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ABSTRACT 

The Regional Greenhouse Gas Initiative (RGGI) is a regionally based carbon 

dioxide (CO2) cap and trade policy. A potential weakness of regional emissions trading 

policies is that they can incur “leakage” if emission reductions in the targeted area are 

accomplished by relying more on imports, thereby causing offsetting emission increases 

in the regions supplying the imports. The member state of New York shares a long 

electrically interconnected border with non-member state Pennsylvania. Pennsylvania is 

a source of many coal plants and statewide emissions may increase if coal power is 

exported to New York. RGGI Leakage is empirically tested for using several models. 

A method is demonstrated to empirically estimate emission and fuel use functions 

for fuel-burning electric generation units in Texas. Emission functions are necessary for 

estimating emissions and fuel use when measurements are not available such as in power 

system simulation scenarios, unit commitment and dispatch decisions, and when 

measurement equipment is absent, turned off, or malfunctioning.  Commonly, the 

“functions” used assume that emissions of a generation unit are simply a constant 

multiple of its output. The functions include the impacts of ramping, startup, and 

shutdown on emissions. The method of their estimation is described and can be extended 

to any fuel-burning generator in the U.S. that reports hourly generation and emissions 

via the EPA’s Continuous Emissions Monitoring System (CEMS). The accuracy of the 

emission functions in predicting in-sample and forecasting out-of-sample is shown. 

The regulations governing the reporting requirements for emissions under various 

EPA mandates offer a possible loophole by way of a calibration exemption. Generators 

that report emissions from CEMS equipment must calibrate the equipment once every 24 

hours. During the hour of calibration generators can take advantage of different emission 

rates during that hour to under-report emissions. This has potential cost savings due to 

the need for generators to hold allowances for NOx and SO2 emissions. CEMS data 

containing the additional information of the hour in which generators calibrate is  

analyzed to determine if generators are utilizing this loophole. The emission functions, 

which can estimate the impact of calibration on reported emissions, are then used to 

determine the magnitude of unreported emissions. 



 

 xi 

The emission functions are then used to address a controversy about the emission 

effects of wind power.  Because wind power increases the frequency of startups, 

shutdowns, and ramping by fuel-burning generators, some have claimed that wind power 

actually increases emissions. Some have also claimed that emissions reductions may not 

be as large as constant emissions rates would indicate.  Emission functions are calculated 

for all of the combustion-based generators in Texas, and applied to the output of 

differing wind power penetration scenarios to carefully estimate the emission impacts of 

increased wind power penetration. 



 

 

1. Introduction 

Electricity generation in the United States is undergoing lots of change as the 

negative externalities of fuel fired generation and public awareness of these externalities 

grow. The main externality from fuel fired generation is the production of polluting 

emissions, especially Carbon Dioxide (CO2), Nitrogen Oxides (NOx), and Sulfur 

Dioxide (SO2). Both CO2 and NOx are greenhouse gases contributing to global warming, 

while NOx and SO2 emissions can cause severe health impacts from their ability to form 

fine particulate matter in the atmosphere and the creation of acid rain. In 2011 CO2 

emissions from the electricity sector were 2.166 billion metric tons, accounting for 40% 

of all U.S. CO2 emissions.  

Non-emitting renewable generation such as wind and solar power has the potential to 

replace emitting thermal generation and allow for decreases in harmful emissions. 

Renewable generation must overcome significant barriers in order for them to have a 

more widespread impact. These barriers consist of their cost compared to conventional 

generation, technical constraints due to their intermittency, and problems from the lack 

of a relationship between the location of wind and solar irradiance and the location of 

population centers and electricity demand. Proper policies supporting clean renewable 

energy generation can help to overcome these obstacles and provide the incentives 

needed to support the adaption of clean renewable energy. More policies can be 

expected to be put in place in the future as CO2 reductions become more important and 

relevant policies are backed by public opinion. This research supports the development 

of future policy through analysis of a regional CO2 cap and trade program in the U.S. 

and the development of emission functions to better forecast electricity generator 

emissions. 

My research consists of four essays that together can help to guide and inform future 

economic policy which would impact the electricity market and system. Such policies 

could be cap and trade programs, renewable portfolio standards, or emission taxes. 

When researching energy use it is particularly important to be aware of both the 

economic and physical underpinnings of the electricity system and market. Due to 

physical limits to electricity transfer such as transmission constraints, reliability 

requirements, and generator limits, economic concepts can be constrained. Additionally 
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the physical aspects of electricity play a large role in all power markets due to the fact 

that electricity cannot be stored and power supply must always equal power demand. All 

of the research presented in this dissertation addresses these issues and offers some 

insight into the importance of considering them when designing economic policies to 

reduce emissions. This research also hopes to spur future research in energy to consider 

both the economic and physical aspects of the power system. 

The first of the four essays, Chapter 2, focuses on the potential impact of emissions 

leakage from a regional cap and trade program. Emissions leakage can occur when a cost 

increase incurred in the production of an emitting good in one region causes the 

production of that good to be moved to a region that does not face the cost increase and 

is therefore cheaper. There are no national policies regulating CO2 emissions in the 

electricity sector. Several states in the North East are currently under a program designed 

to reduce CO2 emissions.  This program, the Regional Greenhouse Gas Initiative 

(RGGI), is a cap and trade program requiring all emitting generators larger than 25 MW 

in size to hold allowances for each ton of CO2 emissions they emit. The program has 

only regional influence with 9 states currently members. One of the concerns of this is 

the potential for the costs imposed on emissions to create incentives to export emissions 

to neighboring non-member states. One of the important considerations of this study are 

the factors of the electricity system which can mitigate emissions leakage. A brief 

discussion of these factors is included in the chapter and their relation to the question of 

leakage from regional cap and trade policies. This can provide information for future 

policies or analyses of policies on the impacts of leakage from regional or sub-national 

cap and trade programs. 

Chapter 3 focuses on building an econometric model to accurately forecast generator 

emissions based upon their electricity generation. These emission functions are generator 

specific and can accurately forecast emissions under all important generator operations; 

startup, shutdown, and ramping. It is important to be able to forecast emissions under 

these operations because policies addressing emissions from the electricity sector 

inherently impact these operations. Economic policies reduce emissions in the electricity 

sector by changing and interrupting the dispatch of generators. Deregulated electricity 

markets rely on dispatch curves created by generators submitting marginal cost bids to 
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the system operator. Generators are then dispatched from lowest cost to highest cost, 

constrained by transmission limits and congestion, as well as limits to generator 

operation such as minimum off and on times, and ramping limits. Generators produce 

electricity according to their dispatch by the system operator at a marginal price set by 

the last generator producing electricity in or providing electricity to their location.  These 

generator dispatches and prices update quickly as the load that is being served changes. 

The result is that generators are often required to change output quickly (ramp), startup, 

or shutdown. More wind generation or other stochastic generation on a system result in 

more of these changes due to an additional time variant besides load, that is, the ability 

of these generators to produce electricity. Stochastic renewable energy relies on non-

controllables such as wind or solar to produce their electricity, so when they are unable 

to produce power in times when the wind is low, fossil fuel generators must fill in. 

Changing the operating profiles of generators under differing wind levels can result 

in changes to their emission rates that cannot be captured by simple models or constant 

emission rate assumptions. Models which do not take into account the impacts of 

ramping, startup, and shutdown will not accurately forecast emissions during these 

times. The impact on generation from imposing a cost on emissions can be modeled 

using dispatch simulation methods. The resulting emissions from these simulations are 

not as simple as multiplying total generation by a constant emissions rate. This chapter 

addresses that issue by providing a forecasting model which can accurately predict 

emissions in all types of operating hours. 

Chapter 4 uses the emission functions from chapter 3 to analyze the potential for 

generators to under report emissions due to a potential loophole in continuous emission 

monitoring system reporting requirements. Any economic policy which inflicts a cost on 

emissions will result in profit oriented companies trying to reduce these costs. Usually 

these are by traditional ways such as emissions controls, purchasing emission offsets, 

and other abatement methods. The regulation may offer a loophole allowing generators 

to under report their emissions and therefore reduce the costs they face from the Clean 

Air Interstate Rule and Acid Rain Program’s which require generators to hold NOx and 

SO2 allowances for every ton of those emissions they generate. The loophole allows for 

generators to include only a portion of an operating hour in their emissions 
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measurement.  By calibrating during high emission rate portions of hours which are 

characterized by large differences in emission rates, generators can report lower average 

emissions. This issue is analyzed using the emission functions in order to determine if 

generators are engaging in this behavior, and if they are, to what extent. 

Chapter 5 illustrates the importance in accounting for generation operation when 

forecasting emissions. Some reports have found that wind power can increase emissions 

from electricity generators. They find that, due to increased ramping and startups, 

expected reductions from increased wind generation are either not entirely occurring or 

actually becoming increases in emissions. Using the emission functions developed in 

chapter 3 this question is addressed more thoroughly. Simulated data is used from 5 

different wind penetration scenarios to determine the impact on generator emissions in 

Texas. From a low wind penetration scenario of 3500 MW of wind capacity to a high 

wind penetration scenario of 29,500 MW of wind capacity generators change their 

operations significantly. The main concern is coal generators which are forced to ramp, 

startup, and shutdown more often as wind penetration increases. These operations impact 

their emissions in a complicated manner that cannot be estimated using simple models or 

emission rate assumptions. This type of analysis could be done for any policy or other 

factors that would change how generators operate. 

These four chapters provide research to support future economic policies to reduce 

emissions from the electricity system. The research presented in the dissertation also 

hopes to show the importance of accounting for economics and the physical electricity 

system when researching topics related to emissions from the power system. 

                                       



 

 

2. An Empirical Test for Inter-State Carbon-Dioxide Emissions 

Leakage Resulting from the Regional Greenhouse Gas Initiative 

2.1 Introduction  

The Regional Greenhouse Gas Initiative (RGGI) is a regionally based carbon dioxide 

(CO2) cap and trade policy. There can be weaknesses in regional emissions trading 

policies because they can incur “leakage” where emissions reductions in the targeted 

area are offset by outside emissions increases. Leakage occurs in regional or sub-

national systems because when a policy only covers one region, that region will face 

increased costs while a nearby region which is not under the policy does not. Therefore 

the uncovered region can produce the regulated good at a lower cost than the region 

under the policy can. In the case of RGGI, producers inside the region face an increased 

cost to producing electricity which producers outside of the region do not face. As a 

result, the RGGI region may get more of its electricity than it otherwise would from the 

relatively cheaper unregulated region.  

The states within the RGGI region during the time period analyzed consist of 

Maryland, Delaware, New Jersey, New York, Connecticut, Rhode Island, 

Massachusetts, Vermont, New Hampshire, and Maine. The 10 member states are 

organized into three interconnected systems consisting of the New York Independent 

System Operator (NYISO), ISO New England, and PJM. Of the RGGI states New 

England serves Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and 

Connecticut. PJM serves Maryland, Delaware, and New Jersey. New York state is the 

only state served by the NYISO. Electricity is regularly transferred between states within 

and across each system as well as with neighboring provinces.  

The member states in RGGI auction off, or in some cases give away, allowances that 

permit CO2 emissions in the electricity sector. Once auctioned, allowances may be re-

sold in secondary markets. At the end of each reconciliation period, an emitting 

generator larger than 25 MWs must turn in allowances equal in number to the amount of 

emissions that occurred during the period. The need for generators to own these 

allowances increases their marginal cost per MWh in proportion to their CO2 emissions 

per MWh. This increase in marginal cost per MWh for generators required to hold 

allowances could make it economically viable for system operators to increase imports 
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of cheaper power from generators in non-RGGI states. The RGGI state would incur a 

decrease in emissions because emitting generators would not be dispatched, and the non-

RGGI state would incur an increase in emissions as their cheaper emitting generators are 

dispatched to meet this additional load. 

 The RGGI policy may be especially prone to emissions leakage due to the regular 

trade of electricity and the economic factors of the generation makeup of each state or 

system. Pennsylvania shares an expansive border with RGGI states and has a generation 

mix consisting of base load coal generation. This coal generation is historically cheap, 

abundant, and highly emitting. Electricity resulting from this generation is regularly 

traded between PJM and the NYISO region across four interfaces. The main interface is 

defined by PJM as the NYIS interface and consists of two buses, and by the NYISO as 

PJM Keystone. In addition there are three fixed contract lines connecting PJM to the 

NYISO: the Neptune Underwater Transmissions Line, the Linden Variable Frequency 

Transformer, and the Hudson DC line. These transmission lines, unlike the main 

interface, are on fixed rate contracts and not subject to daily prices. An illustration of the 

interface names and how prices and electricity flows are represented by them are found 

in the map in Figure 2.1 below.  

 

 

Figure 2.1 NYISO Interchange Map.  

Source: http://www.nyiso.com/public/markets_operations/market_data/interregional_data/index.jsp  

(Date Last Accessed: April 3, 2015) 
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The bottom of the map shows the four interfaces with PJM that are described. This 

map shows the price of electricity in the NYISO, the price of electricity in PJM, how 

much electricity is flowing over the interface, and in what direction by the arrows.  

Since the start of the initial compliance period on January 1, 2009, the price in the 

secondary market for RGGI allowances has never been higher than $4.13. In July of 

2010 the allowances began trading at or near the floor of $1.86. Figure 2.2 below shows 

a history of RGGI allowance prices from the quarterly auctions and the secondary 

market.  

 

 

Figure 2.2: RGGI Auction and Secondary Market Prices 

This paper hopes to help address the question of emissions leakage by using an 

econometric analysis of historical data covering the time period before and during the 

RGGI policy. Leakage can be detected by analyzing Pennsylvania CO2 emissions and 

the imports or flows of electricity from Pennsylvania to New York. An increase in either 

Pennsylvania CO2 emissions or imports of electricity associated with a positive and 

significant RGGI allowance price would indicate emissions leakage. The following 
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section will discuss previous studies analyzing leakage from the RGGI policy. Then 

there will be discussion of the data, econometric methodology, and results. 

2.2 Previous Literature  

There has been some work written on emissions leakage from RGGI. Before RGGI 

was an official policy there was much speculation on the extent to which leakage would 

be an issue. In analyzing different methods of allocating emission permits Burtraw et al. 

(2005) compare how different auction types could impact leakage. While not offering 

any estimates on magnitude, they acknowledge that there is the potential for leakage 

under all auction types. Initial reports on leakage by the RGGI Emissions Leakage 

Multi-State Staff Working Group found that there was potential for significant levels of 

leakage (RGGI, 2007). They used simulations from ICF International and their 

Integrated Planning Model (IPM©) to predict 27% emissions leakage through 2015. This 

means that emissions in non-RGGI states are predicted to increase by 27% of the RGGI 

state reductions. The IPM uses a “pipe-and-bubble” (EIPC, 2010) model of the 

transmission system which accurately predicts the RGGI allowance price to remain in 

the range of $2-$3 through 2015 (ICF Consulting, 2006b). The study may overestimate 

RGGI leakage because one of the major leakage factors identified was new combined 

cycle gas-fired generators choosing to locate outside RGGI rather than inside. The Initial 

Report of the RGGI Emissions Leakage Multi-State Staff Working commented on this 

prediction, calling it “an outcome that staff deems to be unlikely in the real world” 

(RGGI Inc. E.-S., 2007a). 

Using historical data, Chen (2009) looks at emissions leakage from New York to 

Pennsylvania by constructing demand and supply curves for imported electricity to New 

York and use them in simulations of the PJM electricity market. Results show positive 

emissions leakage that could exceed 90% when allowance prices are below $7 per ton.  

Wing and Kolodzieg (2009) use a computable general equilibrium model to find 

levels of emissions leakage of 49-57%. They make some assumptions which could make 

their estimates inaccurate such as identical thermodynamic efficiencies in electricity 

generation between regions, the ability to neutralize leakage through tariffs, and the 

inability to include transmission constraints.  
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In the third annual monitoring report from RGGI Inc. (2013), analysis is done on 

market dynamics and changes in CO2 emissions within RGGI and outside of RGGI to 

conclude that there has been no increase in CO2 emissions from non-RGGI generators. 

However, their analysis does not imply any causation or link between allowance prices 

or the RGGI program and changes in emissions within or outside of RGGI. They also do 

not use any statistical tests in the analysis of the data. Therefore a more thorough 

analysis of the historical data is still needed. 

In trying to determine what has caused the large drop in emissions in the RGGI 

region Murray et al. (2014) delve slightly into the topic of RGGI emissions leakage. 

They find that in their tests for leakage from RGGI to PJM and subsections of PJM, that 

coal and gas utilization rates drop by more in RGGI states than the non-RGGI states. 

They assume the entire difference in utilization rate drops are from leakage. Their 

estimate of the magnitude of this leakage, using “back-of-the-envelope” calculations is 

that leakage could be as large as the entire emissions reduction from RGGI or leakage of 

100%. 

Shawhan et al.  (2014) estimate a small amount of leakage using a detailed model of 

the electricity system taking into account realistic transmission constraints. They find 

that that a RGGI allowance price of $10 would lead to an initial level of leakage of 

9.2%, decreasing over time to 2.6% in year 10, and -14.5% in year 20. Using a less 

detailed model of the electricity grid they get higher levels of leakage, illustrating the 

importance of transmission topology and constraints on limiting emissions leakage. 

Another paper showing the importance of not just energy prices, but accounting for 

system conditions, is Sauma’s (2012) work which examines the impact of congestion 

and transmission limits on the magnitude of leakage that can occur. Using a two-node 

radial network they examine multiple scenarios of congestion, marginal generators, and 

allowance prices and come up with some important propositions based upon their 

assumptions. They find a condition under which there may be no leakage. Their first 

proposition notes that if the marginal cost of a marginal unit in the node that will be 

under cap and trade is higher than the marginal cost of the marginal unit in the uncapped 

region node, that there will be no CO2 emissions leakage after cap and trade is 

introduced.  
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Most of these studies use simulation models to project leakage levels or do not make 

it their primary goal to estimate leakage. This paper aims to add to this literature by 

using historical data and sophisticated econometric techniques to try and detect the 

presence of emissions leakage from RGGI. 

2.3 Background  

In order for leakage to occur there must be the potential for emissions leakage. A key 

assumption is that additional generation in Pennsylvania would produce emissions, 

which is virtually certain. In PJM, the regional system that includes Pennsylvania, a 

coal-burning unit was the marginal unit 74% of the time and a gas-burning unit was the 

marginal unit 22% of the time (Monitoring Analytics, LLC, 2010). Therefore any 

increase in generation caused by RGGI would increase emissions. There is significant 

unused coal capacity in Pennsylvania, West Virginia, Virginia, and Ohio equal to a 

potential extra 64 million tons of CO2 emissions annually (Rogers et al, 2008, p.15). 

Some portion of this could be released from Pennsylvania generators due to increased 

demand by New York.  

The CO2 emission reductions resulting from RGGI can be decomposed into five 

pairs of effects:  short-run supply-side effects, long-run supply-side effects, short-run 

demand-side effects, long-run demand-side effects, and the effects of reinvestment of 

allowance auction proceeds.  Each of these five pairs consists of an effect in the RGGI 

states and an effect in other states and provinces.  In all five pairs, the effect in the RGGI 

states reduces emissions.  In the first two pairs, the effect in other states and provinces is 

“positive leakage,” meaning that it increases emissions, partially offsetting the emission 

reductions resulting from the policy.  In the last three pairs, it is “negative leakage” or 

“emission reduction spillover,” meaning that it further reduces emissions. 

1. Short-run supply-side effects 

a. In RGGI states:  The need to hold one allowance for every ton of CO2 

emitted reduces emissions by raising the marginal generation costs, and 

hence the offer prices, of higher-emitting generators more than those of 

lower-emitting generators and of generators not subject to the allowance 
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requirement, such as those in Pennsylvania.  This causes higher-emitting 

generators subject to the allowance requirement to be used less.   

b. In neighboring jurisdictions:  Positive leakage.  Since RGGI raises the offer 

prices of emitting generators subject to its allowance requirement, generators 

not subject to the requirement, such as those in neighboring states and 

provinces, are used more.  This increases their emissions. 

 

2. Long-run supply-side effects 

a. In RGGI states:  Because RGGI reduces the use of higher-emitting 

generators that are subject to the allowance requirement, such units are 

more likely to be retired and fewer of them are likely to be built in the 

future. 

b. In neighboring jurisdictions:  Positive leakage.  Because RGGI may in the 

long run reduce emitting generation capacity in the RGGI states, the 

demand for electricity imports to these states may increase.  This would 

be likely to result in more generation capacity, and more CO2-emitting 

generation, in neighboring states and provinces. 

 

3. Short-run demand-side effects 

a. In RGGI states:  By raising the offer prices of generators, RGGI raises the 

market price of electricity, which induces an immediate reduction in 

consumption. 

b. In neighboring jurisdictions:  Negative leakage.  The higher offer prices 

within RGGI increase the demand for electricity from neighboring 

jurisdictions by RGGI states.  This reduces the residual supply of generation 

in those jurisdictions, driving up the price and immediately reducing 

consumption in those jurisdictions.  This effect partially offsets effect 1b, but 

can be expected to be substantially smaller than 1b. 
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4. Long-run demand-side effects 

a. In RGGI states:  The consumption reduction becomes greater over a 

period of years.  The reason is that as energy customers replace 

equipment and update their energy use practices, they take the higher 

electricity prices of recent years into account, and consequently choose 

more efficient equipment and practices. 

b. In neighboring jurisdictions:  Negative leakage.  As a result of the higher 

prices in neighboring jurisdictions (effect 3b), there is a long-run demand 

response in those jurisdictions, as in the RGGI states. 

 

5. Reinvestment of allowance proceeds 

a. In RGGI states:  Most of the RGGI allowance auction proceeds are slated 

to be spent on programs to help energy customers use energy more 

efficiently.  This should further reduce CO2 emissions. 

b. Outside of RGGI states:  Negative leakage.  Greater adoption of energy-

efficient equipment in the RGGI states as a result of effect 5a (and effects 

3 and 4) allows manufacturers of such equipment to move down their 

production cost learning curves and to achieve greater economies of 

scale, lowering the costs of more efficient equipment relative to less 

efficient equipment, nationally and internationally.  This should further 

reduce CO2 emissions. 

 

The extent of each of these ten effects is unknown.  Of the five leakage effects, the 

two short-run effects (1b and 3b) can be expected to affect emissions and power flows in 

proportion to the then-current RGGI allowance price.  However, the short-run demand-

side effect (3b) is reflected in load.  Therefore, if one tests for an effect of the RGGI 

allowance price on load, and controls for load as one must, the type of leakage that 

remains to detect is short-run supply-side leakage (effect 1b). This short-run supply-side 

leakage is the most direct type of leakage, and it is what this paper attempts to detect in 

recent historical data.  The long-run leakage effects (2b, 4b, and 5b) accumulate over the 

years rather than being a daily function of the current RGGI allowance price, and 
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attempting to measure any of them would require a different approach than the one 

employed to measure short-term leakage. 

2.4 Method 

Leakage is estimated by building models to describe Pennsylvania CO2 emissions 

and scheduled power flows from Pennsylvania to New York. Higher Pennsylvania CO2 

emissions and higher net flows from Pennsylvania to New York associated with higher 

RGGI allowance prices would indicate emissions leakage. The CO2 emissions model 

and the flows models have different estimation techniques. The estimation methods are 

described for the CO2 and flows models separately. 

2.4.1 Pennsylvania CO2 Emissions Method 

The Pennsylvania CO2 emissions model is an ARMAX model which consists of 

exogenous explanatory variables and has estimated auto-regressive moving average 

(ARMA) residuals using Box-Jenkins model identification (Box & Jenkins, 1970). This 

process involves ensuring stationarity of dependent variables and accounting for any 

seasonality, using autocorrelation and partial autocorrelation functions to determine lag 

lengths of the ARMA terms, and ensuring white noise residuals. This method is used 

because the OLS model has serial correlation of the errors. Serial correlation makes the 

standard errors smaller than their true value and can make coefficients look statistically 

significant when they are actually not. Therefore the errors are modeled and use the 

information in them in order to estimate accurate standard errors. The model takes the 

following general form: 

𝑌𝑡 = 𝛼 + 𝛽𝑋𝑡 + 𝛾𝑀𝑜𝑛𝑡ℎ + 𝜆𝐷𝑎𝑖𝑙𝑦 + 𝜂𝑡 

𝜂𝑡 = ∑𝑛=1
𝑝

ϕnηt-n + ∑𝑚
𝑞

θm+1ϵt-m  

(1) 

(2) 

 

where Y is the dependent variable, X a vector of independent variables with a vector of 

coefficients β, and monthly and daily dummy variables with vectors of coefficients γ and 

λ. The final term η is an error term which is modeled as an ARMA process with a vector 

of autoregressive components to p lags, ηt-k, and vector of moving average components ϵ 

to q lags. These terms both have a vector of coefficients 𝜙 and θ respectively.  
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It is important when estimating ARMA models to use stationary variables. To test 

dependent variables for stationarity three tests are used for robustness. These tests are an 

Augmented Dickey Fuller test (Dickey & Fuller, 1981), Phillips-Perron test (Phillips & 

Perron, 1988), and KPSS test (Kwiatkowski, Phillips, Schmidt, & Shin, 1992). All three 

are done on the deseasonalized dependent variable and find that it is stationary. 

Therefore no trend term is included in the Pennsylvania CO2 emissions model. 

Several dependent variables are identified which should impact Pennsylvania CO2 

emissions. The daily load of contiguous PJM and its squared value are included in the 

model. Load is the main determinant of emissions due to the fact that emitting 

generation must generate enough electricity to serve it, with the highest levels of load 

often being served by the most inefficient and polluting generators. Fuel prices also 

impact emissions. Depending on the relationship between coal and natural gas prices, the 

order of generators dispatched to serve load can change. When natural gas prices are 

higher than coal prices coal will be dispatched more often and when natural gas prices 

are less than coal prices natural gas will be dispatched more. Coal has a much higher 

CO2 emissions rate than natural gas which can mean higher CO2 emissions under higher 

natural gas prices and lower emissions under lower natural gas prices Also included is 

Pennsylvania nuclear generation since there is a significant amount of it serving as 

baseload generation and it is non-emitting. It is important to include nuclear generators 

because when they shut down they can spend long time periods offline, requiring 

emitting generation to replace them. Also important are the NOx and SO2
 
allowance 

prices because when they are high the most emitting generation becomes more 

expensive and may run less. Finally daily and monthly seasonalities are controlled for 

with day of the week and monthly dummy variables.  

As will be discussed the flows models have a simultaneity bias with the RGGI 

allowance price variable. The CO2 model does not have one. Pennsylvania CO2 

emissions are not generated under the RGGI program and therefore should not have an 

impact on the RGGI allowance price. Therefore the RGGI allowance price variable is 

treated as exogenous. 
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2.4.2 Pennsylvania to New York Electricity Flows Method 

The regression model to describe flows from Pennsylvania to New York is a first 

order simplification of the model that describes the supply and demand functions for 

flows. Considering the flow of electricity from Pennsylvania to New York as a simple 

supply and demand model provides structure for analysis of potential endogeneity. Two 

measures of flows are considered, real time and day ahead flows. 

The demand for imports depends on the difference between the price of electricity in 

New York and the price in Pennsylvania, as well as load in New York. If New York is 

facing a larger electrical load they may be faced with transmission constraints, 

generation shortages, or other problems requiring them to import more power from 

Pennsylvania regardless of price. 

QD_Imports = θ1 + B1*(PNY - PPA) + B2*NYLOAD + ϵ (3) 

While most supply and demand functions only consider price it is the case that flows 

from Pennsylvania to New York do not always follow traditional economic signals. One 

of the drivers of non-economic flows may be the need to meet load regardless of price. 

Therefore load is included in both models, in the demand model to represent needs for 

imports and in the supply model as a limit to available generation to export.   

The supply of imports depends on the price difference between  the price of 

electricity in New York and the price in Pennsylvania, as well as the load in 

Pennsylvania. If Pennsylvania is facing a large load they may have less generation 

available to export. 

QS_Imports = θ2 + C1*(PNY - PPA) + C2*PALOAD + ϵ (4) 

The price of electricity in New York and Pennsylvania can be decomposed into some 

more general prices which would cause marginal cost increases to generators on the 

margin of the bid stack. Each term can be thought of as a marginal cost increase to the 

marginal generator, summing into one marginal cost that a generator would bid. PGen 

represents the marginal unit, PRGGI the marginal cost of RGGI permits required for CO2 

emissions associated with generation, PFuel the marginal cost of fuel for generation, PNOX 

and PSO2 the marginal cost of NOx and SO2 permits required as part of the EPA Acid 

Rain Program (ARP) and Clean Air Interstate Rule (CAIR), and ϵ, a random price shock. 
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The generation of baseload power, nuclear and hydroelectric, is also added to both 

equations due to the large impacts having baseload generators offline can have. The 

RGGI price is added in both models because in New York it has a direct impact on 

marginal prices by increasing marginal costs of its generators. In Pennsylvania it has a 

different impact. It may impact Pennsylvania prices due to its impact on imports and 

subsequent changes to bid stacks, congestion, and losses.  

PNY = α1 + D1*PGenNY + D2*PRGGI + D3*PFuelNY + D4*Genbaseload + D5*PNOX_Permits 

+ D6*PSO2_Permits + ϵ 

 

(5) 

 

PPA = α2 + E1*PGenPA + E2*PRGGI +  E3*PFuelPA + E4*Genbaseload + E5*PNOX_Permits + 

E6*PSO2_Permits + ϵ 

 

 

(5a) 

  

PGenNY and PGenPA are the prices for marginal generation in New York and 

Pennsylvania. PRGGI is the RGGI allowance price, and PFuelNY and PFuelPA are the prices 

of fuel for the marginal generator in New York and Pennsylvania respectively. Genbaseload 

is the quantity of baseload generation which is on the system. This quantity has a large 

impact on the need for peaking (more expensive) generators. If baseload generators have 

tripped or are down for maintenance there is a large impact on prices. Finally PNOX_Permits 

and PSO2_Permits are the prices of NOx and SO2 allowances. All of these prices have some 

endogeneity. However, the coefficient which needs an unbiased estimate is the 

coefficient on the RGGI price variable. The regression equation used is described next 

and then a discussion of the endogeneity of the RGGI price will follow. 

A reduced form regression equation is estimated for both the measures of flows in 

the real time market and day ahead market. The reduced form is determined from the 

consideration of the relationships described in the structural supply and demand 

equations in (3), (4), and (5). From the demand and supply equations it can be 

determined that the major variables that must be controlled for are variables describing 

the price difference between New York and Pennsylvania and then the system loads for 

the NYISO and PJM. Therefore the regression equation contains all the major 

determinants of price found in equations (5) and (5a) which make up the price difference 

between New York and Pennsylvania as well as the system loads found in (3) and (4). 



 

17 
 

Some constraints to this are that it is impossible to tease out the price differences from 

the NOx and SO2 allowance programs, as well as what the marginal unit is at any given 

point in time. Therefore only the SO2
 
and NOx allowance price series are included in 

order to control for their impacts. Also included are the loads for New York and PJM as 

a best representation for the marginal unit. In addition the New York load is important to 

include based upon the demand equation (1). The output of hydro and nuclear generation 

is included in the regression equation as well. These make up the baseload generation in 

New York. Therefore they are a major driver in determining how much of the remaining 

portion of load not served by them must be served by emitting generation. They are also 

non-emitting sources of generation and are not impacted by the RGGI price unlike coal, 

gas, or oil generation. Equation 6, below, is the reduced form regression equation that is 

estimated. 

