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EPIGRAPH

Simplicity is the highest goal, achievable when you have overcome all difficulties. After one has
played a vast quantity of notes and more notes, it is simplicity that emerges as the crowning reward
of art.

Frédéric Chopin
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ABSTRACT OF THE DISSERTATION

Integrating conformational and protonation equilibria in biomolecular modeling
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Professor J. Andrew McCammon, Chair

Due to high sensitivity of biomolecular systems to the electrostatic environments, coupled
treatment of conformational and protonation equilibria is required for an accurate characterization of
true ensemble of a given system. The research presented in this dissertation examines the effects of
conformational and protonation equilibria of varying extent on diverse aspects of computational
biomolecular modeling, as introduced in Chapter 1. The effects of protonation and stereoisomerism of
two histidines on virtual screening against the M. tuberculosis enzyme RmlIC are presented in Chapter
2. In Chapter 3, conformational flexibility of three M. tuberculosis prenyl synthases is probed using
molecular dynamics simulations, with implications for computer-aided drug discovery effort for the
new generation antibacterial and antivirulence therapeutics. Chapters 4 and 5 consider the
conformational and protonation equilibria simultaneously by utilizing constant pH molecular dynamics,

in which fluctuations in both conformation and protonation state are possible. In Chapter 4, a
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computational protocol utilizing constant pH molecular dynamics to compute pH-dependent binding
free energies is presented. The methodology is further applied to protein-ligand complexes in Chapter 5,
where the thermodynamic linkage between protonation equilibria, conformational dynamics, and

inhibitor binding is illustrated.
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Chapter 1

Integrating conformational and protonation

equilibria in biomolecular modeling

Introduction

The ensemble of protein conformations determines the possible functions of a protein. The
instantaneous conformation in this structural ensemble is sensitive to changes in its surrounding
environment, such as pH, temperature, pressure, and presence of a ligand. Protonation equilibria are of
particular interest because virtually all proteins depend on tight regulation of the intracellular pH to
maintain stability and function." > The surrounding electrostatic environment is reflected as the
microscopic pK, of the titratable residues in the protein, the pH at which individual acidic and basic
residues are 50% protonated. Changes in conformation of the protein can alter the electrostatics, which
may induce a shift in the pK, of titratable groups.’ Furthermore, the formation of a complex between the
protein and small molecules, nucleic acids, or other proteins can also cause changes in the pK, of
titratable groups on either binding partner.* Therefore, coupling of conformational and protonation
equilibria is essential to an accurate characterization of structural ensemble of a given biomolecular
system.

Conventional biomolecular modeling or free energy computations involving the complex
formation typically employ fixed protonation states for the titratable groups in both binding partners set
a priori, which are identical for the free and bound states. Clearly, in cases where the ligand binding

accompanies a net proton transfer to the system, this assumption ignores the possibility of protonation



states changing while the chemical environments change upon binding. Hence, when the true ensemble
of conformations consists of varying electrostatic environments, the use of a single, static protonation
state may hinder the accurate description of the ensemble and can lead to significant errors.* In this
dissertation, the effects of conformational and protonation equilibria are examined in diverse aspects of
computational biomolecular modeling, with varying degrees of each taken into account. The following
sections briefly describe the motivations and methodologies behind each chapter in addressing the

influence of conformational and protonation ensembles.

Protonation and stereoisomerism of active site histidines of RmIC

While multiple tautomers and protonated forms of ligand molecules are considered in a virtual
screening (VS), titratable groups in protein receptors are assigned a single protonation state that is
identical for both bound and unbound forms. Given a goal of VS to identify small molecules binding to
a target protein with high affinities, such presumption precludes the possibility of finding diverse
ligands that bind to the receptors with different protonation states. An example of where these effects
may be important is the M. tuberculosis enzyme RmlIC, as the active site of the enzyme has two
histidines that engage in proton transfer during the catalysis. Depending on the net charge and the
location of proton(s), a histidine can adopt three states: HIP (+1 charged, both &- and e-nitrogens
protonated), HID (neutral, 5-nitrogen protonated), and HIE (neutral, e-nitrogen protonated). In addition,
three additional states are possible for a histidine with its imidazole ring flipped. In Chapter 2, we
evaluate the performance of VS using 36 receptor models with different protonation and rotameric
states of two active site histidines to investigate the sensitivity of VS to the protonation states of

titratable residues located in the receptor active site.

Conformational flexibility of antibacterial and antivirulence targets

In addition to the assignment of a fixed protonation state, the protein receptors are treated
rigidly in typical VS study by the use of static X-ray crystallographic structures. However, not only is

the intrinsic conformational flexibility of the receptor ignored but also the structural rearrangement



induced by ligand binding in such rigid treatment of receptors. Consequently, an induced fit mechanism
has been incorporated into the docking algorithms in order to account for receptor flexibility.”® While
the docking protocols that consider induced fit show improvements in the accuracy of the VS results by
accounting for binding-induced conformational changes,” " the search algorithm is largely limited to
side chain rotations, and therefore, global structural changes upon ligand binding or rare receptor
conformations are not addressed.

Another approach to account for receptor flexibility in structure-based drug discovery is the
relaxed complex scheme, which utilizes an ensemble of various conformations usually generated by
molecular dynamics (MD) simulations.'' In an MD simulation, the Hamiltonian is computed using the
classical molecular mechanics force field, and the time evolution of the system configurations is
obtained by solving Newton’s equations of motions.'*'® The use of the structural ensemble generated
by MD simulations within the relaxed complex scheme framework enables sampling of the global
structural changes in the receptor conformation that occur on longer timescales, as well as incorporating
infrequently observed, yet biologically important, conformations upon ligand binding into the VS
protocol. The method has been successfully applied to various structure-based drug discovery studies,
showing promising results in finding the inhibitors that bind to rarely sampled receptor conformers.'*
In Chapter 3, we apply the relaxed complex scheme to the computer-aided drug discovery effort to
develop the novel new generation antibacterial and antivirulence therapeutics targeting three M.
tuberculosis prenyl synthases: E,Z-decaprenyl diphosphate synthase; FE,Z-farnesyl diphosphate

synthase; and tuberculosinol/tuberculosinyl adenosine synthase.

Computing pH-dependent binding free energies

In Chapters 2 and 3, the effects of protonation and conformational equilibria on computational
biomolecular modeling are respectively analyzed. However, due to the tight coupling between the
conformation and its surrounding electrostatic environments, as described above, the conformational
and protonation spaces have to be addressed together for an accurate description of true ensemble for a

given biomolecular system. This is particularly important to the biomolecular association, where



protein-ligand binding can accompany a net transfer of protons, and hence, the binding process is pH-
dependent.

Constant pH molecular dynamics (CpHMD) is a technique that incorporates pH as an
additional external thermodynamic variable to the conventional MD framework, enabling concurrent
sampling of conformational and protonation spaces according to the semi-grand canonical ensemble.'®
In CpHMD simulations, conformational fluctuations propagate with MD simulations while intermittent
Monte Carlo steps evaluate a change in the protonation state of a given titratable residue.'®'” The new
protonation state is either accepted or rejected contingent on the application of the Metropolis criterion,
and the MD simulation continues. Repeated application of these steps builds an ensemble of
conformations and protonation states along the MD trajectory. In Chapter 4, we describe a
computational protocol combining CpHMD simulations with the binding polynomial formalism'® to
compute pH-dependent binding free energies. In this approach, the CpHMD method provides a
framework through which the pH dependence of binding processes can be examined with respect to the
reference state, which is taken either from experiment or from thermodynamic integration
computations. Tested to various host-guest complexes, the methodology highlights the errors associated
with incorrect assignment of protonation states in free energy computations and represents a promising

approach to properly address the changes in protonation states upon complex formation.

