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ABSTRACT

Cell adhesion to a substrate or another cell plays an important role in the activities of

the cell, such as cell growth, cell migration and cell signaling and communication with

extracellular environment or other cells. The adhesion of the cell to the extracellular

matrix also plays a vital role in life, as it involves in healing process of a wound and

formation of the blood clot inside a vessel. The spread of cancer metastasis tumors

inside the body is mostly dependent on the mechanisms of the cell adhesion. The

current work is devoted to studying deformation and adhesion of the cell membrane

mediated by receptors and ligands in order to enhance the existing models. In fact

phospholipid molecules as the constructive units of the cell membrane grant sufficient

in-plane continuity and fluidity to the cell membrane that it can be acceptably mod-

eled as a continuum fluid medium. Therefore a two dimensional isotropic continuum

fluid model is proposed in here for cell under implementation of membrane theory.

In accordance to lack of sufficient study on direct effect of presence of receptors on

membrane dilation, the developed model engages the intensity of presence of recep-

tors with membrane deformation and adhesion. This influence is considered through

introduction of spontaneous areal dilation. Another innovation is introduced regard-

ing conception of receptor-ligand bonds formation such that a nonlinear constitutive

relation is developed for binding force based on charge-induced dipole interaction,
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which is physically admissible. This relation becomes also enriched by considering

one-to-one shielding phenomenon. Diffusion of the receptors is formulated along the

membrane under the influence of receptor-receptor and receptor-ligand interactions.

Then the presented models in this work are implemented to an axisymmetric config-

uration of a cell to study the deformation and adhesion of its membrane. Another

target of this work is to clarify the impacts of variety of material, binding and dif-

fusion constitutive factors on membrane deformation and adhesion and to declare a

rational comparison among them.
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Chapter 1

Introduction

Cell adhesion strongly influences various activities of the cell including cell growth,

cell differentiation, cell neutralization and even communication of the cell with extra-

cellular environment and other cells. Most of the functions of a cell at both sides of the

membrane is implemented by the transmembrane proteins called integrins which play

a significant role in adhesion. Additionally, cell adhesion to the extracellular matrix

(ECM) plays a vital role in human life, saving life or sometime imposing danger on

life, where phenomena such as movement and adhesion of the fibroblast cells during

wound healing, spreading of the cancer cells from one organ to another in far distance

and formation of the blood clot inside the vessel which might prevent and obstruct

the flow of the blood to parts of the body are only a few examples. Therefore, cell

adhesion and deformation have attracted many attentions from scientists of different

fields including engineering.

Vesicle is a bubble of liquid enclosed by a phospholipid bilayer membrane, which

stores and transfers the substances within a cell or to the environment (see figure

10-6 in [2]). Vesicles are divided into two groups based on the structure of their

membrane; 1) unilamellar vesicles in which the enclosing membrane consists of one

bilayer and 2) multilamellar vesicles consist of several bilayers. Cell membrane is a

bilayer membrane, which is composed of two layers of mostly phospholipid molecules

(see figure 11-11 in [1]). Each molecule is also composed of two parts of phosphate and

long fatty acid hydrocarbon chains (see figure 10-2 in [2]). The phosphate group which

is also recognized as the head of the phospholipid molecule carries the negative charge

and acts as a hydrophilic (water attracted) component. On the other hand the lipid

tails repel the water molecules and is hydrophobic. As a natural consequence of the

bilayer membrane constituents and their behavior in regards to the water, two layers of
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molecule chains form in a way that hydrophobic tails of two layers settle inside, along

each other, forming the membrane with both hydrophilic heads facing the water.

In other words, the hydrophilic heads shield the tails from the surrounding water

inside and outside of the cell in a way that there is almost no water in the membrane

and it also excludes molecules like sugars or salts that dissolve in water but not in

oil (see figure 10-6 in [2]). In fact, the stable structure of cell membrane is due to

the interaction of the hydrophilic heads and hydrophobic tails of the phospholipid

molecules with the environment (see figure 10-5 in [2]).

Experiments on the biomembrane in order to determine the mechanical character-

istics, begun in 1930s using sea urchin eggs [52] and then continued to study red blood

cells [46]. The results of the experiments suggested that cell membrane as an enclosing

and separating thin amphipathic (hydrophilic and hydrophobic) layer is a compos-

ite material and similar to the vesicle membrane with the total thickness around

5 nm. However cell membrane comprises embedding protein molecules through the

membrane thickness (see figure 10-1 in [2]). In fact biomembrane structure is usu-

ally impermeable to most water-soluble (hydrophilic) molecules. The phospholipid

chains as the dominant components of the membrane are closely held together by non-

covalent interaction, they show the same behavior as a fluid when they freely move

laterally and sideways through the membrane or even rarely diffuse transversely from

one layer to another (see figure 10-8 in [2]). This behavior properly supports the idea

for modeling the cell membrane as mosaic fluid suggested by Singer et al. [52] (see

also [42]). The membrane is depicted as mosaic because it is composed of different

kinds of macromolecules, such as integral proteins, peripheral proteins, glycoproteins,

phospholipids, glycolipids, and in some cases cholesterol, lipoproteins. A biologi-

cal membrane can be considered as a continuum material surface, in other words,

membrane surface includes sufficient number of molecules which the fluctuations and

effects due to behavior of one individual molecule are negligible [1,2]. It is worth not-

ing that the continuum approach requires that any considered characteristic length

must be sufficiently larger than the molecular distances and gaps, which means in

continuum approach the analysis never studies the material behavior from molecu-

lar point of view. However membrane is discontinuous in the third direction along

the thickness, which can be explained by the laminated structure of membrane as

molecular strata.
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1.1 Membrane deformation

Fung et al. [27] was among the first who analyzed the red blood cell deformation

applying the classical membrane theory. They asserted that contribution of bending

and curvature change in deformation of red blood cell is negligible compared to the

effect of shear deformation. This was verified by the micropipette experiment for the

case in which aspiration suction is below the one needed for sucking the vesicle up

to a spherical configuration outside the pipette. In fact Evans et al. [16] showed that

there is a large increase in suction pressure from 103 to 105 dyn/cm2 after vesicle con-

figuration outside the pipette becomes a sphere, where this rise in value, is attributed

to the area dilation. Another work [17] categorized the unilamellar vesicles into three

sizes as small unilamellar vesicle (SUV) with diameter less than 3−5×10−6 cm, large

unilamellar vesicle (LUV) for the diameter range 5× 10−6 to 5× 10−5 cm, and giant

unilamellar vesicle (GUV) with size larger than 10−4 cm. This investigation claimed

that volume change is energetically more expensive than area dilation for GUV, how-

ever it is reverse for LUV and SUV. Review of the literature shows the interest of

researchers in giant vesicles with size of 2× 10−3 cm [14, 18, 20, 22, 39].

Some of the previous studies on the red blood cell deformation pointed out that

the majority of the membrane deformation is attributed to the distortion of mem-

brane, while its area remains constant during distortion. That means, the mem-

brane exhibits high resistance to change in area and low shear deformation rigid-

ity [11,13,15,19,24,25,36,37,48]. Regarding the strong dependency of the membrane

deformation on the Young’s modulus, Skalak [53] and Evans [15] suggested to sep-

arate distortional deformation from dilatation in calculations. They neglected the

influence of curvature variation for the vesicles with greater size than 10−4 cm be-

cause the curvature radius is much larger than the membrane thickness. However for

the vesicle smaller than 3− 5× 10−6cm or regions with high curvature the membrane

thickness is comparable with the curvature radius and elastic behavior of membrane

is no longer independent of curvature [21]. Hence, size and shape of the vesicles and

cells influence the deformation in a way that size significance can be adverted from

two points of view 1) As a criterion for interference of membrane thickness and resis-

tance against curvature change and 2) influence of size on fixity of volume and surface

area of vesicle and cells.

Nadler [44] used a continuum approach to model the deformation of an inflated

spherical membrane with fluid structure, under the contact pressure of two parallel
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rigid plates. The membrane was assumed to behave as an isotropic nonlinear elastic

material, where the neo-Hookean constitutive law was finally adopted for that. The

membrane was treated as a two dimensional surface embedded in tree dimensions

and calculations were carried out based on the membrane theory. This implies that

the thickness of the cell membrane and normal tractions were not considered in his

work and membrane tractions only lied on the tangent plane to the surface at any

points. In that work the referential configuration of the membrane was defined as

a sphere through an injective immersion in polar coordinates. The deformed config-

uration was also defined by a different immersion in polar coordinates system and

the deformation configuration was easily obtained. The principle stretches and direc-

tions in both undeformed and deformed configurations were achieved by comparison

of the two representations of deformation gradient in curvilinear and decompositional

forms. The equilibrium equation in referential form was used besides considering

an isotropic strain energy function to find first order ordinary differential equations

(ODEs) for the principle stretches and geometrical variable parameters. Finally the

proper boundary conditions (BCs) were applied to the obtained system of ODEs as

initial conditions (ICs), where the numerical method was employed to solve for the

unknowns in contact and non-contact (free) regions satisfying the continuity condi-

tion for parameters associated to the point between the free zone and contact zone.

It is worth mentioning that the membrane deformation was solved in that study by

incompressibility consideration.

1.2 Membrane Adhesion

A receptor-ligand adhesion model was proposed by Bell et al. [6, 7] in which adhe-

sion between two cells occurs as the result of attractive interaction, between mobile

receptors and fixed ligands, and repulsive electrostatic interaction. Shenoy et al. [50]

implemented a similar idea of receptor-ligand interaction to study the adhesion of

a cell to a substrate. They considered the case in which the mean receptor density

on the membrane is not sufficient such that, the receptor-ligand interaction cannot

overcome the generic resistance to adhesion of the cell to the substrate. They ex-

plained that for the membrane to adhere, the receptors diffuse from the free region

to the adhesion region in order to generate sufficient attractive force. They showed

that the area of the contact region depends on the ratio of receptor density to ligand

density, diffusivity of the receptors on the membrane and time. In another work, Gao
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et al. [30] focused on the endocytosis of the extracellular particles, mediated by the

receptors on the cell membrane. They considered a coated cell with mobile receptors

and a spherical or cylindrical particle, containing ligands. Then they studied the

mechanism in which the cell membrane engulfs the particle. The mobile receptors

diffuse to the wrapping site and interact with the stationary ligands on the particle,

which decreases the overall free energy of the membrane. A similar model was used

by Liu et al. [40] for analyzing vesicle adhesion. They suggested a linear relation for

the adhesion interaction while the vesicle membrane was modeled as a neo-Hookean

hyperelastic membrane with negligible bending stiffness. The friction between the

membrane and the substrate was neglected and Van der Waals force and other long-

range, weak, repulsive forces were ignored. The adhesion mechanism in this study

was based on the receptor-ligand interaction, where the receptors and ligands were

initially uniformly distributed, however the receptors were allowed to diffuse on the

vesicle membrane, while the ligands were fixed on the substrate. Previous experimen-

tal and numerical studies on the adhesion bonds confirmed the nonlinear behavior

of the bonds, which should have significant influence on the cell adhesion [5, 34]. In

another work Cheng et al. [10] considered two types of interactions between receptors

and ligands. A long-ranged physical interaction was considered as the non-specific

force, which was due to the van der Waals interaction. They suggested a relation

for that non-specific force and claimed that the tangential component of the force

(recruitment force) causes the recruitment of receptors. However, since the non-

specific van der Waals force is weak it only leads to a shallow adhesion of cell to

the substrate. Additionally, they introduced a chemically-induced covalent force as

a short-ranged and strong force, which generated a deep adhesion between cell and

substrate. According to the [2] binding of a receptor protein to a ligand with high

affinity depends on the formation of a set of weak, noncovalent bonds and van der

Waals attractions. Since each individual bond is weak, an effective and tight binding

interaction requires that several weak bonds be formed simultaneously. Formation

of a tight receptor-ligand bond as a set of weak noncovalent (physical) interaction,

instead of one strong covalent (chemical) interaction, is consistent with the temporary

behavior of the receptor-ligand bond, which allows the bond to break gradually.

Nadler et al. [45] focused on the adhesion and decohesion between a rigid flat

punch and a biomembrane, considering two different initial cases of stress-free and

prestressed membrane. In fact their work is distinguished from other researches by

treating the membrane as an elastic material with nonlinear constitutive behavior and
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nonlinear debonding process. First the local equilibrium equation in referential form

was used to formulate the axisymmetric deformation of the initially flat and circular

membrane. The polar and cylindrical coordinate systems were respectively used to

define the undeformed and deformed configurations of the membrane. Then a problem

of pull off of a flat rigid punch from a membrane was studied axisymmetrically by

employing the Griffith fracture criterion. A nonlinear elastic constitutive behavior was

assumed for the membrane besides the assumption of isotropy behavior of membrane

to choose isotropic neo-Hookean material. The total strain energy of the membrane

consists of strain energy of contact and non-contact (free) regions were into account

and then energy release rate was obtained as the variation of strain energy respect to

the contact area variation. Then based on the Griffith fracture criterion the obtained

energy release rate must be greater or equal to the work of adhesion between the

membrane and punch. Finally the membrane profile was obtained by solving for

Griffith criterion relation besides the equilibrium equation.

Currently Sohail et al. [54] studied the adhesion of fluid-filled membrane under

the influence of electrostatic forces. They studied the membrane deformation and

adhesion of a vesicle, to a rigid and charged substrate, by modeling the vesicle as

a flexible charged particle inflated by incompressible fluid. The vesicle is inside an

electrolyte and its membrane can goes under a large nonlinear elastic deformation.

In spite of incompressibility assumption for enclosed fluid, the membrane area was

considered extensible. That work was constructed on membrane theory in which the

bending stiffness of the membrane was negligible and all the tractions and stress tensor

lied on the tangent plane to the membrane two dimensional manifold and do not have

a normal component. Therefore the deformation and adhesion of the membrane to

the substrate were controlled by the fixed-distributed charges on the membrane and

substrate, under electrostatic force. They first started with the Debye-Huckel (D-H)

equation which is a linearized form of the general Poisson-Boltzmann equation (where

the nonlinear Poisson-Boltzmann equation is obtained by substituting the statistically

gained Boltzmann law ,for charge density, into Gauss’s law). Then an infinitesimal

charged element of the membrane was considered as a point charge in the electrolyte,

where the potential function was considered. The electrostatic field and consequently

electrostatic forces applied by charges on membrane and substrate to that element

of membrane were calculated and then the total electrostatic force was obtained by

integration. Finally the same method as applied in [44] was implemented to obtain

the principle stretches and deformed configuration of the adhered vesicle.
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In another work Evans [18] studied the membrane-membrane adhesion of two

spherical vesicles aspirated into pipettes by treating them as an elastic continuum

material. The contour of the adhesion zone was modeled via construction of the

equilibrium equations for free and adhesion zones and satisfaction of continuity at

the connection point. In continuum model the energy released after adhesion is equal

to the minimum energy required for detachment. This means the energy required

to detach the membranes is much larger than adhesion energy, which is strongly in

agreement with experimental observations. It is worth noting that in that research

the binding force behavior was simplified as a linear behavior which followed the

Hook’s law and local bending stiffness of the membrane was contributed. The same

force equilibrium method was applied by Martinez et al. [43] and they approximated

the adhesion bond behavior by linear Hook’s law same as Evans [18].

Biocellular adhesion can be more complicated than receptor-ligand link, in which

the inner cellular constituent called cyteskeleton that acts as the cellular skeleton and

strengthens the cell stability, is involved in adhesion by connecting to the receptors

and supporting them from inside the cell. This type of adhesion usually induces

receptors aggregation in a region called focal adhesion (FA) [4, 29, 43]. There are

two models of cell detachment as peeling model in which the focal contact has no

mechanical rigidity and thus adhesive bonds break gradually starting from the heading

point. This model is associated with minimum detachment energy. On the other hand

fracture model is completely rigid, so bond failure involves equal stress distribution

among all bonds and abrupt rupture which this participation of all bonds together in

detachment causes the highest detachment energy. Regarding the structure of linkage

between intracellular constituent, cytoskeleton, and extracellular matrix (ECM), a

serial connection of two springs was used by Schwarz et al. [49] to model the elastic

behavior of intercellular component and ECM as a united structure.

