
Dynamic Documents for Data Analytic Science

by

Gabriel Becker

B.S. (California Polytechnic State University at San Luis Obispo) 2008

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Statistics

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA at DAVIS

Approved:

———————————————————
Duncan Temple Lang, Chair

———————————————————
Deborah Nolan

———————————————————
Paul Baines

Committee in Charge
2014

i

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3685178

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

UMI Number: 3685178

Acknowledgements

My deepest gratitude goes out to my advisor, Duncan Temple Lang, for showing me that research

in our field can and must go beyond the programming with which we implement our ideas. I

am also deeply grateful to Deborah Nolan, whose support, collaboration, and guidance went far

beyond the duties strictly prescribed to a committee member. I would not be where I am today

without the ideas, advice, opportunities, and constructive criticism provided by Duncan and Deb-

orah throughout my time performing and later describing this research.

My thanks also go out to the remaining members of my committee, Paul Baines, Wolfgang

Polonik, and Alexander Aue. Their insightful comments and discussion were invaluable in allow-

ing the following work to reach its potential.

No graduate career could possibly succeed without the dedicated work of many beyond the

professors and their students. I gratefully acknowledge the tireless efforts of Pete Scully and Pat

Aguilera, without whom our department would surely have ceased to function entirely.

Finally, and with great love, I thank my wife Erin. Without her unending support throughout this

process, the following thesis - and my life while producing it - would have been greatly diminished.

ii

Abstract

The need for reproducibility in computational research has been highlighted by a number of recent

failures to replicate published data analytic findings. Most efforts to ensure reproducibility involve

providing guarantees that reported results can be generated from the data via the reported methods,

with a popular avenue being dynamic documents. This insurance is necessary but not sufficient

for full validation, as inappropriately chosen methods will simply reproduce questionable results.

To fully verify computational research we must replicate analysts’ research processes, including:

choice of and response to exploratory or intermediate results, identification of potential analysis

strategies and statistical methods, selection of a single strategy from among those considered, and

finally, the generation of reported results using the chosen method.

We present the concept of comprehensive dynamic documents. These documents represent the

full breadth of an analyst’s work during computational research, including code and text describ-

ing: intermediate and exploratory computations, alternate methods, and even ideas the analyst

had which were not fully pursued. Furthermore, additional information can be embedded in the

documents such as data provenance, experimental design, or details of the computing system on

which the work was originally performed. We also propose computational models for representing,

processing, and programmatically operating on such documents within R.

These comprehensive documents act as databases, encompassing both the work that the analyst

has performed and the relationships among specific pieces of that work. This allows us to inves-

tigate research in a number of ways difficult or impossible to achieve given only a description of

the final strategy. We can explore the choice of methods and whether due diligence was performed

iii

during an analysis. Secondly, we can compare alternative strategies either side-by-side or inter-

actively. Finally, we can treat these complex documents as data about the research process and

analyze them programmatically.

We also present a proof-of-concept set of software tools for working with comprehensive dy-

namic documents. This includes an R package which implements a framework for comprehensive

documents in R, an extension of the IPython Notebook platform which allows users to author and

interactively view them, and a caching mechanism which provides the efficiency necessary for

interactive, self-updating views of such documents.

iv

Contents

1 Introduction 1

1.1 Examples of Data Analyses . 5

1.1.1 Classifying handwritten digits . 6

1.1.2 Exploring housing prices in the San Francisco Bay Area 2003-2006 21

1.2 Representing the Research Process in a Dynamic Document 30

1.2.1 Comprehensively describing the research process 30

1.2.2 Decisions, alternatives, and tasks . 32

1.2.3 Metadata about document elements . 35

1.2.4 Selecting linear narratives and other subsets from comprehensive documents 37

1.2.5 Computing on the document . 39

1.2.6 Exploring the analysis interactively . 41

1.3 A Roadmap for the Remainder of this Thesis . 42

2 A System for R-based Nonlinear, Comprehensive Dynamic Documents 46

2.1 Representing Documents as R Objects . 49

2.1.1 Representing decisions, alternatives, and tasks via nesting 50

2.1.2 A unified, format-agnostic representation 51

v

2.1.3 Modeling local element-level interactivity in dynamic documents 55

2.2 Operating on DynDoc Objects . 60

2.2.1 Visualizing document structure . 60

2.2.2 Subsetting and querying the document . 63

2.2.3 Specifying threads . 67

2.3 DynDocModel’s Computational Model . 69

2.3.1 Customizing the processing step . 74

2.3.2 Customizing markup generation . 77

2.3.3 Customizing the creation of DynDoc objects 86

2.4 Related Work and Other Approaches . 90

2.4.1 Background and systems for linear documents 90

2.4.2 XDynDocs, IDynDocs, and Vistrails . 92

2.4.3 Other related work . 93

3 Authoring and Exploring Non-Linear Documents 95

3.1 Important Features for Non-Linear Document Systems 97

3.1.1 Features of an authoring environment for non-linear documents 98

3.1.2 Rendering target and exploration environment 101

3.2 Case Study: Modifying IPython Notebook . 103

3.2.1 The IPython Notebook . 104

3.2.2 Adding non-linearity . 107

3.2.3 Detail level and “hidden” elements . 113

3.2.4 Interactive code elements . 118

3.3 Lessons from our Case Study . 122

vi

3.3.1 Changes to the computational model . 123

3.3.2 Drawbacks of our modified IPython Notebook 126

3.3.3 Separate versus ‘both-in-one’ authoring and interactive exploration envi-

ronments . 127

3.4 Background and Related Work . 130

3.5 Possible Alternative Approaches for Exploration Environments 131

3.6 Conclusion . 132

4 Caching for Non-Linear Dynamic Documents 133

4.1 Caching . 134

4.1.1 An input-value based caching mechanism 135

4.1.2 Caching non-assignment effects . 138

4.1.3 A comparison of caching mechanisms . 141

4.1.4 Caching in non-linear and interactive contexts 146

4.1.5 Efficient comparison of large R objects via hashing 147

4.2 Known Limitations and Drawbacks . 150

5 Summary 154

5.1 DynDocModel: A Flexible, Unified System for Dynamic Documents in R 155

5.2 The Modified IPython Notebook: A Non-Linear Authoring and Computing Platform157

5.3 RCacheSuite and FastDigest: a Caching Solution for Non-Linear Dynamic Docu-

ments . 158

5.4 Availability . 160

5.5 Concluding Remarks . 160

vii

A An excerpt of a non-linear IPython Notebook .ipynb file 162

B Machine information and benchmarking code for digest comparison 168

Bibliography 170

viii

List of Tables

2.1 R classes for documents, instances, and document elements by type in DynDoc-

Model . 52

2.2 The IWidget class for declaring GUI controls . 59

2.3 Default class to rpath node name mapping for dyndoc rpath() 66

4.1 R code expressions and their input variables . 136

4.2 Criteria for loading from an existing cache . 142

ix

List of Figures

1.1 Plotting a single observation . 7

1.2 Investigating typical ink location . 8

1.3 Interpretability of the first nine principal components for the combined ‘1’s and

‘8’s data . 10

1.4 Testing multivariate-Normality with the Mahalanobis distance heuristic 12

1.5 Comparing sample variance for the first 25 principal components between ‘1’s and

‘8’s . 13

1.6 A simplified illustration of the structure of the digit analyst’s research 20

1.7 Density of sale price (in $1000s) for all Bay Area houses 2003-2006 24

1.8 Distributions of relative profit from house resales by county 26

1.9 Resale rate vs median house price by city . 27

1.10 Resale rate vs median house price by county . 28

1.11 Percent of resales resulting in no profit vs median house price 29

1.12 Misclassification rates by method and number of principal components used 41

2.1 The hierarchy of DocElement classes . 53

2.2 DocThread, DocElement and ElementInstance objects 56

2.3 Controlling bandwidth with a slider control . 57

x

2.4 Visualizing the digit analysis process as a graph 61

2.5 The DynDocModel computational model for processing dynamic documents . . . 71

2.6 The DynDocModel model for generating output files 72

2.7 Adding automatic timings to a woven report . 76

2.8 Comparing two woven threads side-by-side . 79

2.9 Customizing display of output in woven reports 82

2.10 Building a set of tangling renderers . 85

2.11 Using a custom parser to read roxygen2-style source files 89

3.1 A decision element with two alternatives . 108

3.2 Desired element visitation order for a non-linear notebook 110

3.3 Detail levels in our IPython Notebook fork . 116

3.4 Inserting elements by position in the presence of hidden elements 118

3.5 Adding interactivity to a code element . 123

4.1 The computational model of our caching system 139

4.2 Custom evaluator and return-handler functions . 140

4.3 A side-by-side comparison of the weaver and RCacheSuite decision algorithms . . 144

4.4 A simple (pseudo-code) data-cleaning code element 152

A.1 A very simple non-linear IPython notebook . 163

xi

Chapter 1

Introduction

Research should be reproducible. A number of recent, high-profile incidents have highlighted the

need for reproducibility of computational research in fields ranging from bioinformatics (Baggerly

and Coombes, 2009) to economics (Herndon et al., 2013).

In the experimental sciences, work must generally meet two requirements in order to be con-

sidered reproducible. First, enough detail must be given in the description of the work that an

independent laboratory could replicate the experiment. Secondly, these independent recreations of

the experiment, when performed, must give scientifically equivalent results.

The primary purpose of reproducing an experimental result is to validate and confirm the con-

clusions of the original work. Most obviously, reproducing the experiment itself does this by

generating independent corroborative data which strengthen the body of evidence for the original

conclusion.

Reproducing the full experimental process from data generation to conclusions also acts as a

corroboration of the choice of experimental methods, though more indirectly. As an independent

group of scientists work through a series of experiments, they might find fault with the experimen-

tal design or statistical methodology chosen by the original analyst, even if repeating the original

1

CHAPTER 1. INTRODUCTION

steps precisely leads to results which agree with the original. It is this methodological corrobora-

tion which is key to fully verifying research results.

We can validate the results of computational analyses in a manner similar to the validation of

experimental results: by inspecting the choices made by the analyst as well as confirming that the

chosen methods generate the reported results when applied to the data. This is true even when

generating new data is impossible (e.g., analyzing election data for fraud, or tracking immediate

response to a current event via Twitter or Facebook posts).

The importance of inspecting an analyst’s choice of methods is compounded by the fact that

data analysis can be somewhat subjective, with multiple valid ways of approaching a question.

There are many wrong methods of approaching any given statistical question, but there may be

multiple “correct” approaches as well. Furthermore, the appropriateness of particular methods

for a given data set is often not discernible a priori. We will see this shortly in the context of

an example analysis where the analyst seeks to build a classifier which can predict the intended

numeric digit given a handwritten character.

Dynamic documents have gained interest recently as a tool for ensuring that reported results

correctly correspond to the computations performed by an analyst. Conceptually, a dynamic doc-

ument is a document which combines code and text such that the code can be run on command,

with text, code, and output automatically inserted into an article or report intended for human con-

sumption. This automatic generation and insertion of output ensures that the correct output – e.g

plots, tables, and numerical results – are included in the final result, and that the actual code used

to generate the results in the report is available.

A common form of dynamic document is a file containing a linear sequence of interspersed code

and text chunks which respectively define a series of computational steps and provide discussion

2

CHAPTER 1. INTRODUCTION

of those steps and their results. Most existing dynamic document systems limit themselves to this

linear formulation of dynamic documents, including the popular SWeave (Leisch, 2002) and knitr

(Xie, 2013a) systems for the R statistical programming language (R Core Team, 2014), as well

as the ActivePapers (ActivePapers Development Team, 2013) and IPython Notebook (Pérez et al.,

2013a) projects for Python (Python Development Team, 2013).

These linear dynamic documents act as templates for narratives constructed around a sequence

of computations and their results. In the context of an article-like narrative, computations which

are not necessary to directly generate the final results from data are typically omitted. When the

template is processed, the code is evaluated and the output generated is used to construct the re-

port. This fits with the view proposed by Claerbout (Claerbout and Karrenfach, 1992) and later

championed by Buckheit and Donoho (Buckheit and Donoho, 1995) that the deliverable in compu-

tational research is the combination of output with any algorithms, scripts, or software necessary

to generate it, rather than solely the output itself.

The merit of computational and statistical results must be viewed as contingent on the re-

searcher’s choices of which methods and strategies to apply. These choices are nearly always

based on exploratory computations which investigate the data, but which are not required to gen-

erate the results once a method is chosen. These computations – and the insights they grant – are a

key part of the analysis process which is often not reported when describing the work.

To fully assess or validate computational results we must be able to replicate all intermediate

computations and results which led the analyst to choose the final methods and parameters used

to generate those results. Rossini recognized this, advocating data analyses be described via doc-

uments which “describe results and lessons learned, both substantive and for statistical practice,

as well as a means to reproduce all steps, even those not used in a concise reconstruction, which

3

CHAPTER 1. INTRODUCTION

were taken in the analysis” (emphasis ours) (Rossini, 2001).

A mistake in crucial intermediate computations or their interpretation can invalidate results as

completely as a mistake in applying the chosen method would. Beyond detecting mistakes that

invalidate a set of results, information about these intermediate steps also allows us to understand

why an author made the choices she did. Furthermore, we can consider whether we agree with

her reasoning, or would have chosen a different strategy. Without knowledge of the strategies

considered and access to the intermediate results that the analyst used to make her final decisions,

this type of assessment is much more challenging. Examples of computations which are important

to the research process but unnecessary to regenerate that research’s final results include:

• determining that the data violate the distributional assumptions for the relevant parametric

methods(s), leading to a focus by the analyst on non-parametric approaches,

• performing a regression analysis and detecting autocorrelation in the residuals, leading the

analyst to abandon ordinary regression as a strategy,

• trying multiple data transformations (e.g, square-root, logarithm, etc.) before choosing one

to apply.

We propose a type of dynamic document which more accurately encompasses the entire re-

search process while retaining the ability to dynamically generate concise, article-like reports.

Specifically, we feel the following are essential for documents to fully capture, communicate, and

provide reproducibility for the research process:

• text and code content for all computations which contributed to the generation of final results

or the choice of methods or strategies used;

• relationships between groups of content, e.g., the set of methods and computations considered

4

CHAPTER 1. INTRODUCTION

when choosing how to answer a particular question;

• semantic information about content, e.g., that applying a particular method generated an error,

or failed its diagnostics when applied to the data, and even the reasoning for choosing or not

choosing a particular alternative.

In the remaining sections of this chapter we motivate the concepts which will underlie our pro-

posed documents in the context of two data analysis projects. For each project, we briefly discuss

the actions, decisions, and reasoning a data analyst approaching the problem might perform. Our

two examples are chosen specifically to highlight different aspects of the research process which

would not necessarily be captured in a concise narrative such as a published journal article.

Finally, we conclude the chapter with an outline for the remainder of this thesis. We briefly

summarize the relevance of each of the three software tools we will present: the DynDocModel

and RCacheSuite R packages, and our modified version of the IPython Notebook (Pérez et al.,

2013a) interactive computing environment.

1.1 Examples of Data Analyses

Data analysis is often a sprawling, non-linear process involving much more than applying a single

statistical method to data. We illustrate these more involved aspects of the research process via

two examples: an investigation of classification strategies for handwritten numeric digits, and an

exploratory data analysis of a census of housing sales in the San Francisco Bay Area between 2003

and 2006 with a focus on properties sold more than once during that time.

We “ride along” with the data analyst performing each analysis, looking to both their actions

and reasoning as they explore the data, consider the best way to proceed, and eventually generate

their final results. We use these two hypothetical analyses to identify key aspects of the research

5

CHAPTER 1. INTRODUCTION

process not typically reflected in journal articles or other write-ups of analysis results. We then use

our observations to motivate a discussion of the structure of dynamic documents and how it might

be generalized to more fully reflect the research process.

1.1.1 Classifying handwritten digits

We first step into the mind of an applied statistician tasked with developing a classifier to identify

single, hand-drawn digits. He first obtains a manually classified dataset for use as a training set.

The data are digitized, black-and-white 28x28 pixel images of handwritten numbers (0-9) that have

been centered and normalized for size. Each observation in the data consists of a value between

0 and 255 for each of the 784 individual pixels as well as a label identifying the true digit drawn.

The pixel values range between 0 representing white space (no ink) and 255 representing black

(darkest ink).

Initial exploration

The analyst first seeks to understand his data through some simple explorations. He first plots an

individual observation, receiving the picture shown in Figure 1.1. He notes that the plot shows a

clearly identifiable digit – either a six (‘6’) or a nine (‘9’) – but the orientation is wrong. Checking

the label for the observation, he finds that it is a nine and uses this information to determine the

transformation needed to get it to display correctly. Satisfied that he understands the data at the

single observation level, he makes a note of this transformation to himself and moves on.

6

CHAPTER 1. INTRODUCTION

Figure 1.1: Plotting a single observation. The analyst first plots a single observation. He sees that the image is clearly
a numeric digit, but that its orientation when plotted naively is incorrect. He uses this, along with the observation’s
label identifying it as a nine, to better understand the orientation of the data and how it should be plotted.

The analyst continues by becoming familiar with the data set. In particular, he investigates

where the ink (non-zero pixel values) tends to be within the images. He first quickly confirms his

intuition that because the data are scanned images of curves in black ink drawn on white paper,

most pixel values will tend to be either small (less than 50) indicating white space or large (greater

than 200) indicating ink. He finds that he was correct, with only about 6% of the pixels having

intermediate values in the entire training dataset.

With the knowledge that the values tend to the extremes, he considers heatmaps of two different

pixel-level measures: variance (Figure 1.2), and count of non-zero values in the data. The first gives

him a sense of which areas of the grid tend to differ the most among observations, while the second

indicates areas which most commonly contained ink. He sees that the variability in presence of ink

is concentrated in a central area, with little to no difference between observations near the corners

of the 28x28 grid. This will become important later, but for now he adds this to his understanding

of the data and turns to identifying viable classification strategies.

7

CHAPTER 1. INTRODUCTION

5 15 25

5
15

25

All digits

5 15 25

5
15

25

0s

5 15 25

5
15

25

1s

5 15 25

5
15

25

2s

5 15 25

5
15

25

3s

5 15 25

5
15

25

4s

5 15 25

5
15

25

5s

5 15 25

5
15

25

6s

5 15 25

5
15

25

7s

5 15 25

5
15

25

8s

5 15 25

5
15

25

9s

Variability in pixel value by position

Figure 1.2: Investigating typical ink location. The analyst creates a heatmap of the individual pixel variances to see
which areas differ across the data and for each digit separately. Differences between pixel values across different
observations are common in the center of the 28x28 grid and essentially absent near its corners.

Exploring possible classification methods

Before pursuing a strategy for all ten digits, the analyst decides to see how various classification

methods perform when asked to distinguish only two relatively distinct classes: ones (‘1’s) and

eights (‘8’s). He reasons that analyzing only two digits is less computationally taxing, which will

allow him to iterate and explore quickly without worrying about code optimization. He plans to

exclude methods which have high error rates here from consideration, noting that the full set of ten

digits contains pairs likely to be much more difficult to distinguish, including three and eight (‘3’ vs

‘8’), two and seven (‘2’ vs ‘7’), four and nine (‘4’ vs ‘9’), and five and six (‘5’ vs ‘6’). The analyst

reasons that while the method which performs best on the restricted dataset is not guaranteed to

prove optimal in the ten digit setting, methods which perform very poorly on only two classes

– e.g., having misclassification rates several times higher than the best performing method – are

unlikely to be competitive.

The analyst begins with a simple classical method, Linear Discriminant Analysis (LDA). R’s

lda() function, from the MASS package (R Core Team, 2014), fails, however, throwing an error

8

CHAPTER 1. INTRODUCTION

indicating that some variables “appear to be constant within groups.” Considering the math under-

lying LDA, he recalls that it involves inverting the sample covariance matrix (S) and realizes that

any pixels which have the same value across all observations within one of the classes (intended

digits) would lead to S being singular.

The analyst thinks back to his exploration of typical ink location, recalling that he saw no

variability near the corners of the plot. A quick calculation confirms that 135 of the 784 pixels are

always white space (zero) within the full dataset, and that 296 pixels are non-zero in less than 1%

of observations. Omitting the 135 constant pixels, 253 pixels have a correlation greater than 0.80

with at least one other pixel. The analyst infers from this that dimension reduction beyond simple

exclusion of constant pixels is likely to be effective.

The analyst chooses principal components as his dimension reduction method, reasoning that it

is well understood and relatively efficient to implement. He then considers his options for generat-

ing his principal component data in R. He can use the spectral decomposition or the single value

decomposition to generate the eigen-values and vectors of his data’s covariance matrix. Further-

more, he can write his own function to calculate the principal components, or can use a higher-level

function provided by R, e.g., prcomp() (R Core Team, 2014). He decides to explore multiple

possible implementations and compare their computational efficiency. He ultimately chooses to

use a custom function based on the SVD, but retains the other implementations and makes a note

of why he chose this one (a combination of efficiency and numerical stability).

After he generates principal components for the full data (all ten digits), he decides how many

components to use via scree plots and numerical summaries. He finds that he needs 148 compo-

nents to account for 90% of the total variation. The first 25 contribute roughly 70%, however, and

each individual component after the 23rd contributes less than 1% to the total. He decides to pro-

9

CHAPTER 1. INTRODUCTION

ceed with 25 components, but designs his code so that he can easily switch to using more principal

components later if necessary.

The analyst then switches gears back to his two-digit task. He generates 25 separate principal

components for just this subset of the data in order to give each method he will try the opportunity

to perform as well as possible. He plots the components of the eigen-vectors used to generate the

first nine components for his ‘1’s and ‘8’s data (Figure 1.3) and finds them relatively interpretable.

He sees that the strongly positive and negative elements of the first vector create the outline of an

‘8’ contrasted with the areas in the center of the image where an ‘8’ is largely empty but a ‘1’ is

likely to have ink. The second eigen-vector emphasizes the contrast between one of the diagonals

in the ‘8’ against a largely vertical line more in-line with a ‘1’, and so on.

Figure 1.3: Interpretability of the first nine principal components for the combined ‘1’s and ‘8’s data. The eigen-
vectors (”loadings”) which generate the first nine principal components for the ‘1’ and ‘8’ data are highly interpretable.
The first vector (top-left) clearly shows the outline of an ‘8’ emphasized in one range of colors contrasted with portions
of the center.

The analyst then returns to the LDA approach using the principal component data. The sam-

10

CHAPTER 1. INTRODUCTION

ple covariance matrices for these data are non-singular so the method is mathematically feasible.

Before applying LDA, he investigates whether the two major assumptions of the method hold:

equal covariance for the two classes, and multivariate-Normality within each population. He uses

a heuristic of comparing observed Mahalanobis distances against theoretical quantiles for the Chi-

squared distribution with 25 (the number of components he is using) degrees of freedom to test

for gross violations of multivariate-Normality. Creating a QQ plot (Figure 1.4) he sees a highly

non-linear relationship between the quantiles of the Mahalanobis distances and those of the Chi-

squared distribution, leading him to conclude that the principal component data are substantially

non-normal. Because each component is a linear combination of the individual variables, this im-

plies that the raw pixel data are also non-normal. The analyst makes a note of this in case he goes

back to analyzing the raw data in the future.

The analyst looks for violation of equality-of-variances by comparing the pixel-level variances.

Because these form the diagonal of the covariance matrix, this provides a simple spot-check which

can expose inequality without having to analyze the full matrices. A quick analysis of the ratios

between the variances in the ‘1’ and ‘8’ populations of the twenty-five principal component vari-

ables show some strong discrepancies: the second component is nearly 6 times more variable in

the ‘1’ population than among the ‘8’s, while the fifteenth component is about 8.4 times (nearly a

full order of magnitude) higher in the ‘8’ population than the ‘1’s.

11

CHAPTER 1. INTRODUCTION

10 20 30 40 50 60

0
10

0
20

0
30

0
40

0

Q−Q plot for χ2
ν=25

χ2
ν=25 Quantiles

M
ah

al
an

ob
is

 D
is

ta
nc

e

Figure 1.4: Testing multivariate-Normality with the Mahalanobis distance heuristic. The analyst tests whether the
data follow a multivariate-Normal distribution by comparing the principal component data’s Mahalanobis distances
to their theoretical distribution under multivariate-Normality. The highly non-linear correspondence leads him to
conclude that these data (and thus the original data as well) are not multivariate-Normal.

A scatterplot (Figure 1.5) shows that even among the components with less extreme differences,

there is a strong trend – twenty-two of the twenty-five components – of the component variance es-

timates to be higher in the ‘8’ class. The analyst concludes from this that the component variances

– and thus the covariance matrices – are not equal for the two classes.

The analyst decides to go ahead with using LDA as his baseline classifier, despite evidence

suggesting that neither of the two assumptions he investigated hold, because it is known to be

somewhat robust to such violations. With the principal component data, the lda() function runs

successfully and returns a classifier. Testing his LDA classifier on independent data, the analyst

finds that it has an error rate of approximately 3%.

12

CHAPTER 1. INTRODUCTION

l

l

l

l

l

l

l

l

ll
l

l
ll
lll

lll
llll

l

0e+00 1e+05 2e+05 3e+05 4e+05

0e
+0

0
1e

+0
5

2e
+0

5
3e

+0
5

4e
+0

5

Variance in '1' poluation

V
ar

ia
nc

e
in

 '8
' p

op
ul

at
io

n

Figure 1.5: Comparing sample variance for the first 25 principal components between ‘1’s and ‘8’s. The analyst
investigates equality of the variances for the principal component values in the ‘1’ and ‘8’ populations as a heuristic for
equality of covariance matrices. He concludes that the covariances are not equal after seeing highly divergent values
and a general trend of variability among ‘8’s to be higher than ‘1’s for the same component (twenty-two of twenty-five
components).

The analyst suspects that quadratic discriminant analysis (QDA), which does not require the

equal covariances assumption, may perform better than LDA. Using R’s qda() function, the

analyst generates a new classifier, finding that it achieves an overall error rate of approximately

1.5%, or roughly half that of LDA. QDA still assumes multivariate-Normality, however, so the

analyst suspects he may do even better with non-parametric methods.

For a non-parametric classification method, the analyst turns to k-nearest neighbors (KNN).

The number of neighbors considered (k) acts as a tuning parameter for this method, so he decides

to select it via ten-fold cross-validation. He finds that R’s built-in knn() function from the class

package (R Core Team, 2014) calculates the distance matrix afresh each time it is called to create

a new classifier, which is expensive when performing cross-validation. He writes a custom KNN

13

CHAPTER 1. INTRODUCTION

function which, while slower to fit once the distances are calculated, allows the distance matrix to

be passed in as an argument. He uses this to build a cross-validation mechanism that calculates the

distance matrix for the full data once and reuses portions of it within each validation block. For

his training data, 1 is selected as the optimal value of k, generating a classifier with an error rate of

approximately 0.3% for independent data, performing about 5 times better than QDA and beating

LDA by a full order of magnitude.

Encouraged by the strong performance by KNN, the analyst decides to explore other non-

parametric methods to see if any can improve on KNN’s error rate. He turns to the recursive

partitioning family of methods. He tries standard recursive partition trees (Breiman et al., 1984) –

using Therneau et al.’s rpart package (Therneau et al., 2014) – first, with a plan to apply the ran-

dom forest variant (Breiman, 2001) as well. The analyst finds that the original recursive partition

tree approach does not perform particularly well for his data, achieving an error rate on par with

QDA (roughly 1.5%).

Finally, he finishes his exploration of two-digit classifiers by generating a random forest clas-

sifier for his data. The random forest classifier achieves an error rate of approximately 0.9%, out-

performing the parametric methods (and rpart), but unable to surpass KNN. The analyst turns his

attention to building classifiers for the full dataset, having narrowed the field of possible methods

from his original five to two, KNN (the front-runner) and random forest.

Building a ten-digit classifier

The analyst’s exploration of classifiers in the easier-to-distinguish two-digit case (‘1’s and ‘8’s)

allowed him to exclude LDA, QDA, and rpart as contenders for his final strategy. After generating

the principal component data for the full ten digit training set, he compares KNN and random

forests to determine which he will select as his final method.

14

CHAPTER 1. INTRODUCTION

The analyst applies KNN first. He finds that his cross-validation function is quite expensive

for the full data. He notes that generating a single classifier for a given value of k using knn(),

however, is relatively fast. He proceeds to simply try a few values for k (1, 3, 5, and 7) and compare

their performance on his independent testing data directly. He finds that all four k values he tried

have error rates of approximately 3%, with 5 the lowest at 3.1% and 1 and 7 roughly tied for worst

with about 3.2%. The analyst notes that these error rates are much higher than KNN achieved

for the two-digit case, but recalls that he had specifically chosen two digits which would be easy

to distinguish. The analyst inspects the confusion matrix and confirms that the more difficult

pairs (‘3’-‘8’, ‘4’-‘9’, etc) contribute the vast majority of the errors, with misclassification rates an

order of magnitude higher than other pairs in some cases. The highest error count was caused by

confusing fours (‘4’s) as nines (‘9’s), with 38 of 1348 observations labeled as ‘4’s classified as ‘9’s

(2.8%), more than twice the number of errors confusing ‘4’s as all other digits combined.

Finally, the analyst concludes by comparing his KNN classifiers to a classifier generated via

random forests. The random forest classifier achieves an error rate of about 5.5%. The ratio of

the random forest and KNN error rates is closer for the full data than it was for only the 1 and 8

populations, but KNN remains the best of the investigated methods.

Ultimately, the analyst chooses KNN (with k=5) as his classifier. In a real data analysis sit-

uation, the analyst would likely consider other strategies beyond those we describe above. The

analyses we have described, however, is sufficiently complex to illustrate the concepts we wish to

discuss, so we stop here and move on to the analyst’s process for formulating one or more write-ups

of his results.

15

CHAPTER 1. INTRODUCTION

Summarizing the results

We imagine the statistician preparing several different write-ups of his analysis and results. Each

might record different aspects of what he did, or contain discussion targeting different audiences

(collaborators, independent researchers, reviewers, managers). We list several possible write-ups

and their target audiences below, followed by a detailed discussion of the aspects of the analyst’s

work and code reflected by each write-up.

1. A brief executive summary which focuses on the results of his chosen KNN classifier and

their implications within the context of the problem. This would provide high-level man-

agers, policy makers, etc. an overview of the analyst’s results without requiring them to wade

through any technical details.

2. A multi-resolution report that summarizes the process of generating the final KNN classifier

from the raw data, and that allows the reader to drill down into particular components to see

the details. This would serve more technical managers or researchers in the same field by

allowing them to view both the big picture result and the details (i.e., that KNN with k=5 was

used on data comprising 25 principal components) of how that result was generated.

3. A technical report discussing the code which generates the final result from the raw data,

including implementation considerations and a comparison of alternative implementations.

This would serve a team implementing the analyst’s approach within a production system or

larger analysis.

4. An academic article describing the analysis. This would serve as the primary introduction

to the analyst’s work for peers in his field. A typical article’s narrative would include a

discussion of the final method and results, a subset of the exploratory results (e.g., select

plots) and possibly a brief mention of the other alternatives considered and why they were

16

CHAPTER 1. INTRODUCTION

rejected.

5. An electronic notebook giving a full account of his research path, with his actions arranged

into conceptual tasks and the reasons for each of his decisions clearly indicated. This note-

book would allow the analyst’s work to be audited and validated, as well as serving as a

detailed foundation for future extensions of the work by himself or others.

6. An interactive article which allows another investigator to test out the classifier on a different

set of data, and to consider different values of k or numbers of principal components. This

would allow other researchers interested in applying the analyst’s strategy to new data to get

a feel for how the KNN classification method behaves, and how it is affected by the data and

specific parameter value (k=5) used to generate his results.

7. An interactive research notebook that allows the viewer to select among all methods, imple-

mentations, and parameters considered by the analyst, and to show or hide supplementary

detail, at viewing time. This would allow an independent researcher or referee to validate the

statistical choices made by the analyst, as well as the implementation of the chosen methods.

We now consider which portions of the analyst’s full process would be included in a selection of

the types of write-up described above, and why. We also determine which portions of the analyst’s

code are necessary to replicate each write-up. By describing the write-up types this way, we will

see that each type corresponds to describing a subset of the full body of research. We expand on

the concept of write-ups only requiring a subset of the analyst’s full body of work later in this

chapter.

