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ABSTRACT

The ability to reason analogically is a central marker of human-level cognition.

Analogy involves mapping, reorganizing, and creating structural knowledge, a par-

ticular type of cognitive construct commonly understood as residing purely within

the domain of declarative knowledge. Yet existing computational models of analogy

struggle to show human-level performance on any data sets not manually constructed

for the purposes of demonstration, a problem referred to as the tailorability concern.

Solving the tailorability concern may require more investigation into the nature

of cognitive structures, defined as those elements in mental representation which

are referred to whenever contemporary literature on analogy discusses “structured”

knowledge.

I propose to develop the theory of Analogical Constructivism. This theory

builds on Piaget’s constructivist epistemology, first refining its concepts by clarifying

the modifications Piaget himself made in his later, less-discussed works. I reconcile

Piaget’s assertion that meaning is, first and foremost, rooted in the action schemas

that the agent is both born with and develops throughout life, with an account of

cognitive structure, concluding that cognitive structure is inseparable from action-

centered/procedural knowledge.

After a defense of the claim that cognitive structure cannot exist apart from

actions (a claim which I refer to as “No-semantically-empty-structure”), I introduce

PAGI World, a simulation environment rich enough in possible actions to foster the

growth of artificial agents capable of producing their own cognitive structures. I

conclude with a brief demonstration of an agent in PAGI World, and discuss future

work.

viii



CHAPTER 1

Late Piaget, Analogy, and Summary

1.1 Introduction

In this dissertation, I will introduce, defend, and demonstrate what I call Ana-

logical Constructivism1, which is both a new theory of cognitive development

and an approach to Artificial Intelligence. Analogical Constructivism (referred to

hereafter as AC) is essentially the unification of analogy and Late Piagetian Theory

(LPT). LPT is a term I use to distinguish Piaget’s later works (ranging from around

1965 to his death in 1980). This period can be characterized by the maturation of

Piaget’s constructivist ideas, and the elaboration of what he called abstractions.

Though Piaget’s earlier work on developmental stages and schema mechanisms (as-

similation and accommodation) are very well known in developmental psychology

and childhood education, contemporary discussion on his later thought is compar-

atively minor.

There are several tasks this dissertation achieves:

• Introduce AC;

• Refine the understanding of structured knowledge used in computational cog-

nitive models and computer science in general;

• Describe a new simulation environment for developing such structured knowl-

edge; and

• Present a simulation created in this environment which uses AC.

The layout of this dissertation is as follows: This chapter will summarize some

of the most important concepts characteristic of LPT. This will be followed by an

1In this dissertation, for clarity, I will try to adopt the following convention. Foreign terms
and text to be emphasized will be in italics. New terms, when first introduced, will be in bold.
Properties or conceptual structures, particularly those expressed using English words, will be in
teletype font. Formulae and corollaries will be either in greek letters or, for hypotheses, the
lowercase italicized h. Domains, sets, lists, and groups will be in bold, capital letters (e.g. S).
Finally, objects, and other symbols, will be italicized single letters.

1
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overview of the relevant literature on analogy, the second major component of AC.
Chapter 2 will develop AC’s understanding of structure, and close by stating the

central positions that AC takes. With those preliminaries out of the way, I then

summarize work I have done up to this point in ADR and Analogy (Chapter 3).

Chapter 4 introduces PAGI World, a simulation environment capable of developing

an artificial agent based on the principles of AC. Finally, Chapter 5 will present

a short simulation in PAGI World, serving as preliminary work to launch a new

research program.

1.2 Late Piagetian Theory (LPT)

LPT refers to a highly productive period of Jean Piaget’s life which produced

work that, compared to his earlier work, is not afforded as much attention or dis-

cussion in the psychological literature. However, Piaget arguably wrote some of his

most important work in this period, as he performed several important tasks: he

addressed some of the contemporary criticism of his earlier work by more precisely

defining and providing evidence for central concepts like equilibration; he introduced

and developed the concepts of reflective and empirical abstraction (a concept which

is central to this dissertation); and he even completely changed his position in some

areas, by espousing viewpoints that directly contradicted previously-held viewpoints

for which he is still criticized today.

So why did LPT not enjoy the acclaim given to Piaget’s earlier work? We

might briefly identify several possible reasons here. The first is that as early as

1970, with the publication of Juan Pascual-Leone’s work (Pascual-Leone, 1970), we

saw the emergence of the so-called “neo-piagetians,” whose criticisms of Piagetian

theory (as they understood it) shifted focus away from Piaget himself (Case, 1992;

Morra, Gobbo, Marini, & Sheese, 2008). Another reason is the late translation of

his work from the LPT years. Piaget never was fully comfortable writing in English

(he says this several times in Piattelli-Palmarini (1980)), and much of his work, to

this day, remains only available in his native French. Consider, for example, Studies

in Reflecting Abstraction, which was only translated into English in 2001 (Piaget,

Montangero, & Billeter, 2001). By comparison, the last major effort to implement
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Piagetian thought into a computational simulation was probably Drescher (1991).

The few translations of LPT work into English that do exist contain confusions that

result from Piaget’s use of terms that did not have direct equivalents in English.

The results of this can be seen in the inconsistent English translations, between

different authors, of the different types of reflective abstractions, which I describe

shortly.

Finally, Piaget tried to reach out and connect his work to the emerging school

of French Structuralism (e.g. the work of Claude Lévi-Strauss and Jacques Lacan)

which was gaining popularity at the time, being applied to fields as diverse as

literary analysis, linguistics, and sociology (Piaget, 1970; Turner, 1973; Solo, 1975).

It is entirely possible that the failure of the English-speaking world to adopt French

Structuralism (due in no small part to the work of “post-structuralists” like Jacques

Derrida) led to a throwing out of the baby with the bathwater. Fortunately, a

new wave of investigations into structure (e.g. the limits of logic-based AI, which

intimately relies on structured representations (Bringsjord, 2008b)), the notion of

structure used by literature in analogical reasoning (Hummel & Holyoak, 1997),

and the nature of structure as it exists in the world, perhaps best exemplified by

Luciano Floridi’s Philosophy of Information project2 may provide a renewed focus

on the nature of structures themselves, both as they exist in the world and in how

cognitive systems represent them. As a result, it may be time to re-assess the

insights LPT gives us into the nature of cognitive structures, and AC proposes to

do just that. We will return to the topic of structures in Chapter 2.

In any case, LPT introduces and develops several important concepts which

we will now summarize: abstractions, actions as meaning, and a revision of the

logicism with which Piaget was previously associated.

1.2.1 Abstractions

Although Piaget’s better-known works already offer the contrasting mech-

anisms of accommodation and assimilation to explain the driving forces behind

2Floridi’s work proposes a constructionist rather than a constructiv ist approach (Floridi,
2011b). The difference is that whereas Piaget’s constructivism tends to focus on describing the
emergence of cognitive structures, constructionism shifts the focus to a prescriptive one which tells
us what sorts of cognitive structures should be developed. (Floridi, 2011a)
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schema development in the child, LPT is distinguished from his earlier work by an

increased focus on specific types of what Piaget called abstractions, a focus that

would become the basis of his theory in his final years (Lourenço & Machado, 1996).

The abstraction processes, which allow complex knowledge structures to form from

simpler ones, come in at least three types:

• Empirical (or Simple) Abstraction: Abstraction which comes from per-

ceived objects. Consists of deriving the common characteristics from a class of

objects. Because in constructivism all perception is done through the schemas

the subject currently has available (as opposed to direct perception of prop-

erties), Dubinsky (1991) interprets empirical abstraction as referring to ex-

periences which “appear to the subject to be external. The knowledge of

these properties is, however, internal and is the result of constructions made

internally by the subject” (Dubinsky, 1991, p. 97).

• Reflective (or Reflexive3) Abstraction: Abstraction which starts from

actions and operations. Consists in “deriving from a system of actions or

operations at a lower level, certain characteristics whose reflection (in the

quasi-physical sense of the term) upon actions or operations of a higher level

it guarantees; for it is only possible to be conscious of the processes of an

earlier construction through a reconstruction on a new plane [...] In short,

reflective abstraction proceeds by reconstructions which transcend, whilst in-

tegrating, previous constructions” (Beth & Piaget, 1966, pp. 188-189). This is

the process which creates new (as in, new for a reasoner) logico-mathematical

constructions (Beth & Piaget, 1966, p. 205)(Dubinsky, 1991). Even the senso-

rimotor structures are derived “from more elementary structures by a process

analogous to reflective abstraction” (Beth & Piaget, 1966, p. 204), which

raises the question of where the most fundamental structures come from in

the first place (this is addressed in the next section on action schemas). Pi-

aget would later say that reflective abstraction was another way of describing

equilibration (Montangero & Maurice-Naville, 1997, p. 63).

3Both ‘reflective’ and ‘reflexive’ are in use due to an inconsistency in English translations
(Gallagher & Reid, 2002).
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• Pseudo-empirical Abstraction: Can be considered a hybrid mix between

empirical and reflective abstractions.

Abstraction dominates LPT, and is perhaps one of the most misunderstood

Piagetian concepts (partially responsible, no doubt, for the fact that many of Pi-

aget’s writings still remain untranslated). Yet these studies of abstractions offer us

insight into the particulars of conceptual construction—a useful feature indeed for

the researcher interested in modeling such constructive processes computationally.

The primary difference between the three types of abstractions listed above

seem to be the sources of their inputs. Empirical abstraction operates on the prod-

ucts of direct perception, whereas reflective abstraction works with structures in

memory, ultimately producing new actions, coordinations, and objects onto “higher

levels” (Dubinsky, 1991) (to make use of language, common in Piagetian writing,

which assumes a sort of hierarchy with simple, empirical structures on the bottom,

and highly-abstracted, logico-mathematical constructs on the top). The types of

abstractions are supposed to interact in a way that allows for the products of one

to feed into another.

Let us take the example of a child who sees rocks of different sizes and decides

to place them in order according to size. Empirical abstraction is the process of

perceiving the rocks, recognizing them as rocks, and recognizing that they have the

property size is a perceptual process which draws on conceptual structures rock

and size, themselves products of reflective abstraction. When the child actually

interacts with the rocks and observes that her actions transformed what she is seeing

is pseudoempirical abstraction. Finally, if the child should recall this experience later

and decide that the entire event was similar to a time she did the same thing with

differently-sized sticks she found, she would have performed a reflective abstraction.

Reflective abstraction can further be divided into two components:

• Projection (Réfléchissement) - The projection of structures from one level

onto a higher level (Gallagher & Reid, 2002); the process of an activity or men-

tal operation (which is not a static combination of sensory elements) which

was developed on one level being abstracted and applied on a higher level
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(Glasersfeld, 1991), allowing the projected coordination to be understood ex-

plicitly (Campbell, 2009).

• Reflection (Réflexion)4 - The cognitive reorganization or reconstruction of

what was abstracted or transferred from lower levels (Gallagher & Reid, 2002;

Glasersfeld, 1991); the integration of the projected coordination with other

structures at the higher level (Campbell, 2009).

In some sources there are other types as well: reflected abstraction (abstraction

réfléchie) (reflecting abstraction of the second order) and metareflection/reflective

thinking (métaréflexion/pensée réflexive) (Piaget et al., 2001; Campbell, 2009).

These are higher-order products of reflective abstraction, and we will leave them

out of this discussion.

Our first takeaway from LPT, then, is this list of abstractions, which together

elaborate, coordinate, and make use of cognitive structures, and a high-level view

of how they coordinate to do so. Each type of abstraction seems to build off of the

products of the others, which raises the question: What are the initial cognitive

structures? Piaget offered the following answer:

[T]here are certain givens from which the construction of logical struc-

tures takes off, but these “data” are not primordial in any absolute sense,

being merely the starting point for our analysis, nor do they “contain”

what is, in the course of construction, “derived” from and “based” on

them. We called these initial structures behind which we cannot go “gen-

eral coordinations of actions,” meaning to refer to the connections that

are common to all sensori-motor coordinations (Piaget, 1970, p. 63).

The connection between “general coordinations of actions” and knowledge

structures, however, is a complex one, and another central topic of LPT. The result-

ing implications for the nature of cognitive structures will therefore be important to

understand for the purposes of this dissertation.

4As if to add to the confusion in translations: Gallagher (2002) refers to réfléchissement as
‘projection,’ von Glasersfeld (1991) as ‘reflection.’ However, Gallagher refers to réflexion as ‘re-
flection,’ while von Glasersfeld calls it ‘reflexion!’ We will refer to these terms in their original
French, in italics, to avoid confusion.
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1.2.2 Actions as Meaning

Piaget’s final book, Toward a Logic of Meanings, attempted to create a ‘logic

of actions,’ an intensional logic which would describe operations beginning at the

sensorimotor level and ultimately lead to the creation of logico-mathematical struc-

tures (Piaget, Garcia, & Davidson, 1991). What resulted, however, was a topic of

great interest to the present discussion. It was argued, in no unclear terms, that

the nature of meaning is rooted in action schemas and the action implications be-

tween them. The meaning of an object amounts to “what can be done” with it, and

therefore to perceive an object is to assimilate that object to an action scheme. As

for actions themselves, their meanings are defined by “what they lead to,” or what

transformation(s) they produce in whatever object or situations they are applied to.

In other words, the meanings of actions are what roles they play in action schemas.

Such a view of semantics seems to parallel Wittgenstein’s meaning-as-use se-

mantics and Floridi’s action-based semantics (Floridi, 2011b), the latter which I

will discuss in Section 2.2.1. LPT also has an interesting connection to White-

head’s event-based ontology (Whitehead, 1919), in that they view objects as stable

constructions rather than epistemological primitives—for Piaget, objects are con-

structed from the roles in actions, and for Whitehead they are created with events.

Piaget grounds all meaning in the action schemas that are constructed by a

combination of reflective, empirical, and pseudo-empirical abstractions. In (Piaget

et al., 1991) he argues that there must be action implications between actions, and

discovering a logic that describes their behavior is a primary goal of the book. One

of the major discoveries here is that the action implications seem to behave in a way

that captures all 16 of the binary connectives of propositional calculus. This is the

case at the earliest stages of sensorimotor development, and is present even in the

innate action schemas:

[A]ny observable is always linked to an interpretation which necessar-

ily involves not only meanings, but also inferential links between these

meanings or to previous meanings. [...] Thus, even the most elementary

scheme, the preformed sucking reflex, already involves implications (be-

tween displacements and successes or failures, i.e., when the newborn
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must change its position in order to adjust its ill-positioned mouth to

the nipple) (Piaget et al., 1991, p. 8)

I will not be so bold as to claim that all of meaning can be explained by a

reduction to actions (we will return to this topic later in the discussion of Floridi’s

Action-based Semantics). But the idea that actions, or action schemas, can be a

foundation for both a sensorimotor-level and a higher-level computational model of

cognition is intriguing. Turning our attention briefly to computational implemen-

tations, it is of no surprise that perhaps the field of robotics—which deals directly

with actions in the world—should have what is perhaps the best-developed liter-

ature on implementations of action schemas. For just a few of these approaches,

see (Platt, Grupen, & Fagg, 2006; Cohen, Chang, & Morrison, 2007; Aksoy et al.,

2013). However, a survey of the field makes it obvious that research projects in

robotics typically stop at action-centered representations, rarely using processes like

reflective abstraction to modify and build upon their action schemas, ultimately

producing the sort of structures capable of elementary logico-mathematical reason-

ing. Furthermore, the rich description of action implications described by Piaget

and Garcia (1991) is not nearly satisfied; consider, e.g., how Piaget and Garcia

claim action implications should be rich enough to reflect the propositional-calculus

connectives. Without a full account of action implications, it is difficult to see how

something like contradiction between action implications can be represented, and

without contradictions, schema development is severely handicapped. In Piaget’s

own words: “[The] progressive overtaking of contradictions, which constitutes the

formative process of differentiations as well as coordinations, is fundamental when

it comes to relations between operations and causality. To raise contradictions is,

in effect, to construct a new operational structure” (Piaget & Garcia, 1974).

To their credit, some of the work from the robotics field in implementing action

schemas have built on Ed Dubinsky’s APOS theory (Dubinsky & Mcdonald, 2002).

Dubinsky is one of the few experts on LPT who takes Piaget’s views on meaning

seriously: he builds primarily on Piaget and Garcia (1991) to create a model of how

actions become processes, which in turn become objects, which then combine with

groups of other objects and actions to form schemas (hence the initialism APOS).
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APOS theory has primarily been applied to education (Dubinsky & Mcdonald, 2002;

Arnon et al., 2013).

The astute reader may recognize the applicability of the distinction between

procedural (or action-centered) thought and declarative (or non-action-centered)

thought. LPT’s recommendations, then, might be interpreted as saying the struc-

tures used to represent declarative knowledge arise from a complex interaction be-

tween existing structures, some of which may be considered declarative, others pro-

cedural. Ultimately, however, the primary structures from which all others are built

are implicit and action-centered, to use the language of Sun (2002) . One might even

go a step further, and declare that to successfully model the development Piaget

and colleagues observed, procedural and declarative knowledge must be so tightly

integrated that aside from the innate structures, no structure of either knowledge

type arises without a complex interaction with knowledge of the other type.

This point — that cognitive structures and action schemas increase their com-

plexity by building off of each other — will be restated later as one of the three

central positions of Analogical Constructivism (albeit in a slightly weakened form).

If the reader is at this point concerned that I have made a perfunctory and

uncritical restatement of LPT, it should help to clarify my purpose for selecting the

concepts described thus far: My intent is to search LPT for concepts, terminology,

ideas, and empirical observations, all of which LPT has in abundance, and to explore

whether they can form the basis of a new approach to AI. Although LPT distin-

guishes itself from pre-LPT thought on more points than I mention here (see, e.g.

(Lourenço & Machado, 1996; Montangero & Maurice-Naville, 1997)), the points I

discussed are directly relevant to the simulation which this dissertation will present.

The next step is to see how LPT can hold up, and perhaps be refined by, more

recent literature.

1.2.3 Action Implications

Piaget observed that young children (9-10 months old) who were given boxes

of varying sizes so that some could be nested in the others, behaved in an interest-

ing way. When they placed one box inside of a larger one, they would first put the
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smaller box in their mouth. Piaget suspected that this was evidence of the children

starting with the established scheme of placing-object-in-mouth, and through reflec-

tive abstraction constructing a new container-content scheme (Piaget et al., 1991).