 

Flows = β0 + β1*PRGGI + β2*NY Average Hourly Load + β3* PJM Average Hourly 

Load + β4*NY Hydro + β5*NY Nuclear + β6*NY Natural Gas Price + β7*PA 

Natural Gas Price + β8*SO2 Allowance Price + β9*NOx Allowance Price + 

β10*Time + β11-16*Day of Week Dummies + β17-27*Month of Year Dummies + ϵ1 

(6) 

 

 Since the RGGI allowance price is a price in a demand model it has an endogeneity 

problem. This comes from a simultaneity bias in both flows models with the RGGI 

allowance price.  The RGGI price may impact flows for the aforementioned reasons and 

in the opposite direction flows also impact the RGGI price. An increase in flows due to 

the RGGI price decreases emitting generation within New York. With less emitting 

generation in New York there is less demand for RGGI allowances and therefore a fall in 

the RGGI price. Therefore the direction of causality does not just go from the RGGI 

allowance price to flows but also from flows to the RGGI allowance price. Without 

controlling for this, the coefficient on the RGGI variable will have a downward bias.  

This endogeneity is dealt with by instrumenting the RGGI variable with two 

instruments. The estimator used is the General Methods of Moments (GMM) 

continuously updated estimator as defined in Hansen et al. (1996). The first instrument 

used is coal generation in ISO New England. Since all of ISO New England is covered 
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by RGGI, emitting generation should have an impact on the RGGI price.  The second 

instrument is a gross domestic product (GDP) expectations variable which is constructed 

to capture future economic outlook and known, historic, economic activity. A higher 

GDP is generally means there is a need for more electricity. If operators think that the 

economy is going to grow in the future then they will expect to need more RGGI 

allowances in order to keep up with higher generation demands. The construction of this 

variable is described in the data section.  

GMM allows for us to choose a weighting matrix which can be used to control for 

serial correlation and heteroskedasticity. Tests for both flows models indicate the need 

for errors robust to both heteroskedasticity and autocorrelation. The test for 

heteroskedasticity uses the Pagan-Hall statistic (Pagan & Hall, 1983) which tests a null 

hypothesis of homoskedasticity. The test for autocorrelation applies the Cumby-

Huizinga statistic (Cumby & Huizinga, 1992) which unlike many other autocorrelation 

test statistics is valid given the presence of both endogenous regressors and 

heteroskedasticity. It has a null hypothesis of uncorrelated errors of the first order. Both 

test results are found in Table 2.1, below. 

Table 2.1: i.i.d. Tests 

 DAM 

Imports 

RT Imports 

Pagan-Hall 

statistic 

130.98 125.02 

χ
2
 p-value 0.000 0.000 

Cumby-Huizinga 

statistic 

69.86 57.05 

χ
2
 p-value 0.000 0.000 

 

The presence of autocorrelation and heteroskedasticity in both models is confirmed 

due to the tests rejecting their respective null hypotheses at a high level of significance. 

Therefore HAC standard errors are reported in the results.  
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2.5 Data 

This study attempts to directly measure emissions leakage by examining historical 

data covering the time period of September 30
th

, 2006 to December 31
st
, 2011. This time 

period is chosen because there are no significant changes in NYISO or PJM rules, 

besides the RGGI program itself. There are also no significant changes in the RGGI 

policy. After this time period there is a significant change to RGGI due to the exit of 

New Jersey from the program. Different time periods were experimented with, 

specifically shortening the time period before and after the RGGI program start date, as 

well as only using data from time spans when the RGGI program was in force. Changing 

the time spans like this did not alter results or conclusions obtained from the long time 

period of 2006 to 2011. The data has a daily time step. 

All the models use daily data taken from a combination of sources consisting of 

proprietary data from the NYISO, EPA Continuous Emissions Monitoring System 

(CEMS) data, and generator information from the Energy Information Agency (EIA) 

form 860. Data on electricity prices are taken from data search queries from the NYISO 

and PJM’s respective websites
1,2

. Data on ISO New England coal generation was pulled 

from search queries from their website
3
. 

The GDP variable used for instrumenting the RGGI variable is constructed from 

actual GDP values from the U.S. Bureau of Economic Analysis and forecasted GDP is 

taken from the Survey of Professional Forecasters which is obtained from the Federal 

Reserve Bank of Philadelphia
4
. The Survey of Professional Forecasters is released 

quarterly and beginning in the second quarter of 2009 gives 4 quarters ahead and 1, 2, 

and 3 year ahead forecasts of real GDP. The GDP forecast variable consists of the 

forecast of real GDP until the end of 2011 added to actual GDP starting in 2009. For 

example, the first quarter of 2010 has observations consisting of the first quarter of 

2010’s forecasts of the rest of 2010 plus the forecast for 2011 plus the actual real GDP 

                                                 

1
 http://www.pjm.com/markets-and-operations/energy.aspx (Date Last Accessed: April 3, 2015) 

2
 http://www.nyiso.com/public/markets_operations/market_data/pricing_data/index.jsp (Date Last 

Accessed: April 3, 2015) 
3
 http://www.iso-ne.com/isoexpress/web/reports/operations/-/tree/daily-gen-fuel-type (Date Last Accessed: 

April 3, 2015) 
4
 http://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/ 

(Date Last Accessed: April 3, 2015) 

http://www.pjm.com/markets-and-operations/energy.aspx
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for 2009. Since the data is quarterly, the data changes for the next quarter of 

observations on the day the survey is released. The survey only began giving 3 year 

ahead forecasts in the second quarter of 2009. Therefore interpolated values are used for 

the first quarter of 2009. Previously, the survey had only reported forecasts for 2 years. 

The interpolated value is created by calculating the increase in forecasted GDP across 

two years for the 4
th

 quarter of 2008 and the first quarter of 2009 and assuming those 

forecasted rates of growth would continue into the 3
rd

 year. Those, along with the actual 

forecasted growth rate for three years out GDP, from the second quarter of 2009 survey 

are averaged. This growth rate is then applied to the 2009 1
st
 quarter 2 year forecast, to 

create a prediction of what the 3 year forecast would have been.  

Some variables included in the models require further explanation. Since it is 

unknown exactly what load the electricity from Pennsylvania generators serves, all 

potentially serviced loads of contiguous PJM are used, defined as the following load 

zones: Public Service, Exelon: PECO, PP&L, UGI, Baltimore Gas & Electric, First 

Energy: Jersey Central, First Energy: MetEd, First Energy: PennElec, PEPCO, 

Connectiv: Atlantic Electric, Connectiv: Delmarva Power & Light, Rockland Electric, 

Dominion Virginia, Allegheny Energy, AEP, Dayton Power & Light, and Duequesne 

Light Co. Both variables measuring load in PJM and the NYISO are measures of total 

load for each day. 
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While the series for both day ahead and real time flows is similar there are some 

differences between the two. Day ahead flows may have more economically explainable 

variation than real time scheduled flows because they are not as affected by 

unpredictable events that arise less than a day in advance. Some unpredictable events 

that can occur in real time are generator trips, differences from forecasted load, and 

transmission line constraints or outages. In general the day ahead scheduled flows are 

higher than the real time scheduled flows. Figure 2.3 shows scatterplots of day ahead 

and real time flows overlaid. It can be seen that they trend in the same manner but do not 

overlap and are often fairly different in size. 

Scheduled flows attributable to wheel-through transactions, which are intended to 

pass through rather than sink in a control area, are not included in either of the dependent 

variables.  In the time period studied, wheel-through transactions constituted only 2% of 

day ahead and real time flows from Pennsylvania by volume.  Summary statistics and 

Figure 2.3: Day Ahead and Real Time Flows. September, 2006 – December, 2011 
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short descriptions of all variables used can be found in Table 2.2 below. On average day 

ahead flows are higher than real time flows and they also have a larger standard 

deviation. Also worth noting are the large standard deviations of the NOx and SO2 

allowance prices. Due to a ruling in the U.S. Court of Appeals the regulations governing 

the NOx and SO2 markets were significantly weakened. This led to a large drop in their 

prices which occurred in 2008. 

Table 2.2: Summary Statistics 

Variable Definition Units Average Standard 

Deviation 

Day Ahead 

Scheduled Flows
1
 

Daily imports from 

Pennsylvania across the PJM 

Keystone Proxy Bus to New 

York scheduled in the day 

ahead market 

MWh 34,773 12,899 

Real Time 

Scheduled Flows
1
 

Daily imports from 

Pennsylvania across the PJM 

Keystone Proxy Bus to New 

York scheduled 75 minutes 

ahead 

MWh 29,191 10,513 

PA CO2 Emissions
1
 

Daily CO2 emissions from 

all electricity generating 

power plants in 

Pennsylvania 

1000 Tons 328.59 51.28 

NY Load Daily load in New York MWh 446,891 5,4044 

PJM Contiguous 

Load 

Daily load in what is called 

“contiguous-zone PJM,” 

which excludes the portion 

of PJM in Illinois served by 

Commonwealth Edison 

MWh 1,647,166 214,266 

NY Nuclear Output Daily nuclear generation 

output from all nuclear 

power plants in New York 

MWh 117,273 14,297 

NY Hydro Output Daily hydroelectric 

generation output from all 

hydroelectric power plants in 

New York 

MWh 68,081 9,079 

PA Nuclear Output Daily nuclear generation 

output from all nuclear 

power plants in 

Pennsylvania 

MWh 192,375 19,782 
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Variable Definition Units Average Standard 

Deviation 

RGGI CO2 

Allowance Price 

Daily price of RGGI CO2 

allowance prices (0 until 

compliance is required, 

January 1
st
, 2009). Average 

and Standard Deviation to 

the right pertain to the time 

period of 1/1/2009 – 

9/30/2010 

$ 2.32 0.63 

PA Natural Gas 

Price 

Daily spot price of natural 

gas from Tetco M-3 hub 

$/MMBtu 6.47 2.66 

NY Natural Gas 

Price 

Price per MMBtu of NY 

natural gas from Transco-

Zone 6 

$/MMBtu 6.75 3.06 

PA Coal Price Daily 12,000 BTU OTC 

Market NYMEX Big Sandy 

Barge price 

$/tonne 63.46 20.73 

NOx Allowance 

Price 

Price of NOx emission 

allowances 

$ 415.21 376.56 

SO2 Emissions 

Allowances Price 

Daily price of SO2 emissions 

allowance prices 

$ 197.12 216.32 

GDP Forecast 

Variable 

Sum of 12 Quarters of 

Actual and Forecasted Real 

GDP 

Trillions of 

2009 Chain 

Weighted $ 

152.559 42.766 

ISO NE Coal 

Generation 

Daily coal generation MWh 40,835 16,237 

1
Dependent Variable 

Data supplied from SNL, the NYISO, the EPA, and the EIA 

2.6 Results 

CO2 emissions leakage from New York, a RGGI state, to Pennsylvania, which is not 

a member of RGGI, is empirically tested for. Unlike previous studies on leakage that 

have used simulations of the physical energy network and energy market to predict 

leakage under various scenarios, this study attempts to directly measure emissions 

leakage by examining historical data. Equations (1) and (2) are estimated for 

Pennsylvania CO2 emissions and then equation (6) for real time scheduled flows and day 

ahead scheduled flows.  

2.6.1 Pennsylvania CO2 Emissions 

The first means for attempting to detect leakage is to test for a statistically significant 

effect of the RGGI allowance price on daily CO2 emissions from Pennsylvania’s electric 
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power sector. The Pennsylvania CO2 emissions model is a less direct measurement of 

the leakage potential than the actual flow measurements.  

Pennsylvania CO2 emissions are stationary when the deseasonalized data is analyzed. 

The emissions series is highly seasonal as emissions are higher in summer and winter 

when loads are highest. OLS regressions show highly autocorrelated residuals so the 

residuals are modeled using ARMA terms. Results from both models, which only differ 

by how fuel prices are included, are found in Table 2.3. All variables are standardized so 

that coefficients represent changes in the standard deviation of the dependent variable. 

This makes interpretations of variables with different units easier.  

Table 2.3: PA CO2 Emissions Regression Results 

 ARMA(2,2) Model 1 ARMA(2,2) Model 2 

RGGI Permit Price -0.00482 

(0.0895) 

-0.00216 

(0.0828) 

PJM Load 0.816*** 

(0.0121) 

0.815*** 

(0.012) 

Squared PJM Load -0.0402*** 

(0.00507) 

-0.0407*** 

(0.00504) 

PA Natural Gas Price 0.0316* 

(0.0137) 

 

PA Coal Price -0.0294 

(0.0578) 

 

PA Nat Gas to Coal Price Ratio  0.0425** 

(0.0144) 

PA Nuclear Output -0.0605*** 

(0.0167) 

-0.0605*** 

(0.0167) 

NOx Allowance Price -0.0158 

(0.0805) 

-0.0195 

(0.0796) 

SO2 Allowance Price -0.0423 

(0.101) 

-0.0437 

(0.0917) 

Constant 0.213*** 

(0.003) 

0.213*** 

(0.003) 

Month Dummies Yes*** Yes** 

Daily Dummies Yes*** Yes*** 

AR(1) 1.533*** 

(0.071) 

1.530*** 

(0.0717) 

AR(2) -0.549*** 

(0.0651) 

-0.547*** 

(0.0657) 
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 ARMA(2,2) Model 1 ARMA(2,2) Model 2 

MA(1) -0.620*** 

(0.0718) 

-0.618*** 

(0.0725) 

MA(2) -0.180*** 

(0.0275) 

-0.180*** 

(0.0274) 

AIC -426.2 -429.9 

BIC -253.8 -263.1 

Adjusted R
2
 0.955 0.955 

Variables are standardized and represent standard deviations 

Standard errors in parentheses 

+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001 

 

Using the two measures of fuel prices in the model provides very similar results. 

Both models fit the data well with Adjusted R
2
 values of 0.955. All the explanatory 

variables, except the RGGI allowance price have the correct signs and are significant. 

The RGGI permit price has a negative coefficient but it is highly insignificant in both 

models indicating that there is not a significant impact of the RGGI permit price on 

Pennsylvania CO2 emissions. The relationship between emissions and load is significant 

and positive. A one standard deviation in PJM load increases emissions by 0.776 

standard deviations in model 1 and 0.774 standard deviations in model 2. The natural gas 

price in Pennsylvania turns out to also be a significant driver of emissions. Increasing 

natural gas prices can increase CO2 emissions by causing fuel switching or from gas to 

coal generation. The insignificance of the RGGI allowance price may be due to its lack 

of variation, the low allowance prices that occurred over the time period, or the fact that 

emissions are almost entirely determined by the other variables. A more direct measure 

of the impact of the RGGI allowance price on leakage is the flows models. 

2.6.2 Pennsylvania to New York Electricity Flows 

The second method of detecting emissions leakage to Pennsylvania is to estimate the 

impact of the RGGI allowance price on imports of electricity from Pennsylvania to New 

York. A positive and significant coefficient on the RGGI allowance price would be 

evidence of emissions leakage. These models are estimated using GMM and 

instrumenting the RGGI variable with ISO New England coal generation and the GDP 
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forecast variable. Results of the real time and day ahead flows models are found below 

in Table 2.4. 

Table 2.4: Pennsylvania to New York Electricity Flows Regression Results 

 

Real Time Day Ahead 

OLS GMM Model
1
 OLS GMM Model

1
 

RGGI Allowance Price 
-1812.2*** 

(272.5) 

1166.8 

(1541) 

-709.4* 

(302.4) 

1365.2 

(1678) 

NY Average Load 
0.159*** 

(0.01) 

0.166*** 

(0.01) 

0.134*** 

(0.01) 

0.139*** 

(0.02) 

PJM Average Load 
-0.048*** 

(0.003) 

-0.050*** 

(0.004) 

-0.042*** 

(0.003) 

-0.044*** 

(0.004) 

NY Natural Gas Price 
-315.6 

(199.1) 

-590.6
+
 

(305.6) 

-354.3
+
 

(214.9) 

-528.9
+
 

(318.5) 

PA Natural Gas Price 
2198*** 

(248.0) 

3047*** 

(601.3) 

2002*** 

(275.2) 

2572*** 

(620.6) 

SO2 Allowance Price 
9.39*** 

(2.22) 

22.54** 

(7.24) 

26.99*** 

(2.46) 

36.05*** 

(8.27) 

NOx Allowance Price 
-7.53*** 

(1.28) 

-4.58
+ 

(2.41) 

4.15** 

(1.42) 

6.15** 

(2.59) 

NY Nuclear Generation 
-0.09*** 

(0.01) 

-0.098*** 

(0.02) 

-0.053** 

(0.02) 

-0.061** 

(0.03) 

NY Hydro Generation 
-0.23*** 

(0.02) 

-0.24*** 

(0.03) 

-0.18*** 

(0.03) 

-0.191*** 

(0.04) 

Time 
14.72*** 

(1.02) 

18.21*** 

(2.32) 

31.59*** 

(1.14) 

33.99*** 

(2.67) 

Month of Year Dummies Yes*** Yes*** Yes*** Yes*** 

Constant 

-

204857*** 

(19121) 

-275847*** 

(45211) 

-

519306*** 

(21219) 

-567955*** 

(51918) 

N 1919 1919 1919 1919 
+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001 
Standard Errors in Parentheses 
1Heteroskedasticity – Autocorrelation Robust Standard Errors Reported 

  

The first set of results for each of the models is the OLS results. These results show a 

highly significant and negative RGGI price. It is important to note that due to the 

endogeneity discussed, this coefficient is biased downwards. Therefore the GMM results 

are the ones to consider. The GMM model for each of the dependent flows variables 

shows a large change from the OLS models in the magnitude of the RGGI variable 

coefficient. The OLS coefficient is large and negative but by instrumenting with GDP 

expectations and ISO New England coal generation the coefficient becomes positive as 
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is theoretically expected. The coefficient is insignificant in both GMM models indicating 

that a significantly different from zero impact of the RGGI allowance price on flows is 

not found. 

To ascertain the validity of the instruments three things are tested for: 

underidentification, weakness of instruments, and exogeneity of instruments to the error 

term. The first test determines the power of the instruments in explaining the 

endogenous regressor. Instruments with no explanatory power result in a model that has 

no identification. Under no identification the coefficients will have bias equal to the bias 

under OLS (Hahn & Hausman, 2002). Weak instruments, those that have little 

explanatory power, also result in biased coefficients and asymptotic problems (Stock, 

Wright, & Yogo, 2002). There are appropriate tests to determine if either 

underidentification or weak identification is a problem.  

The test for underidentification uses a Kleibergen and Paap rk LM statistic, which 

has a chi-squared distribution (Kleibergen & Paap, 2006). Results are found below in 

Table 2.5 and reject the null hypothesis of underidentification for both models. 

Table 2.5: Underidentification test 

 
Real Time 

GMM 1 

Day 

Ahead 

GMM 1 

rk-

Statistic 
27.23 27.23 

χ
2
 p-value 0.000 0.000 

 

There are several tests for the weakness of instruments. The appropriate test for a 

GMM model is the Cragg-Donald Wald F statistic (Cragg & Donald, 1993) compared to 

critical values provided by Stock and Yogo (2005). This comparison is only valid under 

an assumption of i.i.d errors.  The extension to robustness under non-i.i.d assumptions 

results in the need to use a statistic robust to heteroskedastic and autocorrelated errors 

(Baum & Schaffer, 2007).  The statistic which is robust to this for testing weak 

identification is the Kleibergen Paap rk Wald F-statistic (Kleibergen & Paap, 2006). This 
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statistic is used and compared to the Stock and Yogo critical values. These critical values 

are test values at a 5% significance level. If the test is significant it indicates that the 

instruments are strong and induce a bias of no more than 10% of the bias from OLS 

(Stock and Yogo, 2005). Model results for this test are found in Table 2.6. It can be seen 

from the results that the test statistics for both models surpass the critical value. 

Table 2.6: Test for Weak Instruments 

 
Real Time 

GMM 

Day 

Ahead 

GMM 

rk Wald F-statistic 13.28 13.28 

Stock and Yogo 

Critical Value (10% 

Maximal LIML 

Size) 

8.68 8.68 

 

The final test is to determine if the instruments are exogenous to the error term. In 

the methods section it was described that there may be non-economic factors left in the 

error term. If any of these are correlated with the instruments it would invalidate them. 

All models are overidentified with one endogenous variables and two excluded 

instruments, allowing for testing of the validity of the assumption that the instruments 

are uncorrelated with the error term. The Hansen J statistic (Hansen, 1982) is used for 

the test of overidentifying restrictions. This tests the null hypothesis that the 

overidentifying restrictions, or the instruments, are valid. This test is robust under non-

i.i.d. error assumptions (Baum, Schaffer, & Stillman, 2003).  Results are found below in 

Table 2.7. The test of overidentifying restrictions fails to reject the null hypothesis 

indicating that the instruments in both GMM models are uncorrelated with the error 

term. 
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Table 2.7: Hansen Test 

 Real Time 

GMM 1 

Day 

Ahead 

GMM 1 

J-Statistic 0.828 0.066 

χ2
2
 p-

value 

0.36 0.80 

 

In the GMM real time flows model most of the coefficients take their expected sign. 

New York and PJM load are important predictors of flows with a one MWh increase in 

load in New York causing an increase in flows by 0.166 MWh. A one MWh increase in 

average hourly load in PJM causes a decrease in flows by 0.05 MWh. The New York 

natural gas price has a negative relationship with flows which is unexpected. Similarly 

increases in the natural gas price in Pennsylvania are associated with higher flows which 

is also unexpected.  

Increases in the cost of SO2 allowance price have a positive impact on flows which 

goes against the theoretical predictions. The hypothesis for this variable is that 

generation on the margin in Pennsylvania is probably higher emitting than the generation 

in New York because of the preponderance of coal in Pennsylvania, especially compared 

to New York. Therefore a higher SO2 allowance price would increase electricity prices 

in Pennsylvania compared to New York and subsequently reduce the incentive for 

imports. There may be a few explanations for the unexpected sign in the results. 

Marginal generators in New York may emit SO2 at a higher rate. Average oil emission 

rates are 12 lbs/MWh of SO2 and average coal rates are 13 lbs/MWh (Environmental 

Protection Agency, 2004). With many large coal plants having emission controls this 

rate could be much lower. The NYISO has a minimum oil burn or loss of gas reliability 

rule requiring dual fuel units to burn oil at certain load levels or in the case of natural gas 

supply disruption (New York Independent System Operator, 2014). High SO2 allowance 

prices could disproportionately impact these highly emitting units and thus electricity 

prices in New York, incentivizing increased imports. 
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The RGGI allowance price variable, the main focus of the study, is positive and 

insignificant. This coefficient is in the theoretically predicted direction but the 

insignificance of the coefficient makes for a lack of confidence on the size of the 

allowance price impact. It is notable that the use of instruments changes the sign on the 

RGGI variable to being positive. There is a downward bias from the endogeneity in the 

OLS estimate explaining the negative sign. There is no economic reason for the 

coefficient to be negative. This study therefore reports that there is no significant leakage 

due to the RGGI policy.  

Despite the potential for emissions leakage due to the RGGI policy this finding may 

be because leakage actually does not occur or is too small in magnitude to detect. In 

initial analysis of the policy, reducing electricity demand within the RGGI region was 

identified as a powerful means to mitigate emissions leakage (RGGI Inc. E.-S. , 2007a). 

Electricity demand has decreased in the time period that the RGGI policy has been in 

effect. Explanations for decreases in New York load are weather, energy efficiency 

programs, increases in on-site customer generation, and the economic downturn (RGGI 

Inc., 2010). This decrease in electric demand could effectively remove the load that 

would be served by otherwise priced out generators and therefore reduce the need for 

increased imports because of allowance holding requirements. Transmission constraints 

and local capacity requirements could also mitigate emissions leakage. Transmission 

thermal ratings and system stability requirements limit the amount of electric power that 

can be imported into New York, regardless of short-term economics.  For example, total 

transmission capability for imports from the PJM Interconnection is typically limited to 

a range of 2,800 to 3,660 MW
5
. Additionally, flows from Pennsylvania to New York 

often do not follow economic signals. 

In 2010, 2011, and 2012 the average price between the NYISO and PJM was found 

to be inconsistent with the direction of average flows in yearly analyses of the PJM 

market (Monitoring Analytics, LLC, 2011, 2012, and 2013). Over the total time period 

analyzed, the average real time price difference between New York and Pennsylvania at 

their border zones was -$2.34 and in the day ahead market $0.05. In addition there were 

1198 days where the average price difference was negative in the real time market and 

                                                 

5
 http://mis.nyiso.com/public/P-8list.htm (Date Last Accessed: April 3, 2015) 

http://mis.nyiso.com/public/P-8list.htm
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913 days during which the average price difference was negative in the day ahead 

market. Despite the negative average price differences, New York was a net importer 

from Pennsylvania on every day during the time period. Finally, the correlation 

coefficients between real time and day ahead imports and the price difference between 

New York and Pennsylvania at their border are only -0.018 and -0.023. This low 

correlation casts further doubt on flows following traditional economic signals. 

There are a variety of situations where system operators may schedule flows for non-

economic reasons such as line congestion, generator trips, and other events that occur on 

the system. Many of the larger load areas in New York also have reliability requirements 

for the amount of generation that must be locally produced. In addition, State of the 

Market reports for PJM by Monitoring Analytics (2011), identify several reasons for 

unexpected prices and transaction levels: different rules governing external transactions 

for the NYISO and PJM, a lack of built in time lag for those rules, and the risk of 

external transactions. All of these reasons could contribute to the inability of the RGGI 

allowance price to have an impact on imports. 

2.7 Conclusion 

This chapter develops models of Pennsylvania CO2 emissions and the flows from 

Pennsylvania to New York in an attempt to determine if there has been leakage from the 

Regional Greenhouse Gas Initiative. The Pennsylvania CO2 emissions model tests for an 

impact of the RGGI allowance price on emissions holding load, fuel prices, NOx and 

SO2 allowance prices, and nuclear generation constant. The flows models use the major 

determinants of the price difference between New York and Pennsylvania. Due to 

simultaneity bias between flows and the RGGI allowance price it is instrumented with 

GDP expectations and ISO New England coal generation. The coefficient estimates are 

negative in the emissions model and positive, as predicted, in the flows models. The 

coefficients on the RGGI allowance price are insignificant in both the emission and 

flows models. As a result this research is unable to conclude that the RGGI program and 

associated allowance price has resulted in emissions leakage. 

There are several reasons the impact of the RGGI allowance price on flows could be 

small or negligible. Predominantly, flows from Pennsylvania to New York do not follow 
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economic price signals as the prices in PJM are, on average higher. Despite this, total 

daily flows during the time span never go from New York to Pennsylvania. There are 

also many differences in rules between the NYISO and PJM systems, reliability rules, 

and transmission limits which may limit the incentives of economic signals, and prevent 

the RGGI policy from impacting imports. 
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3. Estimating Generator Specific Emission Functions 

3.1 Introduction 

The power generation sector is one of the largest producers of greenhouse gas 

emissions in the United States. The Environmental Protection Agency (EPA) estimates 

that 32% of U.S. greenhouse gases are produced by the power generation sector
6
. The 

main three pollutants in this sector are carbon dioxide (CO2), sulphur dioxide (SO2), and 

nitrous oxides (NOx). The latter two are large contributors to health related pollution 

problems such as acid rain. The EPA requires most generators to report hourly SO2 and 

NOx emissions as part of their Acid Rain Program (ARP) and the Clean Air Interstate 

Rule (CAIR) in Part 75 of Title 40 of the code of federal regulations. These programs 

reduce emissions by establishing cap and trade markets for NOx and SO2 emissions 

allowances. Additionally a CO2 cap and trade market exists amongst some Northeast 

states in the form of the Regional Greenhouse Gas Initiative (RGGI). There are also 

renewable portfolio energy standards and wind generation tax credits supporting wind 

generation. In order to address climate change much further work has to be done in 

regulating emissions and incentivizing changes to the power sector as it moves to clean 

renewable energy. In order to analyze the impact of future policies or changes in the 

electricity system on emissions it is important to have good models that can accurately 

predict emissions. This provides the ability to analyze the impacts on emissions from 

different policies.  

Emissions from electric generators are complicated due to the fact that they are 

produced at different rates depending on internal generator factors such as the 

temperature of combustion, how much oxygen is available to burn with the fuel, the type 

of fuel, and emission controls to name a few aspects. Using simple assumptions such as 

constant heat rates, emissions that increase linearly with generation, or omitting large 

generator operation changes such as startup, shutdown, and ramping can lead to 

inaccurate emission estimates.  

                                                 

6
 http://www.epa.gov/climatechange/ghgemissions/sources/electricity.html (Date Last Accessed: April 3, 

2015) 
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As policies targeting emissions from the power sector become more common, 

especially for CO2 emissions, it will be important to be able to have accurate forecasts 

of emissions in order to create effective emission caps. Functions can also be used to 

estimate emissions if continuous monitoring system (CEMS) data is unavailable or 

monitoring equipment is down. Simulations of power generation can also use the 

functions to accurately estimate emissions under different dispatch scenarios or network 

changes that would change generator operation, such as scenarios where wind 

penetration is promoted.  

These emission functions improve the accuracy of emission predictions over simpler 

models or assumptions and have a variety of uses. They can be used to estimate the 

impacts of any policy which may change the operation of generators. For example, when 

there is more wind power on the system generators often have to back it up by ramping 

up and down because of the stochastic nature of wind generation without battery back-

up.  In order to forecast emissions under this scenario the model must be able to 

accurately forecast emissions during ramping, startup, and shutdown. Accurate hourly 

emission functions are estimated which take into account all of these factors.  

3.2 Background 

Emission functions are estimated which accurately estimate emissions given hourly 

generation of a generator. The functions are designed for NOx, SO2, and heat input 

(which is proportional to CO2 emissions). By taking into account the impacts of startup, 

shutdown, upramp, and downramp, these functions can predict emissions for the full 

spectrum of generator operation. They are estimated specifically for each individual 

generator in an automated way making their implementation relatively easy. The results 

are functions that can estimate accurately over all types of hours. 

The emission functions are designed for three different types of generators. The first 

type is a steam turbine which in the data set used here is fired by coal or natural gas. 

These generators burn fuel to heat water and convert it into steam. The heated steam is 

used to turn a turbine and produce electricity. It is then condensed and heated again in a 

closed cycle where the fuel never interacts with the turbine or water. The second type is 

a simple cycle generator which is fueled by natural gas for all generators researched in 
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this chapter, but can also be fueled by oil. These generators use a combustion turbine 

which ignites the fuel in a chamber with compressed air. This hot gaseous mixture is 

then sent to the turbine where it expands and drives the turbine to generate electricity. 

The third type is a combined cycle generator. It consists of a combustion turbine and a 

steam turbine. Waste heat from the combustion turbine portion is used to generate steam 

which drives the steam turbine. 

In order to produce electricity generators must burn fuel. During combustion there 

are a variety of thermodynamic and chemical reactions which occur to produce 

emissions. Depending on how efficiently the generator is transferring heat from 

combustion into steam creation and how efficiently the fuel is burning emission rates can 

vary greatly. The creation of CO2 and SO2 emissions are a result of this fuel combustion. 

