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ABSTRACT

Real-Time Strategy games have become a new frontier of artificial intelligence re-

search. Advances in real-time strategy game AI, like with chess and checkers be-

fore, will significantly advance the state of the art in AI research. This thesis aims to

investigate using heuristic search algorithms to generate effective micro behaviors

in combat scenarios for real-time strategy games. Macro and micro management

are two key aspects of real-time strategy games. While good macro helps a player

collect more resources and build more units, good micro helps a player win skir-

mishes against equal numbers of opponent units or win even when outnumbered.

In this research, we use influence maps and potential fields as a basis representa-

tion to evolve micro behaviors. We first compare genetic algorithms against two

types of hill climbers for generating competitive unit micro management. Second,

we investigated the use of case-injected genetic algorithms to quickly and reliably

generate high quality micro behaviors. Then we compactly encoded micro behav-

iors including influence maps, potential fields, and reactive control into fourteen

parameters and used genetic algorithms to search for a complete micro bot, EC-

SLBot. We compare the performance of our ECSLBot with two state of the art bots,

UAlbertaBot and Nova, on several skirmish scenarios in a popular real-time strategy

game StarCraft. The results show that the ECSLBot tuned by genetic algorithms

outperforms UAlbertaBot and Nova in kiting efficiency, target selection, and flee-

ing. In addition, the same approach works to create competitive micro behaviors

in another game SeaCraft. Using parallelized genetic algorithms to evolve param-

eters in SeaCraft we are able to speed up the evolutionary process from twenty

one hours to nine minutes. We believe this work provides evidence that genetic

algorithms and our representation may be a viable approach to creating effective

micro behaviors for winning skirmishes in real-time strategy games.
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CHAPTER 1

INTRODUCTION

Research on computational and artificial intelligence (CI and AI) on games has a

long history [45]. Several automated game-playing programs are able to outper-

form world champions in classic games such as Backgammon, Checkers and Chess [46].

These efforts significantly promoted researches in search algorithms and machine

learning techniques. More recently, Real-Time Strategy (RTS) games have become

a new frontier of AI research due to their complex, realistic, and dynamic envi-

ronments. RTS games also present a variety of challenges which distinguish them

from traditional board games. In the context of AI development in RTS games,

researchers usually use knowledge intensive techniques including scripting, finite

state machines, and rule-based systems. These techniques however require signifi-

cant domain knowledge to create and tune a competent AI player. In our research,

we aim to create competitive game AI players by using evolutionary techniques to

avoid tedious knowledge acquisition and tuning work.

In RTS games, the participants need to gather resources, train units, build struc-

tures, research technologies, and conduct simulated warfare in order to defeat their

opponents. Players usually divide their decision making into two separate levels

of tasks called macro and micro management, as shown in Figure 1.1. Macro is

long term planning, like constructing buildings, conducting research, and scout-

ing. Good macro management helps a player build a larger army or economy or

both. On the other hand, micro is the ability to control a group of units in combat

or other skirmish scenarios to minimize unit loss and maximize damage to oppo-

nent units. We decompose micro management into two parts: tactical and reactive

control [38]. Tactical control addresses the overall positioning and movement of a
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squad of units. Reactive control focuses on controlling a specific unit to move, fire,

and flee in combat. This thesis investigates using heuristic search algorithms to

find winning tactical and reactive control for skirmish scenarios. This is indicated

by the dotted square in Figure 1.1. Common micro techniques in combat include

concentrating fire on one target, withdrawing seriously damaged units from the

front of the battle, and kiting1 your units to take advantage of the enemy units’

attack-distance limitation. We are interested in generating competitive micro as

part of an RTS game player that outperforms an opponent with the same or greater

number of enemy units. In the future, we plan to incorporate these results into the

design of more complete RTS game players.

Figure 1.1: Typical RTS AI levels of abstraction. Inspired by a figure from [43].

Several challenges needed to be addressed in our research. First, what are the

suitable approaches to generate high performance micro behaviors in RTS skir-

mish scenarios? Second, how do we represent micro behaviors in combat? Third,

how well does our micro bot perform compare with other state of the art bots?
1Kiting refers to making your units pull back and shoot repeatedly similar to how you fly kites.
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Fourth, do the produced micro behaviors generalize to scenarios not previously

encountered? Finally, is our approach applicable to other RTS games? To investi-

gate these issues, we compactly represent micro behaviors as a combination of two

influence maps (IMs), two potential fields (PFs), and a set of reactive control vari-

ables. We explain IMs, PFs, and reactive controls in the Chapter 3. Our approach

is to evolve (off-line) two sets of parameters for each unit type that we want to

control. One set of parameters specifies behavior against melee units, the other

set specifies behavior against ranged units. During a real-time skirmish, our micro

bot switches between these two parameter sets, and their corresponding behav-

iors, based on whether our bot controlled unit’s current target is a melee unit or

a ranged unit. We apply this approach to Vultures, a fast but fragile Terran unit

in our experiments. With the representation described above, we then use evolu-

tionary algorithms to look for good combinations of these parameters that lead to

winning micro behaviors.

The central claim of this thesis is that:

Genetic algorithms is a viable approach for generating effective micro behaviors

for winning skirmishes in RTS games.

The long term goal of our research is to create a complete human-level RTS

game player and this research attacks one aspect of this problem: finding effective

micro management for winning small combat scenarios. In our preliminary work,

we compared the quality, reliability, and robustness of group movement behav-

iors produced by genetic algorithms (GAs) and two types of Hill Climbers (HCs).

The results showed that our hill-climbers quickly find IMs and PFs that generate

quality positioning and movement in our simulations, but they only find quality

solutions fifty to seventy percent of the time. GAs on the other hand evolve high
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quality solutions a hundred percent of the time, but take significantly longer [30].

Case-Injected Genetic AlgoRithms (CIGARs) combine GAs with case-based rea-

soning to learn to increase performance with experience. Since human players also

learn to be better with practice and experience, we investigated using CIGARs to

learn from experience to be quicker and still get high quality solutions (like the

GA) for winning a sequence of skirmishes. The results show that CIGARs learn

from prior experience to reliably find quality solutions on new scenarios in half

the time taken by GAs.

Since the results indicate that the GA and CIGAR produced higher quality so-

lutions more reliably and quickly, we settled on using GAs and CIGARs to search

for effective micro parameters in the rest of this work. We created eleven skirmish

scenarios in a popular RTS game StarCraft: Brood War and used GAs to search for

winning micro behaviors in these scenarios [11]. We subsequently compared the

performance of micro behaviors produced by our GAs with two state of the art

StarCraft bots, UAlbertaBot [14] and Nova [48]. We chose these bots because their

source code was available and they performed well in prior competitions. The re-

sults show that Nova performs well on kiting behavior against melee units, while

UAlbertaBot does well against ranged attack units. Our ECSLBot tuned by GAs

performs well both against melee units and ranged units in eleven scenarios.

Finally, we applied the same approach to another RTS game SeaCraft developed

by our research group. We modeled the game play, unit properties in SeaCraft

around StarCraft. Results show that we can successfully evolve equally effective

micro behaviors in SeaCraft. Furthermore, we show that parameters that specify

reactive control behaviors such as kiting, target selection, and fleeing evolved in

SeaCraft are able to be transferred without change to StarCraft with very little loss
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of unit micro performance in skirmishes. Since SeaCraft can simulate skirmishes

much faster than StarCraft and can be easily used by a Parallel Genetic Algorithm

(PGA), we can speed up micro parameter search by two orders of magnitude even

on only two machines with sixteen cores.

To clarify the scope of our work, note that we do not focus on creating a com-

plete RTS game AI player. Rather, we only focus on finding high performance

micro management in combat for a game AI. In addition, the heuristic search al-

gorithms including GA, CIGAR, and HCs are independent of the game AI and

RTS game. The algorithms do not know how the game AI or RTS game work,

they create micro behaviors and note the performance of the micro behaviors eval-

uated by the RTS game. Our work provides three main contributions towards

finding effective micro behaviors in combat scenarios. First, we applied evolution-

ary algorithms including GAs and CIGARs to generate high performance micro

management in RTS games. Second, we present a new representation of micro be-

haviors in combat based on IMs, PFs, and reactive controls. Third, we extend our

GAs to be able to evaluate individuals in parallel based on Open MPI and apply

our approach to another RTS game SeaCraft.

1.1 Structure of this Thesis

The next chapter provides background information on RTS games, the approaches

used in our research, and related work. We start with an overview of RTS games

and their challenges, including decision making under uncertainty, spatial and

temporal reasoning, and task decomposition. Next we review the definitions of ge-

netic algorithms, case-injected genetic algorithms, the two hill-climbers we used,
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and parallel genetic algorithms. Finally, we provide a summary of academic re-

search in games and RTS micro management.

Chapter 3 describes our representation. Spatial maneuvering is an important

component of combat in RTS games. We applied a commonly used technique

called influence maps to represent the spatial information of terrain and enemy

units in a game. While good influence maps tell us where to go, good unit nav-

igation tells our units how best to move there. We use potential fields to control

a group of units navigating to particular locations on the map. Beside representa-

tion, this chapter also provides detailed specification of our heuristic search algo-

rithms including two hill climbers, genetic algorithms, case-injected genetic algo-

rithms, and parallel genetic algorithms.

Chapter 4 shows the group micro behaviors produced by our genetic algo-

rithms and two hill climbers. We compare micro behaviors produced by genetic

algorithms and two hill climbers with each other. Our initial results comparing ge-

netic algorithms to hill climbers were published in the Proceedings of the 2013 IEEE

Congress on Evolutionary Computation [30].

Chapter 5 shows the influence of case-injection on genetic algorithms. We ap-

ply CIGARs to speed up finding high quality solutions when solving similar prob-

lems. The results for using CIGARs to find effective group behaviors were pub-

lished in the Proceedings of the 2013 IEEE Conference on Computational Intelligence

and Games [31].

Chapter 6 details our evolved micro bot (ECSLBot) and the comparison be-

tween ECSLBot with two state of the art bots, UAlbertaBot and Nova. The results

for comparing ECSLBot, UAlbertaBot, and Nova on a variety of scenarios were
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published in the Proceedings of the 2014 IEEE Conference on Computational Intelligence

and Games [29].

Chapter 7 describes our parallel genetic algorithms. We extend our genetic al-

gorithm to be able to evaluate individuals in parallel based on Open MPI and apply

our approach to another RTS game SeaCraft that enables easy GA parallelization.

Finally, Chapter 8 discusses our conclusions and future work.
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CHAPTER 2

BACKGROUND

This chapter first details gameplay and micromanagement in RTS games. We also

give an overview of the terminology and an introduction to hill climbers, genetic

algorithms, case-injected genetic algorithms, and parallel genetic algorithms. Fi-

nally, the last section of this chapter reviews work related to game AI and micro

management in RTS games.

2.1 Real-Time Strategy Games

RTS games are a sub-genre of strategy video games where players need to gather

resources, train units, build structures, research technologies, and conduct sim-

ulated warfare in order to defeat their opponents. Understanding each of these

factors and their impact on decision making is critical for winning an RTS game.

For example, Figure 2.1 shows a snapshot of gameplay in a popular RTS game

StarCraft II. Compared to board games, players in RTS games do not take turns,

but instead may perform as many actions as they can, while the game runs at a

constant rate to simulate a continuous flow of time. Most RTS games are partially

observable where players can only see the part of the map with a friendly unit or

building nearby. Actions in RTS games are not always deterministic. Some actions

have a probability of success. To measure the complexity in terms of game states,

while Chess has around 1050 board states and Go has 10170 board states, a typical

RTS game is estimated to have over (1050)36000 different game states, more than the

number of protons in the universe [38]. Therefore, traditional AI techniques used

for playing board games, such as MINIMAX game tree search, cannot be directly
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applied to RTS games [44].

Figure 2.1: A snapshot of a gameplay in StarCraft II.

RTS games provide an exciting opportunity for AI research, containing a va-

riety of interesting and challenging problems within. The following sections de-

scribe three challenges presented by RTS games and how they are related to micro

management.

2.1.1 Decision Making Under Uncertainty

In RTS games, the game worlds are usually covered by a fog of war which prevents

players from accessing the complete information of the whole game world, except

in locations containing friendly units or buildings. Figure 2.2 shows the three states

of a fog of war. Locations near the friendly units are fully revealed as shown in the

bottom right part of the map. The top of the map shows that the area currently has
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Figure 2.2: StarCraft - Fog of War [3].

no friendly units nearby but has been visited before. The static terrain information

is accessible in partially concealed area. Fully concealed locations are areas where

the friendly units have never visited before, as shown in the left side of the map.

Players have to send a friendly unit to the specific area to obtain terrain and enemy

information. Due to the fog of war, players are able to deceive and mislead one an-

other in a game. Such decision making under uncertainty is a significant research

subject within the AI research community, especially in games like poker [5, 7].

2.1.2 Spatial and Temporal Reasoning

Spatial reasoning problems involve static terrain and dynamic units in the RTS

game world. Spatial reasoning is particularly essential for tactical reasoning in a

battlefield for winning skirmishes in RTS games. Players need to decide where to



11

attack, where to defend, and how to assault in order to win a series of battles or

even the whole game. For example, engaging an enemy force in front of a bottle-

neck will favor the friendly force. Micro operations like hit and run perform better

in an open space than near a wall. These fundamentally difficult spatial decisions

significantly affect RTS game playing strategies and tactics. In this research, we use

a commonly used representational technique, influence maps, to represent terrain

and enemy spatial information in a battlefield.

In canonical board games, actions or moves take effect immediately. While in

RTS games, movement and actions take a specific amount of time to complete.

