Mathematical Investigation of Hydrodynamic
Contributions to Amoeboid Cell
Motility in Physarum polycephalum

By

OWEN LESLIE LEWIS
B.S. (Harvey Mudd College) 2005

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in
Applied Mathematics
in the
OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIFORNIA
DAVIS

Approved:

Robert D. Guy (Chair)

Alex Mogilner

John K. Hunter

Juan Carlos del Alamo

Committee in Charge

2014



UMI Number: 3685252

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

Dissertation Publishing

UMI 3685252
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106 - 1346



To Those Who Come After.

ii



Abstract

In this work, we investigate the role of intracellular fluid flow in the migration of Physarum polycephalum.
We develop two distinct models. Initially, we model the intracellular space of a physarum plasmodium as
a peristaltic chamber. We derive a PDE relating the deformation of the chamber boundary and the flux of
fluid along the chamber center line. We then solve this PDE for two distinct boundary deformations and
evaluate the characteristic stress associated with the peristaltic flow. We compare the derived stress, as
well as the relative phase of the deformation and flow waves, with values seen in experiments. Second,
we develop a poro-elastic model of the interior of physarum that accounts for cytoskeletal structure, as
well as adhesive interactions with the substrate. We develop this model within a framework similar to the
Immersed Boundary method, which readily allows for computer simulation. We then use this model to
simulate cell crawling across a range of parameters that characterize the coordination of adhesion to the
substrate. We identify a spatio-temporal form of adhesion coordination that is consistent with experiments.
We also show that this form is both efficient and robust, when compared to similar forms of adhesion

coordination.
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CHAPTER 1

Introduction

1.1 Amoeboid Motility

Cell migration plays a critical role in a wide variety of biological processes. From wound healing and
immune response to morphogenesis, the mechanics of motile cells play a key part. Amoeboid motility
is a fast type of cell migration defined by large shape changes as the cell extends and retracts various
pseudopodia and blebs [BrRa01]. Research on amoeboid motility has recently intensified in part because
of a newfound appreciation of the broad applicability of amoeboid motility types. This migration mode is
robust to changes in the extracellular matrix and may be used to move across a 2-D surface or through a 3-
D environment [CHA08B]. Furthermore, studies have suggested that the general mechanisms of amoeboid
motility may be independent of the specific molecular nature of the cell-matrix adhesions [LAM08]. Thus,
amoeboid cells are able to cross barriers, move through confined channels, or squeeze through 3-D matrices
by contracting and pushing off the surrounding environment. Certain cancer cells have even been shown
to dynamically regulate motility type and switch to amoeboid motility, based on chemical treatments or
extracellular geometry [KEL00, SAB09].

Despite the vast existing knowledge about the biological and molecular processes involved in amoe-
boid migration, our understanding of the underlying mechanical processes is still rather phenomenolog-
ical. Cells exhibiting amoeboid migration must generate protrusive stresses to drive the leading edge
forward. These stresses may be generated by the polymerization of filamentous actin or by a flow of cy-
toplasm driven by contraction induced pressure [LAM09]. Furthermore, in order for locomotion to take
place, internal stresses must be transmitted to the substrate. In the traditional paradigm of mesenchymal
motility, the transmission of stress is accomplished by an array of regulated proteins that mediate adhesion
to the substrate. However, there is evidence that amoeboid cells can migrate in 3-D environments without

specific molecular adhesion. It has been suggested that fluid-driven motility modes may be well suited to



migration in the absence of specific adhesion because intracellular pressure pushing on the extracellular
matrix may generate a frictional force large enough for the cell to push or pull itself through the environ-
ment [CHA08B]. However, this hypothetical description of amoeboid motility has not been tested. It seems
clear that motility of this form requires the coordination of contractile stresses (to generate pressure gra-
dients), flow of cytoplasmic material, and mechanical interactions with the extracellular matrix (whether
specific molecular adhesions or not). However, at this point we lack any quantitative understanding of
how these effects may be coordinated in motile amoeboid cells.

To address this issue, mathematical modeling can be extremely helpful. Mathematical models allow
“measurement” of quantities that are virtually inaccessible through experiment; for example, intracellu-
lar pressure is difficult to measure, but readily computable in a model of fluid dynamics. Furthermore,
mechanistic models provide the ability to directly control parameters that may be impossible to perturb
in experiments, or difficult to alter without undesired downstream effects. Thus, modeling provides the
ability to completely isolate the effects of a particular mechanical component of the system in question.
This can be extremely helpful in understanding the complex interplay of mechanical forces that generate

cell motility.

1.2 Physarum polycephalum

Physarum polycephalum is a large multi-nucleated slime mold that belongs to the supergroup Amoebo-
zoa. The subgroup of Dictyostelids are known as cellular slime molds and are comprised of mononuclear
cells that can form multicellular aggregates that coordinate behavior through chemical signaling [PAL96].
Members of Dictyostelium have been the subject of much study, including the mechanisms by which both
individuals and aggretate “slugs” migrate [DA07, R1e05]. In contrast, physarum belongs to the “acellular”
or plasmodial slime mold subgroup of Myxomycetes. Physarum is composed of a large, multinucleated
aggregate of cytoplasm, which may grow to the macro-scale but lacks membrane divisions between indi-
vidual cells.

Due to its large size, physarum is relatively easy to study under a light microscope, and has been used
as a model organism in cellular biology for several decades. Physarum was heavily studied in early investi-
gations into the nature and movement of cytoplasm [Kam59]. Due to the prevailence of large intracellular
flows, the streaming of cytoplasm within physarum plasmodia has been the focus of cytology studies

[KEs82, Kam68, Kam61]. In addition to simple streaming of cytoplasm, the plasmodium of physarum ex-



hibits a vast array of cellular behaviors that have been studied in a variety of contexts. The emergence
of contractile patterns has been studied in the context of coupled oscillators [Tak97a, TAK97B, TAK00,
Tax01, Nax99, TER05] and complex viscoelastic materials [TEP91, Rap13, TEP97, OsT84]. The branching
of flow networks within physarum has even been studied as a model system of transportation networks
[Bau13, Baul0].

Physarum plasmodia grow an intricate branched network of gelated cytoplasm that resembles a vas-
cular system. This network merges into a fan-shaped structure at the leading edge of the organism as
it migrates across its substrate. Figure 1.1a shows a fully grown organism and this cytoplasmic network.
Through the network, the organism generates a periodic back-and-forth flow of cytoplasm known as shut-
tle streaming. This flow is driven by pressure gradients created by contraction of the actomyosin network
within the cell [ALL63, On1L95, Kuk87], which is regulated by a Ca?* oscillation [Yos10].

Removing a small sample of the organism results in a so-called microplasmodium. Examples of mi-
croplasmodia may be seen in the Figure 1.1b and the insets of Figure 1.1c The multinucleated nature of
physarum means that these smaller scale plasmodia are capable of sustaining organic function and may
eventually grow back to the scale of the original. Initially after segregation, microplasmodia adopt a round
shape and begin to reorganize their disrupted cytoskeleton [NaG75]. As the microplasmodia grow to a
critical size (approximately 100 um across), a sharp transition occurs [Koy98]. An elongated tadpole-like
shape develops, with a flow channel of non-gelated cytoplasm along the cell longitudinal axis. This results
in a drastic increase in intracellular fluid velocity as a distinct pattern of cytoplasmic flow develops. In Fig-
ure 1.1c we show data from our experimental collaborators Shun Zhang and Juan Carlos del Alamo where
several plasmodium are allowed to grow while their “shape factor S§ = P? /47 A is measured. Here, P is
the perimeter of the cell and A is its area. A shape factor of one corresponds to a perfectly round cell, while
a larger shape factor indicates elongation. The data clearly illustrates this sharp transition as a function
of microplasmodium size. Once this transition occurs, the smaller physarum amoebae may exhibit a sim-
ilar behavior to their macroscale counterparts. In these microplasmodia, a rhythmic stream of cytoplasm
flows back and forth along the centerline of the cell: a precursor to the shuttle streaming seen in developed
plasmodial networks. The onset of this behavior has been observed to coincide with a drastic increase in
the locomotion speed of growing physarum. It has naturally been hypothesized that the flow of cytoplasm
is therefore a driving phenomenon in this particular example of amoeboid motility.

Due to the relatively large scale of the plasmodia, Particle Image Velocimetry (PIV) experiments allow
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Figure 1.1: A physarum plasmodium is shown in (a), illustrating the plasmodial network of a fully devel-
oped organism. A microplasmodium is shown in (b) that was generated by removing a small portion of the
mature organism. In (c) we present measurements showing the shape factor Sy = P2 /47w A of physarum
microplasmodia as a function of the cell length. Data shows a sudden elongation (associated with cyto-
plasmic streaming) at a critical plasmodium size. The inset shows two example microplasmodia, before
and after elongation. Unpublished data courtesy of Shun Zhang and Juan Carlos del Alamo.

researchers to measure the intracellular fluid velocity in physarum using cell organelles as flow tracers.
In [MAaT08], the authors perform PIV to measure the spatiotemporal flow of cytoplasm within migrating
physarum microplasmodia. In these experiments, the authors observe a periodic, pulsatile flow of cyto-
plasm forward and backward along the longitudinal axis of the plasmodium body. A region of forward
flow (directed toward the anterior end of the cell) develops at the plasmodium posterior and propagates
forward along the cell axis. This is followed by a region of backward flow that also develops at the pos-
terior of the cell and propagates to the anterior. Thus, the spatiotemporal organization of the cytoplasmic
flow is characterized by a phase wave profile. A phase wave is a profile of the form f(kx — wt), where f is
some periodic function (such as a sinusoid). For such waveforms, the wave profile will propagate through
the domain with velocity w/k. Figure 1.2 shows flow data reported in [MAT08] as a function of time and
the longitudinal cell body coordinate (called the Anterior-Posterior (AP) axis by the authors). The pitched
lines of constant flow velocity (marked by circles) indicate the phase wave character of the flow, and the
slope of these lines represents the phase velocity.

In [MATO08], it is argued that the phase wave nature of the cytoplasmic flow is critical to generating
motility via the observed behavior. This argument is motivated by two key observations. First, the direction

that the phase wave travels is from the posterior to the anterior of the cell. The anterograde propogation
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Figure 1.2: Maximum flow along the cell axis as a function of time and location on the Anterior-
Posterior (AP) axis of the cell. Circles denote stagnation points of zero flow velocity. Open circles in-
dicate a transition from backward to forward flow, while filled circles indicate a transition from forward
to backward flow. Reprinted from [MAT08] with permission from Elsevier.

of the flow wave is argued to result in a net forward displacement of fluid within the cell, and thus the
center of mass is transported forward. We reproduce this argument in more detail in Chapter 4. The
second observation of [MAT08] is that the flow wave is of the same wavelength and period as the wave
of contraction on the cell exterior. The two waves have a well-defined phase relative to one another. This
phase relationship ensures that forward flow of cytoplasm occurs at locations on the cell body that are (on
average) wider than locations in which cytoplasm is flowing backwards. Again, this is argued to imply a
net forward flux of material, and thus a translation of the cell. Both of these explanations of motility are
based purely on hydrodynamic phenomena. Neither includes a discussion of the stresses generated by this
behavior, nor how those stresses may be transmitted to the substrate to enact locomotion. We will address
this shortcoming through the use of various mathematical models of physarum. The main goal of this
work is to more quantitatively elucidate the mechanisms by which physarum microplasmodium migrate
while generating the observed flows of cytoplasm.

