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ABSTRACT

In this dissertation we will be studying problems relating to indistinguishability. This

topic is of great interest and importance to cryptography. Cryptographic protocol analysis

is currently being studied a great deal due to numerous high profile security breaches. The

form of indistinguishability that we will be focusing on is static inclusion and its sub-case

static equivalence. Our work in this dissertation is based on “Intruders with Caps.” Our

main results are providing co-saturation procedures for deciding whether a frame A is

statically included in a frame B over Δ-strong and ω�-strong intruder theories, where a

frame consists of hidden data and substitutions that represent knowledge that an intruder

could have gained from eavesdropping on message exchanges by agents.
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CHAPTER 1
Introduction

Symbolic cryptographic protocol analysis is an important topic in cyber security, espe-

cially in the modern era. Recently we have seen many high profile security breaches

in companies such as TARGET and SONY. Due to these and numerous other security

exploitations, research in symbolic protocol analysis is emerging as a high priority.

Cryptographic protocols are designed to facilitate secure communication between

agents. Communication is achieved through message exchanges in an environment that

is, more often than not, hostile. Properties that are important in these exchanges are

privacy (e.g., private data remains secret), authenticity (e.g., no spoofing attacks), and

accessibility (e.g., no denial of service attacks). In our work we are mostly interested in

privacy and authenticity.

1.1 Motivation and Contribution
In this dissertation we will be studying problems related to indistinguishability.

Indistinguishability and related topics are currently being studied in many fields such as

cyber security and data analytics (e.g., differential privacy). The indistinguishability prob-

lem asks if we are given two objects A and B is it possible to differentiate A from B. Some

common examples of indistinguishability are the Turing test (e.g., can we distinguish be-

tween a human and an artificial intelligence?), zero knowledge proofs or protocols (e.g.,

can a third party observer determine if (s)he is witnessing a real or a fabricated run of the

protocol?) and clinical trials (e.g., can the patient distinguish between receiving a placebo

or the real drug? Can a medical researcher differentiate between the effect of the placebo

and the real drug effect?). Indistinguishability is crucial when protecting low entropy data

such as votes in electronic voting protocols where any loss of information can lead to loss

of anonymity.

A common application of indistinguishability in cyber security is the detection of

guessing attacks. An attack where an intruder makes a guess and is able to verify if the

guess is correct is known as a guessing attack [29]. Guessing attacks are also known as
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dictionary or brute force attacks. A guessing attack is offline when an attacker does not

interact with other agents to verify his guess [20]. Some examples of protocols that were

shown to be susceptible to offline guessing attacks are the Kerberos Authentication proto-

col [14], Peyravian-Jeffries’s remote user authentication protocol [30], and the Encrypted

Key Exchange (EKE) protocol [20].

The main topic that we shall be exploring in this dissertation is a property named

static inclusion. We also look at static equivalence which can be viewed as a special case

of static inclusion. Static equivalence is an interesting topic in cryptography since it has a

significant relation to offline guessing attacks [13, 11, 21]. In [21] the authors show how

to formulate guessing verification using static equivalence. Informally static equivalence

can be illustrated using the following example with is based on the Dolev-Yao paper [25]:

Example 1.1.1. Let Alice and Bob be agents that are trying to communicate in a hostile

environment. Consider the following protocol:

Alice → Bob : {M,N1}k

Bob → Alice : {M,N2}k

where M is a message, N1 and N2 are nonces (e.g., randomly generated strings) and k

represents our potentially weak key. Consider an intruder Eve who has witnessed this

message exchange tries to guess a value, k′, for the key and decrypt the above message

exchanges using k′. If Eve is then able to determine that the values for M are the same in

both messages, then it is highly likely that her guess for k was correct.

We now look at this example in terms of substitutions. The messages witnessed by

the intruder can be represented by the following substitution:

θ = {X1 → e(p(M,N1),k), X2 → e(p(M,N2),k)}

where e represents the encryption operator and p represents pairing. In this example the

set of hidden data contains M, N1, N2, k′, and k.

Note that throughout this dissertation we will assume that cryptographic primitives

are known to all agents including intruders. The intruder’s capabilities can be represented
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by a term rewriting system R as follows:

R = {d(e(x,y),y)→ x, π1(p(x,y))→ x, π2(p(x,y))→ y}

where the first rule represents the standard decryption operator, p is the pairing function,

and πi is the projection function on the ith element where i is either 1 or 2.

Now suppose that the intruder wants to extend his knowledge by guessing a key k′.

This can be viewed as an extension of θ :

ρ = θ ∪{
X3 �→ k′

}
.

On the other hand, the principals know the correct key k, so their knowledge can be

viewed as the substitution

σ = θ ∪{X3 �→ k} .

Clearly σ unifies the terms π1(d(X1,X3)) and π1(d(X2,X3)) modulo the rewrite system R,

since it has the correct key whereas ρ does not.

Static equivalence can be viewed as a dual of the unification problem: here two

substitutions are already given and the question is whether they unify the same terms over

a given set of terms, namely the terms that the intruder can construct (called “recipes” in

the literature). In the above example, the terms π1(d(X1,X3)) and π1(d(X2,X3)) are both

recipes since the intruder can construct them with what he knows. Static inclusion, on the

other hand, is the (asymmetric) question of whether ρ can unify every pair that σ can.

Clearly static equivalence corresponds to the case where static inclusion holds both ways.

We will formally define static inclusion and equivalence in Chapter 2.

Here is an example where there is no guessing attack, and thus static equivalence

holds:

Example 1.1.2. Consider the following protocol:

Alice → Bob : {Na}q

Bob → Alice : {M,Na}K
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where M is a message, Na is a nonce, q represents our potentially weak key and K repre-

sents a strong key. [Note that this example is only for illustrative purposes and may not

occur in practice since if Alice and Bob already had a strong key, they would not need to

use a weak key q.]

Consider that an intruder Eve who has witnessed this message exchange tries to

guess a value, q′, for the weak key. As before, the intruder’s capabilities are represented

by the above term rewriting system R.

The set of hidden data in this example consists of M, Na, q, q′, and K. The substi-

tutions we have this time are

σ = {X1 �→ e(Na,q), X2 �→ e(p(M,Na),K), X3 �→ q}

and

ρ =
{

X1 �→ e(Na,q), X2 �→ e(p(M,Na),K), X3 �→ q′
}
.

In this example static equivalence holds, therefore there does not exist a guessing

attack. The intruder may be able to get Na, but she will not be able to verify that her guess

is correct since K cannot be guessed. We will discuss this example in Chapter 6.

Both static inclusion and static equivalence are very important problems in practice;

however, static inclusion is somewhat rare in the literature. An application of static inclu-

sion was studied in [17] where it was referred to as static refinement. Static inclusion is

an undecidable problem in general, even for convergent term rewriting systems [1]. Our

purpose in studying static inclusion is to identify decidable sub-cases.

Our approach can be seen as an extension to the approach given in “Intruders with

Caps” [6]. In that paper the authors consider the deduction problem which is also known

as the cap problem. Essentially what this problem asks is if we stack “cap” terms on top

of the terms we are considering, can we gain access to the encrypted message? If we

can get this message then we call the system treacherous or unsafe. Our approach is very

closely based upon this paper. (The deduction problem is also undecidable for arbitrary

convergent term rewriting systems [1].)
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1.2 Related Work
Static inclusion and its sub-case static equivalence have been studied from many

directions. Research has been going on in these and related problems for some time. Part

of the reason why these types of problems have been studied so much is because humans

tend to choose very poor and often easily guessable passwords [28].

Our approach to solving this problem is based on a saturation method. Some nota-

tion that we use is borrowed from the applied pi-calculus [2, 34], however no prior knowl-

edge of it is required to understand our methodology. Our approach requires knowledge

of term rewriting and syntactic unification. As this dissertation is being written, an al-

ternative approach using a Knuth-Bendix [27] like completion procedure is also being

developed [3, 31, 33]. That approach is related to ours and we will be incorporating both

approaches into a paper.

Static equivalence decision procedures have been proposed for various equational

theories [1, 22, 18] including subterm convergent theories. Yet Another Protocol Analy-

sis Tool (YAPA) [12], Knowledge in Security protocols (KiSs) [23], and FAST [19] can

verify static equivalence for a large set of equational theories; however the precise set

of theories under which these algorithms terminate is not clear. ProVerif [15] is a gen-

eral cryptographic protocol analysis tool that can verify equivalence properties even in

presence of active attackers, but without termination guarantees.

Trace equivalence, a more general form of static equivalence, has been used to

show that many protocols are in fact, insecure. One such protocol is Basic Access Con-

trol (BAC) that was used for French passport authentication [8, 16]. An interesting, and

perhaps surprising, note is that this protocol became insecure due to the addition of cer-

tain security checks. When these checks were added the protocol’s response time was not

padded (i.e., successful and unsuccessful runs could have different run times). Thus if an

adversary was able to time the response of various runs anonymity could be compromised.

It can be noted that in static inclusion we assume that we have a passive intruder. A

passive intruder is assumed to be able to eavesdrop on message exchanges between agents

and use common cryptographic primitives. However, they are not allowed to interact with

the principals. A more practical model of an intruder is an active intruder. A problem that

is related to static inclusion that allows for an active intruder is known as observational
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equivalence [2]. Observational equivalence is stronger than both static equivalence and

trace equivalence. Due to this, it is often more difficult to check. Thus, more focus has

gone into researching static equivalence and trace equivalence.