According to the above review of literature the following report first attempts to

present a detailed analysis of modeling of cell behavior in adhesion to a substrate. Re-

garding the previous discussion about the similar behavior of the phospholipid bilayer

membrane of the cell to the isotropic fluid, in the present work the cell membrane is

modeled as an isotropic fluid-like surface and a constitutive relation of a free energy is

derived for a two dimensional isotropic continuum fluid membrane. Since one of the

main objectives of the current work is to shed light on the significant role of presence

of the receptors in adhesion and deformation of the cell, this idea is considered in the

presented model for the isotropic fluid-like membrane, such that the developed strain
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energy is sensitive to the presence of the receptors. Due to the previous studies about

electrostatic characteristic of the integrin proteins, which carry positive charges and

nonpolar characteristic of the ligand proteins, a nonlinear binding force is developed

to model the receptor-ligand interaction as an ion-induced dipole interaction between

mobile receptors on the membrane and fixed ligands on the substrate. In order to

consider a continuum approach the binding force between receptors on an infinitesi-

mal area of the membrane with a local receptor density and an infinitesimal area of

substrate with a local ligand density is formulated. The tangential component of the

receptor-ligand binding force is then used to formulate the diffusion of the receptors on

the cell membrane, by deriving a constitutive relation for the flux of the receptors due

to the receptor-ligand interactions. In addition to the influence of the receptor-ligand

binding force, the interaction between receptors on the membrane is also engaged

in the diffusion equation by using the Fick’s law. In the second part the proposed

models in earlier sections are implemented to a particular cell with axisymmetric con-

figuration and adhesion and deformation of the cell is studied. The impacts of variety

of material, binding and diffusion constitutive coefficients on membrane deformation

and adhesion are finally discussed and compared together.
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Chapter 2

Formulation and Application of the

Model

2.1 Mathematical modeling of the cell

In this chapter we are concerned with the formulation of a comprehensive model,

which approximates the adhesion and deformation of a biological cell (biocell) to a

rigid substrate. The adhesion is mediated by means of two types of proteins exist on

the cell membrane and substrate. The type of protein molecule on the membrane,

which is involved in adhesion is integrin that is also called under the general name of

receptor (see figure 19-64 in [2]). These integrins are mobile, transmembrane proteins

on the cell membrane that link to the stationary fibronectin proteins (ligands) on

the substrate and construct the adhesion of the cell to the substrate. Due to the

electrostatic characteristics of integrin and ligand proteins, a charge-induced dipole

bond is developed here to model the adhesion force of the cell to the substrate (see

figure 3-37 in [2]). As another external force applied on the membrane, which has

a considerable effect on adhesion and deformation of the cell, is the enclosed fluid

inside the cell, which is taken as an incompressible fluid. The behavior of the cell

in adhesion and deformation is strongly dependent on the material characteristic of

the cell membrane. According to the observed experimental results in literature, the

cell membrane behavior in dilation and distortion is mostly close to the behavior

of a fluid and a biological membrane can be considered as a continuum material in

two dimensions defined on the membrane surface. In other words membrane surface

includes sufficient number of molecules which the fluctuations and effects due to
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behavior of one individual molecule are negligible [1, 2]. It is worth noting that

the continuum approach requires that any considered characteristic length must be

sufficiently larger than the molecular distances and gaps, which means in continuum

approach the analysis never studies the material behavior from molecular point of

view. Therefore in the current work a fluid-like strain energy function is proposed

to approximate the mechanical behavior of the cell membrane. This strain energy

accounts for the resistance of the fluid-like membrane to the in-plane dilation, however

neglects any distortion in the membrane. The thickness of the cell membrane with

respect to its curvature radius plays a significant role in modeling the cell membrane

by shell or membrane theory, such that if the membrane thickness of the cell is

more than %10 of the curvature radius of the membrane, then the cell membrane

is modeled by shell theory and bending stiffness of the cell membrane is considered,

otherwise membrane theory is used for modeling [23]. However, in the current work,

the membrane theory is used for modeling, since the membrane of the cell is considered

to be comprised of phospholipid molecules and other components of the membrane

plus the cyteskeleton underneath the membrane are ignored. Therefore, the behavior

of the cell membrane is better modeled by using membrane theory. That means, the

bending stiffness of the membrane is ignored and the normal forces to the membrane

are tolerated as in-plane stresses. As a novelty and since the influence of the receptor

presence on the adhesion and deformation of the cell has not been sufficiently studied,

in the present work the effect of the presence of the receptors on the areal dilation of

the membrane is addressed through the introduction of spontaneous areal dilation.

The conception of spontaneous areal dilation affects the material behavior of the

membrane through the proposed strain energy function. According to the mobility of

the receptors on the membrane and the electrostatic characteristics of the receptors

and ligands, the migration of the receptors on the membrane is considered to be

under the influence of receptor-receptor and receptor-ligand interactions. Therefore,

a diffusion model is developed, which governs the distribution of the receptors on

the membrane. The notation and terminology used in the following are standard in

differential geometry of surfaces (see [12, 31, 47]).

2.1.1 Constitutive equation of the cell membrane

Since the cell is deformable, the constitutive response of the material to the exter-

nal loads influences the equilibrium condition of the body, therefore the constitutive
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strain energy as the parameter, which determines the stress within the hyperelastic

membrane material has a significant importance. As mentioned in chapter 1 the pre-

vious work in the literature shows that the phospholipid molecules as the dominant

component of the membrane are closely held together by the non-covalent interac-

tion, which grants sufficient lateral freedom to the molecules to possess a fluid-like

behavior in the surface of the cell membrane. Therefore the characteristic behavior

of the cell membrane in dilation and distortion is mostly close to the behavior of the

fluid, which means that the areal dilation of the membrane is energetically expensive,

however the membrane possesses a small resistance to the distortion. Therefore, a

fluid-like strain energy function is proposed to approximate the mechanical behavior

of the cell membrane. This strain energy accounts for the resistance of the fluid-

like membrane to the in-plane dilation, however is insensitive to any distortion in

the membrane. Additionally, since the deformation response of the cell membrane is

modeled by membrane theory, the bending stiffness of the membrane is ignored and

the normal forces to the membrane are tolerated by the in-plane stresses. The cell

membrane is modeled as a compressible, isotropic fluid surface, where its symmetry

group includes every rotation about an axis normal to the membrane surface.

As mentioned before, in the present work three different configurations are defined

as reference, natural and spatial configurations to describe the geometry of the cell

in various stress and deformation conditions. As a physical characteristic, a body in

continuum mechanics occupies regions of Euclidean space at time t. The reference

configuration is defined as a fixed region that a body occupies in the Euclidean space

[9, 32]. The reference configuration is also referred to as undeformed configuration,

which is associated with F = 1, where F denotes the deformation gradient and 1 is

the surface identity tensor. Therefore the reference configuration roles like the origin

for measurement of the deformation in the body. The spatial configuration is defined

as the region that a body occupies in the Euclidean space at any time t, which is also

named as deformed configuration [9,32]. It is notable that, the reference configuration

is not usually defined for the analysis of fluid, since in the case of an open system of

a fluid in flow (control volume) there is no fixed amount of a fluid and we are more

interested in the flow of a fluid in time and space. However, in the case of a closed

system of a stationary fluid without flow, the reference configuration of the fluid is

definable and useful [33]. Therefore a fluid-like cell membrane can be considered as a

closed system of a fluid without flow, for which the reference configuration is defined

here. Due to presence of the receptors on the cell membrane, in the current work
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a third configuration is considered as natural configuration, which is defined as the

configuration of the body in which the strain energy function is minimized. In other

words, in natural configuration the stress tensor in all representation forms of Cauchy,

first and second Piola stresses vanish and therefore this configuration is also referred

to as the stress-free configuration [9, 32]. The natural configuration is considered as

the origin for measurement of stresses in the body and usually coincides with the

reference configuration, however this coincidence is not the case here.

According to the discussion above, consider a cell in the absence of receptors, the

reference configuration of the cell is defined after consideration of the receptors on

the membrane, such that the membrane is constrained to remain undeformed. The

natural configuration as the stress-free configuration, is described after the constraint

on the reference configuration is removed and therefore the cell deforms due to the

presence of the receptors and releases the existing membrane stress. The cell is then

inflated by an incompressible fluid to avoid any possible compressive stresses in the

membrane. The discussed configurations are schematically shown in Fig.2.1, where

χ, χsp and χe respectively denote the injective immersions of motions between every

two configurations of the reference-spatial, reference-natural and natural-spatial.
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Referential configuration

Natural configuration

Spatial configuration

χ

χsp
χe

Figure 2.1: Referential (undeformed), natural (stress-free) and spatial (deformed)
configurations and related deformation gradients.

In accordance to the definitions of three configurations and since in the theory

of nonlinear elasticity the strain energy function depends on the elastic deformation

gradient [33], here the fluid-like strain energy of the cell membrane is defined as

ψ = ψ̃(Fe), where the elastic deformation gradient is Fe = Grads(χe) and Grads(·)
denotes the surface gradient operator in the referential form. By definitions of the

referential, natural and spatial configurations three deformation gradients are related

as
Fsp = oAα ⊗Aα, Fe = aβ ⊗ oA

β =⇒

F = FeFsp = aα ⊗Aα,
(2.1)

where the deformation gradient is F = Grads(χ), the spontaneous deformation gra-

dient is Fsp = Grads(χsp), oAα and oA
β are respectively covariant and contravariant

bases of the natural configuration and aα is covariant basis of the spatial configura-

tion. Since the constitutive equation of the strain energy ψ̃ is required to be invariant



14

under the change of frame

ψ = ψ̃(Fe) =⇒ ψ∗ = ψ̃(F∗
e), (2.2)

where according to the transformations of the scalar field of strain energy ψ and

deformation gradient tensor Fe under the change in frame, respectively as ψ∗ = ψ

and F∗
e = QFe, for all rotation tensors Q

ψ∗ = ψ̃(F∗
e) =⇒ ψ = ψ̃(QFe). (2.3)

Since the rotation tensor Q is arbitrary we are at liberty to choose Q = RT
e , where

Re is the orthogonal tensor in polar decomposition of the elastic deformation gradient

Fe = ReUe, such that Ue is the positive-definite symmetric tensor called elastic right

stretch tensor that transforms a vector in natural configuration to a vector in the

same configuration. It is notable that the orthogonal tensor Re acts between natural

and spatial configurations such that RT
eRe = ReR

T
e = 1. Therefore,

ψ = ψ̃(QFe) = ψ̃(RT
eReUe) = ψ̃(Ue) = ψ̃(

√
Ce) = ψ̆(Ce), (2.4)

where Ce = U2
e = FTe Fe is the elastic right Cauchy-Green deformation tensor that

acts on a vector in natural configuration and maps it to a vector in the same config-

uration. Therefore, from (2.3), and (2.4), the consideration of the frame-indifference

(objectivity) for the strain energy requires that ψ̃ is a function of elastic deformation

gradient Fe by means of the elastic right Cauch-Green deformation gradient Ce

ψ = ψ̃(Fe) =⇒ ψ = ψ̆(Ce). (2.5)

From the representation theorem of an isotropic scalar function of a tensor [33], the

strain energy of the membrane with isotropic fluid characteristic is dependent on only

one principle invariant, J2
e = detCe, where elastic areal dilation Je governs the areal

dilation of the membrane between spontaneous and spatial configurations, therefore

ψ = ψ̆(Ce) = ψ̀(detCe) = ψ̀(J2
e ) = ψ̂(Je). (2.6)

Also from (2.1)3, J = JeJsp, where J =
√
detC is the areal dilation measures the dila-

tion of the area between the reference and spatial configurations and Jsp =
√

detCsp
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denotes the spontaneous areal dilation, that relates the dilation of the area between

the reference and natural configurations. Also C = U2 = FTF and Csp = U2
sp =

FTspFsp are respectively the right Cauchy-Green deformation and spontaneous right

Cauchy-Green deformation tensors in reference configuration that act on a vector in

that configuration and transfer it to a vector in the same configuration. Therefore for

an isotropic fluid-like cell membrane the strain energy per unit volume of the natural

configuration is

ψ = ψ̂(Je) = ψ̂(JJ−1
sp ). (2.7)

Since a continuous function can be represented in the form of a polynomial of order

n when n → ∞, here the strain energy function ψ̂ is represented in that form. This

constitutive function has to satisfy some constitutive restrictions, which are physically

admissible and mathematically convenient as: 1) the constitutive relation of the strain

energy must be frame-indifferent, 2) the strain energy must satisfy the dissipation

inequality, 3) natural (stress free) configuration happens at Je = 1 (J = Jsp), 4) an

increase in a component of the strain should leads to an increase in the corresponding

component of the stress and 5) extreme strain should be maintained by the infinite

stress (see [3,41]). It is worth noting that the constitutive relation of the strain energy

function ψ̂(Je) as a constitutive relation for a scalar function of a scalar variable

Je satisfies the frame-indifference requirement as discussed in (2.5) and (2.6). The

compatibility of the strain energy function ψ̂(Je) with the physics laws are discussed

later. The condition of Je = 1 (J = Jsp) is associated with the fact that natural

configuration is introduced separately here from reference configuration, such that the

membrane in natural configuration is dilated due to the presence of the receptors as

J = Jsp. According to the definition of the natural configuration as the configuration

in which the strain energy is minimized and therefore the stress vanishes, the necessary

and sufficient conditions for the first restriction are

∂ψ̂(Je)

∂Je
|Je=1 = 0,

∂2ψ̂(Je)

∂J2
e

|Je=1 ≥ 0. (2.8)

The second restriction means that the stress as a function of the strain tensor should

be a monotonically increasing. For a hyperelastic material in which stress tensor func-

tion is obtained as the derivative of a scalar function with respect to the deformation

gradient, the monotonic stress function requires the convexity of the strain energy

function under any arbitrary deformation (∀Je). From the definition of the convexity,
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it is obtained that scalar strain function is convex if and only if for all Je

∂2ψ̂(Je)

∂J2
e

≥ 0. ∀Je (2.9)

Considering the general form of the ψ̂ as the polynomial of order n

ψ = ψ̂(Je) =

∞∑

n=1

(αn + βnJe)
n . (2.10)

Since the function ψ̂ is a continuous function the polynomial terms in (2.10) are basis

of the function ψ̂, means that the terms are linearly independent. Therefore, the

constitutive restrictions are applied to each term of (2.10) individually. In order to

have the natural configuration at J = Je = 1, from (2.8)1 and (2.10)

∂ψ̂(Je)

∂Je
|Je=1 =

∂

∂Je
|Je=1

∞∑

n=1

(αn + βnJe)
n =

=
∞∑

n=1

∂

∂Je
|Je=1 (αn + βnJe)

n = 0. (2.11)

That means
∂

∂Je
|Je=1 (αn + βnJe)

n = nβn(αn + βn)
n−1 = 0, (2.12)

which results into αn = −βn and therefore, (2.10) becomes

ψ̂(Je) =

∞∑

n=1

βn (Je − 1)n . (2.13)

Now with an analogous procedure, from (2.8)2 and (2.13)

∂2

∂J2
e
|Je=1 (βn (Je − 1)n) ≥ 0 =⇒

βn n(n− 1) (Je − 1)n−2 |Je=1 ≥ 0.
(2.14)

Therefore the strain energy function is obtained after application of first constitutive

restriction as

ψ̂(Je) =
∞∑

n=2

βn (Je − 1)n . (2.15)

The second constitutive restriction (2.9), which compels the strain energy function to
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be convex under any arbitrary motion (∀Je) should now be applied to (2.15), therefore

∂2

∂J2
e
(βn (Je − 1)n) ≥ 0 ∀Je =⇒

βn n(n− 1)(Je − 1)n−2 ≥ 0 ∀Je =⇒

n = {2, 4, 6, . . .}, βn > 0.

(2.16)

Consequently, the convex strain energy function per unit volume of the natural con-

figuration ψ̂ is obtained from (2.16)

ψ = ψ̂(Je) =

∞∑

n=2,4,6...

Kn (Je − 1)n , (2.17)

where Kn > 0 are material constitutive constants, defined as the energy per unit

volume of the natural configuration. For simplicity, in the current work only the first

term of the series is used to model the constitutive behavior of the cell membrane

ψ̂(Je) = Km (Je − 1)2 , (2.18)

where Km > 0 is the material constitutive constant representing the stiffness of

membrane to area dilation and is defined as the energy per unit volume of the natural

configuration.

2.1.2 Stress in the cell membrane

The strain energy ψ and Cauchy stress tensor T of an isotropic, compressible, viscus

fluid are governed by the constitutive equations of the form

ψ = ψ̃(ρ,L), T = T̃(ρ,L), (2.19)

where ρ is the density of the fluid, L = grads(v) is the velocity gradient tensor, v is

the velocity vector of the fluid and grads(·) denotes the surface gradient operator in

spatial configuration. It is notable that strain energy ψ̃ is measured per unit mass

and the Cauchy stress T̃ and density ρ are successively measured per unit length and

per unit area in spatial configuration. Since the constitutive equations are required

to be invariant under the changes of the frame (frame-indifference), it is obtained by
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the definition of the frame-indifference that

ψ̃(ρ,L) = ψ̃(ρ,D), T̃(ρ,L) = T̃(ρ,D), (2.20)

where the stretching tensor D is D = symL = 1
2
(L + LT ). This means that due to

the frame-indifference of the constitutive equation, the strain energy function ψ̃ and

Cauchy stress T̃ are dependent on the velocity gradient tensor L through stretching

tensor D

ψ = ψ̃(ρ,D), T = T̃(ρ,D). (2.21)

The Cauchy stress tensor of a viscous fluid can be divided into static (equilibrium)

stress tensor T̃eq and the viscous stress tensor T̃vis

T̃(ρ,D) = T̃eq(ρ, 0) + T̃vis(ρ,D), (2.22)

where the static Cauchy stress T̃eq is the stress in the fluid in the absence of flow,

however the viscous Cauchy stress T̃vis represents the stress in the fluid due to flow.

It is notable that viscous stress tensor T̃vis is a deviatoric (traceless) tensor. Since

the constitutive equation of the equilibrium Cauchy stress should be frame-indifferent

and from definition of the frame-indifference

Teq = T̃eq(ρ, 0) =⇒ QTeqQ
T = T̃eq(ρ,Q0QT ) =⇒

QTeqQ
T = T̃eq(ρ,Q0QT ) = T̃eq(ρ, 0) = Teq =⇒

QTeqQ
T = Teq.

