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ṁ the propellant mass flow rate (kg/s)

Tinf the environment temperature (K)

jz the current density in z direction (A/m2)

jr the current density in r direction (A/m2)

D the diffusion coefficient

vc the sheath voltage (V)

I, Ii the total current, the total current at grid i (A)

wi the coupling coefficient [1]

ai+1 the triangular area (m2)

xxiii



xxiv



Abstract

Since its invention at the University of Stuttgart, Germany in the mid-1960, scien-

tists have been trying to understand and explain the mechanism of the plasma

interaction inside the magnetoplasmadynamics (MPD) thruster. Because this

thruster creates a larger level of efficiency than combustion thrusters, this MPD

thruster is the primary cadidate thruster for a long duration (planetary) spacecraft.

However, the complexity of this thruster make it difficult to fully understand the

plasma interaction in an MPD thruster while operating the device. That is, there

is a great deal of physics involved: the fluid dynamics, the electromagnetics, the

plasma dynamics, and the thermodynamics. All of these physics must be included

when an MPD thruster operates.

In recent years, a computer simulation helped scientists to simulate the exper-

iments by programing the physics theories and comparing the simulation results

with the experimental data. Many MPD thruster simulations have been conducted:

E. Niewood et al.[5], C. K. J. Hulston et al.[6], K. D. Goodfellow[3], J Rossignol

et al.[7]. All of these MPD computer simulations helped the scientists to see how

quickly the system responds to the new design parameters.

For this work, a 1D MPD thruster simulation was developed to find the voltage

drop between the cathode and the plasma regions. Also, the properties such as

thermal conductivity, electrical conductivity and heat capacity are temperature

xxv



and pressure dependent. These two conductivity and heat capacity are usually

definded as constant values in many other models. However, this 1D and 2D cylin-

drical symmetry MPD thruster simulations include both temperature and pressure

effects to the electrical, thermal conductivities and heat capacity values interpo-

lated from W. F. Ahtye [4]. Eventhough, the pressure effect is also significant;

however, in this study the pressure at 66 Pa was set as a baseline.

The 1D MPD thruster simulation includes the sheath region, which is the

interface between the plasma and the cathode regions. This sheath model [3] has

been fully combined in the 1D simulation. That is, the sheath model calculates

the heat flux and the sheath voltage by giving the temperature and the current

density. This sheath model must be included in the simulation, as the sheath

region is treated differently from the main plasma region.

For our 2D cylindrical symmetry simulation, the dimensions of the cathode,

the anode, the total current, the pressure, the type of gases, the work function

can be changed in the input process as needed for particular interested. Also, the

sheath model is still included and fully integrated in this 2D cylindrical symmetry

simulation at the cathode surface grids. In addition, the focus of the 2D cylindrical

symmetry simulation is to connect the properties on the plasma and the cathode

regions on the cathode surface until the MPD thruster reach steady state and

estimate the plasma arc attachement edge, electroarc edge, on the cathode surface.

Finally, we can understand more about the behavior of an MPD thruster under

many different conditions of 2D cylindrical symmetry MPD thruster simulations.
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Preface

President Obama approved NASA’s budget for fiscal year 2015 and he reaffirmed

the goal to send humans to Mars in the 2030s and to explore Jupiter’s moon,

Europa [8]. With more than 100 billion dollars invested in America’s space program

over the past six years including 17.5 billion dollars this year, the United States

will remain the world’s pioneer in space exploration for the time being. These

ambitious explorations are the stepping stone approach for NASA space programs,

as it is required to develop new crews, spacecraft, and new space vehicles carrying

scienctific instruments for this long journey. As a result, a new advanced propulsion

technology will be necessary to achieve these challenged missions. Such propulsion

technology would need to have high efficiency and reduce propellant consumption.
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Chapter 1

Introduction

Early in 2011, the Obama administration redefined the role of NASA and how

it would achieve its objectives. With this new direction, NASA is developing

two new rockets, one of which is Orion-a new crew module. By the 2030s,

NASA hopes to send a manned spacecraft to orbit and land upon Mars-the

Red Planet. To achieve this ultimate goal, NASA must develop advanced

propulsion technology. One of the propulsion thrusters that has been identified

as a prime candidate for in-space missions is the electrical propulsion (EP) thruster.

Chemical vs. Electric Propulsion Thrusters

Currently, chemical propulsion systems operate by lifting off (e.g., the Moon, the

Earth, or an asteroid). Because they create a large amount of thrust force, such

force can push against the gravitational force of planetary bodies. However, the

chemical propulsion system provides lower exhaust velocity as well as lower specific

impulse values by an order of magnitude when compared to Electic Propulsion (EP)

thrusters. In a chemical propulsion system, the energy is contained in the molecular

structural bonds. This energy is released through the combustion process and, as a

result, is converted to kinetic energy in the converging-diverging nozzle, producing

thrust. Thus, the amount of energy available is limited by the chemical bonds in

the molecular structures of the propellant.

In an EP system, however, energy is produced by an external power source (e.g.,

solar arrays, batteries, or nuclear reactor), then transferred to the propellant, and
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converted into the converging-diverging nozzle to directed kinetic energy, creating

thrust. This concept allows more energy to be introduced into the propellant and,

as a result, EP have higher propellant-efficiency. For a higher efficiency system,

this means less propellant is required to complete the same delta-V. In turn, a

spacecraft can carry more cargo (e.g., people or scientific instruments) [9],[10].

EP thruster systems can be categorized as ion thrusters, arcjet thrusters, and

magnetoplasmadynamics thrusters. The differences between these systems lie in

the methods by which the propellant accelerates and how the energy transfers into

the propellant. These two factors measure the propellant efficiency. Typically,

these efficiency measures are determined by the specific impulse, Isp (measured in

seconds):

Isp =
F

ṁg0

=
ṁue
ṁg0

=
ue
g0

(1.1)

where Isp is the specific impulse (s), F is the thrust force (N), ṁ is the propellant

mass flow rate (kg/s), ue is the exit velocity (m/s), and g0 is 9.8066 (m/s2). For

each specific mission, there is a certain amount of velocity change (∆v) or, to

put it another way, a certain amount of propellant mass calculated from the rocket

equation. This amount of propellant can be calculated to achieve a certain delta-V

from the rocket equation by:

Mp = Mo(1− exp
(−∆v)
Ispg0 ) (1.2)

where Mp is the propellant mass, Mo is the initial mass, and ∆v is the total

velocity change to accomplish certain missions. As can be seen, for a certain delta-

V, the higher Isp means that a lower propellant mass is required. Recently, the
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cost of launching a payload to a lower earth orbit (LEO) has been estimated at

approximately $10,000 per kilogram. To decrease the cost of a mission, thrusters

need to perform more efficiently.

However, there is another problem. EPs require a longer amount of time to

accelerate the spacecraft because they provide a relatively low thrust. That is, EP

system component parts must last for thousands of hours, especially magnetoplas-

madynamic (MPD) thrusters. This problem is due to the cathode erosion which

occurs during charged particle interactions, which erodes its surface. This limits

the lifetime of MPD thrusters.

The cathode erosion in MPD is due to its high operating temperature, which

is in the range of 2,000-3,000K. The cathodes usually are made from tungsten

or tantalum, which are refractory (high melting point) metals. There are two

shapes of MPD cathodes, hollow and solid rod. The latter has been tested and

developed for decades, so experimental data is more available. Mechanisms that

create thrust are similar for both hollow and solid rod cathodes, the solid rod

cathode has a much simpler geometry than a hollow cathode. As a result, this

research will focus on developing a 1D and 2D cylindrical symmetry simulation

to predict and characterize the attachment area of a plasma region and solid rod

cathode region in a steady state of MPD thrusters. Information about an MPD

thruster study can be read in references [6], [7], [10], [11], [12], [13], [14], [15], [16],

[17].
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Chapter 2

MPD Thruster

2.1 The Classification of an MPD Thruster

The classification of MPD can be considered in several categories as followed: the

operating conditions, the shape of the cathode (hollow and solid rod cathode), the

pulse or direct current mode and hot or cold cathode operation. The hot cathode

operation is usually in a steady state operation while the cold cathode operation

is usually in a start-up phase or pulse mode operation.

For this study, the MPD thruster uses direct current and it is assumed to have

achieved the steady state condition. That is, there are only small changed in values

of all the thermodynamic properties: the current density, magnetic field, and flow

velocity of the gas values. For the shape of the cathode, this MPD thruster uses

the solid shape cathode, which has a simpler design. In any case, this shape can

be used to establish the fundamental physics for an MPD thruster. As a results,

other more complex shapes such as multiple hollow cathode can also use this solid

cathode as principal knowledge and adjust for needed applications.

2.2 The Solid Cathode MPD Thruster in Steady

State

In this system, there are mainly two types of material-an anode (+) and a cath-

ode (-), as can be seen in Fig. 2.1. A cylindrical solid cathode is placed in the
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center and surrounded by a cylindrical anode. The cathode is usually constructed

from high melting point material such as tungsten or tantalum, as they have a low

work function, which effectively provides the thermionic emission. The primary

material for the anode is copper or tungsten, which can withstand high temper-

atures. However, at the anode, the heat load is not as high as at the cathode

and the plasma attachment temperature is much higher than at the cathode. As

a result, this study uses copper as an anode. Then, both anode and cathode are

connected to high voltage and a high current power supply and the surrounding

pressure or background pressure established by a vacuum pump can be as low as

6.75 Torr during operation at the highest flow rates of 640 sccm [2]. For the MPD

Figure 2.1: A Model of an MPD Thruster [2]

thruster propellant in this study, argon is preferred as it is an inexpensive gas and

a noble gas. That is, argon electron shells is fully filled so it almost never react
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with other gases. That means it is extremely nonreactive and inert, even at very

high temperatures.

Initially, the neutral argon propellant is symmetrically introduced from the

cathode base and travels through the gap between electrodes. Then, the propel-

lant is ionized by the arc discharge while traveling downstream. That is, one of

the electrons is separated from the neutral propellant and the neutral propellant

becomes a positively charged propellant. This flow of the electron and charged

propellant is called plasma. The arc discharge is a form of current density path,

which moves through plasma between electrodes. The electrons, the ions, and the

neutral particles have different roles in the cathode surface interaction. That is,

this interaction in steady state occurs once the cathode temperature is high and

the variation of the temperature is minimal. The process where the thermal energy

is given to the flow of charge carriers on the cathode surface and the charge carriers

overcome the binding potential is called the thermionic emission. The thermionic

emission depends on temperature and the electrical field and can be expressed in

the Richardson-Dushman equation as shown below:

jb = ART
2
c exp

(
−ϕeff
kTc

)
(2.1)

where jb is thermionic emission current density, AR is the Richardson coefficient

60 A/cm2/K2 for the tungsten cathode, ϕ is the material work function depending

on temperature, k is Boltzmann’s constant, T is the cathode temperature and ϕeff

is the Schottky effect. This can be written as:

ϕeff = ϕ0 −
√

eEc
4πε0

(2.2)
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where ϕ0 is the reference work function (eV ), e is the electron charge, Ec is the

electric field surrounding the cathode, and ε0 is the permitivity of free space. The

variation of the electrical field changes the Scotty effect value and in turn the

thermionic emission current density changes. For the current density, when it

interacts with the magnetic field, a Lorentz force is created.

The Lorentz force (J×B) is a result of the right hand rule relationship from the

interaction between the current density and the azimutal magnetic field around the

cathode. The response of the current density in the axial or outward direction with

a magnetic field is called the blowing force. The other force is called the pumping

force, which is interaction with the magnetic field that is in the radial direction.

The combination of these two forces generates a thrust in an MPD thruster.

2.2.1 Thermionic Emission

At the surface of the metal electrodes that operate in high temperature, the elec-

trons are emitted to the plasma and this process is called thermionic emission.

This emission determines whether the system reaches a self-sustaining point.

The thermionic emission can be related to the work function of the cathode

surface. That means, in order to acheieve the thermionic emission rapidly, it would

require a lower work function on the surface of the electrodes. The process that

can lower the work function could be reached by covering the electrodes with

monatomic film such as thorium and caesium. As a result, the film of thorium

will be diffused to the surface of the tungsten at a high temperature. Particularly

at the start-up phase, the electrons are emitted from the cold cathode surface

and this emitting generates a micro spot, which is called the “cathode spot.” The

temperature of the cathode spot can reach as high as 3,000 K and it is the most

destructive phase of cathode operation [17].
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2.2.2 Thermal Excitation and Ionization

Ionization is the process whereby one or more electrons are removed from an atom.

The energy exchange between particles is assumed to come from the thermal energy

of the particles. This thermal energy or kinetic-energy is assumed to follow the

Maxell-Boltzmann distribution, which is the most propable temperature in an

ensemble of particles. The general Boltzmann distribution appears in exponential

form as:

exp

(
− kinetic energy

kT

)
(2.3)

where k is Boltzmann’s constant, T is temperature in Kelvin, and kinetic energy

can be replaced by other forms of energy such as potential energy and chemical

energy.

2.2.3 Fluxes and Transportation Properties

Uniform plasma is usually assume for many theoretical studies in plasma physics;

however, this assumption is very difficult to produce. The actual characteristics

of plasma will reveal gradients such as particle number densities, applied elec-

trical potentials, temperature, and velocity components. These gradients can be

considered driving forces that give use to fluxes and can be expressed by

Fick’s law Γ̄ = −D∇n

Ohm’s law j̄ = −σe∇V

Fourier’s law q̄ = −k∇T

Frictional force f̄x = −µ∇vx

(2.4)
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where Γ̄, j̄, q̄, and f̄x refer to fluxes due to diffusion, electrical conduction, ther-

mal conduction and the frictional force in x direction, respectively. The relation

between driving force and fluxes is called transport coefficients D, σ, Kth, and µ,

which are known as the diffusion coefficien, the electrical conductivity, the thermal

conductivity, and the viscosity, respectively.

The particles collisions transfer the energy and momentum between particles.

Thus, sufficient detail of the collision processes must known to determine the trans-

port coeffcient, which depends on the collision cross section between particles.

However, the exact electronic structure in a molecule or atom is difficult to deter-

mine experimentally, a highly simplified model such as a classic sphere has been

developed for determining collision cross sections [18].

2.2.4 Local Thermodynamic Equilibrium (LTE)

In laboratories, LTE plasma is usually optically thin plasma, which does not require

a radiation field that responds to the blackbody radiation. However, it does require

a collision process that governs transitions and reactions in the plasma. In addition,

LTE plasma has micro reversibility properties among the collision processes or a

detailed equilibrium between each reverse process and collision process is necessary.

In steady state, the solution of LTE and complete thermal equilibrium will yield

the same energy distribution. Furthermore, the diffusion time should be on the

same order of magnitude or larger than the equilibrate time and the gradient of

LTE plasma properties (e.g., temperature and heat conductivity) should not be

too large to diffuse from one location to another. This LTE plasma assumption is

necessary to simplyfy the problem [18].
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The following sections provide a literature review that explains studies of the

surrounding plasma and cathode characteristics in an MPD thruster.
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Chapter 3

Literature Review

The prior studies of MPD thrusters were performed at the University of Stuttgart,

Germany. Now, this experiment and numerical simulations are being conducted

in many universities and countries around the world.

3.1 Electrical, Thermal Conductivities and Heat

Capacity Coefficients

Warren F. Ahtye. Ames Research Center, NASA, USA 1965 [4]

In early 1965, W. F. Ahtye calculated the basic transport coefficients of partially

ionized argon by using the rigorous second-order Chapman-Enskog formulation.

In addition, this method determined the electrical conductivity, translational ther-

mal conductivity and heat capacity for fully ionized argon. As the results from

second-order values compared with the simultaneous collision approach of Spitzer,

the electrical and translational thermal conductivities are lower by a factor of

three, as they include the ion-ion interactions. Furthermore, a comparison of the

electrical conductivity values calculated by second-order Chapman-Enskog with

experimental values shows that this second-order approach is accurate for calcu-

lating electrical conductivity and this approach is also valid for calculating thermal

conductivity. Moreover, W. F. Ahtye studied the other thermodynamics proper-

ties (e.g., heat capacity of argon). His study provided a better understanding of

relationship between pressure and temperature for each thermodynamic property.
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Comments:

W. F. Ahtye’s work calculates many properties: electrical and translational con-

ductivities, and the heat capacity of argon. These values’s plot can be used for

our MPD thruster simulations as their values are in many different pressures. Our

MPD thruster simulations require pressure as low as 0.5 torr (66 Pa). For such low

pressure, it is difficult to determine acceptable values of electrical and translational

conductivities, and the heat capacity. However, Ahtye’s method calculates those

values with many different pressures. As a result, these properties of argon, the

electrical, thermal conductivities and the heat capacity, will be used in our 1D and

2D cylindrical symmetry MPD thruster simulations by interpolated method [19].

Daniel A. Erwin and Joseph A. Kunc 1985-1986 [20, 21]

In mid-1985, D. A. Erwin and J. A. Kunc determined some of the transport coeffi-

cients such as electrical conductivity, which depended strongly on the electron tem-

perature (300 to 30,000 K) and degree of ionization (10−8 to 1) for monatomic gases

(H, O, He, and Ne) in a weakly ionized or fully ionized plasma within the steady

state condition. The electron distribution function, which is described by using

the Boltzmann and the Maxwellian assumptions, is also outlined in this work. The

elastic collisions, which can be electron-electron, electron-ion, or electron-neutral

(e-e, e-i, or e-n), were considered in the plasma transport coefficient calculations,

while the electron velocity distribution function was evaluated using the 4 × 4

matrix formulation method from Shkarofsky et al. In a low degree of ionization,

there is a great discrepancy between different gases, as the electron-neutral collision

tends to depend on gas types. They also mentioned the deviation of temperature

between Te and Tn from local thermal equlibrium (LTE), when high external elec-

tric field or density gradients existed; however, the deviation is suppressed by a

low electrical fields and electron temperature at around 12,000 K.
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The computer program was coded and calculated for the electrical conduc-

tivity of a magnetic- field free and partially ionized plasma where neither of the

electron-neutral and Coulomb collisions were important. Although this method

was available to calculate the electron temperature up to 38,000 K, the high

dissociation of molecular gases could not be accurately determined. The computer

codes had been separated into two main parts, which were physical routines and

mathermatical routines. The electron temperature, gas pressure and the electron

density were built into the computer program that calculated the electrical

conductivity (mho/m).

Comments:

This paper provides a method for calculating accurately the result of the electrical

conductivity of plasma and it can be used as a future work that links with [1] to

determine the electrical conductivity of argon in an MPD thruster.

S. Paik et al. 1990 [22]

In the mid-1990, S. Paik and E. Pfender presented the argon plasma transport

properties at low pressures (0.01atm). At this low pressure, the electron tem-

perature deviated from the heavy particle temperature so the two-temperature

particles were adapted to calculate the transport properties, such as electrical

and thermal conductivities. These values with two-temperature effect and with-

out two-temperature effect were compared. There is a large discrepancy at the

low electron temperature ; however, these discrepancies become smaller when the

electron temperature is around 10,000 K and higher.

In addition, the composition of particles was calculated from the Saha

equation, which included the lowering of the ionization energy. From there, this
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calculation would be compared with experimental data: the momentum transfer

cross sections. This method assumes the partially ionized collision-dominated gas

to have the Maxwell-Boltzmann distribution. Their method all species (i.e., ion,

atom, electron) interacted to create a cross-section collision. When the electron

temperature becomes much higher than the heavy particles temperature, the two

particles temperature effect needs to be included. Furthermore, the calculation

can be calculated for the heat capacity composed of three parts (i.e., electron,

reaction, and heavy particles). These three particles interacted with each other;

however, the main contribution of the total value of the specific heat is the

interreaction between electrons and heavy particles.

Comments:

The electrical and thermal conductivity values of argon at a pressure of 0.01

atm in S. Paik et al.’s work could not be used in this proposal because the

pressure inside MPD thruster is much less than 0.01 atm. Moreover, we know the

two-temperature effect starts at approximately 5,000 to 10,000 K; however, above

10,000 K the two-temperature effect becomes less important.

G. J. Dunn and T.W.Eagar 1990 [23]

G.J. Dunn and T.W. Eagar presented their own theory to calculate the electrical

and the thermal conductivities of metallurgical plasmas at the ambient pressure.

Their work was concerned with the metal vapor that changed the electrical and

the thermal conductivity values in the plasma. At 1 atm, the assumption of local

thermodynamic equilibrium (LTE), quasi-neutrality (Te = Ta = Ti), and ideal gas

was given for this calculation. Also, the second ionization became appreciable at

T > 17, 000K. These theories of this electrical conductivity depended strongly on
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the accuracy of the cross section collision theory. They compared the electrical

and thermal conductivity values to other scientists such as Devoto and Cambel,

and the comparison values were well within agreement.

Comments:

At ambient pressure, this paper provided the electrical and the thermal conductiv-

ity values of argon plasma. These electrical and thermal conductivity values can be

used to compare with our argon plasma model at 1 atm. Also, we can apply it to

our MPD thruster simulations; however, their work does not provide the electrical

and thermal conductivity values as low as 0.5 torr (66 Pa). Therefore, it would

not be possible to include these conductivity values for our MPD simulations.

3.2 Numerical Simulation of an MPD Thruster

E. Niewood et al. Massachusetts Institute of Technology, USA 1992 [5]

In mid-to-late 1992 at Massachusetts Institute of Technology (MIT), E. Niewood

and his group developed a quasi-one-dimensional model of an MPD thruster that

included a two-fluid flow. That is, the two fluid flow consisted of heavy particles

and electron particles. Their model used the energy conservation equation and the

momentum equation. These two equations colculated the ion and the neutral par-

ticles separately. In addition, the governing equations included global continuity,

global momentum and electron density, all of which were dominated by Coulomb

collisions. In the energy equation, the main source terms were from Joule heating

(Ohmic heating), elastic transfer between electron and heavy particles, energy lost

from ionization, and the axial heat conduction.
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From this work, the temperature of the heavy species was a magnitude lower

than the electron temperature in which the two fluid temperatures were necessary

to have accurate electrical or thermal conductivities or viscosity coefficients,

and also to determine the effect of plasma instability. In addition, the other

phenomena, such as the area variation of the channel and velocity slip between

ions and neutrals, were considered and then compared to the experimental data.

Comment:

To compare the numerical result and experimental value at one point, it is

necessary to increase the voltage by 45 V to match the experimental data. This

result confirms that the cathode sheath, fall voltage, and the real value of the

conductivity are important in order to understand more about an MPD thruster.

C. K. J. Hulston et al. College of Engineering, India 1994 [6]

In mid-to-late 1996, Hulston et al. conducted a one-dimensional numerical sim-

ulation of cathode thermal erosion. He used the energy equation: conduction,

convection, radiation and ohmic heating. Then, the equations are discretized in

terms of deforming finite elements treated as ablation at the surface. Following

the Galerkin method, the heat conduction was obtained in the form of a semidis-

cretized differential equation. The time step was increased until the system reached

steady state and the time step for each element was within the allowable stability.

Then, the temperature profiles were obtained along the cathode by comparing

the numerical results to verify his model. The erosion rate or material loss of the

cathode was calculated by the convective matrix after the temperature was more

than ablation temperature.

18



Comments:

Hulston, et al.’s work assumed constant thermo-physical properties such as

electrical, thermal conductivities and heat capacity of the material. In addition, if

this work had included the temperature dependent of the heat flux at the cathode

root, this work would have improved the cathode thermal erosion simulation.

For the fundamental relationship of an MPD thruster, it was found to be at a

higher temperature in the conical portion of the cathode and the Ohmic heating

produced a higher amount of heat generation in the conical region of the cathode

than in the cylinder region of the cathode.

K. D. Goodfellow University of Southern California, USA 1996 [3]

In mid-1996, at the University of Southern California, Goodfellow conducted an

experiment and created a quasi-one-dimensional numerical model. This model

required a thermal model and near-cathode plasma model in a steady state for

an electrical thruster to predict the lifetime of the cathode. The thermal model

determined the characteristics of the temperature profile in the cathode and the

near-cathode plasma model calculated the characteristics for heat flux and current

density. The near-cathode plasma was represented as a transition region between

the plasma region and the cathode surface. This near-cathode plasma included

the sheath region, and boundary layers, and was coupled with the thermal model.

A series of operating condition experiments was conducted to verify the numerical

model values. Then, the temperature profile of the cathode was observed under

different conditions.

Comments:

Goodfellow’s work included the sheath region, which was the most important
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model to determine the voltage drop. This fundamental knowledge of the particle

interaction between electron and atom particles provided more understanding

about the MPD thruster. The arc discharge area on the cathode had been

measured from the experiment and put into the numerical model. However, if

the arc attachment area model had been included, his numerical model could

have fullfilled the understand of the MPD thruster theory on the cathode surface.

Further development of the arc attachment area for the MPD thruster model is

required and this topic is in this dissertation.