1.3 Outline
This dissertation is organized as follows. In Chapter 2 we will provide some nec-

essary notation and preliminaries including a formal definition of static inclusion and

equivalence. We then give some general results on plats and recipes that will be neces-

sary in later sections, especially the notions of a pre-cover-set and a cover-set. We pro-

vide a definition of I -closure, which is a modified version of the one given in [6]. This

will enable us to provide some notation and results on I -independent substitutions. In

Chapter 5 we will provide a method of extending frames which provides a foundation for

Chapters 6 and 7. In these chapters we will provide co-saturation procedures for deciding

both Δ-strong intruder theories and ω�-strong intruder theories. These procedures are

the main contributions of this dissertation.
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CHAPTER 2
Notation and Preliminaries

We assume the reader is familiar with the usual notions and concepts in term rewriting

systems [9] and unification theory [10]. We also recommend that the reader be familiar

with the notation and procedures defined in [6].

Let R be a term rewriting system. We say that R is confluent if and only if for all

terms x, y, and z:

y ∗← x ∗→ z ⇒ y ↓ z

where ↓ means joinable. Recall that two terms x and y are joinable if and only if there is

a term z such that x ∗→ z ∗← y. A term rewriting system R is terminating if and only if

there does not exist an infinitely descending chain of rewrite steps. If our term rewriting

system R is both confluent and terminating, we say that it is convergent. We define R to

be interreduced if and only if the right hand side r of each rule l → r ∈ R is R-irreducible

and the left hand side l is irreducible with respect to R�{l → r}. Let � a simplification

ordering containing R, i.e., l � r for every rule l → r in R. A rule l � r is dwindling if

and only if r is a proper subterm of l. Given a term t we define root(t) to be the top level

symbol of t (i.e., the symbol that occurs at position ε in t). We denote by Pos(t) the set

of all positions in t, and by FPos(t) the set of all non-variable positions in t. By ST(t)

we denote the set of all subterms of t.

A substitution σ is a function that maps variables to terms, i.e., σ : V �→ T (F,V )

such that σ(x) = x only for finitely many variables, where V is a denumerable set of

variables, F is the set of function symbols and T (F,V ) is a term algebra. A term t is an

instance of a term s if and only if there exists a substitution σ such that σ(s) = t.

We define the domain, range and variable range of a substitution σ as follows:

Dom(σ) = {x ∈V | σ(x) = x} ,
Ran(σ) = {σ(x) | x ∈ Dom(σ)} ,

VRan(σ) =
⋃

x∈Dom(σ)

V ar(σ(x)).
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Let Names be the set of all constants and ñ be the set of private constants (i.e., the

set of nonces). Therefore Names� ñ is the set of public constants. We assume that Names

is infinite.

Definition 1. A frame φ is composed of the following:

1. ñ,

2. σ , a substitution with a finite domain where the Ran(σ) contains only ground

terms.

Thus φ = ν ñ.σ , where ν can be considered to be a binding.

We define our term algebra as follows: Tφ = T (F ∪ Names � ñ, Dom(σ)), where

F is our signature and σ is a substitution. Note that F does not contain constants (i.e.,

function symbols of arity 0) and all elements in F are public. Therefore our function

symbols in F are of arity greater than or equal to 1 and F will be interpreted as our

cryptographic primitives (i.e., encryption, decryption, etc). Our term algebra Tφ is to be

interpreted as the intruder’s knowledge. We shall refer to the terms in Tφ as φ -recipes. A

term t that is a σ -instance of a term in Tφ is known as a φ -plat.

Now that we have given the necessary notation we will formally define static inclu-

sion and equivalence.

Definition 2. Given frames φ and ψ and an equational theory ≈, we say that φ is stat-

ically included in ψ under ≈, and write φ �S ψ , if Tφ = Tψ (i.e., Dom(σ) = Dom(ρ))

and ∀t, t ′ ∈ Tφ , if σ(t)≈ σ(t ′) then ρ(t)≈ ρ(t ′).

Note that static equivalence is simply static inclusion in both directions.

Definition 3. Given frames φ and ψ and an equational theory ≈, we say that φ and

ψ are statically equivalent under ≈, and write φ ≈S ψ , if Tφ = Tψ (i.e., Dom(σ) =

Dom(ρ)) and ∀t, t ′ ∈ Tφ ,σ(t)≈ σ(t ′) if and only if ρ(t)≈ ρ(t ′).

Let R be a convergent term rewriting system. An n-ary public symbol f is said to be

transparent for R, or R-transparent, if and only if there exist cap-terms C f
1 (�), . . . ,C f

n (�)
such that C f

i [ f (x1, . . . ,xn)]→∗
R xi, for every 1≤ i≤ n where x1, . . .xn are distinct variables.

8



Note that we use the definition of a cap term as given in [6]. We will denote the hole

variable in C f
i (�) being “filled” with a term t as C f

i [t]. A public function symbol is R-

resistant if and only if it is not R-transparent. Note that R may be omitted if the term

rewriting system is clear from the context.

Throughout this dissertation we shall assume that our term rewriting systems are

convergent and interreduced, and frame substitutions (i.e., σ and ρ) are normalized sub-

stitutions.

9



CHAPTER 3
General results on frames, recipes, and plats

Throughout this chapter we assume that φ = ν ñ .σ is a frame and that V is a denumerable

set of variables disjoint from Dom(σ). Furthermore, for ease of exposition, we separate

public names, i.e., those in (Names� ñ), into two sets: names that already appear in

Ran(σ) which we call nframe, and names that are “brand new”, nnew. Thus Names can

be partitioned into the following three sets: ñ � nframe � nnew. This notation will help

provide more clarity in some of the following proofs in this chapter.

Definition 4. A term t that is a σ -instance of a term in Tφ is known as a φ -plat or simply

a plat if the frame is clear from the context. We shall denote the set of all φ -plats as Πφ .

Recall that terms in Tφ are known as φ -recipes. Note that we chose the name plat

since in French plat means meal. Thus, intuitively, we are building our φ -plats or “meals”

from φ -recipes.

Now we will define a more general variant of a φ -recipe that we shall denote as a

general recipe which intuitively is a recipe with the addition of variables.

Definition 5. A term t ∈ T (F ∪ Names� ñ, V ∪ Dom(σ)) is said to be a general recipe.

In other words, a term t is a general recipe if and only if one of the following holds:

1. t ∈V .

2. t ∈ (Names� ñ).

3. t ∈ Dom(σ).

4. t = f (t1, . . . , tn) where every ti, 1 ≤ i ≤ n, is a general recipe.

A concept that we will use heavily is that of a generalized form of a plat which

we will denote as a general plat. We will start by defining a general plat and then we

will provide several alternative yet equivalent characterizations of general plats that will

sometimes be used implicitly in proofs throughout this dissertation.
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Definition 6. A term t ∈ T (F ∪ Names, V ) is said to be a general plat if and only if θ(t)

is a plat for all substitutions θ : V ar(t) �−→ (Names � ñ).

We are now ready to give several alternative characterizations of general plats.

Lemma 3.0.1. A term s ∈ T (F ∪ Names, V ) is a general plat if and only if there exists

a substitution β : V ar(s) �−→ nnew such that β (s) is a plat.

Proof. The “only if” part follows from the definition of general plats. To prove the “if”

part let θ : V ar(s) �−→ nnew be a substitution. We prove that if θ(s) is a plat, then so

is θ ′(s) for all substitutions θ ′ : V ar(s) �−→ (Names� ñ). We prove this by contradic-

tion. Let s be a minimal counterexample in terms of size, i.e., there are substitutions

θ : V ar(s) �−→ nnew and θ ′ : V ar(s) �−→ (Names� ñ) such that θ(s) is a plat whereas

θ ′(s) is not. Note that θ(s) cannot be a term from Ran(σ) since there are new names in

it. Thus s must be of the form f (s1, . . . ,sn) such that θ(si) is a plat for 1 ≤ i ≤ n. Since s

is assumed to be a minimal counterexample, θ ′(si) must also be a plat for 1 ≤ i ≤ n. But

then θ ′(s) will also be a plat.

The following alternative characterization will be used in many of our proofs. Note

that this characterization is a recursive definition of a general plat. It is defined in a similar

style as a term in term rewriting.

Lemma 3.0.2. A term t ∈ T (F ∪ Names, V ) is a general plat if and only if one of the

following holds:

1. t ∈V .

2. t ∈ (Names� ñ).

3. t ∈ Ran(σ).

4. t = f (t1, . . . , tn) where every ti, 1 ≤ i ≤ n, is a general plat.

Proof. The “if” part is straightforward. We prove the “only if” part by contradiction. Let

s be a minimal counterexample in terms of size, i.e., s is a general plat, where s is neither

a variable nor a public constant, s ∈ Ran(σ) and s is not of the form f (s1, . . . ,sn) where

every top-level subterm is a general plat. Since s is neither a variable nor a constant, s
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has to be of the form f (s1, . . . ,sn) such that at least one top-level subterm, say sk, is not

a general plat. Hence s cannot be a ground term (i.e., a plat) either. Let η : V ar(s) �−→
(Names � ñ) be a substitution that replaces every variable in s with a new constant. Since

η(s) is a plat, there must be a recipe s′ such that η(s) = σ(s′). Since s is non-ground,

η(s) cannot be a term from Ran(σ) and thus s′ ∈ Dom(σ). Thus s′ has to be of the form

f (s′1, . . . ,s
′
n) where each top-level subterm of s′ is a recipe as well. Therefore η(sk) =

σ(s′k). Thus η(sk) is a plat, and by Lemma 3.0.1 we get a contradiction.

Lemma 3.0.3. A term t ∈ T (F ∪ Names, V ) is a general plat if and only if there is a

general recipe s such that t = σ(s).

Proof. We only prove the “only if” part because the “if” part will use a similar argument.

This proof is by structural induction on the term tree representation of t. By Definition 5

and Lemma 3.0.2 we know that general recipes and plats must both be in one of four

forms. We will only consider non-ground terms since a ground general plat (resp., recipe)

is a plat (resp., recipe). Our base case occurs when our term tree has only one node, which

means that t must be a variable and thus a general recipe.

The fourth case for general plats will be our inductive case. If t1, . . . , tn are general

plats and have corresponding general recipes s1, . . . ,sn then f (t1, . . . , tn) is also a general

plat with the general recipe f (s1, . . . ,sn).