Proton-linked conformational dynamics and inhibitor binding of

BACE-1

In Chapter 5, conformational dynamics and binding free energies of inhibitors of BACE-1, the
B-secretase responsible for the amyloidogenesis in Alzheimer’s disease, are described from the
perspective of protonation equilibria. The catalytic mechanism of BACE-1 involves a water-mediated
proton transfer from the aspartyl dyad in the active site to the substrate, as well as structural flexibility
in the flap region. Therefore, the coupling of protonation and conformational equilibria is essential to a

full in silico characterization of BACE-1. This work applies the CpHMD-based free energy method



described in Chapter 4 to quantify the binding affinity in protein-ligand systems and highlights the
importance of correctly addressing the binding-induced changes in protonation states for cases where
protein-ligand binding accompanies a net proton transfer. Also, the value of CpHMD technique as an
all-purpose tool for obtaining pH-dependent dynamics and binding free energies of biological systems

is illustrated, suggesting high utility of the CpHMD method in computer-aided drug design workflows.
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Chapter 2

Effects of histidine protonation and rotameric
states on virtual screening of Mycobacterium

tuberculosis RmlC

Abstract

While it is well established that protonation and tautomeric states of ligands can significantly
affect the results of virtual screening, such effects of ionizable residues of protein receptors are less well
understood. In this study, we focus on histidine protonation and rotameric states and their impact on
virtual screening of Mycobacterium tuberculosis enzyme RmlC. Depending on the net charge and the
location of proton(s), a histidine can adopt three states: HIP (+1 charged, both 5- and e-nitrogens
protonated), HID (neutral, &-nitrogen protonated), and HIE (neutral, e-nitrogen protonated). Due to
common ambiguities in X-ray crystal structures, a histidine may also be resolved as three additional
states with its imidazole ring flipped. Here, we systematically investigate the predictive power of 36
receptor models with different protonation and rotameric states of two histidines in the RmlC active site
by using results from a previous high-throughput screening. By measuring enrichment factors and area
under the receiver operating characteristic curves, we show that virtual screening results vary depending
on hydrogen bond networks provided by the histidines, even in the cases where the ligand does not
obviously interact with the side chain. Our results also suggest that, even with the help of widely used

pK. prediction software, assigning histidine protonation and rotameric states for virtual screening can



still be challenging and requires further examination and systematic characterization of the receptor-

ligand complex.

Introduction

The effect of ligand protonation and tautomeric states on virtual screening (VS) has been the
subject of extensive research.'™ It is well known that different protonated forms or tautomers of a
ligand may have significantly different rankings in VS."? Unlike ligand molecules, for which multiple
tautomers and protonated forms can be included in a VS study, the ionizable residues of protein
receptors are assigned a single state prior to the screening. For instance, in the standard protonation
model, all Asp, Glu, and His residues are deprotonated while all Arg and Lys residues are protonated at
pH 7.4, the typical extracellular pH for the biological systems. Various algorithms, such as PROPKA,>*®
H++>"" and MCCE,'"" have been developed to improve the quality of the proton assignment.
However, few studies have investigated the effect of such assignment of the titratable residues of
protein receptors on VS results.”® In this study, we focus on the impact of histidine protonation and
rotameric states on VS by systematically analyzing a screen using results from a previous high-
throughput screening (HTS) of the enzyme RmIC (dTDP-6-deoxy-D-xylo-4-hexulose 3°,5’-epimerase)
of Mycobacterium tuberculosis.'®
Histidines participate in a large number of important biochemical reactions. As catalytic

18-20 I
coordinating

residues in the enzymatic active site,'” proton shufflers in proton transfer reactions,
ligands in metalloproteins and hemoglobin,*"** histidines play essential roles for proper functions of a
cell. The side chain of a histidine has a pK, around 6.0, which is close to the physiological pH.”
Depending on the pH of its environment, a histidine readily switches between the doubly protonated
cationic form and the neutral state (Figure 2-1): At low pH, both &-nitrogen and e-nitrogen of the
imidazole ring are protonated and the amino acid has a +1 charge (HIP). At high pH, the histidine is
neutral with either §-nitrogen (HID) or e-nitrogen (HIE) protonated. Apart from the above three states,

positions of carbon and nitrogen atoms in the imidazole ring may be switched due to common

ambiguities in X-ray crystallographic structures.”* As a result, a histidine can adopt three additional



rotameric states, namely, flipped HIP, flipped HID, or flipped HIE (see Figure 2-1).% In this work, we
set out to evaluate the impact of all six protonation and rotameric states of a histidine on the virtual

screening results.
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Figure 2-1. Six possible protonation and rotameric states of a histidine. Formal charges on nitrogen in
HIP states are marked.

M. tuberculosis is the primary causative pathogen of the lethal, contagious disease
tuberculosis. It has a three-layered cell wall composed of peptidoglycan, arabionogalactan, and mycolic
acids.”® This highly impermeable cellular envelope provides natural resistance against a large variety of
antibiotics, which renders the inhibition of the cell wall biosynthesis a promising target for drug
discovery against tuberculosis.'®*® The enzyme RmIC participates in the synthesis of an indispensible
linker molecule 2’-deoxy-thymidine-B- -thamnose (TRH), connecting the peptidoglycan and
arabinogalactan layer in the bacterial cell wall.* '® Based on the crystal structure of the M. tuberculosis
RmlIC in complex with TRH (Figure 2-2A), it has been suggested that the enzyme uses a histidine
(His62) as a key catalytic site that pairs with Tyr132 in an acid-base couple for proton transfer.?” Apart
from His62, the active site contains another histidine, i.e., His119, involved in the interaction with

TRH.
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His119

Figure 2-2. (A) RmIC homodimer in complex with co-crystalized TRH (PDB ID 2IXC). The two
monomers are colored in pink and beige, respectively. (B) Close view of the co-crystal ligand TRH,
with His62 and His119 highlighted. The binding surface of receptor is represented as wire frame.
Hydrogen bonds are shown with dashed green lines.

As a part of a drug discovery campaign against tuberculosis, 201,368 compounds were
screened in a previous HTS against RmlC, revealing a series of hits with the best half inhibitory
concentration (ICsp) of 0.12 uM at pH 7.4.'® Based on these results, we constructed a library of 2,010
compounds, including 2,000 decoys and ten actives. The library was screened against 36 receptor
models with different protonation and rotameric states of His62 and His119 of RmlC. Through
enrichment factors (EF), receiver operating characteristic (ROC) curves, and area under the curve

(AUC) metrics, we systematically evaluated the relative VS performance of various protonated receptor
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models. In the remainder of the text, we will discuss these analyses in detail and examine pK,

predictions for the two histidines made by commonly used software packages.

Methods

Crystal structure and initial preparation

The X-ray crystallographic structure of RmIC in complex with the product analog 2’-deoxy-
thymidine-B-L-rhamnose (TRH) was obtained from Protein Data Bank (PDB ID 21XC).”” One dimer
containing chains A and B, each in complex with a TRH molecule, was submitted to the Protein
Preparation Wizard of Schrédinger Suite 2011.%* Missing hydrogens in the crystal structure were added
while water and TRH molecules were removed, followed by a brief optimization of hydrogen positions
at pH 7.0. Receptor models with 36 different protonation and rotameric states of His62 and His119 in
chain A were then generated and refined with the OPLS2005 force field. Two other titratable residues
in the active site, Lys72 and Asp83, were kept charged. Subsequent virtual screening (VS) was
performed on the active site of chain A. See Figure 2-S1 for a schematic description of the hydrogen
and nitrogen of His62 and His119 acting as a hydrogen bond donor or acceptor in each receptor model.
Receptor grid generation

A set of 36 receptor models based on different protonation states of His62 and His119 were
generated using Glide 5.7 in Schrédinger Suite 2011.%° The grid center was set to where the center of
mass of the co-crystallized TRH molecule in chain A had been before removal. The sizes of the inner
and outer grid boxes were set to 10 A and 20 A in each direction, respectively. The models were
assigned unique numbers from 1 to 36 as listed in Table 2-1.
Ligand preparation

A library containing 2,000 inactive and ten active compounds was generated from the
previous HTS result of the NIH Molecular Libraries Small Molecule Repository (BioFocus DPI).'®
First, the entire library of 201,386 compounds used in the HTS was obtained from PubChem, with
BioAssay IDs 1532, 1533, 1695, and 1696 (including primary screening results and dose-response

assays).'® Ten verified actives were selected from BioAssay 1696 and 2,000 inactive compounds were
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randomly selected from the remaining compounds. The final library of 2,010 ligands was then subjected
to LigPrep of Schrodinger Suite 2011°° with OPLS2005 force field. The ligands were ionized within the

31,32
K"

pH range of 7.0 & 2.0 using Epi and tautomers and stereoisomers were generated for the inactives,

resulting in a library of total 3,934 compounds. The Canvas tool of Schridinger Suite 2012*

was
used to compare the similarity of the actives and decoys. Tanimoto coefficients of the compounds in the
library to each of the actives were calculated based on the molecular binary fingerprints, as described in
Supporting Information 2. The co-crystal ligand TRH was also prepared in the same way and docked to
all models for initial assessment of pose prediction.
Docking

After experimenting with both the Glide SP and XP docking modes® **** we found that XP
outperformed SP in ranking the actives over decoys (data not shown). The different performance of SP
and XP mainly stems from differences in their scoring functions. The hydrophobic enclosure term in the
XP algorithm may be particularly suitable for our study, given the strong hydrophobic interactions
between many active compounds and the binding site.”® Hence, in the remainder of the study, we used
the Glide XP precision to perform docking on 36 receptor models described above.
Predictive performance analysis

We analyzed the predictive performance of VS using 36 receptor models described above by
calculating enrichment factors (EF), receiver operating characteristic (ROC) curves, and areas under the
curve (AUC). The statistical significance of the AUC values of different receptor models was evaluated

with a p-test with 95% confidence limit.