J Rossignol et al. University Blaise Pascal, France 2003 [7]

J Rossignal et al. introduced a one-dimension model of the cathode sheath in an

electrical arc. Heavy particles interacting above the sheath edge was introduced

as a friction zone derived from an ion-atom collision. This model determined the

heat flux, the electrons, and density of atoms in a steady state. Overall, his work is

divided into the physical process and the modeling. The physical process describes

the cathode’s rise in temperature derived from the plasma bombardment (i.e., ions,

electrons, atoms, radiation) on the surface and the Ohmic heating in the cathode,

and the energy dissipation consisted of thermal conduction droplet ejection and

surface vaporization from the cathode. The sheath region was introduced as the

trasition zone between the plasma and the cathode. The emitted electron could

be accelerated outward by the voltage difference. Some of the newly created ions

then fall into the voltage drop region and bombard the surface of the cathode.

In the surface and sheath model, there are many interactions, consisting of

Bohm criterion velocity, the ionic energy bombardment to the cathode surface,

radiation in the plasma and the cathode surface, and the bombardment of the

electrons from plasma and the returning electron to the cathode surface. In
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addition, the electric field, atomic emission, bombardment and ionic friction

were included in this model. Next, he uses a coupling of the cathode heating

model and sheath model to solve for the energy balance between the energy flux

of vaporization of the cathode and the energy flux due to the thermal conductivity.

Comments:

This work does not explain the properties of the plasma region connected

to the friction zone. However, the basic detail of each particle interaction is

explained well and the results of the numerical simulation model obtain a real-

istic estimation of characteristics for heat flux, current density and particle density.

H. Kawaguchi Hokkaido et al. University, Japan 1995 [24]

In early 1995, H. Kawaguchi presented the numerical study of the thrust mecha-

nism in a two-dimensional self-field MPD thruster. Two types of thrusters, which

were flared and converge-diverge (C-D), had been studied and compared with

experimental data. This work assumed the quasi-steady state, a fully ionized

one-fluid argon plasma, and a constant of electrical conductivity, and neglected

the voltage drop across the plasma sheath. This numerical simulation used the

total variation diminishing (TVD), successive over relaxation (SOR) method and

iterated until the electromagnetic and fluid equation reached self-consistency.

For convenience, the curvilinear coordinates were used instead of the Cartesian

coordinates.

The numerical simulation results show that a shock wave occurred near the

tip of the cathode and the fluid became supersonic near the inlet in the flared

type. In the C-D type, the fluid became supersonic at the throat. The shock

wave and braking force were the main suppression in the flared type and C-D
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type respectively for the aerodynamic force in MPD.

Comments:

Kawaguchi’s comparison between numerical results and the experimental data

provides fundamental knowledge about the relationship between the thrust and

discharge current. In addition, microscopic phenomena can be observed in this

numerical simulation. However, if the electrical conductivity temperature depen-

dent in argon plasma had included in the plasma region, his study might have

delivered the relationship between the voltage drop and temperature. Finally, the

fact that voltage sheath drops across the cathode, which is the main power loss in

the MPD thruster, has not been included in this study.

T. Miyasaka et al. Nagoya University, Japan 1998 [25]

In early 1998, T. Miyasaka et al. studied the Numerical Analyses of 2-Dimension

Axisymmetric MHD Flow Satisfying Sonic Conditions in an MPD Thruster.

This work explained the two-temperature effect, ionization, recombination, and

onset phenomenon to the straight-configuration electrodes in a self-induced MPD

thruster. Argon was the propellant gas, which assumed a sonic speed at the inlet

(argon plasma is a perfect gas having constant specific heats).

The method used was a second-order accurate explicit total variation dimin-

ishing (TVD) upwind scheme to solve the electromagnetic and compressible Euler

equation in steady state. The pressure and current contours showed that the

strong Lorentz force, which came from the concentration of the discharge current,

reduced the pressure from downstream of the inlet. The force was slowly increased

with the current (i.e., the value of thrust was approximately 8 N at 10 kA).
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Comments:

This paper explains the relationship between thrust and the discharge current;

however, the cathode sheath phenomena has not been included in the model. The

cathode sheath is considered repondsible for the voltage drop across the electrodes

in the MPD thruster.
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Chapter 4

Prior Work

4.1 Introduction

In the recent years, the advancements in graphics and processors technology have

allowed the computational simulation to solve the nonlinearity problem because

of its accuracy and sophisticate. In addition, there are several benefits i.e. it

allows scientists and researchers to see how the systems respond. Also, it can

help detecting wrong calculations design, which can save a lot of money before

developing and building experimental set up.

Furthermore, the physical intuition can be tested much more quickly and inex-

pensively than an experiment. Moreover, the computational simulation can be

repeated to investigate the different conditions, once the correct computational

simulation model has been verified.

The MPD thruster has several different characteristics and these differences are

required to be included in the computational simulation for the high-current solid

rods cathode and the surrounding plasma in MPD thruster.

4.2 The Role of MPD Numerical Simulation

The MPD thruster model consists of the following parts: computational grid, solid

cathode model, plasma model, cathode sheath.
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The computational grid is a system of cells covering the model geometry, the

geometry will be axisymmetric, and the cells will be triangular. This triangular

grid system is based on Winslows method [1], which provides many advantages

i.e. the triangular grid can generate the curvature at the interface between two

different material or at the corner much more uniformly than rectangular grid.

Solid cathode model is a set of equations describing flow of heat and electric current

in the cathode. The plasma model is a set of equations describing flow of partially

ionized argon through the model, and the flow of heat and electric current. The

cathode sheath is a model describing the interface between the cathode and the

adjacent plasma using [3].

The goal of this dissertation are to develop 1D and 2D cylindrical symmetry

simulations of an MPD thruster. These simulations consist with 3 mains regions

which are the plasma region, the cathode region, and the plasma sheath region (on

the cathode surface [3]). Then, the electrical conductvity, the thermal conductivity

and the heat capacity are applied into the plasma and the cathode regions until

1D and 2D cylindrical symmetry simulations reach steady state to describe the

temperature, potential, electric field and current density in the simulations.

That is, 1D MPD thruster simulation will be developed first to obtain the fun-

damental physics of an MPD thruster and to calculate to obtain the temperature,

the voltage in the cathode and the plasma regions. Also, the voltage drop (sheath

voltage) between the cathode tip and the plasma can be evaluated. Then, the 2D

cylindrical symmetry MPD thruster simulation calculates temperature, potential,

the current density, the electric field to fully estimate the electroarc edge or

plasma arc attachement edge on the cathode surface. Further development to

include the particles flow of electrons and ions could improve the cathode erosion

simulations as describe in [3] as shown in Fig.4.1. Some of the references for these
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simulations are listed as [5], [14], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],

[34], [35], [36], [37], [38], [39], [40], [41], [42].

Figure 4.1: Diagram of the cathode erosion model [3].
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4.3 1D MPD Thruster Simulation

Figure 4.2: The one-dimensional cathode-plasma system with magnetic field out-
ward direction from the page.

4.3.1 Introduction

This section describes a one-dimensional cathode-plasma model. The model is

designed to find the steady-state behavior of a system consisting of a cathode, a

plasma, and an enclosing electric circuit that forces a specified current density into

the system see Fig. 4.2.

Following are the effects modeled: There are an electric and thermal conduction

within the cathode and the plasma regions. Also, the joule heating (Ohmic heating)

are in both cathode and plasma regions. Then, the voltage drop (cathode fall) can

be calculated using the model and apply at the anode toward the cathode as the

anode voltage is given as 0 V and assume no magnetic field interaction as it is 1D

simulation.
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4.3.2 Grid definitions

This section describes the computational grid. There are two regions, the cathode

and the plasma regions, as can be viewed in Fig.4.3. The N1 and N2 define as the

number of grid in each region and the Lc and Lp define as the total length in the

cathode and the plasma regions, repectively. There is one spatial variable x, which

ranges from 0 at the cathode base to xA at the anode. The grid is composed of

N + 1 points numbered 0 to N. Point 0 is the cathode base; point NC is at the

cathode edge; point NC+1 is at the plasma edge; and point N is at the anode. The

sheath is located between points NC and NC+1. These two points are very close

together and may in fact be collocated, since the sheath model assumes the sheath

to be of infinitesimal thickness. Grid point i is located at x = xi . Thus, x0 =

Figure 4.3: 1D cathode N1 and N2 are the cathode and plasma regions.

0 and xN = xA. Two kinds of cells are defined. Primary cells span the intervals

between grid points. There are N primary cells numbered from 1 to N. Primary

cell 1 covers the interval between point 0 and point 1; more generally, primary cell

i covers the interval between point i-1 and point i. The width of primary cell i is

Li = xi − xi−1 (4.1)
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Secondary cells span the intervals between the midpoints of primary cells.

There are N+1 secondary cells numbered 0 to N. The secondary cell numbered

i surrounds grid point i . Note that if the primary cells adjacent to grid point i are

of different widths, then grid point i is not the midpoint of secondary cell i . The

width of secondary cell i is

LS,i = (Li + Li+1)/2 (4.2)

The two secondary cells at the grid edges are bounded by the grid endpoints.

Thus, secondary cell 0 ranges from x = 0 to x = L1/2 = x1/2, and secondary cell

N ranges from x = (xN−1 +xN)/2 to xN = xA. As you can see in Fig. 4.4, it is the

example of the primary cells, secondary cells, primary grid points and secondary

grid points.

Figure 4.4: 1D cathode numerical grid cells.

30



4.3.3 Equations to be solved

4.3.3.1 Electrical Potential

The external circuit pumps current density J0 through the system, flowing from

anode to cathode. Since the system is one-dimensional, the current density is

constant throughout the system. The electrical potential φ varies from 0 at the

anode to φC < 0 at the cathode base. The electric field is

E = −dφ
dx

(4.3)

The current density is

J = σE (4.4)

where σ is the electrical conductivity. (Note that both the electric field and the

current density are negative, since the field points from right to left.) The electric

field is found from requiring that the current density found from eq. 4.4 is the

specified value:

σE = −J0 (4.5)

where the specified current density J0 is taken to be a positive number. Assumed

no magnetic field interaction in this study for 1D and 2D cylindrical symmetry

simulations; however, the magnetic field can be included in the future work for 2D

cylindrical symmetry simulation.

4.3.3.2 Temperature

We solve the one-dimensional thermal diffusion equation,

cp
dT

dt
= JE +

d

dx

(
K
dT

dx

)
(4.6)
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where cp is the heat capacity per unit volume, JE is the ohmic or Joule heating,

and K is the thermal conductivity.

4.3.3.3 Cathode sheath

The characteristic of near-cathode model from Goodfellow’s model is the charac-

teristic between plasma and cathode in steady state and considers the sheath to

be a discontinuity between cathode and plasma. The model predicts the heat flux

(qtot), current density (jtot), electron number density, and electron temperature

(eV) as a function of temperature and pressure at the near-cathode surface.

Figure 4.5: Near Cathode Plasma Region [3].

The model of near-cathode model consists many properties regions such as solid,

recombination, sheath, presheath, ionization, boundary layers and main plasma

region. An illustration of near cathode plasma region is shown in Fig. 4.5. The
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detail of the characteristic of near-cathode model can be read in reference [3] where

LD, Lei, and LT,C,M are the Debye length, mean free path, and thermal, concentra-

tion and momentum boundary layer thickness, respectively. (je, ji) are the relative

magnitude of electron and ion current density with the region or position.

The mole fraction of argon varies with the electron temperature and the second

ionization starts around electron temperature at 1.1 eV as can be seen in Fig.4.6.

The heat flux and the current density of each species at the interface between the

cathode and the plasma regions with work function of 4.5 eV and pressure of 66

Pa can be calculated as in Fig.4.7 and 4.8.
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As can be seen in the Fig.4.7, the total heat flux consists of many particles as

shown in the equation below:

qtot = qi,1 + qii,1 − qn,1 + qi,2 + qii,2 − qn,2 − qb + qe (4.7)

qtot =
2∑
s=1

(
ji,s
e

(eVe + eVB + εi,s − φeff ) +
jii,s
2e

(2eVc + eVB + εii,s − 2φeff

)

−
2∑
s=1

[Fn,c,s2kTc]−
jb
e

(φeff + 2kTc) +
je
e

(φeff + 2kTc)

where qi,1, qi,2 represent the energy gain by singly-charged ion, qii,1, qii,2 are the

energy gain by doubly-charged ion, qn,1, qn,2, qb are the thermal energy removed by

the neutrals, and thermionic electron, qe is the energy gain from plasma electrons,

and k is Boltzmann’s constant expressed in units of eV/K.
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The net current on the cathode surface consisted many species as in Fig.4.8 and

the expression can be given as

jtot = ji,1 + jii,1 + ji,2 + jii,2 + jb − je (4.8)

where ji,1, ji,2, jii,1, jii,2, jb are the current density gained by singly-charged, boubly-

charged ions, and thermionic current density. je is the plasma electron current

density lost.

The electron temperature, the heat flux, the current density and the electron

temperature of work function of 4.5 eV and pressure of 66 Pa will be considered

as a standard case. The effect of different sheath voltage can be seen in Fig.4.9 -

4.12. The effect of different work function can be seen in Fig.4.13 - 4.16. Then,

the pressure effect can be viewed in Fig.4.17 - 4.20. The discussion of each effect

can be studied in [3].

36



10
0

10
1

10
2

10
3

 2800  3000  3200  3400  3600

C
u
rr

e
n
t 
d
e
n
s
it
y
 (

A
/c

m
2
)

Cathode Temperature (K)

argon

P = 0.5 torr (66.6612 Pa)

φ  = 4.5 eV

Sheath Voltage (Vc) 2
                       4
                       6
                       8

Figure 4.11: Total current as a function of cathode surface temperature with sheath
volatge as a parameter.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2600  2700  2800  2900  3000  3100  3200  3300  3400

E
le

c
tr

o
n
 T

e
m

p
e
ra

tu
re

 (
e
V

)

Cathode Temperature (K)

argon

P	= 0.5 torr (66.6612 Pa)

φ = 4.5 eV

Sheath Voltage (Vc) 1V
                    2V
                    3V
                    4V
                    5V
                    6V
                    7V
                    8V

Figure 4.12: Electron temperature as a function of cathode surface temperature
with sheath voltage as a parameter.

37



 1e+19

 1e+20

 1e+21

 2800  3000  3200  3400  3600  3800  4000

E
le

c
tr

o
n
 N

u
m

b
e
r 

D
e
n
s
it
y
 (

#
/c

m
2
)

Cathode Temperature (K)

argon

Vc = 6

Pressure 0.5 torr (66.6612 Pa)

Work Function (eV) 4.5
              5.0
              5.5

Figure 4.13: Electron number density as a function of cathode surface temperature
with work function as a paramter.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2600  2800  3000  3200  3400  3600  3800  4000

E
le

c
tr

o
n
 T

e
m

p
e
ra

tu
re

 (
e
V

)

Cathode Temperature (K)

argon

Vc = 6

Pressure 0.5 torr (66.6612 Pa)

Work Function (eV) 4.5
             	  5.0

                      5.5

Figure 4.14: Electron temperature as a function of cathode surface temperature
with work function as a parameter.

38



-5

-4

-3

-2

-1

 0

 1

 2

 3

 2700  2750  2800  2850  2900  2950  3000  3050  3100

H
e
a
t 
F

lu
x
 (

W
/c

m
2
)

Cathode Temperature (K)

argon

Vc = 6

Pressure 0.5 torr (66.6612 Pa)

Work Function (eV) 4.5
              5.0
              5.5

Figure 4.15: Total heat flux as a function of cathode surface temperature with
work function as a parameter.

10
1

10
2

 2900  3000  3100  3200  3300  3400  3500  3600  3700  3800  3900

C
u
rr

e
n
t 
d
e
n
s
it
y
 (

A
/c

m
2
)

Cathode Temperature (K)

argon

Vc = 6

Pressure 1 torr (66.6612 Pa)

Work Function (eV) 4.5
              5.0
              5.5

Figure 4.16: Total current density as a function of cathode surface temperature
with work function as a parameter.

39



 1e+19

 1e+20

 1e+21

 2700  2800  2900  3000  3100  3200  3300  3400

E
le

c
tr

o
n
 N

u
m

b
e
r 

D
e
n
s
it
y
 (

#
/c

m
2
)

Cathode Temperature (K)

argon

Vc = 6

φ   = 4.5 eV

Pressure (Pa) 20
              40
              66
            100

Figure 4.17: Number Density as a function of cathode surface temperature with
pressure as a parameter.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2600  2700  2800  2900  3000  3100  3200  3300  3400

E
le

c
tr

o
n
 T

e
m

p
e
ra

tu
re

 (
e
V

)

Cathode Temperature (K)

argon

Vc = 6

φ   = 4.5 eV

Pressure (Pa) 20
              40
              66
            100

Figure 4.18: Electron Temperature as a function of cathode surface temperature
with pressure as a parameter.

40



-10

-8

-6

-4

-2

 0

 2

 4

 2700  2750  2800  2850  2900  2950  3000  3050  3100

H
e
a
t 
F

lu
x
 (

W
/c

m
2
)

Cathode Temperature (K)

argon

Vc = 6

φ  = 4.5 eV

Pressure (Pa) 20
              40
              66
            100

Figure 4.19: Total heat flux as a function of cathode surface temperature with
pressure as a parameter.

10
1

10
2

 2900  3000  3100  3200  3300

C
u
rr

e
n
t 
d
e
n
s
it
y
 (

A
/c

m
2
)

Cathode Temperature (K)

argon

Vc = 6

φ  = 4.5 eV

Pressure (Pa) 20
              40
              66
             100

Figure 4.20: Total current density as a function of cathode surface temperature
with pressure as a parameter.

41



4.3.3.4 Boundary conditions

At the base of the cathode, the temperature is fixed at Tbase or T0, with a typical

value of 500 K or 1500 K. (An alternative boundary condition can be specified

as needed to compare with the experimental data.) At the anode, the simplest

condition is to set the plasma temperature to a fixed value Tp,A, for which a typical

value would be chosen by the condition that the degree of ionization obtained by

the Saha equation be 10−2 to 10−1. (Again, an alternative boundary condition

can be obtained to analyze with the experimental data.) The plasma pressure is

considered to be constant at a value P, for which a typical value is 0.5 Torr (66

Pa).

4.3.3.5 Transport Coefficients

For 1D and 2D cylindrical symmetry simulations, the electrical conductivity, the

thermal conductivity and the heat capacity which are temperature and pressure

dependent, are required. However, in this work, pressure is at 66 Pa only but

can be adjusted as needed. The electrical conductivity of argon plasma changes

significantly as the temperatue changes. This temperature effect must be included

to fully obtain the realistic MPD thruster simulations.

Again in order to calculate the transport coefficients, the electrical and the

thermal conductivity values, it is require to understand the concept of carriers in

transport coefficients. There are three types of carriers in plasma neutrals, ions,

and electrons. The particles collision among carriers can be seen in Table 4.1. At

high temperature, there are relatively more charged particles and thus the electron

particles play an important role in the collision to neutral and charged particles.

The table below shows various particle collision for different types of transport

42



phenomena [43]. There are many valuable references about transport coefficients

[18], [22], [23], [44], [45], [46], [47], [48], [49], [50], [51].

Table 4.1: Various types of transport processes

Transport process Controlling modes of collisions

Electrical conduction Electron-neutral, Electron-ion
Thermal conduction Electron-electron, Electron-neutral,

Thermal conduction (con’t) Ion-Neutral, Electron-ion
Viscosity Neutral-neutral, Ion-ion, Ion-neutral
Diffusion Electron-ion, Ion-neutral
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Figure 4.21: Translational electrical conductivity of argon as a function of temper-
ature with various pressure [4] using interpolation method.

Most of the fully or high ionization plasma are presented in the universe but

hardly found in laboratory. However, the partially ionization, which is in between

fully and low ionization region, are the most useful in engineering applications

and researches. For the argon plasma, only the translational electrical conduc-

tivity portion is important because argon’s electron shells are filled so it has no
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vibrational portion. As it can be seen in Fig.4.21-4.22, the translational electri-

cal conductivity and translational thermal conductvity from [4] are a function of

temperature values with various pressure as a parameter.
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Figure 4.22: Translational thermal conductivity of argon as a function of temper-
ature with various pressure [4] using interpolation method.

As can be seen, the electrical conductivity and thermal conductivity depend

on temperature and pressure. However, the electrical conductivity increase

exponentially and slowly incresed as temperature rises for various pressure. While

the thermal conductivity at low pressure has a kink at temperature below 12,000

K and then steadily increased.
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4.3.3.6 Heat Capacity

The thermodynamic properties can be purely calculated from the statistical

mechanic. The statistical mechanics describe the thermodynamics properties from

the atomic and spectrum [52].
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Figure 4.23: Compressibility of argon as a function of temperature [4].

For this study, the heat capacity will be interpolated from [4] as can be seen in

Fig.4.23 and 4.24. The compressibility of argon at specific pressure must be calcu-

lated with the heat capacity. The heat capacity of argon for 1D and 2D cylindrical

symmetry simulations can be seen in Fig.4.25 or Fig.4.27 as shown in different

units. The density of argon assumes as an ideal gas law in Fig.4.26. For the cath-

ode region, the property of tungsten such as electrical, thermal conductivities and

heat capacity, are shown in Fig.4.28 - 4.30. The detail about statistical mechanics

and statistical thermodynamics can be read in detail in references [50], [42], [41],

[53], [51], [54], [55].
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Figure 4.30: Electrical conductivity of tungsten as a function of temperature.

4.3.3.7 Discretization of the equations

The primary values to be determined by the model are the electric potential φ and

the temperature T . These values are defined at the grid points. The electric field

is defined in the primary cells by

Ei =
φi−1 − φi

Li
(4.9)

Note that the electric field is negative, since it points in the direction from anode

to cathode (to- wards negative x), while the potential is increasing with x. Note

also that the electric field is taken to be constant within a primary cell.

Integrating the thermal diffusion equation across secondary cell i surrounding grid

point i ,

∫ +xi+Li+1/2

xi−Li/2

cp
dT

dt
dx =

∫ xi+Li+1/2

xi−Li/2

(
JE +

d

dx

(
K
dT

dx

))
dx (4.10)
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On the left-hand side, we take the temperature within the secondary cell to be the

constant value Ti , so the left-hand side becomes

cp(Ti)
dTi
dt

Li + Li+1

2
(4.11)

For the Ohmic heating term, the current density is the constant value −J0. The

electric field is constant in each primary cell surrounding grid point i , so

E = (φi−1 − φi)/Li, forxi − Li/2 < x < xi;

E = (φi − φi+1)/Li+1, forxi < x < xi + Li+1/2
(4.12)

The integrated Ohmic heating is

∫ +xi+Li+1/2

xi−Li/2

JEdx = J0

[
φi − φi−1

Li

Li
2

+
φi+1 − φi
Li+1

Li+1

2

]
= J0

φi+1 − φi−1

2

(4.13)

We take the temperature derivative to be constant in primary cells

K
dT

dx
≈ K(T̄i)

Ti − Ti−1

Li
(4.14)

where the average temperature in primary cell i is

T̄i ≡ (Ti−1 + Ti)/2 (4.15)

The derivative of this quantity is then defined in secondary cell i as

d

dx

(
K
dT

dx

)
=

1

Ls,i

(
K(T̄i+1)

Ti+1 − Ti
Li+1

−K(T̄i)
Ti − Ti−1

Li

)
(4.16)
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and, integrating across secondary cell i ,

∫ +xi+Li+1/2

xi−Li/2

d

dx

(
K
dT

dx

)
= K(T̄i+1)

Ti+1 − Ti
Li+1

−K(T̄i)
Ti − Ti−1

Li
(4.17)

Putting together Eq.4.11, 4.13 and 4.17 into the heat equation and rearrange, we

have

cp(Ti)
dTi
dt

Li + Li+1

2
= J0

φi+1 − φi−1

2
+K(T̄i+1)

Ti+1 − Ti
Li+1

−K(T̄i)
Ti − Ti−1

Li
(4.18)

or

dTi
dt

=
1

cp(Ti)Ls,i

(
J0
φi+1 − φi−1

2
+K(T̄i+1)

Ti+1 − Ti
Li+1

−K(T̄i)
Ti − Ti−1

Li

)
(4.19)

where Ti+1 and Ti−1 are the temperature at grid points i+1 and i-1, respectively.

At the cathode edge and the plasma edge, the heat flow equation takes a special

form. At grid point NC , i.e., at the edge of the cathode, the heat flux from the

secondary cell to the right is replaced by the sheath heat flux Q̇S found from the

Goodfellow model. Thus,

dTNC

dt
=

1

cp(TNC
)LS,NC

(
J0

φNC
− φNC−1

2
+ Q̇S −K(T̄NC

)
TNC
− TNC−1

LNC

)
(4.20)

Similarly, at grid point NC+1, i.e., at the plasma edge,

dTNC+1

dt
=

1

cp(TNC+1
)LS,NC+1

(
J0

φNC+2
− φNC+1

2
− Q̇S +K(T̄NC+2

)
TNC+2

− TNC+1

LNC+1

)
(4.21)

The current density is constant along the 1D MPD thruster simulation and by given

cathode temperature and current density to the plasma sheath model. The sheath

model will calcualte the heat flux and the sheath voltage to the cathode surface.