Both carbon (C) and sulfur (S) are found in fossil fuels. When the fuel burns they react 

with oxygen to create heat, carbon dioxide, and sulfur dioxide: 

C + O2  → CO2 + 14,093 Btu/lb 

S + O2 → SO2 + 3,984 Btu/lb 

Nitrous oxides come from both thermal and fuel reactions due to nitrogen being 

found in the air and in some fossil fuels, especially coal. Natural gas fired units mostly 

have thermal NOx emissions while 75% of NOx emissions produced by coal generators 

can come from fuel burning  (The Babcock & Wilcox Company, 2005).  Thermal NOx 

emissions exponentially increase with temperature and are also dependent on oxygen. 

Excess oxygen can promote higher flame temperatures which promotes NOx formation.  

Generators convert heat energy into electricity and do this at different efficiencies 

depending on generator design and operation. The major impact on this conversion 

efficiency is heat loss. Heat can be lost in a variety of ways in the generator. Excess air 

in the combustion chamber can absorb heat, the emission of flue gas out of the stack 

removes heat from the system, there is transfer of heat through walls, and losses of 

unburned fuel from incomplete combustion. Major generation changes can change many 

of these factors. 

Startup can impact emissions and heat input depending on the state the generator is 

in. Startup is generally initiated with natural gas or residual oil due to low heat rates, 

inefficient combustion, and safety factors (The Babcock & Wilcox Company, 2005). 
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Cold starts, or startups after long periods of not running, can result in the lowest 

combustion efficiency and can require long periods of time before the generator is 

operating. Generators must fire at low heat in order to avoid materials expanding too 

quickly. Additionally low load operation of generators can lead to poor distribution of 

air to burners which can lead to low levels of fuel-air mixing and inefficient combustion. 

Incomplete combustion is a large heat loss and waste of fuel that could be converted into 

generation.  

Shutdown of units is done whenever possible in a controlled manner over time.  The 

firing rate of the generator is reduced until operating at a minimum capacity before the 

fuel is shut off and boiler is purged with air, effectively ending generation and 

emissions. Fuel shut off and boiler purging is performed immediately in the case of 

emergency shutdowns. 

The ramping of units up and down requires controlling excess air in order to burn 

fuel at different rates. When downramping generators may maintain excess air if they 

expect to upramp again, or will adjust the air-fuel mixture after downramping. Excess air 

can promote NOx emissions and cause fuel to burn quicker. Adjustments to the burner to 

ramp a unit can also vary the turbulence of air and fuel flow rates in the burners. The 

result of this is an increase in air-fuel mixing which causes an increase in combustion 

intensity, allowing for operation with less air, and increased boiler efficiency (The 

Babcock & Wilcox Company, 2005). This could cause upramps to momentarily increase 

generator efficiency. 

Due to these complicated operations it is important to estimate emission functions 

for individual generators instead of choosing one function for all generators or even all 

generators of a given type. All of the operations above change depending on the type of 

generator, the fuel used, the operation of the generator, and the design of the generator. 

For example, cold starts of coal steam turbine generators require a long lead time 

because their superheaters cannot quickly go from being cold to very hot. Gas steam 

turbine generators operating under lower pressure can startup much quicker and 

combined cycle and simple cycle units can startup almost instantly (The Babcock & 

Wilcox Company, 2005). Many of these operations may have lasting effects over time. 

Some generator types such as combined cycle and simple cycle units are designed to be 
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able to change generation output quickly and efficiently. This may result in lower 

impacts of operation changes than steam turbine units fired by coal or natural gas. All of 

this points for the need to allow for emission functions to be estimated specifically for 

each individual generator and to allow for different time spans of operation impact, and 

different coefficient estimates on those impacts. 

3.3 Emission Functions Data 

 Data for estimating emission functions is taken from 2010 U.S. Environmental 

Protection Agency (EPA) Continuous Emissions Monitoring Systems (CEMs) data. The 

dataset contains information on the variables found below in Table 3.1.  

Table 3.1: CEMS Variables 

Variable Name Description Measure 

GLOAD Gross Generator Output MWh 

NOXMASS Nitrogen Oxide Emissions lb/hour 

SO2MASS Sulfur Dioxide Emissions lb/hour 

HTINPUT Heat Input mmBtu/hour 

 

 These variables have hourly observations for the entire year. The dataset covers 

every electric generator in the U.S. larger than 25 megawatts (MW) in size that produces 

NOx or SO2
 
emissions. Each generator in the dataset is identified by an ORIS ID and 

boiler id. In order to determine the location of each generator this identification must be 

matched with the identification numbers found in the Energy Information Agency (EIA) 

form 860. These numbers in many cases do not match exactly. In these cases there are 

multiple EIA identification numbers that are similar and so additional information is 

used to ensure a correct match. The EIA dataset reports the max output of each generator 

and so by calculating the maximum reported output in the EPA dataset this can be used 

to further match generators. Upon matching generators information is added on location, 

emission control equipment, boiler type, and fuel type to the EPA data. Finally, the 

aggregated EPA dataset is broken down into individual data sets for each generator 
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which are put into four categories.  Those four categories are coal fired steam turbines,  

natural gas fired steam turbines, combined cycle, and simple cycle units. 

 In addition to the variables given in the datset, additional variables are created. These 

created variables are found below in Table 3.2 with descriptions of the calculations used 

to create them. In order to estimate the emissions impacts on CO2, which is not reported 

in the EPA dataset, heat input can be converted into CO2 emissions. The conversion is a 

proportional multiplier to heat input which can be found in an EPA report on emissions 

factors (Environmental Protection Agency, 2004). Heat input and CO2 emissions are 

referred to interchangeably.  

Table 3.2: Created Variables 

Variable Name Calculation Unit 

Upramp {
𝐺𝐿𝑂𝐴𝐷𝑡 − 𝐺𝐿𝑂𝐴𝐷𝑡−1 𝑖𝑓 ≥ 0

𝐸𝑙𝑠𝑒 0
 MWh 

Downramp {
𝐺𝐿𝑂𝐴𝐷𝑡 − 𝐺𝐿𝑂𝐴𝐷𝑡−1 𝑖𝑓 ≤  0

𝐸𝑙𝑠𝑒 0
 MWh 

Startup 
1 if generator has started up in 

the previous hour. 0 otherwise. 

Dummy 

Variable 

Shutdown 
1 if generator Shutdown in the 

following hour. 0 otherwise 

Dummy 

Variable 

GenOn 

1 if the generator is on (has 

htinput > 0) 

0 if the generator is off  

(has htinput = 0) 

Dummy 

Variable 

 

 The CEMS data is primarily measured data from CEMS for each generator. There 

are hours for each generator when they do not report emissions over the entire hour, or 

use calculated instead of measured values. Once per day generators are required to 

calibrate their CEMS equipment. During this calibration hour generators only need to 

use two 15 minute apart data points to calculate hourly emissions instead of the usual 

minimum of 4 data points. Whenever the CEMS equipment is down for reasons other 
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than the calibration, the calibration test results in the a determination that the CEMS 

equipment is out of control, or if at any other point the CEMS equipment is determined 

to be out of control, then calculated emissions are used. In order to ensure this change in 

measurement of emissions does not bias the results it is controled for. Data was obtained 

by special request from the EPA containing information on calibration hours and the 

method of determination codes (MODC) for each hour. Using the calibration data a 

dummy variable is created capturing whether or not a unit calibrated during a given 

hour. Included with the calibration dummy variable are interactions between it and 

startup, shutdown, upramp, and downramp. This is because generators may try to 

calibrate during hours which have the characteristic of different average emission rates 

in different parts of the hour. In this way they can calibrate during a high emission rate 

portion of the hour, and not use that portion of the hour in the calculation of hourly 

emissions. Hours of startup, shutdown, upramp, and downramp all can have the 

characteristic of different emission rates during different parts of the hour. 

 The MODC data provides information on wether the data provided is measured or 

not. The MODC information is represented in five different dummy variables. The 

dummy variables take a value of 1 if the associated reported data is anything but 

measured by the CEMS equipment.These five different variables cover measurements of 

the flow of fuel, level of oxygen in the burner, CO2 measurement, NOx measurement, 

and SO2 measurement. For functions of heat input the flow, oxygen, and CO2 MODC 

dummy variables are included. The flows variable is included because heat input is 

calculated by the flow of fuel into the generator. The CO2 and O2 are included because 

their measurement may be needed for additional calculations of heat input since the level 

of oxygen should impact the heat of the unit. CO2 is another way to calculate the amount 

of fuel burned if flow is not being measured. In the NOx emission model the NOx 

MODC dummy variable as well as the flow and oxygen dummy variables are included 

since both fuel input and oxygen can be used to calculate NOx emissions. Similarly, for 

SO2 emission models the SO2 MODC dummy variable as well as the flow and oxygen 

dummy variables are included. By including these measurement dummy variables as 

well as the calibration variables, any bias that would have been introduced from 

calculating heat input or emissions is controlled for.  
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3.4 Emission Function Methodology 

Ordinary least squares (OLS) estimates of time series data often exhibit strong serial 

correlation in their errors, meaning that current errors are correlated with past errors. 

This violates the standard assumptions of OLS regression, resulting in standard errors 

that are biased and estimates which are no longer efficient. This problem is readily 

apparent in the data and can be seen in the Autocorrelation Function (ACF) and Partial-

autocorrelation Function (PACF) graphs which are provided in Figure 3.11 for both the 

raw and deseasonalized data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the raw graphs there is both hourly and monthly seasonality in the data. Hourly 

seasonality comes from the hourly electricity demand patterns that occur everyday, with 

peak demand occuring in the middle of the day, and a valley late in the night or early in 

the morning. Monthly seasonality comes from patterns through the year of electricity 

demand, primarily based on temperature with a maximum at the hieight of summer, 

another peak in the middle of winter, and then valleys in the shoulder months (Spring 

and Fall).  
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Figure 3.1: ACF and PACF 
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Removing the impact of seasonality allows a closer inspection of the ACF and PACF 

plots, as well as allowing for tests on stationarity of the data. Dependent variables are 

tested for stationarity with three tests for robustness for 2 generators of each of the four 

generator classes. An Augmented Dickey Fuller test (Dickey & Fuller, 1981), Phillips-

Perron test (Phillips & Perron, 1988), and KPSS test (Kwiatkowski, Phillips, Schmidt, & 

Shin, 1992) on the deseasonalized dependent variables. All the dependent variable 

specifications are found to be stationary for the 8 generators tested 

There are two solutions to the serial correlation problem. The standard errors can be 

corrected or additional information can be utilized from the dynamics of the serial 

correlation. By incorporating the dynamics in the errors it is possible to improve the 

accuracy of out-of-sample forecasts. This is important since the emission functions are 

designed with forecasting in mind.  

The emission functions for each generator in the Texas are estimated using ARMAX 

models. ARMAX allows for forecasts to include underlying data generating processes 

from autoregressive (AR) and moving average (MA) components in addition to the use 

of exogenous explanatory variables (denoted by the “X” in ARMAX). ARMAX models 

are often used to forecast engineered and electric systems including the behavior of 

electric load, electricity prices, and wind generation (Alfares & Nazeeruddin, 2002), 

(Aggarwal, Saini, & Kumar, 2009), and (Soman, Zareipour, Malik, & Mandal, 2010). 

The final estimated emission equations have the following form for generator  i and 

emission type e (NOx, SO2, or CO2): 

Eiet = ω1GenOnit + ∑𝑎=1
23 gaHourlyInteractionit +  ∑𝑎𝑎=1

11 haaMonthlyInteractionit + 

α1GLOADit + α2(GLOADit)
2
 + ∑𝑏

𝑧βbUprampi(t-b) +  ∑𝑐
𝑦

γc(Uprampi(t-c))
2
 + ∑𝑑

𝑥δd(Uprampi(t-

d)*GLOADi(t-d)) + ∑𝑒
𝑤ϵeDownrampi(t-e) + ∑𝑓

𝑣ζf(Downrampi(t-f))
2
 + ∑𝑔

𝑢ηg(Downrampi(t-

g)*GLOADi(t-g)) + ∑ℎ= 
𝑇 κhStartupi(t-h) + ∑𝑗 

𝑆 𝜆jWarmstarti(t+j) + ∑𝑘 
𝑟 𝜇kColdstarti(t+k)  + 

 

∑𝑙
𝑞
ξlShutdowni(t+l) + ∑𝑚

𝑝 πm→ρCalibrationVars  +  ∑𝑛
𝑜ρn→oMODCVars + vt 

vt =  ∑𝑛=1
𝑝

ϕnEie(t-n) + ∑𝑚
𝑞

θmϵt-m 

 

where vt is the error term and ϕ is the n
th

 order autocorrelation parameter and θ the m
th

 

order moving-average parameter. The parameters lag and lead length are iteratively 
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chosen with max and minimums: -1 ≤ b, c, d, e, f, g, l ≤ 20, and 10 ≥ j, k ≤ 0, and -10 ≤ h 

≤ 20, and 1 ≥ n ≤ 3 and 0 ≥ m ≤ 3. HourlyInteraction and MonthlyInteraction are 

seasonal dummy variables interacted with unit hourly generation to allow for different 

seasonal impacts. GLOAD, Upramp, Downramp, Startup, and Shutdown variables are 

described in Table 3.2. Warmstart and Coldstart are dummy variables capturing how 

long a generator has been offline for and are described in more detail in following 

paragraphs. CalibrationVars and MODCVars are controls for times when the generator 

is not reporting measured data for an entire hour and are described in more detail in the 

following paragraphs.  

The equation has no constant when the unit is off but does when the unit is on. This 

is done by estimating the equation without a constant and includes the GenOn dummy 

variable. This forces the y-interecept to be zero when the unit is off and has no heat 

input. At these times it is impossible for there to be emissions produced because there is 

no combustion taking place. When the generator is on it will then have a constant which 

will be the ω coefficient on the GenOn variable.  

Included in the equation are hourly and monthly seasonal impacts. 23 hourly dummy 

variables and 11 monthly dummy variables are created and multiplied by unit output in 

order to allow the seasonal impact to vary with the level of generator output.  

Following the seasonal variables are the impacts of unit electricity output. This is 

modeled as a quadratic function as emissions are a non-linear function of generator 

output. The upramp and downramp variables are modeled in the same way. Each of 

them have a quadratic function and then both are interacted with unit output. Larger 

upramps may be fundamentally different from smaller upramps. Larger upramps mean 

moving to a much different set point while smaller ones may just be load following 

adjustments. These probably have different magnitudes and allowing for a non-linear 

impact of upramp can capture this. The interaction with unit output allows for the model 

to control for the impact of ramping up, down, to, and from different generator set 

points.  

The ramping and startup variables can have up to 20 hourly lags and the shutdown 

variable can have 20 hourly leads. Depending on the generator type the impacts of these 

three operations will last for differing amounts of time. Coal steam turbine generators 
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take a long time to move from one set point to another, to startup, and shutdown. 

Therefore they will likely have more persistent impacts from these operations. A 

combined cycle or simple cycle generator is designed to be very efficient at all of these 

operations and therefore may have less lags or smaller impacts on emissions and heat 

input for these lags.  

The impacts of startup occur for some units before they have started generating 

electricity. In this time span before they produce electricity they are burning fuel and 

producing emissions and working on getting equipment online and slowly heating up the 

inside of the generator. Depending on how long the generator has been off, what kind of 

generator it is, and what kind of fuel is used for startup, the impacts on emissions and 

heat input during these hours can change. In order to capture the impact of how long a 

generator has been off before starting up, dummy variables are created for cold startup, 

warm startup, and hot startup.  

A cold start is considered to be when a unit has been off by 120 hours or more. A 

warm start is when a generator has been off for 25-119 hours and a hot start if the unit 

has been off for 24 hours or less. These categories of start are used by the EPA 

(Kokopeli, Schreifels, & Forte, 2013) and are defined by Steven Lefton and Douglas 

Hilleman (2011). Up to 10 leads are allowed of the dummy variables capturing  both the 

length of startup, depending on its type, and the different emission impacts of the startup 

period. Once a generator has started producing electricity it is not considered to have 

impacts differing based upon the type of startup it underwent. Therefore only the dummy 

variables capturing type of startup as leads and not lags are included. Startup itself is 

included with both leads and lags, making the type of startup dummy variables modifiers 

during the time when the generator is preparing itself to generate electricity. Then when 

the generator starts producing electricity, all startups are treated the same. 

3.4.1 Automated Function Estimation 

Emission functions are estimated for 244 generators in Texas. To estimate functions 

by hand for every generator would be time consuming. Therefore an automated 

procedure has been coded to estimate the functions of each emission type for each 

generator. The estimation procedure consists of two steps. The first is an iterative 
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procedure to determine the number of lags and leads for each each variable for a 

particular generator and emission type. All generator types and emission types are 

assumed to have at least an autoregressive structure. Therefore the first step is estimated 

with Newey-West standard errors since errors under standard OLS are known to be 

incorrect due to the autocorrelation. An iterative procedure is used to determine the lag 

or lead length of each variable. The function always includes at least the unlagged 

variable.  

The iteration procedure begins by estimating the base equation which consists of the 

GenOn variable, the seasonal controls, the associated MODC dummy variables, the 

calibration controls, and the quadratic unit output function. The first variable is added 

with 20 lags. If the last lag is insignificant it is removed. This removal process is 

repeated until the last lag is significant at the 5% level or better. When this is done for 

the first variable the next variable is added and the same process occurs. Once the 

number of lags for the added variable are determined the previous variable is rechecked. 

The rechecking process occurs by adding lags until an insignificant lag is added. Then it 

is reduced again until the final lag is significant. By repeating the process the number of 

lags can change dynamically as variables are added to the equation. Lags of all 

previously added variables can be added or removed whenever a new variable is 

introduced. The following results give a snapshot from the middle of this process. 20 

startup lags are added to the model and reduced one by one down to lag 13. 

 

Variable Coefficient P-Value 

L12.startup 197.4 0.017 

L13.startup 138.7 0.079 

 

Lag 13 is removed because its p-value is greater than 0.05.  

 

L11.startup 149.6 0.060 

L12.startup 196.7 0.017 
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The iteration on startup lags stops because lag 12 of startup has a p-value of 0.017 which 

is less than 0.05, the significance cut-off. 20 leads of shutdown are then added to the 

model. These are reduced one by one until a significant one is found. In this case lead 6 

has a p-value less than 0.05. 

 

Variable Coefficient P-Value 

l11startup 148.6606 0.062 

l12startup 196.1282 0.017 

shutdown -656.0645 0.001 

fshutdown -42.48822 0.223 

f2shutdown 59.05545 0.094 

f3shutdown 82.18836 0.204 

f4shutdown 11.61049 0.885 

f5shutdown -103.1538 0.141 

f6shutdown -194.2337 0.029 

Now that the number of leads of shutdown has been determined, the program rechecks 

the startup variable by adding back in lag 13, to see if it has become significant due to 

the change in model specification. 

Variable Coefficient P-Value 

l11startup 149.3362 0.061 

l12startup 196.8841 0.017 

l13startup 138.1024 0.081 

Lag 13 has not become significant so the program reduces lags for startup again until 

finding a significant lag. Once again the 12
th

 lag is significant so the program stops 

removing startup lags there. 

l11startup 148.6606 0.062 

l12startup 196.1282 0.017 

The program adds in the next variable and continues this process of determining the lag 

length of the new variable and then rechecking previously added variables until the full 

model is chosen.  
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Once the first step of choosing lag and lead lengths is completeted the ARMA 

structure of the error term is estimated. The chosen model from the first step is estimated 

with each combination of AR and MA terms up to 3 AR and 3 MA terms. Increasing the 

number of terms past 3 makes the estimation take an infeasible amount of time. In order 

to choose the best ARMA structure the model with the lowest Akaike Information 

Criterion (AIC) value is used. Upon completion of the two step estimation the fully 

estimated equation is saved and can be used to forecast or determine the estimated 

impacts on emissions of different generator operations 

3.4.2 Example Results 

The following section shows some graphs to illustrate what some of the data looks 

like and what the functions results end up looking like. Used in the example is a coal 

generator. Figure 3.2 shows a graph of a coal unit’s generation and emissions in 2010. 

Each of the scatter plots show daily observations of a single coal generator’s  

generation (MW), heat input (mmBtu), NOx emissions (lbs), and SO2 emissions (lbs). 

 

 

 

Figure 3.2: Coal Unit. Generation and Emissions through Time 
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Looking at the top left graph of generation it can be seen that despite the large 

number of data points they cluster around a few different levels. At 0 generation are 

extended periods of time when the coal unit is not running. At the top of the generation 

graph is maximum capacity. There is another line of generation just below this, and then 

a minimum generation line. It can be seen in that in the summer months this minimum is 

higher than the other months. The emissions graphs reflect the generation to a large 

extend but show much larger variation. The heat input graph in the top right and the NOx 

emissions graph in the bottom left show some of the same characteristics as the 

generation graph. They both show clusters of data at max and minimum generation, with 

the NOx emissions graph having more variation. The SO2 emissions graph in the bottom 

right of Figure 3.2 shows a lot of variance and less clustering within any specific range.  

Figure 3.3, below, shows a graph of some of the relationships between emissions and 

generator output for the same coal unit as Figure 3.2. The top left graph displays heat 

input (mmBtu) on the vertical axis, the top right graph NOx emissions (lbs), and the 

bottom left graph has SO2 emissions (lbs). All three of these are graphed against 

generation (MWh) on the horizontal axis in order to examine their relationship. The 

main predictor in the emission functions is the generation each unit. The graph for heat 

input is relatively linear with heteroskedasticity as generation increases. The NOx 

emissions graph is very non-linear and the graph for SO2 emissions shows the strongest 

heteroskedasticity as generation increases.  
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     Figure 3.3: Coal Unit. Emissions vs Generator Output 

Table 3.3, below, shows an example output of regression results for a coal generator. 

In order to limit the amount of space the table takes up variables are in shorthand and are 

organized into multiple columns. GLOAD is the variable for generator output. A f and l 

followed by a number indicate leads and lags of that number respectively. This generator 

did not have any hours in which it did not report measured data, therefore no MODC 

code variables are in the output. From this output one can see the various lag lengths 

chosen for the different variables. For example, 19 startup lags were chosen and only 2 

shutdown leads were selected. 

Table 3.3: Example Regression Results. Coal Generator. Heat Input (mmBtu) 

Base function, 

Startup, 

Shutdown 

Coefficients
1 

Downramp and 

Interactions 

Coefficients
1 

Upramp and 

Interactions 

Coefficients
1 

gload2 11.20*** fdownramp -0.625*** fupramp 0.176*** 

sqgload2 -0.0144*** downramp 2.195*** upramp -1.332*** 

genon 27.37*** Ldownramp 2.099*** lupramp -2.006*** 

cal dummy 5.371*** l2downramp 2.039*** l2upramp -1.980*** 

cal*fupramp -0.130*** l3downramp 2.050*** l3upramp -1.774*** 
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Base function, 

Startup, 

Shutdown 

Coefficients
1 

Downramp and 

Interactions 

Coefficients
1 

Upramp and 

Interactions 

Coefficients
1 

cal*fdownramp -0.0258*** l4downramp 1.984*** l4upramp -2.066*** 

cal*upramp -0.104*** l5downramp 1.966*** l5upramp -2.006*** 

cal*downramp -0.00473 l6downramp 1.662*** l6upramp -1.980*** 

cal*gload -26.89*** l7downramp 1.598*** l7upramp -1.774*** 

cal*startup 13.85*** l8downramp 1.416*** l8upramp -1.644*** 

cal*shutdown -0.102*** l9downramp 1.251*** l9upramp -1.359*** 

startup 13.42*** l10downramp 1.148*** l10upramp -1.367*** 

lstartup 83.47*** l11downramp 1.014*** l11upramp -1.173*** 

l2startup 70.30*** l12downramp 0.676*** l12upramp -1.061*** 

l3startup 61.35*** l13downramp 0.606*** l13upramp -0.823*** 

l4startup 52.45*** l14downramp 0.400*** l14upramp -0.699*** 

l5startup 49.47*** l15downramp 0.354*** l15upramp -0.538*** 

l6startup 44.81*** l16downramp 0.214*** l16upramp -0.377*** 

l7startup 44.40*** l17downramp 0.109** l17upramp -0.243*** 

l8startup 40.96*** l18downramp 0.0925** l18upramp -0.151*** 

l9startup 38.27*** fsqdownramp 0.00212*** fsqupramp -0.000554** 

l10startup 27.94*** sqdownramp 0.00148*** squpramp -0.00272*** 

l11startup 30.92*** lsqdownramp -0.000408 lsqupramp 0.00120*** 

l12startup 29.18*** l2sqdownramp 0.00164*** l2squpramp 0.000106 

l13startup 22.03*** l3sqdownramp 0.000269 l3squpramp 0.0000929 

l14startup 21.57*** l4sqdownramp 0.000726** l4squpramp 0.000262 

l15startup 16.26*** l5sqdownramp 0.000391 l5squpramp 0.000182 

l16startup 10.72*** l6sqdownramp 0.00141*** l6squpramp 0.00172*** 

l17startup 10.03*** l7sqdownramp 0.000993** l7squpramp 0.00125*** 

l18startup 5.679*** l8sqdownramp 0.000395 l8squpramp 0.00117*** 

l19startup 4.701*** l9sqdownramp 0.00127** l9squpramp 0.00126** 

f3warmstart 1.034 fdowngload 0.00409*** l10squpramp 0.000732 

f2warmstart 2.971 downgload -0.0304*** l11squpramp 0.000265 

fwarmstart 3.027 ldowngload -0.0244*** l12squpramp 0.000939* 

warmstart 14.79*** l2downgload -0.0257*** l13squpramp 0.000419 

f3hotstart -2.636*** l3downgload -0.0246*** l14squpramp 0.00117* 

f2hotstart 1.437 l4downgload -0.0243*** l15squpramp 0.00148** 

fhotstart 1.384 l5downgload -0.0238*** fupgload -0.00137*** 

hotstart 17.25*** l6downgload -0.0214*** upgload 0.0202*** 

shutdown -56.55*** l7downgload -0.0201*** lupgload 0.0285*** 

fshutdown -3.661*** l8downgload -0.0177*** l2upgload 0.0259*** 

f2shutdown 2.759*** l9downgload -0.0162*** l3upgload 0.0250*** 

  l10downgload -0.0148*** l4upgload 0.0240*** 

L.AR -0.702*** l11downgload -0.0135*** l5upgload 0.0232*** 

L2.AR 0.595*** l12downgload -0.0104*** l6upgload 0.0215*** 

L3.AR 0.896*** l13downgload -0.00807*** l7upgload 0.0198*** 

L.MA 0.802*** l14downgload -0.00556*** l8upgload 0.0178*** 

L2.MA -0.414*** l15downgload -0.00581*** l9upgload 0.0144*** 

L3.MA -0.798*** l16downgload -0.00297*** l10upgload 0.0153*** 

  l17downgload -0.00142** l11upgload 0.0132*** 
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Base function, 

Startup, 

Shutdown 

Coefficients
1 

Downramp and 

Interactions 

Coefficients
1 

Upramp and 

Interactions 

Coefficients
1 

Monthly 

Controls 

Yes*** l18downgload -0.00166*** l12upgload 0.0111*** 

Hourly Controls Yes*** l19downgload -0.000486*** l13upgload 0.00924*** 

    l14upgload 0.00690*** 

N 8736   l15upgload 0.00483*** 
1
+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001 l16upgload 0.00380*** 

l17upgload 0.00271*** 

l18upgload 0.00139** 

   

The results are meant to be illustrative. For each type of unit the average results from 

the model are reported for each of the various hourly operation types. These results come 

from sums of coefficients like those listed above. Most generators do not have so many 

lagged impacts but summing across all the lags and leads allow for an estimate of the 

total impact of that operation. In this way the total impact through time of startup, 

shutdown, upramp, and downramp on emissions can be estimated.  

3.5 Coal Results 

The first result to report is how well the emission functions work. In order to do this 

out-of-sample emissions are estimated for each generator’s function. Applying each 

estimated function to 2012 CEMS data provides us with forecasts of each emission type. 

These results are then compared to simpler models in order to make the case that the 

complexity of the emission functions is useful and not over fitting. The best model that 

can be generalized and applied to many generators to estimate emissions under different 

scenarios, simulations, or other purposes is one which can accurately estimate total 

emissions, as well as emissions under different operating hour types. If a model cannot 

accurately predict emissions during hours in which a generator upramps, downramps, 

starts up, or shuts down, then any application of that model to a scenario with many 

instances of them will be inaccurate. 

There are two performance metrics used to determine how well a model predicts. 

The first metric for in-sample predictions and out-of-sample forecasts is percentage 

error. This performance metric is used because emissions totals have interpretable 

meaning for most potential emissions function applications. Analyzing total emissions is 
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often used to determine societal damages, cap and trade program emission limits and 

costs, and environmental impacts. Therefore the ability for the functions to estimate total 

emissions over the time span is important. Percentage error is calculated as: 

100 ∗ (∑ 𝑓𝑖 − ∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
𝑖=1 ) 

where 𝑓𝑖 is each i hour’s forecasted emissions and 𝑦𝑖 is each i hour’s actual emissions. 

The percentage error can be interpreted as a measure of bias in the calculation of total 

emissions. 

The second metric is the mean absolute error. This second metric allows for a 

comparison to be made of how accurate the models are. Mean absolute error is 

calculated as: 

1

𝑛
∗ ∑𝑖=1

𝑛 |𝑓𝑖 − 𝑦𝑖|. 

where 𝑓𝑖 is each i hour’s forecasted emissions and 𝑦𝑖 is each i hour’s actual emissions. 

This is a measure of, on average, how accurate each individual observation and by 

extension, how accurate the model predicts. 