First, we will provide a mathematical investigation into the plausibility of the description of motility
in physarum provided in [MAT08]. Can hydrodynamic effects alone explain the motion of physarum mi-
croplasmodia? This is addressed in Chapter 2, where we model a single microplasmodia as a peristaltic
chamber of cytoplasmic fluid. We quantify the phase relationships between contraction and flow that
necessarily result from driving cytoplasmic flow through traveling waves of contraction. These phase

relationships are qualitatively compared to those observed in [MaT08]. Simultaneously, we quantify the



characteristic stresses associated with the flows predicted by our model. These stresses are found to be of
a biologically relevant scale, though on average rather small.

We then develop a more complex model of physarum plasmodium that is easily amenable to com-
putational exploration. This model includes a description of the mechanical structure of the cell interior
(cytoskeleton), as well as adhesive interactions with the substrate. The cytoskeleton is modeled as a porous,
elastic meshwork permeated by viscous cytosol. Adhesive interactions are described via a modulated vis-
cous drag with the substrate. Chapter 3 contains a detailed derivation of the modeling framework and
the numerical methods used in simulation. In Chapter 4, we use the model to simulate crawling physarum
plasmodia. We then analyze the flow patterns generated within the cell and the stresses applied to the sub-
strate by the crawling cell. The model predictions are compared to experimental measurements obtained
by our collaborators using live physarum. We identify parameter regimes that give model predictions that
most closely reproduce experimental measurements. Migration in these parameter ranges is shown to be

extremely efficient and robust.



CHAPTER 2

Peristaltic Flow Within Physarum

2.1 Introduction

We begin by developing a hydrodynamic model of the behavior observed in migrating physarum plasmod-
ium. We will use this model to address one of the main hypotheses put forward in [MaT08]. In [MATO08],
the authors noted a particular correlation between the deformation of the cell boundary and the flow of
cytoplasm along the cell interior. Both phenomena propagate along the cell axis from posterior to ante-
rior. Moreover, there is a similar period of the two waves, and they appear to have a well defined timing
relative to one another. This particular relative phase was postulated to be at least partially responsible for
translation of the center of mass of the plasmodium (discussed in more detail in Section 2.7). One goal of
our modeling work is to investigate the validity of this hypothesis. Concurrently, we attempt to quantify
the stresses generated by the observed deformations and flows. In order to enact motility, the plasmod-
ium must exert stresses on the substrate that it migrates across. We quantify stresses associated with the
flows predicted by our model to explore the possibility that hydrodynamic effects may be used to generate
the forces that drive the cell across the substrate. With this in mind, we model the cell as a microscopic
peristaltic pump.

The cellular contractions observed and measured in [MAT08] bear a stark similarity to the deforma-
tions seen in peristalsis. Peristalsis is a phenomenon whereby waves of contraction propagate along the
exterior of a fluid-filled tube or chamber. When these waves of contraction result in net transport of fluid
along the axis of the tube, it is referred to as a peristaltic pump. Peristaltic pumping is observed in nu-
merous physiological contexts where tubular smooth muscle structures are common. The gastrointestinal
tract, bile duct, and fallopian tubes all engage in peristaltic pumping. Peristalsis also has applications in

industrial processes, where a peristaltic pump can be used to move slurries and corrosive materials without



the liquid coming into contact with any mechanical parts of the device. However, the notion that a cell
may peristaltically “pump” itself across a substrate is a here-to-fore novel concept.

Mathematical analysis of motility using traveling waves dates back as far as [Tay51], where peristaltic-
like waves of deformation were studied as a propulsive mechanism for microscopic swimmers. Later, the
efficiency of peristalsis as a pumping mechanism became the subject of much investigation. Most stud-
ies were asymptotic and applicable to restricted parameter regimes. Zero Reynolds number and infinite
wave length were assumed in [SHA69], while vanishingly small boundary deformations were assumed in
[Fun68]. A review of much of the early work on this subject may be found in [Jar71]. The main quantity
of interest in these works is usually the volume of fluid that the pump may transport, or alternately, the
pressure gradient that the pump is capable of overcoming. Later, numerical techniques were brought to
bear on the problem. In [Poz87], a boundary integral method is used to investigate a wider variety of
deformations (including non-symmetric contraction of the pump walls). In [FAu92], the Immersed Bound-
ary (IB) method is used to investigate the transport of solid objects within a peristaltic pump, such as in
the fallopian tract. With more sophisticated numerical methods, elastic effects were added to problem. In
[CAR97] the authors model the boundary of a peristaltic pump as a contractile elastic medium to more
closely approximate smooth muscle in the ureter. In [TErR08], pumping of visco-elastic fluids was simu-
lated. Critically, all of these investigations assume a peristaltic pump of infinite length (or approximate
one using a periodic domain).

The assumption of an infinitely long tube is not appropriate in the context of the system we are
modelling. The characteristic length (400 pm) of the physarum plasmodium in [MAT08] is significantly
longer than the characteristic width (50 pm) or thickness (20 um). However, it is not clear that the length
may safely be regarded as infinite. Moreover, the cell is fundamentally a closed system. The cell membrane
segregates the intracellular fluid from the extracellular space, and therefore, the peristaltic “pump” may not
transport fluid in the traditional sense. We must take into account the “ends” of the pump at the anterior
and posterior of the cell, and thus we will be modeling peristalsis in a finite domain. Investigations into
finite length peristalsis are relatively new. The mechanics of peristaltically pumping fluid over a finite
distance (from one reservoir to another) was explored in [L193]. More recently, the effects of peristaltic
motion of the walls has been investigated in the context of closed, microfluidic devices [SELO1]. In this
work, the authors investigate peristaltic flow in the high Womersley number regime (that is, a regime

where inertial effects dominate), and are concerned mostly with the mixing properties of the induced



flow. This approximation is not relevant to the length and timescales of interest in our problem, and we
are not concerned with mixing properties. However, peristaltic mixing has been studied in the context
of physarum plasmodium, using a discrete chamber model [I1m12]. The existing investigation that most
closely matches the model we will develop may be found in [Y102], where the authors asymptotically
calculate the flow profile in a finite length chamber under the assumption of small boundary deformation.
This is an approximation we will also make. However, the authors in [Y102] do not address the potential
phase relationships between deformation and flow, nor do they attempt to quantify the associated fluid
stresses.

We will now develop a model of a migrating physarum plasmodium, which we treat as a chamber
undergoing peristaltic deformations. We will quantify the flow driven by various deformations of the
chamber wall, as well as the stresses associated with those flows. This is done to investigate the plausibility
of peristaltic pumping as a mechanism to generate the forces necessary for cell motility. Moreover, we
explore the fundamental asymmetries which aid in this form of locomotion. One asymmetry is immediately
apparent: the directionality of the peristaltic wave. However, it is not immediately clear if this is sufficient
to drive motility in a non-inertial regime. Finally, we will investigate the origin of the phase relationship
(between deformation and flow) noted in [MAT08], as the authors suggest that it is a primary generator of

net mass transport.

2.2 Dimension Reduction

We begin by treating the cell interior as a microscopic chamber that is filled with incompressible Newtonian
fluid. Let the fluid domain be defined by 0 < = < L,, —h(x,t) <y < h(z,t),and —d/2 < z < d/2. The
half width of the domain is given by the periodic function h(x, t), which we will prescribe to drive the flow
(more on this in later sections). Figure 2.1 shows an illustrative example of the intracellular space that is
filled with fluid. Within the chamber, we assume that inertial effects are negligible, and therefore the force

density balance on the fluid is given by Stokes equation:
pAu — Vp = 0. (2.1)

Here u is the fluid velocity field in the cell chamber, 1 is the dynamic viscosity of the fluid, and p is the
hydrodynamic pressure. We note that in the experiments of [MAT08] the characteristic height (from the

basal to dorsal surface of the cell) is roughly d ~ 20 um. This is slightly less than the characteristic



width of the fluid domain (¢ ~ 40 pm), and both are significantly less than the length of the fluid domain
(Lz ~ 400 pm). Therefore, we make a thin gap approximation to the momentum equation of Newtonian

fluid [AcH90]. We assume a characteristic flow velocity scale U and see that the terms of Aw scale like

(2.2)

(82u 0*u (‘92u) pwU  pU  uU
pAu = p

w2 arter) " et
Since d is the smallest length scale in the problem, the third term above will dominate, and we therefore
approximate

O*u

Au~ —-.
a Koz

(2.3)
Note that to justify our choice to ignore the second term in Equation (2.2) we do not require that d << ¢,
but rather that d*> << (2. This is reasonable for the scales in our problem. Therefore the momentum

equation may be reduced to the following balance of viscous force densities and pressure:

dp 0%u
o0~ oz ¢4
Op 0%v
=== 2.5
ay Iu’azz Y ( )
Op 0w
= = 2.
where u = (u, v, w). We still have the incompressibility constraint
% + @ + aﬂ = (2 7)
or  dy 0z '

Since the first term of Equation (2.7) scales as U/ L, the other two must as well. From this we can deduce
the scaling v ~ Ul/L, and w ~ Ud/L,, which implies that the flow in the y- and z-directions is much

smaller than that in the z-direction. Returning to Equations (2.4)—(2.6), this allows us to deduce the scaling

Op Op Op U { d
(89;’ Ay’ 8z> e (1’ Ly LJ;) ' 28)

Clearly, the second and third terms are much smaller than the first. Therefore, as a first approximation we

of the pressure gradient

may assume that the pressure is a function of x only. Considering only flow in the z-direction (for now),
we return to the relation
%u  Op

Since p is assumed to not be a function of z, this is easily solvable. Integrating twice and imposing a no-slip

boundary condition on the basal and dorsal surfaces of the fluid domain ( z = 4d/2), we solve for the flow
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profile as a function of z:

Pz (2 2
=—(d"—-14 . 2.10
) = B (- 1) an
This is simply the standard Poiseuille flow profile [Po146]. Now, we can utilize this flow profile to evaluate

the viscous stress applied by the flow to the basal surface of the cell

o= Ou _ _pad (2.11)
_Mazzz_g_ 2 ’

We will utilize this expression later when we address the characteristic stresses associated with the flow
within the cell. Finally, note that most experiments performed on physarum measure the intracellular
velocity in the zy-plane. Therefore, we make the simplifying assumption that the experimentally measured
velocity can be characterized by the average velocity over the height of the cell. We calculate this mean

velocity as

: p
/u(z) dz = _1102:]0# . (2.12)

Dorsal Surface/Cover Slip

Ventral Surface/Substrate

(a) Schematic of the peristaltic chamber. (b) Side view of peristaltic chamber with Poiseille flow profile.