51



In later chapters, these quations can be discretized to calculate the temperature

in the cathode and the plasma regions.

4.3.3.8 Solution of the difference equations

The model is initialized by making an initial guess for the temperature at each

grid point. Eq.4.19 -4.21 must then be integrated until reach steady state, i.e.,

until the time derivatives of temperature converge to zero. At each timestep, the

electric potentials must be found. This is easy to do in one dimension. Combining

Eq.4.5 and Eq.4.9, then rearrange and we can calculate for potential next to the

anode to cathode base.

σ(T̄i)
φi − φi−1

Li
= J0 (4.22)

or

φi−1 = φi −
J0Li
σ(T̄i)

(4.23)

Starting at the anode where φN = 0, the potential at each successive grid point

working toward the base of the cathode can be found by repeated Eq.4.23.

Note, however, that the potential difference across the sheath is special and is given

by the Goodfellow model:

φNC
= φNC+1 − VF (4.24)

where VF is the cathode fall voltage or the sheath voltage (V). As it can be seen in

Eq.4.20 and Eq.4.21 that the heat flux at the cathode surface can be transferred

toward the cathode for cold cathode temperature or outward the cathode for

hot cathode temperature for every time step until this 1D MPD thruster reaches

steady state condition.
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4.4 2D Cylindrical Symmetry MPD thruster

Simulation

A solid cathode model represents a set of equations descibing the flow of heat,

potential, electric fiedl and current density in the cathode. Fig.4.31, and Fig.4.32

show the solid cathode assembly under experiment and the diagram of the solid

cathode assembly.

Figure 4.31: Solid cathode assembly under an experiment [2].

	
  

Figure 4.32: Section side view diagram of solid cathode assembly.

53



Figure 4.33: Solid cathode assembly.

Fig.4.33 - 4.35 show the diagram for the solid cathode assembly, the pressure

chamber under experiment and the dimension of pressure chamber. The pressure

chamber diameter and length are 520 mm and 370 mm, respectively. The oper-

ating pressure inside the chamber is 640 sccm. The detail experiment operating

conditions can be read in references [2] and [3].

As can be seen in Fig.4.36, the cathode is placed 6 mm from the center of

concentric anode. The cathode lenght is 75 mm with 3.96 mm in diameter. The

length and the diameter of anode are 76mm and 54 mm, respectively. The argon

is used as a propellant and it is injected into the base of the cathode with 1.5 mm

diameter tube. The anode is surrounded by cooling line to maintain anode tem-

perature below the melting point. The material of cooling line in this experiment

is copper. The white material supports the cathode and anode is ceramic or elec-

trical insulators. The high voltage and high current power supply are connected

to cathode and anode. The solid cathode assembly in the pressure chamber in

Fig.4.37 and the numerical boundary can be seen in Fig.4.38.
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Figure 4.34: Pressure chamber under an experiment [2].

Figure 4.35: Dimension of the pressure chamber.
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Figure 4.36: Solid cathode assembly diagram from experimental set up [8].
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Figure 4.37: Solid cathode assembly in the pressure chamber.

Figure 4.38: The boundary of 2D cylindrical symmetry MPD thruster simulation.
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4.4.1 Computational Grid for Catesian Coordinates

4.4.1.1 Introduction

This triangular computational grid method is well developed by Winslow [1] called

topologically regular. That is, it is topologically equivalent to an equilateral tri-

angle array in which six triangles meet at every interior mesh point. The primary

triangle mesh have a common vertex anda secondary mesh of 12-sided figures

whose vertices are alternately the centroids of the six adjacent triangles and the

midpoints of the six adjacent sides as can be viewed in Fig.4.39 and can be read

in detail discussion in [1].

The main advantages of using the structured triangular grids rather than use

the rectangular structural grids are that the triangular structural grid can be easily

fitted into the irregular shape of the boundary domain and it can be used with

adaptive methode to confine the grid in the specific region.

In next several chapters, the detail equations on how to apply for the cylindrical

symmetery will be introduced.

4.4.1.2 Numerical Construction of Topologically Regular Nonumiform

Triangle Meshes

The Laplace equation is in the form

∇2χ = 0, ∇2ψ = 0 (4.25)

Solving Eqn.4.25, the intersecting ”equipotentials” χ = constant and ψ = constant,

and together with the thrid set drawn through the intersection points, form the

58



desired triangle mesh. A mesh constructed in this way is smooth because the well-

known averaging propperty of solutions to Laplace’s equation. The derivation of

this method can be further study in Appendix A, B and [1] in details.

SECONDARY

MESH LINES

PRIMARY

MESH LINES

Figure 4.39: Primary and secondary mesh lines.

4.4.1.3 Description of the method and derivation of the difference

equations [1]

The nonlinear diffusion equation can be written as

c
∂φ

∂t
= ∇ · (λ∇φ) + S (4.26)

The generaized Poisson equation for steady state can be expressed as

∇ · (λ∇φ) + S = 0 (4.27)

where S is the function of position or source term (i.e.thermionic heating), φ

is the potential or voltage at the vertice of triangle, λ is a function of φ or its

derivatives (a positive function or electrical or thermal conductivity; however, this

study includes only electrical conductivity and assumed the thermally condition of

an MPD thruster is in steady state). That is, the temperature is given and assumed
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constant at the cathode and the plasma regions as in steady state. As a result,

the source term S or the thermionic heating will not be considered. However, this

source term can be included in the future models as described in the appendix

C. Fig.4.40 shows the triangle i+1/2 defined by the two side vectors si, si+1, with

values φ, φi, φi+1 at the respective vertices.

Figure 4.40: Vectors used in flux calculation [1].

The potential or voltage of each triangular grid point can be seen in Fig.4.40 and

the gradient of the potential in each triangular can be calculated from Eq.4.29.

This term of gradient is definded as the electric field. Then, the current density

can be determined from Eqn.4.30. The derivation detail can be read in [1] The

equation of this triangle can be expressed by

φj = φ+ sj ·∇φi+1/2, j = i, i+ 1 (4.28)

A vector ∇φi+1/2 is given by

∇φi+1/2 =
(φi − φ)s†i+1 − (φi+1 − φ)s†i

si · s†i+1

(4.29)
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Within each triangle the flux of the diffusing quantity is given by

F i+1/2 = −λi+1/2∇φi+1/2 (4.30)

Comparing Ohm’s law in Eqn.(2.4),which is j̄ = −σe∇V , and Winslow Theory

[1], which is λ∇φ. The term σe ≡ λ and V ≡ φ where j refers to current density,

σe and λ refer to electrical conductivity, V and φ refer to electrical potentials or

voltage.

4.4.2 Outline of the Algorithm

The details of this algorithm was developed by Erwin [56]. In this section, we

will construct the 2D cylindrical symmetry with the dimensions as same as the

experiment set up as in previous section. However, the dimension can be changed

in our 2D simulation as needed in following chapters. In this section, the program

will be described in several steps followed.

1. As it can be seen in Fig.4.41, the physical grid space are separated into

three main regions, which are cathode, the plasma, and the sheath regions on

the cathode surface. The number of cells in the computational grid space can be

defined as seen in Fig.4.42.

2. In Fig.4.41, RA, RC , ZLC , ZSIM , ZLA, which represent the radius of the

anode, the radius of the cathode, the length of the cathode, the length of the

MPD system, and the length of the anode. The values are 27 mm, 1.98 mm, 75

mm, 157 mm, and 76 mm, respectively.

3. In Fig.4.42, N1, N2, N3, N4, N5, which represent the number of cells in the

radius of anode, the radius of the cathode, the lenght of the cathode, the length

of the MPD system, and the length of the anode, repectively.
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4. As mentioned in the Winslow thoery [1], the program in this section only in a

catesian coordinate and it will generate the computational grid space and physical

grid space as in Fig.4.43 and Fig.4.44. In later chapters, we will develp the 2D

cylindrical symmetry to calculate of 2D cylindrical symmetry MPD thruster.

5. Each points are saved in hexagon grid point and each point has a coordinate

value in both computational and physical grid space.

6. In Fig.4.43, there are two type of triangles. The first type of triangle are 1,

3, 5, 7, 9, 11, 14, 16 etc. The latter type are 2, 4, 6, 8, 10, 12, 13, 15 etc.

7. The Winslow [1] calculated the computational grid and physical grid. For

the physical grids, an additional numerical method to solve Laplace equation is

required called ”LU decomposition” and ”backward substitutions”.

8. The output can be ploted using ghost script (gview) or gnuplot as can be

seen in Fig4.44 and Fig.4.45 with different of the N1, N2, N3, N4, N5 values.
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Figure 4.41: Physical grid space with the physical dimension defined as RC , RA,
ZSIM , ZLC and ZLA.

Figure 4.42: Computational grid space with the number of cells definded as N1,
N2, N3, N4, and N5.
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Figure 4.43: Computational grid space N1=6, N2=4, N3=2, N4=4, N5=2.

Figure 4.44: Physical grid space N1 = 6, N2 = 4, N3 = 2, N4 = 4, N5 = 2.
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Figure 4.45: Physical grid space N1 = 20, N2 = 10, N3 = 18, N4 = 42, N5 = 24.

4.4.3 The current and potential boundary conditions

As can be seen in Fig.4.43 or Fig.4.44, point 1 to 5 represente as cathode base and

point 21, 28, 35 represent as anode. Using [1], the current at 1, 2, 3 ,4 can be

expressed as

I1 = w2→1(φ2 − φ1) + w8→1(φ8 − φ1)

I2 = w1→2(φ1 − φ2) + w8→2(φ8 − φ2) + w9→2(φ9 − φ2) + w3→2(φ3 − φ2)

I3 = w2→3(φ2 − φ3) + w9→3(φ9 − φ3) + w10→3(φ10 − φ3) + w4→3(φ4 − φ3)

I4 = w3→4(φ3 − φ4) + w10→4(φ10 − φ4) + w11→4(φ11 − φ4) + w5→4(φ5 − φ4)

I5 = w4→5(φ4 − φ5) + w11→5(φ11 − φ5) + w12→5(φ12 − φ5) + w6→5(φ6 − φ5)

(4.31)
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At the cathode base, we assumed that the potential values at point 1, 2, 3, 4 and

5 are equal (φ1 = φ2 = φ3 = φ4 = φ5) we got

At grid 1: φ1 = φ2

At grid 2: φ2 = φ3

At grid 3: φ3 = φ4

At grid 4: φ4 = φ5

(4.32)

The expression can be reduced to

I1 = w8→1(φ8 − φ1)

I2 = w8→2(φ8 + φ2) + w9→2(φ9 − φ2)

I3 = w9→3(φ9 + φ3) + w10→3(φ10 − φ3)

I4 = w10→4(φ10 + φ4) + w11→4(φ11 − φ4) + w5→4(φ5 − φ4)

I5 = w11→5(φ11 − φ5) + w12→5(φ12 − φ5) + w6→5(φ6 − φ5)

(4.33)

The total current is 60A which can be expressed by

I1 + I2 + I3 + I4 + I5 = 60 (4.34)

substituting

w8→1(φ8 − φ1) + w8→2(φ8 + φ2) + w9→2(φ9 − φ2) + w9→3(φ9 + φ3)

+w10→3(φ10 − φ3) + w10→4(φ10 + φ4) + w11→4(φ11 − φ4)

+w5→4(φ5 − φ4) + w11→5(φ11 − φ5) + w12→5(φ12 − φ5)

+w6→5(φ6 − φ5) = 60

(4.35)
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At the anode region, we use similar approach and we get

I21 = w20→21(φ20 − φ21) + w27→21(φ27 − φ21) + w28→21(φ28 − φ21)

+w14→21(φ14 − φ21) + w13→21(φ13 − φ27)

I28 = w27→28(φ27 − φ28) + w35→28(φ35 − φ28) + w21→28(φ21 − φ28)

I35 = w34→35(φ34 − φ35) + w28→35(φ28 − φ35) + w27→35(φ27 − φ35)

(4.36)

We assumed that the potential values of point 21, 28, 35 are equal (φ21 = φ28 = φ35)

and the expression reduce to

I21 = w20→21(φ20 − φ21) + w27→21(φ27 − φ21) + w14→21(φ14 − φ21)

+w13→21(φ13 − φ27)

I28 = w27→28(φ27 − φ28)

I35 = w34→35(φ34 − φ35) + w27→35(φ27 − φ35)

(4.37)

However, the sum of current at cathode point 1, 2, 3, 4, 5 equal to the sum of

current at anode point 21, 28, 35. The total current is I1 + I2 + I3 + I4 + I5 =

I21 + I28 + I35 = Itotal = 60A. The total current at the cathode base and the anode

region are within 1 percent error.
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Chapter 5

Completed Works

Objectives for this doctoral work are as follows:

Theory/Modeling Goals

1. Completed a 1D MPD thruster simulation to fully combined cathode and

plasma regions with the sheath model and calculate for sheath voltage across the

cathode and the plasma regions at steady state.

2. Completed the 1D MPD thruster simulation to achieve prediction the heat

flux, and temperature until the system reaches steady state.

3. Completed to include the electrical, thermal conductivities, and heat capacity

which are temperature dependent, derived by Ahtye, W. F. [4] into the 1D MPD

thruster simulations at 66 Pa.

4. Completed 2D cylindrical symmetry MPD thruster simulation base on Winslow

[1], [26], which correctly predicts the characteristic profile of specific plasma

properties in the plasma region and the cathode region. At the cathode surface, it

will include the plasma sheath model [3]. The plasma and cathode properties of

specific interest are: the temperature, potential, electric field, and current density.

5. Completed to include the electrical, thermal conductivities, and heat capacity

which are temperature dependent, derived by Ahtye, W. F. [4] into the 2D

69



cylindrical symmetry MPD thruster simulation at 66 Pa.

6. Completed to verify the newly gained quantitative description of the plasma

and cathode properties such temperature, potential, electric field and current

density with argon as a propellant until the system reach steady state.

7. Completed to verify the convection and pressure effect to the cathode surface

for 2D cylindrical symmetry MPD thruster.

8. Completed to verify the plasma arc attachment edge called electroarc edge on

the cathode surface.
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Chapter 6

Research Methodology

Fundamental Assumptions

In 1D and 2D cylindrical symmetry MPD thruster simulations, the plasma region

is assumed to have a local thermal equilibrium (LTE) and the bulk of plasma is

represented as fluid, which obeys the ideal gas state equation. Also, the coulomb

force is neclected and no other transport phenomena except the electrical conduc-

tivity, the thermal conductivity, and the heat capacity. That is, the viscousity

effects are neclected.

Moreover, the plasma is in Saha equilibrium with no chemical reaction. There-

fore, the simulation starts when ionization has completed at the inlet. Also, only

the first ionization has been included and the electron temperature is around 0.9

- 1.0 eV. For computational grid of 1D, the thermal conductivity and the elec-

trical conductivity are in the cells but temperature, potential and heat capacity

are at the grid points. For 2D cylindrical symmetry, the grid points represent the

temperature, potential; however, inside the triangular grids represent electrical,

thermal conductivities, the heat capacity, the current density,and the electric field.

For this study, the magnetic field in the flow will not be calculated, however, it

can be further developed as needed. Fig.6.1 shows the physical grid space in our

2D cylindrical symmetry MPD thruster simulation and the surface of the cathode

where the sheath model will be applied.

Furthermore, there is no current into the insulator at the upstream end and no

current flow across the nozzle exit plane at the downstream end (the current flow
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only from anode to cathode). Also, the magnetic field on the arc jet axis assume

to be zero. At the base of the cathode from a to b in Fig.6.1, the potential are the

same. For the open boundaries c-d and e-d, the mass flow assumes to be constant.

Also, the magnetic field on the azimuthal axis is zero.

As shown in Fig.6.1, the calculation domain consists of the cathode, plasma

and sheath regions. The plasma sheath model is included in the calculation on the

cathode surface. That is, the 2D cylindrical symmetry MPD thruster balances the

energy between the cathode, the plasma and the sheath regions until the system

reach steady state.

Figure 6.1: 1D near-cathode plasma calculation on green color with N1=20,
N2=10, N3=18, N4=42, N5=24.

The Plasma Arc Attachment Edge on the Cathode Surface Factors

The factors of the plasma arc attachement edge on the cathode strongly depend
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on the work function, surface finishing, molecular structure of the cathode. Also,

there are other factors i.e. shape of the current and magnetic field lines, the type

of gas used, the space and orientation of magnetic field, the vacuum level within

the vacuum chamber, the polarity of the direct current, the electrical voltage used,

and the position of the electrods in the vacuum chamber that would have an effect

to the plasma attachement area.

For this research, the electroarc edge is defined as the plasma arc attachment

edge on the cathode surface. This electroarc edge locates at the minimum electric

field value on the cathode surface as will be described later. In order to locate this

edge, the cathode, plasma and the plasma sheath model is fully integrated and

iterated until the system reaches steady state. While iterating the electric field

values on the cathode surface will adjust simultaneously with the current density,

temperature, potential. That is, for particular parameters set up shown in the

next chapter will be the primary factor to consider the limit of plasma sheath

attachment edge, electroarc edge, on the cathode surface. However, the other

factors can be included to further study the effect of plasma attachment edge on

the cathode surface.

73



74



Chapter 7

Results

In this chapter, the 1D and 2D cylindrical symmetry MPD thruster simulation

calculates the cathode, the plasma regions, and the plasma sheath model simul-

taneously. This simulation balances the energy between two regions with the

plasma sheath model until the simulation reaches steady state. The following detail

explains the method for the 1D and 2D cylindrical symmetry MPD thruster.

7.1 Converged Region of Plasma Sheath Model

The plasma sheath model [3] has a specific converged region as can be seen.

Figure 7.1: The converged area of sheath voltage of the plasma sheath model as a
function of temperatureand current density.
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Figure 7.2: The converged area of heat flux of the plasma sheath model as a
function of temperatureand current density.

As can be seen in Fig.7.1 and 7.2, only certain parameters of temperature and

current density on cathode surface will provide the heat flux from plasma toward

cathode regions. That is, the heat flux can be transfered from plasma to cathode

regions or from cathode to plasma.

7.2 Fully Combined Cathode and Plasma

Regions with Plasma Sheath Model in 1D

MPD Thruster Simulation

From Eq.(4.19), this equation will be applied from grid the cathode base to NC-1

and NC+2 to the anode and it can be shown as;

dTi
dt

=
1

cp(Ti)Ls,i

(
J0
φi+1 − φi−1

2
+K(T̄i+1)

Ti+1 − Ti
Li+1

−K(T̄i)
Ti − Ti−1

Li

)
(7.1)
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Using forward difference to the first derivative in time, which has a first order

approximation O(∆t) and it can be expresses as;

dTi
dt

=
T n+1
i − T ni

∆t
(7.2)

where ∆t represents time step and the upper case n represents time step number

n. By substituting into the equation, it can be expresses as;

T n+1
i − T ni

∆t
=

1

cp(T ni )Ls,i

(
J0

φni+1 − φni−1

2
+K(T̄ ni+1)

T ni+1 − T ni
Li+1

−K(T̄ ni )
T ni − T ni−1

Li

)
(7.3)

rearrange for T n+1
i as;

T n+1
i = T ni +

∆t

cp(T ni )Ls,i

(
J0

φni+1 − φni−1

2
+K(T̄ ni+1)

T ni+1 − T ni
Li+1

−K(T̄ ni )
T ni − T ni−1

Li

)
(7.4)

also the potential from the cathode base to NC-1 and NC+2 to the anode and it

can be shown as;

φn+1
i−1 = φni −

J0Li
σ(T̄ ni )

(7.5)

Again, the plasma sheath must be included at NC+1 and it can be shown as;

φNC
= φNC+1 − VF (7.6)

where VF is the cathode fall voltage or plasma sheath voltage which is a function

of temperature and the current density.

Using the same method and applied to Eq.4.20 and 4.21, they can be expresseed

as;

T n+1
NC = T nNC + A

(
J0

φnNC − φnNC−1

2
+ Q̇n

S −K(T̄ nNC)
T nNC − T nNC−1

LNC

)
(7.7)
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T n+1
NC+1 = T nNC+1 +B

(
J0

φnNC+2 − φnNC+1

2
− Q̇n

S −K(T̄ nNC+2)
T nNC+2 − T nNC+1

LNC+1

)
(7.8)

where A = ∆t
cp(Tn

NC)LS,NC
, B = ∆t

cp(Tn
NC+1)LS,NC+1

and Q̇n
S is the heat transfer from the

plasma sheath, which is a function of temperature and the current density.

7.2.1 Critical Time Increment of 1D MPD Thruster Sim-

ulation

Von Neumann criteria

∆t ≤ cp(T
n
i )LS,iLi

2K(T̄ ni+1)
(7.9)

Ohmic heating criteria

∆t ≤ cp(T
n
i )LS,i
J0

(7.10)

As can be seen in the above equations, Von Neumann criteria composes of the

thermal conductivity and the heat capacity terms; however, the Ohmic heating

criteria relates to the current density term and the heat capacity terms. For explicit

methode, Von Neumann and Ohmic heating criteria are required to compute stable

and accurate results.

7.2.2 Outline of Algorithm of 1D MPD Thruster Simula-

tion

In this section, the program will be described in several steps:

1. Set the physical length of the cathode and the plasma regions. Then, set the

number of cells in each regions. After that, set the initial temperature and voltage

at every grid points. For cathode region, the temperature can be between 2800-

3500 K. For plasma region, only first ionization is required and the temperature
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is around 0.9-1.0 eV. The cathode base temperature is 1500K. Then, the average

temperature can be calculated.

2. Given the current density into the system as the current density is the same

along the 1D MPD thruster simulation.

3. Calculate the critical time increment of Von Neumann and Ohmic. Set the

number of step to calculate for the DO loop.

4. In the DO loop to solve for temperature and voltage (potential) at the grid

points

4.1 Updated for the thermal conductivity and electrical conductivity in

the cathode region.

4.2 Updated for the thermal conductivity and electrical conductivity in

the plasma region.

4.3 Calculated for the voltage using Eqn.4.23 for the plasma region.

4.4 Called the subroutine of plasma sheath model to obtain the heat flux

and the sheath voltage.

4.5 Added the sheath voltage to the cathode tip grid.

4.6 Calculated for for the voltage using Eqn.4.23 for the remaining cath-

ode grids.

4.7 Solved for the temperature in plasma region.

4.7.1 At the plasma grid NC+1, using Eqn.4.21.

4.7.2 For the remaining plasma grids, using Eqn.4.19.

4.8 Solved for the temperature in cathode region.

4.8.1 At the cathode tip grid NC, using Eqn.4.20.

4.8.2 For the remaining cathode grids, using Eqn.4.19.

5. Print out the temperature, voltage values.
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7.2.3 1D MPD Thruster Simulation Results

The cathode tip temperature of several initial temperature from 2700 to 3100 K

reach the steady state after 900 s as can be seen in Fig.7.3 and the zoom in of

Fig.7.4. The prediction of cathode tip at steady state is around 2950 K. That

is, when the initial cathode tip temperature is below 2950 K, the plasma region

supplies the heat from the plasma region to the cathode tip. However, if the initial

temperature of the cathode tip is above 2950 K, the heat will transfer from the

cathode tip to the plasma region.

The sheath voltage also approach a steady state after 900 s. and the sheath volt-

age value can be estimated to be around 6 V in Fig.7.5 and 7.6. With the increasing

initial temperature, the initial value of sheath voltage decreases in Fig.7.5.
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Figure 7.3: The cathode tip temperature as a function of time for a pressure of 66
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Figure 7.6: The sheath voltage [zoom in] at the cathode tip as a function of time
for a pressure of 66 Pa with initial temperature at 2700, 2800, 2900, 3000, and
3100 K as a parameter converged after 900 s.

-500

 0

 500

 1000

 1500

 2000

 0  200  400  600  800  1000

H
e
a
t 
F

lu
x
 (

W
/m

2
)

Time (s)

The Heat Flux at the Cathode tip (W/m
2
) with J = 25 A/m

2

argon

P = 66.66 Pa
pure tungsten

Tinit = 2700 K
Tinit = 2800 K
Tinit = 2900 K
Tinit = 3000 K
Tinit = 3100 K
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The heat flux with range of initial temperature from 2700 to 3100 K also

converged a steady state after 900 s. The value of heat flux is nearly or less

than zero, that means the cathode at steady state provide the heat flux to the

plasma region. This process might be due to the ohmic heating from the cathode

region that generated much rapidly than the process of heat conduction in the

plasma region. The initial temperatue from 2700 - 2900 K provide the heat flux

from the plasma region to the cathode region as the heat flux is positive. However,

the heat flux becomes negative around 3000 K and above as can be seen Fig.7.7

and 7.8.
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Figure 7.8: The heat flux [zoom in] at the cathode tip as a function of time for a
pressure of 66 Pa with initial temperature as a parameter start to converged after
900 s.

