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Development of Vehicle Dynamics Control for Wheel-Motored Vehicles

Abstract

This dissertation describes a methodology for the vehicle dynamics control of a wheel

motored vehicle. All theory is developed assuming that the driver has control of the front

wheel steering angle, and that wheel torque is solely generated by independent wheel motors

at each corner of the vehicle. Theoretical work is presented for the general case with four

independent wheel motors, but can be easily reduced to a situation with only two wheel

motors. Indeed, all theory developed in this work is evaluated experimentally on a production

automobile converted to be driven by two independent rear wheel motors.

As opposed to directly allocating wheel torques, the proposed philosophy operates in the

slip-ratio domain. Doing so helps to prevent excessive tire saturation and allows the system

to adapt to changing road surfaces. To that end, this dissertation first proposes a method of

estimating slip-ratio utilizing only sensors currently available on modern automobiles. A slip-

ratio controller is then developed approximating the disturbance observer structure. This

allows the controller to be robust to changing road surface and as a byproduct provide an

accurate estimate of longitudinal tire force. Combining the estimated longitudinal tire force

with the estimated slip-ratio it is then possible to ascertain some degree of tire saturation.

With this in mind, an optimal control allocation problem is proposed which attempts to

achieve the desired vehicle dynamics while at the same time minimizing tire saturation.

It is shown experimentally that the proposed control methodology effectively achieves

desired vehicle dynamics. In addition, the system adapts its behavior to changing road

surfaces resulting in optimal performance regardless of operating conditions.

vi



Acknowledgments and Thanks

First and foremost, I would like to thank my academic advisor, Professor Donald Margolis.

In addition to his astute guidance of this work, he has been an excellent life counselor

throughout my stay at UC Davis. It has been an absolute pleasure to consult with such a

kind and experienced engineer.

In addition I would like to extend sincere gratitude to my industry advisor at Ford Motor

Company, Ming Kuang. It is a direct result of Ming’s encouragement and support that I

enrolled in the doctoral program at UC Davis in the first place. His big picture vision and

guidance helped steer the project towards its final state, of which we are all proud. He went

to bat for me many times, securing two valuable internships with Ford Motor Company as

well as the opportunity to conduct experimental testing on a Ford research vehicle in Europe.

I would also like to thank Marcus Kalabis and Roger Graff of Ford of Europe for their

attentive support throughout the project. I would especially like to thank them for their

kindness and major involvement during vehicle testing in Europe.

I also express my sincere appreciations to all members of my doctoral committee: Prof.

Karnopp, Prof. Assadian, Prof. Eke, Prof. Hess and Dr. Hai Yu for their valuable sugges-

tions with regard to my doctoral research. Finally, I would like to thank the Mechanical and

Aerospace Engineering faculty and staff, without whom none of this work would have been

possible.

vii



Chapter 1

Introduction

1.1 Background and Motivation

Electrified vehicle powertrains are becoming prevalent due to their high efficiency and capa-

bility of utilizing fuel sources alternative to petroleum. These electrified powertrains can be

configured so that electric motors independently drive both front wheels, both rear wheels,

or even all four wheels. Such a configuration is termed a wheel motored vehicle. This can

be accomplished by mounting the electric motors to the sprung mass and transferring their

power via conventional axle shafts, or by mounting the electric motors directly to the un-

sprung mass, termed a hub-electric motor. Regardless of the configuration adopted, the use

of independent electric wheel motors not only allows for improvements in vehicle efficiency,

but has the potential to revolutionize active handling and safety control.

Motor vehicle accidents claim more than 30,000 lives each year in America. In addition

to loss of life, motor vehicle accidents cost the American economy $41 billion in medical and

work loss costs alone [1]. To combat these alarming statistics a technology termed Electronic

Stability Control (ESC) has been developed to help drivers maintain control of vehicles dur-

ing emergency maneuvers. In essence, ESC utilizes on board wheel speed, body acceleration

and yaw-rate sensors to ascertain whether the vehicle is operating in a stable domain. If the
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ESC system concludes that the planar vehicle dynamics are becoming unstable, it intervenes

with controlled actuation to stabilize the vehicle. A study conducted by the National High-

way Traffic Safety Administration (NHTSA) concluded that ESC reduced fatal run-off-road

crashes in passenger vehicles by 36% and rollover involvement in fatal crashes of passenger

vehicles by 70% [2]. As a result of the efficacy indicated by this study, the NHTSA has man-

dates that all light vehicles produced for the American market must come equipped with

ESC by model year 2012 and onward. The NHTSA projects that this mandate will prevent

5,300-9600 fatalities annually [3].

Traditionally, ESC interventions are actuated by reducing engine power and modulating

individual electro-hydraulic brakes [4]. Compared with these conventional actuators, the

electric wheel motor presents the following merits:

• Electric motors can generate both driving and braking torque which allows for the

generation of maximum yaw-moment without impacting longitudinal velocity [5]. Con-

versely, conventional ESC interventions result in rapid deceleration of the vehicle which

is intrusive during performance driving. For this reason, conventional ESC systems are

aggressively employed only after the potential for instability is detected. The ability

of a wheel motored vehicle to generate yaw-moment without effecting longitudinal ve-

locity can allow for the electric motor’s incorporation in the performance handling of

the vehicle, as well as in its stability control.

• Electric motors can respond 10 times more quickly than electro-hydraulic brake systems

[6].

• Unlike electro-hydraulic brake and engine systems, the torque output by the electric

motor can be estimated with high accuracy [6]. This final merit is extremely beneficial

as it can provide additional information regarding the interaction between the vehicle’s

tires and the road surface.
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These merits provide a vehicle driven by wheel motors the potential to outperform conven-

tional vehicles in both stability and handling. Improved stability performance will further

improve the efficacy of ESC and reduce the human and capital costs associated with au-

tomobile accidents. Improved handling performance will make wheel motored vehicle more

enjoyable to drive than conventional vehicles, hopefully increasing their rate of adoption in

the market place. However, to realize this potential requires appropriate control of the wheel

motors.

1.2 Research Goals

It is the goal of this research to propose realizable methodology for the control of wheel

motored vehicles. This methodology should take advantage of the merits of wheel motors,

resulting in a vehicle which outperforms conventional vehicles in both performance handling

and stability.

As will be expounded in this work, the most notable difference between conventional

powertrains and the wheel-motored powertrain is the ability to estimate with high accuracy

the amount of torque being generated at a given wheel. It is proposed that this estimated

torque input can be leveraged to ascertain information relating to interaction between the

tire and the road surface. It is a goal of this research to demonstrate that it is possible to

estimate the tractive capacity of a given tire operating on varying road surfaces in real time.

Intuitively, a driver’s behavior should change with changing road surfaces. For example,

it is necessary to reduce throttle/brake commands on icy surfaces to avoid saturating the

tires and sliding the vehicle. It then follows that the control methodology developed in this

work should adapt its behavior based on estimated road surface condition. It is a goal of

this research to demonstrate that this adaptation results in desirable vehicle performance,

regardless of road surface condition.

In general the development of control theory is undertaken in the mathematical domain.
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Differential equations representing modeled dynamics of physical systems are analyzed, and

mathematical controllers are developed in order to drive the output of these modeled equa-

tions to those desired by the user. All controllers/estimators should adhere to theoretically

motivated rules for stability, robustness and optimality. It is a goal of this research to demon-

strate these attributed with the necessary mathematical rigor for controllers/estimators de-

veloped in this work.

However, it is not the intention of the practical engineer to control differential equations

but instead to develop methodologies to drive physical system performance towards tractable

goals. To this end, it is an overarching goal of this research to ensure that all control theory

developed herein is practically implementable utilizing sensors, processors and actuators

currently available on modern automobiles. The tantamount goal of this work is to apply

the developed theory to a physical vehicle and demonstrate the potential of wheel motors

during real world operation.

1.3 Main Contributions

This dissertation presents a methodology for the vehicle dynamics control of wheel-motored

vehicles. The contributions of this research are:

1. Development of a planar vehicle state estimation routine which utilizes sensors cur-

rently installed on modern automobiles. This contribution is novel as it:

a) Incorporates rigid-body dynamics to ensure accurate estimates during vehicle

cornering maneuver, and

b) Utilizes fuzzy-membership to prescribe the validity of wheel-speed measurements

with respect to torque input.

2. Applying a Controller Output Observer for the estimation of longitudinal tire force.

When combined with estimated tire slip-ratio, this results in the development of a

metric for the current level of tire saturation.
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3. Implementing a Disturbance Observer for the control of tire slip-ratio.

4. Applying an optimal control allocation technique for the actuation of planar virtual

forces. This contribution is novel as it:

a) Allows for adaptation to changing road surface, and

b) Proposes a sub-optimal but practically implementable control allocation prob-

lem.

All contributions are theoretically justified as well as validated with rigorous simulation

and experimental study.

1.4 Guide to this Dissertation

This dissertation is organized as follows: Chapter 2 describes the proposed big picture control

architecture and introduces the tasks of slip-ratio estimation, slip-ratio control as well as slip-

ratio allocation. These three modules are then discussed in-depth in Chapters 3, 4 and 5

respectively. Concluding remarks as well as future research directions are then presented in

Chapter 6.
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Chapter 2

Proposed Control Architecture

2.1 Conventional Vehicle Control

In a conventional vehicle the driver commands vehicle performance through the use of accel-

erator/brake pedals as well as the steering wheel. The accelerator/brake pedal most strongly

relate to the desired longitudinal acceleration of the vehicle, while the steering wheel effects

heading as well as lateral acceleration. However, during overly aggressive maneuvers or

operation on slippery surfaces the vehicle does not perform as expected. For example, an

accelerator pedal input on an icy surface may result in the spinning of the wheels as opposed

to the expected forward acceleration of the vehicle. Similarly, a large steering input near

the limits of vehicle traction may result in the sliding or even spinning out of the vehicle as

opposed to the expected heading adjustment.

To help mitigate these issues and improve vehicle safety modern automobiles are equipped

with active safety features such as Traction Control (TC), Anti-Lock Brake systems (ABS)

as well as Electronic Stability Control (ESC). Each system is tasked with intervening against

a specific form of vehicle misbehavior. Specifically, TC is solely responsible for decreasing

powertrain torque if wheel spin is detected during vehicle acceleration. The ABS system

is responsible for modulating individual brake pressures if wheel lock-up is detected during
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vehicle braking. The ESC system is responsible for correcting vehicle yaw-rate if it differs

largely from the desired yaw-rate by actuating the brake system at individual corners of the

vehicle. In essence, three mutually exclusive control systems are implemented to correct for

abnormal behavior in vehicle acceleration/braking/cornering performance.

In practice this misbehavior may not be mutually exclusive. For example, a spirited

driver may wish to corner and accelerate on a slippery surface. In this situation both the

vehicle’s yaw-rate as well as longitudinal acceleration will differ from those desired by the

driver, requiring intervention from both the ESC and TC system. However, these systems

have been developed for exclusive operation and must be implemented exclusively to avoid

conflicting actuator requests. To this end, the three systems are implemented via a hierarchy

where the ESC system is generally awarded the highest priority. Thus, in the example

situation the ESC system would be activated, actuating individual brakes to help correct

the vehicle’s yaw-rate. This intervention, although helping to achieve the driver’s heading

goals, has the unintended consequence of decelerating the vehicle in direct conflict with the

driver’s desire.

Conventional vehicles employ ESC to actuate the brake and powertrain systems to achieve

desired lateral dynamics. Only if these lateral dynamics are within the desired threshold may

the longitudinal dynamics of the vehicle be considered through the use of TC and ABS sys-

tems. The advent of the wheel-motored vehicle prompts a shift in this conventional paradigm.

As the wheel-motor can generate both positive and negative torque, ESC interventions can

be achieved without necessitating vehicle deceleration as was the case with conventional

brake based systems. Indeed, the lateral and longitudinal dynamics of the vehicle can be

controlled cooperatively with the wheel-motored vehicle, resulting in a safer and more enjoy-

able driving experience. This work proposes a global chassis controller which takes advantage

of the merits of wheel motors to concurrently achieve the longitudinal and lateral dynamics

desired by the driver.
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2.2 Proposed Control Architecture

The proposed control architecture for a wheel-motored vehicle is shown in Figure 2.2.1. This

architecture is relevant for a vehicle with wheel motors actuating both front wheels, both

rear wheels or even all four wheels. The subscripts ij represent an individual corner of the

vehicle, where ij ∈ {lf, rf, lr, rr}. It is assumed in this work that the driver has exclusive

control over the steering angle of the front wheels, and that the rear wheels are fixed in a

forward direction. The only actuators accessible to the controller are the torques delivered

by the independent wheel-motors.

2.2.1 Reference Model

The reference model is critically important in the design of a control system. It is responsible

for generating desired system performance based on inputs from the user. In this structure,

the reference model accepts the steering wheel angle δ and accelerator/brake pedal position

Ppedal inputs from the driver and outputs the desired yaw-rate ωyd and change in longitudinal

velocity V̇xd . The desired performance of a vehicle is often a largely proprietary trait, allowing

a specific vehicle model to achieve a certain “feel”.

The development of a reference model is not the focus of this work. In general, in

this work the desired yaw-rate is characterized by the 2-Degree-of-Freedom bicycle model

for a slightly understeering vehicle [7]. This model is desirable as it is simple to evaluate

and remains stable regardless of vehicle speed. It important to note that their are many

alternative methods to developing a reference signal for stability control, including sideslip

control and combined yaw-rate and sideslip control [4]

2.2.2 Reference Tracking Controller

The objective of the reference tracking controller is to minimize the error between the desired

vehicle performance (V̇xd , ωyd) and the estimated/measured vehicle performance ( V̇x, ωy).