The executive summary (1) describes only the results of the final chosen classifier. To replicate

the results presented in this type of report, we need only the code to import the data, generate

the principal components, generate the final classifier, and calculate error rates and other perfor-

17

CHAPTER 1. INTRODUCTION

mance summaries. The intermediate explorations performed by the analyst and the alternatives he

considered but ultimately decided against are not necessary for the creation or replication of his

final results. Aspects of the analyst’s research which are not necessary to regenerate the results

presented in such a summary include his explorations of the raw and principal component data,

the investigation of two-digit classifiers, the creation of the random forest classifier for all ten dig-

its, and the investigation of other values of k or numbers of components for the ten-digit KNN

classifier.

The multi-resolution “drillable” report (2) summarizes the process of fitting the classifier while

allowing the viewer to access more detail about specific steps. Because this write-up relates only

to the generation of the final results, it requires the same code as the executive summary to be

replicated, though more of the process can be visibly displayed and described to the viewer in this

case.

The technical description (3) again discusses only the steps necessary to generate the final re-

sults from the data based on the analyst’s choices. Here, however, the analyst includes discussions

of other implementations of his final strategy, including different strategies for generating the prin-

cipal component data and any investigations he made into alternate ways of performing the actual

KNN method. To replicate this report, we need code to create the final classifier using each combi-

nation of all implementations he considered for principal component generation and KNN fitting.

As before, none of the data explorations, two-digit classifier investigations, alternative ten-digit

classifiers, or different parameter values for the KNN classifier are necessary for replication.

The academic article (5) would likely add a selection of the exploratory visualizations to a

discussion of the final classifier and its result. It would also likely mention that other values of k

and numbers of principal components were considered, and why the final ones were chosen. To

18

CHAPTER 1. INTRODUCTION

replicate such an article, we require full code to generate each image in the article, as well as the

code to generate our final results from the raw data. We would not need the two-digit classifier

investigations, code to generate any numeric summaries or plots not used in the article, or any code

involving the random forest classifier for replicability.

The comprehensive research notebook (6) involves all work done by the analyst. Thus, to

replicate the results in the notebook, the full body of code generated by the analyst is required.

Replicating this corroborates both the results and the research decisions made by the analyst.

Furthermore, the material necessary to replicate the research notebook also allows us to repli-

cate all possible write-ups of the research because it encompasses the entirety of the analyst’s work

on the project. This is key to our strategy for representing computational research via dynamic doc-

uments, which we will see later in this chapter.

Looking back at the analysis process

We now briefly pause to discuss the shape and flow of the analyst’s work, as this will serve as a

major motivation for the design of our proposed documents in Section 1.2. We provide a simplified

illustration of the structure of his research process in Figure 1.6, as well as a brief discussion below.

The analyst’s work can be described as a series of high-level tasks. He first explored the data, at

both the individual observation and full dataset levels. He then performed a preliminary analysis

on only two of the classes (‘1’s and ‘8’s), testing a number of different prospective classification

methods. Finally, he used what he had learned while performing those tasks to implement and

decide amongst a smaller number of methods for all ten classes.

19

CHAPTER 1. INTRODUCTION

Read in
Data

Dimension
Reduction

LDA Raw

Choose
Final Method

KNN RF

Analyze Results

LDA KNN RPARTQDA RF

Explore
One Obs

Explore
Variability
Across Obs

Preliminary 2-class Analysis

Exploration

Build Final Classifer

Dimension
Reduction

Skip
2-class
exploration

Building 2-class learners
(unordered / parallel)

Skip all
'non-essential'
computions

Figure 1.6: A simplified illustration of the structure of the digit analyst’s research. Essential tasks and selected
alternatives, i.e., those computations required to generate his final classifier and results – and the connections between
them – are drawn in black. Exploratory tasks, unselected alternatives, and their connections are pictured in grey. The
essential tasks make up a small fraction of the analyst’s work overall, and furthermore the workflow outlined in black
is very different from the research process which selected the final strategy. Note some levels of nesting are omitted
for simplicity.

20

CHAPTER 1. INTRODUCTION

Each of these high-level tasks contained multiple lower-level conceptual sub-tasks. His initial

explorations can be thought of as the combination of an “explore a single observation” sub-task

and an “explore the regions of the grid which tend to vary across the dataset” sub-task. Likewise,

the preliminary analysis is made up of a collection of sub-tasks, one for dimension reduction and

one for each classification method he considered at this stage.

These tasks and sub-tasks contain the decisions made by the analyst, as we see in the ten-class

analysis tasks, where he actively decides among classification methods. The dimension reduction

sub-task also contains a decision, where the analyst chooses how many principal components to

use. We discuss these structural concepts in more detail, as well as how they motivate a different

type of dynamic document, in Section 1.2.

1.1.2 Exploring housing prices in the San Francisco Bay Area 2003-2006

In our second example, another analyst is tasked with investigating houses in the San Francisco

Bay Area which were sold more than once in the mid-aughts using a census of housing sales data

from April 2003 to June 2006. Each observation consists of the date and price of a sale, as well as a

number of attributes of the house sold (e.g., number of bedrooms, address, city, county, geographic

location in longitude and latitude, interior and lot size, and age of house).

The analyst first assesses the quality of her data by inspecting each variable for obvious prob-

lems which could impact her findings. She attempts to correct any values which are obviously

erroneous, and sets incorrect values she is unable to correct to missing. The analyst starts with the

variables for lot and building square-footage (lsqft and bsqft). Using a numeric summary,

she identifies a number of highly suspect lot square-footages, including the minimum (19) and the

maximum (418,611,600) which seem obviously erroneous.

21

CHAPTER 1. INTRODUCTION

The analyst must choose a low and high value cut-off for values she will accept as correct.

Through some external research via the Web she finds that so-called “eco homes,” some of the

smallest modern houses in the world, require lot spaces in the mid-double to low-triple digits (e.g.,

60 sqft, 240 sqft). The smallest lot square-footage value she is able to corroborate via external

listings is 355 sqft. She chooses this as her lower cutoff, making a note of the URLs for the page

where she found information about eco homes and for the Internet listing where she confirmed the

355 sqft lot-size for a house in the dataset.

The analyst is more comfortable thinking about large lots in acres. She looks up the conver-

sion between acres and square-feet (43,560 sqft = 1 acre) before considering upper-bounds for lot

square-footage. The reported acreages range from less than one up to 9,610. She spot-checks a

handful of houses with more than a few acres against external data. The values she checks below

200 tend to be corroborated, while none of the values above are. She notes that Web scraping or

available APIs might be used to automate the checking process, but does not pursue that strategy

now. She chooses 200 acres as her cutoff for assuming a listing is erroneous. She also thinks

that properties with large acreage (farms, ranches, vineyards) might be different in some important

ways from urban or suburban homes. She decides not to exclude properties with large (sub-200

acre) lots, but makes a note to herself to revisit this decision if warranted by downstream results.

Next, the analyst determines limits on building square-footage (bsqft). She sets a minimum

of 400 sqft and a maximum of 13,000 sqft. As with lot square-footage, she arrives at these limits

via a combination of general external research and specific spot-checking of observations with

extreme values against Internet listings for the property.

The analyst notes that lot square-footage restricts building square-footage as well. Building

square-footage can be larger than lot square-footage for multi-story residences, but they are un-

22

CHAPTER 1. INTRODUCTION

likely to have more than three or four stories at the extreme. The analyst decides to consider any

building square-footage more than four times the listed lot square-footage to be an error.

For the price variable, the analyst does not find any obviously erroneous values. The minimum

($22,000) and maximum ($20 million) appear to be corroborated by Web listings, the latter being

a large winery in Napa valley. The analyst decides to leave price as is.

For city, the analyst finds that there are separate values for “Belvedere/Tiburon”, “Belved-

ere/tiburon”, “Belvedere”, and “Tiburon”. She learns that Belvedere, CA and Tiburon, CA are

“twin cities”, historically distinct cities that have grown together. She decides to combine all four

values, but notes that only correcting “Belvedere/tiburon” to “Belvedere/Tiburon” might also be a

valid approach. She also fixes some obvious typos, e.g., “oakland” to “Oakland”.

For construction year, the analyst corrects non-ambiguous two-digit years into four digit values

(e.g., 99 to 1999). She sets ambiguous two-digit years (0 could be 1900 or 2000) and years larger

than 2006 as missing.

The analyst then briefly detours to get a better sense of how house prices are distributed in

general before looking more directly at houses which were resold during the time frame. A plot of

sale price’s marginal density (Figure 1.7) shows that it is extremely positively skewed. The analyst

inspects the data’s empirical quantiles to investigate further, finding that 90% of the houses sold

for less than about 1 million and 99.9% sold for less than about 3.5 million.

The analyst finally turns her attention to the goal at hand. Her task is exploratory: investigate

the characteristics of houses which were sold more than once in the time-frame. She first identifies

houses which were bought and then resold within the dataset and calculates the profit for each

resale. She finds that some addresses were listed as sold numerous times in the four year period,

up to 33 times or more than once every two months. She investigates and finds that this is an

23

CHAPTER 1. INTRODUCTION

apartment complex where the units were all listed under the same street address. She goes back

and filters for houses which were sold between two and five times in the dataset. This leaves her

with approximately 26,000 observations.

0 5000 10000 15000 20000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

House sale price

Thousands of dollars

D
en

si
ty

Figure 1.7: Density of sale price (in $1000s) for all Bay Area houses 2003-2006. A simple density plot of sale price
across all observations in the dataset confirms the analyst’s suspicion that price is highly skewed. She will keep this in
mind when designing future plots involving price.

After cleaning the data, the analyst starts with an inspection of the profits from house resales.

She finds that profits ranged from -3.6 million to 4.65 million dollars, and were positive on average

with a mean of $102,000 and a median of $84,000. As a percentage of the previous purchase price,

these sales ranged from 92% loss of value to 890% profit, with a median of 19% profit and a mean

of 24%.

The analyst then looks at the amount of time each house was owned before it was resold. She

finds that some houses were “resold” after zero days, and concludes that these are likely the same

sale listed twice. In fact, she finds that a fair portion of the alleged resales are after suspiciously

24

CHAPTER 1. INTRODUCTION

short amounts of time and for the same amount both times.

The analyst decides that she will consider 90 days to be the minimum time for her to consider

two sales legitimately different. She revisits her code for identifying resales, deciding to include

only sales in which the house was held for more than 90 days and had different sale prices listed

in the two observations. She makes a note that she has chosen 90 days, but that this is arbitrary

and other limits such as 60 or 120 days might be equally reasonable. This reduces her number of

resales from 26,000 to 19,000.

With her revised dataset, the analyst recalculates the profit summary. The minimum and maxi-

mum for both absolute and relative profits remain unchanged. The averages, unsurprisingly, differ

with new means of $136,500 and 32%, and medians of $115,000 and 27% for absolute and relative

profits, respectively.

The analyst decides to investigate the relationship between location and house resales. She

creates boxplots of the relative profits from each county; first she tries standard boxplots before

settling on a violin-plot with the median and outliers overlayed (Figure 1.8). Some counties had

larger absolute ranges than others, but this was reflected primarily in the outliers. The behavior for

non-outlier data was quite similar across the counties.

Next, the analyst investigates how often houses were resold in each of the counties. She starts

by looking at absolute numbers of resales, but quickly realizes that this is misleading because the

counties did not have comparable numbers of total sales. She considers percent of total sales which

were resales instead, again by county. She finds that the county-level resale percentages ranged

from approximately 5% for San Francisco County to about 8.7% for Solano County.

25

CHAPTER 1. INTRODUCTION

R
el

at
iv

e
pr

of
it

0

2

4

6

8

Alam
ed

a
Cou

nt
y

Con
tra

 C
os

ta
 C

ou
nt

y

M
ar

in
Cou

nt
y

Nap
a

Cou
nt

y

San
 F

ra
nc

isc
o

Cou
nt

y

San
 M

at
eo

 C
ou

nt
y

San
ta

 C
lar

a
Cou

nt
y

Sola
no

 C
ou

nt
y

Son
om

a
Cou

nt
y

l l l l l l l l l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

lll
l
l
l

l
ll

l

l

l

l

l

l

l

l

l

ll

l

ll
l

l
l

l

l
l
ll
l
l
l

l

l

l
l

l

l

l

l

l

ll
l

l

ll
l
ll

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l
l

lll

l

l

l
l

lll

l

l
lll

l

ll

l
ll

l

lll

l

l

l

l

l
l

l

l

ll

l

l

l

ll
l
l
l

ll
llll

l

l
l

ll

ll
l
ll

l

l
l

l

l

l

ll

l

l

l
ll

l

ll
ll
l

l
l
l

l
ll
l

l

l

l

lll

l
ll

l

l

l

l

ll

ll

l

l

l

l

l

l

ll
l

ll
l

l

ll

l

l

l

ll
ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l
ll

l

lll
ll

l
l

ll

l

l

l
ll

l

l
ll
ll

l

l

l

l

l

l

l
ll
l

l

l

l

ll

lll

l
l

l

l

l

l

l

l

l

l
l

l
l
l

l

l

l
l
l
l

l

l

l

l

l

l

l

l

ll

l

lll

ll

l

ll

l

ll

l
l
l

ll

l
l

l

ll

l

l

l

l
l

l
ll l

l

l

l

l
l

l

l

l

ll

l
l
l
l
l

l

ll

l

l
l
l

l

l

ll
l

l

l
l

l

lll

lll

l

l
ll

l
l

l

l

l
l

l

l

l

ll
l

l

l

l

ll
lll
l

l

ll

lll

l

lll
lll

l

l

l

l
lll

l

l

l

l
ll

l

l

l

l

l

lll

l

lll

l
l
l

l

l

l

l

l
ll

l

l

l

l

ll
l

l

l

l

l

l

l
l

l

l

l

ll
ll

l
l

l

l
l
l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l
l
l

l

l

l

l

l

l

l

l
l
l
ll

l

l

l

l

l

l

l
l

ll

l

ll

l

l

l

l

l

l

l

l
llll
ll

ll
l

l

l

ll

l

l

l

ll

l
l

l

l

l

l

l
l

l

l
l

l

l
ll

l

ll

l

l
l
l

l

lll
l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

ll
l
l

l

l

l
l

ll
ll
l

l

l
l

l

l

l

l

l

l

l

l
ll

l

l
l

l

l

l

ll

l

l

l

l

ll

l

l
l
l

l

l
l
l
lll
ll
l

l

l

l

l

l
l

l

l

l
l

l

l

ll

l

ll

l

l

l

l

l
l

l

l
ll

l

l
l

l

ll

l

l
ll
l
ll

l

l

l

l

l

l

l

ll

l

l

l

Figure 1.8: Distributions of relative profit from house resales by county. A violin plot of the relative profit from
house resales by county shows that while the range and number of outliers differ dramatically between counties, the
core distributions appear largely the same.

The analyst investigates resale rates by city. There are too many cities to create easily readable

boxplots, so she relies on numerical summaries. The resale rates for cities with at least 100 sales

range from 0% (no resales) up to a maximum of about 10%. The mean and median city resale rates

were both just under 6%, with the median slightly higher (0.1%) than the mean.

After investigating the range of resale rates by city and county, the analyst decides to look for a

relationship between resale rate and the price of residences in the area. She considers three general

ways to assess typical price for a location: median, mean, and trimmed mean of house prices. She

decides to use the median for both cities and counties. A plot of median house price against resale

rate for all cities (Figure 1.9) does not show any obvious relationship at the city level. The analyst

retains the plot, however, to keep a record of this negative result for both herself and anyone else

who might review or study her work.

26

CHAPTER 1. INTRODUCTION

l ll ll ll ll l ll

l
l

ll
l

l lll
l

llll
ll ll l ll l ll

l llll ll l l ll ll l ll ll ll ll l lll ll ll ll lll l ll lll ll l lll ll ll ll lll ll lll ll lll l ll l lll lll l ll llll ll l lll lllll l
ll llll l lllll ll l

ll l l llll l l l

l l l l

l

500000 1000000 1500000 2000000

0.
00

0.
05

0.
10

0.
15

Median sale price 2003−2006

R
es

al
e

ra
te

 2
00

3−
20

06

Figure 1.9: Resale rate vs median house price by city. A plot of resale rate against median house price for each city
in the data. The analyst concludes that there is no obvious relationship between typical house price for a city and how
often houses were resold there.

The analyst finds a strong negative relationship between county median price and resale rate,

however. Plotting these values against each other (Figure 1.10), the downward trend of resale rates

is obvious, although the relationship is among many fewer points. She corroborates the relationship

by calculating the correlation (-.78), meaning that in general the more expensive counties had the

lower resale rates and the less expensive counties had the higher rates. The analyst makes a note

of this and will revisit it when she is considering and interpreting her results.

Finally, the analyst decides to investigate sales which resulted in no net profit. Subsetting her

dataset of resales, she finds that 767 houses were resold without net gain; 508 of these were sold

for a monetary loss. She notes that 508 sales is a tiny fraction of all sales in the full dataset

(approximately 0.2%), but constitutes over 2.5% of the roughly 19,000 resales.

27

CHAPTER 1. INTRODUCTION

l

l

l

l

l

l

l

l

l

4e+05 5e+05 6e+05 7e+05 8e+05 9e+05

0.
05

0.
06

0.
07

0.
08

Median sale price 2003−2006

R
es

al
e

ra
te

 2
00

3−
20

06

Figure 1.10: Resale rate vs median house price by county. A plot of resale rate against median house price for each
county. This plot shows a clear and strong negative linear relationship. More expensive counties had fewer resales.

The analyst decides to look at rates of sale for a loss within resales in general. There are not

enough observations for her to investigate at the city level, so she focuses on differences among

the nine counties. The percent of resales resulting in a loss range from nearly 1.7% (Contra Costa)

to around 5.2% (Marin). All but two (Marin and San Mateo) are between 1.6% and 3%.

The total resale rate had a strong relationship to price (by county), and so the analyst investigates

whether resales-for-a-loss have a similar relationship. In fact, generating the analogous scatterplot

(Figure 1.11), shows her an almost perfectly opposite relationship. The analyst again confirms by

calculating the correlation between her variables, finding a slightly stronger relationship (0.84).

28

CHAPTER 1. INTRODUCTION

l

l

l

l

l

l

l

l

l

400000 450000 500000 550000 600000 650000 700000 750000

0.
02

0.
03

0.
04

0.
05

Median sale price 2003−2006

%
 r

es
al

es
 w

hi
ch

 w
er

e
pr

of
itl

es
s

Figure 1.11: Percent of resales resulting in no profit vs median house price. The relationship between % of resales
which generated no profit and median sale price is nearly the opposite of that between overall resale rate and price.
More expensive counties had substantially higher percentages of their resales generate net losses.

The analyst steps back and takes stock. She has found that more expensive counties have lower

rates of resale, but when houses are resold it is more often for a loss. She makes notes of possible

interpretations of this for further thought and use in her write-up:

1. Buyers in extremely expensive areas may tend to buy above their means and find themselves

unable to pay their mortgages more often than buyers in less expensive regions. People in this

position are more likely to sell a house at a loss.

2. Prices in expensive areas were falling during this time period.

3. All other things being equal, people purchasing in expensive areas have less reason to move,

and so would tend to do so only when forced to by circumstance. The less expensive an area

is, the more a purchaser might want to “trade up” if things go well.

We choose to stop recounting the analyst’s work here. As in our first example, more investiga-

29

CHAPTER 1. INTRODUCTION

tion would occur in a real data analysis setting, but we have enough material to motivate our next

section.

1.2 Representing the Research Process in a Dynamic Document

Having seen the work of our two analysts, we turn to the task and implications of representing

that work in a single document for each analysis. We focus on conceptual details here, leaving

implementation to later chapters.

We have two goals throughout this thesis: investigate how best to fully and reproducibly repre-

sent the data analytic research process, and explore the types of novel capabilities these represen-

tations can grant to the authors and consumers of the research. We use our sample data analyses to

motivate each concept.

We start with a description of the information we wish to capture in these documents: all work

performed by the analyst(s) during a project, relationships between groups of content or actions

by the analyst, and semantic information about the actions, decisions, code or text contained in

the document. We then describe what can be done with such documents: selecting a narrative or

subset to process from the full document, computing on the document to analyze the research or

its results, and exploring the full research process interactively.

1.2.1 Comprehensively describing the research process

Early in the handwritten digit analysis we described above, the analyst performed LDA on the ‘1’

and ‘8’ classes using the raw data. A journal article describing his results, however, would almost

surely make no mention of this.

The code applying LDA to the raw data didn’t even run correctly, throwing an error due to non-

30

CHAPTER 1. INTRODUCTION

singularity of the sample covariance matrices for the two populations. Nonetheless, attempting

LDA was an important step in the research process. The error thrown when evaluating this code

caused him to look more closely at his data, eventually finding that many of the pixels far from the

center of the 28x28 grid were constant with value 0 – indicating no ink – across all the observations

in the data. From the presence of these constant pixels and an exploration of colinearity among

the remaining non-constant pixels, the analyst inferred that he could perform some dimension

reduction with zero information loss, and could probably reduce the dimension greatly with only

minimal loss.

The choice to use principal components to transform the pixel data, then, was motivated di-

rectly by the analyst’s attempt to use LDA with the raw data. He gained further insight from his

exploration of other methods in the ‘1’ vs ‘8’ classification portion of his analysis, narrowing down

his list of possible classification methods for the full data from five (LDA, QDA, KNN, rpart, and

random forests) to two (KNN and random forests).

Consider a dynamic document (code + text) which presents a journal article style discussion of

this digit classification analysis. The discussion would treat as implicit the insights gained from the

analyst’s two-class exploration of possible classifiers, with little or no mention of how he arrived at

them, narratively or via code. Readers would be able to confirm that the analyst’s code generates

the reported results, but unable to validate his choice of strategy.

To fully validate the analyst’s results, we must verify both his code and his decisions which

underlie that code. This requires access to more than simply a concise script which transforms the

raw data into the final results.

We saw when considering write-ups of the digit analysis that only the full, auditable journal of

the analyst’s work was sufficient to provide reproducibility for all possible discussions of the work

31

CHAPTER 1. INTRODUCTION

and its results. We refer to this feature as comprehensiveness. Comprehensive dynamic documents

act as databases characterizing all actions performed or considered by the analyst, including dead

ends, alternative methods or implementations, explorations, comparisons (implicit or explicit),

diagnostics, and confirmatory calculations. Specifically, a comprehensive document for the digit

analysis would contain the code and other details necessary to reproduce a write-up describing

the two-class exploration and then discussing the insights gained. Thus the reader can verify

the analyst’s research fully, rather than only verifying that the chosen methods do produce the

reported results. This brings reproduction of computational research closer to the fully independent

recreation of experiments possible in laboratory-based sciences.

Furthermore, a comprehensive document provides readers with the information necessary to

extend the author’s research. When applying the original author’s strategy to new data, researchers

can see the decision-making process and assess whether their new data exhibits similar enough

behavior for them to reasonably make the same strategy decisions as the original analyst. For

example, the researcher’s new data might be multi-variate Normal, suggesting that non-binary

versions of linear and quadratic discriminant classification methods are worth re-considering. In

all, this provides a much safer and more reasonable mechanism for applying existing analysis

strategies to new data than simply calling the same R functions with new data.

1.2.2 Decisions, alternatives, and tasks

The digit analyst explored two classifier methods (random forest and KNN) on the full data and

chose between them to select his final strategy. The set of methods he considered and why he

ultimately chose KNN are crucial aspects of the research process and speak directly to the weight

we might give his results.

32

CHAPTER 1. INTRODUCTION

We model an analyst’s choice between two or more considered options (even if not all are

fully implemented) with the related concepts of decisions and alternatives. An alternative is the

set of content – code, text, output, and other components – for a single option considered by the

analyst. A decision is simply a group of alternatives which encapsulates a particular, localized

choice the analyst made. In the context of our digit example we have a decision representing the

choice of classification method, with alternatives representing each of the two methods our analyst

considered for the ten-class data (KNN and random forests).

By grouping the alternatives into decisions, we encapsulate information understood by the an-

alyst: that the content and results corresponding to different alternatives in the same decision are

related. More specifically, results generated by alternatives will generally be attempting to perform

the same conceptual action, and thus can be meaningfully compared. In our classification method

example, that action would be to create a classifier, and thus we can compare the results by looking

at the classifiers’ performance. In fact, we will do this explicitly when we discuss computing on the

document in Section 1.2.5. Before moving on to that subject, however, we discuss our motivations

for explicitly including decisions and alternatives in dynamic documents.

Authors and readers can use decisions to describe and differentiate between narratives. Con-

sider again our digit example. An article presenting the analyst’s results would focus heavily or

exclusively on the final KNN classifier. Thus, we can think of constructing this narrative by se-

lecting the alternatives representing the final strategy he chose. That is not the only meaningful

narrative from the analyst’s work, however. A hypothetical narrative discussing the results if the

analyst had chosen to use random forests can be constructed by selecting the random forest alterna-

tive instead. This generalizes naturally to a concept of a thread or linear path through a document,

which we define more explicitly in Section 1.2.4 and will use extensively throughout this work.

33

CHAPTER 1. INTRODUCTION

Human readers can sometimes infer decisions and alternatives given a comprehensive list of

code (and text), but this can become difficult and tedious for large or complex analyses. Having

the decision and alternative information explicitly available both programmatically and to human

readers avoids this confusion while offering new opportunities for both displaying and computing

on the document. Modeling the decision process within dynamic documents also allows authors to

identify and reorganize implicit decisions. Explicitly considering the tasks, decisions, and alterna-

tives that make up an analysis can benefit the author in two ways: it can crystallize the strategy in

his or her own mind, and it ensures that (s)he can effectively communicate the strategy – and his

or her justification for selecting it – to others.

Furthermore, the concepts of decisions and alternatives provide a natural way for interested

researchers to extend an analysis by exploring a different method or strategy. Instead of replacing

the existing code in a linear document, the new strategy can simply constitute a new alternative

placed alongside the existing work from the original analysis.

A processing system that understands decisions and allows users to select specific alternatives

is key for fully leveraging comprehensive documents that include decision information. Such

a system can translate a simple concept such as “use the random forest alternative for the final

classifier” into a concrete set of computations to use when generating an output report (e.g., a PDF

or HTML file for human consumption) automatically, thus increasing the utility of comprehensive

documents.

We note that decisions can occur anywhere during the research process, including within a spe-

cific alternative from a previous decision. Choosing the KNN classifier led the analyst to another

choice: the value of k (1, 3, 5). If he had chosen random forests he would not have needed to

choose k. We say that the choice of k is nested within the choice of classifier method.

34

CHAPTER 1. INTRODUCTION

Decisions can allow referees, collaborators, and even authors revisiting previous work to assess

the due diligence performed by the analyst. Questions of the form “Did you try ...?” are easily

answered. Motivated viewers can retrace the steps of the research process, viewing the intermediate

results available to the analyst when the decision was being made.

We call groups of content which combine to represent a single higher level conceptual action,

but which are not alternatives within a decision, tasks. Tasks often represent abstract concepts, e.g.,

dimension reduction, data cleaning, exploring two-class learners, generating final results. Tasks are

similar to alternatives, but their uses are very different. Tasks are typically combined sequentially

to define an overarching research workflow, while multiple alternatives within a single decision are

not generally used simultaneously in a single narrative.

Decisions, alternatives, and tasks represent important types of semantic and structural infor-

mation about the analysis described in a dynamic document. We now expand this to associating

semantic information with content in a document more generally.

1.2.3 Metadata about document elements

Additional information is sometimes helpful when determining how particular actions by an an-

alyst fit into a larger data analysis. Analysts can provide this context by annotating content in a

document with semantic information. Consider our two example analyses.

The digit analyst’s code which attempts to apply LDA to the raw ‘1’ and ‘8’ data throws an error

when it is evaluated. This error was the impetus for the analyst to use dimension reduction. When

processing or viewing a document, it is important to understand that the error is expected, and not

an indication that the processing has failed. Annotating the relevant task in a programmatically

accessible way allows the author to convey that information to both the processing system and the

35

CHAPTER 1. INTRODUCTION

reader.

In the house resale analysis, the alternatives where the analyst uses the median to calculate

typical house price by city and by county represent the same overarching strategy, even though

the decisions choosing the methods central tendency – median, mean, or trimmed mean – for city

and county prices are structurally distinct and computationally unrelated. It would be strange,

for example, to use mean for cities and median for counties. This type of inter-decision relation-

ship between specific alternatives can provide important context when selecting alternatives for

constructing a thread or narrative. One way to annotate documents with this type of relationship

information is via thread-ids that are the same when alternatives represent the same conceptual

choice at different points in the analysis. In our example, we might have three thread-ids – mean,

median, and trimmedMean – representing the three measures of central tendency the housing

analyst considered.

Another possible use of metadata is to represent different resolutions within the document.

Resolutions refers to the level of detail displayed when rendering a document or narrative. Certain

computations, results, and even entire tasks can be rendered within some narratives but hidden in

others. A prime example of this is the two-class exploration task in our digit analysis. The content

and results of this exploration would be shown in a full recounting of the analyst’s work, but would

likely be hidden in a journal article describing his results. One way to represent the concept of

resolutions is with different detail levels which can be toggled on and off during the processing or

rendering stages. We discuss the concept of detail levels and their uses more in Section 1.2.4 and

will use this concept throughout the remaining chapters.

Processing systems which support the concept of multi-resolution documents can construct both

concise and detailed narratives from the same document by automatically showing or hiding con-

36

CHAPTER 1. INTRODUCTION

tent at different detail levels. Furthermore, interactive viewing systems, such as those we outline

in Section 1.2.6, can allow users to dynamically change the resolution at which they are viewing a

document.

More generally, document authors might want to include information which is important to

record, but doesn’t belong anywhere in a typical (even highly detailed) narrative. Examples of this

might include detailed information about the data generation process, e.g., the MIAME (Brazma

et al., 2001) and MIAPE (Taylor et al., 2007) specifications used in biology, technical information

about the system the code was initially developed on, or original sources of the data used. These

pieces of information could be included in a way intended to be programmatically accessed instead

of rendered directly. To support this, we need the ability to mark these pieces of information in a

way processing systems can be designed or extended to understand.

We abstract these specific annotations in the concept of metadata. Metadata are arbitrary key-

object pairs associated with content in a document, similar to the chunk options of dynamic docu-

ment systems such as knitr and SWeave, or node attributes within XML. A key feature of metadata

is that, like the information about decisions and alternatives in the previous section, it is program-

matically accessible. Thus, it can be used when processing the document into a narrative or report.

In Chapter 2, we describe some particular pieces of metadata and how our DynDocModel package

uses them when processing comprehensive dynamic documents.

1.2.4 Selecting linear narratives and other subsets from comprehensive documents

Suppose our housing analyst wanted to generate two narrative PDF or HTML reports describing

her analysis using her comprehensive document. One uses the median to assess typical price, omits

the univariate exploration of price, and uses the 90 day cut-off for defining resales. The second

37

CHAPTER 1. INTRODUCTION

uses a trimmed mean to assess typical price, includes the exploration of price, and uses 120 days

as the resale cut-off. They both use the same data-cleaning strategies.

These two narratives correspond to different paths through the comprehensive document. Con-

ceptually, we can imagine a path as a series of choices about whether to include or exclude specific

content. In practice, this typically constitutes the choice to include or exclude optional or high-

detail content – e.g., the price exploration – and the choice of a single alternative for each relevant

decision.

We call the subset of content corresponding to a particular linear narrative the thread through

the document for that narrative. The content in a thread need not appear sequentially in the full

document, but the code portions must be able to be evaluated in the order in which they appear in

the thread. Each of the static narrative reports the analyst is generating requires the extraction and

processing of a corresponding thread from the full document. This requires a processing system

that allows dynamic documents to be subsetted either before or during processing (or both).

Subsetting can be done by concept (task), whether an element is visited by a particular thread,

metadata, content, content type, or any combination thereof. R’s extensive subsetting machinery

(R Core Team, 2014) and the XPath query language for XML (Clark and DeRose, 2006) provide

two very different models for subsetting. For the implementation we have chosen to pursue, the

XPath-like approach is more apt. We discuss this approach in some detail in the next chapter.

Metadata will often play a role in the subsets we wish to identify. This is the case in both the

thread-id and detail level cases we described in the previous section. Thread-id values can be used

to identify all content associated with a particular overarching strategy or concept. We note that

this may or may not define an actual thread. In our housing example, the median thread-id would

not fully specify a thread; we would still need to select alternatives for all the decisions unrelated to

38

CHAPTER 1. INTRODUCTION

assessing typical price. Detail level is more likely to be used programmatically to exclude portions

of the document when rendering a document or thread at a particular resolution, but it can also be

used directly by the user to identify and subset content.