Furthermore, the ability to place an object in a container was accompanied with the

ability to take the object out again, constituting a pair of reversible actions. More

generally, Piaget referred to the relationship between such paired actions as a type

of action implication, e.g. “action x implies the possibility of the reverse action”

(Piaget et al., 1991, p.5).

Action implications (and the closely related idea of meaning implications, of

which action implications are a subset) are among the most interesting ideas in-

troduced by LPT, primarily because they represent an abrupt change in Piagetian

thought. Piaget and collaborators found that relations between actions, or the pos-

sible ways that children combined pairs of actions, formed in a way isomorphic to

the sixteen binary operations of propositional calculus, despite previously believing

that the operations of propositional logic did not appear until age 11-12 (Piaget et

al., 1991, p.6).

I will define action implications following (Piaget et al., 1991, p.vii-viii). Given

two actions a1, a2 of an agent, Piaget defines the meanings of those actions as “what

they lead to” in the mind of the agent (Piaget et al., 1991, p.119). An action

implication, then, is a relationship between the meanings of a1 and a2 such that

the first meaning “leads to” the second (Piaget et al., 2001, p.96). For example,

reaching an object implies getting closer to it. Getting closer to an object might

imply either grabbing it and pulling it closer, or walking towards it. These are

examples of action inferences between actions firmly dependent on physical objects.

But action inferences can apply to operations over purely mental constructs as well,

e.g. the action of multiplying a number by two can be “reversed” by dividing by

two.5

Action implications, and their parent class meaning implications, are a fun-

damental building block of LPT’s take on constructivism. Along with reflective

abstraction, Piaget and colleagues believed, meaning implications give rise to the

5I do not discuss here the concept of reversible actions, which Piaget spent much time trying
to understand in his work prior to LPT (Inhelder & Piaget, 1958).
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formal operations, and therefore it is plausible to assume that simulating the hu-

man ability to reason logically might benefit from careful attention to modeling the

processes from which the ability emerges.

1.3 Analogy

A quote from Piaget on reflective abstraction suggests a connection to what

we today might recognize as analogical transfer:

[Reflective abstraction] can be observed at all stages: from the sensory-

motor levels on, the infant is able, in order to solve a new problem, to

borrow certain coordinations from already constructed structures and to

reorganize them in function of new givens (Piaget et al., 2001, p. 6)

Compare this to the modern understanding of analogy, where analogy is typ-

ically used to solve problems that are new for the reasoner, that it is a process that

involves the borrowing of already-obtained knowledge structures, and that it can

often involve the reorganization of the retrieved knowledge structures in order to

improve the match quality (Gentner & Forbus, 2011).

Analogy is the cognitive process which operates over structured representa-

tions in a source and target domain, making analogical reasoning possible (Gentner,

1983). Analogy simpliciter may be better described as consisting of four different

processes, in a division roughly following (Gentner & Forbus, 2011):

• Analogical Retrieval - Given a target domain T and an optional set of prag-

matic constraints, retrieval searches a knowledge-base for relevant source cases

which it may retrieve as a whole or construct from semantically related pieces

(depending on the model used). It is widely believed (Gentner & Forbus, 2011)

that whereas analogical matching relies on structural knowledge, the retrieval

step relies on “surface similarity,” which is not considered to be structural

(this, however, is a point of contention to be addressed later) (Gentner &

Toupin, 1986; Holyoak & Koh, 1987; Thagard, Holyoak, Nelson, & Gochfeld,

1993).
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• Analogical Mapping - Given a source domain S and a target domain T, a map-

ping M is found between the elements of S and T. The mapping may be sub-

ject to constraints such as systematicity, the one-to-one constraint (Gentner,

1983), pragmatic constraints, or any of the others identified by multiconstraint

theory (Holyoak & Thagard, 1989).

• Analogical Inference and Generalization - This might be considered the ulti-

mate goal of analogical reasoning. Given S, T, and M from the mapping step,

new conceptual structures are created and hypothesized to be a part of the

target domain T (analogical inference), or to serve as a generalization of both

S and T (analogical generalization).

• Re-representation - Perhaps the most poorly understood of the four analog-

ical processes, re-representation involves a reorganization of the conceptual

structures in the source and/or target domains to better satisfy one of the

constraints in the mapping step, or to produce better results in the infer-

ence/generalization step.

The analogical mapping step involves, at the very least, making comparisons

between structured representations, but the definition of structured representations

used by computational and cognitive models of analogy is one that, as shall be

argued in Chapter 2, is unsatisfactory. In particular, the weak understanding of

what it means for a representaton to be structured may be to blame for the lack of

models that can perform the re-representation step (at least to a level of proficiency

matching the abilities manifested even by small children).

1.3.1 Analogy as the “Core of Cognition”

When construed as a cognitive process that compares structured representa-

tions and creates new ones on the basis of those comparisons, it is easy to see why

analogy might be considered a central process to thought (assuming of course, that

cognitive thought is fundamentally structured, whatever that means; see Chapter

2). The extreme position, held by Douglas Hofstadter, takes analogy to be “the

very blue that fills the whole sky of cognition” (Hofstadter, 2001). According to
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Hofstadter’s view, all of the higher-level cognitive features typically associated with

the neurobiologically normal adult human mind are fundamentally made possible

by analogy. To cite a few examples: Categorization is an analogical process because

it requires the adaptation, through a mapping process, of an existing mental entity

to a set of incoming stimuli (Hofstadter, 2001; Hofstadter & Sander, 2013). This

means that recognition of, say, everyday visual inputs (“that looks like a tree”) can

be described as a form of analogy.

Hofstadter goes further to criticize the source-target paradigm as it is used in

many experiments, arguing that the vast body of literature which rely too heavily

on it can only produce conclusions of limited generality. In the real world outside

of the experiment, we draw on source knowledge “deeply rooted in our experiences

over a lifetime, and this knowledge [...] has been generalized over time, allowing it

to be carried over fluidly to all sorts of new situations. It is very rare that in real

life we rely on an analogy to a situation with which we are barely familiar at all”

(Hofstadter & Sander, 2013). The use of “surface features” identified by partici-

pants in analogy experiments shows no more than “when people learn something

superficially, they wind up making superficial analogies to it” (Hofstadter & Sander,

2013). Instead, Hofstadter seems to suggest that models of analogical retrieval (and

perhaps matching) should be influenced by not surface similarity, but rather by two

factors: the simulated agent’s familiarity with the source analog, and the source

analog’s level of conceptual development (relative to the simulated agent). These

two factors may be virtually equivalent in practice, but for an artificial simulation

they each suggest different methods of implementation. Familiarity level may be

captured by a simple scalar value attached to a source domain or schema, whereas

the level of conceptual development may be an emergent property of a cognitive

structure falling out of the complexity of the relations (Hofstadter would call these

chunks) used, the height of the overall structure, the flexibility of the structure to

be re-represented, and so on.

The ability to perform argument by analogy, which conforms to a particular

argument form (e.g. (Bartha, 2010; Bringsjord & Licato, 2015)), is trivially reliant

on the four analogical processes listed above. But what about deductive reasoning?
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There have been attempts to work in the other direction, by reducing arguments by

analogy to a deductive schema, though none of them have gained widespread accep-

tance (Bartha, 2010). Reduction of deductive reasoning to arguments by analogy,

on the other hand, is difficult because analogical arguments do not have the validity

that distinguishes deduction; if from a source domain S and a target domain T we

perform an argument by analogy to infer a formula φ about the target domain, we

cannot say that φ is formally valid. At most, φ is prima facie plausible (Bartha,

2010).

Thus, reducing argument forms of analogy and deduction to one another is a

difficult task, and it is not the concern of this dissertation. So we must refine the

question to one that is more relevant: Are the four analogical processes sufficient to

create a system that can correctly distinguish, carry out, and work with deductive

arguments? The answer to this question is a tentative yes, and the demonstration-

of-concept is in a paper I previously published (Licato, Sun, & Bringsjord, 2014)

which will be discussed in Chapter 3. For now, let it suffice to state this hard-to-

deny assertion: Both analogical and deductive reasoning cannot operate without

structured representations. Analogy relies on structured representations almost by

definition, and deduction, insofar that it involves the manipulation of formulae ac-

cording to their adherence to certain syntactually defined criteria, simply cannot

work without the structure which makes those syntactical forms possible in the first

place.

1.3.2 Can Analogy Explain Abstraction? Acting in-accordance-with vs.

reasoning-over

Let us assume that analogy is a general cognitive process that works on all

levels dealing with structured knowledge, including the meta-levels on which we

would assume that LPT’s abstraction processes work. What, then, is the rela-

tionship between the abstraction processes and analogy? Here, I will put forth a

brief argument that the abstraction processes, as described by LPT, can be un-

derstood as intimately related to analogy. More precisely, we will call a cognitive

process analogy-structure-sensitive if the majority of its activity relies on the
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same structured representations which are used by analogy. (Note that the definition

of analogy-structure-sensitive processes may encompass a wide variety of cognitive

processes, but this is exactly the point: I want to show that the sort of structure

used by analogy is central to human-level thought.)

Recall that there are at least four types of abstractions: empirical abstraction,

which applies internal constructs to perceptions which appear to the subject to be

external; réfléchissement, which creates new cognitive structures at a higher level

that are reflections of structures on lower levels without transforming the lower-level

structures; réflexion, which does roughly the same thing but additionally causes a

re-organization or reconstruction of structures; and pseudo-empirical abstraction,

which is a hybrid of the others. If it can be plausibly argued that the first three

types of abstractions can be explained using the four analogical processes, then the

task is complete (at least for the current work, whose goal is to plausibly simulate

the abstractions).

Empirical abstraction is essentially the act of categorizing perceptual stimuli

as it arrives. Let us assume that a child, her eyes directed towards a set of rocks

on the sand of a particularly rocky area on the north side of Makapu‘u Beach Park,

receives the low-level uninterpreted visual sensory data S. At some stage there

needs to be a recruitment of knowledge structures and categories with which she

is familiar, and these structures need to be compared with S to determine if there

is an acceptable match. Now S does not have any apparent structure (if we agree

with the approach of (Hofstadter & Sander, 2013)), since empirical abstraction first

attaches structure to the sensory input, allowing those rocks to be recognized as

such. So it seems disingenuous to say that analogy, while comparing structured

representations, is directly and solely responsible for the initial level of structuring.

On the other hand, empirical abstraction simply cannot operate without previous

products of reflective abstraction that are themselves necessarily structured entities

(Montangero & Maurice-Naville, 1997; Gallagher & Reid, 2002). Furthermore, once

the initial layer of structuring is done, any subsequent structuring is then being

performed between two structured components—the source domains and the newly

structured input. At best, then, we might characterize empirical abstraction as
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a “pseudo-analogical” process, but it certainly can also be described as analogy-

structure-sensitive.

Reflective abstraction, however, is more complicated. I will interpret it using a

distinction often used in discussions of Wittgenstein, that of acting in-accordance-

with versus reasoning-over. Given a cognitive structure S stored as an action

schema (something that the agent can behave in-accordance-with), reflective ab-

straction allows for the creation of SR, which is a reflection of S, that can be used

as an object or substructure in operations by the agent in the future. SR is not an

exact duplicate of S, nor is it a simple generalization; rather, SR is the reflecting

process’s interpretation of S. The reflecting process is finite, and it is itself limited

to the tools provided to it at the time of reflection, namely, the existing concep-

tual constructs (themselves products of previous instances of reflective abstraction).

This is perhaps why the reflective process does not produce an exact copy; it is for

the same reasons that a man observing another cannot generate an explanation of

the observed man’s actions in terms of the low-level neurons firing; rather, he must

produce an explanation that is high-level and conceptual (e.g., “The man is eating

because he is hungry.”).

This distinction seems consistent with the example of reflective abstraction

given by Robert Campbell (translator of Piaget’s Studies in Reflecting Abstraction

and perhaps the leading expert in English on abstraction in LPT):

Multiplication looks like repeated addition — yet children find it much

harder than addition. According to Piaget’s analysis, children have to be

able to recognize how much they are adding each time. This is empirical

abstraction; even the youngest children in [a study done by Piaget and

colleagues] easily recognized the number of poker chips that they were

adding to the row each time. To multiply successfully, however, Piaget

maintains that children must also attend to the number of times that

they add that amount. Only through reflecting abstraction can children

understand how many times they added poker chips to one row or how

many times the experimenter added chips to the other. The same goes

for realizing that adding two and doing that three times has produced
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the same number as adding three and doing that twice. (Campbell, 2009,

p. 153-154, emphases in original)

In this dissertation, behaving in-accordance-with vs. reasoning-about will be

connected to using action-centered (procedural) vs. non-action-centered (declara-

tive) knowledge.

A simple example is in order. If a child were to grab a marshmallow every time

he sees one, we can conclude he has an action schema, a structure, which he can

behave in-accordance-with. But if one were to tell him not to eat the marshmallow on

the table, this requires a few things. First, he needs to transform his action schema

from something he can behave in-accordance-with to something that he can reason-

about (réfléchissement), and then he can further transform the result appropriately

(réflexion). In such a case he would need to perform some sort of negation, in order

to know how not to perform the action of eating the marshmallow, and then to

make this negated action schema an intention of his. Quite a task to demand of a

child!

Now to return to the current goal: Can reflective abstraction be understood as

structure-sensitive processes? In the marshmallow example, we redescribed the two

subtasks which comprise the reflective abstraction step: The réfléchissement step

(reflect S, an in-accordance-with structure, into SR, a reasoning-about structure);

and the réflexion step (incorporate SR into the existing reasoning-about structure-

space). The key to AC’s understanding of the réfléchissement step is this: The pro-

cess of transforming an in-accordance-with structure to a reasoning-about structure

is like an analogical inference where the source domain is a subset of action-centered

(procedural) knowledge, and the target domain is a subset of non-action-centered

(declarative) knowledge. When the child transforms his implicit action schema into

the sort of thing that he can reason about, he is performing a comparison between

two very different types of knowledge, resulting in the creation of new cognitive

structure, but the knowledge that is compared is structured nonetheless.

The réflexion step incorporates SR into the non-action-centered knowledge-

base. Some of this incorporation falls quite nicely out of the analogical inference

process: Because analogy constructs SR out of concepts and structural elements
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that are already extant in the target domain, it already achieves a level of semantic

integration. In that aspect, it is simply a side-effect of analogy processes. But clearly

there is more to it than that. In the marshmallow example, further processing is

done to transform SR, to ensure that the resulting structure is compliant with the

command that was given to the child (“Do not do SR”). Some pragmatic motivation

is seemingly unavoidable here. We must therefore have at least a basic theory of

semantics upon which we can rest our conception of structures, and this task will

ultimately be performed in Section 2.2.1.

1.4 Lessons to Take Away

This chapter brought up several important points:

• Most (if not all) cognitive structures are created through reflective abstraction.

• The complexity and richness of actions and cognitive structures can bootstrap

each other.

• Analogical reasoning, which relies fundamentally on structure, is being in-

creasingly regarded as a core process of cognition.

• The abstraction processes described by LPT, which are responsible for the

elaboration of cognitive structures, can be redescribed as rooted in analogical-

structure-sensitive processes (with a minimum of additional innate processes).

Stated in this way, an obvious theme emerges: Structure, particularly the as-

pect of structure analogy is sensitive to, is extremely important to the AC approach

to AI. But what is structure, and how should it be modelled? The next chapter will

address this topic in more detail.



CHAPTER 2

Structure and Actions

Chapter 1 argued that the two major components of AC, LPT and analogy, are each

inseparable from the concept of structure. This is not an inconsequential claim:

the ability to recognize, operate on, behave in-accordance-with, and reason-about

structures are virtually taken for granted in the modern computer and cognitive-

science literature. The limits, strengths, advantages/disadvantages, and ultimately

the nature of structures is rather insufficiently explored, to the detriment of theories

and computational models that rely heavily on the concept.

As this is a dissertation for a degree in computer science and not philosophy,

I refer only to cognitive structures, i.e., the sort of structure is that is used by

analogy. This is in contrast to structures in the world (isofar as they exist), as

described by varieties of Structural Realism (Floridi, 2011b; S. French, 2014). I

will not be attempting to answer any questions about what is “real,” or what things

exist outside of human knowledge; I will only be talking about features of knowledge

representation in human beings. Where it is clear, I will omit the word ‘cognitive.’

I may alternatively refer to cognitive structures as constructions if there is a need

to emphasize their non-innateness.

In this chapter, I try to answer the following questions:

1. How should AC reconcile the conflicting understandings and ultimately define

cognitive structure? While the analogy literature and LPT both happen to

use the word ‘structure,’ what reason do we have to suppose that they are

referring to the same thing?

2. How can we identify structure in humans and AI agents? It is one thing to

posit the existence of mental constructs, but what should we expect of an AI

agent with truly structured representations?

3. What does AC’s definition mean for models of analogy, which primarily work

with structure?

19
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4. What is the relationship between structure and action?

A precise understanding of structure is of great interest to computer science

as a whole, as the current extreme popularity of the Deep Learning paradigm (her-

alded by breakthroughs in (Hinton, Osindero, & Teh, 2006) and (Bengio, Lamblin,

Popovici, & Larochelle, 2007)) is paving the way for a literature that refers to

structure as the sort of thing neural networks can now learn and represent (e.g. see

(Adams, Wallach, & Ghahramani, 2010; Saxe, McClelland, & Ganguli, 2013)). Such

an implicit assumption may or may not be right. While it is entirely possible that

the definition of structure used by most computer scientists is useful for describing

(artificial) neural networks, the fact remains that its overlap or lack of overlap with

definitions used in cognitive science and computational cognitive modeling is in dire

need of clarification.

This chapter will attempt to face this challenge, as will be necessary to provide

practical answers to the list of questions above. This will pave the way for a formal

introduction of AC’s central principles, closing out this chapter.

2.1 Structure in Models of Analogy

A natural starting point in the story of modern models of analogy is Gen-

tner’s (1983) paper introducing the Structure-Mapping Theory (SMT), whose cen-

tral claims are the linchpin of almost all computational models of analogy today.

Knowledge in SMT is represented using “propositional networks of nodes and pred-

icates,” where nodes would be used to represent localist concepts, and predicates

represent either attributes (single-argument predicates) or relations (predicates with

more than one argument). Second- and higher-order predicates are also possible,

where a second-order predicate is one taking a proposition as an argument (e.g.:

CAUSE[COLLIDE(x,y), STRIKE(y,z)] is a second order predicate CAUSE relat-

ing the propositions COLLIDE(x,y) and STRIKE(y,z)).