8



Figure 2.2.1: Block-Diagram of Proposed Control Architecture

Change in longitudinal velocity V̇x is estimated as discussed in Chapter 3 and yaw-rate ωy

is measured by a gyroscopic sensor installed on modern automobiles. The reference tracking

controller drives the actual vehicle performance towards the desired vehicle performance

by modulating generalized virtual forces. Any controller capable of robustly driving error

towards zero can be considered. This work will utilize proportional-integral control, however

non-linear controllers such as sliding mode control have also been applied effectively [8].
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2.2.3 Control Allocation

The two generalized virtual forces requested by the reference tracking controller are total

longitudinal force ΣFx and total yaw-moment ΣMy. The term generalized is used to imply

that not all terms are strictly in the force domain. For example, the sum of moments, ΣMy, is

in the torque domain. Additionally, the term virtual is used as no actuator exists to directly

impart these generalized forces on the vehicle. Instead, they will be generated indirectly

by appropriately modulating the motor torques at the corners of the vehicle, resulting in

augmented tire forces. This topic will be briefly introduced in this section, with an in-depth

discussion presented in Chapter 5 as well as in Reference [9].

The most significant forces affecting planar vehicle dynamics are those generated by the

tires. For each tire, these forces can be decomposed into a longitudinal component Fx and

a lateral component Fy. Figure 2.2.2 shows this decomposition on a free-body-diagram of

the planar vehicle. The vehicle is modeled as a rigid body with three body-fixed states:

longitudinal velocity Vx, lateral velocity Vy and yaw-rate ωy. The center of gravity of the

body is centered between the vehicle’s trackwidth, indicated by parameter w
2
.

It is our goal to augment tire forces to generate the two generalized virtual forces requested

by the reference tracking controller. For simplicity, we will assume small steering angles and

employ the small angle identities cos δ ≈ 1 and sin δ ≈ 0. To that end, we can generate a

total longitudinal force by summing forces in the direction of longitudinal motion as

ΣFx = Fxlf + Fxrf + Fxlr + Fxrr (2.2.1)

Again, assuming small steering angles, the total yaw moment can be generated by sum-

ming moments in the direction of yaw-rate as

ΣMy =
w

2
(Fxrf + Fxrr − Fxlf − Fxlr) (2.2.2)

10



Figure 2.2.2: Planar Vehicle Free-Body-Diagram

We have shown that the desired virtual forces requested by the reference tracking con-

troller can be achieved by intelligently augmenting the longitudinal force generated at each

tire. However, as will be described subsequently, direct allocation of longitudinal force could

have unintended consequences due to the nonlinear relationship by which tires generate force.

For this reason, the control allocation problem is to determine which slip-ratios should be

desired at each wheel to best achieve the virtual forces requested by the reference tracking

controller. These desired slip-ratios are then tracked by the slip-ratio controllers discussed

in Section 2.2.5.

Tire Force Generation

As tires are elastomeric, there is a strong correlation between the amount of longitudinal force

generated by a tire and its deformation in the longitudinal direction. A tire’s longitudinal
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deformation is characterized by slip-ratio σ, defined as

σ =
R · ω − Vw

max (Vw, R · ω)
(2.2.3)

where Vw is the longitudinal velocity of the wheel center, R is some mean radius of the

wheel and ω is its angular velocity. Slip-ratio measures the difference between tire velocity

R · ω and wheel center velocity Vw, normalized by the maximum of the two. A spinning tire

attached to a motionless chassis is characterized by a slip-ratio of σ = 1, while a locked up

tire attached to a moving chassis is characterized by a slip-ratio of σ = −1.

Figure 2.2.3 presents the constitutive relationship by which tires generate longitudinal

force with respect to slip-ratio. The longitudinal forces presented in this figure have been

normalized by the tire’s normal force Fz. For illustrative purposes, the figure highlights this

relationship for tires operating on three different road surfaces, with maximum coefficient of

friction µmax = 0.2, 0.5 and 0.8 corresponding to icy pavement, wet pavement and dry pave-

ment respectively. As is evident in the figure, all three tires generate force in approximately

linear proportion to slip-ratio when operating at relatively small slip-ratios. However, as

slip ratio increases beyond this linear region the tire begins to progressively slip on the road

surface and force generation saturates. This saturation occurs earlier for tires operating on

lower friction surfaces.

Figure 2.2.4 shows the longitudinal force generation with respect to slip-ratio relationship

for a hypothetical tire. Due to the nonlinear constitutive behavior of the tire, it can generate

2500N of longitudinal force operating in states ? as well as ∗, as annotated on the figure. It

is desirable to operate with slip-ratios at or below the slip-ratio corresponding to maximum

force generation, subsequently termed σmax. Operating with larger slip-ratios results in a

reduction in longitudinal and lateral force generation and accelerated tire degradation. For

these reasons slip-ratio should be controlled to remain at or below σmax. Thus, saturated

operating state ∗ should be avoided. Unfortunately, the value of σmax changes dynamically
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Figure 2.2.3: Normalized Longitudinal Tire Force Generation with Respect to Slip-Ratio for
Tires Operating on Varying Road Surfaces

with factors such as road surface, tire wear, slip angle and normal loading [10] and as such

is indeterminate during vehicle operation. Instead, the longitudinal tire stiffness, defined as

Cx =
Fx
σ

(2.2.4)

can be used to avoid operating in a saturated state. Both slip-ratio σ and longitudinal force

Fx can be estimated with high accuracy as will be discussed in Chapters 3 and 4 respectively.

With these estimates, longitudinal stiffness Cx can be straightforwardly determined during

vehicle operation utilizing Eqn. 2.2.4. As is evident in Figure 2.2.4, Cx : ∗ for the saturated

tire is notably smaller than Cx : ? for the tire operating within the linear region of force

generation. As will be shown in Chapter 5, penalizing the allocation of slip-ratio to tires

with lower estimated Cx results in improved vehicle performance.
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Figure 2.2.4: Longitudinal Tire Force Generation with Respect to Slip-Ratio

Assuming that slip-ratio has been constrained at or below σmax, the following relationship

for force generation can be used

Fx = Cxσ (2.2.5)

Eqn. (2.2.5) in conjunction with Eqns. (2.2.1) and (2.2.2) are formulated as an optimization

problem. The objective of this problem is to select the desired slip-ratios σij which will best

achieve the desired generalized virtual forces ΣFx and ΣMy.

2.2.4 Slip-Ratio Estimation

It was argued in Section 2.2.3 that control of slip-ratio has merits as opposed to direct tire

force feedback control. However, slip-ratio, as introduced in Eqn. (2.2.3) cannot be directly

measured. Instead, it must be estimated. Tire velocity, R · ω, can be formulated by mul-

tiplying measured wheel-speed ω with assumed static tire radius R. However, wheel center
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velocity cannot be straightforwardly measured, and must instead be estimated. Chapter 3

proposes a method of estimating planar vehicle states in order to facilitate the estimation of

slip-ratio for each tire.

2.2.5 Slip-Ratio Controller

The slip-ratio controller for a given wheel is tasked with modulating wheel-motor torque

in an attempt minimize the error between slip-ratio desired by control allocation and the

estimated slip-ratio. As is evident in Figure 2.2.3, the constitutive relationship by which

tires generate force varies greatly with road surface. For this reason, the tire longitudinal

force is treated as a disturbance, and a slip-ratio controller was developed in a form similar

to a disturbance observer to provide robustness against this disturbance. The result is a slip-

ratio controller which performs well regardless of road surface. Additionally as a byproduct

of its formulation, the slip-ratio controller provides an accurate estimate of longitudinal

tire force F̂x. This estimate, in combination with estimated slip-ratio σ̂ is used to prevent

tire saturation as discussed in Section 2.2.3. A detailed discussion of the development and

validation of the slip-ratio controller is provided in Chapter 4.
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Chapter 3

Slip-Ratio Estimation

3.1 Planar State Estimation

Lateral and Longitudinal vehicle velocity are states of great interest for vehicle dynamics

control. Together they can be used to estimate vehicle side-slip which is often used for

vehicle stability control [4]. Additionally, knowledge of longitudinal velocity is necessary

for estimation of tire longitudinal slip-ratio. Coarse estimation of slip-ratio is necessary as

feedback for technologies such as Anti-Lock Brake (ABS) systems [11] and Traction Control

(TC) systems. With advancements in vehicle dynamics control through the use of electri-

fied powertrains, refinements in slip-ratio estimation are necessary to realize stability and

handling enhancements [12] [9].

Much research effort is devoted to the estimation of vehicle state using only sensors

available on modern automobiles. These sensors include longitudinally and laterally oriented

accelerometers and yaw oriented gyroscopic sensors housed in the Inertial Measurement Unit

(IMU) as well as wheel-speed sensors monitored by the ABS unit. Some research efforts also

utilize Global Positioning System (GPS) sensors in their estimation [13]. The results are

promising, however vehicle state estimation should remain active in situations where GPS

satellites are not available.
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Lateral velocity estimation schemes often rely upon assumed knowledge of tire parameters

as well as known longitudinal velocity [14] [15]. However, tire parameters vary greatly during

vehicle operation which can result in poor estimator performance. Additionally, as will be

shown in this work, longitudinal velocity should be estimated in parallel with lateral velocity

due to the coupling between them through rigid body dynamics.

The Reference [16] utilizes algebraic techniques for numerical differentiation and diagnosis

of IMU signals. Depending on the diagnosed situation, the vehicle state estimator relies

entirely on either the combined wheel speed measurement, or integration of IMU signals for

the estimation of longitudinal velocity. Lateral velocity is estimated via integration of IMU

signals, or assumed to be zero depending on the diagnosed situation. A simulation study

showed the efficacy of the approach, however, the Boolean logic used to differentiate between

smoothly varying situations could result in reduced estimator performance.

Fuzzy logic provides a useful extension of boolean logic for the description of smoothly

varying phenomenon. The Reference [17] proposes the estimation of longitudinal vehicle ve-

locity utilizing a Kalman filter with Fuzzy logic rule-based covariance entries. This technique

allows for the smooth transition from reliance on wheel speed measurements to reliance on

IMU signals for the estimation of longitudinal velocity. However, the proposed technique is

developed for straight line estimation and would exhibit large error if applied to a cornering

vehicle.

This work attempts to expand upon the ideas proposed in [16] and [17]. The estimator

developed here utilizes longitudinal/lateral accelerometer and yaw-rate gyroscope signals

from the IMU as well as wheel speed measurements to estimate vehicle state. Rigid body

dynamics are considered, ensuring that the estimator is applicable during cornering. The

estimator is structured as an Extended Kalman filter whose measurement noise covariance

entries are selected via a Fuzzy membership function defined over input wheel torque. The

result is a vehicle state estimator which utilizes sensor suites currently available on modern

automobiles for the estimation of vehicle state, regardless of operating maneuver.
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This chapter is organized as follows: Section 3.2 introduces the model of vehicle dynamics

used for estimator development. Section 3.3 describes the proposed estimator structure

with attention paid to observability as well as fuzzy membership. Section 3.4 presents a

simulation study used to develop the fuzzy membership function and Section 3.5 provides

experimental validation of the proposed estimation system. Finally, Section 3.6 provides

concluding remarks.

3.2 Model Development

3.2.1 Vehicle State Equations

The vehicle is modeled in the plane as shown in Figure 3.2.1. The vehicle moves longitudinally

with velocity Vx, laterally with velocity Vy and may rotate in the plane with yaw-rate ωy. It

is important to note that these three vectors are body fixed. As such, the longitudinal and

lateral accelerations experienced at the vehicle’s center of gravity are represented as:

along = V̇x − Vy × ωy (3.2.1)

alat = V̇y + Vx × ωy (3.2.2)

where the second term of each equation represents the Coriolis acceleration indicative of

a body-fixed coordinate frame [18]. We are interested in how the longitudinal and lateral

velocity evolves in time. To that end, we can utilize Euler integration to approximate the

rate of change of velocity over the time increment ∆t = t(k + 1)− t(k) as:

V̇ =
V (k + 1)− V (k)

∆t
(3.2.3)

where k and k + 1 represent discrete samples of continuous signals separated by one control

iteration. Utilizing this discretization, the evolution of planar vehicle states introduced in
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Figure 3.2.1: Velocity Diagram of Planar Vehicle

Eqns. (3.2.1) and (3.2.2), can be represented by the following finite difference equation:

xk+1 = fk(xk) + Guk (3.2.4)

where the three planar vehicle states are contained in the state vector:

xk = [Vx(k), Vy(k), ωy(k)]T (3.2.5)

with the non-linear function of states provided in Eqn. (3.2.6). Elements with subscript k

denote time dependence.

fk(xk) =


x1(k) + ∆t · x2(k) · x3(k)

x2(k)−∆t · x1(k) · x3(k)

0

 (3.2.6)

The inputs to the finite difference equation (3.2.4) are measured longitudinal acceleration,
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lateral acceleration and yaw-rate (gy) as packaged in the input vector:

uk = [along(k), alat(k), gy(k)]T (3.2.7)

These inputs are currently measured by the IMU sensor suite common on modern automo-

biles. It is important that IMU signals are compensated for misalignment and chassis pitch

and roll angles to avoid sizable error [19] [20] when integrated over time. The input vector

uk enters the discrete state evolution equation linearly by the input matrix:

G =


∆t 0 0

0 ∆t 0

0 0 1

 (3.2.8)

3.2.2 State Measurement Equations

Figure 3.2.1 shows the relationship between the body-fixed velocity components represented

at the vehicle’s center of gravity and the corresponding velocity components at the vehicle’s

four wheels. The vehicle’s center of gravity is located by parameters w
2
, a and b. The

components of the vehicle velocity at each corner of the vehicle can be projected in the

direction of wheel orientation as provided in Eqns. (3.2.9)-(3.2.12).