For example, moving a unit from one location to another location may take 30

seconds. Therefore, players use timed attacks and retreats to gain advantage in

battles. Decisions on temporal questions such as when to build military units,

when to upgrade technologies, and when will an opponent attack are crucial in

RTS games.

2.1.3 Task Decomposition

Players usually decompose the problem of playing an RTS game into a collection

of smaller problems and solve the sub-problems independently. A common sub-

division is:

• Macro management (or Strategy) corresponds to high-level and long-term de-

cision making process. This is the top level of abstraction in RTS games. For

example, adopting a specific build-order against a given opponent or up-

grading a key technology against a specific race. Strategy decisions usually

concern all the elements in the game.
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• Micro management can be split into tactics and reactive control.

– Tactics: considers a squad of units in a specific area in the game. It in-

volves the positions and movements of a group of units.

– Reactive control: consists of moving, targeting, firing, fleeing, kiting be-

haviors of individual units during battle. Reactive control focuses on a

single unit.

Figure 2.3: Levels of abstraction and the correspondence to uncertainty, spatial and
temporal reasoning described in [38].

Figure 2.3 illustrates one common task decomposition and shows the levels of

abstraction where strategy corresponds to long term decision making over several

minutes, reactive control corresponds to short term decisions over a second, and

tactics is in between. This research focuses on tactics and reactive control behav-

iors. We investigates heuristic search algorithms to find winning tactical and reac-

tive control for skirmish scenarios in RTS games. Many different approaches have

been applied to finding high performance micro management. In the following

section, we provide an overview of the techniques we use (hill climbers, genetic
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algorithms, case-injected genetic algorithms, and parallel genetic algorithms) as

well as techniques used by other researchers.

2.2 Hill Climbers

Hill climbers are a local search optimization technique. A hill climber starts with

a random initialized solution to a problem, then attempts to find a better solution

by incrementally updating an element of the solution. The update will be kept if

it produces a better solution. The process is repeated until no further improve-

ments can be made. Hill climbers are good for finding a local optimum but are

not guaranteed to find the global optimum. In problems with only a single hill

in the search space, hill climbers are optimal. Figure 2.4 shows an example of a

search space with only a single hill. However, in problems with multiple hills in

the search space, hill climbing performs worse than other globe search algorithms

like genetic algorithms and simulated annealing. Figure 2.5 shows an example of

a search space with two hills.

Figure 2.4: An example of a search space with a single hill.

The characteristic of being easily implemented makes hill climbers a popular

first choice amongst optimizing algorithms. In this research, we compare two
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Figure 2.5: An example of a search space with two hills.

types of hill climbers against genetic algorithms in searching for competitive so-

lutions to win skirmishes in RTS games.

2.3 Genetic Algorithms

Figure 2.6: Genetic algorithms in context.

Genetic algorithms were first introduced by John Holland from his research on

cellular automata at the University of Michigan in 1975 [24, 19]. Before discussing

genetic algorithms in detail, we want to put these algorithms in context. In recent

years, the fields of Evolution Computing, Neural Networks, and Fuzzy Logic are cate-

gorized together as techniques which are using numeric knowledge representation

to solve complicated problems. The broader research domain is known as Compu-
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tational Intelligence [8]. Figure 2.6 details the structure of computational intelligence

and evolutionary algorithms.

A genetic algorithm is a heuristic search technique inspired by natural evolu-

tion, with inheritance, selection, crossover, and mutation. GAs are usually applied

to generate useful solutions to optimization and search problems. Figure 2.7 shows

a overview of a genetic algorithm.

Figure 2.7: Overview of a canonical genetic algorithm.

GAs attempt to solve problems in an iterative process starting with a population

of randomly initialized individuals. Each individual encodes a candidate solution

to the problem in its chromosome that represents a set of parameters called the genes.

Each gene is in turn encoded into a binary string. The values interpreted from the

genes are called alleles, as shown in Figure 2.8. Table 2.1 lists the common terms

and their description used in GAs [19].
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Figure 2.8: An individual in GAs.

Table 2.1: Nomenclature in Genetic Algorithms

Term Description

Population A set of individuals with their associated statistics.

Individual A candidate solution includes a chromosome with an associated
fitness.

Chromosome One encoded string of parameters.

Gene The encoded version of parameters of the problem to be solved.

Allele The value which a gene can assume.

Fitness A value indicating the quality of an individual as a solution to the
problem.

Selection Operation for selecting one individual from the population.

Crossover Operation that exchange information of two selected parents to
yield two new children.

Mutation Operation that spontaneously changes one or more bits in a chro-
mosome.

A fitness function is used to evaluate the fitness of each individual in the pop-

ulation. Once every individual in the population has a fitness, individuals are

recombined and manipulated by the genetic operators of selection, crossover, and

mutation, to evolve a new population. Selection chooses individuals with a proba-

bility proportional to the individual fitnesses. Crossover exchanges and recom-

bines information between individuals in attempting to produce children with
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Figure 2.9: One Point Crossover.

Figure 2.10: Bit-Wise Mutation.

higher fitnesses. Figure 2.9 shows an example of one point crossover. Mutation

maintains genetic diversity from one generation to the next. Bit-wise mutation

randomly flips a bit with a low probability, as shown in Figure 2.10. Using ge-

netic algorithms in our research, we are able to evolve high performance micro

behaviors for winning skirmishes in RTS games.

2.4 Case Injected Genetic Algorithms

CIGAR was first introduced by Louis and McDonnell. They borrowed ideas from

case-based reasoning (CBR) in which experience from solving previous problems

helps solve new similar problems [33]. This approach augmented GAs with a case-
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Figure 2.11: Solving problems in sequence with CIGAR.

based memory of past problem solving experience and was used to obtain better

performance over time on sets of similar problems. Figure 2.11 shows how CIGAR

solves a sequence of problems. An existing case-base is not necessary in case-

injected GAs because the GA simply starts with a randomly initialized population

to search the space. During such search, we save good chromosomes which are

cases into the case-base for potential use in subsequent problem solving. Case-

injection enable genetic algorithms to learn from experience. Louis and Li applied

CIGAR for solving traveling salesman problems (TSPs) and showed performance

improvement on similar TSPs [32]. Louis and Miles applied CIGAR in a strike force

asset allocation game [34]. They used cases from both human’s and system’s game-

playing experiences to bias CIGAR toward producing plans that contain previous

important strategic elements.

In our research, we investigate using CIGARs to quickly generate high qual-
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ity unit micro-management in real-time strategy game skirmishes. We consider a

series of maps as a sequence of problems to be solved by CIGAR and expect that

CIGAR will learn on problems early in the sequence to improve performance on

problems later in this sequence.

2.5 Parallel Genetic Algorithms

One feasible way to run our GA faster is by parallelizing evaluation since most

of the computational load comes from evaluation in the RTS game engine. Most

parallel programs adopt the idea of a divide and conquer strategy to split a task

into sub-tasks and solve sub-tasks simultaneously using multiple processors. This

divide and conquer approach can be used in GAs too. There are three main types

of Parallel GAs (PGAs):

1. Global single-population master-slave GAs.

2. Single-population fine-grained GAs.

3. Multiple-population coarse-grained GAs.

In a master-slave PGA there is a single population as in a canonical GA, but

the evaluation of fitness is distributed among several processors, as shown in Fig-

ure 2.12a. Since selection and crossover operate on the entire population, this type

of parallel GA is also called global single-population parallel GAs. Fine-grained

parallel GAs are usually used in massively parallel computers environment and

consist of one spatially-structured population. Selection and mating are restricted

to a small neighborhood, but neighborhoods overlap permitting some interaction
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(a) Global parallelization. (b) Fine grain. (c) Coarse grain.

Figure 2.12: Different models of parallel genetic algorithms.

among all the individuals as shown in Figure 2.12b. Multiple-population coarse-

grained GAs are more complicated as they consist of several subpopulations which

exchange individuals occasionally as shown in Figure 2.12c. In this research, we

use a global single-population master-slave PGA to search for effective micro be-

haviors in RTS skirmishes.

2.6 Related Work

Typically, industry RTS AI developers create RTS AI not so much for beating oppo-

nents as to entertain and tutor users. Industry AI employs techniques such as finite

state machines, rule based systems, and scripting [10, 40]. Some industry AIs may

cheat. On the the other hand, academic RTS AI research focuses on using learn-

ing or reasoning techniques to win an RTS game and reach human competitive

performance. Our research falls in the academic category.

Much work has been done in applying different techniques to build RTS AI

players in academia. For example, some work has been done in our lab on co-
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evolving robust build orders in WaterCraft [4]. Ontañón et al. used real-time

case-based planning(CBP) in an RTS game Wargus [37]. Weber and Mateas pre-

sented a data mining approach to strategy prediction by learning from StarCraft

replays [49]. Churchill et al. adopted an Alpha-Beta search approach from board

games for RTS combat scenarios of up to eight versus eight units [15]. This paper

focuses on the work related to using IMs and PFs for spatial reasoning and unit

movement. Miles et al. applied IMs to evolve a LagoonCraft RTS game player [13].

Sweetser et al. developed a game agent designed with IMs and cellular automata,

where the IM models the environment and helps an agent make decisions in their

EmerGEnt game [47]. They built a flexible game agent that responds to natural

phenomena and user actions while pursuing a goal. Bergsma et al. used IMs to

generate adaptive AI for a turn based strategy game [6]. Su-Hyung et al. pro-

posed a strategy generation method using IMs in the strategy game Conqueror. He

applied evolutionary neural networks to evolve non-player characters’ strategies

based on the information provided by layered IMs [26]. Avery et al. worked on co-

evolving team tactics using a set of IMs, guiding a group of friendly units to move

and attack enemy units based on the opponent’s position [2]. Their approach used

one IM for each entity in the game to generate different unit movement. How-

ever, this method does not scale well to large numbers of units. For example, if

we have two hundred entities, the population cap for StarCraft, we will need to

recompute two hundred IMs every update. This could be a heavy load for our

system. Preuss et al. used a flocking based and IM-based path finding algorithm to

enhance group movement in the RTS game Glest [39, 16]. Raboin et al. presented

a heuristic search technique for multi-agent pursuit-evasion games in partially ob-

servable space [41]. In this paper, we use an enemy units position IM combined

with a terrain IM to gather spatial information and guide our units in producing
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winning micro behaviors for RTS games.

Potential fields have also been applied to AI research in RTS games. Most of

the prior work in PFs is related to unit movement for spatial navigation and colli-

sion avoidance [9]. This approach was first introduced by Khatib in 1986 while he

worked on real time obstacle avoidance for mobile robots [28]. The technique was

then widely used in avoiding obstacles and collisions, especially in multiple unit

scenarios with flocking [36, 17, 42]. Hagelbäck et al. applied this technique to AI

research within an RTS game [23]. They presented a Multi-Agent Potential Field

based bot architecture in the RTS game ORTS [12] and incorporate PFs into their AI

player at both tactical and unit reactive control level [22]. We have also done some

prior work in PFss [30, 31] and use two PFs for group navigation in our work.

Reactive control, including individual unit movement and behavior, aims at

maximizing damage output to enemy units and minimizing the damage to friendly

units. Common micro techniques in combat include fire concentration, target se-

lection, fleeing, and kiting. Uriarte et al. applied IMs for kiting, frequently used by

human players, and incorporated kiting behavior into his StarCraft bot Nova [48].

Gunnerud et al. introduced a CBR/RL hybrid system for learning target selection

in given situations during a battle [21]. Wender et al. evaluated the suitability of re-

inforcement learning algorithms to micro manage combat units in RTS games [50].

The results showed that their AI player was able to learn selected tasks like “Fight”,

“Retreat”, and “Idle” during combat.

We scripted our reactive control behaviors with a list of unit features repre-

sented by six parameters. Each set of parameters influences reactive control be-

haviors including kiting, targeting, fleeing, and movement. As testbeds for our

research, we next describe a popular commercial RTS platform, StarCraft, and a
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purposely built RTS platform designed for AI research, SeaCraft.

2.7 Real-Time Strategy Environments

In our field, a suitable RTS research environment would be popular, open source,

speed adjustable, and easily parallelizable. StarCraft: Brood War is one of the most

successful commercial RTS games which is released in 1998 by Blizzard Entertain-

ment1. StarCraft has become a new popular RTS research platform due to the Star-

Craft: Brood War Application Programming Interface (BWAPI) framework and the

AIIDE2 and CIG3 StarCraft AI Competitions [11]. BWAPI provides an interface al-

lowing our program to interact with StarCraft game data through code instead of

keyboard and mouse. However, StarCraft was designed for human players and is

difficult to run in parallel. Therefore, other RTS games such as SeaCraft, Wargus,

and ORTS emerged and were designed specifically for scientific research. In our

work, we run our experiments on the popular platform StarCraft that allows us to

compare our work with our peers. On the other hand, we also use an open source

RTS game SeaCraft we developed to speedup our search process by parallellizing

evaluation, and then use the evolved solution in StarCraft.

2.7.1 StarCraft and Bots

StarCraft is one of the most well known RTS games with a huge player base and

numerous professional competitions all over the world. Figure 2.13 shows a snap-

1http://www.blizzard.com
2http://www.StarCraftAICompetition.com
3http://cilab.sejong.ac.kr/sc competition/
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Figure 2.13: A snapshot of a game play in StarCraft.

shot of a game play in StarCraft. The game has three different races: Terran, Pro-

toss, and Zerg. Thanks to the popularity of the StarCraft and recent StarCraft AI

tournaments, many groups have been working on integrating cutting edge tech-

niques into RTS AI players called bots which are capable of playing StarCraft. In

our research, we apply heuristic search algorithms to generate effective micro be-

haviors and compare the micro performance of our ECSLBot with two other state

of the art bots: UAlbertaBot and Nova. The bots we used in this paper are listed

below:

• UAlbertaBot: Developed by D. Churchill from the University of Alberta. It

is the champion of the AIIDE 2013 StarCraft competition.