(2.23)

Therefore the static Cauchy stress tensor must have a specific form of

T̃eq = −p̃eq(ρ)1, (2.24)

where 1 = PI is the identity tensor on the membrane tangent plane, I denotes the

identity tensor in three dimensional Euclidean space E3, P = I−n⊗n is the projection

tensor onto the membrane tangent plane, n is the normal vector to the membrane

tangent plane and p̃eq is the equilibrium pressure function. This pressure always act

inward and normal to any surface in fluid, which is represented as a negative sign in

(2.24). Therefore, the Cauchy stress tensor of an isotropic, compressible and viscous



19

fluid can be expressed from (2.22) and (2.24) as

T̃(ρ,D) = −p̃eq(ρ)1+ T̃vis(ρ,D). (2.25)

In addition the constitutive equation must satisfy the dissipation inequality

ρ
Dψ

Dt
−T ·D ≤ 0, (2.26)

where D(·)/Dt represents the material time derivative. It is notable that the strain

energy in (2.26) is defined per unit mass and T and ρ are respectively defined per

unit length and area in spatial configuration. From substitution of (2.21)1 and (2.25)

into (2.26)

ρ

(
∂ψ̃(ρ,D)

∂ρ
ρ̇+

∂ψ̃(ρ,D)

∂D
· Ḋ
)

−
(
−p̃eq(ρ)1+ T̃vis(ρ,D)

)
·D ≤ 0, (2.27)

where ˙(·) denotes the material time derivative. Using 1 ·D = trD = trL = div v and

the continuity equation
Dρ

Dt
+ ρ div v = 0, (2.28)

where tr(·) is the trace operator and div(.) denotes the divergence operator in the

spatial configuration, the dissipation inequality yields

(
p̃eq(ρ)− ρ2

∂ψ̃(ρ,D)

∂ρ

)
trD+ ρ

∂ψ̃(ρ,D)

∂D
· Ḋ− T̃vis(ρ,D) ·D ≤ 0. (2.29)

Since the inequality (2.29) must hold for all tensors Ḋ therefore, its coefficient must

be zero otherwise the inequality can be violated for different values of Ḋ in differ-

ent deformations. Hence ∂ψ̃(ρ,D)/∂D = 0, which results in ψ = ψ̃(ρ). Also, the

inequality must hold for all symmetric D, therefore without loss in generality D can

be replaced by aD for a > 0. Dividing by a

(
p̃eq(ρ)− ρ2

∂ψ̃(ρ)

∂ρ

)
trD− T̃vis(ρ, aD) ·D ≤ 0. (2.30)
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If a −→ 0, since T̃vis(ρ, 0) = 0, therefore

(
p̃eq(ρ)− ρ2

∂ψ̃(ρ)

∂ρ

)
trD ≤ 0. (2.31)

Since (2.31) must hold for all symmetric stretching tensor D, therefore

(
p̃eq(ρ)− ρ2

∂ψ̃(ρ)

∂ρ

)
= 0. (2.32)

The equilibrium fluid pressure is obtained as

p̃eq(ρ) = ρ2
∂ψ̃(ρ)

∂ρ
(2.33)

and from (2.30) and (2.32), the viscous Cauchy stress must satisfy

T̃vis(ρ,D) ·D ≥ 0. (2.34)

However, as mentioned above the fluid-like cell membrane is considered as a closed

system of fluid without flow and therefore equilibrium pressure in (2.24) and (2.33)

generates the only stress field in the membrane. Hence the viscous Cauchy stress in

(2.34) is not applicable to this work

T = T̃eq(ρ, 0) = −p̃eq(ρ)1 = −ρ2d ψ̃(ρ)
d ρ

1. (2.35)

The proposed strain energy in (2.18) is dependent on elastic areal dilation Je, therefore

(2.35) is required to be represented as a function of Je. From local form of the

conservation of mass law, the fluid-like membrane density in natural configuration ρN

is related to the density of the membrane in spatial configuration ρ by

ρ =
ρN
Je
, (2.36)

where ρN and ρ are successively defined as the mass per unit volume in natural and

spatial configurations. Hence the strain energy ψ̃(ρ) can be represented as

ψ = ψ̃(ρ) = ψ̃(J−1
e ) = ψ̌(Je), (2.37)
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where strain energy functions ψ̃ and ψ̌ are defined as the energy per unit mass. Also

from (2.36)

d ρ = −ρN
J2
e

dJe. (2.38)

Substitution of (2.37) and (2.38) into (2.35) yields

T = −ρ2d ψ̃(ρ)
d ρ

1 = ρN
d ψ̌(Je)

d Je
1. (2.39)

Finally the Cauchy stress tensor of the fluid-like cell membrane is obtained as

T = T̃eq(ρ) = −ρ2 d ψ̃(ρ)
d ρ

1 = d ψ̂(Je)
d Je

1 =⇒

T = T̂(Je) =
d ψ̂(Je)
d Je

1,
(2.40)

where ψ̂(Je) is the strain energy per unit volume of the natural configuration and T̂

is defined as the force per unit area of the spatial configuration. Now the proposed

fluid-like strain energy in (2.18) can be substituted into (2.40) to obtain the relation

for the Cauchy stress in the membrane

T̂(Je) = p̂m(Je)1, p̂m(Je) =
d ψ̂(Je)

dJe
= 2Km (Je − 1) , (2.41)

where p̂m(Je) is the membrane pressure function per unit spatial area.

2.1.3 Spontaneous areal dilation

Unlike previous work which did not acknowledge the influence of the presence of

receptors on area dilation, here an additional area dilation is introduced to consider

extra role of receptors in deformation of the cell membrane. Considering an area A on

the reference configuration in the absence of receptors, once N number of receptors

are present on the same area and the area is permitted to expand, it dilates to

A0 = A + ζN on natural configuration, where ζ denotes the additional area due to

the area of a single receptor (see Fig.2.2).
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Jsp Je

J

Referential area A Natural area A0 Spatial area a

Figure 2.2: Referential (undeformed), natural (stress-free) and spatial (deformed)
area elements and related area dilations [26].

The spontaneous area dilation is defined by the ratio of the two areas in natural

and reference configurations

Jsp =
dA0

dA
. (2.42)

It follows that the spontaneous area dilation, Jsp due to the presence of receptors

takes the form

Jsp =
d(A+ ζN)

dA
= 1 + ζ

dN

dA
= 1 + ζρr0 = 1 + ζJρr, (2.43)

where ρr0 and ρr are respectively the receptor densities on the reference and spatial

configurations. Therefore

Ĵsp(J, ρr) = 1 + ζJρr. (2.44)

The product Jρr is the pull-back receptor density to the reference configuration. It

is notable that (2.44) preserves the global area of the cell membrane under diffusion

of the receptors and in the absence of any elastic deformation.
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2.1.4 Binding force

In the current work the adhesion and deformation of the cell to the substrate is studied

by considering the equilibrium response of the membrane of the cell to the external

loads. The response of the cell membrane in the equilibrium condition is governed

by the constitutive behavior of the membrane material. A fluid-like constitutive

equation was proposed in previous section to model the behavior of the membrane.

That constitutive model was also improved by consideration of the newly introduced

spontaneous areal dilation, which accounted the influence of the presence of receptors

on the areal dilation of the membrane. A constitutive relation was then proposed for

the spontaneous areal dilation, which depended on receptor density and local areal

dilation. The membrane of the cell experiences three types of distributed forces on its

surface. These three surface forces include 1) binding force, which is the interaction

between mobile receptors on the membrane and fixed ligands on the substrate, 2) fluid

pressure force, which is the normal force generated by the pressure of the enclosed

fluid inside the cell and is applied to the cell membrane in outward normal direction,

3) surface reaction force, which is a surface force applied in inward normal direction

to the membrane along the contact region and is induced by the reaction pressure of

the substrate.

In the present work the adhesion between a cell membrane and a substrate is me-

diated by transmembrane integrin proteins (called also as receptors) and another type

of proteins on the substrate called as fibronectins (or generally as ligands). Receptors

the same as phospholipid molecules show a free lateral movement on the membrane,

while ligands are fixed on the substrate. The electron micrograph shows that each

receptor is comprised of two subsets, which in overall carries five divalent cations

Ca+2 orMg+2 on the head (see figure 19-64 in [2]). However ligands have a nonpolar

structure, which means there is a weak, short-range noncovalent interaction between

one receptor and one ligand. Therefore the reason that the mobile receptor proteins

on the membrane interact, with high affinity, with the fixed ligand proteins on the

substrate is due to the formation of a set of weak, noncovalent bonds and van der

Waals attractions. Since each individual bond between one receptor and a ligand is

weak, therefore many weak bonds must be formed simultaneously inside one bond in

order to construct a strong interaction between a receptor and a ligand [1,2] (see figure

3-37 in [2]). Formation of a tight receptor-ligand bond as a set of weak noncovalent

(physical) interaction, instead of one strong covalent (chemical) interaction, is consis-
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tent with the temporary behavior of the receptor-ligand bond, which allows the bond

to break gradually. This consideration of receptor-ligand interaction is also consistent

with the microscopic observation in which a binding is established, when one ligand

fits precisely into cavity of a receptor like a hand into a glove (see figure 3-37 in [2]).

Therefore we adopt the proposed approach by Alberts et al. [1,2], which was used by

Liu et al. [40] to model one strong receptor-ligand bond with high affinity, as a set of

number of noncovalent weak sub-bonds. Regarding above discussion a binding force

is associated to polarization of a nonpolar ligand molecule in the electrostatic field of

a charged receptor. In other words a charge-induced dipole interaction is considered

here to model a receptor-ligand binding.

It can be shown that the free energy function of an ion-induced dipole (ion-

nonpolar molecule) interaction, between one ion, holding total charge of Q = Ze,

(where Z is the ionic valency and e = 1.602× 10−19C is the elementary charge) and

one nonpolar molecule is [38]

W̃ (r) = −1

2
uindE, (2.45)

where uind = αE is the induced dipole in nonpolar molecule due to the external

electrostatic field E of charges, α = α0+u
2
ind/3kT is the total polarizability coefficient,

α0 denotes the polarizability of the nonpolar molecule, k = 1.381×10−23 JK−1 is the

Boltzmann’s constant and T represents the absolute temperature. The electrostatic

field E of a charge Q in an electrolyte is obtained from the free energy for the Coulomb

interaction given by [38]

φ̃(r) =
Qe−Kr

4πǫ0ǫr
, (2.46)

where ǫ denotes the dimensionless relative permittivity (static dielectric constant),

ǫ0 = 8.854 × 10−12C2J−1m−1 is the permittivity of free space, K represents the

inverse of the Debye length and r is the distance. Therefore the electrostatic field

Ẽ(r) of the charge Q in the electrolyte is

Ẽ(r) = −d φ̃(r)

d r
. (2.47)

From (2.46) and (2.47)

Ẽ(r) =
Ze(Kr + 1)e−Kr

4πǫ0ǫr2
. (2.48)

By substitution of (2.48) into (2.45), the free energy function of the ion-induced dipole
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interaction becomes

W̃ (r) = −1

2
α
(Ze)2(Kr + 1)2e−2Kr

(4πǫ0ǫ)2r4
. (2.49)

Now, if assume that the receptor-ligand interaction is always in vertical direction the

derivative of the free energy function of the ion-induced dipole (2.49) with respect to

the distance yields the binding force between one receptor and a ligand

Fb =
dW (r)

dr
(−k), (2.50)

where k is a unit vector in vertical direction. If Nb shows the number of weak

noncovalent sub-bonds, which form in a receptor-ligand interaction, (2.49) and (2.50)

yields

Fb = −C(Kr + 1)
(
(Kr + 1)2 + 1

) e−2Kr

r5
k, (2.51)

where distance r = h+h0, such that h0 is the gap between the cell and substrate, h is

the vertical distance of any point on the membrane from the region of the membrane

in contact with substrate, C = αNb(Ze)
2/(4πεoε)

2. Since this work is based on the

continuum approach, therefore a similar concept is considered for the binding force,

in which the number of receptors on any infinitesimal area element is assumed to be

dense enough, such that there is always sufficient number of receptors on the area

element regardless of tiny size of that. Hence an infinitesimal area element d a with

local receptor density as ρr is considered on the spatial configuration, where exist

ρr d a number of receptors. Considering the continuum approach for the receptor-

ligand interaction, if a one-to-one interaction is also assumed between a receptor and

a ligand, then the binding force fb per unit spatial area is defined between the cell

and substrate, using (2.51), as

fb =
dFb
d a

= −fbk, fb = C(Kr + 1)
(
(Kr + 1)2 + 1

) e−2Kr

r5
ρrl, (2.52)

where ρrl is the density of actively interacting receptors with ligands. In developed

binding force model the receptors on the infinitesimal area with density ρr is treated

as a point charge. Based on the assumption of one-to-one interaction between one

receptor and a ligand, the density of actively interacting receptors with ligands is
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determined by

ρrl =




ρr ρr ≤ ρl

ρl ρr > ρl,
(2.53)

where ρl denotes the density of the ligands. That means only the receptors on the

closest layer of the cell membrane interact with the ligands, while other receptors are

shielded and do not participate in any interaction.

The projection tensor is now used to obtain the tangential and normal components

of the binding force fb to the membrane surface. The tangential projection tensor is

a linear mapping from a vector space to a vector space such that the mapping is

defined by the tensor product of a unit vector by itself. Assume that u is a unit

vector, then the tangential projection tensor, u⊗u maps any arbitrary vector v into

the projection vector (u · v)u along the direction of u. Similarly, normal projection

tensor, (I−u⊗u), maps any arbitrary vector v into the projection v− (v ·u)u onto

the plane perpendicular to the unit vector u. Consider aα and aα, where α = {1, 2},
respectively as the covariant and contravariant basis of the cell membrane in spatial

configuration. The tangential projection tensor P‖ to the tangential plane of the

membrane surface is defined as

P‖ = aα ⊗ aα (2.54)

and therefore the projection of the binding force on the tangential plane to the mem-

brane surface is

f tb = P‖fb = (aα ⊗ aα)fb. (2.55)

The normal projection tensor P⊥ to the perpendicular plane to the membrane surface

is

P⊥ = I− (aα ⊗ aα) = (n⊗ n) (2.56)

and therefore the projection of the binding force in the normal direction to the mem-

brane surface, n, is

fnb = P⊥fb = (I− aα ⊗ aα) fb = (n⊗ n)fb. (2.57)

2.1.5 Diffusion of the receptors

As mentioned before, in the current work the adhesion of the cell to the substrate

is mediated by interaction between the transmembrane integrin proteins and ligand

proteins on the substrate. Receptors the same as phospholipid molecules show a free
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lateral movement on the membrane, while ligands are fixed on the substrate. In order

to study the migration of the receptors on the cell membrane, we consider the first law

of the physics for the total number of receptors. Since the total number of receptors

on the membrane is constant

DN
D t

= 0 =⇒

D
D t

∫
dN = D

D t

∫
s
ρr d a =

∫
s

D
D t

(ρr d a)

=
∫
s

(
D ρr
D t

+ ρr div vr
)
d a = 0,

(2.58)

where vr denotes the velocity of receptor migration on the spatial configuration of

the membrane. From localization theorem if (2.58) is valid for every surface s, then

the continuity equation of the receptor density in spatial configuration is

D ρr
D t

+ ρr divs vr =
∂ρr
∂t

+ divs(ρrvr) = 0, (2.59)

where divs(·) = (·),α · aα is the spatial surface divergence operator. Considering a

quasistatic process in which the time dependency of receptor density is ignored, the

continuity equation of the receptor (2.59) becomes

divs(ρrvr) = 0, (2.60)

where based on the definition of the flux, ρrvr is the flux vector of the receptors in

spatial configuration of the cell. In order to propose a constitutive equation for the

flux vector of the receptors, the concept and logic of the receptor migration on the

cell membrane should be studied in more details. As discussed the electron micro-

graph shows that each receptor is comprised of two subsets, which in overall carries

five divalent cations Ca+2 orMg+2 on the head [2]. The presence of the electrostatic

charges on the integrins induces an electrostatic repulsive interaction between inte-

grins, which attempts to push them to the farthest distance possible from others. The

ligand proteins are nonpolar molecules, which are polarized within the electrostatic

field of the charged integrins. This charge-induced dipole interaction between recep-

tors and ligands also controls the migration of the receptors on the membrane by

attracting the receptors toward the substrate. Consequently, the diffusion and final

distribution of the receptors on the membrane are affected by the receptor-receptor
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and receptor-ligand interactions.

In this work, the flux of receptors due to the receptor-receptor interaction is ap-

proximated by the Fick’s law, which is a linear constitutive equation with respect to

the gradient of receptor density

jr = −D grads(ρr), (2.61)

where D denotes the Fick’s law coefficient, which is taken to be a constant and

grads(·) = (·),α ⊗ aα is the surface gradient operator on the spatial configuration.

Fick’s law asserts that the flux is proportional to the gradient of the receptor density,

such that, receptors diffuse from high density to low density. The tangential compo-

nent of the receptor-ligand interaction along the tangential plane to the membrane

surface is considered to drive the receptors toward the substrate and consequently

induce the diffusion of the receptors on the membrane. Therefore a constitutive

equation is proposed based on the role of binding force in diffusion of the receptors,

in which receptor flux is dependent on the tangential component of the binding force,

f tb (see (2.55)), as

jb =MP‖fb, (2.62)

where M is the receptor mobility constitutive coefficient associated to the receptor-

ligand binding traction. By presenting two constitutive equations, jr and jb, the flux

filed of the receptors ρrvr is described as

ρrvr =MP‖fb −D grads(ρr). (2.63)

Since any constitutive equation has to satisfy the laws of physics, the proposed relation

in (2.63) is required to satisfy the continuity equation in (2.60), which guarantees the

conservation of receptors locally. Therefore the continuity equation of the receptor,

(2.60), after substitution of the constitutive relation for receptor flux becomes

divs(ρrvr) = divs
(
MP‖fb −D grads(ρr)

)
= 0, (2.64)

which implies

MP‖fb −D grads(ρr) = C, (2.65)

where C is a constant vector. The proposed constitutive models are presented in

Table 2.1 in summary.
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Table 2.1: Summary of the developed models, which govern the deformation of the
cell and diffusion of the receptors on the membrane.