Lemma 3.0.4. Let s = f (s1, . . . ,sn) be a plat. If at least one of the si’s is not a plat, then

s ∈ Ran(σ).

Proof by contradiction. We shall assume that at least one of the si’s is not a plat and

s ∈ Ran(σ). Since s is a plat we can write it as σ(t) = s for some term t ∈ Tφ . This

recipe t can be either a variable or of the form f (t1, . . . , tn), where the ti’s are recipes. If t

is a variable then t ∈ Dom(σ) and thus σ(t) = s is in Ran(σ), which is a contradiction.

Otherwise s= f (s1, . . . ,sn)=σ( f (t1, . . . , tn)) which means that σ(t1)= s1, . . . ,σ(tn)= sn.

However this is a contradiction since the ti’s are recipes and thus the si’s are plats.

Corollary 3.0.5. Let s be a plat and p ∈ Pos(s) such that s|p is not a plat. Then there

exists a position ε � q ≺ p such that s|q ∈ Ran(σ).

Proof. We prove this by contradiction. Let s be a minimal counterexample with respect

to term size, i.e., s is a φ -plat, p ∈Pos(s) such that s|p is not a φ -plat, and s|q ∈ Ran(σ)

12



for all ε � q ≺ p. Clearly s must be of the form f (s1, . . . ,sn) and p = i · p̂ where 1 ≤ i ≤ n.

If si itself is not a φ -plat then we have a contradiction by Lemma 3.0.4. Else si is a φ -plat

and a subterm of si, namely si|p̂ is not a φ -plat. However, this contradicts the minimality

of s since si will be a smaller counterexample.

Lemma 3.0.6. A term t ∈ T (F ∪ Names, V ) is a general plat if and only if θ(t) is a plat

for all substitutions θ : V ar(t) �−→ Πφ .

Proof. We first prove the following claim:

Claim: Let s ∈ T (F ∪ Names, V ) be a term and θ : V ar(s) �−→ nnew

be a substitution. If θ(s) is a plat, then so is θ ′(s) for all substitutions

θ ′ : V ar(s) �−→ Πφ .

Proof: The proof is again by contradiction. Let s be a minimal counterexam-

ple to this in terms of size, i.e., there are substitutions θ : V ar(s) �−→ nnew

and θ ′ : V ar(s) �−→ Πφ such that θ(s) is a plat whereas θ ′(s) is not. Note

that θ(s) cannot be a term from Ran(σ) since there are new names in it.

Thus s must be of the form f (s1, . . . ,sn) such that θ(si) is a plat for 1 ≤ i ≤ n.

Since s is assumed to be a minimal counterexample, θ ′(si) must also be a plat

for 1 ≤ i ≤ n. But then θ ′(s) will also be a plat. �

The remainder of this proof is shown by Lemma 3.0.1.

Lemma 3.0.7. Let t ∈ T (F ∪Names, V ) and let θ : V ar(t) �−→ T (F ∪Names) be a sub-

stitution. If t is not a general φ -plat and θ(t) is a φ -plat, then there exists a position

p ∈ FPos(t) such that t|p is a non-ground term and θ(t|p) ∈ Ran(σ).

Proof. We prove this by contradiction. Let t be a minimal counterexample with respect

to term size, i.e., t is not a general plat, θ(t) is a plat and θ(t|p) ∈ Ran(σ) for all p ∈
FPos(t). Thus t cannot be a variable or a ground term. It cannot be that θ(t) ∈Ran(σ)

for if so, then p = ε and we have a contradiction. Thus t must be of the form f (t1, . . . , tn)

where θ(ti) is a φ -plat for all 1 ≤ i ≤ n. (Since θ( f (t1, ..., tn)) ∈ Ran(σ) all top level

subterms of f must be plats.) We know that some t j, where 1 ≤ j ≤ n, must not be a

13



general plat since t is not a general plat. However, this contradicts the minimality of t

since ti will be a smaller counterexample.

Note that the converse of Lemma 3.0.7 is not true. Consider the frame ν{b}.σ
where σ = {x �→ f (a,b)}. Let t = f (a,y) and θ = {y �→ b}. Now t is a general plat, but

θ(t|ε) ∈ Ran(σ).

Lemma 3.0.8. Let t ∈ T (F ∪Names, V ) and let θ : V ar(t) �−→ T (F ∪Names) be a sub-

stitution such that θ(t) is a φ -plat. If θ(t|p) ∈ Ran(σ) for all positions p ∈ FPos(t),

then t is a general plat and θ(x) ∈ Πφ for all x ∈ V ar(t) (i.e., θ : V ar(t) �−→ Πφ ).

Proof. Follows from Corollary 3.0.5 and Lemma 3.0.7.

Definition 7. A substitution σ̂ is a plat-extension of σ if and only if

1. σ ⊆ σ̂ and

2. ∀x ∈ (Dom(σ̂)�Dom(σ)) : σ̂(x) is a φ -plat.

The following two notions that we will define, pre-cover-set and cover-set, will be

crucial concepts in understanding the co-saturation procedures that we will provide in

Chapters 6 and 7.

Lemma 3.0.9. For any term t ∈ T (F ∪ Names, V ) there exists a finite set S of general

plats such that

(1) every term s ∈ S is an instance of t.

(2) for all substitutions θ : V ar(t) �−→ T (F ∪Names), if θ(t) is a plat, then there exists

a general plat s ∈ S and a substitution η : V ar(t) �−→ Πφ such that θ(t) = η(s).

(We refer to these sets by the phrase “pre-cover sets”.)

Proof. We first outline the construction of the pre-cover set S for t:

14



If t itself is a general plat, then t ∈ S. Now for all positions p in FPos(t) such

that t|p is a non-ground term which can be matched with a term in Ran(σ),

we define

β j
p = mgu(t|p �? σ(Xj))

where Xj ∈ Dom(σ) and t|p matches with σ(Xj). Now we can define the

pre-cover-set recursively as follows:

S =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{t} ∪ ⋃
p∈FPos(t)

pre-cover-set(β j
p(t)) if t is a general plat

⋃
p∈FPos(t)

pre-cover-set(β j
p(t)) otherwise.

(3.1)

This procedure is clearly terminating since the number of variables is de-

creasing with each recursive call: note that we are only matching non-ground

subterms with terms in Ran(σ).

To prove (2) we will consider the following two main cases. Let θ be any

substitution such that θ(t) is a φ -plat.

(a) There does not exist a position p ∈FPos(t) such that t|p is non-ground

and can be matched with a term in Ran(σ): this case is handled by

Lemma 3.0.8.

(b) There exists a position p ∈ FPos(t) such that t|p is non-ground and

can be matched with a term in Ran(σ). Thus t|p must contain at least

one variable.

Since we compute the pre-cover set recursively on t|p, we can show that

the result of all the recursive calls is as follows:

θ = θ̂ ◦β jm
pn

◦ · · · ◦β j1
p1

where p1, . . . , pn are positions in FPos(t), Xj1 , . . .Xjm are terms in

Dom(σ) such that t|pk
is matchable to σ(Xjk) with 1 ≤ k ≤ n and 1 ≤

j ≤ m. By our initial assumption in this case we know that at least one

such β j
p must exist.
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Since θ and the β j
p are all ground substitutions we can say:

θ̂ = θ �

{
β jm

pn
◦ · · · ◦β j1

p1

}

Note that the β j
p’s can only replace the variables in t that can match with

a proper subterm of a term in Ran(σ), the remaining variables in t have

to be replaced with φ -plats. Thus what is left after all the β j
p’s are ap-

plied is a substitution θ̂ that will map the variables in t to φ -plats. Thus,

η is equal to θ̂ .

Now we must show that there exists an s such that θ(t) = η(s). This

is obvious since we can choose our s to be β jm
pn ◦ · · · ◦ β j1

p1(t). Thus,

θ(t) = θ̂
(

β jm
pn ◦ · · · ◦β j1

p1(t)
)
= η

(
β jm

pn ◦ · · · ◦β j1
p1(t)

)
.

Examples: Let ν{a}.σ be a frame where σ =
{

X1 �→ f (g(a),a), X2 �→ g(g(a))
}

.

(i) Let t = f (g(u),a), then FPos(t) = {ε,1,2}. Note that t itself is not a general

plat, but t|ε = t can be matched with σ(X1) and t|1 = g(u) can be matched with

σ(X2). Thus β 1
ε = {u �→ a} and β 2

1 = {u �→ g(a)}. Now β 1
ε (t) = f (g(a),a) which

is a ground plat, whereas β 2
1 (t) = f (g(g(a)),a) which, though ground, is not a plat.

Thus pre-cover-set(t) = { f (g(a),a)}.

(ii) Let t = f (g(u),v), then FPos(t) = {ε,1}. Note that t is a general plat, and besides

t|ε = t can be matched with σ(X1) and t|1 = g(u) can be matched with σ(X2). Thus

β 1
ε = {u �→ a, v �→ a} and β 2

1 = {u �→ g(a)}. Now β 1
ε (t) = f (g(a),a) is a ground plat

(as in Case (i) above) and β 2
1 (t) = f (g(g(a)),v) which is a general plat. Therefore

pre-cover-set
(
β 1

ε (t)
)
= { f (g(a),a)} and the pre-cover-set

(
β 2

1 (t)
)

turns out to be

{ f (g(g(a)),v)} since there is no non-variable non-ground subterm of f (g(g(a)),v)

which matches with a term in the range of σ . �

Lemma 3.0.10. For any term t ∈ T (F ∪Names, V ) that has an instance which is a φ -plat,

there exists a finite set S of general recipes such that
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1. for all terms s ∈ S : σ(s) is an instance of t, and

2. for all substitutions θ : V ar(t) �−→ T (F ∪ Names), if θ(t) is a φ -plat, then there

exists a general recipe τ ∈ S and a plat-extension σ̂ of σ such that θ(t) = σ̂(τ).