Figure 2.1: A schematic of the geometry for our model. The chamber is assumed to be of uniform thickness
(d) in the z-direction. The longitudinal flow profile in this direction is assumed to be a parabolic Poiseuille
flow.

For the remainder of this section, we will only be concerned with the two-dimensional, planar flow
within the cell chamber. Therefore, we will drop the “bar” notation and refer to the mean velocity in
the longitudinal direction as u. Similarly, v will denote the average velocity in the lateral (y-) direction.

However, this should be understood to imply that the flow has already been averaged over the z-coordinate.

11



We now address the flux of fluid in the longitudinal direction. We define the quantity

h
Qx,t) = /udy. (2.13)
“h

This quantity does not correspond to the traditional notion of volumetric flux. In our model, () has units
of area per time, as opposed to volume per time. However, it is our chosen quantity of interest and will be
referred to as “flux” from this point forth.

We now directly calculate the flux from the longitudinal fluid velocity u. In order to do this, we make
use of our earlier approximations. Since the pressure is assumed to not be a function of y, Equation (2.4)
shows that the velocity « is not either. This leads us to a uniform flow profile in the y-direction. This

assumption, coupled with Equation (2.12), leads to

_pde
= = . 2.14
Integrating to find the flux immediately gives
/ hd?
Qlz) = /u(m) dy = 2hua) = L 2.15)
“h

It should be noted that our assumption of uniform flow in the y-direction is not particularly critical to
the above relationship. The uniform profile in y is obviously a crude approximation and indeed does not
even satisfy a no-slip boundary condition at y = £h. We could perform another lubrication approximation
on the two-dimensional flow to account for variations in the y-direction. This would yield that « has a
Poiseuille flow profile in the y-direction. If the magnitude of this Poiseuille flow is given by Equation (2.12),

then we may write

u(x,y) = —pglgérz)dz <1 - (%)2> . (2.16)

Integrating over a chamber cross section gives

—pahd?

5 (2.17)

h
Q) = / u(w,y) dy =
“h

Thus we see that the precise assumption regarding the flow profile in the y-direction is not critical, as its
effect on the calculated flux simply amounts to an order one constant. This calculation is purely expository.
For the duration of Chapter 2, we will assume that the flow profile is uniform in the y-direction, and thus

the flux Q(z) is given by Equation (2.15). Combining Equations (2.11) & (2.15), we can relate the flux @
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and boundary deformation h to the characteristic viscous stresses associated with the flow

3p Q(w,t)
= — . 2.18
7774 h(x,t) (218)
Now, all that remains is to determine the flux of fluid driven by the boundary deformation.
2.3 Relating Deformation and Flux
Assuming that the two-dimensional flow field (in the xy-plane) is incompressible, we have
u
V-u=V. = Uy +vy = 0. (2.19)
v

This equation is obviously an approximation, as we have averaged an incompressible fluid over the z-
direction. However, in experiments, physarum are seen to change area in the xy-plane by no more than
approximately 5% [ZuA13]. This implies that the planar flow field is nearly incompressible. Integrating

over the width of the domain, we have

h

O:/(ux+vy)dy
—h
0 / oh /
:ax/udy— <u|yh—|—u|y_h)a$—+—/vydy
—h —h
9 h h
zaz/udy%—/vydy
—h —h
0 y=h

= Qx(x>t) + U(h(xat)at) - U(_h(m7t)>t)

= Qu(z,t) + 2h(x, t). (2.20)

Where again, Q(x,t) is the fluid flux through a cross section of the domain. We have made use of the
fact that v(h) = h; and v(—h) = —h; (which derives from a no slip boundary condition). We have also
assumed that |h,| << 1, in order to ignore the boundary terms from the Leibniz integration rule. This is
equivalent to an assumption that the wavelength of the deformation is long compared to the width of the
cell. As we will see, the wavelength of the deformation is on the order of 1600 pm, while the cell width

is on the order of 50 pm. Notice that Equation (2.20) requires very few assumptions about the fluid in
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question. We have simply integrated the incompressibility constraint.

Now we have a one-dimensional partial differential equation (PDE) that is defined on the interval
0 < z < L for time ¢ > 0. Given a boundary function h(z, t), Equation (2.20) determines the associated
flux of fluid within the chamber. However, we still require the appropriate boundary conditions to close
the system. Given that physarum is enclosed by an impermeable bilipid membrane, one might assume
that no-slip boundary conditions for the fluid should be imposed at both x = 0 and x = L,. We note
that no-slip boundary conditions for the fluid result in homogeneous Dirichlet boundary conditions for
the flux (Q = 0). However, Equation (2.20) is a first order differential equation for (). This implies that
imposing boundary conditions at both ends of the domain over-determines the system, and we are left with
a constrained problem. In light of this fact, it is perhaps not immediately clear what boundary conditions

are appropriate for Equation (2.20). This will be discussed further in the following sections.

2.4 Boundary Deformations

We now impose a boundary deformation which mimics the peristaltic contractions observed to propagate
down the lateral sides of migrating physarum specimens. Experimental measurements have shown that the
cell membrane deformations appear to be a traveling, periodic function (phase wave), which propagates
from the posterior to the anterior end of the cell [MaT08, ZHA13]. These wave-like contractions travel

with a distinct velocity, which we refer to as the phase velocity.

2.4.1 Unconstrained Deformation

As a first approximation, we idealize the boundary deformation as a traveling sinusoid of the form

h(z,t) = ho + Acos <klgj - wt) , (2.21)

x
with the stipulation that £ # 0. We refer to k as the wave number of the deformation, and thus the
wavelength is given by A\ = 2w L, /k. Similarly, w is the frequency of the wave, and the period is given
by T' = 27 /w. The ratio wL, /k gives the phase velocity and has units of length per time. Intuitively,
this can be thought of as the velocity with which the peak (or any point of given phase) of the sinusoid
travels in the spatial coordinate. Now, given our assumed form of the chamber wall deformation, a simple

calculation shows that

h: = wAsin <k£j — wt> . (2.22)

T
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From Equation (2.20) we calculate

Q. = —2wAsin </<;Lx - wt) . (2.23)
Integrating gives
2AL,
Q(z,t) = k “ sin (k; — wt> +C(1), (2.24)

where C(t) is a spatially independent function of integration determined by the boundary conditions. We
make the assumption that the domain is “closed” at the left end (z = 0) and impose a no flux condition
Q(0,t) = 0. This is analogous to the assumption that fluid may not pass through the cell membrane at the
posterior end of the chamber. However, we have made no assumptions about the behavior of the model at
the anterior end of the chamber. Indeed, fluid is free to flow in and out of the “head” at = L,, resulting
in a very clear asymmetry in the domain. We will return to this idea in the following section. Imposing
the boundary condition and a brief calculation gives that

—2AL,w

o) = —

cos (wt) , (2.25)

and therefore the resulting solution to Equation (2.20) is

Qx,t) = 2A£xw (cos (k‘; - wt> — Cos (wt)) . (2.26)

Finally, we define the displacement of the chamber wall as

h(z,t) = h(x,t) — hg = Acos <k£: - wt> . (2.27)

We may regard the displacement & as the input of the model, while the resulting flux () may be thought

of as the output.

2.4.2 Volume Preserving Deformation

We now return to the previous discussion of what boundary conditions are appropriate to impose on
Equation (2.20). In the previous section, we stipulated a zero flux boundary condition at the left (x = 0)
boundary of the chamber only. This allows a free flow of fluid in and out of the right boundary (z = L,).
However, if we consider the physical system we are modeling, it is obvious that cytoplasm cannot flow
freely through the anterior end of the cell membrane. We may therefore choose to impose another no flux
boundary condition at the right boundary. Doing so over-determines the problem, as previously stated.

The consequence of this is a constraint on the allowable deformations h(z,t). Zero flux through both
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domain boundaries implies overall volume conservation of the chamber. Thus, for the system to have a
solution, the deformation must be consistent with volume conservation.

The space of deformations which satisfy this constraint is far too large to explore fully. Therefore we
make the following assumption: The chamber boundary has a “preferred” deformation which is the same
as in the previous section (Equation (2.21)); However, there is a spatially uniform correction term which is

calculated to impose constant volume on the chamber,

h(x,t) = ho + Acos (kLI — wt) + D(t). (2.28)

T

The correction term D is determined by integrating over the chamber to determine the overall chamber

volume as a function of time.

V(t)= [ ldydx

h
/1dydm

O\E b\

7
0
Ly
/ ho + A cos (kg - wt) + D(t))dx

La

=0

AL,
=2 (hOL l-c sin <k:li — wt)

2AL,
= 2hoL, +2L,D(t) + 2 (sin (k — wt) — sin (—wt))

+ LxD(t)>

= 2hoL, +2L,D(t) + = (sin (k — wt) + sin (wt)) . (2.29)

Now, we impose the constraint that V' (¢) = V(0) = 2hoL,. This allows us to calculate the correction
term

D(t) = —% (sin (k — wt) + sin (wt)) . (2.30)

We now have the fully determined, volume preserving deformation

h(z,t) = ho + Acos (k; - wt> - % (sin (k — wt) + sin (wt)) . (2.31)

16



We proceed as in the previous section. Taking the time derivative of Equation (2.31) gives

hi = —wA cos <k; - wt) _Aw (cos (wt) — cos (k — wt)) . (2.32)

x k
Substituting into Equation (2.20) and integrating with respect to = gives

2wAL, A
Q(x,t) = wk‘ Ccos <kL$ - wt) Ml

(cos (wt) — cos (k — wt)) + F(t), (2.33)

where F'(t) is a constant of integration that will be determined by boundary conditions. Here, we impose

only the boundary condition that Q(0,¢) = 0. This gives

2WAL,
Q0,8) = === cos (—wt) + F(t) = 0, (2.34)
which can readily be solved to obtain
—2wAL,
F(t)= WT cos (—wt) . (2.35)

This gives the complete description of the flux function

_ 2wAL,

Qat) = == <cos (k:fi - wt) — cos (wt)> + 2A:x(cos (wt) —cos (k—wt)).  (2.36)

Notice here that evaluating the flux at the right domain endpoint (x = L) gives

2WAL,

Q(L,,t) = (cos (k — wt) — cos (wt) 4 cos (wt) — cos (k — wt) ) = 0. (2.37)

Thus, the no flux boundary condition is automatically satisfied at the right end of the domain, due to the
constraint imposed on the deformation h. Again, we specifically call attention to the displacement of the

chamber wall

h(z,t) = h(z,t) — hg = Acos <ka - wt) - % (sin (k — wt) + sin (wt)), (2.38)

xT

which we regard as the input which generates an output of flux given by Equation (2.36).