Models Constitutive equations Equation

Full strain energy ψ = ψ̂(Je) =
∑∞

n=2,4,6...Kn (Je − 1)n , Kn > 0 (2.17)

Strain energy (first term) ψ̂(Je) = Km (Je − 1)2 , Km > 0 (2.18)

Cauchy stress T̂(Je) = 2Km (Je − 1)1 (2.41)

Spontaneous areal dilation Ĵsp(J, ρr) = 1 + ζJρr (2.44)

Binding force fb = C(Kr + 1) ((Kr + 1)2 + 1) e
−2Kr

r5
ρrl k (2.52)

Diffusion equation MP‖fb −D grads(ρr) = C (2.65)

2.2 Implementation of the models

Now, the proposed models are used to study the constitutive behavior of a cell mem-

brane under the application of the external loads in equilibrium condition, while the

diffusion equation governs the migration of the receptors on the membrane. The

implementation of the developed models in a symmetrical configuration is addressed

in this section. The reference (undeformed) and spatial (deformed) configurations of

a symmetrical cell are defined mathematically by introducing relative mappings to

describe the geometry of the cell in various stress and deformation conditions. The

curvilinear bases for both configurations are defined, using the introduced mappings

and deformation gradients are obtained relatively. According to the nonlinear elas-

ticity, the Cauchy stress tensor for the isotropic fluid membrane is dependent on an

invariant of the elastic right Cauchy-Green deformation tensor (see (2.40) and (2.41)).

This means that, the stress field of the cell membrane can be obtained by defining the

the mappings of the configurations. Then the stress function and loading equations

are used into the equilibrium equation of the cell membrane to predict its behavior.

It is worth mentioning that, the referential representation of the equilibrium equation

is chosen in this work.
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2.2.1 Geometry and deformation of the cell

Here the cell membrane is modeled by membrane theory, considering only the in-plane

dilation stiffness, while neglecting the bending stiffness. In other words the tractions

in a membrane are lying in the tangent plane to the membrane and do not have

any components normal to the tangent plane. Consider that Ω is an open subset

of the real plane, Ω ⊂ R
2, and X̂ denotes an smooth enough, injective immersion

X̂ : Ω −→ ω, where

ω = X̂(Ω) (2.66)

is a two dimensional surface embedded into a three dimensional Euclidean space,

ω ⊂ E
3 (see Fig.2.3). The injective characteristic of the immersion X̂ guarantees that

each point X ∈ ω can be unambiguously written as

X = X̂(X), X ∈ Ω (2.67)

where the two coordinates Xγ for γ = {1, 2} of X = (X1, X2) are called the convected

coordinates of X. The Greek indices in this work varies as the set {1, 2} and the

summation convention is applied.

Considering a cell membrane with spherical reference configuration of radius R,

the polar coordinate system is used to define the mapping of the configuration, since

the configuration is symmetric in both circumferential and meridional directions.

Therefore, the reference configuration ω ⊂ E3 is defined by the injective immersion

X̂ : Ω → ω, which determines the position of any material point X = (φ, θ) in the

reference configuration as

X = X̂(φ, θ) = RER(φ, θ), (2.68)

where the standard spherical coordinates {R, φ, θ} are the curvilinear coordinates

of the point X ∈ ω ⊂ E
3, with the associate orthonormal spherical (polar) basis

{ER(φ, θ),Eφ(φ, θ),Eθ(θ)} for 0 ≤ φ ≤ π and 0 ≤ θ < 2π. The gradient of the

immersion X̂ in (2.68) generates a tensor of second order, which can be represented

as a matrix of 3× 2.

∇X̂(φ, θ) =
[

∂X̂
∂φ
, ∂X̂

∂θ

]
, (2.69)

where ∇(·) denotes the gradient operator. The point X ∈ ω represents a posi-

tion in three dimensional Euclidean space, which is comprised of three components
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X1(φ, θ), X2(φ, θ) and X3(φ, θ), while the immersion X̂(φ, θ) is a mapping from the

real plane R
2, which depends on two independent curvilinear coordinates φ and θ.

Therefore, two columns of the gradient tensor in (2.69) present the partial derivatives

of the injective immersion X̂ with respect to the independent curvilinear variables

φ and θ, which are linearly independent due to the immersion characteristic of the

mapping X̂.

2nd

2ndd

R
2

Ω

X

e1

e2

X̂(X)

X̂(X)

X

E
3

E
3

ω

ω

A1

A2

A1

A2

R r0φ

Figure 2.3: Reference (undeformed) configuration mapped by injective immersion X̂

and associated covariant and contravariant bases.

Since the partial derivatives of the immersion X̂ are linearly independent, they

can be considered as the curvilinear basis of the tangential plane to the membrane
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surface (See Fig.2.3), hence

Aα(φ, θ) =
∂X̂(φ, θ)

∂θα
, (2.70)

where θ1 = φ, θ2 = θ and Aα denotes the covariant curvilinear basis of the tangential

plane to the membrane surface at point X = X̂(φ, θ). From (2.68), (2.70) the two

covariant basis are

A1(φ, θ) =
∂X̂(φ,θ)
∂φ

= ∂
∂φ

(RER(φ, θ)) = R∂ER(φ,θ)
∂φ

= REφ(φ, θ),

A2(φ, θ) =
∂X̂(φ,θ)
∂θ

= ∂
∂θ

(RER(φ, θ)) = R∂ER(φ,θ)
∂θ

= R sinφEθ(θ),

(2.71)

where ∂ER/∂φ = Eφ(φ, θ) and ∂ER/∂θ = sin φEθ(θ). It is notable that, each co-

variant basis vector Aα is tangent to the α-th coordinate line in ω, passing through

point X = X̂(φ, θ), where the coordinate line in ω is defined as the image by X̂ of

the points in Ω that located on the line parallel to the Cartesian basis eα passing

through (φ, θ) ∈ R
2 (See Fig.2.3). Therefore, the covariant basis A1 and A2 are not

generally orthogonal. Considering the covariant basis Aα defined in (2.70) and (2.71),

the contravariant curvilinear basis of the tangential plane to the membrane surface

at point X = X̂(φ, θ) are defined and denoted by Aα such that

Aα ·Aβ = δαβ (2.72)

where, δαβ is the Kronecker delta such that

δαβ =





1 α = β

0 α 6= β.
(2.73)

It is notable that according to the definition of the dot product of two vectors, the

contravariant basis, (2.72), implies that contravariant basisAα and covariant basisAβ

are orthogonal if α 6= β (see Fig.2.3). In order to obtain the contravariant basis, we

need first to define the metric tensor at point X = X̂(φ, θ) as a symmetric, positive

definite tensor by ∇X̂T (φ, θ)∇X̂(φ, θ). Therefore the covariant components of the

metric tensor at point X = X̂(φ, θ) become

Aαβ(φ, θ) = Aα(φ, θ) ·Aβ(φ, θ). (2.74)



33

Considering the covariant components of the metric tensor the contravariant compo-

nents of the metric tensor at point X = X̂(φ, θ) is obtained as the components of the

inverse matrix

[Aαβ(φ, θ)] = [Aαβ(φ, θ)]
−1, (2.75)

where the contravariant components of the metric tensor is related to the dot product

of the contravariant basis

Aαβ(φ, θ) = Aα(φ, θ) ·Aβ(φ, θ). (2.76)

Now using (2.71) and (2.74), the covariant components of the metric tensor are

A11 = A1 ·A1 = R2

A12 = A21 = A1 ·A2 = 0

A22 = A2 ·A2 = R2 sin2(φ)





=⇒ [Aαβ(φ)] =

[
R2 0

0 R2 sin2(φ)

]
. (2.77)

From (2.75) and (2.77)

[Aαβ(φ)] =

[
R2 0

0 R2 sin2(φ)

]−1

=

[
R−2 0

0 R−2 sin−2(φ)

]
. (2.78)

According to the role of contravariant component of the metric tensor Aαβ in cal-

culation of contravariant basis of the tangential plane to the membrane surface, the

contravariant curvilinear basis of the membrane surface at point X = X̂(φ, θ) is

obtained as

Aα(φ, θ) = Aαβ(φ)Aβ(φ, θ). (2.79)

Using (2.71), (2.78) and (2.79) the contravariant basis are

A1(φ, θ) = A11A1 + A12A2 = R−1Eφ(φ, θ),

A2(φ, θ) = A21A1 + A22A2 = (R sinφ)−1Eθ(θ),
(2.80)

Since X̂(φ, θ) is an immersion from a flat two dimensional real plane Ω ⊂ R
2 to a two

dimensional surface ω embedded in E
3, it is defined on only two independent variables

φ and θ and therefore there exists two covariant and contravariant curvilinear bases

respectively as A1, A2 and A1, A2, where the third covariant and contravariant bases
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are defined via cross product A3 = A3 = (A1×A2)/||A1×A2|| = (A1×A2)/||A1×
A2||.

Considering the deformed configuration of the cell, the cylindrical coordinate sys-

tem is used to define the mapping of the configuration, since it is symmetric in only

meridional direction. Therefore, the spatial configuration κ ⊂ E3 is defined by the

injective immersion x̂ : Ω → κ, which determines the position of a material point in

the spatial configuration as (see Fig.2.4)

x = x̂(φ, θ) = u(φ) i(θ) + h(φ)k, (2.81)

where the standard spherical coordinates {φ, θ} are the curvilinear coordinates of the

point x ∈ κ ⊂ E
3, with the orthonormal cylindrical basis {i(θ), j(θ),k} of the spatial

configuration for 0 ≤ φ ≤ π and 0 ≤ θ < 2π. The gradient of the immersion x̂ in

(2.81) generates a tensor of second order, which can be represented as a matrix of

3× 2

∇x̂(φ, θ) =
[

∂x̂
∂φ
, ∂x̂

∂θ

]
. (2.82)

This is due to, the point x ∈ κ represents a position in three dimensional Euclidean

space, which is comprised of three scalar components x1(φ, θ), x2(φ, θ) and x3(φ, θ),

while the immersion x̂(φ, θ) is a mapping from a real plane R2, which depends on two

independent curvilinear variables θα = {φ, θ} for α = {1, 2}. Therefore, two columns

of the gradient tensor in (2.82) present the partial derivatives of the injective immer-

sion x̂ with respect to the independent curvilinear variables θα, which are linearly

independent due to the immersion characteristic of the mapping x̂. Since the partial

derivatives of the immersion x̂ are linearly independent, they can be considered as

the curvilinear basis of the tangential plane to the membrane surface (See Fig.2.4),

hence

aα(φ, θ) =
∂x̂

∂θα
, (2.83)

where aα denotes the covariant curvilinear basis of the tangential plane to the mem-

brane surface at point x = x̂(φ, θ). From (2.81), (2.83) and by remembering that

θα = {φ, θ} for α = {1, 2}, the two covariant basis are

a1(φ, θ) =
∂x̂(φ,θ)
∂φ

= ∂
∂φ

(u(φ)i(θ) + h(φ)k) = u′(φ)i(θ) + h′(φ)k,

a2(φ, θ) =
∂x̂(φ,θ)
∂θ

= ∂
∂θ

(u(φ)i(θ) + h(φ)k) = u(φ)∂i(θ)
∂θ

= u(φ)j(θ),

(2.84)
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where ()′ = d()/dφ and ∂i/∂θ = j(θ).
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Figure 2.4: Spatial (deformed) configuration mapped by injective immersion x̂ and
associated covariant and contravariant bases.

It is notable that, each covariant basis vector aα is tangent to the α-th coordinate

line in κ, passing through point x = x̂(φ, θ), where the coordinate line in κ is defined

as the image by x̂ of the points in Ω that located on the line parallel to the Cartesian

basis eα passing through (φ, θ) (See Fig.2.4). Therefore, the covariant basis a1 and a2

are not generally orthogonal. Considering the covariant basis aα defined in (2.83) and

(2.84), the contravariant curvilinear basis of the tangential plane to the membrane

surface at point x = x̂(φ, θ) are defined and denoted by aα such that

aα · aβ = δαβ . (2.85)
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It is notable that according to the definition of the dot product of two vectors, the

definition of the contravariant basis, (2.85), implies that contravariant basis aα and

covariant basis aβ are orthogonal where, α 6= β (see Fig.2.4). Also the covariant and

contravariant basis are identical, aα = aα, if the coordinate lines are perpendicular.

In order to obtain the contravariant basis, we need to define the metric tensor at point

x = x̂(φ, θ) as a symmetric, positive definite tensor by ∇x̂T (φ, θ)∇x̂(φ, θ). Therefore

the covariant components of the metric tensor at point x = X̂(φ, θ) become

aαβ(φ, θ) = aα(φ, θ) · aβ(φ, θ). (2.86)

Considering the covariant components of the metric tensor the contravariant compo-

nents of the metric tensor at point x = x̂(φ, θ) is obtained as the components of the

inverse matrix

[aαβ(φ, θ)] = [aαβ(φ, θ)]
−1, (2.87)

where the contravariant components of the metric tensor is related to the dot product

of the contravariant basis

aαβ(φ, θ) = aα(φ, θ) · aβ(φ, θ). (2.88)

Now using (2.84) and (2.86), the covariant components of the metric tensor are

a11 = a1 · a1 = u′2 + h′2

a12 = a21 = a1 · a2 = 0

a22 = a2 · a2 = u2





=⇒ [aαβ(φ)] =

[
u′2 + h′2 0

0 u2

]
. (2.89)

From (2.87) and (2.89)

[aαβ(φ)] =

[
u′2 + h′2 0

0 u2

]−1

=

[
(u′2 + h′2)−1 0

0 u−2

]
. (2.90)

According to the role of contravariant component of the metric tensor aαβ in calcu-

lation of contravariant basis of the tangential plane to the membrane surface, the

contravariant curvilinear basis of the membrane surface at point x = x̂(φ, θ) is ob-

tained as

aα(φ, θ) = aαβ(φ)aβ(φ, θ). (2.91)
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Using (2.84), (2.90) and (2.91) the contravariant basis are

a1(φ, θ) = a11a1 + a12a2 =
u′i+h′k
u′2+h′2

,

a2(φ, θ) = a21a1 + a22a2 =
j

u
.

(2.92)

Since x̂(φ, θ) is an immersion from a flat two dimensional real plane Ω ⊂ R
2 to a two

dimensional surface κ embedded in E
3, it is defined on only two independent variables

φ and θ and therefore there exists two covariant and contravariant curvilinear bases

respectively as a1, a2 and a1, a2, where the third covariant and contravariant bases

are defined via cross product a3 = a3 = (a1 × a2)/||a1 × a2|| = (a1 × a2)/||a1 × a2||.
Since the injective immersions of reference and spatial configuration X̂(φ, θ) and

x̂(φ, θ) are both differentiable at any points (φ, θ) ∈ Ω, the deformation gradient F is

defined between the reference and spatial configurations as (see Fig.2.5)

d x̂(φ, θ) = F(φ, θ) d X̂(φ, θ) =⇒ F(φ, θ) = Grad x̂(φ, θ). (2.93)

From definitions of the immersion (2.68) of the reference configuration and covariant

basis related to the same configuration (2.70)

d X̂(φ, θ) =
∂X̂(φ, θ)

∂θα
d θα = Aα(φ, θ) d θα. (2.94)

Similarly, from the defined immersion for spatial configuration (2.81) and the covari-

ant basis (2.83)

d x̂(φ, θ) =
∂x̂(φ, θ)

∂θα
d θα = aα(φ, θ) d θα. (2.95)

The deformation gradient is obtained from (2.93), (2.94) and (2.95) as

aα(φ, θ) d θα = F(φ, θ)Aα(φ, θ) d θα =⇒

aα(φ, θ) = F(φ, θ)Aα(φ, θ).
(2.96)
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Figure 2.5: Reference (undeformed) and spatial (deformed) configurations mapped
by injective immersions and the deformation gradient F between them.