An important clarification of SMT’s knowledge representation is that a given

collection of objects and predicates (referred to as a domain or situation) is intended

to “reflect the way people construe a situation” (Gentner, 1983, p.157), meaning that

a domain might be the result of, for example, a perceptual process, or possibly a
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perception that has previously been restructured in some way. In a comparison

between two domains, the type of predicates used determine whether the compari-

son is considered an analogy. If a large number of predicates (both attributes and

relations) are mapped relative to the number of nonmapped predicates, the com-

parison is a literal similarity. If many relations but few to no attributes are (or in

Gentner’s words, “can be”) mapped, then it is an analogy. Finally, if few relations

but many attributes are mapped, then the comparison is a mere-appearance or

surface match.

SMT holds that there are three constraints on the mapping process (the fol-

lowing descriptions following (Gentner & Forbus, 2011)). For a source domain S,

target domain T, and mapping M ⊆ S×T:

• Structural Consistency:

– 1-to-1 constraint - M does not map any element in S or T to more than

one element.

– Parallel connectivity - For (s, t) ∈M , if s and t are predicates, then their

arguments must also be paired in M .

• Systematicity - Mappings are preferred if they put into correspondence larger

systems of relations, in particular “those governed by higher order constraining

relations” (Gentner & Forbus, 2011).

• Tiered Identicality - Mappings are preferred if they consistently put the same

symbols into correspondence. E.g., if (s1, t1) ∈M , and there exist s2 ∈ S, t2 ∈
T where s1, s2 have the same symbol and so do t1, t2, then a mapping which

paired (s2, t2) would be preferred.

Structure in SMT, therefore, is conveniently a property of the formal syntax

of the representation: If something in a domain is a predicate, then it is part of the

structure of that domain (as far as analogy is concerned).

2.1.1 Competing Views of Analogy

SMT, being a theory formalizing analogy to a certain amount, lends itself quite

nicely to computational implementation. The first computational model to take
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advantage of SMT, the Structure-Mapping Engine (SME) (Falkenhainer, Forbus, &

Gentner, 1989), has been a central figure in the computational analogy literature

ever since its publication. But perhaps due to the restrictions and precise definitions

that are at the core of SMT, it also prompted a body of criticism and competing

theories.

The Multiconstraint Theory (MT) (Holyoak & Thagard, 1989), proposed three

changes:

1. That the constraints identified by SMT be interpreted as mere preferences

(rather than hard rules), referred to as the isomorphism constraint;

2. treat semantic similarity as a constraint on analogy separate from isomor-

phism; and

3. treat pragmatic centrality as a constraint on analogy, also separate from iso-

morphism.

The computational implementation of MT was named ‘ACME’ (Analogical

Constraint Mapping Engine), and although the authors noted that “in many respects

ACME can be characterized as an extension of SME” (Holyoak & Thagard, 1989,

p.316), there were several key differences between the two systems, reflective of the

differences between MT and SMT.

MT uses a definition of structure that is more or less the same as the one

used in Gentner (1983). However, a note in Holyoak and Thagard (1989) tells us

something rather interesting:

This sense of “structural” [as used in Falkenhainer et al. (1986)] is to be

distinguished from that used by Holyoak (1985) and Holyoak and Koh

(1987), who defined “structural” properties as the goal-relevant aspects

within a single analog. Structural properties in the latter sense will be

termed “pragmatically central” or simply “important” properties in the

present paper [...] Use of different senses of the term “structural” in the

analogy literature has contributed to some theoretical misunderstandings

(e.g. Gentner 1989; Holyoak 1985). (Holyoak & Thagard, 1989, Footnote

1)



23

What we see here is a move toward a definition of structure that is more in

line with that used by SMT and SME, away from a definition that incorporates

pragmatically central properties, e.g. considerations of the action that initiated the

analogy in the first place. This move is parallel, but in a direction completely

opposite to, the move AC will make later in this chapter.

Although MT might be considered a slight modification to SMT, Chalmers

et al. (1992) and Hofstadter and Mitchell (1995) put forth more biting critiques

of both SMT and SME. I will not here recap the entirety of the exchange, but will

instead extract a few points relevant to the present discussion.6 Perhaps the primary

critique here is that analogy and high-level perception are either extremely close, or

the same thing (Chalmers et al., 1992; Hofstadter & Mitchell, 1995; Hofstadter &

Sander, 2013). If this is accepted as fact, then some important consequences follow:

• The structural mapping and perceptual processes are not temporally separa-

ble; rather, they interact in so close a manner that we might consider analogy-

making to be a perceptual process.

• Categorization, insofar as it is a perceptual process (i.e., to categorize X as

an instance of Y is to see X as Y ), is therefore also temporally inseparable

from structural mapping.

• An approach like that of SME is doomed to suffer from tailorability and a lack

of flexibility.

According to Chalmers et al. (1992), the (high-level) perceptual processes giv-

ing us the highly formalizable representations used in SME are themselves the results

of multiple iterations of structural mapping and restructuring. This is so important,

that by the time we end up with the representations that SME maps together, the

problem of finding an analogy is essentially solved: The answer is encoded into the

representations.

Ultimately, Chalmers et al. (1992) warns that “the use of hand-coded, rigid

representations will in the long run prove to be a dead end, and that flexible, context-

6See (Chalmers, French, & Hofstadter, 1992; Hofstadter & Mitchell, 1995; Forbus, Gentner,
Markman, & Ferguson, 1998).
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dependent, easily adaptable representations will be recognized as an essential part

of any accurate model of cognition” (Chalmers et al., 1992). This worry was taken

seriously by what I’ll call the ‘Copycat Group’ of models that came from this line of

thought: Copycat (Hofstadter, 1984; Mitchell, 1993; Hofstadter & Mitchell, 1995)

Metacat (Marshall, 2006), Tabletop (R. M. French & Hofstadter, 1991), Musicat

(Nichols, 2012), and so on. But it is not clear that research with completely fluid

structures like in that family of models has not reached the same dead end Chalmers

et al. (1992) warned would come from the “rigid representations” of other models.

In their response to criticisms from (Chalmers et al., 1992; Hofstadter &

Mitchell, 1995), Forbus et al. (1998) argued that the metaphor between anal-

ogy and high-level perception was too vague as a technical proposal. Among other

responses, they argue that the Copycat model is extremely inflexible, being domain-

specific and lacking generality, and in many ways, SME is actually more flexible than

Copycat. The debate seems to have settled into the background for now, with no

clear winner.

The consensus so far (at least among the research groups thus far described)

seems to be that cognitive structure is a feature of human knowledge representation

used heavily by analogical processes, and that structure is either identical to, or

emerges from, the network of relations between concepts. What can the clash of

ideas between the Copycat Group, MT, and SMT further teach us about cogni-

tive structure? Let us examine the claims of Chalmers et al. (1992) from a LPT

perspective.

I find at least one claim made by the Copycat Group to be quite convincing:

A source and target analog already rich with high-level concepts (represented as

localist chunks) virtually obviates the need for a high-level perceptual process. The

perceptual processes, then, whatever they are, are such that their result is a struc-

tured representation which can then be operated on by analogy. The perceptual and

categorization processes, when they are initiated by an observation actively being

made by an agent, make use of concepts and tools for structuring. This makes the

perceptual and categorization processes look very much like empirical abstraction.

But in the view of Chalmers et al. (1992), this process is not a one-time executor
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which takes an input once and spits out a fully formed conceptual structure on par

with the tailored examples typically provided to SME. Rather, the process is incre-

mental: Empirical abstraction partially structures the input, analogy comes in and

does something, and these two steps repeat until a full perceptual structure emerges.

The three approaches taken by the Copycat Group, MT, and SMT might be

placed on a sort of continuum. At one end, we have SMT with its emphasis on

the structural mapping taking place over “rigid” syntactual constructions, already

assumed to exist in more-or-less a final form at the time of mapping. At the other

end is the Copycat Group, for whom the structures do not exist in a single form

that is used in all cases; rather, every time a structure is needed it is re-created from

some partially structured or unstructured representations. MT is in the middle

only by virtue of its having both structured and unstructured knowledge, and its

acknowledgement that there are some nonstructural features of interest to analogy-

making.

AC takes a position in the middle of the two extremes, and in that sense, it

is closest to MT. But AC, and this dissertation, are also attempting to argue for

Copycat’s emphasis on how structures are created both initially (when they are first

formed in the mind of the cognizer), and dynamically (at “run-time”, or the way

that they are created in response to momentary needs by the cognizer), in order to

preserve the flexibility of human cognitive structures. AC differs from the Copycat

Group in that it claims the answer lies in a deep connection between cognitive

structure and action. My next step is to explore a body of literature that tries to

understand structure at a neurobiological level.

2.1.2 The Structure of Structures: Cognitive Structure at a Neurobio-

logical Level

Largely based on MT, Hummel and Holyoak’s LISA (Learning and Inference

with Schemas and Analogies) model (Hummel & Holyoak, 1997, 2003a, 2003b) at-

tempts to show how the analogical processes of retrieval, mapping, and inference

can be explained as a natural side-effect of neurobiological activity. Achieving such

a task, as it turns out, requires breaking apart the predicate-object dichotomy char-
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acterizing SMT, which they achieve by arguing for the requirement of dynamic,

independent binding.

Systematicity and compositionality (systematicity here is not to be confused

with the systematicity constraint introduced by Gentner (1983)), two well-known

properties of structural representations (Fodor, 1980; Fodor & Pylyshyn, 1988), are

both made possible by the ability to represent a predicate’s roles and to bind them to

fillers (typically objects, but possibly other propositions) in such a way that is both

dynamic (bindings of variables to role fillers must be easy to frequently create and

destroy) and independent (the binding must be independent of the entities it binds,

so that its destruction or creation does not impede the ability for the entities to bind

with others) (Hummel & Biederman, 1992; Hummel & Holyoak, 1997; Holyoak &

Hummel, 2000). This is contrasted with static binding, also called conjunctive

coding, a representation style that fixes the binding with the identity of the unit

representing it. For example, consider a representation of the concept RED CAT. In

conjunctive coding, there would be a single unit used to represent RED CAT, and

an entirely separate unit used for BLUE CAT. In dynamic binding, properties are

represented with separate units than the objects they are bound to, so that RED and

CAT might be separate units, and the representation for RED CAT consists of the

two separate units with a binding between them. Furthermore, the requirement that

the binding is independent ensures that if the CAT unit had a binding to RED and

another binding to BLUE, the bindings can exist simultaneously without interfering

with each other. Static binding also causes a loss of similarity structure (Hummel

& Biederman, 1992; Hummel, 2001), making it impractical for any system hoping

to capture the sort of structure necessary for analogical reasoning. LISA, however,

uses static binding in long-term memory (Hummel & Holyoak, 1997; Holyoak &

Hummel, 2000).

LISA, and the closely related object perception model JIM (Hummel & Bieder-

man, 1992; Hummel, 2001), is able to avoid SME’s n-ary restriction that predicates

can only be mapped to predicates with the same label and the same number of ar-

guments (although the “same label” restriction is somewhat relaxed by their “tiered

identicality constraint” (Forbus et al., 1998)), as it would, for example, allow a



27

proposition with two arguments to be mapped onto a subset of another proposition

with three (Hummel & Holyoak, 1997). Thus, the principle of independent, dynamic

binding gives us a cognitive structure with increased flexibility, but in such a way

that the trade-off (in terms of lost formalizability and predictability) is minimal.

In keeping with its MT-inspired roots, LISA has a hirearchical representation

that divides representations into two levels. The top level consists of localist units

representing objects, roles, propositions, and groups—essentially everything that

is needed to create structures satisfying dynamic, independent binding (Hummel

& Holyoak, 1997, 2003a; Hummel & Landy, 2009). The bottom level, however,

holds distributed representations, in the form of “semantic units,” which may also

correspond to features or single-argument predicates. This two-level distinction is

an important one in understanding the nature of structure, and will be elaborated

further in our discussion of CLARION (Section 2.2).

Although LISA explains analogical retrieval, mapping, and inference, it stops

short of the re-representation step and, of course, the fundamentally important

structural construction step. The DORA (Discovery of Relations by Analogy) model

(Doumas, Hummel, & Sandhofer, 2008) extends LISA and shows how roughly the

same neurobiological activity allowing LISA to operate can also explain how higher7

structure can emerge out of the substructural elements LISA and MT already assume

exist. It does this by using the role-filler binding representation style of LISA, so that

they can reduce “the problem of learning relations to the problems of learning object

properties or relational roles (single-place predicates) and linking them together

to form multiplace relational structures” (Doumas et al., 2008). In other words,

DORA shows that the analogical comparison ability LISA already has can, with

slight tweaking, construct relations out of pre-existing relations of lower arity.

Of course, this raises two questions: First, where do the single-place predicates

come from? And second, where do the most primitive comparison operators come

7The concept of height in knowledge representations is only applicable if knowledge represen-
tations are thought of as tree-like structures with object concepts at the bottom, predicate or
propositional concepts linking them at a higher level, and higher-order predicate or propositional
concepts linking the predicate or propositional concepts at the level below them. The term ‘higher-
order’ is not to be confused with its use in formal logic (where a higher-order logic may be one that
is formally at least as expressive as Second-Order Logic). This confusion of terms is unfortunately
deeply ingrained in the analogy literature.
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from? DORA offers an answer to the first question: The emergence of single-place

predicates can be explained through comparison of already-semantically-rich rep-

resentations of objects. But the second question is more difficult and relevant to

the present discussion. In (Doumas et al., 2008), DORA learns the HIGHER-THAN

relation by first learning representations of specific values of height. Next, it learns

representations of HIGHER and LOWER, but these are tied to specific heights or cate-

gorical values (as they note, children start by categorizing some things as high, and

some other things as low). Finally, by comparing the HIGHER and LOWER representa-

tions, DORA is able to learn representations (HIGHER-THAN) that are object-feature-

and context-independent. This falls out of comparing the predicates, roles, objects,

and semantic (I will refer to these units as ‘low-level’ or ‘distributed’ from now on

to avoid confusion with the use of the word ‘semantics’ that philosophers are more

familiar with, a term I will also need here) units associated with the HIGHER and

LOWER structures. Therefore, structural alignment in DORA explains the origin of

comparison operations.

But something seems missing in this approach. DORA’s approach, at present,

requires that representations of specific values of height, possibly encoded along

with the objects that were perceived at those heights, comes first (meaning it comes

first in the sequence of steps DORA concerns itself with). And that encoding has

to be done in such a way that when a HIGHER element is compared to a LOWER one,

the distributed units connected to each unit corresponding to the specific values of

height can be compared to each other (so that the difference between them can be

treated as the core of the nascent relationship). But why should the units for height

be compared to each other rather than, say, color?

One answer might be that given enough training examples, the relevant dis-

tributed units would eventually be selected. This may be possible, given a suffi-

ciently large amount of supervised training examples, but this brings to mind an

analog of Chomsky’s “poverty of the stimulus” line of argumentation (Chomsky,

1965; Piattelli-Palmarini, 1980). Considering the large amount of low-level sensory

inputs children have (related to e.g. color, sound, texture, height, etc.), are chil-

dren given sufficiently many examples of objects with differing heights to narrow



29

down the search space as efficiently as they do, and can we explain this efficient

narrowing-down by presupposing minimal innate mechanisms?

A slight formalization may be in order to clarify things here: Let us assume

that in some child’s mind, two object units O1, O2 are respectively connected to the

sets of distributed units D1 = {d11, ..., dn1}, D2 = {d12, ..., dm2 }. Some subset H1 ⊆ D1

corresponds to the (perceived) height of O1, and likewise some subset H2 ⊆ D2

corresponds to the height of O2. We tell the child that “O1 is higher than O2” and

leave him to figure out what is meant by that. Now if the child were to compare

every possible combination of distributed units in D1×D2, he would end up with a

large set indeed (we assume that this example is not a toy example, and thus n and

m are likely quite large). How can children so reliably narrow down the possible

combinations without a prohibitively large amount of example cases?

It seems to me that a more plausible answer is to suggest that there is a

pre-existing connection, or association between at least some of the units in H1

and H2, and possibly also between units in the same set as well. What would

such associations be? Two possibilities come to mind: either low-level associative

links (like the ones in CLARION (Sun & Zhang, 2006) or LISA), or there may

be some deeper fact about how the units in H1 ∪ H2 were acquired in the first

place. The former suggestion is certainly plausible, but the latter suggestion gives

us something deeper to explore. And that “something deeper,” I believe, is the

underlying semantics those distributed units are encapsulations of—the action from

which the declarative concept of height (in the present example) emerged in the first

place!

Consider the following example. A child, or a robot, moves its eyes upward.

This action can easily be explained through a series of innate actions that the child

has in his arsenal; certainly it should not be controversial to assert that there may

be a group of neurons along which the child can send a signal that ultimately

gets translated into a motion of the eyes in one direction or another. So the child

moves his eyes upward, and sees the object O1. As a result, a series of distributed

units are created, capturing all of the sensory knowledge the child is experiencing

at this point—the colors, the brightness levels, the sounds, and so on. But the
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child also creates distributed units capturing the action the child took to make

the present state of things possible, and in this case that action is the upward

movement of the eyes. Likewise with O2 and the downward movement of the eyes.

If the distributed units are therefore tied to action, we have an origin story for the

sort of distributed units that make DORA possible. The pre-existing association

between H1 and H2 might be explained by the fact that they contain distributed

units whose corresponding actions were activated by (roughly) the same groups of

neuron firings.

So far, so good. I have tried to draw a link between the (unstructured) dis-

tributed units and the actions associated with them. However—and this is a central

point of the present chapter—it seems that something gets preserved up at the

structural level as well. If I understand that the relationship HIGHER-THAN(O1, O2)

holds, and I am presently looking at O1, and I want to look at O2, then solely by

virtue of the fact that I think the HIGHER-THAN relationship exists between the two

objects, I should be able to infer that I can move my eyes downward and expect to

find O2. This is not a deductive inference in the sense that it was an explicit modus

ponens performed by a reasoner equipped with an axiom governing the use of the

predicate HIGHER-THAN. Rather, the ability to draw this sort of action-inference8

can reasonably be expected of a child who has just learned the relational predicate

HIGHER-THAN, who cannot also be expected to also have immediately acquired an

axiom set containing rules for working with the HIGHER-THAN predicate! Stated

simply: DORA does not explain how structure becomes grounded in action, such

that every instance of structural knowledge has a set of action implications.

The preceding paragraph is a cue to introduce what will likely be the most

controversial, but possibly most important, claim of AC:

No-semantically-empty-structure Principle (strong version) (NSESs)

• In declarative memory, a cognitive relation not grounded in action is se-

mantically empty.

