANETs. Because vehicles can move into and out from the AOI, geocast has dynamic des-

tination nodes. Such a dynamic group of destinations is different from message dissemination

that specifies destination nodes prior to transmissions in traditional MANETs. There still lacks

understanding of the spatial propagation properties of geocast in 2-D networks with realistic
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node mobility, which we will study in this chapter. Our contributions are three-fold.

1. We model message dissemination by message mobility, which focuses on where active

messages reach rather than by which nodes carry and relay. Without specifying relay

nodes on information propagation path, message mobility can shroud dynamic destination

nodes of geocast and enable us to analyze the dissemination distance and hitting time.

2. Based on the formulation of active message mobility, we derive lower and upper bounds

for the farthest distance that active messages reach at time t and the first hitting time

that active messages reach devices at distance d from the original source location under L-

copy (L ≥ 1) direction-invariant and geographic-assisted dissemination strategies, respec-

tively. Simulation results show that several well known dissemination algorithms, including

stateless opportunistic forwarding (SOF) [82] and GPS-based broadcasting (GBB) [83],

are well bounded by our analytic bounds. Both analysis and simulation evidence that

regardless of the number of disseminators used in the dissemination, the upper bound

on expected dissemination distance increases with the square root of time t in direction-

invariant dissemination strategy, while it increases approximately linearly with time t in

geographic-assisted dissemination strategy.

3. We apply our analytical and simulation results to two real VANET applications, i.e.,

post-crash warning and emergency vehicle signal preemption, to provide guidelines for

dissemination algorithm design. Our results suggest that for VANET applications that

target an area near the source location, dissemination algorithms with multiple dissemi-

nators are suitable, while for applications that target an area far from the source location,

geographic-assisted dissemination strategy is preferable in order to satisfy the application

requirements.

The rest of this chapter is organized as follows. In Section 3.2, we introduce our network

and vehicle mobility models, define and classify dissemination strategies, and formulate message

mobility. Lower and upper bounds on dissemination distance and hitting time are derived in

Section 3.3. In Section 3.4, we validate our analytic bounds by comparing them with simulation

results, and show how our results provide guidelines for choosing appropriate dissemination

methods in VANET applications. We conclude this chapter in Section 3.5.

3.2 Models and Problem Formulation

In this section, we first introduce our network and mobility models and two general dissemina-

tion strategies, then formally define dissemination distance and hitting time with formulation

of the mobility of active message.

48



3.2.1 Network and Mobility Models

Assume that at time 0, n nodes {X (0)} = {X1(0), . . . ,Xn(0)} are uniformly distributed at

random in a two-dimensional torus B = [0, B]2, where B =
√

n/λ for some λ > 0. The random

vector Xi(0) denotes the location of node i at time 0. By definition [84], {X (0)} is a homogeneous

Poisson point process. n nodes are Poisson distributed in the network with density λ = n/B2

everywhere. The average number of neighbors per node is therefore smaller (or equal) than

πr2 n
B . In [85], Xue and Kumar have shown that if the average number of neighbors is smaller

than 0.074 log n, then the network is almost surely disconnected when n is large. In order to

study the properties of intermittently connected VANETs, we further assume that λ is small

such as to capture the intermittent connectivity in vehicle to vehicle networks due to node

mobility and limited radio coverage.

Suppose that time is slotted and each node moves according to a given mobility model

M(t), t = 1, 2 . . . . In other words, the displacement of node i from its position Xi(t−1) to Xi(t)

is distributed according to M(t). Two nodes i and j can communicate with each other at time t

if only if their distance is less or equal to transmission range r, i.e., di,j(t) � ||Xi(t)−Xj(t)|| ≤ r.

We consider a generic mobility model [86] defined as the following.

Definition 7 (Generic Mobility) Given initial nodes’ positions X (0) at t = 0, the spatial dis-

tribution Xi(t) of node i at time slot t is around a point x∗i by a non-increasing and direction-

invariant function Ψi(x) = Ψ(x − x∗i ). Assume that Ψi is non-zero in and only in a region

characterized by a constant a; that is, Ψi(x) = Ψ(x − x∗i ) > 0 when ||x − x∗i || < a and

Ψi(x) = Ψ(x− x∗i ) = 0 otherwise.

This mobility model is very general such that it covers a wide range of possible scenarios

of realistic mobility processes. The case of static nodes uniformly deployed over the area can

be obtained by setting Ψi(x) = δ(x −Xi(0)). The i.i.d. mobility model in [87] corresponds to

the case when Ψ(x) is a constant function independent of x and a = ∞. When a < ∞ and

x∗i = Xi(0), we obtain the constrained i.i.d. mobility model used in [22].

To mimic vehicle mobility which is constrained by the speed limit and dependent on previous

movements, we assume that a < ∞ and x∗i = Xi(t − 1) at time slot t, thus Xi(t) is uniformly

distributed at random in A(Xi(t − 1), a)-the circular region centered at Xi(t − 1) with radius

a > 0. The positions Xi(t) are mutually independent among all nodes and only dependent on

previous locations Xi(t − 1). This mobility process can also be interpreted as the following.

At each time slot, a node chooses a random direction uniformly from [0, 2π] and travels for a

random length which is chosen from [0, a] following certain distribution. Denote by A(t) and θ(t)

the length and angle of the movement step at time t, respectively. Movement vector of a node i

at time t is YM (t) � A(t)ejθ(t) (j is imaginary unit) with origin at Xi(t) and endpoint uniformly

distributed in A(Xi(t), a). Since both sequences {A(t)} and {θ(t)} are i.i.d. and independent
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from each other, YM (t) (t = 1, 2 . . . ) are also i.i.d. random variables. This constrained i.i.d.

mobility satisfies the following Lemma.

Lemma 1 Under constrained mobility in Definition 7, n nodes are Poisson distributed in the

network B with density λ everywhere at all times.

Proof : Let the circular region A centered at a random selected location in the network with

radius a be partitioned to m+ 1 concentric rings Ai indexed by i, 0 ≤ i ≤ m, each of which is

with equal ring width ε. Note that A0 is a circle centered at the center of A with radius ε. Denote

the area enclosed by ring Ai as SAi
, and define by Ni(t) the number of nodes in Ai at time t.

Since nodes are Poisson distributed in the network area initially, i.e., Ni(0) ∼ Pois(λSAi
).

Under constrained mobility model in Definition 7, when t = 1, number of nodes in interval

A0 is

N0(1) = N0(0)

∫
A0

1

πa2
dA0 + · · ·+Nm(0)

∫
Am

SA0

SAm

1

πa2
dAm. (3.1)

Denote pi �
∫
Ai

SA0
SAi

1
πa2

dAi, i = 0, 1, . . . ,m, and N∗
i (0) � piNi(0). Accordingly,

P (N∗
i (0) = k∗) =

∑
k≥k∗

(kk∗)p
k∗

i (1− pi)
k−k∗ · e−λSAi

(λSAi
)k

k!

= e−λSAi
(piλSAi

)k
∗

k∗!

∑
k≥k∗

[(1− pi)λSAi
]k−k∗

(k − k∗)!

= e−piλSAi
(piλSAi

)k
∗

k∗!
. (3.2)

Clearly, N∗
i (0) follows Poisson distribution with parameter piλSAi

. Since {N∗
i (0), i = 0, . . . ,m}

are independent Poisson random variables and N0(1) equals to the sum of N∗
i (0),

N0(1) ∼ Pois(

m∑
i=0

piλSAi
) ∼ Pois(λSA0). (3.3)

Similarly, number of nodes in any small circular region in the network at t = 1 follows the

same Poisson distribution as at t = 0. Assume Ni(t) ∼ Pois(λSAi
), 0 ≤ i ≤ m, using the same

method as above, we can show that Ni(t+1) ∼ Pois(λSAi
), 0 ≤ i ≤ m. Therefore, by induction,

nodes are Poisson distributed in the network area at all times.

Remark 14 We use the constrained vehicle mobility model because (i) it generally accounts

for a wide range of realistic mobility processes in vehicular scenarios, including Manhattan

mobility [12] and random walk, (ii) it reflects the speed limit of nodes (usually wireless devices

carried by humans or installed on vehicles) that nodes can jump to adjacent locations with pre-

assigned probabilities and each movement step is limited in a circular region around previous
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location, and (iii) n nodes are Poisson distributed in the network B with density λ everywhere

at all times.

3.2.2 Dissemination Strategies

Dissemination performance, such as information propagation speed and dissemination latency,

depends on how many nodes are recruited to disseminate the message (i.e., number of dissem-

inators) and how the disseminators are chosen. By using as many disseminators as possible,

full epidemic broadcast achieves best performance, but leads to network congestion. Hence,

limited-copy dissemination (i.e., limited number of disseminators) is more feasible in order to

save network resources and enable the coexistence of multiple applications. If being used for

choosing disseminators, geographic information has the potential to enhance performance of

geocast. But, geographic information may be unavailable for all vehicles in the network and

exchanging geographic information consumes the limited network resources. Since number of

disseminators and whether geographic information can be used in disseminator selection affect

performance of dissemination strategies, we classify dissemination strategies according to these

two factors, based on which we study geocast performance.

Definition 8 (1-Copy Message Dissemination) Assume that at time 0, node v0 initiates a mes-

sage dissemination and acts as the disseminator. There is only one disseminator at each time

slot. The disseminator will rebroadcast the message to its neighbors until it finds the next-hop

disseminator. Disseminator is selected based on criteria imposed by applications. This process

repeats until the dissemination completes.

1-copy message dissemination is particularly useful in the following situations: 1) network

has limited capacity; 2) network load is heavy; 3) nodes are computationally-constrained or

energy-constrained devices. In these situations, the network could only support one disseminator

in order to save network resources and enable the coexistence of multiple applications.

Definition 9 (L-Copy Message Dissemination) Assume that node v0 initiates a message dis-

semination at time 0. First, the message will be spread to L distinct disseminators. Then, each

disseminator independently disseminates the message according to 1-copy message dissemina-

tion in Definition 8.

As multiple disseminators actively rebroadcast the message at the same time, L-copy mes-

sage dissemination likely increases the speed of message arriving AOI and enhance the probabil-

ity of successful deliveries to destinations (i.e., dissemination reliability). Thus L-copy message

dissemination could be favorable for time critical message dissemination of safety applications

in VANETs.
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Remark 15 In a message dissemination, if neighbors’ locations or speeds are unavailable, a

disseminator chooses its next-hop disseminator isotropically (equally in all directions), which we

refer to as 1-copy and L-copy direction-invariant dissemination; otherwise, geographic informa-

tion can be used to assist disseminator selection such as to enhance dissemination performance

(such as propagation speed), which we refer to as 1-copy and L-copy geographic-assisted dis-

semination.

Direction-invariant dissemination can be implemented by imposing the receivers to proba-

bilistically decide whether to become a disseminator; geographic-assisted dissemination can be

achieved by scheduling receivers to broadcast their decision based on their locations. In either

strategy, the feedback mechanism is used between two disseminators such that the previous

disseminator stops broadcasting the message and the new disseminator starts spreading the

message. Note that the traffic induced by feedback mechanism would not be overwhelming in

intermittently connected networks.

3.2.3 Problem Formulation

In geocast, we are interested in the dissemination within the AOI, such as whether the message

has reached vehicles in the AOI or how far the message is from the AOI. Hence, we study how

far the dissemination has reached by time t and how long the dissemination takes to spread the

message to certain location, i.e. the spatial and temporal limits.

In order to derive spatial and temporal limits of geocast, we do not consider the effects of

buffering or congestion, and assume that a message can be transmitted instantaneously between

two nodes in range (i.e., omit the transmission delay). Under these assumptions, we are able to

derive spatial and temporal bounds of geocast since they correspond to an ideal scenario with

that respect. Actually, previous assumptions have little impact on the accuracy of our results

because information transmission occurs much faster than the speed of the mobile nodes and

propagation delay is much smaller than the dissemination latency incurred by dynamic topology

and intermittent connectivity in VANETs.

Dissemination Distance

In a dissemination, the message copy held by the disseminator is called active message, otherwise

called latent message. Clearly, nodes holding latent messages contribute nothing to increase

delivery ratio and decrease dissemination latency. Hence, we ignore the latent messages and

their carriers and focus on active messages and disseminators.

Denote by V(t) the set of disseminators at time t and 1 ≤ |V(t)| ≤ L. Let us place a Cartesian

coordinate system in the network with its origin at the source location. The dissemination vector
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D(t) is the vector from source point X0(0) to the location of the farthest disseminator at time

t. The length of dissemination vector is called Dissemination Distance, which is defined as

|D(t)| � max
vk∈V(t)

{||Xk(t)−X0(0)||}. (3.4)

|D(t)| by definition is the distance from the source location to the farthest location reached by

disseminators by time t.

Figure 3.1: In the circular region centered at the source with |D(t)| as diameter, nodes have
at least partially received the message by time t.

Figure 3.2: Dissemination distance varies due to movements of disseminators and jump of
active message (i.e., transmission) from disseminator vi (the black node) to next disseminator
vj (the green node).

To avoid specifying the relay nodes, we study D(t) through the mobility of active messages.
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In 1-copy message dissemination, denote by Y (t) = D(t) − D(t − 1) the progress of active

message from time t−1 to t (t = 1, 2, . . . .). As shown in Figure 3.2, suppose vi (the black node)

is the disseminator at time t− 1, (i) if vi is also the disseminator at time t, the active message

moves with vi, which means that Y (t) equals to the movement step YM (t) of vi; (ii) if node

vj (i �= j) (the green node) is selected as the next disseminator at time t, the active message

jumps from vi to vj and moves with vj , which means that Y (t) equals to the propagation vector

YP (t) plus the movement step YM (t) of vj . Y (t) is affected by constrained node mobility, limited

transmission range, and disseminator availability.

In L-copy message dissemination, we number each active message from 1 to L and denote

by |Dk(t)| the farthest distance reached by the kth active message. We assume that each active

message is independent from each other. Hence, the progress of the kth active message, Yk(t),

equals either YM(t) or YM(t) + YP (t).

Remark 16 For direction-invariant dissemination, E(Y x
P (t)) = E(Y y

P (t)) = 0; for geographic-

assisted dissemination that utilizes geographic information to increase dissemination distance

|D(t)|, E(Y x
P (t)) ≥ 0 when Dx(t) ≥ 0 and E(Y x

P (t)) ≤ 0 when Dx(t) < 0 (the same for the

y-component).

Hitting Time

To find the first time of the dissemination reaching certain location, we define hitting time as

τ(d) � inf
t>0

{t : |D(t)| ≥ d}, (3.5)

where d is a positive constant. Essentially, τ(d) is the message’s fist hitting time of the region

that is outside the circular region centered at X0(0) with radius d.

Dissemination distance and hitting time manifest the spatial and temporal limits of geocast,

respectively. Dissemination distance reveals the size of the zone affected by the dissemination in

which nodes are at least partially informed by the message. Hitting time uncovers the minimum

latency of reaching nodes at certain locations. Putting together, they can be used to determine

whether the dissemination has reached vehicles in the AOI and whether vehicle-to-vehicle com-

munication can possibly satisfy the time requirements of time critical safety applications in

VANETs. Intuitively, different dissemination strategies exhibit different performance in dissem-

ination distance and hitting time. We expect our results to also provide guidelines on choosing

appropriate dissemination methods according to application requirements.
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3.3 Analysis of Dissemination Distance and Hitting Time

3.3.1 Lower bounds

To begin with, we derive lower bounds on dissemination distance and hitting time under a 1-

copy message dissemination that the source will be the only disseminator. Originally, the source

initiates a geocast with |D(0)| = 0, and actively spreads the message while all other recipients

carry latent messages without retransmission. The dissemination is solely determined by the

mobility of the source node. In other words, the progress of the active message from time k− 1

to k (k = 1, 2, . . . ) equals to the movement vector YM (k). Hence, at time t, D(t) =
∑t

k=1 YM (k).

Lower bound on dissemination distance

In order to find lower bound on |D(t)|, we first examine mobility vector YM (t).

Lemma 2 Under constrained i.i.d. mobility, movement vector YM(t) satisfies that E(|YM (t)|) =
2a
3 and E

{|YM (t)|2} = a2

2 , where |YM (t)| is the length of vector YM(t) and a is the maximum

movement length per time slot.

Proof : Suppose node i locates at Xi(t − 1) and Xi(t) at time t − 1 and t, respectively. The

movement vector YM (t) has its origin at Xi(t − 1) and endpoint at Xi(t) that is uniformly

distributed in A(Xi(t − 1), a). The length of a movement step |YM (t)| = Ai(t) = ||Xi(t) −
Xi(t− 1)||.

Let the circular region A(Xi(t − 1), a) be partitioned to m concentric rings indexed by

j, 0 ≤ j ≤ m− 1, each of which is with equal ring width ε. When ε is much smaller than a,

P (Ai(t) = x) ≈ 2πxε

πa2
=

2

a2
xε. (3.6)

Hence,

E(|YM (t)|) = E(Ai(t)) =

∫ a

0

2

a2
x2dx =

2a

3
, (3.7)

E
{|YM (t)|2} =

∫ a

0

2

a2
x3dx =

a2

2
. (3.8)

Based on Lemma 2, we have

E(|D(t)|2) =
t∑

k=1

E(|YM (k)|2) = a2t

2
. (3.9)

Since better designed dissemination algorithm can spread out the message faster, a2t/2 can

serve as the lower bound of the mean square displacement (MSD) of dissemination distance.
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Lower bound on hitting time

We have the following lower bound on probability distribution of hitting time τ(d).

Theorem 2

P (τ(d) < t) ≥ max{0, 1 − 4(d + a)2

a2t
}

Proof : Denote byDx(t) andDy(t) the x-component and y-component of dissemination distance

vector D(t), respectively. Then,

τ(d) ≤ τx(d) � inf
t>0

{t : |Dx(t)| ≥ d}. (3.10)

And Dx(t) =
∑t

k=1 Y
x
M(k), where Y x

M (k) is the x-component of mobility vector YM(k) as shown

in Figure 3.3.

Figure 3.3: Probability distribution of x-component of mobility vector YM .

Based on constrained vehicle mobility model, for −a < x < a and small Δx, we have

P (x ≤ Y x
M (k) ≤ x+Δx) ≈ 2

√
a2 − x2Δx

πa2
, (3.11)

i.e., the green area in Figure 3.3. Clearly, the probability distribution of Y x
M (k) is a even function,

thus E(Y x
M (k)) = 0. As Dx(t) is a generalized 1-D random walk with independent and mean-

zero increments Y x
M (k), Dx(t) is a martingale process with respect to (Y x

M (k), k ≥ 0) according

to the definition of martingale. Further, based on Eq. (3.11),

E((Y x
M (k))2) = 2

∫ a

0
x2

2
√
a2 − x2

πa2
dx =

a2

4
. (3.12)
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According to Wald’s Second Inequality, the stopping time of martingale Dx(t) satisfies

E(τx(d)) =
E(D2

x(τx(d)))

a2/4
≤ 4(d+ a)2

a2
. (3.13)

Based on Markov inequality P (τx(d) < t) ≥ 1− E(τx(d))
t . Therefore,

P (τ(d) < t) ≥ P (τx(d) < t) ≥ max{0, 1 − 4(d+ a)2

a2t
}. (3.14)

3.3.2 Upper bounds on 1-Copy Message Dissemination

Next, we move to derive upper bounds of dissemination distance under dissemination strategies

that use one or multiple disseminators with or without geographic information assistance in

choosing disseminators, respectively. We begin with the baseline case: 1-copy message dissemi-

nation strategy defined in Definition 8.

1-Copy Message Dissemination Distance

Originally, D(0) = 0. At time t, D(t) =
∑t

k=1 Y (k), where Y (k) is the progress of the active

message from time k − 1 to k (k = 1, 2, . . . .). As shown in Figure 3.2, Y (k) equals either the

movement vector YM (k) or YM (k) plus the propagation vector YP (t). In order to derive dissem-

ination distance D(t), we study random variables YM (k) and YP (k), respectively in Lemmas 2

and 3.

Lemma 3 Propagation vector YP (t) satisfies that

E(|YP (t)|) ≤ r(1− e−λπr2), (3.15)

E
{
|YP (t)|2

}
≤ r2 − 1

λπ
(1− e−λπr2), (3.16)

where |YP (t)| is the length of propagation vector YP (t), r is transmission range of nodes, and λ

is node density.

Proof : Assume node vi locates at Xi(t) = 0 at time t and Ni(t) is the set of vi’s neighbors.