2.5 Stress Generation

We now address the issue of the stresses associated with the flux generated by the flow of cytoplasm. In or-
der to migrate, it is necessary for a cell such as physarum to generate stresses internally and transmit them
to the underlying substrate in a coordinated fashion. Our goal is to quantify the stresses that are a gener-

ated via the peristaltic pumping of intracellular fluid observed in experiments. Recall from Equation (2.18)
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that the viscous stress on the basal surface of the chamber is given by the non-linear relationship

3pQ(w,t)

= —. 2.39
h(z,t)d (2:39)

From the preceding sections, we have proposed to two idealized deformation functions (Equations (2.21)

& (2.31)) and calculated the flux of intracellular fluid that results (Equations (2.26) & (2.36)).

2.5.1 Unconstrained Deformation
In the case of the unconstrained deformation, where fluid may flow freely through the head of the domain,

we rewrite the deformation as

h(z,t) = ho <1 + hé cos (k:L:E - wt)) = ho <1 + (f) hl(x,t)> . (2.40)
0 T 0

Again, hy is the resting half width of the chamber, while A is the amplitude of the displacement wave. In
physarum specimens observed in [MAT08], the average width of the cell is approximately 40 pm, while
the amplitude of deformation is approximately one fourth of that (10 pm). This allows us to estimate the
non-dimensional amplitude of deformation A/hy ~ 1/4. We now define the parameter

A
= — 241
e= 1 (241

and make the assumption that ¢ << 1. Noticing that the function h; is order one, we make use of the
asymptotic expansion 1/ (1 4+ ¢) = 1 — ¢ + O (¢?). We then approximate

1 1

1
h~ ho(1+chi(x,t)) ~ ho

(1 —cehyi(z,t)). (2.42)

This gives us an asymptotic approximation of the basal viscous stress due to flow of fluid within the
cell

3uQ _ 6uALw

- dho (Lt =) = ehe ((COS (kx — wt) — cos (wt) ) (1 —ecos (kr — wt) >> . (2.43)

g

Expanding Equation (2.43), we arrive at the following expression:

_ buewl, x 9 x x
o= [cos (kLa; — wt> — cos (wt) —e( cos <kL$ - wt> — cos (ka - wt) cos (wt) ) }

T1 T2
(2.44)

The stress o is comprised of two distinct functional forms that have been labeled Terms T1 & T2. Term

T1 is comprised of two pure sinusoids. If we were to integrate over one period of the wave, the stress
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contributed by Term T1 would be zero. That is to say, the stresses directed forward, and those directed
backwards would cancel over one period of the wave. Conversely, Term T2 is comprised of two products
of sinusoids (with the same period). This means that the full stress o does have non-zero average, but only
Term T2 contributes to this average. Furthermore, we see that while Term T1 is O (50), Term T2 is O ().
This means that for ¢ << 1, Term T1 will give a good approximation to the characteristic scale of the
stress o, while Term T2 gives the average stress over each period of the wave.

We now calculate the characteristic scale of average stress associated with the flow wave. The period

averaged basal viscous stress is give by

2m

(o) = % /adt = %(2 sin (ki) cos (l{:i) +4 cos (kzi) —sin (21{:[1) —47r>. (2.45)

0

From Equation (2.45), we can calculate the “total average” (that is, a temporal and spatial average) viscous

stress
1 3e2pwL, (sin (k) — k)
. _ 3wl -
() = I /<a> dz ; e . (2.46)
0

Notice that (7) indeed has units of stress; We will return to discuss the scale of this term in Section 2.6. We
use this quantity as a measure of the average imbalance of stresses (over one period of the wave) associated
with the flow of cytoplasm. As currently developed, the model does not address how these stresses may be
transmitted to the substrate (that will be addressed in later chapters). However, at this point () represents
the only component of the model that is not perfectly symmetric in time. Both the flux of fluid (@) and the
imposed deformation (k) have zero average over one period of the wave (for both the free and constrained
deformation). However, at second order in ¢, we see that there is non-zero average stress associated with
the flow, which may be used to enact motility.

We now return to Term T1 and address the issue of the relative scale of the stresses generated by
the flow of fluid. As previously mentioned, Term T2 is of a higher order in ¢, therefore we make the
approximation that the size of the stress may be reasonably approximated by the size of Term T1. We
define

Osize = % ( cos <k£: — wt> — cos (wt) ), (2.47)

x

and note that oy, ~ o to leading order in £. We again integrate over the domain to find the “spatial
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average stress” associated with the wave,

_ GuewlL, (sin (wt) + sin (k — wt) — cos (wt) )

Ly

1

Osize = fx / Tsize AT = d 2 . (2.48)
0

As we have already mentioned, over one period, this function has zero mean. However, we may still
quantify the characteristic magnitude of stresses by maximizing this (continuous) function on the domain

0 <t < 27 /w. A calculation yields the critical points of Gy, are given by

. —1 —1 + cos (k)
= — —_— . 2.4
t - arctan ( Sin (k) — & > (2.49)

Since we only consider £ > 0 (forward traveling waves), the argument of the arctan function is restricted
to the interval [0, o). There are two branches of the arctan function which yield values of ¢* in the interval
[0, 27 /w] (that is, there are two critical points each period of the wave). However, the choice of branch
does not change our calculations (as we will be considering the absolute value of &j,e). For this reason,
we will only consider the value ¢t* produces by the primary branch of arctan. Finally, we may define the

“maximum average” (that is, averaged in space and maximized in time) stress due to the fluid flow

+ sin <k + arctan (M)) — cos <— arctan (W)) ‘ (2.50)

We now make use of the fact that the maximum average stress may be written in the form

_ bpewl,
o dk?

Omax ‘= |Esize (t*) ’

Ly
Omax = BIUJC; 5f(k) (2.51)

Likewise, the total average stress may be written as

(&) = 3"7“’529(1@). (2.52)

We define the function

G
0= G~ F(R)

The quantity er is called the “effective stress." Up to a constant (C' = 3uwL,/d), the non-dimensional

(2.53)

functions f and g characterize the maximum and total average stresses that are generated each period of
the wave. The quantity er is the proportion of the maximum stresses that have non-zero average, and

thus have a directionality that may theoretically be harnessed in order to enable motility. Figure 2.2a
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shows graphs of f, g, and r for values of k in the interval [0, 27]. This interval of k corresponds to waves
ranging from those with infinite wavelength (spatially homogeneous) to those with a wavelength equal to
the cell body length. Before commenting on the stresses generated by this deformation, we will derive the

equivalent expressions in the case of the constrained, volume preserving deformation.

2.5.2 Constrained Deformation
We now return to the constrained deformation, which was derived in Section 2.4.2. Recall that the defor-

mation function is given by

A x 1, . .
h(z,t) = ho (1 + o <cos <ka - wt> — %(sm (k — wt) + sin (wt) )) ) , (2.54)
which we rewrite as

h(z,t) = ho (1 + <;i> h2(:):,15)> : (2.55)

Proceeding exactly as before, we asymptotically expand in the limit of small £ := A/hy,

1 1 1
B ho (1+ eha(z,t)) ~ ho (1 —ehg(x,1)). (2.56)

We pause here to clarify that the functional form of hy is given by

ho(x,t) = cos (kg - wt> — %(sin (k — wt) + sin (wt) ). (2.57)

z
This means that in the limit £ << 1, the product €hs is no longer small when compared to 1, and our
expansion in Equation (2.56) is no longer valid. However, as will be discussed later, we are not concerned
with the limit £ << 1, as these values are not compatible with the wavelength of deformation seen in
migrating physarum.

Having made this expansion of the inverse of the deformation function h, we can approximate the

basal viscous stress associated with flows driven by the volume preserving deformation. We have

3uQ _ 6pAwL,

7T dho(L+ehy)  dkho

((cos (k:; - wt> — cos (wt) — @ cos (k — wt) — cos (w)) )

x

xT

X (1 —ecos <k; - wt) + %(sin (k — wt) + sin (wt) ))] . (2.58)
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Expanding and collecting terms by order in ¢, we have

o = Spewla [cos <kx _ wt) ~ cos (wt) — a(cos (k — wt) — cos (wt) )

dk L,
T3
x x
+ 5<cos <kL — wt) X <cos (wt) 4+ x cos (k — wt) — cos <kL — wt> — T COoS (wt))
in (k — wt
- sm(kw) X <cos (wt) + x cos (k —wt) — cos <k; - wt> —  cos (wt))

sin (wt)

x
- % <cos (wt) 4+ z cos (k — wt) — cos <kL - wt) — T cos (wt)) ) ] . (2.59)

xT

T4

Again, we see a structure similar to the case of of the unconstrained deformation. Term T3 has zero mean
over one period of the wave, but is a lower order in € and thus dominates the magnitude of the stress
0. Meanwhile, Term T4 is a product of sinusoids and thus has non-zero mean, while being smaller in
magnitude due to the higher order in €.

As in the case of the unconstrained deformation, we calculate the total average stress as

27

Ly &
_ w 3uc?wl, (4 —4cos (k) — ksin (k) — k?
= dtdx = . 2.60
(o) 27TL1;//0- v d ( 3 (2.60)
00
Again, we approximate the magnitude of the stress using Term T3 as
Ly
Osizge = GMZLZ <cos <k; - wt> — cos (wt) — z( cos (k — wt) — cos (wt) )) . (2.61)
This allows us to approximate the spatial average stress
Ly
Fone = 1 /Usize do — Buewly (2sin (wt) + 2sin (k — wt) — kcos (k — wt) — k cos (wt) (262)
x d k?
which has critical points at
L 1 2cos (k) + ksin (k) — 2
" = —arct . 2.63
W e an<kcos(k:)+k—2sin(l€) (2.63)

Again, we see that there are two branches of the arctan function which yield values of ¢* in the range
of one period [0, 27 /w]. And again, the choice of which branch to use will simply shift the argument
of the sinusoids in Equation (2.62) by a value of 7. This implies that branch choice simply changes the
sign of Ggj,e. As we are only concerned with the magnitude of spacial average stress, this is irrelevant for

our purposes. Now, in contrast to the case of the unconstrained deformation, the argument of the arctan
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function may take on values anywhere in the interval (—oo, c0), and indeed has a pole at k = 7. However,
the left and right limits of the argument are +00, and thus ¢* has left and right limits of +7/(2w). Again,
we see that this does not affect magnitude of j,e, which is our quantity of interest. Now we calculate the

maximum average stress due to the fluid flow:

Omax ‘= |Esize(t*)| =

e )

b () o (22 2|

SpewlLy
dk?