The EF is a widely used metric to evaluate the efficiency of VS.* The value of EF*”
indicates how much more likely an active compound is ranked in the top x% of a VS result compared to
a random selection, i.e., how many times the database is enriched. Specifically, EF is calculated as Eq.
1:

X%
( 1 ) EFX% _ experimental
N . xx%

active
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where Nexpeﬁmental)(% is the number of experimentally verified actives in the top x% of the database and
Naciive 1S total number of actives in the database.” In this study, EF'” and EF'®” were calculated from
the top 1% and 10% of the VS result, respectively.

To investigate the docking performance in a threshold-independent manner, the AUC value
was calculated from the ROC curve. The ROC curve allows a straightforward visualization of the
performance of VS in ranking the actives higher over decoys.”” In our study, we have a list of
experimentally verified actives, or positives, and decoys, or negatives. These positives and negatives are
further categorized into true or false according to their rank above or below, a certain threshold of the
VS result, respectively, e.g., the actives ranked above a chosen threshold becomes true positive (TP). To
generate the ROC curve, the true positive rate (TPR) and false positive rate (FPR) are calculated as Eqgs.

2 and 3:

2) TPR = l
TP +FN

3) FPR :i
TN + FP

In the ROC curve, the TPR is plotted as a function of the FPR. The AUC is then calculated to compare
the performance of different receptor models quantitatively.”> An AUC of 0.5 corresponds to a random
selection of the ligand by a receptor.

To evaluate the statistical significance of the AUC values of different receptor models, we
performed the two-sided p-test at the 95% level. A two-sided p-value of less than 0.05 (corresponding
to 5%) rejects the null hypothesis that the AUC values of a pair of receptors are statistically identical
and accepts the alternative hypothesis that their difference is statistically meaningful. Hence the pair of
receptors with statistically different AUC values is differentiated by their abilities to rank the actives
41,42

and decoys. The two-sided p-values were calculated following Craig ef al. and references therein,

which is described below briefly. As in Eq. 4, the AUC is first calculated as the mean TPR of decoys:

decoys 1 decoys

4)  AUC= ) AFPRTPR,= >, TPR, =(TPR)  =1-(FPR)

decoy: actives

decoys 1
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where TPR; is the true positive rate at decoy i and AFPR is the constant increment in the false positive

rate. The difference between the AUC values of the pair of receptor models A and B becomes as Eq. 5:

(5)  AAUC=AUC,-AUC,=(TPR) —(TPR) =(TPR,-TPR,)

decoys,B decoys

where the last step arose from docking of the same library into all receptor models, which statistically

indicates the pairing of samples. As a result,

AAUC = — dioys(TPRLA ~TPR,, )=(TPR, —TPR,,)

( 6) decoys 1 decoys

= 1 amzvjs(FPRi,B_FPRi,A)=<FPRB_FPRA>

actives 1

actives

Then the variances for the actives and decoys are given by:

M Var, = ! acies{(FPRiA ~FPR,, )~ (FPR, - FPRB>MM}2

actives 1

(8) Var, = —1 dioys{(TPRiA—TPR]_B)—<TPRA—TPRB>dmys}2

decoys 1

with the standard error in AAUC given as:

) SE = |——8a , "Tad

Finally, the two-sided p-value for AAUC between the two receptors is obtained as a Gaussian

distribution with a standard deviation equal to SE,:

(10) pzerfc[|AAUC|J

\2sE,

where erfc is the complementary error function. All analyses of the receptor predictive power were

done with Matlab R2011a (Version 7.12).*
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pK. Prediction analysis

PROPKA,”® Maestro,”®* H++,""" and MCCE'*"* were employed to predict the protonation
states of His62 and His119 in the active site of RmIC. Along with the dimer of chains A and B from the
X-ray crystal structure containing the co-crystallized TRH molecule, we also generated an additional
structure by removing the TRH to examine the effect of the ligand on pK, prediction. Therefore, the
dimers with and without the ligand were subjected to pK, calculation using PROPKA, Maestro, H++,
and MCCE.

PROPKA™® predicts the pK, through an empirical method by calculating a pK, shift, ApK,,
arising from perturbation of electrostatic energy of an ionizable residue between its charged and neutral
states. Thus the pK, is predicted by:

an pK, =pK +ApK,

Model
with additional terms and parameters describing the Coulombic interaction, desolvation, unfavorable
electrostatic reorganization energies, and hydrogen bond networks. The model pK, used for histidine in
PROPKA is 6.50.

The Protein Preparation Wizard of Maestro™ * has been updated to employ PROPKA by
default, from its previous version using Epik.*""** The pK, calculation using Epik relies on the well-
established Hammett and Taft (HT)* linear free energy approach and the quality of hydrogen bond
networks. In this study, we compared the pK, prediction of Maestro both with and without PROPKA.

H++ is a single-structure continuum electrostatics methodology that predicts the pK, values of
the titratable residues based on either Generalized Born or Poisson-Boltzmann method using the
AMBER 10 force field.”"" Multi-conformation continuum electrostatics (MCCE) calculates the pK,
values of the ionizable groups in protein and ligands by generating various conformations by side chain
rotations throughout a titration.'"”'* The changes in the conformation create a position-dependent
dielectric response and the degrees of freedom of the conformers are added to calculate the Boltzmann

distribution of the ionization states and atomic positions. The pairwise electrostatic interactions between

different conformers are calculated by the DelPhi Poisson-Boltzmann solver.
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Results and discussion

In order to evaluate the effect of histidine protonation and rotameric states on the predictive
performance of receptors, we performed virtual screening (VS) for the M. tuberculosis enzyme RmIC
based on the results of a previous high-throughput screening (HTS) study. Below, we will first examine
the typical interactions of the co-crystal ligand TRH to probe the ligand pose dependence on histidine
protonation. We further contextualize analysis of enrichment performance and predictive power of
various receptor models, by discussing the interactions with the receptor to show the effect of different
histidine protonation states on VS. Finally, we compare the predicted pK, values calculated by several
common pK, calculation packages to the receptor protonation states with the best predictive power.

Docking of TRH

Docking the co-crystal ligand TRH back into 36 receptor models was carried out to show the
pose, or ligand orientation relative to the receptor, dependence on histidine protonation and rotameric
states. Hydrogen bonding patterns for the crystal coordinates of His62 and His119, shown in Figure 2-
2B, imply the potential significance of hydrogen bonds in docking of TRH. Docking of this ligand
allowed preliminarily examination of the dependence of pose on possible hydrogen bond networks with
the receptor.

Varying histidine protonation states has a clear effect on pose prediction for the determined co-
crystal ligand. RMSD of docking pose of self-docked TRH into the crystal coordinates for different
protonation and rotameric states of His62 and His119 varied from 2.91 A to 5.44 A. The protonation
state of both histidines with the best average RMSD is HIE, which agrees with the most probable
protonation states of the crystal coordinates in the presence of TRH. Also, in all cases, the docking
algorithm predicts the position of the pyrophosphate of the ligand correctly, but the large deviation from
the crystal coordinates mainly stems from the flipping of the thymidine and rhamnose moieties around
the pyrophosphate, resulting in different hydrogen bonding patterns between TRH and two histidines.
This indicates the importance of hydrogen bond networks with His62 and His119 in the pose prediction

of the co-crystal ligand TRH. Therefore, after examining the pose dependence upon hydrogen bonds
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provided by two histidines, we expanded our study to look systematically at ranking compounds in VS
and how it is affected by the protonation and rotameric states of histidines.
Virtual screening

Molecular docking was carried out to examine compound ranking dependence on histidine
protonation and rotomeric states. The ligand set included ten actives and 2,000 inactives selected at
random from a HTS. We note that Tanimoto scores indicate that most of our decoys have a low
similarity to the actives. Such a decoy set presents a smaller challenge to the docking algorithm and the
predictive performance of VS itself may be affected when decoys with greater similarity to the actives
are used. However, this study aimed to examine not the predictive performance of the docking
algorithm per se, but how histidine protonation states affect the relative performance in VS.

Docked active ligands and the product analog were examined to characterize important
interactions in the RmIC binding site. In all receptor models, hydrophobic pi-pi stacking interactions
contribute significantly to docking scores of the active compounds within the RmIC active site. The
initial hit compound from HTS, SID7975595, is ranked high in most receptor models, between 8th and
51st rank in 26 out of 36 receptors. Although there is only limited structural similarity between
SID7975595 and the co-crystal ligand TRH, the tricyclic ring of SID7975595 readily replaces the TRH
thymidine moiety, while the benzimidazolone ring replaces the rhamnose moiety, providing structural
basis of the inhibition. As shown in Figure 2-3, the hydrophobic interaction between the actives and
receptor often involves Tyr132 and Tyr138 from chain A and Phe26 from chain B (note that a part of
chain B intrudes in the active site of chain A). Through interacting with the essential binding site
residues and preventing water molecules from accessing Phe26 and Tyrl32, the actives provide
abundant hydrophobic contacts to achieve the high binding affinity. As discussed in Sivendran et al.,'
substitution of the ethyl group attached to the nitrogen on the tricyclic ring of SID7975595 by an allyl
group (e.g., the active compound 77074) further enhances the binding affinity by forming an even
tighter hydrophobic seal. In comparison, substitution of this group by a smaller methyl group or a

hydrogen atom results in a lower binding affinity.'® In addition to the hydrophobic contacts described
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above, some of the actives also form hydrogen bonds with Ser51, Arg59, and Argl70. The interactions

of the docked actives can be found in Figure 2-S3.