8These sort of deep connections between structural (predicate) knowledge and action-inferences
were one of Piaget’s main conclusions in one of the most important (and again, most ignored) books
of LPT—Toward a Logic of Meanings (1987/1991) (Piaget et al., 1991).
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• In a cognitively realistic system, no cognitive relations are created in

declarative memory that are semantically empty.

In Section 2.4, I will defend the strong version of NSES, but AC is also com-

patible with a weaker version:

No-semantically-empty-structure Principle (weak version) (NSESw)

• In declarative memory, a cognitive relation not grounded in action is se-

mantically empty.

• In a cognitively realistic system, few cognitive relations are created in

declarative memory that are entirely semantically empty.

In this dissertation, if it is not important whether the weak or strong versions

of NSES are referred to, then I will simply drop the subscript.

A corollary of NSESs is that bottom-up structure creation as in DORA cannot

be accomplished in such a manner that the newly created relation is semantically

empty. And this is equivalent to the claim that the newly created relation is con-

nected to action in some way. Since both forms of NSES place action at the root of

structured knowledge, clearly action itself must be more carefully defined; I tackle

this problem in Section 2.4.

In short, I believe DORA is a step in the right direction, but I think that

it, and models like it, need to go further in the direction of integrating action and

structure. AC offers a guide to pursue this goal, and furthermore it offers a way

to do this largely within pre-existing systems such as DORA, LISA, and SME.

However, as we shall see in the next section, it will require the ability to represent

action-centered knowledge, at present lacking from most models of analogy.

2.2 CLARION and the Case for Action-Centered-Knowledge

Although the distinction between distributed (low-level) and localist (top-

level) representations is somewhat captured in LISA and DORA, the two knowl-

edge types are perhaps best captured in the hybrid cognitive architecture CLAR-

ION (Sun, 2002). CLARION sets itself apart from other cogntive architectures
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by embracing two fundamental dichotomies: The first is the distinction between

explicit (localist) and implicit (distributed) knowledge, and the second is between

action-centered (procedural) and non-action-centered (declarative) knowledge. Un-

like other cognitive architectures like ACT-R (Anderson, 1976), CLARION treats

the two dichotomies as if they existed in orthogonal directions, leading to four di-

visions of knowledge: explicit action-centered knowledge (EACK), implicit action-

centered knowledge (IACK), explicit non-action-centered knowledge (ENACK), and

implicit non-action-centered knowledge (INACK) (these acronyms are not used by

Sun, but are introduced here for easy reference later). The psychological data sup-

porting the orthogonal treatment of these dichotomies is extensive; there is evidence,

e.g., that all four types of knowledge exist in humans (Sun, 2002, 2012b).

The distinction between procedural (action-centered) and declarative (non-

action-centered) knowledge (Anderson, 1976) is rooted in the philosophical dis-

tinction between reasoning in-accordance-with (knowing how) and reasoning-about

(knowing what) referred to in Chapter 1 (Winograd, 1975). Recall in Section 1.3.2

it was suggested that the réfléchissement step might be understood as a transfor-

mation from procedural to declarative knowledge. Such a transformation, then, is

one possible way that structure in ENACK might be created.

Because the nature of distributed representations only allows for associative

links between non-localist units (Sun, 2002), the requirement of dynamic, indepen-

dent binding rules out the existence of structure in either IACK or INACK. Do the

cognitive correlates of what we know to be structured knowledge exist in EACK?

According to NSES, structure is defined as being rooted in action. There is an

element of redundancy in asking whether the representations of actions and action

schemas (the content of EACK) themselves are structured. However, it is difficult

to deny that action schemas do not contain at least some primitive sort of structure,

since they typically contain some sort of ordered linking between e.g., a context,

an action, and an effect (Drescher, 1991). So we will instead call action schemas

‘pseudo-structured’ and leave it at that for now.

Structure, as AC understands it, only exists in ENACK (this dissertation says

nothing about other possible types of knowledge, such as might exist in a meta-
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cognitive or motivational subsystem, as in (Sun, 2002)). The localist, structurable

units that lie at the intersection of declarative and explicit knowledge are capable

of supporting precisely the properties of structured knowledge catalogued by the

present chapter. The second part of NSES, with its reference to declarative memory,

points to this fact. But the first part, the claim that the semantics of relations are

grounded in action, must next be defended.

2.2.1 Action-based Semantics

NSES states that a relation must be grounded in action, otherwise it is se-

mantically empty. This means that it is relying on a notion of semantics that draws

its support from two lines of thought. The first of course, is LPT. The second is

Floridi’s Action-based Semantics (AbS). I will briefly summarize both views here.

Piaget and Garcia’s Toward a Logic of Meanings (Piaget et al., 1991) at-

tempted to create a “logic of meanings” by demonstrating the existence of implica-

tions between actions and operations in young children. They carried out a set of

experiments designed to detect a sort of reasoning not necessarily based on truth-

values, but rather on action-implications, i.e., what can be done with objects? These

experiments yielded some interesting discoveries, including evidence for the existence

of connectives between actions “isomorphic to 10 of the 16 future binary operations.

[...] The 10 that are used are all connectives between meanings that do not depend

on an extensional truth table” (Piaget et al., 1991, p.66). Their conclusions were a

series of statements about meaning:

• “an object is a set of conjoined predicates and its meaning amounts to ’what

can be done’ with it, and is thus an assimilation to an action scheme” (Piaget

et al., 1991, p. 119)

• “From a general standpoint, the two meanings of an object are, subjectively,

what can be done with it and, objectively, what it is made of or how it is

composed. The former cannot be separated from the meaning of actions”

(Piaget et al., 1991, p. 57)

Although these statements may be seen as a bold declaration of views Piaget
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had been arguing for in some form or another for most of his career, he was not able

to further justify these claims, as Toward a Logic of Meanings was published only

3 years before his death.

A more modern theory of meaning that seems to reflect the sentiments behind

LPT’s final views on meaning (though it does not trace its ancestry to Piaget’s work)

is Luciano Floridi’s Action-based Semantics (AbS) (Floridi, 2011b). Floridi recalls

the well-known Symbol Grounding Problem (SGP) (Harnad, 1990), and argues that

a satisfactory solution to the SGP must satisfy three conditions comprising the Zero

Semantic Commitment Condition (Z condition):

1. No form of innatism is allowed; no semantic resources should be pre-installed

in the artificial agent.

2. No form of externalism is allowed either; no semantic resources should be

uploaded from the ’outside’.

3. The artificial agent may have its own capacities and resources (computational,

procedual, perceptual, etc.) to ground its symbols with (Floridi, 2011b, p.137).

In a discussion of CLARION, Floridi argues that CLARION’s learning algo-

rithms in its two-level approach do not solve SGP, in part because CLARION’s

solution to the emergence of intentionality is to rely on a first-order intentionality

to come from the interaction of the implicit layers with the world. The explicit lay-

ers can then construct conceptual representations from the first-order intentionality

provided by the lower levels. According to Floridi, the answer of how the first-level

intentionality emerged in the first place is unanswered, and thus “[u]nless a logically

valid and empirically plausible answer is provided, the SGP has simply been shifted”

(Floridi, 2011b, p. 147).9

Floridi proposes AbS as a theory of meaning to explain how new meanings

can be generated and symbols attached to those meanings. Such a process of mean-

ing generation begins with proto-meanings derived directly from (or exactly equal)

9Floridi, however, may be referring to an outdated understanding of what CLARION is capable
of. See (Sun, 2012a) for more recent work in CLARION on symbol grounding, and (Bringsjord,
2015) for a criticism of Floridi’s answer to SGP.
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the agent’s internal states, and those internal states are “directly correlated to the

actions performed by the same [agent]” (Floridi, 2011b, p. 164), where the actions

used may be teleologically free (not necessarily connected to any end goal or pur-

pose). In other words, the part of the agent’s internal state corresponding to the

action it is currently taking, as opposed to its current command being executed

or end goal, is what is used to create the proto-meanings eventually attached to

symbols.

AbS is then implemented by a type of artificial agent Floridi calls a “two-

machine artificial agent”, or AM2. The agent has an architecture consisting of an

object level (OL) and a meta-level (ML). Here we see more overlap with LPT.

The OL interacts with the external environment and allows for the coordination

of actions, whereas the ML takes the actions at the OL as its data. Furthermore,

the “relevant metaprograms are the reflection processes, where these function as

upward reflection [...] The utility of reflection shows that the whole system [OL

+ ML] not only interacts with itself but is also properly affected by the results

of such interactions” (Floridi, 2011b, p. 167). Floridi here draws his reflection-

related terminology from the so-called reflective architectures of Brazier and Treur

(1999) and Barklund et al. (2000); these reflective architectures center around a

notion of reflection more-or-less synonymous with introspection, self-referencing,

and metareasoning (interaction between an OL and ML) (Brazier & Treur, 1999;

Barklund, Constantini, & Lanzarone, 2000). The reflective architectures cited by

Floridi seem to trace their ancestry to early work in meta-levels (see the survey in

(Harrison, 1995)), but the concept of a “reflection principle” comes from Feferman

(1962), who defines it as:

[A] description of a procedure for adding to any set of axioms A certain

new axioms whose validity follow from the validity of the axioms A and

which formally express within the language of A evident consequences

of the assumption that all the theorems of A are valid (Feferman, 1962).

So although the terminology of reflective architectures appears close to that of

LPT, they refer to quite different conceptions of reflection. It is interesting to note
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that none of the literature on reflective archictectures refer to Piaget at all, though

Piaget’s work precedes most of them by a number of years (likely an example of the

sort of lack of communication between two fields that this dissertation attempts to

bridge).

I will not dwell further on the similarities or differences between LPT and

Floridi’s AbS. Rather, I only include them here to show that the approach AC takes

is supported both empirically (through the studies done by LPT) and philosophi-

cally, and the cursory pointers to the relevant literature thus far will have to suffice

for the interested reader.10 We are finally in position to introduce the central tenets

of Analogical Constructivism.

2.3 Introducing Analogical Constructivism (AC)
First, a clarification. AC attempts to be an approach to modeling analogy and

cognition that is largely supplemental; AC should not be considered a competing

theory to SMT, MT, or that of the Copycat Group. It should, rather, be properly

considered as an approach that can theoretically be implemented with SME, ACME,

Copycat, LISA, DORA, CLARION, ARCADIA (Bridewell & Bello, 2015), or the

large majority of any of the other currently existing models of analogy or cognition,

so long as those models are not based on assumptions significantly incompatible

with the tenets of AC, summarized as follows:

Analogical Constructivism (AC)

AC.1 The nature of cognitive structures and their complex relationship with

action-centered knowledge should be central foci of models of analogy and

cognition.

AC.2 Cognitive structures and action schemas can bootstrap each other in com-

plexity, through a process of reflective abstraction.

10For a recent counter argument to Taddeo and Floridi’s proposed solution to the Symbol
Grounding Problem (first presented in (Taddeo & Floridi, 2005, 2007)), see (Bringsjord, 2015).
Bringsjord’s analysis is language-focused. Indeed, the language in question is at the level of adult
humans.
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AC.3 Many human-level thought processes are manifestations of analogical com-

parison between structured representations.

AC.4 NSESw:

– In declarative memory, a cognitive relation not grounded in action is

semantically empty.

– In a cognitively realistic system, few cognitive relations are created

in declarative memory that are entirely semantically empty.

AC.1 is warranted by the discussions in Chapter 1 and the first half of the

current chapter, according to which the concept of structure is extremely important

to understanding how human knowledge (or at least the part of knowledge relevant

to analogy and higher-level reasoning in general) works, behaves, and should be

modeled. One important way structured knowledge and actions interact is stated

by AC.2 and AC.3, which again were discussed, and their motivations explained, in

Chapter 1. AC.4, however, requires two more clarifications. NSES is strictly about

cognitive structures: It does not say anything about structures “in the world.”

NSES also says little about systems where human-like abilities are not a priority;

this leaves open the possibility that an approach not obeying NSES may create a

convincingly human-like AI (but it does express doubt that such a task is possible

without NSES).

2.4 A Defense and Clarification of NSES

Clearly, both NSESs and NSESw require a considerable amount of elaboration,

offered in this section.

Let us differentiate between constructions that are rooted in action and those

that are not. We will define action-rooted constructions as mental constructs

which both (1) originated with representations of actions or other action-rooted

constructions as significant components, and (2) retain actions or other action-rooted

constructions as a part of their constructions (though the actions retained by the

constructions may not always be the same as those the construction originated

from). Now it would be pointless to say that every construction is action-rooted if it
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is done with the help of an action (because the act of constructing itself is trivially an

action, according to the definition I will introduce), so I use the language “originated

with representations of actions as significant components”. So the act of relation

construction in declarative memory requires representations of actions (in IACK

or EACK) to be bundled up with the package, though the actions bundled in the

package may change over time.

An action, in the sense of the word used in this dissertation, is any event or

chain of events initiated by the mind of an agent. In its simplest form, an action

can be completely automatic and unintentional. For example, consider two ENACK

chunks c1, c2 having some associative link to each other. If c1 is activated for some

reason, activation may spread to c2. This spread of activation is, under the definition

I use, an action—an extremely simple action, perhaps somewhat far removed from

the commonsense definition of action, but an action nonetheless. If the agent has

some ability to become consciously aware of which of its ENACK chunks are active,

it might at some point become aware that the activation of one chunk is followed

by the activation of the other, but the representation of such an awareness must be

distinguished from the action itself.

Under such a definition of action, assuming one believes that computers or

artificial agents can have minds, we must accept that artificial agents have actions.

But this definition of action does not commit to accepting that artificial agents

have intentional actions, or that they can or must be aware of such actions. Similar

remarks can be made for non-human animals. However, my definition of action does

depend on the highly controversial assertion that action requires a mind. I will not

define ‘mind’ in this dissertation, being aware of the difficulties of such an endeavor,

and will leave the reference to ‘mind’ talis qualis.

The definition of action used here is to be contrasted with Piaget’s defini-

tion. Piaget distinguished between actions and operations (internalized actions).

Although it may be helpful to separate actions that operate on purely mental con-

structs from actions that result in actualizations in the physical world, AC treats

both as subsets of actions, reflecting its implicit assumption that both types of

actions come from the same mechanisms.
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What, then, is a non-action-rooted construction? I have been refering to

these as pure observables; these are constructions existing in declarative memory

without being associated with something that the agent “knows how to do”, i.e.

they either are not constructed from actions, or their recognition does not imply

the possibility of actions. They are constructions that do not contain references to

actions in their encoding. Such pure observables are few and far between in human

beings. As a rule of thumb, if an agent refers to an action as part of the recognition

or verification process of some construct, or if recognition of that construct causes

the agent to automatically infer the possibility of some action, then the construct

is not a pure observable.

For example, consider the featural invariants of relations. These are used in

the construction of new relational constructs in the DORA model, and outputted

by models of visual perception such as JIM (Hummel & Biederman, 1992). Yet

the origins of such featural invariants have to date not been accounted for (Doumas

et al., 2008), at least not completely.11 Purely visual featural descriptors, such as

might be reliably recognized by a suitably trained artificial neural network, can be

considered pure observables in that they can conceivably be learned without the

help of a system suitably rich in action-centered knowledge (although even visual

featural invariants might have action implications, e.g. see Section 2.4.2.1). But it is

difficult to see how such a network could then use its learned symbols in a way that

matches the semantic richness of a system that takes AC seriously. Such a system

could learn that object A is above object B, but would it automatically know that

removal of object A would be necessary to reach object B? Would it be able to

predict that movement of object B would cause movement of object A?

NSES is therefore the centerpiece in AC’s argument that although the focus on

the construction of semantically empty declarative structures have no doubt been

productive, they will not be sufficient to create intelligent agents with semantically

rich, truly structured representations.

11According to Doumas et al. (2008), the DORA model does “not provide a complete answer to
the question of where relational invariants come from,” and focuses instead on being able to “isolate
them from other features and represent them as explicit structures that can take arguments”
(Doumas et al., 2008, p.2-3).
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2.4.1 Comparison with Affordance Theory

Around the time that the major works of LPT were starting to see their first

translations into English, J.J. Gibson began writing about what he called Affor-

dance Theory. According to Affordance Theory, when we look at objects we do

not perceive their qualities, but rather their affordances. An affordance of the en-

vironment is what the environment “offers the animal, what it provides or furnishes,

either for good or ill” (Gibson, 1977). Alternatively, affordances might better be de-

scribed as not properties at all, but rather relationships between aspects of animals

and aspects of situations (Chemero, 2003).

AC, however, is more extreme in its position on the meaning of perceptions.

As Floridi explained in his description of the differences between Wittgenstein’s

meaning-as-use semantics and his own action-based semantics, in linguistic games,

meaning is the way a symbol is to be used within that particular game. But in

action-based semantics, the meaning of a symbol is the internal (action-rooted)

state of the agent associated with that symbol, and is not defined by the external

action, its externally-defined use, or the external action’s results.

I do agree with Affordance Theory that perception is affected by actions of the

agent. Witt’s theory of Action-Specific Perception, derived from Affordance Theory,

argues that we perceive and remember objects in the environment based on our

abilities to act on them (Witt, 2011). For example, softball players who performed

better in games later reported that the game balls were larger in size than the

players who performed poorer (Witt & Proffitt, 2005). Although Witt and Proffitt

acknowledge the relationship between perceived size and player performance is not

yet proven to be a causal one in either direction, they reference other experiments

reporting similar effects.

AC, then, has some significant overlap with Affordance Theory, though AC is

more directly descended from constructivist epistemology and tries to understand

mental constructs as constructs ; that is, how knowledge structures are created, built

up, combined, destroyed, and change. AC is more interested in the general nature

of structured knowledge and how it behaves not only in instances of perception, but

in instances of thinking, acting, and learning as well.
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But the most significant difference between AC and Affordance Theory is cap-

tured in a common phrase used by some authors to summarize Affordance The-

ory: “perception drives action” (Friedenberg & Silverman, 2012; Kosgeroglu, Acat,

Ayranci, Ozbaci, & Erkal, 2009; Azevedo, Reis, & Cornacchione Jr., 2013). In my

view, this is wrong. AC says, rather, actions drive perception. Or perhaps more

precisely, action-rooted constructions, created through reflective abstraction, are the

building blocks used by empirical abstraction (though this phrasing is less catchy).

2.4.2 Example Relational Concepts

Let us now consider some examples. In each of the cases that follow, I will

present a natural-language relation and try to identify typical action inferences that

might have been used during the construction of the concepts corresponding to that

natural language relation.