The cathode region temperature trends show in Fig.7.9 and 7.10 with initial

temperature of 2800 K and current density of 25 A/m2 and time ranged from

0, 300, and 900 s. As can be seen in Fig.7.10, the electrical conductivity in the

cathode region conducts the electricity very well so the voltage in the cathode
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region is almost the same. The 1D MPD thruster potential presents in Fig.7.11

with the sheath voltage at the cathode tip. The anode is set to be 0 V and the

voltage in plasma region increases with more negative value until at the grid NC +

1. The sheath voltage between NC and NC + 1 was included and at the cathode tip

(NC). The zoom in for cathode region and plasma region can be viewed separately

in Fig. 7.12 and 7.13.
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The current density must precisely determine along with the initial tempera-

ture. The comparison between different initial temperature and current density

are shown in Fig.7.14. That is, only change the current density 1 A/m2, the heat

flux changes significantly from positive to negative as can be seen in Fig.7.14 to

7.16.

The comparison of the sheath voltage with different initial temperature and

current density are presented in Fig.7.17 to 7.19. As decribed before, the increased

initial temperature increases the sheath voltage values.
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Figure 7.14: The heat flux at the cathode tip as a function of time for a pressure
of 66 Pa with initial temperature at 3200, 3300, 3400 K and current density as a
parameter (pure tungsten).
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Figure 7.16: The heat flux [zoom in] at the cathode tip as a function of time for
a pressure of 66 Pa with initial temperature at 2900 K and current density as a
parameter (pure tungsten).
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Figure 7.17: The sheath voltage at the cathode tip as a function of time for a
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Figure 7.18: The sheath voltage at the cathode tip as a function of time for a
pressure of 66 Pa with initial temperature at 2900 K and current density as a
parameter (pure tungsten).
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In Fig.7.18, the current density increasing from 25, 30, and 35 A/m2 also

substantially changes the sheath voltage from 18, 23, and 29 V; however, the

system reaches steady state with the sheath voltage around 6 V as can be viewed in

zoom in Fig.7.19. By increasing the current density, the temperature significantly

increases as shown in Fig.7.20.

7.3 Fully Combined Cathode and Plasma

Regions with the Plasma Sheath Model in

2D Cylindrical Symmetry MPD Thruster

In chapter 4, the cartesian coordinate has been introduced and it can be applied for

cylindrical symmetry. In this section, the detail of how to fully combined cathode

and plasma regions together will be described.

The nonlinear heat diffusion equation can be applied with [1] for the 2D cylin-

drical symmetry and it can be written as

cp(T )
∂T

∂t
=

1

r
∇ ·
(
rK(T )∇T

)
+ S (7.11)

where S is the function of position or source term (i.e.thermionic heating), T is

the temperature at the vertice of triangle, K(T) is a temperature dependent of

thermal conductivity, cp(T ) is a temperature dependent of heat capacity, s is the

source terms i.e. Ohmic heating.

For steady state, we got

∇ ·
(
rK(T )∇T

)
+ S = 0 (7.12)
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Figure 7.21: Primary and secondary mesh lines.

Figure 7.22: Vectors used in flux calculation.

The equation can be written in finite-difference approximation as

∆T

∆t
=

1

G

[
6∑
i=1

wi(Ti − T ) + S

]
(7.13)

For a steady state of the finite-difference analog of Eq.7.17 is

∑
i

wi(Ti − T ) + S = 0 (7.14)
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Again, using forward difference to the first derivative in time, which has a first

order approximation O(∆t) and it can be expresses as;

∆Ti
∆t

=
T n+1
i − T ni

∆t
(7.15)

Then, Eq.7.17 can be written as

T n+1
i = T ni +

∆t

G

[
6∑
i=1

wi(Ti − T ) + S

]
(7.16)

On the cathode surface (NC), the plasma sheath must be included so the grids can

be written as

T n+1
NC = T nNC +

∆t

G

[
6∑
i=1

wi(Ti − T ) + S + Q̇ai+1/2

]
(7.17)

For the plasma grids next to the cathode surface(NC+1), the heat flux from the

plasma sheath must be included as well so the grids can be written as

T n+1
NC+1 = T nNC+1 +

∆t

G

[
6∑
i=1

wi(Ti − T ) + S − Q̇ai+1/2

]
(7.18)

where

G =
∑6

i=1 cp(T )i+1/2 ¯̄ri+1/2ai+1/2,

S =
∑6

i=1 ji+1/2 ¯̄ri+1/2ai+1/2,∑6
i=1wi = 1

4

∑
i

K(T )i+1/2

Ai+1/2
¯̄ri+1/2(si+1 − si)

2,

¯̄ri+1/2 = 7
12
r̄i+1/2 + 5

12
r,

r̄i+1/2 = 1
3
(r + ri + ri+1).
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7.3.1 Critical Time Increment of 2D Cylindrical Symmetry

MPD Thruster Simulation

Von Neumann criteria

∆t ≤ G

2
∑6

i=1wi
(7.19)

Ohmic heating criteria

∆t ≤ G

2S
(7.20)

On the cathode surface, the heat flux critiria from the plasma sheath model must

be included as can be shown below.

Heat Flux Sheath criteria

∆t ≤ G

2Q̇ai+1/2
(7.21)

Convective criteria

∆t ≤ G

2hcai+1/2
(7.22)

Again, as can be seen in the above equations, Von Neumann criteria composes of

the thermal conductivity and the heat capacity terms; however, the Ohmic heating

criteria relates to the current density, electrical field, and the heat capacity terms.

On the cathode surface, the heat flux sheath criteria relates to the heat capacity,

the heat flux sheath and the area of the cells.

7.3.2 Outline of Algorithm of 2D Cylindrical Symmetry

MPD Thruster Simulation

In this section, the 2D program will be described in several steps:

1. Given the initial temperature values of the cathode and plasma regions.
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2. CALL the subroutines to obtain the electrical conductivity, thermal conduc-

tivity and heat capacity of both regions.

3. CALL the subroutine MAKEGRID to generate the cells as a triangular as

decribed in chapter 4. Also, calculate for the average radius and the average radius

of a quadrilateral. At this point, the area of each triangle can be obtained.

4. Given the total current of the system, the total current must be equal at

the cathode base and anode as describe in chapter 4.

5. Set up the initial temperature at the grid points.

6. Calculate the critical time increment of the system.

7. Given the number of step to calculate in DO loop.

8. In the DO loop to solve for temperature

8.1 Calculate the average temperature at each triangular both in the

cathode and in the plasma regions.

8.2 CALL the subroutine to update the electrical conductivity, thermal

conductivity, and heat capacity of each triangle of both regions.

8.3 Calculate the total current for with the updated conductivity, thermal

conductivity, and heat capacity.

8.4 Calculate the summation of electric field, current density, thermal

conductivity, and heat capacity at the grid points.

8.5 Calculate the temperature using Eq.7.16 except for cathode surface

grid points.

8.6 Calculate the temperature using Eq.7.17 for the cathode surface. The

plasma sheath is included

9. Print out the temperature, voltage values.
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7.3.3 2D Cylindrical Symmetry MPD Thruster Simulation

Results

For the 2D cylindrical symmetry simulationl, the MPD system diameter parame-

ters are set as followed: Lc = 7.5 m, La = 7.6 m, rc = 2.0 m, ra = 9.0 m, Tcinit
=

3300 K, Teinit
= 9000 K, Vinit = 100 V, I = 100 A. The first case has grids of N1=6,

N2=4, N3=2, N4=4, N5=2 and the second case has grids of N1=24, N2=8, N3=10,

N4=20, N5=8. However, some of these parameters can be changed as needed to

see how an MPD thurster system respond.
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Figure 7.23: The physical grid of MPD Thruster with N1=6, N2=4, N3=2, N4=4,
N5=2.
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Figure 7.24: Temperature as a function of time with grid cathode surface location
as a parameter in pressure of 66 Pa and pure tungsten.

The cathode surface temperature (at middle, conical tip, and tip) reach the

plateau after 25000 s. As expected, the tip has a high temperature nearly 3500

K following at conical tip and at the middle of the cathode as can be viewed in

Fig.7.24.

The maximum electric field value locates at the tip of the cathode and followed

by at the conical tip and at the middle of the cathode. The electric field rapidly

approach the steady state after 3000 s as in Fig.7.25.

The maximum current density value still locates at the cathode tip; however,

the lowest current density value is at the conical tip. The reason of this result still

unclear; however, it might be due to the distribution area of the grid at the conical

tip.
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Figure 7.25: Electric field as a function of time with grid cathode surface location
as a parameter in pressure of 66 Pa and pure tungsten.
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Figure 7.26: Current density as a function of time with grid cathode surface loca-
tion as a parameter in pressure of 66 Pa and pure tungsten.
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Figure 7.27: Heat flux as a function of time with grid cathode surface location as
a parameter in pressure of 66 Pa and pure tungsten.

The heat flux at the cathode surface have a negative sign. This is due to

the ohmic heating generating heat in cathode region must faster than the heat

conduction from plasma to cathode regions. The heat flux has a direct relationship

with the cathode temperature so the location of maximum to minimum are the

same with temperature.

7.3.3.1 Convection Effect

The equation from previous section is still the same; however, the convective term

carries the heat away from the cathode surface so this effect has a negative sign in

Eq.7.17 and it becomes

T n+1
i = T ni +

∆t

G

[
6∑
i=1

wi(Ti − T ) + S + Q̇ai+1/2 − hcai+1/2(T ni − T ninf )

]
(7.23)
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Figure 7.28: Temperature as a function of time with convection effect as a param-
eter in pressure of 66 Pa and pure tungsten.
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Figure 7.29: Electric field as a function of time with convection effect as a param-
eter in pressure of 66 Pa and pure tungsten.
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Figure 7.30: Current density as a function of time with convection effect as a
parameter in pressure of 66 Pa and pure tungsten.
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Figure 7.31: Heat flux as a function of time with convection effect as a parameter
in pressure of 66 Pa and pure tungsten.
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The convection effect tends to lower the temperature, and current density;

however, electric field value does not change. As lower the cathode temperature,

the heat flux also decreased as can be seen in Fig.7.28 - 7.31.

7.3.3.2 Pressure Effect

The plasma properties in different pressure have a significant impact on electrical

conductivity, thermal conductivity and heat capacity respectively. We will compare

pressure of 105 and 107 Pa with our pressure at 66 Pa to see the pressure effect.

The properties of interested are temperature, electric field and the current density

in our 2D cylindrical symmetry. The equation is thes same as in the case of

without convection effect, Eq.7.17 but the electrical, thermal conductivities and

heat capacity values will be adjusted for 105 and 107 Pa conditions.
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Figure 7.32: Temperature as a function of time with pressure as a parameter in
pressure of 66 Pa and pure tungsten.
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Figure 7.33: Electric field as a function of time with pressure as a parameter in
pressure of 66 Pa and pure tungsten.
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Figure 7.34: Current density as a function of time with pressure as a parameter in
pressure of 66 Pa and pure tungsten.
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Figure 7.35: Heat flux as a function of time with pressure as a parameter in pressure
of 66 Pa and pure tungsten.

The temperature and heat flux influence very small amount as pressure

changed in Fig.7.32 and 7.35. The electric field and current density values reduced

as the pressure increased as can be shown in Fig.7.33 and 7.34.

For N1=24, N2=8, N3=10, N4=20, N5=8, the physical grids, electrical, thermal

conducitivity and heat capacity can be viewed as;
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Figure 7.36: The physical grids space of MPD Thruster Simulation with N1=24,
N2=8, N3=10, N4=20, N5=8.
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Figure 7.37: The area size distribution of physical grids space with N1=24, N2=8,
N3=10, N4=20, N5=8.
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The parameters size of MPD thruster are greater than the previous experimental

data as to simulate the actual size of the MPD thruster to use in spacecraft. The

area size distribution of the computation grids distributed almoste equally in the

cathode and the plasma regions as can be seen in the color distribution. However,

at the cathode tip in the plasma region, the size of the grids are smaller than

others.

The temperature, electrical conductivity, thermal conductivity and heat capac-

ity distribution of cathode and plasma regions shown in Fig.7.38 - 7.41. The elec-

trical conductivity, thermal conductivity and heat capacity are as expected to has

a greater value in the cathode region than in the plasma region.

Figure 7.38: The temperatuer distribution of cathode and plasma regions in MPD
thruster.
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Figure 7.39: The electrical conductivity distribution of cathode and plasma regions
in MPD thruster.
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Figure 7.40: The thermal conductivity distribution of cathode and plasma regions
in MPD thruster.

Figure 7.41: The heat capacity distribution of cathode and plasma region in MPD
thruster.
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7.3.3.3 Electroarc Edge

The electroarc edge is definded as the location where the plasma arc attach the

cathode surface. To locate this point, the electric field along the cathode surface

must be calculated to find the minimum values of electric field in Fig.7.42.
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Figure 7.42: The minimum value of electric field on the cathode surface in MPD
thruster is definded as the edge of plasma arc attachment, Electroarc Edge.

Figure 7.43: Illustration of Electroarc Edge in High Pressure [3].

Figure 7.44: Illustration of Electroarc Edge in Low Pressure [3]
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The experiment of MPD thruster showed the relationship between the location

of this electroarc edge; however, the exact location could not be validated as can

be seen in Fig.7.43 and 7.44. This research was be able to locate exactly where the

electroarc edge would be. The electroarc edge is approximately at the cathode tip

with pressure 107Pa and the electroarc edge move toward the cathode base. These

numerical simulation results agree well with the experimental observation [3].

Figure 7.45: The electric field distribution of cathode and plasma regions in MPD
thruster.
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Figure 7.46: The electric field contour of cathode and plasma regions in MPD
thruster.

Figure 7.47: The current density distribution of cathode and plasma in MPD
thruster.
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The electric field distribution, electric field contour and current density distri-

bution can be seen in Fig.7.45 - 7.47. The maximum of electric field value locates

at the tip surface.

7.4 Recommendations for Future Work

The future study could improve the 2D cylindrical symmetry MPD thruster

simulation to include the flow of particles such as electrons and ions as in

particle-in-cell or Direct Simulation Monte Carlo (DSMC) within the system [57].

For this study, the time and financial were not allowed to calculate and include

the flow of the particles model in 2D cylindrical simulation. In addition, the

model could be further developed to included the erosion effects base on this 2D

cylindrical symmetry. Furthermore, this 2D cylindrical symmetry MPD thruster

simulation can be improved by calculating the magnetic field, and the thrust in

an MPD thruster to fully see how the system response with this magnetic field.
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Chapter 8

Conclusions

The objective of this work were to improve the computation simulations and

explain the interaction between the cathode and the plasma regions with the

plasma sheath model [3] in an MPD thruster. These simulations should help

describing the experimental phenomenon as well as predicting how an MPD

thruster respond to the operational changed.

In this study, a 1D, and a 2D cylindrical symmetry MPD thruster simula-

tions have been developed to predicting the temperature, the voltage, the current

density, the electric field with the surrounding plasma in an MPD thruster and

estimated the plasma attachment edge, electroarc edge.

The 1D MPD thruster simulation consists with three regions: the cathode, the

plasma, and the interface of these regions, the plasma sheath model. The interface

provides the boundary values to the cathode in steady state. The criteria of the

plasma sheath model is limited with certain temperature and current density. At

the cathode temperature below 2500 K, the heat flux transfers from plasma to the

cathode. Once the cathode reaches around 2700 K, the heat flux transfer from

cathode to plasma region. In other words, the plasma region heats up by the cath-

ode region. Moreover, the current density also significantly impact on the cathode

temperature as increased the current density, the cathode can heat up rapidly.

As a results, we need to consider the criteria of the plasma sheath model to pin

point where we need to obtain the cathode temperature and current density. This

1D MPD thruster simulation uses the plasma sheath mode, by given the cathode
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temperature and current density of the cathode surface, the plasma sheath model

provides the heat flux and the plasma sheath to the cathode surface. Then, the

1D simulation balances the energy of cathode region with the plasma region until

it reaches steady state for temperature, sheath voltage and heat flux.

For the 2D cylindrical symmetry MPD thruster simulation, temperature, poten-

tial, current density, electric field can be calculated and this 2D simulation also

can estimated the electroarc edge, which is definded as the edge of the plasma arc

attachement at the minimum electric field value on the cathode surface. In the

numerical results of low pressure, the minimum value of electric field locates further

to near the cathode base as obaserved in experiment [3]. In addition, the mini-

mum electric field value moves toward the cathode tip for high pressure condition

as decribed [3]. The electroarc edge results using the criteria of minimal value of

electric field on the cathode surface agree well with the experimental observation.

In conclusive, this work was achieved the objectives that is to improve the MPD

thruster simulations and explain the interaction of the cathode, the plasma with

the plasma sheath model and predict the electroarc edge on the cathode surface

in MPD thruster.
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Appendix A

Derivatives in the Computational Domain for further reading [58]. Consider a

function f , where it is required to determine its first-and second order derivatives

in the computational domain.

∂

∂x
= ξx

∂

∂x
+ ηx

∂

∂η
(A-1)

∂

∂y
= ξy

∂

∂y
+ ηy

∂

∂η
(A-2)

Therefore,

∂f

∂x
= fx = ξxfξ + ηxfη (A-3)

∂f

∂y
= fy = ξyfξ + ηyfη (A-4)

fx = Jyηfξ + (−Jyξ)fη = J(yηfξ − yξfη) (A-5)

fy = Jxηfξ + (−Jxξ)fη = J(xηfξ − xξfη) (A-6)

To determine the second-order derivatives, fxx and fyy
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∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
=

∂

∂x

(
ξxfξ + ηxfη

)
=

(
ξx
∂

∂ξ
+ ηx

∂

∂η

)(
ξxfξ + ηxfη

)
(A-7)

∂2f

∂x2
= ξx

∂

∂ξ

(
ξxfξ + ηxfη

)
+ ηx

∂

∂η

(
ξxfξ + ηxfη

)

= ξ2
xfξξ+ξxfξ

∂

∂ξ
(ξx)+ξxηxfξη+ξxfη

∂

∂ξ
(ηx)+ηxξxfξη+ηxfη

∂

∂η
(ξx)+η

2
xfηη+ηxfη

∂

∂η
(ηx)

where

ξx = Jyη, ξy = −Jxη, ηx = −Jyξ, ηy = Jxξ

Let

ξ = 4

then, we have

∂2f

∂x2
= J2(y2

ηf44 − 2y4yηf4η + y2
4fηη) + Jyη

[
f4

∂

∂4
(4x) + fη

∂

∂4
(ηx)

]

+(−Jy4)

[
f4

∂

∂η
(4x) + fη

∂

∂η
(ηx)

]

At this point, the derivatives of the metrics are determined as follows:

∂

∂4
(4x) =

∂

∂4
(Jyη) =

∂

∂4

(
yη

x4yη − xηy4

)
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∂

∂4
(4x) = J2

[
y4η(x4yη − xηy4)− yη(yηx44 + x4y4η − xηy44 − y4x4η

]

or

∂

∂4
(4x) = J2(x4yηy4η − xηy4y4η − y2

ηx44 − x4yηy4η + xηyηy44 + y4yηx4η)

(A-8)

∂

∂4
(ηx) = −J2(x4yηy44−xηy4y44−y4yηx44−x4y4y4η +xηy4y44+y2

4x4η)

(A-9)

∂

∂η
(4x) = J2(x4yηyηη−xηy4yηη−x4yηyηη−y2

ηx4η+y4yηxηη+xηyηy4η) (A-10)

∂

∂η
(ηx) = −J2(x4yηy4η − xηy4y4η − y4x4yηη − y4yηx4η + y2

4xηη + xηy4y4η)

(A-11)

Substituting

∂2f

∂x2
= J2(y2

ηfηη − 2y4yηf4η + y2
4fηη+ (A-12)

+J3

[
(y2
ηy44 − 2yηy4y4η + y2

4yηη)(xηf4 − x4fη)+
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+(y2
ηx44 − 2yηy4x4η + y2

4xηη)(y4fη − yηf4)

]

∂2f

∂y2
= J2(x2

ηf44 − 2x4xηf4η + x2
4fηη)+ (A-13)

+J3

[
(x2

ηy44 − 2x4xηy4η + x2
4yηη)(xηf4 − x4fη)+

+(x2
ηx44 − 2x4xηx4η + x2

4xηη)(y4fη − yηf4)

]

Now, consider the Laplacian

∇2f =
∂2f

∂x2
+
∂2f

∂y2
(A-14)

∇2f = J2(af44 − 2bf4η + cfηη)+

+J3

[
(ay44 − 2by4η + cyηη)(xηf4 − x4fη)

+(ax44 − 2bx4η + cxηη)(y4fη − yηf4)

]

where

x2
η + y2

η = a

x4xη + y4yη = b

x2
4 + y2

4 = c

and finally

∇2f = J2(af44 − 2bf4η + cfηη + dfη + ef4) (A-15)

126



where

d = J(y4α− x4β)

e = J(x4β − yηα)

α = ax44 − 2bx4η + cxηη

β = ay44 − 2by4η + cyηη

For elliptic system

∇2ξ = 0

∇2η = 0

let

f = ξ

ξξ =
∂ξ

∂ξ
= 1

ξη = 0

ξξξ =
∂

∂ξ

(
∂ξ

∂ξ

)
= 0

ξηη = 0

ξξη = 0

A-15 yield :

∇2ξ = 0, ∇2η = 0

J2e = 0, J2d = 0

J3(xηβ − yηα) = 0, J3(yξα− xξβ) = 0
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Since

J 6= 0

then

xηβ − yηα = 0

yηα− xξβ = 0

Eliminating α yield

β(xξyη − xηyξ) = 0

But

xξyη − xηyξ =
1

J

Thus,

1

J
β = 0

Since J 6= 0, then

β = 0

or

ayξξ − 2byξη + cyηη = 0

We show that β = 0 and , therefore, α must also be zero, which result in

axξξ − 2bxξη + cxηη = 0
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Appendix B

Transformation of the Governing Parial differential Equations [59]

Now, define the following relation between the physical and computational spaces

ξ = ξ(x, y) (B-16)

η = η(x, y) (B-17)

The chain rule for partial differentiation

∂

∂x
=
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η
(B-18)

let

∂ξ

∂x
= ξx

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
(B-19)

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
(B-20)

Now consider a model PDE such as
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∂U

∂x
+ a

∂U

∂y
= 0 (B-21)

Transforming from physical spcae to computational space

ξx
∂U

∂ξ
+ ηx

∂U

∂η
+ a

(
ξy
∂U

∂ξ
+ ηy

∂U

∂η

)
= 0 (B-22)

which may be rearranged as

(
ξx + aξy

)
∂U

∂ξ
+

(
ηx + aηy

)
∂U

∂η
= 0 (B-23)

Matrics and the Jacobian of Transformation

From C-19 and C-20

ξx =
∂ξ

∂x
∼=
4ξ
4x

This ratio of arc length in the computational space to the physical space

From C-16 and C-17

dξ = ξxdx+ ξydy

dη = ηxdx+ ηydy

dξ
dη

 =

ξx ξy

ηx ηy


dx
dy


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Reverse the role of independent variables, we get

dx = xξdξ + xηdη

dy = yξdξ + yηdη

dx
dy

 =

xξ xη

yξ yη


dξ
dη


it can be in the form that

ξx ξy

ηx ηy

 =

xξ xη

yξ yη


−1

from which

ξx = Jyη (B-24)

ξy = −Jxη (B-25)

ηx = −Jyξ (B-26)

ηy = Jxξ (B-27)

The Jacobian Transfromation is

J =
1

xξyη − yξxη
(B-28)
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Appendix C

C This mainprogram 1DMPD thruster includes the plasma sheath model

C By given the cathode temperature and the current density:

C the plasma sheath model provides the heat flux and the sheath voltage.

C The mainprogram will stop when it reaches the steady state.