This set is referred to as a cover-set for t with respect to φ .

Proof. By Lemma 3.0.9, we only need to show that for every general plat there is a

general recipe. Thus by Lemma 3.0.3 we are done.

Example 3.0.11. Let φ = ν{a,b} . {X1 �→ g1(a), X2 �→ f (g1(a),b)} be a frame and t =

f (g1(u),v) be a term. The cover-set is { f (g1(u),v), f (X1,v), X2}.

Note that { f (g1(u),v)} is not a cover-set by itself, since there is no plat-extension that

maps f (g1(u),v) to f (g1(a),b).

For additional examples please see Appendix B.

We also consider cover-sets of equations — this essentially amounts to considering

equality (=) as a binary function symbol. Additionally we can consider the cover-set of a

convergent term rewriting system R. As R is a set of rewrite rules l → r, we can consider

each rule as an equation of the form l =R r. Now to compute the cover-set of R we simply

take the union of the cover-sets of all such equations. It is worth noting here that for such

rules the equation l =R r itself will be in the cover-set, since it contains no hidden nonces.

Example 3.0.12. Let φ = ν{a,b} . {X1 �→ g(a), X2 �→ h(h(b))} be a frame and

f (g(x),h(y)) = g(x) be an equation denoted by eq. The cover-set for eq with respect

to φ is as follows:

{
f (g(x),h(y)) = g(x), f (X1,h(y)) = X1, f (g(x),X2) = g(x), f (X1,X2) = X1

}

The size of a cover-set can be exponential. This will be illustrated in the following

example:

Example 3.0.13. Let φ = ν{a,b}.{X1 �→ g(a),X2 �→ g(b)} be a frame and

t = f (g(u1), f (g(u2), ...,g(un))) be a term. The cover-set for t with respect to φ will
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contain all recipe terms of the form:

f (Xi1 , f (Xi2 , ...,Xin))

where i j ∈ {1,2} for all j. For a term tree representation of this term, please see figure 3.

Note that the variables u1, ...,un can all be replaced by either a or b, thus we have 2n

possibilities.

f

fg

f

gu1

u2

g

un

g

un−1

Figure 3.1: Term tree representation

Definition 8. Let R be a convergent term rewriting system and let φ = ν ñ.σ and ψ = ν ñ.ρ

be frames. A mapping (xi �→ si) in σ is syntactically redundant with respect to ρ if and

only if there exists a recipe r ∈ T (F ∪ Names � ñ, Dom(σ)�{xi}) such that si = σ(r)

and ρ(xi) =R ρ(r).

Example 3.0.14. Let R =
{

d(e(x,y),y)→ x, e(d(x,y),y)→ x
}

and let

φ = ν ñ.σ = ν{a,k,k1}.{X1 �→ e(a,k), X2 �→ k, X3 �→ a}

and

ψ = ν ñ.ρ = ν{a,k,k1} . {X1 �→ e(a,k), X2 �→ k1, X3 �→ d(e(a,k),k1)}
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be frames. The mapping X1 �→ e(a,k) is syntactically redundant with respect to ρ , since

X1 = σ(e(X3,X2))

and

ρ(e(X3,X2) = e(d(e(a,k),k1),k1) →!
R e(a,k) = ρ(X1).
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CHAPTER 4
General results on I -independent substitutions

Now we will provide a modified definition of I -closure. We will use the notions of I -

closure, I -independence and I -cores when we are performing checks after running our

procedures. Intuitively they are used to identify non-redundant information.

Definition 9. Let S be a finite set such that S ⊆ ñ. We define the I -closure of S, denoted

by I (S), as follows:

– S ⊆ I (S)

– If f (p) is a function symbol and s1, . . .sp are in I (S), then

f (s1, . . .sp) ∈ I (S)

– Nothing else is in I (S).

In other words, a term t ∈ ñ is in I (S) if and only if either t itself is in S, or the root

symbol of t ∈ F and all its top-level subterms are in I (S).

Definition 10. A set of terms Γ = {t1, . . . , tn} is I -independent if and only if for all ti,

we have ti ∈ I (Γ� {ti}). A ground substitution θ is I -independent if and only if

Ran(θ) is an I -independent set and ∀vi,v j ∈ Dom(θ) : θ(vi) = θ(v j) ⇔ vi = v j. A

ground substitution θ is I -dependent if and only if it is not I -independent.

Lemma 4.0.15. If σ syntactically unifies two distinct recipes then σ must be I -dependent.

Proof. We will prove this by contradiction. We will assume that σ syntactically unifies

two distinct recipes r1 and r2 and, besides, σ is I -independent. Let (r1,r2) be a minimal

counterexample in terms of |r1|+ |r2|. Neither r1 nor r2 can be a variable, since that

would contradict the I -independence of σ . We know that r1 and r2 are both of the form

f (t1, . . . , tn) since we know that they are both syntactically unifiable their root symbols

and arities must be the same. However, r1 and r2 are assumed to be distinct recipes so

they must differ at a subterm, so without loss of generality we can say that they differ at

position p ∈ Pos(r1) and Pos(r2) where p = ε . However, this contradicts minimality
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since s1 = r1|p and s2 = r2|p are two distinct recipes that are unified by σ and |s1|+ |s2|<
|r1|+ |r2|.

Lemma 4.0.16. Let σ be an I -independent substitution, τr a recipe, and l be any term.

If σ(τr) is an instance of l and Pos(l)⊆ Pos(τr), then τr is an instance of l.

Proof. We will prove this by contradiction. The case where l is linear is trivial. If l is non-

linear and l does not match τr, then there must be a variable y ∈ V ar(l) and distinct posi-

tions p,q ∈ Pos(l) such that y = l|p = l|q and τr|p = τr|q. Since σ is an I -independent

substitution, we know by Lemma 4.0.15 that σ cannot syntactically unify two distinct

recipes. Thus this is a contradiction.

Definition 11. A set S1 of terms is an I -core of a set of terms S2 if and only if S1 ⊆ S2,

S1 is I -independent and every term in S2 �S1 belongs to I (S1).

Now that we have the notion of I -independence we can define the set of all non-

redundant mappings of a substitution θ , which we will denote as I -core(θ ):

Definition 12. A substitution θ1 is an I -core of a substitution θ2 if and only if θ1 ⊆ θ2,

θ1 is I -independent and Ran(θ1) is an I -core of Ran(θ2).
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CHAPTER 5
Static Inclusion

Throughout this chapter and remaining chapters we shall assume that φ = ν ñ.σ , φ ′ =

ν ñ.σ ′, ψ = ν ñ.ρ , and ψ ′ = ν ñ.ρ ′ are frames. In this chapter we shall give a formal

definition of static inclusion and the basic framework for how we will be able to extend

frames. We are able to model an intruder’s growing knowledge by extending these frames.

Recall the following definitions of static inclusion and static equivalence, given in

Chapter 2.

Definition 13. Given frames φ and ψ and an equational theory ≈, we say that φ is

statically included in ψ under ≈, and write φ �S ψ , if Tφ = Tψ (i.e., Dom(σ) =Dom(ρ))

and ∀t, t ′ ∈ Tφ , if σ(t)≈ σ(t ′) then ρ(t)≈ ρ(t ′).

Definition 14. Given frames φ and ψ and an equational theory ≈, we say that φ and

ψ are statically equivalent under ≈, and write φ ≈S ψ , if Tφ = Tψ (i.e., Dom(σ) =

Dom(ρ)) and ∀t, t ′ ∈ Tφ ,σ(t)≈ σ(t ′) if and only if ρ(t)≈ ρ(t ′).

We shall now discuss the notion of a simple extension. This definition will be

a key part of our co-saturation procedure, since they will be used to extend our frames’

substitutions. Extending these substitutions is how we will model the intruders knowledge

over the course of the protocol’s runtime. Recall Example 1.1.1, where we extended ρ to

model the intruder guessing a key k′.

Definition 15. A frame φ ′ is called a simple extension of φ if and only if σ ⊂ σ ′ and

|σ ′|= |σ |+1. In other words, σ and σ ′ are of the form

σ = {x1 �→ t1, x2 �→ t2, . . . , xn �→ tn}

and,

σ ′ = σ � {xn+1 �→ tn+1}.

Lemma 5.0.17. Let R be a convergent term rewriting system and let φ , φ ′, ψ , and ψ ′ be

frames such that
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(a) Dom(σ) = Dom(ρ), Dom(σ ′) = Dom(ρ ′) and

(b) φ ′ is a simple extension of φ and ψ ′ is a simple extension of ψ .

If φ ′ �S ψ ′ then φ �S ψ .

Proof by contradiction. Assume that φ ′ �S ψ ′ and φ �S ψ . Since φ ′ is a simple extension

of φ (respectively for ψ ′ and ψ), we know that σ ′ = σ �{xn+1 �→ tn+1} and ρ ′ = ρ �
{xn+1 �→ sn+1} for some ground terms sn+1, tn+1 where n = |σ |= |ρ|. Thus we have

ν ñ.{σ �{xn+1 �→ tn+1}} �S ν ñ.{ρ �{xn+1 �→ sn+1}} and ν ñ.σ �S ν ñ.ρ.

Therefore for some t, t ′ ∈ Tφ ,σ(t) ↓R σ(t ′) but ρ(t) ↓R ρ(t ′). By definition we have that

Tφ ⊆ Tφ ′; thus t, t ′ must also be ∈ Tφ ′ , and besides, σ ′(s) = σ(s) and ρ ′(s) = ρ(s) for

all s ∈ Tφ . Since φ ′ �S ψ ′ we know that if σ ′(t) ↓R σ ′(t ′) then ρ ′(t) ↓R ρ ′(t ′), which is a

contradiction.

