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ABSTRACT 
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The use of hand gesture recognition has been steadily growing in various human-computer 

interaction applications. Under realistic operating conditions, it has been shown that hand gesture 

recognition systems exhibit recognition rate limitations when using a single sensor. Two dual-

sensor approaches have thus been developed in this dissertation in order to improve the 

performance of hand gesture recognition under realistic operating conditions. The first approach 

involves the use of image pairs from a stereo camera setup by merging the image information 

from the left and right camera, while the second approach involves the use of a Kinect depth 

camera and an inertial sensor by fusing differing modality data within the framework of a hidden 

Markov model. The emphasis of this dissertation has been on system building and practical 

deployment. More specifically, the major contributions of the dissertation are: (a) improvement 

of hand gestures recognition rates when using a pair of images from a stereo camera compared to 

when using a single image by fusing the information from the left and right images in a 
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complementary manner, and (b) improvement of hand gestures recognition rates when using a 

dual-modality sensor setup consisting of a Kinect depth camera and an inertial body sensor 

compared to the situations when each sensor is used individually on its own. Experimental 

results obtained indicate that the developed approaches generate higher recognition rates in 

different backgrounds and lighting conditions compared to the situations when an individual 

sensor is used. Both approaches are designed such that the entire recognition system runs in real-

time on PC platform. 
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CHAPTER 1 

INTRODUCTION 

Human-computer interface (HCI) is an active research area in computer vision that emerged in 

the early 1980s. It involves utilizing both human and machine to achieve a specific task. 

Examples of the human-computer interface technology include face recognition, speech 

recognition, eye tracking, gesture recognition and wearable body sensing. Normally, a single 

sensor or a single modality sensor is deployed for HCI. However, the use of a single sensor or a 

single modality sensor has limitations when operating under realistic conditions. This 

dissertation aims at exploring the use of more than one sensor in order to achieve a more robust 

hand gesture recognition. More specifically, the hand gesture recognition problem is examined 

by considering a pair of the same modality sensors and a pair of differing modality sensors. It is 

hypothesized that fusion of information from dual sensors would improve the recognition 

outcome under realistic operating conditions. One fusion scenario involves using two sensors of 

the same modality or a pair of stereo cameras, and the other fusion scenario involves using two 

sensors of differing modalities or a depth camera and an inertial sensor. Real-time application 

has been the thrust of this dissertation, that is placing emphasis on system building or practical 

deployment rather than pure theoretical development. 

Experiments reported in the literature for hand gesture recognition are mostly conducted 

under controlled  lighting and backgrounds when using a camera. However, in practice, image 

information captured under different lighting conditions and in various backgrounds drastically 
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changes the recognition outcome. Similarly, when using a wearable body sensor for hand gesture 

recognition, sensor jitters and drifts occur and as a result  many false alarms get generated. In 

this dissertation, it is hypothesized that the simultaneous utilization of dual sensors of the same 

modality or differing modalities would increase the recognition system robustness by using the 

information from dual sensors in a complementary way. Naturally, there are challenges when 

fusing data from two sensors. When fusion is done across two sensors of the same modality, the 

data collected might contain redundancy. The data fusion approach should be designed in such a 

way that redundant information are identified and not used. When fusion is done across two 

differing modality sensors, data sample correspondences need to be established. For example, 

up-sampling and down-sampling may  be necessary to make sure data frequencies match. 

1.1 DIFFERENT TYPES OF FUSION 

Fusion of information from two sensors can be done in different ways. In general, one 

may perform three types of fusion: 

1) Data-level fusion 

2) Feature-level fusion 

3) Decision-level fusion 

As shown in Figure 1.1, data-level fusion occurs at the data level where the incoming raw 

data from different sensors are combined. This type of fusion can be applied in cases when data 

are of the same type. In other words, when sensors of the same modality are used. Data-level 

fusion combines raw data from several sensors of the same modality for a classifier. Another 

type of fusion is feature-level fusion. Feature-level fusion involves carrying out fusion of 

features after features are extracted from raw data. This type of fusion requires carrying out the 
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processes  of synchronization, noise suppression, down-sampling and up-sampling. The fusion 

type with the least computational complexity is decision-level fusion. It involves fusing the 

decisions made by individual classifiers or decision makers. In this dissertation, the feature level 

fusion is considered.   

 

Figure 1.1. Three different types of fusion: (a) data-level fusion, (b) feature-level fusion, (c) 

decision-level fusion. 
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1.2 HAND GESTURE RECOGNITION METHODS 

The goal in hand gesture recognition to interpret human hand gestures via computer  

algorithms. For instance, sign language and hand motions are used to provide human 

communication. Both non-vision and vision-based approaches have been used to achieve hand 

gesture recognition. An example of a non-vision approach was reported in [1] where finger 

bending was detected by a pair of wired gloves. In general, vision-based approaches are more 

natural as they require no hand fitting devices. In all the vision-based hand gesture recognition 

methods, the task to accomplish is the same. That is, given a sequence of hand images, measure 

the similarity between the image sequence and a hand model. Vision-based approaches can be 

divided into active and passive sensing. Active sensing approaches have proven successful for 

hand gesture recognition, in particular through the use of Kinect [2] [3] and time-of-flight depth 

cameras [4].  

Many passive vision-based hand gesture recognition techniques have been introduced in 

the literature, e.g. [5-7], where images from a single camera are used to achieve hand gesture 

recognition. Hand gestures can be classified into two categories: static and motional gestures. A 

recognition technique for static gestures was reported in [8], where features derived from elastic 

graph matching was used to identify hand postures in complex backgrounds leading to a 

recognition rate of 85%. In [9], a learning approach based on a disjunctive normal form was used 

leading to a recognition rate of 93%. This approach involved the use of normalized hand 

moments and compactness. In [10], finger spell recognition was achieved at the processing rate 

of 125ms per image frame using the CamShift algorithm. In [11], principal component analysis 

was used for hand gesture recognition. 
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 As far as motional hand gesture recognition is concerned, the following three major 

approaches have been utilized: optical flow, model-based and HMM. In [5], a hand gesture 

model was devised using an Adaboost classifier and Haar features together with a Kalman 

predictor to cope with false detection. In [7], a model-based tracking of hand gestures was 

considered. The use of HMM for hand gesture recognition was discussed in [12].  

1.3 STEREO FUSION 

Stereo camera is a type of camera that has two optical sensors or cameras as shown in 

Figure 1.2. In many cases, the distance between the optical centers of  a typical stereo camera is 

comparable to  the distance between human eyes. Stereo cameras are often used to create a sense 

of depth perception.  

 

 

Figure 1.2. Stereo cameras 

The first approach developed  in this dissertation involves performing  hand gesture 

recognition in real-time based on a pair of stereo images by fusing the information from the left 

and the right camera of  an inexpensive stereo webcam, such as the one in [13]. This method is 

different from the traditional high computational complexity method of depth image generation 

from the stereo camera. The attempt made  here is to increase the robustness of hand detection 
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and hence the robustness of hand gesture recognition by using a pair of low-resolution stereo 

images, instead of images taken from a single camera. The challenge in this attempt is to increase 

robustness in a computationally efficient manner so that a real-time throughput is achieved. The 

developed approach establishes a balance between robustness and computational complexity. On 

one hand, the solution is designed to be robust to different backgrounds and lighting conditions. 

On the other hand, it is designed to incorporate time-efficient and relatively simple functions to 

achieve a real-time throughput. The developed approach combines or merges the information 

from the left and right images of a stereo camera in order to increase the robustness of hand 

detection while meeting the real-time constraint. 

Figure 1.3 represents the stereo disparity geometry where a left and aright image are 

captured by a pair of cameras. In this figure, pl and pr denote the projected points of a scene 

point into the stereo images. The disparity of the scene point in the left and right images 

translates into a horizontal displacement of the projected points that are located on so called the 

epipolar line: 

dlr = Xl - Xr.                                                                            (1) 

where Xl and Xr represent the horizontal coordinates of the projected pixels in the left and right 

images, respectively. Given that the vertical disparity can be rectified, the depth of the scene 

point can be computed from the following equation: 

z = b × f / dlr                                                                                                              (2) 

where b denotes the distance between the camera lens centers (baseline) and f the focal length of 

the cameras which are normally identical. It is seen that depth is inversely proportional to 
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disparity in Equation (2). In other words, an object closer to the stereo camera generates higher 

disparity. 

 

 

Figure 1.3. Stereo disparity geometry 

1.4 DUAL-MODALITY FUSION 

The aim of dual-modality fusion is to gain complementary information from differing 

modality sensors where data from a single modality cannot provide sufficient recognition 

accuracy. 

1.4.1Kinect 

Microsoft's Kinect is a low-cost RGB-Depth sensor introduced by Microsoft for human-

computer interface applications.. A similar sensor is  Xtion pro introduced by ASUS. 

 Kinect is the first large-scale, commercial release of a depth sensor device and its 

application have extensively grown in many human computer interaction applications. For 
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instance, this device is used as a game controller by analyzing 3D data using open-source 

algorithms for feature selection, scene analyzing, motion detection, skeleton tracking, face 

recognition and gesture recognition. It deploys an infrared projector and an infrared sensor to 

obtain the depth information. Two software packages are publically available for this sensor 

(OpenNi/NITE and Kinect SDK) that allow performing feature selection, motion tracking, 

gesture and movement recognition. These software packages can be used to track the body joints 

as illustrated in Figure 1.4. They allow Kinect to recognize people and track their actions. Using 

the infrared camera, it can recognize up to six objects in the field of view of the sensor. Two 

objects out of six can be tracked relatively accurately. The joints of users and their movements 

can be tracked in space and time. The skeleton tracking capability enables recognizing objects 

standing or sitting. To be recognized, objects need to be in front of Kinect, making sure that the 

head and upper body are visible; it requires no specific calibration. 

The introduction of Kinect has led to successful recognition in many applications 

including video games, virtual reality and gesture recognition. Not only of its low cost, Kinect is 

selected as one of the sensing devices here because of its ability to cope with 3D gestures in real-

time. Figure 1.5 gives an example of a hand gesture depth image generated by Kinect. In the near 

range mode, Kinect can detect objects at distances between 0.4 and 3.0 meters. 
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Figure 1.4. Skeleton joints of a human body and Kinect world coordinates 

 

Figure 1.5. Depth map generated by Kinect depth camera 

1.4.2 Inertial Sensor 

Expensive inertial sensors such as strategic and tactical sensors which provide low bias 

are  often utilized  in defense and commercial aviation. Low-cost consumer inertial sensors with 

typical bias (>30deg/h) are often used in mobile and video game devices such as Nintendo Wii. 

Inertial body sensors, which produce acceleration and angular signals, are now well-developed 
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allowing various types of motion to be monitored. However, inertial body sensors normally 

produce drifts in dead reckoning.  

 Figure 1.6 shows a 9-axis wireless body sensor having a size of 1”x1.5” that was 

designed and built in the ESSP Laboratory at the University of Texas at Dallas. It consists of (i) 

an InvenSense 9-axis MEMS sensor MPU9150 which captures 3-axis acceleration, 3-axis 

angular velocity and 3-axis magnetic strength data, (ii) a Texas Instruments 16-bit low power 

microcontroller MSP430 which provides data control, (iii) a dual mode Bluetooth low energy 

unit which streams data wirelessly to a laptop/PC, and (iv) a serial interface between MSP430 

and MPU9150 enabling control commands from the microcontroller to the MEMS sensor and 

data transmission from the MEMS sensor to the microcontroller. For the magnetometer to 

provide an accurate reference, a controlled magnetic field without any distortion is required. 

Thus, here the 6-axis data consisting of 3-axis accelerometer and 3-axis gyroscope are used 

noting that a controlled magnetic field is not normally available. 

