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Abstract

In this work, we investigate the role of intracellular �uid �ow in the migration of Physarum polycephalum.

We develop two distinct models. Initially, we model the intracellular space of a physarum plasmodium as

a peristaltic chamber. We derive a PDE relating the deformation of the chamber boundary and the �ux of

�uid along the chamber center line. We then solve this PDE for two distinct boundary deformations and

evaluate the characteristic stress associated with the peristaltic �ow. We compare the derived stress, as

well as the relative phase of the deformation and �ow waves, with values seen in experiments. Second,

we develop a poro-elastic model of the interior of physarum that accounts for cytoskeletal structure, as

well as adhesive interactions with the substrate. We develop this model within a framework similar to the

Immersed Boundary method, which readily allows for computer simulation. We then use this model to

simulate cell crawling across a range of parameters that characterize the coordination of adhesion to the

substrate. We identify a spatio-temporal form of adhesion coordination that is consistent with experiments.

We also show that this form is both e�cient and robust, when compared to similar forms of adhesion

coordination.
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C������ 1
Introduction

1.1 Amoeboid Motility
Cell migration plays a critical role in a wide variety of biological processes. From wound healing and

immune response to morphogenesis, the mechanics of motile cells play a key part. Amoeboid motility

is a fast type of cell migration de�ned by large shape changes as the cell extends and retracts various

pseudopodia and blebs [B��01]. Research on amoeboid motility has recently intensi�ed in part because

of a newfound appreciation of the broad applicability of amoeboid motility types. This migration mode is

robust to changes in the extracellular matrix and may be used to move across a 2-D surface or through a 3-

D environment [C��08�]. Furthermore, studies have suggested that the general mechanisms of amoeboid

motility may be independent of the speci�c molecular nature of the cell-matrix adhesions [L��08]. Thus,

amoeboid cells are able to cross barriers, move through con�ned channels, or squeeze through 3-Dmatrices

by contracting and pushing o� the surrounding environment. Certain cancer cells have even been shown

to dynamically regulate motility type and switch to amoeboid motility, based on chemical treatments or

extracellular geometry [K��00, S��09].

Despite the vast existing knowledge about the biological and molecular processes involved in amoe-

boid migration, our understanding of the underlying mechanical processes is still rather phenomenolog-

ical. Cells exhibiting amoeboid migration must generate protrusive stresses to drive the leading edge

forward. These stresses may be generated by the polymerization of �lamentous actin or by a �ow of cy-

toplasm driven by contraction induced pressure [L��09]. Furthermore, in order for locomotion to take

place, internal stresses must be transmitted to the substrate. In the traditional paradigm of mesenchymal

motility, the transmission of stress is accomplished by an array of regulated proteins that mediate adhesion

to the substrate. However, there is evidence that amoeboid cells can migrate in 3-D environments without

speci�c molecular adhesion. It has been suggested that �uid-driven motility modes may be well suited to
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migration in the absence of speci�c adhesion because intracellular pressure pushing on the extracellular

matrix may generate a frictional force large enough for the cell to push or pull itself through the environ-

ment [C��08�]. However, this hypothetical description of amoeboid motility has not been tested. It seems

clear that motility of this form requires the coordination of contractile stresses (to generate pressure gra-

dients), �ow of cytoplasmic material, and mechanical interactions with the extracellular matrix (whether

speci�c molecular adhesions or not). However, at this point we lack any quantitative understanding of

how these e�ects may be coordinated in motile amoeboid cells.

To address this issue, mathematical modeling can be extremely helpful. Mathematical models allow

“measurement” of quantities that are virtually inaccessible through experiment; for example, intracellu-

lar pressure is di�cult to measure, but readily computable in a model of �uid dynamics. Furthermore,

mechanistic models provide the ability to directly control parameters that may be impossible to perturb

in experiments, or di�cult to alter without undesired downstream e�ects. Thus, modeling provides the

ability to completely isolate the e�ects of a particular mechanical component of the system in question.

This can be extremely helpful in understanding the complex interplay of mechanical forces that generate

cell motility.

1.2 Physarum polycephalum
Physarum polycephalum is a large multi-nucleated slime mold that belongs to the supergroup Amoebo-

zoa. The subgroup of Dictyostelids are known as cellular slime molds and are comprised of mononuclear

cells that can form multicellular aggregates that coordinate behavior through chemical signaling [P��96].

Members of Dictyostelium have been the subject of much study, including the mechanisms by which both

individuals and aggretate “slugs” migrate [DA07, R��05]. In contrast, physarum belongs to the “acellular”

or plasmodial slime mold subgroup of Myxomycetes. Physarum is composed of a large, multinucleated

aggregate of cytoplasm, which may grow to the macro-scale but lacks membrane divisions between indi-

vidual cells.

Due to its large size, physarum is relatively easy to study under a light microscope, and has been used

as a model organism in cellular biology for several decades. Physarumwas heavily studied in early investi-

gations into the nature and movement of cytoplasm [K��59]. Due to the prevailence of large intracellular

�ows, the streaming of cytoplasm within physarum plasmodia has been the focus of cytology studies

[K��82, K��68, K��61]. In addition to simple streaming of cytoplasm, the plasmodium of physarum ex-
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hibits a vast array of cellular behaviors that have been studied in a variety of contexts. The emergence

of contractile patterns has been studied in the context of coupled oscillators [T��97�, T��97�, T��00,

T��01, N��99, T��05] and complex viscoelastic materials [T��91, R��13, T��97, O��84]. The branching

of �ow networks within physarum has even been studied as a model system of transportation networks

[B��13, B��10].

Physarum plasmodia grow an intricate branched network of gelated cytoplasm that resembles a vas-

cular system. This network merges into a fan-shaped structure at the leading edge of the organism as

it migrates across its substrate. Figure 1.1a shows a fully grown organism and this cytoplasmic network.

Through the network, the organism generates a periodic back-and-forth �ow of cytoplasm known as shut-

tle streaming. This �ow is driven by pressure gradients created by contraction of the actomyosin network

within the cell [A��63, O��95, K��87], which is regulated by a Ca2+ oscillation [Y��10].

Removing a small sample of the organism results in a so-called microplasmodium. Examples of mi-

croplasmodia may be seen in the Figure 1.1b and the insets of Figure 1.1c The multinucleated nature of

physarum means that these smaller scale plasmodia are capable of sustaining organic function and may

eventually grow back to the scale of the original. Initially after segregation, microplasmodia adopt a round

shape and begin to reorganize their disrupted cytoskeleton [N��75]. As the microplasmodia grow to a

critical size (approximately 100 �m across), a sharp transition occurs [K��98]. An elongated tadpole-like

shape develops, with a �ow channel of non-gelated cytoplasm along the cell longitudinal axis. This results

in a drastic increase in intracellular �uid velocity as a distinct pattern of cytoplasmic �ow develops. In Fig-

ure 1.1c we show data from our experimental collaborators Shun Zhang and Juan Carlos del Álamo where

several plasmodium are allowed to grow while their “shape factor,” S

f

= P

2
/4⇡A is measured. Here, P is

the perimeter of the cell andA is its area. A shape factor of one corresponds to a perfectly round cell, while

a larger shape factor indicates elongation. The data clearly illustrates this sharp transition as a function

of microplasmodium size. Once this transition occurs, the smaller physarum amoebae may exhibit a sim-

ilar behavior to their macroscale counterparts. In these microplasmodia, a rhythmic stream of cytoplasm

�ows back and forth along the centerline of the cell: a precursor to the shuttle streaming seen in developed

plasmodial networks. The onset of this behavior has been observed to coincide with a drastic increase in

the locomotion speed of growing physarum. It has naturally been hypothesized that the �ow of cytoplasm

is therefore a driving phenomenon in this particular example of amoeboid motility.

Due to the relatively large scale of the plasmodia, Particle Image Velocimetry (PIV) experiments allow
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(a) Fully developed plasmod-
ium.

(b) Small developing microplasmodium
segregated from mature organism.
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Figure 1.1: A physarum plasmodium is shown in (a), illustrating the plasmodial network of a fully devel-
oped organism. A microplasmodium is shown in (b) that was generated by removing a small portion of the
mature organism. In (c) we present measurements showing the shape factor S

f

= P

2
/4⇡A of physarum

microplasmodia as a function of the cell length. Data shows a sudden elongation (associated with cyto-
plasmic streaming) at a critical plasmodium size. The inset shows two example microplasmodia, before
and after elongation. Unpublished data courtesy of Shun Zhang and Juan Carlos del Álamo.

researchers to measure the intracellular �uid velocity in physarum using cell organelles as �ow tracers.

In [M��08], the authors perform PIV to measure the spatiotemporal �ow of cytoplasm within migrating

physarum microplasmodia. In these experiments, the authors observe a periodic, pulsatile �ow of cyto-

plasm forward and backward along the longitudinal axis of the plasmodium body. A region of forward

�ow (directed toward the anterior end of the cell) develops at the plasmodium posterior and propagates

forward along the cell axis. This is followed by a region of backward �ow that also develops at the pos-

terior of the cell and propagates to the anterior. Thus, the spatiotemporal organization of the cytoplasmic

�ow is characterized by a phase wave pro�le. A phase wave is a pro�le of the form f(kx�!t), where f is

some periodic function (such as a sinusoid). For such waveforms, the wave pro�le will propagate through

the domain with velocity !/k. Figure 1.2 shows �ow data reported in [M��08] as a function of time and

the longitudinal cell body coordinate (called the Anterior-Posterior (AP) axis by the authors). The pitched

lines of constant �ow velocity (marked by circles) indicate the phase wave character of the �ow, and the

slope of these lines represents the phase velocity.

In [M��08], it is argued that the phase wave nature of the cytoplasmic �ow is critical to generating

motility via the observed behavior. This argument ismotivated by two key observations. First, the direction

that the phase wave travels is from the posterior to the anterior of the cell. The anterograde propogation

4



Figure 1.2: Maximum �ow along the cell axis as a function of time and location on the Anterior-
Posterior (AP) axis of the cell. Circles denote stagnation points of zero �ow velocity. Open circles in-
dicate a transition from backward to forward �ow, while �lled circles indicate a transition from forward
to backward �ow. Reprinted from [M��08] with permission from Elsevier.

of the �ow wave is argued to result in a net forward displacement of �uid within the cell, and thus the

center of mass is transported forward. We reproduce this argument in more detail in Chapter 4. The

second observation of [M��08] is that the �ow wave is of the same wavelength and period as the wave

of contraction on the cell exterior. The two waves have a well-de�ned phase relative to one another. This

phase relationship ensures that forward �ow of cytoplasm occurs at locations on the cell body that are (on

average) wider than locations in which cytoplasm is �owing backwards. Again, this is argued to imply a

net forward �ux of material, and thus a translation of the cell. Both of these explanations of motility are

based purely on hydrodynamic phenomena. Neither includes a discussion of the stresses generated by this

behavior, nor how those stresses may be transmitted to the substrate to enact locomotion. We will address

this shortcoming through the use of various mathematical models of physarum. The main goal of this

work is to more quantitatively elucidate the mechanisms by which physarum microplasmodium migrate

while generating the observed �ows of cytoplasm.

First, we will provide a mathematical investigation into the plausibility of the description of motility

in physarum provided in [M��08]. Can hydrodynamic e�ects alone explain the motion of physarum mi-

croplasmodia? This is addressed in Chapter 2, where we model a single microplasmodia as a peristaltic

chamber of cytoplasmic �uid. We quantify the phase relationships between contraction and �ow that

necessarily result from driving cytoplasmic �ow through traveling waves of contraction. These phase

relationships are qualitatively compared to those observed in [M��08]. Simultaneously, we quantify the
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characteristic stresses associated with the �ows predicted by our model. These stresses are found to be of

a biologically relevant scale, though on average rather small.

We then develop a more complex model of physarum plasmodium that is easily amenable to com-

putational exploration. This model includes a description of the mechanical structure of the cell interior

(cytoskeleton), as well as adhesive interactions with the substrate. The cytoskeleton is modeled as a porous,

elastic meshwork permeated by viscous cytosol. Adhesive interactions are described via a modulated vis-

cous drag with the substrate. Chapter 3 contains a detailed derivation of the modeling framework and

the numerical methods used in simulation. In Chapter 4, we use the model to simulate crawling physarum

plasmodia. We then analyze the �ow patterns generated within the cell and the stresses applied to the sub-

strate by the crawling cell. The model predictions are compared to experimental measurements obtained

by our collaborators using live physarum. We identify parameter regimes that give model predictions that

most closely reproduce experimental measurements. Migration in these parameter ranges is shown to be

extremely e�cient and robust.

6



C������ 2
Peristaltic Flow Within Physarum

2.1 Introduction
We begin by developing a hydrodynamic model of the behavior observed in migrating physarum plasmod-

ium. We will use this model to address one of the main hypotheses put forward in [M��08]. In [M��08],

the authors noted a particular correlation between the deformation of the cell boundary and the �ow of

cytoplasm along the cell interior. Both phenomena propagate along the cell axis from posterior to ante-

rior. Moreover, there is a similar period of the two waves, and they appear to have a well de�ned timing

relative to one another. This particular relative phase was postulated to be at least partially responsible for

translation of the center of mass of the plasmodium (discussed in more detail in Section 2.7). One goal of

our modeling work is to investigate the validity of this hypothesis. Concurrently, we attempt to quantify

the stresses generated by the observed deformations and �ows. In order to enact motility, the plasmod-

ium must exert stresses on the substrate that it migrates across. We quantify stresses associated with the

�ows predicted by our model to explore the possibility that hydrodynamic e�ects may be used to generate

the forces that drive the cell across the substrate. With this in mind, we model the cell as a microscopic

peristaltic pump.

The cellular contractions observed and measured in [M��08] bear a stark similarity to the deforma-

tions seen in peristalsis. Peristalsis is a phenomenon whereby waves of contraction propagate along the

exterior of a �uid-�lled tube or chamber. When these waves of contraction result in net transport of �uid

along the axis of the tube, it is referred to as a peristaltic pump. Peristaltic pumping is observed in nu-

merous physiological contexts where tubular smooth muscle structures are common. The gastrointestinal

tract, bile duct, and fallopian tubes all engage in peristaltic pumping. Peristalsis also has applications in

industrial processes, where a peristaltic pump can be used to move slurries and corrosive materials without
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the liquid coming into contact with any mechanical parts of the device. However, the notion that a cell

may peristaltically “pump” itself across a substrate is a here-to-fore novel concept.

Mathematical analysis of motility using travelingwaves dates back as far as [T��51], where peristaltic-

like waves of deformation were studied as a propulsive mechanism for microscopic swimmers. Later, the

e�ciency of peristalsis as a pumping mechanism became the subject of much investigation. Most stud-

ies were asymptotic and applicable to restricted parameter regimes. Zero Reynolds number and in�nite

wave length were assumed in [S��69], while vanishingly small boundary deformations were assumed in

[F��68]. A review of much of the early work on this subject may be found in [J��71]. The main quantity

of interest in these works is usually the volume of �uid that the pump may transport, or alternately, the

pressure gradient that the pump is capable of overcoming. Later, numerical techniques were brought to

bear on the problem. In [P��87], a boundary integral method is used to investigate a wider variety of

deformations (including non-symmetric contraction of the pump walls). In [F��92], the Immersed Bound-

ary (IB) method is used to investigate the transport of solid objects within a peristaltic pump, such as in

the fallopian tract. With more sophisticated numerical methods, elastic e�ects were added to problem. In

[C��97] the authors model the boundary of a peristaltic pump as a contractile elastic medium to more

closely approximate smooth muscle in the ureter. In [T��08], pumping of visco-elastic �uids was simu-

lated. Critically, all of these investigations assume a peristaltic pump of in�nite length (or approximate

one using a periodic domain).

The assumption of an in�nitely long tube is not appropriate in the context of the system we are

modelling. The characteristic length (400 �m) of the physarum plasmodium in [M��08] is signi�cantly

longer than the characteristic width (50 �m) or thickness (20 �m). However, it is not clear that the length

may safely be regarded as in�nite. Moreover, the cell is fundamentally a closed system. The cell membrane

segregates the intracellular �uid from the extracellular space, and therefore, the peristaltic “pump”may not

transport �uid in the traditional sense. We must take into account the “ends” of the pump at the anterior

and posterior of the cell, and thus we will be modeling peristalsis in a �nite domain. Investigations into

�nite length peristalsis are relatively new. The mechanics of peristaltically pumping �uid over a �nite

distance (from one reservoir to another) was explored in [L�93]. More recently, the e�ects of peristaltic

motion of the walls has been investigated in the context of closed, micro�uidic devices [S��01]. In this

work, the authors investigate peristaltic �ow in the high Womersley number regime (that is, a regime

where inertial e�ects dominate), and are concerned mostly with the mixing properties of the induced
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�ow. This approximation is not relevant to the length and timescales of interest in our problem, and we

are not concerned with mixing properties. However, peristaltic mixing has been studied in the context

of physarum plasmodium, using a discrete chamber model [I��12]. The existing investigation that most

closely matches the model we will develop may be found in [Y�02], where the authors asymptotically

calculate the �ow pro�le in a �nite length chamber under the assumption of small boundary deformation.

This is an approximation we will also make. However, the authors in [Y�02] do not address the potential

phase relationships between deformation and �ow, nor do they attempt to quantify the associated �uid

stresses.

We will now develop a model of a migrating physarum plasmodium, which we treat as a chamber

undergoing peristaltic deformations. We will quantify the �ow driven by various deformations of the

chamber wall, as well as the stresses associated with those �ows. This is done to investigate the plausibility

of peristaltic pumping as a mechanism to generate the forces necessary for cell motility. Moreover, we

explore the fundamental asymmetrieswhich aid in this form of locomotion. One asymmetry is immediately

apparent: the directionality of the peristaltic wave. However, it is not immediately clear if this is su�cient

to drive motility in a non-inertial regime. Finally, we will investigate the origin of the phase relationship

(between deformation and �ow) noted in [M��08], as the authors suggest that it is a primary generator of

net mass transport.

2.2 Dimension Reduction
We begin by treating the cell interior as amicroscopic chamber that is �lledwith incompressible Newtonian

�uid. Let the �uid domain be de�ned by 0  x  L

x

, �h(x, t)  y  h(x, t), and �d/2  z  d/2. The

half width of the domain is given by the periodic function h(x, t), which we will prescribe to drive the �ow

(more on this in later sections). Figure 2.1 shows an illustrative example of the intracellular space that is

�lled with �uid. Within the chamber, we assume that inertial e�ects are negligible, and therefore the force

density balance on the �uid is given by Stokes equation:

µ�u�rp = 0. (2.1)

Here u is the �uid velocity �eld in the cell chamber, µ is the dynamic viscosity of the �uid, and p is the

hydrodynamic pressure. We note that in the experiments of [M��08] the characteristic height (from the

basal to dorsal surface of the cell) is roughly d ⇡ 20 �m. This is slightly less than the characteristic

9



width of the �uid domain (` ⇡ 40 �m), and both are signi�cantly less than the length of the �uid domain

(L
x

⇡ 400 �m). Therefore, we make a thin gap approximation to the momentum equation of Newtonian

�uid [A��90]. We assume a characteristic �ow velocity scale U and see that the terms of µ�u scale like

µ�u = µ

✓
@

2
u

@x

2
+

@

2
u

@y

2
+

@

2
u

@z

2

◆
⇠ µU

L

2
x

+

µU

`

2
+

µU

d

2
. (2.2)

Since d is the smallest length scale in the problem, the third term above will dominate, and we therefore

approximate

µ�u ⇡ µ

@

2
u

@z

2
. (2.3)

Note that to justify our choice to ignore the second term in Equation (2.2) we do not require that d << `,

but rather that d

2
<< `

2. This is reasonable for the scales in our problem. Therefore the momentum

equation may be reduced to the following balance of viscous force densities and pressure:

@p

@x

= µ

@

2
u

@z

2
, (2.4)

@p

@y

= µ

@

2
v

@z

2
, (2.5)

@p

@z

= µ

@

2
w

@z

2
, (2.6)

where u = (u, v, w). We still have the incompressibility constraint

@u

@x

+

@v

@y

+

@w

@z

= 0. (2.7)

Since the �rst term of Equation (2.7) scales as U/L

x

, the other two must as well. From this we can deduce

the scaling v ⇠ U`/L

x

and w ⇠ Ud/L

x

, which implies that the �ow in the y- and z-directions is much

smaller than that in the x-direction. Returning to Equations (2.4)–(2.6), this allows us to deduce the scaling

of the pressure gradient ✓
@p

@x

,

@p

@y

,

@p

@z

◆
⇠ U

d

2

✓
1,

`

L

x

,

d

L

x

◆
. (2.8)

Clearly, the second and third terms are much smaller than the �rst. Therefore, as a �rst approximation we

may assume that the pressure is a function of x only. Considering only �ow in the x-direction (for now),

we return to the relation

µ

@

2
u

@z

2
=

@p

@x

. (2.9)

Since p is assumed to not be a function of z, this is easily solvable. Integrating twice and imposing a no-slip

boundary condition on the basal and dorsal surfaces of the �uid domain ( z = ±d/2), we solve for the �ow
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pro�le as a function of z:

u(z) =

p

x

8µ

�
d

2 � 4z

2
�
. (2.10)

This is simply the standard Poiseuille �ow pro�le [P��46]. Now, we can utilize this �ow pro�le to evaluate

the viscous stress applied by the �ow to the basal surface of the cell

� = µ

@u

@z

����
z=� d

2

= �p

x

d

2

. (2.11)

We will utilize this expression later when we address the characteristic stresses associated with the �ow

within the cell. Finally, note that most experiments performed on physarum measure the intracellular

velocity in the xy-plane. Therefore, wemake the simplifying assumption that the experimentallymeasured

velocity can be characterized by the average velocity over the height of the cell. We calculate this mean

velocity as

ū =

1

d

d

2Z

�d

2

u(z) dz =

�p

x

d

2

12µ

. (2.12)

(a) Schematic of the peristaltic chamber.

Ventral Surface/Substrate

Dorsal Surface/Cover Slip

z

x

d

(b) Side view of peristaltic chamber with Poiseille �ow pro�le.

Figure 2.1: A schematic of the geometry for our model. The chamber is assumed to be of uniform thickness
(d) in the z-direction. The longitudinal �ow pro�le in this direction is assumed to be a parabolic Poiseuille
�ow.

For the remainder of this section, we will only be concerned with the two-dimensional, planar �ow

within the cell chamber. Therefore, we will drop the “bar” notation and refer to the mean velocity in

the longitudinal direction as u. Similarly, v will denote the average velocity in the lateral (y-) direction.

However, this should be understood to imply that the �ow has already been averaged over the z-coordinate.
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We now address the �ux of �uid in the longitudinal direction. We de�ne the quantity

Q(x, t) =

hZ

�h

u dy. (2.13)

This quantity does not correspond to the traditional notion of volumetric �ux. In our model, Q has units

of area per time, as opposed to volume per time. However, it is our chosen quantity of interest and will be

referred to as “�ux” from this point forth.

We now directly calculate the �ux from the longitudinal �uid velocity u. In order to do this, we make

use of our earlier approximations. Since the pressure is assumed to not be a function of y, Equation (2.4)

shows that the velocity u is not either. This leads us to a uniform �ow pro�le in the y-direction. This

assumption, coupled with Equation (2.12), leads to

u(y, x) = u(x) =

�p

x

d

2

12µ

. (2.14)

Integrating to �nd the �ux immediately gives

Q(x) =

hZ

�h

u(x) dy = 2hu(x) =

�p

x

hd

2

6µ

. (2.15)

It should be noted that our assumption of uniform �ow in the y-direction is not particularly critical to

the above relationship. The uniform pro�le in y is obviously a crude approximation and indeed does not

even satisfy a no-slip boundary condition at y = ±h. We could perform another lubrication approximation

on the two-dimensional �ow to account for variations in the y-direction. This would yield that u has a

Poiseuille �ow pro�le in the y-direction. If the magnitude of this Poiseuille �ow is given by Equation (2.12),

then we may write

u(x, y) =

�p

x

(x)d

2

12µ

✓
1 �

⇣
y

h

⌘2◆
. (2.16)

Integrating over a chamber cross section gives

Q(x) =

hZ

�h

u(x, y) dy =

�p

x

hd

2

9µ

. (2.17)

Thus we see that the precise assumption regarding the �ow pro�le in the y-direction is not critical, as its

e�ect on the calculated �ux simply amounts to an order one constant. This calculation is purely expository.

For the duration of Chapter 2, we will assume that the �ow pro�le is uniform in the y-direction, and thus

the �ux Q(x) is given by Equation (2.15). Combining Equations (2.11) & (2.15), we can relate the �ux Q
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and boundary deformation h to the characteristic viscous stresses associated with the �ow

� =

3µ

d

Q(x, t)

h(x, t)

. (2.18)

Now, all that remains is to determine the �ux of �uid driven by the boundary deformation.

2.3 Relating Deformation and Flux
Assuming that the two-dimensional �ow �eld (in the xy-plane) is incompressible, we have

r · u = r ·

2

64
u

v

3

75 = u

x

+ v

y

= 0. (2.19)

This equation is obviously an approximation, as we have averaged an incompressible �uid over the z-

direction. However, in experiments, physarum are seen to change area in the xy-plane by no more than

approximately 5% [Z��13]. This implies that the planar �ow �eld is nearly incompressible. Integrating

over the width of the domain, we have

0 =

hZ

�h

(u

x

+ v

y

) dy

=

@

@x

hZ

�h

u dy �
⇣

u|
y=h

+ u|
y=�h

⌘
@h

@x

+

hZ

�h

v

y

dy

⇡ @

@x

hZ

�h

u dy +

hZ

�h

v

y

dy

=

@

@x

Q(x, t) + v|y=h

y=�h

= Q

x

(x, t) + v(h(x, t), t) � v(�h(x, t), t)

= Q

x

(x, t) + 2h

t

(x, t). (2.20)

Where again, Q(x, t) is the �uid �ux through a cross section of the domain. We have made use of the

fact that v(h) = h

t

and v(�h) = �h

t

(which derives from a no slip boundary condition). We have also

assumed that |h
x

| << 1, in order to ignore the boundary terms from the Leibniz integration rule. This is

equivalent to an assumption that the wavelength of the deformation is long compared to the width of the

cell. As we will see, the wavelength of the deformation is on the order of 1600 �m, while the cell width

is on the order of 50 �m. Notice that Equation (2.20) requires very few assumptions about the �uid in
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question. We have simply integrated the incompressibility constraint.