• Nova: Developed by A. Uriate from Drexel University. Nova was ranked

number 7 on the AIIDE 2013 StarCraft competition.

• SCAI: The default StarCraft AI. It was used as our baseline in evaluating the
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micro performance of other bots.

• ECSLBot: Our bot that currently only does micro, using parameters gener-

ated by our approach.

The micro logic of the UAlbertaBot is handled by a MeleeManager and a Ranged-

Manager for all types of units rather than each specific unit type. This abstraction

allows the bot to adapt the micro managers to different types of military units.

However, the UAlbertaBot implementation ignores the difference between units.

For example, both Vulture and Dragoon are range attackers and can “kite” or

“hit and run” against melee units, but they should kite differently based on their

unique weapon cool down times and target selection algorithms. In contrast, Nova

uses IMs to control the navigation of multiple units and applied this idea to a kiting

behavior.

2.7.2 SeaCraft

In our work using evolutionary computing algorithms, we need to run the game

in order to evaluate competing micro. This makes evaluations computationally

expensive. Thus, although StarCraft is a good platform for RTS AI research and

we can compare our work with other researchers, one disadvantage of StarCraft is

that it is difficult to parallellization. We therefore apply our approach to another

playable RTS game that we developed, named SeaCraft, that makes it easier to

parallellize evaluations for an evolutionary computing algorithm. SeaCraft was

developed in our ECSL lab for evolutionary algorithms research in RTS games.

SeaCraft uses the popular OGRE graphics engine and is implemented in C++ [27].

We modeled game play in SeaCraft around StarCraft to make comparisons and
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transfer easier. Like in StarCraft, players can control several types of units, with

the objective of destroying their opponent’s force. SeaCraft runs in a Linux en-

vironment and allows researchers to turn off the graphics thread, which makes

SeaCraft suitable for parallel evaluation. Figure 2.14 shows a snapshot of game

play in SeaCraft.

Figure 2.14: A snapshot of a game play in SeaCraft.

We applied different approaches for finding effective micro behaviors in both

StarCraft and SeaCraft. The next chapter details the representation of micro be-

haviors in RTS games and the approaches we used in our experiments.
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CHAPTER 3

METHODOLOGY

In our scenarios, ECSLBot attempts to defeat the opponent by eliminating enemy

units while minimizing the loss of friendly units. A secondary objective is to do

this as quickly as possible. Our first set of scenarios contain two StarCraft unit

types: Vulture and Zealot. A Vulture is a Terran unit with a ranged attack weapon,

low hit-points (easy to destroy), and fast movement. On the other hand, a Zealot

is a Protoss unit with a melee weapon, high hit-points (hard to destroy), and slow

movement. Table 3.1 shows the detailed parameters for Vultures and Zealots.

Table 3.1: Unit properties defined in StarCraft

Parameter Vulture Zealot Purpose

Hit-points 80 160 Entity’s health. Entity dies when Hit-
points ≤ 0.

MaxSpeed 6.4 4.0 Maximum move speed of Entity.

Damage 20 8×2 Number of Hit-points that can be removed
from the target’s health by each hit.

Weapon Ranged Melee The distance range within which an entity
can fire upon target.

Cooldown 30 22 Time between weapons firing.

Destroy Score 150 200 Score gained by opponent when this unit
has been killed.

3.1 Influence Maps

Spatial maneuvering is an important component of combat in RTS games. We ap-

plied a commonly used technique called Influence Maps (IMs) to represent terrain
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and enemy units spatial information. IMs originated out of work on spatial reason-

ing within the game of Go and have been used widely in various video games [52].

An IM is a grid placed over a virtual world with values assigned to each square

by an IM function [35]. Figure 3.1 shows an IM representing four units in a game,

with the IMFunction being the number of Tanks within some radius. A Tank is a

Terran unit with a ranged attack weapon, high hit-points, and slow movement. In

case the two Tanks belongs to your opponent, and the radius of the circle was the

weapon range of a tank, this IM could be used to find areas dangerous to friendly

units.

Figure 3.1: An influence map based on two Tanks.

Figure 3.2 shows an IM which represents a force of enemy units and the sur-

rounding terrain in StarCraft. A unit IM is computed by all enemy units in the

game. In our experiments, greater cell values indicate more influence by enemy

units and more danger to friendly units. In addition to the position of enemy

units, terrain is another critical factor for micro behaviors. For example, kiting en-
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emy units near a wall is not a wise move. We then use another IM to represent

terrain in the game world to assist micro management. We combine the two IMs

and use this battlefield (or map) spatial information to guide our AI player’s po-

sitioning and reactive control. Since computation time depends on the number of

IM cells, we use a cell size of 32×32 pixels. The entire map consists of a 64×64 grid

of such 32 × 32 pixel cells. Note that as enemy units move, the two IMs change.

The sum IM therefore also changes and no matter what the actual StarCraft map

we play on and where on that map opponent units are positioned, the sum IM

indicates vulnerable positions to attack as well as positions not to attack. Algo-

rithm 1 described below chooses a specific location to attack based on the current

sum IM. We recompute all the IMs every second. In our research, we use heuris-

tic search algorithms to find optimal IM parameters that help specify high quality

micro behaviors of units in combat scenarios. Once learned, the parameters that

define an IM generalize well to other game maps and is one reason IMs are a useful

representation for spatial information.

Algorithm 1 Targeting and Positioning Algorithm
Initialize TerrainIM, EnemyUnitIM, SumIM;
Target = MinIMValueUnit on SumIM;
targetPos = Target.getPosition();
movePos = minSurroundingPos(targetPos);
squad.moveTo(movePos);
squad.moveAttack(Target);

3.2 Potential Fields

While good IMs tell us where to go, good unit navigation tells our units how best

to move there. We use Potential Fields (PFs) in our research to control a group

of units navigating to particular locations on the map. PFs are methods originat-
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Figure 3.2: An IM representing the game world with enemy units and terrain. The
light area on the bottom right represents enemy units. The light area surrounding
the map represents a wall.

ing from maneuvering robots to avoid obstacles. A PF creates an attracting or a

repelling field in a virtual space. Similar to magnetic charges, the sum of all the

PFs determines a vector force with a strength and a direction at a given position

in the virtual world. Equation 3.1 shows a typical PF function where Force is the

potential force on the unit, d is the distance from the source of the force to the unit.

c is the coefficient and e is the exponent applied to distance and used to adjust the

strength and direction of the vector force.

Force = cde (3.1)

Figure 3.3 shows a typical potential function including both attraction and re-

pulsion. The X-axis is distance between the destination and the entity, the Y-axis is

the potential force. The negative part of the curve acts over a relatively short dis-

tance and represents repulsion. The positive part further away from the vertical

axis represents the force of attraction.
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Figure 3.3: A typical PF Function.

We use two PFs of the form described by Equation 3.1 to control the movement

of units. Each PF calculates one force acting on a unit. The two potential forces in

our game world are:

• Attractor: The attraction force is generated by the unit’s destination - the unit

is attracted to its destination. This force is inversely proportional to distance.

A typical attractor looks like Force = 2500
d2.1 . Here c = 2500 and e = −2.1 with

respect to Equation 3.1.

• Repulsor: This keeps friendly units moving towards the destination from

colliding with each other. It is usually stronger than the attractor force at

short distances and weaker at long distances. A typical repulsor looks like

Force = 32000
d3.2 .

Each PF is determined by two parameters, a coefficient c and an exponent e.

Therefore, we use four parameters to determine a unit’s PFs:

PF = cadea + crder (3.2)
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where ca and ea are parameters of the attractor force, cr and er for the friend re-

pulsor force. These parameters are then encoded into a binary string for our algo-

rithms.

3.3 Reactive Control

Besides the group positioning and unit movement, reactive control behaviors must

be represented in a way that our algorithms can process. In our research, we

considered three reactive control behaviors: kiting, target selection, and fleeing

frequently used in real games by good human players. Figure 3.4 shows the six

variables used in our micro scripting logic and Table 3.2 explains the details and

purpose of each variable.

Figure 3.4: Variables used to represent reactive control behaviors. The Vultures on
the left side of map are friendly units. Two Vultures on the right are enemy units.

• Kiting: Also known as “hit and run”. This behavior is especially useful in

combat where our units have a larger attack range than the enemy units. The

variables used in kiting are S t,Dk,Dkb as explained in Table 3.2.
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• Target Selection: Concentrating fire on one target, or switching to a nearby

enemy with low hit-points. The variables used in target selection are Rnt,HPe f .

• Flee: Temporarily repositioning to the back of our forces away from the front

line of battle when our units have low hit-points. HP f b controls this “fleeing”

behavior.

We encoded a candidate solution into a 60-bit string. The detailed representa-

tion of IMs, PFs, and reactive control parameters are shown in Table 3.2. Note that

the sum IM is derived by summing the enemy unit IM and terrain IM so it does not

need to be encoded. When the game engine receives a candidate solution, it de-

codes the binary string into corresponding parameters according to Table 3.2 and

directs friendly units to move to a location specified by Algorithm 1 and then at-

tack enemy units. The fitness of this candidate solution at the end of each match is

then computed and sent back to our GA. Algorithm 1 shows that we first find the

lowest value IM cell that contains an enemy unit, call this Cellt. This cell denotes

the enemy that the IM indicates is most separated from the rest of the enemies.

The algorithm then finds the IM cell with the lowest value that is also nearest Cellt.

We call this new IM cell, Cellnt. The algorithm then chooses Cellnt as the location to

first move to and from which to then launch the attack. In case Cellnt is far from

the Cellt, ECSLBot may perform less well resulting in a lower fitness. The IM pa-

rameters that result in poor performance should be quickly eliminated by the GA.

3.4 Fitness Evaluation

We evolve the behaviors for fighting against melee units and ranged attack units

separately. Our first fitness evaluation maximizes the damage to enemy units, min-
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Table 3.2: Chromosome

Variable Bits Description
IM

WU 5 Enemy unit weight in IMs.

RU 4 Enemy unit influence range in IMs.

WT 5 Terrain weight in IMs.

RT 4 Terrain influence range in IMs.

PF

ca 6 Attractor coefficient.

c f 6 Repulsor coefficient.

ea 4 Attractor exponent.

e f 4 Repulsor exponent.

S t 4 The stand still time after each firing. Used for kiting.

R
ea

ct
iv

e
C

on
tr

ol

Dk 5 The distance from the target that our unit start to kite.

Rnt 4 The radius around current target. Other enemy units
within this range will be considered to be a new target.

Dkb 3 The distance for our unit to move backward during kiting.

HPe f 3 The hit-points of nearby enemy units, under which target
will be assigned.

HP f b 3 The hit-points of our units, under which unit will flee.

Total 60

imizes the damage to friendly units, and minimizes the game duration in scenarios

with ranged attack enemy units. In this case, a unit remaining at the end of game

will contribute 100 to its own side. The fitness of an individual will be determined

by the difference between the number of friendly units and the number of enemy

units at the end of each game. For example, suppose three friendly Vultures and

one enemy Vulture remain at the end of the game, the score will be (3−1)∗100 = 200

as shown in the first term of Equation 3.3. Negative fitnesses when the number

of enemy units is greater than the number of friendly units were not allowed to

reproduce and typically stopped appearing after three generations. The detailed
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evaluation function to compute fitness against ranged units (Fr) is:

Fr = (NF − NE) × S u + (1 − T
MaxT ) × S t (3.3)

where NF represents how many friendly units remained, NE is the number of en-

emy units remaining. S u is the score for saving a unit (100) as defined above.

The second term of the evaluation function computes the impact of game time on

score. T is the time spent on the whole game, the longer a game lasts, the lower

1 − T
MaxT becomes. S t in the function is the weight of time score which was set to

100. Maximum game time is 2500 frames, approximately one and a half minutes at

normal game speed. We took game time into our evaluation because “timing” is

an important factor in RTS games. Suppose combat lasts one minute. This might

be enough time for the opponent to relocate backup troops from other places to

support the ongoing skirmish thus increasing the chances of our player losing the

battle. Therefore, combat duration becomes a crucial factor that we want to take

into consideration in our evaluation function.

In scenarios against melee attack units, good players can be expected to maxi-

mize damage and destroy all opponents by kiting well. To reflect this bias towards

damage we increase the weight given to destroying an enemy unit and reduce the

weight for losing a friendly unit. Therefore, we want to see how many enemy units

can be eliminated by friendly units during 2500 frames, we add 200 to the score for

destroying an enemy unit while losing a friendly unit will subtract 150, therefore,

the second melee specific fitness function (Fm) is:

Fm = NE × DS ET − NF × DS FT (3.4)

where NF represents how many enemy units were killed, NE is the number of

friendly units being killed. DS ET and DS FT are the destroy scores for the types



36

of unit being killed as defined in StarCraft. We apply this fitness function in exper-

iments dealing with scenarios where we want to evaluate how fast our bots can

eliminate melee attack enemy units. Although this equation does not specifically

deal with time, we have 25 Zealots in this scenario and the faster you can destroy

a Zealot, the more Zealots can be destroyed. This implicitly drives evolution to-

wards parameters that lead to faster elimination of enemy units.