Let us start by pseudo-formalizing a corollary of NSESs called N : If some

agent hasR(b, c) in declarative memory, then there is a nonempty set of construction-

relative actions (called the action inferences of R) the agent believes are possible

involving b and c.

N takes the action inferences of R to be construction-relative, meaning that

the action inferences of R may vary for different agents depending on how R was

constructed for those agents. It might be argued that having two different construc-

tions for some relation R means that they are not quite the “same thing,” so we must

be careful when we answer questions of the form “What are the action inferences for

the relational concept C?”, where the concept C is mapped to the linguistic signifier

‘C’. Such a question will be interpreted as “What are typical action inferences of

the relational concepts C that agents map to the signifier ‘C’?”

Another important component of N is the relation between the declarative

concept R and its modal relation to its action inferences. In N ’s phrasing, it is

one of belief, so that if a(b, c) is an action inference of R for some agent α, then

Bα(R(b, c))→ Bα(♦αa(b, c)) where ♦α denotes some sense of possibility relative to

the actions of agent α. It is perhaps misleading to use such declarative notation

to express the relation between a and R, because the belief the agent has in the
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possibility of action a is not necessarily a structure in declarative knowledge. Rather,

it is a construction in procedural knowledge (hence the α superscript to distinguish

it from the more well-known epistemic modal operator B).

2.4.2.1 Actions as expectation primers

Under the definition of action used by AC, something as simple as a spreading

of activation can be considered an action, albeit an unintentional one. If psychologi-

cal priming can be explained by the activation of concepts in memory, then priming

may also be considered an action. Such an action might be an action inference of a

predicate IsSquare(object), manifested when either a square is partially recognized,

or when one is told verbally that an object should be perceived as a square.

2.4.2.2 Cause-effect and Sequences

Action inferences might also include expectations for observables in the future,

or expectations for “what should happen next.” For example, if a child were trained

through repetition that whenever hearing a certain sound a certain image will appear

momentarily in a certain location l, then the child may create a perceptual symbol s

associated with the sound, and attach s to action inferences involving the motion of

his eyes towards l. In this way, sequences of purely external events, linked temporally

through repetition, can be encoded in the child’s mind.

It is possible that much of what is understood as the epistemological origins

of causality can be understood in terms of the mechanisms previously described.

Certaintly there is much more to it, though much of this is outside the scope of this

dissertation. Piaget, particularly in the LPT period, had a nuanced view of how the

understanding of causality developed, and his view may offer a set of directions worth

exploring (Piaget & Garcia, 1974). Instead, consider the example where an agent

observes a boulder falling on to the ground and emitting a loud crashing noise. How

would the agent encode the knowledge of what he just saw? His auditory perceptual

processes might create a pure observable symbol CRASH, corresponding to the

crashing noise. Empirical abstraction recruits the previously-created symbols for

BOULDER and GROUND, and some low-level, sub-structural process may associate

the two. An association between BOULDER and GROUND may also form with the
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newly created symbol CRASH. But the resulting representation is not structured,

according to NSES, unless they are (at a minimum) linked together under a symbol

rooted in action. In this case, an appropriate set of action-rooted symbols might

be CAUSE-EFFECT and TOUCHES, so that the resulting representation becomes

CAUSE-EFFECT(TOUCHES(BOULDER, GROUND), CRASH).

2.4.2.3 Similarity, Difference, and Identity

Identity is often considered to be the prototypical example of an irreducible

relation, i.e. a relation between two elements that cannot be translated into more ba-

sic relations between those two elements (Jackson, 1977). Similarity and difference

may also be as irreducible as identity, and are therefore likely candidates for innate

relations. But the ability to represent the relational predicates for similarity, differ-

ence, or identity should be distinguished from any actions of producing inferences on

the basis of the existence of those relational predicates, or whatever physical chain

of events, whether neurobiological as in LISA or electrical as in computers, causes

the determination of similarity, difference, or identity to arise in the first place. An

agent may be able to recognize and perform actions in response to observing simi-

larities or differences, but it does not follow that the same agent can represent the

observed similarity or difference as a relation of similarity or difference.

2.4.2.4 Reasoning and Inference

Since we have extended action to apply to comparisons between, and creation

of, mental representations, presumably reasoning and inference are also subsumed.

The logical operations themselves, according to LPT, are internalized actions created

through reflective abstraction. We might even be tempted to say that the most

basic inference mechanism that allows for the creation of new declarative structures,

utilized by both analogy and deduction, is an action. Given that inference is such a

basic and seemingly irreducible operation, we may be forced to accept the innateness

of such an action (but I will not elaborate on this further in this dissertation).

However, as will be shown in Chapter 3, both deduction and analogy can be

modeled by a process sensitive to just the sort of cognitive structure the present

chapter is trying to define. Reasoning, and the autonomous development of reason-
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ing ability, is a profoundly structural process, and studying it is one of the ultimate

goals of Analogical Constructivism.

2.5 Conclusion

Although the list in Section 2.4.2 cannot be expected to capture all possible

relations humans deal with, it should at least offer preliminary support for the

validity of NSESs, and its weaker form NSESw. Although a proper and full-length

defense of NSES and the other tenets of AC is warranted, such a defense would take

up an entire dissertation, and the defense given thus far will have to do for now.

This chapter analyzed the conception of structure, an idea central to all models

of analogy and cognitive architectures in general. I concluded that structure must

be rooted in action, and this line of thought resulted in the No-semantically-empty-

structure Principle (NSES). NSES takes its understanding of semantics from LPT

and AbS. I then introduced the tenets of Analogical Constructivism.

This chapter concludes the bulk of the theoretical discussion behind AC. The

following chapters will largely focus on technical details behind a demonstration of

NSES in action: a simulation environment capable of supporting an agent able to

produce structured representations rooted in its actions, and then a demonstration

of this agent taking first steps toward doing so.



CHAPTER 3

Representing Knowledge

In this chapter I will discuss the knowledge representation used by the cognitive

simulation in this dissertation, and how the phenomena described in prior chapters

(such as réfléchissement, réflexion, structured knowledge rooted in action, and so

on) can be faithfully modeled using the style of knowledge representation I have

chosen.

3.1 Prior Work

AC attempts to be an approach to cognitive modeling that is compatible with

many of the already-existing paradigms (most of which arguably have more in com-

mon than their creators might be willing to admit). The style of cognitive modeling

used by this dissertation is a natural continuation of research whose goal was to

model Analogico-Deductive Reasoning (ADR), which is best described as the

intersection of hypothetico-deductive and analogical reasoning (Licato, Bringsjord,

& Hummel, 2012; Bringsjord & Licato, 2012). In a typical example of ADR, a

reasoner uses analogy to generate a hypothesis h, where h may have been created

to explain some observation or theory about the world. h is then subjected to a

deductive reasoning step, where the reasoner attempts to show that either h or ¬h
follows deductively from a set of axioms A. Depending on the implementation, A

might derive from the reasoner’s beliefs, the axioms of a mathematical theory, or

anything else which can be stated in the relevant proof theory’s language. If some

proof A ` h is found, then h is accepted; otherwise if some proof A ` ¬h is found

then the analogy which generated h in the first place is rejected.

ADR is a very generalized and domain-independent reasoning technique which

relies on a minimal apparatus of hypothesis generation through analogy, and some

Portions of this chapter previously appeared as: Licato, J., Sun, R., & Bringsjord, S. (2014).
Structural Representation and Reasoning in a Hybrid Cognitive Architecture. In Proceedings of
the 2014 International Joint Conference on Neural Networks (IJCNN). Beijing, China: IEEE.

45
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deductive method to confirm or refute those hypotheses. Not surprisingly then,

ADR can be used to explain the reasoning used by young children working through

Piagetian tasks (Licato et al., 2012; Bringsjord & Licato, 2012), all the way up to

professional logicians such as Gödel (Licato, Govindarajulu, Bringsjord, Pomeranz,

& Gittelson, 2013) and Goodstein (Govindarajulu, Licato, & Bringsjord, 2013).

In some of our explorations into ADR (Licato et al., 2012; Bringsjord & Licato,

2012), Hummel and Holyoak’s LISA model (Hummel & Holyoak, 1997, 2003a) was

used for the analogical steps. The knowledge in an instantiation of LISA can be

translated into a human-readable language referred to as “LISA-ese,” and proposi-

tions expressed in LISA-ese can easily be imported into a deductive reasoner. LISA’s

explicit representation of propositions, objects, and roles as units also provided some

of the inspiration for the implementation adopted in (Licato et al., 2014). (Licato et

al., 2014) introduced a way of capturing declarative “structure” (though according

to AC, this was not true structure, but semantically-empty/non-action-based struc-

ture) in CLARION’s non-action-centered subsystem (NACS). This capturing was

achieved mostly through the use of two features already present in the NACS: local-

ist chunks (hereafter referred to alternately as “declarative chunks” or just “chunks”

if it is clear from context) and associative rules (ARs).

3.2 Declarative Knowledge in CLARION

In CLARION, non-action-centered knowledge is contained in the non-action-

centered subsystem (NACS). The NACS consists of a top level (the general knowl-

edge store, or GKS, which stores ENACK) and a bottom level (the associative

memory network, or AMN, which stores INACK). The AMN holds implicit as-

sociative knowledge encoded as dimension-value pairs (DV pairs). Each localist

unit in the GKS (referred to as chunks) connects to a set of DV pairs in the AMN

with some adjustable weight. CLARION therefore can define a directed similarity

measure between two chunks c1 and c2, derived from the amount of overlap between

the DV pairs connected to the two chunks (Sun, 1995; Tversky, 1977; Sun & Zhang,

2004):
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Sc1→c2 =

∑
i∈c2∩c1 W

c2
i × Ai

f(
∑

i∈c2 W
c2
i × Ai)

(3.1)

Where f(x) = x1.0001. Sun and Zhang (2004) define Ai as the strength of

activation of the values of dimension i in chunk c1, and W c2
i as the weights of the

DV pairs specified with respect to c2. For simplicity, we will set all A and W values

to 1, which reduces Equation 3.1 to a function of the number of dv pairs connected

to c1 and c2:

Sc1→c2 =
|c1 ∩ c2|
|c2|1.0001

(3.2)

The denominator in Equation 3.2 may possibly be zero, in which case Sc1→c2

is set to 1.

An Associative Rule (AR) consists of a set of condition chunks c1, c2, ... and

a single conclusion chunk d. For any given AR, each condition chunk i has a weight

Wi such that
∑

iWi = 1. ARs can be written as:

(c1, c2, ..., cn)⇒ d

The chunks in the GKS and DV pairs in the AMN have activation levels

which can be set by CLARION’s other subsystems. Activations can also spread

through the NACS using the chunk-DV pair connections and the top-level ARs.

The manner in which this activation spreads can be restricted: other subsystems

can temporarily disable Rule-Based Reasoning (activation spreading through ARs)

or Similarity-Based Reasoning (activation spreading through chunk similarity), or

perform activation propagation as some weighted combination of both of these rea-

soning types. These abilities are detailed further in Sun & Zhang (2004, 2006),

where these mechanisms are shown to be psychologically plausible by using them

to closely emulate the results of psychological studies. We use no more than these

mechanisms to construct the knowledge structures in this chapter.

The activation levels of the units in the GKS and AMN can be set by the

other subsystems of CLARION. Activations can likewise spread through both level

of the NACS, and this spreading can be confined: Rule-Based Reasoning (activa-

tion spreading through ARs) or Similarity-Based Reasoning (activation spreading
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Chases

1st 2nd 

Dog Cat

COMPO-
NENT

WHOLE

Chases

Dog Cat

Figure 3.1: A knowledge structure representing the proposition
CHASES(DOG,CAT ). On the right is the simplified
version, which does not picture the CDCs and many of the
ARs. This figure previously appeared in Licato, J., Sun,
R., & Bringsjord, S. (2014). Structural Representation
and Reasoning in a Hybrid Cognitive Architecture. In
Proceedings of the 2014 International Joint Conference on
Neural Networks (IJCNN). Beijing, China: IEEE.

through chunk similarity) can be temporarily disabled, for example. These capaci-

ties are further itemized in Sun & Zhang (2004, 2006), in which these components

are used to model psychological data, showing them to be psychologically plausible.

3.2.1 Introducing Chunk Types

It is possible to assign types to chunks. The scope of these types, however,

holds only within the context of a complete structure, for reasons we will explain

shortly.

The first type of chunk is the object chunk. This is often paired with a propo-

sition chunk, which is both a placeholder for the proposition’s predicate symbol and

a marker of the relationship between the object chunks. Both the proposition and
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object chunks are pictured in Figure 3.1 as ovals.

Object and proposition chunks need to somehow be linked together, and that

role is played by Cognitively Distinguished Chunks (CDCs). If, in keeping with

Licato et al. (2014), we assume that the ability to perform structured reasoning is

possessed by all neurobiologically normal adult humans, then we can safely assume

that there are cognitive correlates which are either innate or develop very early in

life underlying structured knowledge. CDCs are meant to reflect these abilities and

as we will see shortly, we can use CDCs to connect to action knowledge.

CDCs are pictured using stars (as in Figure 3.1). ARs connect the CDCs

to chunks, e.g., object chunks may be connected to proposition chunks using an

AR also connectd to a WHOLE CDC. In Figure 3.1 (which depicts the proposition

CHASES(DOG CAT)), the WHOLE CDC is part of two ARs (each AR appears as

an arrow with multiple tails and one head):

(DOG,WHOLE)⇒ CHASES

(CAT,WHOLE)⇒ CHASES

A COMPONENT CDC is also defined to introduce some redundancy into the

structure, such that for every rule involving a WHOLE CDC, a complementary rule

going in the other direction is created with a COMPONENT CDC. In Figure 3.1,

these ARs are:

(CHASES,COMPONENT )⇒ DOG

(CHASES,COMPONENT )⇒ CAT

Whole chunks are always drawn above component chunks whenever possible.

Ordinal CDCs, which also appear in Figure 3.1 as 1ST, 2ND, etc., allow the ob-

ject chunks to fill distinct roles within the overall propositional structure. Ordinal

CDCs establish independent, dynamic bindings as laid out by (Hummel & Holyoak,

1997; Holyoak & Hummel, 2000). In the case of Figure 3.1, the existence of ordi-

nal bindings suggests that the reasoner has the knowledge of how to retrieve the

object which fills the “first” role in the proposition CHASES(DOG CAT), implying

a structural organization which implies an absolute argument order. But the ordi-

nal CDCs are not the only type of CDCs that can specify independent, dynamic



50

bindings. For example, one might also create CDCs SUBJECT and OBJECT and

create the following ARs:

(CHASES, SUBJECT )⇒ DOG

(CHASES,OBJECT )⇒ CAT

The division of chunk types and the use of ARs described so far is therefore

quite flexible in that it can have objects play multiple roles within a proposition

simultaneously, and structures can also be nested, so that instead of an object

chunk a proposition chunk can have another proposition chunk as a component.

Proposition chunks can also have the same object chunks as components multiple

times, as in the proposition P (a,X, a) (Figure 3.2). Although there is in principle

no limit on the amount of nesting that can be done so that structures can reach

arbitrary heights, it may be worthwhile to explore limits in future work.

3.3 Performing Reasoning

It should not be too controversial to suggest that something innate exists that

allows basic traversal of knowledge structures, an ability afforded to us by the CDCs

we defined in the previous section. But in order to really demonstrate the power of

this system to perform higher level reasoning, we need to show that it can match

structures based on form, a prerequisite shared by both analogical (Gentner, 1983)

and deductive reasoning, as I will now explain.

3.3.1 Templates and Form Matching

Deductive reasoning uses form-based matching when determining whether or

not an inference rule applies. To use a standard inference rule as an example, assume

that we know all men are mortal. Such a statement can take the following form,

with X as a variable ranging over some predefined universe:

Man(X)→Mortal(X) (3.3)

If given the statement Man(socrates), a reasoner would have to first match the

form specified in the antecedent of Equation 3.3. If a match is made, there should be
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enough information available to inform us how to transform the input statements to

produce a new statement (the inferred statement) in accordance with the form spec-

ified in the consequent of Equation 3.3; that resulting formula is Mortal(socrates).

All of this should be quite familiar to anyone who remembers their first ex-

periences with deductive reasoning. Whenever deductive reasoning takes a general

rule and applies it to some specific statement, it performs form matching between

the general rule and the statement. But what happens when we instead start with

a slightly different statement:

Man(plato) ∧Mortal(plato) (3.4)

Given now the statement Man(socrates), it does not follow from deductive

reasoning that Socrates is mortal. If it does follow from these statements, it is

through analogical reasoning—Plato was also a man, therefore by analogy it is

plausible that Socrates is also mortal. In a template such as that in Equation 3.3,

the antecedent clearly specifies a predicate portion that must be matched exactly

(Man), and an object portion that can be anything over which theX variable ranges.

In the case of Equation 3.4, the statements Man(plato) and Man(socrates) do not

line up exactly—the objects plato and socrates do share the primary similarity

specified by the predicate (they are both men), but an analogical reasoner would

likely find similarities between them in other respects: they are both philosophers,

they are both from Ancient Greece, etc.

These examples suggest that when matching structured knowledge forms with

the end goal of performing deductive or analogical reasoning, at least two things

should be available: Firstly, we need to know what constitutes an acceptable match.

This may require an exact alignment as in Equation 3.3, or it may allow a relaxed

requirement of surface similarity, as in Equation 3.4. Secondly, once the match is

made, we need to know what resulting inference, or transformation of the input, can

be made, and how to do it. This is specified nicely by the consequent portions of

both Equations 3.3 and 3.4.

To achieve these goals, we introduce the template, which builds on the

method of representing structured knowledge we defined earlier in this paper. Tem-
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plates are groups of chunks that both specify what constitutes an acceptable form

match and how to transform the input when such a match is found. In order to

represent templates, two features are created. The first is the Template Chunk,

which is a chunk type used by chunks specifically designated to identify complete

templates.12 Template chunks are connected to the template’s individual chunks

using the template CDC, which is identified in our diagrams by a star encasing the

letter ‘T’.

For every chunk c in some template identified by the template chunk tc, an

associative rule connects these chunks to the template CDC T :

(tc, T )⇒ c

Since every AR can be weighted as well (not to be confused with the weight

of the individual condition chunks within the AR itself), the weights of all ARs

outgoing from any particular template chunk adds up to one; this allows us to

specify how much matching some particular chunk contributes to the match score

of the overall template. Such ARs can have weights of zero, and chunks within

templates which have zero weights in their corresponding ARs are pictured using a

circle with a double border (Figure 3.2).