Both metrics are calculated over the entire year, and for subsets of hours: only 

upramp hours, downramp hours, startup hours, and shutdown hours. For the subsets of 

hours the percentage error is calculated at different points in time. These different points 

of time for upramp, downramp, and startup are at time t when a generator has just 

performed the relevant operation, hour t+1 or the hour just after the relevant operation, 

and hour t+4 or four hours after the relevant operation. For shutdown the hours are t, t-1, 

and t-4 since the hours before shutdown occurs are important. The best model is one that 

can consistently forecast accurate emissions totals in all hour types. The percentage error 

is reported in each table with the mean absolute error in parentheses below it. 
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Table 3.4: Model Predictions and Forecasts: Heat Input 

Percent Error 

(Mean Absolute Error in Parentheses) 

 In-sample (2010) Out-of-sample (2012) 

 
Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

All hours 
-0.36 

(21.3) 

-0.17 

(95.2) 

-0.05 

(22.1) 

0.26 

(34.9) 

-3.62 

(205) 

-0.35 

(46.1) 

Upramp 

hours 

-0.41 

(48.8) 

-3.72 

(190) 

-0.06 

(38.5) 

-0.31 

(45.2) 

-4.78 

(251) 

-4.02 

(48.1) 

Upramp 

hours t+1 

-0.43 

(48.2) 

-0.62 

(172) 

-0.04 

(37.1) 

-0.51 

(44.7) 

-4.2 

(246) 

-1.97 

(46.4) 

Upramp 

hours t+4 

-0.46 

(47.0) 

-0.14 

(162) 

-0.04 

(35.0) 

-0.38 

(41.6) 

-4.6 

(196) 

0.30 

(41.4) 

Downramp 

hours 

-0.38 

(47.6) 

3.73 

(188) 

-0.02 

(35.5) 

0.40 

(40.4) 

5.26 

(246) 

-3.14 

(41.9) 

Downramp 

hours t+1 

-0.38 

(47.4) 

0.31 

(195) 

-0.09 

(35.8) 

-0.24 

(39.8) 

-3.14 

(235) 

2.6 

(41.4) 

Downramp 

hours t+4 

-0.45 

(46.9) 

-0.28 

(177) 

-0.07 

(35.1) 

-0.42 

(39.7) 

-3.69 

(213) 

0.67 

(40.4) 

Startup 

hours 

-2.3 

(108) 

-3.71 

(214) 

-0.74 

(247) 

-1.29 

(141) 

13.6 

(209) 

-92.8 

(252) 

Startup 

hours t+1 

-5.6 

(91.0) 

-21.9 

(476) 

-48.4 

(200) 

5.76 

(56.2) 

-84.2 

(398) 

-85.9 

(73.7) 

Startup 

hours t+4 

-5.5 

(46.0) 

-7.89 

(386) 

-14.2 

(71.9) 

4.39 

(13.5) 

-89.0 

(290) 

-24.1 

(48.9) 

Shutdown 

hours 

0.66 

(43.6) 

142.5 

(1494) 

13.1 

(648) 

-5.14 

(59.2) 

150.9 

(1587) 

34.3 

(959) 

Shutdown 

hours t-1 

0.76 

(90.3) 

-24.4 

(792) 

20.3 

(83.5) 

-1.50 

(53.0) 

70.6 

(496) 

13.5 

(73.3) 

Shutdowns 

hours t-4 

-0.32 

(39.7) 

-36.0 

(152) 

0.30 

(39.8) 

-1.02 

(12.6) 

75.2 

(269) 

4.02 

(37.7) 

 

Table 3.4, found above, reports these results for three models. Estimated model 

refers to the emission function determined by the methodology of this chapter. The 

ARMA only model is a pure ARMA forecast model of emissions. This model has no 

explanatory variables and only uses the ARMA terms determined as having the lowest 

AIC for the specific emission type and generator. The base model consists of a bare 

bones version of the fully estimated model. It contains generation, generation squared, 
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hourly and monthly controls, and the unlagged and unlead variables of startup, 

shutdown, upramp, and downramp as well as ARMA terms. 

The results of predicting and forecasting heat input for coal generators show that 

both the full estimated model and base model predict emissions well both within and 

out-of-sample. Within-sample the base model predicts with less bias in all hours except 

shutdown hours where it over predicts heat input by 13.1% at the time of shutdown and 

20.3% and hour before shutdown. The full estimated model is not as accurate in some of 

the hours. Considering the mean absolute error as a measure of accuracy, the base model 

is the most accurate in the ramping hours. However, in startup and shutdown hours the 

full estimated model is the most accurate in sample. 

For out-of-sample forecasts, the full estimated model outperforms the base model. 

Considering the bias in estimated emissions, as measured by percentage error, the total 

forecasted emissions over the entire year are only 0.26% higher than actual emissions. 

The full estimated model predicts accurately in the hours of ramping and following 

ramping. It predicts with less bias than the base model in the hour of upramps and 

downramps as well as the hour after. Four hours after, the models perform almost 

equally. The fully estimated model performs better in the hour of and hours after startup 

and shutdown compared to the base model and ARMA only model. In terms of accuracy 

the full estimated model is more accurate in every single hour type. All the hours of 

operation, and time periods before or after them, show lower mean absolute error values 

than the base model or ARMA only model. This means that the fully estimated model 

outperforms the base model in all the subset hours. This is important because the goal is 

to provide a forecasting model which can be used to forecast emissions under scenarios 

where upramps, downramps, startups, and shutdowns change in frequency and 

magnitude. If the model does not predict accurately in these types of hours to being with, 

then it would predict even worse when these types of hours occurred more often. In 

Table 3.5, below, the same results are reported for the models of NOx emissions. Again 

the values represent averages across all coal generators. 
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Table 3.5: Model Predictions and Forecasts: NOx Emissions 

Percent Error 

(Mean Absolute Error in Parentheses) 

 In-sample (2010) Out-of-sample (2012) 

 
Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

All hours 
-0.38 

(11.8) 

-0.27 

(19.9) 

-0.11 

(12.6) 

0.43 

(38.3) 

-3.51 

(40.7) 

-0.35 

(26.4) 

Upramp 

hours 

-0.50 

(27.8) 

-3.85 

(42.2) 

-0.39 

(27.7) 

-0.31 

(30.3) 

-4.18 

(49.9) 

-3.82 

(35.2) 

Upramp 

hours t+1 

-0.46 

(27.2) 

-1.16 

(39.6) 

-0.18 

(26.4) 

-0.32 

(30.9) 

-3.95 

(50.0) 

-2.21 

(34.8) 

Upramp 

hours t+4 

-0.50 

(25.8) 

-0.35 

(37.8) 

-0.08 

(25.6) 

-0.48 

(31.0) 

-4.50 

(43.3) 

-0.27 

(30.9) 

Downramp 

hours 

-0.26 

(27.3) 

3.72 

(41.7) 

0.22 

(27.4) 

-0.40 

(30.8) 

5.08 

(50.1) 

-2.93 

(33.3) 

Downramp 

hours t+1 

-0.37 

(27.4) 

0.74 

(42.8) 

-0.08 

(27.9) 

-0.15 

(29.6) 

-3.21 

(48.8) 

3.16 

(32.4) 

Downramp 

hours t+4 

-0.45 

(27.1) 

-0.12 

(40.0) 

-0.88 

(26.2) 

-0.80 

(30.1) 

-3.62 

(45.5) 

1.29 

(30.3) 

Startup 

hours 

2.4 

(47.9) 

-6.3 

(69.8) 

-80.4 

(77.8) 

11.5 

(72.5) 

99.5 

(94.4) 

-92.8 

(96.2) 

Startup 

hours t+1 

-13.8 

(71.3) 

-42.2 

(166) 

-60.2 

(103) 

-4.52 

(44.3) 

-70.4 

(357) 

-80.4 

(102) 

Startup 

hours t+4 

-6.4 

(51.8) 

-33.3 

(98.5) 

-48.0 

(94.3) 

4.67 

(38.7) 

-84.6 

(452) 

-24.5 

(68.2) 

Shutdown 

hours 

-0.21 

(108) 

175.2 

(277) 

37.1 

(130) 

-3.47 

(153) 

135.5 

(285) 

34.3 

(199) 

Shutdown 

hours t-1 

-5.37 

(68.6) 

7.22 

(128) 

-21.1 

(85.9) 

-4.23 

(63.7) 

-64.5 

(389) 

8.46 

(90.6) 

Shutdowns 

hours t-4 

-0.91 

(21.7) 

0.15 

(41.0) 

-34.4 

(27.5) 

-0.79 

(35.7) 

-70.4 

(437) 

3.68 

(50.5) 

 

The models for NOx emissions have within-sample predictions and out-of-sample 

forecasts with low bias. The base model predicts, within-sample, the total level of 

emissions in all ramping hours with less bias than the fully estimated model. It has a 

percentage error that is higher in magnitude in all shutdown and startup hours even 

compared to the ARMA only model. In terms of accuracy, the fully estimated model is 

the most accurate in all hours except for a few of the ramping hours. In the few ramping 
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hours where the base model is more accurate, the mean absolute error is very close in 

value indicating there is not much of a difference in the predictive accuracy of the 

models in those hours type. 

Out-of-sample, the fully estimated model and base model have a much lower in 

magnitude percentage error than the ARMA model. Total emissions are forecasted with 

low bias by both the base and fully estimated model with a percentage error that is -0.35 

and 0.43 respectively. The fully estimated model forecasts with less bias in all the 

subsets of operating hours. It forecasts in all ramping hours with a percentage error less 

than 1. For startup and shutdown the bias is larger with all but contemporaneous startup 

hours having prediction errors smaller in magnitude than 4.7. During the actual startup 

hour the percentage error is 11.5 which is large in magnitude but is still much smaller in 

magnitude than the base model and ARMA only model which have percentage errors of 

-92.8 and 99.5 respectively. The accuracy of the fully estimated model, as measured by 

the mean absolute error, is better than the ARMA only model and base model in all of 

the subset operation hours except for the group of four hours after upramp. The base 

model is the most accurate in all hours with the lowest mean absolute error over all 

hours. Given the accuracy of the fully estimated model in the different operating hour 

types, and the low amount of bias in those hour types, it can be considered to be the 

better model. 

Table 3.6: Model Predictions and Forecasts: SO2 Emissions 

Percent Error 

(Mean Absolute Error in Parentheses) 

 In-sample (2010) Out-of-sample (2012) 

 
Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

All hours 
-0.25 

(69.4) 

0.01 

(81.8) 

-0.02 

(69.8) 

-2.04 

(159) 

14.1 

(483) 

-0.07 

(129) 

Upramp 

hours 

-0.30 

(173) 

-2.69 

(192) 

-0.24 

(170) 

-2.40 

(174) 

-2.60 

(204) 

-1.05 

(151) 

Upramp 

hours t+1 

-0.32 

(173) 

-1.02 

(193) 

0.02 

(174) 

-0.52 

(152) 

-2.31 

(210) 

-1.29 

(173) 

Upramp 

hours t+4 

-0.24 

(161) 

-0.37 

(182) 

0.03 

(163) 

-0.30 

(159) 

-2.54 

(208) 

-0.05 

(143) 
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Percent Error 

(Mean Absolute Error in Parentheses) 

 In-sample (2010) Out-of-sample (2012) 

 
Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

Downramp 

hours 

-0.25 

(156) 

2.10 

(191) 

0.11 

(159) 

-1.85 

(137) 

2.42 

(181) 

0.11 

(169) 

Downramp 

hours t+1 

-0.24 

(156) 

-0.40 

(188) 

-0.15 

(156) 

-2.37 

(138) 

0.64 

(187) 

-0.81 

(171) 

Downramp 

hours t+4 

-0.33 

(163) 

-0.47 

(189) 

-0.13 

(164) 

-2.47 

(141) 

-0.63 

(195) 

-0.87 

(172) 

Startup 

hours 

28.6 

(76.3) 

71.6 

(388) 

-196 

(155) 

6.85 

(295) 

56.4 

(76.9) 

-110 

(305) 

Startup 

hours t+1 

-29.1 

(316) 

-29.8 

(434) 

-50.8 

(360) 

2.11 

(171) 

-79.3 

(174) 

-84.4 

(594) 

Startup 

hours t+4 

-21.3 

(304) 

-4.80 

(314) 

-1.22 

(366) 

2.40 

(118) 

-56.8 

(257) 

-24.6 

(144) 

Shutdown 

hours 

5.13 

(361) 

191 

(610) 

34.3 

(375) 

-10.7 

(183) 

171 

(796) 

-22.2 

(238) 

Shutdown 

hours t-1 

-21.1 

(251) 

37.1 

(621) 

6.56 

(275) 

-1.89 

(177) 

-64.5 

(296) 

10.3 

(107) 

Shutdowns 

hours t-4 

-34.4 

(109) 

-0.54 

(302) 

-2.49 

(196) 

-2.40 

(255) 

-70.4 

(155) 

0.34 

(140) 

 

In Table 3.6 the models for SO2 emissions show low magnitude percentage error 

predictions of total emissions within-sample. The ARMA only model has the lowest 

forecast error and the base model has the second lowers in magnitude. All three models 

do a poor job of predicting emissions during startup. The fully specified estimated model 

is the only one which does a reasonable job of predicting emissions during shutdowns 

with a forecast error of 5.13% compared to an error of 191% for the ARMA only model 

and 34.3% for the base model. The three models are very close in the value of their mean 

absolute error. For all the startup and shutdown hours the mean absolute error shows that 

the fully estimated model is the most accurate.  

Out-of-sample forecasts differentiate the three models in terms of bias as measured 

by percentage error. The base model outperforms both the fully estimated model and 

ARMA only model when predicting emissions over the whole year. It forecasts total 

2012 yearly emissions to within 0.07% of actual emissions. The base model also 
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outperforms the fully estimated model in almost all upramp and downramp hours. The 

fully estimated model has a forecast with lower bias in the hour after an upramp occurs 

with a percentage error of -0.52 compared to the base model’s -1.29. The base model 

performs very poorly in both startup and shutdown hours. It under predicts emissions 

during the hour of startup by 110% of actual emissions and under predicts emissions 

during the hour of shutdown by 22.2% of actual emissions. The fully estimated model 

has less bias in these hours and the hours after startup and before shutdown. The 

accuracy of the fully estimated model, as measured by the mean absolute error, is not 

better than the other models for all hours. There are mixed results for the ramping hours 

with the full estimated model being more accurate in some cases and the base model 

more accurate in others. The full model is the most accurate in all startup hours and in 

the hour of shutdown, but not the hours before shutdown.   

These mixed results make the decision on which model is better for forecasting more 

difficult since both the full estimated model and base model do better in different 

categories. If forecasting emissions in scenarios with different startup and shutdown 

frequencies and characteristics than the data is estimated on, it is likely that the fully 

estimated model will provide more accurate results given the lower bias in these hours 

and better accuracy. If forecasting emissions in scenarios where startups and shutdowns 

have the same frequency and characteristics as the data used to estimate the function, 

then it is likely the base model will provide the most accurate results. 

The overall results comparing the fully specified emission function with the simpler 

models, is that it is has very low bias and better accuracy for heat input and NOx 

emissions. It predicts well for these emission types in all types of hours when compared 

to the simpler ARMA only and base models. For SO2 emissions the fully specified 

emission function does not predict emission totals as well as the simpler base function 

model, but still predicts with less bias and more accuracy than the ARMA only model. 

The fully specified emission function model performs better than the base model during 

startup and shutdown hours compared to the base model. This means that the fully 

specified emission function, for SO2 emissions, is best suited to forecasting when startup 

and shutdown hour accuracy is particularly important. If not, then the base model will 

likely produce more accurate forecasts. 
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Having shown the predictive ability of the models the function results are reported. 

The average, across all generators of a type, of the estimated impact on emissions 

startup, shutdown, and ramping are reported. Startup and shutdown impacts for an 

individual generator are simply the sum of the coefficient estimates of the associated 

dummy variables. Ramping impacts are non-linear and depend upon generator set point. 

To make them comparable the impacts of ramps that are sized and centered relative to 

each generator’s max capacity are calculated. Ramps sized at 1%, 25%, and 50% of 

generation capacity are centered on 50% of generation capacity. For example, a 25% 

upramp for a 200 MW generator would involve a generator starting at 175 MW and 

ramping up 50 MW to 225 MW. These ramp sizes are then converted into per MW 

ramps by dividing by the ramp size.  

The results for ramping estimates in Table 3.7 below find that on average units are 

more efficient in the hour of and following an upramp compared to the same time span 

of steady state operation. On average, a one percent upramp has a reduction in heat input 

by 0.70 mmBtu, a reduction in NOx emissions by 0.04 lbs, and SO2 emissions by 1.41 

lbs. The non-linearity in ramp can be seen by looking at the 25% and 50% upramp 

values. They all have a different per MW ramp impact. On average a 50% upramp 

decreases heat input by 1.86 mmBtu, decreases NOx emissions by 1.87 lbs, and has no 

impact on SO2 emissions. The post startup impact on emissions is the impact of a startup 

on emissions in the hours after the hour of startup. The average coal generator has an 

increase in heat input of 1550 mmBtu in the hours after startup. If that startup is a warm 

start, when the generator has been off for more than 24 hours but less than 120, there is 

an additional increase in heat input in the hours before startup of 408 mmBtu. From this 

it can be seen that warm and cold starts both increase the heat input by more than a hot 

start. This fits the profile of a coal generator’s startup since they must startup slower 

during a cold start due to limits to the rate of heating their equipment can undergo when 

initially cold. 
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Table 3.7: Coal Model Estimates 

 
Heat Input 

(mmBtu) 

NOx Emissions 

(lbs) 

SO2 Emissions 

(lbs) 

1% Upramp (per 

MW ramp) 
-0.70 -0.04 1.41 

25% Upramp 

(per MW ramp) 
-1.27 -0.94 0.72 

50% Upramp 

(per MW ramp) 
-1.86 -1.87 0.00 

1% Downramp 

(per MW ramp) 
2.98 2.77 1.32 

25% Downramp 

(per MW ramp) 
4.24 3.17 1.20 

50% 

Downramp(per 

MW ramp) 

5.55 3.59 1.07 

Warm Start, Pre-

startup (per 

startup instance) 

404 -77.5 -563 

Hot Start, Pre-

startup (per 

startup instance) 

302 -185 -433 

Cold Start, Pre-

startup (per 

startup instance) 

408 -148 -172 

Post-Startup (per 

startup instance) 
1550 1857 1307 

Shutdown (per 

shutdown) 
-1712 -161 -47 

3.6 Gas Steam Turbine Results 

The results for gas steam turbines are analyzed. These results do not differ in their 

estimation method from the coal generator results. The only difference is that there are 

no estimates for SO2 emissions. This is due to the fact that natural gas has very little 

sulfur in it, so SO2 emissions from the burning of natural gas are fairly negligible. The 

EPA reports that they are, on average, 0.1 lbs per MWh (Environmental Protection 

Agency, 2004). Table 3.8, below, provides the results of the fully specified estimated 

model , the ARMA only model, and the base model for in-sample predictions and out-

of-sample forecasts. Percentage error values are reported along with mean absolute 

errors in parentheses below them.  
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Table 3.8: Model Predictions and Forecasts: Heat Input 

Percent Error 

(Mean Absolute Error in Parentheses) 

 In-sample (2010) Out-of-sample (2012) 

 
Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

All hours 
-0.15 

(4.12) 

-6.11 

(42.7) 

-1.07 

(5.67) 

-3.01 

(8.22) 

-4.46 

(63.0) 

-2.69 

(11.8) 

Upramp 

hours 

-0.06 

(27.1) 

-24.7 

(355) 

-0.44 

(38.1) 

-2.58 

(35.9) 

-23.5 

(329) 

-2.54 

(55.3) 

Upramp 

hours t+1 

-0.13 

(27.7) 

-7.41 

(346) 

-0.17 

(38.4) 

0.96 

(35.8) 

-11.4 

(330) 

-2.68 

(56.3) 

Upramp 

hours t+4 

-0.13 

(25.8) 

-2.83 

(303) 

-0.27 

(34.3) 

1.07 

(35.2) 

1.98 

(304) 

-2.49 

(53.9) 

Downramp 

hours 

-0.20 

(28.7) 

20.2 

(301) 

-0.46 

(40.3) 

1.12 

(38.4) 

22.1 

(303) 

-2.65 

(56.8) 

Downramp 

hours t+1 

-0.05 

(26.6) 

0.50 

(305) 

-0.71 

(35.7) 

0.21 

(37.5) 

11.5 

(316) 

-2.38 

(54.3) 

Downramp 

hours t+4 

0.02 

(26.2) 

1.48 

(280) 

-0.23 

(33.8) 

-1.90 

(38.9) 

13.2 

(280) 

-2.45 

(53.3) 

Startup 

hours 

-0.34 

(52.8) 

-60.5 

(234) 

-14.2 

(88.1) 

0.46 

(53.8) 

-40.1 

(190) 

-3.76 

(68.3) 

Startup 

hours t+1 

-1.26 

(43.4) 

-41.7 

(373) 

-12.4 

(90.6) 

-1.91 

(44.4) 

-44.6 

(382) 

-14.0 

(80.2) 

Startup 

hours t+4 

-1.98 

(29.7) 

-11.9 

(312) 

15.9 

(217) 

-1.42 

(33.5) 

-12.8 

(279) 

-13.2 

(55.5) 

Shutdown 

hours 

-0.09 

(95.5) 

160 

(496) 

13.3 

(123) 

1.22 

(141) 

168 

(576) 

18.0 

(186) 

Shutdown 

hours t-1 

-0.01 

(29.7) 

7.98 

(298) 

-1.00 

(38.1) 

-4.03 

(32.5) 

9.51 

(290) 

-5.92 

(44.7) 

Shutdowns 

hours t-4 

-0.37 

(23.5) 

-5.11 

(297) 

-0.41 

(31.0) 

-2.96 

(26.9) 

-5.23 

(293) 

-12.0 

(49.6) 

  

The fully specified estimated model provides in-sample results with the least bias, 

under predicting emissions by only 0.15% of actual emissions compared to 6.11% for 

the ARMA only model and 1.07% for the base model. It also has less bias in each of the 

different operating hours and the hours after or before them. It is more accurate in all of 

the hour types as well with the lowest mean absolute error in each hour type compared to 

the other two models. 
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Out-of-sample the fully specified model has the least bias, under forecasting 

emissions on average by only 3% over all hours. The base model does a slightly better 

job for total emissions, under forecasting by 2.69% of actual emissions on average. The 

base model has the same bias as the fully estimated model in the hours of upramp. In the 

hours after upramp the fully estimated model has a less biased forecast. The fully 

estimated model also has a lower bias during and after downramp, startup, and during 

and before shutdown. There is consistency in the mean absolute error values as well. The 

fully estimated model has the lowest mean absolute error in all hour types compared to 

the other two models. The base model has the second lowest values in all hour types. 

In choosing between the fully specified model and the base model, there are only 

marginal improvements in overall bias with the base model, and fairly large 

improvements for startup and shutdown hours for the fully specified model. It is also the 

most accurate in all hour types. This means that the fully specified model meets the goal 

set forth of being able to estimate under a variety of scenarios where the characteristics 

and frequencies of ramping, startups, and shutdowns change. Table 3.9, below, provides 

the results for NOx emissions.  

Table 3.9: Model Predictions and Forecasts: NOx Emissions  

Percent Error 

(Mean Absolute Error in Parentheses) 

 In-sample (2010) Out-of-sample (2012) 

 
Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

All hours 
-0.17 

(2.15) 

-9.63 

(16.3) 

-1.44 

(2.50) 

-1.82 

(4.47) 

-8.27 

(9.83) 

1.15 

(5.46) 

Upramp 

hours 

-0.14 

(15.0) 

-31.9 

(50.4) 

-1.39 

(18.8) 

-2.30 

(23.3) 

-32.0 

(55.2) 

-0.52 

(29.7) 

Upramp 

hours t+1 

-0.18 

(16.0) 

-13.6 

(52.5) 

-0.55 

(20.0) 

-0.86 

(25.6) 

-18.3 

(58.2) 

-2.90 

(32.5) 

Upramp 

hours t+4 

-0.11 

(15.0) 

-6.31 

(47.5) 

-0.20 

(18.1) 

0.50 

(24.3) 

-2.6 

(54.6) 

-2.40 

(30.8) 

Downramp 

hours 

-0.34 

(12.9) 

22.0 

(40.6) 

1.10 

(16.0) 

-1.69 

(19.7) 

24.8 

(46.8) 

5.17 

(25.1) 

Downramp 

hours t+1 

-0.07 

(12.1) 

-0.31 

(38.0) 

-1.50 

(14.7) 

-2.02 

(17.9) 

13.4 

(45.7) 

-2.27 

(23.3) 
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Percent Error 

(Mean Absolute Error in Parentheses) 

 In-sample (2010) Out-of-sample (2012) 

 
Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

Downramp 

hours t+4 

-0.23 

(11.4) 

-0.87 

(36.0) 

4.89 

(13.9) 

-3.19 

(15.8) 

10.7 

(36.3) 

4.82 

(19.1) 

Startup 

hours 

-0.90 

(11.2) 

-56.0 

(22.8) 

-44.5 

(18.6) 

-3.22 

(10.3) 

-38.2 

(21.9) 

-18.3 

(17.2) 

Startup 

hours t+1 

-1.30 

(14.8) 

-48.6 

(40.2) 

-22.4 

(21.6) 

-3.76 

(20.3) 

-51.0 

(46.2) 

-16.4 

(23.0) 

Startup 

hours t+4 

-7.73 

(15.3) 

-17.8 

(47.3) 

-3.37 

(18.9) 

-9.5 

(32.6) 

-11.5 

(53.1) 

-12.7 

(31.7) 

Shutdown 

hours 

1.57 

(15.4) 

159 

(46.8) 

33.3 

(19.1) 

7.70 

(20.1) 

188 

(60.1) 

41.9 

(30.8) 

Shutdown 

hours t-1 

0.32 

(11.0) 

14.4 

(36.0) 

-3.97 

(14.3) 

-4.05 

(19.2) 

16.4 

(42.2) 

5.12 

(22.2) 

Shutdowns 

hours t-4 

-0.10 

(13.7) 

-8.86 

(43.3) 

0.43 

(16.9) 

-3.47 

(33.4) 

-7.19 

(51.1) 

11.3 

(29.8) 

 

The NOx emissions results for the within-sample predictions in Table 3.9 show the 

fully specified model predicts the best in all hours and in each subset of hour type. The 

ARMA only model has a large bias in all hours, under predicting by 9.63% over all 

hours. The base model predicts well in total with a forecast error of -1.44%. It also 

predicts well in upramp and downramp hours but has a large magnitude percentage error 

during startups and shutdowns. The fully estimated model is the most accurate as 

measured by the absolute mean error with the lowest values in all hour types compared 

to the other two model types. The base model is the next most accurate with values only 

a little bit larger. 

The out-of-sample results mirror the in-sample results. Both the fully specified 

model and the base model forecast with a low bias. The fully specified model under 

forecasts emissions by 1.82% of actual emissions and the base model over forecasts 

emissions by 1.15% of actual emissions. The base model also has a low bias during the 

hour of an upramp with a forecast error of -0.52% compared to the fully estimated 

model’s percentage error of -2.30%. In the hours following upramp the fully estimated 

model is less biased with percentage errors of -0.86 and 0.50 in the hour after and four 
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hours after compared to -2.90 and -2.40 for the base model. The fully specified model is 

less biased in the hour of downramp and about equal in the hours after. There is a low 

bias in the hour of and hours after startup and also the hour of and hours before 

shutdown. The fully estimated model is the most accurate model in almost all hour 

types. Only in the fourth hour after startup and four hours before shutdown is the base 

model more accurate. In these two hour types the base model is only slightly more 

accurate with a mean absolute error of 31.7 and 29.8 for the shutdown and startup hours 

respectively compared to the fully estimated model’s values of 32.6 and 33.4. 

These results indicate that the fully specified model, despite being a little worse at 

forecasting during the hour of upramp, is better overall given its accuracy in downramp, 

startup, and shutdown hours. The bias during the hour of upramp is offset somewhat by 

the forecast accuracy in that hour. The fully estimated model has a lower mean absolute 

error during the hour of upramp compared to the base model with values of 23.3 and 

29.7 respectively. The measurement metrics all indicate that the fully specified model 

performs well in the different hour types and their respective lags and leads. This shows 

the importance of including lags and leads in improving the accuracy of forecasts in the 

hours after ramping and startup, and before shutdown.  

Table 3.10, below, provides the functions results themselves. All values are 

calculated in the same manner as the calculations for coal in Table 3.8. Therefore their 

interpretations are the same except that they are only applicable to gas steam turbine 

units. For gas steam turbines, upramps decrease efficiency and increase emissions on 

average. A 1% upramp results in an increase in heat input by 2.87 mmBtu per MW ramp 

and an increase of 1.22 lbs per MW ramp of NOx emissions. Larger upramps have only 

slightly larger per MW ramp impacts on heat input and NOx emissions. The type of 

startup; warm, hot, or cold, has less of an impact for gas steam turbines than the coal 

units. A warm start increases heat input by only 22.48 mmBtu while hot starts and cold 

starts reduce heat input by 28.75 mmBtu and 14.4 mmBtu respectively. The post startup 

period increases heat input by 500 mmBtu and NOx emissions by 251 lbs while a 

shutdown decreases heat input by 51.9 mmBtu and NOx emissions by 71.2 lbs.  
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Table 3.10: Gas Steam Turbine Model Estimates 

 
Heat Input 

(mmBtu) 

NOx Emissions 

(lbs) 

1% Upramp (per 

MW ramp) 
2.87 1.22 

25% Upramp 

(per MW ramp) 
3.42 1.57 

50% Upramp 

(per MW ramp) 
3.98 1.92 

1% Downramp 

(per MW ramp) 
-3.22 1.18 

25% Downramp 

(per MW ramp) 
-3.67 0.67 

50% 

Downramp(per 

MW ramp) 

-4.13 0.14 

Warm Start, Pre-

startup (per 

startup instance) 

22.48 -24.3 

Hot Start, Pre-

startup (per 

startup instance) 

-28.75 -37.6 

Cold Start, Pre-

startup (per 

startup instance) 

-14.4 -28.5 

Post-Startup (per 

startup instance) 
500 251 

Shutdown (per 

shutdown) 
-51.8 -71.2 

3.7  Combined Cycle Results 

The combined cycle results are reported below. Combined cycle units are fast 

ramping units that are very efficient in their operation due to the capturing of waste heat 

from the gas turbine portion of their generator and using it to power a steam turbine. As 

with the gas steam turbine results, since the combined cycle generators are fired by 

natural gas, results are only reported for heat input and NOx emissions. Table 3.11, 

below, reports the prediction and forecast errors for heat input. 
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Table 3.11: Model Predictions and Forecasts: Heat Input 

Percent Error 

(Mean Absolute Error in Parentheses) 

 In-sample (2010) Out-of-sample (2012) 

 
Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

All hours 
-0.15 

(5.28) 

-2.66 

(34.4) 

-0.21 

(7.48) 

-1.22 

(17.7) 

-1.71 

(62.7) 

1.16 

(18.4) 

Upramp 

hours 

-0.11 

(20.7) 

-11.33 

(162) 

-0.46 

(34.8) 

-1.66 

(35.2) 

-8.42 

(136) 

-0.47 

(38.9) 

Upramp 

hours t+1 

-0.17 

(18.6) 

-3.15 

(144) 

-0.39 

(31.7) 

-0.34 

(32.6) 

-3.68 

(123) 

-3.84 

(35.9) 

Upramp 

hours t+4 

-0.19 

(16.2) 

-0.62 

(108) 

-0.02 

(21.4) 

0.03 

(28.4) 

-0.90 

(94.0) 

-4.04 

(27.4) 

Downramp 

hours 

-0.21 

(18.6) 

7.50 

(127) 

0.10 

(23.7) 

-2.15 

(35.9) 

7.42 

(122) 

2.58 

(37.7) 

Downramp 

hours t+1 

-0.21 

(16.9) 

-0.11 

(131) 

0.13 

(21.8) 

1.05 

(32.9) 

1.55 

(120) 

-2.32 

(32.8) 

Downramp 

hours t+4 

-0.18 

(15.9) 

-0.89 

(111) 

0.05 

(20.0) 

0.57 

(31.7) 

0.73 

(105) 

-2.91 

(29.8) 

Startup 

hours 

-0.52 

(76.4) 

-79.5 

(261) 

-20.3 

(102) 

-8.05 

(118) 

38.9 

(358) 

-12.2 

(151) 

Startup 

hours t+1 

-1.95 

(53.2) 

-41.8 

(463) 

-21.3 

(177) 

-8.24 

(72.4) 

-47.3 

(435) 

-35.1 

(173) 

Startup 

hours t+4 

-4.39 

(22.1) 

-3.14 

(127) 

-0.67 

(33.2) 

-1.22 

(27.8) 

-33.7 

(95.7) 

-23.4 

(30.7) 

Shutdown 

hours 

0.39 

(78.9) 

255 

(653) 

6.3 

(98.8) 

28.2 

(176) 

318 

(864) 

53.3 

(233) 

Shutdown 

hours t-1 

-0.60 

(22.7) 

-1.48 

(109) 

0.19 

(24.2) 

0.87 

(38.2) 

-16.1 

(123) 

0.49 

(43.6) 

Shutdowns 

hours t-4 

-1.35 

(15.4) 

-3.77 

(108) 

0.00 

(23.0) 

-0.43 

(23.0) 

-31.9 

(95.2) 

-2.47 

(29.3) 

 

The fully specified model and base model have similarly low biases, as measured by 

percentage error, for within-sample predictions. The fully specified model has a 

prediction error of only -0.15% and the base model -0.21%. Their bias is similar in both 

upramp and downramp hours. The fully specified model performs better in bother 
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startup and shutdown hours with a prediction error of -0.52% in startup hours and 0.39% 

in shutdown hours. The base model’s bias is not as low with an in-sample percentage 

error of -20.3% in startup hours and 6.3% in shutdown hours. The ARMA only model 

has a percentage error of -2.66% for in-sample total emissions but has a large bias in 

upramp, downramp, startup, and shutdown errors. In terms of accuracy the fully 

estimated model is the most accurate with the lowest mean absolute error across all hour 

types. 