Lemma 5.0.18. Let R be a convergent term rewriting system and let φ , φ ′, ψ , and ψ ′ be

frames such that

(a) Dom(σ) = Dom(ρ), Dom(σ ′) = Dom(ρ ′) and

(b) φ ′ is a simple extension of φ (respectively for ψ ′ and ψ)

Let {xn+1 �→ sn+1} = σ ′
�σ and {xn+1 �→ tn+1} = ρ ′

�ρ .If there exists a recipe r ∈ Tφ

such that sn+1 =R σ(r) and tn+1 =R ρ(r) then (φ �S ψ if and only if φ ′ �S ψ ′).

Proof (only-if) by contradiction. Assume φ �S ψ and φ ′ �S ψ ′, i.e., there are φ ′-recipes

τ1 and τ2 such that σ ′(τ1) ↓R σ ′(τ2) and ρ ′(τ1) ↓R ρ ′(τ2). However, we know that

there exists an r ∈ Tφ such that sn+1 =R σ(r) and tn+1 =R ρ(r). For every φ ′-recipe s,

let sφ = {xn+1 �→ r}(s). Thus σ ′(s) = σ(sφ ) and ρ ′(s) = ρ(sφ ) since sn+1 =R σ(r)

and tn+1 =R ρ(r). This leads to σ(τφ
1 ) ↓R σ(τφ

2 ) and ρ(τφ
1 ) ↓R ρ(τφ

2 ) which contra-

dicts φ �S ψ .

Proof (if). This proof is straightforward since it is a special case of Lemma 5.0.17.
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CHAPTER 6
Δ-strong Intruder Theories

In this chapter we will be defining Δ-strong intruder theories and then we will provide

our co-saturation procedure for these theories. We will assume that our intruder theory is

Δ-strong and recall that it is also convergent and Interreduced. There are many Δ-strong

intruder theories that are useful in practice. Some of these theories are Homomorphic En-

cryption [5], Blind Signatures [6], and a 2-sorted Equational theory for Cipher-Decipher

Block Chaining [4].

We shall now introduce a co-saturation procedure that was inspired by “Intruders

with Caps.” We refer to our co-saturation method as a procedure since it solves the static

inclusion decision problem. However, our procedure is an algorithm as we will show

soundness, completeness, and termination for Δ-strong intruder theories.

Definition 16. Let R be any convergent intruder term rewriting system, and � a simpli-

fication ordering on R. We assume that � is a precedence based ordering that satisfies

the block-ordering property: every private symbol is higher than every public symbol

under �.

Definition 17. Let R be any convergent intruder term rewriting system, and � a simpli-

fication ordering on R. A rewrite rule l → r is said to be Δ-strong, with respect to the

simplification ordering �, if and only if every R-resistant subterm of l is greater than r

with respect to �. The intruder term rewriting system R is said to be Δ-strong with respect

to � if and only if every rule is Δ-strong with respect to �.

Note that a definition of Δ-strong appeared in “Intruders with Caps” [6]. Our defi-

nition differs from theirs since we only allow Δ-strong rules. In [6] they defined Δ-strong

theories to contain either Δ-strong rules or dwindling rules. Also, we only consider func-

tion symbols to be public, since in practice cryptographic primitives are generally known

to all agents including intruders. For example in the RSA cryptosystem [24, 32] both the

encryption and decryption operations (namely, modular exponentiation) are made pub-

licly available. In [6] function symbols could be public or private.

24



Definition 18. Let R be a convergent term rewriting system, σ a ground substitution and

S a set of terms over T (F ∪ Names,Dom(σ)). Then by (σ(S)) ↓R we denote a set of

normal forms of terms in S instantiated by σ .

Definition 19. Let φ = ν ñ.σ be a frame, t ∈ Ran(σ) such that the root symbol of t is

R-resistant, l → r a rule in R and θ = mgu(l|p =? t) where p ∈ FPos(l). If θ(l) has an

instance which is a plat, then θ(l) is said to be the s-overlap of l and t at position p.
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Figure 6.1: s-overlap of l and t at position p

Example 6.0.19. Let φ = ν ñ.σ = ν{a} . {X1 �→ g1(a)} be a frame and let

R1 = { f (g1(x),h(x))→ g2(x)}

where h is R1-resistant. Then f (g1(a),h(a)) is not an s-overlap since it is not a plat (i.e.,

we cannot construct h(a) since a is in ñ).

Example 6.0.20. Let φ = ν ñ.σ = ν{a} . {X1 �→ g1(a)} be a frame and let

R2 = { f (g1(x),h(x,y))→ g2(x)}

where h is R2 transparent. Then the only s-overlap is f (g1(a),h(a,y)). Which has no

instance that is a plat.
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Note that when R is Δ-strong, θ(r) will be a ground term and besides θ(r) ≺
θ(l|p) = t. This fact is crucial in many of the following proofs.

Lemma 6.0.21. Let R be a convergent term rewriting system and let φ = ν ñ.σ be a frame

where σ is an I -independent substitution and the root symbol of every term in Ran(σ)

is R-resistant. Let t ∈ Tφ be an irreducible recipe such that σ(t) is a redex. Then there is

an s-overlap S such that σ(t) is an instance of S.

Proof. Let l → r be a rule in R such that l � σ(t), i.e., ∃θ : θ(l) = σ(t). Thus Pos(l)⊆
Pos(σ(t)). By Lemma 4.0.16 we know that Pos(l) ⊆ Pos(t), since otherwise t would

be reducible. Thus there must exist a position p ∈ FPos(l) and a variable Xj ∈ V ar(t)

such that θ(l|p) = σ(Xj), i.e., l|p � σ(Xj). Let η = mgu(l|p =? σ(Xj)). Thus η � θ .

By Definition 19 we have that η(l) is the s-overlap of l and σ(Xj) at position p and the

result follows.

Note, that in our co-saturation procedure we will refer to ψ as a “parallel universe”,

in the sense that ψ is where the intruder can try to extend his knowledge by applying

cryptographic primitives and making guesses on keys. Informally our goal is to compare

these two “universes” or frames at various stages as they evolve over time during our

procedures.

In the other cases, where the substitutions need not be extended because the terms

are already in the range of σ , we need to check whether the recipes produce the ‘mirror’

terms in the range of ρ . More precisely, in the overlapping case, if there is already a

mapping (x j �→ θ(r)), then we have to check whether (x j �→ t̂) is in ρ . Similarly, in the

dismantling case if there is a mapping (x j �→ si) in σ , then we should check whether the

mapping
(
x j �→ (Cg

i [ρ(xi)])↓R
)

is in ρ . (Thus the cover-set has to be constructed in any

case.)

An easy way to picture what we are doing with our co-saturation procedure is to

relate it to the Marx brothers’ 1933 film “Duck Soup”. In this film there is an well-

known scene involving Groucho and Harpo. In this scene Harpo pretends to be Groucho’s

reflection. Groucho starts out being suspicious of his reflection and begins doing elaborate

moves that Harpo must predict and try to mimic as to not raise suspicion. Some of these

moves start off screen and many involve props such as hats. Groucho is often fooled by

26



The key ideas of the modified co-saturation procedure are as follows. There are

two cases, which we refer to as the overlapping case and the dismantling case

respectively, where we extend the substitutions:

s ∈ Ran(σ) (l, p)
σ ∪{xn+1 �→ θ(r)}

if θ = mgu(l|p =? s) where θ(r) ∈ Ran(σ)
and root(s) is R-resistant, then we compute the

cover-set Sc of θ(l), apply the substitution ρ
of frame ψ (i.e., our parallel universe) to terms

in this set, and then check if all terms in ρ(Sc)
have the same ground normal form, i.e., whether

ρ(Sc)↓R is a singleton set of ground terms. If it

is, say {t̂}, then set ρ = ρ ∪{
xn+1 �→ t̂

}
, where

n = |Dom(σ)|; if it is not then φ �S ψ .

(X �→ g(s1, . . . ,sm)) ∈ σ
σ ∪{

xn+1 �→Cg
i [s]

} if g is R-transparent and si ∈Ran(σ), where 1 ≤
i≤m and n= |Dom(σ)|. We extend ρ by adding

xn+1 �→ (Cg
i [ρ(xi)])↓R.

Note that the main check that is performed during this procedure is determining if

ρ(Sc)↓R is a singleton set of ground terms.

Harpo wearing props that are the wrong color and even when Harpo switches places with

him “inside the mirror”. He is nearly convinced that Harpo is his reflection until Chico

wanders into the scene and bumps into both Harpo and Groucho. This scene relates to our

procedure in many ways. Consider that Groucho is φ and Harpo is ψ . In our procedure

if ψ is a clever “mimicker” then φ may still be deceived into thinking that it is statically

included in ψ even after our procedure terminates. Thus we must perform additional

checks to ensure that φ has not been fooled by clever “mimicking.”

We will formulate our co-saturation procedure in Figure 1. Please note that even if

the co-saturation exits without failure we cannot deduce that φ is statically included in ψ

yet.
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Let n = |Dom(σ)|= |Dom(ρ)|.

1. For every mapping X �→ g(s1, . . . ,sm)) ∈ σ , where g is R-transparent,

- for i = 1, . . . ,n:

i. if si ∈ Ran(σ), we set σ = σ ∪{xn+1 �→ si} and

ρ = ρ ∪{
xn+1 �→ (Cg

i [ρ(xi)])↓R
}

.

ii. if there is a mapping (x j �→ si) in σ , then check whether the mapping

(x j �→ (Cg
i [ρ(xi)]) ↓R) is in ρ . If so, continue; if not, output “Not

included”.

2. For every mapping X �→ s where root(s) is R-resistant, rule l → r and position

p ∈ FPos(l) such that l|p and s are unifiable, let θ = mgu(l|p =? s), Sc = the

cover-set of θ(l) and U = ρ (Sc)↓R. Now if U is not a singleton set of ground

terms, then output “Not included”. If it is, say
{

t̂
}

, then

- if θ(r) ∈ Ran(σ), then set σ = σ ∪ {xn+1 �→ θ(r)} and

ρ = ρ ∪{
xn+1 �→ t̂

}
.