(2.64)
Again we see that both the maximum and total average stresses are of the form
Lq
Omax = SIUIC; Ef(k)v (2'65)
and
Ly
7) = ?’u%ng(k). (2.66)
This again allows us to define the function
g(k)
r(k) = 22 (2.67)
W= )

The functions f, g, and r are illustrated in Figure 2.2b and discussed in the following section.

2.5.3 Discussion of Stresses

We reiterate that Figure 2.2 shows calculated stresses for values of k that correspond to waves with infinite
wavelength (spatially homogeneous) to those with a wavelength equal to the cell body length. This range
is chosen because physarum plasmodia are seen to contract with a wave length several times the length of
the plasmodium [MaT08]. Immediately, several characteristics are apparent in Figure 2.2. In the case of the
unconstrained deformation, the maximum average stress (or rather, f(k)) is maximized at wave number
k = 0. This means that the cell is generating maximal viscous stresses when the wavelength of the defor-
mation wave is infinite. However, in this regime, the total average viscous stresses (defined by g(k)) are in
fact zero over one period of the wave. Therefore, we see that while the cell is generating relatively large

stresses, the symmetry of the problem results in no net stress that may be used for locomotion. Instead, the
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Figure 2.2: Green solid lines indicate the function f (k) which characterizes maximum avearge stress G ax-
Blue dashed lines indicate the function g(k) which characterizes total average stress (7). Red dash-dot

lines indicates the ratio (k) = g(k)/f(k).

maximum imbalance in stresses occurs at £ = 7, which corresponds to a deformation wavelength which is
twice the cell body length. At this wavelength, the function g takes on a maximal value of 1/7. Finally, we
note that the ratio of these is maximized at k = 27, which corresponds to a deformation wavelgnth equal
to the cell body length. At this wavelength, the function r takes on a value of 1/2, while f(27) = 1/x
and ¢g(27) = 1/2x. This may be interpretted to mean that while the deformation is generating stresses of
magnitude 1/7, a proportion £/2 of them are directionally unbalanced and thus may be used to drive the
cell across its substrate. In Section 2.6 we will redimensionalize these stresses to their physical scales.
The case of constrained deformation is rather different. The maximum average stress f has a non-
trivial extrema in the interval k& € [0, 27|, but now the total average stress (¢) is maximized at k = 2. It
is still the case that in the limit £ — O (infinite wavelength, or spatially homogeneous deformation), the
total average and effective stresses are negligible. However, we are not concerned with this limit, as our
approximations are dubious in this case. Curiously enough, in the case k = 2, all three measures of stress
(f, g, and r) are identical to those calculated with unconstrained deformation. This is a consequence of the
functional form of the constrained deformation given in Equation (2.31). When k& = 2, this reduces to
the unconstrained deformation given by Equation (2.21). finally, we note that for all values of k, all three

stresses (f, g, and r) are less than or equal to the same measurements in the case of the unconstrained
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deformation. This implies that when deformation is constrained by volume preservation, not only does
the cell produce less stress, but a smaller ratio of the stress produced is directionally unbalanced for use in
motility. This implies that a front-back asymmetry in the domain aids in the generation of motile stresses.

We will return to this idea in the following section.

2.6 Redimensionalization

We now return to the problem of redimensionalizing the model predictions and examining the predicted
stress generation in physical units. From Equations (2.50) & (2.64), we can see that only five parameters
are required to calculate the stresses associated with the flow of cytoplasm. From [MAaT08] and our col-
laboration with Dr. Nakagaki, we have good estimates for the thickness of the cell in the z-direction (d),
the frequency of the wave pattern (w), and the non-dimensional deformation amplitude (¢ = A/hg). We
also can estimate the wave number (k) from the data presented in [MAT08]. The one parameter that we do
not have accurate estimates for is the viscosity of the cytoplasm within the cell chamber (1:). Estimation
of the rheological properties of cell interiors is a difficult problem and may result in values ranging over
several orders of magnitude depending on cell type and experimental set-up [Lim06]. To our knowledge,
no attempt to experimentally measure or estimate of the internal rheology of physarum plasmodium exists
in the literature.

However, our model does provide us a way to crudely estimate the cytoplasmic viscosity. Equa-
tion (2.14) allows us to perform this estimation, provided that we know the characteristic flow velocity
and pressure gradient. While we do not know the local pressure gradient within the cell, we do know the
characteristic length of the cell body (L ;). We also have estimates for the characteristic pressure difference
([p]) from the anterior to posterior of the cell [Kam57]. Finally, it is relatively easy to extract a characteristic
velocity scale from the data in [MAT08]. The known parameters are listed in Table 2.1.

Using the values listed in Table 2.1 and Equation (2.14), we approximate the viscosity of the intracel-

lular fluid as

[p]d?
120,U°

11~ (2.68)
This yields a viscosity of 4 = 50/3 Pa sec &~ 17 Pa sec. For comparison, this is roughly the viscosity of

honey [VP ], or approximately 17,000 times the viscosity of water. As previously stated, measuring the

viscosity of cytoplasm is a difficult problem, partially due to the ambiguity of the material being measured.
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Table 2.1: Known parameters for peristaltic pumping in Physarum.

Parameter | Numerical Value | Description
L, 400 pm Cell length
[p] 1000 Pa Pressure difference across cell
27w 100 sec Wave period
27 [k 1600 pm Wavelength
d 20 pm Cell thickness
ho 20 pm Cell resting half-width
A 5 um Deformation amplitude
U 5 pm/sec Characteristic fluid veloicty

Cytoplasm is a complex mixture of ions, proteins, and other compounds. Proteins such as actin may poly-
merize (to form a gel-like network) or depolymerize spontaneously or in response to various chemical
signals. This means that the measured rheology of cytoplasm can vary wildly depending on timescale of
interest, experimental methodology, environmental factors, or cell type [LP94]. Values for cytoplasmic
viscosity have been reported over several orders of magnitude [Lim06], ranging up to 10* Pa sec for fi-
broblasts [TH099]. Furthermore, our model has homogenized all of this complex rheology into a single
parameter. Therefore, while the computed value of p is rather high to describe cytosol, it is well within a
reasonable range to describe the viscosity of cytoplasm.

Given our approximate value of 1, we may return to the calculated stress functions and express them
in dimensional values. As previously noted, the ratio of deformation amplitude to cell half-width is ¢ =
A/hy = 0.25. The dimensional constant found in (&) and T,y is

3uwlL,

= 10 Pa. (2.69)

The deformation wavelength seen in [MATO08] corresponds to a wave number of £k ~ m/2. This is a
wavelength four times the length of the cell body. Using this value, we may finally evaluate the total
average and maximum average stresses. The results are summarized in Table 2.2. We note that the figures
listed in Table 2.2 are relatively low compared to experimental measurements in some cell types. Strongly
adherent cells such as keratocytes have been observed exerting stresses up to 10, 000 Pa on the substrate
[Bur99]. However, some weakly adherent cells such as dictyostelium are known to migrate using traction
stresses on the order of 20 to 40 Pa or less [Bas14]. Thus, the values of g, calculated in Table 2.2 may
be small, however, we note that this analysis addresses only viscous stresses associated with the flow of

cytoplasm. We have not addressed any elastic or contractile stresses which may also effect traction stress
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measurements.

Table 2.2: Basal viscous stresses associated with flow. All values calculated with & = 7/2.

Unconstrained deformation | Constrained deformation
Omax Maximum Average Stress 2.333 Pa 0.6150 Pa
(@)  Total Average Stress 0.1446 Pa 0.006159 Pa

Finally, we note again that the maximum average stress Tmay, as well as the total average stress
(@), are larger in the case of unconstrained deformation, compared to constrained deformation. Since
the constraint which we placed on the deformation was meant to prevent fluid flow through the anterior
head of the cell, this case corresponds to a spatially symmetric domain. The model suggests that a spatial
heterogeneity aids in the production of viscous stress via peristaltic pumping. It has been observed that
the cell head is mechanically distinct from the rest of the body of the plasmodium [ST094]. The head
of the cell appears to be more elatically compliant, as the tail has a more developed and organized actin
cytoskeleton and cortex. Within the context of our model, the unconstrained deformation represents the
situation where the elastic stiffness of the head region is zero. In this case, fluid may flow into the head
without penalty. Conversely, in the limit of infinite stiffness, fluid may not flow into the head, regardless
of the applied pressure. This scenario is mimicked by our constrained deformation. It is unlikely that
either scenario perfectly captures the mechanics of the cell head in vivo, and a more sophisticated model
would represent an elastic regime between these two limits. However, our model does indicate that the
mechanical heterogeneity at the cell head may be an important factor in generating motility. In the case of
the constrained deformation, the model shows that there is a non-zero net viscous stress associated with the
flow in a closed peristaltic pump. The directionality of the peristaltic wave is enough of an asymmetry to
generate this non-zero stress. However, this stress is exceptionally low. An additional asymmetry such as
the mechanical response in the head, may increase the unbalanced stresses associated with the peristaltic
flow. This suggests that a more sophisticated model including the mechanically distinct cell head is of

value. We will develop and analyze just such a model in Chapters 3 & 4.

2.7 Phase Differences

Having now quantified the stresses associated with two distinct forms of peristaltic pumping within the
cell body, we now quantify the relative timing of the flow and deformation waves. In [MAT08], the au-

thors noted a particular relationship between flow and deformation. Picking a location on the cell axis and
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regarding both waves as a function of time only, they noted that deformation preceded flow by approxi-
mately one quarter of the wave period. That is, the maximum forward flow velocity of the wave occurred
approximately 25 sec after the same location on the cell axis had reached its maximum width. This behav-
ior is illustrated in Figure 2.3. It was hypothesized that this phase relationship aided in driving motility.
This hypothesis was based on the argument that with this particular timing, the width of the cell would
be (on average) wider at locations in space and time where the flow was directed forward. Similarly, the
cell would be narrower at locations where the flow was directed backwards. The result of this asymmetry,
it was argued, is a net forward flux of mass, as more cytoplasm flows forward through a larger channel.
However, this behavior is not generic at all points along the cell axis. Figure 2.4 shows that for much of the
length of the cell body, the maximum cell width (open circles) occurs a quarter period before the maximum
flow velocity (center of the white region of forward flow). However, in regions closer to the head (indicated
with dashed white lines), this relationship is broken and appears to even reverse. Near the cell head, the
maximum cell width occurs just after the maximum flow velocity. We explore this phase relationship with

our model and determine, if possible, the origin of the observed data.
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Figure 2.3: Time sequence of cell width and intracellular fluid velocity along the cell axis. Measurements
were taken at a location on the cell axis indicated by a dashed grey line in Figure 2.4. Reprinted from
[MAaT08] with permission from Elsevier.