Vwlf
= (Vx −

w

2
ωy) cos δ + (Vy + aωy) sin δ (3.2.9)

Vwrf
= (Vx +

w

2
ωy) cos δ + (Vy + aωy) sin δ (3.2.10)

Vwlr
= Vx −

w

2
ωy (3.2.11)

Vwrr = Vx +
w

2
ωy (3.2.12)

Assuming that a wheel rolls freely over the ground, the aforementioned velocity compo-

nents can be determined from wheel speed measurements ω and approximately known wheel

20



radius R as follows:

Vwij
= R · ωij (3.2.13)

where ij ∈ {lf, rf, lr, rr} represents the four corners of the vehicle. However, the assumption

that a wheel rolls freely is easily violated with the application of wheel torque, resulting in

longitudinal slip deformation of the tire. This violation is addressed in Section 3.3.3. It is

assumed that the dynamic change of tire radius is negligible.

With these issues currently set aside, wheels speeds at each corner of the vehicle can be

determined as a function of vehicle state as follows:

zk = Hkxk (3.2.14)

where zk is the wheel velocity vector

zk = [Vwlf
(k), Vwrf

(k), Vwlr
(k), Vwrr(k)]T (3.2.15)

and matrix Hk is defined as

Hk =



cos (δ(k)) sin (δ(k) −w
2

cos (δ(k)) + a sin (δ(k))

cos (δ(k)) sin (δ(k) w
2

cos (δ(k)) + a sin (δ(k))

1 0 −w
2

1 0 w
2


(3.2.16)
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3.3 Estimator Development

3.3.1 Extended Kalman Filter

The system developed in Section 3.2 can be written with input and measurement noise as

xk+1 = fk(xk) + Guk + Gwk (3.3.1)

zk = Hkxk + vk (3.3.2)

where

wk = [walong
(k), walat(k), wgy(k)]T (3.3.3)

is the vector of noise corresponding to each of the input entries, and

vk = [vωlf
(k), vωrf

(k), vωlr
(k), vωrr(k)]T (3.3.4)

is the vector of measurement noise corresponding to each wheel velocity measurement. The

state update equation (3.3.1) is non-linear due to the Coriolis coupling terms of Eqns. (3.2.1)

and (3.2.2). However, the non-linear function fk(xk) can be represented by a Taylor expan-

sion about the previous state estimate x̂k|k as

fk(xk) = f(x̂k|k) + F k(xk − x̂k|k) +O(||xk − x̂k|k||2) (3.3.5)

where O(||xk − x̂k|k||2) represents higher order terms. Assuming that the state estimate is

in the neighborhood of the true state, we neglect these higher order terms and define

fk(xk) ≈ f(x̂k|k) + F k(xk − x̂k|k) (3.3.6)
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where F k is the Jacobian of function fx, defined as

F k =
∂fk(k)

∂x

∣∣∣∣
x=x̂k|k

=


1 ∆tx̂3k|k ∆tx̂2k|k

−∆tx̂3k|k 1 −∆tx̂1k|k

0 0 0

 (3.3.7)

It is our goal to utilize a Kalman filter [21] to estimate the planar vehicle states, optimally

fusing the input measurements uk and output measurements zk. Since the Kalman filter is

developed for linear systems it is necessary to approximate our non-linear system as the

linear system defined by

xk+1 = F kxk + u′k + wk (3.3.8)

where the augmented system input is given by

u′k = fk(x̂k|k)− F kx̂k|k + Guk (3.3.9)

Together equations (3.3.8) and (3.3.2) constitute a linear system appropriate for Kalman

filtering. The input and output measurement noise is assumed to be uncorrelated and white

with variance defined in Eqns. (3.3.10) and (3.3.11).

E[wkw
T
j ] = W kδkj (3.3.10)

E[vkv
T
j ] = V kδkj (3.3.11)

The recursive Extended Kalman Filter is implemented as follows [22]. First, an a priori

estimate of state, x̂k+1|k is generated utilizing the previous estimate of state, as well as

current input vector as shown in Eqn. (3.3.12). It is important to note that the a priori

estimate is propagated through the non-linear state equation. Additionally, the prediction
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error covariance matrix is updated as shown in Eqn. (3.3.13).

x̂k+1|k = fk(x̂k|k) + Guk (3.3.12)

P k+1|k = F kP k|kF
T
k + W k (3.3.13)

Next, the Kalman filter gain K is updated as shown in Eqn. (3.3.14). Utilizing this

gain, the a posteriori estimate of state is generated in Eqn. (3.3.15). This estimate is

a combination of the a priori estimate generated in Eqn. (3.3.12) and the state estimate

resulting from measurement vector zk. The relative weighting between these two estimates

is provided by the Kalman filter gain, and is the topic of discussion in Section 3.3.3. Finally,

the prediction error covariance matrix is again updated as shown in Eqn. (3.3.16).

Kk+1 = P k+1|kH
T
k+1[Hk+1P k+1|kH

T
k+1 + V k+1]−1 (3.3.14)

x̂k+1|k+1 = x̂k+1|k + Kk+1[zk −Hkx̂k+1|k] (3.3.15)

P k+1|k+1 = [I −Kk+1Hk+1]P k+1|k (3.3.16)

Equations (3.3.12)-(3.3.16) are evaluated consecutively, constituting a recursive realiza-

tion of the extended Kalman filter. Assuming the vehicle starts at rest the recursion is

initiated with initial state x̂0|0 = x0 and initial prediction error covariance P 0|0 = 0. It is

important to note that the EKF is not the only method of applying the Kalman filter tech-

nique to non-linear systems. The Unscented Kalman Filter (UKF) and Ensemble Kalman

Filter (EnKF) have also been proven for the state estimation of nonlinear systems [23]. How-

ever, as the only nonlinearity encountered in this work is simply the multiplication of two

state variables by each other, the EKF and its first order Taylor series approximation is

deemed sufficient.
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3.3.2 Observability Criterion

The extended Kalman filter presented in the previous section relies upon the following lin-

earized state-space system realization:

xk+1 = F kxk + u′k (3.3.17)

zk = Hkxk (3.3.18)

where F k is defined in Eqn. (3.3.7) and Hk in Eqn. (3.2.16). This linear system is said to

be observable1 if and only if the observability matrix

Obs = [Hk,HkF k, ...,HkF
n
k ]T (3.3.19)

has rank n, where n is the number of system states [21]. It is found that the system

model described in this work is observable for non-zero yaw rate and non-zero steering angle.

However, when F k is linearized about ωy = x̂3 = 0 and δ = 0, the observability matrix drops

by a rank of one, meaning that one of the three states has become unobservable. Conducting

a Kalman Decomposition [24], the system may be transformed to the standard form for

unobservable systems utilizing the following similarity transformation

F̂ = TFT−1 =

F 1 0

F 21 F 2

 and Ĥ = HT−1 =

[
H1 0

]
(3.3.20)

where

T =


1 0 0

0 0 1

0 1 0

 =

[
vo1 vo2 vō

]
(3.3.21)

1If a system is completely observable, knowledge of {uk} and {zk} for k ∈ [0, n− 1] suffices to determine
xo [21].
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The pair (F 1,H1) is the observable portion of standard form of the unobservable system

(F̂ , Ĥ). In this instance, the vectors {vo1, vo2} are a basis for the observable subspace and

{vō} is a basis for the unobservable subspace. It then follows that the unobservable state

is lateral velocity Vy. This result can be explained intuitively by revisiting Figure 3.2.1. Vy

experienced at the center of gravity is orthogonal to wheel alignment at the rear axle, and is

projected onto the front axle by component sin (δ). However, assuming small steering angles,

lateral velocity is essentially orthogonal to wheel alignment at the front axle as well. The

result is that Vy cannot be directly measured by wheel speed measurements zk. Fortunately

lateral velocity is coupled to the directly observed states through the kinematic relationship

of Eqns. (3.2.1) and (3.2.2). Thus, for nonzero yaw-rate the lateral velocity may be indirectly

observed resulting in the full rank observability matrix.

Additionally, lateral velocity at the center of gravity may be observed through the front

wheels with nonzero steering angle. However, for small steering angles this observability is

very weak, and noise in wheel speed measurement will be amplified into inaccurate lateral

velocity estimate. For this reason it is proposed that below a certain steering angle thresh-

old, front wheel speed measurement should be neglected in the estimation of lateral vehicle

velocity utilizing the following pseudocode:

if |δ| < δthreshold then

δ = 0

else

δ = δ

end if

where δthreshold is selected by the calibration engineer.

In order to guarantee stability of the estimation algorithm, the system must be de-

tectable2. Fortunately, the eigenvalue of the unobservable state is z = 1 corresponding to a

discrete integrator. Thus, the system is detectable for all time, and bounded state estimates

2 Detectability is a relaxation of observability, requiring that the dynamics of any unobservable states be
stable [21].
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should be expected from bounded inputs.

3.3.3 Fuzzification of Measurement Noise

As discussed in Section 3.2.2, wheel speed measurements are used to estimate the velocity

of a given wheel center based on the effective tire radius using Eqn. (3.2.13). However,

the wheel center velocity is not generally equal to the tire velocity due to the elastomeric

properties of the tire. Instead, the two velocities are related via longitudinal tire deformation,

represented by slip-ratio σ:

σ =
R · ω − Vw

max (R · ω, Vw)
(3.3.22)

where R · ω represent the velocity of the tire and Vw represents the velocity of the wheel

center. From Eqn. (3.3.22) it is evident that Eqn. (3.2.13) is only valid for slip-ratios σ = 0,

and is approximately valid for very small slip-ratios.

In general, tires generate slip ratio in response to input torque from the brake and pow-

ertrain systems, subsequently denoted as τ . Thus, wheel speed measurements from a wheel

subjected to significant input torque will be ineffective at predicting wheel center velocity.

Conversely, the slip-ratio for a wheel subjected to minimal input torque can be assumed to

be small, σ ≈ 0 . In this situation, wheel speed measurement can be used to reliably predict

wheel center velocity.

On the other hand, automotive grade accelerometer and gyroscopic sensor signals are

relatively noisy and prone to drift when compared with wheel speed measurement signals

[17]. If a given wheel is operating with very little slip-ratio, the respective wheel speed

measurement should be more strongly relied upon for state estimation. However, in the

presence of significant input torque, the IMU signals should be more strongly relied upon.

The Kalman filter structure allows for such estimation weighting through the selection of

input and measurement noise covariance matrices W ,V presented in Eqns. (3.3.10),(3.3.11).

As the variance of the noise inherent in the IMU measurements remains approximately
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constant in time, we define:

W =


nalong

0 0

0 nalat 0

0 0 ngy

 (3.3.23)

where nalong
, nalat and ngy represent the variance of the longitudinal/lateral accelerometer

and yaw-rate gyroscope signals respectively. The structure of W is based on the assump-

tion that no cross-correlation exists between the three signals. Additionally, we define the

measurement variance matrix as:

V k =



nwlf
(k) 0 0 0

0 nwrf
(k) 0 0

0 0 nwlr
(k) 0

0 0 0 nwrr(k)


(3.3.24)

where nwij
represents the variance of respective wheel speed signals. Wheels operating with

substantial input torque, τ , should be assigned a large value of nw representing high variance

in measurement noise with the converse true for free rolling wheels. Based on this sentiment,

the following fuzzy rule base is proposed:

- If τ is small, then nw = ηsmall

- If τ is large, then nw = ηlarge

where ηsmall and ηlarge are user defined small and large constant values separated by multiple

orders of magnitude. A suggested fuzzy membership function for a wheel operating with

“small” input torque is provided in Figure 3.3.1. This membership functions was arrived

upon via simulation and experimental study. Changing the shape of this function has a

large effect on estimator performance, and should be carefully designed by the calibration

engineer.
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Figure 3.3.1: Membership Function for “Small” Wheel Torque

Using singleton fuzzification, product composition and inference, and centroid defuzzifi-

cation [25], the expression for nw is given by:

nw(k) = ηsmallµs(τ(k)) + ηlarge(1− µs(τ(k))) (3.3.25)

Utilizing the adaptive measurement noise covariance matrix V k allows the Kalman filter

to smoothly adapt to changing driving situations.

3.4 Simulation Study

The Extended Kalman filter developed in this work was validated utilizing the CarSim c©

vehicle simulation environment. A standard B-class hatchback was simulated from an initial

velocity of 80kph and subjected to the open-loop steering input shown in Figure 3.4.1. The

purpose of this maneuver was to study the efficacy of the EKF during transient cornering.

IMU and wheel speed measurements provided by CarSim c© were injected with zero mean

Gaussian noise with variance highlighted in Table 3.1. These variance values approximately

replicate signal noise measured during production vehicle operation. The input noise covari-

ance matrix W introduced in Eqn. (3.3.23) was populated with the same variance values as

shown in Table 3.1.
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Figure 3.4.1: Open-Loop Steering Input Measured at Wheel

Table 3.1: Simulated Sensor Variance

Signal Nomenclature Input Sensor Variance
along Longitudinal Accelerometer 0.02m

s2

alat Lateral Accelerometer 0.02m
s2

gy Yaw-Rate Gyroscope 0.002 rad
s

Vw Wheel-Speed (R · ω) 0.005m
s

The same input torque was injected at all four wheels of the vehicle, and a batch simu-

lation was conducted varying this value from τ = [−30, 30]Nm. For each study, the planar

vehicle states were estimated in three ways. The first method utilized only Wheel-Speed mea-

surements, relying upon the relationship established by Eqn. (3.2.14). To extract the vehicle

states from this linear measurement relationship the Moore-Penrose pseudo-inverse [24] was

utilized as

x̂k = H+
k zk (3.4.1)

resulting in the best estimate of vehicle state with respect to wheel-speed measurement in

the least squared sense. The second method utilized to estimate planar vehicle state relied

only on IMU signals by numerically integrating Eqn. (3.2.4). The accelerometer signals
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received from CarSim c© were meant to mimic measurements taken by body fixed sensors,

meaning that they were corrupted by the projection of gravitational acceleration during the

roll and pitch action of the vehicle. Finally, the planar vehicle states were estimated utilizing

the EKF developed in this work. The measurement variance matrix was adapted utilizing

the fuzzy logic described in Section 3.3.3 with ηsmall = 0.01 and ηlarge = 100.