 

Figure 1.6. Wireless inertial sensor and its world frame 

1.4.3 Fusion of Kinect and inertial sensor 

For hand gesture recognition and movement monitoring, wireless inertial body sensors 

have been used due to their low cost and ease of use. The developed real-time hand gesture 

recognition system is based on the simultaneous utilization of a low-cost inertial body sensor and 
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a low-cost Kinect camera in a collaborative way in order to detect and recognize a set of hand 

gestures appearing in the Microsoft MSR dataset [14]. The utilization of both of these two 

sensing devices (Kinect camera and inertial motion unit (IMU) or sensor)) at the same time is 

expected to provide system robustness for practical deployment. The fusion or merging of data 

from these differing modality sensors has not been previously explored for this purpose. 

The literature includes a large collection of works where either vision sensors or inertial 

body sensors have been used for measurement or recognition of human body movements 

spanning various applications including healthcare rehabilitation and consumer electronics 

entertainment, e.g. [15-22]. Each of the above two sensors has been used individually for body 

movement measurements and recognition. However, each sensor has its own limitations when 

operating under realistic conditions. The major contribution of this work is the development of a 

general purpose fusion framework to increase the robustness of measurement or recognition by 

utilizing the information from two differing modality sensors at the same time and in real-time. 

The above two sensors are deployed in such a way that they act in a complementary manner by 

compensating for erroneous data that may get captured by each sensor individually. The focus of 

this work is on hand gesture recognition. However, it should be noted that the approach is 

general purpose in the sense that the same idea can be applied and extended to other types of 

human body movements. More specifically, this work involves the fusion of data from a cost-

effective inertial body sensor and a cost-effective depth sensor in order to achieve more robust 

hand gesture recognition compared to the situations when these sensors are used individually. 

As far as vision sensors are concerned, two major matching techniques have been 

deployed for hand gesture recognition. These techniques are Dynamic Time Warping (DTW) 
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[23] and Elastic Matching (EM) [24]. Statistical modeling techniques such as particle filtering 

[25] [26], and Hidden Markov Model (HMM) [27] have also been utilized for hand gesture 

recognition. The application of depth sensors, in particular Kinect [28], has been steadily 

growing for body movement measurements and recognition. Several studies utilizing the depth 

sensor Kinect have been reported in the literature for hand gesture recognition. For example, in 

[2], depth images captured by Kinect were used to achieve recognition of American Sign 

Language (ASL). In [3], both depth and color information captured by Kinect were used to 

achieve hand detection and gesture recognition. In [4], a Kinect-based rehabilitation system was 

developed to assist patients in recovering their muscle atrophy and cerebral palsy. In [29], a 

HMM was trained to identify the dynamic gesture trajectory of seven gestures using the Kinect 

sensor. 

As far as inertial body sensors are concerned, many body measurement and recognition 

systems involving such sensors have been presented in the literature. For example, a human 

motion capture system using wireless inertial sensors was presented in [18]. In [19], wireless 

body motion sensors were used to recognize the activity and position of the upper trunk and 

lower extremities. In [20], a customizable wearable body sensor system was introduced. In [21], 

a SVM classifier was used as part of a body sensor network to estimate the severity of 

Parkinsonian symptoms. In [22], Kalman filtering as part of a body sensor network was used to 

obtain dynamic orientations and positions of body limbs. 

The simultaneous utilization of both inertial body sensor and depth sensor in real-time 

has been fairly limited in the literature. In [30], an angle estimation approach involving both an 

inertial sensor and a Kinect senor was discussed where Kalman filtering was applied to correct or 
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calibrate for the data drifting of the inertial sensor. The fusion approach done here differs from 

all the previous works in the sense that both inertial and depth sensor data are used at the same 

time and together as the input to a probabilistic classifier in order to increase the robustness of 

recognition. Another attribute of this approach is that the computational complexity is kept low 

so that its real-time implementation is made possible. Furthermore, both of the sensors deployed 

are cost-effective which eases their joint utilization in various applications. The developed 

approach uses HMM classification as this classifier has been proven effective in various 

recognition applications due to its probabilistic framework. It is also worth stating that this is the 

first time HMM is used to fuse the signals from a Kinect depth camera and an inertial sensor. 

1.5 TEST DATABASES 

For the  stereo fusion approach, 50 cases of a movement were considered under various 

background and lighting conditions consisting of florescent, lowlight, sunlight, incandescent 

lighting.  The input images were captured with the stereo webcam Novo Minoru, which is an 

inexpensive stereo webcam generating low resolution images of size 640*480. Additional stereo 

images were examined using a Fuji stereo digital camera. The CCD sensors of this camera 

support 2-10 MP resolution. 

There are a number of datasets for testing hand posture or gesture recognition [31], [32] 

and [33]. However, most  either include 2D hand gestures or two-handed gestures. For the  dual-

modality fusion approach, two gesture sets were considered. One gesture set considered was the 

single hand gestures in the Microsoft Action Dataset [14] and the other gesture was the $1 

Gesture Recognizer Dataset [34]. There are 5 single hand gestures in the Microsoft Action 
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Dataset and 15 single hand gestures in the $1 Gesture Recognizer Dataset. The hand gestures in 

the $1 Gesture Recognizer Dataset are used to manage and navigate an Opera Web Browser [35].  

1.6 CHAPTER ORGANIZATION 

The rest of the dissertation chapters are organized as follows. In Chapter 2, the existing 

techniques are discussed in detail. The developed fusion approaches are then covered in Chapter 

3. In Chapter 4, a comparison between the stereo fusion approach and the dual-modality fusion 

approach is presented. Finally, the dissertation is concluded in Chapter 5. 
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CHAPTER 2 

EXISTING TECHNIQUES USED IN HAND GESTURE RECOGNITION 

Many techniques have been developed for data fusion within two main processes of  object 

tracking and signal matching. Object tracking involves online-calibration, detecting moving 

objects of interest, and segmentation. Signal matching involves correlating a well-trained signal 

or template signal with a test signal to detect the presence of the template in the test signal. 

2.1 GAUSSIAN MIXTURE MODEL 

Gaussian Mixture Model (GMM) is a well-established method for density estimation. It 

is commonly used as a probabilistic model for representing distributions of features such as the 

sound intensity and frequency of specific words in speech recognition and the skin color cluster 

in face recognition. Normally, GMM parameters are estimated by using the iterative 

Expectation-Maximization (EM) algorithm based on a large training dataset or by using the 

Maximum A Posteriori (MAP) algorithm [36]  from a well-trained prior model. In [37], GMM 

was used to solve image inverse problems via piecewise linear estimations. In [38], GMM was 

applied to recover the spatial images contaminated by noise. In [39], an advanced color 

correction method RACE [40] was utilized to correct the skin-color and GMM was employed to 

describe the hand colors. 
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2.2 MEANSHIFT AND CAMSHIFT 

Meanshift algorithm is a nonparametric iterative algorithm which uses a generalized 

kernel. Originally, it was used as a cluster segmentation method. It requires no prior knowledge 

of the number of clusters. 

Recently, Meanshift [41] [42] and its variation Camshift [43] [44] are mostly used to do 

visual tracking. The window size used to do tracking is the only parameter which needs to be 

estimated in the Meanshift algorithm. In Camshift, the window size is adaptive with the updating 

of the convergence of Meanshift. The major disadvantage of Meanshift and Camshift is that they 

are computationally expensive and do not scale well with the growing dimensionality of the 

feature space. 

2.3 CONVEX HULL 

The convex hull of a point set is the smallest convex space which contains the points. For 

a finite 2D point set, the convex hull is the smallest convex polygon containing all the points. 

Computationally efficient algorithms such as the Quick Hull algorithm [45] exist for computing 

convex hulls. The worst-case complexity of this algorithm for a point-set containing n points is 

O(nlogn). Therefore, the computational efficiency aspect of the convex hull makes it particularly 

suitable for real-time recognition tasks. 

2.4 DYNAMIC TIME WARPING 

The Dynamic Time Warping (DTW) algorithm has been successfully used to evaluate the 

similarity between two given temporal sequences which are varied in time and speed [46]. 

Initially, DTW was used to compare a prototypical model (template) of words in automatic 
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speech recognition [47] [48].  Later. new and more computationally efficient DTW algorithms 

have been developed [49]. This algorithm has  been successfully used to cope with  speed 

variations of time sequences [50] [51]. In spite of its O(n
2
) complexity, it is extensively used  in 

time series matching problems. 

In DTW methods,  different distances are used. In particular, Manhattan distance [52], 

Euclidean distance [49] and Lp Norms [53] are the most common.  For all the three distances, 

the Euclidean distance method provides linear computational complexity and also the 

implementation is the most straightforward without any parameter setting. All of the distances, 

however, are sensitive to temporal misalignments. Time shifted or expanded signals are difficult 

to be recognized. 

2.5 HIDDEN MARKOV MODEL 

Hidden Markov Model (HMM) is a widely used statistical model originally utilized for 

speech recognition. In [54], the HMM toolkit HTK was applied to the features extracted from a 

filterbank for speech recognition. In [55], a recognition system using HMM and a simple pattern 

matching was utilized to predict characters based on their online writing information. In [56], a 

data fusion framework was presented which combined HMM and SVM to recognize gestures 

and postures. Features of the gestures were extracted using statistical properties. The decisions of 

HMM and SVM were then integrated to improve the recognition rate. In [57], skin color 

segmentation was performed in the YCrCb space, followed by Kalman filtering and HMM to 

recognize Malaysian Sign Language (MSL). 
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2.6 SUMMARY 

In this chapter, the major existing techniques previously deploted for hand gesture 

recognition were presented, including Gaussian mixture model, Meanshift and Camshift 

tracking, Convex Hull, Dynamic Time Warping and Hidden Markov Model. In the subsequent 

chapters, these techniques will be revisited within the context of the developed fusion 

approaches. 
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CHAPTER 3 

REAL-TIME HAND GESTURE RECOGNITION USING DUAL SENSORS OF THE  

 

SAME AND DIFFERING MODALITIES 

3.1 INTRODUCTION 

Hand gesture recognition enables  humans to use a most  versatile instrument – their 

hands – in a  natural and effective way to perform HCI. Hand gesture recognition by using 

passive and non-intrusive sensors is often preferred over those using intrusive sensors.  

The fusion strategy utilized in this dissertation is based on using  the same or different 

modality sensors that are low-cost. It is to be noted that  the introduced approaches to hand 

gesture recognition here are general purpose in the sense that they can be applied to other human 

body movements applications. Portions of this chapter have been previously published in 

reference [23], [88], [89] and [90]. 

3.2 PREVIOUS WORKS ON STEREO FUSION 

The use of stereo images for real-time passive vision-based hand gesture recognition has 

been previously addressed in the literature. In [13] and [14], a stereo camera with dedicated 

hardware was utilized to generate depth maps for hand gesture recognition; however, no real-

time processing rates were reported in these references. In [58], multiple sets of stereo camera 

coordinate systems was calibrated and converted into the same world coordinate system to 
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generate a point cloud of the face and the hand. Skin color detection was used to track the hand. 

HMM was utilized to achieve a recognition rate of 89.6% for American Sign Language (ASL) by 

tracking the center of the hand.  In [59], a real-time hand gesture system based on stereo cameras 

was presented. A depth map was generated to detect the hand by using the convex hull 

technique, then a  thinning method was utilized to recognize hand gestures based on hand feature 

points, their angles and distances. A recognition rate of 83% was achieved based on five types of 

hand gestures. In [60], a multi-camera system was utilized to detect face and hand gestures. Two 

fixed cameras were used to predict the hand and face position, while the other two moving 

cameras were used to track face and hand targets based on the skin color technique. Template 

matching was used in [61] to recognize hand gestures. 

3.3 STEREO FUSION 

Two types of hand gestures have been considered in the stereo fusion approach: 

directional hand movement and finger number spelling. The developed  recognition system 

consists of four main components: online color calibration of hand color, color-based hand 

detection, hand tracking, and finally hand gesture recognition. 