Denote by random variable

S(t) = maxvj∈Ni(t){||Xi(t)−Xj(t)||} (3.17)

the maximum distance between node vi and its neighbors Ni(t) at time t. Apparently, the length

of propagation vector, denote by |YP (t)|, is equal or less than S(t) and the equality holds if
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only if vi chooses its furthest neighbor as next-hop disseminator (in other words, active message

jumps from vi to its furthest neighbor). Hence, for 0 ≤ x ≤ r,

P (|YP (t)| ≥ x) ≤ P (S(t) ≥ x), (3.18)

i.e., random variable S(t) stochastically dominates |YP (t)|.
Let Am(x, y) denote the event that there exist m neighbors in area {s : x ≤ ||s−Xi(t)|| ≤ y},

(0 ≤ x < y ≤ r). As n nodes are Poisson distributed in the network with density λ everywhere

at all times, P (Am(x, y)) = e−λπ(y2−x2) [λπ(y
2−x2)]m

m! . For 0 ≤ x ≤ r,

P (S(t) ≥ x) = 1− P (A0(x, r)) = 1− e−λπ(r2−x2). (3.19)

Hence,

E(S(t)) = r − e−λπr2
∫ r

0
eλπx

2
dx ≤ r(1− e−λπr2)

E(S2(t)) =

∫ r

0
x2(e−λπ(r2−x2))′dx = r2 − 1− e−λπr2

λπ
. (3.20)

Combining (3.18) and (3.20) completes our proof.

Remark 17 Lemma 3 shows that the largest expected length of propagation vector increases as

transmission range r and node density λ increase, which provide better chance of finding the

next active spreading node located far from the previous active spreading node.

Because of the intermittent network connectivity in VANETs, the active message travels

a journey in the network area through movements and transmissions of disseminators. Hence,

dissemination distance |D(t)| is affected not only by distributions of YM (k) and YP (k) (1 ≤
k ≤ t) but also by number of jumps of an active message within time t, which is defined as

N (t) =
∑t

k=1 1Y (k)=YM (k)+YP (k). As transmission between two disseminators occurs when the

preceding disseminator meets its succeeding disseminator, N (t) is determined by intermittent

connectivity of VANETs as well as dissemination algorithms. Rather than limiting our study

on specific algorithms, we focus on the impact of intermittent connectivity. More specifically,

we derive upper bound for N (t) by investigating the first passage time, which is defined as the

time when two nodes first meet.

Lemma 4 In a large scale network that L goes to infinity, suppose two independent nodes vi

and vj move according to the constrained i.i.d. mobility model in Definition 7. Then, there exists

constant C > 0 that the first passage time TF of nodes vi and vj satisfies

P (TF > t) ≥ Ct−α, for all sufficiently large t, (3.21)
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where α is a constant determined by mobility model and α = 1
2 in constrained i.i.d. mobility.

Proof : We prove this lemma using the same methodology that is used to derive inter-meeting

time of two nodes under 2-D isotropic random walk in [60]. According to Definition 7, the

position of a node v at time t can be written as

Xv(t)−Xv(0) =

t∑
k=1

Y v
M(k) =

t∑
k=1

Av(k)e
iθv(k), (3.22)

where Y v
M (k) is the movement vector at time k. Define by C(t) = Xu(t)−Xv(t) the difference

vector between the positions of nodes u and v at time t. Under 2-D constrained i.i.d. node

mobility, we observe that

C(t) =

t∑
k=1

(Au(k)e
iθu(k) −Av(k)e

iθv(k)). (3.23)

Under constrained i.i.d. mobility, Au(k) and Av(k) are all i.i.d. and so are θv(k) and θv(k).

Thus, Aucos(θu) − Avcos(θv) is symmetric and continuous (because uniform distribution is

continuous). Accordingly, [C(t)]x, sum of random variables Au(k)cosθu(k)−Av(k)cosθv(k) for

1 ≤ k ≤ t, is 1-D random walk. According to results in [60], P (TF > t) ∼ t−1/2, thus completes

our proof.

Now, we can derive upper bound on distribution of N (t).

Theorem 3 N (t) is stochastically dominated by Poisson process with parameter α and E(N (t))

≤ αt, where α is a constant determined by mobility model and α = 1/2 under 2-D constrained

i.i.d. mobility.

Proof : Denote by T the time interval that a disseminator transmits the active message to its

next-hop disseminator. Clearly, random variable T stochastically dominates their first passage

time TF , which means P (T > t) ≥ P (TF > t). Based on Lemma 4, there exists constant C > 0

such that

P (T > t) ≥ Ce−αt, for all sufficiently large t. (3.24)

Therefore, number of transmissions among disseminators, N (t), is stochastically dominated by

Poisson process with parameter α, and E(N (t)) ≤ αt accordingly, where α = 1/2 under 2-D

constrained i.i.d. mobility model.

As TF corresponds to the residual life time of the inter-meeting time TI , when TI has a

finite mean, TF has the equilibrium distribution of TI [88]. Extensive existing studies have

shown that TI exhibits exponential tail decay under existing mobility models (such as random

direction, random waypoint and Brownian Motion) in a bounded domain, while power-law
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decay in empirically traces as well as infinite domain (See [60] and references inside). Because

Eq. (3.24) holds under exponential as well as power-law decayed TF with α determined by

specific mobility model, Theorem 3 likely holds under other mobility models and in realistic

traces.

Equipped with previous results on movement vector YM (t), propagation vector YP (t) and

N (t), we are ready to analyze dissemination distance for both direction-invariant dissemination

and geographic-assisted dissemination that are mentioned in Remark 15 and Remark 16.

Theorem 4 The mean of dissemination distance, E(|D(t)|), is upper bounded by function√
tf1(r, λ, a, α) in 1-copy direction-invariant dissemination, by function

√
tf2(r, λ, a, α, t) in

1-copy geographic-assisted dissemination, where f1(r, λ, a, α) and f2(r, λ, a, α, t) are shown in

Eqs. (3.28) and (3.31).

Proof : Denote D(t) = (Dx(t),Dy(t)) = (
∑t

k=1 Yx(k),
∑t

k=1 Yy(k)). Define by Z(k) the event of

active message jump at time k (i.e., Y (k) = YM (k) + YP (k)). Accordingly, N (t) =
∑t

k=1 1Z(k).

(i) Direction-invariant dissemination, which means E(Y x
P (k)) = E(Y y

P (k)) = 0.

Because E(Y x
M (k)) = E(Y y

M (k)) = 0 under constrained i.i.d. mobility and YM (k) and YP (k)

are independent,

E{D2
x(t)} = E

{
t∑

k=1

[Y x
M (k)]2 +

[
Y x
P (k) · 1Z(k)

]2}
= tE

{|Y x
M (k)|2}+ E(N (t))E

{|Y x
P (k)|2

}
.

(3.25)

Similar results can be obtained for E{D2
y(t)}.

E(|D(t)|2) = E{D2
x(t) +D2

y(t)} = tE
{|YM (k)|2}+ E(N (t))E

{|YP (k)|2
}
. (3.26)

Based on results in Lemmas 2, 3, and Theorem 3, we get

E2(|D(t)|) ≤ E(|D(t)|2) ≤ t[a2/2 + αr2 − α

λπ
(1− e−λπr2)]. (3.27)

Therefore, by denoting

f1(r, λ, a, α) = a2/2 + αr2 − α

λπ
(1− e−λπr2), (3.28)

we have E(|D(t)|) ≤√tf1(r, λ, a, α).

(ii) Geographic-assisted dissemination, which means E(Y x
P (k)) = E(Y y

P (k)) �= 0.
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As YM (k) and YP (k) are independent and E(Y x
M (k)) = 0,

E
{
D2

x(t)
}
=E

{
t∑

k=1

[
(Y x

M(k))2 +
(
Y x
P (k) · 1Z(k)

)2]}

+ E

⎧⎨⎩ ∑
1≤k1<k2≤t

[
Y x
P (k1) · 1Z(k1) · Y x

P (k2) · 1Z(k2)

]⎫⎬⎭ . (3.29)

Similar result can be obtained for E
{
D2

y(t)
}
. Hence,

E(|D(t)|2) ≤ tE
{|YM (k)|2}+ (E(N (t)) +

t(t− 1)

2

)
E
{|YP (k)|2

}
. (3.30)

In view of Lemmas 2, 3, and Theorem 3, and by denoting

f2(r, λ, a, α, t) =
a2

2
+ (α+ (t− 1)/2)

(
r2 − 1− e−λπr2

λπ

)
, (3.31)

E2(|D(t)|) ≤ E(|D(t)|2) ≤ tf2(r, λ, a, α, t). (3.32)

Therefore, E(|D(t)|) ≤√tf2(r, λ, a, α, t).

Theorem 4 shows that the upper bound of E(|D(t)|) depends on node velocity (indicated by

maximum movement length a per time slot), mobility model (represented by α), node transmis-

sion range r, and node density λ. Furthermore, the expected dissemination distance can at most

increase with the square root of time t in direction-invariant dissemination while approximately

linearly with time t in geographic-assisted dissemination. The upper bound on dissemination

distance under 1-copy geographic-assisted dissemination is approximately
√
t times of that un-

der 1-copy direction-invariant dissemination. In other words, comparing to direction-invariant

dissemination, the increase in dissemination distance of utilizing geographic information accu-

mulates as time goes by.

1-Copy Message Dissemination Hitting Time

As dissemination distance vector D(t) =
∑t

k=1 Y (k), i.e., sum of i.i.d. random variables, we use

martingale theory to study the hitting time τ(d).

Lemma 5 Dissemination distance {|D(t)|2}t∈N is a submartingale with respect to Filtration

Ft, which is the σ-algebra generated by {D(k); k ≤ t} for every t ∈ N.
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Proof : We prove that |D(t)|2 is a submartingale by proving that (D2
x(t),D

2
y(t)) is a 2D sub-

martingale according to the following definition. A sub-martingale is defined as an integer-time

stochastic process {Zn;n ≥ 1} with the properties that E[|Zt|] < ∞ for all t ≥ 1 and

E[Zt|Zt−1, Zt−2, . . . , Z1] ≥ Zt−1; for all t ≥ 2. (3.33)

Denote dissemination vector D(t) = (Dx(t),Dy(t)) = (
∑t

k=1 Yx(k),
∑t

k=1 Yy(k)), where

Y (k) = (Yx(k), Yy(k)) equals either YM (k) or YP (k) + YM(k).

(i) Due to limited transmission range r and movement length a, |Yx(k)| ≤ r+a < ∞. Then,

for any k ∈ N.

|Dx(t)| ≤ |Yx(1)| + · · ·+ |Yx(t)| ≤ t× (r + a) < ∞. (3.34)

Similarly, |Dy(t)| ≤ t× (r + a) < ∞.

(ii) Then we prove Eq. (3.33), which distinguishes martingale from other processes. Assume

node vi is the disseminator at time t−1. Denote filtration F of process {D(t)} as Ft = σ-algebra

generated by {D(k); k ≤ t} for every t. First, for any t ∈ N, it holds that E(Dx(t)|Ft−1) =

Dx(t− 1) + E(Yx(t)) and E(Dy(t)|Ft−1) = Dy(t− 1) +E(Yy(t)).

(a) When Y (t) = YM (t), Yx(t) = Y x
M (t) = A(t)cos(θ(t)) and Yy(t) = Y y

M(t) = A(t)sin(θ(t)).

In constrained i.i.d. mobility, P (Y x
M (t) = z) = P (Y x

M (t) = −z) and P (Y y
M (t) = z) = P (Y y

M (t) =

−z) (0 ≤ z ≤ a). Hence, E(Yx(t)) = E(Y x
M (t)) = 0 and E(Yy(t)) = E(Y y

M (t)) = 0.

(b) When Y (t) = YP (t)+YM (t), for direction-invariant dissemination, E(Y x
P (t)) = E(Y y

P (t))

= 0; for geographic-assisted dissemination, E(Y x
P (t)) ≥ 0 if Dx(t) ≥ 0 and E(Y x

P (t)) ≤ 0 if

Dx(t) ≤ 0 (the same for Y y
P (t)).

From (a) and (b), when Dx(t) ≥ 0, E(Dx(t)|Ft−1) ≥ Dx(t − 1), which proves that Dx(t)

is submartingale. When Dx(t) < 0, E(−Dx(t)|Ft−1) ≥ −Dx(t− 1), which means that −Dx(t)

is submartingale. As D2
x(t) = Dx(t) ∗ Dx(t) = (−Dx(t)) ∗ (−Dx(t)) and square function is

convex, D2
x(t) is a submartingale. Similarly D2

y(t) is also a submartingale. Therefore, |D(t)|2 =
D2

x(t) +D2
y(t) is a submartingale.

Based on Lemma 5, we have the following theorem.

Theorem 5 In a geocast, the probability of τ(d) ≤ t satisfies, i) for direction-invariant dissem-

ination,

P (τ(d) ≤ t) ≤ E(|D(t)|2)
d2

≤ t

d2
f1(r, λ, a, α); (3.35)

ii) for geographic-assisted dissemination,

P (τ(d) ≤ t) ≤ E(|D(t)|2)
d2

≤ t

d2
f2(r, λ, a, α, t), (3.36)

where f1(r, λ, a, α) and f2(r, λ, a, α, t) are shown in Eqs. (3.28) and (3.31), respectively.
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Proof : We proceed to find distribution of hitting time τ(d) usingDoob’s Submartingale Maximal

Inequality, which is that for (|D(k)|2)k∈N being a non-negative sub-martingale with respect to

a filtration (Fk)k∈N, for any d > 0,

P (max1≤k≤t|D(k)|2 ≥ d2) ≤ 1

d2
E(|D(t)|2). (3.37)

Based on definitions of dissemination distance in Eq. (3.4) and hitting time in Eq. (3.5),

we have {max1≤k≤t|D(k)|2 ≥ d2} = {τ(d) ≤ t}. By applying Doob’s Submartingale Maximal

Inequality to the submartingale |D(t)|2, we have

P (τ(d) ≤ t) ≤ 1

d2
E(|D(t)|2). (3.38)

(i) Direction-invariant dissemination: the proof of Theorem 4 shows that E[|D(t)|2] ≤
tf1(r, λ, a, α), where f1(r, λ, a, α) is shown in Eq. (3.28). Hence, we prove Eq. (3.35).

(ii) Geographic-assisted dissemination: the proof of Theorem 4 shows that E(|D(t)|2) ≤
tf2(r, λ, a, α, t), where f2(r, λ, a, α, t) is shown in Eq. (3.31). Thus, we prove Eq. (3.36).

Remark 18 The probability that a 1-copy message dissemination reaches nodes or infrastruc-

tures located distance d from the source within time t is upper bounded by a function proportional

to E(|D(t)|2) and inversely proportional to d2.

3.3.3 Upper bounds on L-Copy Message Dissemination

In this section, we extend our results from 1-copy message dissemination to the more general

message dissemination strategy (i.e., L-copy message dissemination).

L-Copy Message Dissemination Distance

In L-copy message dissemination, number of disseminator is equal or less than L, i.e., |V(t)| ≤
L. Denote by |Di(t)| the distance between the source location and the location of the ith

disseminator at time t and denote by dissemination distance |DL(t)| the maximum of |Di(t)|.

Theorem 6 For L-copy direction-invariant dissemination, E(|DL(t)|) ≤ (
√
L− 1+1)×√

tf1(r, λ, a, α); for L-copy geographic-assisted dissemination, E(|DL(t)|) ≤ (
√
L− 1+1)×√

tf2(r, λ, a, α, t), where f1(r, λ, a, α) and f2(r, λ, a, α, t) are shown in Eqs. (3.28) and (3.31),

respectively.

Proof : To analyze |DL(t)|), which equals the maximum of several random variables, we intro-

duce Aven’s [89] upper bound on the mean of the maximum of a number of random variables
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{Zi, 1 ≤ i ≤ L} with general distributions (not necessarily independent and identically dis-

tributed).

E( max
1≤i≤L

Zi) ≤ max
1≤i≤L

E(Zi) +

√
L− 1

L

(
L∑
i=1

Var(Zi)

)1/2

. (3.39)

Applying the above equation to |DL(t)|,

E(|DL(t)|) = E( max
vi∈V(t)

{|Di(t)|}) ≤ max
1≤i≤L

E(|Di(t)|) +
√

L− 1

L

(
L∑
i=1

E(|Di(t)|2)
)1/2

(3.40)

Based on the proof and results of Theorem 4, for L-copy direction-invariant dissemination,

E(|DL(t)|) ≤ (
√
L− 1 + 1)

√
tf1(r, λ, a, α); (3.41)

for L-copy geographic-assisted dissemination,

E(|DL(t)|) ≤ (
√
L− 1 + 1)

√
tf2(r, λ, a, α, t). (3.42)

Remark 19 Clearly, using multiple disseminators can increase the dissemination distance.

Theorem 6 shows that the upper bounds on the expected dissemination distance in L-copy mes-

sage dissemination are
√
L− 1 times larger than those in corresponding 1-copy message dis-

semination in Theorem 4.

Regarding 1-copy direction-invariant dissemination as a base line, the upper bound of dis-

semination distance at time t increases
√
L− 1 times under L-copy direction-invariant dissemi-

nation, increases approximately
√
t times under 1-copy geographic-assisted dissemination. This

means that using multiple disseminators may benefit dissemination more at the beginning while

as time goes on, utilizing geographic information tends to gain more benefits. Hence, multiple

disseminators should be used for geocast applications with AOI near the source, while for AOI

far from the the source, geographic information should be used to choose relays in order to

enhance dissemination distance.

Remark 20 In order to increase the dissemination distance, multiple disseminators should be

used at the beginning, and geographic information is used preferably as time goes on.

L-Copy Message Dissemination Hitting Time

The hitting time τL(d), i.e., the first time that |DL(t)|2 ≥ d2, satisfies the following theorem.

64



Theorem 7 For L-copy direction-invariant dissemination, P (τL(d) ≤ t) is upper bounded by

t

d2

(
f1(r, λ, a, α) +

√
L− 1(r + a)

√
f1(r, λ, a, α)

)
; (3.43)

for L-copy geographic-assisted dissemination, P (τ(d) ≤ t) is upper bounded by

t

d2

(
f2(r, λ, a, α, t) +

√
L− 1(r + a)

√
f2(r, λ, a, α, t)

)
. (3.44)

Proof : According to L-copy message dissemination in Definition 9, the message is first spread to

L distinct disseminators and then each of disseminators independently disseminates the message

according to 1-copy message dissemination. Define |DL∗

(t)| as the dissemination distance that

L disseminators start to independently disseminate the message according to 1-copy message

dissemination from time t = 0. As |V(t)| ≤ L, |DL(t)|2 = maxi∈V(t){|Di(t)|2} ≤ |DL∗

(t)|2 =

maxLi=1{|D∗
i (t)|2}. Thus,

τL(d) = inf
t≥1

{|DL(t)| ≥ d} ≥ τL
∗

(d) = inf
t≥1

{|DL∗

(t)| ≥ d}. (3.45)

Upon Lemma 5, {|D∗
i (t)|2, 1 ≤ i ≤ L} are independent sub-martingales. Hence, |DL∗

(t)|2 =
maxLi=1{|Di(t)|2} is a sub-martingale. Based on Doob’s Submartingale Maximal Inequality in

Eq. 3.38,

P (τL
∗

(d) ≤ t) = P (max1≤k≤t|DL∗

(k)|2 ≥ d2) ≤ 1

d2
E(|DL∗

(t)|2). (3.46)

Using Aven’s [89] upper bound on the mean of the maximum of a number of random variables

in Eq. (3.39), we have

E(|DL∗

(t)|2) = E( max
1≤i≤L

{|D∗
i (t)|2}) ≤ max

1≤i≤L
E(|D∗

i (t)|2) +
√

L− 1

L

(
L∑
i=1

Var(|D∗
i (t)|2)

)1/2

.

(3.47)

Denote Z =
|D∗

i (t)|
2

(r+a)2t . Clearly, 0 ≤ Z ≤ 1. Thus,

Var(Z) = E(Z2)− E2(Z) ≤ E(Z)(1 − E(Z)) ≤ E(Z), (3.48)

Var(|D∗
i (t)|2) = (r + a)4t2Var(Z) ≤ (r + a)2tE(|D∗

i (t)|2). (3.49)

Based on the proof of Theorem 4 and combining Eqs. (3.45), (3.46), and (3.49), we complete

our proof.

Remark 21 Compared with 1-copy dissemination, L-copy dissemination can reduce dissemi-

nation latency as it can increase the probability that reaches nodes or infrastructures located d

distance from the source within time t. Note that it is not known whether these upper bounds
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are achievable. The upper bounds may not be achievable by any algorithm in reality since the

analysis is not based on realistic network and mobility models.

3.4 Simulation Results and Applications

Many VANET applications require position-based multicasting (e.g., for disseminating traffic

information to vehicles approaching the current position of the source). A natural match for

this type of routing is the geocasting protocols that forward messages to all nodes within a

Area of Interest (AOI). Previous research work on geocast schemes for vehicular networks has

mostly proposed various flooding schemes. One problem with a pure flooding-based geocasting

protocol is that the flooding can cause network congestion [81]. Therefore, selective flooding

may be used in which the forwarding is based on an intelligent decision that should maximize

the spreading of the message at the same time as it minimizes the network load caused by the

message spreading. Apparently, limiting number of disseminators and geographic information

exchanges are two effective methods to reduce network load caused by the message spreading.

However, there is a trade-off between minimizing network load by limiting number of dis-

seminators and geographic information exchanges and maximizing the spreading of the message

through increasing number of disseminators and exchanging geographic information to select

nodes with the most forward progress towards the destination as relays. It is not clear how many

disseminators are needed and whether geographic information exchanges should be used for se-

lecting relays, which depend on dissemination mechanism performance as well as application

requirements.