C Written by: Thada Suksila

C Date: Sep 27, 2014

C UPDATE: Oct 20, 2014

C

PROGRAM mainprogram

INCLUDE ’common_declare.f’

OPEN(93, FILE = ’mainprogram.txt’, STATUS = ’UNKNOWN’)

OPEN(94, FILE = ’mainprogram_C.txt’,STATUS= ’UNKNOWN’)

OPEN(95, FILE = ’mainprogram_P.txt’,STATUS= ’UNKNOWN’)

C

CALL grid

CALL tinit

CALL vinit

NSTEPS = 7000

TIME = 0.0

TOL = 5E-3

C check critical time 1.Von Neumann at cathode and 2. Ohmic Heating at plasma

C Cathode

T = TAVG_C(NPC)

CALL KTH_C(T,XKTH_C)

T = TC

CALL Cp_C(T,CAP_C)

DT_VON_C = CAP_C*XLSC(NNPC)*XNLC/(2*XKTH_C)

DT_OHM_C = CAP_C*XLSC(NNPC)/XJ

C WRITE(93,*) DT_VON_C, DT_OHM_C

C Plasma

T = TAVG_P(1)

CALL KTH_P(T,XKTH_P)
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T = TE

CALL Cp_P(T,CP_NOR) ! CP_NOR = Z*CP/R

CALL Z(T, XZ)

Rho = PR/(Rar*T)

CAP_P = CP_NOR/XZ*Rar*1000

CAP_P = CAP_P*Rho

XCAP_P(1) = CAP_P

DT_VON_P = CAP_P*XLSP(1)*XNLC/(2*XKTH_P)

DT_OHM_P = CAP_P*XLSP(1)/XJ

C WRITE(93,*) DT_VON_P, DT_OHM_P

C choose DT cathode

IF(DT_VON_C.GT.DT_OHM_C)THEN

DTIME_C = DT_OHM_C

ELSE

DTIME_C = DT_VON_C

ENDIF

C choose DT plasma

IF(DT_VON_P.GT.DT_OHM_P)THEN

DTIME_P = DT_OHM_P

ELSE

DTIME_P = DT_VON_P

ENDIF

C choose between cathode and plasma

IF(DTIME_C.GT.DTIME_P)THEN

DTIME = DTIME_P

ELSE

DTIME = DTIME_C

ENDIF

DTIME = DTIME/5

C Fixed temperature at the cathode base and anode

TEMP_C(1) = TCB

TEMP_P(NNPP) = TEA

C Solve for temperature and potential

DO 500 ISTEP = 1, NSTEPS

DTT = ISTEP*DTIME

C #1 conductivities at cathode region

DO 1 I = 1, NPC

T = TAVG_C(I)

CALL KTH_C(T,XKTH_C)

CALL SIGMA_C(T,SIG_C)

XKAPA_C(I) = XKTH_C

XSIGMA_C(I)= SIG_C

1 CONTINUE

C #2 conductivities at plasma region

DO 2 I = 1, NPP

T = TAVG_P(I)

CALL KTH_P(T,XKTH_P)
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CALL SIGMA_P(T,SIG_P)

XKAPA_P(I) = XKTH_P

XSIGMA_P(I)= SIG_P

2 CONTINUE

C Solve for Potential (V)

C #3 plasma region

DO 3 I = NNPP-1, 1, -1

XPHINEW_P(I) = XPHI_P(I+1) - ((XJ*XNLP)/(XSIGMA_P(I)))

XPHI_P(I) = XPHINEW_P(I)

3 CONTINUE

C #4 Call for the plasma sheath model

T = TEMP_C(NNPC) !****************

J = XJ

CALL CMODEL( T, J, VC, Q )

Q = Q

WRITE(93,*) TIME, T, J, Vc, Q

C #5 Include voltage drop (plasma sheath, VC)

XPHI_C(NNPC) = XPHI_P(1) - VC

C #6 cathode region

DO 4 I = NNPC-1, 1, -1

XPHINEW_C(I) = XPHI_C(I+1) - ((XJ*XNLC)/(XSIGMA_C(I)))

XPHI_C(I) = XPHINEW_C(I)

4 CONTINUE

C Solve for Temperature (K)

C #7 plasma region

C #7.1 at the NC+1

T = TEMP_P(1)

CALL Cp_P(T,CP_NOR) ! CP_NOR = Z*CP/R

CALL Z(T, XZ)

Rho = PR/(Rar*T)

CAP_P = CP_NOR/XZ*Rar*1000

CAP_P = CAP_P*Rho

XCAP_P(1) = CAP_P

ALPHA = DTT/(XCAP_P(1)*XLSP(1))

BETA1 = ALPHA*XJ/2

BETA2 = ALPHA*XKAPA_P(1)/XNLP

A = BETA1*(XPHI_P(2)-XPHI_P(1))

B = ALPHA*Q

C = BETA2*(TEMP_P(2)-TEMP_P(1))

TNEW_P(1) = TEMP_P(1) + A - B + C ! Eq.4.21

TEMP_P(1) = TNEW_P(1)

TAVG_P(1) = (TEMP_P(1)+TEMP_P(2))/2

C #7.2 the rest except the anode

DO 5 I = 2, NNPP-1

T = TEMP_P(I)

CALL Cp_P(T,CP_NOR) ! CP_NOR = Z*CP/R

CALL Z(T, XZ)
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Rho = PR/(Rar*T)

CAP_P = CP_NOR/XZ*Rar*1000

CAP_P = CAP_P*Rho

XCAP_P(I) = CAP_P

ALPHA = DTT/(XCAP_P(I)*XLSP(I))

BETA1 = ALPHA*XJ/2

BETA2 = ALPHA*XKAPA_P(I)/XNLP

BETA3 = ALPHA*XKAPA_P(I-1)/XNLP

A = BETA1*(XPHI_P(I+1)-XPHI_P(I-1))

B = BETA2*(TEMP_P(I+1)-TEMP_P(I))

C = BETA3*(TEMP_P(I) -TEMP_P(I-1))

TNEW_P(I) = TEMP_P(I) + A + B - C ! Eq.4.19

TEMP_P(I) = TNEW_P(I)

TAVG_P(I) = (TEMP_P(I)+TEMP_P(I+1))/2

5 CONTINUE

C #8 cathode region

C #8.1 at the cathode tip

T = TEMP_C(NNPC)

CALL Cp_C(T,CAP_C)

XCAP_C(NNPC) = CAP_C

ALPHA = DTT/(XCAP_C(NNPC)*XLSC(NNPC))

BETA1 = ALPHA*XJ/2

BETA2 = ALPHA*XKAPA_C(NNPC)/XNLC

A = BETA1*(XPHI_C(NNPC)-XPHI_C(NNPC-1))

B = ALPHA*Q

C = BETA2*(TEMP_C(NNPC) -TEMP_C(NNPC-1))

TNEW_C(NNPC) = TEMP_C(NNPC) + A + B - C !Eq. 4.20

TEMP_C(NNPC) = TNEW_C(NNPC)

TAVG_C(NNPC) = (TEMP_C(NNPC)+TEMP_C(NNPC-1))/2

C #8.2 the rest except cathode base

DO 6 I = 2, NNPC-1

T = TEMP_C(I)

CALL Cp_C(T,CAP_C)

XCAP_C(I) = CAP_C

ALPHA = DTT/(XCAP_C(I)*XLSC(I))

BETA1 = ALPHA*XJ/2

BETA2 = ALPHA*XKAPA_C(I)/XNLC

BETA3 = ALPHA*XKAPA_C(I-1)/XNLC

A = BETA1*(XPHI_C(I+1)-XPHI_C(I-1))

B = BETA2*(TEMP_C(I+1)-TEMP_C(I))

C = BETA3*(TEMP_C(I) -TEMP_C(I-1))

TNEW_C(I) = TEMP_C(I) + A + B - C !Eq.4.19

TEMP_C(I) = TNEW_C(I)

TAVG_C(I) = (TEMP_C(I)+TEMP_C(I+1))/2

6 CONTINUE

C print output

IP = ISTEP - (ISTEP/1)*1
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IF(IP.EQ.0)THEN

WRITE(94,300) TIME, (TEMP_C(I),I = 1, NNPC),(XPHI_C(I),I = 1,NNPC),Q,VC

WRITE(95,300) TIME, (TEMP_P(I),I = 1, NNPP),(XPHI_P(I),I = 1,NNPP),Q,VC

ENDIF

300 FORMAT(F15.6,2X,11(F15.4,2X),11(F15.4,2X),2X,F15.4,2X,F15.4)

TIME = TIME + DTIME

500 CONTINUE

501 STOP

END PROGRAM

C ---------------------- SUBROUTINE HEAT CAPACITY ---------------------

C subroutine to calculate the temperature dependent Heat capacity

C of the Cathode and Anode

C ---------------------------------------------------------------------

SUBROUTINE Cp_C( T, CAP_C )

INCLUDE ’common_declare.f’

C Compute heat capacity of tungsten in J/(K m^3)

RHOMOL_C = RHO_C / XMAMU_C ! gmol/m^3

AVOLJ = AMOLCAL_C * XJPERCAL * RHOMOL_C

BVOLJ = BMOLCAL_C * XJPERCAL * RHOMOL_C

CAP_C = AVOLJ + 1E-3*T*BVOLJ

C Convert from J/(K m^3) to J/(Kg K) by 19.25E3 (density at room temperature (Wiki)

C CAP_C = CAP_C / (RHO_C*1E-3)

RETURN

END

C ---------------- SUBROUTINE CTCOND ---------------------------

C subroutine to calculate the temperature dependent thermal

C conductivity of Cathode(Tungsten)

C TUNGSTEN VALUES solid and liquid [W/m/K]

C --------------------------------------------------------------

SUBROUTINE KTH_C(T, XKTH_C)

INCLUDE ’common_declare.f’

IF ( T .LE. 3670 ) THEN

XKTH_C = A0 + A1*EXP(-A2*T) + A3*EXP(-A4*T)

ELSE

XKTH_C = B0 + B1*T + B3*T*T

ENDIF

RETURN

END
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C ------------------------ SUBROUTINE SIGMA_C -------------------------

C This subroutine calculates the temperature dependent Electrical

C conductivity of cathode(Tungsten) [mho/m]

C A linear curve fit of the electrical resistivity in page 99 eq.3.10 Goodfellow

C --------------------------------------------------------------------

SUBROUTINE SIGMA_C(T,SIG_C)

INCLUDE ’common_declare.f’

XRHOE_C = (C0 + C1*T)*0.00000001

SIG_C = 1/XRHOE_C

RETURN

END

C------------------------- SUBROUTINE CP Normalized --------------------

C This subroutine calculates the Cp of argon without any unit

C Written By: Thada Suksila

C----------------------------------------------------------------------

SUBROUTINE Cp_P(T,CP_NOR)

DIMENSION X(200), FX(200,200)

OPEN(11,FILE= ’P0.0006_5000-5500.txt’, STATUS = ’OLD’)

OPEN(12,FILE= ’P0.0006_5500-5750.txt’, STATUS = ’OLD’)

OPEN(13,FILE= ’P0.0006_5750-6000.txt’, STATUS = ’OLD’)

OPEN(14,FILE= ’P0.0006_6000-6500.txt’,STATUS = ’OLD’)

OPEN(15,FILE= ’P0.0006_6500-7000.txt’,STATUS= ’OLD’)

OPEN(16,FILE= ’P0.0006_7000-7250.txt’,STATUS= ’OLD’)

OPEN(17,FILE= ’P0.0006_7250-7400.txt’,STATUS= ’OLD’)

OPEN(18,FILE= ’P0.0006_7400-7600.txt’,STATUS= ’OLD’)

OPEN(19,FILE= ’P0.0006_7600-7800.txt’,STATUS= ’OLD’)

OPEN(20,FILE= ’P0.0006_7800-8000.txt’,STATUS= ’OLD’)

OPEN(21,FILE= ’P0.0006_8000-8100.txt’,STATUS= ’OLD’)

OPEN(22,FILE= ’P0.0006_8100-8200.txt’,STATUS= ’OLD’)

OPEN(23,FILE= ’P0.0006_8200-8300.txt’,STATUS= ’OLD’)

OPEN(24,FILE= ’P0.0006_8300-8600.txt’,STATUS= ’OLD’)

OPEN(25,FILE= ’P0.0006_8600-8800.txt’,STATUS= ’OLD’)

OPEN(26,FILE= ’P0.0006_8800-8900.txt’,STATUS= ’OLD’)

OPEN(27,FILE= ’P0.0006_8900-9000.txt’,STATUS= ’OLD’)

OPEN(28,FILE= ’P0.0006_9000-9100.txt’,STATUS= ’OLD’)

OPEN(29,FILE= ’P0.0006_9100-9200.txt’,STATUS= ’OLD’)

OPEN(30,FILE= ’P0.0006_9200-9300.txt’,STATUS= ’OLD’)

OPEN(31,FILE= ’P0.0006_9300-9400.txt’,STATUS= ’OLD’)

OPEN(32,FILE= ’P0.0006_9400-9500.txt’,STATUS= ’OLD’)

OPEN(33,FILE= ’P0.0006_9500-9600.txt’,STATUS= ’OLD’)

OPEN(34,FILE= ’P0.0006_9600-9700.txt’,STATUS= ’OLD’)

OPEN(35,FILE= ’P0.0006_9700-9800.txt’,STATUS= ’OLD’)

OPEN(36,FILE= ’P0.0006_9800-9900.txt’,STATUS= ’OLD’)

OPEN(37,FILE= ’P0.0006_9900-10000.txt’,STATUS= ’OLD’)

OPEN(38,FILE= ’P0.0006_10000-10100.txt’,STATUS= ’OLD’)
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OPEN(39,FILE= ’P0.0006_10100-10200.txt’,STATUS= ’OLD’)

OPEN(40,FILE= ’P0.0006_10200-10300.txt’,STATUS= ’OLD’)

OPEN(41,FILE= ’P0.0006_10300-10400.txt’,STATUS= ’OLD’)

OPEN(42,FILE= ’P0.0006_10400-10500.txt’,STATUS= ’OLD’)

OPEN(43,FILE= ’P0.0006_10500-10600.txt’,STATUS= ’OLD’)

OPEN(44,FILE= ’P0.0006_10600-10700.txt’,STATUS= ’OLD’)

OPEN(45,FILE= ’P0.0006_10700-10800.txt’,STATUS= ’OLD’)

OPEN(46,FILE= ’P0.0006_10800-10900.txt’,STATUS= ’OLD’)

OPEN(47,FILE= ’P0.0006_10900-11000.txt’,STATUS= ’OLD’)

OPEN(48,FILE= ’P0.0006_11000-11200.txt’,STATUS= ’OLD’)

OPEN(49,FILE= ’P0.0006_11200-11400.txt’,STATUS= ’OLD’)

OPEN(50,FILE= ’P0.0006_11400-11600.txt’,STATUS= ’OLD’)

OPEN(51,FILE= ’P0.0006_11600-11800.txt’,STATUS= ’OLD’)

OPEN(52,FILE= ’P0.0006_11800-12000.txt’,STATUS= ’OLD’)

OPEN(53,FILE= ’P0.0006_12000-12300.txt’,STATUS= ’OLD’)

OPEN(54,FILE= ’P0.0006_12300-12600.txt’,STATUS= ’OLD’)

OPEN(55,FILE= ’P0.0006_12600-13000.txt’,STATUS= ’OLD’)

C given the temperature

XX = T

IF(XX.LE.5000)THEN

FF = 2.378552973

GOTO 101

ELSEIF(XX.GT.13000)THEN

FF = 0.00017581*XX + 3.69888312

GOTO 101

ENDIF

IF(XX.GT.5000.AND.XX.LE.5500) THEN

N = 7

DO IROW = 1,N

READ(11,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.5500.AND.XX.LE.5750)THEN

N = 10

DO IROW = 1,N

READ(12,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.5750.AND.XX.LE.6000)THEN

N = 8

DO IROW = 1,N

READ(13,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.6000.AND.XX.LE.6500)THEN

N = 12

DO IROW = 1,N

READ(14,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.6500.AND.XX.LE.7000)THEN
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N = 12

DO IROW = 1,N

READ(15,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7000.AND.XX.LE.7250)THEN

N = 7

DO IROW = 1,N

READ(16,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7250.AND.XX.LE.7400)THEN

N = 8

DO IROW = 1,N

READ(17,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7400.AND.XX.LE.7600)THEN

N = 8

DO IROW = 1,N

READ(18,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7600.AND.XX.LE.7800)THEN

N = 8

DO IROW = 1,N

READ(19,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7800.AND.XX.LE.8000)THEN

N = 8

DO IROW = 1,N

READ(20,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8000.AND.XX.LE.8100)THEN

N = 8

DO IROW = 1,N

READ(21,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8100.AND.XX.LE.8200)THEN

N = 8

DO IROW = 1,N

READ(22,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8200.AND.XX.LE.8300)THEN

N = 8

DO IROW = 1,N

READ(23,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8300.AND.XX.LE.8600)THEN

N = 9

DO IROW = 1,N
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READ(24,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8600.AND.XX.LE.8800)THEN

N = 8

DO IROW = 1,N

READ(25,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8800.AND.XX.LE.8900)THEN

N = 7

DO IROW = 1,N

READ(26,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8900.AND.XX.LE.9000)THEN

N = 8

DO IROW = 1,N

READ(27,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9000.AND.XX.LE.9100)THEN

N = 8

DO IROW = 1,N

READ(28,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9100.AND.XX.LE.9200)THEN

N = 8

DO IROW = 1,N

READ(29,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9200.AND.XX.LE.9300)THEN

N = 8

DO IROW = 1,N

READ(30,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9300.AND.XX.LE.9400)THEN

N = 8

DO IROW = 1,N

READ(31,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9400.AND.XX.LE.9500)THEN

N = 8

DO IROW = 1,N

READ(32,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9500.AND.XX.LE.9600)THEN

N = 8

DO IROW = 1,N

READ(33,*) X(IROW),FX(IROW,1)

ENDDO
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ELSEIF(XX.GT.9600.AND.XX.LE.9700)THEN

N = 8

DO IROW = 1,N

READ(34,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9700.AND.XX.LE.9800)THEN

N = 8

DO IROW = 1,N

READ(35,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9800.AND.XX.LE.9900)THEN

N = 8

DO IROW = 1,N

READ(36,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9900.AND.XX.LE.10000)THEN

N = 8

DO IROW = 1,N

READ(37,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10000.AND.XX.LE.10100)THEN

N = 8

DO IROW = 1,N

READ(38,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10100.AND.XX.LE.10200)THEN

N = 8

DO IROW = 1,N

READ(39,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10200.AND.XX.LE.10300)THEN

N = 8

DO IROW = 1,N

READ(40,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10300.AND.XX.LE.10400)THEN

N = 8

DO IROW = 1,N

READ(41,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10400.AND.XX.LE.10500)THEN

N = 8

DO IROW = 1,N

READ(42,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10500.AND.XX.LE.10600)THEN

N = 8

142



DO IROW = 1,N

READ(43,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10600.AND.XX.LE.10700)THEN

N = 8

DO IROW = 1,N

READ(44,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10700.AND.XX.LE.10800)THEN

N = 8

DO IROW = 1,N

READ(45,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10800.AND.XX.LE.10900)THEN

N = 8

DO IROW = 1,N

READ(46,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10900.AND.XX.LE.11000)THEN

N = 8

DO IROW = 1,N

READ(47,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11000.AND.XX.LE.11200)THEN

N = 9

DO IROW = 1,N

READ(48,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11200.AND.XX.LE.11400)THEN

N = 8

DO IROW = 1,N

READ(49,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11400.AND.XX.LE.11600)THEN

N = 7

DO IROW = 1,N

READ(50,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11600.AND.XX.LE.11800)THEN

N = 8

DO IROW = 1,N

READ(51,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11800.AND.XX.LE.12000)THEN

N = 7

DO IROW = 1,N

READ(52,*) X(IROW),FX(IROW,1)
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ENDDO

ELSEIF(XX.GT.12000.AND.XX.LE.12300)THEN

N = 8

DO IROW = 1,N

READ(53,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.12300.AND.XX.LE.12600)THEN

N = 9

DO IROW = 1,N

READ(54,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.12600.AND.XX.LE.13000)THEN

N = 10

DO IROW = 1,N

READ(55,*) X(IROW),FX(IROW,1)

ENDDO

ENDIF

C Compute divided-difference coefficients:

M = N

DO 20 ICOL = 2,N

M = M - 1

DO 30 IROW = 1,M

FX(IROW,ICOL) =

& FX(IROW+1,ICOL-1)-FX(IROW,ICOL-1)

FX(IROW,ICOL) =

& FX(IROW,ICOL)/(X(IROW+ICOL-1) - X(IROW))

30 CONTINUE

20 CONTINUE

C Compute desired F(X) at the given X value:

FF = FX(1,1)

FAC = 1.

DO 40 I = 2, N

FAC = FAC*(XX-X(I-1))

FF = FF + FX(1,I)*FAC

CP_NOR = FF

40 CONTINUE

101 WRITE(89,100) XX, FF

100 FORMAT(’value of F(X) at x = ’, E10.4,’is’, E16.7)

C Close all open files

CLOSE(11)

CLOSE(12)

CLOSE(13)

CLOSE(14)

CLOSE(15)

CLOSE(16)

CLOSE(17)

CLOSE(18)
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CLOSE(19)

CLOSE(20)

CLOSE(21)

CLOSE(22)

CLOSE(23)

CLOSE(24)

CLOSE(25)

CLOSE(26)

CLOSE(27)

CLOSE(28)

CLOSE(29)

CLOSE(30)

CLOSE(31)

CLOSE(32)

CLOSE(33)

CLOSE(34)

CLOSE(35)

CLOSE(36)

CLOSE(37)

CLOSE(38)

CLOSE(39)

CLOSE(40)

CLOSE(41)

CLOSE(42)

CLOSE(43)

CLOSE(44)

CLOSE(45)

CLOSE(46)

CLOSE(47)

CLOSE(48)

CLOSE(49)

CLOSE(50)

CLOSE(51)

CLOSE(52)

CLOSE(53)

CLOSE(54)

CLOSE(55)

RETURN

END

C ------------------ SUBROUTINE Z (compressibility factor ----------

C This pressure is 0.0006atm to calculate the compressibility factor of gas

C Program for computing F(X) at a given X

C using Newton’s divided-difference interpolating polynomials

C Written By: Thada Suksila

C Date: October 27, 2013

C Calculate for Z at pressure 0.0006 atm

SUBROUTINE Z(XI,FF)
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DIMENSION X(200), FX(200,200)

OPEN(11,FILE= ’Z0.0006_6000-6500.txt’, STATUS = ’OLD’)

OPEN(12,FILE= ’Z0.0006_6500-7000.txt’, STATUS = ’OLD’)

OPEN(13,FILE= ’Z0.0006_7000-7500.txt’, STATUS = ’OLD’)

OPEN(14,FILE= ’Z0.0006_7500-8000.txt’,STATUS = ’OLD’)

OPEN(15,FILE= ’Z0.0006_8000-8500.txt’,STATUS= ’OLD’)

OPEN(16,FILE= ’Z0.0006_8500-9000.txt’,STATUS= ’OLD’)

OPEN(17,FILE= ’Z0.0006_9000-9500.txt’,STATUS= ’OLD’)

OPEN(18,FILE= ’Z0.0006_9500-10000.txt’,STATUS= ’OLD’)

OPEN(19,FILE= ’Z0.0006_10000-10500.txt’,STATUS= ’OLD’)

OPEN(20,FILE= ’Z0.0006_10500-11000.txt’,STATUS= ’OLD’)

OPEN(21,FILE= ’Z0.0006_11000-11500.txt’,STATUS= ’OLD’)

OPEN(22,FILE= ’Z0.0006_11500-12000.txt’,STATUS= ’OLD’)

OPEN(23,FILE= ’Z0.0006_12000-12500.txt’,STATUS= ’OLD’)

OPEN(24,FILE= ’Z0.0006_12500-13000.txt’,STATUS= ’OLD’)

OPEN(25,FILE= ’Z0.0006_13000-13500.txt’,STATUS= ’OLD’)

OPEN(26,FILE= ’Z0.0006_13500-14000.txt’,STATUS= ’OLD’)

C Start to calculate using given temperature

XX = XI

IF(XX.LE.6000)THEN

FF = 1.0

GOTO 101

ELSEIF(XX.GT.14000)THEN

FF = 2.0

GOTO 101

ENDIF

IF(XX.GT.6000.AND.XX.LE.6500) THEN

N = 5

DO IROW = 1,N

READ(11,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.6500.AND.XX.LE.7000)THEN

N = 7

DO IROW = 1,N

READ(12,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7000.AND.XX.LE.7500)THEN

N = 7

DO IROW = 1,N

READ(13,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7500.AND.XX.LE.8000)THEN

N = 6

DO IROW = 1,N

READ(14,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8000.AND.XX.LE.8500)THEN
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N = 7

DO IROW = 1,N

READ(15,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8500.AND.XX.LE.9000)THEN

N = 7

DO IROW = 1,N

READ(16,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9000.AND.XX.LE.9500)THEN

N = 7

DO IROW = 1,N

READ(17,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9500.AND.XX.LE.10000)THEN

N = 6

DO IROW = 1,N

READ(18,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10000.AND.XX.LE.10500)THEN

N = 7

DO IROW = 1,N

READ(19,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10500.AND.XX.LE.11000)THEN

N = 6

DO IROW = 1,N

READ(20,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11000.AND.XX.LE.11500)THEN

N = 6

DO IROW = 1,N

READ(21,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11500.AND.XX.LE.12000)THEN

N = 6

DO IROW = 1,N

READ(22,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.12000.AND.XX.LE.12500)THEN

N = 6

DO IROW = 1,N

READ(23,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.12500.AND.XX.LE.13000)THEN

N = 6

DO IROW = 1,N
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READ(24,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.13000.AND.XX.LE.13500)THEN

N = 6

DO IROW = 1,N

READ(25,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.13500.AND.XX.LE.14000)THEN

N = 4

DO IROW = 1,N

READ(26,*) X(IROW),FX(IROW,1)

ENDDO

ENDIF

C Compute divided-difference coefficients:

M = N

DO 20 ICOL = 2,N

M = M - 1

DO 30 IROW = 1,M

FX(IROW,ICOL) =

& FX(IROW+1,ICOL-1)-FX(IROW,ICOL-1)

FX(IROW,ICOL) =

& FX(IROW,ICOL)/(X(IROW+ICOL-1) - X(IROW))

30 CONTINUE

20 CONTINUE

C Compute desired F(X) at the given X value:

FF = FX(1,1)

FAC = 1.