Now in order to extract the deformation gradient F, do tensor product of both

sides of (2.96) by contravariant basis of reference configuration Aα

aα(φ, θ)⊗Aα(φ, θ) = F(φ, θ)Aα(φ, θ)⊗Aα(φ, θ) =⇒

F(φ, θ) = aα(φ, θ)⊗Aα(φ, θ),
(2.97)

where Aα ⊗ Aα = 1. By substituting the curvilinear basis, (2.80) and (2.84), the

deformation gradient becomes as:

F = (u′(φ) i(θ) + h′(φ)k)⊗ 1

R
Eφ(φ, θ) + u(φ) j(θ)⊗ 1

R sin(φ)
Eθ(θ). (2.98)
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The relations between bases of spherical coordinate and cylindrical coordinate systems

are obtained from Fig.2.6 as

ER(φ, θ) = sin(φ)E1(θ) + cos(φ)E3,

Eφ(φ, θ) = cos(φ)E1(θ)− sin(φ)E3,

Eθ(θ) = E2(θ),

(2.99)

where {E1(θ),E2(θ),E3} are the orthonormal cylindrical basis of the reference config-

uration. Use the relation between polar and cylindrical coordinate systems, (2.99), as

the substitution for polar basis in (2.98), the deformation gradient tensor F becomes

F = (u′i+ h′k)⊗ 1

R
(cos(φ)E1 − sin(φ)E3) + uj⊗ 1

R sin(φ)
E2. (2.100)

Consider the representation of the deformation gradient tensor F in terms of the

meridional and hoop (circumferential) principle stretches denoted respectively by λ(φ)

and µ(φ), yields

F(φ, θ) = λ(φ)l(φ, θ)⊗ L(φ, θ) + µ(φ)m(θ)⊗M(θ), (2.101)

where orthonormal vectors {l(φ, θ),m(θ)} and {L(φ, θ),M(θ)} successively denote

the principle directions at point x = x̂(φ, θ) on tangential plane to spatial κ and at

point X = X̂(φ, θ) on the tangential plane to the referential ω configurations, such

that normal vector to spatial configuration becomes n(φ, θ) = l(φ, θ) × m(θ) (see

Fig.2.4) and to the referential configuration is N(φ, θ) = L(φ, θ)×M(θ) (see Fig.2.6).
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Figure 2.6: The relation between bases in different coordinate systems.

From comparison of (2.100) and (2.101) and by using (2.84)1 and (2.99)2,3

λ =

√
(u′)2 + (h′)2

R
, µ =

u

R sinφ
, l =

u′i + h′k

λR
=

a1

λR
,

m = j, L = cos(φ)E1 − sin(φ)E3 = Eφ, M = E2 = Eθ.

(2.102)

The meridional principle direction, l, can be represented by the angle τ(φ) as illus-

trated in Fig.2.4

l(φ, θ) = cos(τ)i− sin(τ)k. (2.103)

The normal unit vector n is represented in terms of the cylindrical unit vectors i and

j using the definition of n as the cross product of tangential unit vectors l and m (see

Fig.2.4), therefore from (2.102)4 and (2.103)

n(φ, θ) = l×m = (cos(τ)i− sin(τ)k)× j =⇒

n(φ, θ) = sin(τ)i+ cos τk.
(2.104)

The first order nonlinear ordinary differential equations (ODEs), which govern the
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geometry of the cell membrane are established by comparison of (2.102)3 and (2.103)

as

u′(φ) = λ(φ)R cos(τ),

h′(φ) = −λ(φ)R sin(τ).
(2.105)

Before closing this subsection it is worth it to find another representation of the

contravariant basis of the spatial configuration. From (2.92) and (2.102)(1,3,4)

a1(φ, θ) =
l

Rλ
, a2(φ, θ) =

m

u
. (2.106)

Considering the developed constitutive equation for the spontaneous areal dilation

(2.44), the partial derivates of the strain energy function (2.18) are obtained as

ψ̂,Je = 2Km(JJ
−1
sp − 1), ψ̂,Jeλ = 2Km

(
µJsp−λµ2ζρr

J2
sp

)
,

ψ̂,Jeµ = 2Km

(
λJsp−λ2µζρr

J2
sp

)
, ψ̂,Jeρr = −2Km

(
JJ−1

sp

)2
ζ.

(2.107)

2.2.2 Equilibrium condition of the cell

It is notable that, the reference configuration is not usually defined for the analysis

of the fluid control volume, since in the case of an open system of a fluid in flow

(control volume) there is no fixed amount of a fluid and we are more interested in

the flow of a fluid in time and space. However, in the case of a closed system of a

stationary fluid without flow, the reference configuration of the fluid is definable and

useful [33]. Therefore a fluid-like cell membrane can be considered as a closed system

of a fluid without flow, for which the reference configuration is defined here. Due to

presence of the receptors on the cell membrane, in the current work a third config-

uration is considered as natural configuration, which is defined as the configuration

of the body in which the strain energy function is minimized. In other words, in

natural configuration the stress tensor in all representation forms of Cauchy, first and

second Piola stresses vanish and therefore this configuration is also referred to as the

stress-free configuration [9, 32]. The natural configuration is considered as the ori-

gin for measurement of stresses in the body and usually coincides with the reference

configuration, however this coincidence is not the case in here.

The physical quantities and relations can be represented in the form of any defined
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configuration, for instance the derived Cauchy stress tensor in (2.40) and (2.41) is a

representation of the stress distribution, defined as the force per unit area of the

spatial configuration, which generates a traction vector t as the force per unit area of

spatial configuration by acting on unit normal vector n to the spatial configuration,

such that the infinitesimal force d f becomes

d f = t d a = T̂n d a, (2.108)

where d a is an infinitesimal area of spatial configuration. The same infinitesimal

force d f can also be represented by the first Piola stress tensor P̂ as

d f = t d a = P̂N dA, (2.109)

where dA denotes the infinitesimal area in reference configuration and the first Piola

stress P is defined as the force per unit area of the reference configuration, such

that acts on the normal unit vector N to the reference configuration and generates

a traction force t as the force per area of spatial configuration. In the current work,

since the spatial configuration is well-defined by the injective immersion (2.81) and

curvilinear bases (2.84) and (2.92), therefore we can represent the stress tensor in

spacial form as the Cauchy stress T in order to use the equilibrium equation in

spatial form

divs T̂+ ρbm = 0, (2.110)

where the spatial surface divergence operator is well-defined by the contravariant

curvilinear basis of spatial configuration (2.92) as divs = (·),α · aα, such that (·),α
denotes the partial derivative with respect to the independent variable θα and bm

represents the body force and lateral traction per unit mass. However, we can neither

define the stress tensor as the force per unit area of the natural configuration, nor

express the equilibrium equation in natural form, since we did not introduce any im-

mersion, which geometrically defines the natural configuration and the corresponding

curvilinear basis. This means that the deformation gradient Fe is not geometrically

defined between natural and deformed configuration to express the stress tensor in

terms of the force per unit natural area. It is worth noting that based on the definition

of the natural configuration in where strain energy is minimized and consequently the

stress field vanishes, this configuration is the origin of stress measurements. Finally,

since in this work the reference configuration is defined for fluid-like cell membrane
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by (2.68) the referential representation of the equilibrium equation associated with

the first Piola stress P is used to study the deformation and equilibrium condition of

the cell membrane

Divs P̂+ Jb = 0, (2.111)

where Divs denotes the referential surface divergence operator, defined by contravari-

ant curvilinear basis of the reference configuration (2.80) as Divs = (·),α ·Aα and b

represents the body force and lateral traction per unit spatial area.

In order to use the referential representation of the equilibrium equation (2.111),

the first Piola stress tensor P̂ should be derived from Cauchy stress tensor (2.40)

P̂ = T̂F∗ = JT̂F−T , (2.112)

where F∗ = JF−T is called the cofactor of deformation gradient tensor F. Now, from

equation of deformation gradient (2.97)

F−T (φ, θ) = aα(φ, θ)⊗Aα(φ, θ). (2.113)

Now, from (2.71), (2.92) and (2.113) in accordance to the (2.102)2

F−T =
u′i+ h′k

u′2 + h′2
⊗ (u′i+ h′k) +

j

u
⊗ uj = (2.114)

=
l

λR
⊗ RL+

m

u
⊗R sin(φ)M =⇒

F−T = λ−1l⊗ L+ µ−1m⊗M.

Also the areal dilation J is defined as the ratio of the infinitesimal area in spatial

configuration d a, to the one in reference configuration dA

J(φ) =
d a

dA
. (2.115)

By the definition of the determinant operator, d a/ dA =
√
detC, where according to

the definition of the right Cauchy-Green deformation tensor C = FTF. Considering

the representation of the deformation gradient F in terms of the principle stretches
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and principle directions (2.101)

FT = λL⊗ l+ µM⊗m. (2.116)

Therefore, the right Cauchy-Green deformation tensor C can be represented by prin-

ciple stretches and directions, using (2.101) and (2.116)

C = (λL⊗ l+ µM⊗m) (λl⊗ L+ µm⊗M) =⇒

C = λ2L⊗ L + µ2M⊗M.
(2.117)

From (2.115), (2.117) and d a/ dA =
√
detC the areal dilation J becomes

J(φ) =
√
detC =

√
λ2(φ)µ2(φ) =⇒

J(φ) = λ(φ)µ(φ).
(2.118)

Therefore, by substitution for Cauchy stress T̂, F−T and areal dilation J from (2.40),

(2.114) and (2.118) into (2.112), the relation for the first Piola stress tensor of an

isotropic fluid-like membrane cell is obtained as

P̂ = λµd ψ̂(Je)
d Je

(λ−1l⊗ L + µ−1m⊗M) =⇒

P̂(φ, θ) = ψ̂,Je (µl⊗ L+ λm⊗M) .

(2.119)

where comma in subscript (·), represents partial derivative with respect to the sub-

script term.

The constitutive relation of first Piola stress, (2.119), must satisfy every physical

law, including the balance of linear momentum (2.111). The referential surface di-

vergence operator is well-defined by the contravariant curvilinear basis of reference

configuration (2.80) as Divs = (·),α ·Aα, such that (·),α denotes the partial derivative

with respect to the independent variable θα = {φ, θ} for α = {1, 2}. Therefore, from
definition of referential surface divergence operator

Divs P̂(φ, θ) =
(
P̂(φ, θ)

)
,α
·Aα = P̂,φ ·A1 + P̂,θ ·A2. (2.120)

By using the constitutive equation of first Piola stress (2.119) and contravariant curvi-
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linear basis of reference configuration (2.80)

Divs P̂(φ, θ) =

((
µψ̂,Je

)′
+ µψ̂,Je

cos φ

sin φ

)
l

R
+ µψ̂,Je

l′

R
− λ

R sinφ
ψ̂,Jei. (2.121)

In calculation of Divs P̂ in (2.121) the following relations were noted

M′(θ), m′(θ), (µ(φ)ψ̂,Je(φ)),θ , (λ(φ)ψ̂,Je(φ)),θ = 0,

M,θ(θ) = E2,θ(θ) = −E1(θ),

m,θ(θ) = j,θ(θ) = −i(θ).

(2.122)

Now, from (2.7), (2.18) and (2.44)

ψ = ψ̂(Je) = ψ̂(JJ−1
sp ) = ψ̂ (λ(φ), µ(φ), ρr(φ)) = ψ̂(φ). (2.123)

Therefore we can show from chain rule that

ψ̂′
,Je
(λ, µ, ρr) = ψ̂,Jeλλ

′ + ψ̂,Jeµµ
′ + ψ̂,Jeρrρ

′
r. (2.124)

From (2.121) and (2.124)

Divs P̂(φ, θ) = (2.125)

[
µψ̂,Jeλλ

′ + (ψ̂,Je + µψ̂,Jeµ)µ
′ +

(
ψ̂,Jeρrρ

′
r + ψ̂,Je

cos(φ)

sin(φ)

)
µ

]
l

R

+µψ̂,Je
l′

R
− ψ̂,Je

λ

R sin(φ)
i.

Considering the obtained relation for the divergence of first Piola stress (2.125),

the various types of external body force is addressed here. The membrane of the cell

experiences three types of distributed forces (body force and lateral traction) on its

surface. These three forces include 1) binding force, which is the interaction between

mobile receptors on the membrane and fixed ligands on the substrate, 2) fluid pressure

force, which is the normal force generated by the pressure of the enclosed fluid inside

the cell and is applied to the cell membrane in outward normal direction and 3)

surface reaction force, which is a surface force applied in inward normal direction

to the membrane along the contact region and is induced by the reaction pressure
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of the substrate. One of the external forces applied to the membrane of the cell is

the surface traction exerted by the enclosed fluid inside the cell. Since the fluid is

enclosed it is considered as a closed system in rest in which the Cauchy stress only

includes the static stress and the viscous stress of the fluid vanishes. The static stress

of the enclosed fluid is related to the temperature and density of the fluid through

some type of equation of state. Since any constitutive equation is required to satisfy

the frame-indifference condition, the same calculation process as in (2.23) shows that

the static Cauchy stress of the enclosed fluid has a scalar form, which only depends

on the spatial density of the fluid as

T̂(ρf ) = T̂eq(ρf) = pf(ρf )1, (2.126)

where pf is fluid pressure and ρf denotes spatial density of enclosed fluid inside

cell. Therefore the associated traction applied by the fluid pressure to the membrane

becomes:

ff(ρ) = pf(ρf )n. (2.127)

Since the weight of the enclosed fluid is ignored then the equilibrium condition of the

fluid yields (see (2.110))

div T̂(ρf) = grad pf(ρf ) = 0, (2.128)

which means the pressure of the fluid inside the cell is homogeneous. For compressible

fluid the pressure, pf , is a function of the fluid volume dilation Jf , however in the

present work we assume that the bulk stiffness of the enclosed fluid is much higher

than the membrane stiffness and the incompressibility assumption is appropriate for

the enclosed fluid inside the cell. The assumption of incompressibility of the enclosed

fluid implies that the pressure function becomes a constant Lagrange multiplier and

is not a constitutive quantity of the fluid.

The binding force caused by the interaction between receptors and ligands is one

of the distributed forces applied to the surface of the cell membrane. This force can

be resolved into two orthogonal components, along the tangential direction l on the

tangential plane to the membrane surface and in the normal direction. The tangen-

tial component of this interaction along the tangential plane to the membrane surface

drives the receptors toward the substrate and consequently induces the diffusion of

the receptors on the membrane. Therefore, the tangential component of the binding
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force was considered into diffusion equation of the receptors, (2.65), through intro-

duction of a constitutive equation for the flux vector of the receptors, caused by the

receptor-ligand interaction. The normal component of the binding force (receptor-

ligand) interaction fnb in (2.57) is directly subjected to the cell membrane and therefore

is involved in the deformation of the membrane for which is considered into the equi-

librium equation of the membrane (2.111). The normal component of binding force

is obtained using (2.52) and (2.57)

fnb = (n⊗ n)fb = (fb · n)n = (−fbk · n)n =⇒

fnb = −fb cos(τ)n.
(2.129)

The cell is supported by the substrate, which is assumed to be a rigid solid and

frictionless, hence the contact traction (force per unit area of the cell spatial config-

uration) fc is normal to the substrate and in the direction opposite to the normal of

the membrane surface. Therefore this traction is obtained as

fc = −pcn, (2.130)

where pc denotes the contact pressure defined as the force per unit area of the cell

spatial configuration. The resultant of body force and lateral tractions exerted on

the membrane due to receptor-ligand interaction, enclosed fluid pressure and contact

traction is

b = (fnb + pf − pc)n (2.131)

defined in (2.127), (2.129) and (2.130). Note that the angle τ in (2.129), between the

tangential direction l and horizontal direction (see Fig.2.4), becomes τ = π.

Now, by placing (2.125) and (2.131) into referential form of the equilibrium equa-

tion, (2.111),

[
µψ̂,Jeλλ

′ + (ψ̂,Je + µψ̂,Jeµ)µ
′ +
(
ψ̂,Jeρrρ

′
r + ψ̂,Je cos(φ) sin

−1(φ)
)
µ
] l

R
(2.132)

+R−1µψ̂,Jel
′ −R−1 sin−1(φ)ψ̂,Jeλi + λµ (pf − fb cos τ − pc)n = 0.

Considering the equation of equilibrium (2.132), we are now interested in projections

of the equation onto the tangential plane of the membrane surface and also normal

to that plane. The projection of the (2.132) onto the tangential plane is obtained by
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applying the projection tensor (2.54) to (2.132). It is notable that, since the reference

and spatial configurations, respectively defined by injective immersions (2.68) and

(2.81), are symmetric in hoop (circumferential) direction, the projection tensor P‖

on the membrane surface is only limited to the meridional direction. Hence, by

using the covariant and contravariant curvilinear bases of the tangent plane of spatial

configuration in (2.102)3 and (2.106)1

P‖ = a1 ⊗ a1 = Rλl⊗ l

Rλ
= l⊗ l. (2.133)

The projection of the equilibrium equation (2.132) in the normal direction to the

membrane surface is obtained by applying the projection tensor (2.56) to the equilib-

rium equation. However, we will first find the results of some dot products between

unit vectors, which are useful for the rest of calculations. From (2.103)

l′(φ, θ) = −τ ′ sin(τ)i− τ ′ cos(τ)k. (2.134)

Therefore

l · l′ = (cos(τ)i− sin(τ)k) · (−τ ′ sin(τ)i− τ ′ cos(τ)k) = 0. (2.135)

From (2.103) and (2.104)

l · i = cos(τ)i− sin(τ)k · i = cos(τ),

l · k = cos(τ)i− sin(τ)k · k = − sin τ,

l · n = l · (l×m) = 0.

(2.136)

Also, from (2.104) and (2.134)

n · i = (sin(τ)i+ cos τk) · i = sin(τ),

n · k = (sin(τ)i + cos τk) · k = cos(τ),

n · l′ = (sin(τ)i+ cos τk) · (−τ ′ sin(τ)i− τ ′ cos(τ)k) = −τ ′.