For each simulation study, the Mean Squared Error (MSE) for the longitudinal and lateral

velocities were generated by summing the squared error between estimated velocity V̂ and

the known velocity V (reported by Carsim c©) as shown in the following equation

VMSE =
1

n

n∑
i=1

(V̂ − V )2 (3.4.2)

where n is the total number of estimator iterations. All three estimation methods operated

with a time step of ∆t = 0.01s, equivalent to a frequency of 100Hz.

Figure 3.4.2 highlights the MSE in longitudinal velocity estimation of the three methods

with respect to changing input wheel torque. As is evident in the figure,the Wheel-Speed

method of estimating longitudinal velocity was extremely accurate when the wheels were

subjected to small input torques. The skewing of this relation towards positive torque is due

to the rolling resistance of the tires, which was unaccounted for by the estimation model.

Specifically, when operated with zero input torque the tire will still assume some small

longitudinal deformation as a result of the rolling resistance encountered at the contact patch,

resulting in estimation error. As expected, increasing wheel torque resulted in increased

velocity estimation error. Error in longitudinal velocity estimated by the IMU method was

also effected by wheel torque, but to a lesser extent. This trend was the result of the increased

pitch motion of the vehicle experienced during larger absolute wheel torques. Stabilizing

accelerometer measurements with respect to the roll/pitch motion of the vehicle could help

to negate this trend [20]. Due to the increased noise of the IMU sensors as compared with

the wheel-speed measurements, the IMU method exhibited larger estimation error for small
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Figure 3.4.2: Mean-Squared-Error in Estimation of Longitudinal Velocity with Respect to
Input Wheel Torques

wheel torques when compared with the Wheel-Speed method.

By utilizing fuzzy logic to adapt its measurement variance matrix entries, the EKF

method is able to leverage the strengths of the two sensor suites to return accurate estimates

of longitudinal velocity, regardless of operating state. Similarly, Figure 3.4.3 highlights the

MSE in lateral velocity estimation of the three methods. Similar trends to the longitudinal

velocity study can be observed. However, the MSE in the estimation of lateral velocity is

generally higher than that for the estimation of Longitudinal velocity. The increased error

exhibited by the IMU method may be attributed to lack of stabilization of accelerometer

measurements with respect to the roll motion of the vehicle. Increased error exhibited by the

Wheel-Speed method can be attributed to the poor observability of lateral velocity resulting

from small front steering wheel angle discussed in Section 3.3.2. Again, the EKF method is

able to leverage the strengths of these two sensor suites to return an accurate estimate of
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Figure 3.4.3: Mean-Squared-Error in Estimation of Lateral Velocity with Respect to Input
Wheel Torques

lateral velocity, regardless of operating state.

3.5 Experimental Validation

Experimental validation was performed to study the efficacy of the planar state estimation

technique proposed in this work when applied with “real-world” sensor data. A small portion

of the collected data is presented, highlighting the performance of the estimator when applied

to a vehicle piloting the highly dynamic handling track presented in Figure 3.5.1. A B-class

production vehicle was instrumented with a Racelogic Vbox3i 100Hz GPS Data Logger. The

purpose of the Vbox was to record absolute planar vehicle states to compare with the states

estimated by the methods presented in this work.

All signals used by the state estimators were collected from the vehicle’s Controlled Area
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Figure 3.5.1: GPS Layout of Handling Track, Collected by Vbox Differential-GPS Sensor

Network (CAN) bus at a rate of 100Hz. Thus, these signals are representative of production

sensor and signal filtration techniques. The recorded accelerometer signals were not stabilized

for vehicle pitch/roll motion which was found to be a cause of error during extreme cornering

and acceleration/braking. Figure 3.5.2 compares the vehicle states estimated by the EKF

with those measured by the Vbox. Unfortunately, the data acquisition system was not

capable of recording the vehicle’s true lateral velocity. From the figure it is evident that the

estimated states show good agreement with those measured by the Vbox GPS data logger.

Table 3.2 records the Mean-Squared-Error (MSE) of longitudinal velocity estimates gen-

erated by the three techniques described in Section 3.4 compared with the longitudinal

velocity measured by the Vbox. Most notably, the MSE of the IMU technique at estimating

longitudinal velocity is orders of magnitude larger than for the other two techniques. This

larger error highlights the challenge of integrating accelerometer signals for the purpose of es-

timating velocity. Small error in accelerometer measurement due to chassis roll/pitch, sensor
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Figure 3.5.2: Extended Kalman Filter Estimated Vehicle States Compared with True Values

misalignment, road grade as well as sensor drift result in large errors in velocity estimation

when integrated over time. For this reason, it is necessary to only rely upon IMU signals

for velocity estimation for short time periods while wheel speed measurement is deemed

unreliable.

This technique was realized utilizing fuzzy-logic, as described in Section 3.3.3. It was

found that a fuzzy rule base saturating between ηsmall = 0.01, and ηlarge = 10 resulted in

good EKF performance. Compared with the value ηlarge = 100 used in the simulation study,

it was found that experimentally recorded IMU signals should be less strongly relied upon.

Carefully stabilizing accelerometer signals for chassis pitch/roll as well as road grade could

allow the IMU signals to be more strongly relied upon in future studies. From Table 3.2
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Table 3.2: Mean-Squared-Error in Estimated Longitudinal Velocity

Estimation Method MSE (m
s

)2

Wheel-Speed 0.0128
IMU 32.851
EKF 0.0125

it is evident that both the wheel-speed and EKF methods estimated longitudinal velocity

with little error. However, the EKF was able to slightly outperform the wheel-speed method.

This performance advantage came by fusing IMU measurements with wheel-speed measure-

ments for instances when large brake or acceleration torque was being applied, biasing the

wheel-speed measurements. Improvements to the stabilization of IMU signals should further

improve the efficacy of the EKF method.

Unfortunately, lateral vehicle velocity was not directly recorded by the Vbox GPS unit. It

is proposed that future vehicle testing should be conducted to directly record lateral velocity

and validate the EKF performance in this respect. However, the magnitude of lateral velocity

evident in Figure 3.5.2 appears reasonable. To further investigate the validity of the lateral

velocity estimate, the body side-slip angle β was calculated as

β = − arctan(
Vy
Vx

) (3.5.1)

and presented in Figure 3.5.3. These values of side-slip are commensurate with data recorded

by dual antenna GPS systems in other studies [26] [27], and could provide beneficial feedback

for the stability control of modern automobiles.

Slip-Ratio Estimation

For this work, the goal of planar state estimation was to facilitate the estimation of slip-ratio

at each corner of the vehicle. As presented in Eqn. (3.3.22), this estimate can be extremely

noisy and possible even numerically unstable for low tire/vehicle velocities. For this reason,
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Figure 3.5.3: Extended Kalman Filter Estimated Body Side-Slip

slip-ratio is determine experimentally as

σ =
R · ω − Vw

max (R · ω, Vw, ε)
(3.5.2)

where ε is a constant value to prevent division by exceedingly small numbers at low vehicle

velocities. For the experimental data presented in this work ε = 30. This large value of

ε was required due to pragmatic limitations of the experimental vehicle being tested, and

should conceivably be reduced for standard implementation. (3.5.2) compares the velocity

of the tire, characterized by the wheel-speed measurement ω with the longitudinal velocity

of the chassis at each respective corner of the vehicle Vw. Referring back to Figure 3.2.1

the relationship between the estimated center of gravity longitudinal velocity Vx and the

longitudinal velocity experienced at each corner of the vehicle can be determined as

Vwlf
= Vwlr

= Vx −
w

2
ωy (3.5.3)

Vwrf
= Vwrr = Vx +

w

2
ωy (3.5.4)

Utilizing Eqns. (3.5.3) and (3.5.4) in conjunction with Eqn. (3.5.2) the slip-ratio of each

tire was estimated. A sample of these estimates is provided in Figure 3.5.4 during operation

on the handling track presented in Figure 3.5.1. These estimates are commensurate with the
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Figure 3.5.4: Extended Kalman Filter Estimated Slip-Ratios

expected values for a vehicle being driven aggressively on dry pavement.

3.6 Summary of Slip-Ratio Estimation

An Extended Kalman filter has been developed to facilitate the estimation of planar vehicle

state by optimally fusing wheel-speed and IMU measurements. The body-fixed nature of the

on-board IMU is modeled by the EKF allowing for accurate state estimates during cornering

maneuvers. Additionally, the measurement noise covariance matrix of the filter is adapted

in response to wheel torque inputs via a fuzzy inference system. The result is a vehicle state

estimator capable of accurate operation during any vehicle accelerating/braking/cornering

maneuver. Estimator performance was studied in the CarSim c© simulation environment

as well as with experimentally recorded data. In both situations it was found that the

estimation philosophy proposed in this work accurately estimated vehicle state regardless
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of vehicle maneuver. It was shown that the estimated longitudinal velocity could be used

to accurately estimate the slip-ratio of tires at each corner of the vehicle. This result is

especially promising as the estimator only utilizes sensors currently installed on modern

production automobiles.
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Chapter 4

Control of Slip-Ratio

4.1 Control Goals

Coarse control of slip-ratio has been demonstrated by conventional ABS and TC systems.

This chapter describes how much finer control can be achieved by leveraging the merits of an

electric motor independently controlling the torque input to a wheel. In this respect, these

merits are three-fold:

1. Electric motors can respond 10 times more quickly than electro-hydraulic brake systems

[6], allowing for higher bandwidth slip-ratio control.

2. Electric motors can generate torque bi-directionally. This allows the same controller

to be developed for the generation of both driving and braking slip-ratio.

3. Unlike electro-hydraulic brake and engine systems, the torque output by the electric

motor can be estimated with high accuracy [6].

As will be demonstrated in this chapter, this final merit allows for the fast and accurate

estimation of longitudinal tire force utilizing the Controller Output Observer (COO) concept

[28]. This estimate can be used to inform high level controllers, as will be discussed in Chapter

5.
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This chapter proposes a slip ratio controller which quickly and accurately achieves a

desired slip ratio. The longitudinal tire force estimated by the COO is represented as a

disturbance, and rejected by the control law. This control architecture is similar to the

disturbance observer presented in [29] [30] [31] [32]. Indeed, the proposed control structure

is shown to be equivalent to the disturbance observer structure under certain circumstances.

However, the proposed control structure utilizing the COO can be realized without requiring

plant inversion, and can be calibrated using classical feedback control techniques [12]. The

result is a slip-ratio controller which robustly tracks desired slip-ratio, regardless of road

surface and tire operating condition.

This chapter is organized as follows: A linear model of wheel and tire dynamics is pre-

sented followed by presentation of the Controller Output Observer as applied to predict

longitudinal tire force. A disturbance observer is applied to the same problem, and its po-

tential equivalence to the COO is presented. A proposed slip ratio controller utilizing the

COO for disturbance rejection is proposed with some linear simulation results. Finally, the

slip ratio controller is applied on an experimental vehicle and its performance is tested on

varied road surfaces. The proposed control structure tracks desired slip ratio quickly and

accurately while providing a useful estimate of generated longitudinal tire force.

4.2 Linear Model of Wheel Dynamics

A schematic of a modeled wheel is shown in Figure 4.2.1. The wheel has a moment of inertia

J and a radius R. Torque τ can be applied to the wheel and longitudinal tire force Fx is

generated at the contact patch between the tire and the road surface. The wheel rotates with

angular velocity ω and moves with a longitudinal velocity at its center Vw. A summation of

the moments about the axis of rotation of the wheel generates the dynamical equation

ω̇(t) =
1

J
τ(t)− R

J
Fx(t) (4.2.1)
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Figure 4.2.1: Wheel Schematic Diagram

To simplify analysis, only a single wheel will be studied connected to a mass m equivalent

to a quarter of the vehicle’s sprung mass. A summation of forces in the longitudinal direction

renders the second dynamical equation

V̇w(t) =
1

m
Fx(t) (4.2.2)

Together, Eqns. (4.2.1) and (4.2.2) describe the dynamics of a single wheel.