Therefore, we perform simulations using four dissemination algorithms that use one or

multiple disseminators and choose disseminators randomly or based on geographic information.

Along with the simulation results and application requirements, we intend to provide guidelines

on design of dissemination algorithms for geocast in VANET. In this section, we first present

and implement four dissemination algorithms in OmNet++ and compare simulation results

with the analytic bounds presented in the previous sections. Then, we present two geocast

scenarios to demonstrate the applications of our results.

3.4.1 Simulation Results

Dissemination Algorithms

In stateless opportunistic forwarding (SOF) [82], a disseminator will choose next disseminator

from its available neighbors at random. Stateless opportunistic forwarding has been suggested

to be useful in intermittently connected networks [90–93]. It is particularly useful in vehicular

ad hoc network as its global network topology is not known and rapidly varying due to high
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vehicle mobility and the presence or availability of the next-hop neighbors is not easily control-

lable. Clearly, SOF chooses next disseminator isotropically, thus is a type of direction-invariant

dissemination. The SOF with one disseminator at each time slot is referred to as 1-copy SOF.

Similarly, dissemination algorithm that first sprays active messages to L disseminators and then

each disseminator performs SOF independently, is referred to as L-copy SOF.

In GPS-based broadcasting (GBB) [83], a disseminator will choose its farthest neighbor as

next disseminator so that the message can be spread out as fast as possible to certain locations

(e.g., police station). GBB is useful for disseminating time-critical message (such as emergency

warning) in VANETs. Apparently, GBB is an example of geographic-assisted dissemination.

The GBB with one disseminator is referred as 1-copy GBB. Similarly, in L-copy GBB, source

node first sprays active messages to L disseminators and then each disseminator performs GBB

independently.

Constrained vehicle mobility

Because currently there is no single benchmark of D2D communication network scenarios to

evaluate its performance [94], we choose simulation parameters that are close to realistic network

scenario and IEEE 1609/802.11p standards [95] for VANETs. In a 10 km×10 km network area,

size of a university, 5000 nodes move according to constrained i.i.d. mobility model. Node density

is λ = 5×10−5 vehicle/m2. The average number of neighbors for each vehicle is equal to or less

than π ∗200∗200∗5000/(10000∗10000) = 2π. As simulations in [96] suggested that six to eight

neighbors can make a small size network connected with high probability, the above simulation

settings will produce a intermittently connected network. Using the standard simulator 802.11p

in OMNeT++ INET framework, we set carrierFrequency = 5.9GHz, wlan.opMode = “p”, bitrate

= 27Mbps, and messageLength = 512B. The transmission range of node is R = 200m. Each

time slot is 1 second and the maximum movement length a = 20m per time slot, which means

that speed limit is about 45mph. L = 1 or 4 for L-copy SOF and GBB.

As shown in Figure 3.4, average dissemination distances of 1-copy SOF and 1-copy GBB are

upper bounded by bounds of expected dissemination distances of 1-copy direction-invariant and

geographic-assisted dissemination in Theorem 4, respectively. Similarly, Figure 3.5 shows that

average dissemination distance of 4-copy SOF and 4-copy GBB are upper bounded by bounds

of expected dissemination distances of L-copy direction-invariant and geographic-assisted dis-

semination in Theorem 6, respectively. In a word, the average dissemination distances of above

four algorithms are well upper bounded by their corresponding analytic upper bounds.

Since more sophisticated algorithms could achieve better performance, the simulation results

of SOF and GBB could serve as the lower bounds for direction-invariant and geographic-assisted

dissemination, respectively. As shown in Figures 3.4 and 3.5, the upper bounds of expected dis-
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Figure 3.4: Dissemination distance |D(t)| of 1-copy direction-invariant and geographic-assisted
message dissemination, respectively.

semination distance under direction-invariant dissemination is tight, while there is a wide gap

between the performance of GBB and the upper bounds under geographic-assisted dissemina-

tion. The gap could be lessened by more sophisticated algorithms, such as those choosing nodes

that move away from the message source as relays.

Examining more closely, Figures 3.6 and 3.7 show that the expected dissemination distances

of direction-invariant dissemination algorithms (e.g., 1-copy and 4-copy SOF) exhibit square

root increase with time t, while that of geographic-assisted dissemination algorithms (e.g., 1-

copy and 4-copy GBB) achieve approximately linear increase as time eclipses.

In addition, both Figures 3.4 and 3.5 reveal that comparing to direction-invariant dissemi-

nation, geographic-assisted dissemination significantly increases dissemination distance by uti-

lizing nodes’ geographic information. Increasing number of disseminators, although may benefit

the dissemination reliability, is less effective than incorporating geographic-assisted dissemina-

tion in terms of enhancing dissemination distance.

Figures 3.8 and 3.9 show that simulation results of P (τ(d) ≤ t) of four dissemination

algorithms are well bounded by corresponding analytic bounds in Theorem 5 and Theorem 7.

Both figures demonstrate benefits of utilizing geographic information in greatly reducing hitting

time. However, geographic information becomes less effective in reducing hitting time when

multiple disseminators are used than when one disseminator is used. In other words, increasing

number of disseminators seems reduce hitting time in direction-invariant dissemination more

dramatically than that in geographic assisted dissemination.
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Figure 3.5: Dissemination distance |D(t)| of L-copy (L = 4) direction-invariant and geographic-
assisted message dissemination, respectively.

Highway mobility

In a 20 km×16 m rectangular network area, 200 nodes move according to highway mobility

model. This setting characterizes a stretch of highway that has 4 lanes with each lane width 4

meters. As message dissemination on highway may affect several miles to dozens of miles, 20

km network length is suitable for studying message dissemination in highway scenario. Each

time slot is 1 second. Each vehicle chooses a moving direction (left or right) at time 0 and will

not change its moving direction at any time t > 0. The vehicle speed is uniformly distributed

in [25m/s, 35m/s] (approximately 55∼80 mph). The transmission range R = 250 meters. The

average number of neighbors for each vehicle is equal to or less than 2∗250∗200/20000 = 5. Such

simulation settings will produce an intermittently connected network with high probability [96].

Figure 3.10 shows the simulation results and theoretical bounds on dissemination distance of

1-copy message dissemination strategy in a highway scenario. Dissemination distances of state-

less opportunistic forwarding and GPS-based broadcasting are upper bounded by the results

on that of direction-invariant strategy and geographic-assisted strategy, respectively. Moreover,

a close look at the results on stateless opportunistic forwarding in Figure 3.11 shows that dis-

semination distance increases with square root of time t without using geographic information

for disseminator selection. If Geographic information is used to speed up the dissemination, the

dissemination distance increases linearly with time t, as shown in Figure 3.10. These results are

consistent with our theoretical analysis as well as results in a scenario with constrained vehicle

mobility.
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Figure 3.6: Dissemination distance of 1-copy/4-copy direction-invariant dissemination strate-
gies.

In the following, by setting parameters according to specific realistic applications, we fur-

ther demonstrate how our analytical bounds and simulation results serve as guidelines to choose

dissemination strategy and decide number of disseminators such as to satisfy application re-

quirements.

3.4.2 Applications

We give two important applications of VANETs, which are post-crash warning and emergency

vehicle signal preemption to show how our results could be used in guiding the network design.

The application requirements are obtained from vehicle safety communication project report [97]

by National Highway Traffic Safety Administration in Department of Transportation of US. In

the following, we assume the time is slotted and each time interval is 1 sec. The node density

and node transmission range are assumed to be the same as our simulation settings in the

previous subsection.

Post-Crash Warning

In the application of post-crash warning, a disabled vehicle (due to an accident or mechanical

breakdown) will warn approaching vehicles of its position and will discontinue broadcast when

the accident is cleared. According to report [97], the allowable latency for this application is

approximately 5 seconds.

Suppose vehicle speed is about 20m/s and drivers need about 1.5sec to react and 3sec to
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Figure 3.7: Dissemination distance of 1-copy/4-copy geographic-assisted dissemination strate-
gies.

brake if it is necessary, which mean that the geocast needs to target vehicles within range of

about 100m. Simulation results (Figures 3.4 and 3.5) show that in 5 time slots, dissemination

distances are about 252m, 396m, 660m, and 669m for 1-copy and 4-copy SOF, 1-copy and 4-

copy GBB, respectively. Since more sophisticated algorithms could achieve better performance

than SOF and GBB algorithms, both direction-invariant and geographic-assisted algorithms

could disseminate the message fast enough to reach the borders of targeted area.

As propagation speed is fast enough, dissemination strategy should focus on achieving the

reliability requirement of this safety application. As simultaneous rebroadcasting of multiple

disseminators can enhance the probability of vehicles receiving this warning, L-copy message

dissemination strategy could be a good candidate in fast and reliably post-crash warning dis-

semination.

Emergency Vehicle Signal Preemption

Emergency vehicle signal preemption allows the emergency vehicles to override traffic signals.

When an emergency vehicle is approaching an intersection, it initiates a geocast targeting

vehicles around that intersection. After receiving the message and verifying that the request

has been made by an authorized source, the vehicles around the intersection should prepare to

stop and provide the right of way to the emergency vehicle.

As an example, we give specific and reasonable data to illustrate a scenario of this applica-

tion. We assume that the geocast targets vehicles in the circular region around the intersection
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Figure 3.8: P (τ(d) ≤ t) (d = 500m) in 1-copy direction-invariant and geographic-assisted
message dissemination, respectively.

with radius 100m. Suppose the emergency vehicle moves at speed about 20m/s. In order to

inform targeted vehicles about 15sec before the emergency vehicle enters that region around

the intersection, the emergency vehicle should initiate the dissemination when it is about 300m

away from that region. The allowable latency for this application is approximately 1sec ac-

cording to report [97]. Hence, the message should at least hit the farthest locations of targeted

region, which is 500m from the source, within 10 time slots.

From Figures 3.8 and 3.9, the upper bounds of the probability of reaching 500 meters in

10 time slots are about 70% for 1-copy direction-invariant dissemination while 100% for other

three dissemination strategies. That means that 1-copy direction-invariant message dissemina-

tion is incapable of serving this application, while dissemination methods assisted by geographic

information or using multiple disseminators could satisfy requirements for this application sce-

nario. Furthermore, we can see that the probability of reaching 500 meters in 10 time slots is

about 30% and 40%, 100% and 100% for 1-copy and 4-copy direction-invariant dissemination, 1-

copy and 4-copy geographic-assisted dissemination, respectively. Therefore, geographic-assisted

dissemination better serves the application requirements for the above scenario.

Remark 22 Dissemination strategies that use multiple disseminators are suitable for applica-

tions like post-crash warning, which geocast targets an area near the source location. Dissemi-

nation strategies that utilize geographic information to choose relays are needed for applications

like emergency vehicle signal preemption, which geocast targets an area far from the source

location.
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Figure 3.9: P (τ(d) ≤ t) (d = 500m) in L-copy (L = 4) direction-invariant and geographic-
assisted message dissemination, respectively.

3.5 Summary

In this chapter, we studied the spatial and temporal limits of geocast in VANETs. By focusing

on movement of active messages rather than specifying relays on information propagation paths,

we derived lower and upper bounds for the dissemination distance and hitting time. Simulation

results of four dissemination algorithms validate our analysis. Two applications are presented

to show that dissemination algorithms with multiple disseminators are suitable for geocast with

area of interest near to source location while dissemination algorithms assisted by geographic

information are suitable for geocast with area of interest far from the source.
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highway scenario.
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Chapter 4

Evaluating the Feasibility of Mobile

Cloudlets

With the emerging cloud computing [98] and the explosive growth of mobile applications, mo-

bile cloud computing (MCC) has become a promising technology for mobile services. In MCC,

mobile devices, such as smart phones and tablets, can offload data storage and computing onto

the cloud through wireless communications, thereby overcoming their limited capabilities re-

garding process power, storage capacity, and battery lifetime [23]. Besides relying on a distant

“cloud”, cloudlet [99] is proposed to instantiate software in real-time on nearby computing

resources (e.g., laptops, desktops) using virtual machine technology. In addition, with the in-

creasing memory and computational power of mobile devices [25], nearby mobile devices can

form a mobile cloudlet and share their computing resources to speedup computing and conserve

energy. Open questions are when/whether mobile cloudlet is able to support mobile appli-

cations. In other words, whether the computation offloading generates communication traffic

between mobile devices and infrastructures in cellular and WiFi networks or between peering

mobile devices through opportunistic communications.

First of all, we investigate the basic scenario where a mobile device needs to offload compu-

tational tasks to remote cloud through cloudlets infrastructures. We discover that the cloudlet

access probability is determined by mean connection time μTC
and mean inter-connection time

μTI
between the mobile device and the cloudlet. To find out whether or when mobile cloudlet

is feasible for MCC, we further study the computing performance of a mobile cloudlet through

investigating the properties of a mobile cloudlet with respect to cloudlet size, cloudlet node’s

lifetime and reachable time. We demonstrate through traces and mathematical analysis that 1)

the more frequently mobile devices meet, the larger the pool of computing resources an initiator

can access; 2) intermittent connection between devices has little adverse effect on the optimal

computing performance of mobile cloudlet in the long run; 3) the ratio E(TC)/[E(TI )+E(TC)]
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indicates the connection likelihood of two nodes, where TC and TI are their contact and inter-

contact time. Then, we derive upper and lower bounds on computing capacity and computing

speed of a mobile cloudlet. An initiator can use both bounds to decide whether to offload its

task to local mobile cloudlets for mobile application services.

4.1 Motivation and Related Work

The rapid development of processing and storage technologies and the success of wired/wireless

networks have enabled the cloud computing model [98], in which a shared pool of configurable

computing resources can be accessed conveniently. Cloud computing has been widely recognized

as the next generation computing infrastructure. In cloud computing, users can use infrastruc-

tures (e.g., servers and storage), platforms (e.g., operating systems), and software (e.g., appli-

cation programs) provided by cloud providers at low cost in an on-demand fashion. Therefore,

computing resources can be rapidly provisioned and released with minimal management cost

or service provider interaction.

As mobile devices (e.g., smart phone, tablet, etc.) increasingly become an essential part of

human life for convenient communication and various mobile applications, mobile cloud com-

puting (MCC) is introduced to apply cloud computing to mobile services [23]. In MCC, the data

processing and storage of mobile applications are moved from the mobile devices to powerful

and centralized computing platforms in clouds, thereby extending battery lifetime, improving

data storage capacity and processing power of mobile devices. The general architecture of MCC

can be shown in Figure 4.1. Mobile devices are connected to the mobile cloud via base stations,

access points, or satellite.

MCC faces many challenges on both computing side and wireless communication side [23].

On one hand, issues in computing side include computing offloading, security, and efficiency of

data access. For instance, Chun et al. [100] design and implement the CloneCloud, a system

that enables unmodified mobile applications running in an application-level virtual machine to

seamlessly off-load part of their execution from mobile devices onto device clones operating in a

computational cloud. Many solutions (see survey [101]) are proposed to address security issues

on the cloud.

On the other hand, challenges for MCC in communication side are low bandwidth, ser-

vice availability, and network heterogeneity. Paper [99] points out that accessing remote cloud

through wireless communication is costly because of long WAN latencies. Rather than relying on

a distant “cloud”, the authors propose the use of cloudlets, as shown in Figure 4.2. Paper [102]

presents a cloudlet architecture and a prototype implementation, showing the advantages and

capabilities of cloudlet for a mobile real-time augmented reality application. The authors also

point out that cloudlets do not have to be fixed infrastructure close to the wireless access point,
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Figure 4.1: MCC uses re-
mote cloud.

Figure 4.2: MCC uses
cloudlet.

Figure 4.3: MCC uses mo-
bile cloudlet.

but can be formed dynamically with any resource-rich devices in the LAN network. Nowadays,

mobile devices have increasing memory and computational power [25]. Paper [27] proposes a vir-

tual cloud computing platform using mobile phones with pervasiveness and high computational

capabilities. The authors of paper [29] also show that it is possible for a mobile computation

initiator to use computing resources in other encountered mobile devices to speedup computing

and conserve energy. As shown in Figure 4.3, mobile devices can be service clients and cloudlet

nodes, providing hardware and software resources.

The benefits of utilizing cloudlet and mobile cloudlet are the omnipresent and fast service

access, the support of mobility and locality, the freedom of deployment and use of new services as

well as the reduced hardware maintenance costs [27]. First, as the computation and information

reside on nearby devices, users can get direct access instantly through interactions among one

another, eliminating the communication latency introduced by the cellular radio. Second, service

performance can be enhanced if the execution sequence of an application can be reordered for

increasing the level of parallelism. Third, offloading to nearby mobile devices not only saves

monetary cost due to expensive data charging in roaming situations, but also mitigates pressure

of cellular networks and WiFi networks by serving user requests on local devices. Finally,

nearby mobile users often tend to pursue the same task in social activities. This is especially

true in group activities, such as visiting a museum, performing archaeological expeditions, and

attending a conference. By dividing the task (e.g. construct augmented reality tourist guide)

among a group of users, only a portion of the task is executed locally, thus nodes can save

energy compared with a complete local execution.

Therefore, in this chapter, we investigate the cloudlet spectrum, where a mobile device’s

contacts with other devices can be exploited for computing. In this scenario, an initiator mobile
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device tries to use the available computing resources on nearby, potentially intermittently con-

nected devices in order to improve computing performance. The set of devices that can provide

computing resources for the initiator form a cloudlet. The computing performance of a cloudlet

is determined by its properties, such as number of nodes in a cloudlet and the time that a node

can compute task for the initiator. Therefore, we study cloudlet properties and performance for

a deeper understanding of cloudlet in MCC. Our contributions are three-fold.

1. We study the impact of mobility on mobile cloud computing in a network where nodes

access cloudlets located at community sites. We find that node mobility affects not only

cloudlet access probability but also cloudlet computing performance and its impact can

be represented by μTC
/(μTC

+ μTI
).

2. We further study the properties and computing performance of mobile cloudlet, where

mobile devices share computing resources to execute a task. Traces and analysis results

together prove that the mobile cloudlet size follows negative exponential growth with

parameter 1/E(TI), and the expected lifetime and reachable time grow linearly with τ

with the increase rates 1 and E(TC)/[E(TC ) + E(TI)], where E(TC) and E(TI) are the

expectations of contact and inter-contact time between two nodes.

3. Based on the above properties of mobile cloudlet, we study the computing capacity and

speed of a mobile cloudlet. The bounds on computing capacity and speed of mobile

cloudlet can both be used for an initiator to decide whether to execute the task in mobile

cloudlet or remote cloud.

The rest of this chapter is organized as follows. In Section 4.2, we introduce both cloudlet and

mobile cloudlet models. We study the impact of mobility on cloudlet performance in Sections

4.3. In Sections 4.4, 4.5, and 4.6, we analyze the properties and computing performance of

mobile cloudlet through traces and mathematical analysis. Finally, we conclude in Section 4.7.

4.2 Models and Problem Statement

4.2.1 Cloudlet Models

Assume that a mobile device is moving in a network Ωm with m cloudlets. The locations of

cloudlets can be community locations extracted from real map or points generated according

to a random process. The network is partitioned into a Voronoi diagram with m Voronoi cells,

and there is one cloudlet in each region. Figure, 4.4 shows 19 cloudlets in the network and the

mobile device is connected to cloudlet C7 for mobile application computing.

Suppose the computational task on the mobile device requires C instructions. Let Si be the

computing speed, in instructions per time slot (e.g., second), of the cloudlet Ci, ∀i = 1, 2, . . . ,m.
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Figure 4.4: Cloudlet network model

This task thus takes C/Si time slots to compute on cloudlet Ci, ∀i = 1, 2, . . . ,m. Denote B

as the network bandwidth. If the mobile device needs to send Dout bytes of task data to the

cloudlet while the cloudlet needs to send back Din bytes of executed task data to the mobile

device, it takes Dout/B and Din/B time slots to transmit and receive data, respectively. Define

δi = C/Si +(Din +Dout)/B as the task completion time, which is the sum of task transmission

time and task computing time at cloudlet Ci.

Cloudlet Connection Model: When cloudlet Ci (1 ≤ i ≤ m) is within the mobile device’s

transmission range, the mobile device can access the computing resources in Ci; otherwise, the

mobile device is disconnected from Ci. An example is shown in Figure 4.5. Suppose mobile user

Bob needs to do mobile commerce (e.g., mobile transactions and payments, mobile ticketing)

using his smartphone. In order to avoid data overage charge and preserve battery on his phone,

Bob offloads the task to a nearby cloudlet that includes resource-rich devices, such as desktops,

laptops, even tablets and high-end smartphones. As Bob moves around, he exploits different

cloudlets during different periods of time.

Formally, suppose mobile device is moving in the network according to a mobility process

M. Denote by X(t) and XCi
(t) the locations of the mobile device and cloudlet Ci, respectively.

Let the transmission range of the mobile device be r. Connection to Ci is available at time t if

and only if ||X(t) −XCi
(t)|| ≤ r, where || · || is the Euclidean norm in 2-Dimension. Further,

the connection and inter-connection time between a mobile device and a cloudlet are defined

as follows.