Figure 2-3. Predicted interaction of the initial hit compound SID7975595 with flipped HID62 and
HIP119 in receptor model 23. Generally, the actives do not have strong interactions with His62 or
His119, yet varying histidine protonation states have a profound effect on the ranked results. Favorable
interactions are observed with other binding site residues, such as Tyr132 and Tyr138 as depicted here.

Interestingly, the actives generally do not achieve polar interactions with His62 and His119.
As shown in Figure 2-3, the carbonyl oxygen and two benzimidazolone nitrogens of SID7975595 face
away from His62 and His119. The direction of aromatic hydrogens of the actives is often unable to
participate in hydrogen bond networks with the two histidines. Nevertheless, different protonation and
rotameric states of these histidines do affect the VS results through their interactions with the decoys.
Assessment of differences in ranking

It is not uncommon that only the top 1% of compounds screened can be tested experimentally

in a VS study, due to the limited resources. Therefore, the enrichment factor (EF)'”

metric, which
reflects the database enrichment performance in the top 1% (i.e., 20 docked compounds) of a library,
becomes particularly relevant in assessing the predictive power of VS. The EF'” ranges from 0 to 80 for
36 receptor models (Table 2-1), indicating that the VS results are sensitive to the protonation and

rotameric states of His62 and His119 of RmIC. Nevertheless, 28 out of 36 receptors rank more than

eight actives within the top 10% in the VS, as reflected by the EF'®” (Table 2-1), suggesting that most
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receptors are able to distinguish the actives and decoys when a larger portion (10%) of the database is
considered. The EF results also suggest that the receptor models with HIP62 or HIP119 tend to have
poor enrichment performance, likely due to the extensive hydrogen bond networks with the decoys, as
discussed later.

The area under the receiver operating characteristic curve (AUC) for each receptor model was
evaluated to report the enrichment performance of models upon different protonation and rotameric
states of His62 and His119. As shown in Figure 2-4A and Table 2-1, the AUC values of all receptor
models range from 0.868 to 0.996, indicating an overall good predictive performance (an AUC of 0.5
corresponds to no differentiation between the actives and decoys). In general, the AUC result is
complementary to the EF assessment for receptor predictive performance. Summarizing Table 2-1,
Figure 2-4C shows how the range of the receptor performance depends on the two histidine protonation
and rotameric states. Considering the 25% to 75% range of the AUCs (Figure 2-4C, indicated by the
thicker lines), the His62 models show a larger variation across His119 states. The His119 models, on
the other hand, have a more consistent performance regardless of the protonation states of His62, with
the exception of HIP state. This indicates that different protonation states of His62 have a smaller

influence than those of His119 on the receptor performance in our screening.



Table 2-1. AUC values of 36 receptor models with different protonation and rotameric states.

Receptor Model ~ His62 His119 AUC EF'” EF'"%
1 HIE HIE 0.942 60 8
2 HIE Flipped HIE 0.992 60 10
3 HIE HID 0.868 30

4 HIE Flipped HID 0.961 50

5 HIE HIP 0.875 30

6 HIE Flipped HIP 0.996 80 10
7 Flipped HIE HIE 0.963 70

8 Flipped HIE Flipped HIE 0.945 30

9 Flipped HIE HID 0.991 60 10
10 Flipped HIE Flipped HID 0.938 50

11 Flipped HIE HIP 0.918 0

12 Flipped HIE Flipped HIP 0.963 60

13 HID HIE 0.989 30 10
14 HID Flipped HIE 0.991 40 10
15 HID HID 0.989 30 10
16 HID Flipped HID 0.990 20 10
17 HID HIP 0.916 0 8
18 HID Flipped HIP 0.991 20 10
19 Flipped HID HIE 0.992 80 10
20 Flipped HID Flipped HIE 0.957 40

21 Flipped HID HID 0.969 50

22 Flipped HID Flipped HID 0.987 50 10
23 Flipped HID HIP 0.981 40 10
24 Flipped HID Flipped HIP 0.988 60 10
25 HIP HIE 0.971 40 8
26 HIP Flipped HIE 0.991 30 10
27 HIP HID 0.982 0 10
28 HIP Flipped HID 0.933 40 9
29 HIP HIP 0.869 0 7
30 HIP Flipped HIP 0.936 30 9
31 Flipped HIP HIE 0.945 30 9
32 Flipped HIP Flipped HIE 0.933 10 6
33 Flipped HIP HID 0.964 40 8
34 Flipped HIP Flipped HID 0.917 6
35 Flipped HIP HIP 0.950 8
36 Flipped HIP Flipped HIP 0.969 20 9
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Figure 2-4. (A) AUC values of 36 receptor models. Protonation and rotameric states are marked for
each histidine. Flipped states are marked with the letter F. Darker color indicates higher AUC and better
predictive performance of the corresponding receptor model. (B) Average hydrogen bond percentage of
the top 1 % compounds in 36 VS runs. Protonation and rotameric states are marked for each histidine.
Lighter color indicates higher hydrogen bond percentage, with % unit for the colorbar. The R? for the
correlation between the AUCs and average hydrogen bond percentage for each VS run is 0.42 (see
Figure 2-S4 for the scatter plot). (C) Receptor performance dependence on His62 (top) and His119
(bottom). The median of the AUC values of each protonation state is shown with large horizontal line.
The small ticks in each histidine model mark six different protonation states of the other histidine. The
thicker vertical lines represent 25-75 % range of the AUCs. The best receptor models are shown
explicitly with the models’ protonation states.
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A stronger dependence of enrichment on the protonation states of His119 is observed in the
HIE62 and HIP62 models. With HIE62 state, the models with flipped HIP119 (model 6) and flipped
HIE119 (model 2) yield the highest receptor performance. Models 3 and 5 with HID119 and HIP119,
respectively, lead to the worst enrichment. In examining why HIE62 state has the largest variation in
AUCs, one finds that His62 has either pi-pi stacking or no interactions with ligands, and makes only a
few hydrogen bonds with high-ranking decoys. Therefore, the receptor performance depends on the
interaction of His119 with the decoys. This is also seen when examining the broad performance range
of AUCs of the HIP62 models. The hydrogen bond networks with the decoys will be discussed later in
the following section.

In order to evaluate the statistical significance of difference of the AUC values between a pair
of receptor models, we performed a two-sided p-test at the 95% level on the null hypothesis that the pair
has statistically comparable AUC values, against the alternative hypothesis that their difference in the
AUC values and predictive power is statistically meaningful. On average, the receptors have more than
16 p-values less than 0.05, demonstrating the sensitivity of VS on histidine protonation and rotameric
states. As one might expect, the receptors with the most significant differences correspond to the
models with the highest (model 6) or lowest AUC values (models 3, 29, and 5). Model 6 is statistically
better at ranking the actives over decoys than 26 other receptors in the ensemble. Models 3, 29, and 5
are distinguishably worse at ranking the actives than 29, 25, and 31 other receptors, respectively.

Quantitative analysis of the hydrogen bonding interactions was carried out for the top 1% (20
docked compounds) of each VS result to account for the abundant hydrogen bonding interactions with
the binding site residues often observed with the decoys. The results indicate an inverse correlation
between the hydrogen bonding contribution and receptor performance. Figure 2-4B shows the average
hydrogen bond percentage of each receptor model for the top 1% docked compounds. Hydrogen bond
percentage is defined as the portion of the Glide XP hydrogen bonding term in the total docking score.
Comparison of Figure 2-4A and 4B reveals the inverse relationship between the hydrogen bond
percentage and AUC with a R? of 0.42 (y = - 56.18x + 67.95, the correlation is plotted in Figure 2-S4).

The inverse relationship is commonly observed with models with HIP119, flipped HIP119, or HID62,
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where the high hydrogen bond percentage resulted in poor enrichment. For example, receptor model 29
with HIP62 and HIP119, where both histidines presenting active site facing hydrogen bond donors, has
one of the worst AUCs due to the high percentage of hydrogen bonds in the top hits.