Longitudinal force Fx is generated at the contact patch between the tire and the road

surface. The generation of this force is dependent on the longitudinal deformation of the

tire, termed the slip-ratio

σ =
R · ω − Vw

max (R · ω, Vw)
(4.2.3)

as shown in Figure 4.2.2 for three hypothetical tires. The friction coefficients µ = 0.2, 0.5

and 0.8 correspond to a tires operating on icy pavement, wet pavement and dry pavement re-

spectively. As is evident in the figure, tires operating with relatively small slip-ratio generate

longitudinal force in approximately linear proportion to slip-ratio with slope Cx. Assuming
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Figure 4.2.2: Linear Model of Longitudinal Tire Force Generation for Tires with Normal
Loading Fz = 4000N

small slip-ratio, longitudinal tire force can be represented by

Fx ≈ Cxσ (4.2.4)

However, as slip ratio increases beyond this linear region the tire begins to progressively slip

on the road surface and force generation saturates. This saturation occurs earlier for tires

operating on lower friction surfaces. It is desirable that the slip-ratio controller developed in

this work be robust to the non-linear region of tire operation which is frequently encountered

during operation on slippery road surfaces.
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Model Linearization

Slip-ratio, as presented in Eqn. (4.2.3), is a non-linear function of states ω and Vw. To

simplify analysis, slip-ratio during braking will be represented as

σ =
R · ω − Vw

Vw
(4.2.5)

with the complementary analysis for slip-ratio during acceleration omitted for brevity. A

variable can be linearized by representation as an initial value plus a deviation about the

initial value as

x = xo + ∆x (4.2.6)

To facilitate linear analysis, the non-linear slip ratio described in Eqn. (4.2.5) is linearized

as

∆σ =
∂σ

∂ω
∆ω +

∂σ

∂Vw
∆Vw =

R

Vwo

∆ω − Rωo
V 2
wo

∆Vw (4.2.7)

where variables preceded with ∆ represent linearized quantities and variables ωo and Vwo

represent initial values for which the linearization centers. Augmenting Eqns. (4.2.1) and

(4.2.2) with Eqns. (4.2.4) and (4.2.7), the linear system of equations describing the wheel

dynamics with a linear tire model were developed as

 ∆ω̇(t)

∆V̇w(t)

 =

−R2Cx

JVwo

R2Cxωo

JV 2
wo

CxR
mVwo

−CxRωo

mV 2
wo


 ∆ω(t)

∆Vw(t)

+

 1
J

0

∆τ(t) (4.2.8)

with output equation ∆ω(t)

∆σ(t)

 =

1 0

0 1


∆ω(t)

∆σ(t)

 (4.2.9)

Transforming this system of equations from the time domain to the Laplace domain and

applying Cramer’s rule to solve the system of equations with respect to a single output, the
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following transfer functions were developed

G∆τ→∆ω(s) =
1

J

s+ Cn
s(s+ Cd)

(4.2.10)

G∆τ→∆σ(s) =
R

JVwo

1

s+ Cd
(4.2.11)

where

Cn =
CxRωo
mV 2

wo

(4.2.12)

and

Cd =
RCx
Vwo

[
R

J
+

ωo
mVwo

] (4.2.13)

The variable s represents the operator variable in the Laplace domain. G∆τ→∆ω(s) pro-

vides the transfer function from torque input to wheel speed output, while G∆τ→∆σ(s) repre-

sents the transfer function from torque input to slip ratio output. Both transfer functions are

stable assuming only positive entries forming the coefficients in Eqns. (4.2.12) and (4.2.13)

which is guaranteed by limiting analysis to forward vehicle velocity. The remainder of this

chapter will describe the development of a system to control the slip-ratio of this linearized

system. However, the “∆” notation will be omitted for readability.

4.3 Controller Output Observer

The relationships which govern the generation of tire forces are often complicated and cannot

be measured directly. Instead, an observer termed the Controller Output Observer (COO)

[28] is proposed to provide an estimate of longitudinal tire force F̂x which will be used by

the slip ratio controller proposed later in this chapter. A block diagram representation of

the COO is provided in Figure 4.3.1.

The COO constructs a model of wheel dynamics as

ω̇m(t) =
1

J
τ(t)− R

J
F̂x (4.3.1)
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Figure 4.3.1: Controller Output Observer Block Diagram

with longitudinal tire force as an unknown input quantity and ωm representing the COO

modeled wheel speed. The modeled system and physical system are both subjected to the

same known input wheel torque τ . It is a merit of electric motors that this input quantity

can be known accurately [6]. The resulting measured and modeled wheels speeds ω and ωm

are then compared, generating the error term ωerr. This error is attributed to the unknown

quantity F̂x, and input into the model of wheel dynamics after being multiplied by positive

observer gain Ko. It is important to note that modeling error and disturbance input cannot

be deciphered mathematically. Thus, error in model parameters R and J will be assumed

as disturbance inputs, resulting in error in estimated longitudinal force F̂x. It therefore

stands to reason that effort should be made to ensure that estimates of these parameters are

reasonably accurate during vehicle operation.

Setting the input torque to zero, the transfer function from plant (measured) wheel speed

ω to internally modeled wheel speed ωm can be found as

ωm(s)

ω(s)
=

R
J
Ko

s+ R
J
Ko

(4.3.2)

which represents a stable first order system with prescribed positive observer gain Ko. This
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system can be alternatively represented in time-constant form as

Gω→ωm(s) =
1

τs+ 1
(4.3.3)

where τ = J
RKo

is the system’s time constant. In this form it is evident that increasing

observer gain Ko results in reduced system time-constant, and thus quicker response. Addi-

tionally, the system’s DC-gain, evaluated by prescribing the Laplacian operator to s→ 0, is

unity. Thus, subjected to a step in measured wheel speed ω, the internally modeled wheel

speed will exponentially approach the measured wheel speed with zero steady-state error.

It is shown in [28] that if the modeled outputs converge toward the measured outputs, the

quantities estimated by the COO will converge towards their true values. Thus the COO

should provide an estimate of longitudinal tire force with zero steady state error. As the

COO structure makes no assumption regarding tire model and instead treats tire forces as

a disturbance, this convergence result should hold regardless of operating surface and level

of tire saturation.

4.3.1 Linear COO Validation

The linear system described in Section 4.2 was simulated subjected to a pulse of brake

torque, initiating at t=0.1 and terminating at t=0.3 seconds. In addition to implementing

the continuous time COO developed in the previous section, a discrete variant was proposed

by utilizing trapezoidal integration [33] to approximate the continuous time integrator. This

discrete variant was implemented with a sampling frequency of 100Hz, a reasonable value

for modern vehicle motion control systems.

Figure 4.3.2 shows the physical and modeled wheel speeds in response to the input torque.

Both the continuous and discretely modeled wheel speeds track the decreasing physical wheel

speed with constant error, and the constant physical wheel speed with zero steady-state error.

These observations are commensurate with a stable first order system with unity DC-gain.
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Figure 4.3.2: Measured Wheel-Speed Compared with Continuously and Discretely Modeled
Wheel Speed During Pulse of Brake Torque, Ko = 400

Figure 4.3.3 shows the true longitudinal force and the longitudinal forces estimated by the

continuous and discretely realized COO. It is interesting to note that even during periods of

transient wheel-speed the COO is able to estimate longitudinal force with zero steady-state

error. Additional analysis was necessary to explain this phenomenon.

Linear COO Error Dynamics

It is our goal to derive an analytical expression for longitudinal force estimation error Fxerror

as a function of wheel torque input τ where

Fxerror = Fx − F̂x (4.3.4)

and the analytical expression for the true longitudinal force is

Fx = Cxσ = CxGτ→σ(s)τ (4.3.5)
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Figure 4.3.3: Actual and Continuously and Discretely Estimated Longitudinal Tire Force
During Pulse of Brake Torque, Ko = 400

assuming the linear tire model of Eqn. (4.2.4). Therefore, in transfer function form

Gτ→Fx(s) =
Fx
τ

= CxGτ→σ(s) (4.3.6)

Referring back to Figure 4.3.1 it is possible to determine that the relationship between torque

input and longitudinal force estimate for the COO is

Gτ→F̂x
(s) =

F̂x
τ

= Ko

1
J
− sGτ→ω(s)

s+ KoR
J

(4.3.7)

Subtracting these two transfer functions, we develop the following analytical expression for

estimation error

Gτ→Fxerror
(s) =

Fxerror
τ

= Gτ→Fx(s)−Gτ→F̂s
(s) =

CxR

JVwo

s

(s+ Cd)(s+ KoR
J

)
(4.3.8)

It is interesting to note that when decomposed via partial fraction expansion, this transfer

function will result in two stable exponentially decaying terms in the time domain. One
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term’s speed of decay is governed by Cd, and is thus a function of the physical system

parameters, as shown in Eqn. (4.2.13). Therefore, the maximum speed of estimation error

decay is a direct function of the system parameters. Therefore it is suggested that the

observer gain be selected such that

Ko ≤ Cd
J

R
(4.3.9)

as larger values will not result in faster decay of estimation error.

It was the goal of this analysis to determine why the COO exhibited zero steady-state

estimation error when subjected to a step in input torque, as presented in Figure 4.3.3. To

this end, the final value theorem

y(∞) = lim
t→∞

y(t) = lim
s→0

sy(s) (4.3.10)

is applied to the equation of error dynamics when subjected to a step in input torque

Fxerror(s)|τ=step = Gτ→Fxerror
(s)

1

s
(4.3.11)

resulting in

Fxerror(∞)|τ=step = lim
s→0

s
CxR

JVwo

s

(s+ Cd)(s+ KoR
J

)

1

s
= 0 (4.3.12)

As is evident in Eqn. (4.3.12), the COO should exhibit zero steady-state estimation error

when subjected to a step in input torque τ .

4.3.2 Equivalence to Disturbance Observer

Another approach proposed for estimating unknown inputs is the disturbance observer [29]

[30]. Treating the last term of the wheel dynamic model shown in Eqn. (4.2.1) as an unknown

disturbance, the nominal transfer function from input wheel torque to resulting wheel speed

is

Gn
τ→ω(s) =

1

J

1

s
(4.3.13)
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Figure 4.3.4: Disturbance Observer Block Diagram

The disturbance observer takes the measured output from the physical system and passes

it through the inverted nominal plant model, as shown in Figure 4.3.4. The output from the

inverted plant model, τ̂ , is then compared with the known input torque, τ . The difference

between the two signals is the result of unknown disturbances as well as discrepancies between

the nominal plant model and the physical plant. The low pass filter Q(s) is applied to make

the inverted plant model realizable, as well as to smooth the disturbance estimate.

It can be shown that the disturbance observer shown in Figure 4.3.4 can be made equiv-

alent to the controller output observer shown in Figure 4.3.1 by selecting a low pass filter of

the form

Q(s) ,
RKo

J

s+ RKo

J

(4.3.14)

The disturbance observer is a mature concept, used in many applications [31]. Its main

objective is to reject unknown disturbances and modeling uncertainties, thus improving the

robustness of the controlled system. However, the classical disturbance observer requires

inversion of the nominal plant transfer function. If this transfer function has non-minimum

phase (unstable) zeros, its inverse will have unstable poles and be unsuitable for application.

Non-minimum phase zeros are common in discrete representations of systems as a result of
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sampling. Indeed, a bilinear approximation [33]

s ≈ 2

Ts

z − 1

z + 1
(4.3.15)

where Ts represents the discrete sampling time, and z is the operator variable in the discrete

domain, can be used to transform the nominal plant transfer function shown in Eqn. (4.3.13)

to the discrete transfer function

Gn
τ→ω(z−1) =

Ts
2J

1 + z−1

1− z−1
(4.3.16)

It is necessary to utilize the inverse of this transfer function for disturbance observer imple-

mentation as

1

Gn
τ→ω(z−1)

=
2J

Ts

1− z−1

1 + z−1
(4.3.17)

which has a pole located at z = −1 which describes undamped oscillatory behavior (chat-

tering) and is undesirable.

Tomizuka [34] proposes the zero phase error tracking method of approximating the inverse

of a discrete plant with non-minimum phase zeros. This method has been proven for motion

control applications [32]. However, the COO method of disturbance estimation provides an

alternative which does not require the inversion, or approximate inversion of the nominal

plant. For this reason, the COO structure will be used for disturbance estimation for the

remainder of this work.

4.4 Slip-Ratio Control with Disturbance Rejection

As was shown in Figure 4.2.2, tire slip ratio is strongly correlated with longitudinal force

generation. Additionally, by avoiding regions of excessive slip ratio, tire performance can

be optimized. For these reasons it is desirable to implement a slip ratio controller at each

electrically driven wheel. Eqn. (4.2.1) shows that wheel dynamics are governed by the
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torque input from the electric motor, as well as the longitudinal force developed by the tire.

Tire force generation, although correlated with slip ratio, also depends on tire slip angle and

immeasurable factors such as road surface and tire condition [10]. The proposed slip ratio

controller treats the longitudinal tire force as an unknown disturbance. This disturbance is

estimated using a COO and explicitly rejected by the control law. This architecture provides

quick and accurate slip ratio control which is robust to changes in immeasurable factors such

as road surface and tire condition.

The following control law is proposed

τ(t) = u(t) +RF̂x(t) (4.4.1)

which adds the estimated disturbance RF̂x(t) to the output of a slip-ratio feedback controller

u(t). When applied to the model of wheel dynamics shown in Eqn. (4.2.1), the proposed

control law reduces wheel dynamics to

ω̇(t) =
1

J
[u(t)−R(Fx(t)− F̂x(t))] (4.4.2)

From this equation it is evident that as the estimated longitudinal force approaches the

actual longitudinal force the equation of wheel dynamics is reduced to approximately

ω̇(t) ≈ 1

J
u(t) (4.4.3)

Thus, as the COO estimate of longitudinal force converges toward the true value, as is

guaranteed in [28], the model of wheel dynamics converges towards the straight-forward

control of a rotary inertia. This is a desirable result as the proposed control structure is not

disturbed by changing road surface or tire condition.

A block diagram of the proposed slip ratio controller utilizing a COO for disturbance

rejection is shown in Figure 4.4.1. Ko is the observer gain and Gc(s) represents the slip ratio
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Figure 4.4.1: Continuous Slip Ratio Control with COO Disturbance Rejection Block Diagram

feedback controller, and has been implemented as the Proportional-Integral (PI) controller

Gc(s) = Kp +
1

s
Ki (4.4.4)

where Kp and Ki are tunable gains. Although a PI controller is presented in this work, any

controller which is capable of driving an error towards zero can be considered.

4.4.1 Discrete Realization

The slip-ratio controller proposed in Figure 4.4.1 requires knowledge of current wheel-speed

in order to estimate current longitudinal force, and determine the required control response.

However, a digitally implemented system requires that the wheel-speed be measured at

discrete sampling intervals. This sampling process can be modeled by a Zero-Order-Holds

(ZOH) as shown in Figure 4.4.2. In this situation, it is necessary to delay the torque input

to the COO as well as longitudinal force estimate by one sampling period z−1 to ensure that
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Figure 4.4.2: Discrete Slip Ratio Control with COO Disturbance Rejection

they correspond with the sampled wheel-speed measurement. Additionally, the continuous

time integrator utilized by the COO is replaced by a discrete approximation utilizing a

bilinear transformation. Finally, the continuous PI controller is replaced by the discretely

implementable approximation

Gc(z
−1) = Kp(1− z−1) +

Ts
2
Ki(1 + z−1) (4.4.5)

again utilizing the bilinear transformation.