Summarizing, ECSLBot learns how to fight melee units in Train1 shown in Fig-

ure 6.1a using fitness function Fm. ECSLBot learns how to fight against ranged

units in the Train2 shown in Figure 6.1b using fitness function Fr. After training

and learning to handle both melee and ranged units, ECSLBot simply switches

between the two sets of learned parameters, Pm and Pr, according to the current

target enemy unit type (melee or ranged).

3.5 Bit Setting Optimizer and Random Flip Hill Climbers

We use the Bit-Setting Optimization (BSO) hill climber to search for a locally op-

timal solution by sequentially flipping each bit and keeping the better fitness so-

lution [51]. Algorithm 2 shows the pseudo code of our BSO hill climber. BSO

is defined over a Hamming space where points in the space are represented by

binary strings. The performance of BSO depends on a random initial point, and

it searches a local hill since they only explore closely related points in the search

space. We run BSO multiple times with different initial points in an attempt to find

a higher local optima or even the global optima.

The bit setting hill-climber searches only a relatively small subset of the whole

search space to find local optima, and it depends heavily on the initial starting
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Algorithm 2 Bit Setting Optimization Hill Climber

currentNode = startNode;
while number of evaluation ≤Max do

index = 0
while index < LEN(currentNode) do

nextNode = FLIP(currentNode, index++)
if EVAL(nextNode) > EVAL(currentNode) then

currentNode = nextNode
end if

end while
end while

point. However, Random Flip Optimization (RFO), a different hill-climber could

search a different and larger space from the same initial points. Algorithm 3 shows

the pseudo code for our random flip hill-climber which starts from the same set of

ten initial points as our BSO.

Algorithm 3 Random Flip Optimization Hill-climber

currentNode = startNode;
while number of evaluation ≤Max do

index = RANDOM(0, LEN(currentNode))
nextNode = FLIP(currentNode, index)
if EVAL(nextNode) > EVAL(currentNode) then

currentNode = nextNode
end if

end while

3.6 Genetic Algorithm

We used a CHC based GA in our experiments [25, 18]. CHC selects the N best

individuals from the combined parent and offspring populations (2N) to create the

next generation after recombination. Early experiments indicated that our CHC

GA worked significantly better than the canonical GA on our problem.
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Algorithm 4 CHC Genetic Algorithm

initial population
eval(population)
while (current ≤maxGeneration) do

if generate o f f spring then
selection(population)
crossover(population)
mutation(population)

end if
eval(o f f spring)
tmpPopulation = rank (population, o f f spring)
o f f spring = top half of tmpPopulation

end while

Following prior experiments in our lab, we set the population size to 20 and

ran the GA for 30 generations. The probability of crossover was 88% and we used

CHC selection. We also used bit-mutation with 1% chance of each individual bit

flipping in value. The default SCAI was used to control the opponent force in our

evaluations. Standard roulette wheel selection was used to select chromosomes

for crossover. CHC being strongly elitist, helps to keep valuable information from

being lost if our GA produces low fitness children. These operator choices and GA

parameter values were empirically determined to work well.

3.7 Case Injected Genetic Algorithm

The CIGAR used in this paper operates on the basis of hamming distance for solu-

tion similarity [33]. Therefore, our solution similarity distance metric is computed

by the following formula:

D(A, B) =
l−1∑
i=0

(Ai ⊕ Bi) (3.5)
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where l is the chromosome length, ⊕ represents the exclusive or operator (XOR),

and Ai represents the ith bit of solution A. Algorithm 5 shows the pseudo code for

our CIGAR.

Algorithm 5 Case-Injected Genetic Algorithm
t = 0;
Initialize P(t);
while (current ≤maxGeneration) do

if (t MOD injectPeriod) == 0 then
InjectFromCaseBase(P(t), CaseBase);

end if
Select P(t+1) from P(t);
Crossover P(t+1);
Mutate P(t+1);
t = t + 1;
if NewBest(P(t)) then

CacheNewBestIndividual(P(t), Cache);
end if

end while
SaveCacheToCaseBase(Cache, CaseBase).

We use a “closest to best” injection strategy to choose individuals from the

case-base to be injected into CIGAR’s population. We replace the four (10% of the

population size) worst individuals with the individuals retrieved by our injection

strategy. We chose the injection interval to be log2(N) where N is the population

size. Therefore, we inject four “closest to best” cases every log2(40) ≈ 6 generations

and replace the four worst individuals. We configured the population, selection,

crossover and mutation in the CIGAR to be the same as the GA.

3.8 Parallel Genetic Algorithm

Parallel Genetic Algorithms (PGAs) are extensions of canonical GAs. The well-

known advantage of PGAs is their ability to speed up the evaluation process. We
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Figure 3.5: Structure of our Parallel GA.

implemented our PGA as a single population master-slave PGA. In our PGA, there

is only a single panmictic population that exists on the master node, like the canon-

ical GA. However, unlike the canonical GA, all individuals in the population are

distributed to slave nodes and evaluate in parallel. Since the game evaluation

is the computationally expensive part of the GA, parallel evaluation on multiple

slave nodes through SeaCraft can linearly speedup the entire evolutionary process.

The evaluation of the population is distributed on a first come first served basis.

Individuals are sent to any unoccupied slave node from the master node. We use

Open-MPI as our inter-processor communication backbone [20]. Figure 3.5 shows

the structure and data flow of our PGA implementation.
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We detailed the representation of micro behaviors in RTS games based on influ-

ence maps, potential fields, and reactive control in the first part of this chapter. We

then described the heuristic search algorithms we used in our experiments includ-

ing hill climbers, genetic algorithms, case-injected genetic algorithms, and parallel

genetic algorithms. In the next chapter, we will discuss our results on the first

set of experiments: comparing heuristic search algorithms including GAs and two

type of hill climbers on finding effective micro behaviors in a StarCraft skirmish

scenario.
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CHAPTER 4

PHASE ONE: GENETIC ALGORITHMS VERSUS HILL CLIMBERS

The first goal of our research is finding a suitable search algorithm for searching ef-

fective solutions in our RTS combat scenarios. Therefore, we compare the quality,

reliability, and robustness of solutions produced by genetic algorithms, bit-setting

optimizer hill climber, and random flip hill climber. To simplify the comparison,

we limited ourselves to evolve only influence maps and potential fields parame-

ters for effective group positioning and movement in this set of experiments. We

use StarCraft’s built-in AI as our opponent baseline against which to make our

comparisons. We represent group behaviors in combat as a combination of influ-

ence maps and potential fields parameters. We then are able to compare genetic

algorithms performance versus much faster hill climbers. We also compare the

performance of our micro bot running in different scenarios to investigate the ro-

bustness of the solutions produced by genetic algorithms and hill climbers. The

following section details our results for comparing the quality, reliability, and ro-

bustness of solutions produced by genetic algorithms, bit-setting optimization hill

climbers, and random flip hill climbers.

4.1 Experiment Settings

We used StarCraft’s game engine to evaluate our evolving solutions in this set of

experiments. In order to increase the difficulty and unpredictability of the game

play, the behavior of the game engine was set to be non-deterministic for each

game. In this case, some randomness is added by the game engine thus affect-

ing the probability of hitting the target and the amount of damage done. This
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randomness is restricted to a small range so that results are not heavily affected.

These non-deterministic settings are used in ladder games and professional tour-

naments as well. This does not impact some scenarios such as Vultures against

Zealots too much, because theoretically Vultures can “kite” Zealots to death with-

out losing even one hit-point. But the randomness may have an amplified effect on

other scenarios. For example, 5 Vultures fighting with 5 Vultures may end up with

up to a 3 units difference in fitness at the end. To mitigate the influence of this non-

determinism, individual fitness is computed from the average scores in 5 games.

Furthermore, our results are collected from averaged scores over ten runs, each

with a different random seed. The definition of game speed in BWAPI is the wait

time between two consecutive frames. A number of 0 in game speed indicates that

frames are executed immediately with no delay. Early experiments showed that

the speed of game play affects outcomes as well. Therefore, instead of using the

fastest game speed possible: 0, we set our games to a slower speed of waiting 10

milliseconds between any two frames to reduce the effect of the randomness 1.

We created a customized StarCraft map using StarEdit, a free tool provided

by Blizzard Entertainment to build custom scenarios. The scenario contains eight

Marines and one Tank on each side, as shown in Figure 4.1. A Marine has low hit-

points and a short attack range but can be built fast and cheaply. A Tank is stronger

than a Marine, with high hit-points and attack range but it costs more to produce.

The goal of this scenario is to eliminate opponent units while minimizing the loss

of friendly units as well as minimizing the game duration. In case both sides have

the same number and types of units left at the end of a game, we will get a higher

score for a shorter game. We used the fitness evaluation function Fr as shown in

Equation 3.3 to bias the search toward the goal of this scenario.

1Human players play StarCraft at game speed 42 in terms of BWAPI game speed.
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Figure 4.1: Scenario

4.2 Comparison in Quality and Reliability

We first compare the micro performance of solutions produced by GAs, BSO, and

RFO in terms of quality and reliability. Figure 4.3 shows that the BSO HC could

find good solutions 5 out of 10 times. The average score of BSO shown in Fig-

ure 4.2 climbed fast in the first 250 evaluations, and slowed down in the rest of

evaluations. This tells us that the BSO could find local optima quickly, but had

difficulty finding high quality, globally optimal solutions. The final average score

for BSO was only 887.0. This was the lowest average score among the three tested

algorithms. The RFO HC works slightly better than the BSO. Similar to BSO, RFO

climbed fast in the first 250 evaluations and then slowed down for the rest. How-

ever, the RFO found high quality solutions 7 out of 10 times with the same starting

points as BSO. The RFO is more reliable than BSO based on average score as shown
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Figure 4.2: Average score of BSO, RFO, and GA over time. X-axis represents the
evaluation times and Y-axis represents the average fitness evaluated by fitness
function.

in Figure 4.2. Final average score was 1106.6 which was better than BSO. The best

score found by RFO was 1567 and the corresponding tactic ended up with no own

unit being destroyed. Furthermore the RFO was 5 seconds faster than the BSO in

ending the skirmish.

We also applied GAs to compare the quality and reliability against HCs. Fig-

ure 4.2 shows the average of maximum scores in each generation. The GA con-

verged quickly to 1500 during the first 900 evaluations, and then increased fitness

slowly during the remaining evaluations. Compared to HCs, the GA always (a

hundred percent of the time) found good solutions. Also the average of the best

scores converged to 1566, and the best score from the GA is 1567. This indicates

that every run of the GA found high quality, near-optimal solutions. Furthermore,

skirmishes fought by the best solution from the GA end 5 seconds faster than those

fought by the best solution produced by the RFO and 10 seconds faster than those

produced by the BSO. This indicates that the skirmish finishes in a short time, and
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Figure 4.3: Best scores of BSO, RFO, and GA with 10 different random seeds. X-
axis represents random seed and Y-axis shows the highest fitness found by each
algorithm initialized with each random seed.

reduces uncertainties from opponent reactions, and increases the safety of our own

units.

The above results show that both BSO and RFO can find local optima quickly

against the default SCAI, but they are not guaranteed to find good solutions every

time. They find good solutions between 50% to 70% of the time starting with ten

different random seeds. Compared to HCs, the GA always find good combina-

tions of IMs and PFs parameters and produce higher quality solutions compared

to the HCs. However, GAs take much longer to converge. Good solutions find

good unit attack positions, produce smooth unit movement, avoid unit collisions,

synchronize attacking, and complete the skirmishes quickly.
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4.3 Comparison in Robustness

We were also interested in the robustness of the solutions found by GAs and the

two HCs from the point of view of the enemy’s initial positioning. We wanted to

know how our optimal solutions applied in different environments and were also

curious how enemy initial position impacted our fitness scores. We designed three

types of different custom maps in StarCraft in which the enemy were initially well

dispersed, well concentrated, or in an intermediate position. The intermediate

map was used for all prior results above. Table 4.1 specifies these initial enemy

positions. These three types of scenarios can usually be found in human player

matches. Dispersed units have less concentrating fire power but more map control

and information gain. However, concentrated units have less map control but are

harder to destroy.

We applied the solutions obtained from our initial intermediate scattered map

to the two other maps. Each map was tested 500 times to get the average scores

and their standard deviations. Table 4.1 shows these test results. The optimum was

obtained from a GA running in intermediate initial position and had the highest

fitness of 1567. We tested this solution 500 times and on average obtained a fitness

1380.728 on the intermediate map. The standard deviation over all 500 tests on

this map was 198.9 indicating the average error is within 2 Marines. We tested the

same solution in a map with dispersed enemy units initial positions. The average

fitness of 500 tests on this map was 1423.364. This is a higher score on a map never

seen by the GA. The reason for the higher average score is that enemy units are

dispersed and can be eliminated one by one with very little damage. This tells us

the optima we get from intermediate scattered position could work well or even

better with more scattered enemy units. This also showed how group position-
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Table 4.1: Average fitnesses and standard deviations of 500 matches on three maps
with different initialized enemy units’ position. Dots on the left side of the map
represent the friendly units, and dots on the middle of the map represent the en-
emy units.

Enemy Initial Position Description Fitness

Intermediate enemy position initial-
ized, maximum distance from 2 units
is 6 IM cells, which is also the default
map for all the HCs and GAs experi-
ments.

1380.7

σ = 198.9

Dispersed enemy position initialized,
maximum distance from 2 units is 11
IM cells. New scenario added to test
robustness of the solution of previous
map.

1423.4

σ = 62.6

Concentrated enemy position initial-
ized, maximum distance from 2 units
is 3 IM cells. New scenario added to
test robustness.