3.3.1 Online color calibration 

The goal of the online color calibration component is to adapt subsequent color 

processing to the color characteristic of the light source under which images are captured. This 

technique has been previously used quite successfully for face detection in [62] in order to cope 

with unknown color characteristics of various light sources encountered in practice. The 

calibration is done at the beginning and only once when the system is turned on. It involves 

building a GMM model in the CrCb color space to represent the color characteristics of the hand 
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being captured in an online or on-the-fly manner. The calibration is performed easily by the user 

simply placing his or her hand in a box displayed at the image center, see Figure 3.1. 

Representative skin color pixels are collected within this box using a two-cluster k-means 

clustering algorithm separating skin pixels from non-skin pixels. A GMM model is then trained 

and used for a region growing hand color segmentation within a region-of-interest specified by a 

tracking module mentioned next. More details of the online color calibration can be found in 

[62]. 

 

 

                               (a)                           (b) 

Figure 3.1. Online color calibration: (a) left camera calibration box, (b) right camera calibration 

box 

3.3.2 Hand detection 

There are two main steps for hand detection involving stereo fusion which includes hand 

tracking and improving robustness based on stereo images. 

3.3.2A Hand tracking 

The existing tracking methods including optical flow, either sparse [63] or dense [64], 

and Kalman filtering pose challenges as far as the real-time aspect is concerned due to their 
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computational complexity. To have a computationally efficient tracking, the CamShift algorithm 

[43] is adopted here. In this algorithm, the hue component of color is used for tracking. Figure 

3.2 shows a sample hue histogram associated with a hand. The histogram within a window is 

used as the hand tracking feature together with a searching window. The center of the window is 

used as the seed point for the so called flood fill region growing operation [65] to achieve 

segmentation in a computationally efficient manner. The CamShift algorithm works similar to 

the MeanShift algorithm but it also copes with dynamically changing distributions by readjusting 

the search window size. 

 

Figure 3.2. Sample hue histogram used for CamShift hand tracking 

The segmented areas from the left and right images are merged by aligning the left and 

right images as was previously reported in [66]. The merged area is then used for hand contour 

extraction. The flow chart of all the components involved in the developed approach appears in 

Figure 3.3. 
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3.3.2B Increasing robustness via stereo images 

The following rules are introduced to merge the information from the left and right 

cameras leading to more robust hand detection as compared to using a single camera image. Let 

1x i
denote the current hand mask and x i

 the previous hand mask. The superscripts l and r 

indicate the left and right camera label for the masks. Let S represent the mask area and δ a 

percentage parameter reflecting the mask area difference between the frames. The 

experimentations done have revealed that a δ value in the range 25%-30% can cope with the 

variability in hand motions made by various subjects. Due to the continuity of motion, it is not 

physically possible to have a large mask area difference between the frames either left to right or 

current to previous. Even when the hand is approaching the camera, the mask area is expected to 

grow consistently. Only when the current mask does not exhibit a large difference from the 

previous one in both the left and right images, the masks get merged. For instance, first the mask 

areas between a current left frame
1(x )l

iS 
 and a current right frame

1(x )r

iS 
are compared. If there 

exists relatively little difference between them as per Equation (3), the change is considered to be 

consistent. Next, the change in the mask areas between a previous and a current frame is 

examined. If both of the left and right area changes, that is
1| (x ) (x ) |l l

i iS S  and 
1| (x ) (x ) |r r

i iS S  , 

show a consistent change between a current and a previous image as per Equation (4), the current 

left and right hand masks are merged and get updated as per Equation (5). If one of the areas 

leads to an inconsistent change as per Equation (6) or (8), the update process in Equations (7) 

and (9) is done. If there exists a large difference between a current left or a current right frame 

and the image side which does not change consistently as per Equations (11) and (13), it is not 
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used for the next time frame and only the consistent image side is used as per Equations (12) and 

(14). Otherwise, no update is done for the next time frame as per Equation (15). 

 

Figure 3.3. Flowchart of the introduced real-time solution using stereo images 

 

1 1 1if | (x ) (x ) | * (x )l r l

i i iS S S                                         (3)
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1 1 1 1if | (x ) (x ) | * (x ) | (x ) (x ) | * (x )l l l r r r

i i i i i iS S S and S S S                 (4)
 

1 1 1x x xl r

i i i                             (5)
 

 1 1 1 1elseif | (x ) (x ) | * (x ) | (x ) (x ) | * (x )l l l r r r

i i i i i iS S S and S S S          (6)
 

1 1x xl

i i                                   (7)
 

1 1 1 1elseif | (x ) (x ) | * (x ) | (x ) (x ) | * (x )l l l r r r

i i i i i iS S S and S S S                 (8)
 

1 1x xr

i i                               (9)
 

else        

1x xi i                                (10)
 

else                                                                                            

1 1 1 1

1 1

if | (x ) (x ) | * (x ) and | (x ) (x ) | * (x )

and (x ) (x )

l l l r r r

i i i i i i

l r

i i

S S S S S S

S S

    

 

     

 
   (11)

 

1 1x xl

i i                        (12)
 

1 1 1 1

1 1

elseif (x ) (x ) * (x ) and | (x ) (x ) | * (x )

and (x ) (x )

l l l r r r

i i i i i i

l r

i i

S S S S S S

S S

    

 

      



    

(13)

 

1 1x xr

i i                            (14)
 

else    

1x xi i 
                           (15) 
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3.3.2C Hand contour detection 

 For gestures that use the hand contour, it is required that the hand contour is obtained in a 

computationally efficient manner. Many contour detection techniques have been discussed in the 

literature involving the following four major approaches: prior knowledge [71], morphology 

[72], level set [73], and active contour model [74]. 

In [67], a sequential Monte-Carlo technique based on corner detection and deterministic 

optimization was proposed to extract a contour. The extraction of the contour depends on the 

balanced prior constraints on continuity and smoothness. In [68] a morphology based contour 

extraction algorithm was discussed based on a series of simple morphology transform operations 

such as dilation, erosion, XOR and union. In [69], a contour algorithm  based on the maximum 

likelihood method was considered. This technique is free of parameter estimation and the 

segmentation is adaptable  to complex connected objects. However, the complexity of the  

contour extraction is too high for real-time deployment. In [70], the method of active contour 

model (SNAKE) was shown to be effective. This method does not try to solve the contour 

problem at one shot. The framework is computationally complex due to its  semi-automatic, live-

wire edge detection scheme, where  the boundary detection problem is formulated as an 

optimization problem searching for  an optimal path between a start-pixel and an end-pixel. The 

optimal path is the one that generates  the minimum cost in traversing from the start-pixel to the 

end-pixel with  the cost being the cumulative cost accumulated going from one pixel to its 

neighbor. The cost function is a weighted sum of three costs consisting of Laplacian, gradient 

magnitude, and gradient direction. The computational complexity of this technique does not 

allow its real-time deployment. 
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In the devised recognition system, the morphology technique  is adopted due to its 

computational efficiency. 

3.3.3 Hand gesture recognition 

Two types of hand gestures are considered here. The first type of gestures is motional 

gestures consisting of seven directional hand gestures of rotation, forward, backward, left, right, 

up, and down. The second type of hand gestures is finger spelling consisting of six numbers of 

zero, one, two, three, four, and five. The first type of hand gesture is recognized via the dynamic 

time warping technique while the second type of hand gesture is recognized via the convex hull 

technique. 

3.3.3A Dynamic Time Warping (DTW) 

Dynamic time warping (DTW) is a widely used technique for comparing sequences or 

time series by searching for optimal alignment. In this section, a brief review of the DTW 

algorithm is provided. 

Let us consider two sequences or time series: X = {x1, x2, x3, ... xN} and Y={y1, y2, y3, ... 

yM} as shown in Figure 3.4. The two sequences can be arranged on the adjacent sides of a grid. 

The DTW distance calculation starts from the bottom of the grid. Inside each cell, a distance 

measure is placed for comparing the corresponding elements in the sequences. The best match or 

the alignment of the points appear in the path through the grid which minimizes the total distance 

between them. The process of computing the overall distance involves calculating all possible 

routes through the grid and for each one computing the overall distance. The overall distance of 

DTW is the minimum of the sum of the distances between the individual elements on a path 

divided by the sum of the weighting function which is used to normalize the path length. 
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A  warping path of the DTW algorithm satisfies the following three conditions: 

 Boundary: The first and last elements of X and Y are matched to each other. The 

warping path starts and finishes in the diagonally opposite corner of the accumulated cost 

matrix and will possibly turns back on itself.  

 Continuity or step size: This condition restricts the allowable steps in the warping 

path to adjacent cells. The path advances one step at a time. Both i and j index only 

increase by at most 1 on each step along the path. 

 Monotonicity: The path will not turn back on itself. Both i and j index either stay 

the same or increase. Figure 3.4 shows an example of the boundary condition.  

The optimal warping path is calculated by satisfying the constraints given above with 

minimal cost. The foregoing constraints allow one to restrict the moves which can be made from 

any point in the path and so limit the number of paths to be considered. Instead of calculating all 

the possible routes in the grid which satisfy the above conditions, the DTW algorithm keeps 

track of the cost of the best path to each point in the grid, and this makes the algorithm effective. 

3.3.3B Motional gesture recognition 

As was reported in [71], although disparity can provide the hand depth information using 

a stereo camera, it loses its sensitivity when the hand is hold far from the camera. Here, for 

forward and backward movements, the contour area variance is used due to its simplicity. For the 

other motional hand gestures, the Dynamic Time Warping (DTW) algorithm is used as this 

algorithm is capable of generating the dynamic distance between an unknown gesture signal and 

a set of reference gesture signals in a computationally efficient manner while coping with 

different speeds of motional hand gestures. The sample gesture signal comes from the seed point 
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of the CamShift tracking. More details of the DTW algorithm are discussed in [72] [73]. The 

warping distance in the DTW algorithm utilized is the sum of Euclidean distances of the time 

series for three dimensions. 

 

Figure 3.4. DTW grid example 

A tree structure is used to indicate the priority level of the hand gestures (see Fig 3.5). 

For rotation hand gesture, the circumscribed angle of the seed point in the CamShift tracking is 

used to serve as the motional signal of “rotation” gesture at the highest priority level followed by 

“forward” and “backward” gestures. The disparity of the seed point is used as the motional signal 

for these gestures. An actual sample “rotation” signal and its corresponding reference signal are 
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shown in Figure 3.6. The gradient or position difference of the seed point between consecutive 

frames is considered to be the motional signal of “left” gesture. An actual sample “left” signal 

and its corresponding reference signal are shown in Figure 3.7. The gesture for testing DTW 

recognition appears smooth and without any halting. The range of gesture speeds for DTW is 2-

4s. 

 

 

Figure 3.5. Priority level of the hand gestures 
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Figure 3.6. A sample “rotation” signal and corresponding reference signal 

 

Figure 3.7. A sample “left” signal and corresponding reference signal 
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3.3.3C Finger spelling recognition 

Finger spell recognition is done by first going through the hand contour extraction. Then, 

the convex hull of the detected contour is used to determine the number of finger tips as reported 

in [74]. From number 2 to number 5, the recognition can be achieved by the number of the 

defects from the convex hull. For instance, if there are n complete convex hulls in a hand 

contour, it implies that there are n+1 fingers. However, this rule does not hold for numbers 0 and 

1. The area of the convex hull is thus used instead. As per Equation (16), the area of the convex 

hull Sconvex is compared with the contour area Scontour, 

0 *
Number

1 otherwise

convex contourS S
 


                  (16) 

where α denotes a parameter related to the camera distance range where gestures are made. The 

finger spell recognition requires a relatively high resolution of the hand contour. If the distance 

range is considered to be too far from the camera, the recognition will suffer due to images 

having low resolution. If the distance range is considered too close to the camera, the recognition 

will also suffer, this time due to too much variation in the hand contour. The experimentations 

done indicated that the following α’s provided relatively consistent outcome:  α = 10% for 15-

35cm camera distance range and 20% for 10-15cm camera distance range. Sample finger spell 

contours and recognized numbers are shown in Figure 3.8. 