Notably, the hydrogen bonding potential of His119 often determines the receptor performance.
For example, the model with HID62 and HIP119 was an outlier among the HID62 models in Figure 2-
4C, with noticeably low enrichment compared to the overall good performance of the other five HID62
models. The HID62 models have a high median AUC of 0.989, despite the frequent hydrogen bonding
to the decoys from HID62. This is due to His119 states achieving few hydrogen bonding interactions
with the decoys. Only with HIP119 state does the HID62 model make hydrogen bonds with a number
of decoys, resulting in the relatively low AUC. This observation agrees with the stronger dependence of
the receptor performance on the protonation states of His119, as discussed above. Figure 2-S4 describes
the AUC distribution and hydrogen bond percentage along with the direction of hydrogen bond donor
or acceptor from two histidines facing the receptor.

Above analyses highlight the hindering effect of hydrogen bonding to the decoys on the
predictive power of VS, due to the various coordinates of two histidines with different protonation and
rotameric states. The scatter of the observed correlation with the R? of 0.42 is likely attributed to several
causes, including the chemical nature of the decoy dataset, as well as the slight differences in geometry
of each receptor upon minimization in the initial preparation of the protein. By clearly showing the
sensitivity of virtual screening results on different protonation and rotameric states of histidines in the
active site, we emphasize that care should be taken when preparing the atomic coordinates of a receptor
for VS, particularly considering the general properties of the ligands being screened. This includes
taking into account the hydrogen bonding to the co-crystal ligand and its effect on protein preparation,
as well as a comprehensive analysis of proximal hydrogen bond networks. This is usually achieved by
examining the results from widely used pK, prediction software packages, and to this point, we have

compared results from different packages relative to our VS results and discuss them further.
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Docking of the decoys

Various factors lead to differences in ranking across the receptors, particularly with respect to
the decoys. Generally, the decoys that ranked higher than the actives were of high molecular weight and
had more potential to have hydrogen bonds with the receptor. In this section, we further analyze the
frequent interaction patterns observed between the decoys and receptor, with a focus on the receptor
models with poor enrichment.

Decoys tend to have larger molecular weight and more ring structures than the actives (Table
2-2). This results in the decoys ranking higher, due to hydrophobic interactions in the absence of
hydrogen bonds to the receptor. Figure 2-5A shows the hydrophobic interactions achieved through the
large inactive compound 16952387 in receptor model 19. This compound is often ranked within the top
five in many VS runs for its substantial pi-pi stacking interactions with Phe26, Tyr132, and Tyr138.
This trend is frequently observed in virtual screening where larger molecules rank better as a result of

. . . . 46
extensive interactions with the receptor.

Table 2-2. Comparison of molecular weight, number of hydrogen bond donor, and number of hydrogen
bond acceptor for the actives and decoys.

Actives Decoys
Average Molecular Weight (g/mol) 417.69 353.85
Stdev. of Molecular Weight (g/mol) 27.07 80.85
Average Number of Hydrogen Bond Donor 1.1 1.04

Average Number of Hydrogen Bond Acceptor 5.8 5.89
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Figure 2-5. (A) Interaction of the inactive compound 16952387 with flipped HID62 and HIE119 in
receptor model 19. The compound has no interaction with either histidine. Pi—pi stacking interactions
with Phe26 from chain B, Tyr132, and Tyr138 contribute to its high rank, along with hydrogen bonds
with Arg23, Arg59, Argl70, and Ser51 (not shown). (B) Interaction of the inactive compound 17388064
with HIE62 and HID119 in receptor model 3. Both histidines provide hydrogen bonds to the compound.

The enrichment performance is particularly low for the receptors providing abundant hydrogen
bond networks to the decoys. Interactions through His62 and His119 were not widely observed for the
actives, and therefore compounds with larger enthalpic contributions erroneously rank more favorably.
An example shown in Figure 2-5B depicts the interaction of inactive compound 17388064 in receptor
model 3 (AUC 0.868), ranked as first. In this receptor, which is the worst at ranking compounds based

on AUC, compound 17388064 forms two hydrogen bonds with two histidines, one between its
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hydroxyl hydrogen and the &-nitrogen of HIE62 and the other between its hydroxyl oxygen and the
hydrogen on d-nitrogen of HID119. This compound has five hydrogen bond donors and nine acceptors,
a large number compared to the respective averages of those of the decoys and actives (Table 2-2).
Therefore, with a high hydrogen bonding contribution of 34.7 + 6.6% to the total score, this decoy
compound is frequently observed to form at least one hydrogen bond with either of the two histidines,
thereby achieving high ranks in multiple V'S runs.

Two other receptor models, model 29 with HIP62 and HIP119 and model 5 with HIE62 and
HIP119, show similar interaction patterns to decoys as model 3. These three models have the lowest
AUC values, with an average of 0.870 among them. As discussed above, their AUC values differ
significantly from other receptors, reflecting the subtle relationship between hydrogen bonds achieved
through His62 and His119 and poor enrichment. An additional figure describing the hydrogen bond
networks between the decoys and receptors is provided in Supporting Information 5.

pK. Prediction for His62 and His119

Our results clearly demonstrate the sensitivity of virtual screening on histidine protonation and
rotameric states. In many computational biophysical studies, the protonation states of the titratable
residues are determined using various pK, prediction programs. To assess the performance of these
programs to identify the receptor model with the best predictive power in docking, we compared the
pK, prediction results of His62 and His119 from PROPKA, Maestro, H++, and MCCE, as shown in

Table 2-3 with the calculated pK, values.
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Table 2-3. Comparison of the predicted pK, values and protonation states of His62 and His119 of RmIC
by commonly used software.

RmIC-TRH complex RmIC without TRH
His62 His119 His62 His119
pK. 4.24 5.8 5.16 6.12
PROPKA 3.1
Protonation Neutral Neutral Neutral Neutral
Maestro pKa 7.09 5.6 4.99 6.12
with PROPKA Protonation HIP HIE HIE HIE
Maest
aestro Protonation HIP HIP HIP HIP
with Epik
pK. 3 <0.0 3 <0.0
H++ .
Protonation HIE HIE HIE HIE
<
MCCE pK. . 0.0 7.201 2.771 1.347
Protonation Neutral HIP Neutral HIP

First, PROPKA 3.1 predicts that both His62 and His119 are neutral regardless of the presence
of TRH during preparation. The program, however, cannot assign rotameric states of histidines.
Therefore, a state of HID, flipped HID, HIE, or flipped HIE must be determined manually. Similar to
PROPKA, the program H-++, which uses a single-structure continuum electrostatics, also finds both
histidines to be neutral, although the predicted pK, values are different from those from PROPKA. The
program MCCE, which is based on multi-conformation continuum electrostatics, predicts His62 to be
neutral while His119 to be protonated.

Next, we used the Protein Preparation Wizard in Maestro to calculate pK, of His62 and His119
with and without TRH. Note that Maestro is able to vary rotameric states, whereas PROPKA cannot. A
recent update enables Maestro to employ PROPKA in its pK, prediction instead of Epik. With Epik,
Maestro predicts both His62 and His119 in doubly protonated states, regardless of the presence of TRH.
Interestingly, the receptor model that corresponds to this di-doubly protonated state has the worst
predictive power with an AUC of 0.869. When PROPKA is used, HIP62 and HIE119 are predicted for
the protein-TRH complex and HIE62 and HIE119 for the apo protein. These two predictions by
PROPKA in Maestro correspond to the models of moderate enrichment performance, with AUCs of

0.971 for model 25 (HIP62 and HIE119) and 0.942 for model 1 (HIE62 and HIE119), respectively.
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Given that the above predictions made by different software vary significantly from each other,
caution should be taken when using these results as a guideline to prepare a protein for virtual
screening. Without intimate knowledge of the true protonation state of the receptor as well as the
ligands being screened, it is difficult to address this problem. Therefore, we suggest that a small-scale
analysis, like one performed in this study, and comparison with experimental data, if available, could
provide a more accurate description of protonation and rotameric states of the titratable residues in
protein receptors for future larger-scale screenings. Alternatively, a model that includes explicit
incorporation of alternative side chain protonation and rotameric states during docking, potentially with
information stored in the grid as exists for rotatable hydroxyls and thiols in Glide, may be worth
pursuing. Examination of the results with respect to the protonation states and rankings based on
interactions with histidines should be carefully examined before proceeding to experimental testing.

Additionally, receptor flexibility will likely affect the protonation states of the ionizable
residues. While this was not explicitly studied here, aside from minimization of each receptor after
assigning protonation states, protein flexibility is clearly important for drug design and development.*”
*® Coupling of conformational and protonation space becomes quickly intractable with physical
methods such as those described here, but enhanced sampling methods show promise in tackling such
difficulties.* This includes constant pH molecular dynamics simulations, for which the pH is an
external thermodynamic variable, used for blind prediction of pK, values of the titratable residues.” >
Effectively applying results from these simulations to molecular design is an ongoing area of interest.
Equilibrium ensembles from such simulations can be used in conjunction with docking as an
application of relaxed complex scheme, where virtual screening is conducted with an ensemble of
structures with different protonation states, to improve the enrichment results.” Taking receptor
flexibility into account in the target preparation will lead to broader sampling of conformational and

protonation space, thus enhancing the performance of VS.
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Conclusions

Protein-ligand recognition is of central importance in structure-based drug discovery. Correctly
accounting for the chemical environment surrounding the ligand is imperative for characterizing and
predicting the molecular interactions. The possible effect of the various protonation and rotameric states
of the ionizable residues of the receptor on virtual screening (VS) is critical yet often overlooked. In this
study, we thoroughly examined the influence of the protonation and rotameric states of histidine on the
predictive power of the docking protocol for drug discovery.