Out-of-sample the three models all forecast with a low bias having percentage errors 

no larger than 1.80 in magnitude. The ARMA only model forecast is highly biased in the 

majority of the different operating hours. The fully estimated model has a higher bias 

than the base model during the hour of upramp. The hour after and four hours after, the 

fully estimated model has a lower bias than the base model. For the hour of downramp 

the fully estimated model is more biased than the base model and the hours after 

downramp are much less biased. The fully estimated model forecasts startup hours with 

less bias than the base model as well. However, the hour of and just after startup have a 

percentage error of about -8 each which is high. The hour of shutdown is forecasted with 

high bias in all three models but the fully estimated model is the least biased of them 

with a percentage error of 28.2 compared to the base model’s 53.3. The hour before 

shutdown the fully estimated model and base model perform about equally while four 

hours before, the fully estimated model has less bias. In terms of accuracy as measured 

by mean absolute error, the fully estimated model and base model are almost equal for 

all hours and ramping hours. The fully estimated model is more accurate in the hours of 

startup and shutdown, including the hours after startup and before shutdown.  

These results show that the fully estimated model performs better than the base 

model or the ARMA only model. This is especially the case in the hours after ramping 

and startup, and the hours before shutdown. These hours have a much lower bias and, for 

startup and shutdown, are much more accurate. 
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Table 3.12: Model Predictions and Forecasts: NOx Emissions 

Percent Error 

(Mean Absolute Error in Parentheses) 

 In-sample (2010) Out-of-sample (2012) 

 
Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

All hours 
0.08 

(1.17) 

-14.5 

(1.95) 

-2.42 

(1.48) 

-6.71 

(3.51) 

-6.10 

(3.23) 

6.76 

(3.37) 

Upramp 

hours 

0.23 

(5.89) 

-23.6 

(11.8) 

-4.14 

(8.00) 

-7.71 

(8.79) 

-13.1 

(8.91) 

-2.23 

(8.80) 

Upramp 

hours t+1 

-0.32 

(4.66) 

-4.3 

(7.82) 

-1.29 

(6.38) 

-5.06 

(7.62) 

-11.7 

(7.03) 

12.0 

(7.06) 

Upramp 

hours t+4 

-0.03 

(2.91) 

-8.62 

(4.69) 

0.18 

(3.32) 

3.24 

(6.10) 

-2.33 

(7.15) 

12.5 

(6.59) 

Downramp 

hours 

1.59 

(3.04) 

-3.09 

(5.09) 

0.79 

(3.34) 

5.79 

(5.92) 

3.80 

(7.84) 

6.07 

(6.12) 

Downramp 

hours t+1 

0.28 

(2.82) 

-4.8 

(5.03) 

2.98 

(3.26) 

-6.13 

(5.85) 

1.56 

(7.81) 

9.41 

(6.79) 

Downramp 

hours t+4 

-0.05 

(2.71) 

-1.07 

(4.30) 

1.98 

(3.06) 

-5.04 

(5.71) 

-6.71 

(7.25) 

10.5 

(6.51) 

Startup 

hours 

0.46 

(35.8) 

-90.4 

(82.1) 

-12.9 

(46.2) 

9.39 

(50.9) 

59.6 

(81.3) 

28.7 

(70.2) 

Startup 

hours t+1 

-2.30 

(31.1) 

-11.0 

(58.7) 

-52.8 

(59.5) 

-12.2 

(34.3) 

-27.8 

(47.0) 

-51.2 

(47.6) 

Startup 

hours t+4 

-1.91 

(6.08) 

0.91 

(8.33) 

11.8 

(8.17) 

-6.4 

(7.06) 

19.8 

(12.5) 

-38.0 

(14.79) 

Shutdown 

hours 

1.59 

(16.8) 

39.2 

(24.2) 

6.17 

(14.3) 

5.79 

(18.4) 

90.4 

(24.2) 

76.8 

(23.1) 

Shutdown 

hours t-1 

0.35 

(6.68) 

-10.1 

(9.21) 

-3.1 

(8.39) 

-2.17 

(10.8) 

-5.86 

(7.23) 

-18.8 

(8.14) 

Shutdowns 

hours t-4 

-0.24 

(3.10) 

-5.06 

(5.32) 

0.92 

(3.75) 

-1.01 

(12.8) 

-8.45 

(4.80) 

-41.0 

(5.15) 

 

Table 3.12, above, provides the results for the combined cycle unit’s models of NOx 

emissions. The within-sample results show that the fully specified model has the least 

bias, as measured by percentage error, when predicting emissions within sample. The 

base model only predicts with the least amount of bias during downramp hours and the 

ARMA only model has a high magnitude percentage error during all hours and in total. 
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In terms of accuracy as measured by mean absolute error, the fully estimated model has 

the lowest values in all hours making it the most accurate of the three models for within 

sample predictions. 

The out-of-sample results have a percentage error with larger magnitude than any of 

the previous generator’s or emission type’s out-of-sample results. All three types of 

models forecast total emissions with about a 6 percent forecasting error with the base 

model over forecasting by this much and the fully specified and ARMA only model 

under forecasting. The base model has the least bias during upramp hours with a forecast 

error of -2.23% compared to the fully estimated model’s -7.71%. The hour after and four 

hours after upramp are more accurately forecasted by the fully estimated model. The 

base model is the least accurate during downramps and after them.  The fully estimated 

model’s lowest magnitude of percentage error hour type is the hour of startup when the 

model over forecasts emissions by 9.39% of actual emissions and the hour after startup 

where it under forecasts by 12.2%. The ARMA only model and base model have a high 

bias during startup hours with a forecast error of 59.6% and 28.7% respectively. Their 

forecasts in the hours after startup also have more bias than the fully estimated model’s 

forecasts. Finally, the fully estimated model has the lowest bias in the hour of and hours 

before shutdown. The mean absolute errors indicate that the fully specified model is the 

most accurate at out-of-sample forecasting. For all hour types except the hours before 

shutdown, it is the most accurate model type. On average the fully estimated model is 

forecasting each individual hour of the year with the lowest error compared to the 

ARMA only model and base model.  

The fully estimated model is consistently the least biased across the different 

operating hour types and is therefore considered the best, although the bias is higher than 

previous models for coal and gas steam turbines. The fully estimated model consistently 

is the most accurate as well adding more evidence that it is better at out-of-sample 

forecasting than the two simpler models.  

The functions results for combined cycle units are reported below in Table 3.13. 

Combined cycle units are able to startup very quickly and do not require the pre-startup 

time which gas and coal steam turbines require. Therefore, the estimates of warm, hot, 
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and cold starts are not included as they were not significant explanatory variables in the 

models.  

Table 3.13: Combined Cycle Model Estimates 

 
Heat Input 

(mmBtu) 

NOx Emissions 

(lbs) 

1% Upramp (per 

MW ramp) 
0.55 0.08 

25% Upramp 

(per MW ramp) 
10.89 -14 

50% Upramp 

(per MW ramp) 
15.56 -61.2 

1% Downramp 

(per MW ramp) 
3.70 0.91 

25% Downramp 

(per MW ramp) 
95.0 26.9 

50% Downramp 

(per MW ramp) 
195 65 

Post-Startup (per 

startup instance) 
857 330 

Shutdown (per 

shutdown) 
-226 5.11 

  

The upramp results for combined cycle units indicate that upramps increase 

inefficiency compared to other hours. A 1% upramp increases heat input by 0.55 mmBtu 

per MW ramp and this increases quickly to 15.56 mmBtu per MW ramp for a 50% 

upramp. NOx emissions on the other hand go from increasing by 0.08 per MW ramp for 

a 1% upramp to decreasing by 61.2 lbs per MW ramp for a 50% upramp. Both heat input 

and NOx emissions increase under all sizes of downramp and increase quickly with 

downramp size. The post startup period increases heat input by 857 mmBtu and 330 lbs 

of NOx emissions. Shutdowns decrease heat input by 226 mmBtu and increase NOx 

emissions by 5.11 lbs.  

3.8 Simple Cycle Results 

The results for simple cycle generators follow. Simple cycle units are fast ramping 

units primarily used to serve peak load using a combustion turbine. The prediction and 

forecast errors for heat input models are reported below in Table 3.14.  
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Table 3.14: Model Predictions and Forecasts: Heat Input 

Percent Error 

(Mean Absolute Error in Parentheses) 

 In-sample (2010) Out-of-sample (2012) 

 
Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

All hours 
-0.89 

(2.10) 

-21.2 

(9.28) 

-2.12 

(2.23) 

-0.25 

(2.89) 

-20.8 

(17.6) 

-3.08 

(4.65) 

Upramp 

hours 

-1.16 

(25.0) 

-48.2 

(151) 

-0.46 

(30.8) 

-0.60 

(27.2) 

-49.1 

(168) 

-0.47 

(45.3) 

Upramp 

hours t+1 

-0.35 

(21.4) 

-18.5 

(123) 

-1.43 

(24.2) 

-0.47 

(18.4) 

-20.2 

(128) 

-3.91 

(33.4) 

Upramp 

hours t+4 

-0.68 

(19.9) 

-4.34 

(94.9) 

-0.67 

(22.1) 

0.84 

(17.2) 

-10.4 

(106) 

-1.04 

(30.1) 

Downramp 

hours 

-1.49 

(23.8) 

20.2 

(100) 

0.10 

(28.6) 

-0.18 

(26.5) 

29.9 

(122) 

1.58 

(42.1) 

Downramp 

hours t+1 

-0.75 

(21.9) 

-1.81 

(105) 

-1.67 

(26.2) 

-0.20 

(18.7) 

-8.21 

(112) 

-2.92 

(31.3) 

Downramp 

hours t+4 

-0.30 

(20.0) 

-6.88 

(89.8) 

1.25 

(30.0) 

0.91 

(17.8) 

4.10 

(116) 

0.59 

(30.4) 

Startup 

hours 

-4.76 

(33.2) 

-91.6 

(175) 

-20.3 

(44.6) 

-0.92 

(42.6) 

-92.6 

(204) 

-12.2 

(66.4) 

Startup 

hours t+1 

-0.20 

(23.9) 

-44.3 

(200) 

-3.17 

(29.5) 

-1.06 

(20.9) 

-44.2 

(204) 

-7.00 

(41.5) 

Startup 

hours t+4 

-0.62 

(19.0) 

-10.9 

(92.9) 

-0.56 

(20.2) 

0.35 

(16.6) 

-6.73 

(103) 

-0.85 

(28.9) 

Shutdown 

hours 

-3.47 

(31.2) 

255 

(177) 

6.35 

(42.3) 

2.42 

(38.9) 

318 

(198) 

52.3 

(59.5) 

Shutdown 

hours t-1 

-0.28 

(19.5) 

-26.9 

(107) 

-3.25 

(24.8) 

-0.05 

(16.8) 

-23.7 

(101) 

-3.78 

(30.3) 

Shutdowns 

hours t-4 

-0.74 

(21.0) 

-31.9 

(123) 

-1.36 

(23.0) 

-0.27 

(19.4) 

-30.1 

(121) 

-4.31 

(33.0) 

 

For simple cycle units the fully specified model has within-sample predictions for 

total yearly emissions with the least bias. The base model has the least bias during 

upramps and downramps but the fully specified model is still accurate with a prediction 

error of -1.16% during upramps and -1.49% during downramps. The fully specified 

model has the least bias during startups and shutdowns. The ARMA only model has a 

large bias in all hours and in total. Considering accuracy, as measured by the mean 
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absolute error, the fully estimated model has the lowest values across all hour types. The 

base model is the next most accurate with values only slightly higher than the fully 

estimated model.  

For out-of-sample forecasting, the fully specified model has a very low bias, under 

forecasting emissions by only 0.25% of actual heat input in total. It is equally biased as 

the base model in the hour of upramp with a forecast error of -0.60% for the fully 

specified model compared to -0.47% for the base model. The fully specified model has a 

lower bias in the hours after upramp than the base model indicating the benefit of 

upramp lags. The fully specified model also has a lower bias than the base model in the 

hour of downramp and hour after downramp. The base model is equally biased four 

hours after a downramp. The fully specified model is much less biased in the hour of and 

hours after startup as well as the hour of and hours before shutdown. The ARMA only 

model is biased in all hours and in total with percentage errors that are large in 

magnitude. The mean absolute error values indicate that the fully estimated model is the 

most accurate in all hour types compared to the other two model types. When 

considering bias the base model had some hour types with similar percentage error 

values, but in the case of accuracy, there are no hours like that. The fully estimated 

model always has a lower mean absolute error indicating that it is the most accurate at 

forecasting hourly emissions. 

These results show that the fully specified model is the best forecasting model for 

simple cycle heat input in all hour types and in total. It has the least bias when 

forecasting total emissions in all hour types, and is the most accurate at forecasting 

hourly emissions for all hour types. The importance of the inclusion of lags and leads in 

the forecasting model is also displayed by its greater accuracy and lower bias in the 

hours after ramping and startup as well as the hours before shutdown. 
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Table 3.15: Model Predictions and Forecasts: NOx Emissions 

Percent Error 

(Mean Absolute Error in Parentheses) 

 In-sample (2010) Out-of-sample (2012) 

 
Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

Estimated 

Model 

ARMA 

Only 

Model 

“Base” 

Model 

All hours 
-1.31 

(0.21) 

-44.7 

(0.25) 

-3.16 

(0.20) 

-5.86 

(0.29) 

-45.0 

(0.50) 

-8.69 

(0.35) 

Upramp 

hours 

-1.81 

(2.55) 

-61.5 

(4.13) 

-4.14 

(2.40) 

-10.6 

(4.20) 

-63.6 

(6.88) 

-9.24 

(4.72) 

Upramp 

hours t+1 

-1.66 

(2.25) 

-34.7 

(2.52) 

-0.81 

(1.96) 

2.49 

(2.98) 

-20.0 

(3.72) 

4.16 

(3.14) 

Upramp 

hours t+4 

-1.13 

(2.15) 

-33.3 

(2.30) 

-4.73 

(1.92) 

1.38 

(1.34) 

-22.3 

(1.79) 

35.3 

(1.70) 

Downramp 

hours 

-1.87 

(1.99) 

-14.3 

(2.78) 

0.79 

(1.78) 

16.7 

(1.89) 

18.4 

(2.29) 

-11.1 

(1.87) 

Downramp 

hours t+1 

9.42 

(1.63) 

-20.6 

(1.90) 

10.1 

(1.38) 

9.47 

(1.58) 

-9.25 

(2.06) 

21.7 

(1.72) 

Downramp 

hours t+4 

10.3 

(1.52) 

-30.1 

(1.84) 

23.8 

(1.49) 

3.53 

(1.49) 

-8.22 

(2.07) 

15.1 

(1.49) 

Startup 

hours 

-4.61 

(3.34) 

-92.5 

(8.36) 

-12.9 

(3.52) 

-15.4 

(5.33) 

-94.8 

(11.9) 

28.7 

(6.31) 

Startup 

hours t+1 

0.06 

(3.32) 

-34.8 

(5.00) 

0.75 

(3.99) 

-2.80 

(4.47) 

-20.0 

(6.66) 

5.06 

(5.39) 

Startup 

hours t+4 

4.48 

(2.11) 

-33.7 

(2.25) 

1.52 

(1.96) 

1.96 

(1.37) 

-21.2 

(1.78) 

33.5 

(1.61) 

Shutdown 

hours 

0.17 

(2.59) 

39.2 

(3.70) 

6.17 

(2.68) 

2.36 

(2.41) 

90.4 

(3.58) 

76.8 

(2.54) 

Shutdown 

hours t-1 

-2.79 

(3.60) 

-50.5 

(3.94) 

-4.35 

(3.08) 

1.79 

(3.12) 

-41.1 

(3.51) 

-10.5 

(3.27) 

Shutdowns 

hours t-4 

-3.39 

(2.38) 

-51.5 

(3.48) 

-0.68 

(2.39) 

5.65 

(2.37) 

-37.9 

(3.76) 

6.20 

(2.48) 

 

Simple cycle NOx emission model results are found in Table 3.15. These results, 

similar to the combined cycle NOx emission results have a high bias compared to the 

NOx emission models of coal and gas team turbine generators. The within-sample 

predictions have a low bias for both the fully specified model and the base model with 

the fully specified model being the least biased in total and in all hour types except 
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downramp. The base model is the most accurate in most hour types for within sample 

predictions but all three model types are very close in their values of mean absolute 

error. 

The out-of-sample results show that the fully specified model is the least biased for 

total emissions in all hours with a forecast error of -5.86% compared to the base model’s 

-8.69% forecast error. The base model is the least biased in the hour of upramp and 

downramp. However, the base model is much more biased than the fully specified model 

in the hours after upramp and downramp.  The base model is more biased during and 

after startup as well as during and before shutdown. The base model over forecasts 

emissions by 76.8% during shutdown hours compared to 2.36% for the fully specified 

model. Since simple cycle units startup and shutdown often due to their usage as peak 

load units, so the low bias of the fully specified model is relatively important during 

these operational hours. Despite the base model being the most accurate, as measured by 

the mean absolute error, in within sample predictions, it is not the most accurate at 

forecasting. The fully specified model is the most accurate in all hour types except the 

hour of downramp where it has a mean absolute error of 1.89 compared to the base 

model’s 1.87.  

The relative bias and accuracy of the fully specified model in the hours after upramp, 

downramp, startup and before shutdown indicate the importance of lags and leads. The 

best forecasting model based on the criteria of having a low bias and accurate hourly 

forecasts in all hour types, is the fully specified model. 
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Table 3.16: Simple Cycle Model Estimates 

 
Heat Input  

(mmBtu) 

NOx Emissions 

(lbs) 

1% Upramp (per 

MW ramp) 
-2.30 0.21 

25% Upramp 

(per MW ramp) 
-22.4 6.71 

50% Upramp 

(per MW ramp) 
28.5 16.3 

1% Downramp 

(per MW ramp) 
22.6 0.17 

25% Downramp 

(per MW ramp) 
262 -1.40 

50% Downramp 

(per MW ramp) 
-107 -14.4 

Post-Startup (per 

startup instance) 
204 -22.3 

Shutdown (per 

shutdown) 
358 -6.32 

 

Table 3.16, above, provides the estimated function results for the different operations 

of the simple cycle units. Simple cycle units get more efficient with ramps sized at 1% 

and 25% of maximum capacity. Larger, 50% ramps increase inefficiency by increasing 

heat input by 28.5 mmBtu per MW ramp. NOx emissions increase under all sized 

upramps. They also increase by 0.17 lbs per MW ramp for small 1% downramps but 

increase by 6.71 lbs per MW ramp and 16.3 lbs per MW ramp for 25% and 50% sized 

downramps respectively. The post-startup period increases heat input by 204 mmBtu on 

average and reduces NOx emissions by 22.3 lbs. Shutdown increases heat input by 358 

mmBtu on average and decreases NOx emissions by 6.32 lbs. 

3.9 Conclusion 

This chapter sets out to estimate emission functions for use in scenarios, simulations, 

and other applications which could accurately forecast emissions given a variety of 

criteria. They need to accurately forecast levels of emissions generally and accurately 

forecast emissions during times when generators undergo certain operational changes. 

These operational changes are times of upramp, downramp, startup, and shutdown. 

These operations are often non-linear in impact, changing the emission and heat rates of 
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generators, and can have lasting impacts through time. There are many cases where 

emissions need to be forecasted accurately during these time periods because of their 

increase in importance under some scenarios. Any change in the dispatch of generation 

which requires generators to make larger upramps, downramps, or more upramps, 

downramps, startups, and shutdowns, will need accurate forecasts of emissions during 

these types of hours.  

The inclusion of non-linearities and lagged and leading impacts allows for accurate 

forecasts of emissions during all types of operation. By comparing out-of-sample 

forecasts with simpler models, it is shown that only the fully specified emission 

functions that we estimate can accurately forecast emissions in all types of hours. While 

there were some cases of the simpler functions forecasting overall emissions with equal 

or greater accuracy, only the fully specified emission functions could consistently and 

accurately forecast emissions in upramp, downramp, startup, and shutdown hours. 
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4. The Calibration Exemption and Its Impact on Reported Emissions 

4.1 Introduction 

Most fuel burning generators in the United States are required to monitor, record, 

and report NOx and SO2 emissions under Title 40 of the code of federal regulations, Part 

75. These regulations come from the US EPA Acid Rain Program but are expanded to 

cover units which are subject to other state or federal NOx emission reduction programs 

by Part 75.2. The rest of the regulation provides information on the requirements for 

installing, maintaining, certifying, and operating the continuous emission monitoring 

systems needed to measure SO2 and NOx emissions. The US EPA establishes cap and 

trade programs for NOx and SO2 emissions under the Acid Rain Program (ARP) and the 

Clean Air Interstate Rule (CAIR). These programs create the need for generators to hold 

allowances for each ton of both SO2 and NOx emissions they emit. In order to ensure 

accountability it is important for emissions to be accurately measured and reported 

(Schakenbach, Vollaro, & Forte, 2006). Generators face an increase in their marginal 

cost in proportion to their emissions rate due to the need to hold allowance prices. This 

cost increase is the incentive to reduce emissions. 

The emissions of generators for most hours of the year are measured by Continuous 

Emission Monitoring Systems (CEMS). There is an exemption to this which applies 

once a day which may allow generators to under report emissions during that hour. That 

exemption is the fact that generators are required to calibrate their emissions equipment 

once every 26 hours. When calibrating, generators do not need to use that portion of the 

hour in calculating that hours emissions. Therefore during any hour during which there 

is a large discrepancy in emission rate in one half of the hour compared to the other half, 

it is possible to report a lower average hourly emission rate in part of the hour than 

would be reported if the whole hour was used. Any hour that has this characteristic could 

be used as an opportunity to under report emissions by calibrating during the portion of 

the hour with a higher emissions rate. This paper attempts to determine if generators 

engage in this behavior and to estimate how large an impact it may have.  
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4.2 Background 

There is the potential for a small loophole to allow for a reduction in a generator’s 

reported emissions. This comes from the regulations governing operating requirements 

for the CEMs equipment, part 75.10. This part declares: 

“(1) The owner or operator shall ensure that each continuous emission 

monitoring system is capable of completing a minimum of one cycle of 

operation (sampling, analyzing, and data recording) for each successive 

15-min interval. The owner or operator shall reduce all 

SO2 concentrations, volumetric flow, SO2 mass emissions, 

CO2 concentration, O2concentration, CO2 mass emissions (if 

applicable), NOX concentration, and NOX emission rate data collected 

by the monitors to hourly averages. Hourly averages shall be computed 

using at least one data point in each fifteen minute quadrant of an hour, 

where the unit combusted fuel during that quadrant of an hour. 

Notwithstanding this requirement, an hourly average may be computed 

from at least two data points separated by a minimum of 15 minutes 

(where the unit operates for more than one quadrant of an hour) if data 

are unavailable as a result of the performance of calibration, quality 

assurance, or preventive maintenance activities pursuant to §75.21 and 

appendix B of this part, or backups of data from the data acquisition and 

handling system, or recertification, pursuant to §75.20. The owner or 

operator shall use all valid measurements or data points collected during 

an hour to calculate the hourly averages. All data points collected during 

an hour shall be, to the extent practicable, evenly spaced over the hour.” 

This section means that reported hourly emissions are generated by taking an 

average of CEMS measured emissions from at least 4 observations that are equally 

spaced out by 15 minute time periods within each hour. However, generators can use 

only two data points spaced fifteen minutes apart if they are undergoing calibration of 

their CEMs equipment.  This means that generators, when operating in a time period 

covered under this exemption, could use two data points during an efficient operating 

period of an hour, and not use the remaining time in the calculation of average 

emissions. If they perform calibration during periods of greatest generation inefficiency, 

they can lower their reported average hourly emissions. This can occur if, within an 

hour, the average emission rate when the CEMs equipment is running is lower than the 

average emission rate when the CEMs equipment is not running and is undergoing 

calibration. 
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The calibration process involves a zero injection where a neutral gas is injected into 

the monitor. When clear of everything but this neutral gas, upscale injections of test 

gases of various known concentrations and amounts are injected into the monitor. As 

long as these are all properly measured the calibration is determined to be successful and 

the CEMS equipment can run again. If measured wrong the equipment is determined to 

be out of control and the generator must report calculated values until the equipment is 

determined to be measuring properly again. The calculated values are designed to over-

estimate emissions to ensure that generators are incentivized to always have their CEMS 

equipment measuring emissions. 

Generators are required to calibrate their CEMs equipment every 24 hours with a 2 

hour grace period extending this to 26 hours. Therefore generators could effectively 

choose, about once per day, to calibrate their CEMs equipment during an operating hour 

characterized by a large difference in emissions rate during one part of the hour 

compared to the other part. This would reduce their reported emissions and lower their 

operating cost by reducing the amount of allowances they need to hold. There are four 

types of operation which can occur over an hour and allow for a reduction in reported 

emissions due to calibration. 

Any hour during which the emissions rate is higher in one part of it than another 

allows for an opportunity to report lower emissions due to the calibration exemption. 

Hours that have this characteristic are ones in which the generator ramps up or down and 

hours of startup or shutdown. Averages which are calculated using emissions measured 

during the portion of the hour with a lower emission rate than the other portion would be 

lower than if the averages were calculated from the whole hour. This would result in 

lower reported emissions to the EPA than the generator actually emitted. 

It is possible that not all generators engage in or know of this possibility, or that, 

depending on their emissions rates, that it is not worth it for them to schedule calibration 

so deliberately. It can take a significant amount of time and training of personnel in 

order to run the CEMs equipment, and oftentimes those in charge of the equipment are 

required to be present at the generator at the time of calibration (EPRI, 2003). Deliberate 

calibration during times when the generator recognizes it is undergoing an inefficient 

operation, may incur extra costs due to these factors. 
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From many literature searches, it is apparent that no one has tried to determine the 

impacts of this calibration exemption. Only one other study has attempted to estimate the 

cost of a specific regulation’s loophole (Anderson & Sallee, 2011). They estimated auto-

makers’ marginal costs of improved car emissions by examining if they used a loophole 

in the Corporate Average Fuel Economy (CAFE). The case presented here is different 

because it has implications not just for cost savings by generators, but also has impacts 

on overall emissions since a reduction in reported emissions means that those emissions 

are not facing costs from the emission allowance markets. If the emissions had been 

subject to that cost by being reported, they may have been abated.  

4.3 Method 

In order to determine if and how much generators are taking advantage of the 

calibration exemption two sets of statistics are reported. The first shows how generators 

are operating in calibration hours compared to other hours. Generators that choose 

calibration more often in hours with startup, shutdown, or large ramps, are more likely to 

be using the calibration exemption. So, summary statistics are shown to try and capture 

and explain when generators are deciding to calibrate their CEMs equipment.  

The second set of results are the statistically estimated impacts of calibration on 

reported emissions by generators in Texas. These results are more robust than the first 

set and should show if generators are reporting lower emissions in hours during which 

they calibrate. To determine this emission function models are estimated for 22 coal, 23 

combined cycle, 16 simple cycle, and 31 natural gas steam turbine generators in Texas. 

A brief discussion of the differences between these generator types can be found in 

chapter 3, page 37. Variables indicating the hour of the day which the generators 

calibrate their CEMs equipment are included in these models. Using this and interactions 

with the calibration variable, the impact of calibration on various generator operating 

states is estimated, controlling for the normal emission impacts of these operating states. 

Emission functions are estimated using an ARMAX regression which takes into 

account the various impact on emissions of a generator. The functions estimate an 

equation for each emission type and each generator taking into account the impacts of 

generator electric output, the contemporaneous and lagged impacts of upramp, 
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downramp, and startup, and the leading and contemporaneous impact of shutdown. The 

result is a specific equation for each generator with specific lag and lead impacts of each 

variable that best explains the emissions of that generator. In this way emissions can be 

accurately predicted for any generator. By including variables that capture the hour when 

calibration occurs, and controlling for all other generator operation, the impact of 

calibration on reported emissions is estimated. The emission function equation estimated 

is displayed below for generator i and emission type e. Description of all the variables 

are found in Section 3.4 of Chapter 3 and Table 3.2 

 

Eiet = ω1GenOnit + ∑𝑎=1
23 gaHourlyInteractionit +  ∑𝑎𝑎=1

11 haaMonthlyInteractionit + 

α1GLOADit + α2(GLOADit)
2
 + ∑𝑏

𝑧βbUprampi(t-b) +  ∑𝑐
𝑦

γc(Uprampi(t-c))
2
 + ∑𝑑

𝑥δd(Uprampi(t-

d)*GLOADi(t-d)) + ∑𝑒
𝑤ϵeDownrampi(t-e) + ∑𝑓

𝑣ζf(Downrampi(t-f))
2
 + ∑𝑔

𝑢ηg(Downrampi(t-

g)*GLOADi(t-g)) + ∑ℎ= 
𝑇 κhStartupi(t-h) + ∑𝑗 

𝑆 𝜆jWarmstarti(t+j) + ∑𝑘 
𝑟 𝜇kColdstarti(t+k)  + 

 

∑𝑙
𝑞
ξlShutdowni(t+l) + ∑𝑚

𝑝 πm→ρCalibrationVars  +  ∑𝑛
𝑜ρn→oMODCVars + vt 

vt =  ∑𝑛=1
𝑝

ϕnEie(t-n) + ∑𝑚
𝑞

θmϵt-m 

 

Seven variables capture the impact of calibration summarized in the CalibrationVars 

term. The calibration dummy variable takes a value of 1 if the hour was an hour during 

which the generator performed a calibration of their CEMs equipment. The other six 

calibration variables are interactions between startup, shutdown, upramp, downramp, 

and a lead of upramp and downramp with the calibration dummy variable. Startup and 

shutdown are both dummy variables taking a value of 1 if the generator is in the first 

hour of operation for startup or last hour of operation for shutdown.  Upramp is a 

measure of how much the generator increased its generation from hour t-1 to hour t. If 

the generator did not increase generation from hour t-1 to hour t then it takes a value of 

zero. Downramp is a measure of how much the generation decreased its generation from 

hour t-1 to hour t. If the generator did not decrease generation from hour t-1 to hour t 

then it takes a value of zero. Both the upramp and downramp interactions include one 

lead of upramp and downramp interacted with contemporaneous calibration as well as 

the contemporaneous upramp and downramp interacted with contemporaneous 

calibration. The reason for this is that the actual hour of the upramp cannot be known. A 
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generator that increases output from hour t-1 to hour t could begin its ramp up halfway 

through the t-1 hour and finish it in the t hour. This would result in an increase in output 

from hour t-1 to hour t. It could also upramp entirely in the t-1 or t hour and still result in 

an increase in output from hour t-1 to hour t. Depending on which hour the ramp took 

place in, the impact of calibration in hour t could be different. 