Also, based on extensive experimentations, the following operating distance ranges and 

corresponding α were found to match well: α = 10% for 15-35cm distance from the camera and 

20% for 10-15cm distance from the camera. 
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Figure 3.8. Finger spelling contours and recognized numbers 

3.4 PREVIOUS WORKS ON DUAL-MODALITY SENSORS FUSION 

In previous works on sensor fusion, a number of methods and algorithms have been used 

including Central Limit Theorem, Kalman filtering, Bayesian network, Dempster-Shafer and 

Hidden Markov Model. In [75], a probability model using Central Limit Theorem was proposed 

to detect the location of targets. The independent Poisson random variables were summed over 

from different infrared cameras.  In [76], a real-time navigation system consisting of electro-
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optical stereo sensors and Inertial Measurement Unit (IMU) sensors was used to render views 

from a 3D graphic model. In [77], a road matching strategy based on Dynamic Bayesian 

Network was utilized for vehicle localization and road matching. This algorithm merged the 

information of a GPS device and a GIS device to improve the performance of the localization 

estimation. In [78], a multi-modality biometric identification system based on face and ear bio-

information was presented by using   Garbor wavelet features and the  Dempster-Shafer  theory 

to achieve a robust recognition. In [79], the HMM was used to recognize human actions by 

fusing  data from multiple cameras. 

3.5 DUAL-MODALITY SENSORS FUSION 

Inertial body sensor and Kinect each has its own shortcomings. Inertial body sensor 

suffers from long-term drift and Kinect sensor cannot cope with occlusion and its data reliability 

is lost in the presence of fast movements. In the dual-modality sensors  approach in this work, a 

framework is introduced in order to fuse the data from a wireless inertial body sensor and a 

vision-based Kinect sensor. The motivation behind this data fusion is to utilize the strengths of 

these sensors at the same time in order to achieve robustness for hand gesture recognition. By 

using both of the sensors, a total of 9 signals are generated: 3  Kinect depth coordinate signals of 

the hand skeleton location and 6 acceleration and gyro signals from the wireless inertial body 

sensor worn on a subject’s wrist as illustrated in Figure  3.10. An example position signal from 

the Kinect camera and an example acceleration signal from the inertial sensor are shown in 

Figure 3.9. All of the signals are then fed simultaneously into a multi-HMM classifier to 

recognize hand gestures.  

 



35 

 

 

Figure 3.9. Example signals from Kinect depth camera (left) and wireless inertial body sensor 

(right) 
 

 

Figure 3.10. Two differing modality sensing for hand gesture recognition 

3.5.1 Resampling and filtering 

The sampling rates of the Kinect and inertial sensor used are 30 Hz and 200 Hz, 

respectively. Thus, in order to fuse the data from these two sensors, the inertial sensor data is 

down-sampled to match the sampling frequency of the Kinect. Because of the presence of 

various noise sources in an actual operating environment, jitters often appear in the Kinect 

skeleton signal as well as in the inertial signal. A moving average window is thus used in order 

to reduce jitters in the signals. After carrying out extensive experimentations, it was found that a 



36 

 

moving window of size between 9 and 19 generates a substantial reduction of jitters in the 

signals. Figure 3.11 shows an example of the raw and filtered signals from the Kinect and inertial 

(IMU) sensors. 

 

 

Figure 3.11. Raw signal vs. filtered signal, top: Kinect, bottom: inertial sensor 

3.5.2HMM classifier 

Markov chain is a widely used model to cope with a random sequence of a finite number 

of states. In this work, arrays of consecutive gesture coordinates in Kinect and arrays of angular 

velocities of an inertial sensor are considered to form a Markov chain where the true states of the 

model S = {S1, S2, …, SM} are hidden in the random signal sequences which are not directly 

observable. This type of Markov chain model is known as Hidden Markov Model (HMM). 
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HMMs aim at building a probability model to represent the true states S from an actual 

observation sequence O = {O1, O2, …, OT} and a state sequence Q = {q1,q2, …, qT} together 

with the probability of the observation sequence O.  

The HMM model characterizes a state transfer probability distribution A and an 

observation symbols probability distribution B. Given an initial state matrix π, an HMM is 

described by the triplet λ = {π, A, B}. Since gesture recognition involves temporal signal 

sequences, a left-right HMM topology is adopted here, see Figure  3.12. 

 

Figure 3.12. Left-right HMM topology 

A brief mention of the HMM equations are provided in this section. More details are 

available in [16]. Suppose a random sequence O = {O1, O2, …, OT} is observed; let V = {v1, v2, 

…, vT} denote all possible outcomes and let S = {S1, S2, …, SM} denote all HMM states with qt 

representing the state at time t, where T indicates the number of time samples. Then, the HMM 

probability matrices are as follows: 

π = {pi = P(Q1 = Si )}, 1≤ i ≤ M;          (17) 

A = {aij = P(qt = Sj | qt-1 = Si)}, 1≤ i, j ≤M;     (18) 

B = {bj(k) = P(Ot = vk | qt = Sj)}, 1≤ j ≤M, 1≤ k ≤T;    (19) 

where
1

1
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b k


       (20) 
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For the training of HMM, first its parameters need to be initialized. Among all the 

initialization matrices, the most important initialization is the transition matrix A where the 

constraints to control the initial transitions are set. By zeroing out all the nonadjacent 

probabilities in this matrix, the state transitions are made limited to the sequence of adjacent 

states representing a hand gesture. That is to say, for the application under consideration here, the 

prior is set to constrain all possible state transitions to only occur from left-to-right and between 

two adjacent states. A typical initial transition matrix A is thus formed to be 

0.5 0.5 0 0 0

0 0.5 0.5 0 0

0 0 0.5 0.5 0

0 0 0 0.5 0.5

0 0 0 0 1

A

 
 
 
 
 
 
  

         (21) 

Based on the initialization matrices, let O = {O1, O2, …, OT} be the observation sequence 

of a hand gesture, Q = {q1,q2, …, qT} be the corresponding state sequence with the probability of 

the observation sequence O given by                     
 
   . According to the Baum-

Welch algorithm [16], the probability           
     

     
     

        
can get calculated 

towards updating λ. Since P(O, Q|λ)=P(O|Q, λ)P(Q, λ), one gets  

                                         
         

   
            

   
       

(22) 

To update the current model λ = {π, A, B}, let the updated model be           . For estimating 

the model           , let the probability of the joint event that O1, O2, …, Ot is observed be 

t(i), thus t(i) = P(O1, O2, …, OT, qT = Si|λ). In a backward way, let t(i) = P(Ot+1, O t+2, …, OT, 

qT = Si|λ).  The probability being in state Si at time t and state Sj and time t+1 is thus given by 
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 (23)  

Given t(i) as the probability of state Si at time t, one gets 
 
     

 
      

   ,           , 

where 

   
 
                          (24) 
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Considering a very small threshold value, e.g. ε = 10
-6

, or if log{ P(O|λ)} - log{P(O| )} < ε, the 

training can get terminated. The flow chart of the training process is shown in Figure  3.13. 

For testing, a test sequence is fed into several trained HMM models each corresponding 

to a hand gesture in order to calculate the likelihood probabilities. Then, a high (e.g., 95%) 

confidence interval is applied to the probabilities to classify the sequence. Let  and  represent 

the mean and variance of the likelihood probabilities. For the 95% confidence interval, whenever 

none of the probabilities is larger than       
 

  
 (where n = 5 when testing based on Microsoft 

MSR hand gesture dataset, n = 10 when testing on $1 Recognizer hand gesture dataset), the 

sequence is rejected and the gesture is considered to be a NOT-DONE-RIGHT gesture. If the 
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sequence is not rejected, the gesture with the maximum probability is considered to be the 

recognized gesture, see Figure  3.14. 

 

Figure 3.13. Flowchart of HMM training 
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Figure 3.14. Flowchart of HMM testing or recognition 

3.6 MULTI-HMM CLASSIFICATION 

During operation or testing the HMM models, the variance of the likelihood probabilities 

is sometimes not adequate enough to recognize the hand gestures. The small variance can be 
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traced back to the intrinsic drift error of the inertial sensor or to the unreliable Kinect data due to 

rapid hand movements. In these cases, HMMs could fail and the likelihood probabilities may not 

be distinct enough and thus false negative would occur. To enhance the differences among the 

likelihood probabilities and to decrease false negatives, an improvement of the previous solution 

is done in this section by utilizing a multi-HMM classification [90] for recognition of single hand 

gestures. 

The improvement is made by combining the decisions of multiple HMM classifiers to 

form a mixture model. Often, the data captured by one type of sensor does not capture all the 

variations of a hand gesture. However, by using differing modality sensors within a multi-HMM 

classification framework, it is hypothesized that a more robust recognition can be achieved under 

realistic conditions. Multi-HMM classification is not a new concept and has been previously 

applied to many applications, e.g. text recognition [80], handwriting recognition [81], finger-

print recognition [82], speaker recognition [83]. However, this work is the first time such a 

classification approach is applied to hand gesture recognition based on two differing modality 

sensors. More specifically, the fusion approach introduced in this dissertation  differs from all the 

previous approaches not only by using a multi-HMM classification but also by using the data 

from both a depth camera (Kinect) and a wearable inertial  sensor. Another important aspect of 

this paradigm is that the computational complexity of the recognition pipeline is kept low leading 

to its real-time implementation. 

In what follows, it is discussed how the multi-HMM classification increases the 

robustness of recognition. An HMM model characterizes a state transfer probability matrix A and 

an observation symbols probability matrix B. Given an initial state matrix π, an HMM is 
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described by the triplet λ = {π, A, B}. Here, a left-to-right HMM topology is adopted since hand 

gesture recognition involves temporal signal sequences. Let O = {O1, O2, …, OT} be  the 

observation sequence of a hand gesture, where T denotes the number of time samples. The theory 

of HMM is well established and the details on HMM can be found in many references, e.g. [16]. 

In spite of intrinsic drift errors associated with inertial sensors and Kinect errors due to 

rapid hand movements, the improvement made to increase the overall correct recognition rate is 

reported next.   

Similar characteristic input signals of coordinates, acceleration, and angular gyro are 

clustered and fed into three component HMM classifiers, each classifier generating its own 

likelihood probability as shown in Figure  3.15. All likelihood probabilities from the component 

classifiers are then multiplied by equal weights and are pooled together to generate an overall 

probability P(O|λ) for the input signals. 

 

Figure 3.15. Framework of the multiple HMM classification 

Each hand gesture data consists of 9-dimensional signals (3 dimensions for angular 

gyros, 3 dimensions for accelerations, and 3 dimensions for Kinect hand skeleton coordinates). 

The models considered are denoted by λg0= {πg0, Ag0, Bg0}, λa0 = {πa0, Aa0, Ba0} and λK0 = {πK0, 
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AK0, BK0} representing gyro, accelerometer and Kinect HMM models, respectively. The 

parameters of these models are then estimated according to the Baum-Welch algorithm [11]. 

During operation or testing, P(O|λ) is represented by the three likelihood probabilities P(O|λg), 

P(O|λa) and P(O|λK). The gesture with the maximum average of the three likelihood probabilities 

is then considered to be the recognized gesture.  As a result of using a multi-HMM in this 

manner, the difference of the probability likelihoods gets diminished or the discriminatory power 

gets increased. 

3.7 SUMMARY 

Three new real-time hand gesture recognition systems have been discussed in this chapter 

using different fusion approaches. First, based on a pair of stereo images, a rule-based 

framework merging the information from the left and right images of a stereo image pair was 

introduced. Second, a data fusion approach to hand gesture recognition based on the probabilistic 

HMM classification involving the two sensors of inertial body sensor and Kinect depth sensor 

was introduced. Third, a multi-HMM classification was considered for the two differing 

modality sensors in order to improve the recognition performance of this real-time hand gesture 

recognition system. 
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CHAPTER 4 

RECOGNITION RESULTS AND DISCUSSION 

In this chapter, the results of various experiments conducted are presented and discussed to see 

how well the developed  hand gesture recognition systems perform. First, the DTW hand gesture 

recognition rate based on different distances of time series are compared. Then, for the stereo 

fusion approach,  the results of hand detection in different lighting conditions, as well as 

motional hand gesture recognition confusion matrices, finger spelling recognition confusion 

matrices are presented when using a single image and when using a pair of images. In the third 

part, a cross-modality comparison between the two dual-sensors approaches is presented. Finally, 

the classification outcome of using one HMM model and a multi-HMM model are compared. 