Now we have a one-dimensional partial di�erential equation (PDE) that is de�ned on the interval

0 < x < L

x

for time t > 0. Given a boundary function h(x, t), Equation (2.20) determines the associated

�ux of �uid within the chamber. However, we still require the appropriate boundary conditions to close

the system. Given that physarum is enclosed by an impermeable bilipid membrane, one might assume

that no-slip boundary conditions for the �uid should be imposed at both x = 0 and x = L

x

. We note

that no-slip boundary conditions for the �uid result in homogeneous Dirichlet boundary conditions for

the �ux (Q = 0). However, Equation (2.20) is a �rst order di�erential equation for Q. This implies that

imposing boundary conditions at both ends of the domain over-determines the system, andwe are left with

a constrained problem. In light of this fact, it is perhaps not immediately clear what boundary conditions

are appropriate for Equation (2.20). This will be discussed further in the following sections.

2.4 Boundary Deformations
We now impose a boundary deformation which mimics the peristaltic contractions observed to propagate

down the lateral sides of migrating physarum specimens. Experimental measurements have shown that the

cell membrane deformations appear to be a traveling, periodic function (phase wave), which propagates

from the posterior to the anterior end of the cell [M��08, Z��13]. These wave-like contractions travel

with a distinct velocity, which we refer to as the phase velocity.

2.4.1 Unconstrained Deformation
As a �rst approximation, we idealize the boundary deformation as a traveling sinusoid of the form

h(x, t) = h0 + A cos

✓
k

x

L

x

� !t

◆
, (2.21)

with the stipulation that k 6= 0. We refer to k as the wave number of the deformation, and thus the

wavelength is given by � = 2⇡L

x

/k. Similarly, ! is the frequency of the wave, and the period is given

by T = 2⇡/!. The ratio !L

x

/k gives the phase velocity and has units of length per time. Intuitively,

this can be thought of as the velocity with which the peak (or any point of given phase) of the sinusoid

travels in the spatial coordinate. Now, given our assumed form of the chamber wall deformation, a simple

calculation shows that

h

t

= !A sin

✓
k

x

L

x

� !t

◆
. (2.22)
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From Equation (2.20) we calculate

Q

x

= �2!A sin

✓
k

x

L

x

� !t

◆
. (2.23)

Integrating gives

Q(x, t) =

2AL

x

!

k

sin

✓
k

x

L

x

� !t

◆
+ C(t), (2.24)

where C(t) is a spatially independent function of integration determined by the boundary conditions. We

make the assumption that the domain is “closed” at the left end (x = 0) and impose a no �ux condition

Q(0, t) = 0. This is analogous to the assumption that �uid may not pass through the cell membrane at the

posterior end of the chamber. However, we have made no assumptions about the behavior of the model at

the anterior end of the chamber. Indeed, �uid is free to �ow in and out of the “head” at x = L

x

, resulting

in a very clear asymmetry in the domain. We will return to this idea in the following section. Imposing

the boundary condition and a brief calculation gives that

C(t) =

�2AL

x

!

k

cos (!t) , (2.25)

and therefore the resulting solution to Equation (2.20) is

Q(x, t) =

2AL

x

!

k

✓
cos

✓
k

x

L

x

� !t

◆
� cos (!t)

◆
. (2.26)

Finally, we de�ne the displacement of the chamber wall as

¯

h(x, t) = h(x, t) � h0 = A cos

✓
k

x

L

x

� !t

◆
. (2.27)

We may regard the displacement ¯

h as the input of the model, while the resulting �ux Q may be thought

of as the output.

2.4.2 Volume Preserving Deformation
We now return to the previous discussion of what boundary conditions are appropriate to impose on

Equation (2.20). In the previous section, we stipulated a zero �ux boundary condition at the left (x = 0)

boundary of the chamber only. This allows a free �ow of �uid in and out of the right boundary (x = L

x

).

However, if we consider the physical system we are modeling, it is obvious that cytoplasm cannot �ow

freely through the anterior end of the cell membrane. We may therefore choose to impose another no �ux

boundary condition at the right boundary. Doing so over-determines the problem, as previously stated.

The consequence of this is a constraint on the allowable deformations h(x, t). Zero �ux through both
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domain boundaries implies overall volume conservation of the chamber. Thus, for the system to have a

solution, the deformation must be consistent with volume conservation.

The space of deformations which satisfy this constraint is far too large to explore fully. Therefore we

make the following assumption: The chamber boundary has a “preferred” deformation which is the same

as in the previous section (Equation (2.21)); However, there is a spatially uniform correction term which is

calculated to impose constant volume on the chamber,

h(x, t) = h0 + A cos

✓
k

x

L

x

� !t

◆
+ D(t). (2.28)

The correction term D is determined by integrating over the chamber to determine the overall chamber

volume as a function of time.

V (t) =

Z

⌦

1 dy dx

=

L

xZ

0

hZ

�h

1 dy dx

= 2

L

xZ

0

h(x, t) dx

= 2

L

xZ

0

(h0 + A cos

✓
k

x

L

x

� !t

◆
+ D(t)) dx

= 2

 
h0Lx

+

AL

x

k

sin

✓
k

x

L

x

� !t

◆����
L

x

x=0

+ L

x

D(t)

!

= 2h0Lx

+ 2L

x

D(t) +

2AL

x

k

(sin (k � !t) � sin (�!t))

= 2h0Lx

+ 2L

x

D(t) +

2AL

x

k

(sin (k � !t) + sin (!t)) . (2.29)

Now, we impose the constraint that V (t) = V (0) = 2h0Lx

. This allows us to calculate the correction

term

D(t) = �A

k

(sin (k � !t) + sin (!t)) . (2.30)

We now have the fully determined, volume preserving deformation

h(x, t) = h0 + A cos

✓
k

x

L

x

� !t

◆
� A

k

(sin (k � !t) + sin (!t)) . (2.31)
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We proceed as in the previous section. Taking the time derivative of Equation (2.31) gives

h

t

= �!A cos

✓
k

x

L

x

� !t

◆
� A!

k

(cos (!t) � cos (k � !t)) . (2.32)

Substituting into Equation (2.20) and integrating with respect to x gives

Q(x, t) =

2!AL

x

k

cos

✓
k

x

L

x

� !t

◆
+

A!x

k

(cos (!t) � cos (k � !t)) + F (t), (2.33)

where F (t) is a constant of integration that will be determined by boundary conditions. Here, we impose

only the boundary condition that Q(0, t) = 0. This gives

Q(0, t) =

2!AL

x

k

cos (�!t) + F (t) = 0, (2.34)

which can readily be solved to obtain

F (t) =

�2!AL

x

k

cos (�!t) . (2.35)

This gives the complete description of the �ux function

Q(x, t) =

2!AL

x

k

✓
cos

✓
k

x

L

x

� !t

◆
� cos (!t)

◆
+

2A!x

k

�
cos (!t) � cos (k � !t)

�
. (2.36)

Notice here that evaluating the �ux at the right domain endpoint (x = L

x

) gives

Q(L

x

, t) =

2!AL

x

k

�
cos (k � !t) � cos (!t) + cos (!t) � cos (k � !t)

�
= 0. (2.37)

Thus, the no �ux boundary condition is automatically satis�ed at the right end of the domain, due to the

constraint imposed on the deformation h. Again, we speci�cally call attention to the displacement of the

chamber wall

¯

h(x, t) = h(x, t) � h0 = A cos

✓
k

x

L

x

� !t

◆
� A

k

(sin (k � !t) + sin (!t)) , (2.38)

which we regard as the input which generates an output of �ux given by Equation (2.36).

2.5 Stress Generation
We now address the issue of the stresses associated with the �ux generated by the �ow of cytoplasm. In or-

der to migrate, it is necessary for a cell such as physarum to generate stresses internally and transmit them

to the underlying substrate in a coordinated fashion. Our goal is to quantify the stresses that are a gener-

ated via the peristaltic pumping of intracellular �uid observed in experiments. Recall from Equation (2.18)
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that the viscous stress on the basal surface of the chamber is given by the non-linear relationship

� =

3µQ(x, t)

h(x, t)d

. (2.39)

From the preceding sections, we have proposed to two idealized deformation functions (Equations (2.21)

& (2.31)) and calculated the �ux of intracellular �uid that results (Equations (2.26) & (2.36)).

2.5.1 Unconstrained Deformation
In the case of the unconstrained deformation, where �uid may �ow freely through the head of the domain,

we rewrite the deformation as

h(x, t) = h0

✓
1 +

A

h0
cos

✓
k

x

L

x

� !t

◆◆
= h0

✓
1 +

✓
A

h0

◆
h1(x, t)

◆
. (2.40)

Again, h0 is the resting half width of the chamber, while A is the amplitude of the displacement wave. In

physarum specimens observed in [M��08], the average width of the cell is approximately 40 �m, while

the amplitude of deformation is approximately one fourth of that (10 �m). This allows us to estimate the

non-dimensional amplitude of deformation A/h0 ⇡ 1/4. We now de�ne the parameter

"

..
=

A

h0
, (2.41)

and make the assumption that " << 1. Noticing that the function h1 is order one, we make use of the

asymptotic expansion 1/ (1 + ✏) = 1 � ✏ + O �
✏

2
�
. We then approximate

1

h

=

1

h0 (1 + "h1(x, t))

⇡ 1

h0
(1 � "h1(x, t)) . (2.42)

This gives us an asymptotic approximation of the basal viscous stress due to �ow of �uid within the

cell

� =

3µQ

dh0 (1 + "h1)
⇡ 6µAL

x

!

dkh0

 ⇣
cos (kx � !t) � cos (!t)

⌘⇣
1 � " cos (kx � !t)

⌘!
. (2.43)

Expanding Equation (2.43), we arrive at the following expression:

� =

6µ"!L

x

dk

h
cos

✓
k

x

L

x

� !t

◆
� cos (!t)

| {z }
T1

� "

�
cos

2

✓
k

x

L

x

� !t

◆
� cos

✓
k

x

L

x

� !t

◆
cos (!t)

�

| {z }
T2

i
.

(2.44)

The stress � is comprised of two distinct functional forms that have been labeled Terms T1 & T2. Term

T1 is comprised of two pure sinusoids. If we were to integrate over one period of the wave, the stress

18



contributed by Term T1 would be zero. That is to say, the stresses directed forward, and those directed

backwards would cancel over one period of the wave. Conversely, Term T2 is comprised of two products

of sinusoids (with the same period). This means that the full stress � does have non-zero average, but only

Term T2 contributes to this average. Furthermore, we see that while Term T1 is O �
"

0
�
, Term T2 is O (").

This means that for " << 1, Term T1 will give a good approximation to the characteristic scale of the

stress �, while Term T2 gives the average stress over each period of the wave.

We now calculate the characteristic scale of average stress associated with the �ow wave. The period

averaged basal viscous stress is give by

h�i ..
=

!

2⇡

2⇡
!Z

0

� dt =

3"

2
µ!L

x

4kd⇡

⇣
2 sin

✓
k

x

L

x

◆
cos

✓
k

x

L

x

◆
+4⇡ cos

✓
k

x

L

x

◆
�sin

✓
2k

x

L

x

◆
�4⇡

⌘
. (2.45)

From Equation (2.45), we can calculate the “total average” (that is, a temporal and spatial average) viscous

stress

h�i ..
=

1

L

x

L

xZ

0

h�i dx =

3"

2
µ!L

x

d

�
sin (k) � k

�

k

2
. (2.46)

Notice that h�i indeed has units of stress; We will return to discuss the scale of this term in Section 2.6. We

use this quantity as a measure of the average imbalance of stresses (over one period of the wave) associated

with the �ow of cytoplasm. As currently developed, the model does not address how these stresses may be

transmitted to the substrate (that will be addressed in later chapters). However, at this point h�i represents
the only component of the model that is not perfectly symmetric in time. Both the �ux of �uid (Q) and the

imposed deformation (¯h) have zero average over one period of the wave (for both the free and constrained

deformation). However, at second order in ", we see that there is non-zero average stress associated with

the �ow, which may be used to enact motility.

We now return to Term T1 and address the issue of the relative scale of the stresses generated by

the �ow of �uid. As previously mentioned, Term T2 is of a higher order in ", therefore we make the

approximation that the size of the stress may be reasonably approximated by the size of Term T1. We

de�ne

�size ..
=

6µ"!L

x

dk

⇣
cos

✓
k

x

L

x

� !t

◆
� cos (!t)

⌘
, (2.47)

and note that �size ⇡ � to leading order in ". We again integrate over the domain to �nd the “spatial
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average stress” associated with the wave,

�size ..
=

1

L

x

L

xZ

0

�size dx =

6µ"!L

x

d

�
sin (!t) + sin (k � !t) � cos (!t)

�

k

2
. (2.48)

As we have already mentioned, over one period, this function has zero mean. However, we may still

quantify the characteristic magnitude of stresses by maximizing this (continuous) function on the domain

0  t  2⇡/!. A calculation yields the critical points of �size are given by

t

⇤
=

�1

!

arctan

✓�1 + cos (k)

sin (k) � k

◆
. (2.49)

Since we only consider k > 0 (forward traveling waves), the argument of the arctan function is restricted

to the interval [0,1). There are two branches of the arctan functionwhich yield values of t⇤ in the interval

[0, 2⇡/!] (that is, there are two critical points each period of the wave). However, the choice of branch

does not change our calculations (as we will be considering the absolute value of �size). For this reason,

we will only consider the value t

⇤ produces by the primary branch of arctan. Finally, we may de�ne the

“maximum average” (that is, averaged in space and maximized in time) stress due to the �uid �ow

�max ..
= |�size(t

⇤
)| =

6µ"!L

x

dk

2

����� sin
✓
� arctan

✓�1 + cos (k)

sin (k) � k

◆◆

+ sin

✓
k + arctan

✓�1 + cos (k)

sin (k) � k

◆◆
� cos

✓
� arctan

✓�1 + cos (k)

sin (k) � k

◆◆ �����. (2.50)

We now make use of the fact that the maximum average stress may be written in the form

�max =

3µ!L

x

d

"f(k). (2.51)

Likewise, the total average stress may be written as

h�i =

3µ!

d

"

2
g(k). (2.52)

We de�ne the function

r(k)

..
=

h�i
" |�max| =

g(k)

f(k)

. (2.53)

The quantity ✏r is called the “e�ective stress." Up to a constant (C = 3µ!L

x

/d), the non-dimensional

functions f and g characterize the maximum and total average stresses that are generated each period of

the wave. The quantity ✏r is the proportion of the maximum stresses that have non-zero average, and

thus have a directionality that may theoretically be harnessed in order to enable motility. Figure 2.2a
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shows graphs of f , g, and r for values of k in the interval [0, 2⇡]. This interval of k corresponds to waves

ranging from those with in�nite wavelength (spatially homogeneous) to those with a wavelength equal to

the cell body length. Before commenting on the stresses generated by this deformation, we will derive the

equivalent expressions in the case of the constrained, volume preserving deformation.

2.5.2 Constrained Deformation
We now return to the constrained deformation, which was derived in Section 2.4.2. Recall that the defor-

mation function is given by

h(x, t) = h0

 
1 +

A

h0

✓
cos

✓
k

x

L

x

� !t

◆
� 1

k

�
sin (k � !t) + sin (!t)

�◆
!

, (2.54)

which we rewrite as

h(x, t) = h0

✓
1 +

✓
A

h0

◆
h2(x, t)

◆
. (2.55)

Proceeding exactly as before, we asymptotically expand in the limit of small " ..
= A/h0,

1

h

=

1

h0 (1 + "h2(x, t))

⇡ 1

h0
(1 � "h2(x, t)) . (2.56)

We pause here to clarify that the functional form of h2 is given by

h2(x, t) = cos

✓
k

x

L

x

� !t

◆
� 1

k

�
sin (k � !t) + sin (!t)

�
. (2.57)

This means that in the limit k << 1, the product "h2 is no longer small when compared to 1, and our

expansion in Equation (2.56) is no longer valid. However, as will be discussed later, we are not concerned

with the limit k << 1, as these values are not compatible with the wavelength of deformation seen in

migrating physarum.

Having made this expansion of the inverse of the deformation function h, we can approximate the

basal viscous stress associated with �ows driven by the volume preserving deformation. We have

� =

3µQ

dh0 (1 + "h2)
⇡ 6µA!L

x

dkh0

"⇣
cos

✓
k

x

L

x

� !t

◆
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�
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⇥
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1 � " cos

✓
k

x

L

x

� !t

◆
+

"

k

�
sin (k � !t) + sin (!t)

�⌘
#
. (2.58)
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Expanding and collecting terms by order in ", we have

� =
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. (2.59)

Again, we see a structure similar to the case of of the unconstrained deformation. Term T3 has zero mean

over one period of the wave, but is a lower order in " and thus dominates the magnitude of the stress

�. Meanwhile, Term T4 is a product of sinusoids and thus has non-zero mean, while being smaller in

magnitude due to the higher order in ".

As in the case of the unconstrained deformation, we calculate the total average stress as

h�i =

!

2⇡L

x

L

xZ

0

2⇡
!Z

0

� dt dx =

3µ"

2
!L

x

d

✓
4 � 4 cos (k) � k sin (k) � k

2

k

3

◆
. (2.60)

Again, we approximate the magnitude of the stress using Term T3 as

�size =

6µ"!L

x

dk

✓
cos

✓
k

x

L

x

� !t

◆
� cos (!t) � x

�
cos (k � !t) � cos (!t)

�◆
. (2.61)

This allows us to approximate the spatial average stress

�size =

1

L

x

L

xZ

0

�size dx =

3µ"!L

x

d

✓
2 sin (!t) + 2 sin (k � !t) � k cos (k � !t) � k cos (!t)

k

2

◆
, (2.62)

which has critical points at

t

⇤
=

1

!

arctan

✓
2 cos (k) + k sin (k) � 2

k cos (k) + k � 2 sin (k)

◆
. (2.63)

Again, we see that there are two branches of the arctan function which yield values of t

⇤ in the range

of one period [0, 2⇡/!]. And again, the choice of which branch to use will simply shift the argument

of the sinusoids in Equation (2.62) by a value of ⇡. This implies that branch choice simply changes the

sign of �size. As we are only concerned with the magnitude of spacial average stress, this is irrelevant for

our purposes. Now, in contrast to the case of the unconstrained deformation, the argument of the arctan
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function may take on values anywhere in the interval (�1,1), and indeed has a pole at k = ⇡. However,

the left and right limits of the argument are ±1, and thus t

⇤ has left and right limits of ±⇡/(2!). Again,

we see that this does not a�ect magnitude of �size, which is our quantity of interest. Now we calculate the

maximum average stress due to the �uid �ow:

�max ..
= |�size(t

⇤
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3µ"!L
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dk
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✓
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✓
2 cos (k) + k sin (k) � 2

k cos (k) + k � 2 sin (k)

◆◆
+2 sin

✓
k � arctan

✓
2 cos (k) + k sin (k) � 2

k cos (k) + k � 2 sin (k)

◆◆

� k cos

✓
arctan

✓
2 cos (k) + k sin (k) � 2

k cos (k) + k � 2 sin (k)

◆◆
� k cos

✓
k � arctan

✓
2 cos (k) + k sin (k) � 2

k cos (k) + k � 2 sin (k)

◆◆ �����.

(2.64)

Again we see that both the maximum and total average stresses are of the form

�max =

3µ!L

x

d

"f(k), (2.65)

and

h�i =

3µ!L

x

d

"

2
g(k). (2.66)

This again allows us to de�ne the function

r(k) =

g(k)

f(k)

. (2.67)

The functions f , g, and r are illustrated in Figure 2.2b and discussed in the following section.

2.5.3 Discussion of Stresses
We reiterate that Figure 2.2 shows calculated stresses for values of k that correspond to waves with in�nite

wavelength (spatially homogeneous) to those with a wavelength equal to the cell body length. This range

is chosen because physarum plasmodia are seen to contract with a wave length several times the length of

the plasmodium [M��08]. Immediately, several characteristics are apparent in Figure 2.2. In the case of the

unconstrained deformation, the maximum average stress (or rather, f(k)) is maximized at wave number

k = 0. This means that the cell is generating maximal viscous stresses when the wavelength of the defor-

mation wave is in�nite. However, in this regime, the total average viscous stresses (de�ned by g(k)) are in

fact zero over one period of the wave. Therefore, we see that while the cell is generating relatively large

stresses, the symmetry of the problem results in no net stress that may be used for locomotion. Instead, the
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(a) Stress generation with open head. (b) Stress generation with closed head.

Figure 2.2: Green solid lines indicate the function f(k) which characterizes maximum avearge stress �max.
Blue dashed lines indicate the function g(k) which characterizes total average stress h�i. Red dash-dot
lines indicates the ratio r(k) = g(k)/f(k).

maximum imbalance in stresses occurs at k = ⇡, which corresponds to a deformation wavelength which is

twice the cell body length. At this wavelength, the function g takes on a maximal value of 1/⇡. Finally, we

note that the ratio of these is maximized at k = 2⇡, which corresponds to a deformation wavelgnth equal

to the cell body length. At this wavelength, the function r takes on a value of 1/2, while f(2⇡) = 1/⇡

and g(2⇡) = 1/2⇡. This may be interpretted to mean that while the deformation is generating stresses of

magnitude 1/⇡, a proportion "/2 of them are directionally unbalanced and thus may be used to drive the

cell across its substrate. In Section 2.6 we will redimensionalize these stresses to their physical scales.

The case of constrained deformation is rather di�erent. The maximum average stress f has a non-

trivial extrema in the interval k 2 [0, 2⇡], but now the total average stress (g) is maximized at k = 2⇡. It

is still the case that in the limit k ! 0 (in�nite wavelength, or spatially homogeneous deformation), the

total average and e�ective stresses are negligible. However, we are not concerned with this limit, as our

approximations are dubious in this case. Curiously enough, in the case k = 2⇡, all three measures of stress

(f , g, and r) are identical to those calculated with unconstrained deformation. This is a consequence of the

functional form of the constrained deformation given in Equation (2.31). When k = 2⇡, this reduces to

the unconstrained deformation given by Equation (2.21). �nally, we note that for all values of k, all three

stresses (f , g, and r) are less than or equal to the same measurements in the case of the unconstrained
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deformation. This implies that when deformation is constrained by volume preservation, not only does

the cell produce less stress, but a smaller ratio of the stress produced is directionally unbalanced for use in

motility. This implies that a front-back asymmetry in the domain aids in the generation of motile stresses.

We will return to this idea in the following section.

2.6 Redimensionalization
We now return to the problem of redimensionalizing the model predictions and examining the predicted

stress generation in physical units. From Equations (2.50) & (2.64), we can see that only �ve parameters

are required to calculate the stresses associated with the �ow of cytoplasm. From [M��08] and our col-

laboration with Dr. Nakagaki, we have good estimates for the thickness of the cell in the z-direction (d),

the frequency of the wave pattern (!), and the non-dimensional deformation amplitude (✏ = A/h0). We

also can estimate the wave number (k) from the data presented in [M��08]. The one parameter that we do

not have accurate estimates for is the viscosity of the cytoplasm within the cell chamber (µ). Estimation

of the rheological properties of cell interiors is a di�cult problem and may result in values ranging over

several orders of magnitude depending on cell type and experimental set-up [L��06]. To our knowledge,

no attempt to experimentally measure or estimate of the internal rheology of physarum plasmodium exists

in the literature.

However, our model does provide us a way to crudely estimate the cytoplasmic viscosity. Equa-

tion (2.14) allows us to perform this estimation, provided that we know the characteristic �ow velocity

and pressure gradient. While we do not know the local pressure gradient within the cell, we do know the

characteristic length of the cell body (L
x

). We also have estimates for the characteristic pressure di�erence

([p]) from the anterior to posterior of the cell [K��57]. Finally, it is relatively easy to extract a characteristic

velocity scale from the data in [M��08]. The known parameters are listed in Table 2.1.

Using the values listed in Table 2.1 and Equation (2.14), we approximate the viscosity of the intracel-

lular �uid as

µ ⇡ [p]d

2

12L

x

U

. (2.68)

This yields a viscosity of µ = 50/3 Pa sec ⇡ 17 Pa sec. For comparison, this is roughly the viscosity of

honey [VP ], or approximately 17, 000 times the viscosity of water. As previously stated, measuring the

viscosity of cytoplasm is a di�cult problem, partially due to the ambiguity of the material being measured.
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Table 2.1: Known parameters for peristaltic pumping in Physarum.

Parameter Numerical Value Description
L

x

400 �m Cell length
[p] 1000 Pa Pressure di�erence across cell

2⇡/! 100 sec Wave period
2⇡/k 1600 �m Wavelength

d 20 �m Cell thickness
h0 20 �m Cell resting half-width
A 5 �m Deformation amplitude
U 5 �m/sec Characteristic �uid veloicty

Cytoplasm is a complex mixture of ions, proteins, and other compounds. Proteins such as actin may poly-

merize (to form a gel-like network) or depolymerize spontaneously or in response to various chemical

signals. This means that the measured rheology of cytoplasm can vary wildly depending on timescale of

interest, experimental methodology, environmental factors, or cell type [LP94]. Values for cytoplasmic

viscosity have been reported over several orders of magnitude [L��06], ranging up to 10

4 Pa sec for �-

broblasts [T��99]. Furthermore, our model has homogenized all of this complex rheology into a single

parameter. Therefore, while the computed value of µ is rather high to describe cytosol, it is well within a

reasonable range to describe the viscosity of cytoplasm.