The estimation of these seven calibration variables provides point estimates for each 

generator of the impact of calibration on reported emissions during upramp, downramp, 

startup, and shutdown while controlling for these operations during non-calibration 

hours. After analyzing the emission functions and the estimates of calibration impact on 

these types of hours the average impacts of calibration are estimated across different 

scenarios. This will provide an estimate of the impact calibration has on reported 

emissions during the analyzed year compared to hours of normal operation.  

4.4 Data 

Data for the estimation of the emissions functions primarily comes from the EPA 

Continuous Emission Monitoring System data which is pulled from search queries of the 

EPA’s Air Market Program Data tool
7
. This provides hourly data on individual 

generator’s generation output, heat input, SO2, and NOx emissions. Using the hourly 

generation output additional variables are generated capturing startup, shutdown, and 

ramping of the generators. 

Data on calibration was provided by special request from the EPA. It contains, to the 

minute, when calibration started, that is when the zero gas is injected into the CEMs 

equipment, and another minute value for when the upscale injection takes place. A 

dummy variable value of 1 is created for any hour during which calibration is started or 

upscale injection occurs. In this way, if calibration is done at the end of an hour, and 

continues into the next hour, there is the best chance of capturing the fact that calibration 

occurred in both hours. While the CEMs equipment does not come back on line 

immediately after the upscale injection, the knowledge of when the upscale injection 

occurs is the last data point available to capture the length of calibration time.  

                                                 

7
 http://ampd.epa.gov/ampd/ (Date Last Accessed: April 3, 2015) 
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4.5 Ramping Analysis 

The fact that generators are calibrating much more often in hours of upramp than any 

other type of hour is illustrated first. Table 4.1 shows the percentage of hours a generator 

calibrates which are during upramp and downramp. 

Table 4.1: When do generators calibrate? - Ramping 

 Coal 
Gas Steam 

Turbine 

Combined 

Cycle 
Simple Cycle 

Calibration 

during upramp 

hours (% of 

calibration 

hours) 

55.1 

 

40.1 

 

54.6 

 

59.7 

 

Calibration 

during 

downramp 

hours (% of 

calibration 

hours) 

26.4 

 

10.6 

 

21.4 

 

11.9 

 

Hours of year 

generator 

upramps (% of 

all hours) 

39.6 

 

39.4 

 

42.5 

 

44.4 

 

Hours of year 

generator 

downramps (% 

of all hours) 

38.0 

 

31.2 

 

37.0 

 

32.1 

 

 

 Table 4.1 shows that coal, combined cycle, and simple cycle choose to calibrate 

during upramp over 50% of the time. This is the case despite the fact these generators 

upramp in only around 40% of its hours. It would be expected that if a generator chose 

to calibrate randomly, that it would choose to calibrate in each type of hour in proportion 

to how often that hour occurs in all hours. If a generator upramps in 40% of its hours, it 

would randomly choose to calibrate during upramp about 40% of the time. The 

differences in table 1 can be statistically tested for using a simple two-sample t-Test. 

With a null hypothesis that the difference in means is zero,  a one tailed t-Test that 

assumes unequal variances finds that the difference in means for coal, combined cycle, 

and simple cycle are all significant at the 1% level.  
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 This is not full evidence of generators choosing to calibrate specifically during 

upramp hours because upramp hours are times in which there is the potential to reduce 

reported emissions. It could be that generators are primarily calibrating in the morning 

when they are more likely to upramp, or generally calibrate during the day when it may 

be more likely that there is a technician on site. Many generators choose to calibrate only 

when a technician is available in order to oversee it (EPRI, 2003). Table 4.2 examines 

this question by looking at how generators behave during “daytime work hours”.  

Table 4.2: Calibration and Ramping from 8 am to 6 pm 

 Coal 
Gas Steam 

Turbine 

Combined 

Cycle 
Simple Cycle 

Calibration 

during upramp 

hours (% of all 

calibration 

hours) 

7.6 

 

30.1 

 

41.7 

 

46.3 

 

Calibration 

during 

downramp 

hours (% of all 

calibration 

hours) 

4.9 
7.1 

 

18.1 

 

7.3 

 

Daytime 

generator 

upramps (% of 

all upramp 

hours) 

41.7 

 

55.6 

 

46.2 

 

 

51.4 

 

Daytime 

generator 

downramps (% 

of all downramp 

hours) 

34.0 

 

29.8 

 

32.3 

 

28.9 

 

 

From the table it can be seen that generators can be grouped by type. Coal units are 

rarely calibrating during the daytime work hours while ST, CC, and SC generators are 

more often calibrating during work hours. Delving further into the choice of hour to 

calibrate for the generators can further describe the issue. Coal units are predominantly 

calibrating during upramps around 6 am or 7 am. This is in most cases, the hour of, or 

the hour after their largest average upramp.  The other three generator types have less 
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pattern to their calibration choice. Looking at the distribution of average upramps 

compared to hour of the day, their choice of hour to calibrate has much less correlation 

with upramp size. These distributions are found in Figures 4.2-4.4. 

The reason coal units may uniformly choose the hour of the day which offers them 

the best opportunity to under report emissions is that they have the highest emission 

rates of the four types of generators so they would have the most to gain monetarily. 

Also, since they are base load, they may be able to better predict and know when their 

largest upramp will be. Figure 4.1, 4.2, 4.3, and 4.4 displays graphs for each individual 

generator overlaying two distributions. In blue are the average upramp sizes during each 

hour and in red are the number of times calibration was performed in a given hour of the 

day. The number of calibrations are divided by twenty so that they are more comparable 

in size to the average upramps.  

 

  

 

Figure 4.1 Coal Units. Average upramp and number of calibrations in each hour of 

the day 
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Figure 4.1, above, indicates the pattern of calibration by coal units. Almost of all of 

them are calibrating in the hour of or hour after their largest average upramp.  Across all 

the coal generators the average upramp, when a unit is upramping, is 22.4 MW. The 

average upramp when a unit calibrates during an upramp is 34.6 MW.  This is numerical 

evidence of the conclusions from Figure 4.1. 

Figures 4.2-4.4 show the different behavior of the steam turbine, combined cycle, 

and simple cycle units. Most of them do not upramp during the largest mean upramp 

hour and they often are spreading out calibration hours over different hours of the day. 

In considering averages of upramp size across all generators of each type, compared to 

averages of upramp size when a unit calibrates during an upramp, there is very little 

difference. Gas steam turbines have an average upramp size of 32.1 MW, while their 

average upramp during an upramp calibration hour is 29.3 MW. Simple cycle units 

average upramp is 19.9 MW and their average upramp during an upramp calibration 

hour is 16.1 MW. Finally, combined cycle units have an average upramp 21.0 MW and 

an average upramp during a calibration hour of 22.1 MW. The graphs and average 

upramp statistics do not support there being a concerted effort by these generator types 

to calibrate in hours of larger than normal upramps. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Simple Cycle 

Figure 4.2: Gas Steam Turbines: Average upramp and number of calibrations in 

each hour of the day 
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Figure 4.4 Combined Cycle: Average upramp and number of calibrations in 

each hour of the day 

Figure 4.3 Simple Cycle: Average upramp and number of calibrations in each 

hour of the day 



 

91 
 

4.6 Emission Function Results 

Estimating emission functions that include variables to capture the impact of 

calibration allows for estimation of the impact of calibration on reported emissions while 

controlling for standard generation operations. Table 3 reports the average estimated 

impact of calibration on reported heat input for each type of generator for an upramp and 

downramp that is 25% of a generator’s capacity, and centered on 50% of a generators 

capacity. To better illustrate this calculation an example is provided. A coal generator 

has the following estimates for the calibration variables used in calculating the impact of 

calibrating during an upramp on emissions: 

Calibration Dummy (π1): -4.5 

Calibration*Upramp (π2):  -1.63 

Calibration*F.Upramp (π3):  -0.70 

Calibration*GLOAD (π4):  -0.179 

 

This generator has a maximum capacity of 445 MW. So, a 25% ramp is 111.25 MW 

and moves generation output from 166.9 MWh to 278.1 MWh for an average hourly 

generation of 222.5 MWh. The ramp is assumed to be reported half in the hour of 

upramp and half in the hour after upramp in order to capture both the contemporaneous 

upramp and leading upramp coefficients. The heat input impact of this ramp is therefore 

calculated as: 

Heat Input (mmBtu) = α1 + α2*55.6 + α3*55.6 + α4*222.5 

 

-4.5 + -1.63*55.6 + -0.70*55.6 + -0.179*222.5 = -173.9 mmBtu 

 

Dividing this by the size of the ramp (111.25 MW) gives a value of -1.56 

mmBtu/MW ramp. This calculation is done for each generator and emission type to 

provide the average values found in Table 4.3. A similar process is also done for 

downramp. Startup and shutdown impacts are simply averages of the coefficients on the 

startup and shutdown calibration interaction variables.  
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Table 4.3: Impact of Calibration on Reported Heat Input (mmBtu/MW ramp) 

 Coal 
Gas Steam 

Turbine 

Combined 

Cycle 
Simple Cycle 

Average Impact 

of Calibration 

During Upramp 

-0.29 

 

0.64 

 

0.15 

 

1.93 

 

Average Impact 

of Calibration 

During 

Downramp 

-0.51 

 

-0.68 

 

0.19 

 

0.15 

 

Number of 

Generators 
22 29 23 16 

 

Results on heat input show that coal generators, for upramp and downramp, have 

lower reported heat input when calibrating than during non-calibration upramp and 

downramp hours. The average estimated impact of calibration on reported heat input 

during a 25% of generation ramp, centered on 50% of generation, was -0.35 mmBtu per 

MW ramp. Sub-bituminous coal, for reference, has an emission factor of 211.91 lbs CO2 

/ mmBtu (Environmental Protection Agency, 2004). If CO2 were calculated from the 

estimate mmBtu/MW ramp impact, it would be a reduction in reported CO2 by 75 lbs / 

MW ramp. Since there are not any CO2 limits from cap and trade or other regulations in 

Texas, there is not much of an incentive for generators to under-report heat input or CO2 

emissions. Thus, the reduction in heat input during calibration hours may be a byproduct 

of NOx and SO2 reporting. 

All three types of natural gas units have positive estimates on the impact of 

calibration on reported heat input during ramping. This is unexpected but could be 

related to the different behavior they display in their profiles of when they calibrate. 

Coal generators are choosing hours with upramps that are larger on average, than other 

hours. The gas steam turbine, simple cycle, and combined cycle generators are not 

choosing to calibrating in hours where this is the case. 
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Table 4.4: Impact of Calibration on Reported NOx Emissions (lbs/MW ramp) 

 Coal 
Gas Steam 

Turbine 

Combined 

Cycle 
Simple Cycle 

Average Impact 

of Calibration 

During Upramp 

-0.16 

 

 

0.17 

 
0.04 

0.30 

 

Average Impact 

of Calibration 

During 

Downramp 

-0.03 

 

-1.14 

 

0.56 

 

-0.06 

 

Number of 

Generators 
22 29 23 16 

 

Table 4.4 shows the estimated impact of calibration on reported NOx emissions 

during ramping hours. Coal units, on average, have a negative impact in both upramp 

and downramp hours. The average impact of calibration on reported NOx emissions is 

larger in upramp hours compared to downramp hours. Gas steam turbines also have a 

negative impact of calibration on reported NOx emissions during upramps but have a 

positive impact during downramps. Combined cycle and simple cycle units both have a 

positive estimate during upramp hours and negative estimate during downramp hours. 

The expectation for the impacts of calibration on reported NOx emissions were negative 

for generators that use the calibration exemption as an opportunity to operate differently 

during the hour of calibration. Positive coefficients could be the result of generators not 

engaging in this behavior and be byproducts of some other factor. Other factors could be 

that calibration can find “out of control” readings which mean that generators would 

need to report calculated emissions instead of measured emissions. Calibration could 

also occur, for gas generators, during hours that regularly have higher emission rates 

than other hours. If that is the case, and they do not use the exemption to reduce their 

reported emissions, then it could result in a positive estimate. 
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Table 4.5: Impact of Calibration on Reported SO2 Emissions (lbs/MW ramp) 

 Coal 
Gas Steam 

Turbine 

Combined 

Cycle 
Simple Cycle 

Average Impact 

of Calibration 

During Upramp 

-0.35 

 
NA NA NA 

Average Impact 

of Calibration 

During 

Downramp 

0.48 

 
NA NA NA 

Number of 

Generators 
22 NA NA NA 

 

The results in Table 4.5 show the impact of calibration on reported SO2 emissions 

during upramp and downramp. Only the results for coal units are reported as the 

functions used do not estimate SO2 emissions for gas units. This is because of the very 

low SO2 emission rates associated with generation from natural gas. Coal units have a 

negative impact of calibration on reported SO2emissions during hours of upramp. They 

have a positive impact on reported emissions during downramp. This positive impact 

could be due to other factors as stated previously.  

The overall result is that it is primarily coal units who may be using the calibration 

hour to reduce their reported emissions. Looking at the types of hours they calibrate in, 

and the estimated impacts of calibration, provides several pieces of information 

indicating they may be engaging in this behavior. The results for the three types of 

natural gas generators are more mixed. They often have positive estimates during 

upramp and downramp hours, and do not show any consistent pattern of choosing to 

operate during hours which have larger upramps.  

4.7 Startup and Shutdown Results 

Another hour type that has the opportunity to manipulate reported emissions are 

startup and shutdown hours. As with ramping hours, these hours can undergo significant 

differences in operation from the beginning of the hour to the end of the hour. As such, it 

is possible to report a lower average emissions in one half of the hour, compared to what 

it would be if the whole hour was considered. The fact that units calibrate at all during 
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startups may be indicative of the incentive to use the calibration exemption to under 

report emissions. This is because section 2.1.5.2 in Appendix B of Part 75 denotes a 

grace period after startup during which generators do not need to calibrate. If the unit has 

passed its quarterly and annual CEMs assessments, a calibration was performed and 

passed within 26 hours of the last time the unit was operating, and the unit has been off 

for at least 1 hour, then a generator can consider their first 8 hours of data as quality 

assured, and do not need to do their daily calibration until after this time period is up. 

Table 4.6 reports average startup and shutdown operation statistics for the four types of 

generators. The statistics in Table 4.6 are slightly different than those in Table 4.2. The 

occurrence of startup and shutdown may not be as predictable as upramp and downramp 

for some units. As such, instead of reporting the percentage of calibration hours that are 

during startup, the percentage of startup hours that have calibration are reported.  

Table 4.6: When do generators calibrate? – Startup and Shutdown 

 Coal 
Gas Steam 

Turbine 

Combined 

Cycle 
Simple Cycle 

Calibration 

during startup 

hours (% of 

startup hours) 

6.92 

 

18.32 

 

10.84 

 

20.81 

 

Average 

Number of 

Startups in Year 

10.77 

 

70.14 

 

121.4 

 

179.2 

 

Calibration 

during 

shutdown hours 

(% of shutdown 

hours) 

4.68 

 

1.65 

 

0.77 

 

7.61 

 

Average 

Number of 

Shutdowns in 

Year 

10.82 

 

70.28 

 

121.5 

 

179.3 

 

 

The main interpretation of this table is that generators, despite not being required to 

calibrate in the first hour of startup, are doing so anyways. In order to determine if these 

calibrations during startup are reporting a lower amount of emissions than other startup 

hours the estimation results are reported. These results come from the interaction of the 
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startup and shutdown dummy variables with the calibration dummy variable. The 

estimations for the impact of shutdown and startup are reported in Table 4.7. These 

results are the average of all units which had instances of calibration during startup or 

shutdown of each generator type. 

Table 4.7: Impact of Calibration on Reported Emissions - Startup and Shutdown 

  

Coal 

 

Gas Steam 

Turbine 

 

Combined 

Cycle 

 

Simple Cycle 

 

Heat Input (mmBtu) 

Average Impact 

of Calibration 

During Startup 

-177 9.14 

 

-30.1 

 

-1.79 

 

Average Impact 

of Calibration 

During 

Shutdown 

-753.1 74.8 

 

-8.37 

 

52.6 

 

NOx Emissions (lbs) 

Average Impact 

of Calibration 

During Startup 

-15.83 2.41 

 

-6.98 

 

-1.17 

 

Average Impact 

of Calibration 

During 

Shutdown 

68.98 -0.95 

 

0.17 

 

3.16 

 

SO2 Emissions (lbs) 

Average Impact 

of Calibration 

During Startup 

-142.7 N/A 

Average 

Impact of 

Calibration 

During 

Shutdown 

-168.2 

 

The results in Table 4.7 tell a similar story to the ramping results. Coal units 

predominantly report lower heat input and emissions in startup and shutdown hours of 

calibration compared to startup and shutdown hours that do not have calibration. As an 

example of how to interpret the results, the average coal unit reports a lower heat input 

during a startup hour  in which they calibrate by 177 mmBtu compared  to a startup hour 

in which they do not calibrate. They report lower NOx emissions by 15.83 lbs during a 
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startup hour in which they calibrate compared to a non-calibration startup hour and 

lower SO2 emissions by 142.7 lbs. The results for gas steam turbines are positive for heat 

input in hours of startup and shutdown as well as for NOx during startup. It is negative 

for NOx emissions during shutdown but very close to zero. Combined cycle generators 

have negative estimates for heat input during startup and shutdown. For NOx reported 

emissions are lower during startup hours and slightly higher during upramp compared to 

startup and shutdown hours when there is no calibration. Simple cycle results show 

lower reported heat input and NOx emissions during startup hours compared to non-

calibration startup hours and higher reported heat input and NOx emissions during 

shutdown hours.  

The results presented on startups and shutdowns indicate that coal units are 

consistently reporting lower emissions during calibration. Except for NOx emissions 

during shutdown, all the estimates for heat input, NOx and SO2 are negative. This 

consistency in results between ramping, startup, and shutdown indicate they may be 

using the calibration hour to under-report emissions. The same consistency in results is 

not found in the three other generator categories. They find mixed results with some 

categories of operating hours having lower reported emissions during calibration and 

others having higher reported emissions. These units also do not appear to have engaged 

in the behavior of choosing hours with the potential for large differences in emission 

rates within the hour. Therefore conclusions cannot be drawn as readily for gas steam 

turbine, combined cycle, and simple cycle generators. This may be expected given that 

they have lower emission rates than coal fired generators and therefore have less to gain 

by under-reporting emission.   

4.8 Cost Reductions 

In order to determine the magnitude of the calibration impacts estimated coefficients 

are applied, for each generator, to their 2010 data to determine the impact on emissions 

reported for the entire year. This is calculated by predicting emissions over the entire 

year assuming there was no calibration and subtracting predicted emissions over the year 

with the calibration hours accounted for. This difference is the estimated impact from 
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calibration on total emissions over the year. Averages across each generator type are 

reported in Table 4.8. 

Table 4.8: Estimated Impact of Calibration on 2010 Reported Emissions 

 Coal 
Gas Steam 

Turbine 

Combined 

Cycle 
Simple Cycle 

Heat Input 

(mmBtu) 

-1562 

 
507 

1315 

 
1791 

NOx Emissions 

(lbs) 

-6516 

 
801 132 77 

SO2 Emissions 

(lbs) 

-11625 

 
N/A N/A N/A 

 

These results indicate that gas steam, combined cycle, and simple cycle units are not 

using the calibration hour to under report emissions. Their positive estimates have no 

interpretation and are taken as evidence of them not using calibration strategically. Coal 

units report reduced heat input, NOx emissions, and SO2 emissions. This indicates that 

they may be using calibration to report fewer emissions. In order to get perspective on 

the magnitude of unreported emissions several calculations are done. The cost savings in 

allowances not needed is calculated for two different allowance price levels. Also, the 

cost of the un-reported emissions to society are calculated. 

Coal units may be under reporting emissions and saving a significant amount of 

money by purchasing fewer NOx and SO2 allowances. The average NOx allowance price 

in 2010 was 48.78 $/ton and the average SO2 allowance price was 16.98 $/ton. This 

means that the average coal plant saved, over the entire year, about $158.00 in NOx 

allowances and $98.69 in SO2 allowances. This is not very much of an incentive to 

calibrate strategically. Units may have established their calibration policies when the 

allowance prices were higher. In July of 2008 the D.C. Court of Appeals struck down 

parts of CAIR causing allowance prices for both NOx and SO2 allowance prices to 

plummet. Since the coal units from Figure 4.1 seem to all calibrate in morning hours 

they may have made it a policy to do calibrate in these hours knowing that was when 



 

99 
 

they were likely to undergo large ramps. Yearly cost savings are calculated using 

allowance prices from before the court decision.  The largest price the allowances got to 

were 1450 $/ton for NOx and 720 $/ton for SO2. Calculating savings with these prices 

results in yearly savings for the average coal generator of $4,724 from NOx and $4,185 

for SO2. Across all 22 coal generators estimated this adds up to $104,000 dollars in 

savings a year for NOx allowances and $92,000 in savings a year for SO2 allowances. It 

may be the case that the higher allowance prices incentivized using the calibration period 

and the behavior continued even after allowance prices plummeted.  

Another way to estimate the impact of the estimated reduction in reported emissions 

is to use the estimated marginal damages of NOx and SO2 to determine the societal cost 

the emissions incur. This assumes that the unreported emissions would have been 

abated. Two values for NOx and SO2 marginal damages are used to estimate these costs. 

They come from estimates by the National Research Council of the National Academies 

(2010) and Muller and Mendelsohn (2009). The National Research Council estimates 

marginal damages for NOx and SO2 emissions as 1600 $/ton and 5800 $/ton 

respectively. Muller and Mendelsohn calculate the marginal damages for NOx and SO2 

emissions as 260 $/ton and 1310 $/ton respectively. Both sets of costs include the 

estimated emissions damages on human health, agricultural yields, building materials, 

recreation, and visibility. Using these damages the estimated yearly cost of the 

unreported emissions for coal generators in Texas is between $115,000 and $18,600 for 

NOx emissions and between $742,000 and $167,500 for SO2 emissions. 

4.9 Conclusion 

Generators may be able to use an exemption in emission reporting requirements to 

under report emissions. This comes from Part 75 language allowing generators to not use 

data points to calculate hourly emissions when calibrating CEMS equipment. Generators 

could take advantage of this by calibrating during the part of an hour with a higher 

emission rate than the other part of the hour. There are certain types of hours which have 

the characteristics that allow for emission rates to be different in different parts of the 

hour. Hours in which a unit upramps, downramps, starts up, or shuts down can all have 

very different emission rates within the hour. Calibrating during these types of hours 
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could allow generators to reduce hourly reported emissions from what reported 

emissions would have been when calculated over the entire hour. In order to determine if 

this is occurring an analysis is done on the pattern of coal steam turbine, gas steam 

turbine, simple cycle, and combined cycle’s choice in what hour to calibrate.  

Analyses of the type of hour these units are calibrating in indicate that they are often 

calibrating during the types of hours which would allow for an advantageous use of the 

calibration exemption. Coal units are often calibrating during ramping hours, especially 

upramp hours. These upramp hours, additionally, have larger upramps than the average 

upramp hour when calibration is not occurring. The three other types of units may 

calibrate more often during ramping hours, but these ramp hours are not different from 

other ramp hours. Statistical analysis using emission functions provides some indication 

of the impact of calibrating during hours that have the potential for large differences in 

emissions rates within the hour. Only coal units show reduced reported emissions during 

upramp. Other types of hours have different results depending on the type of generator. 

Applying the coefficient estimates from the calibration to data from 2010 allows for an 

estimate of the under-reported emissions. Results for coal generators found lower 

reported emissions due to calibration while the other generator categories found positive 

reported emissions from calibration. As a result, only coal units seem to be using the 

calibration hour to report fewer emissions. This reduction in reported emissions is 

relatively small and the results shows only small savings using the low allowance prices 

of 2010. Using prices from when the NOx and SO2 allowance prices were higher results 

in more significant cost savings across Texas coal generators of $104,000 per year for 

NOx allowances and $92,000 for SO2 allowances. The societal damages from these 

emissions may be even larger assuming the under-reported emissions would be abated. 

The estimated damages on human health are estimated to be between $115,000 and 

$18,600 for NOx emissions and $742,000 and $167,500 for SO2 emissions. These two 

sets of cost metrics can allow for readers to determine for themselves the importance of 

the calibration exemption. 
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5. Improved Emission Functions for Generators, and How They Help 

Resolve a Controversy about the Emission Effects of Wind Power 

5.1 Introduction 

Wind power continues to be integrated into the power system at a rapid pace. Wind 

power is a low marginal cost and non-dispatchable source of energy that can only be 

produced when the wind blows. Most systems take all wind generation due to its low 

marginal cost and lack of emissions. This means that fossil-fuel fired generation must be 

dispatched differently and have output changed depending on the amount of wind 

generation available at any given time. Variability in fossil-fueled generation output and 

dispatch means an increase in the instances and magnitude of ramping generators from 

one set point to another. Very high levels of wind can mean increasing the times a 

generator must startup or shutdown. During times of ramping or startup, the change in 

heat input required to move a generator from one level of generation output to another, 

can change the emissions rate of the generator. If the average effect of ramping, startup, 

and shutdown on emissions, averaged across the generation units in a region, is positive, 

this will partially offset the emissions reductions that wind power offers. The offset of 

emissions reductions may have implications for policies which support wind generation 

such as tax credits for wind generation.  

Unexpected changes in emissions when fossil fuel generators operate differently may 

impact economic policies that target those generators. Estimating the impact wind 

penetration has on generator operation and subsequent emissions is important in order to 

determine the impacts on emissions these policies may have. For example, if wind 

penetration increases in a region with an emissions cap and trade policy, there may be 

unexpected changes in emissions which would impact allowance markets, generators 

costs, and emission limits. It is therefore important to be able to accurately forecast 

emissions when generator operation may change. 

The impact on emissions from changing generation operation under differing levels 

of wind penetration is analyzed in this chapter. This is done by estimating emission 

functions which can accurately predict emissions under all types of generator operating 

hours, including ramping, startup, and shutdown. Wind power may increase emissions 

because it increases instances of ramping, and startups of fuel-fired generation. The 
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functions, which incorporate these impacts, can be used in comparing scenarios that 

differ significantly with respect to ramping or start-ups, such as a high-wind-penetration 

scenario and a low-wind-penetration scenario. The emission functions are applied to 

simulation data of five scenarios differing in wind penetration from the Electric 

Reliability Council of Texas (ERCOT). In this way CO2, NOx, and SO2 emissions are 

forecasted and compared across the scenarios to determine how emissions change as the 

level of wind penetration increases. 

5.2 Literature Review 

Some research has been done exploring the relationship between wind penetration 

and generation operation on emissions. Two studies show that generation operation will 

change with increasing wind penetration. Simulations run by General Electric (GE) 

show that 20 to 30 percent renewables penetration in the Western Electricity 

Coordinating Council (WECC) would result in a significant increase in ramping of 

generation units, including those fueled by coal (GE Energy, 2010). Analysis of power 

spectrum density plots of wind variability has found that the relatively large amplitude of 

low frequency fluctuations of wind output (in the range of hours), compared to high 

frequency fluctuations (minutes or seconds), highlights the importance of using slow 

ramping generation, such as coal or natural gas fired units, to back up variable wind 

generation (Apt, Fertig, & Katzenstein, 2012). Increased instances of ramping, or 

increases in the magnitude of ramping could increase emissions above the rate at which 

they occur when at a steady state of constant generation. These higher emission rates 

could then increase overall emissions, potentially offsetting gains from wind power.  

Several studies have tried to determine the impact on generator or system emissions 

from changes in wind penetration with different results. Increases in wind penetration in 

Ireland are modeled and determined to be an effective means of reducing CO2 emissions 

on the system but not to reduce NOx and SO2 emissions (Denny & O'Malley, 2006). 

They find that applying an emission tax or similar regulation in combination with wind 

power does reduce NOx and SO2 emissions. This is likely just due to the regulation 

changing dispatch order however.  
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Two studies use displacement analysis to determine the extent of emissions 

reductions under different amounts of wind generation. Displacement analysis considers 

expected emission reductions to be proportional to the displaced fossil fueled generation 

by wind. Katzenstein and Apt (2009) use regression analysis to model emissions of NOx 

and CO2 for two types of fast-ramping natural gas generators and apply the results to a 

small 2 gas, 1 wind, 1 solar unit system. Their results show that actual CO2 emissions 

reductions are 75-80% of what the reductions would be using a constant emission rate. 

For NOx, depending on emissions controls emissions reductions range from 30-50% of 

constant emission rate reductions to an increase of 2-4 times the constant emission rate 

reductions. Fripp (2011)  finds that using gas operating reserves will undo 6% of the 

emission reductions that are expected from wind power. This comes from inefficiency in 

the system which runs excess combined cycle and simple cycle generators, and uses 

simple cycle generators because they can start quickly instead of more efficient options. 

These two studies place importance on the use of fossil fuel operating reserves to back 

up wind has been shown to offset at least some of the emissions reductions from wind 

and solar power (Katzenstein & Apt, 2009) (Fripp, 2011).   

Estimates of the effects of wind energy on coal unit ramping and emissions have 

been similarly disparate. Bentek energy released a report in April 2010 saying that wind 

energy causes increases in SO2 and NOx emissions in both PSCO (Colorado) and 

ERCOT (Texas) and increases in CO2 emissions in PSCO. Colorado’s Xcel energy later 

refuted this report saying that their large additions in wind energy have resulted in an 

overall decline in emissions (Prager, 2010). Finally, a study by Lew et al. found 

insignificant impacts on emissions from ramping but significant impacts on emissions 

from partial load operation and from starting up, for both coal and gas plants (Lew, et 

al.).  

Two studies analyze the impact of wind penetration in Texas. The first study 

estimates the marginal impact of adding wind generation to the system. Cullen (2013) 

uses a reduced form econometric model to determine the marginal change to generation 

caused by wind. After estimating the marginal change to generation for each individual 

generator, average emission rates are applied to determine the impact on emissions. 

Cullen (2013) estimates that SO2 emissions are offset by 3.15 lbs/MWh wind, NOx 
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emissions by 1.05 lbs/MWh wind, and CO2 emissions by 0.71 tons/MWh wind. This 

estimation method is limited because it assumes constant emission rates and only 

estimates the change in generation caused by wind.  