The discrete slip-ratio controller can be implemented with the following recursive steps:

1. Utilize measured wheel-speed ω(k) as well as previously estimated longitudinal force

F̂x(k−1) and previously actuated wheel torque τ(k−1) to estimate current longitudinal

force F̂x(k)

2. Evaluate discrete slip-ratio feedback controller Gc(z
−1) to determine control effort u(k)

3. Actuate control torque τ(k) = u(k) +RF̂x(k)
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where k− 1 and k represent discrete samples of continuous signals separated by one control

iteration , i.e. Ts = t(k)− t(k − 1).

4.4.2 Linear Slip-Ratio Controller Validation

The response of the discretely realized slip ratio controller to a step in desired slip-ratio was

simulated with and without disturbance rejection from the COO. Figure 4.4.3 shows the

response of these two systems with controllers operating with sampling time Ts = 100Hz.

The PI gains Kp and Ki were selected such that the system with COO disturbance rejection

exhibited minimal oscillations and overshoot. The same gains were then used in a system

using only a PI controller to highlight the effect of adding the COO disturbance rejection.

As is evident from the figure, the use of COO disturbance rejection vastly improved the

settling time of the discrete control system. The discrete controller without disturbance

rejection performed poorly, requiring significantly larger gains to reduce settling time. This

necessary increase in gain can result in an increasingly oscillatory response for the system

without COO disturbance rejection. If higher bandwidth slip-ratio tracking is required it is

suggested that a feedforward control element be added.

In addition to improving slip ratio response, use of the COO for disturbance rejection

also provides a near real time estimate of longitudinal tire force F̂x. Figure 4.4.4 shows the

estimated and actual tire forces for the discretely realized controller with COO disturbance

rejection. As is evident from the figure, the COO quickly and accurately estimated lon-

gitudinal tire force. A similar validation carried our with a nonlinear plant can be found

in [12].

4.5 Experimental Validation

The conventional powertrain of a B-class production vehicle was replaced with two wheel-

motors independently driving both rear wheels of an experimental vehicle. The vehicle is
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Figure 4.4.3: Step Response of Discrete Slip Ratio Controllers with and without Disturbance
Rejection

Figure 4.4.4: Estimated and Actual Longitudinal Forces

shown in Figure 4.5.1 being launched on a split-µ surface for controller validation. The left

tires of the vehicle are on pavement, while the right tires of the vehicle are on a very low

friction surface.

The complete control architecture presented in Chapter 2 was applied to the vehicle for
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Figure 4.5.1: Experimental Vehicle with Wheel-Motors Installed at Each Rear Wheel, Being
Tested on a Slip-µ Surface

control validation, operating at a discrete sample frequency of approximately 60Hz. The

performance of the slip-ratio controller during full throttle launch on the split-µ surface is

presented in Figure 4.5.2. The control allocation functionality discussed in Chapter 5 was

employed, resulting in the non-symmetric desired slip-ratio commands, however they are

similar enough to allow for comparison of the slip-ratio controller’s performance on differing

road surfaces.

The PI controllers discussed in Section 4.4 were implemented as only Proportional (P)

controllers to simplify experimental calibration. However, even without integral control the

desired slip-ratio is approximately achieved at both wheels. This is a particularly impressive

feat when studying the right-rear tire which was operating on the low-µ surface. Indeed, it

can be seen in Figure 4.5.3 that the right-rear tires is operating at and above the region of

maximum force generation for a low-µ surface. Operating in this difficult region resulted in

the slightly oscillatory behavior noted in Figure 4.5.2.

Figure 4.5.4 presents the torque requests made by the slip-ratio controllers of the left

and right rear tires. As is evident from the figure, both controllers quickly increased torque

requests in an attempt to achieve the desired slip-ratio. However, the variable operating
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Figure 4.5.2: Desired and Estimated Slip-Ratios for Left and Right Rear Tires when
Launched from a Stop with Left-Rear Tire on High-µ Surface and Right-Rear Tires on
Low-µ Surface

surface between the two tires is quickly evident by t = 2s where the torque request made of

the right-rear wheel is quickly reduced. It is suggested that feedforward control functionality

should be employed in future renditions of this slip-ratio controller to further reduce settling

time.

Figure 4.5.5 presents the estimated longitudinal force for the right-rear tire. In addition

to the estimate made by the COO, an estimate is obtained neglecting wheel dynamics and

assuming the tire is rigidly fastened to the road surface with the relationship

F̂x =
τ

R
(4.5.1)

The purpose of this presentation is to sanity check the estimates made by the COO. As
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Figure 4.5.3: Longitudinal Force vs. Slip-Ratio for Tires Operating on Varied Road Surfaces,
Generated using Pacejka MF [10] with Experimental Data Points Superimposed

is evident from the figure, the COO estimate is generally slightly delayed from the non-

dynamical estimate. This delay is reasonable, as the COO accounts for the inertia of the

wheel. Additionally, tire deformation is of itself a dynamic quantity, requiring finite time

for force to be generated in response to torque input. In addition to delayed response, the

COO estimate of longitudinal force is also generally of smaller magnitude compared with the

non-dynamic estimate. This discrepancy can be explained by the rolling resistance, bearing

resistance and tire rolling radius uncertainty which are accounted for by the COO, but not

by the non-dynamic model. In general, the COO estimate of longitudinal force is deemed

accurate, and is relied upon for higher-level control system functionality discussed in Chapter

5.
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Figure 4.5.4: Requested Wheel Torques from Slip-Ratio Controller

4.6 Summary of Slip-Ratio Controller

In this chapter a slip-ratio controller has been proposed to take advantage of the merits of the

wheel-motored vehicle. The controller is similar in form to the classical disturbance observer.

However, the Controller Output Observer (COO) is proposed for disturbance estimation to

avert the need for nominal plant inversion. The result is a practically implementable slip-

ratio controller which is robust to changing road surface and tire condition. Additionally,

as a byproduct of the controller’s structure, a fast and accurate estimate of longitudinal

tire force is obtained. This estimate is useful in determining tire saturation and informing

higher-level control decisions. The proposed slip-ratio controller is validated through linear

system simulation, as well as experimental testing on a wheel-motored vehicle.
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Figure 4.5.5: Estimated Longitudinal Force Generated by Right-Rear Tire
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Chapter 5

Allocation of Slip-Ratio

5.1 Control Allocation

As the wheel motored vehicle is generally over actuated, i.e. it has more actuators than

control goals, a control allocation framework is proposed [35]. This framework separates

the large problem of controlling planar vehicle dynamics into three tractable sub-problems:

high-level control, control allocation and low-level control. The interested reader may wish

to revisit Section 2.2 for a thorough introduction to the proposed system architecture.

This chapter focuses on the development of the control allocation problem. Its task is to

generate targets for the low-level controllers such that the generalized virtual forces requested

by the high-level controller are achieved optimally, or at worst sub-optimally. Three control

allocation problems are developed in this work. The first utilizes in depth knowledge of

the constitutive relations by which tires generate force. This controller is not practical,

but is developed to provide a benchmark for assessing the performance of the intended

sub-optimal result – since it represents the limit of physically achievable performance. A

suboptimal variant of this control allocation problem is then developed by incorporating

simplifying assumptions. Unfortunately, these assumptions result in the loss of important

tire saturation information and thus a decrease in system performance. Finally, a variant of
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the realizable controller is proposed which utilizes a fuzzy inference system to regain some

understanding of the tires’ level of saturation.

Desired control effort is allocated to each corner of the vehicle via control allocation.

It is the task of the low-level controllers to attempt to achieve the desired control effort

by modulating independent wheel motor torque. In addition, the low-level controller can

be augmented with the task of estimating valuable information relevant to tire saturation

to help improve control allocation performance. Such a low-level controller is proposed in

Chapter 4.

A simulation study is conducted to compare the performance of the three allocation

controllers when implemented on a vehicle in the CarSim c© simulation environment. It

is shown that the performance of the sub-optimal control allocation problem with fuzzy

adaptation approaches the benchmark performance of the optimal control allocation problem.

Experimental validation is then conducted on a B-class production vehicle with conventional

powertrain replaced by two wheel-motors installed at the rear wheels. It is shown that the

control allocation framework allows for the intuitive calibration of planar vehicle dynamics.

Additionally, it is shown that the fuzzy adaptation mechanism prevents tire saturation,

resulting in near optimal performance, regardless of road surface.

5.2 Model of Tire Force Generation

Aside from aerodynamic drag, tires are the only method of imparting lateral and longitudinal

forces on the vehicle. Under normal operation they act like a spring, generating force in

proportion to deflection. However, the force generating capacity of a tire is limited by its

normal loading and the coefficient of friction between the tire and the road surface. If

this force generating capacity is exceeded, the tire will begin to progressively slip on the

road surface, resulting in a saturation of force generation. This section will focus on the

relationship between longitudinal slip-ratio, σ, and longitudinal/lateral tire force generation
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Fx and Fy.

The longitudinal deflection of a tire is measured by slip ratio as shown in Eqn. (5.2.1)

where Vw represents the velocity of the wheel center in the direction of wheel orientation. R

represents the radius of the tire and ω its angular velocity. Slip-ratio describes the disparity

between tire velocity and wheel velocity, normalized by the maximum of the two. Figure

5.2.1 shows longitudinal force generation with respect to slip-ratio for a road with varying

coefficients of friction. Coefficients of friction (µmax = {0.2, 0.5, 0.8}) approximately repre-

sent icy pavement, wet pavement and dry pavement respectively. For small slip-ratios the

relationship with force generation is approximately linear. However, as slip-ratio increases

beyond the linear region the tire begins to progressively slide on the road surface, and force

generation saturates.

σ =
R · ω − Vw

max (Vw, R · ω)
(5.2.1)

Figure 5.2.1 as well as Figure 5.2.2 to be described later were generated using the Pacejka

Magic Tire Formula [10]. The Magic Formula (MF) relies upon semi-empirical functions of

the form

Fx,y = Dx,y sin [Cx,y arctanBx,yσ − E(Bx,yσ − arctanBx,yσ)] (5.2.2)

to predict the force generation of a tire based upon its operating conditions. The parameters

Bx, Cx, Dx, Ex are shaping coefficients for the longitudinal force generation function. These

parameters are selected to fit the MF equations to data generated via experimental tire

testing.

Similarly, lateral force generation with respect to slip ratio can be predicted with the

selection of parameters By, Cy, Dy, Ey. Figure 5.2.2 shows the resulting curves for selected

slip-angles of α = {2o, 4o, 8o}. Much like slip-ratio characterizes longitudinal tire deflection,

slip-angle characterizes lateral tire deflection as

α = − arctan
Vw⊥

|Vw|
(5.2.3)
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Figure 5.2.1: Constitutive Relationship Between Slip-Ratio and Longitudinal Force Genera-
tion for Surfaces with Varying Coefficient of Friction

where Vw⊥ is the tire velocity perpendicular to the direction of wheel orientation. When

σ = 0 the tire is said to be operating with pure side-slip, and generates its maximum lateral

force. However, as slip-ratio increases, lateral force generation is decreased. This behavior

can be explained by looking at the resultant force generated by the tire, FR, defined by

F 2
R = F 2

x + F 2
y ≤ (µ · Fz)2 (5.2.4)

We expect that the resultant force generated by the tire should be less than or equal to

the tractive capacity of the tire, µ · Fz, where Fz represents the tire’s normal loading. As

we increase slip-ratio, we observe an increase in longitudinal force generation, as depicted

in Figure 5.2.1. Therefore, to obey our intuition regarding maximum resultant force, we

require a decrease in lateral force generation with respect to slip-ratio, as is evident in
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Figure 5.2.2: Constitutive Relationship Between Slip-Ratio and Lateral Force Generation
for Tires Operating at Varying Slip-Angle

Figure 5.2.2. The coupling between longitudinal and lateral force generation with respect to

slip-ratio should be accounted for during the intervention of a stability control system. The

development of such a controller is a central focus of this chapter.

Concluding our discussion of tires and their force generating constitutive behavior we now

introduce some definitions which will be used in the following sections. First, we introduce

the longitudinal stiffness,

Cx =
Fx
σ

(5.2.5)

as depicted in Figure 5.2.1. The longitudinal stiffness provides a linear representation of how

the tire generates longitudinal force with respect to slip-ratio. Additionally we introduce the

lateral stiffness,

Cy =
Fy − Fyo

σ
(5.2.6)
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as depicted in Figure 5.2.2 where Fyo represents the lateral force that the tire would have

generated in pure side-slip (σ = 0). Thus, the lateral stiffness provides a linear representation

of how lateral tire force diminishes with respect to slip-ratio. In addition to these linear

descriptors, we introduce affine slopes as described by,

∆Cx =
∂Fx
∂σ

(5.2.7)

∆Cy =
∂Fy
∂σ

(5.2.8)

and depicted in Figures 5.2.1 and 5.2.2. The affine slopes can be calculated by differentiating

Eqn. (5.2.2) with respect to slip-ratio, and evaluating the result at the current operating

point. This derivative is generally unknown because the parameter of the MF cannot be

determined online. The affine slopes are intended to be used only for the benchmark optimal

control allocation problem.

It has been shown in Chapter 4 that Fx can be estimated quickly and accurately for

vehicles utilizing independent electric motors for propulsion and braking. Additionally, a

practical estimator of slip-ratio σ was proposed in Chapter 3. With this information, we can

introduce an estimate of longitudinal stiffness as defined by

Ĉx =
F̂x
σ̂

(5.2.9)

Conversely, it is much more difficult to generate an estimate of lateral stiffness, Cy. To do so

would not only require an estimate of lateral force Fy, but also an estimate of the pure side-

slip lateral force Fyo. Additionally, it is possible to generate estimates of ∆Cx as described

in [36], but the quality of the estimate is dramatically effected by lack of persistence of

excitation. Compounding the difficulties of estimating Cy with those of estimating ∆Cx,

an accurate estimate of ∆Cy is deemed infeasible. It is a central focus of the following

work to develop a realizable controller which utilizes only the readily available estimate

of longitudinal stiffness Ĉx to make decisions regarding allocation. It will be shown that
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the performance of this controller can approach the performance of the benchmark optimal

controller which utilizes Cx,∆Cx, Cy,∆Cy within its routine.