2.7.1 Unconstrained Deformation
For simplicity, we will work in non-dimensional body coordinates. This is accomplished via the transfor-
mation x — x/L,. This simplifies calculations greatly and does not affect predicted values, as we will

only be concerned with non-dimensional quantities such as phase. We begin by noting that the imposed
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Figure 2.4: Relationship of flow and deformation in migrating physarum. Greyscale indicates the mag-
nitude of intracellular flow along the cell axis. Open circles indicate the onset of contraction (cell width
is maximal). Filled circles indicate the onset of expansion (where cell width is minimal). Filled grey lines
indicate particle paths obtained via integration of the velocity field. The dark grey dashed line indi-
cates the location where the data from Figure 2.3 was obtained. White dashed lines indicate the region
in the cell head that appears mechanically distinct from the cell body. Reprinted from [MAT08] with
permission from Elsevier.

deformation, Equation (2.21), may be regarded as the real part of a complex exponential oscillation. This

oscillation has the form

h(x,t) = ho + AelFr=t), (2.70)

The displacement, given by Equation (2.27), which we earlier referred to as the input of the model, is the
real part of the function

h(z,t) = Aellhr=wt), (2.71)

The output oscillation, which results from driving the model with this input, is the flux of fluid (Equa-

tion (2.26)), which has complex form

Q(x,t) = ZA% (ei(kz_m) - e_iwt). (2.72)

Both the input and output may be regarded as a complex function multiplied by the temporal oscillation
e~ That is,

h(z,t) = D(z)e” ™", and Q(x,t) = F(zx)e” ™" (2.73)
The functions D(z) and F () may be regarded as spatially varying modulations of the waves h and @Q

respectively. It is a simple matter to determine that

D(z) = Aeth®, (2.74)



and that
ikr
F(z) = 2Awu.

- (2.75)

Now, we define the spatially varying phase of the displacement and flux to be the complex argument of

the functions D and F’ respectively

Vin = arg (D(x)) , and Yoyt = arg (F(x)) (2.76)

It is not so simple to derive analytical expressions for ¢, and @qy. However, these functions are straight-
forward to evaluate numerically. Figure 2.5 show calculated values of ¢;, and @q,t as a function of the
normalized cell coordinate . To analyze the relative timing of the displacement and deformation waves,
we also calculate the quantity

¥ = Pout — ¥in- (2.77)
This is a measure of the relative phase of the two oscillations and is defined so that a positive value of

@ corresponds to the displacement preceeding the flow wave, while a negative value corresponds to the

displacement wave following the flow wave. Calculated values of ¢ are shown in Figure 2.5c.
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Figure 2.5: Calculated phases for unconstrained deformation. Panel (a) shows the phase of the displacement
function D(z) as a function of z and wave number k. Panel (b) shows the phase of the associated flux
fucntion F'(x). Panel (c) shows the relative phase ¢ = @out — . Dashed grey lines indicate relative
phases of +7/2, or one quarter period.

We note that a phase which is perfectly linear in the body coordinate x corresponds to a waveform
that propagates along the cell axis in a linear fashion (such as cos (kx — wt)). The displacement wave
propagates through the cell linearly by construction, and thus ¢y, is linear in . However, the phase of
the flow wave also is linear. This results in a phase difference ¢ that is a linear function of the cell-axis

coordinate. At the tail of the cell (x = 0), we see a phase difference of ¢ = /2 regardless of the wave
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number of the input deformation. This agrees with the observed phase relationship reported in [MAT08]
(the wave length of deformation observed in that work corresponds to a value k ~ m/2). Depending on
the wave number k, the phase relationship decreases as a function of body coordinate. In the most extreme
case (k = 2m), we see a phase difference of ¢ = —/2 at the head of the cell. This means that the flow
wave is preceding the deformation wave by a quarter period. For other wave numbers this decrease in

relative phase is less dramatic.

2.7.2 Constrained Deformation
We now perform the same calculation for the volume preserving deformation that was derived in Sec-
tion 2.4.2. The functional form of the constrained deformation, Equation (2.31) may be regarded as the real

part of the complex function

h(z,t) = ho + A (ei(’”‘“t) + % <ei(k_‘”t) - e_i‘”t) ) . (2.78)
This allows us to define the complex displacement function
h(z,t) = A (ei(kxm) + % (ei(k*‘“t) — e*M) ) (2.79)
Similarly, the associated flux of fluid given by Equation (2.36) is the real part of
Q(x,t) = 21{% <ei(k$*wt) — zelF=wb) 4 pemivt _ e*i“t> . (2.80)

Factoring out the complex temporal oscillation allows us to define the input function

D(z) = A<eim + % (eik - 1) ), (2.81)

and the output function
etk — petk 4z —1
’ .

F(x) =2Aw (2.82)

We again define iy, @out, and ¢ in the same manner as the previous section. Figures 2.6a & 2.6b show the
calculated phases of the displacement and flow waves in the case of constrained deformation. Figure 2.6¢
shows the relative phase of the two waves (¢). Again, a positive value of ¢ corresponds to the displacement
wave preceding the flow wave.

The phase relationships illustrated in Figure 2.6 are rather different than those observed in the case of
the unconstrained deformation. The flow wave still appears to be a phase wave, as @y is a linear function

of body coordinate. However, the displacement wave phase (¢,) has a much more complex character. For
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Figure 2.6: Calculated phases for constrained deformation. Panel (a) shows the phase of the displacment
function D(z) as a function of = and wave number k. Panel (b) shows the phase of the associated flux
fucntion F'(x). Panel (c) shows the relative phase ¢ = @out — ¢in. Dashed grey lines indicate relative
phases of +7/2, or one quarter period.

small values of k (longer wavelength deformations), we see that ¢;, has a somewhat sigmoidal dependence
on body coordinate. The result of this is that the phase difference ¢ has a sharp transition near the center
of the cell body. In the most extreme case shown (k = 7/4), we see a phase difference of approximately
¢ = 7 in the back half of the cell and a phase difference of approximately ¢ = 0 in the front half of the
cell. This corresponds to a scenario where the flow and deformation waves are perfectly anti-phase in the
posterior of the cell and perfectly in-phase in the anterior. As we have previously stated, in the case that
k = 27 the model reproduces the results of the unconstrained deformation. Other values of k interpolate

between these two behaviors.

2.7.3 Relation to Experiment
We now restrict ourselves to the wave number that most closely approximates the observed deformations
in migration physarum (k = 7/2) and compare the predicted phase differences to experimental observa-
tions. This wave number is represented by the solid red lines in Figures 2.5 & 2.6. For clarity, we reproduce
the phase difference ¢ of this wave number for both deformations in Figure 2.7. The solid blue line rep-
resents ¢ for an unconstrained deformation, while the dashed red line represents the same measurement
for the constrained deformation. We see that in both cases, the model captures certain aspects of the
experimental observations but poorly reproduces other features of the data seen in Figure 2.4.

As we have previously discussed, for the constrained volume preserving deformation, the model pre-
dicts a nearly anti-phase relationship in the posterior of the cell (¢ ~ 2.6226 ~ 87/10 at x = 0) and

a nearly in-phase relationship in the anterior (¢ ~ —0.2664 ~ —8x/100 at x = 1). Clearly this does
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Figure 2.7: Relative phase ¢ calculated with the model for wave number experimentally observed in
[MAT08]. Solid blue line indicates  for the unconstrained deformation (open head). Dashed red line
indicates phase for the constrained deformation (closed head).

not match the experimental data. As previously noted, the experimental data indicates a relative phase of
approximately 7/2 & 1.5708 throughout most of the cell body. Near the anterior end of the cell, there
is a transition where the relative phase decreases to approximately — /2 over a relatively short spatial
domain (see Figure 2.4). The model does predict this rapid transition of relative phase. Moreover, the model
predicts that the deformation wave “catches up” to the flow wave by a factor of nearly 7, just as observed
in experiments. However, this transition occurs in a spatial location (the center of the cell) that is not
consistent with experimental observations.

Conversely, in the case of unconstrained deformation, our model predicts phase relationships that
are relatively constant throughout the spatial domain. For the free deformation, the model gives a relative
phase of ¢ = 7/2 & 1.5708 at the posterior of the cell (x = 0). This decreases linearly to a value of
¢ = /4 ~ 0.7864 at the anterior of the cell (z = 1). In this case, the model predicts a phase difference
that is close to the observed value 7/2 throughout most of the domain. The unconstrained deformation,
however, fails to reproduce the rapid transition in relative phase that is seen in both experiments and the
model with constrained deformation. Thus we see that without constraint, the model predicts the correct
(approximate) value of ¢ throughout the majority of the cell body but fails to capture the qualitative tran-
sition near the head. With the deformation constraint, the model predicts a qualitatively correct transition
but is inconsistent with the observed location of this transition, as well as the values of .

We again come back to the notion that our model, in both cases, involves a highly idealized repre-
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sentation of the cell head. Fluid may flow freely into the head with no penalty, or may not flow into the
head at all. In all likelihood, the elastic behavior of the anterior end of physarum allows cytoplasm to
flow forward and extend the anterior membrane with some associated pressure penalty. Our two model
cases are extreme limits of this behavior. It seems plausible that the elastic compliance of the cell head
in vivo interpolates between these two limits, and gives rise to the precise phase differences observed in

experiments.

2.8 Discussion

Physarum plasmodia have been observed to migrate across a substrate while undergoing peristaltic con-
tractions of the cell membrane. These contractions drive a periodic streaming flow of cytoplasm on the
cell interior. This flow has been postulated to be responsible for driving the observed motility. In this sec-
tion, we have developed a model that treats the migrating physarum plasmodium as a peristaltic chamber.
The behavior of this model was analyzed in two cases: (1) the head of the cell is infinitely compliant, and
cytoplasm may flow freely through the anterior end of the peristaltic chamber; (2) the head of the cell is
infinitely stiff, and cytoplasm may not flow through the anterior end of the peristaltic chamber.

From the model, we were able to calculate the relative phases of the waves of deformation on the
cell exterior and flow on the cell interior. We saw that the model was unable to perfectly reproduce the
experimentally observed phase relationship. However, in each case, the model was able to reproduce
certain aspects of the observed phase relationships. This suggests that the elastic behavior of the head is
not accurately reproduced by either of the idealized cell head behaviors captured with our model. However,
it seems plausible that a finite compliance (and some elastic response law) would interpolate between the
two limiting cases presented here and accurately reproduce the observed phase differences. Moreover, this
may suggest that the observed phase differences are not designed to enable motility, but rather a necessary
product of pumping fluid withing a peristaltic chamber (with an elastic end). Regardless, to faithfully
reproduce the deformation-flow relationship observed in [MAT08], we require a more sophisticated model
that takes into account the elasticity of the domain in which fluid is being pumped. The development of
such a model is the main goal of the following chapter.