Definition 10 The connection time TC of the mobile device and cloudlet Ci (∀i = 1, 2, . . . ,m)
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Figure 4.5: Mobile cloud computing through cloudlets in the vicinity of a mobile device: Bob
uses cloudlet 1 during [t1, t2], cloudlet 2 during [t3, t4], and cloudlet 3 during [t5, t6] to execute
mobile applications on his phone.

is defined as

T i
C � inf

t>0
{t : ||X(t) −Xi(t)|| > r}, (4.1)

given that ||X(0) − Xi(0)|| > r and ||X(0+) − Xi(0
+)|| ≤ r. The inter-connection time (i.e.,

time between two consecutive connections) of the mobile device and cloudlet Ci is defined as

T i
I � inf

t>0
{t : ||X(t) −Xi(t)|| ≤ r}, (4.2)

given that ||X(0) −Xi(0)|| ≤ r and ||X(0+)−Xi(0
+)|| > r.

Let F i
TC

and F i
TI

denote the distribution functions of the connection time T i
C and inter-

connection time T i
I , respectively, and suppose that they have finite expectations μi

TC
and μi

TI

and their density functions f i
TC

and f i
TI

exist and are continuous on (0,∞), respectively. In

reality, distributions of T i
C and T i

I can be estimated based on movement history of mobile users

as human tend to repeat their everyday schedules [53].

In this chapter, we study the performance of using cloudlet for mobile applications. Due to

node mobility, cloudlet connection is intermittent, which poses challenges for utilizing cloudlet

computing. In order to identify power and node mobility of cloudlet computing, we examine the

probability that a mobile device can connect to at least one cloudlet, which is called cloudlet
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Figure 4.6: The initiator device 0 can dis-
tribute tasks to cloudlet nodes 1, 2, 3, 4
through one-hop communications.

Figure 4.7: The initiator device 0 can dis-
tribute tasks to cloudlet nodes 1, 2, 3, 4
through multi-hop communications.

access probability, the success rate of task execution, the total number of tasks executed by

cloudlets and average task execution speed over time t.

4.2.2 Mobile Cloudlet Models

When accessing to cloud directly or through cloudlets is unavailable or too expensive, we con-

sider mobile cloudlet for a mobile cloud computing network of n mobile nodes on a torus surface

Ωn = [0,
√

n
λ ], where λ is the spatial density of mobile users. Suppose each mobile device has a

transmission radius r. Denote by Xt = {X1(t), . . . ,Xn(t)} the positions of users at time t, two

nodes are in contact if ||Xi(t)−Xj(t)|| ≤ r and out of contact otherwise. We assume that the

mobility process of a node is stationary and ergodic that a node’s location Xi(·) has uniform

stationary distribution in the network area. Mobility processes of nodes are independent and

identically distributed (i.i.d.).

Without loss of generality, we assume that a mobile user needs to offload a task to nearby

mobile devices at time 0. As shown in Figures 4.6 and 4.7, initiator 0 can connect to cloudlet

nodes 1, 2, 3, 4 by direct communication links or multi-hop communication paths. In the one-hop

mobile cloudlet (Figure 4.6), direct connections between the initiator and the cloudlet nodes

ensure short delay in task transfer and easy management of task distribution and retrieval. In

themulti-hop mobile cloudlet (Figure 4.7), employing mobile devices in multi-hop range provides

the potential to utilize more devices in a large area. However, multi-hop communications incur

longer delay and unreliable task dissemination and retrieval due to node mobility. Fesehaye et

al. [103] show that when the maximum number of wireless hops in a cloudlet is larger than two,

accessing cloudlet nodes incurs longer data transfer delay than directly accessing remote cloud

through 3G/4G network. Hence, we only consider the more practical one-hop mobile cloudlet

in this chapter.
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Apparently, node mobility affects structure of mobile cloudlet. Specially, how frequent nodes

meet and how long they stay in contact affect the size and stability of a mobile cloudlet.

In turn, contact and inter-contact time between nodes influence the computing capacity and

performance of a mobile cloudlet as tasks can only be distributed and retrieved when there are

communication links between an initiator and cloudlet nodes.

Contact time TC is also called link lifetime or link duration. Zhao et al. [104] find that PDF

of link lifetime can be approximated by exponential distribution with parameter characterized

by the ratio of average node speed to effective transmission range. Hence, in this chapter, we

assume that TC follows exponential distribution with parameter λC . Inter-contact time TI has

shown to exhibit exponential tail decay under many mobility models (such as random waypoint

and Brownian motion) [88]. Analysis of a diverse set of mobility traces [105] also reveals that

TI follows a power law decay up to a characteristic time, beyond which TI ’s distribution decays

exponentially. For the simplicity of analysis, we assume that TI has an exponential distribution

with parameter λI . Note that our analysis and results can be easily extended to the case when

TC and TI follow other distributions.

Suppose the delay requirement of an initiator’s task is τ , mobile devices that meet the

initiator before the task expires have the potential to provide computing services, thus can

form a mobile cloudlet for the task computation. We assume that all nodes are willing to

support cloudlet computing. Hence, a mobile cloudlet is dynamically formed by the nodes that

the initiator encounters over a period of time τ . Formally, we define a mobile cloudlet as follows.

Definition 11 (Mobile Cloudlet) For τ ∈ R+, let Cτ be the mobile cloudlet for an initiator

vi with a task to compute within delay τ . Cτ is the set of nodes vi encountered within time τ ,

where cloudlet node vj ∈ Cτ if and only if vi �= vj and there exists a link between vi and vj at a

time 0 ≤ t ≤ τ .

The task dispatching, computing, and retrieving can only be performed after the first contact

between an initiator and a cloudlet node and before their last contact within time τ . We find

the following definition useful.

Definition 12 (Lifetime) For any cloudlet node vj ∈ Cτ for an initiator vi, vj ’s lifetime

LT (τ) = exit− entr, where its entrance time to Cτ

entr � inf
0≤t≤τ

{t : ||Xi(t)−Xj(t)|| ≤ r},

and its exit time from Cτ

exit � inf
0≤t≤τ

{t : ∀t′ >= t and t′ ≤ τ, ||Xi(t
′)−Xj(t

′)|| > r}.
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In an optimal situation, an initiator utilizes a cloudlet node’s whole lifetime for computing.

A cloudlet node receives tasks at its entrance time; then it can compute the task during its

lifetime even when it is not in contact with the initiator; it sends back the tasks right before

its exit time. Hence, the lifetime of a cloudlet node can be used to provide an upper bound on

the computing capacity of mobile cloudlet.

Nevertheless, the task dissemination and retrieval can only be performed during the contact

period of an initiator and a cloudlet node. The percentage of time that a cloudlet node is

in contact with the initiator shows how likely the initiator can reach it . In order to study

the reachability of cloudlet nodes and reliability of a mobile cloudlet, we define the reachable

time RT (τ) as the total contact duration between a cloudlet node and an initiator within time τ .

Based on these mobile cloudlet properties, we can study mobile cloudlet computing performance

and find out whether and when a mobile cloudlet can serve mobile applications.

4.3 Impact of Mobility on Cloutlet Performance

Because of node mobility, the connection between a mobile device and a cloudlet can be in-

termittent. In order to study cloudlet computing performance, we start with modeling the

connection and inter-connection process between a mobile device and a cloudlet.

Definition 13 Let {η(t), 0 ≤ t < ∞} be a stochastic process with state space {0, 1}. If a

mobile device can connect to a cloudlet at time t, η(t) = 1; otherwise, η(t) = 0. Denote by

α1, β1, α2, β2, . . . the lengths of successive intervals spent in states 0 and 1, respectively, in time

(0,∞), where α1, α2, . . . are i.i.d. and β1, β2, . . . are i.i.d.. The process {η(t)} assumes the states

0 and 1 alternately, as shown in Figure 4.8. The process {η(t)} is called alternating renewal

process.

Figure 4.8: The connection and inter-connection process of a mobile device and a cloudlet is
an alternating renewal process.
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With only a slight loss of generality, we assume that the time origin of the process {η(t)}
is an arbitrary connection or inter-connection. When η(0) = 0, the mobile device is initially

disconnected from the cloudlet; when η(0) = 1, the mobile device is initially connected with

the cloudlet. If η(0) = 0, αi = T i
I and βi = T i

C , i.e., ith inter-connection and connection time,

respectively; if η(0) = 1, αi = T i
C and βi = T i

I , i.e., ith connection and inter-connection time,

respectively. The former case is shown in Figure 4.8. Based on the alternating renewal process of

the connection between a mobile device and a cloudlet, we study the cloudlet access probability,

task success rate and execution speed.

4.3.1 Cloudlet access probability

A mobile device’s connection to cloudlets is intermittent due to node mobility. If there is

no cloudlet in the vicinity of mobile device, cloudlet computing is unavailable. Hence, it is

important to find out the cloudlet access probability, which is defined as the probability that a

mobile device can connect to at least one cloudlet in the network.

Note that if the mobile device can connect to multiple resource-rich devices at the same

time, these devices can be seen as belonging to one cloudlet. In other words, a mobile device can

connect to at most one cloudlet at any time t, and a mobile device’s connections with different

cloudlets are exclusive. This assumption is reasonable because different cloudlets probably locate

at different community sites. Based on this assumption and the connection and inter-connection

process of a mobile device and a cloudlet, we have the following theorem for the cloudlet access

probability.

Theorem 8 The limiting cloudlet access probability is

CA =
m∑
i=1

μi
TC

μi
TC

+ μi
TI

. (4.3)

where μi
TC

and μi
TI

are expectations of connection time T i
C and inter-connection T i

I between the

mobile device and cloudlet Ci (i = 1, 2, . . . ,m), respectively.

Proof : The movements of mobile device result in alternating connection and inter-connection

with a cloudlet Ci, 1 ≤ ∀i ≤ m, which is modeled in Definition 13. The probability that the

connection between the mobile device and cloudlet Ci is available at time t, conditional on the

initial state, is given by Cox in Renewal Theory (1962, p.83) [106]. When the mobile device is

initially connected to cloudlet Ci,

CAi
1(t) = 1− F i

TC
(t) +

∫ t

0
hi1(u)[1− F i

TC
(t− u)]du,
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where h1(u) is the inverse Laplace transform of

H i
1(s) =

f i
TC

(s)f i
TI
(s)

s(1− f i
TC

(s)f i
TI
(s))

;

when the mobile device is disconnected from cloudlet Ci at t = 0,

CAi
0(t) = F i

TI
(t) +

∫ t

0
hi1(u)[1 − F i

TI
(t− u)]du.

It is reasonable to assume that the process of connection and inter-connection between nodes

has been running for a long time before it is first observed. The limiting connection probability

of cloudlet Ci is

CAi = lim
t→∞

CAi
1(t) = lim

t→∞
CAi

0(t) =
μi
TC

μi
TC

+ μi
TI

. (4.4)

As the mobile device’s connections to different cloudlets are exclusive, the cloudlet access prob-

ability is CA =
∑m

i=1 CAi. Thus, we finish our proof.

Remark 23 Connection probability CAi of a cloudlet Ci is determined by the average con-

nection and inter-connection time, i.e., mobility pattern of a mobile user. The more frequent

visit and the longer sojourn time at the location of a cloudlet, the more likely a mobile user can

connect to this cloudlet. The mobile device’s isolation probability is 1−CA, which is determined

by the percentage of time that the mobile user is at locations without any cloudlet (i.e., user

mobility pattern).

4.3.2 Task Success Rate

Cloudlets available at a point in time can not guarantee a successful task execution. In order

to successfully compute a task, a cloudlet has to maintain a connection with the mobile device

during the task transmissions and computation. In other words, cloudlet Ci can successfully

execute a task for a mobile device if a connection is available between them for at least δi period

of time, where δi = C/Si+(Din+Dout)/B. We derive the task success rate by applying results

on interval availability of an alternating renewal process [107].

Theorem 9 The task success rate is

SR =

m∑
i=1

CAi

(
1−

∫ δi

0
[1− F i

TC
(x)]/μi

TC
dx

)
, (4.5)

where cloudlet Ci’s access probability CAi =
μi
TC

μi
TC

+μi
TI

.
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Proof : Define SRi(t, δi) as the probability that a connection between the mobile device and

cloudlet Ci is available at least δi period of time starting at t. Based on the interval availability

of an alternating renewal process derived by Barlow and Hunter (1961) [107], we have that

conditioning on initial state η(0) = 1,

SRi
1(t, δi) = 1− F i

TC
(t+ δi) +

∫ t

0
hi1(u)[1 − F i

TC
(t+ δi − u)]du;

while conditioning on initial state η(0) = 0,

SRi
0(t, δi) =

∫ t

0
hi2(u)[1 − F i

TC
(t+ δi − u)]du,

where hi2(u) is the inverse Laplace transform of

H i
2(s) =

f i
TI
(s)f i

TI
(s)

s(1− f i
TC

(s)f i
TI
(s))

.

It is readily seen

SRi = lim
t→∞

SRi
1(t, δi) = lim

t→∞
SRi

0(t, δi) (4.6)

=

∫∞
δi

(1− F i
TC

(u))du

μi
TC

+ μi
TI

=
μi
TC

(1− ∫ δi
0 [1− F i

TC
(u)]/μi

TC
du)

μi
TC

+ μi
TI

.

Note that SRi is the product of the limiting cloudlet access probability CAi and the limiting

probability that it survives an interval of duration δi. As the limiting success rate is SR =∑m
i=1 SR

i, we complete our proof.

The connection time between a mobile device and a cloudlet is also called contact time

or link lifetime, which has been formally described to be exponential random variable under

various mobility models [104, 108]. When T i
C (i = 1, 2, . . . ,m) follows exponential distribution

with parameter 1/μi
TC

, we have the following corollary.

Corollary 1 When {T i
C , i = 1, 2, . . . ,m}, are exponential random variables with rates {1/μi

TC
,

i = 1, 2, . . . ,m}, the limiting task success rate is

SR =

m∑
i=1

CAie
−

δi

μi
TC . (4.7)

Remark 24 The probability that a task can be executed successfully by cloudlet Ci not only

depends on the cloudlet access probability CAi and the probability distribution of connection

time T i
C but also depends on the task completion time δi, which is determined by computation
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demand C, sizes of task dataDin andDout, cloudlet computing speed Si, and channel bandwidth

B.

4.3.3 Task Execution Speed

In mobile cloud computing, mobile applications, such as mobile learning, health monitoring,

and map navigation, require recurrent services. For example, in mobile gaming, mobile users

offload game engine (e.g., graphic rendering) to the servers in the cloudlet and users need to

access the cloudlet repeatedly as the game refreshes during the game playing time. In general,

a mobile device has a large amount of tasks to compute, and each task is sent to a cloudlet for

computing after the previous task is finished. It is important to find out how many tasks can

be executed successfully over time t and what is the average task execution speed.

Because of node mobility, the connection between a mobile device and a cloudlet is unstable.

In order to maintain high cloudlet computing reliability, it is reasonable to assume that for

recurrent task computing, a mobile device only utilizes a cloudlet when they are connected.

Accordingly, the average number of executed tasks over a fixed time t depends on the total

connection time between a mobile device and its encountered cloudlets as well as task completion

time. We derive the following theorem using renewal theory.

Theorem 10 The average number of executed tasks over time t, denoted as N(t), satisfies

E(N(t)) =
m∑
i=1

⌊
E(N i

C(t))μ
i
TC

δi

⌋
, (4.8)

where �·� is the floor function, and E(N i
C(t)) is the number of connections between a mobile

user and cloudlet Ci within time t. Formally, E(N i
C(t)) is the inverse Laplace transform of

F i
TC+TI

(s)/[s(1− F i
TC+TI

(s))] and F i
TC+TI

(s) is the Laplace transform of random variable T i
I +

T i
C .

Proof : In the connection and inter-connection process of a mobile device and cloudlet Ci,

define Si
0 = 0 and Si

n = αi1 + βi1 + αi2 + βi2 + · · · + αin + βin for n ≥ 1. The process

N i
C(t) = maxn≥0{n|Si

n ≤ t} is the number of renewals over time t. The total connection time

between a mobile device and cloudlet Ci over time t is approximately

CTi(t) ≈
N i

C(t)∑
k=1

T ik
C , (4.9)

where T ik
C is the kth connection time between a mobile device and cloudlet Ci. As {T ik

C , k =
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1, 2, . . . } are i.i.d. and have the same distribution as T i
C ,

E(CTi(t)) = E(N i
C(t))E(T i

C ) = E(N i
C(t))μ

i
TC

, (4.10)

where E(N i
C(t)), by renewal theory, is the inverse Laplace transform of F i

TC+TI
(s)/[s(1 −

F i
TC+TI

(s))] and F i
TC+TI

(s) is the Laplace transform of random variable T i
I + T i

C . The number

of tasks executed by cloudlet Ci is �E(CTi(t))/δi�. Accordingly, the total number of executed

tasks over time t is sum of �E(CTi(t))/δi� over all cloudlets Ci, i = 1, 2, . . . ,m.

Similar to connection time TC , inter-connection time TI , also called inter-contact time, has

been shown to exhibit exponential tail decay under many mobility models [88]. Under the

special case when T i
C and T i

I (i = 1, 2, . . . ,m) are exponential random variables, we can derive

the closed form for the average number of renewals E(N i
C(t)) over time t, thus E(N(t)) in the

following corollary.

Corollary 2 If T i
C and T i

I (1 ≤ ∀i ≤ m) are exponential random variables with rates 1/μi
TC

,

1/μi
TI
, respectively,

E(N(t)) =
m∑
i=1

⌊CAit+ CAi(1− CAi)μi
TC

(
1− e

− t

CAiμi
TI

)
δi

⌋
, (4.11)

where CAi = μi
TC

/(μi
TC

+ μi
TI
).

Proof : When T i
C and T i

I are exponentially distributed with rates 1/μi
TC

and 1/μi
TI
, respectively,

T i
I + T i

C has density function 1
μi
TI

−μi
TC

(e
−t/μi

TI − e
−t/μi

TC ), which gives the Laplace transform

LTI+TC
(s) = 1

μi
TC

μi
TI

(s+1/μi
TC

)(s+1/μi
TI

)
. Then,

L(E(N i
c(t)), s) =

1

μi
TC

μi
TI
s2(s + 1

μi
TC

+ 1
μi
TI

)
.

Performing inverse Laplace transform, we have

E(N i
c(t)) =

t

μi
TC

+ μi
TI

+ CAi(1− CAi)(1 − e
−( 1

μi
TC

+ 1

μi
TI

)t

).

Substituting this equation into Eq. (4.8), we finish the proof.

To understand how the number of tasks executed by cloudlets increases over time t, we

give some numerical results in Figure 4.9. We set the scenario that a mobile user mainly stays

at work place and home. Let there be two cloudlets in the network (i.e., m = 2). Cloudlet
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Figure 4.9: Number of tasks computed by cloudlet 1, cloudlet 2, and both cloudlets over time
t.

C1 locates at the mobile user’s home, and Cloudlet C2 locates at the mobile user’s office. The

mean connection and inter-connection time between the mobile user with these two cloudlets

are μ1
TC

= 12 hours and μ1
TI

= 12 hours, μ2
TC

= 8 hours and μ2
TI

= 16 hours, respectively. Let

the task completion time δ1 = δ2 = 1 minute. Figure 4.9 shows that number of tasks executed

by cloudlet C1 (or C2) increases linearly with rate approximately equal to cloudlet C1’s (or C2’s)

access probability CA1 = 1
2 (or CA2 = 1

3). The total number of executed tasks by cloudlets

in the network increases linearly with rate approximately equal to cloudlet access probability

CA = CA1 + CA2 = 5
6 .

Remark 25 Average number of executed tasks over time t grows linearly with rate approxi-

mately equal
∑m

i=1CAi/δi. In other words, number of executed tasks is mainly determined by

cloudlet access probability and task completion time.

Theorem 11 The limiting average speed of task execution satisfies

CS = lim
t→∞

E(N(t))

t
=

m∑
i=1

CAi

δi
. (4.12)

Proof : The average speed of task execution is CS(t) = E(N(t))/t. Based on Theorem 10, we

have limiting task execution speed when t → ∞,

CS = lim
t→∞

E(N(t))

t
=

m∑
i=1

lim
t→∞

E(N i
c(t))μ

i
TC

t
.
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According to the elementary renewal theorem,

lim
t→∞

E(N i
c(t))

t
=

1

(μi
TC

+ μi
TI
)
.

Hence, we complete our proof.

Remark 26 The higher the cloudlet access probability CAi (1 ≤ ∀i ≤ m) and the shorter the

task completion time δi (1 ≤ ∀i ≤ m) are, the faster the task execution speed CS is. Findings in

this chapter reveal that mobility pattern of a mobile user determines its connection and inter-

connection time to cloudlets, which in turn affect not only the cloudlet access probability, but

also success rate and speed of task execution.

4.4 Mobile Cloutlet Properties in Traces

The cloudlet size and cloudlet node’s lifetime and reachable time are determined by contacts

and inter-contacts between the initiator and cloudlet nodes, which have been studied using

mobility traces in mobile wireless networks. Hence, we start examining the mobile cloudlet

properties using mobility traces.