We also note that the mechanism of processing a dynamic document – which we leave abstract

for now and discuss in detail in Chapter 2 – necessarily requires subsetting as well. Before the

code elements within a dynamic document are evaluated to generate new output, they must be

identified. This constitutes subsetting. Thus all dynamic document systems are already centered

around the concept of subsetting; we are simply generalizing this subsetting step to allow users to

identify portions of the document to include or exclude during processing. The concept of threads

– and our mechanisms for declaring and extracting them – provides a useful abstraction for this

general subsetting step. We discuss this abstraction, as well as how it fits into the model we have

implemented, in more detail in the next chapter.

1.2.5 Computing on the document

Beyond providing reproducibility for an analyst’s research process, comprehensive documents act

as data about the described analysis workflow and its results. Authors and independent researchers

can use these documents to ask questions about the author’s actions, decisions, and results.

We can investigate how many different final classifiers are possible via combinations of the

alternatives the analyst considered and how they compare. In this case, each distinct thread (up

to inclusion of, and choices within, exploratory computations and tasks) will generate a different

classifier. By querying the document for decisions (or simply generating all these threads) we

would see that there are two implemented dimension reduction strategies (principal components

using 25 and 150 components) and ultimately four classification methods (random forest, and knn

39

CHAPTER 1. INTRODUCTION

with k=1, 3, 5). Thus there are eight sets of possible final results encompassed by the analyst’s

work, one actual and seven hypothetical.

We can go further, evaluating these eight threads and collecting, e.g., the eight overall misclas-

sification rates on the independent testing data. We can then use these rates in further computations

(they are simple numeric objects in R). For example, we could create a plot comparing the eight

error rates to explore how method and number of principal components used seems to affect per-

formance for our data, allowing us to assess how sensitive the analyst’s results are to the specific

choices he made during his analysis. Doing this, we would arrive at Figure 1.12. We discuss

the details of generating this plot, as well as computing on documents more generally, within the

context of presenting our DynDocModel package in Chapter 2.

Now suppose we want to verify the digit analyst’s work. We might first analyze his comprehen-

sive document to determine which R packages we must have installed before initiating potentially

expensive computations. We can do this by identifying all the code in the document and analyzing

it, e.g., via Temple Lang’s CodeDepends package (Temple Lang et al., 2013), to detect calls to

library()and require(). This allows us to identify that we need to have the gplots (Warnes

et al., 2014), RColorBrewer (Neuwirth, 2011), rpart (Therneau et al., 2014), parallel (R Core

Team, 2014), and randomForest (Liaw and Wiener, 2002) packages available before we can pro-

ceed. We can use the same process to determine the requirements to run a particular thread, e.g.,

the thread that corresponds to the final article-style narrative.

40

CHAPTER 1. INTRODUCTION

Misclassification rate

C
la

ss
ifi

ca
tio

n
M

et
ho

d

knn

RF

0.030 0.035 0.040 0.045 0.050 0.055

l

l

l

l

l

l

l

l

PCs Used
l

l
25
150

Figure 1.12: Misclassification rates by method and number of principal components used. To explore how the
different final classifier candidates compare, the analyst plots their error rates together in a single plot. Note that this
plot is not created by processing a single thread through the document, but rather by interactively computing on the
document itself.

1.2.6 Exploring the analysis interactively

We saw in Section 1.2.4 that authors can use different threads through a dynamic document to

generate different static output reports. These can be targeted at different audiences by showing

different levels of detail, or used to explore hypotheticals by making different choices throughout

the analysis process and showing the results.

Readers are likely to find additional detail even more valuable if they can hide and show it

on command without reprocessing the entire document. For example, a student reading the digit

analysis might want to view the plot of the single observation to get a more concrete understanding

41

CHAPTER 1. INTRODUCTION

of the data, only to hide that content again once that understanding is gained.

Given an interactive way of rendering comprehensive documents, readers can also navigate

between specific alternatives or entire threads. This allows us to step through the analysis, inspect-

ing or even changing the analyst’s choices and viewing the corresponding output throughout the

rendered document.

Finally, we can leverage a mechanism for interactively displaying a comprehensive document

to allow authors to associate graphical user interface (GUI) controls to code elements within the

document. For example, the digit analyst might associate a slider control with the KNN classifier

instead of simply having three alternatives with different values of k. This allows the reader to

explore the effect of k on the result for a wider range of values, e.g., to check for robustness of

KNN’s results, without cluttering the document with dozens of specific alternatives.

We discuss a specific interactive viewing environment, which doubles as an authoring environ-

ment for comprehensive documents, in Chapter 3. We now conclude this chapter with an outline

of the remainder of this thesis.

1.3 A Roadmap for the Remainder of this Thesis

In the remaining chapters of this thesis we describe our contributions to the field of dynamic

documents. We have solidified, explored, combined, and implemented various ideas proposed

in (Gentleman and Temple Lang, 2007), (Nolan and Temple Lang, 2007) and (Nolan and Temple

Lang, 2014). In Chapter 2 we develop an object model for comprehensive dynamic documents as

well as a computational model for computing on and processing these documents in R. We also

present proof-of-concept software which implements these models. Next we present a case study

for modifying an existing interactive authoring and computing platform (IPython Notebook (Pérez

42

CHAPTER 1. INTRODUCTION

et al., 2013a)) to support comprehensive, non-linear documents in Chapter 3. Then, in Chapter 4,

we present a caching system designed to facilitate interactive exploration of non-linear dynamic

documents.

Our DynDocModel R package (Chapter 2) implements two computational models: an object

model for representing arbitrary linear and non-linear dynamic documents within R, and a model

for processing such documents which encompasses both currently standard and novel types of pro-

cessing. Via these two models, our package offers full support for reading, processing, computing

on, and writing non-linear documents in various file formats.

Our object model is format agnostic, allowing dynamic documents to be represented in the

same data structure regardless of input and target output format. This model allows us to design

and implement algorithms and methods for computing on dynamic documents once and apply

them across documents stored in various formats. The object representing a dynamic document is

also available to the user, allowing users to compute on the documents themselves, as we saw in

our scatter plot of misclassification rates above. This allows authors and readers alike to analyze a

body of work, extracting newly synthesized information from the full body of work done during a

research project.

For the document rendering model, we focus heavily on customizability and extensibility. Users

are able to customize behavior at each step of the standard dynamic report generation (weaving)

process (parsing, content selection/subsetting, evaluation, and rendering). We show that current

processing mechanisms, including weaving and code extraction (tangling) are achievable via our

model. We also give example of customizing each step within our model to illustrate the flexibil-

ity our system offers. Customizable parsing allows users to easily add support for new types of

dynamic documents without losing any functionality offered by the package. Content selection is

43

CHAPTER 1. INTRODUCTION

crucial for non-linear documents, as it is what allows us to specify a thread to be woven into a linear

report. With custom evaluation, users can modify the type of output to be generated. Finally, Dyn-

DocModel supports custom rendering and formatting of text, code, and generated output based

on a custom dispatch mechanism operating directly on the output objects. When taken together,

our model grants full control over both what appears in the output from processing a dynamic

document and how that content is included or displayed.

DynDocModel also supports the concepts of multiple resolution documents and interactive

code elements. We implement multiple resolutions via the detail level metadata field discussed

in Section 1.2.3, while interactive code elements are specified via a narrow but useful widget

abstraction. DynDocModel does not contain a way to directly display interactive code elements,

but it supports outputting both full documents and woven reports for viewing in our modified

IPython Notebook platform, which does support widget controlled code elements.

Our modification of the IPython Notebook platform (Chapter 3) serves both as proof-of-concept

software for creating and interactively exploring non-linear documents, and as a case-study in the

design challenges for building or modifying systems to support such documents. As such, we

present specific decisions we made when creating the software, as well as the lessons learned about

the larger issues facing developers looking to support non-linear documents. We also discuss the

successes and drawbacks of designing a single system which acts as both a document authoring

tool and an exploration environment.

Our non-linear IPython Notebook platform allows authors to iteratively construct and evaluate

linear and non-linear dynamic documents. In fact, we used the platform to author comprehensive

documents describing both of the analyses we discussed earlier in this chapter. By allowing ana-

lysts to construct non-linear documents during the analysis and authoring steps, we provide a more

44

CHAPTER 1. INTRODUCTION

convenient mechanism for creating dynamic documents (when compared to combining multiple

separate scripts piecemeal after the fact). The platform also allows authors and readers to per-

form basic interactive exploration and execution of non-linear dynamic documents. This includes

navigating between threads by selecting alternatives, switching between resolutions of the docu-

ment by changing the displayed detail level, (re)running the currently active thread, and using the

interactive code element GUI controls to explore different parameters and configurations.

Finally, our RCacheSuite package (Chapter 4) implements a form of result caching which

supports multiple caches for a single set of R code expressions within one or many documents.

This is key when dealing with non-linear documents, as different threads will often share some

code elements, but generate different values when evaluating the code expressions within these

shared elements. In particular, this type of multiple caching is crucial when switching between

alternatives or threads within a document in real time during interactive explorations. We achieve

this by proposing a new caching mechanism which takes the current values of variables used by an

expression into account when creating new caches and matching against existing ones.

Finally, we conclude the thesis with a high-level description of the work we have presented and

its contributions to the field. We first summarize the discussion and identify the key points from

each of the projects we presented. We then briefly discuss availability of the software described

in this dissertation before concluding with a summary of how our three main avenues of research

fit together to contribute to the current understanding of dynamic documents in particular and the

description of scientific research and its results more generally.

The material throughout this dissertation is based upon work supported in part by the National

Science Foundation under grant number 1043634.

45

Chapter 2

A System for R-based Nonlinear,

Comprehensive Dynamic Documents

In the previous chapter we described two data analyses, one regarding the classification of hand-

written digits and one exploring housing sales in the San Francisco Bay Area. We used these

to motivate ways in which dynamic documents can more fully and accurately characterize data

analytic research, which we briefly recount here.

We saw in both the housing and digit examples that the analysts gleaned important insights

from explorations that would be omitted from a concise discussion or recreation of the respective

final results. The digit analyst, for example, explored possible classification methods in the context

of only two populations (’1’s and ’8’s). By focusing on only two populations first, he was able to

better understand his data and rule out methods which did not perform well before moving on

to the more computationally intensive and analytically complex full problem. To understand and

validate the (digit) analyst’s final results it helps to understand and validate the intermediate results

and reasoning on which he based his final strategy. This motivated our concept of comprehensive

46

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

dynamic documents, which reflect the full body of work comprising an analysis rather than only

the portions necessary to replicate final results from raw data.

Both analysts considered and implemented multiple strategies at points in their research, before

selecting one or more methods to focus on moving forward. The housing analyst considered three

measures of central tendency when assessing typical housing prices at the city and county levels:

mean, median, and trimmed mean. She ultimately chose to use the median in both cases, but the

fact that she considered the other two approaches – and the results generated via those methods –

provides important context for both her eventual use of the median and the portions of her findings

which involved typical housing price. This type of choice by the analyst motivates grouping con-

tent into decisions and alternatives within a comprehensive document. An alternative encapsulates

the content (code + text) making up a single possibility considered by the analyst at that point, e.g.,

calculating and using the mean, while a decision is the collection of alternatives considered by

the analyst during the choice. Tasks – as described in Chapter 1 – represent groupings of content

which encapsulate a higher-level concept implemented or described by the analyst. Tasks within

the analyses we presented in the previous chapter include data cleaning, fitting a particular type of

classifier, and assessing a classifier’s performance on independent data.

When motivating the concept of database-like comprehensive documents in Chapter 1, we noted

that the analysts might prepare multiple different write-ups for different audiences. For the digit

analyst these might include: an executive summary of the final classifier’s performance for a high-

level manager, a technical implementation-centric discussion for a team putting his classifier into

production, and a full auditable record of his work. Generating or reproducing the results in each of

these write-ups requires a subset of the code in the full, comprehensive dynamic document for the

analysis. This motivates the concept of threads, which are subsets of the comprehensive document

47

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

that define a linear narrative, or “path through” the research process. We can think of these specific

threads and the resulting narrative reports as subsets or projections of the entire body of work.

We can also consider and work with non-thread subsets of a document, e.g., by omitting certain

self-contained tasks or specific alternatives. These sub-documents can be non-linear in cases when

the parent document is non-linear, but they need not be so.

We also saw that computing directly on the documents can help us better understand the re-

search in ways that viewing a narrative thread from data to results might not. In the plot of mis-

classification rates in Figure 1.12, we showed the overall error rates for the eight possible classifiers

given the methods and choices considered by the digit analyst. The plot presents information about

how the methods compare for the digit data, which would not be discernible from the result of us-

ing any single method. In Section 2.2.3 we walk through the code used to generate and extract

these values from the comprehensive document.

Finally, we discussed the concept of interactive code elements. These are elements which can

be rendered with graphical user interface (GUI) controls – e.g., sliders, buttons, and menus – that

allow the reader to control and re-run computations at viewing time.

We present the DynDocModel R package, which implements a unified system for represent-

ing and processing linear and non-linear dynamic documents in R, regardless of storage format.

DynDocModel offers a particular implementation of the ideas we recapped above. We present the

features of our package within the context of the two example analyses we discussed previously.

We assume for the entirety of this chapter that comprehensive dynamic documents for the two

analyses already exist. We present software for constructing comprehensive, non-linear dynamic

documents in Chapter 3.

The remainder of this chapter is organized as follows. We first discuss our abstraction and

48

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

object model in Section 2.1. Here we describe the data structures we use to represent dynamic

documents and their elements, as well as the mechanisms for creating and populating them. We

also discuss a simple mechanism for defining widgets for use with interactive code elements.

Next, we turn to interacting with documents and elements programmatically in Section 2.2.

We discuss visualizing non-linear dynamic documents as graphs before moving on to discuss low-

level features of the API for manipulating documents within R, such as querying and modifying

documents programmatically.

In Section 2.3, we discuss the components of our high-level weaving API for generating dy-

namic reports and other output. We illustrate the flexibility and features which our API and com-

putation model provide by weaving output reports using in-context examples from the housing and

digit analyses.

Finally, we discuss related and motivating work in Section 2.4. We first provide a brief history

of linear dynamic documents for R (and S/S-plus). We then discuss existing work in the realm

of non-linear dynamic documents for R including both a general history of non-linear dynamic

documents and a discussion of previous investigations into non-linear dynamic documents in an

R-based setting. Third, we discuss other related work, including approaches to non-linear dynamic

documents within R and a brief discussion of dynamic document work in other languages. We then

conclude the chapter with a brief recap of what DynDocModel contributes to dynamic documents.

2.1 Representing Documents as R Objects

A central tenet of DynDocModel’s design philosophy is that users have programmatic access to

the classes and functionality used internally to represent and process dynamic documents. This

access allows users to compute on the documents, moving beyond simple generation of reports. To

49

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

facilitate this, users are provided a suite of both high-level and low-level tools for interacting with

dynamic documents via our package. In fact, the high-level weaving API is built exclusively via

the exposed low-level API, ensuring that the low-level machinery provided to developers is robust

and useful. We first define our object model and then discuss the low-level interface.

2.1.1 Representing decisions, alternatives, and tasks via nesting

Gentleman and Temple Lang note that the order of code and text in a dynamic document “need

not be simply sequential but can support rich and complex document structures. For example,

the ordering of the chunks may have branches and generally may form a graph with various paths

through the nodes (chunks) that allow different readers to navigate the document in different ways.”

(Gentleman and Temple Lang, 2007) We implement the non-linearity they describe by allowing

the nesting of content within dynamic documents.

Decisions, alternatives, and tasks represent different types of content groupings within a dy-

namic document. We define structural elements to be document elements which contain nested

content and then use this nesting to represent decisions, alternatives, and tasks. We draw inspi-

ration for this model from Nolan and Temple Lang’s use of specific XML nodes to signify these

features in their Rdocbook (Rdb) extension (Nolan and Temple Lang, 2014) of Walsh’s DocBook

format (Walsh and Muellner, 1999).

A decision element is a structural element which contains the content representing the set of

alternatives considered by the analyst. An alternative element, in turn, contains the content, i.e.

code, text, and nested structural elements, representing a single considered alternative. Similarly,

a task element contains the collection of content representing a conceptual task.

We call documents which contain at least two distinct threads non-linear. This occurs most

50

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

commonly via inclusion of decision elements, but can also occur via detail levels – or other forms

of content exclusion – in documents without branching. Package vignettes and similar traditional

dynamic documents, then, are linear, whereas our database-like documents may or may not be (but

are typically not).

2.1.2 A unified, format-agnostic representation

The DynDocModel package provides a single object model for dynamic documents in R, regard-

less of input (storage) and intended output (target) format, allowing us to handle Rnoweb, Rhtml,

Rmarkdown, XML (Rdocbook) and JSON (IPython notebooks) formats within the same frame-

work. Dynamic documents are represented via the DynDoc class. We discuss the creation of

DynDoc objects – and the customization thereof – in more detail in Section 2.3.3.

The DynDoc class is a container for a – possibly nested – set of elements which make up a

dynamic document. All classes representing elements within a dynamic document inherit from the

abstract/virtual DocElement class. These element-representing classes indicate their basic type

(text, code, or structural element) by inheriting from one of three mid-level classes: TextElement,

CodeElement, or ContainerElement. Each of these basic classes has multiple subclasses which

represent specific types of elements within a document. For example, the RCodeElement class

represents code elements which contain R code, while the MDTextElement represents text ele-

ments which contain Markdown content. We list these subclasses, and what they indicate about

the elements they represent, in Table 2.1. Following that, we present the formal class hierarchy (vi-

sualized via Maechler’s classGraph package (Maechler, 2010)) representing document elements

in Figure 2.1.

DocElement objects have pass-by-reference semantics, causing them to behave differently than

51

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

Table 2.1: R classes for documents, instances, and document elements by type in DynDocModel

Class Purpose Base class
TextElement contains plaintext content TextElement
MDTextElement contains text content in Markdown TextElement
DbTextElement contains text content in DocBook

(XML)
TextElement

LatexTextElement contains text content in LATEX TextElement
RCodeElement contains parseable R code CodeElement
PyCodeElement contains parseable Python code CodeElement
DecisionElement represents a decision among two or

more alternatives
ContainerElement

AltElement represents a sing alternative within a
DecisionElement

ContainerElement

AltMethodElement a subclass of AltElement specific to
statistical methods

ContainerElement

AltImplElement a subclass of AltElement specific to
implementation strategies

ContainerElement

TaskElement represents a conceptual task ContainerElement
MixedTextElement represents raw text containing inline

code expressions
ContainerElement

MixedMDTextElement subclass of MixedTextElement for
Markdown

ContainerElement

MixedLatexTextElement subclass of MixedTextElement for
LATEX text

ContainerElement

MixedDbTextElement subclass of MixedTextElement for
DocBook text

ContainerElement

InlineRCodeElement represents an inline R expression
within a mixed text element

CodeElement

IntRCodeElement represents R code that can be ren-
dered with interactive GUI controls

CodeElement

regular R objects. This non-standard behavior allows each element to retain an accessible link to

its parent (either a ContainerElement or the DynDoc). With access to the parent of each element

we can traverse a document in both directions (up and down), whereas with, e.g., standard R list

objects we can only traverse in one (downward). DynDocModel uses this ability extensively in the

thread-related machinery we discuss in Section 2.2.3.

52

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

D
oc

C
on

ta
in

er
C

od
e

O
ut

pu
t

Te
xt

Ta
sk

M
ix

ed
Te

xt
A

lt
D

ec
is

io
n

S
ec

tio
n

M
ix

ed
M

D
M

ix
ed

D
B

M
ix

ed
La

te
x

A
ltI

m
pl

A
ltM

et
ho

d
A

ltQ
ue

st
A

ltI
m

pl
S

et
A

ltM
et

ho
dS

et
A

ltQ
ue

st
S

et
H

ea
de

rS
ec

t

R
C

od
e

P
yC

od
e

In
tC

od
e

In
tR

C
od

e
In

lin
eR

C
od

e*
In

tP
yC

od
e

M
D

Te
xt

La
te

xT
ex

t
D

bT
ex

t

In
lin

eL
at

ex
*

Fi
gu

re
2.

1:
Th

e
hi

er
ar

ch
y

of
D

oc
E

le
m

en
tc

la
ss

es
.

A
ll

cl
as

se
s,

ex
ce

pt
th

os
e

m
ar

ke
d

w
ith

*,
en

d
in

’E
le

m
en

t’
,w

hi
ch

ha
s

be
en

om
itt

ed
fo

r
br

ev
ity

.
Pu

re
ly

vi
rt

ua
l

cl
as

se
s

ar
e

sh
ow

n
as

no
de

s
w

ith
do

tte
d

ou
tli

ne
s.

53

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

We define a thread as a collection of elements from a dynamic document that defines an ordered

linear narrative. Threads correspond most naturally to paths through the directed graph represen-

tation of a dynamic document we described in Section 2.1.1. In this formulation, a thread can be

mapped directly onto a set of exactly one alternative for each relevant decision.

Threads are sets of elements which can be processed as a single sequential narrative, but the

elements making up a thread need not appear that way in the parent document. Threads can

represent narratives with some content removed – such as excluding the two-digit analysis in our

handwritten numeral example – or even subsets of the document more generally, so long as the

organization of elements in the thread is linear.

Threads will be our primary way of representing and then generating linear reports from com-

prehensive documents. Modeling different threads through the space of possible strategies consid-

ered by an analyst – separately or simultaneously – is a key feature of our non-linear, database-like

documents. We saw in Chapter 1 that this multitude of potential threads allows us to both generate

many distinct reports from the same document and to meaningfully compute on a document to

explore the described research. To effectively deal with multiple threads through a document si-

multaneously, however, we need a way for threads to share elements while still being able to make

local modifications that are not shared across all objects representing a particular element, such as

associating thread-specific output to specific ‘versions’ of the element.

We support specific modifications while retaining the overall reference semantics of DocEle-

ment objects via instances (the ElementInstance class). An ElementInstance object is essentially

a reference to a document element (a DocElement object) along with output and attributes associ-

ated with that element within a specific context – e.g., when the element is being processed within

a thread – but which should not be associated with the element in all contexts. Many ElementIn-

54

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

stance objects can represent the same DocElement. Each ElementInstance includes a reference to

the underlying DocElement in addition to instance-level information, such as attributes and associ-

ated output. This allows us to construct threads – DocThread objects – as collections of instances,

rather than collections of elements directly, as pictured in Figure 2.2. ElementInstance objects

have pass-by-reference semantics for the same reason that DocElement objects do.

The distinction between elements and element instances allows us to retain the database-like

nature of comprehensive DynDoc objects – one central data store serving many “queries” -, while

supporting the type of local modifications necessary to process threads and associate output with

specific elements within those threads. Any changes to a DocElement is immediately propagated

to all associated ElementInstance objects, while setting attributes on or associating output with an

ElementInstance is not propagated to the underlying DocElement, and thus does not interfere with

other instances of the same element. ElementInstances are typically created as needed – e.g., when

creating a DocThread object for a thread -, but can be explicitly created by the user as well.

2.1.3 Modeling local element-level interactivity in dynamic documents

An obvious form of interactivity for our comprehensive documents is navigating between threads

within a display of the entire document. We discuss that form of interactivity in Chapter 3. It

is also useful, however, to model a more localized version of interactivity centered around the

output from individual code elements. Under this model, viewers alter the parameters used in a

particular expression and immediately see the results of that change reflected in displayed output.

We have implemented a mechanism for supporting this type of interactivity within displays of

comprehensive documents and threads within them.

55

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

data
cleaning

text

model

text

Fit
KNN

text

Fit
Random
Forests

Assess
Fit

text

data
cleaning

text

Fit
KNN

Assess
Fit

text

data
cleaning

text

Fit
Random
Forests

Assess
Fit

DocumentKNN Thread Random Forest Thread

Figure 2.2: DocThread, DocElement and ElementInstance objects. Threads (DocThread objects) are represented
as collections of ElementInstance objects in the same manner that documents (DynDoc objects) are collections of
DocElements. Each ElementInstance object contains a reference to the underlying DocElement (pictured in the image
above as a dotted grey line). This allows us to, e.g., have multiple sets of output associated with the same code element
within different threads.

Consider a non-parametric regression performed via the kernel regression method (Watson,

1964). Robustness to the selection of the bandwidth tuning parameter is an important aspect of the

generated result. Robustness can be investigated and summarized in a static plot or table, but it can

also be enlightening to explore such robustness interactively. This would be useful for reviewers to

quickly assess whether the result represents a general consensus among similar tuning parameter

values. Nolan and Temple Lang have also argued that the ability for students to control parameters

and see the effects of changing them would be a valuable tool when teaching statistical methods

and reasoning.(Nolan and Temple Lang, 2007)

Given access to the code, the audience could alter specific code expressions and then re-run

56

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

them to view new output, but this would be tedious and require some care to understand the code

correctly before proceeding. A more focused and user-friendly approach is to provide graphical

user interface (GUI) style controls embedded within an article-like view which hide the details

of altering the code, re-generating the output, and updating the display from the casual user. Ex-

amples of this could include a mouse-controlled slider which resets the bandwidth of our kernel

regression – as pictured in Figure 2.3 – or a drop-down menu which selects which kernel is used

when generating the estimate.

Figure 2.3: Controlling bandwidth with a slider control. We control the bandwidth parameter of a kernel regres-
sion estimator relating distance and speed of traveling cars. By embedding an interactive control within a dynamic
document, we allow the viewer to explore the code and the effect of the specific parameters we chose (bandwidth).

One natural way of using these controls is to embed them within dynamic documents. This

extends the concept of exploring the research process further, giving audiences another tool to

57

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

gain a deeper understanding of the reported results by interactively controlling and visualizing

the effects of individual code elements. To support these controls we require two things. First, a

document author must be able to declare these controls and associate them with specific code in

his or her dynamic document. Secondly, we require a display platform capable of supporting these

controls, including both rendering them and re-running analysis code in response to their use. We

describe the concept of an interactive code element and a simple widget abstraction for use with

our object model below. We leave discussion of rendering functional versions of these controls to

Section 3.2.4 in the next chapter.

Interactive code elements – e.g., IntRCodeElement when the code is R – are an extension of

standard code elements with one or more interactive controls associated with them. An IntR-

CodeElement object is simply an RCodeElement object with additional information about GUI

control(s) that should be associated with the code and output for the element. IntRCodeElement

objects default to standard RCodeElement behavior when the output format does not support in-

teractivity.

We abstract common GUI controls (e.g., sliders, buttons, textbox inputs, etc) as widgets which

we represent as S4 objects. The information necessary to describe these widgets is somewhat spe-

cific to the platform in which the widgets will be displayed, though much of this can be handled

via different renderings of the same widget description (see Section 2.3.2). We allow arbitrary

widget descriptions by providing an empty, virtual WidgetBase class. Any object which inherits

from WidgetBase (or lists thereof in the form of WidgetList objects) can be attached to an IntR-

CodeElement in the widgets slot, specifying that these widgets should be rendered along with the

code and most recent output for the element as a means for viewers to interactively modify the

computations performed and update the corresponding output. The layout of these widgets during

58

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

Table 2.2: The IWidget class for declaring GUI controls

Slot Contains
var The name (character) of a variable the widget will con-

trol
linenum The expression index (integer) within the code. The cur-

rent expression will be replaced with an assignment of
the variable to the user selected value1

default A character value containing the default value the wid-
get should bet set to (e.g., the value a slider is initially
set to)

additional.info A list containing any additional information the target
platform might need

rendering is left to the display mechanism, though metadata on the widget or widget list objects

can dictate layout information for display programs which support this.

Beyond the base virtual class, we provide an IWidget class, and subclasses, which implements

a particular, narrow but useful way of describing how widgets should interact with rendered code.

We have designed the IWidget class to contain the information necessary to construct a GUI control

which modifies an assignment expression within the code and then re-invokes the code to generate

new output. The IWidget classes have four base slots, shown in Table 2.2.

We discuss supporting the IWidget style of widget descriptions in a display/rendering platform

in Section 3.2.4. Because we discuss the mechanism, and the benefits and downsides of this par-

ticular style of widget description there, we omit a similar discussion here.

We now turn to manipulating DynDoc objects and their elements once created. We first discuss

low-level programmatic operations on the objects in Section 2.2. We then discuss the higher-level

weaving API for generating dynamic reports and other types of output files from DynDoc objects

in Section 2.3.

59

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

2.2 Operating on DynDoc Objects

We have designed DynDocModel so that users can operate on DynDoc objects beyond simply

generating an output report. In this section we discuss a number of high-level and low-level op-

erations in the context of our digit analysis. In particular, we illustrate the high-level mechanisms

for visualizing the document structure as a graph, and for identifying threads. We also discuss

the lower-level API for querying a document for specific elements, or sets of elements, that meet

certain criteria. We leave the traditional weaving of reports to the following section.

2.2.1 Visualizing document structure

Though we represent dynamic documents as nested collections of elements, it is useful conceptu-

ally to consider the graph structure Gentleman and Temple Lang alluded to in the quote we cited

at the beginning of Section 2.1.1. This gives us a natural visualization of document structure and,

by proxy, the research process.

We can use a graph representation of a document to quickly get a general sense of its structure.

For example, the graph allows users to see the layout of content in the document and identify the

possible threads within it. This includes the ability to easily identify terminal alternatives, which

were considered by the analyst but do not fit into the larger flow of the analysis – e.g., because their

code throws an error, does not return the expected type of object, or is otherwise a dead-end in the

analysis. The graph also shows the effect of declaring detail levels, which define implicit edges in

the document graph which skip the affected content. Figure 2.4 represents the structure of our digit

analysis document as a graph. We have excluded the individual code and text elements for clarity.

The graph, drawn via our makeStructureGraph() function, is read top to bottom with nodes

representing structural elements (task, decision, or alternative) in the document. We discuss how

60

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

these element types map specifically to the graph structure and appearance below.

start

LoadData

DataLoc

local remote

WhereInk

VariancePlot NonZeroPlot

DimReduction

DRMethod

PrinComps

HowGeneratePCs

EigenFun SVDFun prcomp

Other

HowManyPCs

25PCs 150PCs

2DigitExplore

LDARaw

LDiscrPC

QDAPC

KNNPC

RpartPC

ChooseCVFun

27 28 29

RFPC

ChooseMethod

KNN

ChooseK

k=1 k=3 k=5 k=7

RForest

end

Figure 2.4: Visualizing the digit analysis process as a graph. We visualize document structure as a directed graph.
Decisions, alternatives, and the starting point of tasks are pictured as triangles, squares, and diamonds, respectively.
Tasks membership is indicated via color, with each colored non-task node belonging to the most recent task sharing
the same color. Circles represent the start and end of the document. Nodes are labeled by their id, or by position in the
list of nodes if they have no id (see nodes ’27’, ’28’, and ’29’ within the chooseCVFun decision).

The graph in Figure 2.4 represents decisions as triangles, and the beginnings of alternatives and

tasks as squares and diamonds, respectively. For nodes which represent or are contained in a task,

color indicates the nesting depth of that task. Task membership, then, is indicated by blocks of

61

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

color. A non-task element will always form a continuous color block with its closest task-element

ancestor (or it will be uncolored if there is no such task). Task elements – which are colored accord-

ing to their own nesting depth – are contained in the task whose color forms a contiguous block up

to the task. In this figure, elements with a white background are outside of the explicitly declared

tasks within the document, while those with green backgrounds are contained most directly by a

top level task, and those light blue ones have sub-tasks as their closest task-element ancestor. We

see this in the nodes labeled LoadData, DataLoc, local, and remote. These nodes form a

contiguous block of green, indicating that these are contained by the LoadData task. Similarly,

the DimReduction task consists of 8 nodes representing the analysts code, text, and decision

between methods during the dimension reduction phase of his analysis.

We can see that when reading the data in the LoadData task, the analyst made a decision

between two alternatives, but only one connects to the rest of the graph. The remote alterna-

tive contains code to read the data from a remote server which no longer provides the files for

download. This is what we call a terminal alternative, in that it cannot be used within a thread

that continues through the rest of the document (because the code will fail to load the data used

throughout the analysis). The local alternative, on the other hand, uses a local copy of the data.