5.3 The Control Allocation Problem

The control allocation portion of the system is tasked with proposing slip-ratios which best

achieve the generalized virtual forces desired by the reference tracking controller. This

problem will be developed assuming wheel-motors are installed at all four corners of the

vehicle, but can be easily reduced for two-wheel implementation. The desired slip-ratios

form the control effector vector

uT = [σlr, σrf , σlr, σrr] (5.3.1)

and the generalized virtual forces form the virtual force vector

vT = [ΣFx,ΣMy,ΣFy] (5.3.2)

The term generalized is used to imply that not all terms are strictly in the force domain.

For example, the sum of moments, ΣMy, is in the torque domain. Additionally, the term

virtual is used as no actuator exists to directly impart these generalized forces on the vehicle.

Instead, they are a function of the forces generated by the tires at each corner of the vehicle.

Figure 5.3.1 shows a free body diagram of the planar vehicle. The generalized virtual forces

can be formulated as a sum of tire forces in the longitudinal direction Vx, as

ΣFx = Fxlf cos δ − Fylf sin δ + Fxrf cos δ − Fyrf sin δ + Fxlr + Fxrr (5.3.3)
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Figure 5.3.1: Free Body Diagram of Planar Vehicle

sum of moments about the center of gravity in the yaw direction ωy as

ΣMy = −w
2

(Fxlf cos δ − Fylf sin δ) + a(Fylf cos δ + Fxlf sin δ)

w

2
(Fxrf cos δ − Fyrf sin δ) + a(Fyrf cos δ + Fxrf sin δ)

− w

2
Fxlr − bFylr +

w

2
Fxrr − bFyrr (5.3.4)

and sum of tire forces in the lateral direction Vy as

ΣFy = Fylf cos δ + Fxlf sin δ + Fyrf cos δ + Fxrf sin δ + Fylr + Fyrr (5.3.5)

The variable δ represents the steered angle of the front wheels, and distance parameters a,

b and w
2

locate the vehicles center of gravity.

The wheel motored vehicle is generally over actuated, i.e. it has more actuators than

control goals (size(v) <size(u)). The result is that the desired generalized virtual forces can

be achieved by infinitely many selections of the control effector vector u. A control allocation
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technique is proposed to take advantage of this over actuation, achieving the desired virtual

forces while imposing secondary objectives to allow for the selection of a unique solution

which minimizes tire saturation. Control allocation has been widely used in aerospace and

marine time industries, and is gaining prevalence in the automotive industry [35].

Although non-linear methods have been proposed, this work will focus on the assump-

tion that a linear relationship exists between control effectors u and virtual forces v. This

assumption simplifies computational burden and guarantees the existence of a globally min-

imal solution. The forces depicted in Figure 5.3.1 are generated by the tires at each corner

of the vehicle, and are a non-linear function of slip-ratio, slip-angle and many other factors.

Thus, to develop a linear relationship between u and v the tire must be linearized about its

current operating state. An affine representation utilizing tire information Cx,∆Cx, Cy,∆Cy

as well as a linear representation utilizing only Ĉx will be presented.

5.3.1 Optimal Control Allocation

The first control allocation formulation to be discussed utilizes the following affine approxi-

mation of tire forces

Fxij ≈ Cxijσij + ∆Cxij∆σij (5.3.6)

Fyij ≈ Cyijσij + ∆Cyij∆σij (5.3.7)

where subscripts ij = {lf, rf, lr, rr} represent each individual wheel. It is important to note

that the variable Fy represents degradation in lateral force generation compared with pure

side-slip as a result of change in slip-ratio, and not its absolute value. As the parameters

utilized in this approximation could not be known in practice, the optimal control allocation

problem is developed to benchmark the performance that the suboptimal control allocation

problems developed in subsequent sections should approach. Utilizing the affine approxima-

tion of tire force generation, the generalized virtual forces can be regarded as the addition
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of two linear functions

v = Bouo +B∆∆u (5.3.8)

where

u = uo + ∆u (5.3.9)

and

v = vo + ∆v (5.3.10)

The notation uo, vo represents the current value of each vector, for which linearization is

centered. The notation ∆u,∆v represents small changes in each vector about the linearized

value. Combining Eqns. (5.3.3) and (5.3.5) with Eqns. (5.3.6) and (5.3.7) the linear control

effectiveness matrix Bo can be constructed as

Bo =


C∗xlf C∗xrf Cxlr Cxrr

Bo,21 Bo,22 Bo,23 Bo,24

C∗ylr C∗yrf Cylr Cyrr

 (5.3.11)

where

C∗xlf = Cxlf cos(δ)− Cylf sin(δ)

C∗xrf = Cxrf cos(δ)− Cyrf sin(δ)

C∗ylf = Cylf cos(δ) + Cxlf sin(δ)

C∗yrf = Cyrf cos(δ) + Cxrf sin(δ)

Bo,21 = (−w
2
C∗xlf + aC∗ylf );Bo,22 = (

w

2
C∗xrf + aC∗yrf )

Bo,23 = (−w
2
Cxlr − bCylr);Bo,24 = (

w

2
Cxrr − bCyrr)

(5.3.12)

The affine control effectiveness matrix B∆ is constructed by simply replacing the linear tire

stiffness parameters within Bo with their affine counterparts as

B∆ = Bo(Cxij → ∆Cxij , Cyij → ∆Cyij) (5.3.13)
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It is our goal to select a vector ∆u which best generates the virtual force vector v requested

by the reference tracking controller. As the system is over actuated we may add secondary

objectives and formulate the optimization problem stated as

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

(5.3.14)

In this framework, we are attempting to select the optimal decision variable x which mini-

mizes the objective function fo while obeying the constraint equations fi.

With the adopted affine representation, our decision variable is ∆u, a desired change in

slip-ratios with respect to current operating slip-ratios. We propose the least square objective

function

fo(∆u) = ||Wv(Bouo +B∆∆u− vd)||22 + λ||Wu(uo + ∆u)||22 + ξ||W∆u∆u||22 (5.3.15)

with Tikhonov and smoothing regularization [37]. The first Euclidean norm of the objective

function penalizes error between desired and actual generalized virtual forces. The matrix Wv

is a diagonal matrix, who’s entries weigh the relative irritation from error in respective virtual

forces. The second Euclidean norm represents irritation to tire slip-ratio. The diagonal

matrix Wu provides a means to weigh the irritation of allocating slip-ratio to each respective

tire. For the currently described controller, Wu is an identity matrix of appropriate size.

The first two terms of the objective function make the statement: Select the ∆u which best

achieves the desired virtual forces, while minimizing σ2
lf + σ2

rf + σ2
lf + σ2

rr. The final term of

the objective function represents irritation to changes in slip-ratio ∆u. This term provides

a means of smoothing the solution of the optimal control allocation problem. The diagonal

matrix W∆u provides a means to weigh the relative irritation of changes in slip-ratio at each

respective tire. The scalar parameters λ and ξ provide a means to proportion the relative

importance of the objectives of each normative term. In practice they are parameters which
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are tuned by a calibration engineer.

It is desirable that slip-ratios requested by the optimal allocation controller be constrained

to avoid excessive saturation of the tires. However, this constraint is intrinsically induced by

the affine approximation of tire forces introduced in Eqns. (5.3.6) and (5.3.7). Specifically,

excessive slip ratio requests will be discouraged by negative affine slopes ∆Cx contained in

the control effectiveness matrix B∆. In addition, the optimal allocation controller will seek to

avoid excessively degrading lateral force generation implied by Figure 5.2.2 in an attempt to

achieve the desired lateral virtual force ΣFy. Finally, if multiple solutions satisfy the virtual

force requests, the solution with minimum Euclidean norm of vector u will be selected as a

result of the second term of the objective function. For these reasons, no extrinsic constraint

equations fi are imposed on the optimal allocation controller.

The objective function stated in Eqn. (5.3.15) can be expanded and transformed to the

quadratic form

fo(∆u) =
1

2
∆uTH∆u+ fT∆u+ b (5.3.16)

where

H = 2[BT
∆WvB∆ + λWu + ξW∆u]

fT = 2[(Bouo − vd)TWvB1 + λuToWu]

b = [(Bouo − vd)TWv(Bouo − vd) + λuToWuuo]

(5.3.17)

The optimal solution to this unconstrained quadratic objective function can be determined

utilizing the optimality condition for unconstrained problems [37]

∇fo(∆u) = 0 (5.3.18)

analytically as

∆u∗ = −2[H +HT ]−1f (5.3.19)

where ∆u∗ is the optimal solution.
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In summary, the optimal control allocation technique takes advantage of the affine ap-

proximation of tire force generation stated in Eqns. (5.3.6) and (5.3.7) to select a desired

slip-ratio vector (Eqn. (5.3.1)) which will best achieve the desired generalized virtual force

vector (Eqn. (5.3.2)). As a result of the objective function stated in Eqn. (5.3.15), the

optimal allocation controller intrinsically respects the saturating nature of the tires, and set-

tles upon an optimal solution without the use of extrinsic constraint equations. The control

allocation technique developed in this section is not implementable due to the infeasibility

of estimating some affine tire parameters. However, it will serve as a benchmark to the

performance of the sub-optimal, but realizable allocation controllers to be developed in the

subsequent sections.

5.3.2 Sub-Optimal Control Allocation

In order to reduce the aforementioned optimal control allocation problem to a real time

implementable control allocation problem relying upon only estimates of longitudinal tire

stiffness Ĉx, the following assumptions are made:

• Negligible steering angle:

– cos(δ)→ 1

– sin(δ)→ 0

• Small slip-ratio approximation:

– ∆Cx → Cx

– Cy,∆Cy → 0

The small slip-ratio approximation is of particular interest. First, it states that for small

slip-ratios the affine slope of the longitudinal force generation curve is approximately equal to

its linear slope. This intuition is conveyed graphically in Figure 5.2.1. Additionally it states
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that for small slip-ratios, selection of slip ratio has little effect on lateral force generation.

This conjecture can be verified graphically in Figure 5.2.2.

In effect, the small slip-ratio assumption has removed the ability of control allocation to

attempt to achieve desired lateral forces, and thus the virtual force vector for the problem

is reduced to

vT = [ΣFx,ΣMy] (5.3.20)

Additionally, the affine representation of tire force generation has been reduced to the linear

approximation

Fxij ≈ Cxijσij (5.3.21)

With these approximations, the affine control effectiveness relationship of Eqn. (5.3.8) can

be reduced to the linear relationship

v = Bu (5.3.22)

with control effectiveness matrix B provided as

B =

 ĈxLF
ĈxRF

ĈxLR
ĈxRR

−w
2
ĈxLF

w
2
ĈxRF

−w
2
ĈxLR

w
2
ĈxRR

 (5.3.23)

It is important to note that the only tire information required in the control effectiveness

matrix is the easily estimated longitudinal stiffness Ĉx.

The sub-optimal control allocation objective function is proposed as

fo(u) = ||Wv(Bu− vd)||22 + λ||Wuu||22 + ξ||W∆u(u− uo)||22 (5.3.24)

where the decision variable is u, as opposed to the decision variable ∆u used by the optimal

allocation controller. The objectives of Eqn. (5.3.24) are similar to those of Eqn. (5.3.15).

The first term penalizes error between desired and actual virtual forces, the second term
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penalizes allocation of independent slip-ratios and the final term penalizes changes in slip-

ratios from their previous values.

Eqn. (5.3.24) can be expanded, resulting in the quadratic form

fo(u) =
1

2
uTHu+ fTu+ b (5.3.25)

where

H = 2[BTWvB + λWu + δW∆u]

fT = 2[−vTdWvB − δuToW∆u]

b = [vTdWvvd + δuToW∆uuo]

(5.3.26)

It is tempting to solve for the unconstrained solution to this problem as was done with the

optimal control allocation problem. However, doing so would result in infeasible slip-ratio

requests. While the optimal control allocation problem intrinsically included the saturating

nature of tires as well as the coupling between lateral force degradation and slip-ratio, the

sub-optimal control allocation formulation does neither.

Instead, it is necessary to extrinsically impose constraints on the sub-optimal control

allocation problem. It is desired that each tire’s slip-ratio should be constrained between

some minimum and maximum value

σmin ≤ σij ≤ σmax (5.3.27)

which can be formulated as a linear matrix inequality as

 I4×4

−I4×4


A

u ≤

 14×1σmax

−14×1σmin


b

(5.3.28)

Eqns. (5.3.25) and (5.3.28) constitute a quadratic programming problem with many available

solution methods. We select Hildreth’s Quadratic Programming procedure for simplicity [38].
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5.3.3 Fuzzy Inference Adaptation

In the previous section, the optimal control allocation problem was simplified by a small slip-

ratio assumption to produce a sub-optimal, but real-time implementable control allocation

routine. Unfortunately, in doing so information regarding the saturating nature of physical

tires as well as the coupling between slip-ratio and lateral force degradation was lost. In this

section, a simple holistic is proposed to regain some of this lost information, resulting in a

real time implementable controller which approaches the performance of the optimal control

allocation problem. The holistic is as follows: as a tire becomes saturated, its longitudinal

stiffness becomes reduced.

This statement can be verified by Figure 5.3.2, which highlights the estimated longitudinal

stiffness for both rear tires of a prototype wheel-motored vehicle when launched on a split-µ

surface. For this experiment, the left tires of the vehicle were operating on dry pavement,

while the right tires were operating on a wet tile surface with significantly lower friction

coefficient µ. The same amount of torque was input at both wheels, which intuitively would

result in a higher level of saturation experienced by the tire operated on the lower-µ surface.