Given our approximate value of µ, we may return to the calculated stress functions and express them

in dimensional values. As previously noted, the ratio of deformation amplitude to cell half-width is " =

A/h0 = 0.25. The dimensional constant found in h�i and �max is

3µ!L

x

d

= 10 Pa. (2.69)

The deformation wavelength seen in [M��08] corresponds to a wave number of k ⇡ ⇡/2. This is a

wavelength four times the length of the cell body. Using this value, we may �nally evaluate the total

average and maximum average stresses. The results are summarized in Table 2.2. We note that the �gures

listed in Table 2.2 are relatively low compared to experimental measurements in some cell types. Strongly

adherent cells such as keratocytes have been observed exerting stresses up to 10, 000 Pa on the substrate

[B��99]. However, some weakly adherent cells such as dictyostelium are known to migrate using traction

stresses on the order of 20 to 40 Pa or less [B��14]. Thus, the values of �max calculated in Table 2.2 may

be small, however, we note that this analysis addresses only viscous stresses associated with the �ow of

cytoplasm. We have not addressed any elastic or contractile stresses which may also e�ect traction stress
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measurements.

Table 2.2: Basal viscous stresses associated with �ow. All values calculated with k = ⇡/2.

Unconstrained deformation Constrained deformation
�max Maximum Average Stress 2.333 Pa 0.6150 Pa
h�i Total Average Stress 0.1446 Pa 0.006159 Pa

Finally, we note again that the maximum average stress �max, as well as the total average stress

h�i, are larger in the case of unconstrained deformation, compared to constrained deformation. Since

the constraint which we placed on the deformation was meant to prevent �uid �ow through the anterior

head of the cell, this case corresponds to a spatially symmetric domain. The model suggests that a spatial

heterogeneity aids in the production of viscous stress via peristaltic pumping. It has been observed that

the cell head is mechanically distinct from the rest of the body of the plasmodium [S��94]. The head

of the cell appears to be more elatically compliant, as the tail has a more developed and organized actin

cytoskeleton and cortex. Within the context of our model, the unconstrained deformation represents the

situation where the elastic sti�ness of the head region is zero. In this case, �uid may �ow into the head

without penalty. Conversely, in the limit of in�nite sti�ness, �uid may not �ow into the head, regardless

of the applied pressure. This scenario is mimicked by our constrained deformation. It is unlikely that

either scenario perfectly captures the mechanics of the cell head in vivo, and a more sophisticated model

would represent an elastic regime between these two limits. However, our model does indicate that the

mechanical heterogeneity at the cell head may be an important factor in generating motility. In the case of

the constrained deformation, themodel shows that there is a non-zero net viscous stress associatedwith the

�ow in a closed peristaltic pump. The directionality of the peristaltic wave is enough of an asymmetry to

generate this non-zero stress. However, this stress is exceptionally low. An additional asymmetry such as

the mechanical response in the head, may increase the unbalanced stresses associated with the peristaltic

�ow. This suggests that a more sophisticated model including the mechanically distinct cell head is of

value. We will develop and analyze just such a model in Chapters 3 & 4.

2.7 Phase Di�erences
Having now quanti�ed the stresses associated with two distinct forms of peristaltic pumping within the

cell body, we now quantify the relative timing of the �ow and deformation waves. In [M��08], the au-

thors noted a particular relationship between �ow and deformation. Picking a location on the cell axis and
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regarding both waves as a function of time only, they noted that deformation preceded �ow by approxi-

mately one quarter of the wave period. That is, the maximum forward �ow velocity of the wave occurred

approximately 25 sec after the same location on the cell axis had reached its maximum width. This behav-

ior is illustrated in Figure 2.3. It was hypothesized that this phase relationship aided in driving motility.

This hypothesis was based on the argument that with this particular timing, the width of the cell would

be (on average) wider at locations in space and time where the �ow was directed forward. Similarly, the

cell would be narrower at locations where the �ow was directed backwards. The result of this asymmetry,

it was argued, is a net forward �ux of mass, as more cytoplasm �ows forward through a larger channel.

However, this behavior is not generic at all points along the cell axis. Figure 2.4 shows that for much of the

length of the cell body, the maximum cell width (open circles) occurs a quarter period before the maximum

�ow velocity (center of the white region of forward �ow). However, in regions closer to the head (indicated

with dashed white lines), this relationship is broken and appears to even reverse. Near the cell head, the

maximum cell width occurs just after the maximum �ow velocity. We explore this phase relationship with

our model and determine, if possible, the origin of the observed data.

Figure 2.3: Time sequence of cell width and intracellular �uid velocity along the cell axis. Measurements
were taken at a location on the cell axis indicated by a dashed grey line in Figure 2.4. Reprinted from
[M��08] with permission from Elsevier.

2.7.1 Unconstrained Deformation
For simplicity, we will work in non-dimensional body coordinates. This is accomplished via the transfor-

mation x 7! x/L

x

. This simpli�es calculations greatly and does not a�ect predicted values, as we will

only be concerned with non-dimensional quantities such as phase. We begin by noting that the imposed
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Figure 2.4: Relationship of �ow and deformation in migrating physarum. Greyscale indicates the mag-
nitude of intracellular �ow along the cell axis. Open circles indicate the onset of contraction (cell width
is maximal). Filled circles indicate the onset of expansion (where cell width is minimal). Filled grey lines
indicate particle paths obtained via integration of the velocity �eld. The dark grey dashed line indi-
cates the location where the data from Figure 2.3 was obtained. White dashed lines indicate the region
in the cell head that appears mechanically distinct from the cell body. Reprinted from [M��08] with
permission from Elsevier.

deformation, Equation (2.21), may be regarded as the real part of a complex exponential oscillation. This

oscillation has the form

h(x, t) = h0 + Ae

i(kx�!t)
. (2.70)

The displacement, given by Equation (2.27), which we earlier referred to as the input of the model, is the

real part of the function

h(x, t) = Ae

i(kx�!t)
. (2.71)

The output oscillation, which results from driving the model with this input, is the �ux of �uid (Equa-

tion (2.26)), which has complex form

Q(x, t) =

2A!

k

⇣
e

i(kx�!t) � e

�i!t

⌘
. (2.72)

Both the input and output may be regarded as a complex function multiplied by the temporal oscillation

e

�i!t. That is,

h(x, t) = D(x)e

�i!t

, and Q(x, t) = F (x)e

�i!t

. (2.73)

The functions D(x) and F (x) may be regarded as spatially varying modulations of the waves h and Q

respectively. It is a simple matter to determine that

D(x) = Ae

ikx

, (2.74)
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and that

F (x) = 2A!

e

ikx � 1

k

. (2.75)

Now, we de�ne the spatially varying phase of the displacement and �ux to be the complex argument of

the functions D and F respectively

'in = arg

⇣
D(x)

⌘
, and 'out = arg

⇣
F (x)

⌘
. (2.76)

It is not so simple to derive analytical expressions for 'in and 'out. However, these functions are straight-

forward to evaluate numerically. Figure 2.5 show calculated values of 'in and 'out as a function of the

normalized cell coordinate x. To analyze the relative timing of the displacement and deformation waves,

we also calculate the quantity

' = 'out � 'in. (2.77)

This is a measure of the relative phase of the two oscillations and is de�ned so that a positive value of

' corresponds to the displacement preceeding the �ow wave, while a negative value corresponds to the

displacement wave following the �ow wave. Calculated values of ' are shown in Figure 2.5c.
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Figure 2.5: Calculated phases for unconstrained deformation. Panel (a) shows the phase of the displacement
function D(x) as a function of x and wave number k. Panel (b) shows the phase of the associated �ux
fucntion F (x). Panel (c) shows the relative phase ' = 'out � 'in. Dashed grey lines indicate relative
phases of ±⇡/2, or one quarter period.

We note that a phase which is perfectly linear in the body coordinate x corresponds to a waveform

that propagates along the cell axis in a linear fashion (such as cos (kx � !t)). The displacement wave

propagates through the cell linearly by construction, and thus 'in is linear in x. However, the phase of

the �ow wave also is linear. This results in a phase di�erence ' that is a linear function of the cell-axis

coordinate. At the tail of the cell (x = 0), we see a phase di�erence of ' = ⇡/2 regardless of the wave
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number of the input deformation. This agrees with the observed phase relationship reported in [M��08]

(the wave length of deformation observed in that work corresponds to a value k ⇡ ⇡/2). Depending on

the wave number k, the phase relationship decreases as a function of body coordinate. In the most extreme

case (k = 2⇡), we see a phase di�erence of ' = �⇡/2 at the head of the cell. This means that the �ow

wave is preceding the deformation wave by a quarter period. For other wave numbers this decrease in

relative phase is less dramatic.

2.7.2 Constrained Deformation
We now perform the same calculation for the volume preserving deformation that was derived in Sec-

tion 2.4.2. The functional form of the constrained deformation, Equation (2.31) may be regarded as the real

part of the complex function

h(x, t) = h0 + A

 
e

i(kx�!t)
+

i

k

⇣
e

i(k�!t) � e

�i!t

⌘!
. (2.78)

This allows us to de�ne the complex displacement function

h(x, t) = A

 
e

i(kx�!t)
+

i

k

⇣
e

i(k�!t) � e

�i!t

⌘!
. (2.79)

Similarly, the associated �ux of �uid given by Equation (2.36) is the real part of

Q(x, t) =

2A!

k

⇣
e

i(kx�!t) � xe

i(k�!t)
+ xe

�i!t � e

�i!t

⌘
. (2.80)

Factoring out the complex temporal oscillation allows us to de�ne the input function

D(x) = A

 
e

ikx

+

i

k

⇣
e

ik � 1

⌘!
, (2.81)

and the output function

F (x) = 2A!

e

ikx � xe

ik

+ x � 1

k

. (2.82)

We again de�ne 'in, 'out, and ' in the same manner as the previous section. Figures 2.6a & 2.6b show the

calculated phases of the displacement and �ow waves in the case of constrained deformation. Figure 2.6c

shows the relative phase of the twowaves ('). Again, a positive value of' corresponds to the displacement

wave preceding the �ow wave.

The phase relationships illustrated in Figure 2.6 are rather di�erent than those observed in the case of

the unconstrained deformation. The �ow wave still appears to be a phase wave, as 'out is a linear function

of body coordinate. However, the displacement wave phase ('in) has a much more complex character. For
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Figure 2.6: Calculated phases for constrained deformation. Panel (a) shows the phase of the displacment
function D(x) as a function of x and wave number k. Panel (b) shows the phase of the associated �ux
fucntion F (x). Panel (c) shows the relative phase ' = 'out � 'in. Dashed grey lines indicate relative
phases of ±⇡/2, or one quarter period.

small values of k (longer wavelength deformations), we see that 'in has a somewhat sigmoidal dependence

on body coordinate. The result of this is that the phase di�erence ' has a sharp transition near the center

of the cell body. In the most extreme case shown (k = ⇡/4), we see a phase di�erence of approximately

' = ⇡ in the back half of the cell and a phase di�erence of approximately ' = 0 in the front half of the

cell. This corresponds to a scenario where the �ow and deformation waves are perfectly anti-phase in the

posterior of the cell and perfectly in-phase in the anterior. As we have previously stated, in the case that

k = 2⇡ the model reproduces the results of the unconstrained deformation. Other values of k interpolate

between these two behaviors.

2.7.3 Relation to Experiment
We now restrict ourselves to the wave number that most closely approximates the observed deformations

in migration physarum (k = ⇡/2) and compare the predicted phase di�erences to experimental observa-

tions. This wave number is represented by the solid red lines in Figures 2.5 & 2.6. For clarity, we reproduce

the phase di�erence ' of this wave number for both deformations in Figure 2.7. The solid blue line rep-

resents ' for an unconstrained deformation, while the dashed red line represents the same measurement

for the constrained deformation. We see that in both cases, the model captures certain aspects of the

experimental observations but poorly reproduces other features of the data seen in Figure 2.4.

As we have previously discussed, for the constrained volume preserving deformation, the model pre-

dicts a nearly anti-phase relationship in the posterior of the cell (' ⇡ 2.6226 ⇡ 8⇡/10 at x = 0) and

a nearly in-phase relationship in the anterior (' ⇡ �0.2664 ⇡ �8⇡/100 at x = 1). Clearly this does
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Figure 2.7: Relative phase ' calculated with the model for wave number experimentally observed in
[M��08]. Solid blue line indicates ' for the unconstrained deformation (open head). Dashed red line
indicates phase for the constrained deformation (closed head).

not match the experimental data. As previously noted, the experimental data indicates a relative phase of

approximately ⇡/2 ⇡ 1.5708 throughout most of the cell body. Near the anterior end of the cell, there

is a transition where the relative phase decreases to approximately �⇡/2 over a relatively short spatial

domain (see Figure 2.4). The model does predict this rapid transition of relative phase. Moreover, the model

predicts that the deformation wave “catches up” to the �ow wave by a factor of nearly ⇡, just as observed

in experiments. However, this transition occurs in a spatial location (the center of the cell) that is not

consistent with experimental observations.

Conversely, in the case of unconstrained deformation, our model predicts phase relationships that

are relatively constant throughout the spatial domain. For the free deformation, the model gives a relative

phase of ' = ⇡/2 ⇡ 1.5708 at the posterior of the cell (x = 0). This decreases linearly to a value of

' = ⇡/4 ⇡ 0.7864 at the anterior of the cell (x = 1). In this case, the model predicts a phase di�erence

that is close to the observed value ⇡/2 throughout most of the domain. The unconstrained deformation,

however, fails to reproduce the rapid transition in relative phase that is seen in both experiments and the

model with constrained deformation. Thus we see that without constraint, the model predicts the correct

(approximate) value of ' throughout the majority of the cell body but fails to capture the qualitative tran-

sition near the head. With the deformation constraint, the model predicts a qualitatively correct transition

but is inconsistent with the observed location of this transition, as well as the values of '.

We again come back to the notion that our model, in both cases, involves a highly idealized repre-
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sentation of the cell head. Fluid may �ow freely into the head with no penalty, or may not �ow into the

head at all. In all likelihood, the elastic behavior of the anterior end of physarum allows cytoplasm to

�ow forward and extend the anterior membrane with some associated pressure penalty. Our two model

cases are extreme limits of this behavior. It seems plausible that the elastic compliance of the cell head

in vivo interpolates between these two limits, and gives rise to the precise phase di�erences observed in

experiments.

2.8 Discussion
Physarum plasmodia have been observed to migrate across a substrate while undergoing peristaltic con-

tractions of the cell membrane. These contractions drive a periodic streaming �ow of cytoplasm on the

cell interior. This �ow has been postulated to be responsible for driving the observed motility. In this sec-

tion, we have developed a model that treats the migrating physarum plasmodium as a peristaltic chamber.

The behavior of this model was analyzed in two cases: (1) the head of the cell is in�nitely compliant, and

cytoplasm may �ow freely through the anterior end of the peristaltic chamber; (2) the head of the cell is

in�nitely sti�, and cytoplasm may not �ow through the anterior end of the peristaltic chamber.

From the model, we were able to calculate the relative phases of the waves of deformation on the

cell exterior and �ow on the cell interior. We saw that the model was unable to perfectly reproduce the

experimentally observed phase relationship. However, in each case, the model was able to reproduce

certain aspects of the observed phase relationships. This suggests that the elastic behavior of the head is

not accurately reproduced by either of the idealized cell head behaviors captured with our model. However,

it seems plausible that a �nite compliance (and some elastic response law) would interpolate between the

two limiting cases presented here and accurately reproduce the observed phase di�erences. Moreover, this

may suggest that the observed phase di�erences are not designed to enable motility, but rather a necessary

product of pumping �uid withing a peristaltic chamber (with an elastic end). Regardless, to faithfully

reproduce the deformation-�ow relationship observed in [M��08], we require a more sophisticated model

that takes into account the elasticity of the domain in which �uid is being pumped. The development of

such a model is the main goal of the following chapter.

Using our peristaltic model we also quanti�ed the characteristic viscous stresses generated by the �ow

of �uid within the cell chamber. We showed that at any particular point in time, there is a non-zero spatial

average stress associated with the �ow. Furthermore, depending on the form of the deformation wave, this
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stress may be up to⇠ 2.33 Pa in size. Over a full period of the wave, these average stresses nearly balance

but not completely. The space and time average stress associated with the �ows may be up to ⇠ 0.14 Pa.

Thus, at any point in time, the average stresses associated with the �ow may be of biologically relevant

scale, but over one full period of the wave the net stress is of a less signi�cant scale.

We saw that the stress associated with �ow was in general increased in the case of the unconstrained

deformation, when �uid was allowed to �ow freely into the head. In the case of a closed head, the domain

is spatially symmetric, non-zero stresses are generated, but they are quite small (sub Pa scales). This is a

product of the directionality of the deformation and �ow waves. However, an additional asymmetry in the

problem, namely the in�nitely compliant head, increased our measures of stress by an order of magnitude

(or more). This again suggests that a more sophisticated model of physarum motility should incorporate a

treatment of the mechanical asymmetry of the plasmodium head.

Finally, we note that even in the case of the unconstrained deformation, where cytoplasm may �ow

freely into the head, the spatial average stress is small when compared to some migrating cells [T��99].

In Chapter 4 we will see that migrating physarum exert stresses on its substrate that are on the order of

hundreds of Pascals. However, we note that our analysis of the peristaltic model only quanti�es the average

stresses generated by the �ow. We have ignored any local treatment of stress. Obviously the stress � will

locally be larger (or smaller) than the values reported in Table 2.2. It is plausible that physarum may

mechanically transmit these local viscous stresses to the substrate in a coordinated manner, and therefore

produce traction stresses on a scale larger than indicated in Table 2.2. Furthermore, we have only treated

viscous stresses in this analysis, ignoring both contractile and passive elastic stresseswithin the cytoskeletal

structure of the cell. Such stresses are likely to contribute to the traction stresses measured in Chapter 4.

To address such issues, we require a more sophisticated model that incorporates contraction of the cells

mechanical structure and the linkage of the intracellular space to the extracellular substrate. We now

develop such a model in Chapter 3.
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C������ 3
Model Development

3.1 Introduction
In the previous chapter, our model described the intracellular material of physarum as a Newtonian �uid

(albeit with high viscosity). This is admittedly a simpli�cation of the rheological properties of intracel-

lular cytoplasm. Physarum cytoplasm contains an wide multitude of proteins, ions, organelles, and other

material that alter the mechanical properties of the intracellular space [LP00]. Critically, the cytoplasm is

�lled with an actin-myosin cytoskeleton that is important in a wide variety of cell functions. In addition

to providing structural integrity to the cell, the actin cytoskeleton is known to be associated with trans-

membrane adhesion structures that mechanically link the cell interior to the extracellular matrix and/or

substrate [B��87]. Thus, the cytoskeletal structure of the cell interior is involved in transmitting stresses

internally generated to external structures. As mentioned in the previous chapter, our peristaltic model

of the cytoplasmic �ow within physarum included only hydrodynamics of intracellular �uid. We did not

address the matter of how such stresses may be transmitted to the substrate. In this chapter we develop a

more detailed model that addresses this shortcoming.

The model that we develop incorporates the physics of four basic systems within physarum plas-

modia: the intracellular �uid; the porous, elastic cytoskeleton; the membrane/cortex which encapsulates

the plasmodium; and adhesions coupling the cell to the substrate. Our description of the intracellular �uid

remains very similar to in Chapter 2. We still assume that the �uid which �lls the interior of physarum

is Newtonian. Because the system we are modelling is in a non-inertial regime, the �uid equations of in-

terest remain the incompressible Stokes equations. As we have already discussed, there are a number of

structures within the cell interior that give rise to more complex rheology, however we e�ectively lump

all of them into our description of the cytoskeletal structure on the interior of the cell.
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Our model of the intracellular structure takes the form of a porous, elastic material that is permeated

by the intracellular �uid (or cytosol). We envision this elastic material as an approximation of the actin

cytoskeleton of the physarum. However, in the context of our model it incorporates any other structures

whichmay give the cell interior an elastic stress response. When combinedwith the Newtonian description

of the interstitial cytosol, this e�ectively describes the interior of physarum as a poro-elastic material.

Recent experimental work on blebbing cells has suggested that a poro-elastic description of the cytoplasm

is required to properly capture the e�ects of pressure propogation through the cytoplasm [C��05, M��08,

C��09]. Because physarum appears to drive �owwithin the cell interior via contraction generated pressure

gradients, it is important that our model properly capture these dynamics. For this reason, we develop a

poro-elastic description of the cell interior. Furthermore, the elastic cytoskeleton (which we will often

refer to as the “network”) provides the mechanical structure that links the intracellular �ow to adhesions

that interact with the substrate.

Many cell species transmit stresses to the underlying substrate via highly localized aggregates of

integrins and accessory proteins known as focal adhesions [B��88]. By contrast, physarum does not appear

to transmit stresses in such a highly localized manner. Instead, traction stresses on the substrate are di�use,

and applied across the ventral surface of the cell (see Chapter 4 for the traction stress patterns exerted by

migrating physarum). The details of the mechanical structure that physarum uses to apply these stresses

are not known. It is not even known if physarum expresses integrin-like transmembrane proteins, though

some candidate proteins have been identi�ed [H��08]. However, the period of the deformations and �ow

patterns observed in physarum is long (⇠ 100 sec) compared to the timescale of the life of an integrin

bond [K��09]. Over longer time scales and large ensembles of bonds, one can represent the dynamics of

adhesion via a viscous drag law [S��09]. Because of this, our model assumes the adhesive complexes of

physarum interact with the cytoskeletal network elastically and with the substrate viscously. Furthermore,

given the lack of data on the precise nature of adhesion mechanics in physarum, we are unable to develop

a mechanistic model of how the strength of adhesion to the substrate may be regulated. Our model allows

for the modulation (in space and time) of the strength of viscous interaction with the substrate. However,

the form of this modulation will be somewhat phenomenological and will, in fact, be an input of the model

in Chapter 4.

Finally, our model re�ects the fact that a physarum plasmodium is enclosed in a cell membrane. This

membrane is a bilipid layer, together with various embedded proteins, and delineates the cell interior
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from the extracellular space. Immediately adjacent to the interior surface of the cellular membrane is

the cortex [K��87]. The cortex is a specialized layer of cytoskeleton comprised mostly of dense cortical

actin, as well as various accessory proteins. This layer functions to provide structural support to the

cellular membrane and is responsible for much of the elastic properties of the membrane in our model.

We represent the membrane and cortex together as a single one dimensional structure, which we will

refer to as the “membrane” for brevity. The underlying cortex of physarum is mechanically coupled to

the bulk cytoskeleton by an array of linking proteins [H��86, I��92]. As a �rst approximation, we model

this coupling with a Hookean force law linking a material point on the membrane with the corresponding

point on the boundary of the cytoskeleton.

In this chapter, we develop a model of a crawling physarum plasmodium that incorporates all of the

aforementioned physics. Concurrently, we develop a computational framework with which to simulate

a crawling cell. This computational framework will be based on the Immersed Boundary method. Since

the Immersed Boundary method is a rather general framework, and not speci�c to the problem at hand,

we describe its machinery �rst. In later sections we describe the mathematical model of the poro-elastic

cytoskeleton, the viscous adhesion to the substrate, and the elastic membrane surrounding the cell. As we

do so, we outline how each may be simulated via our Immersed Boundary framework.

3.2 Immersed Boundary Framework
We now develop a computation framework with which to simulate a crawling cell with a poro-elastic

interior. To do this, we �rst note that the equations of �uid mechanics are most naturally formulated in

a �xed Eulerian coordinate system. Conversely, elastic constitutive laws are more naturally treated in

moving Lagrangian coordinates. Our method leverages each of these “natural” representations and uses

both coordinate systems where appropriate. The Immersed Boundary (IB) method is a computational

method that was developed to exploit the convenience of both coordinate systems in simulating �uid-

structure interaction problems [P��77]. For this reason, we develop a model based on the IB method.

The IB method was originally developed to simulate blood �ow [P��77] but has since been adopted

to address an array of �uid-structure interaction problems in biology and engineering [M��05]. The key

feature of the IB method is that the equations of �uid mechanics are solved in a �xed Eulerian coordinate

system, while the equations of the immersed solid structure are represented on a moving Lagrangian

coordinate system [P��02]. Transformations between the two coordinate systems are accomplished by the
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so-called “spread” and “interpolation” operators, which are both convolutions against a delta distribution

kernel. Novel use of the spread and interpolation operators allows numerical simulation of �uid equations

in complex geometries (often de�ned by the immersed structures) without the use of geometry conforming

meshes. In the traditional IB formulation, the immersed structure is assumed to be neutrally buoyant so

that all stresses on the boundary are transmitted to the �uid. It is also assumed that a no-slip boundary

condition is satis�ed at the �uid-structure interface. One of these assumptions is inappropriate for the

simulation of a poro-elastic material, as the immersed solid does not move with the local �uid velocity.

Rather, relative motion of the porous solid and the �uid results in a drag force density. However, the basic

machinery of the IB method is not restricted to the above assumptions, and we will see that it may be

leveraged to simulate the coupled poro-elastic equations in a single uni�ed framework.