A histidine can adopt three different forms depending on the net charge and the location of
proton(s). Due to common ambiguities in X-ray crystal structures, three additional states may be
generated through flipping of the imidazole ring. In this work, we performed a VS study on the M.
tuberculosis enzyme RmIC to investigate the effect of six protonation and rotameric states of histidines.
We systematically examined the contribution of hydrogen bonding interactions provided by two
histidines in the active site, His62 and His119. The predictive performance of receptors was assessed by
quantitatively analyzing enrichment factors and area under the receiver operating characteristic curve.
We showed that the hydrogen bond networks involving His62 and His119 are important in the
interaction between the co-crystal ligand TRH and active site, validating the significance of accurate
description of protonation and rotameric states of the two histidines in VS. We compared the typical
patterns of interactions achieved with the active site residues observed for the active compounds and
decoys; whereas the actives often involve only hydrophobic interactions, the high-ranking decoys are
erroneously enriched by additional hydrogen bonds provided by His62 and His119. Our analyses reveal
the sensitivity of virtual screening on protonation, ionization, and rotameric states of active site
histidines. We recommend a priori analysis of receptor-ligand hydrogen bonding interactions, in
addition to the usage of protonation assignment software packages, to prepare a receptor for virtual
screening. Systematically assessing binding site protonation state effects before conducting a large
virtual high-throughput screening, beyond empirical state prediction, may therefore result in enrichment

gains.
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Figure 2-S1. (A) Location of His62 and His119 with respect to the active site of RmIC. Atom types of
nitrogen of histidine are shown as either N6 or Ne and the surface is represented as wireframes. (B)
Schematic description of hydrogen and nitrogen of two histidines in (A). The active site is shown as a
circle and His62 is located below the circle and His119 right next to it. Colon (:) represents a lone pair
of electrons on nitrogen. (C) Schematic description of hydrogen and nitrogen of two histidines in 36
receptor models following (B).
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Figure 2-S2. Distribution of Tanimoto scores of the library of total 3,934 compounds against each of ten
active compounds as a reference. The active compound used to calculate Tanimoto score is (A) 77070;
(B) 77071; (C) 77072; (D) 77073; (E) 77074; (F) 78531; (G) 78532; (H) 78533; (I) SID7972845; and
(J) SID7975595.
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Figure 2-S3. (A) Predicted interaction of the active compound SID7975595 with HIE62 and flipped
HIE119 in receptor model 2 (AUC 0.992). The compound mainly has hydrophobic interactions. (B)
Predicted hydrogen bonding networks between the active compound SID7975595 and Arg59, Argl70,
and Ser51 in the active site in receptor model 23 with flipped HID62 and HIP119 (AUC 0.981). (C)
Interaction of the active compound 77074 with flipped HID62 and flipped HIP119 in receptor model 24
(AUC 0.988). The compound 77074, where the ethyl group attached to the nitrogen on the tricyclic ring
of the compound SID7975595 has been substituted by an allyl group, has the lower ICso. Hydrophobic
pi-pi stacking comprises the main interaction between the compound and the active site residues.
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Figure 2-S4. (A) AUC values of 36 receptor models (Figure 2-4A) shown with hydrogen bond donor or
acceptor of two histidines for each model as described in Figure 2-S1. (B) Average hydrogen bond
percentage of the top 1% compounds in 36 VS runs (Figure 2-4B). Hydrogen bond donor or acceptor
from two hisidines is shown together in the same way as in (A). (C) Scatter plot showing the correlation
between the AUCs and average hydrogen bond percentage for the top 1% compounds of each VS run.
The correlation is observed as y = - 56.18x + 67.95 with the R* of 0.42.
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Figure 2-S5. (A) Interaction of the inactive compound 14741063 with HIP62 and HIP119 in receptor
model 29 (docking score -8.513, AUC 0.869). Both hydrogens on §-nitrogens of HIP62 and HIP119
accept lone electron pairs from carboxylic acid group of the compound. Phe26 and Tyr132 interact with
the compound via pi-pi stacking interaction. (B) Interaction of the inactive compound 14736762 with
HIP62 and HID119 in receptor model 27 (AUC 0.982). Hydrogen on §-nitrogen of HIP62 makes two
hydrogen bonds with the amide oxygen and carboxylic oxygen of the compound while that of HIP119
also forms a hydrogen bond with carboxylic oxygen. Additional hydrogen bonding networks include the
one between the hydroxyl oxygen of Tyr132 and the amide nitrogen of the compound.
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Chapter 3

A molecular dynamics investigation of
Mycobacterium tuberculosis prenyl synthases:
Conformational dynamics and implications for

computer-aided drug discovery

Abstract

With the increasing rise in antibiotic resistance, there is considerable interest in discovering
new drugs active against new targets. Here, we investigated the structural dynamics of three isoprenoid
synthases from Mycobacterium tuberculosis by performing molecular dynamics (MD) simulations with
a view to discovering new drug leads. Two of the enzymes, E,Z-farnesyl diphosphate synthase (E,Z-
FPPS, Rv1086¢) and E,Z-decaprenyl diphosphate synthase (E,Z-DPPS, Rv2361c), are involved in
bacterial cell wall biosynthesis while the third, tuberculosinol/tuberculosinyl adenosine synthase
(Rv3378c), is involved in virulence factor formation. The MD results for these three enzymes were then
compared with previous results on undecaprenyl diphosphate synthase (UPPS) from E. coli by means of
active site volume fluctuation and principal component analyses. In addition, an analysis of the binding
mechanisms of prenyl diphosphates to £,Z-FPPS, E,Z-DPPS, and UPPS utilizing the new MD results is
reported. We also screened libraries of inhibitors against £,Z-DPPS, finding ~ 1 pM inhibitors, and used

the receiver operating characteristic-area under the curve (ROC-AUC) method to test the predictive

40
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power of X-ray and MD-derived E,Z-DPPS receptors. We found one compound with potent M.
tuberculosis cell growth inhibition activity as an ICsy ~ 0.5- to 20-uM inhibitor of E,Z-DPPS depending
on substrate, a ~ 660-nM inhibitor of Rv3378c, as well as a 4.8-uM inhibitor of E,Z-FPPS, opening up
the possibility of multi-target inhibition involving both cell wall biosynthesis and virulence factor

formation.

Introduction

Complications associated with the growing drug-resistance of pathogenic bacteria to
antibiotics have triggered the research for new tools and strategies to treat bacterial infections."
Antibiotics such as penicillin, methicillin, and vancomycin all target bacterial cell wall biosynthesis, but
all have either lost or are losing their efficacy.” * Drug-resistant forms of pathogenic Mycobacterium
tuberculosis have reactivated the research on treatment of contagious disease tuberculosis, leading to a
quest for new drugs that are active ideally against new targets.’

One attractive target for drug discovery against M. tuberculosis is to inhibit isoprenoid
biosynthetic pathway in the bacterial cell wall biosynthesis, in particular, E,Z-decaprenyl diphosphate
synthase (E,Z-DPPS; Rv2361c), an essential gene for the organism. E,Z-DPPS converts E,Z-farnesyl
diphosphate (E,Z-FPP) to w,E,polyZ-DPP by adding seven isopentenyl diphosphate (IPP) to E,Z-FPP, a
reaction that is very similar to the one catalyzed by undecaprenyl diphosphate synthase (UPPS) in non-
mycobacterial systems (Figure 3-1).5'" E,Z-FPP in M. tuberculosis is produced by E,Z-FPPS (Rv1086¢)
from geranyl diphosphate (GPP); however, E,Z-FPPS is not crucial for bacterial cell wall growth as its
role can be replaced by DPPS in its absence.'> "> An implication of this observation is, therefore, that it
would be desirable to inhibit DPPS activity with both GPP and E,Z-FPP as substrates, as we describe

here.
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Figure 3-1. (A) Reactions catalyzed by FE,Z-FPPS, E,Z-DPPS, UPPS, and Rv3378c. (B) Chemical
structures of several inhibitors discussed in the text.