4.1 DTW RECOGNITON RATE BASED ON DIFFERENT DISTANCES 

DTW allows comparing  two temporal sequences, a sample sequence X: (x1, x2, ..., xn) 

and a testing sequence Y: (y1, y2, ..., ym), based on a  local distance measure. In this section, the 

recognition rate based on different distance measures consisting of Manhattan distance (L1), 

Euclidean distance (L2) and p-norm distances (Lp) are compared. 

Manhattan distance, see Equation (27), also called Taxicab distance indicates  the 

distance a taxi has to drive in a rectangular street in Manhattan to get from an origin to a 
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destination. The L1 norm of the vector d is the sum of the absolute values of all the terms, p is the 

number of warping path steps, normally it is bigger than n and m, 

            
 
        (27) 

For the Euclidean distance calculation, the local distance between a sample sequence and a 

testing sequence is computed as per Equation (28): 

 

              
 
                  (28) 

The p-norm distances, where q>2, is computed as per Equation (29):  

             
  

    
 

        (29) 

Note that for q=1, the Manhattan distance is resulted and for q=2,the Euclidean distance 

is resulted. Considering the tradeoff between computational complexity and recognition rate,  

Euclidean distance was found to be the best choice here. As can be seen from Equations (27)-

(29) and Table 4.1, the computational complexity of the distance measures  increases 

proportionally with q, while the hand gesture recognition rate does not increase proportionally 

with q. 

Table 4.1. Computational complexity of DTW using different distances 

 Manhattan distance Euclidean distance p-norm distances 

Complexity O(p) O(p
2
) O(p

q
) 

 

As can be seen from Figure 4.1, the recognition rate achieved by using the Euclidean 

distance is competitive with the other distances while having  a relatively lower computational 
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complexity. Moreover, since the mapping between the components of two temporal sequences is 

fixed, the Manhattan distance is  very sensitive to noise  and time misalignment and thus are not 

suitable to recognize relatively complex gesture such as DrawX. 

One gesture set consisting of the five single hand gestures in the Microsoft Action 

Dataset [14] was used to examine  the recognition outcome based on the DTW algorithm. There 

are 5 single hand gestures in the Microsoft Action Dataset and the gestures are illustrated in 

Figure 4.2. Ten subjects were asked to perform these five gestures 30 times in front of different 

backgrounds. Different backgrounds included different scenes appearing in different lighting 

conditions including outdoor day light, indoor florescent and indoor incandescent lights. Each 

subject performed the gestures at different speeds which were timed to last between 1 to 3 

seconds. The variance of Figure 4.1 is based on ten subjects. q=5 for the p-norm distance was 

used. 

 

Figure 4.1. Hand gesture recognition rate (%)  and variance based on different distances. 
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 Figure 4.2. Single hand gestures in the Microsoft Action Dataset: “wave”, “hammer”, “punch”, 

“drawX”, “circle” 

4.2 COMPARISON OF SINGLE AND STEREO CAMERA 

This section covers the experiments carried out  to show the  increase in robustness when 

the information from two cameras were used  versus using the information from a single camera. 

The algorithm is written in C which was run  on a PC with a dual core 2.1GHz processor. The 

input images were captured with the stereo webcam Novo Minoru, which is an inexpensive 

stereo webcam generating low resolution images of size 640*480 shown on the left side of 

Figure 4.3. Additional stereo images were examined using a Fuji stereo digital camera shown on 

the right side of Figure 4.3.  
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Figure 4.3. Novo Minoru and Fuji stereo digital camera 

Table 4.1 provides a comparison of the hand detection outcome using a single image 

versus a pair of stereo images under different lighting conditions. As can be seen from this table, 

both the single and stereo image approaches achieved a frame rate of 31-32 frames per second 

(fps) or about 30ms per frame. However, as shown in Table 4.2, by merging the information 

from the left and right images, the average percentage detection rate was considerably improved 

(by nearly 60%). It is worth noting that in the presence of adequate lighting (florescent), both 

single and stereo images  achieved a relatively higher detection rate. While in the presence of 

inadequate or outdoor lighting (low light and sunlight), the utilization of stereo images 

outperformed single images due to the rule-based fusion of stereo images. 

In the experiments carried out, 50 cases of each movement ("Left", "Right", "Up", 

"Down", "Forward", "Backward" and "Rotation") were considered under various lighting and 

background conditions.  Tables 4.3 and 4.4 provide the recognition confusion matrices when 

using single images versus when using stereo images. As can be seen from Table 4.4, by 

combining the information from the left and right cameras, in particular for backward and 

forward motions, the overall recognition rate was significantly improved. Also, as noted in 

Figure 4.4, the variance when using single images is larger than when using stereo images. This 

is caused by merging the gesture information based on stereo images, the robustness is enhanced, 
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in particular for the gestures "Forward" and "Backward". The use of a single camera does not 

allow one  to detect the depth information. In this comparison, the growing and shrinking of the 

hand blob was used to represent the "Forward" and "Backward" gesture cases. 

For motional hand gestures, the average recognition rate reached 93% when using stereo 

images as compared to 66% when using single images. Notice that there was a 4% of no 

detection. This was attributed to the low resolution of the captured hand images. 

The finger spell recognition comparison when using single images versus when using 

stereo images is provided in Tables 4.5 and 4.6. For finger spell recognition, the average 

recognition rate reached 92% when using stereo images as compared to 62% when using single 

images. For the finger spelling experiments, 100 cases of each finger spelling number were 

considered under various lighting conditions. As can been seen from Tables 4.5 and 4.6, by 

merging the hand contour of the stereo images, the recognition rate was improved. Since the 

shape (convex hull) and the orientation of the hand contour highly depend on the camera viewing 

angle and the lighting conditions, the features of finger spelling are not always reliable for 

recognition in the case of a single camera. The application of stereo cameras can alleviate some 

of the problems. Since the viewing angles of a pair of stereo cameras are different, the shape and 

extracted hand contours from the two cameras act in a complementary manner. Also, as seen 

from Figure 4.5, the variance when using stereo images was smaller than when using single 

images. 
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Table 4.2. Comparison of hand detection rates when using single images versus pairs of stereo 

images 

 

LIGHTING CONDITION 

Single image Stereo images 

Detected 

frames 

Frame 

rate 

Detected 

frames 

Frame 

rate 

FUJI_FLORESCENT 105/245 33 230/245 31 

MINORU_FLORESCENT 137/350 33 329/350 31 

MINORU_FLORESCENT_LOWLIGHT 82/315 31 215/250 30 

MINORU_SUNLIGHT 56/200 32 178/200 32 

FUJI_INCANDESCENT 144/400 34 368/400 32 

MINORU_COMPLEXBACK_ 

FLORESCENT 

62/295 31 264/295 30 

MINORU_INCAND_LOWLIGHT 52/275 31 232/275 30 

MINORU_INCAND 64/265 32 236/265 31 

Average detection rates 26% 32 89% 31 

 

In Table 4.7, the total processing time for all the components in the recognition system is listed, 

which is approximately 30ms per frame. Note that the online color calibration took 1sec but it is 

not included in the table since it is done only once at the beginning when the system is turned on. 
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Table 4.3. Motional hand gesture recognition confusion matrix when using single images 

Hand gesture recognition 

rates (%) 

Recognized Gesture 

L RI U D F B RO 
No 

detection 

Actual 

Gesture 

Left(L) 76 4 2 4 2 4 2 6 

Right(RI) 6 72 4 2 4 2 2 8 

Up(U) 2 4 76 2 4 0 2 10 

Down(D) 4 2 4 74 2 4 4 6 

Forward(F) 2 6 4 10 42 20 12 4 

Backward(B) 2 4 2 14 18 48 6 6 

Rotation(RO) 2 0 2 2 4 6 74 10 

 

Table 4.4 Motional hand gesture recognition confusion matrix when using stereo images 

Hand gesture 

recognition rates (%) 

Recognized Gesture 

L RI U D F B RO 
No 

detection 

Actual 

Gesture 

Left 98 0 0 0 0 0 0 2 

Right 0 96 0 0 0 2 0 2 

Up 0 0 96 0 0 0 0 4 

Down 0 0 0 96 2 0 0 4 

Forward 4 2 2 0 86 0 0 6 

Backward 0 2 2 0 0 92 0 4 

Rotation 0 0 4 2 0 0 88 6 
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Figure 4.4. Hand gesture recognition rate (%)  when using single images versus pairs of stereo 

images. 

 

Figure 4.5. Finger spelling recognition rate (%)  when using single images versus pairs of stereo 

images. 
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Table 4.5. Finger spelling recognition confusion matrix when using single images 

Finger spelling 

recognition rates 

(%) 

Recognized Number 

Zero One Two Three Four Five 

Actual 

Number 

Zero 67 15 18 0 0 0 

One 31 62 5 1 1 0 

Two 5 6 60 25 4 0 

Three 6 10 6 63 5 10 

Four 0 10 10 3 65 12 

Five 0 5 6 10 24 55 

 

 

Table 4.6. Finger spelling recognition confusion matrix when using stereo images 

Finger spelling 

recognition rates 

(%) 

Recognized Number 

Zero One Two Three Four Five 

Actual 

Number 

Zero 88 12 0 0 0 0 

One 0 92 4 4 0 0 

Two 0 4 94 2 0 0 

Three 0 0 4 90 3 3 

Four 0 0 0 2 95 3 

Five 0 0 0 3 3 94 
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Table 4.7. Average and standard deviation processing times of the component of the introduced 

approach 

 
Components Processing time (ms) 

Color based hand tracking 5±0.5 

Gesture recognition 15±0.9 

Finger spell recognition 10±1.0 

Total processing time  per frame 30±2.4 

 

In a different set of experiments, the developed approach was compared to two existing 

approaches in the literature that have been shown to provide high recognition rates, namely 

optical flow and HMM.  

Table 4.8 provides a comparison of the developed approach with these approaches. As 

shown in this table, although the recognition rates between the three approaches were more or 

less comparable, the dual-sensor approach achieved a higher frame rate leading to a real-time 

throughput. 

4.3 CROSS COMPARISON BETWEEN STEREO CAMERA APPROCH AND DUAL-

MODALITY APPROACH 

In this section, the two approaches of stereo cameras and dual-modality sensors are 

compared. Two gesture sets were considered for the comparison of two approaches. One gesture 

set consisted of the single hand gestures in the Microsoft Action Dataset [14] and the other 

gesture set consisted of the $1 Gesture Recognizer Dataset [34]. There are 5 single hand gestures 

in the Microsoft Action Dataset and 15 single hand gestures in the $1 Gesture Recognizer 
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Dataset. The gestures in the Microsoft Action Dataset are illustrated in Figure 4.2. The hand 

gestures in the $1 Gesture Recognizer Dataset are used to manage and navigate an Opera Web 

Browser [35]. These gestures are illustrated in Figure 4.6 with the beginning of a gesture 

indicated by a solid dot. 

Table 4.8. Comparison of average and standard deviation recognition and frame rates between 

two existing approaches and the introduced approach 

 

LIGHTING 

CONDITION 

Optical Flow HMM Introduced approach 

Recognition 

rate (%) 

Frame 

rate/s 

Recognition 

rate (%) 

Frame 

rate/s 

Recognition 

rate (%) 

Frame 

rate/s 

FLORESCENT 91±3.1 3±0.4 92±2.3 4±1.4 94±3.0 31±1.0 

SUNLIGHT 84±5.2 2±2.0 87±5.2 6±4.0 89±5.3 32±3.4 

INCANDESCENT 87±4.3 3±1.5 91±3.0 3±1.5 89±3.1 31±1.6 

Average and 

standard deviation 

of  recognition rate 

and frame rate per 

second 

87±4.2 3±1.3 90±3.5 4±2.3 90±3.8 31±2.0 

 

In the stereo recognition system, the 3D hand position is localized by a stereo camera, 

and thus the centroids of the hand blobs and the hand bounding boxes are used to represent the 

hand movement. The DTW algorithm is then used to generate a dynamic distance between a 

hand gesture model signal and an actual hand movement signal. While in the dual-modality 

recognition system, the temporal hand gestures are considered to be statistical variations in both 

positions and state transitions among a set of dynamic models. By feeding the trajectories into 
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trained models, HMMs are used to generate the statistical variations in both the position and 

transition of hand movements, as well as to segment the gesture stream automatically. 