We now introduce some notation. For the remainder of this work, x will represent the Eulerian

coordinate (with domain⌦). We use s as the Lagrangian coordinate (with domain �net) that parametrizes a

volume-�llingmaterial that we call the “network”. This will model the cytoskeleton on the cell interior. The

variable ✓ will be a second Lagrangian coordinate (with domain �mem) that parametrizes a co-dimension

one material which models the cell membrane and cortex. In Section 3.3.1, we will describe how we reduce

our cell model to two dimensions. Therefore, ✓ will parametrize a one-dimensional membrane, while s

will parametrize a two-dimensional cytoskeleton. Wherever possible, we will use the convention that

quantities that are de�ned in the Eulerian frame will be denoted with lower case letters, while Lagrangian

quantities will be denoted in upper case. For example, Xnet (s, t) will denote the physical position of the

material point of network s at time t. See Figure 3.1 for an illustration. The key insight of the IB method

is that we are free to compute in either coordinate system provided we have the appropriate coordinate

transform. The operator which maps from the Lagrangian coordinate s to Eulerian coordinate x is known

as the spreading operator, is denoted Snet, and is given by

v(x) = Snet [V (s)] =

Z

�net

V (s) � (Xnet (s, t) � x) ds. (3.1)

Similarly, the interpolation operator, denoted by S⇤
net, maps from Eulerian coordinates to Lagrangian,

V (s) = S⇤
net [v(x)] =

Z

⌦

v(x) � (Xnet (s, t) � x) dx. (3.2)

We use this notation for interpolation because the spread and interpolation operators satisfy an adjoint
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property. For two scalar �elds V1 and v2 de�ned in Lagrangian and Eulerian coordinates respectively,

hSnetV1, v2i⌦ =

Z

⌦

v2(x)

0

@
Z

�net

V1(s)� (Xnet (s, t) � x) ds

1

A
dx

=

Z

⌦

Z

�net

V1(s)v2(x)� (Xnet (s, t) � x) ds dx

=

Z

�net

V2(s)

0

@
Z

⌦

v2(x)� (Xnet (s, t) � x) dx

1

A
ds

= hV1,S⇤
netv2i�net . (3.3)

An analogous result holds for vector �elds. This calculation shows that the spread and interpolation op-

erators preserve integrals when mapping between coordinate systems.

The spread and interpolation operators for one-dimensional Lagrangian structures are de�ned simi-

larly:

v(x) = Smem [V (X)] =

Z

�mem

V (✓) � (Xmem (✓, t) � x) d✓, (3.4)

V (✓) = S⇤
mem [v(x)] =

Z

⌦

v(x) � (Xmem (✓, t) � x) dx, (3.5)

where Xmem(✓, t) is the location of material point ✓. A simple calculation shows that Smem and S⇤
mem

satisfy an adjoint property analogous to Equation (3.3). To perform numerical simulations, we necessarily

must discretize these integral operators. However, when we do so, we will take care to ensure that this

adjoint property is preserved discretely. This will ensure that we do not violate physical constraints, such

as the balance of forces on the system.

Having de�ned the operators that map between coordinate systems, we now formulate our IB-like

method. Given a con�guration of the immersed material Xnet(s, t), we may calculate the force density

this structure exerts on the �uid:

F net (Xnet (s, t)) . (3.6)

We perform a similar calculation for the immersed membrane

Fmem (Xmem (✓, t)) . (3.7)

For now, we will not discuss the constitutive laws that give rise to these forces. Once the forces each
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structure exerts on the �uid are known (as a function of Lagrangian coordinate), we spread these forces to

the Eulerian coordinate system:

fnet(x) = Snet [F net] , (3.8)

fmem(x) = Smem [Fmem] . (3.9)

Note that due to the form of Equation (3.4) and the fact that ✓ parametrizes a one-dimensional membrane,

fmem is a delta-like distribution of force density, supported on the location of the membrane.

�mem

Xmem

x

�net

⌦

Xnet

Figure 3.1: A generic scenario for poro-elastic simulations. The Eulerian variable is indicated by x with
domain ⌦. The position of the elastic network is given byXnet(s, t), where s is the �rst Lagrangian
coordinate with domain �net. The position of the membrane is given byXmem(✓, t), where ✓ is the other
Lagrangian coordinate with domain �mem. The Eulerian domain is discretized with a uniform, structured
mesh. The Lagrangian membrane is discretized with a simple curvilinear mesh. The Lagrangian network
is discretized with an unstructured mesh using the software DistMesh [P��04].

Similarly, given the �uid velocity we can interpolate this velocity �eld to the Lagrangian structures.

The �uid velocity, in general, will be given by the appropriate momentum balance equation. In this work

wewill assume that the �uid is Newtonian and described by Stokes equation (inertial e�ects are negligible);

however, themethod is not restricted to this case. We denote the �uid velocity (as a function of the Eulerian
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coordinate x) by u. Interpolating to the two Lagrangian structures, we have

U(s) = S⇤
net [u] , (3.10)

U(✓) = S⇤
mem [u] . (3.11)

Here,U(s) is the �uid velocity evaluated at the locationXnet (s, t). The velocityU(✓) has a similar inter-

pretation. In the standard IB framework, a no slip boundary condition is imposed on the immersed struc-

ture by moving it with the interpolated �uid velocity [P��02]. In this work, the membrane parametrized

by ✓ will represent the impermeable lipid membrane bounding the cell (Section 3.5), where we will stipu-

late a no-slip condition. However, the structure parametrized by s will represent a porous material which

may move relative to the interstitial �uid, and thus has its own velocity �eld. Regardless, we assume that

the velocity �eld of the porous medium has some functional dependence (denoted G) on the local �uid

velocity, and we will therefore need to evaluate v on the Lagrangian structures. We may now formulate

the equations of the IB method.

�u�rp + fnet + fmem = 0, (3.12)

r · u = 0, (3.13)

fnet(x) = Snet [F net] , (3.14)

fmem(x) = Smem [Fmem] , (3.15)

@X(✓, t)

@t

= S⇤
mem [u] , (3.16)

@X(s, t)

@t

= G (S⇤
net [u]) . (3.17)

The constitutive laws which describeF net andFmem, and the method of their calculation, will be discussed

in Sections 3.3 & 3.5.

3.2.1 Discretization of the Immersed Boundary Method
For simulation of our model, we must discretize our IB framework. The Eulerian domain in which the

immersed structures are embedded is assumed to be the unit square [0, 1]⇥ [0, 1] with periodic boundaries

(or more formally, the two-torus T2). This is done so that we may make use of relatively simple methods

for solving the �uid equations in the Eulerian domain. We discretize the unit square with a standard,

uniform mesh in the x- and y-directions. The grid spacing is given by �x = 1/M

x

and �y = 1/M

y

. The
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grid points are given by

{xnm} = {(xn

, y

m

)} =

⇢✓
n

✓
�x � 1

2

◆
, m

✓
�y � 1

2

◆◆�
, (3.18)

where 1  n  M

x

, and 1  m  M

y

. The fact that the Eulerian grid does not conform to the geometry

imposed by any immersed elastic structures is the key feature which allows the use of standard methods

to solve the �uid equations. The Langrangian structures are discretized separately, in a manner which will

be discussed in Sections 3.3 & 3.5. For now, it su�ces to say that after discretization we have collections

of Lagrangian points,
�
s

i

 
Mnet
i=1

and
�
✓

j

 
Mmem
j=1

, which approximate the porous medium and membrane

respectively. We also know the location of each of these Lagrangian points:

X

i

net = Xnet
�
s

i

, t

�
, (3.19)

X

j

mem = Xmem(✓

j

, t). (3.20)

We note that while these locations are within the Eulerian domain, they are not constrained to lie on the

discrete Eulerianmesh. Finally, to each discrete Lagrangian point we assign a “volume.” Each discrete point

in the space-�lling porous material has an area dA

i, while each point on the one-dimensional membrane

has a length d`

j . The determination of these discrete volumes will be discussed later when we provide the

speci�cs of the discretization of each Lagrangian material.

Discrete Spreading and Interpolation We now address the discretization of the spread and interpo-

lation operators (Equations (3.1) & (3.2)). The following discussion is nearly identical to that in [P��02],

and is only included here for clarity. In order to approximate the integrals in Equations (3.1) & (3.2), we

must �rst construct an appropriate approximation to the Dirac delta distribution. We begin by de�ning a

function � : R ! R in the following piecewise manner:

�(r) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

0 : |r| � 2

1
8

⇣
5 + 2r �p�7 � 12r � 4r

2
⌘

: �2  r  �1

1
8

⇣
3 + 2r +

p
1 � 4r � 4r

2
⌘

: �1  r  �0

1
8

⇣
3 � 2r +

p
1 + 4r � 4r

2
⌘

: 0  r  1

1
8

⇣
5 � 2r �p�7 + 12r � 4r

2
⌘

: 1  r  2

(3.21)

It is shown in [P��02] that this function may be uniquely derived from a collection of �ve properties. We

will not go into the details here, but for now it su�ces to note that
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1. �(r) = 0 for r � 2, and

2.
P
`2N

�(r � j) = 1 for all r 2 R.

We now de�ne approximate (one-dimensional) delta functions by scaling � according to the spacing of

our Eulerian mesh:

��x

(x) =

1

�x

�

⇣
x

�x

⌘
, and ��y

(y) =

1

�y

�

✓
x

�y

◆
. (3.22)

In Figure 3.2, we illustrate the function � as well as ��x

for �x = 1/2 and �x = 1/4. We pause here to

remark on the aforementioned properties of � and their implication for the approximate delta functions.

First, Property 1 ensures that for any r 2 R, the translated function

��x

(x � r) .

is supported on exactly four points x

n in our Eulerian discretization. This will greatly improve computa-

tional e�ciency, as the vast majority of terms in the discrete convolution integrals will be zero. Second,

Property 2 ensures that for any r 2 R,
M

xX

n=1

��x

(x

n � r) �x = 1. (3.23)

This fact will ensure that our discrete spread and interpolation operators satisfy a discrete form of the

adjoint property demonstrated in Equation (3.3).
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Figure 3.2: The function � and two approximate delta functions ��x

are shown.
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Finally, we de�ne the two-dimensional approximate delta function via

�2(x) = ��x

(x · x̂)��y

(x · ŷ). (3.24)

This allows us to de�ne the discrete spread and interpolation operators. For a �eld F net de�ned on the

Lagrangian material parametrized by s, we de�ne F i

net = F net(s
i

). We spread this �eld to the Eulerian

grid via

fnet(x
n

, y

m

) = f

nm

net = SnetF net =

MnetX

i=1

F

i

net�2
�
X

i

net � x

nm

�
dA

i

. (3.25)

Similarly, for any �eld u de�ned on the Eulerian grid, we have unm

= u(x

nm

), and we interpolate this to

the triangulated Lagrangian structure via

U(s

i

) = U

i

= S⇤
netu =

M

x

,M

yX

n=1,m=1

u

nm

�2
�
x

nm �X

i

net
�
�x�y. (3.26)

Due to the compact support of the function �, the discrete sums in Equations (3.25) & (3.26) contain numer-

ous zero terms and may be optimized for computation. For a given Lagrangian node at positionX

i

net, the

two-dimensional approximate delta function is supported on a four-by-four patch of Eulerian grid points

that surround X

i

net. This is illustrated in Figure 3.3.

We may de�ne the spread and interpolation operators for the one-dimensional membrane in a com-

pletely analogous way. For a force density exerted on the �uid by the membrane Fmem(✓), we de�ne

F

j

mem = Fmem(✓

j

), and

fmem(x

n

, y

m

) = f

nm

mem = SmemFmem =

MmemX

j=1

F

j

mem�2
�
X

j

mem � x

nm

�
d`

j

. (3.27)

Similarly, the �uid velocity interpolated to the membrane location is given by

Umem(✓

j

) ⇡ U

j

mem = S⇤
memu =

M

x

,M

yX

n=1,m=1

u

nm

�2
�
x

nm �X

j

mem
�
�x�y. (3.28)

Figure 3.3 depicts how information from a given Lagrangian node is spread to the surrounding four-by-

four patch of Eulerian grid points. Similarly, information from the same patch of Eulerian grid that is

interpolated to the Lagrangian node via a weighted average. Thus, through the two spreading operators,

we can calculate the total force on the �uid

f = fnet + fmem = SnetF net + SmemFmem. (3.29)
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Figure 3.3: Footprint of the spreading and interpolating operators (S and S⇤). The Eulerian grid is shown
in dashed black. A small set of the Lagrangian structure is shown in blue, with a single node highlighted.
A vector quantiy at the Lagrangian node (illustrated as a black vector) may be spread to the neighboring
Eulerian grid points shown in red. Similarly, data from these red nodes (illustrated as cyan vectors) may
be interpolated to the highlighted Lagrangian node.

3.2.2 Solving the Fluid Equations
Now that we have the machinery to represent the forces that the immersed structures exert on the �uid,

we must develop a method to solve for the velocity of the interstitial �uid. The governing equation of the

�uid is the forced Stokes equation. Generically, this has the form

µ�u�rp = �f , x 2 T2 (3.30)

r · u = 0, x 2 T2
. (3.31)

We solve this via a standard “Pressure Poisson” method. Taking the divergence of Equation (3.30) and

invoking the incompressibility of the �uid, we arrive at the equation

�p = r · f , x 2 T2
. (3.32)

This is known as the Pressure Poisson equation (PPE), and in the case of our domain may be readily solved

for the pressure p. It is true that the pressure is only de�ned up to an arbitrary additive constant, but as

the physics of our system only depend on the gradient of p, this constant is irrelevant. Given that p is
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determined, so is rp, and substituting back into Equation (3.30) we have

�u =

1

µ

(rp � f) , x 2 T2
. (3.33)

Again, we must solve a Poisson equation to recover the �uid velocity u.

Now, we will exploit the fact that both Equations (3.32) & (3.33) are rather simple to solve in Fourier

space. If the function f has Fourier decomposition

f(x) =

X

k2N2

ˆ

f

k

e

i

(

x·k
)

, (3.34)

then a relatively simple calculation shows

r · f =

X

k2N2

ik · ˆ

f

k

e

i

(

x·k
)

. (3.35)

Therefore, we may solve Equation (3.32) for the pressure

p(x) =

X

k 6=0

� ik · ˆ

f

k

|k|2 e

i

(

x·k
)

. (3.36)

Notice that this Fourier representation of the pressure is valid as long as k 6= 0 (the vector of all zeros).

However, a simple calculation shows that Equation (3.30) is a well posed problem only if the forcing func-

tion f has zero integral. This is equivalent to the condition f0 = 0. Therefore, we may safely represent

the pressure gradient as

rp(x) =

X

k 6=0

k

|k|2k · ˆ

f

k

e

i

(

x·k
)

. (3.37)

Since we have a Fourier representation of f andrp, Equation (3.33) can readily be solved for the velocity

u:

u(x) =

1

µ

X

k 6=0

 
ˆ

f

k

|k|2 � k

|k|4k · ˆ

f

k

!
e

i

(

x·k
)

. (3.38)

For notational convinience, we de�ne

u

k

=

1

µ

 
ˆ

f

k

|k|2 � k

|k|4k · ˆ

f

k

!
. (3.39)

Now, our IB implementation gives us an approximation to the forces exerted on the �uid given by

Equations (3.4) & (3.25). Given a discrete forcing function f

nm generated by the spread operator, we

use a Fast Fourier Transform (FFT) to calculate ˆ

f

k

[F��05]. This results in a truncated Fourier series

representation of the forcing applied to the �uid in the Eulerian domain. Equation (3.38) may be used to
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calculate the truncated Fourier series of the �uid velocity that results from this forcing. Equation (3.36)

may similarly be used to calculate the pressure. Finally, we use an Inverse FFT to recover the approximate

�uid velocity and pressure at the nodes of the Eulerian grid

p

nm

= p(x

n

, y

m

), (3.40)

u

nm

= u(x

n

, y

m

). (3.41)

This is an example of a so-called spectral method [T��00]. We will not discuss the various drawbacks and

bene�ts of such a method in this work. However, the numerical convergence of this method for solving

the forced Stokes equation is shown for a simple test problem in Appendix A.

3.3 Poro-Elastic Description of Cell Interior
To describe the mechanics of the cell interior, we begin with a two-phase �ow model, which is often

used to describe multicomponent mixtures (gels) that consist of an elastic network immersed in a viscous

�uid [C��10]. Both phases may exist simultaneously at all points within some spatial domain. The two

phases are often referred to as the network and the sol. As the names imply, we will assume that the

network phase behaves as an elastic solid, while the sol phase behaves as a viscous �uid. In the context

of our model, the elastic network will represent the cytoskeleton of physarum, while the viscous �uid will

represent interstitial cytosol. Each phase moves with its own velocity �eld, and at any point within the

domain, the composition of the mixture is described by the volume fractions of the di�erent phases. The

velocity of the �uid sol is now denoted by u
f

. This is to distinguish it from the network velocity, unet. The

volume fraction of the network phase is '. Since the volume fraction of network and sol must sum to one,

the volume fraction of the �uid is 1 � '. We assume constant total density, and thus mass conservation

leads to a volume-averaged incompressibility constraint. Due to our interest in describing phenomena on

a cellular length scale, we assume that inertia is negligible. Therefore, the dynamics of both phases may

be described by the appropriate force density balance law. The force density balance for each phase and

the volume-averaged incompressibility constraint are given by

r · �
f

� (1 � ')rp + ⇠ (unet � u

f

) = 0, (3.42)

r · �
e

� 'rp + ⇠ (u

f

� unet) = 0, (3.43)

r · ('unet + (1 � ')u

f

) = 0. (3.44)
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Here, u
f

and unet are the velocity �eld of the �uid and network phases respectively, while p denotes the

pressure within the gel. The parameter ⇠ is a drag parameter that mechanically couples the network and

sol, and quanti�es the force density associated with relative motion of the two phases past one another.

The tensors �
f

and �

e

represent the viscous �uid stress within the cytosol and the elastic stress within

the cytoskeleton, respectively. The �uid stress is given by the standard Newtonian �uid stress

�

f

= µ

�ru

f

+ ru

T

f

�
+ � (r · u

f

) I, (3.45)

where µ is the �uid shear viscosity, � is the second coe�cient of viscosity, and I is the identity tensor. We

will discuss �
e

in more detail below, but for now, we note that it is derived from an approximation of the

stress due to deformation in a linear elastic solid.

Following other theoretical works that have modeled cytoskeleton [L��09], we make the simplifying

assumption that ' ⌧ 1. In this limit, Equation (3.44) reduces to

r · u
f

= 0, (3.46)

which is the well known incompressibility constraint applied to the interstitial �uid. The constraint that

the �uid velocity is incompressible simpli�es the form of the �uid stress. Also, in the limit that ' ⌧ 1, the

pressure gradient disappears from the force density balance on the network, Equation (3.43). In this case,

the equations that describe the dynamics of the gel reduce to

�u

f

�rp + ⇠ (unet � u

f

) = 0, (3.47)

r · �
e

+ ⇠ (u

f

� unet) = 0, (3.48)

r · u
f

= 0. (3.49)

Notice that Equations (3.47)–(3.49) e�ectively describe the cell interior as a poro-elastic material.

These equations do appear to di�er somewhat from the classical description of poro-elasticity, as dis-

cussed in [B��41]. However, by assuming that viscous e�ects on the �uid are negligible and by adding

Equations (3.42) & (3.43), one may eliminate the drag term from the force density balance equations. In

this case, elastic stresses within the network are balanced by the pressure within the gel. Finally, through

a rearrangement of Equation (3.42), one may derive an equation which resembles Darcy’s law governing
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the �uid velocity. This exercise yields the system

r · �
e

�rp = 0

µ (u

f

� unet) = �rp.

These equations are equivalent to the poro-elastic theory derived by Biot [B��41], and the parameter

 = µ(1 � ')/⇠ is the Darcy permeability of the network. In Chapter 4, when we choose the paramter ⇠

for simulation of the model, it will be done by choosing a permeability consistent with the literature and

evaluating ⇠ via this relation. The Darcy permeability of cytoskeletal actin networks has been estimated

[K��09], and we will calculate ⇠ to be consistent with permeability values in the literature. We �nally note

that this reduction is purely expository; we will not be using the poro-elastic model of Biot. We may wish

to simulate scenarios where regions of viscous �uid are in close proximity to porous media, and as such,

it would be inappropriate to omit the viscous term from Equation (3.47).

3.3.1 Two-Dimensional Reduction
In the experimental setup used in [M��08], as well as that used by our collaborators (Dr. Juan Carlos

del Álamo and Shun Zhang, UC San Diego), the migrating physarum plasodium is con�ned to a narrow

gap. The length scale in the z-direction (⇠ 20 �m) is signi�cantly smaller than the standard length scales

in the x- and y-directions (⇠ 400 �m and ⇠ 50 �m respectively). For this reason, we average across

the z-direction and reduce the dimensionality of the model. This will have the added bene�t of greatly

simplifying computation, as simulation of three dimensional dynamics is more computationally expensive.

We begin by expanding Equation (3.48) into its three constitutive equations. In the region 0 < z < d, we

have

@

x

�

xx

+ @

y

�

yx

+ @

z

�

zx

+ ⇠

�
u

x

f

� u

x

net
�

= 0, (3.50)

@

x

�

xy

+ @

y

�

yy

+ @

z

�

zy

+ ⇠

⇣
u

y

f

� u

y

net

⌘
= 0, (3.51)

@

x

�

xz

+ @

y

�

yz

+ @

z

�

zz

+ ⇠

�
u

z

f

� u

z

net
�

= 0. (3.52)

Here, superscripts denote components of the vector and tensor quantities in the x-, y-, and z-directions.

Later, in Section 3.4, we envision a surface force applied to the basal boundary of the cytoskeleton by

adhesive structures linked to the substrate. This leads to a boundary condition on the force balance law

� · ẑ = f at z = 0. (3.53)
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For simplicity, we will assume a no stress condition (� · ẑ = 0) at z = d. We could assume a symmetric

stress at the boundary z = d, but it would not alter the analysis. We also make the assumption that there

is no �uid or network displacement in the z-direction.

From these simplifying assumptions, we may simply discard Equation (3.52). We now integrate Equa-

tions (3.50) & (3.51) in the z-direction,

dZ

0

�
@

x

�

xx

+ @

y

�

yx

+ @

z

�

zx

+ ⇠

�
u

x

f

� u

x

net
��

dz = 0, (3.54)

dZ

0

⇣
@

x

�

xy

+ @

y

�

yy

+ @

z

�

zy

+ ⇠

⇣
u

y

f

� u

y

net

⌘⌘
dz = 0. (3.55)

Assuming that all components of � are su�ciently smooth, we may exchange the order of integration and

di�erentiation and write

d ⇥
⇣
@

x

�

xx

+ @

y

�

yx

+ ⇠

�
u

x

f

� u

x

net
�⌘

+ f

x

= 0, (3.56)

d ⇥
⇣
@

x

�

xy

+ @

y

�

yy

+ ⇠

�
u

y

f

� u

y

net
�⌘

+ f

y

= 0. (3.57)

Here, the notation ⇤ denotes the average over the z-direction

⇤ =

1

d

dZ

0

⇤ dz. (3.58)

Equations (3.56) & (3.57) are equivalent to the two-dimensional vector equation

r2D · (�2D) + f2D + ⇠2D (u

f

� unet) = 0. (3.59)

Here, r2D is the two-dimensional divergence, �2D is the two-dimensional stress, with units of force per

unit length, and u

f

and unet are the average �uid and network velocities in the plane. f2D is simply the

projection of f onto the xy-plane. Note that in Equation (3.53), f represented a surface force applied to

the boundary of the cytoskeleton. However, in the two-dimensional averaged model, this boundary force

enters the force balance directly. Finally, ⇠2D = d ⇥ ⇠ is the two-dimensional drag parameter with units

of momentum per unit volume. We draw particular attention to the units of ⇠2D due to the fact that we

will calculate a desired drag parameter ⇠ given the Darcy permeability of a particular network. However,

in order to analyze our two-dimensional model, we must then calculate the appropriate ⇠2D using the

characteristic thickness of the gel (d).
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As in Chapter 2, we will assume that the two-dimensional average �uid velocity is incompressible

(this is a result of our thin gap approximation). Therefore, Equation (3.47) has a relatively straightforward

reduction to two dimension, and we will not go through the calculation. It is a simple exercise to arrive at

our full system of equations

µ2D�2Duf

�rp2D + ⇠2D (unet � u

f

) = 0, (3.60)

r2D · �2D + ⇠2D (u

f

� unet) + f2D = 0, (3.61)

r2D · u
f

= 0. (3.62)

At this point, we will drop the subscripts and overline notations that distinguish the two-dimensional

reduction of ourmodel. All work from this pointwill be donewith the understanding thatwe are discussing

the reduced model. The only exception to this will be when assigning values to parameters in Chapter 4.

In this case, distinguishing notation will be used.

3.3.2 Elastic Forces
We now focus on the treatment of the elastic network that is immersed in the �uid. Assuming (for the

moment) no boundary force, we may rewrite Equations (3.60), (3.62) and (3.62) as

�u

f

�rp � fdrag = 0, (3.63)

f

e

+ fdrag = 0, (3.64)

r · u
f

= 0. (3.65)

Here, the force due to elasticity is denoted f

e

= r · �
e

, while the drag force due to relative motion is

denoted fdrag = ⇠ (u

f

� unet). Furthermore, we note that the balance of forces on the immersed network

(Equation (3.64)) must hold in the Lagrangian coordinate system as well. This allows us to formulate our

model in a mixed coordinate system:

�u

f

�rp � fdrag = 0, (3.66)

F

e

+ F drag = 0, (3.67)

r · u
f

= 0, (3.68)

where F drag = ⇠ (S⇤
netuf

�Unet).

Having rewritten the equations of motion in this mixed framework, all that remains is to specify the
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constitutive law for the elastic forces within the network F

e

. We assume that the elastic response of the

network is characterized by an elastic energy density functional W (E), which depends only on the strain

in the network E . From this point, we could de�ne the elastic stress within the network via

�

e

=

@W

@E . (3.69)

However, it will be more convenient to directly calculate the elastic forces from a variational derivative.

From the elastic energy density, we may compute the total elastic energy in the network

E

e

=

Z

�net

W ds. (3.70)

Finally, we may calculate the elastic force density in the network

F

e

= �dEe

dX
. (3.71)

Here we have used the symbol d to denote a variational derivative, as the symbol � is used to denote a

Dirac delta distribution.