Kaffine et al. (2013) expand on Cullen by using a similar model, but instead of 

estimating the marginal impact of wind on generation, estimate the marginal impact of 

wind on emissions for each generator. They do this by regressing, for each generator, its 

reported emissions on control variables and a variable consisting of total wind 

generation on the system in each hour. This results in an hourly estimate of the marginal 

impact of total system wind generation on a generator’s emissions. They find that SO2 

emissions are offset by 1.277 lbs/MWh wind, NOx emissions by 0.710 lbs/MWh wind, 

and CO2 emissions by 0.523 tons/MWh wind. Since their model does not structurally 

estimate the direct impact of an individual generator’s elecitricity generation on 

emissions, out-of-sample forecasts under scenarios where wind capacity is different from 

their dataset cannot be accurately done. The small changes in wind generation that may 

occur under the current system are not comparable in their impacts on generation 

operation to the much larger changes that may occur with higher levels of wind 

penetration. This paper can capture the impacts on large changes in generation operation 

and accurately determines the resulting emission impacts by using dynamic emission 

functions. 

Such large differences in results points to the need for further research on this topic. 

This paper aims to improve on these studies by using a method which will accurately 

estimate emissions from fuel-fired generators and apply them to realistic wind 

penetration scenarios. Since the emissions functions used accurately forecast emissions 

during periods of ramping, startup, and shutdown, they are particularly well fitted for 

analyzing different wind penetration scenarios. This will allow for a careful analysis of 

the impact of wind penetration on emissions and provide robust results to a question that 

has had many answers. 

5.3 Research Method 

To estimate the emissions impacts of wind penetration the following procedure is 

used. The procedure consists of two components which are estimating emission 
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functions and then applying them to data from simulations of the ERCOT power system 

under different wind penetration scenarios to estimate emissions. Historically reported 

data is used to estimate the emission functions. This allows for the creation of equations 

which will accurately predict emissions given a generator’s hourly electricity output. 

The emission functions are then applied to simulated wind penetration scenarios in 

Texas. By applying the functions, hourly emissions are forecasted under each scenario 

and can be added up to produce forecasted total emissions in the system. The forecasted 

emissions are compared across all the scenarios in order to determine the wind 

penetration impact.  

Emissions are forecasted for 5 wind penetration scenarios in Texas. Texas provides a 

self-contained electricity system to research. This is because it is, for the most part, not 

electrically connected to anywhere else. With 5 scenarios the analysis will attempt to 

determine if the changes in emissions across the levels of wind differ greatly. The 

following emission function is estimated for generator i and emission type e. Description 

of methods for estimation and all the variables are found in Section 3.4 of Chapter 3 and 

Table 3.2. 

Eiet = ω1GenOnit + ∑𝑎=1
23 gaHourlyInteractionit +  ∑𝑎𝑎=1

11 haaMonthlyInteractionit + 

α1GLOADit + α2(GLOADit)
2
 + ∑𝑏

𝑧βbUprampi(t-b) +  ∑𝑐
𝑦

γc(Uprampi(t-c))
2
 + ∑𝑑

𝑥δd(Uprampi(t-

d)*GLOADi(t-d)) + ∑𝑒
𝑤ϵeDownrampi(t-e) + ∑𝑓

𝑣ζf(Downrampi(t-f))
2
 + ∑𝑔

𝑢ηg(Downrampi(t-

g)*GLOADi(t-g)) + ∑ℎ= 
𝑇 κhStartupi(t-h) + ∑𝑗 

𝑆 𝜆jWarmstarti(t+j) + ∑𝑘 
𝑟 𝜇kColdstarti(t+k)  + 

 

∑𝑙
𝑞
ξlShutdowni(t+l) + ∑𝑚

𝑝 πm→ρCalibrationVars  +  ∑𝑛
𝑜ρn→oMODCVars + vt 

vt =  ∑𝑛=1
𝑝

ϕnEie(t-n) + ∑𝑚
𝑞

θmϵt-m 

This function, and the appropriate lag length for each variable, is estimated for each 

generator in Texas. This is done by an iterative method which intiially adds variables 

with a large number of lags. The lags are reduced until the largest numbered lag is 

significant at a 0.05 significance level. Once the lags of each vaiable are chosen, the 

function is estimated with each combination of AR and MA terms from (0,0) to (3,3). 

The combination which produces the lowest AIC value is then chosen as the ARMA 

portion of the emission function. This process is shown in chapter 3 to produce accurate 

out of sample forecasts for all types of generators and emissions. The out of sample 

forecasts are accurate for total yearly emissions  and for hours of ramping, startup, and 
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shutdown.   After estimating the function for each generator STATA software is used to 

forecast emissions over the simulation data. The simulation data contains hourly 

generation output and therefore can be used to create all the necessary variables for the 

forecast.  

In order to ensure that all the forecasts for simulation emissions were realistic all 

results were examined. This was done by checking to see if the average heat rate and 

emission rate for each generator was realistic. The average heat rate and emission rate 

are calculated for each generator from the 2010 CEMS data and for the simulation 

forecasts. The standard deviation of each generator type, coal, gas steam turbine, 

combined cycle, and simple cycle, were calculated from the 2010 CEMS heat and 

emission rates. If a generator’s average heat rate or emission rate in the simulation 

forecasts is calculated as being greater than 3 times the standard deviation for that unit’s 

generator type, it was considered to be unrealistic. This was the case for 5 of the 

generators. For these 5 generators the base function described in Chapter 3 was used to 

forecast emissions. This base model is a simplified version of the full model where 

ramping is included linearly and all variables have no lags and leads. The forecasting 

results in Chapter 3 indicate that this function still forecasts well, although not as well as 

the fully estimated function. Forecasted heat rates and emission rates for the simulation 

data, using the base model for these 5 generators, were again checked and found to be 

realistic. 

5.4 Simulation Data 

ERCOT simulated hourly operation of their system for one year using PROMOD 

software. PROMOD is an electric market simulation software which runs unit 

commitment and economic dispatch, with transmission grid topology and constraints, 

and with ramping constraints for units. Five simulations were run using five different 

wind penetration scenarios. The five scenarios consist of 3,500, 10,000, 16,500, 23,000, 

and 29,500 MW of wind capacity. For reference, the 2010 Texas system had 10,000 

MW of installed wind capacity. All scenarios are run with 2012 load conditions, and the 

projected 2016 transmission system which has wind-oriented expansions. The reason for 

using the 2016 transmission system is that under all but the lowest wind penetration 
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scenario, the current transmission system must curtail or spill wind to stay within 

transmmission constraints. Under the 2016 transmission system there is enough 

transmission capacity to handle the maximum amount of wind generation that can occur 

under the 10,000 MW to 29,500 MW wind capacity scenarios. 

To estimate emissions from the scenarios, the generators from the ERCOT data are 

matched with generators from the EPA and EIA data sets using generator characteristics 

such as unit name, fuel type, latitude, longitude, and capacity. The estimated emission 

functions are then applied to each generator’s simulated hourly output under each 

scenario to produce hourly estimated emissions. For natural gas fired generation, SO2 

emissions are ignored due to their low magnitude. 

It is important that the characteristics of the simulation data are realistic in order to 

use the emission functions to forecast emissions based upon the simulation data. The 

reason for this is that if generators do not ramp, startup, shutdown, and have the same 

capacity limits as the CEMS data, forecasts will become inaccurate. If a generator in the 

CEMS data never undergoes a 300 MW ramp, and in the simulation data it does, then 

the 300 MW ramp will have an estimated impact based upon the smaller ramps it 

actually did in the CEMS data. Since the ramp variables are non-linear this could quickly 

lead to inaccurate results. In order to ensure the simulation data does not do this, the 

PROMOD model was run with realistic assumptions regarding generator operation. The 

average operating assumptions for each generator type used in the simulation are 

provided in Table 5.1, below. 

The forced outage rate denotes the probability that the unit will not be available to 

generate electricity when dispatched. The forced outage duration is the length the unit is 

assumed to be unavailable if there is a forced outage. Minimum downtime is the 

minimum number of hours the generator must be off until it can startup again. The 

minimum runtime is the minimum number of hours the generator must be on until it can 

shutdown. The maximum ramp rate gives the maximum rate at which a generator can 

ramp up or down as a percentage of its maximum capacity. Simple cycle units are fast 

ramping and are assumed to be capable of ramping their entire generation capacity in 

one hour. The slowest ramping units are the coal generators which can only ramp 15.7% 
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of their capacity in an hour. The installed capacity indicates that most of the generation 

on the system is natural gas fired with most of that being combined cycle generators. 

Table 5.1: Operating Assumptions in PROMOD Simulation 

 Coal Gas Steam 

Turbine 

Combined Cycle Simple Cycle 

Forced Outage 

Rate (%) 

7.92 3.11 5.08 3.12 

Forced Outage 

Duration (Hours) 

50.0 26.0 43.8 26.5 

Minimum 

Downtime 

(Hours) 

12.1 8.00 4.27 1.25 

Minimum 

Runtime (Hours) 

24.0 8.00 5.87 1.10 

Max Ramp Rate 

(% of Max 

Generation/Hour) 

15.7 32.5 39.0 100 

Installed 

Capacity (MW) 

19,812 12,356 35,238 3,853 

 

It is the case that combined cycle units in the simulation data have much higher 

maximum generator outputs than the same combined cycle generators in the CEMS data. 

The reason for this is that the CEMS data only includes the generator output from the 

combustion turbine portion of a combined cycle unit. Any generation from the steam 

turbine portion is not reported since no emissions are generated by it. The solution to this 

mismatch is to calculate the maximum observed generation from the CEMS data and use 

it to modify all the generator output values of the simulation combined cycles. This 

changes the simulation data for combined cycle generators, which includes both their 

combustion turbine and steam turbine, into an approximation of what only the 

combustion turbine would produce. In this way the emission functions from the CEMS 

data can be applied with the least error.    

5.5 Simulation and Emission Results by Generator Type 

The impact of increasing wind penetration is different for each of the four generator 

types. This is the case for both the operation of the generators in each wind penetration 

scenario, and the emission forecasts in each scenario.  The results by individual 
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generator type are important to consider because system results may be biased by the 

emission rates of different fuels and generator types. For example a system of entirely 

coal generators would find larger reductions in CO2 emissions compared to reductions in 

total generation than a system with half coal and half gas, where only the gas generators 

reduce generation. This means that the aggregate results for Texas cannot be generalized 

to other systems with different generation mixes. The results by generator type are more 

generalizable since the coal, gas steam turbine, combined cycle, and simple cycles in 

Texas are unlikely to be much different from those in other states. Still, depending on the 

wind penetration scenario, and how it impacts generator operations, the emission 

impacts are still case dependent. Since the differences between aggregated and generator 

type results are important, this section reports results for each type of generator 

seperately, and then aggregate results across the entire system. 

For each generator type, the first set of results reported come from the simulation 

data. They analyze the characteristics of generation operation under the different wind 

penetration scenarios. One of the main assumptions made is that increasing wind 

penetration will increase the number of instance generators are required to ramp, startup, 

and shutdown. The changes in these across the wind penetration scenarios is therefore 

reported first. From these results an operating profile can be given of the various 

generator types and better inform the emission results. The impacts on emissions from 

the many changes across the different types of generators are also reported.The emission 

functions show the ability to forecast ramps, startups, and shutdowns accurately. They 

are better suited than other simpler functions for forecasting scenarios like the ones 

presented here. This is because of the large changes for each of the different types of 

generators in ramp, startup, and shutdown operations across the different scenarios.  

Table 5.2, below, reports the basic profile of wind generation in each of the 

scenarios. It is clear from the table that although there is a constant increase in wind 

capacity of 6,500 MW between the wind penetration scenarios, the resulting wind 

generation does not increase proportionally. Therefore care must be taken in interpreting 

results between scenarios. 
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Table 5.2: Wind Penetration Scenarios: Wind Characteristics 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Wind 

Capacity 

(MW) 

3,500 10,000 16,500 23,000 29,500 

Wind 

Generation 

(MWh) 

14,415,000    35,431,000   63,215,000 92,590,000  113,145,000 

 

5.5.1 Coal Results 

This is especially important for coal units since they are not designed for rapidly 

changing operation and are the least efficient during these operations. Table 5.3 provides 

the simulation results for coal generator operation. Reported are the total amount of 

generation in each wind penetration scenario, the number of upramps, downramps, 

startups, and shutdowns, and the average size of upramps and downramps as well as 

their standard deviations. Startups and shutdowns have the same number of instances for 

every generator and in total so they are reported in the same row. 

Table 5.3: Coal Generators in Simulation 

(Percent change from previous scenario in parantheses) 

[Percent change from 3500 MW scenario in brackets] 

 3500 MW 

Wind 

Capacity 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

Total Generation 

(MWh) 

129,371,386 

 

127,774,000 

(-1.2%) 

[-1.2%] 

123,716,000 

(-3.2%) 

[-4.4%] 

116,433,000 

(-5.9%) 

[-10%] 

106,982,000 

(-8.3%) 

[-17%] 

Average Upramp 

Size (MW) 

71.49 

 

71.56 

(0.001%) 

[0.001%] 

74.48 

(4.1%) 

[4.2%] 

76.55 

(2.8%) 

[7.1%] 

76.84 

(0.3%) 

[7.5%] 

Upramp Instances 5,964 

 

10,327 

(73%) 

[73%] 

18,016 

(74%) 

[202%] 

25,603 

(42%) 

[329%] 

28,694 

(12%) 

[381%] 

Upramp Standard 

Deviation (MW) 

32.24 32.29 

(0.1%) 

[0.1%] 

31.58 

(-2.2%) 

[-2.0%] 

30.81 

(-2.4%) 

[-4.4%] 

30.34 

(-1.5%) 

[-5.9%] 

Average 

Downramp Size 

(MW) 

52.15 

 

66.85 

(28%) 

[28%] 

75.28 

(13%) 

[44%] 

77.48 

(2.9%) 

[49%] 

77.33 

(-0.2%) 

[48%] 
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(Percent change from previous scenario in parantheses) 

[Percent change from 3500 MW scenario in brackets] 

 3500 MW 

Wind 

Capacity 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

Downramp 

Instances 

4,294 

 

8,532 

(99%) 

[99%] 

16,245 

(90%) 

[278%] 

24,113 

(48%) 

[462%] 

27,551 

(14%) 

[542%] 

Downramp 

Standard 

Deviation (MW) 

30.81 31.93 

(3.6%) 

[3.6%] 

30.90 

(-3.2%) 

[0.2%] 

29.90 

(-3.2%) 

[-2.9%] 

29.50 

(-1.3%) 

[-4.3%] 

Startup/Shutdown 

Instances 

429 

 

429 

(0%) 

[0%] 

433 

(0.9%) 

[0.9%] 

486 

(12%) 

[13%] 

574 

(18%) 

[34%] 

 

From the results in Table 5.3 it can be seen that coal generation consistently 

decreases as wind capacity increases. It decreases in total by 17% from the lowest wind 

scenario to the highest one. This is significant because it means that coal generation, 

which typically runs as base load in Texas, is being replaced by wind generation. This 

has a large impact on the operation of the coal generators who in the 3500 MW wind 

scenario have 429 startups, 5,964 upramps, and 4,294 downramps across all generators 

during the year and an average upramp size of 71 MWh and average downramp size of 

52 MWh. All of these operation types increase rapidly as wind penetration increases. 

Upramp instance increase the most, by 73%, from 3500 MW to 10,000 MW of wind 

capacity. From the lowest wind penetration scenario to the highest they increase by 

381%. Similarly, downramps increase across the same scenarios by 542%. The average 

ramp sizes also increase for upramps and downramps by 7.5% and 48% respectively 

from the lowest wind scenario to the highest. Startup and shutdown instances do not 

change much from the 3500 MW wind scenario to the 10000 MW one, only increasing 

in frequency by 0.9%. They increase by 12% to the next highest scenario and 18% after 

that for a grand total of 34% from the lowest to highest scenario.  

All of these results are expected as wind penetration increases. Coal becomes less of 

a consistent base load generator due to the reduced demand for coal generation when 

there is a large amount of wind on the system. Coal must decrease generation when wind 

is high enough to reduce all generation higher than coal on the bid stack. The change in 

emissions due to these changes in coal generation operation are reported in Table 5.4. 
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Table 5.4: Coal Emission Results 

 

Emissions from coal generators decrease across all the scenarios. Despite the 

changes in number of ramps, startups, and shutdowns from coal units, their emissions 

change in similar proportion to the changes in generation. CO2 emissions decrease by 

almost exactly the same percentage as does coal-fueled generation, across the five 

scenarios. CO2 emissions are reduced from the 3500 MW wind scenario to the 29,500 

MW wind scenario by 17%, while total coal generation was reduced by 17% across the 

same scenarios. Both NOx and SO2 emissions actually decrease by more than the 

decrease in generation. From the lowest penetration scenario to the highest, NOx 

emissions decrease by 21%, while SO2 emissions decrease by 19%. The chart in Figure 

5.1 graphically represents the results from Table 5.4. Each cluster of bars shows the 

percentage change for each emission type and for generation from the 3500 MW wind 

penetration scenario to the large scenarios. These are the percentage changes found in 

brackets in Table 5.4. 

(Percent change from previous scenario in parantheses) 

[Percent change from 3500 MW scenario in brackets] 

 

3500 MW 

Wind 

Capacity 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

CO2 

Emissions 

(Tons) 
128,858,000 

127,345,000 

(-1.2%) 

[-1.2%] 

123,540,000 

(-3.0%) 

[-4.2%] 

116,652,000 

(-5.6%) 

[-9.5%] 

107,518,000 

(-7.8%) 

[-17%] 

NOx 

Emissions 

(lbs) 
154,734,000 

151,965,000 

(-1.8%) 

[-1.8%] 

145,952,000 

(-4.0%) 

[-5.7%] 

135,910,000 

(-6.9%) 

[-12%] 

122,595,000 

(-9.8%) 

[-21%] 

SO2 

Emissions 

(lbs) 

687,351,000 

 

678,176,000 

(-1.3%) 

[-1.3%] 

653,570,000 

(-3.6%) 

[-4.9%] 

609,918,000 

(-6.7%) 

[-11%] 

556,377,000 

(-8.8%) 

[-19%] 

Total 

Generation 

(MWh) 

129,371,386 

 

127,774,000 

(-1.2%) 

[-1.2%] 

123,716,000 

(-3.2%) 

[-4.4%] 

116,433,000 

(-5.89%) 

[-10%] 

106,982,000 

(-8.3%) 

[-17%] 

Total Wind 

Generation 

(MWh) 

14,415,000 

35,431,000 

(146%) 

[146%] 

63,215,000 

(78%) 

[389%] 

92,590,000 

(46%) 

[542%] 

113,145,000 

(22%) 

[685%] 



 

114 
 

 

Figure 5.1: Percentage Change from 3500 MW Wind Penetration Scenario - Coal 

In each scenario it is clear that CO2 and NOx emissions decrease by more than the 

decrease in coal generation from the 3500 MW wind penetration scenario to each larger 

scenario. The difference between changes in SO2 emissions and generation is very small 

with SO2 emissions decreasing by slightly more than decreases in generation.  NOx 

emissions may decrease by more than SO2 emissions because as coal units reduce their 

generation they may be operating at lower heat levels, which would reduce thermal NOx 

emissions.  

Due to the non-proportional change in wind generation from scenario to scenario 

another metric to analyze the change in emissions is to calculate the marginal impact of 

wind generation on emissions. This is the metric used in Kaffine et al. (2013) and Cullen 

(2013). It is calculated with the following formula:  

(Emissionsi+1 – Emissionsi) / (Wind Generationi+1 – Wind Generationi) 

This is calculated for each i+1 scenario where i=0 is the lowest wind penetration 

scenario and i=4 is the highest wind penetration scenario. The resulting calculated 

metrics are shown in Table 5.5. 
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Table 5.5: Emission Impacts per MWh of Wind Generation 

 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

CO2 tons/MWh Wind -0.07 -0.14 -0.23 -0.44 

NOx lbs/MWh Wind -0.13 -0.22 -0.34 -0.65 

SO2 lbs/MWh Wind -0.44 -0.89 -1.49 -2.60 

Coal Generation 

MWh/MWh Wind 
-0.08 -0.15 -0.25 -0.46 

 

These results are interpretable as the average change in emissions from a marginal 

increase in wind generation from one scenario to another. CO2 emissions decrease, on 

average, by 0.07 tons per MWh of wind generation added between the 3,500 and 10,000 

MW wind capacity scenarios. These average marginal changes increase in magnitude as 

wind penetration increases. From the 23,000 MW wind capacity scenario to the 29,500 

MW wind capacity scenario, CO2 emissions decrease, on average, by 0.44 tons per 

MWh of wind generation added. The decrease in NOx emissions also increases in 

magnitude as wind penetration increases with the largest wind penetration scenario 

having the largest per MWh of wind generation decrease in NOx emissions. SO2 

emissions show the same pattern. They decrease on average by 0.44 lbs per MWh of 

added wind generation from the 3,500 MW scenario to the 10,000 MW scenario 

compared to a decrease of 2.60 lbs per MWh of added wind generation from the 23,000 

MW scenario to the 29,500 MW scenario. This means that all three types of emissions 

benefit, where benefit assumes reducing emissions is good, from increasing wind 

penetration. These results are not directly to Kaffine et al. (2013) and Cullen’s (2013) 

estimates because they estimated system wind marginal changes and not by fuel or 

generator type.  

5.5.2 Gas Steam Turbine Results 

Natural gas fired steam turbine results are discussed next. Their operation profile and 

changes from scenario to scenario are presented in Table 5.6.  
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Table 5.6: Gas Steam Turbine Generators in Simulation 

(Percent change from previous scenario in parantheses) 

[Percent change from 3500 MW scenario in brackets] 

 

3500 MW 

Wind 

Capacity 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

Total Generation 

(MWh) 
1,729,000 

 

1,244,000 

(-28%) 

[-28%] 

735,000 

(-41%) 

[-57%] 

509,000 

(-31%) 

[-71%] 

354,000 

(-30%) 

[-80%] 

Average Upramp 

Size (MW) 
76.22 

77.39 

(1.5%) 

[1.5%] 

72.48 

(-6.3%) 

[-4.9%] 

76.82 

(6.0%) 

[0.1%] 

81.10 

(5.6%) 

[6.4%] 

Upramp 

Instances 
1161 

771 

(-34%) 

[-34%] 

422 

(-45%) 

[-64%] 

279 

(-34%) 

[-76%] 

194 

(-30%) 

[-83%] 

Upramp Standard 

Deviation (MW) 
25.78 

24.69 

(-4.2%) 

[-4.2%] 

26.15 

(5.9%) 

[1.4%] 

21.98 

(-16%) 

[-15%] 

21.09 

(-4%) 

[-18%] 

Average 

Downramp Size 

(MW) 
76.69 

76.36 

(-0.4%) 

[-0.4%] 

71.72 

(-6.1%) 

[-6.5%] 

77.07 

(7.5%) 

[0.5%] 

82.62 

(7.2%) 

[7.7%] 

Downramp 

Instances 
1156 

778 

(-33%) 

[-33%] 

422 

(-46%) 

[-63%] 

286 

(-32%) 

[-75%] 

203 

(-29%) 

[-82%] 

Downramp 

Standard 

Deviation (MW) 

25.53 

 

26.02 

(1.9%) 

[1.9%] 

24.95 

(4.1%) 

[-2.3%] 

22.43 

(-10%) 

[-223%] 

18.81 

(-16%) 

[-26%] 

Startup/Shutdown 

Instances 
1333 

1010 

(-24%) 

[-24%] 

633 

(-37%) 

[-53%] 

459 

(-27%) 

[-66%] 

331 

(-28%) 

[-75%] 

 

The characteristics of steam turbine operation change differently from the coal 

generators in the simulations. They show large decreases in their generation output as 

wind penetration increases. The 29,500 MW wind capacity scenario results in gas steam 

turbine generators producing 80% less power than in the lowest wind penetration 

scenario. In connection with this many of the operating statistics decrease across the 

scenarios. Ramping instances, startups, and shutdowns decrease across all the scenarios. 

This is a result of the steam turbines being used so much less as more wind penetration 

increases. With the large reduction in generation, upramp, startup, and shutdown 

instances, it is likely that emissions will decrease by as least as much as generation. 
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Table 5.7: Gas Steam Turbine Emission Results 

 

The results for gas steam turbine generator emissions are consistent with the coal 

generation results. The decrease in CO2 and NOx emissions across the wind penetrations 

scenarios closely follows the decrease in generation as wind penetration increases. For 

both CO2 and NOx emissions the percentage decrease is 3% larger in magnitude than the 

percentage generation decrease. Generation from gas steam turbines decreased by 80% 

from the lowest to highest wind penetration scenario and emissions of CO2 and NOx 

emissions decreased by 83% each. The only difference of note is that NOx emissions 

only decreased by 27% from the 23,000 MW wind capacity scenario to the 29,500 MW 

capacity scenario compared to a 36% decrease in CO2 emissions and 30% decrease in 

MWh generation. The results for steam turbines indicate the importance of capturing all 

the operating changes of the generator in estimating emissions. Different conclusions 

regarding the impact of wind penetration on emissions could be made by looking at the 

different results. Looking at the lowest penetration scenario to the highest, it could be 

concluded that CO2 and NOx emissions will decrease by more than the decrease in 

generation. If only the 23,000 MW wind capacity to 29,500 MW wind capacity scenario 

 (Percent change from previous scenario in parantheses) 

[Percent change from 3500 MW scenario in brackets] 

 

3500 MW 

Wind 

Capacity 

10000 MW 

Wind Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

CO2 

Emissions 

(Tons) 

1,122,000 

 

786,000 

(-30%) 

[-30%] 

456,000 

(-42%) 

[-59%] 

297,000 

(-35%) 

[-73%] 

191,000 

(-36%) 

[-83%] 

NOx 

Emissions 

(lbs) 
1,854,000 

1,253,000 

(-32%) 

[-32%] 

685,000 

(-45%) 

[-63%] 

441,000 

(-36%) 

[-76%] 

320,000 

(-27%) 

[-83%] 

Total 

Generation 

(MWh) 

1,729,000 

 

1,244,000 

(-28%) 

[-28%] 

735,000 

(-41%) 

[-57%] 

509,000 

(-31%) 

[-71%] 

354,000 

(-30%) 

[-80%] 

Total Wind 

Generation 

(MWh) 

14,415,000 

35,431,000 

(146%) 

[146%] 

63,215,000 

(78%) 

[389%] 

92,590,000 

(46%) 

[542%] 

113,145,000 

(22%) 

[685%] 
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were analyzed, it would look like emissions decrease by less than the decrease in 

generation. In reality it depends on the behavior of the generators in each case. 

Conclusions on the impact of wind penetration likely need to be drawn on a case by case 

basis. Figure 5.2 graphically presents the emissions and generation change from the 

3500 MW wind capacity scenario.  

 

Figure 5.2: Percentage Change from 3500 MW Wind Penetration Scenario - Gas 

Steam Turbines 

The bar chart provides a visual representation of the bracket percentage values from 

Table 5.7. It is clear from this visual representation the similarity in changes between 

emissions and generation. Using the 3500 MW wind capacity as a comparison base, each 

larger wind penetration scenario shows that both CO2 and NOx emissions decrease by 

more than the decrease in generation. These results are consistent with the results for the 

coal generators which also had larger decreases in emissions than generation. Table 5.8, 

below, reports the average change in emissions from a marginal increase in wind 

generation from one scenario to another. These values are calculated using the same 

formula used for Table 5.5 which is displayed again for the i wind penetration scenario 

where 0 is the lowest wind penetration scenario and 4 is the highest wind penetration 

scenario:  

(Emissionsi+1 – Emissionsi) / (Wind Generationi+1 – Wind Generationi) 
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This is calculated for each i+1 scenario where i=0 is the lowest wind penetration 

scenario and i=4 is the highest wind penetration scenario. 

Table 5.8: Emissions Change from Marginal Increase in Wind Generation – Gas 

Steam Turbines 

 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

CO2 tons/MWh Wind -0.016 -0.012 -0.005 -0.005 

NOx lbs/MWh Wind -0.029 -0.020 -0.008 -0.006 

Gas ST Generation 

MWh/MWh Wind 
-0.023 -0.018 -0.008 -0.008 

  

The emission impact per MWh of wind generation for steam turbine generators is 

much smaller than the results for coal generators. This is partly because there is much 

less generation from gas steam turbines on the system and also because they have lower 

emission rates. These units show a decreasing emission impact per MWh of wind 

generation as more wind generation is added to the system. This is due to the steady 

displacement of steam turbine generators by wind generation and other generation as 

described from the results in Table 5.6.  

5.5.3 Combined Cycle Results 

The simulation and emission estimation results for combined cycle generators are 

discussed next. The changes in operation under each wind capacity scenario are 

presented below in Table 5.9. 

Table 5.9: Combined Cycle Generators in Simulation 

 (Percent change from previous scenario in parantheses) 

[Percent change from 3500 MW scenario in brackets] 

 

3500 MW 

Wind 

Capacity 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

Total Generation 

(MWh) 
112,615,000 

95,686,000 

(-15%) 

[-15%] 

77,059,000 

(-19%) 

[-32%] 

63,801,000 

(-17%) 

[-43%] 

54,278,000 

(-15%) 

[-52%] 
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 (Percent change from previous scenario in parantheses) 

[Percent change from 3500 MW scenario in brackets] 

 

3500 MW 

Wind 

Capacity 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

Average Upramp 

Size (MW) 
112.4 

109.5 

(-2.6%) 

[-2.6%] 

109.4 

(-0.1%) 

[-2.7%] 

111.5 

(1.9%) 

[-0.8%] 

112.7 

(1.1%) 

[0.2%] 

Upramp 

Instances 
25252 

28805 

(14%) 

[14%] 

26678 

(-7.4%) 

[5.6%] 

24069 

(-9.8%) 

[-4.7%] 

21743 

(-9.7%) 

[-14%] 

Upramp Standard 

Deviation (MW) 
52.97 

52.92 

(-0.1%) 

[-0.1%] 

52.70 

(-0.4%) 

[-0.5%] 

52.68 

(0%) 

[-0.5%] 

52.77 

(0.1%) 

[-0.3%] 

Average 

Downramp Size 

(MW) 
110.8 

107.0 

(-3.4%) 

[-3.4%] 

105.6 

(-1.3%) 

[-4.7%] 

107.1 

(1.4%) 

[-3.3%] 

107.2 

(0.1%) 

[-3.2%] 

Downramp 

Instances 
25827 

29988 

(16%) 

[16%] 

28433 

(-5.2%) 

[10%] 

26064 

(-8.3%) 

[1.0%] 

23763 

(-8.8%) 

[-8.0%] 

Downramp 

Standard 

Deviation (MW) 
52.25 

51.66 

(-1.1%) 

[-1.1%] 

50.92 

(-1.4%) 

[-2.5%] 

50.64 

(-0.5%) 

[-3.0%] 

50.53 

(-0.2%) 

[-3.3%] 

Startup/Shutdown 

Instances 
3813 

5011 

(31%) 

[31%] 

5870 

(17%) 

[54%] 

6109 

(4.1%) 

[60%] 

5872 

(-3.9%) 

[54%] 

  

Combined cycle units have consistently reduced generation as the wind capacity on 

the system increases. Changes in generation operation are a bit inconsistent. Upramp and 

downramp instances increase from the lowest wind penetration scenario to the 10,000 

MW wind capacity scenario. They decrease from there. Average ramp sizes vary. They 

decrease from the 3,000 MW capacity scenario through the 23,000 MW capacity 

scenario for upramps. Upramps then increase into the largest wind penetration scenario. 