- if there is already a mapping (x j �→ θ(r)) in σ , then check whether

(x j �→ t̂) in ρ . If so, continue; if not, output “Not included”.

Figure 6.2: Saturation Procedure

Definition 20. We say that two frames φ = ν ñ.σ and ψ = ν ñ′.ρ are co-saturated if and

only if σ does not grow under any application of our inference rules and we have encoun-

tered no failures.

Note that though we call our procedure a co-saturation procedure we are only ac-

tually saturating frame φ . In ψ we are just mirroring the effects of φ being saturated.
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Lemma 6.0.22. Let R be a convergent term rewriting system and let φ = ν ñ.σ and ψ =

ν ñ.ρ be co-saturated frames. If (X �→ g(t1, . . . , tn)) ∈ σ and g is transparent, then

(X �→ g(t1, . . . , tn)) does not belong to the I -core of σ .

Proof. Straightforward, since the dismantling step will add mappings of the form Xji �→ ti

(unless ti is already in Ran(σ)) for 1 ≤ i ≤ n.

Lemma 6.0.23 (Soundness and completeness). Let R be a convergent term rewriting sys-

tem and let φ = ν ñ.σ and ψ = ν ñ.ρ be co-saturated frames. Then φ �S ψ if and only if

every mapping in σ not in its I -core is syntactically redundant with respect to ρ .

Proof. For ease of exposition, we partition σ as follows:

σ = σc �σnc

where σc is the I -core of σ and σnc is the remainder of σ . Let φc = ν ñ.σc.

Proof (only-if). We will prove this by contradiction. We will assume that φ �S ψ and

that there exists a mapping (X �→ s) in σnc that is not syntactically redundant with respect

to ρ . Since σc is the I -core of σ there must be a recipe τs such that s = σc(τs). Thus it

must be that ρ(X) and ρ(τs) are not joinable modulo R. This contradicts the assumption

that φ �S ψ .

Proof (if). If every mapping in σnc is syntactically redundant with respect to ρ then φ �S

ψ . We prove this by contradiction. Let t1, t2 be a minimal counterexample (i.e., σc(t1) ↓R

σc(t2) whereas ρ(t1) and ρ(t2) are not joinable) with respect to the number of steps in their

joinability sequence, i.e., σc(t1)
j−→ z k←− σc(t2) so their joinability sequence is j+ k steps.

We assume that σ is a normalized substitution and that t1 and t2 are irreducible recipes.

Since σc is an I -independent substitution it has to be that j+ k > 0, by Lemma 4.0.15.

Without loss of generality, we assume that j > 0, i.e., σc(t1) is reducible. Let t3 be a

non-ground subterm of t1 such that σc(t3) is a redex and let q be its position in t1, i.e.,

t3 = t1|q.
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By Lemma 6.0.21 we know that an s-overlap S exists such that σc(t3) is an instance

of S. Thus, we know that there exists a rule l → r ∈ R, a mapping X �→ s and a substitution

θ = mgu(l|p =? s) where p ∈ FPos(l), such that θ(l) = S. So σc(t3) ↓R= θ(r). Since

φ is saturated, θ(r) is either in Ran(σc) or in Ran(σnc).

(a) θ(r) ∈ Ran(σc): Then there exists a variable Y ∈ Dom(σc) such that σc(Y ) =

θ(r).

(b) θ(r) ∈ Ran(σnc): In this case, due to redundancy, there exists a φc-recipe τ such

that σc(τ) = θ(r).

Thus we can say in general that there is a φc-recipe τr such that θ(r) = σc(τr). Let

t ′1 = t1[τr]q. By doing this replacement we know that we have effectively done a reduction

in σc(t1) since we have reduced its subterm σc(t3) to a ground plat. Thus σc(t1) →+
R

σc(t1[τr]q) = σc(t
′
1) and we have decreased j by at least one step. Therefore the length

of the joinability sequence for t ′1 and t2 is now ( j−m)+ k where m ≥ 1. However this

contradicts the minimality of t1 and t2 since we have now found a pair with a shorter

joinability sequence which is a smaller counterexample.

Recall Example 1.1.2 from Chapter 1. We will now define this example more for-

mally and use our procedure to show that φ �S ψ .

Example 6.0.24. Let our term rewriting system R be:

R = {d(e(x,y),y)→ x, π1(p(x,y))→ x, π2(p(x,y))→ y}

and let φ and ψ be frames such that

φ = ν ñ.σ = ν
{

M,Na,q,q′,K
}
.{X1 �→ e(Na,q), X2 �→ e(p(M,Na),K), X3 �→ q}

and

ψ = ν ñ.ρ = ν
{

M,Na,q,q′,K
}
.
{

X1 �→ e(Na,q), X2 �→ e(p(M,Na),K), X3 �→ q′
}
.
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Consider, θ = mgu(d(e(x,y),y)|1 =? e(p(M,Na),K)), then θ(l) = d(e(p(M,Na),K)K)

is not an s-overlap since it is not a plat (i.e., we cannot construct K since K is in ñ). But

if, θ = mgu(d(e(x,y),y)|1 =? e(Na,q), then θ(l) = d(e(Na,q),q) is an s-overlap since it

has an instance d(X1,X3) which is a φ -plat and θ(r) = Na /∈ Ran(σ).

The pre-cover-set of θ(l) is

pre-cover-set(θ(l)) = {d(e(Na,q),q)}

The cover-set of θ(l) is

Sc(θ(l)) = {d(X1,X3)}

U = {ρ(d(X1,X3)) ↓R}= {d(e(Na,q),q′)}

Since U is a ground singleton set we extend ρ and σ as follows:

σ = {X1 �→ e(Na,q), X2 �→ e(p(M,Na),K), X3 �→ q, X4 �→ Na}

ρ =
{

X1 �→ e(Na,q), X2 �→ e(p(M,Na),K), X3 �→ q′, X4 �→ d(e(Na,q),q′)
}

We can no longer apply any inference rules, since there are no more valid s-overlaps.

Thus our frames are co-saturated.

The I -core of σ is {X2 �→ e(p(M,Na),K), X3 �→ q, X4 �→ Na}. The mapping X1 �→
e(Na,q) is syntactically redundant in ρ , since

X1 = σ(e(X4,X3))

and

ρ(e(X4,X3)) = e(d(e(Na,q),q′),q′) →!
R e(Na,q) = ρ(X1).

By Lemma 6.0.23 we conclude that φ �S ψ .

Lemma 6.0.25. Any frames φ = ν ñ.σ and ψ = ν ñ.ρ can be co-saturated in a finite

number of steps.

Proof by contradiction. Assume there is an infinite chain of co-saturation steps. This

must involve the overlapping case, since the dismantling case simply “strips off” root
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symbols leaving smaller terms at every step which will clearly terminate. Thus the infinite

chain must involve computing the cover set of valid s-overlaps. We can build a finitely

branching infinite tree from nodes that represent all of the terms in Ran(σ) as follows:

• The root of the tree will be an arbitrary symbol not in (F ∪ Names).

• The level i = 1 of the tree will be all the terms in Ran(σ).

• The i+1 level of the tree is obtained from applying our inference rule to all of the

terms s ∈ Ran(σ) in the ith level. If a new mapping is added to σ by an s-overlap

θ(l) of l and s at p, then the corresponding θ(r) becomes a child of s in the tree.

Recall that since R is a Δ-strong rewrite system we know that θ(r)≺ θ(l|p).

This tree is clearly finitely branching since for each node in the tree we can only match at

most with l|p for every l → r ∈ R and every p ∈ FPos(l). By König’s Lemma we know

that this tree must have an infinite path. However, this is impossible since each term that

is added must be lower than it’s parent in the ordering ≺. Thus we have reached our

contradiction and no infinite chain of co-saturation steps can exist.

Example 6.0.26. Let R = {d(e(x,y),y)→ x}. Let

φ = ν ñ.σ = ν{k,k1}.{X1 �→ e(a,k), X2 �→ k}

and

ψ = ν ñ.ρ = ν{k,k1} . {X1 �→ e(a,k), X2 �→ k1}

be frames.

The s-overlap is

θ(l) = d(e(a,k),k)

Note that θ(l) = σ(d(X1,X2)), thus θ(l) is a φ -plat and θ(r) = a /∈ Ran(σ).

The cover-set of θ(l) is

Sc(θ(l)) = {d(X1,X2)}

U = {ρ(d(X1,X2)) ↓R}= {d(e(a,k),k1)}
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Since U is a ground singleton set we extend ρ and σ as follows:

σ = {X1 �→ e(a,k), X2 �→ k, X3 �→ a}

ρ = {X1 �→ e(a,k), X2 �→ k1, X3 �→ d(e(a,k),k1)}

The I -core of σ is {X2 �→ k} since a is a public constant. The mapping X1 �→ e(a,k)

is not in I -core of σ and is not syntactically redundant in ρ , since X1 = σ(e(a,X2))

and ρ(X1) =R ρ(e(a,X2)). Thus by Lemma 6.0.23 φ �S ψ . (The mapping X3 �→ a is not

redundant either.)

Example 6.0.27. (A small variation of Example 6.0.26)

Let R =
{

d(e(x,y),y)→ x, e(d(x,y),y)→ x
}

and let

φ = ν ñ.σ = ν{a,k,k1}.{X1 �→ e(a,k), X2 �→ k}

and

ψ = ν ñ.ρ = ν{a,k,k1} . {X1 �→ e(a,k), X2 �→ k1}

be frames. Saturation yields the same substitutions as before:

σ = {X1 �→ e(a,k), X2 �→ k, X3 �→ a}

ρ = {X1 �→ e(a,k), X2 �→ k1, X3 �→ d(e(a,k),k1)}

The I -core of σ is {X2 �→ k, X3 �→ a}. The mapping X1 �→ e(a,k) now is syntactically

redundant in ρ , since

X1 = σ(e(X3,X2))

and

ρ(e(X3,X2) = e(d(e(a,k),k1),k1) →!
R e(a,k) = ρ(X1)

Example 6.0.28. Let R = { f (g(x),y)→ h(x)} and let

φ = ν ñ.σ = ν{a} . {X1 �→ g(a)}
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and

ψ = ν ñ.ρ = ν{a} . {X1 �→ h(a)}

be frames.