4.4.1 Mobility Traces

Mobility traces record mobile users’ access to base stations or access points (i.e., infrastructure

based traces), or GPS locations (i.e., GPS based traces), or contact and inter-contact time (i.e.,

direct contact based traces). Because mobile cloudlet exploits contacts among nodes for com-

puting, we choose the direct contact based traces. Moreover, since mobile cloudlet is promising

for a social group sharing common tasks, mobility traces of users in social groups are preferred.

Therefore, we select the Cambridge/haggle2009 dataset [109] that includes several traces of

Bluetooth sightings by groups of users carrying small devices (iMotes) for several days in office

and conference.

In Cambridge/haggle2009 data collection, experiment 2 distributed iMotes to 19 graduate

students from the System Research Group at University of Cambridge for around 5 days in

2005. Number of contacts, contact and inter-contact time among nodes were collected. Only 12

iMotes were used to produce trace file Exp2, while others were discarded because of hardware

resets. Similarly, experiment 3 distributed iMotes to 50 students attending the student workshop

at the IEEE Infocom Conference in Grand Hyatt Miami from March 7th to March 10th, 2005.

Only 41 iMotes delivered useful contact information for trace file Exp3.

Exp2 and Exp3 represent node contact on campus and in conference environments, re-

spectively. In both scenarios, mobile users are likely to work on a common task due to their
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common social activities (i.e., working in the same lab and attending the same conference).

Nearby mobile users can create computing communities in which mobile devices can collabora-

tively execute shared tasks. Thus, properties of mobile cloudlet extracted from these two trace

files can characterize the real mobile cloudlet system.

4.4.2 Cloudlet Size

According to the definition of mobile cloudlet, we analyze the size of Cτ by calculating the

average number of encountered nodes over time τ in traces Exp2 and Exp3. As shown in

Figures 4.10 and 4.11, size of Cτ increases as τ increases. Using curve fitting, we can see that

negative exponential distributions approximately fit the data in Figures 4.10 and 4.11. In other

words, the size of Cτ is a negative exponential function of τ and the number of nodes n in the

network (e.g., the maximum cloudlet size is 11 in trace Exp2).
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Figure 4.10: In the trace of Exp2, sizes of mobile cloudlet Cτ follow negative exponential growth
with τ .

Besides the network size n and time τ , the exponential growth rate is vital for cloudlet size.

A large growth rate means that an initiator frequently meets resource-rich devices, thus likely

acquires a large pool of potential computing resources. On the contrary, a small growth rate

means that an initiator seldom encounters new nodes and can only acquires computing resources

from a small portion of nodes in the network, which may lead to poor computing performance.

We will further study the increase rate and how it affects the computing performance of mobile

cloudlet through mathematical analysis.
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Figure 4.11: In the trace of Exp3, sizes of mobile cloudlet Cτ follow negative exponential growth
with τ .

4.4.3 Lifetime

Based on Definition 12, node vj’s lifetime in a mobile cloudlet for initiator vi is from vi and vj ’s

first contact to their last contact within time τ . Figures 4.12 and 4.13 show the average LT (τ)

in traces Exp2 and Exp3, respectively. LT (τ) increases as τ increases. Lifetime increases slowly

when 80000 < τ < 132000 (about 14-hour period) in trace Exp2 and when 90000 < τ < 129000

(about 11-hour period) in trace Exp3. This is probability because users have little contact

during nights, which is also observed in cloudlet node’s reachable time in Figures 4.14 and 4.15.

From Figures 4.12 and 4.13, it is difficult to determine the lifetime when τ is small because

of the randomness of inter-contact time TI . But, it agrees with our intuition that a node’s

lifetime increases linearly with rate 1 when τ is large as shown in Figures 4.12 and 4.13. This

implies that for delay tolerant application (i.e., large τ), the optimal computing performance

of mobile cloudlet—achieved by exploiting the cloudlet nodes’ whole lifetime for computing—

is hardly influenced by intermittent connections between an initiator and cloudlet nodes.

4.4.4 Reachable Time

The reachable time RT (τ) of a cloudlet node is its total contact duration with the initiator

within time τ . Figures 4.14 and 4.15 show the average reachable time in traces Exp2 and Exp3,

which are piecewise linear functions. The piecewise linearity is due to different mobility patterns

of users at different times (daytime and night time). For instance, in trace Exp2, students are

working in the lab during 50000 < τ < 80000 (about 8-hour period), producing long contact
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Figure 4.12: In the trace of Exp2, average lifetimes of cloudlet nodes increase approximately
linearly with τ when time τ is large.

time and short inter-contact time. This leads to high growth rate of reachable time, as shown

in Figure 4.14. On the other hand, they have short contacts and long inter-contacts during

off time, which lead to small growth rate of reachable time. Examining Figures 4.14 and 4.15

more closely, we discover that the increase rate depends on the average contact time and inter-

contact time between two nodes over the corresponding period of time. For instance, the slope of

segment τ ∈ [44400, 85200] in Figure 4.15 is 0.01882, which is very close to average TC/(average

TC + average TI)=0.01877 during 44400 < τ < 85200.

Remark 27 In traces Exp2 and Exp3, cloudlet nodes’ reachable times increase linearly with

τ and the increase rates are approximately average TC/(average TC + average TI), which are

varying according to users’ mobility patterns. The increase rate indicates the connection likeli-

hood between an initiator and a cloudlet node. If an initiator can connect to devices with high

likelihood, it could receive omnipresent and reliable mobile cloudlet computing service.

4.5 Theoretical Analysis of Mobile Cloutlet Properties

In this section, we mathematically analyze the properties of mobile cloudlet. Our analysis

not only confirms our previous observations but also enables us to investigate the computing

performance of a mobile cloudlet, such as computing capacity and speed, which determine when

a mobile cloudlet is competent for executing mobile applications.
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Figure 4.13: In the trace of Exp3, average lifetimes of cloudlet nodes increase approximately
linearly with τ when time τ is large.

4.5.1 Cloudlet Size Analysis

Denote by NCτ (t) (0 ≤ t ≤ τ) the number of devices that an initiator encounters within in

time t. Then, NCτ (0) = N∗, where N∗ is the number of the initiator’s neighbors at t = 0, and

cloudlet size NCτ = NCτ (τ). We can study NCτ (t) by superposing multiple 0-1 processes that

are sequences of on (contact) and off (inter-contact) times between two nodes.

Over a period of time t, a cloudlet node and the initiator will be in contact (on) and

inter-contact (off) states alternately. If this process begins at the origin of a contact or an

inter-contact, it can be modeled as the conventional alternating renewal process. However, in

practice, the choice of time origin does not always coincide with the beginning of a contact or

an inter-contact. Thus, we adopt the following modified alternating renewal process.

Definition 14 Define a stochastic process {χ(t), 0 ≤ t < ∞} with values in an abstract

space X = A + B. The process {χ(t)} assumes the states A and B alternately. Denote by

ξ1, η1, ξ2, η2, · · · the successive sojourn times spent in states A and B, respectively, where

ξ2, ξ3, · · · are i.i.d., η1, η2, · · · are i.i.d., while ξ1 has a different distribution. Define S0 = 0,

S1 = ξ1, and Sn = ξ1+η1+ξ2+η2+· · ·+ηn−1+ξn for n ≥ 2, the process N(t) = maxn≥0{n|Sn ≤
t} is called modified alternating renewal process. This process is also called equilibrium alter-

nating renewal process, if ξ1 has the PDF [1 − Fξ(x)]/E(ξ), where Fξ(x) and E(ξ) are the

cumulative distribution function (CDF) and expectation of ξi for all i > 1.

Let A and B represent contact and inter-contact states. When two node are in contact at t = 0,

ξ1 = T̃ 1
C (the residual time of T 1

C), ξ
i = T i

C (∀i > 1), and ηi = T i
I (∀i ≥ 1); when two nodes
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Figure 4.14: In the trace of Exp2, average reachable times of cloudlet nodes are piecewise linear
functions of time τ with slope depending on contact and inter-contact time.

are not in contact at t = 0, ξ1 = T̃ 1
I (the residual time of T 1

I ), ξ
i = T i

I (∀i > 1), and ηi = T i
C

(∀i ≥ 1). It is reasonable to assume that the process of contact and inter-contact between

nodes has been running for a long time before it is first observed. Then ξ1 will have the PDF of

[1−Fξ(x)]/E(ξ) [106]. Therefore, this process can be seen as an equilibrium alternating renewal

process.

Theorem 12 The expectation of cloudlet size is

E(NCτ ) = (n− 1)

[
1−

(
1− πr2

n/λ

)
e−λIτ

]
. (4.13)

Proof : Assume at t = 0, there are N∗ nodes in the initiator’s transmission range, NCτ (t) −
NCτ (0) (t > 0) can be seen as superposition of n −N∗ − 1 number of 0-1 processes 1{Ni(t)>0},

where Ni(t) has the same distribution as N(t).

NCτ (t) = N∗ +

n−N∗−1∑
i=1

1{Ni(t)>0} = n− 1−
n−N∗−1∑

i=1

1{ξ1i >t}.

It is worth noting that N∗ is a random variable depending on initial node distribution in the

network. Rigorously, P (NCτ (t) = k) = E(P (NCτ (t) = k|N∗)) and E(NCτ (t)) = E(E(NCτ (t)|N∗)).

Therefore, NCτ (t) is determined by the initial node distribution and the residual inter-contact

time between two nodes. In homogeneous network, N∗ satisfies P (N∗ = m) = (n−1
m )

(
πr2

n/λ

)m
×(

1− πr2

n/λ

)n−1−m
. Then, NCτ (t) has a binomial distribution with parameters n − 1 and πr2

n/λ +
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Figure 4.15: In the trace of Exp3, average reachable times of cloudlet nodes are piecewise linear
functions of time τ with slope depending on contact and inter-contact time.

F
T̃I
(t)
(
1− πr2

n/λ

)
, where F

T̃I
(t) = P (T̃I ≤ t). Thus,

E(NCτ (t)) = (n− 1)

(
πr2

n/λ
+

(
1− πr2

n/λ

)
F
T̃I
(t)

)
. (4.14)

In equilibrium alternating renewal process, the density function of T̃I is λI [1 − FTI
(x)], where

FTI
(x) is the CDF of TI and λ−1

I =
∫∞
0 x∗FTI

(dx) =
∫∞
0 (1−FTI

(x))dx. When the inter-contact

time TI follows exponential distribution with parameter λI , T̃I is identically distributed with

TI . By E(NCτ ) = E(NCτ (τ)), we prove Eq. (4.13).

Remark 28 Theorem 12 shows that the expected cloudlet size follows negative exponential

growth with τ , which is consistent with our observation in Figures 4.10 and 4.11. Moreover,

Theorem 12 gives the negative exponential growth rate as λI = 1/E(TI ). The smaller E(TI)

is, the more nodes an initiator encounters within time τ , and vice versa. This implies that the

more frequently nodes meet one another and the larger the network size n is, the more devices

are in the mobile cloudlet to provide computing resources and the better computing performance

is likely to be achieved, and vice versa.

4.5.2 Lifetime Analysis

We study a cloudlet node’s lifetime based on the modified alternating renewal process in Defi-

nition 14, and deduce the following theorem.
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Theorem 13 The expected lifetime of a cloudlet node is approximately τ− 1
λI
(1− πr2

n/λ +
λC

λI+λC
)

when τ is large.

Proof : In equilibrium alternating renewal process in Definition 14, χ(t) = 1 when two nodes

are in contact at time t; χ(t) = 0, otherwise.

(i) When χ(0) = χ(τ) = 1, the node’s entrance time is 0 and its exit time is τ . Clearly, its

lifetime LT (τ) = τ .

(ii) When χ(0) = 0, χ(τ) = 1, the node’s entrance time is ξ1 and its exit time is τ . Then,

LT (τ) = τ − ξ1 · 1{ξ1<τ}, where ξ1 = T̃I is the forward recurrence time of TI .

(iii) When χ(0) = 1, χ(τ) = 0, the node’s entrance time is 0 and its exit time is SN(τ). Thus,

LT (τ) = SN(τ) = τ − ξN(τ) · 1{ξN(τ)<τ}, where ξN(τ) = T̂I is the backward recurrence time of

TI .

(iv) When χ(0) = 0, χ(τ) = 0, if N(τ) = 0, the node’s lifetime is 0; if N(τ) > 0, the node’s

entrance time is ξ1 and its exit time is SN(τ)+ηN(τ). Hence, lifetime equals [τ − (ξ1+ ξN(τ)+1) ·
1{ξ1+ξN(τ)+1<t})] · 1{ξ1<t}, where ξ1 = T̃I and ξN(τ)+1 = T̂I .

Denote πij(t) as the equilibrium probability, given that χ(0) = i and χ(t) = j (i, j = 0, 1).

Let p0 and p1 denote P (χ(0) = 0) and P (χ(0) = 1), respectively. Because TI and TC are

exponential random variables with parameters λI and λC , respectively, T̃I and T̂I have the

same distribution as TI and T̃I + T̂I follows Erlang-2 distribution Erlang(2,λI). Thus,

E(LT (τ)) = τ2λIe
−λIτπ00(τ)p0 (4.15)

+ τ [1 + (π01(τ)p0 + π10(τ)p1 + π00(τ)p0)e
−λIτ ]

− 1

λI
(1− e−λIτ )(π01(τ)p0 + π10(τ)p1 + 2π00(τ)p0),

where p1 = πr2

n/λ and p0 = 1 − p1. The equilibrium probability πij(τ) can be derived based on

Cox’s Renewal Theory (Chapter 7.4) [106]: π00(τ) = β + γe−βτ/λC , π01(τ) = γ − γe−βτ/λC ,

π10(τ) = β − βe−βτ/λC , and π11(τ) = γ + βe−βτ/λC , where β = λC

λI+λC
and γ = λI

λI+λC
. When τ

is large, e−λIτ and e−(λI+λC)τ approach 0,

E(LT (τ)) ≈ τ − 1

λI
(1− πr2

n/λ
+

λC

λI + λC
), (4.16)

i.e., the expected lifetime grows linearly with time τ . To better understand E(LT (τ)), we have

numerical analysis of E(LT (τ)) to show how E(LT (τ)) changes with τ in Figure 4.16. We

set p0 = 0.9, p1 = 0.1, λI = 0.0001, and λC = 0.01. Parameters λI and λC are set to be

approximately equal to 1/E(TI) and 1/E(TC ) in trace Exp3. Figure 4.16 shows that when

τ > 4 × 104, E(LT (τ)) grows linearly with slope 1, which is consistent with Eq. (4.16) and

Figures 4.13. When τ is small (0 < τ < 1000), the close-up figure shows that E(LT (τ)) is
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mainly influenced by τ2.
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Figure 4.16: Expected lifetime of a cloudlet node grows linearly with slope 1 when τ is large.

Remark 29 When τ is small, E(LT (τ)) exhibits quadratic growth. As τ increases, E(LT (τ))

tends to grow linearly with slope 1 and the gap between τ and E(LT (τ)) is a constant 1
λI
(1− πr2

n/λ+
λC

λI+λC
). This indicates that for application with long delay tolerance τ , intermittent connectivity

between an initiator and cloudlet nodes has a small constant negative effect on the optimal

computing performance achieved when cloudlet nodes compute task for the initiator throughout

their lifetimes.

4.5.3 Reachable Time Analysis

In order to study the reachable time RT (τ), i.e., total contact duration between two nodes

within time τ , we rewrite Definition 14 as follows.

Definition 15 Let {(In, Zn}∞n=0 be a bivariate stochastic process on a probability space (Ω, χ, P )

such that Z0 = 0 and In = 1 − In−1 for all n ≥ 1, where p0 = P (I0 = 0) and p1 = P (I0 = 1)

satisfying p0 + p1 = 1. Assume that, conditional on In−1, the Zn − Zn−1 for all n ≥ 1 are

mutually independent. Let the conditional distribution of Z1 be F 1
T̃C

(F 1
T̃I

) if I0 = 1 (0), and

the distributions of Zn − Zn−1 conditioned on In−1 be FTC
(FTI

) if In−1 = 1 (0), for all

n ≥ 2. Distributions of F 1
T̃C

and F 1
T̃I

have density λC [1 − FTC
] and λI [1 − FTI

], respectively,

where λ−1
C =

∫∞
0 FTC

(dx) and λ−1
I =

∫∞
0 FTI

(dx). Then, the point process characterized by

{(In, Zn)}∞n=0, in which In is the point type and Zn is the waiting time until the nth event, is

an equilibrium alternating renewal process.
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The total contact duration between two nodes within time τ depends on not only distribution

of contact time but also the number of contacts, which can be represented as follows.

Definition 16 Let {(In, Zn}∞n=0 be an equilibrium renewal alternating process. For all τ > 0,

let K(τ) =
∑∞

n=1 1Z2n−1≤τ , and L(τ) =
∑∞

n=1 1Z2n≤τ . Then, K(τ) (L(τ)) is the odd (even)

counting random variable of the process at time τ .

When I0 = 1, the number of contacts is K(τ) (or K(τ) + 1) if K(τ) = L(τ) (if K(τ) �= L(τ)).

When I0 = 0, the number of contacts is L(τ) (or L(τ) + 1) if K(τ) = L(τ) (if K(τ) �= L(τ)).

To find out RT (τ), we define the sojourn time of the equilibrium renewal alternating process

as follows.

Definition 17 Let {(In, Zn}∞n=0 be an equilibrium renewal alternating process with odd (even)

counting random variable K(τ) (L(τ)). Let S0 = T0 = 0, Sn =
∑n

i=1(Z2i−1 − Z2i−2), and

Tn =
∑n

i=1(Z2i − Z2i−1), for all n ≥ 1. Then Sn (Tn) is called the nth sum of the odd (even)

states of the process, n ≥ 0. For all τ > 0, let

α0(τ) = TL(τ) · 1{K(τ)=L(τ)} + [τ − SK(τ)] · 1{K(τ)�=L(τ)},

α1(τ) = SK(τ) · 1{K(τ)�=L(τ)} + [τ − TL(τ)] · 1{K(τ)=L(τ)}.

Then α0(τ) (α1(τ) ) is called the sojourn time of the even (odd) states of the process. Clearly,

α0(τ)+α1(τ) = τ . The sojourn time in the on state of the process (i.e., total contact duration)

during (0, τ ] is given by

RT (τ) = α0(τ) · 1{I0=0} + α1(τ) · 1{I0=1}. (4.17)

Lemma 6 For an equilibrium alternating renewal process, the total contact duration (i.e.,

RT (τ)) satisfies

E(RT (τ)) = E(α0(τ))p0 + E(α1(τ))p1, (4.18)

where E(α0(τ)) and E(α1(τ)) are inverse Laplace transform of Eqs. (4.19) and (4.20), respec-

tively, p1 and p0 represent the probabilities that two nodes are originally in contact and out of

contact, respectively.

Proof : In [110], M.H. Rossiter derived the sojourn time distribution in on state for a two-

state system by applying Laplace transform and double Laplace transform. For an equilibrium

renewal alternating process, the Laplace transform of the expected sojourn time in on state

conditioning on I0 = 0

L(E[α0(τ)]; s) =
[1− FTC

(s)]F
T̃I
(s)

s2[1− FTC
(s)FTI

(s)]
, (4.19)
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while conditioning on I0 = 1

L(E[α1(τ)]; s) =
1− F

T̃C
(s)− (FTC

− F
T̃C

)(s)FTI
(s)

s2[1− FTC
(s)FTI

(s)]
, (4.20)

where L{ · ; s} represents the Laplace transform, and FX(s) is the Laplace transform of random

variable X, i.e., FX(s) =
∫∞
0 e−sxF (dx).

We have E(α0(τ)) and E(α1(τ)) by taking inverse Laplace transform of Eqs. (4.19) and

(4.20). Substituting E(α0(τ)) and E(α1(τ)) in the expectation of Eq. (4.17) completes our

proof.

Theorem 14 In homogeneous network with uniform node distribution, if TC and TI follow

exponential distributions with parameters λC and λI , respectively, the expected reachable time

of a cloudlet node

E(RT (τ)) =
λIτ

λI + λC
+

λCp1 − λIp0
(λI + λC)2

(1− e−(λI+λC)τ ), (4.21)

where p1 =
πr2

n/λ and p0 = 1− p1.

Proof : For exponential random variable TC (TI), its forward recurrence time F
T̃C

(F
T̃I
) also

has exponential distribution with parameter λC (λI) because of the memoryless property of

exponential random variable. Then, FTC
(s) = F

T̃C
(s) = λC

s+λC
and FTI

(s) = F
T̃I
(s) = λI

s+λI
.

Based on results in Eqs. (4.19) and (4.20) from [110],

L(E[α1(τ)]; s) =
1− λC

s+λC

s2[1− λC

s+λC

λI

s+λI
]
,

and L(E[α0(τ)]; s) = L(E[α1(τ)]; s)
λI

s+λI
. Performing inverse Laplace transform, we have

E[α0(τ)] =
λIτ

λI + λC
+

λI

(λI + λC)2
(e−(λI+λC)τ − 1), (4.22)

E[α1(τ)] =
λIτ

λI + λC
+

λC

(λI + λC)2
(1− e−(λI+λC)τ ). (4.23)

In our homogeneous network model, p0 = πr2

n/λ and p1 = 1 − p0. Substituting them into Eq.