Chunks can exist in templates that have zero semantic content. These are

called blank chunks, and will be used when matching templates to other structures.

Our TF method does not allow chunks to have multiple parents. When a

quantified variable appears in multiple locations, it is important to preserve the fact

that although separate chunks are created for each instance of the variable, since

they correspond to the same variable, any chunks matched to these instances must

correspond to the same object (or as we will see, this restriction can be relaxed to

allow for objects whose chunks have an extremely high similarity). This restriction is

reflected in TF using identity links, which are pictured using double lines between

chunks (Figure 3.2). Identity links are implemented using the Linker CDC (L, not

pictured in Figure 3.2). such that for any two chunks c1 and c2 which are linked,

the following ARs are created:

12We do not in this paper discuss how such templates arise in the first place; this is the subject
of future work.
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QP

a a

Q

T
TC

QP

a a

Q

TC

Figure 3.2: A typical template with zero-weighted chunks and blank
chunks. A simplified version is on the right, which is equiv-
alent to the left picture. Also note that whenever ARs are
pictured with multiple heads like in this figure, each head
corresponds to a separate AR which has the same tail connec-
tions as the others. This figure previously appeared in Licato,
J., Sun, R., & Bringsjord, S. (2014). Structural Representa-
tion and Reasoning in a Hybrid Cognitive Architecture. In
Proceedings of the 2014 International Joint Conference on
Neural Networks (IJCNN). Beijing, China: IEEE.

(L, c1)⇒ c2

(L, c2)⇒ c1

3.3.2 Matching Structures to Templates

Given some template, actually finding a match to that template is a nontrivial

algorithmic problem. In order to avoid some issues that have been raised by the

Tailorability Concern (Licato, Bringsjord, & Govindarajulu, 2013), an algorithm

must be designed that must work with extremely large data sets. With this in

mind, the algorithm we chose is designed to be in-place and localized—not in the

sense of localist concepts we discussed earlier, but rather as the opposite of global,

meaning that after the algorithm is given a set of chunks as input, the algorithm

only searches chunks in the vicinity of the given chunks. A globally optimal solution
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is not needed, or even necessarily desirable, in a project which strives primarily for

psychological and neurobiological plausibility.

That being said, it would seem that a neurobiologically plausible algorithm

would take advantage of the massive parallelism of the brain. For this reason,

we explored the use of an Ant Colony Optimization (ACO) algorithm based on

(Sammoud, Solnon, & Ghédira, 2005). ACO algorithms are examples of meta-

heuristics, which are used in hard computational optimization problems such as

these when a “good enough” solution is needed (Dorigo & Blum, 2005).

The following will be a strictly high-level description of this algorithm. The

algorithm is given a a set of target chunks TC and a completed template TMP ,

which consists of a template chunk, a set of chunks placed into knowledge structures,

and all the connecting ARs. (This paper does not address how such completed

templates arise in the first place and are modified over time.) The form of this input

is notably different from most other models of analogy, which often take predefined

source and target structures that are already complete. Instead of a source structure

we have a template, and instead of a target structure we simply have a collection of

target chunks which may or may not already be structured. The target chunks are

ideally a reflective sample of which concepts are currently active in the reasoner’s

mind.

The algorithm consists of four main routines, which are controlled by two

other subsystems of CLARION: the ACS (Action-Centered Subsystem) and the

MCS (Meta-Cognitive Subsystem). The first routine recruits chunks to fill out

the target. The second organizes the chunks in the target and template. Next, the

third routine actually performs the mapping using an ACO algorithm. Finally, some

chunks may be transferred on to the target chunks. We will now briefly describe

each routine in turn, by using the example illustrated in Figure 3.3.

3.3.2.1 Recruiting of Target Chunks

The target chunks TC are supposed to be representative of the chunks that

have the highest activation levels at some given moment in the NACS. This can be

interpreted as being the concepts in the foreground of the reasoner’s mind. (This
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differs from most models of analogy which come with fully structured target analogs

as input.) Needless to say, it is possible that the chunks provided to our algorithm

as input are insufficient to draw a proper mapping to the provided template, and

so this first subroutine of the algorithm attempts to fill out the target structure by

activating the chunks in TC and calling chunks from memory that become activated.

3.3.2.2 Organization of Chunks

Now that we have completed template and target structures, we organize the

chunks in TMP and TC into levels, such that all chunks are at the highest levels

possible without being on the same level or on a higher level than their parent

chunks. The bottom, or lowest, levels are considered to be the ‘object levels’, and

the mapping will be made with the assumption that the two object levels will be

mapped to each other, and the same for each level above that. For our example,

the template structure would consist of two linked and blank chunks on the object

level, and a Man and Mortal chunk on the next level up. For the target structure,

there is a socrates chunk on the object level, and a Man chunk on the next level

up.

3.3.2.3 Mapping

An ACO algorithm is next used to find a mapping between the chunks. We

first start by drawing temporary ‘eligibility’ links between chunks. For each pair of

levels starting from the object levels, an eligibility link is drawn between every pair of

chunks (c1, c2) if c1 is in the template’s object level, c2 is in the target’s object level,

and the similarity level between c1 and c2 is above some tolerance. Blank chunks

automatically have eligibility links drawn to every chunk in the corresponding level

of the target. Every ant will start with a copy of this list of eligibility links and,

as they decide which of these links to add to their mapping, will remove some of

these eligibility links from their own copies. In our example (Figure 3.3), both blank

chunks on the object level would have eligibility links to the socrates chunk, and

the two Man chunks would also have eligibility links.

Each ant starts at the object level and selects pairs of chunks from the eligibility

links probabilistically, making choices based on several heuristics that either directly
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or indirectly increase the total match quality, again following Sammoud et al. (2005):

• (Lookahead criteria) Does the candidate pair have parents which are in the

eligibility links?

• (Score contribution criteria) Do they have children that are already paired?

Do the ARs connecting them to these children use the same CDCs?

• (Pheromone) Check the pheromone attached to this choice, but only if this is

the very first choice being made by this ant.

With every choice that is made, eligibility links on the same and higher levels

may no longer be valid (they may, for example, violate structural constraints), and

so they are temporarily removed before the next choice is made. At the end of each

group of ants, the ant with the best match score (which is a function of the number

of pairs in the mapping) is compared to the current best score. If the ant’s score is

better, then pheromone is deposited on each pair in that ant’s mapping.

Each group of ants and a single deposit of pheromone constitutes a single

iteration. After a certain number of iterations, the best mapping is returned.

3.3.2.4 Transfer

The best mapping score that is found (s) is then divided by the theoretical

maximum score (smax). If this amount is greater than a certain tolerance t (usually

0.8), then a bottom-up search is made for chunks in the template that were not

mapped to anything. If that chunk’s weight within the template w is such that

s−w
smax
≥ t, then a copy of the chunk is made and can be transferred to the target, and

any necessary CDC-related ARs are created. s is set to s − w, and the process is

repeated. In Figure 3.3, we would have the two Man nodes mapped together, and

the leftmost blank chunk would be mapped to the socrates chunk. The remaining

two chunks (Mortal and the blank chunk below it) would be transferred to the

target as Mortal(socrates).

As can be seen in Figure 3.3, deductive reasoning is performed by having

templates with blank chunks for quantified variables, and zero-weighted chunks for
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the consequent chunks. This way if a sufficient match is found for the antecedent

(the non-zero-weighted chunks), then the consequent (the zero-weighted chunks) are

automatically created, representing an inference.

Analogical reasoning, as in Figure 3.4, requires an extra step that first collects

source chunks using a similar process to the “Recruiting of Target Chunks” step

described above, and then tries (in parallel) different transformations of the source

chunks into templates. The algorithm used in deductive reasoning can then be used.

Full details will be described in a full-length journal paper.
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QMan Mortal

Man-Mortal Template

Man

socrates

Figure 3.3: Template and target used for the deductive reasoning exam-
ple in Formula 3.3. This figure previously appeared in Licato,
J., Sun, R., & Bringsjord, S. (2014). Structural Representa-
tion and Reasoning in a Hybrid Cognitive Architecture. In
Proceedings of the 2014 International Joint Conference on
Neural Networks (IJCNN). Beijing, China: IEEE.
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Figure 3.4: Template and target used for the analogical reasoning exam-
ple in Formula 3.4. This figure previously appeared in Licato,
J., Sun, R., & Bringsjord, S. (2014). Structural Representa-
tion and Reasoning in a Hybrid Cognitive Architecture. In
Proceedings of the 2014 International Joint Conference on
Neural Networks (IJCNN). Beijing, China: IEEE.



CHAPTER 4

PAGI World

This chapter describes PAGI World, a simulation environment I developed so that an

artificial agent could construct and reason over representations that are semantically

rich. PAGI World offers a number of nice features that can be beneficial to the AI

and cognitive modeling communities in general, and I summarize these features in

this chapter. I will start by outlining the motivations for PAGI World, introduce

technical details about its implementation, compare PAGI World to other simulation

environments, and conclude by discussing future plans for this project.

4.1 Introduction

Frank Guerin (2011), in his recent survey of the emerging field of Developmen-

tal AI, concluded that current systems were lacking in several key areas. Guerin then

suggested that a major reason (arguably the most important) why the field has the

shortcomings he described, was the absence of a suitable simulation environment.

Current simulation environments used by Developmental-AI projects were missing

several key features, and Guerin described some conditions that would need to be

met by simulation environments in order to cure this problem. Among the most

important of these will be referred to as C1, C2, and C3:

C1 It is rich enough to provide knowledge that would bootstrap the understand-

ings of concepts rooted in physical relationships; e.g.: inside vs. outside, large

vs. strong, etc.

C2 It can allow for the modeling and acquisition of spatial knowledge, which

Guerin notes is widely regarded to be a foundational domain of knowledge

acquisition, through interaction with the world.

C3 It can support the creation and maintenance of knowledge which the agent can

verify itself (This is Sutton’s (2006) Verification Principle, to be elaborated

shortly).

60
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Though these points are extremely important, there are a few more that should

be added to this list that may be worth noting as well:

C4 It is rich enough to provide much of the sensory-level information an agent in

the real world would have access to.

C5 It can allow for testing of a virtually unlimited variety of tasks, whether these

are tasks testing low-level implicit knowledge, high-level explicit knowledge, or

any of the other areas required by Psychometric Artificial General Intelligence

(PAGI). Ideally, such a system would support the easy creation of new tasks

and environments without requiring a massive programming effort.

C6 It provides pragmatic features that enable tasks to be attempted by AI coming

from researchers using different types of systems, and different theoretical

approaches, thus enabling these different approaches to be directly compared

with each other.

This chapter describes a task-centered, physically realistic simulation environ-

ment that I have developed to simultaneously address challenges C1-C6. It is hoped

that this system13 can remove a sizable roadblock in the fields of developmental AI

and cognitive modeling in general. In Section 4.2, I will elaborate on and defend

conditions C1-C6, and then explain the concepts of PAI and PAGI.

4.2 Guerin’s Conditions

A common theme running through conditions C1-C3 is that what is lack-

ing from current microworlds is a physically realistic environment—one in which

the agent can acquire, develop, and test its concepts. But the concerns raised by

Guerin (2011) are not only of interest to the field of Developmental AI; in point of

fact, AI in general can benefit by addressing them. For example, feature C1 is ex-

tremely important for cognitive models of analogy, which are currently struggling to

overcome what has been called the Tailorability Concern (TC)(Gentner & Forbus,

13In this paper, I will at times use the words ‘system’ and ‘environment’ to describe simulators.
These words connote slightly different aspects—the former highlights the microworld the simulator
creates for AI agents, the latter emphasizes the total software package provided by the simulator.
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2011; Licato, Bringsjord, & Govindarajulu, 2013). TC, in essence, is the concern

that models of analogy (though this can be applied to all cognitive architectures

in general) have far too long dealt almost exclusively with manually constructed

knowledge representations, using toy examples often selected solely to display some

particular ability. Licato et al. (2013) goes on to argue that overcoming TC is neces-

sary to advance the fields of analogy and cognitive architectures. After making this

point, they develop a set of conditions that must be met in order to claim victory

over TC:

TCA3 A computational system of analogy answers TC if and only if

given no more than either

• unstructured textural and/or visual data, or

• a large, pre-existing database,

and minimal input, it is able to consistently produce useful analogies and

demonstrate stability through a variety of input forms and domains.

According to TCA3
14, then, good performance on the part of a cognitive agent

on a sufficiently large knowledge base from which source analogs could be drawn

is required to answer TC. An agent interacting in the sort of microworld called for

by Guerin (2011) might ideally be able to acquire such source analogs by simply

interacting with its environment.

C1 and TC together require that the microworld itself is what provides the

knowledge drawn upon to construct concepts of basic physical relationships, not

manually constructed source analogs or fully explicit logical theories. C2 expands

on C1 by requiring that this knowledge of physical relationships not be static, but

rather should allow for an agent in the world to learn through interaction. The

idea that children learn by initiating interactions with the world based on their

(often incomplete) conceptions of reality—in a manner that resembles scientific

experimentation—was championed by Piaget and later constructivists (Glasersfeld,

1991; Quartz & Sejnowski, 1997; Piaget et al., 2001), and is at the core of contem-

porary views like Bickhard’s Interactivist Model (Bickhard, 2008).

14In Licato et al. (2013), TCA1 and TCA2 are also formulated and discussed, but ultimately
rejected in favor of TCA3 and TCA4.



63

A microworld that satisfies C2, then, should recognize that the concepts,

schemas, and representations used by the agents will frequently change, and this

is difficult to do if the information provided from the microworld to the agents

within it are frozen in representation. There are many ways in which information

might be frozen in representation: It may make use of labeled concepts which are

too high-level and do not change, or it may be too rigid in its form of presenta-

tion. Consider, for example, the Event Calculus (Kowalski & Sergot, 1986), which

defines the event, a fixed set of predicates and objects, and certain inference steps

as primitives. The DORA model, which attempts to explain concept acquisition

and construction at the neurobiological level, also (at present) requires primitive

conceptual constructs that allow for pairwise comparison of analog values (Doumas

et al., 2008; Doumas & Hummel, 2013). C2 helps to ensure that microworlds make

as few assumptions about which of these primitives are required as possible.

Note that this is to say nothing about what mode of representation the agent

is better off using. It may benefit the agent to use fully top-down approaches

(Bringsjord, 2008a, 2008b), or perhaps hybrid representations (Sun, 2002), depend-

ing on the task being solved and the purpose of the demonstration. Some inflexibility

may be unavoidable: every form of representation has some set of primitive con-

structs at its core, whether they are logical operators, undefined microfeatures, or

a mostly fixed set of sensory inputs and outputs. PAGI World simply tries to pro-

vide a lower granularity for these primitive constructs, with the assumption that

a powerful AGI system can eventually come along and construct all of the other

higher-level constructs with them. Requiring the information directly given to the

agent’s sensors to be as low-level as possible is PAGI World’s way of ensuring that it

does not provide its inhabitants (the agent controlled by AI scripts) with knowledge

based on frozen representations, and is the motivation for C4. Whatever the AI

agent decides to do with that low-level knowledge—whether it extracts higher-level

symbols and performs reasoning over them or not—is completely up to the writers

of the AI scripts.

In contrast with C1 and C2, C3 comes closest to placing a requirement on

the type of knowledge and cognitive operations on this knowledge that the agents
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in the microworld have. However, it goes just short of that by not requiring that

the agents actually do maintain and verify their own knowledge. Rather, it specifies

that the world be rich enough to allow such an agent to exist.

C3 requires further elaboration. Guerin (2011) cites Sutton’s (2006) Verifi-

cation Principle (VP), which states:

An AI system can create and maintain knowledge only to the extent that

it can verify that knowledge itself (Sutton, 2006).

The VP, Sutton argues, is extremely important in AI systems which aim to

acquire and develop knowledge that will eventually become too large or numerous for

humans to independently verify. Just like the commonsense reasoner who is reluctant

to accept revelations of knowledge that do not ‘make sense’ to the reasoner, AI and

AGI systems would need some way discriminating way to consider ideas. Because

PAGI World only provides its agents with low-level information that accurately

describes the state of the microworld and avoids providing interpretations of this

information, an agent that satisfies VP is entirely possible. However, it would be

specific to the tasks to determine how to measure adherence to VP.

There are many ways in which an AI might independently verify knowledge

which it creates or is seeking to maintain. One such way is reminiscent of the

hypothetico-deductive method, that is, it is reasoned that the knowledge to be

verified, if true, would imply some hypothesis h. If h states that some observation

must hold or that some sensory data should be expected, then the agent should be

able to verify h by looking for itself. C3, then, requires that simulation environments

be rich enough to allow the agent to do just that, while placing as little restriction

as possible on the types of hypotheses h that the agent can check for. For example,

the agent may want to check for low-level sensory data, or it might want to perform

detailed experiments (as did the children in many Piagetian experiments). PAGI

World offers this capability.

4.2.1 PAI and PAGI

Following TCA3, another formulation of the Tailorability Concern and rec-

ommendation for how to surpass it was also presented in Licato et al. (2013):
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TCA4 A computational system A for analogy generation answers TC if

and only if, given as input no more than either

• unstructured textual and/or visual data, or

• a vast, pre-existing database not significantly pre-engineered ahead

of time by humans for any particular tests of A,

is — in keeping with aforementioned Psychometric AI — able to con-

sistently generate analogies that enable A to perform provably well on

precisely defined tests of cognitive ability and skill.

TCA4 ties TC to Artificial General Intelligence (AGI) by introducing the

concept of Psychometric AI (PAI) (Bringsjord, 2011; Bringsjord & Schimanski,

2003). PAI sees good performance on well-established tests of intelligence as a solid

indicator of progress in AI. Some may note that most intelligence tests fail to capture

human-level skills such as creativity and real-time problem solving; therefore, related

to PAI is Psychometric Artificial General Intelligence (PAGI) (Bringsjord &

Licato, 2012). For example, one test of PAGI is Bringsjord and Licato’s (2012)

Piaget-MacGyver Room, in which an agent is inside a room with certain items

and a task to be performed. The agent must achieve the task using some combination

of the items in the room (or using none of them, if possible). Depending on the

task, the solutions may require using the items in unusual ways, as viewers of the

MacGyver television series may remember.15

If PAGI tasks are meant to subsume all tasks solvable by neurobiologically

normal human adults, then a simulation environment designed to capture PAGI

tasks should also be able to test for two types of knowledge humans make regu-

lar use of: explicit and implicit knowledge. The implicit/explicit distinction (Sun,

2002), which roughly parallels the System 1/System 2 distinction of Kahneman

(Kahneman, 2011) (but see (Sun, 2014) for a criticism of System 1 vs. 2), encom-

passes an extremely broad spectrum of explanations for human phenomena (Sun,

15Note that although I have adopted “PAGI World” as the name of this simulation environment
in order to reflect the fact that it is designed to support many types of PAGI tests (including vari-
ants of the Piaget-MacGyver Room, as I describe below), PAI tests are just as easily implementable
in PAGI World.
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2001, 2002, 2004). If a simulation environment restricts itself to AI controllers that

rely on explicit or implicit processes exclusively, then it cannot hope to capture the

breadth of tasks required to qualify a Psychometric Artificial General Intelligence.