Structural insights into E,Z-FPPS, E,Z-DPPS, and UPPS reveal a highly similar structural
motif, {-fold, as also found in another M. fuberculosis enzyme, tuberculosinol/tuberculosinyl adenosine
synthase (Rv3378¢)."* !> Rv3378c¢ is an essential enzyme in persistent, non-replicative M. tuberculosis
that resides within macrophages. It was originally thought to be involved in formation of the putative

16 . . .17
then in formation of edaxadiene ' and

tuberculosinol and iso-tuberculosinol virulence factors,
edaxadiene B,'® and most recently, tuberculosinyl adenosine.'® Hence, inhibition of Rv3378c is likely to
represent a novel antivirulence approach to therapy.'” '’ Despite its unique role in M. tuberculosis, the
high structural similarity of Rv3378c to isoprenoid synthases brings special attention to this enzyme as
an attractive target for antivirulence therapeutics. This also opens up a possibility of targeting multiple
enzymes with a single potent inhibitor.

The first characterized isoprenoid diphosphate synthase with (-fold is undecaprenyl
diphosphate synthase (UPPS) (Figure 3-2C).”” The structure of UPPS is well known and promising
inhibitors have been developed.® * '®?' Previously, we found from molecular dynamics (MD) studies
that UPPS has considerable conformational flexibility and that there are up to four inhibitor binding

sites (sites 1-4, Figure 3-2C).'"* However, in E,Z-FPPS and E,Z-DPPS, there are far fewer available

structures, and to date, inhibitors bind only in or close to the native binding site, i.e., site 1 (Figure 3-2A
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and 2B). Likewise, the tuberculosinyl diphosphate substrate for Rv3378c as well as an Rv3378c
bisphosphonate inhibitor bind in or near the active site, i.e., site 1 in UPPS (Figure 3-2D)."*

In this work, we perform a series of long MD simulations on various E,Z-FPPS, E,Z-DPPS,
and Rv3378c structures in order to explore conformational flexibility of these enzymes and to identify
conformations that may be relevant for structure-based drug design. We compare the results with those
obtained previously for UPPS by means of active site volume calculations and principal component
analysis.'”* Motivated by the presence of distinctive conformational transitions in E,Z-FPPS and E, Z-
DPPS, the structures derived from the MD simulations were used to probe possible chain elongation
mechanisms for prenyl diphosphates. In addition, as more emphasis has been focused on E,Z-DPPS as
the promising drug target, we experimentally screened against E,Z-DPPS various libraries of small
molecules using both native (E,Z-FPP) and non-native (GPP and E,E-FPP) substrates for E,Z-DPPS
inhibition activity. Also, utilizing MD-derived structure in conjunction with computational docking, we
investigated enrichment of known inhibitors of E,Z-DPPS in virtual screening. Finally, we explored the
idea of multi-target inhibition to find inhibitors active against all three proteins of interest, £,Z-FPPS,
E,Z-DPPS, and Rv3378c, as a route to new drug leads targeting both cell wall biosynthesis and
virulence. Our results highlight the importance of addressing structural dynamics in both mechanistic

understanding and inhibitor design for the promising drug targets.
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Figure 3-2. X-ray crystallographic structures of interest, shown as stereo views. (A) M. tuberculosis
E,Z-FPPS (Rv1086¢c; PDB ID 2VGO0) + CITPP. (B) E,Z-DPPS (Rv2361c; PDB ID 2VG3) + CITPP. (C)
E. coli UPPS (PDB ID 2E98) + BPH-629. The numbers 1, 2, 3, and 4 denote the four ligand binding
sties found in UPPS. (D) Rv3378c¢ (PDB ID 3WQM) + BPH-629. The red lines indicate where the a3
helix can bend in £,Z-DPPS and UPPS: this helix is “broken” in Rv3378c.
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Methods

Molecular dynamics simulations

The following E,Z-FPPS crystal structures were used: apo E,Z-FPPS (PDB ID 2VFW), E,Z-
FPPS in complex with E E-FPP (PDB ID 2VGl), and E,Z-FPPS in complex with citronellyl
diphosphate (CITPP; PDB ID 2VG0).?! E,E-FPP is a structural analog of the product E,Z-FPP but has
two trans double bonds. For Rv3378c, two dimeric systems based on two different crystal structures
were prepared for the MD simulations: Apo state (PDB ID 3WQL) and the inhibitor BPH-629 bound
system (PDB ID 3WQM)." For each system, tleap program in AMBER 11 was used to neutralize the
systems by adding Na" counterions and solvating using a TIP3P water box.2*** Minimization using the
sander module of AMBER 11 was carried out in two stages: 1,000 steps of minimization of the solvent
and ions with the protein and ligand restrained with a force constant of 500 kcal/mol A?, followed by a
2,500 step minimization of the entire system.”>*” An initial 20 ps MD simulation with a restraint of 10
kcal/mol A% on the protein and ligand was then performed in order to heat the system to 300 K.
Subsequently, 500 ns MD simulations were carried out on each system under the NPT ensemble at 300
K using AMBER 11 suite of programs with the ff99SBildn force field.”> ?” *® Periodic boundary
conditions were used, along with a non-bonded interaction cutoff of 10 A for Particle Mesh Ewald
(PME) long-range electrostatic interaction calculations. Bonds involving hydrogen atoms were
constrained using the SHAKE algorithm, allowing for a time step of 2 fs.”’

For E,Z-DPPS, we used the following structures: apo E,Z-DPPS (PDB ID 2VG4), E,Z-DPPS
in complex with IPP bound to monomer B (PDB ID 2VG2), and E,Z-DPPS in complex with CITPP
bound to both monomers (PDB ID 2VG3).2' Glycerol, phosphate, chloride, and sulfate ions used in
crystallization were removed from the crystal structures while keeping the magnesium ions, which are
essential for catalysis.*® The protonation states of ionizable amino-acid residues were determined by
using PROPKA and H++.>'* Geometries of the ligands were optimized using the B3LYP functional
and a 6-31G(d) basis set in Gaussian 03 suite of programs® and their charges were assigned using the

antechamber and RESP modules in AmberTools 11.2 %" All other force field parameters were taken
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from the General AMBER force field (GAFF).*' Proteins were solvated with TIP3P water molecules?
with a buffer region of 10 A in all directions and neutralized with counterions using the tleap program.**
Each DPPS system was equilibrated using the sander with the MPI module of AMBER 11 and the
ff99SBildn force field.” *** Water molecules were minimized with periodic boundary conditions in a
constant volume with the protein and ligands fixed with a force constant of 2.0 kcal/mol A% followed
by a 150 ps MD simulation in the NPT ensemble. The entire system was minimized and heated from 0
K to 300 K over 500 ps, followed by two 20 ps MD simulations in the NVT and NPT ensembles,
respectively. 500 ns MD simulations were performed on each DPPS system in the NVT ensemble with
a Langevin thermostat using the pmemd module of Amber 11 with the ff99SBildn force field using a
graphics card.” ?*® The PME summation method was used to describe the long-range electrostatic
interactions, and short-range non-bonded interactions were truncated at 8 A in the periodic boundary
conditions.
Volume calculations

Active site volumes were calculated by using the POVME program with frames extracted
every 25 ps from the simulations.*” Points describing the binding pocket were manually defined along
the hydrophobic cavity of monomer B of the apo E,Z-DPPS structure by locating a sphere with a 1 A
diameter at each point, removing any points where van der Waals clashes occurred with the protein. All
points defined for monomer B of apo E,Z-DPPS were used for trajectories of E,Z-FPPS by aligning
them to monomer B of apo E,Z-DPPS. Monomer A was also aligned to monomer B so that the results
were comparable with the same points defining the active pocket. All ligands simulated in the MD were
removed prior to volume calculation. The same procedure was repeated for Rv3378c and the UPPS X-
ray crystallographic structures.
Principal component analysis

To compare the results obtained here with previous PCA results on UPPS obtained from 21 X-
ray crystallographic structures,'’ the X-ray crystal structures of E,Z-FPPS and E,Z-DPPS that were used

in the MD simulations were projected onto the UPPS PC space. Subsequently, the trajectories of the



47

apo states of E,Z-FPPS and E,Z-DPPS were projected onto the UPPS PC space. The PCA was carried
out using the Bio3D package.*
Ligand docking

We docked a series of prenyl diphosphates with various chain lengths to E,Z-FPPS, E,Z-DPPS,
and UPPS using the X-ray crystallographic structures 2VFW, 2VG4, and 2E98, respectively, in addition
to the most open conformations taken from the MD simulations. The receptors were prepared by setting
the receptor docking grid center to C1 of the co-crystallized ligand (CITPP) in the 2VG3 structure. Self-
docking of the ligand CITPP was carried out as a preliminary test of the ability of the receptor grid
center to recover the crystallographic pose of the ligand. The size of the inner and outer grid boxes were
set to 14 A and 20 A in each direction, respectively. The prenyl diphosphates were then generated with
various lengths (from Cjy to Cg) using Maestro in Schrodinger Suite 2012.* The molecules were
further prepared by using LigPrep with the OPLS2005 force field using all possible tautomers and
stereoisomers generated in the pH range 5.2 + 9.2, using Epik.* **7 Docking was carried out using the
Glide XP precision in Schrodinger’s Glide program.**™!