Thus far, the model makes no assumptions as to the form of the elastic energy density W . Given

the lack of knowledge about the elastic response of the intracellular cytoskeleton of migrating plasmodia,

we do not attempt to choose a particular constitutive law based on experimental observation. Instead,

we will develop a nonlinear elastic model in the following section and show that in the limit of small

deformation, our model reproduces a linearly elastic material. In the limit of in�nitesimal strain, a linearly

elastic material is de�ned by

W (E) = µEtr(E2
) +

�E

2

[tr(E)]

2
. (3.72)

Here, µE denotes the elastic shear modulus of the network, and �E is the second Lamè constant. In the

small strain limit, the strain E is given by the symmetric part of the displacement gradient

E =

1

2

�rq + rq

T

�
, (3.73)

where q = Xnet(s, t) � s is the displacement vector of the Lagrangian material from reference. We end

by noting that our elasticity model is limited in the materials that it may reproduce, and in the following

sections, µE = �E in all cases (See Appendix B).
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3.3.3 Discretization of Poro-Elastic Material
We now discuss how we will discretize our poro-elastic model (Equations (3.66)–(3.68)), and the methods

by which the approximate elastic force is calculated. Naively, one may assume that the simplest way to

discretize a continuum of elastic material is by representing it as a discrete collection of material points

connected by elastic springs. Representing Lagrangian mechanics via a network of springs is common in

immersed boundary applications [P��02]. This is indeed the way in which we develop our model of the

cell interior. However, it should be noted that this is not a general method of modeling elastic solids, and

may not be suitable in all cases.

Representing elastic continuum mechanics via a network of springs has been used in Lattice-Spring

Models (LSMs) [OS02, H��41]. Due to the fact that ruptures can be simply captured by breaking elastic

links (or setting parameters to zero locally), the use of LSMs has traditionally been popular in studies

of fracture in solid mechanics [M��87, C��90, T��86, H��89]. However, a known limitation of LSM

stems from the use of springs which produce force in the direction of strain. Because of this, only a one

parameter family of elastic solids with a �xed Poisson ratio can be modeled. Choosing either µ

E

or �

E

in Equation (3.72) dictates the other based on network topology. This limitation can be removed through

several methods, including the introduction of bending springs or shear springs connectingmaterial points,

but care must be taken to maintain rotational invariance of the model [H��89, Z��12]. A relatively recent

literature review of LSMs can be found in [OS02]. The sti�ness coe�cients and the resting lengths of these

springs can be related to the elastic moduli of an isotropic linear elastic material by comparing the discrete

and continuous strain energies. Such calculations for linear elasticmaterials discretizedwith regular square

and triangular lattices can be found in [OS02]. In Appendix B we go through a similar calculation for the

network topology we use in our model.

Since we will model elasticity of the cytoskeleton in a cell with arbitrary geometry, we extend a

Lattice-Spring-like model to an unstructured mesh. A special meshing procedure is used to guarantee

isotropy of the elastic material. We use the Distmesh algorithm because it generates unstructured meshes

where the side length of the triangular elements is almost equal [P��04]. To compute a triangulation, the

algorithm assumes the points are connected by springs with repulsive forces. An iterative procedure for

minimizing the associated energy generates a set of points that are triangulated by a Delaunay algorithm.

The result of this equilibration process is a spring network that approximates an isotropic material (at least
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initially). For large deformations, we do not necessarily expect this initial mesh to remain isotropic. The

meshing algorithm produces a set of Lagrangian material points,
�
s

i

 
Mnet
i=1

, and a triangulation on those

points,
�
�S

k

 
. Recall that we de�ned the Eulerian position of each material point

X

i

net(t) = Xnet(s
i

, t) (3.74)

and assume that initially, Xi

net(0) = s

i (that is, the material is initially in reference con�guration). To

each discrete point, we associate a discrete area dA

i, which is de�ned to be the sum of one third the area

of each triangle for which s

i is a vertex,

dA

i

=

1

3

X

s

i

2�S

k

|�S

k

| . (3.75)

Finally, to each edge in the triangulation, we assign a reference length. For the link connecting points si

and s

j , we have

d`

ij

=

���Xi

net(0) �X

j

net(0)

��� . (3.76)

With these quantities we are able to calculate the discrete approximation of the elastic force within the

network.

Discrete Elastic Force The edges of the triangulation {�S

k

} are modeled as discrete springs with

coe�cients k

ij and resting lengths d`

ij . The strain energy in the elastic link connecting X

i

net to X

j

net

is given by

e

ij

=

k

ij

d`

ij

2

 
|Xi

net �X

j

net|� d`

ij

d`

ij

!2

, (3.77)

and we refer to this quantity as the link energy. We note here that the parameter k

ij has units of force.

The total elastic energy at a pointXi

net is

E

i

=

1

2

X

j

e

ij

, (3.78)

where it is understood that e

ij is zero unless Xj

net is connected to X

i

net by the triangulation. We refer to

this E

i as the node energy. The factor of 1/2 which appears in Equation (3.78) is included to ensure that

summing the link energies or node energies over the network results in same total discrete elastic energy,

E

e

=

X

i

E

i

=

X

i,j

e

ij

. (3.79)
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From Equation (3.79), we compute the elastic force at the nodeXi

net as

c
F

i

= � @E

e

@X

i

net
=

X

j

� @e

ij

@X

i

. (3.80)

Finally, we de�ne the force density at nodeXi

net by dividing force by the associated area of the node,

F

i

=

1

dA

i

ˆ

F

i

. (3.81)

Note that this force density is analogous to a discrete form of the variational derivative given in Equa-

tion (3.71). From Equation (3.77), we may calculate the force density exerted on node Xi

net by the single

elastic spring connected to nodeXj

net,

� 1

dA

i

@e

ij

@X

i

net
= � k

ij

dA

i

 
|Xi

net �X

j

net|� d`

ij

d`

ij

!
X

j

net �X

i

net

|Xi

net �X

j

net|
. (3.82)

We note that the spring constant k

ij must be chosen so that the discrete strain energy density from

our lattice-spring-like model is consistent with the continuous strain energy density for linear elasticity,

Equation (3.72). We set each spring constant within the network according to the formula

k

ij

=

8�

E

3 d`

ij

✓
dA

i

+ dA

j

2

◆
. (3.83)

A detailed derivation of the above formula can be found in Appendix B. Note that this expression assumes

a 2-D elastic material, but an analogous formula could be derived for 3-D.

Time Integration We now have the framework to simulate a poro-elastic material. Before we describe

the time stepping scheme used, we note that by rearrangement of Equation (3.67) and substituting the

de�ntion of F drag, we arrive at a formula for the time evolution of the elastic network

dXnet

dt

= Unet =

1

⇠

F

e

+ S⇤
netuf

. (3.84)

After discretization of the Lagrangian and Eulerian domains, the system consisting of Equations (3.66)–

(3.68) is evolved in the following way:

1. Given a con�guration X

i of the network, evaluate the elastic force F
e

(s

i

) via Equations (3.80) &

(3.81).

2. Given the elastic force on the network, solve for the force due to drag via Equation (3.67).

3. Given the force due to drag (F drag), spread it to the Eulerian grid: fdrag = SnetF drag.
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4. Given the force due to drag on the �uid, solve the Stokes problem for �uid velocity via Equa-

tion (3.38).

5. Interpolate the �uid velocity back to the Lagrangian grid.

6. Evaluate the network velocity U

i

net via Equation (3.84).

7. Evolve the network con�guration via the forward Euler schemeXi

net(t + �t) = X

i

net(t) + �tU

i

net.

3.3.4 Numerical Validation
We now simulate a simple test problem to validate our IB formulation of the equations of poro-elasticity

Equations (3.60)–(3.62). For our test problem, we consider a circular elastic network of radius R that is

expanded uniformly in the radial direction. Wewill compare the results of our IB simulation to the solution

of the equations of linear elasticity in the small strain limit.

For a linearly elastic material deformed as described, we know that the displacement vector q will

have only radial component and will be a function of only the radial coordinate

q = q(r)r̂. (3.85)

From this, we may calculate the displacement gradient, which will have components in the ✓ direction

rq = q

0
(r)r̂r̂ +

q(r)

r

ˆ

✓

ˆ

✓. (3.86)

Since this is a symmetric tensor, we immediately know the linear strain

E = q

0
(r)r̂r̂ +

q(r)

r

ˆ

✓

ˆ

✓. (3.87)

From Equation (3.69), we may calculate the stress due to this deformation

�

e

= 2µE

✓
q

0
(r)r̂r̂ +

q(r)

r

ˆ

✓

ˆ

✓

◆
+ �E

✓
q

0
(r) +

q(r)

r

◆
I. (3.88)

Finally, a calculation yields the Eulerian elastic force density

f

e

= r · �
e

= (2µE + �E)

✓
q

00
(r) +

q

0
(r)

r

� q

r

2

◆
r̂. (3.89)

From this and Equation (3.61), we can immediately see the that force applied to the �uid will be radially

symmetric, and thus the incompressibility condition will result in zero �ow of the �uid (u
f

= 0). This
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reduces the equations of motion to a single equation for the evolution of the network

r · �
e

� ⇠unet = 0. (3.90)

Rearranging this equation, utilizing Equation (3.89), and noting that unet ⇡ @q/@t (in the small strain

limit), we arrive at an evolution equation for the radial component of displacement

@q

@t

=

(2µE + �E)

⇠

✓
@

2
q

@r

2
+

1

r

@q

@r

� q

r

2

◆
. (3.91)

In this validating experiment, we will not be applying any external loading to the elastic network. This

produces a zero-stress boundary condition of the form

� · r̂|
r=R

= 0, (3.92)

which may be expressed as

2µE
@q

@r

+ �E

✓
@q

@r

+

q

r

◆����
r=R

= 0. (3.93)

Finally, we use the initial condition q(r, 0) = 0.2r. This corresponds to expanding the circle by 20%

initially, and then allowing it to relax freely. This initial condition was chosen to stretch the limits of the

small strain assumption and test our methodology.

To validate our IB implementation of poro-elasticity, we would ideally like to compare to a known

solution of Equations (3.91) & (3.93). However, we do not have an analytic solution to this problem. Fortu-

nately, Equations (3.91) & (3.93) represent a one-dimensional di�usion-like equation with Robin boundary

conditions. This problemmay readily be simulated by simple �nite di�erence schemes. Furthermore, these

�nite di�erence simulations may be carried out with very high resolution in a single spacial dimension.

We simulate these equations on a one-dimensional cell centered grid using standard second-order �nite

di�erence stencils. We also use a backward Euler discretization in time. The parameters used are shown in

Table 3.1. All values are in numerical units. The resulting displacement q(r, t) is illustrated in Figure 3.4.

We now compare the behavior of our full IB simulation to the predictions of the �nite di�erence

simulation. IB simulations are run using the same parameters listed in Table 3.1. We take a circle of

immersed elastic network similar to that shown in Figure 3.1, expand it by 20%, and allow it to relax. The

only di�erence between our IB simulations and the �nite di�erence simulation is the spatial and temporal

resolution. Due to the increased computational cost of the IB simulations, we run them at sign�cantly

lower resolutions. Simulations were run on Eulerian grid resolutions of size M

x

= M

y

and M

y

equal to
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Table 3.1: Parameters for relaxing circle simulation.

Parameter Numerical Value Description
R 0.3 Radius of Circle
µE 0.05 Shear Modulus
�E 0.05 Lame Constant
⇠ 1 Drag Coe�cient
µ 1 Fluid Viscosity
� 0.2 Initial Radial Displacement
N 600 Size of Finite Di�erence Mesh
dt 10

�4 Size of Time Step

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

r

q
/
q

m
a

x

 

 

t = 0
t = 0.05
t = 0.1
t = 0.15
t = 0.2
t = 0.25

Figure 3.4: Evolution of the displacement q(r, t). Values are reported in units of q

max

= �R = 0.06.

32, 64, and 128. The Lagrangian triangulation was chosen so that the average side length of each triangle

was roughly equal to the Eulerian grid spacing. This resulted in Lagrangian meshes of Mnet equal to 203,

801, and 3266 nodes respectively. For illustration, Figure 3.5 shows several snapshots (which correspond to

the time points shown in Figure 3.4) of the outer radius of the elastic network relaxing back to its original

radius of 0.3 (these were produced using the most re�ned mesh in our experiments).

At each time point of our IB simulation, we calculate the radial coordinate of each point in the La-

grangian mesh. This allows us to compute the radial displacement from rest con�guration, which we will

denote q

IB

. At time t = 0.1, we compare the displacement computed using the IB simulation to that

computed using the �nite di�erence scheme on the radially symmetric problem. Our measure of relative
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Figure 3.5: Time sequence of the outer radius of a circular elastic network with reference radius R = 0.3.
The material was expanded by an amount � = 0.2 and allowed to relax back towards reference con�gu-
ration. The time points shown correspond to those illustrated in Figure 3.4.

error is

e

IB

(r) =

q(r, 0.1) � q

IB

(r, 0.1)

q

max

. (3.94)

Figure 3.6 shows the L2 and L1 norms of the error e

IB

. It is clear that as the grid is re�ned, the IB

simulation converges to the solution predicted by the �nite di�erence simulation at approximately �rst

order. Thus, we see that our IB model does reproduce the behavior of a porous, linearly elastic material

immersed in a viscous �uid.

3.4 Adhesion Model
As we previously mentioned, one of the major motivations for developing a more complex computation

framework is to mechanically represent the transmission of stresses to the substrate during locomotion of

physarum, and to explore how thesemay a�ect motility. Therefore we incorporate amodel of cell-substrate

adhesion into our existing poro-elastic description of the cell cytoplasm.

We begin by de�ning a new Lagrangian structure, which we refer to as the adhesive complexes. The

adhesion complexes will be parametrized by the same Lagrangian coordinate swith domain �. We denote

the location of the material complexes at time t byXadh(s, t) to distinguish them from the location of the

elastic network Xnet(s, t). We assume that each material point of the adhesive complexes interacts with

the corresponding material point of the cytoskeleton via a Hookean elastic law. The force density of this
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Figure 3.6: Relative error e

IB

= (q � q

IB

) /q

max

for three IB simulations. Blue circles indicate the actual
measured error. Green dashed lines indicate a power law �t to the measured error and red dashed lines
show �rst order convergence for comparison. The resolution of Eulerian grids shown correspond to
immersed networks of 203, 801, and 3266 nodes.

interaction is given by

F adh = kadh (Xadh �Xnet) . (3.95)

Similarly, the adhesive complexes experience a force density due to interaction with the substrate that

the system is migrating across. As previously stated, we choose to model the adhesive complex/substrate

interaction via modulated viscous drag. The form of this interaction is given by

F subs = ⇣(s, t)

✓
U subs � @Xadh

@t

◆
= ⇣(s, t) (U subs �U adh) . (3.96)

Here, the drag parameter ⇣ will be referred to as the adhesion coe�cient. The functional form of ⇣ will be

discussed in more detail in Chapter 4

The new variable U subs is the velocity of the substrate that is assumed to be spatially constant. It

might seem natural to de�ne all velocities in the “lab” frame, and thus impose that U subs = 0. However,

there is no technical need to do so, and in the next section, we will see that U subs plays an important role

in simulation.

With Equations (3.95) & (3.96), we can formulate a new, augmented set of equations that describe the

dynamics of our model. Obviously, the force density that the adhesion complexes exert on the cytoskeleton

must be equal and opposite to the force density that the cytoskelton exerts on the adhesive complexes.
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Finally, all forces on the adhesive complexes must balance. Therefore Equations (3.66)–(3.68) are altered

to include the adhesive force density:

�u

f

�rp � fdrag = 0, (3.97)

r · u
f

= 0, (3.98)

F

e

+ F drag + F adh = 0, (3.99)

F subs � F adh = 0. (3.100)

We may rearrange these equations to give the equations of motion for the two Lagrangian structures. The

equation of motion for the network now becomes

dXnet

dt

= Unet =

1

⇠

(F

e

+ F adh) + S⇤
netuf

. (3.101)

Meanwhile, the equation of motion for the adhesive points is given by

@Xadh
@t

= U adh = U subs � F adh
⇣(s, t)

. (3.102)

3.4.1 Determining the Substrate Velocity
We now address the issue of determining the unknown velocityU subs. Elastically tethering IB structures to

secondary structures that do not directly interact with the �uid (as we have done in our adhesion model) is

a technique that has been used in an array of immersed boundary applications [T��08, F��92]. However,

in the non-inertial regime, this presents complications. When solving Equation (3.97) in a periodic domain,

we are subject to the mathematical constrain that the forces applied to the �uid must sum to zero. That is,
Z

⌦

fdrag dx = 0, (3.103)

in order for the equation to be solvable. There is no a priori reason to believe that the forces introduced

by the adhesion model will satisfy this constraint. Furthermore, the average �uid velocity in the domain

is determined only up to a constant. For any given fdrag, if u⇤
(x) solves Equation (3.97), then so does

u

⇤
(x) + u

C . In [T��09], the authors developed a method to exploit this undetermined velocity, in order

to ensure that forces remain in balance and that the �uid equation remains solvable. However, in [T��09],

the motion of the secondary Lagrangian structure (called the tether points) was known a priori. That is

not the case in this work, as our adhesive complexes evolve according to their own force balance law.

Nevertheless, we adapt the method of [T��09] to enforce the solveability condition Equation (3.103) and
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to simultaneously determine U subs.

We begin by assuming that u⇤ solves

�u

⇤ �rp � fdrag = 0. (3.104)

As we have previously stated, this implies that fdrag satis�es the solveability condition, and therefore

0 =

Z

⌦

fdrag dx

=

Z

⌦

SnetF drag dX

=

Z

�net

F drag ds. (3.105)

Using Equation (3.99), we may substitute and �nd that

0 = �
Z

�net

F

e

ds�
Z

�net

F adh ds. (3.106)

Because F
e

is derived as a variation of an energy function, it integrates to zero. This implies that F adh

must integrate to zero as well, which is the relationship we will attempt to enforce:
Z

�net

F adh ds = 0. (3.107)

We now assume that this constraint is satis�ed initially. In order for the �uid equation to remain

solveable, we must have that
d

dt

Z

�net

F adh ds = 0. (3.108)

Expanding F adh and rearranging terms we have

0 =

d

dt

Z

�net

F adh ds

=

Z

�net

d

dt

kadh (Xadh �Xnet) ds

=

Z

�net

kadh

✓
dXadh

dt

� dXnet

dt

◆
ds. (3.109)

We may now use the evolution equations of the adhesive points and the network (Equations (3.101) &
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(3.102)) to write

0 =

Z

�net

kadh

✓
U subs � F adh

⇣(s, t)

� 1

⇠

(F

e

+ F adh) � S⇤
u

⇤
◆

ds. (3.110)

Rearranging terms and realizing that U subs is a constant that may be pulled from the integral, we have

U subs =

1R
�net

kadh ds

Z

�net

✓✓
kadh
⇠

+

kadh
⇣(s, t)

◆
F adh +

kadh
⇠

F

e

+ S⇤
u

⇤
◆

ds. (3.111)

This expression uniquely determines the substrate velocityU subs, which ensures that all forces within the

system remain in balance as the system evolves and that the solveability constraint is maintained.

Finally we note that not only is the �uid equation unchanged when the �uid velocity is altered by a

constant, but none of the forces within the model change under this transformation either. More precisely,

if u
f

, Unet, U adh, and U subs satisfy the force balance (Equations (3.97)–(3.100)), then so do u

f

+ u

C ,

Unet + u

C , U adh + u

C , and U subs + u

C . We will exploit this and set uC

= �U subs, where U subs is

calculated via Equation (3.111). In addition to ensuring that all forces remain in balance, this will have the

added bene�t of keeping the “lab frame” �xed throughout a simulation. This is bene�cial when attempting

to analyze results, as no further changes of frame are necessary.

During simulation, the method follows a relatively simple time stepping algorithm similar to that

outlined in Section 3.3.3. However, the integral in Equation (3.111) is replaced with a discrete sum over

Lagrangian nodes. The method proceeds as follows:

1. Given the con�gurations Xnet of the network and Xadh of the adhesive complexes, evaluate the

elastic force F
e

via Equation (3.80) and the adhesive force F adh via Equation (3.95).

2. Given the elastic and adhesive force on the network, solve for the force due to drag via Equa-

tion (3.99).

3. Given the force due to drag F drag, spread it to the Eulerian grid: fdrag = SnetF drag.

4. Given the force due to drag on the �uid, solve the Stokes problem for the intermediate �uid velocity

(u⇤) via Equation (3.97).

5. Interpolate the intermediate �uid velocity back to the Lagrangian grid (S⇤
u

⇤).

6. Evaluate the substrate velocity U subs via Equation (3.111).
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7. Evaluate the intermediate network velocityU⇤
net via Equation (3.101), and the intermediate adhesion

velocity U

⇤
adh via Equation (3.102).

8. Evaluate the true velocities by setting u
f

= u

⇤�U subs,Unet = U

⇤
net�U subs,U adh = U

⇤
adh�U subs.

9. Evolve the network con�guration via the forward Euler schemeXnet(t + �t) = Xnet(t) + �tUnet.

Similarly evolve the adhesive points according toXadh(t + �t) = Xadh(t) + �tU adh.

We will not discuss the spatial discretization of the adhesion model until Section 3.5.2.

3.5 Membrane & Cortex Model
We now develop the �nal component of our model of a crawling cell: the enclosing membrane. The

following discussion of the membrane dynamics is relatively standard in the Immersed Boundary literature

[P��02]. It is included here for completeness.

Recall that the membrane is parametrized by its own Lagrangian coordinate ✓ with domain �mem, and

its spacial position is given by Xmem(✓, t). This con�guration determines the elastic potential energy of

the membrane

Emem =

Z

�mem

Wmemd✓, (3.112)

where Wmem(Xmem) is the elastic energy density. The elastic force density on the membrane is calculated

as the variational derivative of the potential energy

Fmem,e

= � dEmem

dXmem
. (3.113)

We note that since the membrane is a one-dimensional structure, the term “force density” should be under-

stood to imply force per unit length in this context. The elastic energy density is assumed to be a function

of the local strain of the membrane and to penalize deviations from a given reference con�gurationX0(✓).

This can be formulated as

Wmem = Wmem

✓����
@Xmem

@✓

����

◆
=

kmem

2

0

@

���@Xmem
@✓

����
���@X0

@✓

���
���@X0

@✓

���

1

A
2

. (3.114)

Carrying out the variational derivative, we see that the force density is given by

Fmem,e

=

@

@✓

0

@
kmem

���@Xmem
@✓

����
���@X0

@✓

���
���@X0

@✓

���

@Xmem
@✓���@Xmem
@✓

���

1

A
. (3.115)
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This expression can be simpli�ed greatly if we identify the tension within the membrane as

T = kmem

���@Xmem
@✓

����
���@X0

@✓

���
���@X0

@✓

���
, (3.116)

and note that

⌧̂ =

@Xmem
@✓���@Xmem
@✓

���
, (3.117)

where ⌧̂ is the unit tangent to the membrane. In this case, Equation (3.115) can be interpreted as

Fmem,e

=

@

@✓

(T ⌧̂) . (3.118)

This model also allows us to represent a membrane under tension (at rest) by the addition of a single term.

In Chapter 4, we will model a cell membrane under resting tension. Therefore, we alter Equation (3.116)

to

T = kmem

���@Xmem
@✓

����
���@X0

@✓

���
���@X0

@✓

���
+ �. (3.119)

We assume that initially at time t = 0, the membrane con�guration is equal to the reference con�g-

uration

Xmem(✓, 0) = X0(✓). (3.120)

We further assume that this con�guration coincides with the boundary of the elastic cytoskeletal network.

Therefore, each material point ✓ is associated with a material point s
✓

on the boundary of the network and

Xmem(✓, 0) = Xnet(s
✓

, 0), for some s
✓

= s

✓

(✓). (3.121)

This should not be misconstrued to say that the membrane is de�ned to be the boundary of the network.

Indeed, the membrane will evolve with a velocity �eld distinct to that of the network, as we shall see.

We assume that the membrane is mechanically linked to the interior network through an elastic force

law. The membrane experiences a force density (per unit length) given by

Fmem,attach = kattach (Xnet(s
✓

, t) �Xmem(✓, t)) . (3.122)

Consequently, the cytoskeletal network experiences a force per unit length on the boundary given by

F net,attach = kattach (Xmem(✓, t) �Xnet(s
✓

, t)) . (3.123)
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We may now write the total force density on the membrane due to elastic e�ects as

Fmem = Fmem,e

+ Fmem,attach. (3.124)

Finally, we identify the membrane as an impermeable boundary within the �uid domain. At this

boundary we assume a no-slip boundary condition. Since the membrane is neutrally buoyant, all forces

acting on the membrane are transmitted directly to the �uid. This implies that the membrane does not

require its own force balance equation, but rather the force density on the membrane appears as an extra

term in the �uid equation. Again, the transmission of these stresses to the �uid is accomplished via a

spreading operator, Equation (3.4). The no-slip boundary condition is satis�ed by stipulating that the

membrane must evolve with the local �uid velocity. This is accomplished via the interpolation operator,

Equation (3.5),
@Xmem

@t

= Umem = S⇤
memuf

. (3.125)

3.5.1 Full System of Equations
By combining our poro-elastic model of the cell interior, together with our adhesion model and the mem-

brane that bounds the cell interior, we arrive at our full IB model of a crawling cell. The force density

balances that de�ne the system are

�u

f

�rp � fdrag + fmem = 0, (3.126)

r · u
f

= 0, (3.127)

F

e

+ F drag + F adh + [F net,attach] = 0, (3.128)

F subs � F adh = 0. (3.129)

Here, [F net,attach] is a delta-like distribution of forces on the boundary of the network due to F net,attach.