Downramps decrease through the 16,500 MW capacity scenario and increase into the 

largest two scenarios. Startup and shutdown instances increase going from the lowest 

wind capacity scenario to the second highest and then decrease from the second highest 

to the last. These results are indicative of there being less need for combined cycle on the 

system as more wind generation is added. Although upramp isntance decrease in the 

larger two wind penetration scenarios the inctrease in ramp size may be due to larger 
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swings in wind generation. Startup instance increase from the lowest scenario and are 

also indicative of the combined cycle units being used to backup wind power. 

Table 5.10: Combined Cycle Emission Results 

 

Table 5.10 reports the emissions results for combined cycle generators. Despite the 

large number of increases in ramps, startups, shutdowns between the 3,500 MW wind 

capacity scenario and the 10,000 MW wind capacity scenario, NOx emissions decrease 

by a larger magnitude percentage than total generation. Total generation drops by 15% 

between the two scenarios and NOx emissions fall by 23%. CO2 emissions on the other 

hand decrease by only 13%. From the lowest wind penetration scenario to the highest, 

CO2 emissions decrease by 54% and NOx emissions by 78% compared to a decrease in 

generation by 52%. The results for NOx and CO2 emissions are consistent between each 

wind penetration scenario. That is, the percentage decrease in emissions between each 

scenario is always larger in magnitude than the percentage decrease in generation. Figure 

5.3 graphically presents the emissions and generation changes from the 3500 MW wind 

capacity scenario to the higher wind capacity scenarios. 

(Percent change from previous scenario in parantheses) 

[Percent change from 3500 MW scenario in brackets] 

 

3500 MW 

Wind 

Capacity 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

CO2 

Emissions 

(Tons) 
45,702,000 

39,559,000 

(-13%) 

[-13%] 

31,527,000 

(-20%) 

[-31%] 

25,105,000 

(-20%) 

[-45%] 

20,944,000 

(-17%) 

[-54%] 

NOx 

Emissions 

(lbs) 
62,442,000 

47,874,000 

(-23%) 

[-23%] 

30,674,000 

(-36%) 

[-51%] 

21,336,000 

(-30%) 

[-66%] 

13,582,000 

(-36%) 

[-78%] 

Total 

Generation 

(MWh) 

112,614,883 

95,686,000 

(-15%) 

[-15%] 

77,059,000 

(-19%) 

[-32%] 

63,801,000 

(-17%) 

[-43%] 

54,278,000 

(-15%) 

[-52%] 

Total Wind 

Generation 

(MWh) 

14,415,000 

35,431,000 

(146%) 

[146%] 

63,215,000 

(78%) 

[389%] 

92,590,000 

(46%) 

[542%] 

113,145,000 

(22%) 

[685%] 
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The bar chart in Figure 5.3 illustrates the large relative change in NOx emissions 

compared to generation. Each wind capacity scenario shows that NOx emissions 

decrease by much more than the percentage decrease in generation from the 3500 MW 

wind penetration scenario. CO2 emissions on the other hand decrease by a little less than 

generation from the 3500 MW scenario to the 10,000 MW and 16,500 MW scenarios 

and decrease by a little more than generation in the largest two scenarios. Table 5.11, 

below, estimates the emissions impact per MWh of wind generation using the 3500 MW 

wind capacity scenario as a baseline. These values are calculated using the same formula 

used for Table 5.5 which is displayed again for the i wind penetration scenario where 0 

is the lowest wind penetration scenario and 4 is the highest wind penetration scenario:  

(Emissionsi+1 – Emissionsi) / (Wind Generationi+1 – Wind Generationi) 

This is calculated for each i+1 scenario where i=0 is the lowest wind penetration 

scenario and i=4 is the highest wind penetration scenario. 
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Figure 5.3: Percentage Change from 3500 MW Wind Penetration 

Scenario - Combined Cycle 
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Table 5.11: Emissions Change from Marginal Increase in Wind Generation – 

Combined Cycle 

 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

CO2 tons/MWh Wind -0.29 -0.29 -0.22 -0.20 

NOx lbs/MWh Wind -0.69 -0.62 -0.32 -0.38 

Combined Cycle 

Generation 

MWh/MWh Wind 
-0.81 -0.67 -0.45 -0.46 

 

The emission impact per MWh of wind generation for combined cycle generators is 

much larger than the steam turbine impacts. This is because they make up a much larger 

portion of the generation in Texas. The impact of increasing wind generation on CO2 

emissions decreases in magnitude by a small amount in each scenario with marginal 

increases in wind leading to an average reduction in CO2 by 0.29 tons in the 10,000 MW 

capacity scenario and 0.20 tons in the 29,500 MW wind capacity scenario. The average 

change in NOx emissions from a marginal increase in wind generation from the 3,500 

MW scenario to the 10,000 MW scenario is a decrease by 0.69 lbs. The average change 

for NOx emissions from the 23,000 MW scenario to the 29,500 MW scenario is -0.38 lbs 

per MWh of wind generation added. Both of these results indicate that increases in wind 

generation in ERCOT will have diminishing benefit, where benefits are considered to be 

emission reductions, for combined cycle generators.  

5.5.4 Simple Cycle Generation 

The simulation and emission estimation results for simple cycle generators are 

discussed next. The changes in operation under each wind capacity scenario are 

presented below in Table 5.12. 

 

 

 

 



 

124 
 

Table 5.12: Simple Cycle Generators in Simulation 

 (Percent change from previous scenario in parantheses) 

[Percent change from 3500 MW scenario in brackets] 

 3500 MW 

Wind 

Capacity 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

Total Generation 

(MWh) 

1,842,000 

 

 

1,348,000 

(-27%) 

[-27%] 

906,000 

-(33%) 

[-51%] 

942,000 

(3.0%) 

[-49%) 

1,046,000 

(10.1%) 

[-43%] 

Average Upramp 

Size (MW) 

36.67 37.19 

(1.4%) 

[1.4%] 

36.84 

(-0.9%) 

[0.5%] 

36.18 

(-1.8%) 

[-1.3%] 

36.31 

(0.3%) 

[-0.9%] 

Upramp 

Instances 

4347 3272 

(-25%) 

[-25%] 

2260 

(-31%) 

[-48%] 

2347 

(4.9%) 

[-46%] 

2667 

(14%) 

[-39%] 

Upramp Standard 

Deviation (MW) 

7.41 6.53 

(-12%) 

[-12%] 

6.73 

(3.1%) 

[-9.2%] 

7.20 

(7.0%) 

[-2.8%] 

7.39 

(2.6%) 

[-0.3%] 

Average 

Downramp Size 

(MW) 

37.06 36.96 

(-0.3%) 

[-0.3%] 

36.65 

(-0.1%) 

[-1.1%] 

36.91 

(0.7%) 

[-0.4%] 

36.59 

(-0.8%) 

[-1.3%] 

Downramp 

Instances 

5335 4108 

(-23%) 

[-23%] 

2827 

(-31%) 

[-47%] 

2877 

(1.8%) 

[-46%] 

3020 

(5.0%) 

[-43%] 

Downramp 

Standard 

Deviation (MW) 

6.99 6.80 

(-2.7%) 

[-2.7%] 

6.77 

(-0.4%) 

[-3.1%] 

6.42 

(-5.2%) 

[-8.2%] 

7.48 

(17%) 

[7.0%] 

Startup/Shutdown 

Instances 

5748 4977 

(-13%) 

[-13%] 

3619 

(-27%) 

[-37%] 

2797 

(-23%) 

[-51%] 

2381 

(-15%) 

[-59%] 

 

The generation output of simple cycle generators initially decreases as wind capacity 

increases. However, when wind capacity increases from 16,500 MW to 23,000 MW, 

simple cycle generation increases. Generation also increases again from the 23,000 MW 

wind capacity scenario to the 29,500 MW wind capacity scenario. The number of 

upramp and downramp instances also increase in the larger two scenarios. Simple cycle 

units are likely being dispatched to back up the large amount of wind generation on the 

system. Ramping up when wind power decreases and ramping down when it increases. 
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With their fast ramping capabilities they have the best ability to do this and therefore are 

seeing increases in total generation.   

Table 5.13: Simple Cycle Emission Results 

 

The emissions results for simple cycles in Table 5.13 show that emissions reductions 

are larger than the reductions in generation output. In the case of CO2 emissions the 

difference is small with percentage decreases across each wind penetration scenario only 

slightly large in magnitude than the percentage decreases in generation across the 

scenarios. The largest change is from the 23,500 MW scenario to the 29,500 MW 

scenario where there is an increase in generation of 10.1%, yet CO2 emissions only 

increase by 5.5%. NOx emissions decrease across all the scenarios despite the increase in 

generation between the last two. NOx emissions also decrease in each case by larger than 

the corresponding change in generation. This again provides more evidence against 

previous results which have found increase in emissions or reductions in emissions not 

as large in magnitude as generation reductions. These results are presented graphically in 

Figure 5.4.  

 (Percent change from previous scenario in parantheses) 

[Percent change from 3500 MW scenario in brackets] 

 

3500 MW 

Wind 

Capacity 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

CO2 

Emissions 

(Tons) 

1,335,000 

 

917,000 

(-31%) 

[-31%] 

608,000 

(-34%) 

[-54%] 

589,000 

(-3.2%) 

[-56%] 

622,000 

(5.5%) 

[-53%] 

NOx 

Emissions 

(lbs) 
6,094,000 

3,993,000 

(-34%) 

[-34%] 

2,368,000 

(-41%) 

[-61%] 

1,707,000 

(-28%) 

[-72%] 

1,137,000 

(-33%) 

[-81%] 

Total 

Generation 

(MWh) 

1,842,674 

 

 

1,347,996 

(-27%) 

[-27%] 

905,930 

-(33%) 

[-51%] 

941,864 

(3.0%) 

[-49%) 

1,046,671 

(10.1%) 

[-43%] 

Total Wind 

Generation 

(MWh) 

14,415,000 

35,431,000 

(146%) 

[146%] 

63,215,000 

(78%) 

[389%] 

92,590,000 

(46%) 

[542%] 

113,145,000 

(22%) 

[685%] 
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Figure 5.4: Percentage Change from 3500 MW Wind Penetration Scenario - Simple 

Cycle 

The bar chart in Figure 5.4 is interesting because although percentage change in 

generation from the 3500 MW scenario begins to get smaller in the 23,000 and 29,500 

MW scenarios, the percentage decrease in NOx emissions continues to get larger. The 

percentage change in CO2 emissions on the other hand levels out some. The most likely 

explanation for this phenomenon is the decrease in startups in the largest two wind 

penetration scenarios. This is because upramp and downramp instances, as well as total 

generation, both increase in the largest two wind penetration scenarios from the 16,500 

MW scenario. Table 5.14, below estimates the emissions impact per MWh of wind 

generation using the 3500 MW wind capacity scenario as a baseline. These values are 

calculated using the same formula used for Table 5.5 which is displayed again for the i 

wind penetration scenario where 0 is the lowest wind penetration scenario and 4 is the 

highest wind penetration scenario:  

(Emissionsi+1 – Emissionsi) / (Wind Generationi+1 – Wind Generationi) 

This is calculated for each i+1 scenario where i=0 is the lowest wind penetration 

scenario and i=4 is the highest wind penetration scenario. 
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Table 5.14: Emissions Change from Marginal Increase in Wind Generation – 

Simple Cycle 

Table 13. Emissions Change from Marginal Increase in Wind Generation – 

Simple Cycle 

 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

CO2 tons/MWh Wind -0.020 -0.011 -0.001 0.002 

NOx lbs/MWh Wind -0.100 -0.058 -0.023 -0.028 

Combined Cycle 

Generation 

MWh/MWh Wind 
-0.024 -0.016 0.001 0.005 

 

The results in Table 5.14 for simple cycle generators indicate very small decreases in 

emissions per MWh of wind generation. As with gas steam turbines this is mostly due to 

the small amount of simple cycle generation in ERCOT compared to other forms. For 

simple cycle generators in ERCOT the average impact on CO2 emissions from marginal 

increases in wind generation are actually positive when going increasing wind 

penetration from the 23,000 MW to 29,500 MW scenario. This is because as discussed 

before, generation actually increases between these two scenarios. NOx emissions face 

decreasing benefit from increases in wind penetration. 

5.6 Simulation and Emission Results Aggregated 

Aggregated reesults for the entire Texas system are reported below in Table 5.15. 

For SO2 emissions, the results are only for coal generators due to the extremely low SO2 

emissions from natural gas fired generators and the inability of the functions to estimate 

SO2 emissions for them.  The results for CO2 emissions show that the percentage 

decrease in total fossil fuel generation is larger in magnitude than the percentage 

decrease in emissions from the lowest wind penetration scenario to the highest one. On 

the system level this result is due to the larger decrease in combined cycle generation 

than coal generation. These two types of generators make up the majority of fossil fuel 

fired generation, and coal generation emits a higher level of CO2 emissions. Therefore, 

the percentage reduction in CO2 emissions is not as large as the percentage reduction in 

generation. Between each wind penetration scenario the percentage reductions in CO2 



 

128 
 

emissions gradually get larger in magnitude. Emissions decrease from the 3,500 MW 

wind capacity scenario to the 10,000 MW wind capacity scenario by 4.8% and from the 

23,000 MW wind capacity scenario to the 29,500 MW wind capacity scenario by 9.3%.  

Table 5.15: ERCOT System Results 

  

The changes in NOx emissions across the wind penetration scenarios are larger than 

the generation changes. NOx emissions decrease by 39% from the lowest wind 

penetrations scenario to the highest wind penetration scenario and total generation 

decreases by 34%. As with the individual generator types this result is counter-factual to 

most of the literature which finds either increases in NOx emissions or decreases in NOx 

emissions which are smaller in magnitude than the reductions in generation. 

The SO2 emissions reductions are smaller in magnitude than the percentage change 

decreases in total generation. This is due to the fact that we only include SO2 emissions 

for coal generation which do not decrease total generation as much as the other three unit 

types. Since natural gas units have such low SO2 emissions this result is still accurate as 

(Percent change from previous scenario in parantheses) 

[Percent change from 3500 MW scenario in brackets] 

 

3500 MW 

Wind 

Capacity 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

CO2 

Emissions 

(Tons) 
177,017,000 

168,607,000 

(-4.8%) 

[-4.8%] 

156,131,000 

(-7.4%) 

[-12%] 

142,643,000 

(-8.6%) 

[-19%] 

129,275,000 

(-9.3%) 

[-27%] 

NOx 

Emissions 

(lbs) 
225,124,000 

205,086,000 

(-8.9%) 

[-8.9%] 

179,680,000 

(-12%) 

[-20%] 

159,394,000 

(-11%) 

[-29%] 

137,634,000 

(-14%) 

[-39%] 

SO2 

Emissions 

(lbs) – Coal 

only 

687,351,000 

 

678,176,000 

(-1.3%) 

[-1.3%] 

653,570,000 

(-3.6%) 

[-4.9%] 

609,918,000 

(-6.7%) 

[-11%] 

556,377,000 

(-8.8%) 

[-19%] 

Total 

Generation 

(MWh) 

 

245,558,000 

226,052,000 

(-7.9%) 

[-7.9%] 

202,417,000 

(-10%) 

[-17%] 

181,685,000 

(-10%) 

[-26%] 

162,661,000 

(-10%) 

[-34%] 

Total Wind 

Generation 

(MWh) 

14,415,000 35,431,000 63,215,000 92,590,00 113,145,000 



 

129 
 

a system wide estimate. This means that on a system with a generation mix like Texas, 

SO2 emissions are likely to decrease by a smaller magnitude than the decrease in total 

system generation under increasing wind penetration scenarios. This comes more from 

changes in what generators are being dispatched as opposed to changes from generation 

operation.  

The changes across scenarios described in the previous paragraphs are graphically 

represented in Figure 5.5 below. Each cluster of bars represents the percentage change 

from the 3500 MW wind penetration scenario. It is clearer from the chart that NOx 

emissions decrease by more than the decrease in generation from the 3500 MW wind 

penetration scenario to each of the larger scenarios. CO2 emissions decrease by less than 

the decrease in generation from the 3500 MW wind penetration to each of the larger 

scenarios and SO2 emissions decrease by even less. 

 

Figure 5.5: Percentage Change from 3500 MW Wind Penetration Scenario  

- ERCOT 

The calculation of the emission impact per MWh of wind generation can allow for a 

direct comparison to the results from Cullen (2013) and Kaffine et al. (2013). The system 

results from this analysis are presented in Table 5.16. These values are calculated using the 

same formula used for Table 5.5 which is displayed again for the i wind penetration 
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scenario where 0 is the lowest wind penetration scenario and 4 is the highest wind 

penetration scenario:  

(Emissionsi+1 – Emissionsi) / (Wind Generationi+1 – Wind Generationi) 

This is calculated for each i+1 scenario where i=0 is the lowest wind penetration 

scenario and i=4 is the highest wind penetration scenario. 

Table 5.16: Emissions Change from Marginal Increase in Wind Generation – 

ERCOT 

 

10000 MW 

Wind 

Capacity 

16500 MW 

Wind 

Capacity 

23000 MW 

Wind 

Capacity 

29500 MW 

Wind 

Capacity 

CO2 tons/MWh Wind -0.40 -0.45 -0.46 -0.65 

NOx lbs/MWh Wind -0.95 -0.91 -0.69 -1.06 

SO2 lbs/MWh Wind -0.44 -0.89 -1.49 -2.60 

Fossil Fuel 

Generation 

MWh/MWh Wind 
-0.93 -0.85 -0.71 -0.93 

 

Average CO2 reductions per MWh of wind generation increase in magnitude 

between each wind penetration scenario, from 0.40 to 0.65 tons per MWh of added wind 

generation. NOx emissions initially decrease in magnitude between the first four wind 

penetration scenarios. NOx emissions decrease an average of 0.95 lbs per MWh of wind 

generation added between the 3,500 MW and 10,000 MW wind penetration scenario. 

This value becomes 0.69 between the 16,500 and 23,000 MW scenarios. It then 

increases from magnitude to 1.06 between the 23,000 MW and 29,500 MW scenarios. 

Finally, SO2 emission reductions increase in magnitude as wind penetration increases 

from 0.44 lbs per MWh of wind generation added to 2.60 lbs per MWh of wind 

generation added. 

These results can be compared to the Cullen (2013) and Kaffine et al. (2013) result. 

The most direct comparison comes from the results calculated between the 3,500 MW 

scenario and the 10,000 MW scenario. This is because they both use older datasets 

which cover time spans where ERCOT had less wind capacity. Cullen uses a time span 

of 2005 to 2007 and Kaffine et al. 2007 to 2009. Wind capacity during 2007 to 2009 

ranged from 2,800 MW to 9,000 MW (Nicholson, Rogers, & Porter, 2010). This is 

similar to the wind capacity between the lower two wind penetration scenarios. The 
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values presented here for those scenarios for coal SO2 emissions are 0.44 lbs/MWh wind 

generation, for NOx emissions 0.95 lbs/MWh wind generation, and for CO2 emissions 

0.40 tons/MWh wind generation. Cullen found that SO2 emissions are offset by wind 

generation at a rate of 3.15 lbs/MWh wind, NOx emissions by 1.05 lbs/MWh wind, and 

CO2 emissions by 0.71 tons/MWh wind. Kaffine et al. found that lower results with SO2 

emissions being offset by wind generation at a rate of 1.277 lbs/MWh wind, NOx 

emissions by 0.710 lbs/MWh wind, and CO2 emissions by 0.523 tons/MWh wind. 

Kaffine et al. explain that their results are lower than the Cullen results because their 

model better captures the impacts of cycling generators on emissions. The reason the 

results from this chapter are lower than Kaffine et al. is likely the same reason. While 

Kaffine et al. use a non-structural model to indirectly determine the impact on emissions 

from wind generation, the functions used here can directly forecast emissions given 

generation inputs. This results in accurate forecasts of emissions under all the different 

generator operations. The result is lower estimated reductions in emissions. 

5.7 Conclusion 

Several studies have found that an increase in wind penetration can cause increases 

in emissions or reductions in emissions that are smaller in magnitude than associated 

generation reductions. Many of these studies use simplistic analyses or unrrealistic 

assumptions. Through the use of emission functions that take into account the imapcts 

on emissions from ramping, startup, and shutdown of generators, this study can 

accurately predict emissions under scenarios where generators operate differently. 

ERCOT provides five simulated wind penetrations scenarios with 3,500, 10,000, 16,500, 

23,000, and 29,500 MW of wind capacity. Applying each generator’s estimated function 

to that generator’s simulation results provides a forecast of emissions. The simulation 

results find that the operation of coal generators at higher levels of wind penetration 

results in significantly more ramping, startups, and shutdowns. The three natural gas 

fired units all find reductions in instances of ramping, startup, and shutdown as well as 

generation. The only exception is simple cycle units in the largest two wind penetration 

scenarios where they increase generation from the 16,500 MW wind capacity scenario 

and have increased instances of ramping. 
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The emissions impacts of these changes in operation are analyzed for each generator 

type and on aggregate for the entire Texas system. Coal generators find percentage 

reductions in CO2 emissions which are the same as the percentage reductions in coal 

generation. NOx and SO2 emissions from coal generation decrease by a larger magnitude 

than the decrease in total coal generation. Gas steam turbines find decreases in CO2 

emissions that are larger in magnitude than the decrease in gas steam turbine generation. 

Their NOx emissions decrease by a lesser magnitude than the decrease in generation. 

Combined cycle units shows decreases in both CO2 and NOx emissions that are much 

larger than their decrease in generation. Finally, simple cycle units report emissions 

reductions for CO2 and NOx emissions that are larger than their decrease in generation. 

Additionally NOx emissions decrease across all scenarios despite increases in generation 

from the 16000 MW wind capacity scenario to the largest two scenarios.   

Aggregate system results find that both CO2 and SO2 emissions are reduced by less 

than the reduction in total generation from the smallest to largest wind penetration 

scenario. This is mostly due to the fact that combined cycle units, which are less 

emitting, have a larger reduction in generation than more emitting coal generators. 

System wide NOx emissions on the other hand, decrease by more than the reduction in 

total generation. The difference in results between the individual generators and the 

aggregated system shows the importance in analyzing the impacts of wind penetration 

on a system level and by generator type.   

The system wide results are comparable to the emission impact per MWh of wind 

estimates in Cullen (2013) and Kaffine et al. (2013). This paper estimated average CO2 

emissions offsets of between 0.40 and 0.65 tons/MWh of wind generation. Average NOx 

emission offsets are estimated to be between 0.69 and 1.06 lbs/MWh of wind generation. 

Finally, SO2 emission offsets are estimated to be between 0.44 and 2.60 lbs/MWh of 

wind generation. This wide range in estimates is due to the large reductions in coal 

generation that occur at the higher wind penetration scenarios. The impacts estimated 

here show that for CO2 and SO2 emissions, there are increasing returns to wind 

generation. The CO2 and SO2 emission reductions per MWh of wind generation steadily 

increase as wind generation increases. For NOx emissions the reductions in emissions 

per MWh of wind generation initially decrease in magnitude as wind generation 
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increases. The estimated emission reductions per MWh of wind generation only increase 

in magnitude in the largest wind penetration scenario.  

5.8 Works Cited 

Apt, J., Fertig, E., & Katzenstein, W. (2012). Proceedings from 2012 45th Hawaii 

International Conference on  System Science, Smart Integration of Variable and 

Intermittent Renewables. (pp. 1997 - 2001). Maui, HI. Retrieved from 

http://www.computer.org/csdl/proceedings/hicss/2012/4525/00/4525b997.pdf 

(Date Last Accessed: April 2, 2015) 

Bentek Energy, LLC. (2010, April 16). How Less Became More... Wind, Power and 

Unintended Consequences in the Colorado Energy Market. Bentek Energy, LLC. 

Retrieved from http://docs.wind-watch.org/BENTEK-How-Less-Became-

More.pdf (Date Last Accessed: April 2, 2015) 

Cullen, J. (2013, November). Measuring the Environmental Benefits of Wind-

Generated Electricity. American Economic Journal: Economic Policy, 5(4), 107-

133. 

Environmental Protection Agency. (2004). Unit Conversions, Emissions Factors, and 

Other Reference Data. Retrieved from http://www.epa.gov/cpd/pdf/brochure.pdf 

(Date Last Accessed: April 2, 2015) 

Fripp, M. (2011). Greenhouse Gas Emissions from Operating Reserves Used to 

Backup Large-Scale Wind Power. Environmental Science and Technology, 

45(21), 9405 - 9412. 

GE Energy, 2010. Western Wind and Solar Integration Study, NREL/SR-550-47434, 

National Renewable Energy Laboratory, Golden, Colorado, May.  

Kaffine, D. T., McBee, B. J., & Lieskovsky, J. (2013). Emissions Savings from Wind 

Power Generation in Texas. The Energy Journal, 34(1), 155-175. 

Katzenstein, W., & Apt, J. (2009). Air Emissions Due to Wind and Solar Power. 

Environmental Science and Technology, 43(2), 253-258. 

Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S. (2012). Impacts 

of Wind and Solar on Emissions and Wear and Tear of Fossil-Fueled 

Generators. Proceedings of the 2012 IEEE Power and Energy Society General 

Meeting, 22-26 July 2012, San Diego, California. Piscataway, NJ: Institute of 

Electrical and Electronics Engineers (IEEE). NREL Report No. CP-5500-57686. 

Retrieved from: http://dx.doi.org/10.1109/PESGM.2012.6343967 (Date Last 

Accessed: April 2, 2015) 



 

134 
 

Prager, F. (2010, May 28). Setting the Record Straight on Wind Energy. The Denver 

Post. Retrieved from: 

http://www.denverpost.com/recommended/ci_15177817%202007 (Date Last 

Accessed: April 2, 2015) 

 

 



 

135 
 

6. Conclusion 

The work presented in this dissertation provides information and support for 

economic policy analysis and researchers studying emissions and their relation to the 

power system.  To properly address climate change policies addressing emissions, 

especially CO2 are going to become more common at least regionally if not nationally. 

Due to the economics of the power system, costs imposed on generators that would 

reduce their generation or change their operation may have impacts that cannot be 

predicted using simple models. Economic theory and simple models can predict that a 

CO2 cap and trade program will cause significant emissions leakage, or that wind power 

will simply replace emitting generator’s electricity production and there will be a 

corresponding drop in emissions.  

The first chapter of research looks at the question of emissions leakage with respect 

to the Regional Greenhouse Gas Initiative. This cap and trade program for CO2 

emissions requires generators in New York and other states to hold allowances for each 

ton of CO2 they emit. This increase in cost puts them at a competitive disadvantage 

compared to neighboring emitting generation in Pennsylvania not under the program. 

Economic theory says that power will be imported from Pennsylvania instead of using 

the more expensive generation in New York. The findings presented here indicate that 

the RGGI allowance price has not resulted in a statistically significant increase in 

electricity imports from Pennsylvania. Several potential reasons are theorized for this. 

Leakage may be mitigated by transmission limits between New York and Pennsylvania. 

Demand for imports may be limited by transmission constraints across New York, or by 

reliability rules of the NYISO. Different scheduling and other rules that differ between 

PJM and the NYISO may also play a role. The biggest two factors are likely the very 

low price of the CO2 allowances in RGGI and the fact that imports seem to not follow 

price signals. These findings on RGGI leakage and the potential mitigating factors are 

interesting especially for researchers looking to study emissions leakage in electricity 

systems elsewhere, or looking to design cap and trade policies in other regional systems.  

The other main topic covered by the dissertation is the need for detailed emission 

functions in order to be able to properly analyze emissions under scenarios where the 

dispatch of generators changes their traditional operating profile. Generators which have 
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different emission rates during times of startup, shutdown, and ramping periods are most 

affected by this Simple models do not forecast well during these types of operational 

hours and these are the hours most likely to change in frequency under scenarios where 

there is more stochastic renewable generation. These scenarios are likely to occur under 

any policy which may impose costs on emitting generators or support renewable energy 

through subsidies, tax breaks, or other policies. It is important in designing these policies 

to recognize that they may result in higher than expected costs or lower emission 

reductions if the emissions from changing generator operation are not accounted for.  

The research in chapter 3 presents a highly detailed emission function which can be 

applied and customized to specific generators automatically. This emission function 

takes into account the major generator operations of startup, shutdown, and ramping and 

by doing so produces highly accurate within sample predictions and out of sample 

predictions. These forecasts often outperform simpler models in all hours and when they 

do not, the forecasts are more accurate in ramping, startup, and shutdown hours 

specifically. These functions are good for analyzing any scenario where the ramping, 

startup, and shutdown of units are important considerations. These functions also prevent 

measurement bias which may be inherent in the continuous emission monitoring systems 

data. By including variables capturing whether a generator is reporting actually 

measured or calculated emissions, and variable indicating the hour during which a 

generator calibrates its CEMS equipment, the model can better estimate emissions 

during both normal operating hours and hours when CEMS measurement is not 

occurring.  

Chapter 4 uses the fact that the emission functions can estimate the impact of 

calibration to try and determine if generators are using a calibration exemption to under 

report emissions. Generators once per 26 hours are required to calibrate their CEMS 

equipment. During the hour they calibrate they only need to report measured emissions 

averaged over the portion of the hour when calibration is not occurring. By calibrating 

during portions of an hour with higher emissions rates, such as during ramping, startup, 

or shutdown hours, generators may be able to under report emissions. We find that coal 

generators may be doing this by calibrating the majority of the time in hours of upramp. 

Additionally the upramp hours they calibrate in tend to be larger than average upramps. 
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Using the estimates on calibration from the emission functions we find that for coal 

generators, emissions during calibration hours are lower than other hours. The results are 

more mixed across hours for other types of units. By applying the calibration variables to 

2010 yearly data to find that only coal units show lower reported emissions across the 

entire year in calibration hours compared to other hours. The under reporting of 

emissions by these coal units is not very large and saves a negligible amount of money 

in avoided NOx and SO2 allowances. Coal generators may be engaging in the practice as 

a holdover from higher NOx and SO2 allowance prices.  

The final chapter of research, chapter 5, uses the estimated functions for all Texas 

generators to analyze five wind penetration scenarios. This is done because previous 

literature has found that wind generation can cause emissions decreases that are less than 

the decreases expected using constant emission rates. Emission functions that can 

estimate emissions under all generator operating conditions forecast emissions under 5 

simulated wind penetration scenarios. These scenarios differ in the amount of installed 

wind capacity and wind generation in ERCOT. After forecasting emissions under all 

scenarios the results are analyzed to find that increasing wind penetration in ERCOT 

results in consistently larger in magnitude decreases in CO2 and SO2 emissions. The 

average decrease in NOx emissions from additional marginal wind generation decreases 

in magnitude as wind penetration increases. 

The research from this dissertation has shown the importance of interdisciplinary 

analysis when researching emissions from the electricity system. It is important to take 

into account both the economics and physical constraints which drive generation 

dispatch and operation. These types of analyses hope to provoke future research to 

carefully consider both aspects of the power system in order to do the important analysis 

and policy designed to address emissions related issues like climate change.  