Using our peristaltic model we also quantified the characteristic viscous stresses generated by the flow
of fluid within the cell chamber. We showed that at any particular point in time, there is a non-zero spatial

average stress associated with the flow. Furthermore, depending on the form of the deformation wave, this
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stress may be up to ~ 2.33 Pa in size. Over a full period of the wave, these average stresses nearly balance
but not completely. The space and time average stress associated with the flows may be up to ~ 0.14 Pa.
Thus, at any point in time, the average stresses associated with the flow may be of biologically relevant
scale, but over one full period of the wave the net stress is of a less significant scale.

We saw that the stress associated with flow was in general increased in the case of the unconstrained
deformation, when fluid was allowed to flow freely into the head. In the case of a closed head, the domain
is spatially symmetric, non-zero stresses are generated, but they are quite small (sub Pa scales). This is a
product of the directionality of the deformation and flow waves. However, an additional asymmetry in the
problem, namely the infinitely compliant head, increased our measures of stress by an order of magnitude
(or more). This again suggests that a more sophisticated model of physarum motility should incorporate a
treatment of the mechanical asymmetry of the plasmodium head.

Finally, we note that even in the case of the unconstrained deformation, where cytoplasm may flow
freely into the head, the spatial average stress is small when compared to some migrating cells [TH099].
In Chapter 4 we will see that migrating physarum exert stresses on its substrate that are on the order of
hundreds of Pascals. However, we note that our analysis of the peristaltic model only quantifies the average
stresses generated by the flow. We have ignored any local treatment of stress. Obviously the stress o will
locally be larger (or smaller) than the values reported in Table 2.2. It is plausible that physarum may
mechanically transmit these local viscous stresses to the substrate in a coordinated manner, and therefore
produce traction stresses on a scale larger than indicated in Table 2.2. Furthermore, we have only treated
viscous stresses in this analysis, ignoring both contractile and passive elastic stresses within the cytoskeletal
structure of the cell. Such stresses are likely to contribute to the traction stresses measured in Chapter 4.
To address such issues, we require a more sophisticated model that incorporates contraction of the cells
mechanical structure and the linkage of the intracellular space to the extracellular substrate. We now

develop such a model in Chapter 3.
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CHAPTER 3

Model Development

3.1 Introduction

In the previous chapter, our model described the intracellular material of physarum as a Newtonian fluid
(albeit with high viscosity). This is admittedly a simplification of the rheological properties of intracel-
lular cytoplasm. Physarum cytoplasm contains an wide multitude of proteins, ions, organelles, and other
material that alter the mechanical properties of the intracellular space [LP00]. Critically, the cytoplasm is
filled with an actin-myosin cytoskeleton that is important in a wide variety of cell functions. In addition
to providing structural integrity to the cell, the actin cytoskeleton is known to be associated with trans-
membrane adhesion structures that mechanically link the cell interior to the extracellular matrix and/or
substrate [Br187]. Thus, the cytoskeletal structure of the cell interior is involved in transmitting stresses
internally generated to external structures. As mentioned in the previous chapter, our peristaltic model
of the cytoplasmic flow within physarum included only hydrodynamics of intracellular fluid. We did not
address the matter of how such stresses may be transmitted to the substrate. In this chapter we develop a
more detailed model that addresses this shortcoming.

The model that we develop incorporates the physics of four basic systems within physarum plas-
modia: the intracellular fluid; the porous, elastic cytoskeleton; the membrane/cortex which encapsulates
the plasmodium; and adhesions coupling the cell to the substrate. Our description of the intracellular fluid
remains very similar to in Chapter 2. We still assume that the fluid which fills the interior of physarum
is Newtonian. Because the system we are modelling is in a non-inertial regime, the fluid equations of in-
terest remain the incompressible Stokes equations. As we have already discussed, there are a number of
structures within the cell interior that give rise to more complex rheology, however we effectively lump

all of them into our description of the cytoskeletal structure on the interior of the cell.
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Our model of the intracellular structure takes the form of a porous, elastic material that is permeated
by the intracellular fluid (or cytosol). We envision this elastic material as an approximation of the actin
cytoskeleton of the physarum. However, in the context of our model it incorporates any other structures
which may give the cell interior an elastic stress response. When combined with the Newtonian description
of the interstitial cytosol, this effectively describes the interior of physarum as a poro-elastic material.
Recent experimental work on blebbing cells has suggested that a poro-elastic description of the cytoplasm
is required to properly capture the effects of pressure propogation through the cytoplasm [CHA05, M1T08,
CHA09]. Because physarum appears to drive flow within the cell interior via contraction generated pressure
gradients, it is important that our model properly capture these dynamics. For this reason, we develop a
poro-elastic description of the cell interior. Furthermore, the elastic cytoskeleton (which we will often
refer to as the “network”) provides the mechanical structure that links the intracellular flow to adhesions
that interact with the substrate.

Many cell species transmit stresses to the underlying substrate via highly localized aggregates of
integrins and accessory proteins known as focal adhesions [BUr88]. By contrast, physarum does not appear
to transmit stresses in such a highly localized manner. Instead, traction stresses on the substrate are diffuse,
and applied across the ventral surface of the cell (see Chapter 4 for the traction stress patterns exerted by
migrating physarum). The details of the mechanical structure that physarum uses to apply these stresses
are not known. It is not even known if physarum expresses integrin-like transmembrane proteins, though
some candidate proteins have been identified [Hav08]. However, the period of the deformations and flow
patterns observed in physarum is long (~ 100 sec) compared to the timescale of the life of an integrin
bond [Kon09]. Over longer time scales and large ensembles of bonds, one can represent the dynamics of
adhesion via a viscous drag law [Sr109]. Because of this, our model assumes the adhesive complexes of
physarum interact with the cytoskeletal network elastically and with the substrate viscously. Furthermore,
given the lack of data on the precise nature of adhesion mechanics in physarum, we are unable to develop
a mechanistic model of how the strength of adhesion to the substrate may be regulated. Our model allows
for the modulation (in space and time) of the strength of viscous interaction with the substrate. However,
the form of this modulation will be somewhat phenomenological and will, in fact, be an input of the model
in Chapter 4.

Finally, our model reflects the fact that a physarum plasmodium is enclosed in a cell membrane. This

membrane is a bilipid layer, together with various embedded proteins, and delineates the cell interior

37



from the extracellular space. Immediately adjacent to the interior surface of the cellular membrane is
the cortex [Kuk87]. The cortex is a specialized layer of cytoskeleton comprised mostly of dense cortical
actin, as well as various accessory proteins. This layer functions to provide structural support to the
cellular membrane and is responsible for much of the elastic properties of the membrane in our model.
We represent the membrane and cortex together as a single one dimensional structure, which we will
refer to as the “membrane” for brevity. The underlying cortex of physarum is mechanically coupled to
the bulk cytoskeleton by an array of linking proteins [Hor86, Ise92]. As a first approximation, we model
this coupling with a Hookean force law linking a material point on the membrane with the corresponding
point on the boundary of the cytoskeleton.

In this chapter, we develop a model of a crawling physarum plasmodium that incorporates all of the
aforementioned physics. Concurrently, we develop a computational framework with which to simulate
a crawling cell. This computational framework will be based on the Immersed Boundary method. Since
the Immersed Boundary method is a rather general framework, and not specific to the problem at hand,
we describe its machinery first. In later sections we describe the mathematical model of the poro-elastic
cytoskeleton, the viscous adhesion to the substrate, and the elastic membrane surrounding the cell. As we

do so, we outline how each may be simulated via our Immersed Boundary framework.

3.2 Immersed Boundary Framework

We now develop a computation framework with which to simulate a crawling cell with a poro-elastic
interior. To do this, we first note that the equations of fluid mechanics are most naturally formulated in
a fixed Eulerian coordinate system. Conversely, elastic constitutive laws are more naturally treated in
moving Lagrangian coordinates. Our method leverages each of these “natural” representations and uses
both coordinate systems where appropriate. The Immersed Boundary (IB) method is a computational
method that was developed to exploit the convenience of both coordinate systems in simulating fluid-
structure interaction problems [PEs77]. For this reason, we develop a model based on the IB method.

The IB method was originally developed to simulate blood flow [PEs77] but has since been adopted
to address an array of fluid-structure interaction problems in biology and engineering [M1T05]. The key
feature of the IB method is that the equations of fluid mechanics are solved in a fixed Eulerian coordinate
system, while the equations of the immersed solid structure are represented on a moving Lagrangian

coordinate system [PEs02]. Transformations between the two coordinate systems are accomplished by the
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so-called “spread” and “interpolation” operators, which are both convolutions against a delta distribution
kernel. Novel use of the spread and interpolation operators allows numerical simulation of fluid equations
in complex geometries (often defined by the immersed structures) without the use of geometry conforming
meshes. In the traditional IB formulation, the immersed structure is assumed to be neutrally buoyant so
that all stresses on the boundary are transmitted to the fluid. It is also assumed that a no-slip boundary
condition is satisfied at the fluid-structure interface. One of these assumptions is inappropriate for the
simulation of a poro-elastic material, as the immersed solid does not move with the local fluid velocity.
Rather, relative motion of the porous solid and the fluid results in a drag force density. However, the basic
machinery of the IB method is not restricted to the above assumptions, and we will see that it may be
leveraged to simulate the coupled poro-elastic equations in a single unified framework.

We now introduce some notation. For the remainder of this work, & will represent the Eulerian
coordinate (with domain {2). We use s as the Lagrangian coordinate (with domain I',¢;) that parametrizes a
volume-filling material that we call the “network”. This will model the cytoskeleton on the cell interior. The
variable 6 will be a second Lagrangian coordinate (with domain I'jer,) that parametrizes a co-dimension
one material which models the cell membrane and cortex. In Section 3.3.1, we will describe how we reduce
our cell model to two dimensions. Therefore, § will parametrize a one-dimensional membrane, while s
will parametrize a two-dimensional cytoskeleton. Wherever possible, we will use the convention that
quantities that are defined in the Eulerian frame will be denoted with lower case letters, while Lagrangian
quantities will be denoted in upper case. For example, X e (s, t) will denote the physical position of the
material point of network s at time ¢. See Figure 3.1 for an illustration. The key insight of the IB method
is that we are free to compute in either coordinate system provided we have the appropriate coordinate
transform. The operator which maps from the Lagrangian coordinate s to Eulerian coordinate « is known
as the spreading operator, is denoted Syet, and is given by

(@) = Snet [V ()] = / V(8)0 (Xou (5,1) — ) ds. (3.1)
Thet

Similarly, the interpolation operator, denoted by S;;

o> maps from Eulerian coordinates to Lagrangian,

V(s) = St [v(a)] = / (@) (X et (5,1) — ) da (3.2)
Q

We use this notation for interpolation because the spread and interpolation operators satisfy an adjoint
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property. For two scalar fields V; and vy defined in Lagrangian and Eulerian coordinates respectively,

(SnetVi,v2)0 = [ va(x) V1(8)0 (X pet (8,t) —x) ds | dx
[ |

Q
://vl(s)@(as)a(Xnet (s,1) — @) ds da

Q Fnet

= /V2(8) /vz(w)é(Xnet (s,t) —x) dx | ds
T het Q

= <‘/17 S;lketv2>rnet' (33)

An analogous result holds for vector fields. This calculation shows that the spread and interpolation op-
erators preserve integrals when mapping between coordinate systems.