DO 40 I = 2, N

FAC = FAC*(XX-X(I-1))

FF = FF + FX(1,I)*FAC

40 CONTINUE

101 WRITE(89,100) XX, FF

100 FORMAT(’value of F(X) at x = ’, E10.4,’is’, E16.7)

C Close all open files

CLOSE(11)

CLOSE(12)

CLOSE(13)

CLOSE(14)

CLOSE(15)

CLOSE(16)

CLOSE(17)

CLOSE(18)

CLOSE(19)

CLOSE(20)

CLOSE(21)

CLOSE(22)

CLOSE(23)
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CLOSE(24)

CLOSE(25)

CLOSE(26)

RETURN

END

C--------------------------------------------------------------------------

SUBROUTINE KTH_P(T,XKTH_P)

C The pressure is 0.00065atm for thermal conductivity of argon

C Program for computing F(X) at a given X

C Written By: Thada Suksila

C using Newton’s divided-difference interpolating polynomials

DOUBLE PRECISION X, FX

DIMENSION X(506), FX(506,506)

OPEN(12,FILE= ’ThP0.0006atm7-8.txt’, STATUS = ’OLD’)

OPEN(13,FILE= ’ThP0.0006atm8-9.txt’, STATUS = ’OLD’)

OPEN(14,FILE= ’ThP0.0006atm9-10.txt’,STATUS = ’OLD’)

OPEN(15,FILE= ’ThP0.0006atm10-11.txt’,STATUS= ’OLD’)

OPEN(16,FILE= ’ThP0.0006atm11-12.txt’,STATUS= ’OLD’)

OPEN(17,FILE= ’ThP0.0006atm12-13.txt’,STATUS= ’OLD’)

OPEN(18,FILE= ’ThP0.0006atm13-15.txt’,STATUS= ’OLD’)

OPEN(19,FILE= ’ThP0.0006atm15-17.txt’,STATUS= ’OLD’)

OPEN(20,FILE= ’ThP0.0006atm17-19.txt’,STATUS= ’OLD’)

OPEN(21,FILE= ’ThP0.0006atm19-21.txt’,STATUS= ’OLD’)

OPEN(22,FILE= ’ThP0.0006atm21-23.txt’,STATUS= ’OLD’)

OPEN(23,FILE= ’ThP0.0006atm23-25.txt’,STATUS= ’OLD’)

OPEN(24,FILE= ’ThP0.0006atm25-27.txt’,STATUS= ’OLD’)

OPEN(25,FILE= ’ThP0.0006atm27-28.txt’,STATUS= ’OLD’)

C given the temperature

XX = T

IF(XX.LT.7000) THEN

FF = 0.0171*1.5951

GOTO 101

ELSEIF(XX.GE.7000.AND.XX.LE.8000)THEN

N = 14

DO IROW = 1,N

READ(12,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8000.AND.XX.LE.9000)THEN

N = 14

DO IROW = 1,N

READ(13,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9000.AND.XX.LE.10000)THEN

N = 14

DO IROW = 1,N

READ(14,*) X(IROW),FX(IROW,1)

ENDDO
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ELSEIF(XX.GT.10000.AND.XX.LE.11000)THEN

N = 14

DO IROW = 1,N

READ(15,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11000.AND.XX.LE.12000)THEN

N = 14

DO IROW = 1,N

READ(16,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.12000.AND.XX.LE.13000)THEN

N = 14

DO IROW = 1,N

READ(17,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.13000.AND.XX.LE.15000)THEN

N = 14

DO IROW = 1,N

READ(18,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.15000.AND.XX.LE.17000)THEN

N = 14

DO IROW = 1,N

READ(19,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.17000.AND.XX.LE.19000)THEN

N = 14

DO IROW = 1,N

READ(20,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.19000.AND.XX.LE.21000)THEN

N = 14

DO IROW = 1,N

READ(21,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.21000.AND.XX.LE.23000)THEN

N = 14

DO IROW = 1,N

READ(22,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.23000.AND.XX.LE.25000)THEN

N = 14

DO IROW = 1,N

READ(23,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.25000.AND.XX.LE.27000)THEN

N = 14
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DO IROW = 1,N

READ(24,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.27000.AND.XX.LE.28000)THEN

N = 14

DO IROW = 1,N

READ(25,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.28000)THEN

FF = 225143.0861

GOTO 101

ENDIF

C Compute divided-difference coefficients:

M = N

DO 20 ICOL = 2,N

M = M - 1

DO 30 IROW = 1,M

FX(IROW,ICOL) =

& FX(IROW+1,ICOL-1)-FX(IROW,ICOL-1)

FX(IROW,ICOL) =

& FX(IROW,ICOL)/(X(IROW+ICOL-1) - X(IROW))

30 CONTINUE

20 CONTINUE

C Compute desired F(X) at the given X value:

C WRITE(5,*)’Input the temperature (K):’

C READ(5,*) XX

FF = FX(1,1)

FAC = 1.

DO 40 I = 2, N

FAC = FAC*(XX-X(I-1))

FF = FF + FX(1,I)*FAC

TH = FF

40 CONTINUE

101 WRITE(2,100) XX, FF,FF*0.00001

C Convert from erg/(K cm s) to Watt/(m K) by time 1E-5

XKTH_P = FF*0.00001

100 FORMAT(’Temp =’,E10.4,’is’, E16.7,’or’,E16.7)

200 FORMAT(1X,E21.16,4X,E21.16)

CLOSE(11)

CLOSE(12)

CLOSE(13)

CLOSE(14)

CLOSE(15)

CLOSE(16)

CLOSE(17)

CLOSE(18)
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CLOSE(19)

CLOSE(20)

CLOSE(21)

CLOSE(22)

CLOSE(23)

CLOSE(24)

CLOSE(25)

RETURN

END

C---------------------------------------------------------------

SUBROUTINE SIGMA_P(T,SIG_P)

C This pressure is 0.00065atm Electrical Conductivity

C Program for computing F(X) at a given X

C Written By: Thada Suksila

C using Newton’s divided-difference interpolating polynomials

DOUBLE PRECISION X, FX

DIMENSION X(506), FX(506,506)

OPEN(10,FILE= ’ElP0.00065atm5.5-6.txt’,STATUS= ’OLD’)

OPEN(11,FILE= ’ElP0.00065atm6-7.txt’, STATUS = ’OLD’)

OPEN(12,FILE= ’ElP0.00065atm7-8.txt’, STATUS = ’OLD’)

OPEN(13,FILE= ’ElP0.00065atm8-9.txt’, STATUS = ’OLD’)

OPEN(14,FILE= ’ElP0.00065atm9-10.txt’,STATUS = ’OLD’)

OPEN(15,FILE= ’ElP0.00065atm10-11.txt’,STATUS= ’OLD’)

OPEN(16,FILE= ’ElP0.00065atm11-12.txt’,STATUS= ’OLD’)

OPEN(17,FILE= ’ElP0.00065atm12-13.txt’,STATUS= ’OLD’)

OPEN(18,FILE= ’ElP0.00065atm13-15.txt’,STATUS= ’OLD’)

OPEN(19,FILE= ’ElP0.00065atm15-17.txt’,STATUS= ’OLD’)

OPEN(20,FILE= ’ElP0.00065atm17-19.txt’,STATUS= ’OLD’)

OPEN(21,FILE= ’ElP0.00065atm19-21.txt’,STATUS= ’OLD’)

OPEN(22,FILE= ’ElP0.00065atm21-23.txt’,STATUS= ’OLD’)

OPEN(23,FILE= ’ElP0.00065atm23-25.txt’,STATUS= ’OLD’)

OPEN(24,FILE= ’ElP0.00065atm25-27.txt’,STATUS= ’OLD’)

OPEN(25,FILE= ’ElP0.00065atm27-30.txt’,STATUS= ’OLD’)

C given the temperature

XX = T

C Start Newton’s interpolation polynomials

IF(XX.LT.5500)THEN

FF = 0.5*(8.52E10+6.7666E11)

GOTO 101

ELSEIF(XX.GE.5500.AND.XX.LT.6000) THEN

N = 14

DO IROW = 1,N

READ(10,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GE.6000.AND.XX.LE.7000) THEN

N = 14

DO IROW = 1,N

152



READ(11,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7000.AND.XX.LE.8000)THEN

N = 14

DO IROW = 1,N

READ(12,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8000.AND.XX.LE.9000)THEN

N = 14

DO IROW = 1,N

READ(13,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9000.AND.XX.LE.10000)THEN

N = 14

DO IROW = 1,N

READ(14,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10000.AND.XX.LE.11000)THEN

N = 14

DO IROW = 1,N

READ(15,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11000.AND.XX.LE.12000)THEN

N = 14

DO IROW = 1,N

READ(16,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.12000.AND.XX.LE.13000)THEN

N = 14

DO IROW = 1,N

READ(17,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.13000.AND.XX.LE.15000)THEN

N = 14

DO IROW = 1,N

READ(18,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.15000.AND.XX.LE.17000)THEN

N = 14

DO IROW = 1,N

READ(19,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.17000.AND.XX.LE.19000)THEN

N = 14

DO IROW = 1,N

READ(20,*) X(IROW),FX(IROW,1)

ENDDO
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ELSEIF(XX.GT.19000.AND.XX.LE.21000)THEN

N = 14

DO IROW = 1,N

READ(21,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.21000.AND.XX.LE.23000)THEN

N = 14

DO IROW = 1,N

READ(22,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.23000.AND.XX.LE.25000)THEN

N = 14

DO IROW = 1,N

READ(23,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.25000.AND.XX.LE.27000)THEN

N = 14

DO IROW = 1,N

READ(24,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.27000.AND.XX.LE.28000)THEN

N = 14

DO IROW = 1,N

READ(25,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.28000) THEN

FF = 6.24869E13

GOTO 101

ENDIF

C Compute divided-difference coefficients:

M = N

DO 20 ICOL = 2,N

M = M - 1

DO 30 IROW = 1,M

FX(IROW,ICOL) =

& FX(IROW+1,ICOL-1)-FX(IROW,ICOL-1)

FX(IROW,ICOL) =

& FX(IROW,ICOL)/(X(IROW+ICOL-1) - X(IROW))

30 CONTINUE

20 CONTINUE

C Compute desired F(X) at the given X value:

C WRITE(5,*)’Input the temperature (K):’

C READ(5,*) XX

FF = FX(1,1)

FAC = 1.

DO 40 I = 2, N
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FAC = FAC*(XX-X(I-1))

FF = FF + FX(1,I)*FAC

40 CONTINUE

101 WRITE(2,100) XX, FF,FF*1.1126535E-10

C convert from (stat mho)/cm to mho/m by time 1.126535E-10

SIG_P = FF*1.1126535E-10

100 FORMAT(’Temp =’,E10.4,’is’, E16.7,’or’,E16.7)

CLOSE(10)

CLOSE(11)

CLOSE(12)

CLOSE(13)

CLOSE(14)

CLOSE(15)

CLOSE(16)

CLOSE(17)

CLOSE(18)

CLOSE(19)

CLOSE(20)

CLOSE(21)

CLOSE(22)

CLOSE(23)

CLOSE(24)

CLOSE(25)

RETURN

END

C

C Model of cathode sheath

C Provides sheath voltage and heat flux

C as functions of cathode temperature and current density

C

C Inputs:

C T (K): Cathode surface temperature

C J (A/cm^2): Current density

C

C Outputs:

C VC (V): Cathode sheath voltage

C Q (W/cm^2): Heat flux to cathode surface

C

SUBROUTINE CMODEL( T, J, VC, Q )

C INCLUDE ’common_declare.f’

C IMPLICIT REAL( J )

SAVE
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LOGICAL FIRST /.TRUE./, DONE

C Note: Following three lines must be consistent with each other!

PARAMETER( NT=301, NJ=2001 )

PARAMETER( TLOW=2500, THIGH=4000, TSTEP=5 )

PARAMETER( JLOW=0, JHIGH=10000, JSTEP=5 )

DIMENSION VCDAT( NT,NJ ), QDAT( NT,NJ ), TVALS( NT ), JVALS( NJ )

DIMENSION IJMIN( NT ), IJMAX( NT )

C write(*,*) ’ CMODEL called with T=’,T,’ J=’,J

IF( FIRST ) THEN

C First time called: Read the data files

OPEN( 8, FILE=’Vc.dat’, STATUS=’UNKNOWN’ )

OPEN( 9, FILE=’q.dat’, STATUS=’UNKNOWN’ )

READ(8,*) NR, NC

C WRITE(*,*) ’In file Vc.dat, got ’,NR, ’ rows -- should be ’, NT

READ(9,*) NR, NC

C WRITE(*,*) ’In file q.dat, got ’,NR, ’ rows -- should be ’, NT

DO IT=1, NT

C write(*,*)’Reading Vc, line ’, IT

READ(8,*) ( VCDAT(IT,IJ), IJ=1, NJ )

C write(*,*)’Reading q, line ’, IT

READ(9,*) ( QDAT(IT,IJ), IJ=1, NJ )

ENDDO

C WRITE(*,*) ’Finished reading Vc, Q values from data files’

C Set the temperature and current density values

DO IT=1, NT

TVALS(IT) = TLOW + (IT-1) * TSTEP

ENDDO

DO IJ=1, NJ

JVALS(IJ) = JLOW + (IJ-1) * JSTEP

ENDDO

C

C For each temperature value, find region of convergence of model

C

C Outside region of convergence: Extrapolate

C Sheath voltage: Increase rapidly for too-high values of J

C Heat flux:

C Increase rapidly for too-high values of J

C Decrease rapidly for too-low values of J

C

C IJMIN, IJMAX: For each T value, the smallest and largest values
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C of IJ for which QDAT is nonzero

C

DO IT=1, NT

DO IJ=1, NJ

IF( QDAT(IT,IJ) .NE. 0 ) THEN

IJMAX(IT) = IJ

ENDIF

ENDDO

DO IJ=NJ,1,-1

IF( QDAT(IT,IJ) .NE. 0 ) THEN

IJMIN(IT) = IJ

ENDIF

ENDDO

ENDDO

C

C write(*,*) ’Finished finding limits of convergence’

VCSLOPE = 10

QSLOPE = 100

C

FIRST = .FALSE.

ENDIF

C

C Check values -- for debugging

DONE = .FALSE.

c DO WHILE( .NOT. DONE )

DO WHILE( .false. )

WRITE(*,200)

200 FORMAT( ’Enter IT, IJ (0 0 to quit): ’, $ )

READ(*,*) IT, IJ

IF( IT .EQ. 0 ) THEN

DONE = .TRUE.

ELSE

WRITE(*,*) ’Vc(’,IT,IJ,’) = ’, VCDAT(IT,IJ)

WRITE(*,*) ’q(’,IT,IJ,’) = ’, QDAT(IT,IJ)

ENDIF

ENDDO

C Check values -- for debugging

DONE = .FALSE.

c DO WHILE( .NOT. DONE )

DO WHILE( .false. )

WRITE(*,300)

300 FORMAT( ’Enter IT (0 to quit): ’, $ )

READ(*,*) IT

IF( IT .EQ. 0 ) THEN

DONE = .TRUE.

ELSE
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WRITE(*,*) ’IJMIN(’,IT,’) = ’, IJMIN(IT)

WRITE(*,*) ’IJMAX(’,IT,’) = ’, IJMAX(IT)

ENDIF

ENDDO

C

C Find location of input T, J in data files

C

C XT: continuous, ranges from 0 to just below NT-1

C IT1, IT2: Integer values below and above XT

C PT: continuous, ranges from 0 to 1: how far across T step we are

XT = MAX( 0.0, MIN( ( T - TLOW ) / TSTEP, NT-1.01 ) )

IT1 = INT(XT) + 1

IT2 = IT1 + 1

PT = XT - INT(XT)

c WRITE(*,*) ’Temperature ’, T, ’ is between IT = ’, IT1, IT2

c WRITE(*,*) ’Fraction ’,PT, ’ across temperature increment’

XJ = MAX( 0.0, MIN( ( REAL(J) - JLOW ) / JSTEP, NJ-1.01 ) )

IJ1 = INT(XJ) + 1

IJ2 = IJ1 + 1

PJ = XJ - INT(XJ)

c WRITE(*,*) ’Current density ’, J, ’ is between IJ = ’, IJ1, IJ2

c WRITE(*,*) ’Fraction ’,PJ, ’ across current density increment’

c write(*,*) ’IJMAX of ’,IT1,’ is ’, IJMAX(IT1)

IF( IJ2 .GT. IJMAX(IT1) ) THEN

C Current too high for model -- extrapolate up

c write(*,*) ’IT1: Current too high -- ijmax is ’,IJMAX(IT1)

IF( IJMAX(IT1) .EQ. 0 ) THEN

C Model not converged at all for this T

c WRITE(*,*) ’Model not converged at all for this T’

c write(*,*) ’vcslope ’,VCSLOPE,’ qslope ’,QSLOPE

VC1 = VCSLOPE*J

Q1 = QSLOPE*J

ELSE

JMAX = JVALS(IJMAX(IT1))

c write(*,*) ’JMAX is ’,JMAX

VC1 = VCDAT(IT1,IJMAX(IT1)) + VCSLOPE*(J-JMAX)

Q1 = QDAT(IT1,IJMAX(IT1)) + QSLOPE*(J-JMAX)

ENDIF

ELSEIF( IJ1 .LT. IJMIN(IT1) ) THEN

C Current too low for model -- extrapolate down

c write(*,*) ’IT1: Current too low -- ijmin is ’,IJMIN(IT1)

JMIN = JVALS(IJMIN(IT1))

c write(*,*) ’JMIN is ’,JMIN

VC1 = 0
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Q1 = QDAT(IT1,IJMIN(IT1)) + QSLOPE*(J-JMIN)

ELSE

C Model converged here -- interpolate model data

c write(*,*) ’IT1: Model is converged’

VC1 = VCDAT(IT1,IJ1)*(1-PJ) + VCDAT(IT1,IJ2)*PJ

Q1 = QDAT(IT1,IJ1)*(1-PJ) + QDAT(IT1,IJ2)*PJ

ENDIF

c write(*,*) ’Got VC1 = ’,VC1,’ Q1 = ’,Q1

IF( IJ2 .GT. IJMAX(IT2) ) THEN

C Current too high for model -- extrapolate up

IF( IJMAX(IT2) .EQ. 0 ) THEN

C Model not converged at all for this T

c WRITE(*,*) ’Model not converged at all for this T’

VC2 = VCSLOPE*J

Q1 = QSLOPE*J

ELSE

JMAX = JVALS(IJMAX(IT2))

VC2 = VCDAT(IT2,IJMAX(IT2)) + VCSLOPE*(J-JMAX)

Q2 = QDAT(IT2,IJMAX(IT2)) + QSLOPE*(J-JMAX)

ENDIF

ELSEIF( IJ1 .LT. IJMIN(IT2) ) THEN

C Current too low for model -- extrapolate down

JMIN = JVALS(IJMIN(IT2))

VC2 = 0

Q2 = QDAT(IT2,IJMIN(IT2)) + QSLOPE*(J-JMIN)

ELSE

C Model converged here -- interpolate model data

VC2 = VCDAT(IT2,IJ1)*(1-PJ) + VCDAT(IT2,IJ2)*PJ

Q2 = QDAT(IT2,IJ1)*(1-PJ) + QDAT(IT2,IJ2)*PJ

ENDIF

C Now interpolate in the T direction

VC = VC1*(1-PT) + VC2*PT

Q = Q1*(1-PT) + Q2*PT

RETURN

END
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Appendix D

C Main file for program CURRENT for 2D Cylindrical Symmetry MPD Thruster

C Originally written by: Dr.Daniel Erwin

C Revised & Updated to calculate temperature by: Thada Suksila

C Date: July 16, 2014

C Included New Sheath Model

C Updated: October 28, 2014

INCLUDE ’common.f’

OPEN (93,FILE = ’NSTEPS.txt’ , STATUS = ’UNKNOWN’)

OPEN (94,FILE = ’0.5_NSTEPS.txt’, STATUS = ’UNKNOWN’)

OPEN (95,FILE = ’main_T.txt’,STATUS = ’UNKNOWN’)

OPEN (96,FILE = ’main_Phi.txt’, STATUS = ’UNKNOWN’)

OPEN (97,FILE = ’main_Xj.txt’, STATUS = ’UNKNOWN’)

OPEN (98,FILE = ’main_E.txt’, STATUS = ’UNKNOWN’)

OPEN (99,FILE = ’mainprogram.txt’, STATUS=’UNKNOWN’)

OPEN(100,FILE = ’11.txt’, STATUS = ’UNKNOWN’)

OPEN(101,FILE = ’16.txt’, STATUS = ’UNKNOWN’)

OPEN(102,FILE = ’17.txt’, STATUS = ’UNKNOWN’)

OPEN(103,FILE = ’18.txt’, STATUS = ’UNKNOWN’)

C initial values for electrical conductivity of tungsten and plasma (mho/m)

T = TC ! cathode

CALL SIGMA_C(T,SIG_C)

CALL KTH_C(T,XKTH_C)

CALL Cp_C(T,CAP_C)

AA = SIG_C

AA1 = XKTH_C

AA2 = CAP_C

T = TP ! plasma

CALL SIGMA_P(T,SIG_P)

CALL KTH_P(T,XKTH_P)

CALL Cp_P(T,CP_NOR)

CALL Z(T,XZ)
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RHO = PR/(Rar*T)

CAP_P = CP_NOR/XZ*Rar*1000

CAP_P = CAP_P*RHO

BB = SIG_P

BB1 = XKTH_P

BB2 = CAP_P

C start makegrid and calculate current

CALL MAKEGRID(AA,AA1,AA2,BB,BB1,BB2)

CALL SUB_CURRENT !

C CALL ASSERT(NP.GT.0, ’Back from MAKEGRID, NP is zero !’)