(4.18) completes our proof.

Numerical results of Theorem 14 are shown in Figure 4.17. The parameter settings are

the same as those in Figure 4.16. Theorem 14 and Figure 4.17 show that when TC and TI

are exponentially distributed, the reachable time of a cloudlet node grows linearly with slope
λI

λI+λC
, i.e., E(TC)

E(TI)+E(TC) as λI = 1
E(TI)

and λC = 1
E(TC) . The linear growth in Figure 4.17
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is different from the piecewise linear growth in Figures 4.14 and 4.15 because depending on

people’s schedules, TI and TC follow different distributions during different time in traces Exp2

and Exp3.
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Figure 4.17: Expected reachable time of a cloudlet node grows linearly with slope approxi-
mately λI/(λI + λC) when τ is large.

Remark 30 The increase rate of E(RT (τ)) shows that the mean reachable time within time

τ is mainly determined by the ratio E(TC)
E(TI)+E(TC) when τ is large. Nodes that meet an initiator

frequently and have long contact time have high connection likelihood and can provide reliable

computing services while still support mobility of the initiator. The initiator can estimate the

ratio E(TC)/(E(TI) + E(TC)) based on its contact histories and use it as an indicator for

whether an encountered node is suitable for providing mobile application services.

4.6 Computing Capacity and Speed of Mobile Cloudlet

The amount of computation that the cloudlet nodes can provide for the initiator not only de-

pends on the computing capabilities of cloudlet nodes and how the task is partitioned for parallel

processing but also depends on the cloudlet node’s lifetime and reachable time. Evaluating the

computing capability of mobile processor and designing application partition schemes [111] are

beyond the scope of this study. In this chapter, we simply assume that computing speed of

each device is a constant V , and the initiator can partition the task into M subtasks that can

be computed on cloudlet nodes in parallel. The data sizes of each subtask before and after
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computing are Di
d and Di

r (1 ≤ i ≤ M), respectively.

Assume a total of B Hz spectrum is shared by all nodes and each node has a fixed transmis-

sion power P . The noise N—including ambient and interference noise—is constant everywhere

in the network. We characterize the wireless link using a pass loss model with attenuation ex-

ponent α ≥ 2. The capacity of a wireless link is B log2(1 + P
N d−α), where d is the Euclidean

distance between the sender and the receiver. Assume that advanced error control coding is

used such that the available link bandwidth is equal to its capacity. For a task contains Di
d

(1 ≤ i ≤ M) bits, the transmission time of dispatching a task is

0 < td =
Di

d

B log2(1 +
P
N d−α)

≤ Dd

B log2(1 +
P
N r−α)

, (4.24)

where Dd �
∑

1≤i≤M Di
d. The transmission time of retrieving a task is

0 < tr =
Di

r

B log2(1 +
P
N d−α)

≤ Dr

B log2(1 +
P
N r−α)

, (4.25)

where Dr �
∑

1≤i≤M Di
r. Then the total transmission time is

0 < td + tr ≤ Dd +Dr

B log2(1 +
P
N r−α)

� ρ. (4.26)

If tasks are computed on cloudlet nodes during their whole lifetime, the optimal mobile

cloudlet capacity is achieved. If an initiator only employs cloudlet nodes when they are in

contact, i.e., the computing times equal to reachable times minus transmission times, we have

a lower bound on the computing capacity of a mobile cloudlet. Based on this methodology

and results in previous section, we have the following theorem on the computing capacity of a

mobile cloudlet.

Theorem 15 A mobile cloudlet Cτ ’s expected computing capacity is upper bounded by Cu
Cτ

and

lower bounded by C l
Cτ

in Eqs. (4.27) and (4.30), respectively.

Proof : During a cloudlet node’s lifetime, the maximum time a cloudlet node can use for

computing is its lifetime minus the transmission time of the task. Hence, the computing capacity

of a mobile cloudlet Cτ satisfies

CCτ ≤
NCτ∑
i=1

(LT i(τ)− tr − td)V.

Hence,

E(CCτ ) < Cu
Cτ � E(NCτ )E(LT (τ))V, (4.27)
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where E(NCτ ) and E(LT (τ)) can be found in Eqs. (4.13) and (4.15), respectively.

To employ cloudlet nodes in contact, a cloudlet node’s total computing time over time τ is

CT (τ) =RT (τ)− (p0 + p1π10)

N(τ)∑
i=1

CT i

− p1π11P (TC < τ)

N(τ)+1∑
i=1

CT i, (4.28)

where CT i � T i
C · 1T i

C<ρ + ρ · 1T i
C≥ρ, πi,j (i, j = 0, 1) are the equilibrium probabilities and N(τ)

is number of renewals within time τ in the equilibrium alternating renewal process.

Denote N0(τ) = N(τ)|{I0 = 0} and N1(τ) = N(τ)|{I0 = 1}. According to the renewal

equation for modified renewal process,

E(N0(τ)) = F
T̃I
(τ) +

∫ τ

0
E(N0(τ))dFTI+TC

(s),

E(N1(τ)) = F
T̃C

(τ) +

∫ τ

0
E(N1(τ))dFTI+TC

(s).

Taking the Laplace transform on both sides,

LE(N0(τ))(s) = L
T̃I
(s)/s + LN0(τ)(s)LTI+TC

(s),

LE(N1(τ))(s) = L
T̃C

(s)/s+ LN1(τ)(s)LTI+TC
(s),

where L
T̃I
(s) = λI/(s+λI) and L

T̃C
(s) = λC/(s+λC). TI+TC has density function λIλC

λC−λI
(e−λI t

−e−λC t), which gives the Laplace transform LTI+TC
(s) = λIλC/(s+ λI)(s+ λC). Thus,

LE(N0(τ))(s) = λI(s+ λC)/[s
2(s + λI + λC)] and LE(N1(τ))(s) = λC(s + λI)/[s

2(s + λI + λC)].

Taking the inverse Laplace transform, we then have

E(N0(τ)) = γλCτ + γ2(1− e−(λI+λC)τ ),

E(N1(τ)) = βλIτ + β2(1− e−(λI+λC)τ ),

where β = λC

λI+λC
and γ = λI

λI+λC
. Subsequently,

E(N(τ)) = E(N(τ)|I0 = 0)p0 +E(N(τ)|I0 = 1)p1, (4.29)

=
λIλCτ

λI + λC
+

p0λ
2
I + p1λ

2
C

(λI + λC)2
(1− e−(λI+λC)τ ),

where p1 =
πr2

n/λ and p0 = 1− p1.
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The computing capacity of a mobile cloudlet Cτ satisfies

CCτ ≥
NCτ∑
j=1

CT j(τ)V.

Therefore, E(CCτ ) is lower bounded by

C l
Cτ � E(NCτ )V {E(RT (τ))− (4.30)[
(1− p1π11e

−λCτ )E(N(τ)) + p1π11(1− e−λCτ )
]
E(CT )

}
,

where E(CT ) = E(TC · 1TC<ρ) + ρP (TC ≥ ρ) = 1−e−λCρ

λC
.
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Figure 4.18: Bounds on computing capacity of mobile cloudlet where λI = 0.0002, λC = 0.001,
p0 = 0.9, p1 = 0.1, n = 10, V = 1, ρ = 0.1.

Figure 4.18 shows the numerical results of this theorem by setting ρ = 0.1 second (typical

packet transmission time in mobile wireless networks), n = 10, E(TI) ≈ 83 minutes, and

E(TC) ≈ 17 minutes. This parameter setting reflects a scenario with 10 students in a team or 10

colleagues at a conference working on the same project. They meet for about 17 minutes between

classes or conference sessions to compute a common task by sharing computing resources on

their mobile devices. Two curves in Figure 4.18 divide MCC into three categories: MCC relying

on i) remote cloud, ii) remote cloud or mobile cloudlet, iii) mobile cloudlet. When this group

of users need to execute a task with computational demand C and delay requirement τ , if
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C ≥ Cu
Cτ
, they should offload the task to remote cloud; if C l

Cτ
< C < Cu

Cτ
, they can use remote

cloud or mobile cloudlet; if C ≤ C l
Cτ
, they can simply share the task computation during their

contacts with each other for mobile cloudlet computing.

The average computing speed of a mobile cloudlet is E(CCτ )/τ . When τ → ∞, we have the

long-term computing speed CS = limτ→∞
E(CCτ )

τ .

Theorem 16 The long-term computing speed of a mobile cloudlet is upper bounded by CSu =

(n− 1)V and lower bounded by CSl = (n−1)V λIe
−λCρ

λC+λI
.

Proof : Based on Theorem 15, we have the upper bound of CS,

CS ≤ lim
τ→∞

Cu
Cτ

τ
= (n− 1)V � CSu. (4.31)

Similarly, the lower bound of CS is limτ→∞
Cl

Cτ

τ . As in modified renewal process,

lim
τ→∞

E(N(τ))

τ
=

1

E(TC + TI)
=

λCλI

λC + λI
.

Accordingly, we have

CS ≥ lim
τ→∞

C l
Cτ

τ
=

λIe
−λCρ

λC + λI
(n− 1)V � CSl. (4.32)

Remark 31 The bounds on long-term computing speed can also be used by an initiator mobile

device to decide where to offload its task for computing service. Suppose the initiator has a task

with computational demand C and delay requirement τ , if C/τ ≥ (n− 1)V , the initiator needs

to offload its task to a remote cloud; if C/τ ≤ λIe
−λCρ

λC+λI
(n− 1)V , the initiator can distribute its

task to nearby devices in a mobile cloudlet; otherwise, the initiator can choose either remote

cloud or mobile cloudlet based on other constraints, such as battery life and quality of wireless

communication.

4.7 Summary

In this chapter, we study the cloudlet computing for mobile applications, in which mobile users

offload tasks to nearby resource-rich devices for instant service access and saving on roaming

charges. If a cloudlet locates at a community site that a mobile user visits, its access probability

for this mobile user is μTC
/(μTI

+ μTC
) determined by the mobile user’s mean connection

time and inter-connection time with the cloudlet. Moreover, cloudlet access probability affects

the cloudlet computing performance, such as probability of successful task execution, average

number of tasks executed over time t, and the limiting task execution speed. In summary,
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a mobile user’s mobility pattern has significant impact on its cloudlet access probability and

cloudlet computing performance, which can be measured by μTC
/(μTI

+ μTC
). In the domain

of mobile cloudlet, we examine the properties and computing capacity of mobile cloudlet in

order to determine whether mobile cloudlet can be used for mobile applications. The negative

exponential growth of cloudlet size shows that the number of resource-rich devices an initiator

can connect to for computing service is determined by the number of nodes in the network

and how frequently they meet. When the task is delay-tolerant, the intermittent connection has

little negative effect on optimal performance of a mobile cloudlet. Furthermore, E(TC)/(E(TC )+

E(TI)) implies the connection likelihood of a cloudlet node to an initiator, thus can be used by

the initiator to choose reliable cloudlet node. Based on cloudlet properties, we have also derived

upper and lower bounds on the computing capacity and long-term computing speed of a mobile

cloudlet. An initiator can use these bounds to decide whether to upload a task to remote clouds

or utilize nearby mobile cloudlet.

106



Chapter 5

Assessing Content Sharing through

D2D Communications

Owing to the development of wireless technologies and smart devices, mobile users can con-

veniently access the enormous contents on the Internet, which is generating large amount of

mobile data traffic and quickly leading to overloaded cellular network. In order to offload mobile

data traffic, device-to-device (D2D) communication is explored for content delivery. However,

adoption of this approach remains elusive due to various challenges of D2D communications. In

this chapter, aiming to lift the fog of opportunistic content delivery, we explore the potential

for content delivery through D2D communications. We first demonstrate through a study of

a YouTube traffic dataset that practical opportunities exist for peer-assisted content delivery

because of the temporal locality of user requests and the stochastic dominance of device con-

tact time over content transmission time. Then, we derive the number of copies of a content in

the network under different content caching policies. Finally, we evaluate the content fetching

and sharing probabilities and show that D2D communication can indeed reduce network load

especially for popular content delivery.

5.1 Motivation and Related Work

With the emergence of mobile devices and the development of wireless technologies, users can

browse websites, listen to music, and watch videos while on the move. As a result of this, mobile

data traffic has been growing at a phenomenal pace. Cisco [31] reported that global mobile data

traffic grew 70 percent and mobile video traffic exceeded 50 percent in 2012. Such tremendous

increase in mobile data traffic is predicted to overload cellular networks.

In order to mitigate the pressure on cellular networks, mobile data offloading is introduced

to deliver contents through complementary network technologies. WiFi and femtocells are the
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preferred offloading technologies [30]. However, the coverage of WiFi hotspots and femtocells

may be constrained by their limited deployment, and mobile users may not be able to fetch

contents through them. Thus, opportunistic D2D communication is also explored for content

delivery. When two nearby users request the same content around the same time, one user can

download the content from content servers through infrastructure networks while the other can

fetch the content from the first user through D2D communications.

There are many challenges in D2D communications, such as the battery and storage con-

straints of mobile devices, the unpredictable device connectivity and user cooperation, and the

complexity of interference handling and transmission scheduling. Nevertheless, peer-assisted

content delivery is an attractive solution to mobile data offloading. Nowadays, the content pop-

ularity distribution is more skewed. In other words, a small number of websites or videos are

extremely popular, drawing many users to access them. Moreover, IEEE 802.15 TG8 (Peer

Aware Communication) [112] is formed to provide a global standard for scalable, low power,

and reliable wireless D2D communications for emerging mobile services. These factors present

promising potential for delivery of contents (especially popular contents) through D2D commu-

nications.

Existing studies [5–8] have investigated mobile data offloading through D2D communica-

tions. Han et al. [5] propose to exploit opportunistic communications to facilitate information

dissemination in Mobile Social Networks (MoSoNets). The service providers can first deliver

the information to only a small fraction of target-users; the target-users then propagate the

information to other users through their contacts, thus offloading mobile data traffic. Similarly,

Peng et al. [6] propose to let a set of socially important users download the content through cel-

lular link and forward the content to their acquaintances when they are in contact. Cai et al. [7]

exploit the double opportunities for content propagation in wireless networks, where the content

could propagates to the users directly from the central controller or by exchange with other mo-

biles in a peer-to-peer manner. These works have not explored content popularity distribution

in the system. Besides offloading cellular network, D2D communications can also alleviate the

burden of content servers. Ciullo et al. [8] show that users’ cooperation can dramatically reduce

the bandwidth requirement of servers for perfect video-on-demand delivery. However, this work

does not consider the dynamics of device connectivity due to user mobility. There still lacks a

comprehensive understanding of content sharing through D2D communications in the existing

literature.

In this chapter, we aim to demystify the opportunities that emerge from opportunistic D2D

communications for content delivery by jointly considering content popularity distribution,

content caching at mobiles, and user mobility. Our contributions are three-fold.

1. We first analyze a video request dataset to determine whether there exist practical op-
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portunities for content delivery through D2D communications. Our trace analysis demon-

strates that the skewed content popularity distribution, the clustered user request pattern,

and the dominated mobile device contact time over content transmission time together

offer practical opportunities for successful content sharing through D2D communications.

2. Based on models of user request pattern and content caching policy, we derive the number

of usersM(t) that have a content in the network. When users cache a content for a constant

time CT , expectation of M(t) equals n(1−e
−pt∗

μ ), where t∗ = min{t, CT}, p is the content

request rate, and μ is the mean inter-arrival time of a user’s content requests. When users

cache the most K recently requested contents, E(M(t)) goes to n[1− (1− p)K ] at steady

state. These results show that content popularity and caching time (size) determine the

availability of a content on devices in the vicinity.

3. We obtain the possibility pp of successfully fetching a content from peers, which is deter-

mined by factor qβτpc, where content caching probability pc = M(t)/n, βτ depends on

nodes’ inter-contact time and delay tolerance τ , and q is the success rate of content trans-

mission. Numerical results reveal that content popularity and delay tolerance of content

request have significant impact on pp. Finally, we study the number of users that will

fetch a content from a providing node, which is determined by ratio p
μλC

as well as the

number of encountered nodes within content caching time. Our analysis validates that

D2D communications can indeed reduce network load especially for delivering popular

contents.

The rest of this chapter is organized as follows. Trace analysis of video requests in Section

5.2 demonstrates the existence of practical opportunities for content sharing through D2D

communications. Theoretical analysis of content distribution and peer-assisted content fetching

is performed in Sections 5.4 and 5.5, respectively. Section 5.7 concludes this chapter.

5.2 Do Opportunities Exist for Content Sharing through D2D

Communications?

In this section, we analyze the characteristics of network traffic using a YouTube traffic dataset.

Zink et al. [113] collected six traces of YouTube traffic in a large university campus network.

These traces contain information about client requests for YouTube video clips, including video

ID, the time that videos are requested, YouTube server IP, and client IP. The data were gathered

between May, 2007 and March, 2008, spanning a period of 10 months. Using this dataset, we

study content popularity distribution, request inter-arrival time, and content transmission time.

Rather than serving as a comprehensively study on characteristics of mobile data traffic, our
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trace analysis is meant to validate the existence of practical opportunity for content sharing

through D2D communications.

5.2.1 Content Popularity

One of the design criteria for content delivery systems is the content popularity, which is repre-

sented by the number of user requests. Obtaining and analyzing the popularity of a file enables

network designers to decide which contents to cache. Content popularity also influences the

number of copies of a content in a network, thus affects the potential benefits of content shar-

ing through D2D communications.

We study content popularity through a trace from Zink’s dataset: youtube.parsed.012908.dat,

which records YouTube traffic of two weeks. Figure 5.1 shows the distribution of video requests

during two weeks on a log-log scale. The x-axis shows videos reverse sorted by the number

of downloads. We get a reasonably good fit for a Zipf distribution, which means that a few

videos are very popular receiving many user downloads. This finding has also been observed

in other studies, such as [113–115], thus it is reasonable to assume Zipf content popularity in

our analysis. Such skewed distribution of content popularity implies that users can likely share

popular contents with nearby peers.
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Figure 5.1: The videos are ranked according to the number of downloads (ranging within
[1, 1454]) over two weeks.

5.2.2 Content Server Distribution

In Zink’s dataset, users download YouTube videos from cloud servers. The number of servers

that store a content indicates how likely the network and cloud servers can be overloaded.
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In Figure 5.2, we plot the number of content servers that provide the downloads of a video.

An interesting finding is that users fetch a video at most from four servers. No matter how

many clients request a video, the video is most likely fetched from one or two content servers.

Furthermore, when the number of clients that request a video increases, the likelihood that the

video is downloaded from one server is decreasing to 0 while from two servers is increasing to

1. Fetching popular videos only from one or two servers may lead to overloaded servers. This

reveals a need to offload server and network loads, especially for delivery of popular contents,

by content sharing through D2D communications.
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Figure 5.2: The percentage of videos that are downloaded from k (k = 1, 2, 3, 4) content servers
when each video is requested by x clients.

5.2.3 Spatial and Temporal Locality of User Request Pattern

Characteristics of content requests are important not only because it represents users’ request

behaviors, but also because it allows us to learn users’ potential of serving peers’ content

requests. For instance, when a client requests a content, it can download the content and cache

the content. If other nearby users request the same content, they can fetch the content directly

from the client that cached the content. Because mobile devices have limited cache size and can

only cache contents for a limited period of time, content sharing through D2D communications

becomes possible only if nearby users request same contents around the same time and the

same geographic region. The spatial and temporal locality of content request are the key for

content sharing among mobile users.

However, there is no trace that contains temporal and spatial information of mobile users’

content requests due to privacy issue. In order to explore the spatial and temporal locality

111



of content request, we integrate content request traces with user mobility traces. We choose

to integrate the content request dataset with a campus mobility dataset. The Content request

dataset [113] contains information about client requests for YouTube video clips, including video

ID, the time that the video is requested, YouTube server IP, content server IP, and client IP.

On the other hand, campus phone dataset [116] gathers smartphones’ various environmental

data (e.g., detected wireless signal strengths, Bluetooth proximity) and communication patterns

(SMS, e-mail, phone, and Facebook). But the content of said communications are not recorded.

We believe that because both traces are collected in campus scenario, mobile users who produce

such mobility trace (i.e., campus phone dataset) are likely generate content requests patterns

found in the content request dataset.

Two major challenges lie in the integration of the content request dataset and the mobility

dataset: user linkage and time synchronization. We choose 80 users from mobility dataset that

on average update information at least once an hour over around a month period of time. We

further randomly choose 80 clients from YouTube traffic dataset and randomly link one client

with a user. Finally, we adjust the time stamps to synchronize these two traces by constructing

a new time stamp for the new integrated trace. We denote T 1
s and T 2

s as the first location

update in Phone dataset and content request in YouTube dataset. Suppose a client requests a

content at time t2 in the content request trace, the time stamp in the constructed new trace will

be t = t2 − T 2
s , and the location of the client is its corresponding user’s location at t1 = t+ T 1

s

in the Phone dataset. By linking users and synchronizing times in these two traces, we produce

a new integrated trace with information of userID, time, requested content, and location. Note

that the locations in the Phone DataSet is in the form of GPS coordinates. We convert the

locations into UTM coordinates.