181.8

σ = 346.1

ing is important in combat. The standard deviation of the tests on this map was

low at 62.6. This matches our intuition that dispersed units are easily destroyed

one by one quickly without much damage to the opponent, and our group with

concentrated units has more concentrated fire power to damage the enemy. On

the other hand, the average fitness of the tests on a map with concentrated units

is low at 181.838. This means the matches were even on this map and only one or

two units survived on average in 500 tests. The Marines and Tank were not able to

synchronize their movement to confront enemy units at the same time, while con-

centrated enemy units could maximize their damage by firing at the same time.

The standard deviation is 346.1, and is the highest on the three types of tests.
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Figure 4.4: Average maximum and average fitness of GA running on two types of
map. X-axis represents generation, and Y-axis represents fitness.

For comparison, Figure 4.4 shows the performance of the same GA running on

the intermediate scattered map and concentrated map. The graphs show that the

enemy group with more scattered units is easier to be eliminated and faster for the

GA to find quality solutions. It converged in the 20th generation. However, the

enemy group with more concentrated units got lower fitness because the enemy

could damage opponent units more. The convergence rate is also slower than

scattered units because the quality solution is harder to find.

4.4 Evolved Group Micro Behaviors

From the point of view of IMs and PFs we can use IMs for guiding our units’ po-

sitioning and move smoothly to attack the opponents units using PFs to guide our

movement. Figure 4.5 shows an example of generated IMs positioning. The units

could take advantage of this positioning to concentrate their fire and maximize



50

their damage to the opponent. The group positioning and movement that evolves

first learns to ensure that single units stay away from enemy unit controlled ter-

ritory or to move outside of the map. If the enemy repulsor force is too small,

units might move into enemy territory and be destroyed. On the other hand, if

the force is too large, it will push the units to the border of the map and lead to

avoiding the enemy altogether. Second, the parameters for the IMs were learned

to guide our unit’s positioning. The IM calculated the enemy’s weak spots from

the current position of enemy units and generates attraction points to guide our

units in preparing for the skirmish. Different IM parameters lead to different loca-

tions, if the IM range of Marine and the IM range of Tank are small, the locations

might be inside the enemy units’ attack range. If they are too large, the units may

spend more time on the way and result in longer games, and low S t. The enemy

replusor and friend attractor were learned last. This affects detailed unit move-

ment. Good combinations of attractors and replusors allow the group to move

and attack smoothly and effectively. Units move to the right locations quickly and

destroy enemy units faster. At the same time our units have more opportunity

to survive. Therefore, our evaluation function is biased towards short movement,

more enemy units eliminated, more own units survival, and shorter game dura-

tion.

4.5 Conclusions

This chapter compared GAs with two HCs to generate group positioning and unit

movement based on influence maps and potential fields for beating opponents

in a typical skirmish scenario in RTS games. We used StarCraft’s built-in AI as

our opponent baseline against which to make our comparisons. We represented
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Figure 4.5: A snapshot of one group positioning in StarCraft minimap. The dots
on the map represent friendly units, and other part of the map was covered by fog
of war. Single dot at the left of the map is Tank, and other dots are Marines.

group behaviors in a combat as a combination of IMs and PFs parameters and re-

stricted our search space to 248. We were able to compare GA performance versus

much faster BSO and RFO hill climbers. Results show that both BSO and RFO HCs

can find local optima quickly against the baseline, but they are not guaranteed to

find good solutions every time. They find good solutions between 50% to 70%

of the time starting with ten different random seeds. Compared to HCs, the GA

always find good combinations of IMs and PFs parameters and produce higher

quality solutions compared to the hill-climbers. However, GAs take much longer

to converge. Good solutions find good units attack positions, produce smooth unit

movement, avoid unit collisions, synchronize attacking, and complete the skir-

mishes quickly. We also compared the performance of GAs running in different

scenarios for testing robustness of the solutions found by GAs and HCs. The result

shows that we could apply the solutions found in one scenario to more dispersed

enemy units’ position with high fitness. However, these solutions do not do well

against more concentrated enemy positions.
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The results in this chapter indicate that our hill-climbers were quick but unre-

liable while the genetic algorithm was slow but reliably found quality solutions

a hundred percent of the time. Therefore, we are interested in techniques which

can reliably and quickly find high quality solutions in skirmish scenarios in RTS

games. The next chapter will investigate case-injected genetic algorithms which

are designed to learn from experience to increase problem solving performance on

similar problems.
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CHAPTER 5

PHASE TWO: CASE-INJECTED GENETIC ALGORITHMS

In the previous chapter, we investigated applying different heuristic search algo-

rithms for generating effective micro behaviors in our skirmish scenarios in an RTS

game StarCraft. We compared the quality, reliability, and robustness of solutions

produced by GAs, BSO, and RFO HCs. The results showed that HCs can find

serviable IM and PF parameters that can occasionally defeat the default SCAI, but

they are not guaranteed to find good solutions every time. Compared to HCs,

the GAs always find good combinations of IMs and PFs parameters and produce

higher quality solutions, but take much longer to converge. Therefore, we are in-

terested in techniques that can reliably and quickly find high quality solutions. In

this chapter, we investigate applying case injected genetic algorithms to learn from

“experiences” generated from previous problems and use this information to bias

our search and speed up the process of finding high quality solutions. We defined

five similar scenarios with different difficulty levels that are similar to scenarios in

typical human player matches. We applied CIGARs to these five sequential scenar-

ios to assess how “experience”, stored as cases in a case-base, affects performance

compared to a GA. GAs with exactly the same parameters as used by CIGAR thus

served as a baseline.

5.1 Experiment Settings

To evaluate the performance of genetic algorithm with case injection and without

case injection, we designed five different but similar scenarios. The difference be-

tween scenarios is the initial positions of enemy units’. Our five scenarios are:
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• Intermediate Position: Enemy units located in the middle of the map. The

maximum distance between any two enemy units is six IM cells.

• Dispersed Position: The maximum distance between any two enemy units

is eleven IM cells. Enemy units in this scenario have the most scattered posi-

tions and the weakest concentrated fire power of all the five scenarios.

• Concentrated Position: Enemy units located in the middle of the map, and

the maximum distance between any two enemy units is three IM cells. En-

emy units in this scenario have the most concentrated fire power.

• Corner Position: Enemy units located at the northeast corner of the map,

concentrated as much as in the previous scenario. Enemy units in this sce-

nario have the strongest concentrated fire power as well as the best defensive

positions.

• Split Position: Enemy units located in the middle of the map and split into

two groups. Enemy units in this scenario have stronger concentrated fire

power than Dispersed and Intermediate positions but weaker concentrated

fire power than Concentrated and Corner positions.

These five types of scenario can usually be found in human player matches.

Dispersed units have less concentrated fire power but more map control and in-

formation gain. On the other hand, concentrated units have less map control but

are harder to destroy. Since our experiments do not have fog of war, the advantage

of dispersed enemy units do not apply in this case resulting in making the more

concentrated enemy units harder to destroy. Therefore, the first two scenarios and

the last one are relatively easy for GAs to find high quality solutions to; scenario

three and four are harder.
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According to the evaluation function Fr defined in Equation 3.3 and the five

scenarios we introduced above, the theoretic maximum score for eliminating en-

emy forces is 1500 and maximum time score (corresponding to minimal time) is

100, therefore, the maximum evaluation score or fitness is 1600. Note that the first

two digits in an evaluation score represent the unit elimination score, and the last

two digits represent time score. For example, if the final score ends up at 1357 we

can infer the following:

• The score being positive means our AI player defeated the built-in AI.

• 1300 represents the unit elimination score and compared to the maximum of

1500, our AI player lost 200 which indicates that two Marines were killed by

the enemy during the game.

• The last two digits being 57 represents (1 − 57
100 ) × 2500 = 1075 frames spent

during the entire game which is approximately 38.4 seconds converted to

standard game speed.

5.2 Case Injection’s Effect on Genetic Algorithms

In our experiments, we tested GAs and CIGARs running with ten different random

seeds. Each such test took 14 hours to run the 40 × 60 × 5 = 12, 000 evaluations,

where 40 is population size, 60 is the number of generations to run, and 5 repre-

sents the five scenarios. Scenarios are tested sequentially in the following order.

Intermediate, Dispersed, Concentrated, Corner, and Split. CIGAR extracts the best

individual in each generation and stores this individual into the case-base; dupli-

cates are discarded. When running on a problem, suitable cases chosen according
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to the “closest to the best” strategy from the case-base are injected into CIGAR’s

population. Each case may contain useful information about the new search space

and be a partial solution to the current problem and thus bias the genetic algo-

rithm to take advantage of “good” genes found by previous search attempts. The

number of cases in the case-base usually increases with the number of problems

solved.

Figure 5.1: Average maximum/average scores of GA and CIGAR over 10 runs on
Intermediate scenario. The X-axis represents the generation and the Y-axis repre-
sents the fitness.

The performance of GAs and CIGARs running in the Intermediate scenarios as

shown in Figure 5.1 tell us that their performance is similar. This is because the

Intermediate scenario is the first problem to be attempted and CIGAR has no cases

in its case-base when running on this problem. They are not exactly the same be-

cause there is some randomness in the game evaluation as explained earlier. On

the other hand, the results from the Concentrated scenario show the difference in

performance (see Figure 5.2). CIGAR has solved two problems (Intermediate and

Dispersed scenarios) before this scenario, and 12.2 cases on average (over the ten

runs) exist in the case-base. We can see that CIGAR outperformed the GA both
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Figure 5.2: Average maximum/average scores of GA and CIGAR over 10 runs on
Concentrated scenario. X-axis represents the generation and Y-axis represents the
fitness.

in quality and speed in the Concentrated scenario when CIGAR’s case-base con-

tains cases from previous scenarios. The curve for CIGAR’s average fitness in the

Concentrated scenario dropped a little every 6 generations because four cases from

the case-base were injected into the population. The new cases may only contain

partial solutions with lower fitness in the population, which cause the average fit-

ness to drop. However, average fitness rises again quickly after the drop. This

shows the cases injected into the population may have introduced useful informa-

tion leading to better performance.

Figure 5.3 compares the quality of solutions found by the GA and CIGAR in

all five scenarios. The number on top of each bar for CIGAR shows the average

number of cases when CIGAR starts in the corresponding scenarios. The case-

base is empty on the Intermediate (first) scenario, and increases to 27.1 on the last

scenario. Therefore, CIGAR’s “experience” generated from solving problems in-

creases scenario by scenario. Both GA and CIGAR reliably found quality solutions
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Figure 5.3: Solution quality of each scenario. As more problems are solved, CIGAR
produces better solutions than genetic algorithm. The X-axis represents 5 different
scenarios. The Y-axis represents the highest fitness. The number on top of each bar
of CIGAR shows the number of cases in case-base when CIGAR starts.

above fitness 1200 a hundred percent of the time. The first two scenarios and the

last one show that the GA and CIGAR found similar quality solutions. The rea-

son behind this is that the Intermediate, Dispersed and Split scenarios are rela-

tively easy to solve because scattered enemy units are easily destroyed one-by-one

quickly without much damage to the opponent. Therefore, both GA and CIGAR

performed very well. On the other hand, the Concentrated and Corner scenarios

show the difference in performance between the GA and CIGAR. Concentrated en-

emy units have stronger fire power than scattered units which leads to high quality

solutions being harder to find by GAs in the search space. In this case, we believe

CIGAR had an advantage and case-injection biased search to more quickly find

solutions with higher fitness.

We wanted techniques for finding high quality solutions quickly and reliably

for winning a skirmish in an RTS game. Thus, we measured the number of gener-
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Figure 5.4: Number of generations to solutions found above 1100. As more prob-
lems are solved, CIGAR took less time compared to the GA.

ations our GA and CIGAR took to produce quality solutions with fitness above a

threshold quality of 1100. Figure 5.4 shows the number of generations needed to

find quality solutions above 1100 from our GA and CIGAR. The GA ran on each

scenario without any bias from injected cases and so GA performance can be used

to indicate a level of difficulty for each scenario. A low number of generations in-

dicates that the GA finds quality solutions easily. A high number of generations

indicates the GA has a hard time finding quality solutions. So we can think of the

GA performance in Figure 5.4 as showing us the difficulty levels of our five scenar-

ios. In order from easy to hard, the scenarios are: Intermediate, Dispersed, Split,

Concentrated, and Corner. The first scenario’s result shows CIGAR found quality

solutions 1 generation on average slower than our GA because CIGAR’s case-base

is empty. However, after CIGAR runs on the first scenario, on average 7.9 cases are

stored into the case-base. CIGAR only takes 4 generations to find solutions with

fitness greater than 1100 on this second scenario (Dispersed), while our GA takes

10 generations. Having found quality solutions for another scenario, the number
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of cases in our case-base increased again. CIGAR finds quality solutions for the

third scenario in 14 generations compared to the GA which takes 30 generations.

CIGAR found quality solutions 21 generations faster for the fourth scenario (the

most difficult for the GA), and 10 generations faster for the last scenario.

5.3 Conclusions

This chapter focuses on applying case injected genetic algorithms to generate group

positioning and unit movement in order to win skirmish scenarios in RTS game.

The results in Chapter 4 showed that hill-climbers can find serviable IM and PF pa-

rameters that can occasionally defeat the default AI, but they are not guaranteed to

find good solutions every time. Compared to hill-climbers, the genetic algorithms

always find good combinations of IMs and PFs parameters and produce higher

quality solutions, but take much longer to converge. Therefore, we are interested

in techniques that can reliably and quickly find high quality solutions. In this

chapter, we investigated applying case injected genetic algorithms to learn from

“experiences” generated from previous problems and use this information to bias

our search and speed up the process of finding high quality solutions. We defined

five similar scenarios with different difficulty levels that are similar to scenarios in

typical human player matches. We applied CIGARs to these five sequential scenar-

ios to assess how “experience”, stored as cases in a case-base, affects performance

compared to a GA. GAs with exactly the same parameters as used by CIGAR thus

served as a baseline.