Our graph makes the presence of this terminal node very obvious without needing to inspect or try

to run the code. Furthermore, we know based on the surrounding structure that were the remote

alternative to be viable, it would replace local and feed directly into the same tasks and code that

the local alternative does. The other terminal alternative in our graph (the Other alternative

within the DRMethod decision), is a note the analyst made to himself that, if analyzing the prin-

cipal component data does not perform well, he might investigate different dimension reduction

methods.

62

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

The graph for our document also highlights nesting and the relationship among decisions within

the document. Near the bottom of the graph we can see that the decision among k values for a final

KNN classifier is contained in the alternative which selects KNN as the final method. If the analyst

chooses random forests instead, the choice of k is never visited.

We provide two functions which create graph visualizations for dynamic documents. The first,

makeStructureGraph(), creates a high-level visualization of the structure of a document,

while the second, makeDocumentGraph(), displays a graph containing the code and text el-

ements as well as the structure. makeDocumentGraph() can be inappropriate for visualizing

full, lengthy documents – as we can see from the complexity in Figure 2.4, which omits individual

code and text elements – but it can be useful to get more detail by graphing only portions of a

document.

2.2.2 Subsetting and querying the document

Computing on a document often requires us to identify a specific element or set of elements within

the document before processing them further in some way. For example, researchers looking to

validate the digit analyst’s work might analyze the document to determine what R packages they

might need. This requires two steps: identifying all (R) code elements in the document, and

determining the packages loaded by each of them.

Code elements can appear anywhere in the nested hierarchy of the document. We provide

[[(), and [() methods for DynDoc and DocElement objects for extracting elements from doc-

uments using standard R syntax, but the nested hierarchy of document elements makes using these

traditional subsetting mechanisms to collect the code elements cumbersome.

Our rpath package (Becker, 2013) allows users to select from R objects via a subset of the

63

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

XPath (Clark and DeRose, 2006) syntax designed for querying specific sets of nodes from within

XML documents. Because XPath is specifically designed to work within nested structures, we can

define a path that will match all code elements (or all elements meeting some other criteria) within

the document. We provide the dyndoc rpath() convenience function, which allows rpath’s

machinery to understand how to traverse and extract attributes of DocElement objects.

Without getting into the details of how XPath works, the path "//code" would match all

<code> elements within an XML document. To retrieve a list of all the RCodeElement objects

within a document doc, then, we simply call dyndoc rpath():

codeElements = dyndoc_rpath(doc, path = "//rcode")

We can go further, however, and retrieve the code from these elements directly by accessing

their content field (as an rpath attribute) via the path:

code = dyndoc_rpath(doc, path = "//rcode/@content")

With the code extracted from the document, all that remains is identifying what libraries are

used. We do this via the CodeDepends package (Temple Lang et al., 2013):

library(CodeDepends)
script = readScript("", txt = unlist(code))
pkgs = unique(unlist(sapply(script, function(x)

getInputs(x)@libraries
)))

This generates a vector of all packages loaded by code in any R code element anywhere in our

document, as desired. We can also use XPath-style indexing when specifying threads, as we will

see in the next section.

64

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

We designed rpath so that nearly every part of its machinery is customizable, which allows

us to use the package with a wide variety of R objects with radically different structures. These

customizations include how the rpath() function retrieves the children of an object, matches

children to entity names in the path (e.g., "rcode" in our example above), and retrieves the named

list of attributes available for use in a path (e.g., "@content" above). Among other arguments,2

rpath() accepts names fun and attr fun, which allow the caller to specify R functions used to

resolve names and attributes to match against as each portion of a path is resolved, respectively.

Thus one could use the classes of R objects being traversed as names in the path in one call, or use

names() and expose the class as an XPath attribute in another, as we see in the simple example

below. In the example, we create multiple lm objects by regressing each variable against miles per

gallon (mpg). We then use rpath() to extract aspects of all the fits simultaneously by class and

name.

vars = setdiff(names(mtcars), "mpg")
fits = lapply(vars, function(x)

lm(as.formula(paste("mpg˜", x)),
data = mtcars))

modeldfs = rpath(fits, "//data.frame",
names_fun = getClassesVec)

resids = rpath(fits, "//residuals", names_fun = names)

Our first rpath() call in the code above searches the list of lm fits for elements which are

data.frame objects. In this case, it finds the ‘model’ data.frame for each fit and returns them

in a single list. Our second rpath call retrieves the vector of residuals for each fit – the named

"residuals" element within each lm object – and returns them in a list. In our simple example
2We refer our readers to the rpath documentation for a more complete discussion of that package.

65

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

Table 2.3: Default class to rpath node name mapping for dyndoc rpath()

Class rpath node name
CodeElement code
RCodeElement rcode
TextElement text
MDTextElement markdown
DbTextElement docbook
LatexTextElement latex
DecisionElement decision
AltElement alt
AltImplElement alt
AltMethodElement alt
TaskElement task
DocThread thread
DynDoc document
(other) (full name of class)

The rpath node names which match our dynamic document-related object classes. To match objects of the classes in
the left column, we use (by default) the abbreviated names on the right in our XPath expression.

we could easily achieve the same result with lapply() statements, but that quickly becomes

cumbersome when querying more deeply nested objects – such as non-linear dynamic documents.

We will use rpath() throughout this chapter via the dyndoc rpath() convenience func-

tion. dyndoc rpath() accepts the same customization options as the base rpath() function,

but provides alternative defaults designed for DynDocModel objects. Node names in rpath ex-

pressions – i.e., the names used to identify patterns to match – correspond to abbreviations (listed

in Table 2.3) of the object’s class if the parent is a DynDocModel-based object (DynDoc, Doc-

Thread, DocElement, ThreadList, ElementList, etc). Names – in the R names() sense – are used

for named list and character objects, while numeric indices are used for unnamed objects of these

types. Attributes – generated via the dyndoc attrs() function – include entries for an element

or instance’s metadata, content, and any associated output.

The rpath package also implements the concept of predicates from the XPath specification.

Predicates, which are surrounded by [] in XPath and rpath, add extra conditions which nodes must

meet in order to match the current step in the path. For example, the path "//decision[@id

66

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

==’ChooseMethod’]", when used on the comprehensive digit document, will match only the

decision element representing the choice of final classifier method between KNN and Random

Forests. We use predicates again in the next section when we present code to generate and extract

the error rates for all possible classifiers.

2.2.3 Specifying threads

The ability to generate static, linear reports is essential, even when dealing with comprehensive

documents. We do this by processing specific threads – as defined in Section 2.1.2 – through the

document. We discuss the processing itself in Section 2.3, but first we must be able to identify and

extract threads.

To characterize a thread we need four pieces of information:

1. a starting point for the thread (A),

2. an ending point for the thread (B),

3. alternatives to select for each decision along the path – through the document graph – between

A and B,

4. elements along the path which should be excluded from the thread.

With this information we traverse backwards from element B to element A, collecting a lin-

ear subset (thread) of the document. Traversing backwards from B instead of forwards from A

drastically reduces our search space of possible paths by excluding paths which originate at A but

never reach B; the number of such paths can be quite large if B is nested within a particular alter-

native rather than occurring at the top level of the document. With this thread in hand we can use

the methods discussed in the next section to generate the standard rendered linear narratives (e.g.,

articles, vignettes, and dynamically generated reports more generally).

67

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

Users interacting with DynDoc objects directly use the getThread() function to create Doc-

Thread objects representing specific threads. Starting and ending points can be specified as nu-

meric positions – interpreted as location in the list of the document’s top-level children – or by

passing the elements directly. Specifying elements directly allows users to specify threads with

starting and ending points anywhere in the document. Similarly, the lists of alternatives to select

and elements to exclude can be identified directly (as lists of elements), or as the set of elements

matching an rpath expression (as implemented by dyndoc rpath()).3 Finally, convenience

arguments threadid and detail level allow the user to specify alternatives to select via threadid and

elements to exclude from the thread by maximum detail level, respectively.

DynDocModel also provides the getAllThreads() function, which returns a list of all

threads which match a specified criteria. We can use this, along with dyndoc rpath() and the

evalDynDoc() function, which we discuss in the next section, to collect the data for our plot of

all possible misclassification rates from Section 1.2.5 (Figure 1.12):

allThreads = getAllThreads(doc, detail_level=1)
allThreads = lapply(allThreads, evalDynDoc)
errs = dyndoc_rpath(allThreads,

"/thread//rcode[@id==’finalErr’]/@outputs[1]/@value")

The above code first extracts all (valid) threads through doc (our digit analysis) and evaluates

them (by evaluating their code and capturing the output). We specify a detail level of 1 so that the

analyst’s two population explorations will not be run because it has no effect on misclassification

rate of the final classifier for all ten digits. We then use dyndoc rpath() to extract the final error

rates for each thread by identifying all (R) code elements with id "finalErr" (one per thread)

via the first portion of the path, /thread//rcode[@id==’finalErr’], and retreiving the
3getThread() selects the first non-terminal alternative when none of the instructions match any of the alternatives within a

given decision.

68

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

generated output value via the /@outputs[1]/@value portion. We discuss the details of this

in Section 2.3.1.

2.3 DynDocModel’s Computational Model

In the previous section we discussed DynDocModel’s object model for representing dynamic doc-

uments in R. Here, we describe our model for processing such documents. We define our model

in general terms, with specific forms of processing, such as the common dynamic report genera-

tion (weaving) and code extraction (tangling) operations, interpreted as special cases, rather than

wholly distinct mechanisms. We also show how this general abstraction allows extensions of cur-

rent processing paradigms.

Our model divides the processing of dynamic documents into four steps:

1. Representing the document as a DynDoc object

2. Projecting the document into the subset to be processed

3. Processing the projected document and capturing generated content

4. Rendering static and dynamically-generated content

We briefly consider a concrete example to illustrate these concepts. In the context of dynamic

documents, weaving is the dynamic creation of documents (typically HTML or PDF) containing

the code and text of a dynamic document interspersed with output generated by running the code.

Suppose we want to weave an article-like result presenting the housing analyst’s findings when a

particular strategy is used. The first step is self explanatory: we require a DynDoc object repre-

senting the analyst’s comprehensive dynamic document.

Next is projection. When creating a report from a comprehensive document, projection gen-

erates the thread that represents the specific strategy we wish the report to reflect. We can think

69

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

of this as analogous to projecting a high dimensional dataset – our representation of the analyst’s

full research process – into a lower dimensional space – the ‘space’ where this particular strategy

was chosen and used. In particular, this typically involves generating a DocThread object which

contains instances of each element which will be rendered into the report and excludes those which

will not.

In the case of weaving, processing corresponds to simply evaluating the code in the projected

document (a thread in this case) and capturing the output so that it can be inserted into the generated

report. In our model, the captured output is associated with the individual element instances in the

thread, as described in Section 2.1.2.

Finally, the collection of code, text, and generated output is rendered into the final woven report.

Because our model is format agnostic, this step involves both transforming the objects generated by

evaluating code into markup and any necessary conversion between text formats – e.g., Markdown

to HTML.

We have implemented our model – pictured in Figure 2.5 – with two core design principles in

mind. First, each step is fully customizable by the end user. We give examples of such customiza-

tions throughout the remainder of this section. Secondly, our implementation is highly modular,

such that users can call each step separately, and access all intermediate results – e.g., the Doc-

Thread after processing – for their own use.

The most common use case for dynamic documents is likely to remain the generation of woven

reports or other output files. DynDocModel implements a four-part computational model for gen-

erating output files from processed DynDoc or DocThread objects, pictured in Figure 2.6. This

represents the Formatting and Rendering component of the overall model pictured in Figure 2.5.

We discuss the details of each of the sub-steps pictured here within remainder of this chapter.

70

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

D
y
n
D

o
c

R
 O

b
je

ct
("

D
a
ta

b
a
se

")

P
ro

je
ct

io
n

P
ro

ce
ss

in
g

Fo
rm

a
tt

in
g

a
n
d

 R
e
n
d

e
ri

n
g

Pa
rs

in
g

R
m

d
 d

o
c

R
n
w

 d
o
c

IP
y
N

B
 d

o
c

R
d
b
 d

o
c

H
T
M

L
d
o
c

P
D

F
d
o
c

R
m

d
 d

o
c

IP
y
N

B
 d

o
c

R
d
b
 d

o
c

P
ro

g
ra

m
m

a
ti

c
A

n
a
ly

si
s

o
f

D
o
c/

T
h
re

a
d

/R
e
su

lt
s

O
th

e
r

d
o
c

D
o
cI

n
st

a
n
ce

 R
 O

b
je

ct
(e

.g
.,

 D
o
cT

h
re

a
d

)

Fi
gu

re
2.

5:
Th

e
D

yn
D

oc
M

od
el

co
m

pu
ta

tio
na

lm
od

el
fo

r
pr

oc
es

si
ng

dy
na

m
ic

do
cu

m
en

ts
.S

ol
id

lin
es

re
pr

es
en

tt
he

st
an

da
rd

in
pu

t-
do

cu
m

en
t-

to
-o

ut
pu

t-
do

cu
m

en
t

pa
ra

di
gm

un
de

r
ou

r
m

od
el

,w
hi

ch
en

co
m

pa
ss

es
fo

ur
st

ep
s:

pa
rs

in
g,

pr
oj

ec
tio

n,
pr

oc
es

si
ng

,a
nd

fo
rm

at
tin

g
an

d
re

nd
er

in
g.

D
as

he
d

lin
es

in
di

ca
te

th
e

cr
ea

tio
n

of
ou

r
tw

o
pr

im
ar

y
ob

je
ct

re
pr

es
en

ta
tio

ns
,D

yn
D

oc
ob

je
ct

s
re

pr
es

en
tin

g
en

tir
e

do
cu

m
en

ts
,a

nd
D

oc
In

st
an

ce
ob

je
ct

s
re

pr
es

en
tin

g
th

e
pr

oj
ec

te
d

(s
ub

)d
oc

um
en

ts
w

e
ty

pi
ca

lly
pr

oc
es

s.
D

ot
te

d
lin

es
re

pr
es

en
tp

ro
gr

am
m

at
ic

ac
tio

ns
av

ai
la

bl
e

to
th

e
us

er
vi

a
ou

rA
PI

w
he

n
op

er
at

in
g

on
th

es
e

R
ob

je
ct

s
di

re
ct

ly
.

71

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

Initialize
output
target

Finalize
output target

Repeat for each
 element

Add rendered
element to

output

Format
output

Render
output

Render one element

Convert
text

Rendered
element

Figure 2.6: The DynDocModel model for generating output files. We operate on each element separately when
constructing output markup. For each element we generate markup for any output via a two step process. We first
format the output by transforming the output (R) object into the R object to be rendered. We then render the formatted
object into the markup which will appear in the output document. We also convert any textual content into the target
markup language. Finally, we combine the text and output markup to create the rendered output for the element as a
whole, which is added to the output document.

As with other portions of our API, we focused heavily on customizability when designing our

mechanism for generating rendered output. Four high-level steps make up our model for generating

output files:

1. initialize an output target

2. generate markup representing a single element – including any associated output

3. add that markup to the output target

4. finalize the output target (e.g., writing to file or closing a connection)

By formulating our computational model with separate steps in which we initialize, add to,

and finalize the output target, we have made the rendering mechanism agnostic to how content is

added to the final document. As such, our model supports both streaming style targets based on

R’s connection objects and targets which collect markup in R before writing to disk (or not), such

as character vectors or the XML package’s XMLInternalDocument objects (Temple Lang, 2013).

72

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

This allows users to re-use logic for rendering markup, regardless of how the destination for that

markup is represented in R.

We listed generating markup from individual DocElement and ElementInstance objects as a

single top-level step above, but we actually break the markup generation into three separate sub-

steps. These sub-steps – which are also illustrated in Figure 2.6 – are formatting output, converting

text, and rendering. We define these sub-steps below.

In the formatting output step we transform any R objects representing output that are with the

element instance into the form which will be rendered into markup. Examples of this formatting

could include printing the object and capturing the console output, or transforming a lm object

into a data.frame so that we can use existing machinery, such as that found in ReportingTools or

hwriter, to represent it as a table in the generated report. We note that the format transformation is

not specific to the type of report (HTML, PDF, etc) being generated. Any transformations specific

to the output format – for example generating hyperlinks from text – occur in the rendering step

which we will discuss shortly. This distinction allows the formatting transformation to be reused

across different markup targets. Our two-stage transformation model for output is based heavily

on the model we developed when designing version 2.0 of the API for the ReportingTools package

(Huntley et al., 2013).

Next is the conversion step. This step transforms textual content into the correct markup lan-

guage as necessary. By default, this conversion is performed either by MacFarlane’s Pandoc (Mac-

Farlane, 2006) or Nolan and Temple Lang’s Omegahat XSL files packaged in the XDynDoc pack-

age (Nolan and Temple Lang, 2013), depending on source format.

Finally, the rendering step generates the final markup that will be added to the output target.

For instances of code elements with output attached, this includes both transforming the formatted

73

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

output into markup and combining it with a markup representation of the code. For text elements

and instances this typically uses the converted text unchanged. Finally, for structural elements, the

rendering process involves rendering all children and combining the resulting markup.

We implement DynDocModel such that each of these steps is fully customizable by the user.

We now go through a number of simple examples designed to illustrate our model, and the cus-

tomization available at each step and sub-step, in action. These examples, while based primarily

on our example analyses from Chapter 1, are simplified from what one might do in practice for the

purposes of conciseness and clarity.

2.3.1 Customizing the processing step

We now consider customization of the processing step in the context of weaving a dynamic report.

Recall that for standard weaving, processing refers to the evaluation of code within the document

and the capture of the output generated and values returned by that evaluation.

One of the central benefits of the dynamic document approach is the fact that output in woven

reports is automatically generated at build time by evaluating the exact code in the document. Dyn-

DocModel evaluates elements (and collections of elements, e.g., threads) via evalDynDoc().

For code elements, the code is parsed and executed and any captured output, along with the final

returned object generated by the code, are attached to the element or instance being evaluated. For

threads and structural elements, evalDynDoc() recursively evaluates each of the object’s chil-

dren. In order to generate and capture the output that we need to create a standard woven report,

then, we simply call evalDynDoc() on the thread we are weaving. Output is added to each Ele-

mentInstance object in the thread within the instances’ outputs fields as an OutputList object. The

code below extracts the default thread from doc and then evaluates it, replacing the unevaluated

DocThread with one containing output for each RCodeElement the thread visits.

74

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

thr = getThread(doc)
thr = evalDynDoc(thr)

The evalDynDoc() function also lets us customize the evaluation step. We can use this to

add post-processing to the evaluated results, use an alternative evaluation engine, e.g., Wickham’s

evaluate (Wickham, 2014) package, or capture information about the evaluation itself, such as

software versioning information, timings, date executed, etc, and add it to the output. The de-

fault evaluator uses our RCacheSuite package to perform caching-enabled evaluation, but custom

evaluators could utilize other caching mechanisms, or turn off caching altogether.

For example, suppose we want to weave an HTML report describing the digit analyst’s findings

which includes timings for evaluating each code element in addition to displaying any output gen-

erated by the code itself. By customizing the evaluation step we can add timings without changing

the document.

We customize evaluation via evalDynDoc()’s eval fun parameter. The eval fun parameter

accepts an arbitrary R function, so long as it has named code and env arguments and accepts ...

to handle any additional parameters. To generate a woven report with timings we write a custom

evaluation function which calculates execution time and adds it to the generated output:

eval_timings = function(code, env, ...) {
timing = system.time({

ret = dyndoc_evaluate(code,
envir = env)

})
as(c(ret, list(timing)), "OutputList")

}

Our eval timings() function is a lightweight wrapper around DynDocModel’s default

evaluator, dyndoc evaluate(), that adds timings to the output. The dyndoc evaluate()

function, in turn, is a wrapper around Wickham’s evaluate() function – from the package of

75

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

the same name (Wickham, 2014) – which captures errors, warnings, text printed to console, and

the final returned value when evaluating code.

We add the timings by wrapping the dyndoc evaluate() call within a call to

system.time() and add the timing result to the end of the list of outputs. We return an Out-

putList object, which is a simple list re-classed via S4. This ensures that DynDocModel can

differentiate between a single output which is a list, and a list of multiple outputs, e.g., a recorded-

Plot object containing a drawn plot and the final returned object.

Once rendered, the resulting HTML file will contain all components of the standard woven

report. Following each code element (and any output for that element) there are timings for how

long it took to run that code (Figure 2.7).

Figure 2.7: Adding automatic timings to a woven report. By passing a custom function to eval fun we capture timings
for each code element – in addition to the evaluation output – and add them to the output associated with that element,
causing the timings to be automatically added to the woven report document. The timing information for our call to
knn() to fit the final model is highlighted in this screenshot. Furthermore, using the custom formatting and rendering
machinery we talk about in the next section we could have the timings appear differently in the report than the standard
output.

Thus we can use customized evaluation to expose additional or different output in woven doc-

76

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

uments. We can go farther than adding timings. For example, we can leverage Ram and Temple

Lang’s rProv package (Ram and Temple Lang, 2012) to generate provenance information and in-

sert it directly into woven reports in an invisible but extractable form. We now turn our attention

to the process of generating the actual woven report from an evaluated thread.

2.3.2 Customizing markup generation

We now consider generating an HTML report for our housing analysis by weaving an evaluated

thread into Markdown (Gruber, 2004) and then using Allaire et al’s markdown package (Allaire

et al., 2014) to transform that Markdown into HTML. By default, this is done by: initializing the

output document as an empty character vector, rendering each element and piece of associated

output into Markdown, adding to the output by pasting new content into the vector, and finalizing

the output document by calling markdownToHTML() to transform the Markdown into HTML

and write it to a file. The markdownToHTML() function takes care of including the CSS files

necessary to format code and output areas differently than text.

Suppose, however, we want to build an HTML page that compares two evaluated threads side-

by-side. We can do this by calling writeDynDoc() on each thread using a custom finishing

method so that it generates Markdown snippets that can be combined into a single page. Dyn-

DocModel provides this functionality via the compareThreads() function, but we choose to

discuss a simplified version of it here to illustrate the concept of customizing file finalization be-

havior. Our compare finisher() function, shown below, wraps each full thread in a <div>

node whose style is compatible with side-by-side display. We can then simply combine these two

<div>s into a single piece of Markdown4 and call markdownToHTML() to generate our desired

page.
4HTML code is valid Markdown syntax, so we will simply treat the <div>s as Markdown directly

77

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

compare_finisher = function(out, file, doc, ...)
{

paste0("<div style=’width:50%;float:left’>\n",
out, "\n</div>")

}

When we specify our compare finisher() function as a custom finisher in a call to

writeDynDoc(), it is passed the collected Markdown snippets representing all of the code,

text, and formatted output that make up the contents of the woven report. The writeDynDoc()

function returns the object returned by the finisher so, in our case, we will get a character vector

containing that content wrapped in a <div> node styled so that it can be displayed side-by-side

with other content.

We can now write a function which will accept two threads, generate a <div> for each of

them, and then combine them into a single page. The sidebyside() function simply calls

writeDynDoc() on each of two threads with our custom finisher, and pastes the resulting

markup into two side-by-side <div>s which appear in a single HTML page.

sidebyside = function(thr1, thr2)
{

content = paste("<div id=’topcontainer’>",
writeDynDoc(thr1, format="md",
output.finisher=compare_finisher),

writeDynDoc(thr2, format="md",
output.finisher=compare_finisher),

"</div>", collapse="\n"
)

markdownToHTML(content)

Figure 2.8 shows the page generated when we call this function with mean and median threads

from the housing analysis.

78

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

Figure 2.8: Comparing two woven threads side-by-side. We display a scatterplot of typical house price vs percent
house resales which resulted in a loss between 2003 and 2006 in the San Francisco Bay area, by county. We can see
that using mean vs median to calculate typical house price does not qualitatively affect the relationship between county
expensiveness and the rate of resales that were for a loss.

Preparing content to be inserted into the output file happens in up to three steps. First, if nec-

essary, the contents of the element or instance are formatted into the output format. For example,

if we are generating an HTML page from an Rnw file, the text – which is in the LATEX markup

language – must be converted into either HTML or Markdown. Next the converted content of the

element is wrapped in any necessary markup so that it will be displayed properly. For example,

in Markdown, blocks of code are delimited by placing them between two lines containing three

tick-marks (’’’). Finally, any output objects associated with the element or instance are formatted

into the target markup language and appended to the representation of the element. This combina-

tion of the converted and rendered element content and the formatted output is then passed to the

custom function we specified via the add.rendered parameter to place it in the output document.

We can customize how elements and output appear in the woven report via the ele-

ment.renderers, formatters, and converters arguments. Formatters modify output objects into the

79

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

form that will be rendered into markup. This can include adding or removing rows or columns

from a table, decorating columns or list elements with classes that will control how they will be

rendered, etc. Element renderer functions perform the transformation of formatted output objects

into final markup that represents the output within the resulting document. For example, we might

add a ”Link” S3 class to a column within an output data.frame during the formatting step; we

would then use that column’s contents to actually construct the links themselves during the ren-

dering step. Finally, converter functions transform textual content from its input markup format –

as indicated by the DocElement subclass, e.g., LatexTextElement – into the markup format of the

output document, e.g, HTML.

Renderer, converter, and formatter functions are selected via a custom dispatch system built on

top of Chambers’ S4 multiple dispatch system (Chambers, 2010) in R. We illustrate this mecha-

nism below in the context of formatters, noting that renderers and converters are dispatched in the

same way.

The formatting of output in DynDocModel is both object class- and target format-specific.

We can have different logic for representing, e.g., data.frame objects in Markdown, lm objects

in Markdown, and data.frame objects in LATEX. By default, formatting is handled by S4 methods

specific to the object class and output target provided by DynDocModel. We override these via the

formatters argument to writeDynDoc(), or by associating formatter(s) directly with individual

elements or instances thereof. In each case, we can specify a function or named list of functions.

When the user specifies a single formatter function, that function is called for all relevant output

objects regardless of class. When the user specifies a named list of functions, this acts as an

informal methods table – with the names indicating class – against which we perform dispatch. As

with S4 dispatch, if no method is found for the object’s direct class, methods for its superclasses are

80

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

considered in decreasing order of inheritance distance.5 Finally, if superclass methods also don’t

match, the default method – i.e., the method for the ALL class – is called. If no default formatter

is specified, the S4 generic is used, which allows users to temporarily override the formatting

behavior for some classes while retaining the default behavior for others.

Suppose we want to generate an HTML report which displays the confusion matrix – a table

object – in the digit analysis as a styled HTML table, rather than as verbatim text, with all other

output displayed as usual. We do this by passing a named list of custom formatters which take

precedence over the class-specific default. In our case, we can generate the report pictured in

Figure 2.9 by assigning a custom table formatter to the element instance – identified via rpath –

whose output contains the confusion matrix:

confMat = dyndoc_rpath(thread,
"/rcode[@id==’ConfusionMatrix’]"
)[[1]]

confMat$formatters = list(table = table_HTML)
writeDynDoc(thread, "customTable.html",

finish.output = table_finisher))

Passing a list with a named "table" element as the formatters argument specifies that

whenever a table object is being formatted during this writeDynDoc() call, our custom

table HTML() function should be used instead of the default (which would display the out-

put as verbatim text). The table HTML() function, shown below, transforms an R table object

into styled HTML tables and returns a FormattedOutput object containing the HTML markup.
5The first superclass method found with a particular inheritance distance will be used, regardless of how many other methods

share the same distance.

81

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

Figure 2.9: Customizing display of output in woven reports. We use a custom formatter for the table class to locally
modify how tables are rendered for the element which prints the confusion matrix to display the correct classifications
in cyan cells and the most common error for each digit in red. Other output tables are rendered normally.

library(hwriter)
table_HTML = function(object, formatters, ...)
{

mat = unclass(object) #hwrite doesn’t understand tables
classes = matrix(NA, nrow = nrow(mat), ncol=ncol(mat))
err_mat = mat
diag(err_mat) = 0
max_errs = max.col(err_mat)
classes[cbind(1:nrow(mat), max_errs)] = "mosterrors"
diag(classes) = "correct"
val = hwrite(mat, class = classes)
new("FormattedOutput", value = val, format = "html")

}

In our table HTML() function, we use Pau’s hwriter package (Pau, 2010), along with some

custom CSS, to create and style the HTML table within our woven report (Figure 2.9). Specif-

ically we create an HTML table with Cascading Style Sheet (CSS) classes "correct" and

"mosterrors" on the cells which represent the correct prediction and highest error rate for

82

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

each row (true digit class), respectively. To use these style classes, we need the CSS defining them

to be included in the final HTML page, which is why we also specified a custom finishing function

when generating the report. We omit the definition of table finisher() here, as it simply

calls markdownToHTML() in a way which forces our CSS to be included in the resulting page.

In situations where multiple custom formatters each require specialized CSS styles or JavaScript

code, they are typically added via the finalizer and the user is responsible for ensuring it is all

compatible.

Formatters can be arbitrary R functions with two restrictions: they must accept parameters

named object and formatters, as well as ..., and they must return either a FormattedOutput or

FormattedOutputList object. The FormattedOutput class has three slots: value, format, and info.

The value slot contains the R object that will be rendered into markup and inserted into the output

document. The format slot describes how the data should be interpreted by the renderer; this is

analogous to a MIME type, though the default renderers do not use proper MIME types currently.

The info slot contains a list of extra information being passed to the renderers. Users can pass

specific instructions to custom renderers via this mechanism. The FormattedOutputList class is

simply an S4-classed list that contains only FormattedOutput elements.

In our table HTML() function we return a FormattedOutput object with a format of

"html", indicating that it is HTML markup that should be inserted directly into the page. When

the output object is a plot (recordedPlot object), the FormattedOutput object will typically have

a format of "plot" and the info slot will contain information about which function should be

called to display the plot and which graphics device should be used to save it to an image file.

Renderers implement the last step of the markup generation process: transforming formatted

output into markup and combining that with markup for any relevant code and text. They return the

83

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

exact markup that will be added to the output document via the function specified by add.rendered.

Dispatch for renderers uses the same list overriding S4 mechanism described above for formatters,

with the exception that the classes in question are for the document elements/instances rather than

for output objects. The element to be rendered is passed to the renderer as the node argument.

In addition to node, renderer functions are guaranteed to receive four other named arguments:

renderers, formatters, state, and converters. A renderer must also accept ..., which allows specific

sets of renderers to accept additional arguments. With these arguments, the renderer is expected to

perform five general steps:

1. Use converters to convert any text content in the element to markup in the output format (as

necessary)

2. Add any additional markup necessary for formatting the result from (1)

3. Call formatObject() on any associated output objects

4. Transform any FormattedObject /FormattedObjectList objects from (3) into raw markup in

the output format

5. Return the combined markup from (2) and (4)

We illustrate the use of custom renderers by discussing a set of renderer functions which will

tangle, or extract only the code from, a thread or linear document. Tangling is distinct from

weaving in that the code is not evaluated, but we can use the same machinery (writeDynDoc())

to tangle a script as we do to emit a woven report by using different renderers. DynDocModel

provides tangling functionality, but we will discuss building a set of simple tangling renderers as

an illustrative example.

We need renderers for four different types of objects associated with threads: element instances;

code elements; structural elements such as tasks, and alternatives; and one for all other types

84

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

of elements. Our code element renderer simply emits the code content unmodified. We render

container elements by rendering each of their children and combining the results. For instances,

we render either a) their underlying DocElement if they have no children, or b) each of their

children. For all other types of elements, we return an empty character vector, though we could

add a renderer for text elements that emits comments if we desired. We include the code for these

renderers in Figure 2.10. Since our tangling renderers will never need the formatters, converter, or

state information, those arguments are subsumed in ... for brevity and readability.

tangle_code = function(node, ...) node$content

tangle_cont = function(node, ...) {
content = lapply(node$children, renderElement, ...)
unlist(content, recursive = TRUE)

}

tangle_inst = function(node, ...) {
if(length(node$children))

tangle_cont(node, ...)
else

renderElement(node$element, ...)
}

tangle_other = function(node, ...) character()

Figure 2.10: Building a set of tangling renderers. We construct a tangling mechanism via four interlocking renderers.
The renderer for ElementInstance objects (tangle inst()) either renders its children, or if it has no children
renders the underlying DocElement. R code elements (RCodeElement objects) are rendered by extracting their code
via tangle code(). All DocElement classes which do not inherit from RCodeElement are “rendered” as empty
strings via tangle other().