Temporal Locality of Content Request

We choose the top 10 popular videos in the YouTube dataset and extract the inter-arrival

time of requests directed to the same video. The red curve in Figure 5.3 shows that the inter-

arrival time of requests for a video is smaller than 30 minutes with probability 0.8, and smaller

than one and a half hour with probability 0.95. Such clustered requests directed to the same

contents indicate a high likelihood that users request the same popular contents around the

same time. The temporal locality in content request pattern shows great promise of using D2D

communications to deliver popular contents.

Besides fetching a content from a neighbor, a user may also obtain a content from its own

cache if a user repetitively requests the same content. We analyze the number of times that

a video is requested by the same client and the inter-arrival time of users’ repetitive requests,

shown in Figures 5.4 and 5.3, respectively. Figure 5.4 reveals that about 22% of videos are
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Figure 5.3: The time intervals between a client’s two requests for the same videos and the time
intervals of two requests directed to the same videos.

requested by the same user for at least two times. Furthermore, the green curve in Figure

5.3 shows that when a client requests a video multiple times, the time interval between two

consecutive requests of the same video is less than 727 seconds (12 minutes) with 70% likelihood,

less than 6160 seconds (102 minutes) with 80% likelihood, and less than 21.7 hours with 90%

likelihood. Figures 5.3 and 5.4 together suggest that users could fetch contents from their own

caches as users tend to request a video multiple times within a short period of time.
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Figure 5.4: The number of times that a video is requested by the same client.

The short time interval between two requests of the same content ensures that content

request of users can partly be served by neighbors or local caches. In other words, users can

cache downloaded contents for a short period of time in order to facilitate their own recurrent

113



content requests as well as neighbors’ requests of the same contents.

In addition, we plot the content request times of the 15 most popular contents from the

integrated trace in Fig. 5.5. This figure shows that most contents’ popularity last a very short

time, i.e., most of user requests that a content receives are clustered within a few hours. A few

content’s popularity lasts a longer time (around 2 to 3 days).
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Figure 5.5: Request times of 15 videos.

Both the inter-arrival time of user requests in the YouTube traffic dataset and the user

request time in the integrated trace indicate temporal locality in users’ requests toward a

content. Therefore, caching contents for a short period of time would lead to opportunities for

content sharing through D2D communications.

Spatial Locality of Content Request

Furthermore, we choose 6 contents from 15 popular contents that received at least 10 re-

quests. Fig. 5.6 shows that most of the contents are requested at certain areas, such as videos

“9-rj3sHpbNY” and “BRX6N4cxFUs”. However, the most popular video “SaH2M9-l4gY” is re-

quested by users located at different places. This means that requests of global popular videos

are requested at different locations in the network, while requests of regional popular videos

are clustered at certain geographic areas.

On one hand, popular contents are widespread in the network, which is promising for content

sharing through D2D communications. On the other hand, unpopular contents have spatial
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Figure 5.6: Locations where a video is requested.

locality in users’ requests, which also produce opportunities for content sharing through D2D

communications. Overall, the temporal and spatial locality of content requests make content

sharing through D2D communications practical and promising.

5.2.4 Content Transmission Time Vs. Device Contact Time

When a user u requests a content o and its neighbor v has content o in cache, node u can

successfully fetch the content from v only if their contact is longer than the transmission time

of content o. In order to identify whether content sharing through D2D communications can be

successful, we compare content transmission time with device contact duration.

Distributions of contact time between mobile devices are extracted from the Cambridge

dataset [109]. The dataset includes one trace that records contacts of 12 graduate students

from the System Research Group at University of Cambridge over 5 days in 2005 and and

another trace that collects contacts of 41 students when they attend the student workshop at

the IEEE Infocom Conference in 2005. We compare contact time in the Cambridge dataset

with video transmission time in the YouTube dataset. The CCDF (complementary CDF) of the

device contact time and the video transmission time are plotted in Figure 5.7.

Figure 5.7 shows that a large percentage of videos take a short transmission time. For

example, transmissions of 60% of videos take less than 60 seconds and transmissions of 90%

of videos need less than 160 seconds. Moreover, the CCDF of contact time has a heavier tail

than the CCDF of video transmission time. When t is larger than 60 seconds, device contact

time stochastically dominates video transmission time. More specifically, 56% (42%) of mobile

devices’ contacts last longer than 60 seconds and 40% (28%) of contacts last longer than 160
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Figure 5.7: CCDF of video transmission time and mobile devices’ contact time

seconds in campus (conference) scenario. There is a relatively high probability that most videos

can be successfully transmitted during devices’ contacts.

Remark 32 Our trace analysis demonstrates that the skewed content popularity distribution,

the temporal and spatial locality of user request pattern, and the dominated mobile device contact

time over content transmission time together offer practical opportunities for successful content

sharing through D2D communications.

5.3 Models and Definitions

In this section, we present the network and mobility models, traffic model, and content caching

model, which are essential to our analysis of content availability on mobile devices in the network

and evaluation of the performance of content sharing through D2D communications.

5.3.1 Network and Mobility Model

We consider a content delivery network, shown in Figure 5.8. A network comprises n nodes

moving over a region S with node density λ. The network also contains a number of infras-

tructure nodes (i.e., cellular base stations and WiFi access points) that can provide ubiquitous

connectivity to the cloud servers. User can download a content either from content servers in

the cloud through infrastructure wireless networks or from close-by mobile devices through D2D

communications.
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Figure 5.8: Content Delivery Network

We assume that each node’s transmission range is r. We adopt the commonly used protocol

model for the simplicity of our analysis. Transmission between node u and node v is feasible only

if the distance between u and v is smaller than or equal to r. Denote by Xt = {X1(t), . . . ,Xn(t)}
the positions of users at time t. Nodes are moving according to mobility process M. We assume

thatM is stationary and ergodic that a node’s locationXi(·) has uniform stationary distribution

in the network area. Mobility processes of nodes are independent and identically distributed

(i.i.d.).

Let Xu(t) and Xv(t) denote the locations of users u and v at time t, we call that one

contact event between users u and v occurs during [t0, t1) if ||Xu(t
−
0 ) − Xv(t

−
0 )|| > r and

||Xu(t)−Xv(t)|| ≤ r for all t ∈ [t0, t1), and ||Xu(t1)−Xv(t1)|| > r. The inter-contact time is the

time between the end and the start of two consecutive contact events between the same pair

of users. Obtaining complete knowledge of contact process can be extremely difficult. Thus, we

assume that contact time TC and inter-contact time TI follow exponential distributions with

parameters λC and λI , respectively, which has been shown to be a good approximation and

used by other existing studies (such as [109,117]).

5.3.2 Traffic and Content Transmission Model

We denote the set of content items by O and the total number of content items by O. We use

a Zipf’s law for the content popularity distribution, which is observed in traffic measurements

shown in Figure 5.1 and widely adopted in performance evaluation studies [8, 118]. This law

implies that, having sorted the contents in decreasing order of popularity, a request is directed
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to content o with probability

po =
R(O)

oγ
, 1 ≤ o ≤ O, (5.1)

where R(O) � (
∑O

i=1 i
−γ)−1 is a normalization constant, and γ is the Zipf’s law exponent.

We denote the inter-arrival time of two consecutive requests from a user by random variable

T . The content request process of a user can be modeled by a renewal process. Let {N(t), t ≥ 0}
be a renewal process with inter-arrival times Ti, i ≥ 1, and the time of the i-th renewal by

Si = T1 + · · · + Ti. Then, the random variable N(t) (t ≥ 0) given by N(t) = sup{i : Si ≤ t}
represents the number of requests of a user by time t.

We assume that all contents are stored in cloud servers, while the set of contents stored

at each node is dynamically changing. When a node u requests a content o, it first tries to

fetch the content from its own cache or a neighbor; if u could not get content o after delay

τ (τ ≥ 0), node u will download the content from cloud servers through infrastructure-based

wireless networks. We restrict content sharing through D2D communications to occur over a

single hop because multihop D2D communication is unreliable due to node mobility.

We denote ε as a content o’s transmission time, which is determined by content’s data size

and network bandwidth. When user u has a content o in its cache, transmission of content o

from node u to node v is feasible only if the connection time between u and v is equal to or

larger than ε. Denote by q the success rate of a content transmission, which takes account into

transmission time, transmission errors, and collisions, we have q ≤ P (TC ≥ ε) = e−λCε.

5.3.3 Content Caching Model

The set of contents stored at each node is dynamically changing according to their caching

policies as well as request patterns. Papers [119,120] give comprehensive surveys on web caching

and replacement algorithms, which can be classified into recency-based policy, frequency-based

policy, size-based policy, function-based policy, and randomized policy. In mobile cache-based

content delivery network, how long a content is cached at nodes is the most important factor

that influences the content delivery performance. Therefore, we define the following generic

caching policy based on content caching time.

Definition 18 (Generic Caching (GC) Policy) When a user requests a content o, it will

cache this item for a period of time CT , which is a random variable dependent on caching and

replacement algorithms, content popularity and size, user request pattern, and user’s cache size.

In order to facilitate analysis on content caching on mobile devices in a network, we further

specify the following two cases.

Definition 19 (Constant Time Caching (CTC) Policy) When a user downloads a con-

tent o, the user will cache this item for a constant period of time CT . After storing a content
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for CT time, the user will delete the content.

We assume that nodes have limited storage capacity, which is realistic as mobile devices are

limited in memory size. Let K be the storage capacity of each node, measured in number of

(equal-size) contents, we give a recency-based caching policy.

Definition 20 (Most Recent Caching (MRC) Policy) When a user downloads a content

o, the user will cache this item. If the cache is full, the user will delete the oldest cached item.

Under the most recent caching policy, a user only stores the most K recently requested contents.

In other words, the caching time CT of a content is a random variable, which equals the sum

of K request inter-arrival time T .

Remark 33 In CTC policy, users cache a content for a constant period of time. This means

that users have heterogenous caching capabilities. More specifically, users that request contents

frequently have a large cache size, while users that request content occasionally have a small

cache size. Such dependency of users’ request behaviors on their mobile device capabilities is

generally consistent with the reality. On the other hand, in MRC policy, users have a limited

cache size. Users that request contents frequently can only store contents for a short period of

time, while users that request contents occasionally can store contents for a long time. Both

CTC and MRC policy reflect mobile caching in real mobile device systems.

5.4 How Many Copies of a Content are there in the Network?

When a user requests a content o at time t, how likely the user can find content o in nearby

nodes’ caches is determined by the number of nodes M(t) that store content o (i.e., content

distribution). Hence, we study the dynamics of M(t) under different caching policies.

5.4.1 Generic Content Request Pattern and Caching Policy

We study the asymptotic behavior of M(t) in a network under generic content request pattern

and content caching policy. Using renewal theory to analyze the content request process of a

user, we have the following lemma.

Lemma 7 When inter-arrival time T of a user’s content requests follows general distribution

with expectation μ, the expected number of times that a content o is requested by a user within

time [t, t + Δt] is asymptotically equal to poΔt
μ for a fixed Δt as t goes to infinity, where po is

the request rate of content o shown in Eq. (5.1).
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Proof : Denote by No(t) the number of times that content o is requested by a user within

time t. Let Ri
o represent the event that the i-th content request is directed to content o, then

No(t) =
∑N(t)

i=1 1Ri
o
. According to Blackwell’s theorem on renewal process, as t → ∞, for any

fixed Δt,

E(N(t +Δt))− E(N(t)) → Δt

μ
. (5.2)

As P (Ri
o) = po, E(No(t+Δt)−No(t)) → poΔt

μ .

In the following, we examine content distribution and delivery for a content o. Hence, we

shall omit the content index o for simplicity in the rest of paper unless specifically specified.

Based on the above lemma, we derive an upper bound on the number of nodes M that have a

content o at time t as t → ∞.

Theorem 17 Suppose that users have zero-delay tolerance with content requests and GC policy

is used, the expectation of M (denoted by M) is asymptotically upper bounded by npE(CT )
μ as

t → ∞, where CT is a random content caching time.

Proof : A node has a content o in its cache at time t only if it requested content o within

time interval [t − CT, t], i.e., the number of requests directed to o within time interval CT is

equal to or lager than 1. Upon Markov’s inequality, the probability pc that a user has a content

o in its own cache at time t is asymptotically upper bounded by E(N(t)) − E(N(t − CT ))

as t → ∞. Based on Lemma 1, we have that conditioning on random variable CT = Δt,

E(N(t))−E(N(t−Δt)) is asymptotically equal to pΔt
μ . Then, E[E(N(t))−E(N(t−CT ))|CT ]

is asymptotically equal to pE(CT )
μ as t → ∞. Subsequently, pc is asymptotically upper bounded

by pE(CT )
μ . As the average number of nodes M that have a content o equals npc, we complete

our proof.

Remark 34 The number of copies of a content in a network is proportional to content re-

quest rate and content caching time. When nodes use CTC policy, M is asymptotically upper

bounded by npCT
μ as t → ∞; when nodes cache the most K recently requested contents, M is

asymptotically upper bounded by npK as t → ∞.

5.4.2 Constant Time Caching (CTC) Policy

In order to facilitate the non-asymptotic analysis of content distribution, we assume that T has

exponential distribution function FT (x) = 1− e−x/μ in the rest of paper, which has been used

in other studies [121]. Subsequently, the inter-arrival time of a user’s two consecutive requests

for a content o also follows an exponential distribution with parameter p/μ. Hence, we have the

following theorem on the expectation of M(t) (denoted by M(t)) under CTC policy.
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Theorem 18 Assume that users’ content requests have zero-delay tolerance (i.e., τ = 0), under

CTC policy, the average number of nodes with content o in their cache at time t satisfies

M(t) = n(1− e
− pt∗

μ ), where t∗ = min{t, CT} and p is the request rate of content o.

Proof : M(t) varies over time as nodes download and delete content o. We now build a differen-

tial equation which describes how M(t) varies over time. Consider the time interval [t, t+Δt],

and let ΔM(t) = M(t+Δt)−M(t). Denote by ΔI(t) as the number of users without content

o at time t that will get content o within time (t, t + Δt]. Similarly, denote by ΔD(t) as the

number of users with content o at time t that will delete content o from their caches within

time (t, t+Δt]. Hence, ΔM(t) = ΔI(t)−ΔD(t).

We assume that a user’s requests of content o follow Poisson process with rate p/μ. Thus, the

probability that a user requests content o within time interval Δt is given by 1− e
− pΔt

μ . Then,

the expectation of ΔI(t) is [n−M(t)](1−e
− pΔt

μ ), which can be approximated by pΔt
μ [n−M(t)].

Under CTC policy, users cache content o for a constant period of time CT . For t + Δt <

CT , ΔD(t) = 0; for t ≥ CT , the probability that a node deletes content o from its cache

within (t, t + Δt] is the joint probability of at least one request directed to content o within

[t−CT, t−CT +Δt] while no request for content o within [t−CT +Δt, t+Δt]. Then, when

t ≥ CT , the expectation of ΔD(t) is given by n(1− e
− pΔt

μ )e
− pCT

μ , which can approximated by
npΔt
μ e

− pCT
μ .

Finally, dividing ΔM(t), ΔI(t), and ΔD(t) by Δt and letting this time interval go to zero,

we get

dM(t)

dt
=

⎧⎨⎩
p
μ [n−M(t)] 0 ≤ t < CT

p
μ [n−M(t)]− np

μ e
− pCT

μ t ≥ CT
(5.3)

Let M(0) = 0, we solve the differential equation for M(t):

M(t) =

⎧⎨⎩n(1− e−
pt
μ ) 0 ≤ t < CT,

n(1− e
− pCT

μ ) t ≥ CT.
(5.4)

Remark 35 The probability pc(t) that a user has a content in its cache at time t is indicated

by M(t)
n , i.e., 1− e−t∗p/μ. When t ≥ CT , the network is at steady state and the expected number

of nodes that have a content is n(1 − e−pCT/μ), which is upper bounded by npCT/μ as shown

in Theorem 17.

Corollary 3 Suppose that the delay tolerance 0 < τ < CT , under CTC policy, the average

number of nodes that have a content o at steady state is lower bounded by n(1 − e−p(CT−τ)/μ)

and upper bounded by n(1− e−p(CT+τ)/μ).
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Proof : At time t, nodes that request content o within in time [t − CT, t− τ ] definitely have

content o in their cache and only nodes that request content o within time [t− CT − τ, t] may

have content o in their cache. Hence, M ≥ n(1− e−p(CT−τ)/μ) and M ≤ n(1− e−p(CT+τ)/μ).

It is reasonable to assume τ < CT because users can cache a content for a few days

while delay tolerance can only be a few minutes or hours. Under CTC policy, delay tolerance

introduces more dynamics into the content distribution in a network. When τ = 0, the lower

and upper bounds of M in Corollary 3 conform to M(t) at steady state in Theorem 18.

5.4.3 Most Recent Caching (MRC) Policy

We continue to analyze M(t) under MRC policy.

Theorem 19 Assume that τ = 0 and users apply MRC policy, the average number of nodes

that have a content o in their cache at time t satisfies

M(t) = e
− p

μ
t
∫ t np

μ
[1− (1− p)Kg(x)]e

p
μ
x
dx, (5.5)

where g(x) =
∑∞

i=K

( x
μ
)i

i! e−
x
μ .

Proof : Similar to proof of Theorem 18, the expectation of ΔI(t) is approximated by pΔt
μ [n−

M(t)]. At time t+Δt, when a user’s cache has K or less than K contents, ΔD(t) = 0. A user

will delete content o from its cache within time interval (t, t +Δt) if and only if the following

four conditions are satisfied: 1) up to time t+Δt, the user has more than K requests, 2) there is

at least one request within time (t, t+Δt), 3) its K recent requests are not directed to content o,

and 4) its K+1th recent request is directed to content o. Conditioning on the event that a user

generates j requests within (t, t+Δt), i.e., N(Δt) = j, the probability rt,Δt that this user will

remove o from its cache within time interval (t, t+Δt] is given by P (N(t+Δt) ≥ K+1)p(1−p)K .

rt,Δt =

∞∑
i=K+1

i∑
j=1

P (N(t+Δt) = i)p(1 − p)KP (N(Δt) = j)

≈ p(1− p)K(1− e−Δt/μ)

∞∑
i=K

( t
μ)

i

i!
e
− t

μ . (5.6)

Subsequently, the average number of nodes that will delete content o within time (t, t+Δt) is

nrt,Δt. Hence, we have a first-order linear differential equation for M(t)

dM (t)

dt
+

p

μ
M(t) =

np

μ

[
1− (1− p)Kg(t)

]
. (5.7)
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where g(t) =
∑∞

i=K

( t
μ
)i

i! e
− t

μ . Then, solving the differential equation for M(t) completes our

proof.

Theorem 20 Let K � ∞ and t is large enough, M = n[1− (1− p)K ] at the equilibrium state

of the network.

Proof : As nodes have finite cache size K, every node’s cache is full almost surely (a.s.) when

t is large. Hence, the probability that a node has generated more than K requests within time

t is almost surely 1, i.e., P (N(t) ≥ K) → 1 a.s.. Then, the differential equation for M(t) can

be simplified as:
dM (t)

dt
+

p

μ
M(t) =

np

μ

[
1− (1− p)K

]
. (5.8)

When the network is in equilibrium state, i.e., dM(t)
dt = 0, we obtain that M(t) = n[1−(1−p)K].

Remark 36 When users only cache the most K recently requested contents, the probability that

a user has a content o in its cache is 1− (1− p)K at steady state. Content distribution is only

determined by a content’s request probability p and user’s cache size K. According to Bernoulli

inequality, (1 − p)K ≥ 1 − pK for K ≥ 0 and p ≤ 1. Then, we have n[1 − (1 − p)K ] ≤ npK,

which is consistent with Theorem 17.

Corollary 4 Suppose that delay tolerance τ > 0 and users adopt MRC policy, the average

number of nodes that have a content o at steady state is n
[
1− (1− p)K

]
.

Proof : Suppose that a user generate i (0 ≤ i < ∞) requests within time [t− τ, t] (denoted as

event Ai), among which j (0 ≤ j ≤ i) requests are satisfied by time t (denoted as event Bj).

When j ≤ K, a user has a content o in its cache if at least one of the j received contents is

content o or at least one of K−j requests by time t−τ is directed to content o. Conditioning on

Bj (j ≤ K), the probability that a user has content o equals [1−(1−p)j ]+(1−p)j [1−(1−p)K−j ],

i.e., 1− (1− p)K . When j > K, a user has a content o in its cache if among j received contents,

at least one of the most K recently received contents is content o. Considering both cases, we

have the probability pc that a user has a content o equals [1 − (1 − p)K ]. Hence, we complete

our proof.

Remark 37 In contrast to content distribution under CTC policy, delay tolerance of content

requests does not affect the average number of copies of a content under MRC policy.