(2.137)

Now, the projection of the equilibrium equation (2.132) into tangential direction of

the membrane is obtained using the projection tensor (2.133) in accordance to the
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(2.135), (2.136) and (2.137)

[
µψ̂,Jeλλ

′ + (ψ̂,Je + µψ̂,Jeµ)µ
′ +
(
ψ̂,Jeρrρ

′
r + ψ̂,Je cos(φ) sin

−1(φ)
)
µ (2.138)

−λψ̂,Je cos(τ) sin−1(φ)
]
R−1 = 0,

where by (2.102)2 and (2.105)1

µ′(φ) =
λ cos(τ)− µ cos(τ)

sin(τ)
. (2.139)

Hence, another first order nonlinear ODE (see (2.105)) is obtained from (2.138) and

(2.139), which governs the variation of meridional principle stretch λ in the cell mem-

brane

λ′(φ) = (µψ̂,Jeλ)
−1 (2.140)

[
λψ̂,Je cos(τ) sin

−1(φ)− sin−1(φ)(ψ̂,Je + µψ̂,Jeµ)(λ cos(τ)− µ cos(φ))

−µ(ψ̂,Jeρrρ′r + ψ̂,Je cos(φ) sin
−1(φ))

]
.

The projection of the equilibrium equation (2.132) in the normal direction n to

the membrane surface is obtained by applying the projection tensor (2.56) to the

equilibrium equation

τ ′(φ) = (µψ̂,Je)
[
Rλµ(pf − pc − fb cos(τ))− λψ̂,Je sin(τ) sin

−1(φ)
]
. (2.141)

2.2.3 Initial fluid pressure

The resistance of the cell membrane to the change in the curvature is negligible,

which supports the application of the membrane theory in analysis of the membrane

equilibrium. In this case, the role of the fluid pressure enclosed within the cell in

bending resistance of the membrane is significant. This means that, the pressure of the

enclosed fluid in the form of a surface traction exerts on the membrane and controls

the deformation of the cell. Additionally, the fluid pressure plays a significant role

in avoiding the wrinkles in cell membrane. Since the wrinkling of the cell membrane

is not of interest, it is required first to make sure that the fluid pressure inside the
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cell is high enough to prevent any wrinkles. In order to control the pressure of the

enclosed fluid, cell is inflated from the referential radius of R to the spatial radius of

ro ≥ R (see Figs.2.3 and 2.5). Since the inflation of the reference configuration of

the cell is a motion without any distortion in which the spherical shape of the cell

preserves, the inflated cell is axisymmetric such that the two meridional λ and hoop

(circumferential) µ principle stretches are equal, λ = µ, at every point, and therefore

from (2.102)2
µ = u

R sin(φ)
= r0 sin(φ)

R sin(φ)
= r0

R
=⇒

µ = λ = r0
R
,

(2.142)

which means the only requirement to guarantee positive stretches and avoid wrinkles

in a spherical membrane is to inflate the cell to a high enough radius. In the absence

of the body forces and due to the axisymmetry, at any point

φ = τ(φ) =⇒ τ ′(φ) = 1. (2.143)

Now fluid pressure of the inflated cell is obtained in the absence of the body forces from

application of (2.141) to the free region (non-adhesion region) under the conditions

of (2.142) and (2.143), where the contact pressure pc vanishes from (2.141) in free

region. Hence

pf0(φ) =
2

Rλ
ψ̂,Je. (2.144)

Since for the inflated, spherical cell the principle stretches λ = µ = r0/R, the fluid

pressure of the inflated cell pf0 is obtained by using (2.44) and (2.107)1

pf0(φ) =
4Km

r0

(
r20

R2 + ζρrr20
− 1

)
. (2.145)

2.2.4 Initial contact pressure

The contact force between the cell and substrate is the reaction of the substrate to

the cell membrane, which is applied in adhesion region (contact region) of the cell.

Contact force as one of the external forces applied to the cell membrane is involved

in deformation and final equilibrium configuration of the cell. The contact traction

fc, in (2.130), as the force per unit area of the cell spatial configuration, is defined via

contact pressure pc. The contact pressure pc is the reaction force of the substrate to

the cell, per unit area of the spatial configuration. The contact pressure is obtained
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by application of the (2.141) to the contact region (adhesion region) of the cell, where

τ = π and τ ′(φ) = 0 for φc ≤ φ ≤ π (φc is the contact spreading front in Fig.2.4)

pc = pf + fb. (2.146)

As (2.146) shows the influences of both pressures of enclosed fluid and receptor-ligand

interaction balance the contact pressure induced by the reaction of the substrate. If

consider the reference configuration of the spherical cell in the absence of the body

forces, then the binding traction fb vanishes and (2.146) yields

pc0 = pf0 , (2.147)

which means the fluid and contact pressures are equal for the reference configuration

of the spherical cell in the absence of the body forces.

2.2.5 Receptor diffusion on the cell

As discussed before, the presence of the electrostatic charges on the integrins in-

duces an electrostatic repulsive interaction between integrins, which attempts to push

them to the farthest distance possible from others. The ligand proteins are nonpolar

molecules, which are polarized within the electrostatic field of the charged integrins.

This charge-induced dipole interaction between receptors and ligands also controls

the migration of the receptors on the membrane by attracting the receptors toward

the substrate. Consequently, the diffusion and final distribution of the receptors on

the membrane are affected by the receptor-receptor and receptor-ligand interactions.

In this work, the flux of receptors due to the receptor-receptor interaction is ap-

proximated by the Fick’s law, which is a linear constitutive equation with respect

to the gradient of receptor density (see (2.61)). The tangential component of the

receptor-ligand interaction along the tangential plane to the membrane surface is

considered to drive the receptors toward the substrate and consequently induce the

diffusion of the receptors on the membrane. Therefore a constitutive equation was

proposed based on the role of binding force in diffusion of the receptors, in which re-

ceptor flux is dependent on the tangential component of the binding force (see (2.62)).

Since any constitutive equation has to satisfy the laws of physics, the proposed relation

in (2.63) is required to satisfy the continuity equation in (2.60), which guarantees the

conservation of receptors locally. Therefore the continuity equation of the receptor,
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(2.60), after substitution of the constitutive relation for receptor flux yielded (2.65).

Now, since the reference and spatial configurations, respectively defined by injective

immersions (2.68) and (2.81), are symmetric in hoop (circumferential) direction, the

projection tensor P‖ on the membrane surface is only limited to the meridional direc-

tion. Hence, by using the obtained projection tensor (2.133) for the cell membrane

with hoop (circumferential) symmetry, the receptor diffusion equation becomes

M(l⊗ l)fb −D grads(ρr) = C =⇒

M(fb · l)l−D grads(ρr) = C.
(2.148)

Due to the axisymmetry of the geometry of the cell the diffusion of the receptors

vanishes at φ = 0 and φ = π. Therefore C = 0 at any point on the cell such that

M(fb · l)l = D grads(ρr). (2.149)

Now considering the definition of the spatial surface gradient operator grads(·) =

(·),α ⊗ aα and (2.52) and (2.136)2

D (ρr,φ(φ)a
1 + ρr,θ(φ)a

2) = −Mfb(k · l) =⇒

Dρ′ra
1 =Mfb sin(τ)l.

(2.150)

Now from (2.106), a first order nonlinear ODE is obtained, which governs the diffusion

of the receptors on the cell membrane

ρ′r(φ) =
MR

D
λfb sin τ. (2.151)

In the current work, a system of five coupled nonlinear first order ordinary differential

equations comprises of (2.105), (2.140), (2.141) and (2.151) governs the equilibrium

behaviors of the membrane configuration and receptor diffusion. This system of

governing equations is first nondimensionalized in the next section, before it is solved

numerically for the adhesion and deformation responses of the cell.



53

2.2.6 Nondimensionalized formulation

Dimensionless quantities are widely used in science and engineering to eliminate the

dependency of the relations and results on a particular choice of units. Nondimen-

sionalization leads to extensive applications of relations disregard of any units. Next,

by a systematic nondimensionalization process all the quantities and equations are

made dimensionless. Here, the over bar denotes nondimensionalized quantities. In

order to nondimensionalize, recall that a spherical cell of radius R was considered

as the referential configuration and then this cell was inflated to a sphere of radius

r0 ≥ R, yielding the principle stretches λ = µ = r0/R to the cell membrane (see

(2.142)). The dimensionless inflation radius is defined as

r̄0 =
2r0
R
. (2.152)

It is convenient to nondimensionalize the lengths in relations by the length 2r0, which

is the diameter of the inflated cell, such that

ū(φ) =
u

2r0
, h̄(φ) =

h

2r0
. (2.153)

Therefore the dimensionless form of (2.105) is

ū′ =
λ

r̄0
cos(τ), h̄′ = − λ

r̄0
sin(τ). (2.154)

Although the meridional and circumferential principle stretches ,λ and µ, are natu-

rally dimensionless by their definitions, the principle stretches in (2.102)1,2 can now

be represented using the dimensionless terms as

λ = r̄0

√
(ū′)2 + (h̄′)2, µ =

r̄0ū

sin(φ)
. (2.155)

The strain energy function (2.18) and its partial derivatives (2.107) are nondimen-

sionalized as

ψ̄(Je) =
ψ̂(Je)

Km

= (Je − 1)2, (2.156)

ψ̄,Je =
ψ,Je

Km
= 2(JJ−1

sp − 1), ψ̄,Jeλ =
ψ,Jeλ

Km
= 2

(
µJsp−λµ2ζ̄ρ̄r

J2
sp

)
,

ψ̄,Jeµ =
ψ,Jeµ

Km
= 2

(
λJsp−λ2µζ̄ρ̄r

J2
sp

)
, ψ̄,Jeρ̄r =

ψ,Jeρr

Km
= −2

(
JJ−1

sp

)2
ζ̄ ,

(2.157)
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The Cauchy stress tensor of the membrane (2.41) is nondimensionalized as

T̄(Je) = p̄m(Je)1, p̄m(Je) =
p̂m(Je)

Km

= 2(Je − 1). (2.158)

The dimensionless receptor density is defined as

ρ̄r =
ρr
ρr0

, (2.159)

where ρr0 is the homogeneous initial receptor density on the inflated membrane, such

that

ρr0 =
Nr

4πr20
, (2.160)

and Nr is the total number of receptors. The spontaneous area dilation in (2.44) can

be expressed in terms of the dimensionless parameters

Jsp(ρ̄r) = 1 + ζ̄Jρ̄r, (2.161)

where ζ̄ = ζρr0 is the dimensionless coefficient of spontaneous area dilation. The

fluid pressure of the inflated spherical cell (2.145) is represented in terms of the

dimensionless parameters by using (2.144), (2.157)1 and the representation of the

principle stretches for inflated, spherical cell in terms of the dimensionless radius

λ = µ = r0/R = r̄0/2 (see (2.152))

pf0 =
8γ1
r̄0

(
r̄20

4 + ζ̄ r̄20
− 1

)
, (2.162)

where γ1 = Km/R is a material parameter of the membrane. The fluid pressure pf is

nondimensionalized by the fluid pressure of the spherical inflated cell (2.162)

p̄f =
pf
pf0

, (2.163)

The receptor-ligand binding force (2.52) is nondimensionalized by introducing the

binding parameter γ2 = Cρr0/(2r0)
5

f̄b =
fb
γ2

=
(
K̄r̄ + 1

) ((
K̄r̄ + 1

)2
+ 1
)
ρ̄rl
e−2K̄r̄

r̄5
, (2.164)
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where K̄ = 2r0K and ρ̄rl = ρrl/ρr0 are respectively dimensionless Debye length and

density of actively interacting receptors with ligands in (2.53). The dimensionless

distance r̄ = h̄ + h̄0 is defined by using (2.153)2. It is notable that the dimension of

the binding parameter γ2 can be verified by

[γ2] =
[C][ρr0 ]

[r0]5
=

[Nbα(Ze)
2/(ǫǫ0)

2] [ρr0 ]

[r0]5
. (2.165)

Considering the dimension of each term in (2.165) [38]

[α] = [Coul]2[L]2[J ]−1, [e] = [Coul], [ρr] = [L]−2,

[ǫ0] = [Coul]2[L]−1[J ]−1, [r0] = [L], [Nb], [Z], [ǫ] : Dimensionless,
(2.166)

where [Coul], [L] and [J ] respectively denote the dimensions of the Coulomb, length

and Joule. According to the dimension of each term in (2.166) the dimension of the

binding parameter γ2 in (2.165) is identical to the dimension of the binding force fb

in (2.52) and body force b in equilibrium equation (2.111), as force per unit spatial

area

[γ2] = [FL−2], (2.167)

where [F ] denotes the dimension of the force. Finally, the dimensionless forms of

the equilibrium equation in (2.140),(2.141) and the diffusion equation (2.38) can be

similarly obtained as

λ′ =
λψ̄,Je cos τ −

(
ψ̄,Je + µψ̄,Jeµ

)
(λ cos τ − µ cosφ)− µ

(
ψ̄,Jeρ̄r ρ̄

′
r sinφ+ ψ̄,Je cosφ

)

µψ̄,Jeλ sinφ
,

τ ′ =
λ

µψ̄,Je

(
8

r̄0
µ

(
r̄20

4 + ζ̄ r̄20
− 1

)
(p̄f − p̄c)− γ̄µf̄b cos τ − ψ̄,Je

sin τ

sinφ

)
,

ρ̄′r = γ3λf̄b sin τ,

(2.168)

where

γ̄ =
γ2
γ1

=
RCρr0
Km(2r0)5

, γ3 =
MRC

D(2r0)5
(2.169)

are dimensionless parameters such that the former one is the ratio of binding and

membrane characteristics and the latter relation is the reciprocal diffusion parameter.

The same procedure as for (2.146) is applied to the dimensionless representation
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of τ ′, (2.168)2, in contact region (adhesion region) of the cell, where τ = π and

τ ′(φ) = 0 for φc ≤ φ ≤ π (φc is the contact spreading front in Fig.2.4), to obtain the

nondimensionalized contact pressure p̄c

p̄c = p̄f +
r̄0γ̄

8

(
r̄20

4 + r̄20 ζ̄
− 1

)−1

f̄b. (2.170)

Based on the previous calculations, equations (2.154), (2.168) present the dimen-

sionless form of a system of five coupled nonlinear first order ODEs. These equations

are simplified at contact and free regions of the membrane in accordance with the

specific conditions in those regions. The flatness of contact region parametrized by

φc < φ < π (where φc denotes the contact spreading front in Fig.2.4) rationalizes

that τ(φ) = π, h′(φ) = 0 and according to (2.168)3, ρ̄
′
r(φ) = 0, which implies that the

receptor density is homogenous in the contact region. It is notable that the resultant

nondimensionalized adhesion force, F̄ad, which is an upper bound of the required force

for detaching the cell from substrate, is

F̄ad =

∫

sl

f̄bda, (2.171)

where sl denotes the lower region of the membrane that ligand-receptor interaction

occurs. The global equilibrium of the cell implies that the adhesion force is balanced

by the contact force. Hence, the resultant adhesion force can be conveniently obtained

by

F̄ad =

∫

sc

p̄cda, (2.172)

where the right hand side represents the resultant contact force (see (2.170)) and

sc is the contact region of the membrane. Then, since the contact pressure, p̄c,

is homogenous in contact region, the adhesion force is obtained from (2.172) and

(2.170) as

F̄ad = p̄cπū
2
c, (2.173)

where ūc = uc/2r0. It is worth noting that the contact pressure vanishes from equation

(2.168)2 within free region.
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2.2.7 Numerical Solution

The system of five coupled nonlinear first order ODEs, (2.154) and (2.168), is solved

by consideration of following boundary conditions (BCs)

ū(0) = 0, τ(0) = 0, ū(π) = 0, τ(π) = π, h̄(π) = 0 (2.174)

as a boundary value problem (BVP). Since the BCs are known at either beginning

or end points of the domain, the BVP can be solved numerically using the Shooting

method. In this method a BVP is converted to an initial value problem (IVP) in

which the known (BCs) at the beginning points are considered as the initial values

for numerical method and the rest of unknown initial values are guessed. Then

the system is solved and the solutions obtained at the end point of domain are

compared with the known values of BCs there. An accurate solution is achieved

by sufficiently repeating the process until the numerical solutions agree with the

boundary conditions at the end point of the domain. In this work fourth order

Runge-Kutta method, which is a single-step, explicit technique, is applied to the

multiple shooting method to find the solutions for every point of membrane. To

use multiple shooting method the domain of convicted coordinate φ is meshed into

(n+1) points
{
φ1 = 0, φ2, ...φi =

π
2
, ..., φn+1 = π

}
and then the known values of BCs

at both top pole φ = 0 and bottom pole φ = π are considered as the initial val-

ues of the multiple shooting method. As mentioned before 4th order Runge-Kutta

technique is implemented to start from both top and bottom poles and solve the

system of ODEs finding the values at next points. Since there is not any transi-

tion in material and physical conditions at the midpoint of the membrane φ = π
2
,

the behavior of the motion x(X) and fields u(φ), h(φ), λ(φ), τ(φ) and ρr(φ) are

smooth. Therefore to prevent any jump discontinuity the jump conditions must

satisfy [|u(π/2)|] = [|h(π/2)|] = [|λ(π/2)|] = [|τ(π/2)|] = [|ρr(π/2)|] = 0 where

[|f |] = f+ − f−.

Furthermore, the incompressibility assumption of the enclosed fluid compels the

constancy of volume, which imposes a constraint on the solution. The initial volume

of the cell related to the reference configuration (undeformed cell) is

V0 =
4

3
πr30. (2.175)
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Using the same length of 2r0 as in (2.153) to nondimensionalized the initial volume

V̄0 =
V0

(2r0)3
=
π

6
. (2.176)

The volume of the deformed cell is obtained using the equation for volume of a conical

frustum. The volume of a conical frustum of the height h and radius r(z), where z is

measured along the height is

V = π

∫ h

0

r2(z) d z, r(z) = R1 + (R2 −R1)
z

h
, (2.177)

where R1 and R2 are respectively the radius of the larger and smaller basis of frustum.