To use our tangling renderers, we simply pass them in a list to writeDynDoc()’s renderers

argument, as in the following code

rends = list("RCodeElement" = tangle_code,
"ContainerElement" = tangle_cont,
"ElementInstance" = tangle_inst,
"default" = tangle_other)

writeDynDoc(thread, file = "tangled.R",
renderers = rends)

85

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

We omit showing the output file here, as it is simply the R code contained in a given thread’s

code elements.

The writeDynDoc() function performs the initial dispatch for renderers; specifically, it calls

the renderElement() function which acts as a custom dispatcher, identifying and calling the

appropriate method for an object given a list of available renderers and a default to use when there

is no match. We note that renderer functions can call renderElement() themselves, as we

see in our tangle cont() and tangle inst() renderers. We pass the full list of specified

renderers along in each call to a specific rendering method for this reason.

Finally, renderers are expected to return any text content in the appropriate markup language.

When the input and output markup languages are different, this requires that the text be trans-

formed into the output markup language. We provide the convertContent() function, which

custom renderers can call to perform this transformation. In addition to the content being con-

verted, convertContent() accepts input (in format) and target (out format) formats, as well

as a list of converter functions. Users customizing conversion behavior will typically modify or

extend the list of default converters, which is represented as the DefaultConverters object

within the package. Converters are organized in a two-level nested list, with output format nested

within input format, with either conversion methods (or NULL) in the leaf elements. Both levels

of nesting also support inclusion of a default element, which specifies a function to be called

when no more specific converter for the in format-out format pair is present.

2.3.3 Customizing the creation of DynDoc objects

Typically, DynDoc objects are created via the readDynDoc() function. In the simplest case,

readDynDoc() accepts a file describing a dynamic document – in any supported format – and

returns a DynDoc object representing the document. By default, the function infers the format of

86

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

the file from its extension, and can read .Rmd (Rmarkdown), .Rnw (Rnoweb), .Rdb (RDocbook),

and .ipynb (IPython Notebook) files.

In addition to providing parsers for reading the formats listed above, readDynDoc() allows

for customized parsing via the parser argument. Parsers must accept a file to parse as well as ...

(which is passed directly to the parser from readDynDoc()).

To illustrate the concept of a custom parser, we present a parser which reads R source files

that have roxygen2 (Wickham et al., 2014) comments and populates a DynDoc which contains

the documentation (in an MDTextElement) followed by source code (a CodeElement) for each

documented object in the file. We do not intend this to be a real-world applicable parser, but rather

present it solely for instructive purposes.

A parser must do two things: recognize the structure of the file passed in, and use that struc-

ture to build and populate the appropriate DocElement objects. We leverage existing function-

ality, namely various machinery in Wickham’s roxygen2 (Wickham et al., 2014) and Murdoch’s

parse Rd() and Rd2HTML() functions from the tools (R Core Team, 2014) package. We note

that this example was chosen for illustrative power rather than direct usefulness. The code for our

custom parser is as follows:

roxygen_parser = function(file, ...)
{

p = parse(file, keep.source=TRUE)
refs = getSrcref(p)
comments = roxygen2:::comments(refs)
keep = sapply(comments, function(x)

any(nchar(as.character(x))>0))
refs = refs[keep]
comments = comments[keep]
els = vector("list", 2*length(refs))
for(i in seq(along=refs))
{

rox = do_rd(as.character(comments[[i]]),

87

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

as.character(refs[[i]]))
code = paste(as.character(refs[[i]]), collapse="\n")
els[[2*i - 1]] = new("MDTextElement", content = rox)
els[[2*i]] = new("RCodeElement", content = code))

}
new("DynDoc", children = els)

}

We first parse the file using R’s parse() function, and extract the expressions for the code

and comments via getSrcref(). Next we get the roxygen2 style comments via that package’s

unexported comments() function. We use these comments to filter out expressions which are not

documented. We loop through the remaining comment-code pairs and create an MDTextElement

and an RCodeElement, adding them to a list of document elements. We generate the Markdown

(actually HTML) text via a custom do rd() function. We omit the definition of do rd() here

for brevity, but it accepts two expression objects – a roxygen comment and the corresponding code

– and returns HTML code for the documentation for the function or constant defined in the code.

Finally, we create a new DynDoc object containing our elements.

To use our roxygen source-file parser we simply pass it to readDynDoc(). We read in the

replay.r file from Wickham’s evaluate package (Wickham, 2014) (chosen for its short function

definitions, and used with generous permission from the author):

replayDocs = readDynDoc("replay.r", parser = roxygen_parser)

Once read in, we interact with replayDocs the same as we would any DynDoc document.

By calling writeDynDoc() (which we discuss in detail in Section 2.3), we get a page that has

HTML R documentation interspersed with formatted code, shown in Figure 2.11.

88

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

Figure 2.11: Using a custom parser to read roxygen2-style source files

The concept of custom parsers is key to the universality of DynDocModel. We have provided

parsers to many current dynamic document storage formats. With the ability to specify a new

parser without altering the rest of a workflow we can easily add support for new formats as they

arrive.

We have designed the DynDocModel API to be both expressive and extensible. Differentiating

and exposing the four stages of weaving allows us to provide a general mechanism useful for

both customizing the appearance of woven reports (e.g., our styled HTML table) and computing

directly on documents or threads (e.g., querying misclassification rates, visualizing the document

as a graph, or building a side-by-side comparison page).

89

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

2.4 Related Work and Other Approaches

We now present related and preceding work on dynamic documents. In Section 2.4.1, we give a

brief, general history of linear dynamic documents in the S (Becker and Chambers, 1984) family of

statistical scripting languages (S, S-plus, R). We then discuss existing work relating to non-linear

dynamic documents in Section 2.4.2.

2.4.1 Background and systems for linear documents

The first dynamic document system designed for the S family of computing languages was the

REVWEB software for S-Plus (Lang and Wolf, 1996). REVWEB is a set of S-plus functions and

external command-line tools which combine to allow users to save statistical analyses to file in a

form where they can be loaded, partially or fully re-run, and then used to generate a new version

of the report, a process the authors call reviving the analysis. The file format is based on Ramsey’s

NoWeb (Ramsey, 1994) literate programming format, which allows authors to intersperse code

chunks – in this case sets of S expressions – within a LATEX file.

REVWEB allows users to operate interactively at the individual chunk level, e.g., re-running a

code for a particular chunk, or inserting output from the previously run code into the report. This

chunk level API allows users to interactively step through their stored analyses, restart an analysis

in the middle, or even insert new code into the document.

Leisch’s Sweave (Leisch, 2002) was the first dynamic document system to be programmed

entirely in S-plus/R. Sweave also transitioned from the interactive, chunk-level command based

approach for processing documents to a whole-document approach, with users calling Sweave()

on Rnw files to automatically generate woven PDF reports by way of LATEX. This processing-

entire-files paradigm has remained dominant in R (and S) dynamic document systems. Sweave

90

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

was eventually incorporated into the core R distribution, and plays a central – and until the recent

introduction of the vignette engine option, exclusive – role in R’s package vignette system (R Core

Team, 2014).

One exception to the processing-entire-files paradigm among REVWEB’s descendants is Gen-

tleman and Gentry’s DynDoc (Gentleman and Gentry, 2013) package within the BioConductor

project(Gentleman et al., 2004). The DynDoc package offers a simple object model and chunk

level API for Rnw files. Zhang’s tkWidgets (Zhang, 2013) leverages the DynDoc API to offer

a vignette explorer GUI (vExplorer()) for interactively viewing and executing package Rnw

files.

Dynamic documents have also entered the realm of so-called WYSIWYG (what you see is

what you get) text editors, e.g., with Kuhn’s odfWeave (Kuhn, 2014). odfWeave allows authors

to create dynamic documents in the Open Document Format (ODF) (Brauer et al., 2005), which is

used by the word processors in the OpenOffice and LibreOffice productivity suites. Temple Lang

and Becker also investigated a dynamic document system for Microsoft Word documents by using

styles to identify code chunks in their RWordXML (Temple Lang and Becker., 2013) package.

Finally, Xie introduced the Rmarkdown format, a NoWeb based format with text in Markdown

rather than LATEX with his knitr (Xie, 2013a) package. Other than the difference in the underlying

format, knitr reworked the internal machinery and formatting mechanisms from Sweave with

an eye to making them more flexible and easily customized. knitr has proven to be a popular

successor to Sweave, and was recently a contributing factor to the decision by the R Core Team to

implement the concept of vignette engines (R Core Team, 2014), which allow package authors to

specify the software which should be used to process their vignettes.

91

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

2.4.2 XDynDocs, IDynDocs, and Vistrails

The primary existing work for non-linear dynamic documents is Nolan and Temple Lang’s XDyn-

Docs (Nolan and Temple Lang, 2013). XDynDocs uses the Rdocbook (Nolan and Temple Lang,

2014) extension of the DocBook document format to describe and store dynamic documents. The

Rdocbook vocabulary includes tags for tasks, decisions, and alternatives which serve as the in-

spiration for our element types. XDynDocs includes some initial experiments in processing and

rendering documents containing decisions, though its historical focus has been largely on process-

ing linear documents.

Nolan and Temple Lang use standard XML technologies to query (XPath (Clark and DeRose,

2006)) and process (XSL (Berglund, 2006) and XSLT (Clark, 1999)) via the XML (Temple Lang,

2013) and Sxslt(Temple Lang, 2011) packages, respectively. Furthermore, XInclude (Marsh et al.,

2006) allows Rdocbook files to be constructed modularly. Their use of XML technologies pro-

vides a built-in object model. The XML package’s use of externalptr objects to represent XML

documents and their elements, however, makes this object model difficult to extend directly via R

classes.

XDynDocs uses S4 dispatch to format output objects. This use of the actual output objects –

as opposed to captured textual output – served as an inspiration for our system of formatters and

renderers. Our extensions to Nolan and Temple Lang’s pure S4 system were largely motivated

by lessons learned when designing and implementing the API for version 2.0 of Huntley et al’s

ReportingTools (Huntley et al., 2013) BioConductor package.

Nolan and Temple Lang also pioneered the concept of interactive renderings of R-based dy-

namic documents that allow the reader to control parameters or other aspects of the code via GUI

controls with their IDynDocs (Nolan and Temple Lang, 2007) package. In some sense this can

92

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

be seen as an extension of Zhang’s vignette explorer from tkWidgets, but while Zhang focused

exclusively on executing code chunks, perhaps repeatedly or out of order, Nolan and Temple Lang

provide a mechanism to alter and then re-run code chunks, making the focus and scope of their

work quite different.

Beyond invoking the evaluation of code chunks via GUI buttons, IDynDocs allows interactive

controls like sliders, drop down menus, etc to control the actual computations performed. For

example, an author using a kernel-based smoother might allow readers to set and change the band-

width used via a slider, or select the type of kernel via a menu. This serves as the direct inspiration

for our interactive code elements.

2.4.3 Other related work

We also build on ideas from other realms of research. The concept of recording analysis sessions

in a queriable and replayable manner has received quite a bit of attention in the arena of interactive

visualization environments.

Vistrails (Bavoil et al., 2005) is a provenance and scientific workflow system. While it is not a

document system per se, Vistrails shares many conceptual features with the comprehensive docu-

ments we propose. It allows scientists to define non-linear workflows which encompass analytic

choices in a way similar in function to our decision elements. Vistrails also allows results to be

embedded directly – and dynamically – within LATEX documents. Furthermore, VisMashup (San-

tos et al., 2009) allows VisTrails-based results to be associated with GUI controls similar to those

produced by IDynDocs and the present work.

In the context of visualizing query results from a database, Lee and Grinstein propose storing

the queries used and information about the results within the database itself(Lee and Grinstein,

1995). This allows the analyst to query and reason about both what was done and what the results

93

CHAPTER 2. A SYSTEM FOR R-BASED NONLINEAR, COMPREHENSIVE DYNAMIC DOCUMENTS

were, both major focuses of our comprehensive documents.

Some visualization exploration systems also recorded certain types of decisions by the analyst,

similar to our proposed documents. The GRASPARC system (Brodlie et al., 1993) defined analysis

questions as computational questions answerable by a particular sequence of steps which rely on

a predetermined set of modifiable parameters. Decisions in this context were then defined as the

analyst modifying one or more of these parameters and restarting the analysis at a particular step.

These decisions were represented as branches within a tree structure representing the full history of

actions in the session. These systems do not deal in documents in the sense we use the term. Even

so, they provide context and insight into the value of having more complete information about the

research process available after the fact.

We have presented the DynDocModel R package. Our package offers an accessible, unified ob-

ject model for dynamic documents, including non-linear comprehensive documents which capture

a more complete picture of the data analytic research process.

DynDocModel offers the ability to perform both traditional processing (e.g., weaving dynamic

reports) and less traditional computations on the document. Furthermore, each weaving subsystem

(reading in document, selecting a subset of content, evaluating code in a document or thread,

transforming content and generated output into the final output form, and constructing the report

itself) is highly customizable, with full control given to the user.

We now turn to the task of creating non-linear documents. In our next chapter we discuss our

custom fork of the popular IPython Notebook interactive computing platform (Pérez et al., 2013a),

which allows authors to construct documents with tasks, decisions, and different levels of detail in

a GUI driven interactive system.

94

Chapter 3

Authoring and Exploring Non-Linear

Documents

We saw with our housing and digit classification analyses in Chapter 1 that non-linear documents

can capture a richer and more accurate picture of the data analysis process. Decision elements

allow analysts to preserve abandoned analysis strategies or implementations without interfering

with the ability to run and view the results of the current strategy. We saw this in our digit example,

where we had working code for generating random forest (Breiman, 2001) and k-nearest neighbor

(Cover and Hart, 1967) classifiers from our training data, even though only one such classifier

will be generated when producing the final narrative (e.g., a report describing the recommended

strategy). Task elements further enhance an author’s ability to capture the research process by

grouping content in the document and adding semantic information.

In previous chapters, we have taken as given the functionality required to create, display, and

explore non-linear documents. In this chapter we will discuss specific features we feel are impor-

tant components to a system for authoring and exploration of these documents. We also present

our work on modifying Granger and Perez et al’s IPython Notebook (Pérez et al., 2013a) platform

to support authoring and exploring documents which capture more of the research process.

95

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

The benefits of having non-linear documents are largely moot if those benefits are outweighed

by the inconvenience of creating the documents in the first place. Users can currently create non-

linear documents, e.g., in Nolan and Temple Lang’s Rdocbook format (Nolan and Temple Lang,

2013), directly in a text editor such as Emacs (Free Software Foundation, 2013). This process

provides complete control to the author, but is also somewhat cumbersome and may dissuade

many analysts from exploring the possibilities of non-linear documents.

We seek to provide a convenient tool that simplifies and makes more intuitive basic activities

such as constructing decision and task elements. In particular, our goal is to allow the capture of the

research structure within these documents to be seamlessly integrated into the analysis process it-

self. We identify and discuss specific features necessary for this type of integration in Section 3.1.1.

The ability to select narrative threads interactively at viewing time by navigating between al-

ternatives considered by the analyst enables the reader to explore the research process. To do this

type of exploration, users must be able to see both the structure and content of the document simul-

taneously, and there must be a mechanism for selecting specific threads or alternatives. Beyond

the ability to display the content, however, the exploration environment must be able to update the

currently displayed output to reflect the thread selected by the user.

A straightforward way to update the displayed output when the thread changes is to run the code

corresponding to the new thread and display newly generated output. This requires the system to

be able to run code on command at viewing time, which the single thread PDF and static HTML

renderings we saw in Chapter 2 are unable to do.1

With the ability to perform new computations at viewing time, we can support interactive code

elements. Interactive code elements combine code expressions with GUI controls which viewers

can use to set parameters or other values within the code. When readers use these controls, any
1Dynamic HTML renderings which can do this are possible, and we discuss briefly in Section 3.5.

96

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

existing output for the element is replaced by new output generated by (re-)evaluating the altered

code. This allows readers to view new output corresponding to different parameter choices without

writing any new code themselves. We discuss the concept of interactive code elements, as well as

our desired features for an exploration environment more generally, in Section 3.1.2.

We present our modification of the IPython Notebook as a case study for what a non-linear

document system might look like and how we altered an existing linear document system into one

that supports non-linear documents. Modifying IPython Notebook has allowed us to both create

an authoring and exploration environment for non-linear documents and gain insight into some

general design requirements for these document systems.

The remainder of the chapter is organized as follows: Section 3.1, discusses our desired feature

sets for authoring and exploration environments. We then present our IPython Notebook-based

case study in Section 3.2. In particular, this includes a discussion of the core IPython Notebook

program and a detailed discussion of the modifications required for each of three features we

implemented: non-linear notebook support, multiple detail levels, and interactive code elements.

Section 3.3 discusses the results of our case study, including both the general insights we gained

into non-linear document system design and how well our modified IPython Notebook performs as

an authoring and exploration system. Finally, in Section 3.4, we provide some background about

related and similar work and discuss alternative approaches before concluding the chapter.

3.1 Important Features for Non-Linear Document Systems

We first describe what we consider core features for authoring and exploration environments for

non-linear documents. For authoring systems, these center around creating the content and struc-

ture which make up the desired documents. In the case of exploration environments, the focus is

97

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

more on the ability of the reader to understand the completed research described in a non-linear

document. We discuss systems for creating these documents first, followed by environments for

exploring them.

3.1.1 Features of an authoring environment for non-linear documents

We want a system which allows analysts to add structural elements – decisions, tasks and alterna-

tives – which organize the code and text within their documents, and to add metadata to elements

of all types. Ideally, the process of constructing a non-linear dynamic document can be fully in-

tegrated with the analysis process itself. R-based integrated development environments (IDEs),

such as Emacs Speaks Statistics (ESS) (Rossini et al., 2001) and RStudio (RStudio Team, 2012),

already offer substantial support for writing R scripts in the form of Rnoweb (.Rnw) or Rmark-

down (.Rmd) dynamic document files. We seek to extend this type of integration to non-linear

documents, allowing the analyst to organize content not only into chunks of code and text, but also

into a structure which captures the research process itself.

Consider what extra capabilities we need, beyond providing a sequence of text and code content,

to construct the dynamic document describing our digit analysis. The analysis is discussed in detail

in Chapter 1. The basic flow of this analysis is: we read in the data, explore the raw data, compare

binary classifiers on data from the one and eight classes, fit classifiers for the whole dataset and

choose one, and finally assess the results.

Before building the full 10-group classifier, we examined several methods for the simpler case

of classifying ones and eights. Our exploration of these possible binary classifiers is a task. The

analyst can create this task proactively, by starting with a task element then adding children, or

he might do so retroactively, by applying the various methods under consideration and only then

organizing them as a task with multiple subtasks. The analyst would likely not construct all these

98

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

subtasks at the same time. Rather, he would likely pursue one strategy until it is complete, e.g.,

focusing on applying the linear discriminant classification method to the raw data before moving

on to another method such as quadratic discriminant analysis or random forests. Thus we need

the ability to create tasks – and other structural elements – and to insert new or existing text/code

content into a task.

When the digit analyst attempts to apply the linear discriminant method to the raw data, he

receives an error because the data are not full rank. He might add metadata to the relevant task

indicating that an error is expected, and another piece of metadata to the full exploration task

indicating that the task will not be required to generate his final results from the raw data, and so

may not be displayed when rendering or viewing the document for certain purposes.

The analyst can construct the element representing his decision between classifiers for the full

dataset in much the same way we described for his task element(s). This will constitute a single

decision element containing alternative elements for each of the two strategies (KNN and random

forests). He might start by pursuing the random forest and KNN strategies separately, before or-

ganizing these groups of content as alternatives within a single decision element. Alternatively, he

might create his decision element first and then create the code and text for each of the alternatives

directly within it. To do this he must be able to navigate within the non-linear structure of the

document he is creating, so that he can select the second alternative as the place to create new

content.

To summarize, then, we have identified four capabilities which are central to creating non-linear

documents:

• Create content, with code and text differentiated

• Create structural elements (tasks, decisions, and alternatives), navigate amongst them, and

99

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

place content within them

• Add metadata to the content and structural elements, such as information about errors or data

provenance

• Run code and capture output, including code contained within structural elements

With these abilities we can capture the research process as it happens. This allows analysts to

create the type of non-linear dynamic documents we describe in Chapter 2 as they carry out their

analyses, while the necessary information is still fresh in their minds.

Another approach for creating non-linear dynamic documents is to add structural elements via

post-processing. We could do this by taking a flat dynamic document which includes all the rel-

evant code (and potentially some text) and using DynDocModel’s facilities to programmatically

modify the document. To do so, we need to know how the document should be modified. We can

achieve this by possessing specific knowledge about the document/analysis, or by automatically

detecting implicit structures based on analysis of code in the document. Temple Lang et al have

investigated using heuristics to detect tasks within scripts based on variable usage and specifically

variable redefinitions.2(Temple Lang et al., 2013) Converting existing linear documents into non-

linear documents which expose the relationships between pieces of content can be very useful, but

we consider it a separate topic which we will not discuss here.

We now transition to discussing our desired features for exploration environments. Exploration

requires some of the same types of activities as authoring, such as navigation through the non-

linear document. Other required features are quite different, however, which we see in the next

section.
2A variable redefinition is when an existing variable is assigned a new value which does not depend on its previous value.

100

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

3.1.2 Rendering target and exploration environment

We saw in Chapter 2 that our DynDocModel package can weave output reports in various formats

(e.g., PDF, HTML) for each thread through a dynamic document. We also saw that non-linear

documents can have many threads, each corresponding to a different potential narrative or set of

strategies within the analysis.

Consider a report woven from a thread through the housing analysis example from Chapter 1

which uses the median for all “typical price” calculations and excludes the optional univariate

explorations. A viewer reading that report has no way of readily seeing the results or code from

when the mean was considered, or that an entire section of univariate explorations was performed

but excluded from this output view. The reader may also be unable to detect the multiple options

considered when the analyst cleaned the data, and made the plots during the analysis process,

depending on how these steps are described in the text. To get a full picture of her analysis, then,

the reader must be able to see the structural elements (tasks, decisions, alternatives), the content

within those elements, and the output generated when code in the document is run. For this purpose

we need the ability to create partial and full views of non-linear documents and display them for

human consumption and understanding.

Output from running particular code elements in a non-linear dynamic document often depends

on the results of running other, earlier code elements in the document, and these dependencies vary

between different threads. For example, the data used to construct the plot of resale rates against

typical house price by city depends on choices made in three decisions earlier in the analysis.

The most obvious is the analyst’s choice of whether to use mean or median as the “typical price”

variable. The second relevant decision is how to perform quality assurance (QA) on the city vari-

able. Specifically we must choose if and how to combine the values "Belvedere/Tiburon",

101

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

"Belvedere/tiburon", "Belvedere", and "Tiburon". Belvedere and Tiburon are “twin

cities”, two historically distinct cities that have grown together, so multiple combination strategies

appear reasonable, but each one will result in a different number of points in her resale rate versus

city price plot. Finally, in the third decision, the analyst chooses the minimum time between two

sales of the same property before she considers them separate transactions and thus a resale. For

this reason, the analyst’s single code element for generating the plot can produce any one of 16

distinct images depending on previous choices. In longer or more complex analyses this number

could easily be much higher for certain code elements.

The ability to see the output for a code element that corresponds to a specific set of choices

is highly useful. This allows the viewer to explore the decisions made by the analyst and the

implications those decisions have on the graphical and numerical results generated. We referred to

this as exploring the analysis process during our discussion of motivations in Chapter 1. It is not

feasible in general to show all possible outputs for a code element when displaying a full-structure

view of a non-linear document due to the type of combinatorial explosion described above. Thus

we need the ability to specify a particular thread or set of choices for which to display output. Once

this is done, we also need the ability to display the correct output for the viewer’s selected thread.

Given the ability to navigate through the structure of a non-linear document and select specific

alternatives, the most straightforward way of ensuring the correct output is displayed is to evaluate

the correct code as the alternatives are being chosen. This differs from traditional weaving (e.g.,

transforming Rmd files to HTML or Rnw files to PDFs) in two ways. First, it happens interactively

within the platform used to view the document, rather than within R during an earlier report gen-

eration step. Secondly, the (sub)set of code being evaluated is not necessarily contiguous within

the document. This requires that the system used to display the documents be able to perform new

102

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

computations on command.

With a platform that can evaluate code at viewing time, we can go further. We can also support

graphical user interface (GUI) controls such as sliders which alter parameter values used in a code

element, rerun the code, and update the displayed output. Nolan and Temple Lang investigated this

concept with their IDynDocs package, particularly in the context of pedagogical documents(Nolan

and Temple Lang, 2007).

To summarize, then, we want a file format and display system which allows users to:

• View the structure of the full document;

• Hide and show structure and content interactively;

• Navigate the structure of the document and select alternatives/threads;

• Run selected code/alternatives/threads and view the output within larger document structure;

• Control specified interactive code elements via GUI controls.

There are multiple ways to build a system which meets these goals. We discuss our fork of

the IPython Notebook project, which provides these features, in Section 3.2, while we discuss

alternative approaches in Section 3.5.

3.2 Case Study: Modifying IPython Notebook

We have chosen to modify the IPython Notebook application (Pérez et al., 2013a) to support the

authoring and viewing features we described in the previous section. IPython Notebook provides

us with a solidly engineered front end to the IPython scientific computing environment (Pérez and

Granger, 2007), which allows us to explore our ideas.

103

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

We present this work as a case study exploring the characteristics of a system for non-linear

documents, and to demonstrate the types of changes necessary to modify an existing linear docu-

ment system to support the creation, display, exploration, and interactive execution of non-linear

documents. As a single case study, this work seeks to provide neither a general template for, nor

exhaustive insights into, modifying existing software to support the type of non-linear documents

we discuss in Chapters 1 and 2. We do feel that we gained some valuable insight into the types of

requirements non-linear authoring systems will have, however, which we discuss near the end of

this chapter.

We make three major changes to the design/behavior of IPython Notebook to allow it to act as

an authoring and exploration environment for non-linear documents. First, we extend the concepts

of notebook and cell (element) to support nesting – both in general and in the form of specific

task, decision, and alternative element types – when creating, viewing, and running ipynb files.

Second, we leverage the concept of metadata to add support for multiple detail levels and the

ability to interactively show/hide extra detail. Finally, we implement support for interactive code

elements which allow the user to control aspects of the code via GUI-style controls such as sliders

or drop-down menus.

We now briefly describe the unmodified IPython Notebook application, with specific focus on

design elements and features relevant to our goals. Following this we discuss each of our three

changes in detail.

3.2.1 The IPython Notebook

The IPython development team describes their IPython Notebook application as “a web-based in-

teractive computational environment where you can combine code execution, text, mathematics,

plots and rich media into a single document” (Pérez et al., 2013a). These documents, called note-

104

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

books, are what we refer to as linear dynamic documents in Chapter 2.

A notebook consists of a linear sequence of code and text elements.3 The text elements can

contain raw text or markdown which is rendered into HTML during viewing. The markdown ren-

derer is extended to support LATEX via MathJax (Cervone and Krautzberger, 2013), thus supporting

the mathematics, images, and rich media referred to in the quote above.

Users create and evaluate content in the IPython Notebook application at the level of individual

elements representing chunks of either code or text. When a code element is evaluated, all output

– including any printed text, plots, warnings, or errors – is captured and inserted directly into

the notebook, replacing any previous output for the element. Using IPython Notebook, we might

create a code element and write code in it which generates a plot. We could then evaluate this

element, see the plot we have generated, then create a text element below the plot where we discuss

what we see. A loaded notebook, then, is essentially a woven report which is being interactively

constructed, modified, and evaluated by the author.

Furthermore, users can select and evaluate any single code element within the loaded notebook

at any time, regardless of its position in the notebook and what other code has been run. This allows

the author to backtrack, iterate on an element or elements, and then see the results without having

to re-evaluate the entire notebook. This feature is quite useful for navigating between alternatives

in non-linear documents, as we will see shortly.

IPython Notebook also provides authors and viewers the ability to navigate through a notebook.

This includes selecting the next and previous elements, inserting new elements at particular posi-

tions in the notebook, and even evaluating the entire notebook or the notebook up to the current

element. These concepts are straightforward for linear documents and will serve as our starting

point for navigation in non-linear documents.
3Notebook elements are referred to as cells in the IPython code and documentation.

105

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

Code in IPython Notebook is assumed to be Python. Other languages, including R, are sup-

ported via IPython’s “magic functions”. With the R magic, we are able to write R-based analyses

using this application. In fact, we wrote both of the example analyses discussed in Chapter 1 with

our modified version of the IPython Notebook using the R magic.

Each element in a notebook, as well as the notebook itself, can be assigned arbitrary metadata

attributes. This is similar in form to the metadata we support in DynDocModel, though the purpose

is somewhat different. The core IPython Notebook application does not use element metadata other

than allowing users to view and edit it interactively. Instead, the developers intend this metadata to

be used by extensions to the application in order to modify behavior without requiring modification

of IPython Notebook’s internal machinery. Avila, for example, utilizes element metadata in support

of his Reveal.js-based live slideshow extension (Avila, 2013).

Our concept of viewing documents at different levels of detail is centered around this built-in

concept of metadata in IPython Notebooks. We allow authors to identify content that represents

“extra” detail via metadata, and this content can then be shown or hidden via a slider in the page

displaying the document. We discuss the details of how we do this, and the implications of having

content that can be hidden, in Section 3.2.3.

Finally, notebooks can be saved, shared, and transported via IPython’s custom ipynb format.

Unlike most dynamic document formats, ipynb files include the text, code, and most recently

captured output for the notebook. In a sense these ipynb files can be considered a combination of

a linear dynamic document file and the report generated by weaving the file.

The IPython Notebook application involves a great deal more design and engineering than we

have listed here. We refer interested readers to the IPython technical documentation (Pérez et al.,

2013b) for a more complete discussion of the application. We now move on to our modifications

106

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

and extensions of the features outlined above.

3.2.2 Adding non-linearity

Implementing support for non-linear documents in general will require three things. First, we must

create a way to represent non-linear notebooks both in the application and in an extension of the

ipynb format. Secondly, we must identify and rework any design elements or internal machinery

which rely on the assumption that notebooks are linear. Finally, we must implement any necessary

functionality specific to non-linear documents, such as displaying and interacting with task, deci-

sion, and alternative elements. For our case study, our goal is to implement these features with as

little perturbation to the existing IPython Notebook machinery as possible.

We represent the structure of non-linear notebooks via nesting, as Nolan and Temple Lang do in

XDynDocs (Nolan and Temple Lang, 2013) and we have done in DynDocModel. We create three

new types of elements within the IPython Notebook codebase: tasks, decisions, and alternatives.

Task and alternative elements display their child elements in sequence vertically. Decision ele-

ments, on the other hand, display their children (alternatives) side-by-side, with the option to hide

all but the currently selected alternative. Figure 3.1 contains a screenshot of a decision element

from our digit classification analysis discussed in Chapter 1. We briefly showcase our changes to

the ipynb format itself in Appendix A.

107

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

Figure 3.1: A decision element with two alternatives. The digit analyst we discussed in chapter 1 chooses between
displaying the location of ink in the images in two slightly different ways early in his non-linear notebook. On the left,
the text, code, and output correspond to a heatmap of the standard deviations of each pixel in the grid, whereas on the
right they relate to a heatmap of the counts of non-zero values for each pixel across all observations in our training set.

There are two contexts in which users typically change which notebook element is currently

selected in IPython Notebook: progressively evaluating the code within a notebook (e.g., via the

Shift-Enter shortcut), and navigating through a document while editing its structure or existing

content (e.g., via the up- and down-arrow keys). We will refer to these as the evaluation and

editing navigation contexts, respectively. For linear notebooks, elements are visited in the same

order regardless of which context – dictated by the author or viewer’s intent and mode of operation

within the IPython Notebook application – is used. With non-linear notebooks, however, this is

no longer the case. For example, when editing a notebook we want to be able to enter a selected

108

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

task element to visit its children, ensuring we can reach all of the notebook’s content. During

evaluation, however, executing a task encompasses evaluation of its children, meaning that they

should not be explicitly visited individually after the evaluation of the task is complete. Similarly,

evaluating a particular alternative excludes all other alternatives within the same parent decision.

We first define the editing navigation order. We want a next-element operator which allows the

viewer to visit each element in the notebook once by traversing it start to finish, and which matches

the naive approach when applied to linear notebooks. Because we have multiple levels of nesting

within our documents, we must choose whether to visit structural elements or their children first;

we elect to visit structural elements first, following a top-down traversal order.4 This makes the

concept of evaluating structural elements much more powerful, as we will see later in this section.