For these reasons, C5 occupies an important place in our list.

C5, however, also contains a warning rooted in pragmatics. Although qual-

itative breadth is important, the downfall of a simulation environment may also

be quantitative shortcomings. For example, the tasks developed for such an envi-

ronment may all be solved, or uninteresting to researchers, thereby motivating the

creation of a new simulator. PAGI World’s solution to this is to provide a task

editor/creator that is extremely easy to use with minimal training; I describe it in

Section 4.3.1.2.

4.3 PAGI World

Requirement C6 is the most practicality-oriented, reflecting both Guerin’s

(2011) inclination (shared by myself) to believe that an effective way to compare

AI and AGI methodologies would be to see how they perform on the same tasks,

implemented on the same systems. But few such tasks and systems exist, and

therefore before describing PAGI World, it may be helpful to take a step back and

look at this project in a broader view.

A wider perspective, after all, may help to understand the need for a system

such as PAGI World. Science advances, in no small part, by having an array of

increasingly powerful tools available to scientists, and by continually improving the

infrastructure available to those scientists for the purposes of testing, analyzing, and

comparing their ideas. If the state of lens manufacturing in Europe was not as well

developed as it was by the time of Galileo, he would not have been able to develop

the telescope and make his discoveries. To use a more contemporary example, it is

difficult to see how modern advances in machine learning (and by extension modern

search engines) could have progressed so quickly without the parallel development

of computers fast enough to run those algorithms. Similarly, AI and AGI can only

benefit from having a physically realistic, easy-to-use simulation environment like

PAGI World.
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Given its potential benefit to the field as a whole, why does such a simulation

not currently exist, and do any of the roadblocks currently in the way affect the

plausibility of the current project?

4.3.1 Why Isn’t Such a System Already Available?

4.3.1.1 Technical Difficulties

One potential roadblock is obvious: programming a realistic physics simulation

is hard. Some of this difficulty is reduced by working with a 2D, rather than a 3D,

environment. Although some software libraries have previously been available for

2D physics simulations, they have often been very language-specific and somewhat

difficult to configure.

Secondly, even if one were to stick with a 2D physics library and commit

to it, substantial development resources would be needed to enable the resulting

simulation to run on more than one major operating system. Furthermore, even if

that problem is somehow addressed, there is a vast diversity of languages that AI

researchers prefer to use: Python, LISP (in various dialects, each with their own

passionate proponents), C++, etc. All of these technical issues tend to reduce how

willing researchers are to adopt particular simulation environments.

Fortunately, all of the above problems can be solved with a single design choice.

Unity, a free game-development engine, has recently released a 2D feature set, which

comes with a 2D physics model that is extremely easy to work with. In fact, the

blog post making the announcement of the 2D feature set was dated November 12,

2013. Furthermore, Unity allows for simultaneous compilation to all major operating

systems, so that developers only have to write one version of the program, and it is

trivial to release versions for Mac OS, Windows, and Linux. Because Unity produces

self-contained executables, very little to no setup is required by the end users.

Finally, because Unity allows scripting in C#, an interface was designed for

AI systems that communicates with PAGI World through TCP/IP sockets. This

means that AI scripts can be written in virtually any programming language that

supports port communication.
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4.3.1.2 Theoretical Difficulties

Unity conveniently helps to remove many of the technical roadblocks that

have previously blocked the development of simulation environments that can be

widely adopted. But there are also theoretical roadblocks; these are problems with

the generality vs. work-required tradeoff. For example, if a simulation environment

is too specifically tailored to a certain task, then not only can systems eventually

be written to achieve that particular task and nothing else, but the simulation

environment quickly becomes less useful once the task is solved. On the other hand,

if the system is too general (e.g. if a researcher decides to start from scratch with

nothing but Unity), then the researcher must devote too much time and energy to

developing a new simulation environment for each project, rather than spending

time on the AI itself.

PAGI World was designed with this tradeoff in mind. A task in PAGI World

might be thought of as a Piaget-MacGyver Room with a configuration of objects.

Users can, at run-time, open an object menu (Figure 4.1) and select from a variety

of pre-defined world objects, such as walls made of different materials (and thus

different weights, temperatures, and friction coefficients), smaller objects like food

or poisonous items, functional items like buttons, water dispensers, switches, and

more. The list of available world objects will frequently be expanding and new

world objects will be importable into tasks without having to recreate tasks with

each update. Perhaps most importantly, tasks can be saved and loaded, so that as

new PAI/PAGI experiments are designed, new tasks can be created by anyone.

4.3.1.3 Problems with Robotics Environments

There have been some attempts to create physically realistic simulation envi-

ronments for AI researchers. However, as will be argued, they have largely failed to

address the concerns in (Guerin, 2011) and (Licato, Bringsjord, & Govindarajulu,

2013). I now briefly discuss other systems that have goals similar to those of PAGI

world, in order to emphasize the uniqueness of this project. What follows is not

intended to be a comprehensive survey of the field, but I have tried to provide a

representative sample of what is currently available.
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Figure 4.1: PAGI World With the Object Menu Visible

The subfields of developmental robotics (Lungarella, Metta, Pfeifer, & Sandini,

2003) and cognitive developmental robotics (Asada et al., 2009) have long offered

an option for researchers interested in demonstrating the effectiveness of a certain

AI theory when placed in a real-time test environment. But as researchers know,

robotics research can be quite costly, and working with hardware can introduce

a steep learning curve that some may want to avoid if possible. Robot software

simulators offer a compromise. Thus, for this and other reasons, the number of

robotics simulation software options has been increasing quickly over the past few

years. Not surprisingly, several surveys and reviews of the software alternatives have

emerged to make sense of the growing landscape.

Although it must be emphasized that PAGI World is not in any way intended

to be a tool for robotics development, there is a clear overlap in interest with robotics

simulation environments, and thus a quick review of the relevant literature is appro-

priate here. Some robotics researchers have already realized the value of using com-

puter games as testbeds for human-level AI (Laird & Lent, 2001), and more specif-

ically the ability for Unity to simulate worlds for testing robotics, and have created

basic frameworks for modeling robot sensors and kinematics (Hernandez-Belmonte,

Ayala-Ramirez, & Sanchez-Yanez, 2011; Mattingly et al., 2012). But although the
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simulators designed for robotics are already popular and enjoy widespread support,

they may be too focused on the specifics of robot hardware for our PAI- and PAGI-

oriented purposes. For example, of particular concern to robotics researchers are

environments that allow them to simulate robot locomotion, grasping, joint damp-

ening (Drumwright, Hsu, Koening, & Shell, 2010), hardware support, robot con-

figuration methods (Kramer & Scheutz, 2007), accuracy of contact resolution, and

having the same interface between the simulated and actual robot control systems

(Ivaldi, Padois, & Nori, 2014). Furthermore, the sorts of PAI/PAGI tasks PAGI

World focuses on are not currently available.

I propose to distinguish PAGI World from the current crop of robotics simu-

lators on several key points:

• As many as possible of the low-level details of hardware implementation are

abstracted, so that the AI researcher can focus on cognitive-level problems.

• Although low-level sensory information about the world will be available, in-

formation will optionally be available at a slightly higher level of abstraction

as well, e.g.: object names, locations, etc.

• An easy-to-use system will be in place for quickly creating new PAI/PAGI

tasks, so that anyone without programming experience can create them and

share them with others. This helps to ensure that the amount of tasks available

will continue to increase, and that therefore time spent developing AI systems

to work with PAGI World will be re-usable.

• PAGI World’s simulator is tied to Unity 2D. This connects PAGI World to an

extremely stable physics and graphics engine that enjoys widespread commu-

nity support and is rapidly being upgraded. This provides a reasonable degree

of confidence that any bugs with the physics simulator or other engine-level

components will be addressed quickly.

In short, PAGI World is PAI/PAGI task-oriented, and targeted to cognitive-

level researchers modeling both high- and low-level tasks, rather than to robotics

researchers.
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4.3.1.4 Other Simulation Environments

There have been some notable attempts to provide simulation environments

for AI systems, particularly those inspired by the Developmental AI approach. For

example, Bruce (2010) created a Developmental AI testbed by updating an older

version created by Frank Guerin (Bruce, 2010).

Although some of the present paper’s authors are sympathetic to the power of

Piagetian schemas and the AI systems derived from Piaget’s theories, Bruce’s (2010)

system is tightly coupled with a particular cognitive architecture (presented in the

same paper) that uses schema-based AI systems, whereas PAGI World is agnostic

about what AI approach is used. It is unclear how easy or difficult it would be to

adapt arbitrary cognitive architectures to work with their simulation environment.

They used the JBox2D library for their physics engine, which, according to

(Bruce, 2010), was poorly documented and difficult to work with (e.g., implementing

a method to detect when the robot hand touched an object took markedly longer

than they planned due to a lack of documentation for JBox2D). Although a newer

version of JBox2D became available afterward, implementing the new version re-

quires the simulation programmer to manually update the relevant code, whereas

updates to the Unity 2D physics engine will automatically be propagated to PAGI

World, with minimal to zero code changes. In other words, upgrades to PAGI

World’s physics engine will be virtually transparent to AI developers.

(Drescher, 1991) proposed an early microworld in which an agent, whose devel-

opment made use of a primitive form of Piagetian schemas, explored the world and

learned about the objects with which it interacted. Although this was a promising

start, after this initial start it was not developed further, nor was any significant

effort made by other researchers to pick up on Drescher’s work, as far as I am aware

(merely one small-scale re-implementation of Drescher’s work exists, e.g. (Chaput,

Kuipers, & Miikkulainen, 2003)). Nevertheless, Drescher’s microworld has some

very interesting elements that have been taken as a starting point for PAGI World,

and those starting points will be described next in detail.



72

4.3.1.5 Drescher’s Simulation

Drescher’s (1991) microworld simulation environment was created primarily

to test his Piagetian artificial agent, which took low-level information about the

environment and constructed increasingly complex schemas about its microworld.

The microworld consists of a 2D scene divided into a grid that limits the granularity

of all other elements in the microworld. Inside this microworld are objects that

take up discrete areas of the grid and contain visual and tactile properties. These

properties can be described by vectors which, for the purposes of this simulation,

have arbitrarily chosen values.

Most importantly, the microworld contains a single robot-like agent with a

single hand that can move in a 3-cell × 3-cell region relative to the part of the

robot’s body considered to be its ‘eye.’ If the hand object is adjacent to an object

in the world (including the robot’s own body), a four-dimensional vector containing

tactile information is returned to the agent. The body has tactile sensors as well,

though they do not return tactile information as detailed as that returned by the

tactile sensors of the hand.

Visual information is available as well, in the form of a visual field whose

position is defined relative to the robot’s body. A smaller region within the visual

field, called the foveal region, represents the area within the visual field where

the robot is currently looking. The foveal region returns vectors representing visual

information, and the cells in the visual field not in the foveal region also return

visual information, but with lower detail.

Perhaps one of the most interesting features of Drescher’s microworld is the

fact that the robot can only interact directly with the world by sending a set of pre-

defined “built-in actions.” Although the internal schema mechanism of the robot

may learn to represent actions as richer and more complicated, ultimately what

is sent to the simulation environment is always extremely low-level. Likewise, the

information provided to the robot is always extremely low-level. The task of iden-

tifying and naming objects in the world—and even of knowing that objects in the

world consistently exist!—is up to the learning mechanism the robot utilizes.

The fact that the learning and control system of the artificial agent can be
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developed almost completely independently of the features of the world itself, is

one of the primary reasons why Drescher’s microworld is appealing as a starting

point for PAGI World. Drescher’s microworld is mostly in line with the theoretical

assumptions made here, which will be described further in the next section. But

first, the primary areas in which PAGI World departs from, and has innovated

beyond, Drescher’s microworld are as follows:

• Agnosticism re. the AI method used. Whereas Drescher’s microworld was

created for the sole purpose of testing his Piagetian schema-learning mecha-

nism, I have designed the world, program, and interfaces so that as wide a

variety as possible of AI techniques can be productively and easily used.

• Optional mid-level input. Related to the previous point, clearly some

researchers simply won’t want to translate vector input for every piece of

tactile or visual information they come across. PAGI World offers the option

for the agent to directly receive the name of the object upon touching or

viewing it.

• Granularity. The granularity of information in PAGI World is dramatically

finer; consider the increase in size of the visual field: Drescher’s was an area of

7-×-7 cells with one visual sensor per cell. The visual area has been upgraded

to span a 450-×-300 unit area, with each visual sensor spaced 15 units from

its nearest neighbor (each unit roughly corresponds to a screen pixel).

• Hands. The robot is given two hands instead of one, each with a similar

range of motion, but with different distances (relative to the body) that each

can reach. Although the simulation world is 2D, the hands exist on a separate

layer that floats ‘above’ objects in the world, analogously to a mouse cursor in

any major operating system. The hands can grip and move objects they are

floating over (just like how one might click and drag an object in Windows or

MacOS), provided the objects are not too heavy or otherwise held down.

• Realistic Physics. Undoubtedly the most important improvement intro-

duced is the aforementioned realistic physics provided by Unity 2D.
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• Focus on a wide breadth of tasks. Although Drescher’s microworld was

a start in the right direction, we feel that it did not make enough of a push

to be considered a simulation environment for AGI tasks, nor did it explicitly

set out to be a testbed for the sort of tasks prescribed by Psychometric AI.

4.3.2 Reflexes, DFAs, and the Implicit vs. Explicit Distinction

Although communication through TCP/IP ports is relatively quick, and the

command system created is designed to be efficient, there are some actions requiring

extremely rapid, simple checks and responses. For example, holding an object in

the air at a certain position relative to the body for an extended period of time may

require many quick corrections. If the object starts to move down, more upward

force should be applied. But if it moves too far up, downward force should be applied

(or the amount of upward force should be reduced). In order to old the object as

still as possible, the amount of force applied would be based on its current and

projected velocity and position. However, if the AI script requests this information,

does a calculation to determine the amount of correction required, and sends back

the command to adjust the amount of force, by the time this command is received

by PAGI World and processed it may be inaccurate.

PAGI World fixes this problem by implementing states and reflexes. Reflexes

and states can be set and modified through commands from the AI script, but they

are actually checked and executed completely on the PAGI World side, which allows

for much faster reaction times. A reflex r consists of a tuple (C,A), where C is a list

of conditions and A is a list of actions. Each condition in C must be satisfied in order

for reflex r to activate. These conditions can consist of sensory inequalities, e.g.:

whether one of the tactile sensors detects a temperature above a certain amount,

or whether the AI agent’s body is moving above a certain velocity. If all of the

conditions are met, then the actions are executed immediately. Furthermore, sensory

inequalities can be specified as simple arithmetic functions of sensory values, so that

a reflex can be fired if (to cite an arbitrary example) the horizontal component of

the agent’s body’s velocity is at least twice the value of the vertical component of

its velocity.
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States can be activated and checked by reflexes. Essentially, this means that

multiple deterministic finite automata (DFAs) can be stored and executed com-

pletely on the PAGI World side. However, the expressivity of the conditions and

actions within each reflex strictly restricts the system so that full Turing machines

cannot be implemented on the PAGI world side. This allows developers to imple-

ment two important categories of abilities generally regarded to be part of the human

experience: explicit, and implicit. Recall that the explicit vs. implicit distinction

divides the mind into explicit processes which are generally slow, deliberate, and

easy to verbalize, and implicit processes which are mostly quick, automatic, and not

easily accessible to the conscious mind (Sun, 2002).

Although PAGI World does not support all imaginable implicit processes (for

example, some might believe that a Bayesian probabilistic approach or a deep learn-

ing artificial neural network is necessary to implement some implicit processes), the

fact that multiple DFAs can be stored and executed in PAGI World’s optimized

code gives the user a flexibility to capture a wide range of implicit processes.

4.3.3 The Architecture of a PAGI World Setup

Figure 4.2 pictures the architecture of a typical PAGI World + AI controller

pairing. As the figure illustrates, it is helpful to think of the processes controlled by

the PAGI World application to be the PAGI-side, as opposed to the side which can

be completely implemented externally, referred to as the AI-side. The reflex and

state machine described in Section 4.3.2 is controlled and managed on the PAGI-

side, but both states and reflexes can be dynamically modified through commands

sent by the AI-side.

All commands going from the AI-side to the PAGI-side, and all sensory in-

formation passing in the other direction, is done through messages communicated

through TCP/IP ports. Therefore, the AI-side can be written in any programming

language which supports the creation and decoding of strings over TCP/IP. Al-

though this flexibility sets PAGI World apart from many other alternatives, some

may prefer an additional level of abstraction on the AI-side, and for this reason

PAGI World will provide, and we are continuing development on, a Python library
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Figure 4.2: The architecture of an instance of PAGI World and an AI
controller. Everything on the AI-side can be written by AI
researchers, as the interface with the PAGI-side is handled
through messages passed over TCP/IP sockets. A Python
library, called pyPAGI, is also optionally available to assist
researchers with common AI-side functionality, including en-
coding of PAGI World knowledge in the Deontic Cognitive
Event Calculus (DCEC∗). The reflex/state machine and task
editors can also be controlled through TCP/IP, though the
task editor is additionally available through a WYSIWYG
drag-and-drop interface.

called pyPAGI, which will be described in the next section.

Tasks can be created, saved, and loaded using the GUI editor at run-time (Fig-

ure 4.1), but as suggested by Figure 4.2, they can also be somewhat configured by

AI-side commands. This can be useful to modify the layout of the task dynamically

in response to actions the AI agent takes (e.g. making an apple appear as a reward,

or a bottle of poison as a punishment), or to load new tasks after successful task

completion for automated batch processing of tasks.