Consider that the s-overlap is θ(l) = f (g(a),y). Note that θ(l) = σ( f (X1,y)), thus θ(l)

is a φ -plat and θ(r) = h(a) /∈ Ran(σ).

The cover-set of θ(l) is

Sc(θ(l)) = { f (X1,y)}

U = ρ({ f (X1,y)}) ↓R= { f (h(a),y)}. Since U is not a ground singleton set, φ �S ψ .

Example 6.0.29. Let R = { f (g(x,y),g(x,z))→ h(x)} and let

φ = ν ñ.σ = ν{a,b,c,d,d′} . {X1 �→ g(a,b), X2 �→ g(a,c)}

and

ψ = ν ñ.ρ = ν{a,b,c,d,d′} . {X1 �→ g(d,b), X2 �→ g(d′,c)
}

be frames.

The s-overlap is

θ(l) = f (g(a,b),g(a,z)).

Note that {z �→ b}(θ(l)) = σ( f (X1,X1)), thus θ(l) has an instance that is a φ -plat.

Therefore we know that θ(r) = θ(h(x)) = h(a) /∈ Ran(σ).

The cover-set of θ(l) is

Sc(θ(l)) = { f (X1,X1), f (X1,X2)}

and

U = ρ({ f (X1,X1), f (X1,X2)}) ↓R= {h(d), f (g(d,b),g(d′,c))}.

Since U is not a ground singleton set, we conclude that φ �S ψ .
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CHAPTER 7
ω�-strong Intruder Theories

Now we shall look at a more general class of theories known as ω�-strong intruder the-

ories1. We will provide a new co-saturation procedure for deciding this class of theories.

Note that as in the previous chapter our procedure is an algorithm for solving the static

inclusion decision problem, however for a more general class of intruder theories.

We will begin by defining an ω�-strong intruder theory.

Definition 21. Let � be a simplification ordering on the term rewriting system R, and Δ

a dwindling and convergent subsystem of R. For every rule l → r in R, let μ(l) stand for

the set of �-minimal subterms of l that are R-resistant. A rule l → r ∈ R is said to be

ω-strong with respect to �, if and only if there exists a position p such that l|p ∈ μ(l)

and l|p � r. The system R is ω�-strong with respect to �, if and only if every rule in R is

either dwindling or ω-strong with respect to �.

Clearly every Δ-strong term rewriting system is also ω�-strong. An example of a

term rewriting system that is dwindling (and hence ω�-strong) but not Δ-strong is

{
d(e(x, pk(y)), sk(y))→ x

}

for public-key encryption and decryption. (Note that sk is R-resistant.)

1Note that in “Intruder with caps” [6] they did not study ω�-strong intruder theories. Instead that paper

studied a related class of theories known as ωΔ-strong intruder theories, which is slightly different because

not every function symbol is public. Nevertheless, our approach is clearly inspired by [6].
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Now we shall present our new co-saturation procedure. We will provide a more

generalized version of the overlapping case from the previous section.

s ∈ Ran(σ) (l, p)
σ ∪{xn+1 �→ θ(r)}

if θ = mgu(l|p =? s) where root(s) is R-resistant,

θ(r) ∈Ran(σ) and s � θ(r) , then we compute

the cover-set Sc of θ(l), apply the substitution ρ
of frame ψ (i.e., our parallel universe) to terms

in this set, and then check if all terms in ρ(Sc)
have the same ground normal form, i.e., whether

ρ(Sc)↓R is a singleton set of ground terms. If it

is, say {t̂}, then set ρ = ρ ∪{
xn+1 �→ t̂

}
, where

n = |Dom(σ)|; if it is not then φ �S ψ .

(X �→ g(s1, . . . ,sm)) ∈ σ
σ ∪{

xn+1 �→Cg
i [s]

} if g is R-transparent and si ∈Ran(σ), where 1 ≤
i≤m and n= |Dom(σ)|. We extend ρ by adding

xn+1 �→ (Cg
i [ρ(xi)])↓R.

As before, if there is already a mapping (x j �→ θ(r)) in σ , then we have to check

whether (x j �→ t̂) is in ρ . The dismantling case from the previous section needs no change.

Lemma 7.0.30. Let R be a convergent term rewriting system and let φ = ν ñ.σ be a frame

where σ is an I -independent substitution and the root symbol of every term in Ran(σ)

is R-resistant. Let l → r be a rule in R that is ω-strong and p ∈ FPos(l) such that

l|p ∈ μ(l) and l|p � r. If, for some substitution θ , θ(l|p) is a φ -plat and θ(r) is not, then

θ(l|p) ∈ Ran(σ).

Proof. Since θ(r) is not a plat, there must be a variable v in V ar(r) and hence in V ar(l|p)
such that θ(v) is not a plat. Thus θ(v) is not a plat whereas a superterm of it, namely

θ(l|p), is a plat. Let p · p′ be a position of v in l. By Corollary 3.0.5, there must be a

position q such that p � q ≺ p · p′ and θ(l|q) ∈ Ran(σ), or, in other words, θ(v) must be

a proper subterm of some term in Ran(σ) which, in turn, must be a subterm of θ(l|p).
Let s = θ(l|q). Now, l|p is a minimal R-resistant subterm of l, so all function symbols

of l|p, except at its root, must be R-transparent; but the root of s is R-resistant by our

assumption above, so it must be that θ(l|p) is a subterm of s; thus θ(l|p) ∈ ST(Ran(σ)).
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But since θ(l|p) is a plat, it must be in Ran(σ).

We can now provide a more general form of this lemma as follows:

Lemma 7.0.31. Let R be a convergent term rewriting system and let φ = ν ñ.σ be a frame

where σ is an I -independent substitution and the root symbol of every term in Ran(σ) is

R-resistant. Let l → r be a rule in R that is ω-strong and p ∈FPos(l) such that l|p ∈ μ(l)

and l|p � r. If, for some substitution θ , θ(l) is a φ -plat and θ(r) is not, then there is a

prefix q of p such that θ(l|q) ∈ Ran(σ).

Proof. If θ(l|p) is a φ -plat, then the result follows from Lemma 7.0.30. If it is not, then

Corollary 3.0.5 applies, since θ(l|p) = θ(l)|p.

Lemma 7.0.32. Let R be a convergent term rewriting system and let φ = ν ñ.σ be a frame

where σ is an I -independent substitution and the root symbol of every term in Ran(σ)

is R-resistant. Let l → l|p (p = ε) be a dwindling rule in R. If, for some substitution θ ,

θ(l) is a φ -plat and θ(l|p) is not, then there exists a position ε � q ≺ p such that θ(l|q) ∈
Ran(σ).

Proof. Follows from Corollary 3.0.5.

Lemma 7.0.33. Let R be a convergent term rewriting system that is ω�-strong and let

φ = ν ñ.σ be a frame where σ is an I -independent substitution and the root symbol of

every term in Ran(σ) is R-resistant. Let t, t ′ be terms such that t →R t ′ where t is both

a plat as well as a redex. If t ′ is not a plat, then there is an s-overlap S such that t is an

instance of S.

Proof. Let l → r be a rule in R, such that θ(l) = t and θ(r) = t for some substitution θ .

Since l → r is ω�-strong we must consider the following cases:

Case 1 Let l → r is a dwindling rule. We know that θ(l) is a plat and θ(l|p) is not a

plat where p ∈ FPos(l) l|p can be replaced by r since l → r is dwindling. Thus

there must exist a position q where q is a proper prefix of p and θ(l|q) ∈ Ran(σ)

by Lemma 7.0.32.

37



Case 2 Let l → r is an ω-strong rule. Thus by by Lemma 6.0.21 there must exist a

position p ∈ FPos(l) such that l|p ∈ μ(l), l|p � r, q is a prefix of p and θ(l|q) ∈
Ran(σ).

Therefore in both cases we know there is an s-overlap S such that t is an instance of S by

Lemma 6.0.21. Now what remains to be shown is that θ(l|q) � θ(r). This is clear since

l|q is a prefix of l|p where l|p � r. Therefore θ(l|q)� θ(r).

Lemma 7.0.34. Let R be a convergent term rewriting system that is ω�-strong and let

φ = ν ñ.σ be a frame where σ is an I -independent substitution and the root symbol of

every term in Ran(σ) is R-resistant. Let t, t ′ be terms such that t →R t ′ where t is both a

plat as well as a redex. If t ′ is a plat, then there is an equation e1 = e2 in the cover-set

of R such that t = t ′ is an instance of e1 = e2.

Proof. Let l → r be a rule in R such that σ(l) = t and σ(r) = t ′. The cover-set of R is, by

definition, a superset of the cover-set of l = r. Now the result follows from the definition

of cover-set (Lemma 3.0.10).

Note that the termination argument given in Lemma 6.0.25 with slight modifications

will work for ω�-strong intruder theories as well.

Theorem 7.0.35 (Soundness and completeness). Let R be a convergent term rewriting

system that is ω�-strong. Let φ = ν ñ.σ and ψ = ν ñ.ρ be co-saturated frames and φc =

ν ñ.σc be the I -core of φ . Then φ �S ψ if and only if the following hold:

1. every mapping in σ not in its I -core is syntactically redundant with respect to ρ ,

and

2. every equality in the cover-set for R with respect to φc also holds in ψ .

Proof. For ease of exposition, we partition σ as follows:

σ = σc �σnc

Proof (only if). We will prove this by contradiction. We will assume φ �S ψ and there

exists a mapping (X �→ s) in σnc that is not syntactically redundant with respect to ρ .
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Since σc is the I -core of σ there must be a recipe τs such that s = σc(τs). Thus it must

be that ρ(X) and ρ(τs) are not joinable modulo R. This contradicts the assumption that

φ �S ψ .