The results show that CIGARs performed similar to our GAs in the first sce-

nario when the case-base is empty. In scenarios with more scattered enemy units,
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including scenarios one, two, and five, which are relatively easy problems, both

GAs and CIGARs found high quality solutions. However, CIGARs find high qual-

ity solutions up to twice as fast as GAs. Finally, in scenarios two and three, with

more concentrated enemy units, CIGARs not only find higher quality solutions

than GAs, but also doubled the speed of finding a quality solution above 1100. This

indicates that CIGARs are a suitable technique to apply across similar problems

in RTS games. In addition, these “experiences” generated from solved problems

provided valuable information and could help to speed up solving other similar

problems.

After the results showed that GAs and CIGARs are effective on producing high

quality micro behaviors, we extend our representation to cover not only IMs and

PFs but also reactive controls in the next chapter. We will compare the micro per-

formance of our evolved ECSLBot against two state of the art bots, UAlbertaBot

and Nova on several skirmish scenarios in StarCraft.
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CHAPTER 6

PHASE THREE: ECSLBOT VERSUS THE STATE OF THE ART BOTS

Since the results in Chapter 4 and 5 indicate that the GAs and CIGARs produced

higher quality solutions more reliably and faster, we settled on using GAs and

CIGARs to search for effective micro parameters in the rest of this work. We ex-

tended our representation to cover not only group tactics and movement but also

reactive control behaviors including kiting, target selection, and fleeing. We test

the micro performances of our evolved ECSLBot against two state of the art bots,

UAlbertaBot and Nova on several skirmish scenarios in StarCraft. We designed

two training scenarios and eight testing scenarios in which bots need to control a

number of Vultures against different types of enemies, to evaluate micro perfor-

mance.

6.1 Experiment Settings

We created a series of customized StarCraft maps as our training scenarios and test-

ing scenarios to evolve and evaluate our ECSLBot. As explained earlier, we want

ECSLBot to learn to control a specific type of Terran unit (Vulture) to fight against

different types of enemy units in these predefined scenarios. More specifically,

we evolve Vulture kiting behavior against melee enemy units, and target selection

and fleeing against ranged enemy units. Melee and ranged units are the two broad

types of units in RTS games like StarCraft. After learning how to play against dif-

ferent types of enemies in two training scenarios, we test the generalizability of

learned behaviors on eight previously unseen testing scenarios. Finally, we com-

pare our ECSLBot, Nova, and UAlbertaBot against each other using Vultures.
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Players in RTS games are usually not able to access complete state informa-

tion because of the “fog of war” as described in Section 2.7.1. However, the “fog

of war” influences longer-term planning for distant units, while we are focused

on short-term planning for units in close proximity. Furthermore, good human

players will start a skirmish only when they already have enemy and terrain in-

formation through scouting. Therefore, we allow all bots to access complete state

information for all scenarios in this research. In another word, there is no “fog of

war” in our scenarios.

6.1.1 Training Scenarios

Human players usually use different micro behaviors against melee units than they

use against ranged units. Therefore, we evolve our bot against exemplars of these

two broad types of enemy units, separately. In this set of experiments, ECSLBot

learns how to control Vultures to defeat melee enemy units on a scenario contain-

ing 5 friendly Vultures and 25 opponent Zealots (a Protoss melee unit) as shown

in Figure 6.1a. We call this training scenario, Train1 and the parameters evolved

on this scenario, Pm. The game runs to evaluate fitness and evaluation ends after

2500 frames. The goal of this scenario is eliminating as many enemy Zealots as

possible. Kiting efficiency is important in this type of combat and will be evolved

by our GAs.

Our second scenario was created for fighting against ranged attack units. We

call this scenario, Train2, and the parameters evolved here, Pr. Figure 6.1b shows

that our ECSLBot controls 5 friendly Vultures positioned at the top left to fight

against 6 enemy Vultures positioned at the bottom right. Positioning and target
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(a) Train1: A bot controlling 5 Vultures at
top left fighting against 25 Zealots at the bot-
tom right in 2500 frames. The score will be
higher with more Zealots killed.

(b) Train2: A bot controlling 5 Vultures at
top left fighting against 6 Vultures at the bot-
tom right. The score will be higher with
more Vultures killed and shorter of the game
duration.

Figure 6.1: Training scenarios.

selection become key contributors in this scenario. Train2 also runs for 2500 frames

or until one side is eliminated.

6.1.2 Testing Scenarios

We evolve micro behaviors for fighting against melee and ranged enemy units

in the previous two training scenarios. However, we are interested in evaluating

the generalizability of our evolved behaviors on scenarios never encountered be-

fore. Therefore, we created eight new testing scenarios with more units, mixed

types of opponent units, and different terrain. We expect ECSLBot evolved on two

simple training scenarios to perform similarly in other unseen situations because

our evolved parameters represent a range of behaviors that are relatively position

and terrain independent and simply switching between parameter sets takes into

account the two broad opponent types in RTS games. We first test our evolved

ECSLBot on the two test scenarios shown in Figure 6.2. Here, friendly Vultures
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(a) Test1: 5 Vultures at bottom left versus 6
Vultures which are split into 2 groups.

(b) Test2: 5 Vultures at bottom left versus 25
Zealots which are split into 2 groups.

Figure 6.2: Testing scenarios where only the initial position of units changed.

spawn at the bottom left of the map instead of top left. Enemy units spawn at the

top of the map and are split into two groups. These two scenarios (Test1 and Test2)

test whether ECSLBot is able to adapt when the initial positions of friendly units

and enemy units change.

Next, we considered four scenarios where we change the number of units con-

trolled by our bots. We evolved ECSLBot for controlling five Vultures against en-

emy units. We now investigate how ECSLBot performs when controlling more

than five Vultures. Figure 6.3 shows four scenarios (Test3, Test4, Test5, and Test6)

where our ECSLBot controls ten Vultures instead of five, to fight against differing

numbers of enemy units. Furthermore, we consider more complex terrain. Test6

contains an untraversable block in the middle of the map as shown in Figure 6.3d.

Results show that ECSLBot learned to avoid map boundaries while kiting dur-

ing training, and this generalized to the case of the never before encountered un-

traversable block in the center of Test6. ECSLBot adapts to the block in the center

and kites well avoiding the block.

Finally, in the last two scenarios we evaluate generalizability against mixed op-
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(a) Test3: 10 Vultures at top left
versus 10 Vultures at the bot-
tom right of the map.

(b) Test4: 10 Vultures at top left
versus 12 Vultures at the bot-
tom right of the map.

(c) Test5: 10 Vultures at top
left versus 40 Zealots which are
spread into 3 groups at the bot-
tom of the map.

(d) Test6: 10 Vultures at top
left versus 40 Zealots at bottom
right with unwalkable area in
the middle of the map.

(e) Test7: 10 Vultures at top left
versus 8 Zealots and 8 Vultures
at the bottom right of the map.

(f) Test8: 10 Vultures at top left
versus 18 Zerglings and 10 Hy-
dralisks at the bottom right of
the map.

Figure 6.3: Testing scenarios with ten friendly Vultures and different types of en-
emy units.

ponent types. ECSLBot simply switches between Pm and Pr, the two evolved pa-

rameter sets according to whether the current target unit is melee or ranged respec-

tively. Figure 6.3e shows the testing scenario, Test7, where ECSLBot controls ten

Vultures and fights against eight Zealots and eight Vultures. Since we were partic-

ularly interested in the performance of ECSLBot fighting against mixed opponent

units, we also created the last scenario, Test8, shown in Figure 6.3f. ECSLBot con-

trols ten Vultures to fight against eighteen Zerglings and ten Hydralisks which are

melee and ranged unit types respectively, from a different StarCraft Race (Zerg).

These units have different melee damage and different weapons range when com-

pared to Zealots and Vultures.
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6.1.3 Head-to-head Scenario

After we compared our ECSLBot, UAlbertaBot, and Nova on a variety of testing

scenarios where our bots control different number of Vultures against different

types of enemy units controlled by the default SCAI, we were also interested in

how they perform when competing against each other with identical units. A new

scenario was designed for this comparison where all three bots control five Vul-

tures against each other.

Figure 6.4: The scenario for head to head evaluation.

6.2 Evolved ECSLBot

Scenario Train1 as shown in Figure 6.1a evaluates the efficiency of kiting behavior

against melee attack units. Fm as defined in Equation 3.4 is used as our evaluation

function in this scenario. Figure 6.5 shows the average scores of ECSLBots run-

ning on this kiting scenario. We can see that the maximum fitness in the initial

population is as high as 3217, which means our bot eliminated 16 Zealots within
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2500 frames. However, the average of maximum fitness increases slowly to 3660

at generation 30, which is 18 Zealots. This results tell us that our GAs can quickly

find a kiting behavior to perform “hit and run” against melee attack units while

trading off damage output. Our ECSLBot trades off well between kiting for safety

and kiting for damage to enemy.

Figure 6.5: Average score of ECSLBot versus generations on scenario Train1. X-axis
represents time and Y-axis represents fitness by the fitness function Fm.

Besides performance against melee attack units, we are also interested in per-

formance against ranged attack units. In this case, positioning and target selection

become more important than kiting because the additional movement from kiting

behavior will waste enemy damage output while avoiding enemy attack. We used

our GAs to search for effective micro behaviors using the same representation as in

the previous scenario. However, we changed our fitness evaluation function to Fr

as shown in Equation 3.3 to maximize killing of enemy units, minimize the loss of

friendly units, and minimize combat duration. Figure 6.6 shows the average score

of the evolving ECSLBots in scenario Train2. The average maximum fitness found

by GAs is 336, which means 3 friendly units remained at the end of the game and
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all enemy units were eliminated. Considering that the Vulture is a vulnerable unit

and easily dies, 3 Vultures saved after a skirmish is, we believe, good performance.

Figure 6.6: Average score of ECSLBot over generations in scenarios Train2. X-axis
represents time and Y-axis represents fitness by the fitness function Fr.

We are interested in the differences in evolved parameters for the two train-

ing scenarios - against melee attack units and ranged attack units. Table 6.8 lists

the details of optimal solutions in different scenarios. Videos of all learned micro

behaviors can be seen online 1. We would like to highlight two findings in these

results. The first concerns the learned optimal attack route in the scenario against

six Vultures as shown in Figure 6.7. The IM parameters evolved by the GA and

our control Algorithms 1, lead to a gathering location at the left side of the map to

move toward before the battle. Our ECSLBot then commands the five Vultures to

follow this route to attack enemy units. The result is that only three of the enemy

units are triggered in the fight against our five Vultures at the beginning of the

fight. This group positioning helped ECSLBot minimize the damage taken from

enemy units while maximizing damage output from outnumbered friendly units.

1http://www.cse.unr.edu/∼simingl/publications.html
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Table 6.1: Parameter values of best evolved individuals.

Scenario IM PF Reactive Control
Train1, 25 Zealots 3 9 15 8 43 55 6 2 1 5 6 7 7 0
Train2, 6 Vultures 16 13 20 10 50 26 13 4 12 9 1 7 6 7

Although we describe a behavior that is specific to this scenario, the IM param-

eters tend to guide our units to such vulnerable positions with respect to enemy

forces located anywhere on any map. As performance in never-before-seen testing

scenarios shows, using an IM helps generalizability of learned behaviors. This is

detailed in Section 6.4 where our forces move to a location that the IM indicates is

a location where enemy forces are less concentrated.

Figure 6.7: Learned optimal attacking route against 6 Vultures.

The second interesting finding is that different micro behaviors are learned by

ECSLBot in different scenarios. Figure 6.8 shows that our ECSLBot kited heav-

ily against Zealots as shown on the left side, but seldom move backward against

ranged attack units as shown on the right side. The values of our parameters reflect

this behavior. Table 6.1 shows the parameter values found by our GAs in the two
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training scenarios. We can see that S t (the first parameter in the reactive control

section) is 1 frame in the scenario against melee attack units, which means a Vul-

ture starts to move backward right after every shot. On the other hand, S t is much

bigger (12 frames) against ranged attack units. This is because our units will gain

more benefit after each weapon firing by standing still and firing again as soon as

possible rather than moving backward immediately against ranged attack units.

Figure 6.8: Learned kiting behaviors against Zealots and Vultures. The left side
of the figure shows that our Vultures are moving backward and are pointed away
from the enemy to kite enemy Zealots. The right side shows that our Vultures
are facing the enemy Vultures with only one friendly Vulture moving backward to
dodge.

6.3 ECSLBot versus the State of the Art Bots in Training Scenarios

Next, we investigate the performance differences among our ECSLBot (the best

bot evolved by GAs), UAlbertaBot, and Nova in the two training scenarios. We

used UAlbertaBot and Nova to control the same number of Vultures (5) against 25

Zealots in training scenario Train1. Table 6.2 shows the results for all three bots

versus the baseline SCAI over 30 runs in the training scenario Train1. We can see
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Table 6.2: The performance of bots controlling 5 Vultures vs 25 Zealots units in
scenario Train1.

Win Draw Lose Avg Killed / σ Avg Left / σ

UAlbertaBot 0 0 30 3.33 / 2.1 0 / 0
Nova 30 0 0 20.03 / 2.37 4.7 / 0.4
ECSLBot 30 0 0 20.2 / 2.57 4.8 / 0.4

Table 6.3: The performance of bots controlling 5 Vultures vs 6 Vultures in scenario
Train2.