The equations of motion for the Lagrangian structures are

@Xmem

@t

= S⇤
memuf

, (3.130)

@Xnet

@t

= S⇤
u

f

+

1

⇠

(F

e

+ F adh + [F net,attach]) , (3.131)

@Xadh
@t

= U subs � F adh
⇣(s, t)

. (3.132)
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3.5.2 Discretization
We discretize the full model in the following way. The poro-elastic cell interior is triangulated via the

method described in Section 3.3.3. After discretization, the adhesive points are assumed to be equal (ini-

tially) to the corresponding network nodes, and we setXi

adh = X

i

net. Lagrangian points on the boundary

are identi�ed and ordered geometrically to assign a membrane Lagrangian coordinate ✓

j . We then con-

struct the mapping ✓

j ! s

i and set Xj

mem = X

i

net for the appropriate points. This yields the initial

position of the membraneX0(✓
j

) = X

j

0.

Having this discrete parametrization allows us to approximate the derivatives in Equation (3.115) via

�nite di�erences. We de�ne the quantities

�✓

j+
=

���Xj+1
0 �X

j

0

��� , (3.133)

�✓

j�
=

���Xj

0 �X

j�1
0

��� , (3.134)

�✓

j

=

1

2

�
�✓

j+
+ �✓

j��
. (3.135)

Note that these di�erence quantities are calculated using the reference membrane con�guration. We also

de�ne the one-dimensional volume of each point ✓

j to be d`

j

= �✓

j . Note that this quantity is indexed

by a single integer and should not be confused with the reference length of the springs in our poro-elastic

network de�ned in Equation (3.76) This is necessary for the discrete spread and interpolation operators

from the membrane (Equations (3.27) & (3.28)).

We now may calculate approximate derivatives (@Xmem/@✓) via forward and backward �nite di�er-

ence schemes

�X

j+
mem =

X

j+1
mem �X

j

mem
�✓

j+
, (3.136)

�X

j�
mem =

X

j

mem �X

j�2
mem

�✓

j� . (3.137)

Derivatives of the reference con�guration (�X

j+
0 and �X

j�
0 ) may be calculated in a completely anal-

ogous manner. Using our �nite di�erences, we can approximate the tangent vector to the membrane, as
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well as the tension in the membrane via discrete analogues of Equations (3.116) & (3.117):

⌧̂

j+
=

�X

j+
mem��

�X

j+
mem

�� , (3.138)
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�� , (3.139)
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, (3.140)

T

j�
= kmem

��
�X

j�
mem

���
����X

j�
0

���
����X

j�
0

���
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Finally, we are able to de�ne the discrete elastic energy at a membrane node via the centered �nite di�er-

ence

F

j

mem,e

=

T

j+
⌧̂

j+ � T

j�
⌧̂

j�

�✓

j

. (3.142)

We now address the attachment force that links the membrane to the cytoskeletal network. As pre-

viously mentioned, these attachments result in a boundary force on the network, which given our dimen-

sional reduction, has units of force per length. Mathematically, this results in a jump boundary condition

on the force balance equation for the network. However, we wish to avoid boundary conditions, and in-

tegrate this e�ect directly into the force balance (Equation (3.67)), resulting in Equation (3.128). This can

be done by approximating the boundary force with a force density supported only at the boundary nodes

of the cytoskeletal network. However, some care must be taken to maintain proper scaling of forces. We

begin by de�ning the attachment force, which acts between the membrane and cortex

c
F

j

mem,attach = kattach
�
X

i

net �X

j

mem
�
, (3.143)

c
F

i

net,attach = kattach
�
X

j

mem �X

i

net
�
, (3.144)

where it is understood that the membrane Lagrangian point ✓

j maps to the network Lagrangian node si.

We then de�ne the force densities as

F

j

mem,attach =

c
F

j

mem,attach

�✓

j

, (3.145)

F

i

net,attach =

c
F

i

net,attach

�A

i

. (3.146)

This scaling ensures that forces remain in balance as the discrete Lagrangian structures are re�ned. It

also ensures that when the contribution from these two force densities are spread to the �uid (from the
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membrane and network respectively), they balance and do not violate the solveability constraint of the

�uid equation. More precisely, this enforces
Z

⌦

(SnetF net,attach + SmemFmem,attach) dx = 0, (3.147)

which discretely has the form

M

x

,M

yX
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X
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net � x
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+

MmemX

j=1

F

j

mem,attach�2
�
X

j

mem � x

nm

�
d`

j

1

A
�x�y = 0. (3.148)

The scaling de�ned above ensures that this equality holds discretely for all levels of re�nement.

3.6 Discussion
We now have a fully developedmodeling framework with which to describe a crawling physarum plasmod-

ium. This framework incorporates a poro-elastic cell interior, with a solid elastic cytoskeleton permeated

with Newtonian �uid. It also incorporates adhesive interactions to the substrate that are mechanically

linked to the cells internal structure, as well as an elastic membrane/cortex bounding the cell exterior.

This entire model has been embeded into an Immersed Boundary framework for ease of simulation. In

the following chapter, we will use this model to address the crawling of physarum observed in [M��08].

Speci�cally, we will address questions about how the observed �ow of �uid may drive locomotion, and

how the stresses associated with this �ow are transmitted to the substrate.
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C������ 4
Simulating Crawling Physarum

4.1 Introduction
In this chapter we investigate the coordination of cytoskeletal contraction, substrate adhesion and cyto-

plasmic �ow in migrating amoebae of the slime mold Physarum polycephalum. As discussed in Chapter 2,

a purely hydrodynamic explanation of motile physarum plasmodia ignores the transmission of stresses to

the underlying substrate, which are necessary for cellular migration to take place. It is unclear if passive,

uncoordinated cell-substrate interactions are su�cient for physarum plasmodia to e�ectively “�ow” across

a substrate. Alternately, the motility of physarum plasmodium may be dependent upon cell-substrate ad-

hesion which is dynamically coordinated relative to the stresses generated by the �ow. It is known that

substrate bound structures within the cell are mechanically linked the to actomysosin network within the

plasmodium [B��87]. However, the precise nature of these structures is not well studied, and there cur-

rently exists no quantitative description of the stresses which the cell exerts on the substrate as it migrates,

nor how these stresses are correlated to the cytoplasmic �ow measured in [M��08].

To address these questions we use the model devloped in Chapter 3 to examine how cytoskeletal

contraction, cyotosolic �ow, and cell-substrate adhesion work together to generate cell locomotion. We

also compare the model predictions to Particle Image Velocimetry (PIV) and Traction Force Microscopy

(TFM) experiments performed on migrating physarum plasmodia by our collaborators Dr. Juan Carlos del

Álamo and Shun Zhang. TFM is an experimental method speci�cally designed to measure the stresses

migrating cells exert on the underlying substrate. TFM has been used to study the spatiotemporal patterns

of cell-substrate interactions in a diverse array of unicellular and multicellular organisms ranging from

a few microns to a few centimeters in size [D��99, B��02, R��05, DA07, L��10]. In particular, TFM has

been applied to multiple migrating cell types including �broblasts, neutrophils, and dictyostelium.

71



Our collaborators’ measurements show that traction stresses in migrating physarum amoebae are

mainly distributed along the cell periphery forming an inward contractile pattern. These stresses are

spatiotemporally modulated to establish a rythmic contraction wave that travels in the direction of cell

migration (see Figures 4.3, 4.5 and 4.10). The contractile wave has the same time period as the intracellular

�ow waves previously described, and a phase lag of approximately 1/3 of a cycle. By measuring the spa-

tiotemporal patterns of both �ow waves and stresses applied to the substrate, we are able to quantify the

correlation between the �ows previously reported and the stresses that drive the cell across the substrate.

We see that the pattern of stress on the substrate is time periodic, with a well de�ned timing relative to

rhythmic streaming of cytoplasm.

Within ourmodeling framework, we propose an idealized phenomenologicalmode of adhesion strength,

also consisting of a traveling wave. We then compare numerical simulation of our model developed in

Chapter 3 to �ows and tractions stresses observed in vivo. These spatiotemporal �ow and stress patterns

are reproduced by the numerical simulations using the model. Using the numerical model, we investigate

a range of parameters which characterize the strength of adhesion and the coordination of adhesion rela-

tive to the rhythmic �ow of cytoplasm. Speci�c coordination patterns are identi�ed which are consistent

with experimental data. These parameters are seen to be optimal in that they (nearly) maximize migration

velocity of the model cell for a given strength of actomyosin contraction. Finally, we perform numerical

simulations of the model cell crawling across randomly heterogeneous substrates and show that the speed

of migration is only mildly perturbed. These simulations imply that the proposed model of motility is

robust to perturbations of adhesiveness of the extracellular substrate.

4.2 Model Parameters and Inputs

4.2.1 Cell Geometry and Discretization
We �rst de�ne a cell geometry inspired by the plasmodia observed in [M��08] and our collaborators’

experiments. The model cell is composed of long rectangular region with semicircular “caps” at either

end. The width of the model cell (and diameter of the semicircular caps) is denoted L

y

. To be consistent

with experiments we set L

y

= 66.6 �m. The overall length of the cell (L
x

) is 400 �m. This gives the

cell an aspect ratio of 6 : 1. The cell interior is discretized with Mnet = 706 Lagrangian network nodes.

This results in a triagulation of 1270 faces with an average area of 24.1 �m2 and an average side length of
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Viscous Cytosol
Cytoskeletal Network

Adhesive Points Membrane

ŷ

x̂

Figure 4.1: A schematic of our full computation model of a physarum plasmodium. Cytoskeletal network
points are shown in red. Membrane points are shown in deep blue. Adhesive points are illustrated in
brown. Finally, the viscous cytosol that permeates the porous media is shown in light blue.

7.5 �m. The boundary of the cell contains Mmem = 140 points which are used to initialized the discrete

membrane. A schematic of numerical cell is shown in Figure 4.1. The adhesive points are moved slightly

for illustrative purposed, but are initialized as per the description in Section 3.5.2. The Eulerian domain

is a periodic square of length 640 �m. It is discretized with a grid of size M

x

= 64 by M

y

= 128. The

y-direction was discretized more �nely to resolve the �uid velocity �eld within the relatively narrow cell

body.

4.2.2 Model Inputs
We now discuss the inputs of our model that will drive the simulation. The deformations in physarum

that drive the observed �ows are generated by an actin-myosin contraction within the cell interior. This

contraction has been linked to a Ca2+ oscillation on the cytoplasm [Y��10]. However, we do not include

a description of chemical kinetics in our modeling framework. Rather, we add a term due to contractile

stress to the force balance equation of the cytoskeleton, and use a phenomenological description of this

contractile stress.
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We modify Equation (3.128) to include a force due to active cytoskeletal contraction

F

a

+ F

e

+ F drag + F adh + F net,attach = 0. (4.1)

The term F

a

is the active contractile force density, and is assumed to be a result of an active stress

F

a

= r · �
a

. (4.2)

We do not have experimental measurements of the spatio-temporal form of contraction within the cy-

toskeleton of physarum. However, we assume that this contraction is correlated with the observed defor-

mation which has been measured. For this reason, we prescribe the contraction within the network to be

a traveling sinusoidal function of the cell body coordinate,

�

a

=

�max

2

✓
cos

✓
2⇡

`cont
s · x̂ � 2⇡

T

t

◆
+ 1

◆
I. (4.3)

This functional form of �
a

results in an isotropic contractile stress with maximum magnitude �max and a

minimummagnitude of zero. This is to ensure that the cytoskeleton is never generating an active expansive

stress.

In order to represent this force density due to contractile stress in our simulations, we apply a con-

tractile loading force in our discrete cytoskeletal network. After discretization, the network is de�ned by

a triangulation of the cell interior. Upon each edge of this triangulation, we calculate a force on the two

discrete points de�ned by that edge. For each discrete Lagrangian point si with an edge connecting it to

point sj , the orientation of that edge is de�ned by the unit vector r̂

ij . The sinusoidal wave of loading force

within the network is again a function of the longitudinal cell coordinate. For each link, the magnitude of

the force is de�ned by the Lagrangian coordinate of the link center. Therefore, we have

d
F

ij

a

=

C

2

✓
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✓
2⇡

`cont

✓
s

i

+ s

j

2

◆
· x̂ � 2⇡

T

t

◆
+ 1

◆
r̂

ij

, (4.4)

This is a traveling sinusoidal wave of maximum amplitude C and minimum amplitude zero, again to avoid

any expansive forces. The total force at the point si is given by the sum of these forces over all edges

emanating from that point

c
F

a

(s

i

) =

c
F

i

a

=

X

j

d
F

ij

a

. (4.5)

And �nally the force density at point si is obtained by dividing by discrete area of the point

F

i

a

=

c
F

i

a

dA

i

. (4.6)
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Thus, we drive our simulations with a propagating wave of contractile force of amplitude C , which travels

in the x-direction (from posterior to anterior) with velocity `cont/T . The parameter C is related to the

magnitude of isotropic stress by the relation

�max =

3C

2

d`

dA

, (4.7)

where d` is the average length of the triangulation edges, and dA is the average area of the faces in the

triangulation. This relation is arrived at in a similar fashion to Equation (3.83) by comparing the discrete

and continuum models of elasticity. For more details see Appendix C.

As discussed in Chapter 3, we must now specify a form of the adhesion coe�cient ⇣(s, t) to complete

the inputs of the model. As we’ve previously mentioned, the nature of the of the mechanism with which

physarum adheres to the substrate is not known, though some candidate integrin-like proteins have been

identi�ed [H��08]. The period of the deformations observed in physarum is long (⇠ 100 sec) compared to

the timescale of the dynamics of a cell-substrate bond, and so we represent the dynamics of adhesion via

a viscous drag law [S��09]. The functional form of this viscous drag is phenomenological. In this chapter

we investigate an idealized model of adhesion of the form

⇣(s, t) =

A

2

✓
cos

✓
2⇡

`adh
s · x̂ � 2⇡

T

t + �

◆
+ 1

◆
+ ✏. (4.8)

This choice of ⇣ is inspired by the observation that both the deformation of, and associated �ow within

physarum propagate from the posterior to the anterior as a phase wave. Furthermore, the traction stresses

exerted on the substrate by the migrating plasmodium appear to have a phase wave character (discussed

in more detail in Section 4.7). Therefore we make the assumption that the strength of adhesive interaction

with the substrate is characterized by a phase wave of maximum amplitude A+✏ and minimum amplitude

✏. This is done to prevent simulation of a negative viscous drag coe�cient. The amplitude parameter A is

a measure of the strength of active coordinated adhesion, and will often be referred to as the “coe�cient

of adhesion” in the following text. The parameter ✏ represents nonspeci�c adhesive interactions between

the substrate and the basal surface of the cell. We will often report coe�cient of adhesion in nondimen-

sional units of [A/✏] in later sections. The wavelength `adh and period T of the adhesion modulation are

assumed to be the same as the those of the contractile wave. The parameter � represents the phase of the

coordinated adhesion relative to the traveling wave of contraction strength (Equation (4.4)). This will be a

parameter of interest in later sections, as we will investigate the biological signi�cance of the coordination
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of contraction, �ow, and adhesion.

4.2.3 Model Parameters
We perform simulation of the model using the parameter values listed in Table 4.1. Where possible, pa-

rameter values are chosen to be consistent with measured or estimated values in the literature. However,

some model parameters are simply not experimentally measurable, or were arrived at through numerical

experimentation. Below we give a brief discussion of our estimates for these parameters.

Speci�cs of Phase Waves The wavelength and period of the cytoskeletal contraction (`cont and T ) are

not directly measurable, but the wavelength and period of the resulting deformation are relatively straight-

forward to measure. We assume that the resulting deformation wave of the cell shape is directly correlated

with the underlying cytoskeletal contraction. We choose `cont = 1600 �m (four body lengths) and T = 100

sec, which is consistent with the wavelength and period of deformation reported in [M��08] and in our

collaborators’ experiments. As previously mentioned, the wavelength and period of the adhesion wave

are assumed to be the same.

Contraction and Adhesion The amplitude of cytoskeletal contraction was chosen to approximately

reproduce the magnitude of deformations seen in the experiments of our collaborators (about 25% of cell

width). The coe�cient of speci�c adhesion A was chosen to range over values less than to much greater

than the coe�cient of nonspeci�c adhesion ✏. The value of ✏ listed in Table 4.1 was chosen to reproduce

traction stresses of approximately the scale observed in the experiments.

Cytoskeletal Drag The ratio of cytosol viscosity and drag coe�cient (µ/⇠) is the Darcy permeability of

the cytoskeleton (See Section 3.3). The permeability of cytoskeletal network has been estimated in other

cell types [K��09, C��05]. However, these estimates were based on dense actin networks and result in

permeability bounds as low as 10

�5 �m2. Physarum, conversely, pumps �uid through well formed �ow

channels with relatively unformed cytoskeletal meshwork. Through a thin gap �ow approximation, we

estimate a permeability of 33.3 �m2 in �ow channels. In this work, we are representing the rheology of the

cell interior as a uniformly network with a single permeability of 3.28 �m2, derived from homogenizing a

�ow channel surrounded by a dense actin network. The value of ⇠ listed in Table 4.1 was calculated from

this permeability as discussed in Section 3.3. Details of the homogenization are provided in Section 4.2.4.
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Cytoskeletal Elasticity Elastic moduli of living cells have been measured to vary over a vast range

(10 Pa – 40 kPa) depending on cell type and experimental setup [Y��00, B��98, W��93]. The elastic

moduli of the cytoskeleton has not been measured for physarum plasmodia on this scale. Therefore, we

choose a moderate value of �

E

which falls well within the range of previously reported values. It has

been previously observed that the posterior end of the cell comprised of a much more developed actin

cytoskeleton, while the anterior end of the cell exhibits much less dense intracellular structure [S��94].

For this reason, we assume that the front 20% of the model cell has an elastic modulus half as large as the

posterior 80%. Similarly, the strength of contraction in this anterior region is half as strong to model the

relatively lower capacity for contractile stress generation the less developed cytoskeleton.

Table 4.1: Model parameters for crawling simulation.

Parameter Numerical Value Description
L

x

400 �m Cell Length
L

y

66.6 �m Cell Width
d 20 �m Cell Gap Height
µ 0.75 Pa sec Cytosol Viscosity
⇠ 2.29 ⇥ 10

11 Pa sec/m2 Drag Coe�cient
�

E

781 Pa Cytoskeletal Elastic Modulus
C 120 pN Amplitude of Active Contraction
k 10

�2 Pa Membrane/Cortex Elastic Sti�ness
� 1.6 ⇥ 10

�2 Pa Membrane Resting Tension
✏ 2.29 ⇥ 10

6 Pa sec/m Coe�cient of Nonspeci�c Adhesion
A 4.58 ⇥ 10

4 – 2.29 ⇥ 10

10 Pa sec/m Coe�cient of Speci�c Adhesion
T 100 sec Contraction Period

`cont 1600 �m Contraction Wavelength

4.2.4 Permeability Bound
We have access to some estimated values of cytoskeletal permeabilities [K��09, C��05]. However, these

e�orts have often focused on dense actin networks (for example, in lamellapodia of migrating keratocytes)

and have produced low permeability values on the order of 10

�5–10

�3 �m2. We regard these estimates

as something of a lower bound on reasonable values for the permeability in our model. In well formed

�ow channels in physarum, it is unlikely that a permeability this low accurately describes the intracellular

rheology. Under the assumption of a purely Newtonian cell interior (no cytoskeleton), it is possible to esti-

mate an e�ective permeability which we will regard as an upper bound of reasonable values for our model.

We reiterate that the basal-dorsal thickness of physarum plasmodia in our preparation is approximately
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20 �m, which much less than the posterior-anterior length of the cell. Just as in Chapter 2, we make a thin

gap approximation to arrive at the expression

µ

@

2
u

@z

= �@p

@x

, (4.9)

where z and x are the coordinates in the basal-dorsal and posterior-anterior directions respectively, u is

the �uid velocity in the x-direction, and p is the intracellular pressure. Assuming that the pressure is not

a function of z, integrating, and imposing the no slip boundary condition at z = 0 and z = 20 �m allows

us to derive the Darcy relation for the z-averaged �ow

µu = �e�px, (4.10)

where the permeability e� = (20 �m)

2
/12 ⇡ 33.3 �m2. This may be interpreted as the e�ective per-

meability felt by the two dimensional �ow in the xy-plane. We reiterate that our model assumes a spe-

cially homogeneous drag parameter, while the actual cell interior is heterogeneous. In fully formed �ow

channels, the permeability of the cell interior may range up to values suggested by the Newtonian ap-

proximation, while regions of dense cytoskeleton may exhibit permeabilities in line with those reported in

lemellapodia actin networks. For this reason, we estimate a homogenized permeability through the whole

cell body. The basic geometry of the cell body is illustrated in Figure 4.2. We assume a cell width of hout

and that along the centerline of the cell, there exists a �ow channel of width hin. Within the �ow channel,

viscous e�ects are relevant, and the average �uid velocity pro�le obeys the equation

µ

@

2
u

@y

2
� µ

e�
u � p

x

= 0. (4.11)

In the rest of the cell body, which is comprised of denser cortical actin meshwork, the physics are drag

dominated and the �uid pro�le is assumed to obey the Darcy-like equation

µu = cortpx. (4.12)

We solve both equations with a matching condition at the �ow channel wall (y = ±hin/2) for the complete

�ow pro�le u(y). We then calculate the �ux through a cross section of the cell due to the given pressure

gradient p

x

by

Q =

hout/2Z

�hout/2

u(y) dy. (4.13)
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Alternately, we calculate the �ux due to a �ow pro�le which results when we assume the entire cell interior

is composed of a porous material with homogeneous permeability,

˜

Q =

hout/2Z

�hout/2

ũ(y) dy = �
hout/2Z

�hout/2

tot

µ

p

x

dy. (4.14)

Finally, we equate Q and ˜

Q and solve for the unknown homogenized permeability tot. We have cho-

sen the values of viscosity and cytoskeletal drag listed in Table 4.1 to be consistent with a homogenized

permeability of tot = 3.28 �m2. This resulted from assuming the parameter values listed in Table 4.2.



tot

h

out

h

in



e↵



cort

Figure 4.2: Schematic drawing of our homogenization calculation. The inner channel of width hin and
permeability e� is shown, as well as the outer layer with permeability cort. The value tot, which we
calculate, is shown to hold in the entire domain.

Table 4.2: Parameters for permeability homogenization.

Parameter Numerical Value Description
hout 66.6 �m Cell Width
hin 17 �m Flow Channel Width
e� 33.3 �m2 E�ective Permeability In Flow Channel
cort 10

�4 �m2 Cortical Permeability Outside Flow Channel

4.3 Cell Behavior
We begin with a qualitative description of the behavior of migrating physarum plasmodia observed by

our collaborators Shun Zhang and Juan Carlos del Álamo. Except where noted, this behavior is consistent

with the experiments reported in [M��08], and is included here only for completeness. Upon reaching an

adequate size (approximately 100 �m across), our collaborators observe the cells elongate into a tadpole-

like shape. Concurrent with this shape change, our collaborators observe the onset of a rhythmic, pulsating

�ow of cytosol within the cell interior, similar to that reported in [M��08]. This �ow is primarily directed
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along the cell centerline from the anterior to posterior end of the elongated cell (longitudinal cell axis).

The �ow has a distinct periodicity of approximately 100.4 ± 14.2 sec (measured over six cells). A region

of cytoplasmic �ow directed forward develops at the posterior end of the cell. This pattern of forward

�ow becomes more prominent and travels forward along the cell axis towards the anterior of the cell.

Eventually, a region of �ow directed backwards will emerge at the posterior end. This rearward �ow will

also propagate along the cell axis towards the anterior end of the cell, before the entire pattern repeats.

Figure 4.3a shows three instantaneous measured velocity �elds: a fully developed forward �ow pattern,

the early formation of a backward directed �ow pattern, and a more fully developed backward �ow pattern

which has propagated most of the length of the cell.

(a) Intracellular �ow along the cell
axis [�m/sec].

(b) Experimentally measured trac-
tion stresses [Pa].

(c) Traction stresses with moving
average removed [Pa].

Figure 4.3: Instantaneous intracellular �ow and traction stresses observed in migrating physarum. In (a)
arrows indicate the direction of �ow. Colormap indicates the projection of �ow velocity onto the cell
axis. In (b) & (c) arrows indicate the direction of traction stress �eld. Colormap indicates the magnitude
of stress �eld. Provided courtesy of Shun Zhang and Juan Carlos del Álamo.

The emergence of this periodic wave of back-and-forth �ow is observed to coincide with a dramatic

increase in the migration velocity of the cell, as in [K��98]. The migration of the cell is necessarily accom-

panied by the application of traction stresses to the underlying substrate. Figure 4.3b shows a sequence

of the stresses applied to the substrate by physarum at three time points which are approximately those

reported in Figure 4.3a. There is a slight delay between the images of Figures 4.3a & 4.3b due to changing

the imaging channel of the microscope from bright �eld to �orescent �eld.
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The dominant feature of this traction stress pattern is purely contractile, and the larger traction

stresses are found near the cell periphery. This behavior has been observed in other cell types, and it

has been hypothesized that this e�ect is due to strong stresses associated with the cell cortex and directed

out of the plane of the substrate [DA13]. Our collaborators remove this average “cortical” stress pattern

from the measured traction �eld. This will aid in comparison to our model, as the model is restricted to

representing forces generated in-plane. The average traction stress �eld is calculated by averaging the

instantaneous traction stress �eld mentioned above for at least two complete periods of the observed be-

havior. The average contractile stress is then removed from the instantaneous traction stress �eld. The

resulting stress patterns are shown in Figure 4.3c. Once the average cortical stress is removed, we observe

that the dominant feature of the stress �eld is a locus of contractile stress which develops near the rear of

the cell. This locus travels forward along the longitudinal axis of the cell before a weaker locus of expansive

stress begins to develop at the posterior of the cell. This apparently phase wave behavior of traction stress

supports our assumption of the functional form of adhesion strength Equation (4.8).