Proof (if). We prove that if the conditions hold then φ �S ψ . We first prove the following

claim:

Claim: If, for some substitution θ , θ(l) is a φ -plat, then so is θ(r).

Proof by contradiction. Suppose θ(l) is a φ -plat and θ(r) is not a φ -plat.

Thus by Lemma 7.0.33 we know that there is an s-overlap S such that θ(l)

is an instance of S. Therefore we will be able to extend our substitution σ

by applying our overlapping rule. However this is a contradiction since we

know that our frames are already co-saturated.

We now prove the “if” part by contradiction. Let t1, t2 be a minimal counterexample

(i.e., σc(t1) ↓R σc(t2) whereas ρ(t1) and ρ(t2) are not joinable) with respect to the number

of steps in their joinability sequence, i.e., σc(t1)
j−→ z k←− σc(t2) so the length of their

joinability sequence is j+k steps. We assume that σ is a normalized substitution and that

t1 and t2 are irreducible recipes. Since σc is an I -independent substitution it has to be

that j+ k > 0, by Lemma 4.0.15. Without loss of generality, we assume that j > 0, i.e.,

σc(t1) is reducible. Let t3 be a non-ground subterm of t1 such that σc(t3) is the first redex

in the reduction sequence and let q be its position in t1, i.e., t3 = t1|q. Thus there is a rule

l → r ∈ R such that σc(t3) = θ(l). Note that by our above claim we know that θ(r) must

also be a φ -plat and hence a φc-plat. By Lemma 7.0.34 there is an equation el = er in the

cover-set of R with respect to φc such that θ(l) =R θ(r) is an instance of it. Therefore

θ(r) = η(σc(er)) where η �σc is a plat extension of σc. Since η(σc(er)) = σc(η(er))
2

we can set t ′3 = η(er). Similarly for θ(l) we have that θ(l) = σc(η(el)) where η(el) must

be equal to t3 by Lemma 4.0.15. Note that t3 and t ′3 are equivalent with respect to ρ too,

since el = er holds in ψ .

Let t ′1 = t1[t
′
3]q. By doing this replacement we have effectively done a reduction

in σc(t1) since we have reduced its subterm σc(t3) to a ground plat. Thus σc(t1) →+
R

2Since i.e., η and σc are ground substitutions with different domains
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σc(t1[t
′
3]q) = σc(t

′
1) and we have decreased j by at least one step. Therefore the joinability

sequence for t ′1 and t2 is now ( j −m) + k where m ≥ 1. However this contradicts the

minimality of t1 and t2 since we have now found a pair with a shorter joinability sequence

which is a smaller counterexample.
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CHAPTER 8
Conclusion and Future Work

In conclusion, the main contributions that we have made in this dissertation are providing

co-saturation procedures for deciding if a frame φ is statically included in another frame ψ

over specific classes of intruder theories. We developed our approach by essentially start-

ing where “Intruders with Caps” ended. In that paper the authors were studying a related

problem, the cap or deduction problem. They solved this problem for Δ-strong and ωΔ-

strong intruder theories. We modified their procedures to solve the decision problem for

static inclusion over Δ-strong and ω�-strong theories. For these classes of theories we

guarantee termination, soundness, and completeness.

A notion we introduced that was not in [6] is that of a cover-set. This was not needed

in [6] because exactly how a term was deduced was not important there. Deciding the

deduction problem was shown to be non-primitive recursive for general Δ-strong intruder

theories [7]. The same proof can be adapted to show that deciding static inclusion is

also of non-primitive recursive complexity over general Δ-strong intruder theories (see

Appendix A).

As this dissertation is being written another more general approach is being devel-

oped. This approach uses a Knuth-Bendix style completion procedure [27]. As part of

our future work we hope to complete this technique and if possible combine it with our

approach. Another goal is to generalize our current technique to handle more classes of

intruder theories. Additionally we would like to implement our co-saturation procedures

and include them in a protocol analysis tool such as Maude-NPA [26]. We plan to pro-

vide detailed comparisons to other implementations such as YAPA [12], KiSs [23], and

FAST [19].
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APPENDIX A
Non-Primitive Recursive

With the permission of the authors [3, 31, 33], I will include material from an appendix in

their technical report on “Intruders with Caps” [7]. This material was not in the published

version of their paper [6]. We will show how to modify their construction to show that

the complexity of deciding static inclusion over general Δ-strong intruder theories is non-

primitive recursive.

The proof is based on the following lines of reasoning. The starting point is the

following observation of Petr Jančar, where A (n) is a non-primitive recursive function

on natural integers:

“The problem to decide, given a 2-counter machine C and a natural number n,

whether C halts on zero input in A (n) steps is non-primitive recursive”.

in “Nonprimitive recursive complexity and undecidability for Petri net equivalences”

(Theor. Comp. Science, 256(1-2):23–30, 2001; Proposition 9, Section 4).

Let C be an arbitrarily given 2-counter machine, with L+ 1 instructions; to each

instruction of label i, 0 ≤ i ≤ L, is associated a state denoted as qi, which is treated as a

unary function on N. Consider the following convergent term rewriting system R, where

0 stands for the natural number 0, s for the successor function on N, and p stands for the

predecessor function defined as usual:

f (0,x) → s(x)

f (s(x),0) → f (x,s(0))

f (s(x),s(y)) → f (x, f (s(x),y))

p(s(x)) → x

h(g(x,u,v,w)) → r( f (x,x),u,v,w)

d(qi(x)) → x, 0 ≤ i ≤ L.

The function f obviously encodes the usual Ackermann-Peter function (on two
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arguments over N). The symbol h plays no specific role, other than ensuring that a term

with top symbol g is R-irreducible. The qi’s and s are R-transparent and the other symbols

are all R-resistant. Note that the last rule above is a meta-rule that represents a set of

rewrite rules.

We encode the instructions of the given 2-counter machine C by the following set

of rewrite rules, where the second and the fourth arguments, under the symbol r in the

terms to the left, stand for the values of the two counters of C, respectively (and the l, l′

are suitable instruction labels):

Incrementation of counter 1 or 2:

h(r(s(u),x,ql(z),y))→ r(u,s(x),ql+1(z),y),

h(r(s(u),x,ql(z),y))→ r(u,x,ql+1(z),s(y)).

Conditional decrementation of counter 1 or 2:

h(r(s(u),s(x),ql(z),y))→ r(u,x,ql+1(z),y),

h(r(s(u),0,ql(z),y))→ r(u,0,ql′(z),y).

h(r(s(u),x,ql(z),s(y)))→ r(u,x,ql+1(z),y),

h(r(s(u),x,ql(z),0))→ r(u,x,ql′(z),0).

At STOP, release the secret m:

h(r(u,v,qL(z),w))→ z.

Let R′ denote the intruder theory formed of all these encoding rules and the rules of

the term rewriting system R given above; R′ is obviously Δ-strong under the lpo based on

the precedence 0< qi < s< p< f < r < g< h (where 0≤ i≤ L), and it is also convergent

under this simplification ordering.
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In [7] the authors show that a given ground constant m can be deduced from the

singleton set S = {g(sn(0),0,q0(m),0)}, where n is some given positive integer, if and

only if the machine C, with initial counter values both 0, halts under instruction L in

f (n,n) steps. Thus the deducibility problem for the Δ-strong intruder theory R′ is non-

primitive recursive.

Using an idea from [1], we show that this holds for the static inclusion problem as

well. Let φ and ψ be frames defined as follows:

φ = ν ñ.σ = ν {m} .{X1 �→ g(sn(0),0,q0(m),0), X2 �→ d(m)}

and

ψ = ν ñ.ρ = ν {m} .{X1 �→ g(sn(0),0,q0(m),0), X2 �→ d(d(m))}

where again n is some given positive integer, and m is a nonce.

Note that without the second mapping the two frames φ and ψ are identical; fur-

thermore, we cannot have any s-overlaps with the second mapping, since the function

symbol d only appears in the left-hand sides of the meta-rule (at the root) and none of the

left-hand sides in this meta-rule can be matched with the range term d(m). So, d(m) is

not in the I -core after co-saturation if and only if m has been “deduced,” i.e., a mapping

of the form Xi �→ m has been added. Clearly in this case φ �S ψ .

Thus it is not hard to verify that φ �S ψ if and only if the machine C, with initial

counter values both 0, halts in f (n,n) steps.
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APPENDIX B
Some examples

1. Let σ = ν{a} . {X1 �→ g1(a)} be a frame.

• R1 = { f (g1(x),h(y))→ g2(x)} where h is transparent.

The cover-set is { f (X1, h(y))}.

• R2 = { f (g1(x),h(x,y))→ g2(x)} where h is transparent.

The only s-overlap is f (g1(a),h(a,y)).

This has no instance that is a plat.

• R3 = { f (g1(x),h(g1(x),y))→ g2(x)} where h is transparent.

The s-overlap f (g1(a),h(g1(a),y)) has the cover-set { f (X1,h(X1,y))}.

• R4 = { f (g1(x),h(g1(y),y))→ g2(x)} where h is transparent.

(This system is not Δ-strong though.)

The s-overlap f (g1(a),h(g1(y),y)) has the cover-set { f (X1,h(g1(y),y))}.

Note that f (X1,h(X1,a)) is not a recipe.

2. Let σ = ν{a} . {X1 �→ g1(a,a), X2 �→ g1(a,b)} be a frame.

• R5 = { f (g1(x,x), h(g1(x,y),y))→ g2(x)}.

Consider the s-overlap f (g1(a,a), h(g1(a,y),y)).

Its cover-set is { f (X1, h(X2,b)}.

Note that the instance f (g1(a,a), h(g1(a,a),a)) of the s-overlap is not

a plat.
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