CALL initial_temp

C

C check critical time 1.Von Neumann and 2. Ohmic Heating

A = (XCAP_NODE(1)*R2BAR_NODE(1)*TAREA_NODE(1))

B = 0.25 * XKTH_NODE(N1+3)*R2BAR_NODE(N1+3)*SSQRT_NODE(N1+3)/(3*TAREA_NODE(N1+3))

C = Xj_NODE(N1+3)*E_NODE(N1+3)*R2BAR_NODE(N1+3)*TAREA_NODE(N1+3)

C

DT_VON = A/(2*B)

DT_OHM = A/(2*C)

C choose DT

IF(DT_VON.GT.DT_OHM)THEN

DTIME = DT_OHM

ELSE

DTIME = DT_VON

ENDIF

C WRITE(99,*) DTIME, DT_VON, DT_OHM

C divided by safty factor

DTIME = DTIME/5000

C WRITE(99,*) DTIME, DT_OHM_P,DT_VON_P,DT_OHM_C,DT_VON_C

C

C NSTEPS = 100000

NSTEPS = 1

TOL = 5E-3

TIME = 0.0

C

C Solve for Temperature at the grid points

DO 500 ISTEP = 1, NSTEPS

DTT = ISTEP * DTIME

C #2 Calculates for average triangle temperature

DO IT = 1, NT

TEMP_TRI(IT) = (TEMP(ICTP(1,IT))+TEMP(ICTP(2,IT))+TEMP(ICTP(3,IT)))/3

C WRITE(99,*) IT, TEMP_TRI(IT), ICTP(1,IT),ICTP(2,IT), ICTP(3,IT)

ENDDO

C #3 case N1=6,N2=4,N3=2,N4=4,N5=2

IF(N1.EQ.6.AND.N2.EQ.4.AND.N3.EQ.2.AND.N4.EQ.4.AND.N5.EQ.2)THEN
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DO IT = 1, NT

IF(IT.LE.N1+1)THEN !column1

T = TEMP_TRI(IT)

CALL SIGMA_C(T,SIG_C)

CALL KTH_C(T,XKTH_C)

CALL Cp_C(T,CAP_C)

SIGMA(IT) = SIG_C

XKTH(IT) = XKTH_C

XCAP(IT) = CAP_C

C WRITE(99,*) T,IT, SIGMA(IT), ’column 1’

ELSEIF(IT.GE.N1*2+1.AND.IT.LE.(N1*2+1)+((N2-1)*2)-1) THEN ! column 2

T = TEMP_TRI(IT)

CALL SIGMA_C(T,SIG_C)

CALL KTH_C(T,XKTH_C)

CALL Cp_C(T,CAP_C)

SIGMA(IT) = SIG_C

XKTH(IT) = XKTH_C

XCAP(IT) = CAP_C

C WRITE(99,*) T,IT, SIGMA(IT), ’column 2’

ELSE ! plasma

T = TEMP_TRI(IT)

CALL SIGMA_P(T,SIG_P)

CALL KTH_P(T,XKTH_P)

CALL Cp_P(T,CP_NOR)

CALL Z(T,XZ)

RHO = PR/(Rar*T)

CAP_P = CP_NOR/XZ*Rar*1000

CAP_P = CAP_P*RHO

SIGMA(IT) = SIG_P

XKTH(IT) = XKTH_P

XCAP(IT) = CAP_P

C WRITE(99,*) T,IT, SIGMA(IT), ’plasma’

ENDIF

ENDDO

C case N1=24,N2=8,N3=2,N4=10,N5=8

ELSEIF(N1.EQ.24.AND.N2.EQ.8.AND.N3.EQ.10.AND.N4.EQ.20.AND.N5.EQ.8)THEN

DO IT = 1, NT

IF(IT.GE.1.AND.IT.LE.2*N2-1)THEN

T = TEMP_TRI(IT)

CALL SIGMA_C(T,SIG_C)

SIGMA(IT) = SIG_C

C WRITE(99,*) IT, SIGMA(IT), ’cathode’

ELSEIF(IT.GE.2*N1+1.AND.IT.LE.(2*N1+1)+(2*N2-3))THEN

T = TEMP_TRI(IT)

CALL SIGMA_C(T,SIG_C)

SIGMA(IT) = SIG_C

C WRITE(99,*) IT, SIGMA(IT), ’cathode’
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ELSEIF(IT.GE.4*N1+1.AND.IT.LE.(4*N1+1)+(2*N2-4))THEN

T = TEMP_TRI(IT)

CALL SIGMA_C(T,SIG_C)

SIGMA(IT) = SIG_C

C WRITE(99,*) IT, SIGMA(IT), ’cathode’

ELSEIF(IT.GE.6*N1+1.AND.IT.LE.(6*N1+1)+(2*N2-5))THEN

T = TEMP_TRI(IT)

CALL SIGMA_C(T,SIG_C)

SIGMA(IT) = SIG_C

C WRITE(99,*) IT, SIGMA(IT), ’cathode’

ELSEIF(IT.GE.8*N1+1.AND.IT.LE.(8*N1+1)+(2*N2-6))THEN

T = TEMP_TRI(IT)

CALL SIGMA_C(T,SIG_C)

SIGMA(IT) = SIG_C

C WRITE(99,*) IT, SIGMA(IT), ’cathode’

ELSEIF(IT.GE.10*N1+1.AND.IT.LE.(10*N1+1)+(2*N2-7))THEN

T = TEMP_TRI(IT)

CALL SIGMA_C(T,SIG_C)

SIGMA(IT) = SIG_C

C WRITE(99,*) IT, SIGMA(IT), ’cathode’

ELSEIF(IT.GE.12*N1+1.AND.IT.LE.(12*N1+1)+(2*N2-8))THEN

T = TEMP_TRI(IT)

CALL SIGMA_C(T,SIG_C)

SIGMA(IT) = SIG_C

C WRITE(99,*) IT, SIGMA(IT), ’cathode’

ELSEIF(IT.GE.14*N1+1.AND.IT.LE.(14*N1+1)+(2*N2-9))THEN

T = TEMP_TRI(IT)

CALL SIGMA_C(T,SIG_C)

SIGMA(IT) = SIG_C

C WRITE(99,*) IT, SIGMA(IT), ’cathode’

ELSEIF(IT.GE.16*N1+1.AND.IT.LE.(16*N1+1)+(2*N2-10))THEN

T = TEMP_TRI(IT)

CALL SIGMA_C(T,SIG_C)

SIGMA(IT) = SIG_C

C WRITE(99,*) IT, SIGMA(IT), ’cathode’

ELSE

T = TEMP_TRI(IT)

CALL SIGMA_P(T,SIG_P)

SIGMA(IT) = SIG_P

C WRITE(99,*) IT, SIGMA(IT), ’plasma’

ENDIF

ENDDO

ELSE

GOTO 66

ENDIF

C

C
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C #4 calculates the Xj, E, SSQRT etc.

CALL SUB_CURRENT

C

C #5 Updated Xj_NODE,E_NODE (at the nodes) and calculates average

C temperature at the nodes

DO I = 1, NP

DO IS=1, 6

IPS = ICPP(IS,I) ! Point at other end of side IS

ISP = MOD(IS,6) + 1 ! Adjacent side (counterclockwise)

IITP = IS ! Adjacent triangle index (counterclockwise)

ITP = ICPT(IITP,I) ! Adjacent triangle

E_NODE(I) = (E_tot(ICPT(1,I))+E_tot(ICPT(2,I))+E_tot(ICPT(3,I))+

& E_tot(ICPT(4,I))+E_tot(ICPT(5,I))+E_tot(ICPT(6,I)))

Xj_NODE(I) = (Xj_TOT(ICPT(1,I))+Xj_TOT(ICPT(2,I))+Xj_TOT(ICPT(3,I))+

& Xj_TOT(ICPT(4,I))+Xj_TOT(ICPT(5,I))+Xj_TOT(ICPT(6,I)))

SIGMA_NODE(I) = (SIGMA(ICPT(1,I))+SIGMA(ICPT(2,I))+SIGMA(ICPT(3,I))+

& SIGMA(ICPT(4,I))+SIGMA(ICPT(5,I))+SIGMA(ICPT(6,I)))

XKTH_NODE(I) = (XKTH(ICPT(1,I))+XKTH(ICPT(2,I))+XKTH(ICPT(3,I))+

& XKTH(ICPT(4,I))+XKTH(ICPT(5,I))+XKTH(ICPT(6,I)))

XCAP_NODE(I) = (XCAP(ICPT(1,I))+XCAP(ICPT(2,I))+XCAP(ICPT(3,I))+

& XCAP(ICPT(4,I))+XCAP(ICPT(5,I))+XCAP(ICPT(6,I)))

ENDDO

ENDDO

C# 5.1 Calculate sum of (Ti-T)

DO I = 1, NP

T1 = ABS(TEMP(ICPP(1,I)) - TEMP(I))

T2 = ABS(TEMP(ICPP(2,I)) - TEMP(I))

T3 = ABS(TEMP(ICPP(3,I)) - TEMP(I))

T4 = ABS(TEMP(ICPP(4,I)) - TEMP(I))

T5 = ABS(TEMP(ICPP(5,I)) - TEMP(I))

T6 = ABS(TEMP(ICPP(6,I)) - TEMP(I))

TSUM(I) = T1 + T2 + T3 + T4 + T5 + T6

C WRITE(99,*) I,T1,T2, T3, T4, T5, T6, TSUM(I)

ENDDO

C

C #6 calculates for temperature

DO IP = 1, NP

IF(ICOMPUTE(IP).EQ.0)THEN

IF(ISH(IP).EQ.1)THEN ! at the cathode surface

T = TEMP(IP)

J = Xj_NODE(IP)

CALL CMODEL( T, J, VC, QQ )

VCC(IP) = VC

165



QQQ(IP) = QQ*TAREA_NODE(IP)

A = DTIME/(XCAP_NODE(IP)*R2BAR_NODE(IP)*TAREA_NODE(IP))

B = 0.25 * XKTH_NODE(IP)*R2BAR_NODE(IP)*SSQRT_NODE(IP)

& /(3*TAREA_NODE(IP))

C = Xj_NODE(IP)*E_NODE(IP)*R2BAR_NODE(IP)*TAREA_NODE(IP)

D = QQQ(IP)

TNEW(IP) = TEMP(IP) + A* ( B*TSUM(IP) + C + QQQ(IP) ) ! Eq.7.21

TEMP(IP) = TNEW(IP)

ELSE

A = DTIME/(XCAP_NODE(IP)*R2BAR_NODE(IP)*TAREA_NODE(IP))

B = 0.25 * XKTH_NODE(IP)*R2BAR_NODE(IP)*SSQRT_NODE(IP)

& /(3*TAREA_NODE(IP))

C = Xj_NODE(IP)*E_NODE(IP)*R2BAR_NODE(IP)*TAREA_NODE(IP)

TNEW(IP) = TEMP(IP) + A* ( B*TSUM(IP) + C ) ! Eq.7.20

TEMP(IP) = TNEW(IP)

ENDIF

ENDIF

C Set cathoe base back to 1500 K

IF(IP.LE.N2+1)THEN

TNEW(IP) = TB

TEMP(IP) = TNEW(IP)

ENDIF

ENDDO

C Print out at every step 4 steps

IPP = ISTEP - (ISTEP/20)*20

IF(IPP.EQ.0)THEN

WRITE(95,300) TIME, (TEMP(I), I = 1, NP)

c$$$C WRITE(96,300) TIME, (PHIVAL(I),I = 1,NP)

c$$$C WRITE(97,300) TIME, (Xj_NODE(I),I=1,NP)

c$$$C WRITE(98,300) TIME, (E_NODE(IP), I = 1, NP)

WRITE(100,*) TIME,11, TEMP(11), Xj_NODE(11), QQQ(11),VCC(11),’s’

WRITE(101,*) TIME,16, TEMP(16), Xj_NODE(16), QQQ(16),VCC(16),’s’

WRITE(102,*) TIME,17, TEMP(17), Xj_NODE(17), QQQ(17),VCC(17),’s’

WRITE(103,*) TIME,18, TEMP(18), Xj_NODE(18), QQQ(18),VCC(18),’s’

ENDIF

c$$$

TIME = TIME + DTIME

c$$$
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c$$$C WRITE(99,*) ISTEP,TIME, IP, TEMP(11),TEMP(16),TEMP(17),TEMP(18), QQ, VC, J

500 CONTINUE

300 FORMAT(F15.6,3X,35(F15.4,2X))

CLOSE(93)

CLOSE(94)

CLOSE(95)

CLOSE(96)

CLOSE(97)

CLOSE(98)

CLOSE(99)

CLOSE(100)

CLOSE(101)

CLOSE(102)

CLOSE(103)

66 STOP

END

C---------------------------------------------------------------------

C ---------------------- SUBROUTINE HEAT CAPACITY ---------------------

C subroutine to calculate the temperature dependent Heat capacity

C of the Cathode and Anode

C ---------------------------------------------------------------------

SUBROUTINE Cp_C( T, CAP_C )

INCLUDE ’common.f’

C Compute heat capacity of tungsten in J/(K m^3)

RHOMOL_C = RHO_C / XMAMU_C ! gmol/m^3

AVOLJ = AMOLCAL_C * XJPERCAL * RHOMOL_C

BVOLJ = BMOLCAL_C * XJPERCAL * RHOMOL_C

CAP_C = AVOLJ + 1E-3*T*BVOLJ

C Convert from J/(K m^3) to J/(Kg K) by 19.25E3 (density at room temperature (Wiki)

C CAP_C = CAP_C / (RHO_C*1E-3)

RETURN

END

C ---------------- SUBROUTINE CTCOND ---------------------------

C subroutine to calculate the temperature dependent thermal

C conductivity of Cathode(Tungsten)

C TUNGSTEN VALUES solid and liquid [W/m/K]

C --------------------------------------------------------------

SUBROUTINE KTH_C(T, XKTH_C)

INCLUDE ’common.f’

IF ( T .LE. 3670 ) THEN
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XKTH_C = A0 + A1*EXP(-A2*T) + A3*EXP(-A4*T)

ELSE

XKTH_C = B0 + B1*T + B3*T*T

ENDIF

RETURN

END

C ------------------------ SUBROUTINE SIGMA_C -------------------------

C This subroutine calculates the temperature dependent Electrical

C conductivity of cathode(Tungsten) [mho/m]

C A linear curve fit of the electrical resistivity in page 99 eq.3.10 Goodfellow

C --------------------------------------------------------------------

SUBROUTINE SIGMA_C(T,SIG_C)

INCLUDE ’common.f’

XRHOE_C = (C0 + C01*T)*0.00000001

SIG_C = 1/XRHOE_C

RETURN

END

C------------------------- SUBROUTINE CP Normalized --------------------

C This subroutine calculates the Cp of argon without any unit

C----------------------------------------------------------------------

SUBROUTINE Cp_P(T,CP_NOR)

DIMENSION X(200), FX(200,200)

OPEN(11,FILE= ’P0.0006_5000-5500.txt’, STATUS = ’OLD’)

OPEN(12,FILE= ’P0.0006_5500-5750.txt’, STATUS = ’OLD’)

OPEN(13,FILE= ’P0.0006_5750-6000.txt’, STATUS = ’OLD’)

OPEN(14,FILE= ’P0.0006_6000-6500.txt’,STATUS = ’OLD’)

OPEN(15,FILE= ’P0.0006_6500-7000.txt’,STATUS= ’OLD’)

OPEN(16,FILE= ’P0.0006_7000-7250.txt’,STATUS= ’OLD’)

OPEN(17,FILE= ’P0.0006_7250-7400.txt’,STATUS= ’OLD’)

OPEN(18,FILE= ’P0.0006_7400-7600.txt’,STATUS= ’OLD’)

OPEN(19,FILE= ’P0.0006_7600-7800.txt’,STATUS= ’OLD’)

OPEN(20,FILE= ’P0.0006_7800-8000.txt’,STATUS= ’OLD’)

OPEN(21,FILE= ’P0.0006_8000-8100.txt’,STATUS= ’OLD’)

OPEN(22,FILE= ’P0.0006_8100-8200.txt’,STATUS= ’OLD’)

OPEN(23,FILE= ’P0.0006_8200-8300.txt’,STATUS= ’OLD’)

OPEN(24,FILE= ’P0.0006_8300-8600.txt’,STATUS= ’OLD’)

OPEN(25,FILE= ’P0.0006_8600-8800.txt’,STATUS= ’OLD’)

OPEN(26,FILE= ’P0.0006_8800-8900.txt’,STATUS= ’OLD’)

OPEN(27,FILE= ’P0.0006_8900-9000.txt’,STATUS= ’OLD’)

OPEN(28,FILE= ’P0.0006_9000-9100.txt’,STATUS= ’OLD’)

OPEN(29,FILE= ’P0.0006_9100-9200.txt’,STATUS= ’OLD’)

OPEN(30,FILE= ’P0.0006_9200-9300.txt’,STATUS= ’OLD’)

OPEN(31,FILE= ’P0.0006_9300-9400.txt’,STATUS= ’OLD’)

OPEN(32,FILE= ’P0.0006_9400-9500.txt’,STATUS= ’OLD’)
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OPEN(33,FILE= ’P0.0006_9500-9600.txt’,STATUS= ’OLD’)

OPEN(34,FILE= ’P0.0006_9600-9700.txt’,STATUS= ’OLD’)

OPEN(35,FILE= ’P0.0006_9700-9800.txt’,STATUS= ’OLD’)

OPEN(36,FILE= ’P0.0006_9800-9900.txt’,STATUS= ’OLD’)

OPEN(37,FILE= ’P0.0006_9900-10000.txt’,STATUS= ’OLD’)

OPEN(38,FILE= ’P0.0006_10000-10100.txt’,STATUS= ’OLD’)

OPEN(39,FILE= ’P0.0006_10100-10200.txt’,STATUS= ’OLD’)

OPEN(40,FILE= ’P0.0006_10200-10300.txt’,STATUS= ’OLD’)

OPEN(41,FILE= ’P0.0006_10300-10400.txt’,STATUS= ’OLD’)

OPEN(42,FILE= ’P0.0006_10400-10500.txt’,STATUS= ’OLD’)

OPEN(43,FILE= ’P0.0006_10500-10600.txt’,STATUS= ’OLD’)

OPEN(44,FILE= ’P0.0006_10600-10700.txt’,STATUS= ’OLD’)

OPEN(45,FILE= ’P0.0006_10700-10800.txt’,STATUS= ’OLD’)

OPEN(46,FILE= ’P0.0006_10800-10900.txt’,STATUS= ’OLD’)

OPEN(47,FILE= ’P0.0006_10900-11000.txt’,STATUS= ’OLD’)

OPEN(48,FILE= ’P0.0006_11000-11200.txt’,STATUS= ’OLD’)

OPEN(49,FILE= ’P0.0006_11200-11400.txt’,STATUS= ’OLD’)

OPEN(50,FILE= ’P0.0006_11400-11600.txt’,STATUS= ’OLD’)

OPEN(51,FILE= ’P0.0006_11600-11800.txt’,STATUS= ’OLD’)

OPEN(52,FILE= ’P0.0006_11800-12000.txt’,STATUS= ’OLD’)

OPEN(53,FILE= ’P0.0006_12000-12300.txt’,STATUS= ’OLD’)

OPEN(54,FILE= ’P0.0006_12300-12600.txt’,STATUS= ’OLD’)

OPEN(55,FILE= ’P0.0006_12600-13000.txt’,STATUS= ’OLD’)

C given the temperature

XX = T

IF(XX.LE.5000)THEN

FF = 2.378552973

GOTO 101

ELSEIF(XX.GT.13000)THEN

FF = 0.00017581*XX + 3.69888312

GOTO 101

ENDIF

IF(XX.GT.5000.AND.XX.LE.5500) THEN

N = 7

DO IROW = 1,N

READ(11,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.5500.AND.XX.LE.5750)THEN

N = 10

DO IROW = 1,N

READ(12,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.5750.AND.XX.LE.6000)THEN

N = 8

DO IROW = 1,N

READ(13,*) X(IROW),FX(IROW,1)

ENDDO
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ELSEIF(XX.GT.6000.AND.XX.LE.6500)THEN

N = 12

DO IROW = 1,N

READ(14,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.6500.AND.XX.LE.7000)THEN

N = 12

DO IROW = 1,N

READ(15,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7000.AND.XX.LE.7250)THEN

N = 7

DO IROW = 1,N

READ(16,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7250.AND.XX.LE.7400)THEN

N = 8

DO IROW = 1,N

READ(17,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7400.AND.XX.LE.7600)THEN

N = 8

DO IROW = 1,N

READ(18,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7600.AND.XX.LE.7800)THEN

N = 8

DO IROW = 1,N

READ(19,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7800.AND.XX.LE.8000)THEN

N = 8

DO IROW = 1,N

READ(20,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8000.AND.XX.LE.8100)THEN

N = 8

DO IROW = 1,N

READ(21,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8100.AND.XX.LE.8200)THEN

N = 8

DO IROW = 1,N

READ(22,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8200.AND.XX.LE.8300)THEN

N = 8
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DO IROW = 1,N

READ(23,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8300.AND.XX.LE.8600)THEN

N = 9

DO IROW = 1,N

READ(24,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8600.AND.XX.LE.8800)THEN

N = 8

DO IROW = 1,N

READ(25,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8800.AND.XX.LE.8900)THEN

N = 7

DO IROW = 1,N

READ(26,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8900.AND.XX.LE.9000)THEN

N = 8

DO IROW = 1,N

READ(27,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9000.AND.XX.LE.9100)THEN

N = 8

DO IROW = 1,N

READ(28,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9100.AND.XX.LE.9200)THEN

N = 8

DO IROW = 1,N

READ(29,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9200.AND.XX.LE.9300)THEN

N = 8

DO IROW = 1,N

READ(30,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9300.AND.XX.LE.9400)THEN

N = 8

DO IROW = 1,N

READ(31,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9400.AND.XX.LE.9500)THEN

N = 8

DO IROW = 1,N

READ(32,*) X(IROW),FX(IROW,1)
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ENDDO

ELSEIF(XX.GT.9500.AND.XX.LE.9600)THEN

N = 8

DO IROW = 1,N

READ(33,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9600.AND.XX.LE.9700)THEN

N = 8

DO IROW = 1,N

READ(34,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9700.AND.XX.LE.9800)THEN

N = 8

DO IROW = 1,N

READ(35,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9800.AND.XX.LE.9900)THEN

N = 8

DO IROW = 1,N

READ(36,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9900.AND.XX.LE.10000)THEN

N = 8

DO IROW = 1,N

READ(37,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10000.AND.XX.LE.10100)THEN

N = 8

DO IROW = 1,N

READ(38,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10100.AND.XX.LE.10200)THEN

N = 8

DO IROW = 1,N

READ(39,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10200.AND.XX.LE.10300)THEN

N = 8

DO IROW = 1,N

READ(40,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10300.AND.XX.LE.10400)THEN

N = 8

DO IROW = 1,N

READ(41,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10400.AND.XX.LE.10500)THEN
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N = 8

DO IROW = 1,N

READ(42,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10500.AND.XX.LE.10600)THEN

N = 8

DO IROW = 1,N

READ(43,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10600.AND.XX.LE.10700)THEN

N = 8

DO IROW = 1,N

READ(44,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10700.AND.XX.LE.10800)THEN

N = 8

DO IROW = 1,N

READ(45,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10800.AND.XX.LE.10900)THEN

N = 8

DO IROW = 1,N

READ(46,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10900.AND.XX.LE.11000)THEN

N = 8

DO IROW = 1,N

READ(47,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11000.AND.XX.LE.11200)THEN

N = 9

DO IROW = 1,N

READ(48,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11200.AND.XX.LE.11400)THEN

N = 8

DO IROW = 1,N

READ(49,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11400.AND.XX.LE.11600)THEN

N = 7

DO IROW = 1,N

READ(50,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11600.AND.XX.LE.11800)THEN

N = 8

DO IROW = 1,N
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READ(51,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11800.AND.XX.LE.12000)THEN

N = 7

DO IROW = 1,N

READ(52,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.12000.AND.XX.LE.12300)THEN

N = 8

DO IROW = 1,N

READ(53,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.12300.AND.XX.LE.12600)THEN

N = 9

DO IROW = 1,N

READ(54,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.12600.AND.XX.LE.13000)THEN

N = 10

DO IROW = 1,N

READ(55,*) X(IROW),FX(IROW,1)

ENDDO

ENDIF

C Compute divided-difference coefficients:

M = N

DO 20 ICOL = 2,N

M = M - 1

DO 30 IROW = 1,M

FX(IROW,ICOL) =

& FX(IROW+1,ICOL-1)-FX(IROW,ICOL-1)

FX(IROW,ICOL) =

& FX(IROW,ICOL)/(X(IROW+ICOL-1) - X(IROW))

30 CONTINUE

20 CONTINUE

C Compute desired F(X) at the given X value:

FF = FX(1,1)

FAC = 1.

DO 40 I = 2, N

FAC = FAC*(XX-X(I-1))

FF = FF + FX(1,I)*FAC

CP_NOR = FF

40 CONTINUE

C 101 WRITE(89,100) XX, FF

101 ZAP = 1

100 FORMAT(’value of F(X) at x = ’, E10.4,’is’, E16.7)

C Close all open files

CLOSE(11)
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CLOSE(12)

CLOSE(13)

CLOSE(14)

CLOSE(15)

CLOSE(16)

CLOSE(17)

CLOSE(18)

CLOSE(19)

CLOSE(20)

CLOSE(21)

CLOSE(22)

CLOSE(23)

CLOSE(24)

CLOSE(25)

CLOSE(26)

CLOSE(27)

CLOSE(28)

CLOSE(29)

CLOSE(30)

CLOSE(31)

CLOSE(32)

CLOSE(33)

CLOSE(34)

CLOSE(35)

CLOSE(36)

CLOSE(37)

CLOSE(38)

CLOSE(39)

CLOSE(40)

CLOSE(41)

CLOSE(42)

CLOSE(43)

CLOSE(44)

CLOSE(45)

CLOSE(46)

CLOSE(47)

CLOSE(48)

CLOSE(49)

CLOSE(50)

CLOSE(51)

CLOSE(52)

CLOSE(53)

CLOSE(54)

CLOSE(55)

RETURN

END

C ------------------ SUBROUTINE Z (compressibility factor ----------
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C This pressure is 0.0006atm to calculate the compressibility factor of gas

C Program for computing F(X) at a given X

C using Newton’s divided-difference interpolating polynomials

C Written By: Thada Suksila

C Date: October 27, 2013

C Calculate for Z at pressure 0.0006 atm

SUBROUTINE Z(XI,FF)

DIMENSION X(200), FX(200,200)

OPEN(11,FILE= ’Z0.0006_6000-6500.txt’, STATUS = ’OLD’)

OPEN(12,FILE= ’Z0.0006_6500-7000.txt’, STATUS = ’OLD’)

OPEN(13,FILE= ’Z0.0006_7000-7500.txt’, STATUS = ’OLD’)

OPEN(14,FILE= ’Z0.0006_7500-8000.txt’,STATUS = ’OLD’)

OPEN(15,FILE= ’Z0.0006_8000-8500.txt’,STATUS= ’OLD’)

OPEN(16,FILE= ’Z0.0006_8500-9000.txt’,STATUS= ’OLD’)

OPEN(17,FILE= ’Z0.0006_9000-9500.txt’,STATUS= ’OLD’)

OPEN(18,FILE= ’Z0.0006_9500-10000.txt’,STATUS= ’OLD’)

OPEN(19,FILE= ’Z0.0006_10000-10500.txt’,STATUS= ’OLD’)

OPEN(20,FILE= ’Z0.0006_10500-11000.txt’,STATUS= ’OLD’)

OPEN(21,FILE= ’Z0.0006_11000-11500.txt’,STATUS= ’OLD’)

OPEN(22,FILE= ’Z0.0006_11500-12000.txt’,STATUS= ’OLD’)

OPEN(23,FILE= ’Z0.0006_12000-12500.txt’,STATUS= ’OLD’)

OPEN(24,FILE= ’Z0.0006_12500-13000.txt’,STATUS= ’OLD’)

OPEN(25,FILE= ’Z0.0006_13000-13500.txt’,STATUS= ’OLD’)

OPEN(26,FILE= ’Z0.0006_13500-14000.txt’,STATUS= ’OLD’)

C Start to calculate using given temperature

XX = XI

IF(XX.LE.6000)THEN

FF = 1.0

GOTO 101

ELSEIF(XX.GT.14000)THEN

FF = 2.0

GOTO 101

ENDIF

IF(XX.GT.6000.AND.XX.LE.6500) THEN

N = 5

DO IROW = 1,N

READ(11,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.6500.AND.XX.LE.7000)THEN

N = 7

DO IROW = 1,N

READ(12,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7000.AND.XX.LE.7500)THEN

N = 7

DO IROW = 1,N

READ(13,*) X(IROW),FX(IROW,1)
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ENDDO

ELSEIF(XX.GT.7500.AND.XX.LE.8000)THEN

N = 6

DO IROW = 1,N

READ(14,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8000.AND.XX.LE.8500)THEN

N = 7

DO IROW = 1,N

READ(15,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8500.AND.XX.LE.9000)THEN

N = 7

DO IROW = 1,N

READ(16,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9000.AND.XX.LE.9500)THEN

N = 7

DO IROW = 1,N

READ(17,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9500.AND.XX.LE.10000)THEN

N = 6

DO IROW = 1,N

READ(18,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10000.AND.XX.LE.10500)THEN

N = 7

DO IROW = 1,N

READ(19,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10500.AND.XX.LE.11000)THEN

N = 6

DO IROW = 1,N

READ(20,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11000.AND.XX.LE.11500)THEN

N = 6

DO IROW = 1,N

READ(21,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11500.AND.XX.LE.12000)THEN

N = 6

DO IROW = 1,N

READ(22,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.12000.AND.XX.LE.12500)THEN
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N = 6

DO IROW = 1,N

READ(23,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.12500.AND.XX.LE.13000)THEN

N = 6

DO IROW = 1,N

READ(24,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.13000.AND.XX.LE.13500)THEN

N = 6

DO IROW = 1,N

READ(25,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.13500.AND.XX.LE.14000)THEN

N = 4

DO IROW = 1,N

READ(26,*) X(IROW),FX(IROW,1)

ENDDO

ENDIF

C Compute divided-difference coefficients:

M = N

DO 20 ICOL = 2,N

M = M - 1

DO 30 IROW = 1,M

FX(IROW,ICOL) =

& FX(IROW+1,ICOL-1)-FX(IROW,ICOL-1)

FX(IROW,ICOL) =

& FX(IROW,ICOL)/(X(IROW+ICOL-1) - X(IROW))

30 CONTINUE

20 CONTINUE

C Compute desired F(X) at the given X value:

FF = FX(1,1)

FAC = 1.