Content request rate and content caching time (cache size) determine content distribution,

which in turn affects content sharing performance as we will show in the next section.
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5.5 How Likely Can a User Get/Share a Content through D2D

Communications?

We evaluate the performance of content sharing through D2D communications in two compli-

mentary aspects under both CTC and MRC policies: i) when a user requests a content o, how

likely the user can fetch o from its neighbors (i.e., peer fetching probability); ii) when a user

caches content o, how many nodes the user would be able to share the content with.

5.5.1 Peer Fetching Probability

Suppose that a user requests a content at time t with τ = 0, the prospect of fetching the content

from peers is the probability that at least one neighbor has the content in cache and stays in

connection for successful content transmission.

Theorem 21 The probability that a user can successfully fetch a content from its neighbor

satisfies that

pp = [1− pc][1− (1− qαpc)
n−1], (5.9)

where pc = 1−e−pCT/μ under CTC policy while pc = 1−(1−p)K under MRC policy, α = πr2λ/n,

and q is the success rate of content transmission.

Proof : We assume that a node requests a content o at time t. Each of the nodes in the network

falls in a disc of radius r around the requesting node with probability α = πr2λ/n. Hence, the

number of neighbors X of the requesting node follows Binomial(n− 1, α).

Results in Section 5.4 demonstrate that a node has a content o with probability pc at steady

state. Accordingly, the number of neighbors Xc that have a content o satisfies Xc =
∑X

i=1 1{Ci}.

Denote by Ci the probability that a neighbor vi has content o and I the indicator function

1{Ci}, which has Bernoulli distribution with probability pc. The probability generating function

of I is GI(z) = pcz + 1− pc for |z| ≤ 1. Similarly, GX(z) = (αz + 1− α)n−1 for |z| ≤ 1. As Xc

is a random sum of indicator random variables, its probability generating function

GXc(z) = E[(pcz + 1− pc)
X ] = GX [pcz + 1− pc] = [αpcz + 1− αpc]

n−1, (5.10)

for |z| ≤ 1. The inversion of GXc(z) shows that Xc ∼ Binomial(n− 1, αpc).

Then, the probability that a requesting node can successfully fetch a content from a neighbor

is

pp = [1− pc]

n−1∑
i=0

[1− (1− q)i]P (Xc = i) = [1− pc][1− (1− qαpc)
n−1]. (5.11)
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Clearly, the probabilities that a user fetches a content from its own cache, neighbors, and cloud

servers are pc, pp, and 1 − pc − pp, respectively. We have their numerical results in Fig. 5.9

in order to illustrate how peer and server fetching probabilities vary over content popularity.

We set the parameters for the numerical analysis according to our trace analysis. Specifically,

n = 100, α = 0.08, q = 0.25, λC = 0.003, λI = 0.00001, μ = 10800 (i.e., 3 hours), CT = 24

hours, K = 10. Suppose that there are 10000 contents in the network and γ for Zipf law is 1,

content request rate p = 1/o ln 10000, where o varies from 5 to 100.
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Figure 5.9: Caching probability pc, peer fetching probability pp, and server fetching probability
under CTC and MRC policies.

Fig. 5.9 shows that content fetching from neighbors through D2D communications can

indeed reduce network and server load. In Fig. 5.9, peer fetching probability pp under MRC

policy is higher than pp under CTC policy because the average caching time of MRC policy

(i.e., 30 hours) is set to be longer than CTC policy (i.e., 24 hours). Besides content caching

time, content popularity p has a significant impact on pp. For the top 5 popular contents, server

fetching probability can be reduced by 40% even when users have zero delay tolerance. On the

other hand, for less popular contents, pp is very small.

Remark 38 Although D2D communication is not as reliable as infrastructure-based wireless

networks, contents can still be successfully fetched from close-by devices through D2D communi-

cation. Fig. 5.9 further illustrates that D2D communication is especially beneficial for popular

content fetching.

If a user allows τ delay tolerance in its content requests, it is more likely to fetch contents

from its neighbors as it has opportunity to meet more nodes. We derive the upper and lower

bounds on the peer fetching probability over time τ .
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Theorem 22 The probability pτp that a user can successfully fetch a content from nearby users

within time τ satisfies

pτp ≥ (1− pc)
[
1− (1− βτ p̆cq)

n−1
]
, (5.12)

pτp ≤ (1− pc)
[
1− (1− βτ p̂

τ
c q)

n−1
]
, (5.13)

where βτ = 1 − (1 − α)e−λI τ , p̆c = 1 − e−p(CT−τ)/μ and p̂τc = 1 − e−p(CT+2τ)/μ under CTC

policy, p̆c = 1− (1− p)K and p̂τc = 1− (1− p)Ke−
2τp
μ under MRC policy.

Proof : Let a user u request a content o at time t, and the delay tolerance is τ . Nodes that user

u encounters within time [t, t+τ ] are candidates to provide content o for u. A user v encounters

user u within time τ if their inter-contact time is smaller than τ . Accordingly,

βτ � α+ (1− α)P (TI ≤ τ) = 1− (1− α)e−λI τ . (5.14)

Suppose that node u meets node v at least once within time [t, t + τ ], there exists a time

point t0 ∈ [t, t + τ ] when nodes u and v are in contact. The probability that requesting node

u can successfully obtain content o from node v at time t0 is pcq. Corollary 3 shows that

pc ≥ p̆c � 1 − e−p(CT−τ)/μ under CTC policy; Corollary 4 reveals that pc = p̆c � 1 − (1 − p)K

under MRC policy. Subsequently, the probability that a user u can obtain content o from

another user v is lower bounded by βτ p̆cq. Hence, we prove Eq. (5.12).

Content fetching from peers is possible only if a peer has the content at a time within delay

tolerance. Denote by p̂τc the probability that there exists at least one time point t0 ∈ [t, t + τ ]

when a node v has content o. Apparently, p̂τc equals 1 minus the probability that node v does

not have the content throughout [t, t + τ ]. When users apply CTC policy, if user v does not

request content o during time [t−CT−τ, t+τ ], it would not have content o during time [t, t+τ ].

Then,

p̂τc = 1− e−p(CT+2τ)/μ. (5.15)

When users apply MRC policy, if the most K recent requests before time t−τ and all i requests

within time [t, t + τ ] are not directed to content o, a user will not have content o during time

[t, t+ τ ]. Thus,

p̂τc = 1−
∞∑
i=0

(2τμ )i

i!
e−

2τ
μ (1− p)K+i = 1− (1− p)Ke−

2τp
μ .

Accordingly, the probability that a user u can obtain content o from another user v is upper

bounded by βτ p̂
τ
c q. Therefore, we prove Eq. (5.13).

Numerical results of Theorem 22 are shown in Fig. 5.10 by fixing content request rate as

p = 0.01 and letting τ vary from 0 to 3 hours. As delay tolerance increases, the probability
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of fetching a content from neighbors increases while that from cloud server decreases, approxi-

mately linearly.
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Figure 5.10: Upper and lower bounds on pτp, and server fetching probability under CTC and
MRC policies.

Remark 39 When τ = 0, upper and lower bounds of pτp converges to pp in Theorem 21.

When τ > 0, peer-assisted content fetching probability increases mainly because the number of

encountered nodes within τ increases.

5.5.2 Content Sharing Capacity

When a user u caches a content o for CT period of time, user u can share this content with

encountered nodes if they request content o during their contacts with u and their contact

duration is long enough for successful content transmission. Because nodes’ contact duration

TC is a random variable, we derive the number of requests within a random interval.

Lemma 8 Assume random time TC is exponentially distributed with parameter λC and request

arrivals at a user form a Poisson process with rate 1/μ, the number of times that a content o

is requested by a user within TC has Geometric distribution with mean p
μλC

.

Proof : The random variable N(t) is defined as the number of requests directed to a content

o in a fixed time interval (0, t). We denote by f(x) the probability density function (p.d.f.) of

the request inter-arrival time, pi(t) = P (N(t) = i), and G(z, t) =
∑∞

i=0 z
ipi(t). It is known

that these functions’ Laplace transform with respect to t are: p∗i (s) = [f∗(s)]i(1− f∗(s))/s, and

G∗(z, s) = (1− f∗(s))/[s(1 − zf∗(s))], where f∗(s) =
∫∞
0 e−stf(t)dt.
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Suppose that random variable TC is distributed independently of request inter-arrival time

and has p.d.f. fTC
(t). Let N(TC) be the number of requests that are directed to content o in

random interval (0, TC ). Then the probability generating function of N(TC) is given by

G(z) =
∞∑
i=0

piz
i =

∫ ∞

0
G(z, t)fTC

(t)dt. (5.16)

When fTC
(t) = λCe

−λC t,

G(z) = λC [G
∗(z, s)]s=λC

=
1− f∗(λC)

(1− zf∗(λC)
, (5.17)

so that N(TC) ∼ Geometry(1− f∗(λC)) with

P (N(TC) = k) = [f∗(λC)]
k (1− f∗(λC)), k = 0, 1, . . . .

Taking for f(x) the special exponential form f(t) = p/μe−pt/μ, f∗(s) = p/μ
s+p/μ and N(TC) has

geometric distribution with mean p
μλC

, i.e., N(TC) ∼ Geometry( μλC

p+μλC
).

A contact between a providing node u and another node v is effective for sharing a content o

if node v will request and successfully fetch content o from u. We denote by pTC
s the probability

that a providing node u shares a content o with a user v within their contact duration TC , and

derive the following theorem on pTC
s .

Theorem 23 Content sharing probability pTC
s satisfies that

qpμλC(1− pc)

(p+ μλC)2
≤ pTC

s ≤ p

p+ μλC
, (5.18)

Proof : We assume that node u has a content o in cache during its contact with another user

v. User v will fetch content o from node u if v requests content o only once within TC and at

that time v does not have o in its cache. Then, pTC
s ≥ (1 − pc)P (No(TC) = 1)q. On the other

hand, if user v generates no request directed to o (i.e., No(TC) = 0), user v will not need to

fetch content o from node u. Accordingly, pTC
s ≤ 1− P (No(TC) = 0). Upon results on No(TC)

in Lemma 8, we obtain the lower and upper bounds for pTC
s .

Remark 40 Ratio p
μλC

represents a node’s request rate toward a content o within a contact

time, which in turn determines the probability that a providing node shares content o with

another node during their contact time.

Lemma 9 The expected number of nodes E(NE(CT )) that a providing node encounters within

content caching time CT is (n − 1)βCT , where βCT = 1 − (1 − α)e−λICT under CTC policy,
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and βCT = 1− (1− α)
(

1
1+λIμ

)K
under MRC policy.

Proof : Clearly, E(NE(CT )) = (n− 1)βCT , where βCT is the probability that a node meets a

providing node within time CT . More specifically, βCT = α+(1−α)P (TI ≤ CT ). For constant

caching time CT , βCT = 1− (1− α)e−λICT . When CT is a Erlang(K, 1/μ) random variable,

P (TI ≤ CT ) =

∫ ∞

0
(1− e−λIx)

( 1μ)
KxK−1e−x/μ

(K − 1)!
dx = 1−

(
1

1 + λIμ

)K

. (5.19)

Hence, we complete our proof.

Based on Theorem 23 and Lemma 9, we can deduce the number of nodes that will fetch a

content o from a providing node u during node u’s caching time of content o.

Theorem 24 The expected number of nodes that can fetch a content o from a providing node

u with o in cache is upper bounded by
[
1− (μλC/(p + μλC))

E(NC(CT ))
]
E(NE(CT )), where

E(NC(CT )) is shown in Eqs. (5.20) and (5.22) for CTC and MRC policies, respectively.

Proof : A node v fetches a content o from a provider node u if and only if it successfully fetches

a content o during at least one contact with node u within node u’s content caching time CT .

Hence, we need to derive the number of times two nodes meet during time CT , denote by

E(NC(CT )). As two nodes alternates between contact and inter-contact states, their contact

process can be modeled by alternating renewal process.

i) When users apply CTC policy, i.e., CT is constant, by renewal theory, E(NC(CT )) is

the inverse Laplace transform of LTC+TI
(s)/[s(1−LTC+TI

(s))], where LTC+TI
(s) is the Laplace

transform of random variable TI + TC . As TC and TI are exponential random variables with

rates λC and λI , respectively, LTI+TC
(s) = λCλI

(s+λC)(s+λI )
. Accordingly,

L(E(NC(CT )), s) =
λCλI

s2(s+ λC + λI)
.

Performing inverse Laplace transform, we have

E(NC(CT )) =
λCλICT

λC + λI
+

λCλI

(λC + λI)2
(1− e−(λC+λI)CT ). (5.20)

ii) When users apply MRC policy, content caching time CT =
∑K

i=1 Ti, where Ti is the

content inter-arrival time. As Ti is an exponential random variable with mean μ, content caching

time follows Erlang distribution with mean Kμ, i.e.,

fCT (t) =
(1/μ)KtK−1e−t/μ

(K − 1)!
. (5.21)
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The probability generating function ofNC(t) can be represented byG(z, t) =
∑∞

i=0 z
iP (NC(t) =

i). Hence, the probability generating function of NC(CT ) is G(z) =
∫∞
0 G(z, t)fCT (t)dt. Ap-

parently,

E[NC(CT )] =

[
dG(z)

dz

]
z=1

, (5.22)

where for Erlang distributed CT [122],

G(z) =
(1/μ)K

(K − 1)!

(
∂

∂s

)K−1 [ 1− fTC+TI
(s)

s(1− zfTC+TI
(s))

]
s=1/μ

.

Subsequently, a user v fetches content o from a providing node u within time CT with probability

E
[
1− (1− pTC

s

)NC(CT )
]
≤ 1−

(
μλC

p+ μλC

)E(NC(CT ))

.

Multiplying this probability upper bound with E(NE(CT )) gives an upper bound on the ex-

pected number of nodes that can fetch a content from a providing node.

Remark 41 The content sharing capacity is proportional to the number of nodes that a provid-

ing node encounters during its content caching time, and is also determined by content sharing

probability during a contact time and the number of contacts within content caching time.

5.6 Applications

Based on our theoretical analysis, we show that D2D communications can indeed enable con-

tent sharing especially for popular contents and delay tolerant contents. Therefore, we identify

several promising applications of content sharing through D2D communications.

Special Events Social networking: Special events, such as sports games, attract lots of

people in a small area. A large number of users try to access the Internet through the same

cellular base station or a few WiFi access points will cause a high pressure on wireless networks.

Fortunately, people participating group activities are likely demand related or same contents.

For example, during a football game, football related pictures and videos become highly popular.

Moreover, high user density makes D2D communication possible, and users are likely to stay in

connection for a sufficiently long period of time in order to successfully transmit contents. Users

at such special events can leverage the D2D communication opportunities to share contents.

Delay Tolerant Subscription Based Services: Many users subscript services to down-

load newspaper, podcasts, shows to their mobile devices. For instance, RSSRadio provides

video/audio podcasts downloading or streaming to mobile devices based on mobile users? sub-

scriptions. Many of current social applications are based on pub/sub abstractions, such as
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Instagram, Pinterest, and YouTube channels. Many users subscribe to popular publishers on

Instagram, Pinterest, and YouTube. When there is status updates, blogs, pictures, or videos are

published, subscribers can download these contents on their mobile devices. Mobile user scan

avoid cellular traffic by waiting until wifi access or delivery from neighboring user is available,

i.e., contents are delay tolerant. Moreover, there is no limitations on content sharing privacy

as these applications fall into the social network category, . Therefore, contents can be shared

opportunistically among subscribers.

5.7 Summary and Future Work

In this chapter, we explored the potential for content delivery through D2D communications.

We first demonstrated through trace analysis that practical opportunities exist for peer-assisted

content delivery because of the temporal locality of user requests and the stochastic dominance

of device contact time over content transmission time. Then, we derived the number of copies

of a content in the network, and proved that M(t) is an exponential function and a power-law

function of content popularity under CTC and MRC policies, respectively. Finally, we evaluated

the content fetching and sharing probabilities, and showed that D2D communication can indeed

reduce network load especially for popular content delivery. Numerical results exhibit that

content request rate, content caching time, and delay tolerance of user request have a dramatic

impact on the performance of peer-assisted content sharing. In the future, we will conduct

experiments of real mobile wireless networks in order to evaluate the performance of content

sharing through D2D communications in real mobile device systems.
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Chapter 6

Conclusion and Future Directions

In this report, we have presented our research results on the mobility and traffic correlation

in D2D communication networks. Next, we summarize our research results and discuss the

possbile future directions.

6.1 Conclusion

Our study has focused on the analysis and understanding of mobility correlation and traffic

flow in D2D communication networks. In Chapter 2, we measured mobility correlation in spa-

tial and temporal locality domains such as to detect group structures, evaluate group stability

and evolution, assist topology control and data forwarding. As message dissemination is essen-

tial for many applications of D2D communication networks, we examined the performance of

message dissemination in VANET with intermittent connectivity and high vehicle mobility in

Chapter 3. The temporal and spatial limits of message dissemination can provide guidelines

on message dissemination algorithm design. In Chapter 4, we studied the D2D communication

in the new paradigm of mobile cloud computing. We investigated the computing capacity of

mobile cloudlet, evaluating the feasibility of mobile cloudlet to support mobile applications.

In Chapter 2, we characterized mobility correlation in spatial and temporal locality domains

such as to detect group structures. We defined a metric, namely Dual-Locality Ratio (DLR),

to quantify the mobility correlation between a pair of users, taking account of both similarities

in spatial locality (i.e., location and speed) and in temporal locality (i.e., mobility pattern).

Simulations and real traces showed that DLR can effectively identify meaningful and stable

node groups compared with existing community detection algorithms. Moreover, we showed

that DLR has implications on link lifetime and group stability. In order to show the application

of DLR, we utilize DLR to evaluate group stability, provide conditions for group evolutions

(e.g., node switching and group merging), assist data forwarding and topology control.
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In Chapter 3, we studied the performance of information propagation in geocast applications

of VANETs. In order to overcome the challenge of dynamic destinations in geocast, we modeled

active message mobility that focuses on where the message is broadcasted rather than who is

spreading the message. Using message mobility, we analyzed the dissemination distance and

hitting time, specifically the farthest distance that the dissemination reaches by time t and

the first time that the dissemination reaches location distance d from the source, respectively.

Simulation results of four dissemination algorithms are well bounded by our analytic bounds

for the dissemination distance and hitting time. Furthermore, two VANET applications are

presented to show how our results can provide guidance to design of message dissemination

mechanisms in order to satisfy application requirements.

In Chapter 4, we investigated the performance of cloudlet computing for mobile applications.

Mobile users can either access remote cloud through cloudlet infrastructures at community sites

or offload computational task to encountered mobile devices. In the first scenario, we showed

that a mobile user’s visiting pattern to the community sites with cloudlets has significant

impact on cloudlet computing performance, such as cloudlet access probability, task success

rate, and average task execution speed. In the second scenario, we examine the properties and

computing capacity of mobile cloudlet in order to determine whether and when mobile cloudlet

is able to support mobile applications. Properties of mobile cloudlet, including cloudlet size,

node’s reachable time and lifetime, are extracted from real traces and analyzed mathematically.

Based on the properties of mobile cloudlet, we further derived upper and lower bounds on the

computing capacity and long-term computing speed of a mobile cloudlet, which a mobile user

can user to decide whether to upload a task to remote cloud or utilize nearby mobile cloudlet.

In both cases, mean contact time TC over mean inter-meeting time TI represents the impact of

user mobility on cloudlet computing performance.

In Chapter 5, we demystified the opportunities of content delivery through D2D commu-

nications. Using both trace and theoretical analysis, we found that i) content sharing through

D2D communications is feasible because of the temporal locality in user request pattern and

the stochastic dominance of device contact time over content transmission time; ii) the number

of copies of a content is an exponential or a power law function of content popularity under con-

stant time caching and recency-based caching, respectively; iii) peer-assisted content delivery

can greatly reduce the network load for popular contents and delay-tolerance requests, while it

achieves little success for less popular contents.

6.2 Future Directions

The work in this dissertation focuses on understanding the mobility and traffic correlation

in emerging network systems, such as vehicular ad hoc networks, mobile cloud computing,
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and content delivery networks. Our current work looks at the mobility and traffic correlation

mainly from an analysis perspective. A joint study from the analysis perspective as well as

the experiment and design perspective can offer more comprehensive understanding of the

performance limits of a D2D communication network. Although we have showed that some

mobile applications can be served by mobile cloudlet, a framework needs to be developed for

mobile devices to share computational resources efficiently and reliably. It is important to

identify mobile applications that can be served by mobile cloudlet, and design computation

partition and offloading strategies that are adaptive to application requirements and contexts

of mobile devices.

In addition, as mobile devices are sensing richer contexts and mobile applications are evolv-

ing toward context-awareness, information and computation sharing through D2D communi-

cations not only needs to consider mobility but also needs to adapt to the behaviors of the

applications according to user contexts, such as user activities, preferences, and friendship

relationships. Therefore, it is highly desirable to study the correlation between context and

information and computation sharing. This will not only provide guidelines to design tailored

network services which fit to the current context of the users, but also save network resources,

computing resources and battery of mobile devices.
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