4.3.4 pyPAGI: An AI-side Library

The pyPAGI library, a Python library which will also be made available,

provides users with many of the mid- to high-level commands to control the AI
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agent. This library may be useful to first-time users of PAGI World, to beginners

and students of AI programming, or to researchers not concerned with the methods

used to convert high-level commands into the low-level sensory commands PAGI

World requires. For example, although commands to apply force to the hand and

to grab objects are part of the set of TCP/IP commands, actually picking up an

object and holding it still in the air for a specified amount of time requires a series

of reflexes to be put in place to allow for the tiny corrections that are necessary to

accommodate the object’s weight, the momentum of the hand, and any other forces

which may prevent the object from being held stationary. The pyPAGI library has

support for performing this and many other functions.

pyPAGI also performs bottom-up symbol and concept extraction for those who

are not concerned with implementing these common functions themselves. It does

this by interpreting sensory shapshots of the world at discrete moments in time, and

extrapolating information about the motion, relative layout, and other descriptive

features of the world. This information is primarily expressed in the language of

the Deontic Cognitive Event Calculus (DCEC∗), which is a highly expressive logical

framework for representing nested beliefs, knowledge, deontic facts (obligations),

and more (Bringsjord, Clark, & Taylor, 2014).

Figure 4.3: A task in which the apple and bacon will fall at the same
time, leaving only enough time to save one of them.
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PAGI World offers an environment in which the amount of actions that an

artificial agent can learn is virtually unlimited. PAGI World’s flexibility also allows

us to control an agent with the AC notation described in Chapter 3. The stage is

therefore set for a demonstration of AC in action, which will be the focus of the

next chapter.



CHAPTER 5

Demonstration and Conclusion

As suggested by this dissertation’s title, I want to show how action schemas and

analogy can give rise to the ability to reason. In Chapters 1 and 2, I argued that

LPT’s central concepts of abstraction, cognitive structures rooted in action, and the

literature on analogical reasoning suggest an approach for achieving the goal stated

in the subtitle, and taking these ideas seriously points to the no-semantically-empty-

structure principle (NSES). In Chapter 3, I showed how NSES could be realized in

a cognitive architecture. Chapter 4 described a simulation environment which was

rich enough to support a semantically rich cognitive agent.

In this final chapter, I will present a short, extremely simple demonstration,

that should be considered a starting point for future work. Such future work, as this

dissertation has argued, requires an environment capable of supporting the develop-

ment of knowledge rich in action. PAGI World is such an environment. Therefore,

in this demonstration, an agent in PAGI World will use information provided to its

sensors by the environment in order to construct representations which take NSES

seriously. After describing the demonstration and discussing its strengths and weak-

nesses, I will conclude the dissertation and discuss future directions of a research

program based in AC.
A typical representation of an action instance is a triple (pre, action, post)

where pre is a set of observables or components of context which hold (or are

believed by the agent to hold) prior to action taking place, and post is a set of

observables perceived after the action is taken.

An action is implemented here as a subroutine, or a set of instructions whose

execution can be affected by a set of provided parameters. By analogy to program-

ming languages, an action is like a function that can take arguments, but does not

return a value. Note the compatibility between this understanding of an action and

the definition of action provided in Section 2.4 holds if one accepts that the com-

puter executing the subroutines is a kind of ‘mind’ (though acceptance of such a

79
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claim is not centrally important to our purposes here).

An action by itself is non-teleological (does not have a truth value or end goal);

any feedback obtained through execution of an action comes in the form of percepts.

For example, if an agent performs the action of grabbing an object, the action itself

does not return a notification of success. Rather, the agent will receive feedback

through its normal senses during the execution of the action (force sensors, touch

sensors, etc.) and the agent’s judgement of success or failure of the action depends

on the match between the agent’s observations and the expectations set by whatever

goal-setting subsystem initiated the action in the first place.

A perceptual symbol is a non-relational mental construction which is con-

structed out of perceptual inputs, to be identified with the pure observables defined

in Section 2.4. The ability to recognize and classify combinations of sensory inputs

as perceptual symbols is learned over time, and does not require rooting in action.

As a rule of thumb, one might think of a purely perceptual symbol as the sort of

thing which can be learned and accurately identified by today’s best computer vision

systems (e.g. (Socher, Lin, Ng, & Manning, 2011)). A perceptual symbol can be

purely constructed out of perceptual inputs, or, in the case of relational perceptual

symbols, partially constructed out of actions.

I will define an observable as a perceptual symbol, relational or otherwise,

paired with an object. An observable may be a pure observable (defined in Section

2.4 as those symbols not rooted in action), or it may be a construct partially con-

sisting of action-rooted structures. The observables used in this demonstration are

simply given to the agent, so I do not address whether they should be considered

pure observables or not.

Observables come in the predicate-object form as described in Chapter 3.

Given that observables and objects are so central to the elements in action instances,

we are faced with a problem: in PAGI World we are only given sensor values, not

direct knowledge about objects! So how do we bridge the gap and generate predicate-

object representations from PAGI World’s provided sensory data?

This chapter’s demonstration will attempt to answer that question, and in do-

ing so demonstrate that PAGI World is a valid system on which an agent completely
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Figure 5.1: A poisoned item (left) and a steak (right), which provide
negative and positive endorphins when coming into contact
with PAGI guy’s body.

Figure 5.2: A set of colored bombs (or dynamite sticks, left) and colored
walls (middle). When a bomb comes into contact with a
wall piece of the same color, they explode (right) and both
disappear.

based in AC can be hosted. I now turn to the description of the task itself.

5.1 Description of the Task

The agent in PAGI World (referred to as “the agent” for the remainder of this

chapter) is placed in an environment (alternately, a specific setup of the PAGI World

environment will be referred to as a ‘task’) and is given a set of perceptual symbols

related to its sensors. I will show how how the predicate-object representation

described in Chapter 3 can be constructed.

The task is a small area with a series of stationary wall blocks. Randomly

scattered throughout the environment are randomized combinations of 8 items:

• Poisoned item (Figure 5.1, left side), which appears as a triangle with a skull

and crossbones logo. When this touches PAGI guy’s body, a value of −10
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endorphins is triggered in the relevant body sensors.

• Steak (Figure 5.1, right side). Like the poisoned item, except it has an endor-

phin value of +10.

• Green, blue, and red blocks (Figure 5.2, middle). Acts just like the normal

brick wall blocks all over the environment, except these can be destroyed by

bombs.

• Green, blue, and red bombs (Figure 5.2, left side). Appears (and perhaps

better described) as bundled sticks of dynamite. When these come in contact

with colored blocks of the same color, they destroy each other, resulting in

an explosion (Figure 5.2, right) that is visible to PAGI guy and lasts for

approximately one second. Both the dynamite and the colored block it came

into contact with disappear when the explosion appears, and remain gone after

the explosion dissipates.

PAGI guy starts with no knowledge of how to interact with any of these items.

He does, however, come equipped with semantically empty symbols for each of the

8 item types (Ostarting), so that when an object comes into his visual field, he can

recognize the type of the object (the type, however, is a semantically empty label,

so that if the types of steak and poison were reversed it would make no practical

difference to PAGI guy).

5.1.0.1 From Sensor Data to Objects

On the AI-side (using the terminology introduced in Chapter 4), the AI con-

troller is written in python. The simulation starts with a task consisting of the

visual elements previously described. PAGI guy then issues a command to retrieve

information from his peripheral sensors, which are visual sensors spaced roughly 200

pixels apart (see Figure 5.3). Each visual sensor v returns an array of data describ-

ing extremely low-level data: the color data of the pixels at v, a vector describing

visual features of the object at v, etc. For this demonstration, the only information

used from the visual sensors is a string naming the object which the visual sensor
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Figure 5.3: PAGI guy with his peripheral vision sensors marked as white
‘o’s

sees. Again, this string is semantically empty to PAGI guy, and is only meaningful

for convenience to the programmer.

For each item type, there is a predicate which can be used to create an ob-

servable in predicate-object form. For example, isApple(o) is the ideal output of an

observation-generating process which is perceiving an apple. Imagine the situation

pictured in Figure 5.3, where the apple object is visible to two or more peripheral

vision sensors, which we will call p1 and p2. PAGI World provides information that

these two peripheral vision sensors have both recognized the symbol ‘isApple’, and

so PAGI guy is given the predicate-sensor pairs isApple(p1) and isApple(p2). But

under what criteria can PAGI guy determine that these two sensors are referring

to the same object? And complicating things further, what if PAGI guy’s tactile

sensors returns a predicate-sensor pair isTouchingObject(h1) (where h1 is one of

the tactile sensors on his hands)? What criteria should PAGI guy use to determine

whether the object triggering his tactile sensor is the same as the object triggering

his peripheral vision sensors?

Questions such as those are central to an AC research program which makes
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use of PAGI World. To begin to answer them, I will describe a simple algorithm A

which takes predicate-sensor pairs and outputs predicate-object pairs. A starts by

taking all provided predicate-sensor pairs P (s) and localizing the sensors. Essen-

tially, localizing a sensor is assigning a physical location to that sensor such that

all predicate-sensor pairs under consideration have a roughly uniform coordinate

system. This is akin to a child feeling a sensation on his hand and either looking

at the location of the sensation to determine what caused it, or relying on his pro-

prioceptive senses to estimate where he believes his hand, and the sensation, are

located. For ease of implementation, I will use the peripheral sensors as a rough

coordinate system. If a predicate-sensor pair P (s) is triggered with the tactile sensor

s, then P (s) is replaced with P (s′), where s′ is the peripheral vision sensor which is

closest to the location that PAGI guy calculates the event causing P (s) took place.

The choice of peripheral vision sensors as a rough coordinate system also have the

added benefit that pairs of the form P (v) where v is a peripheral vision sensor do

not require any additional conversion.

After the localization step, the algorithm A employs two rules to combine

pairs. Let us assume we are given two localized predicate-sensor pairs P1(s1) and

P2(s2). Combination rule 1 says that if P1 and P2 are the same, and s1 and s2 are

either the same or adjacent, then we combine the two predicate-sensor pairs to pro-

duce a predicate-object pair P1([s1, s2]). Note that an object here is a combination

of vision sensors, and combination rule 1 implicitly assumes that if the exact same

visual description holds between two sufficiently close visual sensors, then they are

to be considered as the same object.

Combination rule 2 says that if s1 and s2 are either the same or adjacent, but

P1 and P2 are different, then an identity link (see Chapter 3) is created between

s1 and s2. Combination rules 1 and 2 also generalize to predicate-object pairs as

follows: Given two objects [p1, ..., pn] and [q1, ..., qm], the two objects are considered

the same if pi = qj for some i, j, and the two objects are considered adjacent if pi is

adjacent to qj for some i, j.

This algorithm is not perfect, of course. There are many problems with it that

are discussed in Section 5.2. But even an algorithm this simple produces results
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Figure 5.4: PAGI guy observing a configuration of colored wall pieces
(left). On the right two grids are displayed. On the first
(upper right), each peripheral vision sensor that is detecting
an object assigns an index number to each unique object.
He labels the two green wall pieces with the same number,
indicating that he thinks they are the same object (because
his peripheral sensors are spaced too far apart for him to
know any better; his detailed vision sensors would correct
this misperception). On the second grid (bottom right), each
sensor shows the first two letters of the predicate symbol of
the observable identified.

Figure 5.5: PAGI guy observing a configuration of colored wall pieces
(left). Note that unlike Figure 5.4, this time the two green
wall blocks are spaced far enough that PAGI guy’s peripheral
vision sensors encode them as two separate objects.



86

which can be used for real-time interaction with the environment. Take for example,

Figures 5.4 and 5.5 which show configurations of objects in PAGI guy’s visual field

alongside the representations of those objects constructed in real-time (in practice,

it took about 0.5 seconds to update this information).

5.2 Discussion

As a demonstration of a theory which takes actions to be central in cognitive

constructions, one omission is glaringly obvious: the constructions produced by this

demonstration are not at all rooted in action! The significance of this demonstra-

tion can only be seen when it is considered as a piece of the larger project of AC.
Although action schemas are not made use of here, the ability to turn sensor data

into predicate-object representation makes the action schema creation procedure I

described in the opening to this chapter much easier. With predicate-object repre-

sentations, relations can be created using a procedure similar to that described by

the DORA model (Doumas et al., 2008), or by an AC-based model that would treat

relations as stabilized action instances applied to objects in predicate-object form.

Algorithm A also needs more work. Much of what makes the algorithm work

so well is two simplifying assumptions: First, each visual sensor only produces a sin-

gle predicate-sensor pair; Second, the perceptual processes which produce predicate-

sensor pairs are not self-contradictory, or non-probabilistic (e.g. what happens when

we need to consider a predicate-sensor pair which has a confidence of 50%?). More

work is necessary to figure out how to make A more robust to be able to handle

weakening of these two assumptions.

5.3 Conclusion and Future Work

PAGI World has already been used in minor demonstrations of cognitive phe-

nomena (Marton, Licato, & Bringsjord, 2015; Atkin, Licato, & Bringsjord, 2015). I

have also been introducing PAGI World as a tool for teaching both high- and low-

level AI programming techniques, in a class offered during the spring 2015 semester

at Rensselaer Polytechnic Institute, called Engineering Human-Level Artificial Cog-

nitive Systems. PAGI World has proven itself a valuable tool both for educational
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and research goals. The short demonstration presented in this chapter is designed

to help convince the reader that PAGI World provides a rich environment with

virtually limitless possibilities.

5.3.1 Next Steps for this Demonstration

Building on this chapter’s demonstration, I will seek to produce an expanded

version of A which takes into account more robust sensor data, and tries to match

its outputs to human behavioral data. This would position PAGI World as a plat-

form upon which much work in cognitive modeling can be built—the representa-

tions in predicate-object form can, with some adaptation, be used as input into

LISA, DORA, and CLARION, and conceivably other models as well. Successful

completion of this work would be followed with a more complete realization of

the ideas presented in the first two chapters—namely, the generation of structure

rooted in action as required by NSES, and the emergence of reasoning through the

analogical-structure-mediated abstractions: réfléchissement and réflexion (empiri-

cal abstraction most closely describes what was modeled in the present chapter’s

demonstration).

The process of going from purely sensor-level to predicate-object representa-

tions is currently nowhere near as sophisticated as contemporary work in computer

vision. Next steps, then, would involve using PAGI World and tasks similar to those

in this chapter and see how well they perform. A natural direction seems to be the

incorporation of the JIM.* models of visual object recognition (Hummel & Bieder-

man, 1992), and to give PAGI guy the ability to recognize 2D-viewpoint-invariant

features of objects.

5.3.2 The Future of PAGI World

The release of PAGI World is accompanied by a call to all AGI and human-

level-AI researchers to finally examine the strengths and limits of their preferred

approaches. PAGI World allows for researchers to very easily create tasks and

microworlds in a 2D world with realistic physics, with no knowledge in how to

program. PAGI World can interact with AI agents that are written in virtually

any programming language, and the simulation can be run on any major operating
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system. PAGI World has very carefully been designed to have an extremely low

technical barrier, so that many researchers can find common ground upon which to

compare their different approaches.

The future of PAGI World is bright. Already there are several AI systems in

progress solving PAGI World tasks (Marton et al., 2015; Atkin et al., 2015), and as

development continues we hope to greatly increase the number of tasks which are

available and the sophistication of the agents which solve those tasks. The library

of future tasks, we hope, will diversify and reflect the broad spectrum of tasks which

require human-like intelligence.

One interesting and possibly fertile source of PAGI World tasks is the area of

morality. Figure 4.3 depicts an example task in which two food objects—an apple

and a piece of bacon—are falling down a series of ramps where they will eventually

fall off the screen and become unreachable, unless the agent chooses exactly one of

them (he will not be able to get both in time). Although not many would consider

the choice between apples and bacon to be a moral decision, it is easy to see how such

a scenario can be adapted to capture miniature moral dilemmas. For example, if the

simulation begins with the agent having knowledge that an apple will save the life

of person A, while the bacon will save person B but leave A to die, suddenly Figure

4.3 becomes a moral decision which the agent must make in real time. Examples

like these illustrate the wide variety of tasks and demonstrations that can be created

with PAGI World.

5.3.3 Toward a Research Program in AC

In the long term, I want to pursue a research program in AC. What would an

AC research program look like?

I submit that a research program in AC is first and foremost cross-disciplinary.

The research described in this dissertation alone span computer science, AI, cog-

nitive science, and developmental psychology. But I haven’t even mentioned yet

the implications for education. Presumably a theory of how cognitive structures

develop from actions implies that there exists some flexibility in which cognitive

structures we try to develop in children. And if such a flexibility exists, then it is
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in the interest of professional educators to tailor their lessons towards the detection

and development of the structures which are most beneficial to the children; this is

the goal of approaches such as Papert’s “Constructionism” in education (Harel &

Papert, 1991).

I have also already applied PAGI World to education at the college level. In

the spring semester of 2015 I taught a course at RPI, along with Selmer Bringsjord,

which used PAGI World as a platform for a homework assignment and a final project.

Students learned how to program and evaluate AI algorithms within the context

of PAGI World, and watched their ideas be tested on tasks in real-time. One of

the simplest assignments, involving the agent navigating a world containing apples

(which were to be seeked out) and poison vials (which were to be avoided), produced

a variety of strategies from the students that I could not have anticipated.

A primary measure of success will be whether AC-generated representations

can allow for analogical reasoning at the human level. In particular, structural repre-

sentations should have the flexibility of re-representation that human representations

do. Recall that the inability for current models of analogy to successfully replicate

such representational flexibility was a motivator for this dissertation’s explorations

into the nature of structure (Section 1.3). A more robust analogical matcher may

allow a connection to the work in Analogico-Deductive Reasoning (ADR). It would

be fascinating and also a potentially fruitful area of research to see if an agent like

PAGI guy could autonomously develop the ability to perform analogico-deductive

inferences in real-world scenarios.

Finally, NSES and its elaboration is an area that will require a lot more work.

A research program inAC would have to explain how all of the things that we believe

to have semantic meaning—sounds, events, names, and so on—can ultimately be

traced to action-rooted constructions. Armchair theorizing would not be enough. In

the spirit of Piaget, NSES needs to be tested empirically: psychological studies on

children and adults need to be carried out; neurological data about the parts of the

brain associated with action-centered versus non-action-centered knowledge should

be contrasted with the predictions of NSES; and the consequences of NSES need to

be fleshed out and compared to those of similar models and theories.
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Ultimately, the creation of structured representations, in accordance with the

views of Analogical Constructivism, may one day achieve the ultimate goal of AC,
alluded to in this dissertation’s title: the emergence of reasoning through analogy

and action schemas.
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