We illustrate our traversal order in Figure 3.2, after which we define a next-element operator which

achieves it.

We define our next-element operator for the editing navigation context piecewise as a series of

contextual rules:

• When a code or text element which is not the last child within its parent is selected, the next

element is the following sibling of the current element.

• When an element which contains children is selected, the next element is defined as the first

child of that element.

• When the selected element is a code or text element which is the last child of a structural ele-

ment, the next element is the parent element’s first following sibling. If there is no following

sibling for the parent, the grandparent is used, continuing until we find a trailing sibling or

reach the top level.
4Note we are defining the visitation order based on usefulness when viewing/interacting with the documents, rather than to

faithfully recreate the exact order in which actions were taken during the original analysis.

109

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

• If a code or text element is the last child of its parent and none of its ancestors have trailing

siblings, there is no next element.

code 4

Notebook

Element visitation order

code 1

text 1

code 2

alternative 1

decision 1

code 3

alternative 2

task 1

Figure 3.2: Desired element visitation order for a non-linear notebook. Structural elements such as tasks, decisions,
and alternatives are visited before their children, and the children of a structural element are visited before that ele-
ment’s following siblings. This makes the concept of evaluating structural elements, which we describe later in this
section, much more powerful.

One of our primary workflows when dealing with notebooks in the unmodified IPython Note-

book is to step through the cells one at a time, evaluating any code and replacing any currently

displayed output with a freshly generated version. The IPython developers have provided a short-

cut (SHIFT and the Enter key) which does this. The shortcut goes further, however, by adding a

new element if it detects that it is at the end of the notebook, thus making continuously authoring

110

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

and then evaluating new content extremely convenient.

We now define the second of our two navigation orders, the one used in the evaluation context.

As implemented in IPython Notebook, the evaluate-and-select-next operator assumes that each

element is either code or text, and that each element should be visited during this process. Neither

of these assumptions necessarily hold with our modified version. When evaluating code in non-

linear notebooks, we typically want to run only a subset of the code contained in the document.

Often, this code will be contained in a specific thread through the document, though it need not

be. For example, we might run the code which performs the strategy ultimately chosen by the

analyst, or code implementing a perturbation of that where specific different choices were made.

During navigation, then, we would want to step from one element to the next one in the currently

active thread. This is where navigation and stepping through the document differ for non-linear

notebooks in a way that they did not for linear ones.

Essentially we want to step through a single thread embedded within the loaded document.

Thus we need a way to identify which thread to step through, and a way to selectively execute the

content of that thread in a convenient manner. This involves defining custom execution mechanics

for each of our new structural element types. For tasks, stepping through the element involves

stepping through each of its children. The task element in this case is acting as a collection of

content we wish to evaluate together (sequentially). The same holds true for alternative elements.

Decision elements, however, are different. When stepping through a decision we evaluate only

the currently active alternative, skipping its inactive siblings. Evaluating the notebook, either all

at once or via interactively stepping through, then, amounts to weaving the thread defined by the

choices of alternatives most recently activated by the viewer.

Finally, we have the concept of inserting a new element when there is no next element. For lin-

111

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

ear notebooks this is unambiguous: when stepping through the last element in the notebook, create

a new element, otherwise select the next element. We could leave this mechanism unchanged, but

the concept of the “last” element is somewhat more complicated when nesting is present. The issue

is whether the new element is added as a top-level child at the end of the notebook, or as a sibling

to the current element (which may be nested within other elements).

We choose to modify the new-element-at-end mechanism slightly so that whenever a non-

alternative element which is the last child of its parent is stepped through, a new element is added

after it within that parent. For example, this behavior allows us to conveniently build up task

elements by creating the task and then incrementally adding cells to the task via the standard –

and convenient – IPython Notebook workflow. Furthermore, this behavior simplifies to that of

the unmodified IPython Notebook application in the case of linear notebooks, thus constituting

a strict extension of the feature to support non-linear documents. There is a mild inconvenience

after constructing the last element in a task in that the step-through method cannot be used. In

our experience constructing these notebooks, however, this has been outweighed by the ease of

constructing multi-element tasks and alternatives.

With these concepts we are able to meaningfully allow so-called headless, or non-interactive,

notebook execution. With our execution methods for the structural elements as we described above,

it suffices to execute each top-level element. With our definitions of executing structural elements

– execute all children for tasks and alternatives, execute the currently selected alternative for deci-

sions – this translates into evaluating the currently selected (or default, e.g., for headless execution)

thread through the document. The same goes for using the “execute full notebook” option within

our modified IPython Notebook GUI. As with other features, these mechanisms simplify to the

behavior of the original IPython Notebook when operating on linear documents.

112

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

3.2.3 Detail level and “hidden” elements

Next we implement support for hiding and showing content interactively without actually adding

and removing it from the notebook. Recall that both our housing and digit classification analyses

from Chapter 1 have content which represents a key portion of the analysis but is not included in

a concise discussion of the final results. In the case of the digit classification, this includes the

plotting of an observation in order to get an understanding of the data, as well as the exploration

of classifiers for just two digits.

Including optional content in our documents can be valuable even in non-interactive settings.

With processing systems such as our DynDocModel presented in Chapter 2 and Nolan and Tem-

ple Lang’s XDynDocs (Nolan and Temple Lang, 2013) we can generate different PDF or static

HTML reports aimed at different audiences by including or excluding this optional content during

processing.

Optional content arguably becomes more useful, however, when the viewer can show and hide it

on command while viewing the document. For example, a student or collaborator may be viewing

our digit analysis and find themselves wanting more detail about the form of the data themselves.

With the ability to hide and show content on the fly, they can quickly show the content where we

explore and plot a single observation to gain additional insight on this subject, only to hide it again

to unclutter the narrative once they are comfortable.

We implement a detail level system in our fork of IPython Notebook which allows authors to

mark elements as being a particular level of additional detail. Notebook authors set the detail level

of elements via the existing metadata mechanism provided by IPython Notebook.5 We provide a

slider which allows the viewer to choose which detail level to view for the entire document, and
5Specifically by setting the detail field within an associative array stored in the dyndocmodel field of the metadata.

113

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

which displays the currently available detail levels for the loaded notebook. Content with a detail

level higher than the currently selected viewing level is hidden both visually and with respect to

navigation through the notebook. Figure 3.3 provides a screenshot of a zoomed-out section of our

digit classification document at three different detail levels, though the slider is not easily visible at

this scale. This system could be extended to allow more local control over content being displayed

and hidden.

In Figure 3.3 we see three levels of detail for a section of the digit classification analysis we

discuss in Chapter 1. In the default narrative (detail level one) pictured on the left in the image, we

assume that the description “pixel level data for images of handwritten numeric digits” is under-

stood. This narrative transitions directly from loading the data to investigating the variances of the

pixels across the dataset.

Viewers who would like a more concrete description of the data, however, can opt to increase

the detail level to two. This presents them with the view pictured in the middle screenshot, where

a single observation (a nine) is plotted as an image. This illustrates more clearly that the columns

in our dataset represent positions in scanned images of handwritten digits, with non-zero values

indicating the location of ink on the paper. Looking closely at the code for this plot, however, the

viewer would see that the observation is transformed before being plotted.

Readers can view the details of that transformation and why it is necessary by increasing the

detail level to three, generating the view on the right. In this version of the narrative we first

see our chosen observation plotted naively, resulting in an image that is clearly either a nine or

a six, but which either way is not oriented correctly. How to fix this is then briefly discussed,

transitioning into the second level of detail within the content. Nolan and Temple Lang suggest

that the ability to allow readers to “drill down” to receive a more detailed discussion of the content

114

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

can be particularly beneficial in a pedagogical setting (Nolan and Temple Lang, 2007).

Support for levels of additional detail requires us to relax a major assumption made by IPython

Notebook: namely that all content in the notebook should be displayed at all times and should

be visited during navigation in the order it appears. Detail content is part of the notebook and

has a fixed position within it, but when hidden it should be neither displayed nor visited during

navigation or evaluation.

Recall that indexing, position, and the navigation orders within the notebook depend on the

position of <div> HTML nodes which have the “cell” CSS class, indicating they represent the

notebook elements in the page. We can easily make these <div>s invisible by manipulating their

style information. If we stop at making the <div>s invisible, however, the element would still

be visited when navigating or stepping through the notebook. We do not wish to remove hidden

elements from the notebook entirely, however, for two reasons. First, the position must remain un-

changed, even when other elements are added to or removed from the notebook. Secondly, hidden

content must be included when saving the document, which is done by traversing the notebook

element-wise and adding each element to the object eventually written to file.

To allow elements to remain in the notebook, but only be counted by some operations (saving,

loading) and not others (navigation, evaluation) we split IPython Notebook’s special CSS class for

element <div>s into two: “cell” and “hidden cell” class. When the viewer changes the detail

level via the slider, the metadata for each element in the notebook is inspected and its CSS class is

changed if necessary.

115

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

Fi
gu

re
3.

3:
D

et
ai

ll
ev

el
si

n
ou

rI
Py

th
on

N
ot

eb
oo

k
fo

rk
.T

ho
ug

h
th

e
re

so
lu

tio
n

of
th

e
ab

ov
e

sc
re

en
sh

ot
s

is
no

ts
uf

fic
ie

nt
to

re
ad

th
e

te
xt

of
th

e
pa

ge
s,

th
e

di
sp

la
ye

d
st

ru
ct

ur
e

–
an

d
ef

fe
ct

of
ch

an
gi

ng
th

e
di

sp
la

ye
d

de
ta

il
le

ve
l(

on
e,

tw
o,

an
d

th
re

e
in

th
e

le
ft

,m
id

dl
e,

an
d

ri
gh

tp
ag

es
,r

es
pe

ct
iv

el
y)

ha
s

on
it

–
is

cl
ea

r.
So

m
e

se
ct

io
ns

of
co

nt
en

ti
n

th
e

no
te

bo
ok

ar
e

an
no

ta
te

d
w

ith
bo

xe
s

co
lo

re
d

by
th

e
co

nt
en

t’s
de

ta
il

le
ve

l–
bl

ac
k

fo
rl

ev
el

on
e,

bl
ue

fo
rt

w
o,

an
d

re
d

fo
rt

hr
ee

–
an

d
th

e
sa

m
e

co
nt

en
t

is
co

nn
ec

te
d

by
an

ar
ro

w
be

tw
ee

n
pa

ge
s

w
he

re
ap

pl
ic

ab
le

.W
e

ca
n

se
e

de
ta

il
le

ve
ls

ar
e

hi
er

ar
ch

ic
al

,w
ith

hi
gh

er
de

ta
il

le
ve

ls
in

cl
ud

in
g

al
lc

on
te

nt
fr

om
lo

w
er

le
ve

ls
.

T
hu

s
m

ov
in

g
to

hi
gh

er
di

sp
la

ye
d

de
ta

il
le

ve
ld

is
pl

ac
es

co
nt

en
tf

ro
m

th
e

lo
w

er
le

ve
l(

s)
to

fu
rt

he
rd

ow
n

on
th

e
pa

ge
.

116

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

Since hidden elements should not be visited or executed, we are able to leave most machinery

which looks for the “cell” class unchanged. The exception is that we implement a function which

retrieves all cells and modify the notebook saving machinery to use it, which ensures that hidden

content is properly saved.

Locating the next element, for both navigation and evaluation, still consists of walking through

the list of <div>s with the “cell” CSS class via the algorithms we describe in the previous section.

Inserting elements into the notebook, however, requires more care when hidden content is present.

Consider inserting an element into an existing document. Typically inserting an element af-

ter the selected element and inserting it before the element after the currently selected one are

equivalent. In fact, in IPython Notebook, they are implemented via the same machinery, with in-

sertion before an element at index n, simply inserting the element after the element at index n-1.

This works well because there is only one possible position between two sequentially adjacent

elements. In the presence of hidden content, however, this is not the case. The new element can be

placed before or after any hidden content between the selected element and its sibling, as illustrated

in Figure 3.4.

The issue with insertion in the presence of hidden content arises from the fact that the concept of

“the directly following element” is no longer unambiguous. The next element in the full notebook

is no longer guaranteed to be the next element which is currently displayed. Thus we decouple

the insertion before and insertion after operations, and perform each with respect to the entire

notebook.

117

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

Traditional Insertion Insertion with
Hidden Element(s)

Element A

Element B

New element

insert after A

insert before B
New element

Element A

Element B

New element

insert after A

insert before B

hidden element

New element

New element

Figure 3.4: Inserting elements by position in the presence of hidden elements. Generally, insertion before one
element and after its immediate predecessor are considered equivalent operations. We see here that this is not the case
in the presence of hidden content.

3.2.4 Interactive code elements

Finally, our third major change to the IPython Notebook application is support for interactive code

elements. As we described in Section 3.1.2, interactive code elements are code elements with asso-

ciated GUI controls which can change values within the code and rerun the computations without

requiring users to edit the code themselves. This allows authors to build documents where readers,

or the authors themselves, can quickly explore the effect that changing a particular parameter or

variable value has on the output generated by a code element. The reader can then execute the

remainder of the notebook to update later results which depend on the result of evaluating the

118

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

element’s code.6

Support for these interactive code elements requires three major components: a way to declare

interactivity for a code element, machinery to display the specified GUI controls, and a way of

allowing those controls to alter and then rerun the code in the element on command.

We center our GUI control infrastructure for interactive code elements around modifying the

notebook author’s code within the elements in response to the reader’s actions. For example, when

the reader moves a slider to alter the bandwidth used in a kernel smoother, an expression within

the author’s code might be changed from bw <- 5 to bw <- 10. This is suboptimal in some

ways, but it allows us to work within IPython Notebook’s existing framework. IPython Notebook

is designed to pass the exact contents of a code element directly to the evaluation engine when

the element is being executed, so modifying that code is the least disruptive way of altering the

computations that will be performed.

One advantage of directly changing the code being evaluated is that it allows us to separate the

logic which defines the GUI controls themselves from the code within the element. When readers

view a notebook, then, they see the exact code which generates the output that follows it. The code

within the notebook is more directly and parsimoniously associated with the analysis itself.

We limit our changes to single lines that contain simple assignments, that is expressions of the

form var = value or var <- value. When we use the associated GUI control, we con-

struct a string containing the expression for a new simple assignment using the variable associated

with the control and the value selected by the user, e.g., var = <selected value> – with

<selected value> replaced with the value chosen by the reader – and replace the existing ex-

pression within the code element. After this replacement, the code element is executed as normal
6It would be possible to have GUI controls always run all code depending on the current selection, but this goes against a major

design decision of IPython Notebook, which essentially models cells as distinct and independent from a code execution perspective.

119

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

to generate the output requested by the user.

The restriction to only controlling direct assignments is quite limiting; it would be much more

convenient to be able to control constant values directly within complex expressions or function

calls such as rnorm(10). Such expressions can easily be refactored by the author, however,

to involve variables who receive their values via simple assignment and are then used within the

complex expression:

n = 10
rnorm(n)

We declare interactive controls for a code element within its metadata. Instead of a single value,

however, we must provide enough information to create the interactive control. We do this via a

simple, expedient, and extendable widget abstraction. We characterize interactive controls for code

elements via five pieces of information:

1. type of control (slider, dropdown menu, etc);

2. variable that the control will modify;

3. line number of assignment to modify within the code;

4. default or current value of the variable;

5. any extra information required by the chosen type of control (e.g., min, max, and step for a

slider or the labels and values for a drop-down menu).

Widget descriptions associated with code elements are transformed into GUI controls within

the page via widget constructors. We provide constructors for the common ”slider” , ”dropdown

menu” , and ”textbox” widget types. Users can also create their own widget constructors which

either implement new widget types or override our default constructors. The list of available con-

structors is declared via an associative array in the widget constructors property of the

120

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

IPython.IntCodeCell object prototype, and can be added to or modified via standard IPython Note-

book JavaScript extensions.

Widget constructors perform three actions. First, they create the HTML elements for the UI

controls themselves. Secondly, they insert these UI elements into the HTML content representing

the notebook element in the page. Finally, they attach an event handler which calls the notebook

element’s doControl() method with three pieces of extra information when the viewer uses the

control to select a new value. These three pieces of information are: the name of the variable whose

value the user is selecting, the line number to be modified, and an optional JavaScript function to

preprocess the HTML control’s raw value before constructing the new assignment expression.

The doControl()method on the JavaScript object representing an interactive code element

performs the work of actually modifying the code element’s content and executing the element. It

retrieves the current value from the HTML control, and calls the specified preprocessing function,

if any. With this done, doControl() constructs the new assignment expression and replaces the

specified line in the element with it. Finally, the element is executed as normal.

Suppose we want a slider which creates assignments of integer values for the chosen variable,

rather than generic numeric values. We define a new type of widget, which we will name ”intslider”

. The constructor will be nearly identical to the slider constructor with two exceptions. We will

throw an error if the minimum, maximum, or step values for the slider are not integers, and we

specify a preprocessing function which appends an “L” to the value. Thus doControl() will

generate, e.g., the expression k = 5L, specifying an integral value of k, rather than k = 5.

Notebook authors create interactive code elements by converting the type of an element from

“Code” to “Interactive Code” via the conversion menu in the main IPython Notebook toolbar. This

conversion displays a dialog box which prompts the user for the information necessary to define

121

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

the widget, pictured in Figure 3.5. With this information, the application creates and connects the

GUI control via the appropriate widget constructor.

Finally, interactive code elements are intended to provide a (near) real-time experience for the

user. UI elements can be highly frustrating when there is a noticeable delay between user action

and the display of the new results. We provide a mechanism to cache and quickly restore the

result(s) of evaluating R code during execution of code elements.

R code within code elements is executed via the %%R magic defined by IPython, which eval-

uates the code via Gautier’s rpy2 (Gautier, 2012) interface between Python and R. We provide

a new %%Rcaching magic, which performs the same function except that the code is evaluated

with caching via our RCacheSuite package, allowing GUI controls to be used with code that is

expensive to run.7 We leave further description of RCacheSuite’s behavior to Chapter 4, where

we discuss the package in detail.

3.3 Lessons from our Case Study

We now consider the successes of, and lessons learned from, our case study where we modified the

IPython Notebook system. We do not claim that our specific solutions are optimal, or these exact

changes could be directly applied to other linear document systems. The problems we addressed

with our changes, however, are likely to be present whenever support for non-linear documents is

being implemented in an authoring or exploration environment.
7The first time the code is run with each possible value for the control will still take the full time to execute.

122

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

Figure 3.5: Adding interactivity to a code element. A dialogue box collects the widget description information from
the author when he or she converts a code element into an interactive code element. Our modified IPython Notebook
then uses this information to identify and invoke the correct widget constructor. In this image we are creating a slider
for the bw variable defined in line 1 of the element being converted (counting starts at 0 in JavaScript), and which
ranges from 1 to 51 by steps of two.

We first discuss the changes we required to IPython’s computational model in the context of the

more general issues they address. We then discuss the drawbacks and limitations of our resulting

modified IPython Notebook application. Finally, we draw on our experience designing and using

an environment which combines authoring and exploration to discuss the pros and cons of such

two-in-one applications versus designing two separate specialized tools.

3.3.1 Changes to the computational model

We found three major assumptions made by IPython Notebook’s computational model to be incom-

patible with non-linear documents, which we list below. Developers seeking to implement systems

for non-linear dynamic documents will need to avoid these assumptions, or modify machinery to

remove them when adapting existing systems which make the assumptions.

123

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

1. The definition (and display) of a notebook as a flat ordered list of atomic code and text8

elements with no additional structure.

2. The assumption that a single concept of “next element” is appropriate for both navigation and

execution.

3. The assumption that the set of all elements in the notebook and the set of elements currently

visible to the user are always identical.

The issue with the assumption that notebooks are flat, sequential lists of code and text elements

with no additional structure is clear. We will not belabor it here. There are many ways to model

non-linear documents. We chose to model non-linear structures via nesting. We saw in Section

3.2.2 that this strategy required only relatively narrow changes to IPython Notebook’s machinery,

though we make no comparisons to other strategies which we did not attempt.

The assumption that execution and navigation will have the same concept of “next element”

arises from the fact that linear notebooks have only one full thread. When executing elements

from a notebook in sequence, we are traversing a thread through the document. When navigating

between elements without executing, we are traversing the notebook with the expectation that

we can visit every element in the notebook by navigating in only one “direction”. With linear

documents, traversing the thread through the notebook will visit each element. This allows systems

for linear documents to have a single concept of next and previous.

With documents containing decisions, however, executing a thread will not involve all elements

within the document. Thus we need two separate concepts of next and previous: one which travels

through the entire notebook, and one which travels along a single currently active thread through

the document.
8IPython Notebook also has title/header elements equivalent to the <h1>-<h5> HTML tags, but these are simply specialized

text elements with specific formatting.

124

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

To support element-level navigation in non-linear documents developers must do one of two

things. They can define two different traversal methods as we did in Section 3.2.2. Alternatively,

they can abandon the assumption that starting at the first element in the notebook and navigating

continually in one direction will eventually reach each currently displayed element.

Finally, supporting the concept of multiple levels of detail requires that we have the concept of

hidden or deactivated elements which cannot be seen or directly navigated to by the user. The abil-

ity to hide elements without removing them allows us to place detail content in the right position

within the document, and simply leave it dormant until it becomes visible.

The presence of hidden elements requires us to have two separate concepts of the notebook,

however. One, the true or full notebook, knows about all elements, even hidden ones. This full

notebook concept is used for loading, saving, and insertion of elements into the document, as we

discussed in Section 3.2.3. The other concept of the notebook involves only the elements which

are currently displayed, and is used when navigating through and executing elements within the

document. These two concepts will not be the same if any elements in the true notebook are

hidden, and thus developers wishing to support detail level or similar mechanisms must abandon

the assumption that all elements will be active and displayed at all times.

Some additional work is also required to support interactive code elements. This, in general,

will consist of three components: a system to describe the interactivity desired, a way to associate

interactivity with a specific element, and a way to alter the computations performed based on user

feedback. We have chosen to have our controls alter the code within the element itself, preserving

the concept that the code contained by an element when it is executed is identical to the code which

generated the output inserted into the page.

125

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

We will now address the limitations of our modified IPython Notebook platform. Following

this we discuss the pros and cons of combining authoring and exploration environments we have

experienced when writing and using our system.

3.3.2 Drawbacks of our modified IPython Notebook

We have used our modified IPython Notebook system to successfully author and explore multiple

non-linear dynamic documents, including notebooks representing both example analyses shown in

Chapter 1. While we found the process convenient in some ways compared to the currently avail-

able alternatives, there were non-trivial inconveniences as well. We give a brief, frank discussion

of these shortcomings in the remainder of this section.

The largest weakness of our modified IPython Notebook system is that cut, paste, and con-

version operations happen at the element level. This means that when an analyst looks back and

realizes that the code they have been writing should be organized into a task, moving that existing

content into the task is less convenient than we would like.

Secondly, our system is limited in the types of more complex navigation it allows users to per-

form. Individual alternatives can be activated or deactivated, but selecting threads at the document

level, e.g., via a visualization of the structure of the notebook, is not currently supported. A cus-

tom front end which could be developed which offers this behavior, but the core IPython Notebook

front-end application focuses on an individual cell-centric computational model and as such does

not lend itself to extensions in this direction.

Support for more advanced transformations, such as rendering multiple threads side-by-side, is

also lacking. This can be achieved by saving the notebook and processing it via DynDocModel,

but GUI support for at least common use-cases such as direct thread comparison is desirable and

not present.

126

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

In fact, we have no direct interface between IPython Notebook and DynDocModel at all, be-

yond saving dynamic document files and passing them between the systems. This can cause cum-

bersome workflows if an analyst is doing more complex manipulations or meta-visualizations in

DynDocModel during the authoring process.

Editing metadata on elements in the notebook is also cumbersome. With the exception of

adding an interactive widget to a code element, notebook authors must use an element-level toolbar

provided by the core IPython Notebook application to manually enter or modify the metadata in

raw JavaScript Object Storage Notation (JSON). This is inconvenient, and could be streamlined

greatly with a better metadata authoring tool for common fields.

Finally, our layout for displaying alternatives side-by-side within a decision element is prob-

lematic in the face of many levels of nesting or large numbers of alternatives in a single decision.

In these cases, the elements do not have enough room within the page, and thus are not displayed

correctly. We have provided the ability to hide all but the currently selected alternative. Showing

only one alternative fixes the problem of the content not displaying correctly, but also limits the

usefulness of the exploration aspect of our system somewhat.

3.3.3 Separate versus ‘both-in-one’ authoring and interactive exploration environments

IPython Notebook – both the original and consequently modified version – offers a single system

for creating and exploring non-linear notebooks, rather than two separate, more specialized sys-

tems. We found both advantages and significant downsides to our implementation of this single

application approach, which we discuss in the remainder of this section.

When using our system to build documents, we noticed that some exploration actions are central

to our writing process. When adding detail elements, for example, we found ourselves repeatedly

changing the displayed detail level to show and hide the elements. This allowed us to ensure that

127

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

the elements were in the right position in the entire document. Repeatedly changing the detail

level also allowed us to confirm that the notebook flowed properly, both programmatically and

narratively, at all different detail levels.

Furthermore, when authoring code in dynamic documents in general, it is very convenient to be

able to run the code to test it within the context of the document. When writing code within non-

linear notebooks, however, this testing requires us to run it in the context of all possible threads

which include that code. To this end, we found the ability to select alternatives and step through

threads executing the code without leaving the authoring environment highly efficient and effective.

Finally, we found the ability to have functional interactive code elements within our authoring

environment to be beneficial as well. The primary purpose of interactive code elements is generally

to provide interactivity for the reader, but our experience suggests that having interactive code

elements function during the analysis as we create the document served two valuable purposes.

First, it allowed us, as authors, to see the interactivity as it would be presented to the reader,

ensuring that it worked correctly and was effective in its message. Secondly, it allowed us as

analysts to explore certain aspects of the analysis more conveniently as we performed our research

than if we had needed to manually change the code expressions ourselves. We were able to do

the same type of interactive parameter space exploration available to the reader and to base actual

analytic decisions or strategies on any insights we gained. This extends a major focus of the

original IPython Notebook, which was to allow interactive and iterative computational research.

We found our modified IPython Notebook system to be less useful for pure exploration. Specif-

ically, we found two relatively major deficiencies. One weakness of our system as an exploration

platform is that it does not support advanced transformations or views of the notebook, such as dis-

playing two threads and their results side-by-side. Furthermore, there is currently no mechanism

128

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

in our modified IPython Notebook to do computations on the document and its structure, e.g., our

plot of the different achieved misclassification rates for all the different threads through our digit

classification example from Chapter 1. We can perform these types of computations in R with

DynDocModel, but it would be convenient to be able to perform common tasks within the GUI

itself.

Finally, IPython Notebook, both the original and our modified version, displays code in a way

designed for programming. The code and text content in the notebook are always editable. This

blurs the creation and reading use-cases. The ability to edit content as one views it is useful when

carrying out an analysis. However, it can distract from the experience of reading the notebook,

even when the reader is able to alter the computations via interactive code elements.

Overall, we consider our modified IPython Notebook a success as an authoring platform for

non-linear documents. We were able to create multiple complex notebooks via the system and

found it more convenient to do so than constructing ipynb or XML (.Rdb) files via raw text editing.

Furthermore, we identified some general issues with supporting non-linear dynamic documents

which we think are likely to generalize to other projects.

As an exploration and content delivery platform, however, our system is less successful. In-

teractive code elements and basic navigation through the document are functional, but the lack of

more advanced navigation and viewing mechanisms is a serious limitation. Furthermore, the plat-

form doesn’t act as a reading platform, because it allows viewers to edit code and text. This issue

is inherited from the core IPython Notebook application which is primarily focused on interactive

computational work. Ultimately, we feel the field would benefit from either separate authoring and

viewing platforms, or substantially more exploration features being added to our modified IPython

Notebook system.

129

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

3.4 Background and Related Work

The concept of authoring tools and exploration environments for R-based linear dynamic docu-

ments is relatively well established. Emacs Speaks Statistics (Rossini et al., 2001), a mode for the

open source Emacs editor, and the RStudio IDE (RStudio Team, 2012) both offer the ability to

run code within Rnoweb or Rmarkdown documents as the analyst is creating them. Furthermore,

RStudio provides a convenient way to preview a rendered, or woven, HTML version of the narrative

without leaving the IDE. This preview functionality can be seen as the combination of exploration

of the woven report with RStudio’s authoring capabilities. RStudio is also investigating a type of

interactive notebook powered by their Shiny technology, though currently this is in relatively early

stages (Xie, 2013b).

Zhang’s tkWidgets R package (Zhang, 2013) in the Bioconductor project provides a vignette

explorer GUI. This interface uses Gentry and Gentleman’s DynDoc package (Gentleman and Gen-

try, 2013) to allow users to explore the vignettes of R packages installed on the local system. This

exploration includes viewing the structure of the document (a list of code and text chunks in the

.Rnw file) as well as evaluating code chunks individually on command.

Nolan and Temple Lang’s XDynDocs R package offers some support for non-linear documents

(Nolan and Temple Lang, 2013). XDynDoc’s XML-based format, RDocBook, supports storing

non-linear documents via the same type of nesting paradigm we use in DynDocModel and our

extension of IPython’s ipynb format. Furthermore, Nolan and Temple Lang offer some limited

capabilities for rendering full documents in the form of XSL files which render decisions by dis-

playing all of their alternatives within a tabbed HTML control.

Nolan and Temple Lang have also investigated the concept of interactive code elements with

their IDynDocs package (Nolan and Temple Lang, 2007). In particular, they argue for the use of

130

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

interactive code elements and similar technologies for teaching. As with XDynDocs, IDynDocs

provides a great deal of the inspiration for our work.

3.5 Possible Alternative Approaches for Exploration Environments

Here we briefly discuss possible alternative approaches to creating authoring and exploration en-

vironments. Because we have not implemented these, we will not attempt to discuss any of them

in detail. Instead, we will describe how they might work, and what aspects of the authoring or

exploration processes they might facilitate.

Our RBrowserPlugin software embeds a local instance of the R interpreter within many mod-

ern Web browsers, allowing Web pages to invoke new R-based computations at viewing time(Becker

and Temple Lang, 2013). RBrowserPlugin could be used in conjunction with a dynamic document

processing system such as our DynDocModel or Nolan and Temple Lang’s XDynDocs to gener-

ate HTML pages which display the full structure and rendered content of a non-linear document.

These pages would contain JavaScript instructions associated with switching between threads/al-

ternatives which would automatically perform the necessary computations via RBrowserPlugin.

HTML pages which show the full document structure could also be generated which invoke

R computations when navigating between alternatives or threads using server-based technologies,

such as RStudio’s Shiny (RStudio Inc., 2014), Urbanek’s fastRWeb (Urbanek and Horner, 2012)

or one of many others. The differences between these approaches and RBrowserPlugin are out of

scope here. It suffices to say that, again, the pages would allow the user to navigate through the

page, selecting alternatives or threads and having the output displayed throughout the page reflect

those changes.

Finally, and most ambitiously, a GUI front end could be built for our DynDocModel or Nolan

131

CHAPTER 3. AUTHORING AND EXPLORING NON-LINEAR DOCUMENTS

and Temple Lang’s XDynDocs (Nolan and Temple Lang, 2013). These packages have program-

matic support for querying and computing on the documents to varying degrees, and so supporting

a subset of these more advanced features in the GUI would be relatively straightforward.

3.6 Conclusion

Authoring and exploration tools are needed before non-linear documents are likely to be widely

adopted. We presented a modified version of the IPython Notebook (Pérez et al., 2013a) which

facilitates the authoring and interactive exploration of these documents. As an authoring tool, the

system allows analysts to capture the research process more completely and to capture it as it is

being performed. As an exploration tool, it allows readers to navigate though a document, selecting

alternatives and re-running computations to reflect the currently chosen thread. This allows viewers

to get a more complete concept of the research that was done and the statistical decisions made by

the analyst.

In addition to providing usable software, however, we have presented our work as a case study

for modifying linear document systems more generally. Our experience has granted us some in-

sight into the types of challenges unique to non-linear documents. Specifically, we saw that issues

of location and navigation order in non-linear document platforms are much more complex than

their linear document counterparts. While in general this is fairly obvious, we have provided spe-

cific discussion of both the types of machinery and abstractions which break down when moving

from linear to non-linear documents, and a set of specific changes which achieved non-linear doc-

ument support in our case.