Win Draw Lose Avg Killed / σ Avg Left / σ

UAlbertaBot 0 0 30 2.67 / 0.54 0 / 0
Nova 2 0 28 3.13 / 1.45 0.13 / 0.56
ECSLBot 18 0 12 5.2 / 1.35 1.8 / 1.7

that the UAlbertaBot performed poorly against melee attack units. This seems to

be mainly because UAlbertaBot uses the same logic for all its units and the logic

is optimized only for Protoss units. It eliminated only 3.33 Zealots on average in

each game, while losing all of its Vultures. Note that UAlbertaBot was designed

to play as Protoss. On the other hand, Nova’s performance is good. Nova killed

20.03 Zealots and lost only 0.3 Vultures on average per run. This is because Nova

has hard coded and tuned logic specifically for Vultures and is optimized to control

Vulture kiting behavior against melee attack units. We then tested ECSLBot on sce-

nario Train1. The results show that ECSLBot got the higher score on average over

30 runs. 20.2 Zealots being killed in one match on average, while losing only 0.2

Vultures. Visually, ECSLBot and Nova seem to have very similar kiting behavior

and performance and statistically, the difference in performance is not significant

at P = 0.795 using the t-test.

Table 6.3 shows the results from all of our three bots tested in scenario Train2.
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All the bots run 30 times against the default SCAI. This time, both UAlbertaBot and

Nova perform poorly. UAlbertaBot loses all 30 games against 6 Vultures, killing

2.67 enemy Vultures on average in each game, while losing all of its units. Nova

performed slightly better than UAlbertaBot with 2 wins and 28 losses out of 30

runs. However, ECSLBot outperformed both the others with a 60% win rate. 5.2

enemy Vultures were eliminated and 1.8 friendly Vultures survived on average in

each run. This is statistically significantly different at P = 6.04 × 10−7 using the

t-test on the number of Zealot killed by ECSLBot and Nova. This result indicates

that in scenarios against ranged attack units, certain behaviors like kiting are not as

effective versus melee attack units. Positioning and target selection become more

important than kiting in such scenarios. UAlbertaBot and Nova did not optimize

micro behaviors in all scenarios and performed poorly in these cases. Note how-

ever, that ECSLBot needs about 21 hours to evolve either Pm or Pr.

6.4 ECSLBot versus the State of the Art Bots in Testing Scenarios

Since we evolved micro behaviors for ECSLBot in two training scenarios, we in-

vestigate how the corresponding parameter sets perform in scenarios never en-

countered before. Therefore, we compared our evolved ECSLBot to Nova and

UAlbertaBot on eight testing scenarios as shown in Figure 6.2 and Figure 6.3. Ta-

ble 6.4, 6.5, 6.6, and 6.7 shows the results of the three bots playing against SCAI

on all eight scenarios. The table provides standard deviations as well.

The first two testing scenarios Test1 and Test2 as shown in Figure 6.2 are some-

what similar to the two training scenarios Train1 and Train2 with the only change

being the units’ positions. The purpose of these two scenarios is to evaluate how
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Table 6.4: The performance of bots controlling 5 Vultures vs opponent units on
scenario Test1 and Test2.

Test1: 5 Vultures vs 6 Vultures (split)
Win Draw Lose Average Killed / σ Average Left / σ

UAlbertaBot 29 0 1 5.97 / 0.18 2.0 / 0.8
Nova 11 2 17 5.03 / 1.05 0.73 / 1.06
ECSLBot 27 0 3 5.87 / 0.43 2.87 / 1.28

Test2: 5 Vultures vs 25 Zealots (split)
Win Draw Lose Average Killed / σ Average Left / σ

UAlbertaBot 0 0 30 2.63 / 1.64 0 / 0
Nova 30 0 0 17.4 / 2.36 3.77 / 0.84
ECSLBot 30 0 0 19.8 / 1.51 3.93 / 0.85

well ECSLBot’s parameters work when the positions of both friendly units and

enemy units are changed. The results in Table 6.4 show that ECSLBot and Nova

are still good at kiting Zealots in these new scenarios. 17.4 Zealots were killed by

Nova and 19.8 Zealots were killed by ECSLBot during 2500 frames on Test2. This

testing scenario performance is similar to performance on the training scenarios.

UAlbertaBot only killed 2.63 Zealots and lost all 5 Vultures on Test2. However,

UAlbertaBot performs better when destroying split enemy Vultures on Test2. 5.97

Vultures were killed and 2.0 Vultures survived on average over thirty runs. EC-

SLBot performs similar to UAlbertaBot on Test2. Nova performs badly on fighting

against ranged attack units which is similar to the results on training scenarios.

Eleven out of thirty matches are lost against six split Vultures.

In order to test the micro performance of ECSLBot for controlling different

numbers of Vultures, other than five we trained on, we conducted experiments

where bots control ten Vultures to fight against different types of enemy units in-

cluding ranged units, melee units, mixed units, and different terrain. The results
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Table 6.5: The performance of bots controlling 10 Vultures vs ranged attack units
on scenario Test3 and Teset4.

Test3: 10 Vultures vs 10 Vultures
Win Draw Lose Average Killed / σ Average Left / σ

UAlbertaBot 23 0 7 9.43 / 1.15 3.97 / 2.71
Nova 30 0 0 10 / 0 6.93 / 1.1
ECSLBot 30 0 0 10 / 0 8.1 / 0.83

Test4: 10 Vultures vs 12 Vultures
Win Draw Lose Average Killed / σ Average Left / σ

UAlbertaBot 11 0 19 10 / 2.18 1.13 / 1.58
Nova 25 0 5 11.6 / 1.05 3.06 / 1.9
ECSLBot 29 0 1 11.97 / 0.18 6.4 / 1.74

on scenarios Test3 and Test4 as shown in Table 6.5 indicate that all three bots do

well in destroying enemy units. However, ECSLBot saved 8.1 and 6.4 out of 10

friendly Vultures in two scenarios. Nova saved 6.93 and 3.06 Vultures and UAl-

bertaBot saved only 3.97 and 1.13 Vultures. The difference in performance on saved

units between ECSLBot and Nova is statistically significant at P = 5.35 × 10−5 on

Test3. These results show that ECSLBot outperformed Nova and UAlbertaBot both

on training and testing scenarios against ranged opponents. The ECSLBot seems

to find a good balance in the trade off between concentrating fire and kiting.

On scenarios Test5 and Test6, Nova outperformed the other two bots on scenar-

ios with and without obstacle as shown in Table 6.6. Nova destroyed on average

37.6 and 32.6 Zealots in the two scenarios. ECSLBot performs close to Nova and

destroyed 34.87 and 30.8 Zealots. In scenario Test5, the difference in performance

between Nova and ECSLBot is statistically significant at P = 2.43×10−8. The differ-

ence between UAlbertaBot and the other two bots is statistically significant. This

results show that in terms of kiting efficiency against melee units, ECSLBot per-
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Table 6.6: The performance of bots controlling 10 Vultures vs melee attack units on
scenario Test5 and Test6.

Test5: 10 Vultures vs 40 Zealots (split)
Win Draw Lose Average Killed / σ Average Left / σ

UAlbertaBot 1 0 29 12.7 / 2.69 0.03 / 0.18
Nova 30 0 0 37.6 / 1.8 9.4 / 0.7
ECSLBot 30 0 0 34.87 / 1.36 8.8 / 0.65

Test6: 10 Vultures vs 40 Zealots (obstacle)
Win Draw Lose Average Killed / σ Average Left / σ

UAlbertaBot 3 0 27 17.6 / 0.18 2.0 / 0.8
Nova 30 0 0 32.6 / 2.54 7.6 / 0.99
ECSLBot 30 0 0 30.8 / 1.42 7.5 / 0.8

forms as well as Nova and better than UAlbertaBot on both training and testing

scenarios. Moreover, ECSLBot is able to use the same set of parameters to perform

well despite an untraversable obstacle in the center of the map by using the terrain

influence map learned during training.

Since we test our bots on scenarios against melee units and ranged attack units

independently, we next investigated how our bots fight against enemy units con-

taining both melee and ranged units. We test our bots on scenario Test7 where

the enemy is composed of a mix of eight Zealots and eight Vultures as shown in

Figure 6.3. Test8 looked at a completely different set of units from the Zerg race

in StarCraft. Eighteen Zerglings and ten Hydralisks, Zerg melee and ranged units,

never encountered by ECSLBot during training made up the opponents in sce-

nario Test8. Results on these two scenarios are displayed in Table 6.7 and show

that Nova performs as well as ECSLBot. Both eliminate all enemy units and more

than six friendly Vultures survive. The differences in performance of saved units

between ECSLBot and Nova on both Test7 and Test8 are not statistically signif-
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Table 6.7: The performance of bots controlling 10 Vultures vs mixed units on sce-
nario Test7 and Test8.

Test7: 10 Vultures vs 8 Zealots & 8 Vultures
Win Draw Lose Average Killed / σ Average Left / σ

UAlbertaBot 6 0 24 8.9 / 1.57 0.53 / 1.18
Nova 30 0 0 16 / 0 6.43 / 1.87
ECSLBot 30 0 0 16 / 0 6.5 / 1.5

Test8: 10 Vultures vs 18 Zerglings & 10 Hydralisks
Win Draw Lose Average Killed / σ Average Left / σ

UAlbertaBot 5 0 25 24.5 / 2.3 0.67 / 1.57
Nova 30 0 0 28 / 0 6.67 / 1.66
ECSLBot 30 0 0 28 / 0 6.33 / 1.37

icant. However, the difference between UAlbertaBot and the other two bots is

statistically significant. ECSLBot performs well in these mixed opponent type sce-

narios by switching between Pm and Pr depending on target type. For example, if

the current target is a Zergling which is a melee unit, ECSLBot uses Pm, the param-

eters evolved in the Train1 melee scenario for the IM, PF, and reactive control. As

soon as the target changes to an enemy Vulture, ECSLBot will use ranged reactive

control parameters that refer to the ranged attack IM and PF (Pr). This mechanism

performs well even when fighting against enemy units not seen during training

by simply comparing the weapon attack ranges between the target unit and the

friendly unit to determine ranged or melee and thus which parameter set to use.2

2In RTS games, weapons ranges and damage information is known and publicly available
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6.5 ECSLBot versus the State of the Art Bots in Head-to-head Sce-

nario

We have compared the performance of three bots playing against SCAI on two

training and eight test scenarios and the results show that ECSLBot works well

on all scenarios while Nova and UAlbertaBot perform well on some and perform

badly on others. However, what are the results when they play against each other?

To answer this question, we set up our last set of experiments with a Head-to-

head scenario. Each bot plays against the other two bots thirty times with identical

units. Since we evolved parameters for Vultures which are a ranged unit, we used

Vultures as the unit type in this scenario. ECSLBot thus used Pr for control against

UAlbertaBot and Nova. The result shows that ECSLBot beats Nova but is defeated

by UAlbertaBot. The replays show that ECSLBot’s positioning micro is driven by

training against by SCAI and does not generalize well to other Bots. Thus although

ECSLBot’s representation and control algorithms evolve to generalize over oppo-

nent positions, terrain, and opponent types, they are specifically evolved to beat

SCAI.

Therefore, we evolved another set of parameters directly against UAlbertaBot

and applied ECSLBot with this set of parameters against UAlbertaBot and Nova.

Table 6.8 shows the detailed results among all the bots. We can see UAlbertaBot

wins 24 matches, draws 5, and loses 1 against Nova. After examining game replays

for these games, we found that Nova’s micro kites against any type of opponent

units. However, as our experiments with the scenario Train2 showed, kiting too

much against the same ranged attack units actually decreased micro performance.

UAlbertaBot on the other hand, disabled kiting when fighting against the equal
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Table 6.8: Head-to-head scenario over 30 matches.

Win Draw Lose Units Remaining
UAlbertaBot vs Nova 24 5 1 2.33

ECSLBot vs Nova 30 0 0 3.37
ECSLBot vs UAlbertaBot 17 1 12 0.30

weapon range units and defeated Nova easily. Similarly, ECSLBot defeated Nova

on all 30 games without a loss or draw. The average number of units surviving was

3.37 which is higher than UAlbertaBot’s 2.33. The final comparison was between

ECSLBot versus UAlbertaBot. The results show that ECSLBot wins 17 matches,

draws 1 match, and loses 12 matches out of 30. ECSLBot performed quite well on

this scenario against the other bots.

Although our approach can evolve good micro against specific opponents while

generalizing over maps and unit types, for the longer term, we are investigating

co-evolutionary approaches to evolving micro that is effective against a variety of

opponents. Co-evolutionary approaches have been shown to work well in board

games and other video games and provide a promising computational intelligence

approach to robust behavior evolution.

6.6 Conclusions

This chapter focuses on generating effective micro management: group position-

ing, unit movement, kiting, target selection, and fleeing in order to win skirmishes

in real time strategy games. We compactly represented micro behaviors as a com-

bination of influence maps, potential fields, and reactive control parameters in a

60 length bit-string.
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The results in Chapter 4 showed that genetic algorithms perform better than

two hill climbers. In this chapter, we test the micro performances of our evolved

ECSLBot against two state of the art bots, UAlbertaBot and Nova on several skir-

mish scenarios in StarCraft. We designed eight testing scenarios in which bots

need to control a number of Vultures against different types of enemies, to evalu-

ate micro performance. The results show that ECSLBot performs well by switch-

ing parameter values depending on the currently targeted unit. Simple parameter

switching can be done in real-time and ECSLBot thus achieves good micro per-

formance. The results also indicate that Nova is highly effective at kiting against

melee attack units but performs poorly against ranged attack units. UAlbertaBot,

the AIIDE 2013 champion, performs poorly against melee attack units but is excel-

lent against ranged attack units in our scenarios. Compared to the UAlbertaBot,

we generate unit specific micro behaviors instead of a common logic for all units.