 

Figure 4.6. Single hand gestures in the $1 Gesture Recognizer Dataset 

In the experiments carried out, ten subjects were asked to perform each gesture in the two 

gesture sets 30 times with different speeds in front of different backgrounds. For the stereo 

camera fusion system, the DTW distance indicated how well an unknown signal matched a 

number of template or reference signals. A template or reference signal of a hand gesture was set 
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up by taking the average of the training sample signals. The signals consisted of the 3-axis {X, Y, 

Z} gradient signals after merging the information from the stereo images. For the dual-modality 

sensor fusion, 8-12 HMM states were used. The 3-axis accelerometer and the 3-axis gyroscope 

signals from the wireless inertial sensor and the 3-axis {X, Y, Z} gradient or position difference 

signals from the Kinect camera were captured simultaneously in a synchronized manner to form 

the observation sequence O = {O1, O2, …, OT} of the HMM classifiers. The recognition process 

was repeated 10 times. Each time a different set of 9 training subjects was chosen. The 

recognition rates obtained were averaged to remove any bias to a particular subject. In addition 

to performing the hand gestures correctly, incorrect gestures were also performed such that half 

of them were the same gestures but done in an incomplete way and the other half were random 

gestures. The incorrectly performed gestures is named “Negative” here while the correctly 

performed gestures named “Positive”. 

Table 4.9 shows the performance outcome of the stereo fusion system and Table 4.10 

shows the performance outcome of the dual-modality fusion system based on the Microsoft 

Action gesture set. The experiments included a positive database containing a total of 5*30=150 

correctly done gestures and a negative database containing 50 incorrectly done gestures, named 

“Not-done-right (N)”, with 25 gestures done in incomplete ways and 25 done by random hand 

movements. In these tables, PPV (positive predictive value) and NPV (negative predict value) 

indicate the recognition rates of correct and incorrect hand gestures, respectively; TP, FP, TN 

and FN denote true positive, false positive, true negative and false negative, respectively. Table 

4.11 and Table 4.12 summarize the performance outcomes of the two fusion systems for the $1 

Recognizer gesture set. For this gesture set, the experiments included a positive database 
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containing 15*30=450 correctly done gestures and a negative database containing 100 

incorrectly done gestures. 

As an alternative way to show the recognition outcomes of the two fusion systems, Table 

4.13 through Table 4.17 provide the confusion matrices obtained, where Table 4.15 provides 

False recognition rate  per subject in the Microsoft Action Dataset when using the dual-modality 

fusion system. In these tables, the following abbreviations are used for the hand gestures: “Arrow 

(A)”, “Carret (Ca)”, “Check mark (Ch)”, “Circle (Ci)”, “Delete (De)”, “Diamond (Di)”, “Left 

square bracket (L)”, “Question mark (Q)”, “Rectangle (Re)”, “Right square bracket (Ri)”, “Spiral 

(Sp)”, “Star (St)”, “Triangle (T)”, “X”, “V” and “Not-done-right (N)”. Figures 4.7 and 4.8 

present the recognition rates when using the stereo fusion system versus the dual-modality sensor 

system. As can be seen from Figure 4.7, in addition to the recognition rate getting improved by 

merging the information from the left and right images, the gesture "Punch" and "DrawX" still 

showed relatively low variance. This is attributed to the gesture "Punch", for which detecting the 

depth by the stereo cameras is not as accurate as Kinect. For the gesture "DrawX", the dual-

modality fusion system tracked speedy hand movements more robustly than those of the stereo 

cameras. Based on $1 Recognizer Dataset, Figure 4.8 shows the hand gesture recognition rate 

when using the stereo fusion system versus the dual-modality fusion system. 
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Table 4.9. Recognition rates of the stereo fusion system for the hand gestures in the 

Microsoft Action Dataset 

 

Hand 

gesture 

Recognition outcome 

Total 
Recognition 

measures True False 

Positive 123 27 150 PPV=0.82 

Negative 42 8 50 NPV=0.83 

*PPV(Positive Predictive Value)=TP/(TP+FP) NPV(Negative Predictive Value)=TN/(TN+FN) 

 

 

Table 4.10. Recognition rates of the dual-modality fusion system for the hand gestures in the 

Microsoft Action Dataset 

 

Hand 

gesture 

Recognition outcome 

Total 
Recognition 

measures True False 

Positive 138 12 150 PPV=0.92 

Negative 48 2 50 NPV=0.97 

 

 

Table 4.11. Recognition rates of the stereo fusion system for the hand gestures in the $1 

Recognizer Dataset 

 

Hand 

gesture 

Recognition outcome 

Total 

Recognition 

measures True False 

Positive 338 112 450 PPV=0.75 

Negative 73 27 100 NPV=0.73 
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Table 4.12. Recognition rates of the dual-modality fusion system for the hand gestures in the $1 

Recognizer Dataset 

 

Hand 

gesture 

Recognition outcome 

Total 
Recognition 

measures True False 

Positive 407 43 450 PPV=0.90 

Negative 91 9 100 NPV=0.91 

 

Table 4.13. Confusion matrix (% recognition rates) for the hand gestures in the Microsoft Action 

Dataset when using the stereo fusion system 

  

 
wave hammer punch drawX circle N 

wave 80 3 3 5 8 1 

hammer 2 85 3 5 2 3 

punch 4 6 83 2 3 2 

drawX 5 4 3 76 7 5 

circle 6 2 1 4 86 1 

N 1 1 5 9 1 83 

 

 

Table 4.14. Confusion matrix (% recognition rates) for the hand gestures in the Microsoft Action 

Dataset when using the dual-modality fusion system  

 

 
wave hammer punch drawX circle N 

wave 92 1 1 5 1 0 

hammer 5 91 2 2 0 0 

punch 3 5 91 0 0 1 

drawX 0 0 6 88 6 0 

circle 1 0 0 0 99 0 

N 0 1 1 1 0 97 
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Table 4.15. False recognition rate (%) per subject in the Microsoft Action Dataset when using 

the dual-modality fusion system 

Subject# 1 2 3 4 5 6 7 8 9 10 

False 

recognition 
rate 

6 8 3 11 7 5 8 8 4 10 

 

 

 

Figure 4.7. Hand gesture recognition rates (%)  when using the stereo fusion system versus the 

dual-modality fusion system for the Microsoft Action Dataset. 

 

As can be seen from these tables, the dual-modality fusion system outperformed the 

stereo fusion system. On average, the dual-modality system provided 12% higher recognition 

rate for the Microsoft Action Dataset and 16% higher recognition rate for the $1 Recognizer 

Dataset compared to the stereo system. This is attributed to the fact that the sensors in the dual-

modality fusion system are of two different modalities capturing different attributes or features 
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of a hand gesture while in the stereo fusion system, both the left and right video images used 

have the same vision-based modality. 

 

Table 4.16. Confusion matrix (% recognition rates) for the hand gestures in the $1 Recognizer 

Dataset when using the stereo fusion system 

 

 A Ca Ch Ci De Di L Q Re Ri Sp St T V X N 

A 68 12 8 0 1 5 0 1 1 1 1 0 1 0 0 1 

Ca 0 74 0 0 1 0 0 0 12 10 0 0 0 1 1 1 

Ch 6 0 66 2 2 1 1 0 0 0 0 2 1 13 3 3 

Ci 0 0 0 79 0 0 7 0 5 0 6 0 3 0 0 0 

De 0 0 0 0 82 1 0 0 0 4 0 0 5 0 6 2 

Di 0 0 0 11 1 70 4 0 6 0 4 0 3 0 0 1 

L 0 0 0 10 1 5 77 0 0 3 0 0 2 0 0 2 

Q 6 0 1 0 1 0 0 79 0 6 0 1 0 0 2 4 

Re 0 0 0 5 0 9 1 0 72 0 0 0 8 0 5 0 

Ri 1 1 0 2 2 0 4 6 0 76 0 0 0 0 5 3 

Sp 0 1 1 11 0 3 0 0 0 3 79 0 0 0 0 2 

St 2 0 0 3 3 7 0 0 0 0 2 73 5 0 3 2 

T 0 0 0 2 2 6 0 2 5 0 0 0 78 0 4 1 

V 1 2 12 3 6 0 0 0 0 0 0 0 2 73 0 1 

X 0 1 1 3 7 0 0 0 0 3 0 0 0 0 83 2 

N 1 2 2 1 0 1 5 3 1 4 2 1 1 3 0 73 
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Table 4.17. Confusion matrix (% recognition rates) for the hand gestures in the $1 Recognizer 

Dataset when using the dual-modality fusion system 

 

 A Ca Ch Ci De Di L Q Re Ri Sp St T V X N 

A 89 3 0 0 0 0 0 0 0 0 0 0 0 2 3 3 

Ca 3 90 2 0 3 0 0 0 0 0 0 0 0 0 0 2 

Ch 1 2 91 0 2 0 0 0 0 0 0 0 0 4 0 0 

Ci 0 0 0 87 1 3 0 0 4 0 0 0 4 0 0 1 

De 0 3 4 0 86 3 0 0 0 0 0 0 0 0 3 1 

Di 0 0 0 3 0 89 0 0 3 0 0 0 4 0 0 1 

L 0 0 0 0 0 2 95 0 1 1 0 0 0 0 0 1 

Q 0 0 0 0 0 0 0 94 0 3 0 0 1 0 1 1 

Re 0 0 0 4 0 5 0 0 86 0 0 0 3 0 0 2 

Ri 0 0 0 0 2 0 5 2 0 87 0 0 0 0 3 1 

Sp 0 0 0 0 0 0 0 0 0 0 98 0 0 0 0 2 

St 2 0 0 0 0 0 0 0 1 0 0 92 2 0 0 3 

T 0 0 0 3 0 6 0 0 1 0 0 0 88 0 0 2 

V 0 1 7 0 2 0 0 0 0 0 0 0 0 89 0 1 

X 0 0 0 3 1 4 0 0 0 0 0 0 0 1 90 1 

N 2 0 0 0 0 0 1 1 0 2 0 2 0 0 1 91 

 

Table 4.18. provides the comparison between the two real-time systems in terms of frame 

rates and computational complexity. As can be seen from this table, the frame rates of the two 

systems were comparable with the computational complexity of the stereo system being slightly 

higher than the dual-modality system. The computational complexity of the stereo system is 

O(m
2
+L

2
) where  denotes the number of mean shift iterations, m

2
 image resolution, L the 

length of the warping path in the DTW algorithm.  
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Since the parameters of the HMM model are pre-trained, the computational complexity 

of the dual-modality system is basically the same as the complexity of the HMM model testing 

which is given by O(RNS), where R denotes the number of operations to compute an observation 

likelihood, N the number of states in HMM, and S the number of observations [84]. It is worth 

pointing out that the skeleton tracking is done by a dedicated processor as part of the Kinect 

depth sensor [85]. As a result, the skeleton is retrieved in real-time and the skeleton image 

resolution has little influence on the computational complexity. Example video clips of the two 

systems operating in real-time can be seen at the websites  [86] and [87]. 