132

Chapter 4

Caching for Non-Linear Dynamic

Documents

The concept behind caching is simple: we can store and reuse the results of expensive computations

instead of repeatedly performing those computations in contexts where we can assume the results

will be identical. The success of a caching mechanism, then, hinges on its ability to predict when

results will be identical and thus can be loaded from a cache.

Determining whether to use a cached result is particularly challenging in the case of non-linear

dynamic documents. Evaluating different threads through the same document commonly involves

evaluating the same code expressions with different sets of input values. For example, we would

expect the output when evaluating code which utilizes variables defined within a decision – i.e.

within the code contained in each alternative of the decision – to differ depending on which alter-

native was previously evaluated. Each thread selects only one branch within the decision. Thus

when processing two or more threads we cannot safely assume that the outcome from evaluating a

code expression will be identical in each thread, even if the expression itself is identical within all

threads.

We saw an example of different threads generating different results for the same code element

133

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

in Section 1.2.5 of Chapter 1, where we plotted the overall misclassification rate achieved by all

five strategies encompassed by the non-linear dynamic document we used in that example. The

code element which calculated the misclassification rate was identical across all five threads, but

evaluating each thread assigned a different value to the variable representing the classifier itself.

The values input to a code element can also vary during interactive evaluation, even in cases

where the document has not changed. In this situation, evaluation is often being performed only on

a subset of the document, or even an individual element, rather than the document itself. Typically,

a code element’s inputs will be created by evaluating other code elements within the document,

but this need not be the case. For example, an author might quickly create a mock object1 in order

to test his or her code element without running a full thread up to that element. Furthermore, a

researcher might create an external extension to a dynamic document, which takes a subset of the

existing document and appends new content to it.

Existing R-based caching mechanisms are not designed to support this type of multiplicity

of input state. Their machinery is targeted at weaving linear dynamic documents where each code

element in the document can only ever use the input values generated by running the code elements

in the document up to that point. We propose a caching mechanism based on the values of the

variables the code uses at evaluation time. We have implemented this concept in the RCacheSuite

package which provides a flexible, input-value aware caching mechanism for evaluating R code.

4.1 Caching

At their core, caching systems consist of two components: a storage method capable of saving

and later retrieving the result of a set of computations, and a decision function which determines

whether the result of evaluating a set of expressions is guaranteed to be identical to any available
1An object representative of the input values the code expects, but smaller, simpler, and easier to use.

134

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

cached values. Matching cached values are loaded directly into the environment, by-passing eval-

uation of the code. The decision function can use arbitrary logic to make this determination, so

long as it does not misidentify cached results as matches which would be different from the result

of evaluating the code in the current context.

The crux of a caching mechanism, then, is in the information accepted and logic applied by

its decision function. We propose a decision function which takes into account the values of the

variables required to evaluate the code in question.

4.1.1 An input-value based caching mechanism

The purpose of the decision function is to determine whether we can safely use cached results in

lieu of evaluating a given set of code expressions. We can do so when the cached value is identical

to the result we would receive via evaluation.

An input variable is a variable whose existence prior to evaluation is assumed by a code. In

other words, input variables which are used within an expression without first being defined within

that expression. We provide some example expressions and identify the corresponding input vari-

ables in Table 4.1.

In most cases, repeated evaluations of a code expression with the same values of its input vari-

ables will always generate the same result. Specifically, identical results can be perfectly predicted

by looking at input variable values for R code expressions that meet four criteria:

1. Any external data used by the code is unchanged between evaluations,

2. Behavior of R and any package-provided functions remains unchanged,

3. Options and other state not captured by explicit variables do not affect the result,

4. No (pseudo)random numbers are used.2

2This requirement can be relaxed by considering the seed state to be an implicit input variable as pursued by Xie.(Xie, 2013a)

135

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

Table 4.1: R code expressions and their input variables

Expression Input variables

x = rnorm(n, sd = sd) n, sd

mylist[["x"]] = 1:10 mylist

xyplot(y ˜ x, data = mydata) mydata

Some R code expressions and which of the variables they use constitute input variables. Note that in the call to
xyplot() x and y are assumed to be columns in the data frame mydata.

We propose a simple decision mechanism in which both the expression and the values of all

input variables must match between a cache and the current evaluation context for a cached value

to be used. For our discussion here we assume the input variables of each code expression are

known. In practice we use Temple Lang et. al’s CodeDepends (Temple Lang et al., 2013) package

to detect these automatically.3

We compare the expressions and input values for the prospective evaluation and a given existing

cache via two keys. Keys are strings of characters that are assumed to be the same only if the content

used to generate them is identical. One key represents the text of the code expression, while the

other is a hash of the collected values of all input variables for the expression. We discuss the

efficient generation of these keys from potentially large R objects – the input values – in Section

4.1.5.

By comparing the input values specifically, our decision mechanism obviates the need for any

complex dependency tracking between code expressions. Under our assumptions, the only way

earlier code can affect a code expression’s result is by causing changes to one or more of its

input values. These changes will be automatically detected and correctly handled via the value

inspection. Furthermore, changes to code will only trigger re-evaluation of later code when the

inputs of the later code have actually changed. This is in contrast to existing systems, which
3CodeDepends extends Tierney’s similar codetools (Tierney, 2011) package in ways that make it more immediately useful for

our current task.

136

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

implement multi-level dependency tracking and must re-evaluate a piece of code whenever an

earlier piece of code which could affect its inputs changes.

Though we are assuming that the result of evaluating a piece of code is determined entirely by

its input values, code text, and metadata values, the mapping of input values to results need not

be one-to-one. A concrete example of this is that the mean, median, and standard deviation of a

data vector (and many other meaningful statistics) are independent of data order.4 In addition any

calculation involving, e.g., the absolute value, sine/cosine/etc., floor, positive even exponent, or

binning of an input variable can generate the same output from different values of that input.

We know of no way to detect this type of many-to-one mapping via general static code analysis,

so both our system and existing ones must re-evaluate such code when its inputs have and could

have changed, respectively. Moving forward from that point, however, our system will be aware of

whether the results have actually changed, whereas the pure static code analysis approach will not.

This means that we can prevent unnecessary propagation of re-evaluation, while existing general

systems cannot.

This prevention of cascading re-evaluation allows our system to safely load cached results in

a strictly greater number of situations than code text dependency-based systems. We discuss a

concrete example of this in some detail in Section 4.1.3.

Our system’s direct reliance on the input values themselves has strong advantages in contexts

other than traditional weaving. Input values are necessarily available in all situations where code

is to be evaluated. This allows our system to be applied directly in situations such as finer-grained

evaluation of code elements within a document and interactive exploration of a document. We

discuss this situation in more detail in Section 4.1.4.
4Barring finite precision arithmetic issues in the cases of mean and standard deviation

137

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

4.1.2 Caching non-assignment effects

Tracking and reproducing the return value and any values assigned to variables during evaluation is

not sufficient to fully replicate the behavior of some code expressions. Code can have a number of

non-assignment effects (NAEs) when evaluated, including but not limited to: printing output to the

console, opening and drawing to graphics devices, throwing warnings or errors, loading libraries,

and returning a value not assigned to a variable by the code.5

Our model allows for the storage and reproduction of NAEs by caching a secondary represen-

tation of the evaluation result – the result object – rather than simply storing the assigned and

returned value(s).6 These result objects are generated by an evaluator function, and processed –

whether they were generated fresh or loaded from cache – by a return-handler function. During

this processing, the return-handler recreates any supported NAEs. We illustrate the full caching

mechanism in Figure 4.1, and discuss the details of these functions below. Furthermore, both the

evaluator and return-handler functions are customizable by the user, allowing developers to exper-

iment with new NAE capturing strategies without being required to build an entirely new caching

mechanism or implement substantial changes to an existing one.

By default result objects contain information about any assignments performed during the eval-

uation, the final return value it generated, and any plots the code generated (or modified), but there

are no explicit limits on the form, class, or contents of a result object, other than that it can be

processed by a particular return-handler. Because different evaluator functions can return different

result objects with all other things being equal, the evaluator function is treated as an implicit in-

put variable for the purposes of locating matching caches (the decision algorithm we described in

Section 4.1.1).
5We mean assignments within the code, not assignments of the return value of evaluating the code.
6In essence, this is what Xie’s knitr does via its use of Wickham’s evaluate package, but the user has little control over what is

stored or how it is processed when being loaded from cache.

138

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

Decision
algorithm:

Load cache?

call
evaluator

on
expression

load
cache

expression

Yes
No

recreated
assignments

result
object

performed
assignments

call
return handler

(re)created
NAEs

final
return value

Input state

expression
input values

evaluator
function

Figure 4.1: The computational model of our caching system. Our computational model is designed around a sec-
ondary representation of the results of evaluation – the result object – which is generated by an evaluator and processed
by a return-handler, both of which are customizable by the user. These functions evaluate code expressions in a way
that captures information about NAEs, and use that information to recreate the NAEs, respectively. The captured NAE
information is stored within the cache alongside the final return value, allowing us to regenerate NAEs even when
loading cached results.

The return-handler uses the result object to recreate all supported NAEs before processing and

139

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

returning the final output value. This occurs regardless of whether the result object was obtained

by calling an evaluator or loading an existing cache. We present a simple example of a custom

evaluator and return-handler pair below.

Suppose we want to cache global or graphical options in R, as set by options() and par(),

respectively. We note that while we use this example to illustrate the flexibility of our system, care

should be taken when setting options without explicit instructions from the user.

In order to add caching support for these types of options, we can simply create a new pair

of evaluator and return-handler functions, shown in Figure 4.2. These functions add a layer of

options handling around the default evaluation (Wickham’s evaluate()) and NAE recreation

mechanisms (our evaluate handler()). We do this by inspecting the current options before

and after evaluating code and including the new values of any changed options in the result object

within the evaluator. The return-handler then sets options based on this information. Because the

return-handler is called after either generating or loading the result object, the new values of the

options will be set even when loading from cache.

eval_opts = function(code, env, ...) {
pre_ops = options()
def_res = evaluate(code, env, ...)
post_ops = options()
list(evaluate_ret = def_res,

opts = option_changes(pre_ops, post_ops))
}

handler_opts = function(res_obj, ...) {
do.call(options, res_obj$opts)
evaluate_handler(res_obj$evaluate_ret)

}

Figure 4.2: Custom evaluator and return-handler functions. These functions allow caching of global option changes.
The eval opts() compares the current options before and after code evaluation and includes any differences in the
result object, while handler opts() sets any options altered by the code to their new values before continuing
with default processing.

When we designed our system there was no existing way to evaluate code and have access to

140

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

both the raw return value generated during evaluation and information about any plotting, con-

sole output, errors, and warnings which occurred. Since then, however, changes have been made

to Wickham’s evaluate package which allow the return of raw final values instead of emulated

printed output. With this change, we are able to use evaluate() as our core evaluation mech-

anism, which allows caching of plots, console output, errors, and warnings. This rendered the

customizability of our system less necessary, though we feel that there is still value in the flexibil-

ity offered by our approach. As such we have left the mechanism unchanged, other than leveraging

evaluate by default, as it is described above.

We now present a detailed comparison of our approach – as implemented in our RCacheSuite

package – with two existing systems. We do this in the context of a concrete example which

illustrates a case where our system is able to (correctly) load a result from cache where existing

systems do not.

4.1.3 A comparison of caching mechanisms

Existing dynamic document caching systems such as weaver (Falcon, 2013) and knitr(Xie, 2013a)

implement decision mechanisms based on a proposal by Leisch to track changes in dynamic doc-

ument files as a proxy for possible changes in results.

Specifically, Leisch notes that there is an inherent dependency graph among the code elements

in a dynamic document based on their order and the variables they use, define, and modify. This

dependency graph allows him to categorize the situations where a code element needs to be re-run

during the weaving process as follows: “[i]n general, each node has to be re-evaluated only if any

ancestral node in the graph [of dependencies among code elements] or the node itself changes.

Otherwise cached results from previous computations can be re-used.”7(Leisch, 2003)
7We emphasize that he is referring to the graph of dependencies among code elements within a flat dynamic document, rather

than the implicit document graph we defined in Chapter 2.

141

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

Table 4.2: Criteria for loading from an existing cache

weaver knitr RCacheSuite

1. Code expression matches
2. Code expressions which gen-

erated input variables match
3. No expressions from (2) were

rerun

1. Full code element matches:

(a) code text
(b) computed chunk option

values

2. No cached dependencies have
changed

1. Code expression matches
2. Current values of input vari-

ables match those previously
used

The criteria for loading an existing cache differs substantially between our RCacheSuite package and the existing
weaver and knitr packages.

Both our system and these existing systems track and identify stored results via keys. Keys are

unique values, typically strings, which encode information about the computations which gener-

ated the result such that computations assigned the same key are assumed to give the same result.

These keys are then used during the process of deciding whether to re-run a piece of code. The

exact manner of the decision is slightly different in each case, as are the keys used. These differ-

ences embody the differences between the systems themselves, as illustrated by the examples in

this section.

Falcon’s weaver and our RCacheSuite both operate at the individual expression level, while the

caching mechanism in Xie’s knitr operates on entire code elements (which often encompass many

individual expressions). The criteria for using a cached result in these three systems are listed in

Table 4.2.

Consider the snippet of an Rnoweb document pictured below. It contains three expressions

involving three variables (foo, bar, and done).

<<b1 cache=TRUE>>=
bar <- 10
foo <- barˆ2 * 3
done <- foo + 5
@

142

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

When any caching system is applied in the absence of pre-existing caches, it evaluates all pieces

of code and creates the relevant caches. For the sake of brevity, we assume this has already occurred

for our code element via both weaver and RCacheSuite. We now discuss the behavior of these

three systems when the first expression in the element is changed to bar <- -10 to illustrate the

differences between Falcon’s decision mechanism and our own. Figure 4.3 illustrates the behavior

of the two systems in this situation.

We now discuss the two algorithms in detail within the context of the example described above.

Checking the expression which generated each input variable only handles direct dependencies.

Dependency under the Leisch/Falcon model is transitive. That is, a piece of code depends on all

of the dependencies of each of its dependencies, and on each of their dependencies, and so on.

We see this in our example code element in the form of the implicit dependency of the done <-

foo + 5 expression on the expression bar <- 10 by way of foo <- barˆ2 * 3. In order

to handle these implicit dependencies without actually constructing Leisch’s dependency graph,

Falcon adds a check for whether any of the direct dependencies needed to be re-evaluated. If so,

it is assumed that there is a mismatch somewhere farther up the stream and the cache is declared

stale (not usable).

As we saw in Figure 4.3, each of our three expressions fails to meet a different one of weaver’s

three criteria for loading an existing cache, and thus all three expressions are re-evaluated. The

first expression has actually changed, and thus no cache exists for it at all. The second expression

has a dependency mismatch, in that previously the expression which generated bar was bar

<- 10 whereas now it is bar <- -10. Finally the third expression has a dependency (foo

being generated by foo <- barˆ2 * 3) which matches but was re-evaluated due to an earlier

change.

143

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

R
u
n
n
in

g
 w

it
h
 `

b
a
r

<
-

-1
0

`
a
ft

e
r

cr
e
a
ti

n
g

 c
a
ch

e
s

w
it

h
 `

b
a
r

<
-

1
0

`

b
a
r

<
-

-1
0

fo
o
 <

-
b
a
r^

2
 *

 3
d

o
n
e
 <

-
fo

o
 +

 5

C
o
d

e
 E

le
m

e
n
t

R
e
-e

v
a
lu

a
te

e
x
p

re
ss

io
n

Lo
a
d

 c
a
ch

e
d

re
su

lt

N
o

Ye
s

Ye
s

Ye
s

N

o
`b

a
r<

-
1

0
`

v
s

`b
a
r<

-
-1

0
`

N

o
fo

o
<

-
b
a
r^

2
 *

 3
w

a
s

re
ru

n

E
x
is

ti
n
g

 C
a
ch

e
s

ke
y

st
o
re

d
 r

e
su

lt

E
x
is

ti
n
g

 C
a
ch

e
s

ke
y

st
o
re

d
 r

e
su

lt

w
e
a
v
e
r

R
C

a
ch

e
S
u
it

e

Ye
s

Ye
s

Lo
a
d

 c
a
ch

e
d

re
su

ltYe
s

fo
o
 =

 3
0

0
N

o
b
a
r

=
 -

1
0

N
o

R
e
-e

v
a
lu

a
te

e
x
p

re
ss

io
n

H
a
v
e
 c

a
ch

e
m

a
tc

h
in

g
 e

x
p

re
ss

io
n

S
to

re
d

 d
e
p

e
n
d

e
n
ci

e
s

m
a
tc

h
D

e
p

e
n
d

e
n
ci

e
s

lo
a
d

e
d

fr
o
m

 c
a
ch

e

H
a
v
e
 c

a
ch

e
(s

)
m

a
tc

h
in

g
 e

x
p

re
ss

io
n

C
a
ch

e
 a

ls
o

m
a
tc

h
e
s

in
p

u
ts

b
a
r<

-
1

0
fo

o
<

-
b
a
r^

2
 *

 3
d

o
n
e
<

-
fo

o
 +

 5

e
x
p

re
ss

io
n

b
a
r

=
 1

0
fo

o
 =

 3
0

0

in
p

u
t

v
a
lu

e
s

re
su

lt

b
a
r

=
 1

0
fo

o
 =

 3
0

0
d

o
n
e
 =

 3
0

5

b
a
r<

-
1

0
fo

o
<

-
b
a
r^

2
 *

 3
d

o
n
e
<

-
fo

o
 +

 5

e
x
p

re
ss

io
n

b
a
r

=
 1

0
fo

o
 =

 3
0

0
d

o
n
e
 =

 3
0

5

(
-,

 -
)

(b
a
r,

 b
a
r<

-
1

0
)

(f
o
o
,

fo
o
<

-
b

a
r^

2
 *

 3
)

re
su

lt
d

e
p

e
n
d
e
n
cy

 l
is

t
(v

a
r

,
ke

y
)

Fi
gu

re
4.

3:
A

si
de

-b
y-

si
de

co
m

pa
ri

so
n

of
th

e
w

ea
ve

r
an

d
R

C
ac

he
Su

ite
de

ci
si

on
al

go
ri

th
m

s.
G

iv
en

th
e

se
to

f
th

re
e

co
de

ex
pr

es
si

on
s

(t
op

)
an

d
ex

is
tin

g
w

ea
ve

r-
an

d
R

C
ac

he
Su

ite
-s

ty
le

ca
ch

es
fo

r
th

em
(m

id
dl

e-
le

ft
an

d
m

id
dl

e-
ri

gh
t,

re
sp

ec
tiv

el
y)

,
w

e
co

m
pa

re
th

e
be

ha
vi

or
of

ou
r

ca
ch

in
g

m
ec

ha
ni

sm
(l

ow
er

-r
ig

ht
)

to
th

at
of

Fa
lc

on
’s

w
ea

ve
r

(l
ow

er
-l

ef
t)

.
A

ft
er

al
te

ri
ng

th
e

fir
st

ex
pr

es
si

on
in

a
w

ay
th

at
do

es
no

ta
ff

ec
tt

he
re

su
lt

of
th

e
se

co
nd

(f
ro

m
b
a
r

<
-

1
0

to
b
a
r

<
-

-
1
0

),
R

C
ac

he
Su

ite
lo

ad
s

th
e

ca
ch

ed
re

su
lt

fo
rt

he
th

ir
d

ex
pr

es
si

on
,w

hi
le

w
ea

ve
r

m
us

tr
e-

ev
al

ua
te

al
lt

hr
ee

.P
at

hs
th

ro
ug

h
th

e
al

go
ri

th
m

s
fo

re
ac

h
ex

pr
es

si
on

co
de

d
by

co
lo

ra
nd

lin
e

ty
pe

.

144

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

Our system, on the other hand, is able to load the existing cached result for the third expression.

The reason for this is that the change in the first expression does not cause a change in the value of

the variable foo present when the third expression is considered.

As above, RCacheSuite re-evaluates the first expression because none of the existing caches

match the new expression. This results in a value of -10 for the variable bar when considering

the second expression. The second expression remains unchanged, but the value of the bar input

variable does not match. Thus the cache does not match and the second expression is re-evaluated,

as it was by weaver.

The re-evaluation of the second expression, however, generates a value of 300 for the variable

foo – the same value generated when bar was 10 – due to the fact that bar appears only as a

squared term in the expression. Thus, when RCacheSuite considers the third expression, both the

expression and its input value match, allowing our system to load the cached result and avoid the

redundant evaluation performed by weaver.

As stated above, Xie’s knitr operates at the level of entire code elements. This means that our

change to one of the expressions within the element causes the single cache for the element to not

match. Thus it will re-evaluate all three expressions during the course of re-evaluating the code

element itself. If the three expressions are split up into three separate code elements, the end result

is the same as in weaver: all three expressions are re-evaluated.

In our example, only one subsequent expression had foo as an input variable and thus the

effective difference between the two systems was not particularly large. In general, however, all

expressions which use foo or any variables whose value depends on foo will be loaded from

cache by our system but recomputed by weaver. In lengthy analyses, this can amount to a substan-

tial difference in total computations performed by the two systems.

145

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

4.1.4 Caching in non-linear and interactive contexts

Our primary purpose for pursuing an input-based decision mechanism is to extend caching for

dynamic documents into interactive contexts and non-linear documents. Both of these situations

require the ability to retain more than one cache per expression, because code run before a partic-

ular element, and thus the set of input values present when evaluating, is not unique. Our system

inherently supports this due to the fact that cache storage and matching depends on both the ex-

pression and the current values of all input variables.

When weaving reports from non-linear dynamic documents, the evaluation history, and thus de-

pendencies of the current expression, at any point in the process depends on which thread through

the document is being woven. This means that a dependency mismatch between an existing cache

and the current state for a particular expression8 is not evidence that a change to the underlying

document has been made which renders the cache permanently invalid, as is the case with flat

documents.

Assumptions about element dependencies break down even further when operating on dynamic

documents interactively. In this situation, the unit of evaluation is typically individual code ele-

ments, which can often be run by the user repeatedly and in any order. This may be via a graphical

user interface (GUI) as in Gentleman and Gentry’s DynDoc and the IPython Notebook platform

– both Granger and Perez et al’s original and our non-linear extension discussed in Chapter 3, but

can also be done directly via interactive scripting as in Temple Lang et. al’s CodeDepends9 and

our DynDocModel.

Furthermore, in non-GUI interactive work, the values of input variables for an expression can
8Or the entire code element.
9The CodeDepends package does not define a dynamic document system per se, but it provides mechanisms for reading scripts

in various formats into a dynamic document-like structure containing a series of script (code) elements and provides methods for
evaluating the structure both as a whole and in parts.

146

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

be modified directly using code which does not appear in the document at all. For example, an

analyst might interactively modify an intermediate value to debug later code that uses it – or more

generally to explore the later code’s behavior given corner-case inputs – without needing to modify

the full document to create a thread which generates that specific value.

Because the decision algorithm we propose in Section 4.1.1 allows us to avoid explicit depen-

dency calculations, we are able to completely bypass the complications of determining dependen-

cies without a fixed, or even finite selection of possible evaluation histories. Furthermore, because

input values are sufficient to detect cache mismatches based on changes to the dependency chain,

we do so without introducing any chance of false positives.

Existing systems which use only calculated dependencies and code text, on the other hand,

would require substantial changes to their underlying assumptions about dependency structure in

order to be useful in non-linear and interactive contexts. Unlike existing systems, however, we

must fully process all input values. Some of these values may be many times larger and more

complex than representations of the code, making the generation of keys potentially much more

expensive than in existing systems. We present our approach for efficiently generating keys from

large input values in the next section.

4.1.5 Efficient comparison of large R objects via hashing

One of the goals of our caching system is to facilitate interactive code elements. For interactive

code elements to be fully effective the GUI controls must be responsive to actions by the user. The

entire process of finding a matching cache and loading the data, then, must occur as quickly as

possibly, with a strong preference for near real-time performance. We explore this issue with an

illustrative, though admittedly contrived example. We note that this example is not intended to be

realistic, but rather is a minimal reproduction of the issue in order to showcase our solution.

147

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

Suppose we have a large numeric vector containing 125 million elements – about 1 gigabyte

of data – in R and we wish to investigate the distribution of its elements. We want to create an

interactive code element which plots a histogram of the values, with the number of bins in the

histogram controlled by a slider GUI element.

To achieve a satisfactory user experience we must generate a key for the data vector, compare

it to existing caches until we find a match or exhaust the set of existing caches, and – if a matching

cache is found – load the result with minimal delays. We will focus here on the generation of the

key, which is a substantial bottleneck when taking the naive approach of serializing the object into

a character vector then calling a hash function on the vector.

With data this size, constructing the input-value portion of the key to compare with existing

caches can itself be expensive. We need a way of generating these keys which is as close to in-

stantaneous as possible while still maintaining the requirement that the same key will be generated

for different data with extremely low probability. For reference, Eddelbuettel et al.’s digest func-

tion (Eddelbuettel et al., 2013) takes on the order of 7 seconds to generate a key from an object

this size on our laptop 10, primarily due to the fact that it copies the data. Furthermore, calling

identical() on two R vectors of this size with the same data, but which are stored in different

objects internally, takes approximately 2.7 seconds on the same machine.

Our fastdigest package takes 0.19 seconds to generate a key for our approximately 1 gigabyte

numeric vector. This is nearly 40 times faster than digest() for one such vector and about 7

times faster than identical() for two such vectors when the data are the same but are stored

in separate objects internally.11

fastdigest provides a streaming-hash option for R’s own internal serialization framework. The
10machine and software specs are provided in Appendix B.
11identical() searches until it finds a difference, so if a difference happens early in the vector it would be faster than

fastdigest which always processes the entire object.

148

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

bulk of the serialization logic in R is implemented in the R Serialize() C function, which accepts

an R object and an output target. We call this function with a custom streaming-hash target so that

instead of writing the serialized data to a file, string, or raw vector, the data is fed directly into the

SpookyHash algorithm. No duplication of the data is ever done, as the hashing algorithm is able to

process the same copy of the data in memory that constitutes the contents of the actual R object.

By using R’s own mechanism, we are guaranteed that the data being passed to the hashing

algorithm uniquely describes the R object. We are also able to provide direct access to the hook

functionality R’s serialize() function provides for handling reference style objects such as

externalptr objects and connections. We simply accept a hook function of the same specification

expected by serialize() and pass it directly to the R Serialize() C function, where it performs

its typical role.

We use Jenkins’ SpookyHash hashing function(Jenkins, 2012), though the same approach could

be used for any hashing function which can accept streaming data. SpookyHash generates 128-bit

hash values which can be compared to infer whether the two data sources used to generate the

hashes were the same. The algorithm is deterministic, meaning identical data will always generate

the same key. Thus two pieces of data which have different hashes are guaranteed to be different.

Two pieces of data which generated the same hash can be distinct, but this occurs with a very

small probability. Specifically, because the hash values are 128-bit, the expected number of such

hash value collisions is approximately 1 collision per 2128 unique, randomly distributed pieces of

data.12(Jenkins, 2012)

Jenkins’ algorithm is also extremely fast, achieving rates of 3 bytes of data processed per pro-

cessor cycle (Jenkins, 2012), the maximum read rate for non-cached memory on the machine, or

the speed at which the data is being passed to it, whichever is smaller. For perspective, a mod-
12Due to hardware constraints, the algorithm has only been empirically tested to 273 unique pieces of data.

149

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

ern processor core performs billions of cycles per second (1 gigahertz is approximately 1 billion

cycles/second).

In practice, the speed of fastdigest() is limited by the throughput of data from the R object

being passed to Jenkins’ algorithm. For atomic vectors, we are able to pass the entire vector as a

single block, thus approaching the speeds Jenkins cites. For lists and other non-atomic structures,

however, each element is processed separately by R Serialize() and thus a list with a few large

vector elements will be processed much more efficiently than a list with the same total amount of

data split into many small elements. Even in this case fastdigest() outperforms digest()

by about a factor of two – 0.5 seconds vs 1.12 seconds for a list with 5 million scalar elements.

Our fastdigest() function is able to generate keys much faster than the operation of read-

ing a cached result of equal size from disk. Thus we consider our bottleneck resolved. We now

discuss some drawbacks of our general caching approach and how we seek to mitigate them.

4.2 Known Limitations and Drawbacks

The most significant weakness of our system is that it requires the ability to compare input values

for all input variables across different evaluation environments or even across R sessions. We do

this via hashing based on R’s internal serialization machinery. That machinery, however, cannot

handle certain types of R objects – e.g. connections and objects based around external pointers –

without specific instructions from the user. Absent such instructions, R will generate non-unique

serializations for these objects, e.g. by recording the address of all externalptr objects as 0. This

causes distinct evaluation contexts to generate the same key at a much higher rate than we assume

based on SpookyHash’s collision rate when the input values include these types of objects.

We mitigate this issue in the same manner that R does: by allowing users to specify cus-

150

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

tom handlers for serializing, e.g., connections and externalptr objects. In fact, as with stan-

dard serialization, the exact same machinery is used when calling these custom handlers within

fastdigest() as when users call the serialize() function directly. We admit that this is

somewhat cumbersome, but feel that matching R’s own approach to serializing these objects is

preferable to implementing a different workaround.

Another downside to our input value based decision mechanism is that it provides no obvious

mechanism for detecting when a cache is no longer needed. In the traditional caching systems

offered by weaver and knitr, any time a cache with a matching key is not loaded due to dependency

mismatches, it is assumed that the document being woven has permanently changed. As such, the

cache is considered permanently invalidated and is typically overwritten with a new cache after

the next re-evaluation of the corresponding code. While this causes problems in the non-linear and

interactive contexts we discussed in Section 4.1.4, it also provides significant, though not perfect,

garbage collection for unnecessary caches in code-text-based systems.

We currently have no automatic system for detecting and removing unneeded caches. In fact,

in the context of arbitrary interactive evaluation, caches can never be guaranteed not to match any

future evaluation context. This does not mean, of course, that caches should never be deleted, but

heuristics and active decision making by the user are required in our system where other systems

are able to automate the process.

To facilitate the identification of caches which may not be worth keeping, we track date and

usage-frequency information for each cache. This allows users to set garbage collection mecha-

nisms based on date created, most recent use, or frequency of use which match the specific needs

of their application. We also allow the restriction of how many caches can be maintained for a

single expression. Restricting the number of caches per expression to one effectively simplifies

151

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

our system to those offered by existing packages, including their implicit cleanup mechanism.

Finally, while not specific to our system, caching at the expression level instead of the larger

code elements involves a potentially substantial trade-off. Expression level caching is much more

precise in determining which computations must be performed than its less granular counterpart,

but it can, in certain situations, result in many times more total space being required to cache

the result of evaluating a given piece of code. Consider the simple pseudo-code in Figure 4.4

describing three data-cleaning steps we might apply to a dataset.

<<datacleaning>>=
replace non-positive values of variable 1 with NAs
replace values greater than 10 of variable 2 with NAs
detect and fix typos in categorical variable
@

Figure 4.4: A simple (pseudo-code) data-cleaning code element

Given a code element with multiple expressions modifying the same object – e.g. a data.frame

representing the data being analyzed – an element-level caching mechanism such as the one used

in knitr will create only one cache storing the final version of the object after all three cleaning

steps. With expression level caching, however, three separate caches are made, each of which

contains a full copy of the data after the respective cleaning step is performed. This causes the

total cache size for our code element to be three times as large when cached by expression than

by code element. This can have significant and even prohibitive consequences when caching is

applied to code which makes repeated or incremental changes to large objects or datasets.

We address this issue by allowing users to specify that a code element should be cached as a

single expression.13 We provide the user three mechanisms for doing this: via specific metadata

on the code element, via an explicit argument in the call to evalWithCache(), or by providing

an R function which accepts the full contents of the code element and returns a logical indicating
13In practice this is done by wrapping the full code block in curly braces.

152

CHAPTER 4. CACHING FOR NON-LINEAR DYNAMIC DOCUMENTS

whether it should be treated as a single entity. We also provide a default heuristic which causes

a code element to be cached as a single unit if all expressions within it set or update the same

variable.

We have presented a proposal to use direct input value inspection during caching in order to

protect against changes to previously evaluated code in a way that extends naturally to contexts

where this evaluation history is not unique. This allowed us to seamlessly support weaving mul-

tiple threads through the same non-linear document, as well as the interactive exploration and

piecewise evaluation of documents. We also briefly discussed an implementation of this proposal

in our RCacheSuite package, and how its behavior compares to existing caching mechanisms for

dynamic document systems in R. Finally, we discussed the drawbacks of our system and our efforts

to mitigate them.