As is evident from the figure, the intuitively more saturated right-rear tire returns a notably

smaller estimate of longitudinal stiffness as compared with the left-rear tire operating on dry

pavement. It therefore follows that allocation of additional slip-ratio to a tire experiencing

decreased longitudinal stiffness should be discouraged.

Fortunately, the objective function of the sub-optimal control allocation problem, pro-

vided in Eqn. (5.3.24) enables just such penalization. Entries of the diagonal matrix Wu

represent the irritation of allocating slip-ratio to the corresponding tire. For example, a

larger value of the diagonal entry of Wu corresponding to σrf will discourage allocation of
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Figure 5.3.2: Longitudinal Stiffness Estimate Ĉx During Vehicle Launch with Right Tire on
Low-µ Surface

slip-ratio to the right front tire. Thus, the entries of Wu should be adapted as follows

Wu =



ηlf 0 0 0

0 ηrf 0 0

0 0 ηlr 0

0 0 0 ηrr


(5.3.29)

where the ηij entries obey the following fuzzy rule base:

• If Ĉxij is Small then ηij is Large (ηij , ηlarge)

• If Ĉxij is Large then ηij is Small (ηij , 1)

and where ηlarge � 1 is a constant to be selected by the calibration engineer.

However, as tires progressively lose grip with the road surface, the classification of satu-

ration should be a continuous function, as proposed in Figure 5.3.3. A tire operating with

an estimated longitudinal stiffness Ĉx ≤ 1× 104 is classified as fully saturated. Conversely,

a tire operating with Ĉx ≥ 4× 104 is classified as non-saturated. The presented membership
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Figure 5.3.3: Membership Function for “Saturated” Tire

function was arrived upon via simulation and experimental testing, but it is the prerogative

of the calibration engineer to tailor the function for individual needs.

Using singleton fuzzification, product composition and inference, and centroid defuzzifi-

cation [25], the expression for ηij is given by:

ηij = fs(Ĉxij) + ηlarge(1− fs(Ĉxij)) (5.3.30)

The proposed fuzzy membership based saturation function restores some of the informa-

tion originally lost due to the small slip-ratio assumption. For example, as a tire becomes

saturated its longitudinal stiffness decreases and the penalization of allocating slip-ratio to

that tire increases. This increased penalization effectively constrains the maximum slip-ratio

which will be allocated to a given tire. Much like with the optimal allocation controller, this

constraint on slip-ratio is intrinsic within the objective function. For this reason, the extrin-

sic constraints required by the previously introduced sub-optimal control allocation problem

are unnecessary for the currently discussed allocation problem. Thus, with a correctly se-

lected fuzzy membership function, an analytical solution to the objective function presented

in Eqn. (5.3.25) can be generated as

u∗ = −2[H +HT ]−1f (5.3.31)
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avoiding the necessity for iterative solution routines.

5.4 Comparative Simulation Study

Three control allocation problems have been developed in the previous sections. The first

is deemed infeasible for practical implementation, but is to serve as a benchmark for the

performance of subsequent systems. This controller shall be termed Optimal in simulation

results. The next control allocation problem was made realizable by instituting a small slip-

ratio assumption. This controller will be termed Static as it utilizes an unchanging control

effector penalization matrix Wu. The final control allocation problem discussed utilizes a

fuzzy membership function to adapt the control effector penalization matrix, penalizing allo-

cation of slip-ratio to saturated tires. This controller shall be termed Adaptive. These three

control allocation problems are implemented within the architecture introduced in Section

2.2 and simulated in the CarSim c© simulation environment for the purpose of performance

comparison.

The open loop sine-with-dwell steering maneuver based on the U.S. Department of Trans-

portation’s electronic stability control systems testing method FMVSS-126, presented in Fig-

ure 5.4.1, was applied to the CarSim c© vehicles while traveling at 80kph. When applied to a

vehicle without stability control functionality this maneuver resulted in loss of control. The

optimal, static and adaptive systems where tasked with allocating desired slip-ratio to sta-

bilize the vehicle, while attempting to impart zero net longitudinal force (off throttle driver

input). Slip-ratio control and longitudinal force estimation was implemented utilizing the

logic developed in Chapter 4. The optimal allocation controller obtained virtual yaw mo-

ment and net lateral force requests from a reference tracking controller attempting to track

the yaw rate and lateral acceleration of a linear 2 degree of freedom bicycle model [7]. The

adaptive and static controllers received only the virtual yaw moment request, as the lateral

coupling was removed as a result of the small slip-ratio assumption. All three controllers
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Figure 5.4.1: Sine-with-Dwell Open-Loop Steering Angle, Measured at the Front Wheels

were able to stabilize the vehicle.

Figure 5.4.2 compares the desired virtual forces with those achieved by each allocation

controller. The net longitudinal forces and yaw moments achieved by the three controllers

are quite similar. However, the net lateral forces achieved by the three controllers are

notably different. In general, the static controller exhibits much larger discrepancy from

the desired lateral force as compared with the optimal and adaptive controllers. This should

be unsurprising as the static controller makes no attempt to achieve the desired virtual

lateral force. The adaptive controller also does not attempt to achieve the desired virtual

lateral force, but approaches the performance of the optimal controller by penalizing slip-

ratio allocation to saturated tires. By avoiding requesting increased slip-ratios from already

saturated tires, the adaptive controller avoids unnecessary degeneration of lateral tire force.

The result of which is evident when comparing the trajectories of the three controlled vehicles

in Figure 5.4.3. From the figure it is evident that the trajectory of the adaptive controller
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Figure 5.4.2: Desired and Achieved Generalized Forces During Sine-with-Dwell Maneuver

approaches the trajectory of the optimal control system.

This simulation study has shown the capabilities of the control allocation architecture

when applied with the purpose of vehicle stability control. The optimal system highlights the

potential performance if the controller had use of a detailed model of tire force generation.

However, as this model cannot be known during practical operation, two realizable systems,

Static and Adaptive were developed. This simulation study showcases how the performance

of the Adaptive system approaches that of the Optimal system. This result is favorable,

especially as the Adaptive system is practically implementable.
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Figure 5.4.3: Trajectory Resulting from Steer-with-Dwell Maneuver

5.5 Experimental Validation

A prototype vehicle with hub-electric motors installed at each rear wheel was utilized for

experimental validation. The control system implemented on the vehicle included the slip-

ratio controller developed in Chapter 4 in conjunction with the sub-optimal control allocation

problem with fuzzy inference adaptation. Data from two experimental tests will be presented.

5.5.1 Low-µ Launch

The vehicle was subjected to full throttle launch from rest on a surface with very low coeffi-

cient of friction. The goal of this testing was to validate the intrinsic constraint of slip-ratio

resulting from the fuzzy membership function presented in Figure 5.3.3. The study was

conducted with different values of ηlarge as defined in Eqn. (5.3.30). ηlarge = 50 employed

modest penalization for allocation of slip-ratio to saturated tires, while ηlarge = 1000 much

more aggressively penalized slip-ratio allocation to saturated tires.
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Figure 5.5.1: Experimental Full Throttle Launch on Low-µ Surface

The result of these two experiments is shown in Figure 5.5.1. From the figure it is

evident that reasonable slip-ratio was requested in each situation, validating the hypothesized

intrinsic constraint of slip-ratio. The larger value of penalization coefficient ηlarge results in a

more dramatic reduction in slip-ratio allocation request in response to estimated longitudinal

stiffness Ĉx. As a result of this more conservative slip-ratio allocation, the ηlarge = 1000 study

was able to constrain the vehicle tires to a region of higher longitudinal stiffness. All in all,

when initialized with ηlarge = 1000 the vehicle was able to accelerate to 20kph in 25% less

time than the comparable vehicle initialed with ηlarge = 50.
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5.5.2 Split-µ Launch

The first term of the objective function of Eqn. 5.3.24 penalizes error between the desired

and allocated virtual forces ΣFx and ΣMy. The weighting matrix

Wv =

wΣFx 0

0 wΣMy

 (5.5.1)

allows for independently prescribed irritation to error in allocation of each respective virtual

force. For this experiment, the irritation to error in allocated yaw moment was set to

wΣMy = 10 and the irritation to error in allocated longitudinal force wΣFx was varied. The

experiment was conducted during a full throttle launch on a split-µ surface, where the

left tires were on pavement and the right tires were on a very slippery surface. The control

allocation problem was tasked with attempting to generating a very large virtual longitudinal

force ΣFx while at the same time generating zero total yaw-moment ΣMy. Figure 5.5.2 shows

the resulting experimental data.

It is evident from the figure that changing the relative weight between the elements in

matrix Wv has a large effect on the performance of the vehicle. With roughly equivalent

weighting, the allocation problem compromises on maximum longitudinal force generated

in order to minimize developed yaw-moment. However, when the weighting of wΣFx is one

order of magnitude larger than wΣMy , the allocation problem much more aggressively achieves

longitudinal force at the cost of generating a large yaw-moment error. This resulted in much

faster vehicle acceleration, but required driver steering input to counteract the undesirable

yaw-moment.

The purpose of this experiment was not to determine which ratio of weights was decidedly

better. Instead, it was to show that the control allocation framework provides an intuitive

method for calibrating vehicle performance. Indeed, the ratio of the elements in Wv can be

calibrated as a function of vehicle speed and other metrics to provide the desired compromise
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Figure 5.5.2: Experimental Full Throttle Launch on Split-µ Surface

between virtual force allocation for all vehicle maneuvers.

5.6 Summary of Slip-Ratio Allocation

Control allocation is tasked with allocating slip-ratio requests to each wheel-motored corner

of the vehicle in an attempt to achieve the desired vehicle performance. In this chapter, three

control allocation problems were introduced. First, the optimal control allocation problem

was introduced, which relied on unknowable tire information to provide a benchmark for

physically achievable performance. This optimal problem was then made practically imple-

mentable by instituting a small slip-ratio assumption. However, with this assumption, the
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control allocation problem became sub-optimal as it no longer incorporated the saturating

nature of physical tires in its decisions. In an attempt to regain some knowledge of tire satu-

ration, a third control allocation problem was presented, which utilized a fuzzy membership

function to identify saturated tires and penalize allocation of control effort to those tires. It

was shown with simulation that the performance of this sub-optimal controller with fuzzy

membership adaptation approached that of the optimal controller.

The sub-optimal control allocation problem with fuzzy membership adaptation was val-

idated on an experimental vehicle with wheel-motors installed at each rear wheel. It was

shown that the system did in fact adapt its behavior, intrinsically avoiding excessive tire sat-

uration on low-µ surfaces. In addition, it was shown that the control allocation framework

provides an intuitive method of calibrating planar vehicle performance.
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Chapter 6

Conclusion

6.1 Summary and Conclusions

The goal of this dissertation work was to develop a philosophy for the control of planar

vehicle dynamics for a wheel-motored vehicle. To this end, it was proposed that control

decisions should be made in the slip-ratio domain. This decision allowed for the intrinsic and

explicit constraint of slip-ratio, helping to avoid excessive tire saturation and improve vehicle

performance. For practical implementation, the control philosophy required development of

three novel control modules:

1. As slip-ratio cannot be directly measured, it must instead be estimated. This dis-

sertation work proposes such an estimator which is developed to utilize only sensors

currently available on modern production automobiles. The estimator is novel in its

incorporation of a body-fixed rigid-body dynamics model to ensure accurate estimation

during cornering maneuvers. Additionally, the estimator relies upon a fuzzy member-

ship function to ascertain whether certain measurements are usable.

2. A slip-ratio controller was developed to modulate wheel-motor torques in an effort to

achieve desired slip-ratios. This dissertation work proposed the novel implementation

of a disturbance observer for this task. Such an implementation leverages the known
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wheel-motor torque generation to estimate the longitudinal force developed by the tire.

This information is then used to make the slip-ratio controller robust to changing road

surface and tire condition.

3. Combining the estimated slip-ratio with the estimated longitudinal force developed

by the tire, it is possible to ascertain longitudinal tire stiffness. This information is

leveraged to improve allocation accuracy but also – utilizing a fuzzy membership model

of tire saturation – to penalize allocation of slip-ratio to saturated tires. The result

is a control allocation framework which allocates slip-ratio requests to wheel-motored

corners of the vehicle to best achieve the desired planar vehicle dynamics while at the

same time minimizing tire saturation.

The three control modules developed in this work were implemented on an B-class vehicle

with its conventional powertrain replaced by wheel-motors installed at each rear wheel.

Utilizing this vehicle, the functionality of the independent control modules and the control

architecture as a whole was validated. The result was an intuitively calibrated system which

automatically adapted its behavior to changing road conditions. Such a system should pave

the way towards safer and better handling vehicles.

6.2 Future Directions

The controllers developed in this work made the assumption that wheel torques were solely

generated by the wheel-motor systems. However, it is likely that these systems may have to

operate in parallel with electro-hydraulic brake systems for mass production implementation.

Together, these systems provide necessary redundancy, as well as an increase in the maximum

braking torque. It is a proposed topic of future investigation to develop a cooperative strategy

for the implementation of the wheel-motor in parallel with the brake system. The control

allocation framework proposed in this work can be easily expanded to incorporate additional

actuators. However, the slip-ratio controller developed in this work strongly relied upon
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knowledge of the input wheel torque. With the incorporation of a less precisely known brake

torque, this controller may require revision.

The planar state estimator developed in this work was satisfactory for preliminary test-

ing, but suffered from error during extended braking. During braking, the system integrates

Inertial Measurement Unit (IMU) sensors to estimate vehicle state. However, during pro-

longed braking, the alignment errors in acceleration measurement due to road grade as well

as chassis pitch and roll resulted in large state estimate errors. It is suggested that this IMU

misalignment be compensated to improve state estimate during braking maneuvers. One

suggested direction of research would incorporate intermittent Global Positioning System

(GPS) data to correct drift and alignment error experienced by the IMU system.
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