 

 

Figure 4.8. Hand gesture recognition rates (%)  when using the stereo fusion system versus the 

dual-modality fusion system based on $1 Recognizer Dataset. 
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If the system is applied to embedded framework, it is necessary to discuss the 

performance rate with the change of the frame difference or sampling rate. Figure 4.9 gives the 

average gesture recognition rates (%) when using the dual-modality sensor fusion versus the 

stereo sensor fusion for the $1 gesture dataset. As can be seen from this figure, the frame 

difference in the origin is 0 which represents that the default sampling rate of the Kinect depth 

sensor is 30 frames per second. The recognition rate dropped significantly by using frame 

difference greater than 5. As illustrated in this figure, in order to keep the  computational 

complexity low, the sampling rate was thus chosen to be 26 frames per second. 

Table 4.18. Frame rates and computational complexity for the stereo fusion system versus the 

dual-modality fusion system  

Hand gesture 

recognition system 

Frame rates per 

sec 

Computational 

complexity 

Stereo Fusion 24±1.6 O(m
2
+ L

2
) 

Dual-Modality 

Fusion 
27±3.0 O(RNS) 

 

4.4 MULTI-HMM CLASSIFICATION 

Additional experiments were carried out to compare the performance when using the 

multi-HMM classification in place of the HMM classification. The code is written in C running 

in real-time on a PC platform with a quad core 1.7GHz processor and 4G memory. The input 

signals were captured with a Microsoft Kinect sensor and the inertial sensor mentioned in section 

2. The inertial sensor was placed and tied to a subject’s wrist. 
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Figure 4.9. Recognition rate variation with frame difference  

Ten single hand gestures of the $1Unistroke Recognizer application set [34] were 

considered. These gestures are illustrated in Figure 4.10 with the beginning of a gesture indicated 

by a solid dot. 

The subjects were asked to perform the ten gestures 30 times with different speeds in 

different backgrounds and lighting conditions. 8-12 HMM states were used as this range of states 

allowed covering all the major transitions in the training sequences. The 3-axis accelerometer 

and the 3-axis gyroscope signals from the wireless inertial sensor and the 3-axis {X, Y, Z} 

coordinates signals from the Kinect camera were captured in real-time and simultaneously to 

form the observation sequence O = {O1, O2, …, OT}. For the training of the original HMM 

classifier, the 9-dimensional signals were used to train one HMM classifier for each hand 
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gesture. While in the multi-HMM approach, three HMM classifiers were trained for each hand 

gesture, where each classifier was trained for 3-dimensional signals. The recognition process was 

repeated 10 times, each time choosing a different set of 9 training subjects. The recognition rates 

obtained were then averaged to remove any bias to any particular subject. For the “Not-done-

right (N)” gesture category, 100 gestures were performed with 50 of them done in an incomplete 

way and with the other 50 done totally differently. 

 

Figure 4.10. Hand gestures in the $1 Gesture Recognizer set 

The recognition rates obtained are shown in the form of confusion matrices in Tables 

4.18 and 4.19 for the ten studied gestures of “Arrow (A)”, “Circle (C)”, “Diamond (D)”, “Left 

square bracket (L)”, “Question mark (Q)”, “Right square bracket (R)”, “Spiral (S)”, “Triangle 

(T)”, “X”, “V” and the additional class of “Not-done-right(N) ”. The capital letters in the tables 
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represent the corresponding initials of the gestures. Table 4.18 corresponds to the situation when 

using the original HMM training and testing method, and Table 4.19 when using the multiple 

HMM training and testing method. Figure 4.11 represents the hand gesture recognition rates 

when using the HMM classification versus the multi-HMM classification based on the $1 

Recognizer Dataset. One can see that the variances of both the HMM and the multi-HMM 

dataset are small. This is attributed to the fact that the dual-modality fusion system  captures 

different attributes or features of hand gestures and thus achieves a more robust recognition rate. 

As can be seen from Table 4.19, many misclassifications occurred among these gestures: 

“Circle”, “Diamond”, “Question mark”, “Right square bracket” and “Triangle”. This was caused 

due to the variance of the likelihood probabilities not being discriminatory enough to distinguish 

these gestures from each other. 

From Table 4.20, it is seen that the multi-HMM classification led to lower 

misclassifications among these gestures leading to a higher overall recognition rate of 91% 

compared to the overall recognition rate of 84% under realistic operating conditions. Basically, 

this increase in the overall recognition rate was due to the enhanced discriminatory power of 

using the multi-HMM classification, in particular for situations involving unreliable signals from 

the inertial sensor or the Kinect camera. Figure 4.12 illustrates an example of normalized 

likelihood probability of Hand gesture QuestionMark when using the HMM classification versus 

the multi-HMM classification. As can be seen from this figure, the among-class difference or the 

variance of the recognized gesture set was improved. The multi-HMM classification exhibited 

more robustness. 
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Table 4.19. Hand gesture recognition rates (%) when using the HMM classification 

 A C D L Q R S T X V N 

A 85 0 0 0 0 0 0 2 6 7 0 

C 0 82 5 0 0 0 1 10 0 0 2 

D 0 8 79 1 0 0 2 7 0 0 3 

L 0 7 0 90 0 0 1 2 0 0 0 

Q 0 0 0 0 82 14 1 0 2 0 1 

R 1 0 0 0 13 81 1 0 2 0 2 

S 0 10 4 0 0 0 84 2 0 0 0 

T 0 3 12 0 0 0 1 82 1 0 1 

X 0 2 0 0 0 0 0 2 87 7 2 

V 7 0 1 0 0 0 0 0 5 86 1 

N 0 2 7 2 0 0 0 3 2 0 84 
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Table 4.20. Hand gesture recognition rates (%) when using the multi-HMM classification 

 A C D L Q R S T X V N 

A 88 0 0 0 0 0 0 1 4 7 0 

C 0 90 5 0 0 0 2 2 0 0 1 

D 0 4 86 0 0 0 1 3 2 0 4 

L 0 5 0 90 0 1 1 2 0 0 1 

Q 0 0 0 0 91 6 0 0 1 0 2 

R 0 0 0 0 7 92 0 0 1 0 0 

S 0 5 1 0 0 0 93 1 0 0 0 

T 0 4 3 0 0 0 1 90 0 0 2 

X 0 1 0 0 0 0 0 3 91 5 0 

V 2 0 0 0 0 0 0 0 3 95 0 

N 0 2 1 0 1 0 0 2 3 1 90 
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Figure 4.11. Hand gesture recognition rate (%)  when using the HMM classification versus the 

multi-HMM classification for the  $1 Recognizer Dataset. 

 

 

Figure 4.12. Normalized likelihood probability of the hand gesture QuestionMark (%) when 

using the HMM classification versus the multi-HMM classification. 
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4.5 SUBJECT-VARIATION STUDY 

The major source of false recognitions is speed variations when different subjects 

perform the gestures. In a study carried out as part of this dissertation, both male and female 

subjects having different heights and ages were asked to perform the above gestures. The 

subjects performed the gestures at their own tempo or at different speeds. 

It was found that when hand gestures were performed at high speeds, the fewer recorded 

samples of the gesture paths, see Figure 4.13, led to a lower accuracy of the gesture  “Done-

Right”. In general, there is a trade-off between the accuracy of performing gesture trajectories 

and their recognition accuracies. 

  

Figure 4.13. A sampled circular “Circle” gesture done at normal speed (left) and the same 

gesture done at fast speed (right) 

 

 

Templates for different gestures, refer to Figure 4.10, were projected onto a 2D surface. 

Subjects wore the inertial sensor on their right wrist when the system was turned on and the 

gestures were initiated by smoothly moving the right hand in front of the Kinect camera at a 

proper distance range with the beginning of the gesture indicated by a solid dot in the figure. 
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Subjects were instructed to perform 10 trials. They were also told not to leave the boundary of 

the display screen while performing the gestures.  

As shown in Figure 4.10, the circular movements such as the gestures “Circle”,  

“Diamond” and “Triangle”, originate from the upper middle of the screen and end in the same 

location. These three gestures generated the most false recognitions. This was due to the fact that 

when the speed of the gesture “Circle” was relatively high, the sampling of the gesture trajectory 

“Circle” did not include enough samples to generate accurate recognition. As a result, the gesture 

“Circle” was incorrectly recognized as the gesture “Diamond”. The same situation occurred for 

the gesture “Triangle”. The low sampling of the gesture “Triangle” caused the false recognitions 

of the gesture “Circle” since the corners of the gesture “Triangle” were missed. Moreover, there 

are four movement segments in the gesture “Diamond” while there are three in the gesture 

“Triangle”. If the second and the third segments of the gesture “Diamond” were not recorded 

properly, because of the speed  in the consecutive segments being relatively high, the gesture 

“Diamond” was mistaken with the gesture “Triangle”.  

For the same reason, the second group of gestures which generated the most false 

recognitions were the  gesture “Question Mark” and “Right square bracket”. These gestures 

started from the upper left of the screen and ended in the lower middle. 

The third group of gestures which generated the most false recognitions were the gesture 

“V” and “X”. As can be seen from Figure 4.10, there are three movement segments in the gesture 

“X”. When relatively tall subjects performed the gesture “X”, the skeleton of them were bigger 

and thus the second movement segment of the gesture fell out of the display screen. As a result,  

this gesture was mistakenly recognized as “V”. 
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For the subject-variation study, the experimental results for different subjects are shown 

in Tables 4.21 through 4.32, which illustrate the effect of speed variations. Note that, in general,  

the recognition rates using  the dual modality approach outperform those using a single modality 

approach. 

 

Table 4.21. Hand gesture recognition rates (%) of Subject 1 when using inertial sensor alone 

 

 A C D L Q R S T X V N 

A 85 0 0 0 0 0 5 5 0 0 5 

C 0 80 0 0 0 0 5 5 0 5 5 

D 5 5 75 0 0 0 0 5 0 0 10 

L 0 10 0 80 0 0 0 0 0 0 10 

Q 0 0 0 0 90 5 0 0 0 0 5 

R 0 0 0 0 10 85 0 0 0 0 5 

S 0 5 5 0 0 0 75 5 0 0 10 

T 0 5 0 5 0 0 0 80 0 0 10 

X 0 0 0 0 0 0 0 5 80 5 10 

V 5 0 0 0 0 0 0 0 10 75 10 

N 0 0 5 0 5 0 0 0 5 0 85 
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Table 4.22. Hand gesture recognition rates (%) of Subject 1 when using Kinect alone 

 

 A C D L Q R S T X V N 

A 85 0 0 0 0 0 5 0 5 0 10 

C 0 85 0 0 0 0 5 5 0 0 5 

D 0 10 80 0 0 0 0 5 0 0 5 

L 0 5 0 80 0 0 0 5 0 0 10 

Q 0 0 5 0 85 5 0 0 0 0 5 

R 0 0 0 0 0 85 0 0 0 0 15 

S 0 0 5 0 0 0 80 5 0 0 15 

T 0 0 0 5 0 0 5 85 0 0 5 

X 0 0 5 0 0 0 0 10 80 0 5 

V 10 0 0 0 0 0 0 5 5 75 5 

N 0 0 0 0 5 0 0 0 5 5 85 
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Table 4.23. Hand gesture recognition rates (%) of Subject 1 when using the dual-modality fusion 

system 

 

 A C D L Q R S T X V N 

A 90 0 0 0 0 0 5 5 0 0 0 

C 0 85 5 0 0 0 0 5 0 0 5 

D 0 10 85 0 0 0 0 5 0 0 0 

L 0 5 5 90 0 0 0 0 0 0 0 

Q 0 0 0 0 90 10 0 0 0 0 0 

R 0 0 0 0 5 90 0 0 5 0 0 

S 0 5 5 0 0 0 85 5 0 0 0 

T 0 5 5 0 0 0 0 90 0 0 0 

X 0 0 0 0 0 0 0 0 80 15 5 

V 5 0 0 0 0 0 0 0 15 80 0 

N 0 0 5 0 0 5 0 0 0 0 90 
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Table 4.24. Hand gesture recognition rates (%) of Subject 2 when using inertial sensor alone 

 