With the right parameters, our ECSLBot beats both UAlbertaBot and Nova.
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CHAPTER 7

PHASE FOUR: PARALLEL GENETIC ALGORITHMS

The results in the previous chapter show that we successfully generated high per-

formance micro behaviors for our ECSLBot which could compete with two state

of the art bots in our skirmish scenarios. However, one run of our algorithm takes

twenty one hours to find high quality solutions. We are interested in techniques

to further decreasing the run time of our GAs. One feasible way to run our GA

faster is parallelizing evaluation since most of the computational load comes from

evaluation in StarCraft. Therefore, we applied the same approach used in Star-

Craft to the new RTS game SeaCraft, which runs in parallel. We used the same GA

configuration in SeaCraft as we did in StarCraft. The only improvement we made

to the GA is distributing the evaluation of our individuals to multiple processes

through Open MPI. We setup a skirmish scenario similar to 5 Vultures versus 25

Zealot kiting scenario we used in StarCraft. The objective of this scenario is to kill

Zealots using only 5 Vultures during 2500 frames. Our experiment environment

was two workstations with a Intel Xeon E5-1620 CPU. The operating system was

Ubuntu 12.04, with Open MPI 1.5.4. Running on 16 cores in total.

The results shown in Figure 7.1 are promising and similar to the results we get

in StarCraft. Our bot found a micro behavior that killed 15.57 Zealots in the first

generation. After a few generations, our bot learned to kill 19.70 Zealots on average

in each SeaCraft match. This means our bot evolved effective kiting behaviors

based on the properties of both our units and opponent units SeaCraft. Figure 7.2

shows a snapshot of learned kiting behavior in SeaCraft. Kiting videos of our bot

in SeaCraft can be found online 1.
1http://www.cse.unr.edu/∼simingl/publications.html
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Figure 7.1: Average fitness of bots over generations on 5 Vultures versus 30 Zealots
scenario with parallel GA in SeaCraft.

7.1 Generalization and Transfer

Previous experiments show that our approach of generating effective micro behav-

iors in StarCraft can also be applied to another similar RTS game, SeaCraft with

similar results. This indicates our approach and representation are not specific to

any particular RTS game. Since micro behaviors like kiting and target selection

are useful in both games, we are interested in whether the high performance mi-

cro behaviors evolved in a fast platform like SeaCraft can be used in the slow but

popular platform StarCraft. We adjusted our unit properties, physics, and combat

in SeaCraft to be like in StarCraft for comparison. Due to the closed source nature

of StarCraft, we have yet to reverse engineer and tune SeaCraft to be identical to

StarCraft in movement physics, opponent AI, and combat mechanisms. However,

we wanted to see if results in SeaCraft transferred to StarCraft, even with a quick

initial tuning attempt. We therefore ran our parallel GA in SeaCraft, copied the

best parameters found to ECSLBot in StarCraft and tested our ECSLBot on the 5
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Figure 7.2: Evolved kiting behavior in SeaCraft. 5 Vultures are moving toward
or away from enemy Zealots. Enemy Zealots are surrounded by influence maps
shown by dark squares.

Table 7.1: 5 Vultures vs 25 Zealots over 30 matches in StarCraft.

Avg Score Avg Killed Avg Lost
ECSLBot(StarCraft) vs SCAI 3566.67 17.83 0.20
ECSLBot(SeaCraft) vs SCAI 1386.67 7.13 0.27

ECSLBot(Combined) vs SCAI 3043.54 15.48 0.35

Vultures versus 25 Zealots scenario.

Table 7.1 shows the results of ECSLBot using micro parameters evolved from

SeaCraft on the 5 Vultures versus 25 Zealots over 30 matches. The first row shows

that ECSLBot with parameters evolved in StarCraft kills 17.83 Zealots within 2500

frames. The second row shows the results of copying all 14 SeaCraft evolved
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parameters to ECSLBot running in StarCraft. This performs poorly in kiting the

Zealots. Only 7.13 Zealots are killed on average by this bot. This implied that we

cannot yet directly use the parameters evolved in SeaCraft in StarCraft. However,

we were interested in whether the reactive control parameters, which are some-

what independent of the exact movement physics, evolved in SeaCraft could be

used in StarCraft. We extracted IMs and PFs parameters from the best individual

evolved in StarCraft and extracted reactive control parameters from the best indi-

vidual evolved in SeaCraft and measured its micro performance. The last row in

Table 7.1 shows that the bot with the combined parameters performed fairly well in

StarCraft. Our bot killed 15.48 Zealots, only 2 Zealots less than ECSLBot evolved in

StarCraft and Nova. This implies that the reactive control parameters are transfer-

able between SeaCraft and StarCraft and we believe that this is because behaviors

like kiting, target selection, and fleeing, deriving from unit properties (not move-

ment physics) are very similar in both games. For example, how far away from

enemy should our unit start to kite. When should our unit switch target? On the

other hand, IMs depend on the map and distribution of units, while PFs are sensi-

tive to physics differences. Therefore, IM and PF parameters evolved in SeaCraft

worked poorly in StarCraft.

7.2 Conclusions

This chapter investigate extending our genetic algorithm to be able to evaluate in-

dividuals in parallel based on Open MPI on anther RTS game SeaCraft that enables

easy GA parallellization. The results show that we can evolve high performance

hit and run behaviors in SeaCraft similar to StarCraft but in 8.77 minutes instead

of the 21 hours that the process took in StarCraft. Furthermore, we show that pa-
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rameters that specify reactive control behaviors such as kiting evolved in SeaCraft

are able to be transferred without change to StarCraft with very little loss of unit

performance in similar skirmish scenarios. In the next chapter, we discuss our

conclusions and contributions towards advancing RTS game AI research.
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CHAPTER 8

CONCLUSION

Our research investigates generating effective micro management: group position-

ing, unit movement, kiting, target selection, and fleeing in order to win skirmishes

in real time strategy games. We compactly represented micro behaviors as a com-

bination of influence maps, potential fields, and reactive control parameters in a 60

length bit-string. First, we compared the performances of different heuristic search

algorithms including bit-setting optimizer hill climber, random flip hill climber,

and genetic algorithms on finding high quality micro behaviors. We used Star-

Craft’s built-in AI as our opponent baseline against which to make our compar-

isons. Results show that both bit-setting optimizer and random flip hill climbers

can find local optima quickly against the baseline, but they are not guaranteed to

find good solutions every time. They find good solutions between fifty to seventy

percent of the time starting with ten different random seeds. Compared to hill

climbers, the genetic algorithms always find good combinations of influence maps

and potential fields parameters and produce higher quality solutions compared to

the hill climbers. However, genetic algorithms take much longer to converge.

We are therefore interested in techniques that reliably and quickly find high

quality solutions. We then investigated applying case injected genetic algorithms

to learn from “experiences” generated from previous problems and use this infor-

mation to bias our search and speed up the process of finding high quality solu-

tions. We defined five similar scenarios with different difficulty levels that are sim-

ilar to scenarios in typical human player matches. We applied case-injected genetic

algorithms to these five scenarios in sequence to assess how experience, stored as

cases in a case-base affects performance compared to a genetic algorithm. Genetic
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algorithms with exactly the same parameters as used by case-injected genetic al-

gorithms thus served as a baseline. The results show that case-injected genetic

algorithms performed similar to our genetic algorithms in the first scenario when

the case-base is empty. In scenarios with more scattered enemy units, both ge-

netic algorithms and case-injected genetic algorithms found high quality solutions.

However, case-injected genetic algorithms find high quality solutions up to twice

as fast as genetic algorithms. Finally, in scenarios with more concentrated enemy

units, case-injected genetic algorithms not only find higher quality solutions than

genetic algorithms, but also doubled the speed of finding quality solutions. This

indicates that case-injected genetic algorithms are a suitable technique to apply

across similar problems in RTS games.

After showing that evolutionary algorithms perform better than two hill climbers,

in the rest of this work we settled on using genetic algorithms to search for effec-

tive micro parameters. We test the micro performances of our evolved ECSLBot

against two state of the art bots, UAlbertaBot and Nova on several skirmish sce-

narios in StarCraft. We designed two training scenarios and eight testing scenar-

ios in which bots need to control a number of Vultures against different types of

enemies, to evaluate micro performance. The results show that our genetic al-

gorithm quickly evolves good micro for handling melee attack units and ranged

attack units. ECSLBot performs well by switching parameter values depending

on the currently targeted unit. Simple parameter switching can be done in real-

time and ECSLBot thus achieves good micro performance. The results also indi-

cate that Nova is highly effective at kiting against melee attack units but performs

poorly against ranged attack units. UAlbertaBot, the AIIDE 2013 champion, per-

forms poorly against melee attack units but is excellent against ranged attack units.

Compared to the UAlbertaBot, we generate unit specific micro behaviors instead
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of a common logic for all units. With the right parameters, our ECSLBot beats both

UAlbertaBot and Nova. Our representation leads to good generalization over dif-

ferent numbers of units, different initial positions, and different terrain obstacles.

However, evolving against a specific AI (SCAI) means that ECSLBot performs well

against SCAI, but not as well against other AIs.

Finally, we extended our genetic algorithm to be able to evaluate individuals

in parallel based on Open MPI and apply our approach to anther real-time strat-

egy game SeaCraft that enables easy GA parallellization. The results show that we

can evolve high performance hit and run behaviors in SeaCraft similar to StarCraft

but in 8.77 minutes instead of the 21 hours that the process took in StarCraft. Fur-

thermore, we show that parameters that specify reactive control behaviors such as

kiting evolved in SeaCraft are able to be transferred without change to StarCraft

with very little loss of unit performance in similar skirmish scenarios.

8.1 Contributions

Our work has contributed to computational and artificial intelligence research in

three ways. First, we applied genetic algorithms and case-injected genetic algo-

rithms towards finding effective micro behaviors in RTS games. While genetic

algorithms and case-injected genetic algorithms have previously been used to ad-

dress problems in real-time strategy games, to the best of our knowledge genetic

algorithms and case-injected genetic algorithms have not been applied specifically

towards generating effective micro behaviors. Our results showed that genetic al-

gorithms and case-injected genetic algorithms are promising approaches for gen-

erating high performance micro behaviors.
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Second, we introduced a new approach to represent group micro behaviors in

real-time strategy skirmishes through influence maps, potential fields, and reactive

controls. We combined a unit influence map and a terrain influence map to rep-

resent battlefield spatial information and guide our AI player’s positioning and

reactive control. We use potential fields to control a group of units navigating to

particular locations on the map. With this representation of the problem domain,

we are able to apply genetic algorithms, case-injected genetic algorithms, and hill

climbers to search high performance micro management for winning skirmishes

in real-time strategy games.

Third, we extended our genetic algorithm to be able to evaluate individuals in

parallel based on Open MPI and apply our approach to another real-time strat-

egy game SeaCraft that enables easy genetic algorithm parallellization. The results

show that we can evolve high performance hit and run behaviors in SeaCraft sim-

ilar to StarCraft but in 8.77 minutes instead of the 21 hours that the process took in

StarCraft. Furthermore, the results indicated that parameters that specify reactive

control behaviors such as kiting evolved in SeaCraft are able to be transferred with-

out change to StarCraft with very little loss of unit performance in similar skirmish

scenarios.

8.2 Extensions and Future Work

There are many directions for future research that would benefit from our current

work. First, we are interested in techniques which can further speed up finding

high quality solution for skirmish in real-time strategy games. Some methods like

a more sophisticated case injection or an expert system may be added to our sys-
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tem in the future to increase solution finding performance. Our parallel genetic

algorithms could also benefit from a faster simulator for StarCraft to reduce the

evolving process.

Second, instead of evolving solutions based on a static baseline such as the

built-in StarCraft AI or UAlbertaBot, we could apply co-evolutionary techniques

to produce both sides of the game AI. Genetic algorithms tend to be good at finding

the global solution for a specific opponent. However, the global solution might

be overfit to the trained opponent and performs poor against a new opponent.

Co-evolutionary algorithms are able to generate more diverse and robust micro

behaviors which are competitive against more opponents.

Third, we are also interested in applying genetic algorithms and case-injected

genetic algorithms to more complicated scenarios where we consider mixed unit

types instead of a single type of unit, more complex terrain. In addition, we want

to integrate the usage of unit abilities (abilities are different from weapons) like the

Terran Ghosts EMP pulse, into our micro behaviors.

There are a broad variety of applications for our simulation gaming and evolu-

tionary computing based techniques. On interesting avenue for future research lies

in using genetic algorithm based techniques for resource management in more re-

alistic simulations. Such simulation “games” loosely based on SimCity, can be used

for education and for research into resource management of critical resources [1].

With good simulations modeling a city, state, or country’s resources, ecology, and

economics, we can investigate applying genetic optimization algorithms to effi-

ciently explore trade-offs and manage water, renewable energy, non-renewable

energy, economic drivers, and other factor to gauge short and long term environ-

mental impact. Furthermore, we can visualize such systems in 3D virtual environ-
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ments and use such interactive visualizations (serious games) for educating the lay

public. What-if simulation scenario results that can be easily interpreted by deci-

sion makers have the potential to lead to better decisions by policy makers and

managers.
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