Using the formula of conical frustum, (2.177), the volume of an infinitesimal frustum

at height 0 < h(φi) < h(0), where 0 < φi < π, becomes

V = π

∫ hi

hi+1

[
ui + (ui+1 − ui)

z

hi − hi+1

]
d z =

π(hi − hi+1)

3
(u2i + uiui+1 + u2i+1),

(2.178)

where ui = u(φi) and hi = h(φi). Considering (2.178), the volume of the deformed

cell is

V =
π

3

m∑

i=1

(
u2i+1 + ui+1ui + u2i

)
(hi − hi+1) , (2.179)

where m denotes the number of infinitesimal conical frustum. According to (2.153),

the dimensionless volume of enclosed fluid V̄ can be evaluated numerically by

V̄ =
V

(2r0)3
=
π

3

m∑

i=1

(
ū2i+1 + ūi+1ūi + ū2i

) (
h̄i − h̄i+1

)
. (2.180)

In addition, since the cell membrane is a closed system with constant number of

receptors the total receptor numbers must be preserved. According to the spherical

shape of the cell reference configuration, the initial number of the receptors is

N0 = 4πr20ρr0 . (2.181)

The number of receptors on the spatial (deformed) configuration is calculated through

the lateral surface of the conical frustum. Consider a infinitesimal lateral surface of
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the deformed cell membrane as dS at the height of h(φ) such that 0 < φ < π, then

S =

∫

κ

dS, dS ≈ 2πu
√
(d u)2 + (d h)2. (2.182)

Since d u(φ) = ∂u(φ)/∂φ dφ and dh(φ) = ∂h(φ)/∂φ d φ

S =

∫ π

0

2πu
√
(u′)2 + (h′)2 dφ. (2.183)

The infinitesimal lateral surface dSi at 0 < φi < π is approximated using the finite

difference method as

dSi = π(ui + ui+1)
√
(ui+1 − ui)2 + (hi − hi+1)2, (2.184)

where the subscript i shows the associated parameter to 0 < φi < π. Therefore,

the lateral surface of the cell, (2.182) and (2.183), is approximated using the finite

difference method as

S =

m∑

i=1

π(ui + ui+1)
√

(ui+1 − ui)2 + (hi − hi+1)2. (2.185)

Total number of receptors on deformed configuration N is calculated as

N =

m∑

i=1

πρri(ui + ui+1)
√

(ui+1 − ui)2 + (hi − hi+1)2, (2.186)

which can be represented in terms of the dimensionless parameters as

N = (2r0)
2 πρr0

m∑

i=1

ρ̄ri (ūi+1 + ūi)

√
(ūi − ūi+1)

2 +
(
h̄i − h̄i+1

)2
. (2.187)

According to the above discussion, in order to use the multiple shooting method

eight numbers of unknowns λB, ρrB , hT , λT , ρrT , φc, pf and φs are required to be

initially guessed, where subscripts B and T are respectively associated to the φ = π

and φ = 0. The numerically obtained solutions for u, h, λ, τ and ρr are checked

for discontinuity at φ = π/2 as [|u(π/2)|] = [|h(π/2)|] = [|λ(π/2)|] = [|τ(π/2)|] =
[|ρr(π/2)|] = 0. Additionally, due to the incompressibility of the enclosed fluid within
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cell, the volume of the cell should be preserved

| 1− V̄

V̄0
|≈ 0, (2.188)

where | · | generates the absolute value. The conservation of number of receptors is

checked as the seventh criterion in shooting method for the accuracy of the results

| 1− N

N0
|≈ 0. (2.189)

As the eighth checking criterion for shooting method, umax should always occur at φ in

which τ(φ) = π/2 (see (2.154)). Table 2.2 presents the summary of the BVP, which

is solved numerically. The numerical results of the cell adhesion and deformation

studied by the developed models will be presented in next chapter.
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Table 2.2: Summary of the five nonlinear first order ODEs and the boundary condi-
tions, which govern the deformation of the cell and diffusion of the receptors on the
membrane.

ODEs Equations

ū′ = λ
r̄0
cos(τ) (2.154)

h̄′ = − λ
r̄0
sin(τ) (2.154)

λ′ =
λψ̄,Je cos τ−(ψ̄,Je+µψ̄,Jeµ)(λ cos τ−µ cosφ)−µ(ψ̄,Jeρ̄r ρ̄

′

r sinφ+ψ̄,Je cosφ)
µψ̄,Jeλ sinφ

(2.168)

τ ′ = λ
µψ̄,Je

(
8
r̄0
µ
(

r̄2
0

4+ζ̄ r̄2
0

− 1
)
(p̄f − p̄c)− γ̄µf̄b cos τ − ψ̄,Je

sin τ
sinφ

)
(2.168)

ρ̄′r = γ3λf̄b sin τ (2.168)

BCs Equations

ū(0) = 0, τ(0) = 0, ū(π) = 0, τ(π) = π, h̄(π) = 0 (2.174)

Constraints Equations

[|u(π/2)|] = [|h(π/2)|] = [|λ(π/2)|] = [|τ(π/2)|] = [|ρr(π/2)|] = 0

V̄
V̄0

= 1 (2.188)

N
N0

= 1 (2.189)

u(φm) = umax at τ(φm) = π/2
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Chapter 3

Results and Discussion

Given the vast range of data on cell characteristics and size, available in the litera-

ture, a small inflated cell with radius of r0 = 12.5 nm [2], inflation of r0 = 1.5R and

contact distance of h0 = 9nm [54] from the substrate is considered to investigate the

suggested model. The following parameters are used Km = 0.1N/m [38,56], receptor

diffusivity D = 10−14m2/sec [35, 40] and mobility of receptors M = 103m/Nsec. In

accordance with the molecular structure of the fibronectin proteins (C47H74N16O10),

the electronic polarizability α0 of the nonpolar atoms and bonds, tabulated in [38]

and the relation between total polarizability α with α0, the constitutive parameter

C = 1.17 × 10−52Nm5 is obtained for the electrolyte of water at room temperature

with assumed Nb = 20 for the number of weak noncovalent sub-bonds between one

receptor and a ligand. The coefficient of spontaneous areal dilation, ζ , is taken to be

the cross-section area of a single receptor. The cross-sectional area of a single receptor

is ζ = 5.0×10−18 m2 [2], density of the receptors on inflated cell membrane is taken as

ρr0 = 1017m−2 [54] and Debye length for the electrolyte of water is about 1µm [38].

Note that in the current work the set of sizes and characteristics described above

is addressed as the ”original state” of the cell, when no receptor-ligand interactions

exist. Considering such a cell, Fig.3.1 shows the equilibrium configurations of the

cell for various ligand densities on the substrate. In the absence of binding force, the

membrane only undergoes homogenous expansion, due to the enclosed fluid pressure,

which sustains the cell spherical configuration. The presence of ligands on the sub-

strate leads to the interaction between receptors and ligands that alters the receptor

distribution on the membrane by driving them toward the substrate (see Fig.3.2).

As the density of ligands on the substrate increases the receptor-ligand interaction

grows accordingly (see (2.52)), which escalates the deformation of the cell, decrease
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Figure 3.1: Cell configurations for different nondimensionalized ligand densities ρ̄l =
{0.0, 0.1, 0.5, 1.0} and {r̄0 = 3, γ̄ = 10−4, γ3 = 10−5, K̄ = 0.025, ζ̄ = 0.5, h̄0 = 0.35}
[26].

in the cell height and extension of contact region. Since the distance between recep-

tors and ligands decreases, the interaction grows (see Fig.3.3) that leads to expansion

of the contact region and increase in deformation. This demonstrate the coupling

between receptor-ligand interaction and the cell deformation. The result of these

coupled phenomena are noticeable in Fig.3.1, where the dimensionless cell heights are

{1.00, 0.97, 0.91, 0.87} for substrate ligand densities of {0, 0.1, 0.5, 1}, respectively.
Fig.3.1 shows that the height of the cell as a measure of cell deformation, decreases

by more than 9%, when ligand density varies from zero to ρ̄l = 0.5, however variation

in cell height drops by only 4% as ligand density rises from ρ̄l = 0.5 to ρ̄l = 1.

This behavior can be attributed to the pressure of the enclosed fluid (see Fig.3.4),

developed due to presence of ligands and consequent deformation. Although the cell

membrane does not possess any bending stiffness, the enclosed fluid pressure yields

the overall stiffness to the cell structure, which increases with the growth in ligand

density. Additionally, the rate of receptor diffusion toward the substrate decreases as
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ligand density grows, due to receptor saturation. Therefore, for high ligand density

the rate of cell deformation diminishes such that further increase in ligand density

does not yield any significant additional deformation.

Distributions of receptors on the cell membrane are depicted in Fig.3.2 for various

nondimensionalized ligand densities. As previously explained, the receptor density

was nondimensionalized with respect to the initial receptor density, ρr0 , (see (2.159)

and (2.160)), where the value of ρr0 = 1017m−2 [54] was used. Fig.3.2 shows a

significant variation in receptor density.
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Figure 3.2: Nondimensionalized receptor density ρ̄r versus dimensionless vertical dis-
tance h̄ for different nondimensionalized ligand densities ρ̄l = {0.0, 0.1, 0.5, 1.0} and
{r̄0 = 3, γ̄ = 10−4, γ3 = 10−5, K̄ = 0.025, ζ̄ = 0.5, h̄0 = 0.35} [26].
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0.35} [26].
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Figure 3.4: The nondimensionalized pressure of the enclosed fluid, p̄f , versus dimen-
sionless ligand density, ρ̄l, and {r̄0 = 3, γ̄ = 10−4, γ3 = 10−5, K̄ = 0.025, ζ̄ = 0.5, h̄0 =
0.35} [26].

Since the upper region of the membrane is shielded from ligands attractions, the

distribution of receptors in this region is only governed by repelling interactions be-

tween receptors, which establish a homogeneous distribution in the upper region of

the membrane. Similarly, in the contact region of the membrane with the substrate,

the receptor distribution is also homogenous, since the tangential component of the

receptor-ligand interactions vanishes (see (2.168)3) and the receptor distribution is

only due to the receptor-receptor interactions, governed by the Fick’s law. However,

in the lower region of the membrane, which is not in contact with the substrate, the

receptor distribution is inhomogeneous due to the non-vanishing tangential compo-

nent of the receptor-ligand interactions and the repulsion between receptors. The
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Figure 3.5: The membrane area dilation, J , versus the dimensionless vertical distance,
h̄, for different nondimensionalized ligand densities ρ̄l = {0.0, 0.1, 0.5, 1.0} and {r̄0 =
3, γ̄ = 10−4, γ3 = 10−5, K̄ = 0.025, ζ̄ = 0.5, h̄0 = 0.35} [26].

results depicted in Fig.3.2 show the diffusion of receptors toward the ligands on the

substrate, where the receptor density reaches its maximum value at the contact re-

gion and minimum value at the upper region. It is worth noting that, increase in the

ligand density on the substrate engages more receptors in the adhesion process, which

leads to accumulation of receptors in the lower region of the membrane specially in

the contact region. Simultaneously the receptors density in the shielded region of the

membrane reduces as a consequence of conservation of receptors. Additionally, the

diffusion of more receptors toward the ligands increases the local deformations of the

membrane.
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Figure 3.6: The spontaneous area dilation, Jsp, on the membrane versus the di-
mensionless vertical distance, h̄, for different nondimensionalized ligand densities
ρ̄l = {0.0, 0.1, 0.5, 1.0} and {r̄0 = 3, γ̄ = 10−4, γ3 = 10−5, K̄ = 0.025, ζ̄ = 0.5, h̄0 =
0.35} [26].

The measurement of the local area dilation of the membrane, J , is the product

of the spontaneous area dilation, Jsp, and the elastic area dilation, Je, as J = JeJsp.

Figs.3.5 and 3.6 show that both local area dilations J and Jsp grow in the contact

region for larger ligand density on the substrate. Therefore, the presence of more

ligands on the substrate entails two consequences as accumulation of more receptors in

contact region and simultaneously larger area dilation of the membrane, which yields

the receptor density distributions as shown in Fig.3.2 for various ligand densities.

Fig.3.5 depicts the membrane area dilation, J , of the deformed configurations for

different densities of ligands on the substrate. Area dilation is homogeneous in the

upper shielded region of the membrane since this region does not interact with ligands

on the substrate (see Fig.3.3) and therefore the distribution of receptors in this region

is only governed by receptor-receptor repelling interactions (see Fig.3.2). Dilation of
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membrane area increase in the lower region of the membrane and attains its maximum

value at the contact region, where it is also homogeneous, that is in accordance with

the receptor density distribution. This increase in area dilation is attributed to both

the receptor-ligand interactions and the presence of higher receptor density. Fig.3.6

shows the variation of spontaneous area dilation Jsp, which is defined in (2.44). Since

the receptor density (see Fig.3.2)) and area dilation (see Fig.3.5)) are directly related

to Jsp (see (2.161)), it shows a very similar behavior.

Returning to Fig.3.3, the binding force distribution is analogous to the receptors

distribution on the lower region of the membrane. This similarity in distribution

is attributed to the proportional relation, (2.52) and (2.53), between the binding

force and the receptor density. However, there exists a discrepancy between receptor

density and binding force in upper region of membrane, where binding force vanishes

despite non-zero density of receptors. This inconsistency refers to the fact that the

upper region of membrane is shielded from the effects of ligands.

The nondimensionalized adhesion force F̄ad between the cell and the substrate is

of immense importance since it represents the required force to detach the cell. Ac-

cording to the obtained results for the nondimensionalized binding force and pressure

of enclosed fluid depicted respectively in Figs.3.3 and 3.4 the adhesion force F̄ad grows

for larger density of ligands on substrate (see Fig.3.7). However dimensionless ad-

hesion force attains its maximum at 0.72 and then remains unaltered for sufficiently

large density of ligands, which is a consequent response upon cessation of receptor dif-

fusion and membrane deformation. In summery, the system of five coupled nonlinear

ODEs ((2.154) and (2.168)) models the adhesion and deformation behaviors of the

membrane as the resultant roles of surface tractions like binding force, strain energy

function of membrane, receptor and ligand densities, electrolytic and diffusion charac-

teristics. Consideration of the impact of one parameter on adhesion and deformation,

needs precise understanding of its relation with other factors. The area dilation as

the change in areal size of a membrane element, alters the receptor density on that

element, which according to the Ficks law ((2.61)) induces a receptor diffusion (see

(2.64) and (2.61)). In addition, the induced variation in receptor density due to the

area dilation affects the number of formed receptor-ligand interactions ((2.52) and

(2.53) or (2.164)), which is the driving force for adhesion of the cell to the membrane

(see (2.171), (2.172), (2.170) and (2.173)).
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Figure 3.7: The nondimensionalized resultant adhesion force of the cell, F̄ad, versus
the dimensionless ligand density ρ̄l and {r̄0 = 3, γ̄ = 10−4, γ3 = 10−5, K̄ = 0.025, ζ̄ =
0.5, h̄0 = 0.35} [26].

Besides that increase or decrease in binding force has a direct impact on defor-

mation of the cell and area of contact zone, which the contact area itself plays a

significant role in adhesion force of the cell (see (2.173)). Also since the tangential

component of the binding force ((2.52) and (2.53) or (2.164)) is involved in diffusion

of the receptors on the membrane ((2.62) and (2.65)), the induced variation in bind-

ing force influences the diffusion of the receptors and the receptor density. In other

words as the matter of coupling influences of different factors, the area dilation has an

impact on local receptor density on the membrane, then the induced variation in re-
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ceptor density and the resultant receptor diffusion influence the binding force between

receptors and ligands and therefore affect the adhesion force of the cell. The change

in binding force also generates some diffusion of the receptors and causes alteration

in receptor density. It is worth noting that increase in the density of ligands on the

substrate increases the membrane pressure (see Fig.3.8), which is a direct result of

the proposed constitutive relation (2.158) and variations of area dilations J and Jsp.
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Figure 3.8: The nondimensionalized pressure, p̄m, in the membrane versus the dimen-
sionless ligand density, ρ̄l, and {r̄0 = 3, γ̄ = 10−4, γ3 = 10−5, K̄ = 0.025, ζ̄ = 0.5, h̄0 =
0.35} [26].

As previously discussed, by increasing the density of the ligands on the substrate

the magnitudes of the fluid pressure p̄f , adhesion force F̄ad and membrane pressure

p̄m increase (see Figs.3.4, 3.7 and 3.8 respectively). That is because by increasing
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the ligand density on the substrate binding force increases (see (2.164) and Fig.3.3),

which drags more receptors toward the substrate. By diffusion of the receptors toward

the substrate the distance between receptors and ligands decreases, which results in

additional growth in binding force and consequently growth in fluid pressure, adhe-

sion force and membrane pressure. However, for sufficiently large density of ligands

on the substrate the diffusion of the receptors to the lower segment of the membrane

stops due to the fixed number of receptors on the cell and therefore, binding force

remains constant and consequently the deformation of the cell ceases and fluid pres-

sure, adhesion force and membrane pressure remain constant. It is notable that, the

continuous behavior of these functions are expected. However, due to the dependency

of the proposed equation for the binding force on the smaller density of receptors and

ligands (see (2.164) and (2.53)), the plotted functions of fluid pressure, adhesion force

and membrane pressure, respectively in Figs.3.4, 3.3 and 3.8, do not have a contin-

uous derivatives at the large ligand density for that growth in functions ceases. In

other words, although the functions of P̄f , F̄b and P̄m are continuous, their derivatives

contain a discontinuity at the value of ligand density for which the functions begin

to remain constant.