153

Chapter 5

Summary

Our work has focused on implementing, exploring and extending ideas proposed by Gentleman

and Temple Lang (Gentleman et al., 2004) and Nolan and Temple Lang (Nolan and Temple Lang,

2013), which we have incorporated into our concept of comprehensive dynamic documents. Our

contributions roughly cluster into three arenas, each associated with a software tool we have de-

veloped:

• We have designed and implemented computational models for representing and processing

linear and non-linear dynamic documents in R (DynDocModel) and a general mechanism for

querying the contents of arbitrarily complex R objects (rpath).

• We have created an interactive authoring and exploration environment which supports non-

linear dynamic documents and discussed the design lessons learned during its creation.

• We have developed and implemented a caching strategy for use when multiple threads are

being evaluated through a comprehensive document.

We now summarize our contributions in each of these arenas, as presented in the preceding

chapters of this dissertation.

154

CHAPTER 5. SUMMARY

5.1 DynDocModel: A Flexible, Unified System for Dynamic Documents in

R

In Chapter 2 we presented our DynDocModel R package. DynDocModel contributes two pri-

mary advances to dynamic documents in R. First, we implement a format agnostic object model

for linear and non-linear dynamic documents. Secondly, we utilize a highly modularized and cus-

tomizable computational model for processing dynamic documents.

All but the most straightforward data analyses will involve decisions by the analyst amongst

multiple alternatives. No existing dynamic document system for R, however, provides standard-

ized, out-of-the-box processing for non-linear dynamic documents1. DynDocModel provides

high- and low-level APIs for handling non-linear dynamic documents. This ensures the author

and audience can generate reports and compute directly on comprehensive research documents.

Linear dynamic documents are currently used primarily to generate woven reports. We meet this

need by ensuring that linear narrative reports can be generated from comprehensive and non-linear

documents. Computing on the documents directly, on the other hand, opens up new use-cases to

both analysts and readers which can incorporate structure, content, and results of the documents

to synthesize new information about the research process or results. We saw this in the plot of

misclassification rates for all the possible final classifiers in our digit analysis (Section 1.2.5),

which displays information not contained by any single thread through the document2.

We have defined a four step computational model for processing dynamic documents: con-

structing or population the document object, subsetting the document, evaluating code, and ren-

dering content (including formatting output). Furthermore, we have designed DynDocModel so

that each of these four steps is fully customizable by the user. Customizability at each step of
1Though Nolan and Temple Lang’s .Rdb format does provide a mechanism for storing non-linear documents, and XPath can be

used to manually construct the set of content to process.
2Unless one considers a linearization of the full body of code a single thread.

155

CHAPTER 5. SUMMARY

our computational model grants us specific capabilities relevant to dynamic documents; we briefly

recount our motivating examples and the concepts they showcase below.

By enabling customization of the parsing mechanism, we allow DynDocModel to – in principal

– support arbitrary, future dynamic document file formats. This serves to future-proof any advances

we or DynDocModel users make in the arena of processing or computing on dynamic documents.

User control of the subsetting mechanism allows them to specify which thread or non-thread

set of content is being processed. This concept is central to our comprehensive documents, as it

allows the user to declare which narrative he or she would like to process.

Customizing the evaluation of code when processing a document – or thread therein – allows

users to affect the output included within a woven report without changing the code in the document

itself. We saw an example of this where we used custom evaluation to automatically add timing

information for each code element in the processed thread. More generally, we can add provenance

or other information for the results presented in a report. This information could be a function of

the processing mechanism, the code being evaluated, or a combination of the two.

Furthermore, the benefits of a separate, customizable rendering step of content (rendering) and

results (formatting) is two-fold. First, the fact that it is a separate step from evaluation allows us

to render a single evaluated thread into multiple different output files of different formats without

any re-evaluation of the content. Secondly, by customizing the insertion of output – R objects –

into a report, users can create rich, context-specific formatting for their reports. We saw this in our

rendering example where we displayed the confusion matrix within our woven HTML report as a

styled <table> with the counts for the most common error for each type of digit highlighted.

We now move on to summarize our work modifying the IPython Notebook (Pérez et al., 2013a)

computing platform. This work constitutes our second area of contributions: software to create

156

CHAPTER 5. SUMMARY

and interactively display non-linear dynamic documents.

5.2 The Modified IPython Notebook: A Non-Linear Authoring and Com-

puting Platform

Our modified IPython Notebook platform – presented in Chapter 3 – provides document authors

with the ability to create non-linear and comprehensive dynamic documents. Our contributions

stemming from this software are twofold. The software itself provides a proof of concept tool

capable of generating the type of non-linear document DynDocModel is designed to process.

Secondly, the process of creating the software acted as a case-study for the types of challenges and

design considerations inherent in supporting non-linear documents.

Our modified IPython Notebook platform allows users to add non-linearity in the form of tasks,

decisions, and multiple resolutions (detail levels) to IPython notebooks. This allows analysts to

create comprehensive documents as they are proceeding through their research. The platform

also provides a way to display and explore non-linear documents, both those generated within it,

and those constructed elsewhere and converted to non-linear ipynb files via our DynDocModel

package.

The process of modifying the original IPython Notebook application allowed us to explore

some of the implications of allowing users to create and explore non-linear notebooks from a

design perspective. We found that a number of concepts which are straightforward for linear

documents require more care when handling non-linear ones. When faced with these differences,

we both addressed them for our specific software and attempted to generalize where appropriate

into insights applicable to the development of other non-linear document creation and exploration

tools.

157

CHAPTER 5. SUMMARY

A major difference between linear and non-linear documents is that the order of navigation

through the document and the order of code execution when running the document are identical

for linear documents but differ for non-linear documents. The reason for this is that when referring

to ‘running’ a non-linear document, we almost always actually mean running a single thread within

the document. Thus, the execution order describes a linear traversal of a subset of the document,

while the navigation order would describe a non-linear traversal of the entire document. These

concepts of ordering were further complicated when we introduced the multiple resolution/detail

level concept, which calls for elements to be contained in the document but not displayed or visited

during navigation. We found that other, less central details of the software that involved order or

position were also affected by our changes, such as insertion of elements into the document when

undisplayed content is present.

Next we summarize our third avenue of research, which involved efficiency when processing

dynamic documents. More specifically, we designed and implemented a caching mechanism which

supports the same code – from the same code element – generating different results. We see this

behavior both when evaluating multiple threads through the same document and in displaying

interactive code elements.

5.3 RCacheSuite and FastDigest: a Caching Solution for Non-Linear Dy-

namic Documents

Finally, we presented our work towards facilitating interactive use of non-linear dynamic docu-

ments via caching in Chapter 4. We proposed and implemented a new caching mechanism based

on comparing the values of input variables before code evaluation to those present when a cached

result was generated.

158

CHAPTER 5. SUMMARY

By distinguishing caches based on the input values used to generate their results, rather than

solely on code text, we are able to support caching in the context of evaluating multiple threads

through a single non-linear document. Furthermore, when these threads contain the same code

element, that code can be associated with multiple caches, one for each distinct set of inputs.

Caching multiple results for the same code is crucial for interactively navigating between

threads. Requiring full re-evaluation of a thread each time we wish to display or load its asso-

ciated results is infeasible when the code in question is computationally expensive. Furthermore,

inspecting input values allows our system to safely load cached results in situations where existing

systems – which look only at the code in a document – cannot.

A major obstacle to employing our strategy was the cost of comparing current input values

with those associated with existing caches (which we do via hashing). For large values this can

be expensive enough to render interactive use infeasible, even if the comparison remains orders of

magnitude faster than re-performing the computations. To mitigate this we developed the fastdi-

gest package, which leverages Jenkins’ SpookyHash to implement a streaming hash target for R’s

built-in serialization machinery.

Implementing a streaming hash target for R’s serialization machinery allows us to avoid storing

a full, serialized copy of the object being hashed. This lack of copying – as well as using Jenkins’

impressively fast 128-bit algorithm – lead to a 40x speed-up compared to existing approaches when

the value consists of relatively few large vectors. We were also able to leverage R’s own handling

of external pointers and environments during serialization. Though potentially still more costly

than a code-text-only comparison scheme, fastdigest makes hashing large R objects – and thus

generating hash keys based on input values – an order of magnitude faster than loading a cached

object of equivalent size from an .rda file.

159

CHAPTER 5. SUMMARY

5.4 Availability

The software tools I implemented during this work are publicly available on github at https://

www.github.com/gmbecker. In addition, I intend to publish the three R packages discussed

herein (DynDocModel, RCacheSuite, and fastdigest) on the CRAN package repository system.

My work modifying IPython Notebook, however, is unlikely to find its way into the core IPython

software. I will continue to make it publicly available via github until such a time as it warrants a

more formal release.

5.5 Concluding Remarks

We have implemented software tools which address three parts of a proposed comprehensive non-

linear document workflow. Our modified version of the IPython Notebook application allows ana-

lysts to interactively create, view and execute non-linear notebooks. The DynDocModel package

provides a flexible, customizable, and format-agnostic object model for representing dynamic doc-

uments in R, including non-linear notebooks created in the modified IPython Notebook platform.

Finally, we implemented a caching mechanism which supports the type of multi-path evaluation

of dynamic documents necessary to navigate and explore a comprehensive document in real time,

e.g., within our IPython Notebook platform.

Throughout this process, we explored both the specific steps necessary to implement our sys-

tems, and the more general design problems which face developers building tools which deal with

non-linear documents. We feel our work both stands as a proof of concept for implementing such

tools, and provides a set of guidelines and lessons learned for future developers in the non-linear

document space. Finally, our examples throughout this document illustrate how these concepts can

inform the ways we record data analyses, and transform those records into articles, reports, and

160

https://www.github.com/gmbecker
https://www.github.com/gmbecker

CHAPTER 5. SUMMARY

interactive representations of the analyst’s research process.

161

Appendix A

An excerpt of a non-linear IPython

Notebook .ipynb file

Here we present the JSON source for a very simple and slightly abridged non-linear ipynb file to

illustrate our extension of the linear ipynb format. Image data has been removed for clarity and

brevity, but would appear in this JSON object as a quoted string. We present a screenshot of the

notebook in question for context, followed by the JSON string.

We have extended the JSON ipynb format to allow cells to be nested (i.e., certain cell types can

contain arrays of child cells), but have left the format specification otherwise unchanged. We also

provide structural element types – tasks (task cells), decisions (altset cells) and alternatives (alt

cells) – which use nesting to implement the types of non-linear structure we describe in Chapter 2.

Expressions within the JSON displayed below which represent cells of these types are shown in a

bolded, blue font for identification and emphasis.

162

APPENDIX A. AN EXCERPT OF A NON-LINEAR IPYTHON NOTEBOOK .IPYNB FILE

Figure A.1: A very simple non-linear IPython notebook

Expressions which utilize our extension of the ipynb JSON format

{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [

163

APPENDIX A. AN EXCERPT OF A NON-LINEAR IPYTHON NOTEBOOK .IPYNB FILE

{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"%load_ext rmagic"

],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is some Markdown text"

]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%%R\n",
"x = \"Some R code!\"\n",
"x"

],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "task",
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": "More text inside a task"
}

],
"metadata": {}
},
{
"cell_type": "altset",
"cells": [
{

164

APPENDIX A. AN EXCERPT OF A NON-LINEAR IPYTHON NOTEBOOK .IPYNB FILE

"cell_type": "alt",
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": "%%R\ny = 5",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 4
}
],
"metadata": {},
"most_recent": true
},
{
"cell_type": "alt",
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": "%%R\ny = 50",
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {},
"most_recent": false
}
],
"metadata": {}

},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now for some code that depends on a decision"
]

},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%%R\n",
"dat = rnorm(100, sd=y)\n"

165

APPENDIX A. AN EXCERPT OF A NON-LINEAR IPYTHON NOTEBOOK .IPYNB FILE

],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": true,
"input": [
"%%R\n",
"sd(dat)"

],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"text": [
"[1] 3.675473\n"
]
}

],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%%R\n",
"hist(dat)"

],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": *base 64 encoded PNG image*
}

],
"prompt_number": 10
},
{
"cell_type": "code",

166

APPENDIX A. AN EXCERPT OF A NON-LINEAR IPYTHON NOTEBOOK .IPYNB FILE

"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}

167

Appendix B

Machine information and benchmarking

code for digest comparison

Benchmark comparisons between fastdigest() and digest() performed on an Intel-based

laptop with 4 gigabytes of RAM and the Core i3 370 M quad-core processor clocked at 2.4GHZ.

The following code was used to perform the benchmarks:

library(fastdigest)
library(microbenchmark)
library(digest)

x = rnorm(125000000)
fdvec = microbenchmark(fastdigest(x))
dvec = microbenchmark(digest(x), times=10)library(fastdigest)

rm(x)
gc()
y = as.list(rnorm(5000000))
fdlist = microbenchmark(fastdigest(y), times=10)
dlist = microbenchmark(digest(y), times=10)

We used versions 1.3-0, 0.6-4 and 0.5-0 of the microbenchmark, digest, and fastdigest pack-

ages, respectively. Full session info was as follows:

168

APPENDIX B. MACHINE INFORMATION AND BENCHMARKING CODE FOR DIGEST COMPARISON

sessionInfo()

R version 3.1.0 (2014-04-10)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8
[2] LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8
[6] LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8
[8] LC_NAME=C
[9] LC_ADDRESS=C
[10] LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8
[12] LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils
[5] datasets methods base

other attached packages:
[1] microbenchmark_1.3-0 digest_0.6.4
[3] fastdigest_0.5-0

loaded via a namespace (and not attached):
[1] compiler_3.1.0 tools_3.1.0

169

Bibliography

ActivePapers Development Team (2013). ActivePapers: python edition. https://github.

com/activepapers/activepapers-python.

Allaire, J., Horner, J., Marti, V., and Porte, N. (2014). markdown: Markdown rendering for R. R

package version 0.7, http://cran.r-project.org/package=markdown.

Avila, D. (2013). live reveal: Project to implement a “LIVE” reveal version for the IPython note-

book. https://github.com/ipython-contrib/live_reveal.

Baggerly, K. A. and Coombes, K. R. (2009). Deriving chemosensitivity from cell lines: Forensic

bioinformatics and reproducible research in high-throughput biology. The Annals of Applied

Statistics, 3(4):1309–1334.

Bavoil, L., Callahan, S. P., Crossno, P. J., Freire, J., Scheidegger, C. E., Silva, C. T., and Vo, H. T.

(2005). Vistrails: Enabling interactive multiple-view visualizations. In Proceedings of IEEE

Visualization.

Becker, G. (2013). rpath: XPath-based querying for R objects. R package version 0.1.0, https:

//github.com/gmbecker/rpath.

Becker, G. and Temple Lang, D. (2013). RBrowserPlugin: R bindings to NPAPI Browser Plugin.

R package version 0.1-5, https://github.com/gmbecker/RBrowserPlugin.

170

https://github.com/activepapers/activepapers-python
https://github.com/activepapers/activepapers-python
http://cran.r-project.org/package=markdown
https://github.com/ipython-contrib/live_reveal
https://github.com/gmbecker/rpath
https://github.com/gmbecker/rpath
https://github.com/gmbecker/RBrowserPlugin

BIBLIOGRAPHY

Becker, R. and Chambers, J. M. (1984). S: An Interactive Environment for Data Analysis and

Graphics. Chapman and Hall/CRC.

Berglund, A. (2006). Extensible Stylesheet Language (XSL) Version 1.1. W3C recommendation,

World Wide Web Consortium (W3C). http://www.w3.org/TR/xsl11.

Brauer, M., Durusau, P., Edwards, G., Faure, D., Magliery, T., Radius, B., and Vogelheim,

D. (2005). Open Document Format for Office Applications (OpenDocument) v1. 0. Tech-

nology standard, Organization for the Advancement of Structured Information Standards

(OASIS). https://www.oasis-open.org/committees/download.php/12572/

OpenDocument-v1.0-os.pdf.

Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., An-

sorge, W., Ball, C. A., Causton, H. C., Gaasterland, T., Glenisson, P., Holstege, F. C., Kim, I. F.,

Markowitz, V., Matese, J. C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S.,

Stewart, J., Taylor, R., Vilo, J., and Vingron, M. (2001). Minimum information about a microar-

ray experiment (MIAME)-toward standards for microarray data. Nature genetics, 29(4):365–71.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Breiman, L., Friedman, J., Stone, C., and Olshen, R. (1984). Classification and Regression Trees.

Chapman and Hall, New York, NY.

Brodlie, K., Poon, A., Wright, H., Brankin, L., Banecki, G., and Gay, A. (1993). GRASPARC-A

problem solving environment integrating computation and visualization. In Proceedings Visual-

ization ’93, pages 102–109. IEEE Comput. Soc. Press.

Buckheit, J. B. and Donoho, D. L. (1995). WaveLab and Reproducible Research. In Antoniadis,

171

http://www.w3.org/TR/xsl11
https://www.oasis-open.org/committees/download.php/12572/OpenDocument-v1.0-os.pdf
https://www.oasis-open.org/committees/download.php/12572/OpenDocument-v1.0-os.pdf

BIBLIOGRAPHY

A. and Oppenheim, G., editors, Wavelets in Statistics, Lecture Notes in Statistics, pages 55–82.

Springer-Verlag.

Cervone, D. and Krautzberger, P. (2013). Mathjax: Beautiful math in all browsers. http://

www.mathjax.org.

Chambers, J. (2010). Software for Data Analysis: Programming with R. Statistics and Computing.

Springer, New York, NY.

Claerbout, J. and Karrenfach, M. (1992). Electronic documents give reproducible research a new

meaning. 1992 SEG Annual Meeting.

Clark, J. (1999). XSL Transformations (XSLT) Version 1.0. W3C recommendation, World Wide

Web Consortium (W3C). http://www.w3.org/TR/xslt.

Clark, J. and DeRose, S. (2006). XML path language (XPath) Version 1.0. W3C recommendation,

World Wide Web Consortium (W3C). http://www.w3c.org/TR/xpath.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on

Information Theory, 13(1):21–27.

Eddelbuettel, D., Lucas, A., Tuszynski, J., Bengtsson, H., Urbanek, S., Frasca, M., Lewis, B.,

Stokely, M., Muehleisen, H., and Murdoch., D. (2013). digest: Create cryptographic hash di-

gests of R objects. R package version 0.6.4, http://cran.r-project.org/package=

digest.

Falcon, S. (2013). weaver: Tools and extensions for processing Sweave documents. R pack-

age version 1.30.0, http://www.bioconductor.org/packages/release/bioc/

html/weaver.html.

172

http://www.mathjax.org
http://www.mathjax.org
http://www.w3.org/TR/xslt
http://www.w3c.org/TR/xpath
http://cran.r-project.org/package=digest
http://cran.r-project.org/package=digest
http://www.bioconductor.org/packages/release/bioc/html/weaver.html
http://www.bioconductor.org/packages/release/bioc/html/weaver.html

BIBLIOGRAPHY

Free Software Foundation (2013). GNU Emacs. https://www.gnu.org/software/

emacs/.

Gautier, L. (2012). rpy2: A simple and efficient access to R from Python. Software version 2.30,

http://rpy.sourceforge.net/.

Gentleman, R. and Gentry, J. (2013). DynDoc: Dynamic document tools. R package ver-

sion 1.42.0, http://www.bioconductor.org/packages/release/bioc/html/

DynDoc.html.

Gentleman, R. and Temple Lang, D. (2007). Statistical Analyses and Reproducible Research.

Journal of Computational and Graphical Statistics, 16(1):1–23.

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,

Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch,

F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang,

J. Y. H., and Zhang, J. (2004). Bioconductor: open software development for computational

biology and bioinformatics. Genome biology, 5(10):R80.

Gruber, J. (2004). Markdown. http://www.daringfireball.net/markdown.

Herndon, T., Ash, M., and Pollin, R. (2013). Does high public debt consistently stifle economic

growth? A critique of Reinhart and Rogoff. Cambridge Journal of Economics.

Huntley, M. A., Larson, J. L., Chaivorapol, C., Becker, G., Lawrence, M., Hackney, J. A., and

Kaminker, J. S. (2013). ReportingTools: an automated result processing and presentation toolkit

for high-throughput genomic analyses. Bioinformatics (Oxford, England), 29(24):3220–1.

Jenkins, B. (2012). SpookyHash: a 128-bit noncryptographic hash. http://burtleburtle.

net/bob/hash/spooky.html.

173

https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
http://rpy.sourceforge.net/
http://www.bioconductor.org/packages/release/bioc/html/DynDoc.html
http://www.bioconductor.org/packages/release/bioc/html/DynDoc.html
http://www.daringfireball.net/markdown
http://burtleburtle.net/bob/hash/spooky.html
http://burtleburtle.net/bob/hash/spooky.html

BIBLIOGRAPHY

Kuhn, M. (2014). odfWeave: Sweave processing of Open Document Format (ODF) files. R package

version 0.8.4, http://cran.r-project.org/package=odfWeave.

Lang, L. and Wolf, H. P. (1996). The REVWEB manual for SPLUS with WINDOWS. http://

www.wiwi.uni-bielefeld.de/fileadmin/emeriti/naeve/manuale.ps (De-

funct), Accessed Nov, 2013.

Lee, J. and Grinstein, G. (1995). An architecture for retaining and analyzing visual explorations

of databases. In Visualization ’95, Proceedings of the IEEE Conference on Visualization, pages

101–108. IEEE Computing Society Press.

Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using literate data analysis.

In Härdle, W. and Rönz, B., editors, Compstat 2002 - Proceedings in Computational Statistics,

pages 575–580, Heidelberg. Physica Verlag.

Leisch, F. (2003). Sweave and Beyond: Computations on Text Documents. In Hornik, K., Leisch,

F., and Zeileis, A., editors, Proceedings of the International Conference on Distributed Statistical

Computing (DSC-2003).

Liaw, A. and Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3):18–

22. Available at http://cran.r-project.org/package=randomForest.

MacFarlane, J. (2006). Pandoc. http://johnmacfarlane.net/pandoc/.

Maechler, M. (2010). classGraph: Construct Graphs of S4 Class Hierarchies. R package version

0.7-4, http://CRAN.R-project.org/package=classGraph.

Marsh, J., Orchard, D., and Veillard, D. (2006). XML Inclusions (XInclude) Version 1.0 (Second

Edition). W3C recommendation, World Wide Web Consortium (W3C). http://www.w3.

org/TR/xinclude.

174

http://cran.r-project.org/package=odfWeave
http://www.wiwi.uni-bielefeld.de/fileadmin/emeriti/naeve/manuale.ps
http://www.wiwi.uni-bielefeld.de/fileadmin/emeriti/naeve/manuale.ps
http://cran.r-project.org/package=randomForest
http://johnmacfarlane.net/pandoc/
http://CRAN.R-project.org/package=classGraph
http://www.w3.org/TR/xinclude
http://www.w3.org/TR/xinclude

BIBLIOGRAPHY

Neuwirth, E. (2011). RColorBrewer: ColorBrewer palettes. R package version 1.0-5, http:

//cran.r-project.org/package=RColorBrewer.

Nolan, D. and Temple Lang, D. (2007). Dynamic, Interactive Documents for Teaching Statistical

Practice. International Statistical Review, 75(3):295–321.

Nolan, D. and Temple Lang, D. (2013). XDynDocs: Dynamic Documents with XML and XSL. R

package version 0.3-1, http://www.omegahat.org/XDynDocs/.

Nolan, D. and Temple Lang, D. (2014). XML and Web Technologies for Data Sciences with R. Use

R! Springer, New York, NY.

Pau, G. (2010). hwriter: HTML Writer - Outputs R objects in HTML format. R package version

1.3, http://cran.r-project.org/package=hwriter.

Pérez, F. and Granger, B. E. (2007). {IP}ython: a System for Interactive Scientific Computing.

Computing in Science and Engineering, 9(3):21–29.

Pérez, F., Granger, B. E., and IPython Core Development Team (2013a). {IP}ython Notebook.

http://ipython.org/notebook.html.

Pérez, F., Granger, B. E., and IPython Core Development Team (2013b). {IP}ython

Notebook Messaging Specification. http://ipython.org/ipython-doc/stable/

development/messaging.html#messaging.

Python Development Team (2013). Python. http://www.python.org.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria.

175

http://cran.r-project.org/package=RColorBrewer
http://cran.r-project.org/package=RColorBrewer
http://www.omegahat.org/XDynDocs/
http://cran.r-project.org/package=hwriter
http://ipython.org/notebook.html
http://ipython.org/ipython-doc/stable/development/messaging.html#messaging
http://ipython.org/ipython-doc/stable/development/messaging.html#messaging
http://www.python.org

BIBLIOGRAPHY

Ram, K. and Temple Lang, D. (2012). rProv: Provenance tracking in R. R package version 0.2-0,

https://github.com/karthik/rProvenance.

Ramsey, N. (1994). Literate programming simplified. IEEE software, 11(5):97–105.

Rossini, A., Maechler, M., Hornik, K., Heiberger, R., and Sparapani, R. (2001). Emacs Speaks

Statistics: A Universal Interface for Statistical Analysis. UW Biostatistics Working Paper Series,

Nr. 173.

Rossini, A. J. (2001). Literate Statistical Practice. In Hornik, K. and Leisch, F., editors, Proceed-

ings of the International Conference on Distributed Statistical Computing (DSC-2001).

RStudio Inc. (2014). shiny: Web Application Framework for R. R package version 0.9.1, http:

//cran.r-project.org/package=shiny.

RStudio Team (2012). RStudio: Integrated Development Environment for R. RStudio, Inc., Boston,

MA. Available at http://rstudio.com.

Santos, E., Lins, L., Ahrens, J., Freire, J., and Silva, C. (2009). Vismashup: Streamlining the

creation of custom visualization applications. IEEE Transactions on Visualization and Computer

Graphics, 15(6):1539–46.

Taylor, C. F., Paton, N. W., Lilley, K. S., Binz, P.-A., Julian, R. K., Jones, A. R., Zhu, W., Apweiler,

R., Aebersold, R., Deutsch, E. W., Dunn, M. J., Heck, A. J. R., Leitner, A., Macht, M., Mann,

M., Martens, L., Neubert, T. A., Patterson, S. D., Ping, P., Seymour, S. L., Souda, P., Tsugita,

A., Vandekerckhove, J., Vondriska, T. M., Whitelegge, J. P., Wilkins, M. R., Xenarios, I., Yates,

J. R., and Hermjakob, H. (2007). The minimum information about a proteomics experiment

(MIAPE). Nature biotechnology, 25(8):887–93.

176

https://github.com/karthik/rProvenance
http://cran.r-project.org/package=shiny
http://cran.r-project.org/package=shiny
http://rstudio.com

BIBLIOGRAPHY

Temple Lang, D. (2011). Sxslt: R extension for libxslt. R package version 0.91-1, http://www.

omegahat.org/Sxslt.

Temple Lang, D. (2013). XML: Tools for parsing and generating XML within R and S-Plus. R

package version 3.98-1.1, http://www.omegahat.org/XML.

Temple Lang, D. and Becker., G. (2013). RWordXML: Simple tools for Open Office Word Process-

ing XML documents. R package version 0.1-0, http://www.omegahat.org/RWordXML.

Temple Lang, D., Peng, R., and Nolan, D. (2013). CodeDepends: Analysis of R code for

reproducible research and code comprehension. R package version 0.3-5, http://www.

omegahat.org/CodeDepends.

Therneau, T., Atkinson, B., and Ripley, B. (2014). rpart: Recursive Partitioning and Regression

Trees. R package version 4.1-8, http://cran.r-project.org/package=rpart.

Tierney, L. (2011). codetools: Code Analysis Tools for R. R package version 0.2-8, http:

//cran.r-project.org/package=codetools.

Urbanek, S. and Horner, J. (2012). FastRWeb: Fast Interactive Framework for Web Scripting Using

R. R package version 1.1-0, http://cran.r-project.org/package=FastRWeb.

Walsh, N. and Muellner, L. (1999). DocBook: The Definitive Guide. O’Reilly Media.

Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W. H. A., Lumley, T., Maechler,

M., Magnusson, A., Moeller, S., Schwartz, M., and Venables, B. (2014). gplots: Various R

programming tools for plotting data. R package version 2.13.0, http://cran.r-project.

org/package=gplots.

Watson, G. S. (1964). Smooth Regression Analysis. Sankhya, 26(4):359–372.

177

http://www.omegahat.org/Sxslt
http://www.omegahat.org/Sxslt
http://www.omegahat.org/XML
http://www.omegahat.org/RWordXML
http://www.omegahat.org/CodeDepends
http://www.omegahat.org/CodeDepends
http://cran.r-project.org/package=rpart
http://cran.r-project.org/package=codetools
http://cran.r-project.org/package=codetools
http://cran.r-project.org/package=FastRWeb
http://cran.r-project.org/package=gplots
http://cran.r-project.org/package=gplots

BIBLIOGRAPHY

Wickham, H. (2014). evaluate: Parsing and evaluation tools that provide more details than the de-

fault. R package version 0.5.5, http://cran.r-project.org/package=evaluate.

Wickham, H., Danenberg, P., and Eugster, M. (2014). roxygen2: In-source documentation for R.

R package version 4.0.1, http://cran.r-project.org/package=roxygen2.

Xie, Y. (2013a). knitr: A comprehensive tool for reproducible research in R. In Stodden, V., Leisch,

F., and Peng, R. D., editors, Implementing Reproducible Computational Research. Chapman and

Hall/CRC.

Xie, Y. (2013b). An R notebook in Shiny. http://glimmer.rstudio.com/ropensci/

knitr/.

Zhang, J. (2013). tkWidgets: R based tk widgets. R package version 1.42.0, http://www.

bioconductor.org/packages/release/bioc/html/tkWidgets.html.

178

http://cran.r-project.org/package=evaluate
http://cran.r-project.org/package=roxygen2
http://glimmer.rstudio.com/ropensci/knitr/
http://glimmer.rstudio.com/ropensci/knitr/
http://www.bioconductor.org/packages/release/bioc/html/tkWidgets.html
http://www.bioconductor.org/packages/release/bioc/html/tkWidgets.html

	Introduction
	Examples of Data Analyses
	Classifying handwritten digits
	Exploring housing prices in the San Francisco Bay Area 2003-2006

	Representing the Research Process in a Dynamic Document
	Comprehensively describing the research process
	Decisions, alternatives, and tasks
	Metadata about document elements
	Selecting linear narratives and other subsets from comprehensive documents
	Computing on the document
	Exploring the analysis interactively

	A Roadmap for the Remainder of this Thesis

	A System for R-based Nonlinear, Comprehensive Dynamic Documents
	Representing Documents as R Objects
	Representing decisions, alternatives, and tasks via nesting
	A unified, format-agnostic representation
	Modeling local element-level interactivity in dynamic documents

	Operating on DynDoc Objects
	Visualizing document structure
	Subsetting and querying the document
	Specifying threads

	DynDocModel's Computational Model
	Customizing the processing step
	Customizing markup generation
	Customizing the creation of DynDoc objects

	Related Work and Other Approaches
	Background and systems for linear documents
	XDynDocs, IDynDocs, and Vistrails
	Other related work

	Authoring and Exploring Non-Linear Documents
	Important Features for Non-Linear Document Systems
	Features of an authoring environment for non-linear documents
	Rendering target and exploration environment

	Case Study: Modifying IPython Notebook
	The IPython Notebook
	Adding non-linearity
	Detail level and ``hidden'' elements
	Interactive code elements

	Lessons from our Case Study
	Changes to the computational model
	Drawbacks of our modified IPython Notebook
	Separate versus `both-in-one' authoring and interactive exploration environments

	Background and Related Work
	Possible Alternative Approaches for Exploration Environments
	Conclusion

	Caching for Non-Linear Dynamic Documents
	Caching
	An input-value based caching mechanism
	Caching non-assignment effects
	A comparison of caching mechanisms
	Caching in non-linear and interactive contexts
	Efficient comparison of large R objects via hashing

	Known Limitations and Drawbacks

	Summary
	DynDocModel: A Flexible, Unified System for Dynamic Documents in R
	The Modified IPython Notebook: A Non-Linear Authoring and Computing Platform
	RCacheSuite and FastDigest: a Caching Solution for Non-Linear Dynamic Documents
	Availability
	Concluding Remarks

	An excerpt of a non-linear IPython Notebook .ipynb file
	Machine information and benchmarking code for digest comparison
	Bibliography