4.4 Model Behavior
In Figure 4.4a we show instantaneous �uid velocity �elds obtained from themodel at time intervals roughly

analogous to Figure 4.3. In these simulations, the phase and amplitude of the adhesion wave were set to

� = 3⇡/2 and A = 100✏, respectively. In Sections 4.6 & 4.7 we will return to consider other adhesion

parameters. The three panels illustrate a fully formed forward �ow, the onset of a backward �ow, and a

fully developed backward �ow pattern which has travelled towards the anterior of the cell. Qualitatively,

they are very similar to the behavior shown in Figure 4.3a. We also calculate the traction stresses applied

to the substrate by our model cell (F trac). These stresses must necessarily balance the stress exerted by the

substrate on the adhesive points in our model. Therefore

F trac = �F subs. (4.15)

In Figure 4.4b we provide illustrations of traction stress �elds generated by our model cell during the same

simulation shown in Figure 4.4a. The three panels show the forward propagation of a contractile locus

of stress through the cell body, followed by the emergence of a weaker expansive locus of stress at the

posterior end of the cell. In this regard, the model again reproduces the qualitative behavior observed in

live physarum.
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(a) Computed cytosol velocity �eld [�m/sec].
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(b) Computed traction stress �eld [Pa].

Figure 4.4: Instantaneous intracellular �ow and traction stresses computed in model cell. In (a) arrows
indicate the direction of �ow. Colormap indicates the projection of �ow velocity onto the cell axis. In (b)
arrows indicate the direction of stress �eld. Colormap indicates the magnitude of stress �eld.

To further analyze the �ow patterns that we observe, we generate kymographs of the intracellular

�ow. This is done by averaging the calculated longitudinal �ow over each lateral cross section of the cell.

That is, we calculate the “mean longitudinal �ow,”

¯

U(x, t) =

R
⌦

c

u

f

· x̂ dy

R
⌦

c

dy

, (4.16)

where ⌦

c

denotes the interior of the cell, x is the Eulerian coordinate parallel to the longitudinal cell axis,

and y is the coordinate orthogonal to the longitudinal axis. Figure 4.5a shows experimentally obtained

measurements of ¯

U while Figure 4.5b shows those produced by the model cell shown in Figure 4.4. Given

the lack of precise values for much of the intracellular rheology of physarum, it is not our goal to achieve

precise agreement between the model and experiment. Regardless, the model agrees qualitatively with

the �ow patterns observed experimentally in live physarum, and reproduces the correct magnitude of �ow

speed within one order.

In our numerical simulations of the model, we observe �ows in good agreement with those reported
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Figure 4.5: Kymographs of mean longitudinal �ow ¯

U . Experimental values are unpublished data courtesy
of Shun Zhang and Juan Carlos del Álamo. Model calculations performed with � = 3⇡/2 and A/✏ = 100.

by our collaborators and in [M��08]. A phase wave pattern is clearly evident, where regions of forward

and rearward �ow are generated at the tail of the cell, and propagate toward the head in an approximately

linear fashion. Forward and rearward �ow patterns are separated by a “stagnation” point which also

travels quickly from the posterior to the anterior end the cell. This phase wave propagates through the

cell at the “phase velocity”, which we will denote c

�

. In [M��08], c

�

was referred to as the “shifting

velocity,” and was speculated to play a central role in motility. We note here the phase velocity is distinct

from any actual �uid velocity observed within the cell. In previous experiments this phase velocity has

been reported as c

�

= 12± 1 �m/sec [M��08]. However, our colaborators observe larger phase velocities

in their experiments. For the cell shown in Figure 4.5a, the phase velocity is measured to be c

�

= 29.4

�m/sec. In general, they measure phase velocities of c

�

= 23.8 ± 12.0 �m/sec across their experiments.

We perform model simulations varying the phase parameter (�) over eight equally spaced values from 0

to 2⇡, and the coe�cient of adhesion (A) over 6 orders of magnitude. Regardless of the form of adhesion,

our model predicts phase waves of �ow in good agreement with experimental observations. We measure

phase velocities in the range 24  c

�

 38 �m/sec (See Figure 4.6).

4.5 Role of Flow
It is argued in [M��08] that the asymmetry of displacement by particle moving in such a phase wave �ow

pattern is directly responsible for the net displacement of the cell over one period. Following this argument,

Figure 4.7a illustrates particle paths in an idealized �owwhere regions of forward (red) and backward (blue)

�ow (of a constant velocity) propagate through the cell body as a phase wave. A particle within the �uid

will translate a distance D

f

forward over one period of the �ow, and a distance D

b

backward. As the
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Figure 4.6: Phase velocity of calculated intracellular �ow as a function of adhesion strength.

particle is in a region of forward �ow for more than half the period of the oscillation, D
f

will be greater

than D

b

. That is, there will be a net forward displacement of the particle over one period of the wave. We

de�ne the asymmetry in the �ow to be the ratioD

f

/D

b

. Figure 4.7b shows the displacement of the centroid

of a physarum specimen provided by our collaborators. The distance that the cell centroid moves forward

(backward) over one period of the wave is labelled L

f

(L
b

). The ratio L

f

/L

b

is the centroid displacement

asymmetry. In Figure 4.7c, we plot the asymmetry in the �ow as a function of the centroid displacement

asymmetry. This data is provided by our collaborators, and was measured over 118 periods of �ow for 9

cells. Each point of data represents one period of the �ow wave measured in a single cell. If the �ux of

mass due to the intracellular �ow wave were solely responsible for the migration of the cell center of mass,

then the data in Figure 4.7c would lie on the green dashed line with slope 1. However, we see that this line

is in fact a poor �t to the data. The solid blue line shows the best linear �t to the data, and it has a much

lower slope of approximately 0.16.

Examining Figure 4.7cmore closely reveals a critical phenomenon. We divide the �gure into quadrants

de�ned by the lines D

f

/D

b

= 1 and L

f

/L

b

= 1 (shown in grey). There are 55 data points with a �ow

asymmetry less than 1. This implies that D

f

< D

d

for those periods of the wave-like behavior. However,

53 of these data points lie in the region where the centroid displacement asymmetry is greater than 1.

Therefore the particle displacement due to �ow suggests a net backward translation of mass, even though

the cell has moved forwards. While �ow is likely to play a major role in the migration of physarum, our

collaborators’ experiments (and our model predictions in Section 4.6) indicate that hydrodynamics alone
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cannot determine the migration of the cell. Some other mechanism is responsible for the net forward

displacement of the cell center.
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Figure 4.7: In (a) we provide an illustration of the particle paths associated with a constant phase wave. The
two components of �ow asymmetry (D

f

and D

b

) are shown. In (b) we show the time series of the centroid
of a migrating physarum. The two components of centroid displacement asymmetry (L

f

and L

b

) are
indicated. In (c) we show experimentally measured values of �ow and centroid displacement asymmetry
over 118 periods and 9 cells. The best linear �t is shown in blue. A perfect one to one correspondence is
shown in green for comparison. Unpublished data courtesy of Shun Zhang and Juan Carlos del Álamo.

4.6 Adhesion Coordination and Crawling Speed
Figure 4.8a shows the translation of the centroids of three cells simulated with the model using di�erent

forms adhesion coordination. Figure 4.8b shows the �ow patterns calculated in these three cells. Cell

A utilizes a phase parameter of � = 3⇡/2 and an adhesion coe�cient of A = 100✏. Cell C utilizes

the same adhesion coe�cient, and a reversed phase parameter of � = ⇡/2. Cell B was simulated with

� = 3⇡/2 and adhesion coe�cient A = 0. All three of these cells are driven with the same contraction

pattern, but more importantly exhibit very similar �ow patterns (See Figure 4.6) which are all consistent

with both our experiments and experiments of others [M��08, K��98]. However, while cell A migrates

forward consistent with experimental observations, cell B shows no net translation over the course of

the simulation, and cell C migrates backwards. The implication is that while hydrodynamic e�ects may

generate stresses integral to motility, it is the coordination of the transmission of those stresses to the

substrate that ultimately determines motility. Furthermore, from Cell B we see that coordinated adhesion is

critical to motility. A cell migrating using just the nonspeci�c, uncoordinated adhesion (✏) fails to migrate.

For comparison, Figure 4.7b provides a time course of the center of a physarum specimen migrating in

the lab. Qualitatively, the predictedmigration behavior ofmodel cell A closelymatches that observed in our
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Figure 4.8: Numerically calculated time evolution of cell centroid is shown in (a). The solid lines indicate
the centroids of individual cells, while the corresponding dashed lines indicates a best (least squares)
linear �t. Migration speeds reported are given by the slope of this �t. Flow velocity kymographs for the
same model cells are shown in (b).

experiments. We see a distinct, periodic translation forward and backward. However, there is a pronounced

asymmetry to the two translations, (L
f

6= L

b

) and the result is a net forward displacement of the cell over

one full period. For the simulation shown, the net displacement of the model cell is approximately 6 �m

per period of the oscillation. This is equivalent to an average migration velocity of approximately 0.06

�m/sec. In the laboratory, we measure physarum migrating at speeds of 0.16 ± 0.04 �m/sec across the

9 cells which exhibit peristaltic behavior. Thus, our model predicts cellular migration of a character and

scale in reasonable agreement with experiments. This also suggests that coordination of adhesion and

contraction is essential for e�cient locomotion.

We now explore the speeds of migration predicted by the model as a function of adhesion strength

and coordination. We perform simulations varying the phase parameter (�) over eight equally spaced

values from 0 to 2⇡, and the coe�cient of adhesion (A) over 6 orders of magnitude. All parameter values

give rise to similar periodic displacements the cell centroid (as shown in Figure 4.8a). However, depending

on the phase and strength of adhesion, our model predicts various translation velocities and directions of

migration. The results are summarized in Figure 4.9.
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Figure 4.9: Average cell crawling speed as a function of adhesion coe�cient and adhesion phase. Adhe-
sion coe�cient is reported in non-dimensional units [A/✏].

We observe that the migration velocity of the model cell is a non-monotonic function of adhesion

coordination and strength. Indeed, the cell speed is maximal at moderate values of coordinated adhesion

strength, while weakly or strongly adherent cells display negligible migration. In the limit A << ✏, the

coordinated adhesion is negligible compared to the uniform, uncoordinated adhesion. In this case, the

cell cannot move with a directional bias, despite generating periodic �ows and displacements (see cell

B in Figure 4.8a). In the limit of strong adhesion A >> ✏, the cell is e�ectively stuck to the substrate

and cannot move, regardless of how this adhesion is coordinated. This result is similar to investigations

which claim that migration of other cell types is maximized at intermediate values of other adhesion

parameters. Theoretical modeling has indicated a biphasic relationship between velocity and integrin

density in mesenchymal cells [D�M91]. Also, experiments have shown a similar biphasic dependence

on substrate compliance in embryonic neurons [C��08�]. To our knowledge, no experiments have been

performed with physarumwhich demonstrate this optimal range of adhesion, however our model suggests

that the results of such an experiment would be qualitatively similar to the existing literature.

We also note that the velocity of cell migration is approximately symmetric in the phase parameter �.

For a cell migrating with velocity v, altering the phase of the adhesion wave � ! � + ⇡ (keeping all other

parameters �xed) results in a newmigration velocity approximately�v. Intuitively, this can be understood

as “reversing” the coordination of adhesion relative to contraction, resulting in locomotion in the opposite
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direction. As we have discussed, this implies the hydrodynamic mechanism of motility hypothesized in

[M��08] is not su�cient to explain directed physarum migration.

As each simulation is driven with active contractions of the same amplitude and form, we may con-

sider migration speed of the cell as a measure of e�ciency. The cell translates most e�ciently with an

active adhesion coe�cient of A/✏ ⇡ 10–100, and a coordination phase of � ⇡ ⇡–3⇡/2. Thus, the model

predicts an optimal parameter regime in which to drive motility.

4.7 Adhesion Correlation
Our model indicates that a traveling wave of adhesion coordination may produce locomotion on biologi-

cally relevant scales. However, there is no a priori evidence that physarum is coordinating adhesion stresses

in this manner to generate the motility observed. In order to address this question, we investigate the char-

acteristic adhesion stresses that the model cell applies to the substrate during locomotion, and compare

these to experimentally measured values.

4.7.1 Traction Stress Patterns
For comparison with experimental data, we generate kymographs of adhesion stresses by de�ning the

quantity

T (x, t) =

R
⌦

c

F trac · x̂ dy

R
⌦

c

dy

. (4.17)

T is a measure of the average traction stress in the direction of motion applied to the substrate at each cross

section of the cell body. Figure 4.10a shows a kymograph of traction stresses measured in our collaborators’

experiments (with average cortical stresses removed). The data displayed are qualitatively representative

their experiments. In the kymograph we see a distinct phase wave of traction stress similar to the �ow

kymographs in Figure 4.5. We now qualitatively compare the traction stress kymographs experimentally

measure to those produced by numerical simulations. Figure 4.10b shows a traction stress kymograph for

a numerical cell migrating with a phase parameter � = 3⇡/2, and adhesion strength A = 100✏. This

simulation was chosen because the cell migrates with a velocity of the correct scale ( approximately 0.06

�m/sec), and exhibits the maximum migration velocity among other cells utilizing the same phase param-

eter. The simulated cell produces a phase wave of traction stress that has a district character, with intervals

of relatively low stress disrupting the pattern each period of the wave (for example at⇠ 130 sec), however
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(b) Model traction stresses with �=3⇡/2, and A/✏=100.
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(c) Model traction stresses with �=⇡/2, and A/✏=100.

Figure 4.10: Average traction stresses applied to substrate by migrating cells and numerical simulations.
Experimental values are unpublished data courtesy of Shun Zhang and Juan Carlos del Álamo.

the traveling wave pattern is clearly evident. While the numerically calculated traction kymograph repro-

duces some features of the traction stresses observed in live physarum, it is at this point unfair to say that

it fully captures the observed stresses generated by migrating cells. Furthermore, Figure 4.10c shows the

traction stress pattern generated by a model simulation with the same strength of adhesion, but a phase

parameter � = ⇡/2. This simulation also produces a distinct phase wave of traction stress with a similar

character. However, this parameter set results in migration in the opposite direction. It is di�cult to iden-

tify which adhesion parameters most closely reproduce the spatio-temporal pattern of the traction stress

kymographs observed in our collaborators’ experiments. For this reason we develop a more quantitative

analysis of the coordination of adhesion to compare experiments and our model results.

4.7.2 Flow and Energy Correlation
We now calculate the total elastic energy of adhesion associated with the traction stress,

Eelas =

Z

⌦
c

1

2

(F trac · c) ds (4.18)
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where c is the local elastic displacement. In our collaborators’ experiments, c measures the elastic defor-

mation of the substrate. In our numerical model, cmeasures the deformation in the elastic elements which

connect the cytoskeleton to the adhesive points. First, we examine the time evolution of the experimentally

measured elastic strain energy produced by live migrating physarum, and compare it with the evolution

of the average intracellular �ow velocity. The �rst panel of Figure 4.11a shows the time course of both

average �ow velocity within the cell interior, and total elastic energy due deformation of the substrate.

We observe a distinct periodic pattern in both the �ow velocity, as well as the adhesion energy, with the

�ow wave preceding the adhesion wave by approximately a 30% of a period (Figure 4.11a, left panel). This

behavior is robust across the 9 reported experiments. To more precisely quantify this phase relationship

between �ow and adhesion energy, we calculate the cross correlation of the two time series. The cross

correlation of two functions is de�ned to be

(f ? g) (⌧) =

1Z

�1

f(t)g(t + ⌧)dt. (4.19)

However, for ease of interpretation, we �rst remove the mean of each signal before performing the cross

correlation. We also normalize so that (f ? f)(0) = 1. The left panel of Figure 4.11a shows the cross

correlation of �ow and adhesion energy, as well as the cross correlation of the �ow wave with itself (au-

tocorrelation). The time between peaks of the autocorrelation function is interpreted as the period T of

the �ow wave oscillation (illustrated in Figure 4.11b). The position peaks of the cross correlation function

indicate the relative timing of the �ow and energy waves. We de�ne the occurrence of the �rst local max-

imum of the cross correlation function (restricted to times t > 0) as our measure of relative timing. This

quantity is denoted ✓ and is illustrated in Figure 4.11a. The ratio ✓/T de�nes the relative phase (between

0 and 1), which our collaborators measured to be 0.34 ± 0.07 in their experiments.

We perform the same analysis for the model simulations. In Figure 4.11b, we report the average

intracellular �uid velocity and elastic strain energy within the model adhesions, as well as the auto and

cross correlation of these two time sequences. The data shown is for a cell with phase parameter � = 3⇡/2

and adhesion strengthA = 100✏. This is the same parameter set for Cell A in Figure 4.8 and the kymograph

in Figure 4.10b. For this phenomenological idealized model of adhesion, and for these parameters, the

model seems to accurately reproduce the observed phase relationship between �ow and energy waves.

We see a clear phase lag of approximately a quarter period. In contrast, Figure 4.11c shows the correlation

we obtain with � = ⇡/2 and adhesion strength A = 100✏. This is the same parameter set for Cell C in
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(b) Numerically calculated �ow and energy for �=3⇡/2 and A/✏=100.
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(c) Numerically calculated �ow and energy for �=⇡/2 and A/✏=100.

Figure 4.11: Left panel shows average �ow velocity within the cell interior, as well as total strain energy
of adhesion as a function of time. Right panel shows auto and cross correlation of �ow and energy. Exper-
imental values are unpublished data courtesy of Shun Zhang and Juan Carlos del Álamo.

Figure 4.8 and the kymograph in Figure 4.10c. We see a clear phase advance of the energy wave, relative

to the �ow wave. This is inconsistent with experiments.

We now utilize the phase relationship between �ow and energy to identify plausible adhesion param-

eters for our model. We calculate the peak correlation for all simulations shown in Figure 4.9. The results

are shown in Figure 4.12a, where we report the ratio ✓/T for all adhesion parameters. For reference, the

relative phase observed in experiments (0.34 ±0.07) is illustrated with the solid and dashed grey lines. We

see that the relative phase of adhesion energy appears to be highly sensitive to �, and relatively insensitive

to adhesion strength. The exception to this is for weak coordinated adhesion (below the range A ⇡ ✏). In

this case, all phase parameters � appear to give the same relative timing in the limit of small A. This is

to be expected, as the phase of coordinated adhesion is unimportant in the limit of purely uncoordinated

adhesion. Values of � in the range 3⇡/2–2⇡ (2⇡ and 0 are equivalent) produce a relative timing which is
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consistent with experimental measurements. Of these parameter values, � = 3⇡/2 is the only one which

produces migration in the forward direction regardless of the strength of coordinated adhesion (See Fig-

ure 4.9). For cells using a phase parameter � = 3⇡/2, the measured phase lag between �ow and strain

energy remains in the range 0.21–0.33 when varying the adhesion strength over 6 orders of magnitude.

Speci�cally, in the case of highest migration velocity (the parameter set used to produce Figure 4.10b), we

measure a phase lag of 0.25. In Figure 4.12b we plot the maximummeasured migration speed as a function

of the average timing of �ow and energy (✓/T ) for each value of �. This illustrates that of the three phase

parameters which reasonably consistent with experimentally observed timing, � = 3⇡/2 produces the

maximal migration speed.
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Figure 4.12: (a)Maximum cross correlation of elastic energy of adhesion and average cytoplasmic �ow.
Adhesion coe�cient is reported in non dimensional units [A/✏]. Horizontal grey lines indicates exper-
imentally measured phase of 0.34 ± 0.07. (b) Maximum migration speed as a function of average cross
correlation peak (average calculated for for adhesion coe�cient A � ✏). Vertical grey lines indicates
experimentally measured phase of 0.34 ± 0.07

4.8 Robustness
From the criteria discussed in the previous section, the spatio-temporal pattern of adhesion which is most

consistent with experimental evidence corresponds to a phase parameter of � ⇡ 3⇡/2 and a strength of

A ⇡ 100✏. It is also the case that these parameters predict nearly optimal migration velocity within the

constraints of the model. Moreover, it is noteworthy that this the migration velocity for the phase param-

eter is not very sensitive to the strength of adhesion. Returning to Figure 4.9, we see that the cell migrates
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maximally at approximately 0.06 �m/sec. However, the model predicts a migration velocity above 0.03

�m/sec (roughly 50% of optimal) over more than two decades of adhesion strength. This suggests that the

migration velocity is quite robust with respect to the strength at which the cell is adhering to the substrate.

We seek to further quantify this notion.

The simulations in Figure 4.9 do not fully address robustness with respect to adhesion strength be-

cause they only consider spatially uniform substrate. In relevant environments, the strength of adhesive

interactions between the cell and substrate is not homogeneous, as numerous environmental and intra-

cellular factors may a�ect such interactions. Therefore, we use our model to quantify the robustness of

migration with respect to spatial variations in adhesion strength. We alter the model of cell adhesion to

the substrate in order to incorporate spatial heterogeneity. We replace our existing model of adhesion

(equation (4.8)) with the following:

⇣(s, t) =

A

2

g(x, y)

✓
cos

✓
2⇡

`adh
(s · x̂) � 2⇡

T

t + �

◆
+ 1

◆
+ ✏, (4.20)

where g(x, y) is a randomly constructed function of mean of µ

r

= 1 and standard deviation of �

r

= 0.34

(for further details, see Appendix D). This has the e�ect of spatially modulating the strength with which

the cell adheres to the substrate. The inset of Figure 4.13a shows a single randomly generated example of

the spatial heterogeneity g(x, y).

(a) (b)

Figure 4.13: (a) Open circles indicate outliers in data set. Filled red points indicate the migration velocity
calculated for a cell migrating across a homogeneous substrate. The inset shows a single randomly gener-
ated substrate. (b) Dashed black lines indicate time course of centroids of cells migrating across random
substrate. Solid red line indicates cell migrating across homogeneous substrate. � = 3⇡/2 in all cases.
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Using the randomly constructed function g to represent a heterogeneous substrate, we simulated

cells migrating across ten di�erent substrates. We performed these simulations for the three values of

� which generically resulted in forward migration, and values of coordinated adhesion that results in

the greatest migration velocity for each phase parameter. These values were � = ⇡, 5⇡/4, and 3⇡/2,

with A = 20✏, 40✏, and 100✏ respectively. The migration velocities of each set of model cells was calcu-

lated and the results are summarized in the box plot in Figure 4.13a. The spread of the data shows that

migration speed is relatively insensitive to substrate heterogeneity for the considered values of �. We

measure mean and standard deviations of 0.058 ± 0.009, 0.083 ± 0.006, and 0.060 ± 0.002 �m /sec for

� = ⇡, 5⇡/4, and 3⇡/2 respectively. Notice that the value � = 3⇡/2, which is most consistent with our

collaborators’ live physarum experiments produces a substantially lower spread in migration speed, with

fully half the data falling within ±2.5% of the median value. Thus, we see that this mode of adhesion

coordination is highly robust with respect to local variations in the strength of adhesive interaction with

the substrate.

The observed robustness is consistent through the whole migration period of the cells. Figure 4.13b

shows the time evolution of the centroid of the 10 cells (migrating across 10 random substrates) with

� = 3⇡/2 (black). For comparison, we also show the time evolution of a cell migrating across homogeneous

substrate (red). The insets show the full time course, while the main panels show just the �nal 100 sec of

migration. Over time, the location of the cells migrating across random substrates begins to deviate from

that of the cell migrating across the homogeneous substrate. This is to be expected, as random e�ects

accumulate over time. However, these deviations are quite small compared to the scale of cell migration.

Our model indicates that, for the set of model parameters that reproduce the experimental measurements,

the overall speed of migration is remarkably insensitive to the spatial heterogeneity of the substrate.

4.9 Discussion
In this chapter, we compared simultaneous measurements of cytoplasmic �ow and the traction stresses

exerted on the substrate by migrating physarum microplasmodia with detailed computational models of

amoeboid migration that resolve the mechanics of cellular deformation and substrate adhesion. Our col-

laborators’ measurements allow the correlation the stresses applied to the substrate with the previously

observed wave of �ow. They reveal that physarum amoebae move by creating traveling waves of con-

tractile traction stresses with a well de�ned period of ⇠ 100 sec. The traction stress waves are similar in
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character to the previously observed waves of intracellular �ow, but the stress waves consistently precede

the �owwaves by⇠ 1/3 cycle. Inspired by this observation, we use our numerical model to investigate the

consequences of migration using traveling waves of coordinated contraction and adhesion. These investi-

gations show that the directionality of the �ow wave does not determine migration of the cell. Rather, by

altering the timing of adhesion relative to the �ow wave, the cell is able to migrate with di�erent velocities

and in di�erent directions. These �ndings alter the previously established view that directional migration

of physarum amoebae is caused by the directionality of the �ow waves [M��08].

By juxtaposing our modeling and our collaborators’ experimental work, we have identi�ed speci�c

forms of stress generation and transmission which plausibly drive the migration of physarum amoebae.

Within the context of our phenomenological adhesion model, our simulations and collaborators’ experi-

ments indicate a small range of phase relationships (� ⇡ 3⇡/2) between contraction and adhesion which

is consistent with experimental measurements in the following ways: the magnitude and qualitative char-

acter of the cytoplasmic �ows, the magnitude and qualitative character of traction stresses, the correlation

of adhesion energy to intracellular �ow, and the scale of cell migration speed. This coordination pattern

consists of a phase lag of 3/4 cycle between adhesion and contraction (� ⇡ 3⇡/2). This result validates

the model, but also provides insight into the underlying mechanism of amoeboid motility. The particu-

lar adhesion coordination pattern we highlight is extremely robust to perturbations in adhesive interac-

tions with the extracellular environment, and results in nearly optimal migration within the context of the

model. It should be noted that the adhesion coordination pattern that produces maximummigration speed

(� = 5⇡/4) indicated by our model is not totally consistent with experimental observations. In particular,

this adhesion coordination does not properly reproduce the relative timing of �ow and strain energy (See

Figure 4.12a). Furthermore, as shown in Figure 4.13a, the most e�cient form of adhesion is not the most

robust one. This insight into the potential compromises of di�erent adhesion coordination would not have

been possible through experimental investigations alone. Our model allows us a direct control over the

coordination of adhesion that we are unable to reproduce in a laboratory setting.