To this point, the direct and indirect roles of the receptors on the deformation and

adhesion of the cell were discussed, however one of the main interest of the present

work is to shed new light on another effect of the receptors on the cell membrane

behavior. To our knowledge, previous work did not acknowledge the influence of

presence of receptors on the area dilation of the membrane, which is recognized here

through the introduction of spontaneous area dilation Jsp. The following results com-

pare the deformation and adhesion behaviors of a small cell in original state. Here,

the cross-sectional area of a single receptor varies as 0.0 ≤ ζ ≤ 0.5 × 10−18m2 with

consequent nondimensionalized values 0.0 ≤ ζ̄ ≤ 0.5 and the density of ligands on the

substrate is ρ̄l = 1.0. It is worth noting that values of the coefficient ζ̄ is restricted to

the range 0.0 ≤ ζ̄ ρ̄r < 1.0 which is imposed by stress free condition where J = Jsp.

Based on our previous discussions on the distributions of area dilations J and Jsp

(see Figs. 3.5, 3.6), receptor density (see Fig.3.2) and binding force (see Fig.3.3), the

maxima and minima values of the distributions are attained at the contact region

and shielded region of membrane, respectively. Thus the following discussion focuses

on these two regions. Comparison of the maximum heights of the cell for ζ̄ = 0.0 and

ζ̄ = 0.5 in Fig.3.9 indicates a 11.60% reduction, which demonstrates the important

role of the spontaneous areal dilation due to the receptors presence on the membrane
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deformation. As stated in (2.43) and (2.161) the coefficient of the spontaneous area di-

lation, ζ̄, constitutes the sensitivity of membrane dilation to the presence of receptors.

When ζ̄ = 0.0 is the case in which the cell membrane does not yield area dilation due

to presence of receptors and Jsp = 1.0. However increase in the coefficient ζ̄ enhances

the effect of the spontaneous area dilation due to the receptor presence. Additionally,

area dilation associated with ζ > 0 effects the receptor density in a way that reduces

the density gradient of receptors, which, in turn, reduces the flux governed by the

Fick’s law. This allows larger diffusion of receptors toward the substrate, and hence

yields larger adhesion force (see Fig.3.10) and cell deformation (see Fig.3.9). The

adhesion force depicted in Fig.3.10 demonstrates convincingly the significant effect of

the area dilation due to the presence of receptors on the cell adhesion force, which

dramatically rises for coefficients ζ̄ > 0.35. Although intuitively the influence of the

spontaneous areal dilation is expected to be insignificant, the results obtained in this

work show that it is significant.
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Figure 3.9: Deformed configurations of the cell for different values of the dimensionless
coefficient of spontaneous area dilation ζ̄ = {0.0, 0.1, 0.25, 0.5} and {r̄0 = 3, γ̄ =
10−4, γ3 = 10−5, K̄ = 0.025, h̄0 = 0.35, ρ̄l = 1.0} [26].
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Figure 3.10: The nondimensionalized adhesion force of the cell F̄ad versus dimension-
less coefficient of spontaneous area dilation ζ̄ and {r̄0 = 3, γ̄ = 10−4, γ3 = 10−5, K̄ =
0.025, h̄0 = 0.35, ρ̄l = 1.0} [26].

The results associated with the influence of electrolytic characteristic of the extra-

cellular environment on the deformation and adhesion behaviors of cells are presented

in Figs.3.11 and 3.12 in terms of the nondimensionalized Debye length inverse K̄. The

cell is in the original state, while the Debye length of the electrolytic environment

outside of the cell alters from 1 nm to 1µm with associated dimensionless values

K̄ = {25.0, 2.5, 0.25, 0.025} and the ligand density on the substrate is ρ̄l = 1.0. De-

bye length characterizes the sphere of influence of the electrostatic field generated by

a charge in an electrolyte. Hence the results in Fig.3.11 show admissible consistency

with the Debye length characteristic in a way that deformation of the cell increases,
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for larger Debye length. These results indicate that the height of the cell reduces

by 13.0% when Debye length of the electrolyte varies from 1 nm to 1µm. For an

electrolytic environment with large Debye length the distance in which electrostatic

interactions between charges and induced dipoles occur, increases and therefore the

binding force (see (2.164)) increases which results in larger diffusion of receptors and

cell deformation. By increasing the Debye length, the electrostatic effect of the charges

within the electrolyte is enhanced, which strengthens the receptor-ligand interactions

(2.164) and thus increases the deformation of the cell.
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Figure 3.11: Deformed configurations of the cell for different values of Debye length
inverse K̄ = {0.025, 0.25, 2.5, 25} and {r̄0 = 3, γ̄ = 10−4, γ3 = 10−5, ζ̄ = 0.5, h̄0 =
0.35, ρ̄l = 1.0} [26].

Larger cell deformation induced by longer Debye length, rises the pressure of the
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enclosed fluid, which grants a stiffness to the cell membrane and slows the rate of cell

deformation. Additionally, receptor diffusion toward the substrate is enhanced by the

strengthened receptor-ligand bindings, however since total number of receptors is fixed

the receptor diffusion saturates, which does not yield further cell deformation Due

to important role of cell adhesion force Fad in determination of required detachment

effort for specific adhesion condition, the influence of electrolytic characteristic of

environment is discussed. Fig.3.12 depicts that the cell adhesion force increases in

electrolytic environment with longer Debye length. This increase in adhesion force is

strongly consistent with growth in binding force (as explained above) and increase in

contact area.



78

10-1 100 101
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K̄

F̄
a
d

Figure 3.12: The nondimensionalized adhesion force of the cell F̄ad versus the inverse
of the Debye length K̄ and {r̄0 = 3, γ̄ = 10−4, γ3 = 10−5, ζ̄ = 0.5, h̄0 = 0.35, ρ̄l = 1.0}
[26].

As the Debye length increases the associate adhesion force increases, however as

discussed before for large enough Debye length the receptor diffusion saturates and

no significant increase in adhesion force is observed with further increase in Debye

length.

Next attention is directed to the roles of the characteristic of the receptor-ligand

interaction in proportion to the material characteristic of the membrane. Recall that

the binding-membrane parameter γ̄ (2.169) is defined as the dimensionless ratio of the

binding parameter γ2 to the membrane parameter γ1. Figs.3.13 and 3.14 present re-
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sults for the original-state cell, ligand density ρ̄l = 1.0 and different values of binding-

membrane parameter, 10−7 ≤ γ̄ ≤ 10−4, which clarifies the effects of binding and

membrane stiffness coefficients on the cell behavior. In order to entail the roles of the

binding and membrane characteristics in variation of the dimensionless parameter γ̄,

the binding force intensity and the membrane stiffness vary as 10−55 ≤ C ≤ 10−52Nm5

and 0.1 ≤ Km ≤ 0.4N/m, respectively [8, 23, 25, 28, 38, 51, 56]. Since the dimension-

less parameter of diffusion, γ3, defined in (2.169)2 depends on the intensity of the

receptor-ligand interactions, it takes the relevant values 10−8 ≤ γ3 ≤ 10−5. The

cell deformations depicted in Fig.3.13 demonstrate the influence of the intensity of

the receptor-ligand binding, C, on the cell deformation. This physically means that

increase in the number of existing charges on a receptor magnifies the generated

electrostatic field, which consequently intensifies the polarization imposed on the

nonpolar molecules of a ligand. Therefore increase in intensity of receptor-ligand

binding C by means of increase in existing charges on a receptor not only reinforces

the external electrostatic filed but also induces a stronger dipole in a nonpolar lig-

and, which together strengthen the interaction between a receptor and a ligand. The

overall result of these phenomena leads to the enhancement in the cell adhesion and

deformation. Additionally an increase in adhesion and deformation is also expected

if polarizability of nonpolar molecules of ligands, α, grows. However between number

of existing charges and polarizability characteristic the former one shows intenser ef-

fect on receptor-ligand interactions and consequent membrane deformation. That is

because, charges are involved in both generating the electrostatic filed and inducing

polarization in ligand molecules, while polarizability characteristic is only commit-

ted to polarization of ligands (this dual effect of charges emerges as the power of 2

for charges in relation of coefficient C). The cell deformations depicted in Fig.3.13

decrease, as anticipated, by increase in the membrane stiffness, Km. In accordance

to the rationale discussed above, cell membrane represents 12.9% reduction in cell

height for the same ranges of variations of binding and material rigidities used above.

The obtained results indicate that the resultant adhesion force increases for larger

binding intensity and smaller membrane stiffness.
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Figure 3.13: Deformed configurations of the cell for different dimensionless
binding-membrane parameters γ̄ = {10−7, 10−6, 10−5, 10−4} and {r̄0 = 3, γ3 =
{10−8, 10−7, 10−6, 10−5}, K̄ = 0.025, ζ̄ = 0.5, h̄0 = 0.35, ρ̄l = 1.0} [26].
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Figure 3.14: The nondimensionalized adhesion force of the cell F̄ad versus dimension-
less binding-membrane parameter γ̄ and {r̄0 = 3, γ3 = {10−8, 10−7, 10−6, 10−5}, K̄ =
0.025, ζ̄ = 0.5, h̄0 = 0.35, ρ̄l = 1.0} [26].

The influence of the dimensionless diffusion parameter γ3 on the deformation and

adhesion of the cell is discussed here. The obtained results show a weak effect of

this parameter on the deformation behavior of the cell in which the areal dilation J

increases in contact region for larger γ3 (see Fig.3.15). The increase in areal dilation at

contact region is accompanied by the decrease in it at upper segment of the membrane.

In fact higher value of the diffusion parameter γ3 increases the mobility of the receptors

on the membrane in a way that the larger number of receptors is attracted toward

the substrate and accumulate in the lower segment of the membrane, such that it

strengthens the binding force and consequently the adhesion force F̄ad between cell

and substrate, as shown in Fig.3.16.
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Figure 3.15: The distributions of the areal dilation J versus dimensionless vertical
distance h̄ for various dimensionless diffusion parameter γ3 = {10−8, 10−7, 10−6, 10−5}
and {r̄0 = 3, γ̄ = 10−4, K̄ = 0.025, ζ̄ = 0.5, h̄0 = 0.35}.

The increase in receptor-ligand interaction in the form of binding force and con-

sequent adhesion force exerts a larger traction to the lower segment of the cell and

increases the areal dilation J of the membrane. It is notable that the deformation

of the cell and increase in contact region has a direct impact on the cell adhesion

force F̄ad, that means the adhesion force not only grows due to the accumulation of

the receptors in lower segment of the membrane and consequent larger binding force

but also because of induced increase in contact region. Fig.3.17 illustrates the same

behavior of spontaneous areal dilation Jsp as of J in upper and lower segments of the

cell.
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Figure 3.16: The nondimensionalized adhesion force of the cell F̄ad versus dimension-
less diffusion parameter γ3 and {r̄0 = 3, γ̄ = 10−4, K̄ = 0.025, ζ̄ = 0.5, h̄0 = 0.35, ρ̄l =
1.0}.

It is reasonable that accumulation of the receptors on the lower segment of the

cell increases the dilation of the membrane due to the presence of the receptors and

vice versa. Also the variation in receptor ρ̄r distribution by diffusion parameter γ3,

displayed in Fig.3.18, implies that although the local areal dilation J increases in

lower segment of the cell for larger diffusion parameter γ3, the accumulation of larger

number of receptors on that segment overcomes the dilation in local area such that

the consequent local receptor density increases in that region. The effect of decrease

in number of receptors in upper segment of cell for larger diffusion parameter γ3 is
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stronger than the decrease in areal dilation and induces lower receptor density in

upper segment. It is worth mentioning that some additional figures of the results are

provided in appendix to support the presented models in this work.
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Figure 3.17: The distributions of the spontaneous areal dilation Jsp versus di-
mensionless vertical distance h̄ for various dimensionless diffusion parameter γ3 =
{10−8, 10−7, 10−6, 10−5} and {r̄0 = 3, γ̄ = 10−4, K̄ = 0.025, ζ̄ = 0.5, h̄0 = 0.35}.
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Figure 3.18: The distributions of the nondimensionalized receptor density ρ̄r versus
dimensionless vertical distance h̄ for various dimensionless diffusion parameter γ3 =
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Chapter 4

Conclusions

In this chapter we were concerned with the formulation of a comprehensive model,

which approximated the adhesion and deformation of a biological cell (biocell) to a

rigid substrate. The adhesion was mediated by means of two types of proteins, in-

tegrin (receptor) on the membrane, and fibronectin (ligand), on the substrate. The

behavior of the cell in adhesion and deformation is strongly dependent on the ma-

terial characteristic of the cell membrane. According to the observed experimental

results in literature, the phospholipid molecules as dominant components of the cell

membrane are closely held together by non-covalent interaction, such that they can

freely move laterally and the cell membrane behavior in dilation and distortion is

mostly close to the behavior of an isotropic fluid. It was discussed that, the surface of

cell membrane includes sufficient number of molecules, such that the fluctuation and

effects of one individual molecule are negligible. Additionally, in the current analysis

any considered characteristic length was sufficiently larger than the molecular dis-

tances and gaps, such that the material behavior was never addressed from molecular

point of view. Therefore, an isotropic continuum fluid-like model was proposed for

the cell membrane and a strain energy function was proposed to approximate the

mechanical behavior of the cell membrane. This strain energy accounted for the re-

sistance of the fluid-like membrane to the in-plane dilation, however neglected any

distortion in the membrane. As a novelty and since the influence of the receptor pres-

ence on the adhesion and deformation of the cell has not been sufficiently studied, in

the present work the effect of the presence of the receptors on the areal dilation of

the membrane was addressed through the introduction of spontaneous areal dilation.

The conception of spontaneous areal dilation also affected the material behavior of

the membrane through the proposed strain energy function. In the current work,
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the membrane theory was used for modeling, since the membrane of the cell was

considered to be comprised of phospholipid molecules and other components of the

membrane plus the cyteskeleton underneath the membrane were ignored. Therefore,

the behavior of the cell membrane was better modeled by using membrane theory.

That means, the bending stiffness of the membrane was ignored and the normal forces

to the membrane are tolerated as in-plane stresses. Additionally a nonlinear binding

force relation was proposed based on charge-induced dipole interaction between re-

ceptors and ligands, which was enriched by a consideration of shielding phenomenon

which is in agreement with intrinsic behavior of bonds. According to the mobility of

the receptors on the membrane and the electrostatic characteristics of the receptors

and ligands, the migration of the receptors on the membrane was considered to be

under the influence of receptor-receptor and receptor-ligand interactions. Therefore,

a diffusion model was developed, which governed the distribution of the receptors on

the membrane.

The current study was allocated to investigate the adhesion and deformation of

a cell by applying the developed model. Additionally, the influences of variety of

membrane, binding and electrolytic constitutive coefficients on the cell adhesion and

deformation behaviors were investigated. The results obtained show that the ligands

density on the substrate has strong effect on the adhesion and deformation the cell.

This result is admissible due to the essential role of the ligands in cell adhesion. The

novelty in this work is the introduction of the intrinsic membrane area dilation due

to the presence of receptors. Based on the results obtained in the current work, the

area dilation due to the presence of receptors possesses a significant effect on the cell

adhesion and deformation, which emphasizes the important of the consideration of

this effect in cell adhesion modeling. The Debye length as the electrolytic charac-

teristic of extracellular environment also shows intense effect on the adhesion and

deformation of the cell. Additional significant parameter is the ratio of the receptor-

ligand binding coefficient to the membrane stiffness, γ̄, which was shown to have a

considerable influence on cell behavior. However, the influence of the dimensionless

diffusion parameter γ3 on the adhesion and deformation of the cell is small, although

the migration of the receptors on the cell membrane is biological fact.
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Chapter 5

Future Work

In the current work, the membrane theory was used for modeling, since the mem-

brane of the cell was considered to be comprised of phospholipid molecules and other

components of the membrane plus the cyteskeleton underneath the membrane were

ignored. Therefore, the behavior of the cell membrane was better modeled by using

membrane theory. That means, the bending stiffness of the membrane was ignored

and the normal forces to the membrane are tolerated as in-plane stresses. For the

future work, the influences of the membrane thickness and bending stiffness of the

membrane on the deformation and consequently adhesion of the cell, can be con-

sidered by using the shell theory for modeling the behavior of the cell membrane.

That model can better account the several different protein components in the cell

membrane and the cyteskeleton, which exists underneath the membrane and analyze

the behavior of the cell membrane. Additionally, due to the existence of the protein

components in the cell membrane, beside the fluid-like behavior of the phospholipid

molecules, a fluid-solid constitutive model can be proposed, which can approximate

the behavior of the membrane by considering the dilation and distortion happen in

the cell membrane. As discussed in the present work the diffusion of the receptors on

the membrane due to the interactions between receptors was modeled by Fick’s law.

As an prospective work, a nonlinear constitutive relation can be proposed based on

the electrostatic interaction of the charges exist on the receptor proteins to improve

the diffusion of the receptors on the membrane.
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Appendix A

Additional Results

In this chapter, additional figures are provided to further analyze the cell adhesion

and deformation.
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Figure A.1: Variation of the membrane area dilation, J , for various values of the
dimensionless coefficient of spontaneous area dilation ζ̄ = {0.0, 0.1, 0.25, 0.5} and
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Figure A.2: The nondimensionalized pressure of the enclosed fluid, p̄f versus nondi-
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