 A C D L Q R S T X V N 

A 85 0 0 0 0 0 0 5 0 0 10 

C 0 80 5 0 0 0 0 5 0 0 10 

D 0 5 85 0 0 0 0 0 0 0 10 

L 0 0 0 90 0 0 0 0 0 0 10 

Q 0 0 0 0 85 10 0 0 0 0 5 

R 0 0 0 0 5 85 0 5 0 0 5 

S 0 0 0 5 0 0 85 5 0 0 5 

T 0 5 0 0 0 0 0 85 0 0 10 

X 0 5 5 0 0 0 0 0 75 5 10 

V 5 5 5 0 0 0 0 0 10 70 5 

N 0 5 0 5 5 0 0 0 0 5 80 
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Table 4.25. Hand gesture recognition rates (%) of Subject 2 when using Kinect alone 

 

 A C D L Q R S T X V N 

A 85 0 0 0 0 0 5 0 0 5 5 

C 0 85 5 0 0 0 0 0 0 0 10 

D 0 5 85 5 0 0 0 0 0 0 5 

L 0 0 5 80 0 5 0 0 0 0 10 

Q 0 0 0 0 85 15 0 0 0 0 0 

R 0 0 0 0 5 85 0 0 0 0 10 

S 0 0 0 0 0 0 85 5 0 0 10 

T 0 10 0 0 0 0 0 80 0 0 10 

X 0 5 5 0 0 0 0 0 75 0 15 

V 0 0 5 0 0 0 0 0 5 85 5 

N 0 0 0 5 5 5 0 0 5 0 80 
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Table 4.26. Hand gesture recognition rates (%) of Subject 2 when using the dual-modality fusion 

system 

 

 A C D L Q R S T X V N 

A 100 0 0 0 0 0 0 0 0 0 0 

C 0 85 5 0 0 0 0 5 0 0 5 

D 0 5 90 0 0 0 0 5 0 0 0 

L 0 0 0 95 0 0 0 0 0 0 5 

Q 0 0 0 0 85 15 0 0 0 0 0 

R 0 0 0 0 10 85 0 0 5 0 0 

S 0 0 0 0 0 0 95 5 0 0 0 

T 0 10 5 0 0 0 0 85 0 0 0 

X 0 0 0 0 0 0 0 0 75 15 10 

V 5 0 0 0 0 0 0 0 15 75 5 

N 0 0 0 5 5 0 0 0 0 0 90 
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Table 4.27. Hand gesture recognition rates (%) of Subject 3 when using inertial sensor alone 

 

 A C D L Q R S T X V N 

A 85 0 0 0 0 0 0 0 0 5 10 

C 5 80 5 0 0 0 0 5 0 0 5 

D 0 10 85 0 0 0 0 0 0 0 5 

L 0 5 0 90 0 0 0 0 0 0 5 

Q 0 0 0 0 80 10 0 0 0 0 10 

R 0 0 0 0 10 85 0 0 0 0 5 

S 0 0 0 0 0 0 90 0 0 0 10 

T 0 0 5 0 0 0 0 85 0 0 10 

X 0 0 5 0 5 0 0 0 80 5 5 

V 0 0 0 0 0 0 0 0 5 85 10 

N 0 5 5 0 0 0 0 5 0 5 80 
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Table 4.28. Hand gesture recognition rates (%) of Subject 3 when using Kinect alone 

 

 A C D L Q R S T X V N 

A 85 0 0 0 0 0 0 0 10 5 0 

C 0 80 5 0 0 0 0 5 0 0 10 

D 0 5 85 0 0 0 0 0 0 0 10 

L 0 0 0 90 0 0 0 0 0 0 10 

Q 0 0 0 0 85 5 0 0 0 5 5 

R 0 0 5 0 5 85 0 0 0 0 5 

S 0 0 0 0 0 0 90 5 0 0 5 

T 0 5 5 0 0 0 0 85 0 0 5 

X 0 0 5 0 0 0 0 0 80 10 5 

V 0 0 0 0 0 0 0 0 5 90 5 

N 0 0 5 0 0 0 0 5 0 10 80 
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Table 4.29. Hand gesture recognition rates (%) of Subject 3 when using the dual-modality fusion 

system 

 

 A C D L Q R S T X V N 

A 90 0 0 0 0 0 0 0 0 5 5 

C 0 85 5 0 0 0 0 10 0 0 0 

D 0 15 85 0 0 0 0 0 0 0 0 

L 0 5 0 95 0 0 0 0 0 0 0 

Q 0 0 0 0 85 10 0 0 0 0 5 

R 0 0 0 0 10 85 0 0 0 0 5 

S 0 0 0 0 0 0 95 5 0 0 0 

T 0 5 5 0 0 0 0 90 0 0 0 

X 0 0 0 0 0 0 0 0 90 5 5 

V 0 0 0 0 0 0 0 0 10 90 0 

N 0 0 5 5 0 0 0 5 0 5 80 
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Table 4.30. Hand gesture recognition rates (%) of Subject 4 when using inertial sensor alone 

 

 A C D L Q R S T X V N 

A 80 0 0 0 0 0 0 5 5 0 10 

C 0 80 10 0 0 0 0 0 0 5 5 

D 0 5 80 0 0 0 0 5 0 0 10 

L 0 5 0 90 0 0 0 0 0 0 5 

Q 0 0 0 0 80 10 0 0 0 5 5 

R 0 0 0 0 5 80 0 0 5 0 10 

S 0 0 0 0 0 0 85 5 0 0 10 

T 0 5 0 0 0 0 0 90 0 0 5 

X 0 0 0 5 0 0 0 0 80 10 5 

V 5 0 0 0 0 0 0 0 5 80 10 

N 0 5 0 0 5 0 0 5 15 0 70 
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Table 4.31. Hand gesture recognition rates (%) of Subject 4 when using Kinect alone 

 

 A C D L Q R S T X V N 

A 85 0 0 0 0 0 0 5 5 0 5 

C 0 80 5 0 0 0 0 0 0 5 10 

D 0 5 85 0 0 0 0 5 0 0 5 

L 0 5 0 85 0 0 0 0 0 5 5 

Q 0 0 0 0 85 5 0 0 0 0 10 

R 0 0 0 0 10 80 0 0 5 0 5 

S 0 0 0 0 0 0 80 15 0 0 5 

T 0 0 0 0 0 0 0 90 0 0 10 

X 0 0 0 5 0 0 0 0 80 5 10 

V 10 0 0 0 0 0 0 0 5 80 5 

N 0 5 0 5 5 0 5 5 0 0 75 
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Table 4.32. Hand gesture recognition rates (%) of Subject 4 when using the dual-modality fusion 

system 

 

 A C D L Q R S T X V N 

A 90 0 0 0 0 0 0 5 5 0 0 

C 0 85 15 0 0 0 0 0 0 0 0 

D 0 15 80 0 0 0 0 5 0 0 0 

L 0 5 0 95 0 0 0 0 0 0 0 

Q 0 0 0 0 80 15 0 0 0 0 5 

R 0 0 0 0 15 80 0 0 5 0 0 

S 0 0 0 0 0 0 95 5 0 0 0 

T 0 5 5 0 0 0 0 90 0 0 0 

X 0 0 0 0 0 0 0 0 85 15 0 

V 5 0 0 0 0 0 0 0 15 80 0 

N 0 5 5 0 5 0 0 5 5 0 75 
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4.6 SUMMARY 

In this chapter, the results of extensive experiments carried out were reported. The results 

obtained indicated that more robust hand gesture recognitions were achieved by using a dual-

sensor approach compared to a single sensor approach. First, it was shown that by merging the 

information from the left and right images of a stereo image pair, an average recognition rate of 

93% for seven motional hand gestures and an average recognition rate of 92% for finger spelling 

hand gestures were obtained under realistic lighting conditions and in various backgrounds. A 

careful selection of the components of the recognition system has led to a real-time processing 

rate of 30 frames per second on the PC platform by using an inexpensive stereo webcam. 

Second, it was shown that fusing or merging the data from two differing modality 

sensors, consisting of an inertial sensor and a vision depth sensor, based on the probabilistic 

HMM classification led to an overall recognition rate of 93% for five motional hand gestures 

performed at different gesture speeds and in various backgrounds. This recognition rate was 

higher than the situations when using each sensor individually on its own. 

Third, it was shown that the utilization of the multi-HMM classification in the dual-

modality sensor approach led to higher recognition rates. For the ten hand gestures in the 

$1Unistroke Recognizer application set, an overall recognition rate of 91% was obtained under 

realistic conditions which included different backgrounds and lighting conditions as well as 

different hand speeds. This recognition rate was 7% higher than the rate when using a single 

component HMM classification.  
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CHAPTER 5 

CONCLUSION 

This dissertation has covered the problem of real-time hand gesture recognition using two dual-

sensor approaches, one based on a stereo camera system and the other based on a Kinect depth 

sensor and an inertial body sensor. The dissertation places emphasis on system building or 

practical deployment rather than pure theoretical development. The hand gesture datasets of 

Microsoft Action Dataset and $1 Gesture Recognizer Dataset were used to examine and compare 

the performance of the developed gesture recognition systems. 

The research work discussed in this dissertation was done for the purpose of increasing 

the robustness of recognition compared to the standard approach of using a single sensor. The 

contributions of the dissertation are as follows: 

1. Recognition rate improvement when using a stereo camera set-up compared to when 

using a  single camera by fusing the information from the left and the right camera in a 

complementary manner. 

2. The introduction of a dual-modality sensor approach consisting of a Kinect depth 

camera and an inertial body sensor to achieve recognition rate improvement compared to 

the situations when each sensor is used individually on its own. 

3. Utilization of a multi-HMM classification approach to improve the outcome in the 

dual-modality sensor approach. 
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5.1 STEREO CAMERA APPROACH 

It should be emphasized that the use of stereo cameras here has differed from its classical 

use which is for obtaining depth information, rather the information from the left or the right 

image is used to verify the information from the other image whereby increasing the robustness 

of the recognition. A robust hand detection is achieved which leads to high recognition rates for 

two types of hand gestures. As shown in Table 4.4 and 4.6, an average recognition rate of 93% 

for seven motional hand gestures and an average recognition rate of 92% for finger spelling hand 

gestures were obtained under realistic lighting conditions and in various backgrounds. By using 

an inexpensive stereo webcam, a real-time processing rate of 30 frames per second on the PC 

platform was achieved by a careful selection of computationally efficient components.  

5.2 DUAL-MODALITY SENSOR APPROACH 

In Chapter 3, a dual-modality sensor approach to hand gesture recognition based on the 

probabilistic HMM classification was introduced for the first time. The utilization of HMM to 

fuse and recognize the signals from two differing modality sensors is new. The two modality 

sensors of Kinect depth camera and inertial sensor are chosen here because they are of low cost 

and they can both cope with 3D hand gestures. It was shown that fusing or merging the data from 

two differing modality sensors, consisting of an inertial sensor and a vision depth sensor, led to 

an overall recognition rate of 93% for five motional hand gestures under realistic conditions such 

as different gesture speeds and backgrounds as noted in Table 4.14. This recognition rate was 

higher than when using each sensor individually on its own. 
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5.3 MULTI-HMM CLASSIFICATION IN DUAL-MODALITY APPROACH 

In Chapter 3, a multi-HMM classification in place of a single HMM classification was 

considered to improve the outcome of the dual-modality sensor approach.  It was shown that for 

the ten hand gestures in the $1Unistroke Recognizer application set, an overall recognition rate 

of 91% was obtained under realistic conditions which included different backgrounds and 

lighting conditions as well as different hand speeds as noted in Table 4.16. This recognition rate 

was 7% higher than the rate when using a single component HMM classification. 

5.4 POSSIBLE FUTURE WORK 

Since the detection of the start and end points of the gestures has a major impact on the 

recognition rates, a possible future work is to utilize Kinect 2.0, which has a finger movement 

detection capability, to specify the start and end points of a hand gesture.  Also, for the 

developed solutions to transition into commercial products, it is recommended to carry out 

further studies related to subject specific applications by performing easy training and testing 

involving specific subjects who will be using such a dual-modality sensing device. 
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