We note that our frictional adhesion model is in some sense independent of the precise nature of

the molecular level cell-substrate interactions. While our friction based adhesion model was justi�ed as a

time-averaged e�ect of integrin-like molecular binding, this assumption is not necessary to arrive at the

precise mathematical form that we use. Indeed, it is not precisely known how physarum exerts stresses

on its surroundings. Cell-substrate stresses may be a result of purely passive frictional interactions. This
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is consistent with our modeling framework, as the modulation of the strength of friction (which we call

coordinated adhesion, purely as a naming convention) may be a result of a variety of factors (such as

intracellular pressure generating forces normal to the substrate). We also note that it is unlikely that

physarum migrate in vivo utilizing adhesive patterns as simple as our idealized model of wave adhesion.

In general, the modulation of interactions with the substrate may be an emergent behavior of complex

interplay of mechanical and chemical signaling [B��06], and most likely cannot be perfectly described

in such a simple functional form. However, given the well documented traveling wave of �ow within

physarum, it is reasonable to assume that the e�ective signal propagation is correlated with the wave of

�ow.

While somewhat unique, the motility of physarummicroplasmodia we investigate in this work shares

fundamental characteristics with other forms of amoeboid migration. Rythmic cellular contractions of

period ⇠ 100 sec are known to drive the motion of neutrophil-like and Dictyostelium amoeboid cells

[DA07, B��14]. In particular, while hydrodynamics do not fully determine the motility of physarum, it

appears that cellular contractions are used to generate intracellular �ows and cell locomotion. The use

of pressure-driven �ows of cytoplasm to generate translation has been widely observed in the context of

motile cells [L��09, T��13, B��14]. Furthermore, we reiterate that the observed motility of physarum

is consistent with a model of cell-ECM interaction hat does not require speci�c integrin-like binding

molecules. It has been shown that neutrophils undergo amoeboid migration in three dimensional en-

vironments in the absence of speci�c binding molecules [L��08]. This contributes to the growing notion

that friction mediated motility is biologically advantageous, as it is robust to geometric and mechanical

changes in the ECM [C��08�, T��13].

The form of amoeboid motility we observe in physarum also shares many characteristics with loco-

motion in higher organisms. The traveling wave of contraction is similar to contraction patterns observed

in migrating gastropods, annelids, and dictyostelium slugs. In both experimental and theoretical investi-

gations of these organisms, it has been seen that the direction of contraction wave propagation is not the

critical factor in determining migration direction. Rather, migration results from the timing of interactions

between the organism and substrate [L��10, T��12]. As we have previously discussed, this same behavior

is observed in our model. Figure 4.9 clearly indicates that it is the relative timing of adhesive interactions,

not the direction of the contraction or �ow waves, which determines migration direction.

While physarum locomotion shares this behavior with various gastropods and annelids, we note that
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the amoeba moves on a vastly di�erent scale than these organisms. The slugs observed in [L��10] ranged

from 0.7-28 cm in length, while physarum microplasmodia begin to migrate in this fashion after reaching

a size of approximately 100 �m. This seems to indicate that a motility mechanism predicated on traveling

waves of strain and appropriately timed adhesive interactions represents a robust design principle; one

which is viable across length scales from cellular to macro. Indeed, the advantageous characteristics of

physarum have not gone unnoticed by the robotics community, where the organism has been the inspira-

tion for biomimetic design [P��12, U��13].
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C������ 5
Conclusions

5.1 Summary
In this work we have used two distinct modeling frameworks to investigate the contributions that �ow

of cytoplasm and hydrodynamic e�ects may make to the amoeboid motility observed in physarum mi-

croplasmodium. Speci�cally, we have focused on the phase wave of cytoplasmic �ow observed by many

investigators but qualitatively characterized in [M��08]. In that work, it was argued that the phase-wave

characteristics of the measured �ows were responsible for cell motility through two e�ects: One, the rel-

ative phase of the peristaltic wave of cell contraction and the phase wave of �uid �ow resulted in a net

forward �ux of �uid; and two, each individual material point of �uid in a (simpli�ed) phase wave experi-

ences a net forward displacement over each period of the wave. In both cases, the overall result is a net

transport of mass in the direction of the phase wave, and thus, a net forward displacement of the plasmod-

ium. It has been a major goal of this work to test these explanations, and to provide a more mechanistic

understanding of how the observed peristaltic contraction of the plasmodium, the �ow of internal cyto-

plasm, and the transmission of stresses to the substrate may be coordinated to result in cellular motility.

In Chapter 2, we analyzed a model of physarum microplasmodia that represented the cell as a peri-

staltic chamber �lled with Newtonian �uid. We primarily investigated two limiting cases: a closed chamber

that allowed no �ux of �uid through the “head” of the cell and an open chamber that allowed �uid to �ow

out of the head without penalty. The results of this investigation showed that the viscous stresses asso-

ciated with peristaltically driven cytoplasmic �ow were of a scale that conceivably could be used to aid

in cellular motility. Moreover, the model indicated that a spacial asymmetry in the peristaltic chamber

(i.e. the open head) greatly increased the potential stress generation due to �ow. Finally, we saw that the

phase relationships between contraction and �ow observed in experiments were not reproduced by either

case of our model. However, our results suggested that the experimental observations might plausibly be
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explained by a model that included an elastic, compliant head that interpolated between our two cases. If

true, this would imply that the phase relationships observed in [M��08] are not, as hypothesized, to allow

the forward �ux of cytoplasmic material, but rather a necessary consequence of peristaltic pumping in a

�nite length chamber.

In Chapter 3, we developed a more complex model of crawling physarum that was more capable of

describing the complex intracellular rheology of the plasmodium. Concurrently, we developed a numerical

method to e�ciently simulate the model in a dynamic geometry. The framework leveraged ideas from the

Immersed Boundary method to represent the elastic structure of the cytoskeleton and membrane/cortex

of the plasmodium, together with viscous cytosol that permeates the cell interior. This resulted in a poro-

elastic description of the interior of the plasmodium, whichwas enclosed in an elastic membrane. Critically,

our modeling framework included adhesive structures that mechanically linked the internal cytoskeleton

of the plasmodium to the substrate across which the cell migrates. We also discussed discretization of our

model and showed that the representation of the cytoskeleton as a discrete collection of nodes and springs

approximates a linearly elastic continuum.

Finally, in Chapter 4 we used the modeling framework developed in Chapter 3 to simulate a physarum

microplasmodium migrating across a substrate. A critical result of these investigations were that the mea-

sured phase wave of cytoplasmic �owwas not responsible for determining the translation of the cell center

of mass. By altering the timing of adhesive interactions with the substrate, our model cell could migrate at

various speeds and in either direction while still displaying cytoplasmic �ows consistent with experiments.

Furthermore, we identi�ed a small subset of model parameters, pertaining to adhesive interactions, that

were most consistent with traction stresses and energies generated by physarum plasmodia in our collab-

orators’ experiments. This subset of model parameters was shown to predict extremely e�cient motility,

producing a nearly optimal speed of migration within the assumptions of our model. Finally, by simulating

crawling across a heterogeneous domain with spatially varying adhesiveness, we showed that this subset

of model parameters was extremely robust to perturbations in cell-substrate interactions.

5.2 Future Research and Outlook
The two distinct modeling frameworks that we have used derive from several simplifying assumptions that

necessarily impose modeling drawbacks. In Chapter 2, the most obvious simplifying assumption was our

choice to omit a description of any elastic e�ects from the model. There are two components of the model

99



where this assumption was manifest: the stress within the cytoplasmic �uid, and our treatment of the cell

“head.” Our assumptions pertaining to the behavior of the cell head were in part chosen to allow easy

analysis of the model. While the precise elastic structure of physarum plasmodia is not totally understood,

it seems clear that the cytoskeletal structure near the head of the microplasmodia studied here is di�erent

than the rest of the cell body. This structure is a precursor to the fan-like structure at the leading edge

of fully developed plasmodia and is likely to have distinct elastic properties from the main plasmodium

body. Our model does not account for elastic compliance at the leading edge of the cell. More importantly,

our model indicates that this phenomenon may be critical to understanding motility driven by peristaltic

�ow. At the very least, this mechanical asymmetry in the cell is necessary to explain the observed phase

relationships between deformation and �ow in [M��08]. This suggests that the directionality of the de-

formation wave is not the only asymmetry within the system which contributes to directed motion of the

cell. The more complicated model discussed in Chapter 3 was developed in part to address this issue.

Our assumption of Newtonian stress within the cytoplasm did not actually a�ect the “�uid equation,”

as that was derived directly from an incompressibility constraint. However, it did allow us to easily calcu-

late the characteristic stresses associated with the �ow. As noted in Chapter 2, the time average viscous

stresses associated with the peristaltic �ow of cytoplasm are rather small, 50 or more times smaller than

the maximal stresses generated during the wave. This is in part due to the “memory-less” viscous �uid that

we assumed �lled the chamber interior. A visco-elastic treatment of intracellular rheology may not have

this issue, and depending on the visco-elastic model chosen, would be more likely to faithfully reproduce

the intracellular rheology of physarum plasmodia. Analysis of a visco-elastic model would be necessarily

more complicated. However, it is possible that such a treatment of intracellular rheology would predict

larger characteristic stresses and that the “memory” of the �uid would result in much less stress lost when

averaging over one period of the wave. In either the case of the leading edge of the cell head or the in-

tracellular rheology of cytoplasm, we have good reason to suspect that elastic e�ects may be important

in increasing the characteristic stresses of peristaltic pumping. A model that could quantify precisely how

important elasticity is would be of scienti�c and biological interest.

Our computational model of crawling physarum developed in Chapter 3 relied on a somewhat lim-

iting assumption regarding the elasticity of the cytoskeleton. Our goal was to discretely represent the

cytoskeleton as a collection of nodes connected by springs in order to simulate the model within an IB

framework. This fundamentally limited the elastic constitutive laws that we were able to represent within
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our model. Speci�cally, we were limited to a family of elastic materials parametrized by a single elas-

tic modulus. In [D��12], the authors develop a similar method representing elastic materials within an IB

framework. However, their method does not evaluate elastic stresses in a way reminiscent of Lattice Spring

Methods and can accurately represent any hyperelastic constitutive law. In addition to being less restric-

tive, the framework outlined in [D��12] is derived directly from an elastic energy density functional and

may therefore be relatively easy to modify to represent a visco-elastic cytoskeleton. As we have previously

noted, the timescale of concern in our model is on the order of several hundred seconds. On timescales

of this length, the �lamentous actin that makes up a large portion of the cytoskeleton is unlikely to be a

permanent structure. Individual monomers may polymerize and depolymerize as the actin network “turns

over” on timescales of about a minute. This phenomenon is well studied in other motile cells where cy-

toskeleton is formed at the leading edge of the cell, migrates to the posterior, and is disassembled [P��03].

Moreover, this behavior is a critical component of overall motility of the cell. A treatment of this viscous

behavior is completely lacking in our model. The turnover of actin network implies that the cytoskeleton

of physarum can reorganize over several periods of the deformation wave. What a�ect this may have on

the particular type of amoeboid motility studied here is a completely open question, but one that our model

is incapable of addressing. Incorporating a visco-elastic cytoskeleton into our existing framework would

be illuminating in this regard.

Finally, we draw attention to the prescribed nature of our adhesion model. The strength of adhe-

sion to the substrate was viewed as an input of our model and was chosen to correlate with the other

wave patterns that have been observed in migrating physarum. It is not known precisely what structures

physarum uses to adhere to its substrates, but in other cell types, adhesive structures such as focal adhe-

sions are known to bemechanosensing andmay change the strength of adhesion depending on the stresses

or strain they experience. Both experimental and theoretical investigations have been dedicated to under-

standing the precise mechanism underlying this phenomenon [B��06]. Whether physarum plasmodium

are adhering to the substrate with integrin-like molecular binding, or pushing o� of the extracellular ma-

trix with non-speci�c frictional forces like those proposed in [C��08�], it seems likely that the strength of

adhesive interaction is an emergent property of the interacting mechanical stresses within the system. Our

model has suggested a form which this emergent strength of adhesion may plausible take, but does not

address the issue of how such a wave of adhesive strength may arise. Potentially, following the paradigm

of mesenchymal migration, we might include a mechanistic model of the adhesive structures in physarum
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plasmodia that regulates the strength of adhesion based on local stresses. Conversely, in accordance with

the hypothesis of [C��08�], the strength of adhesion may be modeled as a frictional force that is a func-

tion of the local intracellular pressure. It would be of scienti�c value to explore both of these adhesion

models and compare the emergent adhesion dynamics to the wave of adhesion postulated in this work.

Such an investigation could potentially explain the emergence of the relative phase of �ow and adhesion

that our experimental collaborators observe and our model predicts. If the traction dynamics observed

in experiments can be explained by a frictional force due to pressure, this would give more weight to the

growing body of work suggesting that pressure driven protrusion and non-speci�c adhesion are viable cell

motility strategies.
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A������� A
Numerical Fluid Solve

In this appendix, we show the accuracy of our Pressure Poisson method for solution of the forced Stokes

equation (outlined in Section 3.2.2) on a simple test problem. Our problem of choice is the so-called “four

roll mill.” The velocity �eld in the four roll mill is given by

u

true

(x, y) =

2

64
sin (2⇡x) cos (2⇡y)

� cos (2⇡x) sin (2⇡y)

3

75 . (A.1)

A quick calculation shows that this velocity �eld is periodic on T2 divergence free. Therefore u
true

should

therefore be the solution to Equation (3.30) for the appropriate forcing f . In Figure A.1 we show a quiver

plot ofu
true

purely for illustrative purposes. Substitutingu
true

into Equation (3.30) assuming zero pressure

gradient, and solving for f , we arrive at

f

true

(x, y) =

2

64
�4⇡

2
µ sin (2⇡x) cos (2⇡y)

4⇡

2
µ cos (2⇡x) sin (2⇡y)

3

75 . (A.2)

The test problem proceeds like this:

1. For a given M

x

and M

y

, we generate the Eulerian grid as in Equation (3.18).

2. We evaluate the forcing function on the Eulerian grid: f
true

(x

n

, y

m

) = f

nm

true

.

3. This discrete forcing function is used as input for our �uid solver to produce a discrete velocity �eld

(unm

approx

) on the Eulerian grid

4. We compute the error in our method by comparing the velocity produced by our solver to the true

solution evaluated on the Eulerian Grid:

E

nm

=

��
u

true

(x

n

, y

m

) � u

nm

approx

��
. (A.3)
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5. We compute the L1 and L2 norms of the error:

kEkL1
= max

n,m

E

nm

, and kEkL2 =

sX

n,m

(E

nm

)

2
. (A.4)

In Figure A.2 we show the computed norms of the error E for four re�nements of the Eulerian grid.

As you can see, the absolute error is below 10

�12 even for relatively unre�ned grids. Note that we are

analyzing absolute error because u
true

is an order one function. The error is so low because the Fourier

method that we are using allows us to solve Equation (3.30) exactly for functions that have a Fourier

series which we can represent. Therefore, our method is as accurate as the FFT method that we use. Due

to the form of u
true

, only 4 points on the Eulerian grid are required to accurately capture the Fourier

series. Indeed, Figure A.3 shows a plot of the error E as a function of x and y for a very unre�ned grid

(M
x

= M

y

= 8). It is clear that the error in our �uid solver has already plunged to levels that approach

machine precision.
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Figure A.1: Vector �eld illustrating the “four roll mill” velocity u
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.
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Figure A.2: Maximum and L2 norm of the error in computed solution for various re�nements of the
Eulerian grid.
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A������� B
Derivation of Elastic Coe�cients

In this appendix, we derive expressions that relate the sti�ness constants in the spring model to the elastic

moduli of an isotropic elastic medium. To derive Equation (3.83) for the sti�ness constant kij , we compute

the discrete strain energy from a pure shear and compressive deformation. We choose k

ij to be consistent

with the continuous strain energy density of a linear elastic material in the limit of in�nitesimal deforma-

tion.

B.1 Shear Modulus
Consider a shear deformation that maps (x, y) ! (x + �y, y). The deformation gradient is then

A =

0

B@
1 �

0 1

1

CA . (B.1)

Let vij

= X

i �X

j and let ˆ

v

ij

= v

ij

/

��
v

ij

��. From Equation (3.77) and Equation (3.78), the discrete strain

energy associated withX

i is
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i

=
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ij

4
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j

✓ |Av
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=
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ij | + 1

�

The quadratic term |Aˆ

v

ij |2 can be expressed as

|Aˆ

v

ij |2 = (
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The unit vector ˆ

v

ij can be written in polar coordinates as ˆ

v

ij

= (cos ✓, sin ✓)

T . Substituting into Eq.

Equation (B.3) yields

|Aˆ

v

ij |2 = 1 + � (2 cos ✓ sin ✓) + �

2
sin

2
✓. (B.4)
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Similarly, the linear term |Aˆ

v

ij | can be written as

|Aˆ

v

ij | =

q
|Aˆ

v

ij |2 =

q
1 + � (2 cos ✓ sin ✓) + �

2
sin

2
✓. (B.5)

Expanding this term in the small deformation limit, � ⌧ 1, yields

|Aˆ

v

ij | = 1 + � cos ✓ sin ✓ +

�

2

2

⇣
sin

2
✓ � (cos ✓ sin ✓)

2
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+ (B.6)

�

3

2

⇣
� sin
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✓ cos ✓ + (cos ✓ sin ✓)

3
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+ O(�

4
). (B.7)

Retaining terms up toO(�

2
), the expression (|Aˆ

v

ij |�1)

2 simpli�es to (� cos ✓ sin ✓)

2. Using the assump-

tion that the network is isotropic, we average over all ✓ 2 [0, 2⇡),

h(|Aˆ

v

ij |� 1)

2i =

�

2

2⇡

2⇡Z
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(cos ✓ sin ✓)
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�

2

8

. (B.8)

Using this expresion and that |vij |2 ⇡ (d`

ij

)

2, the averaged discrete strain energy Equation (B.2) at a point

is

E

i

=

k

ij

4d`

ij

Nlinks

✓
(d`

ij

)

2 �

2

8

◆
=

3

16
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ij

�

2
k

ij

, (B.9)

where we have assumed that the average number of links to other points is Nlinks = 6. We note here

that our above approximations hold for a regular hexagonal mesh, and our meshing algorithm produces

a nearly hexagonal mesh. However, these approximations do not hold in the case of a rectangular or

cartesian mesh, where the diagonal links must have a distinct length and sti�ness than those lying along

coordinate directions in order to obtain a continuum limit as the mesh is re�ned.

The strain-energy density function for an isotropic linearly elastic material is

W =

�

E

2

[tr(E)]

2
+ µ

E

tr(E2
), (B.10)

where the linear strain tensor is

E =

1

2

�rq + rq

T

�
, (B.11)

and the displacement vector is

q = X � x = Ax� x. (B.12)

For the shear deformation described above we have

q =

0
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0 0
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CA
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The strain tensor is then

E =

1

2

0

B@
0 �

� 0

1

CA . (B.14)

Substituting Equation (B.14) into the strain energy equation Equation (B.10) yields

W =

�
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2

[tr(E)]

2
+ µ

E

tr(E2
) =

�

E

2
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2
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µ

E

2

�

2 (B.15)

We now convert the strain energy density (in 2-D, energy per area) to an energy for comparison to the

discrete strain energy. Equation (B.9) gives the discrete strain energy at the nodeX
i

in terms of the sti�ness

coe�cient of the link k

ij . Multiplying the continuous strain energy density by the area weight dA

i

and

matching to the discrete strain energy for shear deformations, we obtain

(µ

E

�

2
/2)dA

i

= 3k

ij

�

2
d`

ij

/16, (B.16)

and

k

ij

=

8µ

E

3d`

ij
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i

. (B.17)

However, if we use the area weight of nodeXj (at the other end of the same link) to match the continuous

strain energy, we obtain

k

ij

=

8µ

E

3d`

ij

dA

j

. (B.18)

To unambiguously de�ne the sti�ness coe�cient, we use the average of these two quantities

k

ij

=

8µ

E

3d`

ij

✓
dA

i

+ dA

j

2
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. (B.19)

B.2 Bulk Modulus
The bulk modulus in three dimensions is related to the Lamé constants byK

v

= �

E

+2µ

E

/3 and byK

v

=

�

E

+ µ

E

in two dimensions. To determine �

E

(and the bulk modulus), we consider a pure compression

deformation so that the deformation gradient is

A =
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We compute the terms |Aˆ

v

ij | and |Aˆ

v

ij |2 that appear in Equation (B.2) for the compressive deformation

Equation (B.20). The quadratic term is
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and the linear term is

|Aˆ

v

ij | = (1 + �). (B.22)

The averaged discrete strain energy at the pointXi is
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where again we take the average number of links at a point to be 6.

The strain tensor is simply E = �I , and so from Eq. Equation (B.10) the strain energy density is

W =
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Multiplying by the same area weight as Equation (B.19), the elastic deformation energy at a point is
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Taking the shear modulus from above, µ
E

= 3k
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)), and solving for �
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gives
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Note that �

E

= µ

E

, and thus a single elastic modulus characterizes the elastic material. The bulk

modulus necessarily equals 2µ

E

in two dimensions. We conclude that

k

ij
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8�

E

3d`

ij
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dA

i

+ dA

j

2

◆
. (B.27)

Finally, we note that the sti�ness coe�cient has units of force, and is therefore not a traditional “spring

constant.” However, these units are consistent with our expression for the elastic energy within a spring,

Equation (3.77).
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A������� C
Isotropic Contractile Stress

In this appendix, we derive the expression that relate the force of active contraction in our discrete network

to a continuum isotropic stress (Equation (4.7)). We will derive the total force density at a point si due to

contraction of the discrete isotropic network. We will then calculate the force density at a point due to an

isotripic stress in the continuummodel of a poro-elastic network and relate the magnitude of the two force

densities. We reiterate that all calculations in this appendix are performed for a two-dimensional elastic

material. To calculate the equivalent three-dimensional average stress we divide by the characteristic gap

thickness (d).

Discrete Contraction As stated in Equation (4.4), in our simulations we input a contractile force in each

link of the network. The form of this force is given by

d
F

ij

a

= f

✓
s

i

+ s

j

2

◆
r̂

ij

, (C.1)

where si and s

j are the nodes at each end of the network link and r̂

ij is the orientation vector of the link.

We de�ne �s

ij

= s

j � s

i, and we rewrite the orientation vector

r̂

ij

=

2

64
cos (✓)

sin (✓)

3

75 . (C.2)

This allows us to rewrite the force exerted by the link on node si in its components
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2
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sin (✓) . (C.3)

Now we perform a Taylor expansion of Equation (C.3) about the point si. Because the form of g that we

chose depends only on the horizontal component of s, this Taylor expansion is simpli�ed, only involves
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partial derivatives in one direction.
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Note that here we have assumed small strain, and therefore derivatives with respect to Eulerian and La-

grangian coordinates may be interchanged. We nowmake use of the fact that the network is approximately

isotropic. We also assume assume that each node has 6 links emanating from it, and that each link is ap-

proximately the same length. We calculate the total force at point si,
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Note that we would have arrived at the same expression for the total force at a point if we had assumed

six evenly spaced links connected to the node si. This gives us the total force density (due to contraction)

at the point si,
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Assuming that the network is approximately regular, this allows us to calculate the characteristic force

density in the x-direction

F
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(s

i

) =

@g

�
s

i

�

@x

3d`

2dA

, (C.7)

where dA is the average area weight of the nodes in the network.

Isotropic Stress in a Continuum We now calculate the force density due to an isotropic stress of the

form similar to the contraction we specify in Equation (4.3). We rewrite Equation (4.3) as

�

a

= g(s)I. (C.8)
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Assuming small strain, we may interchange Lagrangian and Eulerian derivatives and a calculation imme-

diately gives the force density due to this isotropic stress

F

a

= r · �
a

=

@g(s)

@x

x̂ +

@g(s)

@y

ŷ. (C.9)

However, our chosen form of contractile stress does not depend on the lateral coordinate y, and therefore

the force density due to active contraction is purely in the x-direction

F

x

=

@g(s)

@x

. (C.10)

Equating the force densities in Equations (C.7) & (C.10) and integrating with respect to x, we can relate

the functional form of the discrete contractile force f and the continuous contractile stress g

g =

3fd`

2dA

. (C.11)

Finally, for the particular functional forms f and g used in Chapter 4, we can relate the magnitude of

discrete contractile force C and the equivalent continuous contractile stress �max

�max =

3Cd`

2dA

. (C.12)

119



A������� D
Random Substrate Generation

To generate random substrates for Section 4.8, we begin with a discretized Eulerian grid of size Nx⇥Ny.

On this grid, we can represent Fourier modes with wave numbers k

x

2 [�bNx/2c, bNx/2c], and k

y

2
[�bNy/2c, bNy/2c] in the x and y directions respectively. For each Fourier mode, we draw an angle

✓(k
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, k

y

) out of a uniform probability distribution on the interval (0, 2⇡). These are done independently,

with the exception of the constraint that

✓(k

x

, k

y

) = ✓(�k

x

, k

y

) = ✓(k

x

,�k

y

). (D.1)

We then generate the function
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) = e
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)
. (D.2)

The constraint on ✓ ensures that this may be interpreted as the randomly generated Fourier representation

of a real valued function on our Eulerian grid. We then �lter these Fourier modes via multiplication with

the function

ˆ

f(k

x

, k

y

) =

1

⇣
1 +

q
k

2
x

+ k

2
y

⌘1.5 . (D.3)

After application of the �lter, we de�ne the function

ĝ(k

x

, k

y

) = �

ˆ

h

ˆ

f. (D.4)

Finally, we manually set the value

ĝ(0, 0) = µ

r

, (D.5)

and perform an inverse Fourier transform to generate the spatial heterogeneity g(x, y). The parameter µ

r

de�nes the mean of the function g(x, y), while � controls its standard deviation. In practice, we found that

a value of � = 0.2 resulted in a standard deviation of �

r

= 0.34 for our simulations.
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