DO 40 I = 2, N

FAC = FAC*(XX-X(I-1))

FF = FF + FX(1,I)*FAC

40 CONTINUE

C 101 WRITE(89,100) XX, FF

101 ZAP = 1

100 FORMAT(’value of F(X) at x = ’, E10.4,’is’, E16.7)

C Close all open files

CLOSE(11)

CLOSE(12)

CLOSE(13)

CLOSE(14)

CLOSE(15)

178



CLOSE(16)

CLOSE(17)

CLOSE(18)

CLOSE(19)

CLOSE(20)

CLOSE(21)

CLOSE(22)

CLOSE(23)

CLOSE(24)

CLOSE(25)

CLOSE(26)

RETURN

END

C--------------------------------------------------------------------------

SUBROUTINE KTH_P(T,XKTH_P)

C The pressure is 0.00065atm for thermal conductivity of argon

C Program for computing F(X) at a given X

C using Newton’s divided-difference interpolating polynomials

DOUBLE PRECISION X, FX

DIMENSION X(506), FX(506,506)

OPEN(12,FILE= ’ThP0.0006atm7-8.txt’, STATUS = ’OLD’)

OPEN(13,FILE= ’ThP0.0006atm8-9.txt’, STATUS = ’OLD’)

OPEN(14,FILE= ’ThP0.0006atm9-10.txt’,STATUS = ’OLD’)

OPEN(15,FILE= ’ThP0.0006atm10-11.txt’,STATUS= ’OLD’)

OPEN(16,FILE= ’ThP0.0006atm11-12.txt’,STATUS= ’OLD’)

OPEN(17,FILE= ’ThP0.0006atm12-13.txt’,STATUS= ’OLD’)

OPEN(18,FILE= ’ThP0.0006atm13-15.txt’,STATUS= ’OLD’)

OPEN(19,FILE= ’ThP0.0006atm15-17.txt’,STATUS= ’OLD’)

OPEN(20,FILE= ’ThP0.0006atm17-19.txt’,STATUS= ’OLD’)

OPEN(21,FILE= ’ThP0.0006atm19-21.txt’,STATUS= ’OLD’)

OPEN(22,FILE= ’ThP0.0006atm21-23.txt’,STATUS= ’OLD’)

OPEN(23,FILE= ’ThP0.0006atm23-25.txt’,STATUS= ’OLD’)

OPEN(24,FILE= ’ThP0.0006atm25-27.txt’,STATUS= ’OLD’)

OPEN(25,FILE= ’ThP0.0006atm27-28.txt’,STATUS= ’OLD’)

C given the temperature

XX = T

IF(XX.GT.0.AND.XX.LT.7000) THEN

FF = 0.0171*XX**1.5951

GOTO 101

ELSEIF(XX.GE.7000.AND.XX.LE.8000)THEN

N = 14

DO IROW = 1,N

READ(12,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8000.AND.XX.LE.9000)THEN

N = 14

DO IROW = 1,N
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READ(13,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9000.AND.XX.LE.10000)THEN

N = 14

DO IROW = 1,N

READ(14,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10000.AND.XX.LE.11000)THEN

N = 14

DO IROW = 1,N

READ(15,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11000.AND.XX.LE.12000)THEN

N = 14

DO IROW = 1,N

READ(16,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.12000.AND.XX.LE.13000)THEN

N = 14

DO IROW = 1,N

READ(17,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.13000.AND.XX.LE.15000)THEN

N = 14

DO IROW = 1,N

READ(18,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.15000.AND.XX.LE.17000)THEN

N = 14

DO IROW = 1,N

READ(19,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.17000.AND.XX.LE.19000)THEN

N = 14

DO IROW = 1,N

READ(20,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.19000.AND.XX.LE.21000)THEN

N = 14

DO IROW = 1,N

READ(21,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.21000.AND.XX.LE.23000)THEN

N = 14

DO IROW = 1,N

READ(22,*) X(IROW),FX(IROW,1)

ENDDO

180



ELSEIF(XX.GT.23000.AND.XX.LE.25000)THEN

N = 14

DO IROW = 1,N

READ(23,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.25000.AND.XX.LE.27000)THEN

N = 14

DO IROW = 1,N

READ(24,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.27000.AND.XX.LE.28000)THEN

N = 14

DO IROW = 1,N

READ(25,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.28000)THEN

FF = 225143.0861

GOTO 101

ENDIF

C Compute divided-difference coefficients:

M = N

DO 20 ICOL = 2,N

M = M - 1

DO 30 IROW = 1,M

FX(IROW,ICOL) =

& FX(IROW+1,ICOL-1)-FX(IROW,ICOL-1)

FX(IROW,ICOL) =

& FX(IROW,ICOL)/(X(IROW+ICOL-1) - X(IROW))

30 CONTINUE

20 CONTINUE

C Compute desired F(X) at the given X value:

C WRITE(5,*)’Input the temperature (K):’

C READ(5,*) XX

FF = FX(1,1)

FAC = 1.

DO 40 I = 2, N

FAC = FAC*(XX-X(I-1))

FF = FF + FX(1,I)*FAC

TH = FF

40 CONTINUE

C 101 WRITE(2,100) XX, FF,FF*0.00001

101 ZAP = 1

C Convert from erg/(K cm s) to Watt/(m K) by time 1E-5

XKTH_P = FF*0.00001

100 FORMAT(’Temp =’,E10.4,’is’, E16.7,’or’,E16.7)

200 FORMAT(1X,E21.16,4X,E21.16)
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CLOSE(11)

CLOSE(12)

CLOSE(13)

CLOSE(14)

CLOSE(15)

CLOSE(16)

CLOSE(17)

CLOSE(18)

CLOSE(19)

CLOSE(20)

CLOSE(21)

CLOSE(22)

CLOSE(23)

CLOSE(24)

CLOSE(25)

RETURN

END

C---------------------------------------------------------------

SUBROUTINE SIGMA_P(T,SIG_P)

C This pressure is 0.00065atm Electrical Conductivity

C Program for computing F(X) at a given X

C using Newton’s divided-difference interpolating polynomials

DOUBLE PRECISION X, FX

DIMENSION X(506), FX(506,506)

OPEN(10,FILE= ’ElP0.00065atm5.5-6.txt’,STATUS= ’OLD’)

OPEN(11,FILE= ’ElP0.00065atm6-7.txt’, STATUS = ’OLD’)

OPEN(12,FILE= ’ElP0.00065atm7-8.txt’, STATUS = ’OLD’)

OPEN(13,FILE= ’ElP0.00065atm8-9.txt’, STATUS = ’OLD’)

OPEN(14,FILE= ’ElP0.00065atm9-10.txt’,STATUS = ’OLD’)

OPEN(15,FILE= ’ElP0.00065atm10-11.txt’,STATUS= ’OLD’)

OPEN(16,FILE= ’ElP0.00065atm11-12.txt’,STATUS= ’OLD’)

OPEN(17,FILE= ’ElP0.00065atm12-13.txt’,STATUS= ’OLD’)

OPEN(18,FILE= ’ElP0.00065atm13-15.txt’,STATUS= ’OLD’)

OPEN(19,FILE= ’ElP0.00065atm15-17.txt’,STATUS= ’OLD’)

OPEN(20,FILE= ’ElP0.00065atm17-19.txt’,STATUS= ’OLD’)

OPEN(21,FILE= ’ElP0.00065atm19-21.txt’,STATUS= ’OLD’)

OPEN(22,FILE= ’ElP0.00065atm21-23.txt’,STATUS= ’OLD’)

OPEN(23,FILE= ’ElP0.00065atm23-25.txt’,STATUS= ’OLD’)

OPEN(24,FILE= ’ElP0.00065atm25-27.txt’,STATUS= ’OLD’)

OPEN(25,FILE= ’ElP0.00065atm27-30.txt’,STATUS= ’OLD’)

C given the temperature

XX = T

C Start Newton’s interpolation polynomials

IF(XX.LT.300) THEN

FF = 8.34E-12

GOTO 101

ELSEIF(XX.GE.300.AND.XX.LT.500) THEN
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FF = 0.5*(8.34E-12+8.27E-8)

GOTO 101

ELSEIF(XX.GE.500.AND.XX.LT.700) THEN

FF = 0.5*(8.27E-8+3.55E-5)

GOTO 101

ELSEIF(XX.GE.700.AND.XX.LT.900) THEN

FF = 0.5*(3.55E-5+3.28E-3)

GOTO 101

ELSEIF(XX.GE.900.AND.XX.LT.1100)THEN

FF = 0.5*(3.28E-3+1.22E-1)

GOTO 101

ELSEIF(XX.GE.1100.AND.XX.LT.1300)THEN

FF = 0.5*(1.22E-1+2.47E0)

GOTO 101

ELSEIF(XX.GE.1300.AND.XX.LT.1500)THEN

FF = 0.5*(2.47E0+3.25E1)

GOTO 101

ELSEIF(XX.GE.1500.AND.XX.LT.1700)THEN

FF = 0.5*(3.25E1+3.1E2)

GOTO 101

ELSEIF(XX.GE.1700.AND.XX.LT.2100)THEN

FF = 0.5*(3.1E2+1.39E4)

GOTO 101

ELSEIF(XX.GE.2100.AND.XX.LT.2300)THEN

FF = 0.5*(1.39E4+7.18E4)

GOTO 101

ELSEIF(XX.GE.2300.AND.XX.LT.2500)THEN

FF = 0.5*(7.18E4+3.22E5)

GOTO 101

ELSEIF(XX.GE.2500.AND.XX.LT.2700)THEN

FF = 0.5*(3.22E5+1.29E6)

GOTO 101

ELSEIF(XX.GE.2700.AND.XX.LT.2900)THEN

FF = 0.5*(1.29E6+4.67E6)

GOTO 101

ELSEIF(XX.GE.2900.AND.XX.LT.3000)THEN

FF = 0.5*(4.67E6+8.6E6)

GOTO 101

ELSEIF(XX.GE.3000.AND.XX.LT.3500)THEN

FF = 0.5*(8.6E6+1.38E8)

GOTO 101

ELSEIF(XX.GE.3500.AND.XX.LT.4000)THEN

FF = 0.5*(1.38E8+1.53E9)

GOTO 101

ELSEIF(XX.GE.4000.AND.XX.LT.4500)THEN

FF = 0.5*(1.53E9+1.28E10)

GOTO 101
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ELSEIF(XX.GE.4500.AND.XX.LT.5000)THEN

FF = 0.5*(1.28E10+8.52E10)

GOTO 101

ELSEIF(XX.GE.5000.AND.XX.LT.5500)THEN

FF = 0.5*(8.52E10+6.7666E11)

GOTO 101

ELSEIF(XX.GE.5500.AND.XX.LT.6000) THEN

N = 14

DO IROW = 1,N

READ(10,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GE.6000.AND.XX.LE.7000) THEN

N = 14

DO IROW = 1,N

READ(11,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.7000.AND.XX.LE.8000)THEN

N = 14

DO IROW = 1,N

READ(12,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.8000.AND.XX.LE.9000)THEN

N = 14

DO IROW = 1,N

READ(13,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.9000.AND.XX.LE.10000)THEN

N = 14

DO IROW = 1,N

READ(14,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.10000.AND.XX.LE.11000)THEN

N = 14

DO IROW = 1,N

READ(15,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.11000.AND.XX.LE.12000)THEN

N = 14

DO IROW = 1,N

READ(16,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.12000.AND.XX.LE.13000)THEN

N = 14

DO IROW = 1,N

READ(17,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.13000.AND.XX.LE.15000)THEN
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N = 14

DO IROW = 1,N

READ(18,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.15000.AND.XX.LE.17000)THEN

N = 14

DO IROW = 1,N

READ(19,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.17000.AND.XX.LE.19000)THEN

N = 14

DO IROW = 1,N

READ(20,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.19000.AND.XX.LE.21000)THEN

N = 14

DO IROW = 1,N

READ(21,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.21000.AND.XX.LE.23000)THEN

N = 14

DO IROW = 1,N

READ(22,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.23000.AND.XX.LE.25000)THEN

N = 14

DO IROW = 1,N

READ(23,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.25000.AND.XX.LE.27000)THEN

N = 14

DO IROW = 1,N

READ(24,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.27000.AND.XX.LE.28000)THEN

N = 14

DO IROW = 1,N

READ(25,*) X(IROW),FX(IROW,1)

ENDDO

ELSEIF(XX.GT.28000) THEN

FF = 6.24869E13

GOTO 101

ENDIF

C Compute divided-difference coefficients:

M = N

DO 20 ICOL = 2,N
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M = M - 1

DO 30 IROW = 1,M

FX(IROW,ICOL) =

& FX(IROW+1,ICOL-1)-FX(IROW,ICOL-1)

FX(IROW,ICOL) =

& FX(IROW,ICOL)/(X(IROW+ICOL-1) - X(IROW))

30 CONTINUE

20 CONTINUE

C Compute desired F(X) at the given X value:

C WRITE(5,*)’Input the temperature (K):’

C READ(5,*) XX

FF = FX(1,1)

FAC = 1.

DO 40 I = 2, N

FAC = FAC*(XX-X(I-1))

FF = FF + FX(1,I)*FAC

40 CONTINUE

C 101 WRITE(2,100) XX, FF,FF*1.1126535E-10

101 ZAP = 1

C convert from (stat mho)/cm to mho/m by time 1.126535E-10

SIG_P = FF*1.1126535E-10

100 FORMAT(’Temp =’,E10.4,’is’, E16.7,’or’,E16.7)

CLOSE(10)

CLOSE(11)

CLOSE(12)

CLOSE(13)

CLOSE(14)

CLOSE(15)

CLOSE(16)

CLOSE(17)

CLOSE(18)

CLOSE(19)

CLOSE(20)

CLOSE(21)

CLOSE(22)

CLOSE(23)

CLOSE(24)

CLOSE(25)

RETURN

END

C Function to place contour labels

FUNCTION ZCONT(R)

INCLUDE ’common.f’
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ZCONT = ZBOT + (ZTOP-ZBOT)*( (R-RLEFT)/RRIGHT )**2

RETURN

END

C---------------------------------------------------------------

C

C Model of cathode sheath

C Provides sheath voltage and heat flux

C as functions of cathode temperature and current density

C

C Inputs:

C T (K): Cathode surface temperature

C J (A/cm^2): Current density

C

C Outputs:

C VC (V): Cathode sheath voltage

C Q (W/cm^2): Heat flux to cathode surface

C

SUBROUTINE CMODEL( T, J, VC, QQ )

C INCLUDE ’common_declare.f’

C IMPLICIT REAL( J )

SAVE

LOGICAL FIRST /.TRUE./, DONE

C Note: Following three lines must be consistent with each other!

PARAMETER( NT_SH=301, NJ=2001 )

PARAMETER( TLOW=2500, THIGH=4000, TSTEP=5 )

PARAMETER( JLOW=0, JHIGH=10000, JSTEP=5 )

DIMENSION VCDAT( NT_SH,NJ ), QDAT( NT_SH,NJ ), TVALS( NT_SH ), JVALS( NJ )

DIMENSION IJMIN( NT_SH ), IJMAX( NT_SH )

C write(*,*) ’ CMODEL called with T=’,T,’ J=’,J

IF( FIRST ) THEN

C First time called: Read the data files

OPEN( 8, FILE=’Vc.dat’, STATUS=’UNKNOWN’ )

OPEN( 9, FILE=’q.dat’, STATUS=’UNKNOWN’ )

READ(8,*) NR, NC

C WRITE(*,*) ’In file Vc.dat, got ’,NR, ’ rows -- should be ’, NT_SH

READ(9,*) NR, NC

C WRITE(*,*) ’In file q.dat, got ’,NR, ’ rows -- should be ’, NT_SH

DO IT=1, NT_SH

C write(*,*)’Reading Vc, line ’, IT
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READ(8,*) ( VCDAT(IT,IJ), IJ=1, NJ )

C write(*,*)’Reading q, line ’, IT

READ(9,*) ( QDAT(IT,IJ), IJ=1, NJ )

ENDDO

C WRITE(*,*) ’Finished reading Vc, Q values from data files’

C Set the temperature and current density values

DO IT=1, NT_SH

TVALS(IT) = TLOW + (IT-1) * TSTEP

ENDDO

DO IJ=1, NJ

JVALS(IJ) = JLOW + (IJ-1) * JSTEP

ENDDO

C

C For each temperature value, find region of convergence of model

C

C Outside region of convergence: Extrapolate

C Sheath voltage: Increase rapidly for too-high values of J

C Heat flux:

C Increase rapidly for too-high values of J

C Decrease rapidly for too-low values of J

C

C IJMIN, IJMAX: For each T value, the smallest and largest values

C of IJ for which QDAT is nonzero

C

DO IT=1, NT_SH

DO IJ=1, NJ

IF( QDAT(IT,IJ) .NE. 0 ) THEN

IJMAX(IT) = IJ

ENDIF

ENDDO

DO IJ=NJ,1,-1

IF( QDAT(IT,IJ) .NE. 0 ) THEN

IJMIN(IT) = IJ

ENDIF

ENDDO

ENDDO

C

C write(*,*) ’Finished finding limits of convergence’

VCSLOPE = 10

QSLOPE = 100

C

FIRST = .FALSE.

ENDIF

C

C Check values -- for debugging
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DONE = .FALSE.

c DO WHILE( .NOT. DONE )

DO WHILE( .false. )

WRITE(*,200)

200 FORMAT( ’Enter IT, IJ (0 0 to quit): ’, $ )

READ(*,*) IT, IJ

IF( IT .EQ. 0 ) THEN

DONE = .TRUE.

ELSE

WRITE(*,*) ’Vc(’,IT,IJ,’) = ’, VCDAT(IT,IJ)

WRITE(*,*) ’q(’,IT,IJ,’) = ’, QDAT(IT,IJ)

ENDIF

ENDDO

C Check values -- for debugging

DONE = .FALSE.

c DO WHILE( .NOT. DONE )

DO WHILE( .false. )

WRITE(*,300)

300 FORMAT( ’Enter IT (0 to quit): ’, $ )

READ(*,*) IT

IF( IT .EQ. 0 ) THEN

DONE = .TRUE.

ELSE

WRITE(*,*) ’IJMIN(’,IT,’) = ’, IJMIN(IT)

WRITE(*,*) ’IJMAX(’,IT,’) = ’, IJMAX(IT)

ENDIF

ENDDO

C

C Find location of input T, J in data files

C

C XT: continuous, ranges from 0 to just below NT_SH-1

C IT1, IT2: Integer values below and above XT

C PT: continuous, ranges from 0 to 1: how far across T step we are

XT = MAX( 0.0, MIN( ( T - TLOW ) / TSTEP, NT_SH-1.01 ) )

IT1 = INT(XT) + 1

IT2 = IT1 + 1

PT = XT - INT(XT)

c WRITE(*,*) ’Temperature ’, T, ’ is between IT = ’, IT1, IT2

c WRITE(*,*) ’Fraction ’,PT, ’ across temperature increment’

XJ = MAX( 0.0, MIN( ( REAL(J) - JLOW ) / JSTEP, NJ-1.01 ) )

IJ1 = INT(XJ) + 1

IJ2 = IJ1 + 1

PJ = XJ - INT(XJ)

c WRITE(*,*) ’Current density ’, J, ’ is between IJ = ’, IJ1, IJ2

c WRITE(*,*) ’Fraction ’,PJ, ’ across current density increment’
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c write(*,*) ’IJMAX of ’,IT1,’ is ’, IJMAX(IT1)

IF( IJ2 .GT. IJMAX(IT1) ) THEN

C Current too high for model -- extrapolate up

c write(*,*) ’IT1: Current too high -- ijmax is ’,IJMAX(IT1)

IF( IJMAX(IT1) .EQ. 0 ) THEN

C Model not converged at all for this T

c WRITE(*,*) ’Model not converged at all for this T’

c write(*,*) ’vcslope ’,VCSLOPE,’ qslope ’,QSLOPE

VC1 = VCSLOPE*J

Q1 = QSLOPE*J

ELSE

JMAX = JVALS(IJMAX(IT1))

c write(*,*) ’JMAX is ’,JMAX

VC1 = VCDAT(IT1,IJMAX(IT1)) + VCSLOPE*(J-JMAX)

Q1 = QDAT(IT1,IJMAX(IT1)) + QSLOPE*(J-JMAX)

ENDIF

ELSEIF( IJ1 .LT. IJMIN(IT1) ) THEN

C Current too low for model -- extrapolate down

c write(*,*) ’IT1: Current too low -- ijmin is ’,IJMIN(IT1)

JMIN = JVALS(IJMIN(IT1))

c write(*,*) ’JMIN is ’,JMIN

VC1 = 0

Q1 = QDAT(IT1,IJMIN(IT1)) + QSLOPE*(J-JMIN)

ELSE

C Model converged here -- interpolate model data

c write(*,*) ’IT1: Model is converged’

VC1 = VCDAT(IT1,IJ1)*(1-PJ) + VCDAT(IT1,IJ2)*PJ

Q1 = QDAT(IT1,IJ1)*(1-PJ) + QDAT(IT1,IJ2)*PJ

ENDIF

c write(*,*) ’Got VC1 = ’,VC1,’ Q1 = ’,Q1

IF( IJ2 .GT. IJMAX(IT2) ) THEN

C Current too high for model -- extrapolate up

IF( IJMAX(IT2) .EQ. 0 ) THEN

C Model not converged at all for this T

c WRITE(*,*) ’Model not converged at all for this T’

VC2 = VCSLOPE*J

Q1 = QSLOPE*J

ELSE

JMAX = JVALS(IJMAX(IT2))

VC2 = VCDAT(IT2,IJMAX(IT2)) + VCSLOPE*(J-JMAX)

Q2 = QDAT(IT2,IJMAX(IT2)) + QSLOPE*(J-JMAX)

ENDIF

ELSEIF( IJ1 .LT. IJMIN(IT2) ) THEN

C Current too low for model -- extrapolate down
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JMIN = JVALS(IJMIN(IT2))

VC2 = 0

Q2 = QDAT(IT2,IJMIN(IT2)) + QSLOPE*(J-JMIN)

ELSE

C Model converged here -- interpolate model data

VC2 = VCDAT(IT2,IJ1)*(1-PJ) + VCDAT(IT2,IJ2)*PJ

Q2 = QDAT(IT2,IJ1)*(1-PJ) + QDAT(IT2,IJ2)*PJ

ENDIF

C Now interpolate in the T direction

VC = VC1*(1-PT) + VC2*PT

QQ = Q1*(1-PT) + Q2*PT

RETURN

END
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