The spread and interpolation operators for one-dimensional Lagrangian structures are defined simi-

larly:
0(@) = Suen VX)) = [ V()5 (X (6.0) ~ ) (3.4
Fmem
V() =Spem V()] = /v(a:) 0 (X mem (0,t) — ) dx, (3.5)
Q

where X nem(0,t) is the location of material point #. A simple calculation shows that Spem and S,
satisfy an adjoint property analogous to Equation (3.3). To perform numerical simulations, we necessarily
must discretize these integral operators. However, when we do so, we will take care to ensure that this
adjoint property is preserved discretely. This will ensure that we do not violate physical constraints, such
as the balance of forces on the system.

Having defined the operators that map between coordinate systems, we now formulate our IB-like
method. Given a configuration of the immersed material X ¢t(s,t), we may calculate the force density

this structure exerts on the fluid:

Fnet (Xnet (S, t)) . (36)

We perform a similar calculation for the immersed membrane

Fmem (Xmem (9, t)) . (3-7)

For now, we will not discuss the constitutive laws that give rise to these forces. Once the forces each
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structure exerts on the fluid are known (as a function of Lagrangian coordinate), we spread these forces to

the Eulerian coordinate system:
fnet(m) = Shet [Fnet] ’ (3.8)
S nem (%) = Smem [Fmem] - (3.9)

Note that due to the form of Equation (3.4) and the fact that 6 parametrizes a one-dimensional membrane,

S mem 18 a delta-like distribution of force density, supported on the location of the membrane.
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Fnet

Q

Figure 3.1: A generic scenario for poro-elastic simulations. The Eulerian variable is indicated by « with
domain Q. The position of the elastic network is given by X (s, t), where s is the first Lagrangian
coordinate with domain I'jet. The position of the membrane is given by X em (6, t), where 0 is the other
Lagrangian coordinate with domain I'jer,. The Eulerian domain is discretized with a uniform, structured
mesh. The Lagrangian membrane is discretized with a simple curvilinear mesh. The Lagrangian network
is discretized with an unstructured mesh using the software DistMesh [PER04].

Similarly, given the fluid velocity we can interpolate this velocity field to the Lagrangian structures.
The fluid velocity, in general, will be given by the appropriate momentum balance equation. In this work
we will assume that the fluid is Newtonian and described by Stokes equation (inertial effects are negligible);

however, the method is not restricted to this case. We denote the fluid velocity (as a function of the Eulerian
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coordinate x) by w. Interpolating to the two Lagrangian structures, we have

U(s) = Sqet [u] ; (3.10)

U(0) = Smem [u] - (3.11)

Here, U (s) is the fluid velocity evaluated at the location X ¢ (8, t). The velocity U (6) has a similar inter-
pretation. In the standard IB framework, a no slip boundary condition is imposed on the immersed struc-
ture by moving it with the interpolated fluid velocity [PEs02]. In this work, the membrane parametrized
by 6 will represent the impermeable lipid membrane bounding the cell (Section 3.5), where we will stipu-
late a no-slip condition. However, the structure parametrized by s will represent a porous material which
may move relative to the interstitial fluid, and thus has its own velocity field. Regardless, we assume that
the velocity field of the porous medium has some functional dependence (denoted GG) on the local fluid
velocity, and we will therefore need to evaluate v on the Lagrangian structures. We may now formulate

the equations of the IB method.

Au = Vp+ fret + Fmem = 0, (3.12)
Vou=0, (3.13)

Fret(T) = Snet [Frnet] , (3.14)

f mem () = Smem [Fmen] ; (3.15)

PO S, 619

OX0) _ G (g ) (5.17)

The constitutive laws which describe F',et and F'em, and the method of their calculation, will be discussed

in Sections 3.3 & 3.5.

3.2.1 Discretization of the Immersed Boundary Method

For simulation of our model, we must discretize our IB framework. The Eulerian domain in which the
immersed structures are embedded is assumed to be the unit square [0, 1] x [0, 1] with periodic boundaries
(or more formally, the two-torus T?). This is done so that we may make use of relatively simple methods
for solving the fluid equations in the Eulerian domain. We discretize the unit square with a standard,

uniform mesh in the z- and y-directions. The grid spacing is given by Az = 1/M,, and Ay = 1/M,,. The
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grid points are given by

@) = (" ={ (n (a0 5) om (80 5)) }. (3.18)

where 1 <n < M,,and 1 < m < M,. The fact that the Eulerian grid does not conform to the geometry

imposed by any immersed elastic structures is the key feature which allows the use of standard methods

to solve the fluid equations. The Langrangian structures are discretized separately, in a manner which will

be discussed in Sections 3.3 & 3.5. For now, it suffices to say that after discretization we have collections

of Lagrangian points {si }Mnet and {Oj }Mmem which approximate the porous medium and membrane
grangian p , i=1 j=1 * pp P

respectively. We also know the location of each of these Lagrangian points:

Xiet = Xnet (8°,1), (3.19)
X o= Xopem (7, 1). (3.20)

We note that while these locations are within the Eulerian domain, they are not constrained to lie on the
discrete Eulerian mesh. Finally, to each discrete Lagrangian point we assign a “volume.” Each discrete point
in the space-filling porous material has an area dA?, while each point on the one-dimensional membrane
has a length d¢’. The determination of these discrete volumes will be discussed later when we provide the

specifics of the discretization of each Lagrangian material.

Discrete Spreading and Interpolation We now address the discretization of the spread and interpo-
lation operators (Equations (3.1) & (3.2)). The following discussion is nearly identical to that in [PEs02],
and is only included here for clarity. In order to approximate the integrals in Equations (3.1) & (3.2), we
must first construct an appropriate approximation to the Dirac delta distribution. We begin by defining a

function ¢ : R — R in the following piecewise manner:

0 : |r| > 2
%(5—}—27“—\/—7—121"—47“2) o —2<r<-1
or)=q L(3+22+VI—H—%7) . -1<r<—0 (3.21)
§(3—2r+\/1+4r7—4r2) . 0<r<1
%(5—2r—\/—7+12r—4r2) . 1<r<?2

It is shown in [PEs02] that this function may be uniquely derived from a collection of five properties. We

will not go into the details here, but for now it suffices to note that
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1. ¢(r) =0forr > 2, and

2. Y. ¢(r—j)=1foralr eR.
leN

We now define approximate (one-dimensional) delta functions by scaling ¢ according to the spacing of

our Eulerian mesh:
1 T

ong(x) = Aix (Aia:) , and Oay(y) = A—yqﬁ (Ay) . (3.22)

In Figure 3.2, we illustrate the function ¢ as well as 6o, for Az = 1/2 and Az = 1/4. We pause here to
remark on the aforementioned properties of ¢ and their implication for the approximate delta functions.

First, Property 1 ensures that for any € R, the translated function
Oong (x—1).

is supported on exactly four points 2™ in our Eulerian discretization. This will greatly improve computa-
tional efficiency, as the vast majority of terms in the discrete convolution integrals will be zero. Second,

Property 2 ensures that for any r € R,

Z ong (2" — 1) Az = 1. (3.23)

This fact will ensure that our discrete spread and interpolation operators satisfy a discrete form of the

adjoint property demonstrated in Equation (3.3).
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Figure 3.2: The function ¢ and two approximate delta functions da, are shown.

44



Finally, we define the two-dimensional approximate delta function via

A~

da(x) = 0ax( - 2)0ay(x - 9). (3.24)

This allows us to define the discrete spread and interpolation operators. For a field F'; defined on the
Lagrangian material parametrized by s, we define F_, = F .(s’). We spread this field to the Eulerian

grid via
Mnet
fnet('r 'Y )_ net — “netd net — Z net 2( net Z )d . (3'25)
=1

Similarly, for any field u defined on the Eulerian grid, we have ©™" = u(x™™), and we interpolate this to

the triangulated Lagrangian structure via

Mg, M,
UGs)=U'=S " u= Z "8, (2" — Xy ) AzAy. (3.26)

n=1,m=1
Due to the compact support of the function ¢, the discrete sums in Equations (3.25) & (3.26) contain numer-

ous zero terms and may be optimized for computation. For a given Lagrangian node at position X*_,, the

two-dimensional approximate delta function is supported on a four-by-four patch of Eulerian grid points

that surround X*

net-

This is illustrated in Figure 3.3.

We may define the spread and interpolation operators for the one-dimensional membrane in a com-
pletely analogous way. For a force density exerted on the fluid by the membrane F'ep(60), we define
FJ

mem

= Fem(67), and

Mmem
fmem(:En’ ym) = &Zlm = SmemFmem = Z F‘Iljnerné2 (Xgnem - wnm) dﬁj (3-27)
j=1

Similarly, the fluid velocity interpolated to the membrane location is given by

My, M,y
Uem(07) ® Ul = Stremtt = Y w82 (2" = X}pom) AzAy. (3.28)

n=1,m=1
Figure 3.3 depicts how information from a given Lagrangian node is spread to the surrounding four-by-
four patch of Eulerian grid points. Similarly, information from the same patch of Eulerian grid that is
interpolated to the Lagrangian node via a weighted average. Thus, through the two spreading operators,

we can calculate the total force on the fluid

f = fnet + fmem = SnetFnet + SmemFmem~ (3-29)
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Figure 3.3: Footprint of the spreading and interpolating operators (S and §*). The Eulerian grid is shown
in dashed black. A small set of the Lagrangian structure is shown in blue, with a single node highlighted.
A vector quantiy at the Lagrangian node (illustrated as a black vector) may be spread to the neighboring
Eulerian grid points shown in red. Similarly, data from these red nodes (illustrated as cyan vectors) may
be interpolated to the highlighted Lagrangian node.

3.2.2 Solving the Fluid Equations
Now that we have the machinery to represent the forces that the immersed structures exert on the fluid,
we must develop a method to solve for the velocity of the interstitial fluid. The governing equation of the

fluid is the forced Stokes equation. Generically, this has the form
pAu —Vp=—f, xcT? (3.30)

V-u=0, zeT2. (3.31)

We solve this via a standard “Pressure Poisson” method. Taking the divergence of Equation (3.30) and

invoking the incompressibility of the fl