In vitro screening for E,Z-DPPS, E,Z-FPPS, and Rv3378c¢ Inhibitors.

We screened an in-house library of 19 compounds against E,Z-DPPS using E,Z-FPP as
substrate, 43 compounds using GPP as substrate, and 53 compounds using E,E-FPP as substrate. The
structures and ICsy values for the active compounds (ICsy values in the range 31 nM to 880 uM) are
shown in Figures 3-S1-S3. E,Z-DPPS was expressed and purified as described previously,'* as were the
E,Z-DPPS inhibition assays.23 Briefly, the condensation of IPP and GPP, E E-FPP, or E,Z-FPP
catalyzed by E,Z-DPPS was monitored by using a continuous spectrophotometric assay for diphosphate
release® in 96 well plates with 200 pL reaction mixtures containing 400 uM 2-amino-6-mercapto-7-
methylpurine (MESG), 25 uM GPP, E,Z-FPP, or E,E-FPP, 200 uM IPP, 25 mM Tris-HCI (pH 7.5),
0.01% Triton X-100, and 1 mM MgCl,. The ICs, values were obtained by fitting the inhibition data to a
rectangular hyperbolic dose-response function in OriginPro 8.5 (OriginLab, Northampton, MA). The
ICsy values for the most active hits were verified by radiometric assay as follows. A mixture of 15 uM

substrate, 100 nM E,Z-DPPS, and inhibitors in the assay buffer (25 mM Tris-HCI1, 1 mM MgCl,, and
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0.01% Triton X-100) was incubated for 10 min at 25 °C. 1.8 uL of 25 uM IPP (1% 1-’H IPP, 15
pCi/mL, American Radiolabeled Chemicals, Inc.) was then added. The reaction was incubated at 37 °C
for 10 min before quenching with 500 pL saturated NaCl solution. The saline solution was extracted
with 500 pL butanol by vortexing, and 300 pL of the organic layer was transferred into scintillation vial
for radiation readout. ICsy values were fitted in Origin 9.0 by analyzing the dose-response curves. For
E,Z-FPPS, protein expression, purification and inhibition were all carried out as reported previously.?'

For Rv3378c, protein expression and purification were all carried out as reported previously.™
For inhibition assay of Rv3378c, a mixture of 100 uM TPP, 100 uM adenosine, 75 pg/mL Rv3378c,
and inhibitors in the assay buffer (25 mM Tris-HCl, 1 mM MgCl,, and 0.01% Triton X-100) was
incubated for 2 hours at 37 °C. Tuberculosinyl adenosine formation was determined by LC/MS carried
out using an Agilent LC/MSD Trap XCT Plus instrument. Compounds were separated on a Gemini 3
mm C18 110 A (100*2 mm) column from Phenomenex using a 0—100% methanol (in water with 0.1%
formic acid) gradient, and monitored by using positive-ion mode ESI at m/e=540.4.
Virtual screening

To incorporate receptor flexibility into computer-aided drug discovery as an application of the
relaxed complex scheme, we carried out a virtual screening (VS) of the known actives (Figures 3-S1-
S3) against an ensemble of 30 different E,Z-DPPS conformations.”® The receptor conformers were
selected by clustering the apo E,Z-DPPS trajectory based on the active site volumes. Any potential
ligand binding sites in E,Z-DPPS were first explored by using the computational solvent mapping
program FTMap, which suggests druggable hot spots in a protein by docking a number of small organic
fragments into the protein.” Upon evaluating the results of FTMap (see Results and Discussion), we set
the receptor grid center as the native binding pocket of the enzyme and used the same protocol as
described above for ligand docking for receptor preparation.

The compound libraries consisted of the 43 (GPP substrate), 19 (E,Z-FPP), or 53 (E,E-FPP
substrate) experimentally tested active inhibitors with ICses between 0.03 uM and 20 uM (GPP

substrate), 0.6 uM and 90 mM (E,Z-FPPS substrate) or 0.65 uM and 880 mM (FE,E-FPP substrate),
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together with 1,000 decoys of average molecular weight 400 Da, from the Glide Decoy Set. The ligands
were prepared using LigPrep in Schrédinger Suite 2012 with the OPLS2005 force field, and tautomers
and stereoisomers were generated within the pH range of 5.2 + 9.2 using Epik.* **7 The VS was carried
out using the standard precision (SP) in Schrédinger’s Glide program.**>' The VS results were analyzed
by using the receiver operating characteristic (ROC) and area under the curve (AUC) metrics. ROC is a
widely used method to evaluate the performance of VS in distinguishing known actives from decoy
compounds.”® The AUC then quantitatively compares the performance of different receptors; values of

0.5 correspond to a random selection of a compound in the library.

Results and discussion

M. tuberculosis E,Z-farnesyl diphosphate synthase (E,Z-FPPS), E,Z-decaprenyl diphosphate
synthase (E,Z-DPPS), and tuberculosinol/tuberculosinyl adenosine synthase (Rv3378c) all crystallize as
dimers as their functional units and adopt the same {-fold as seen in undecaprenyl diphosphate synthase
(UPPS) (Figure 3-2). In the following sections, we begin by comparing conformational dynamics of
E,Z-FPPS, E,Z-DPPS, and Rv3378c observed in the molecular dynamics (MD) simulations. Then, by
performing principle component analysis, we compare the structural flexibility of £,Z-FPPS and E,Z-
DPPS to UPPS in terms of the presence and type of bound ligand and size of the active site. We then
propose a basis for chain length regulation by these enzymes and enhanced enrichment of active
compounds of E,Z-DPPS in virtual screening. Finally, we report the experimental inhibition results of a
lead compound that is active against E,Z-FPPS, E,Z-DPPS, and Rv3378c at nM and uM levels,
suggesting a multi-target inhibition as a promising strategy for new generation drug development.
Structural flexibility of the enzyme active sites

To explore the conformational flexibility of the active sites of E,Z-FPPS, E,Z-DPPS, and
Rv3378c¢, fluctuations in the volume of the binding pocket during the MD simulations were analyzed
for each monomer of the various systems. Figure 3-3A-C shows the binding pocket volume fluctuations
during the MD simulations for each monomer of the £,Z-DPPS systems investigated: apo (Figure 3-3A),

isopentenyl diphosphate (IPP)-bound (Figure 3-3B), and citronellyl diophsphate (CITPP)-bound (Figure
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3-3C). There are several clear transitions between the open and closed states in the active site,
indicating large structural flexibility of the binding pocket of E,Z-DPPS. This flexibility is most
pronounced in the apo and IPP-bound E,Z-DPPS simulations. An opening of the active site of the apo
monomer B is particularly noticeable, as shown in Figure 3-4, in which the pocket opens up from 455
A® in the X-ray crystal structure (Figure 3-4A) to 882 A? in the early stage of the simulation (Figure 3-
4B). Additional transitions between open and closed states of the active site between 200 A* to 700 A’
range are subsequently observed. The large range in the volume fluctuation clearly indicates the flexible
nature of the active site, with the largest volume likely being related to the need to accommodate the
large product E,Z-DPP (Csp). Interestingly, the presence of CITPP (C,,, Figure 3-1B), a structural
analog of GPP, restricts the active site volume to ~ 400 A®during the entire simulation (Figure 3-3C).
This is presumably due to strong hydrogen bond networks and salt bridges between the diphosphate

moiety of CITPP and Arg residues, together with hydrophobic interactions in the active site.
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Figure 3-3. Volume fluctuations of the active site in each monomer of the various E,Z-FPPS, E,Z-DPPS,
and Rv3378c systems. (A) Apo E,Z-DPPS. (B) E,Z-DPPS + IPP. (C) E,Z-DPPS + CITPP. (D) Apo E, Z-
FPPS. (E) E,Z-FPPS + CITPP. (F) E,Z-FPPS + E,E-FPP. (G) Apo Rv3378c. (H) Rv3378c + BPH-629.
Red and black lines are for monomers A and B, respectively.
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Figure 3-4. Comparison of the active site volumes. (A) Apo E,Z-DPPS in the X-ray crystal structure
with V=455 A°_(B) The most open state in the MD simulation with V=882 A°.

Figure 3-4 clearly shows the large volume difference observed between the closed X-ray
structure and most open MD structure. This large transition in the pocket volume arises from a
pronounced bend in helix o3 between residues Serl126 and Phel36, which is very similar to what was
previously seen in UPPS.”” The X-ray crystallographic structures of the apo and holo E,Z-DPPS have
this helix a3 in bent conformation and thus correspond to small pocket volumes. However, as discussed
below in more detail, this pocket is too small to accommodate the larger E,Z-DPP product, which can,
however, be docked to the more open structure (Figure 3-4B), and during this catalytic process, the
bending motion of the o3 helix is likely to be important. Interestingly, we observe a closing of the
pocket during an MD simulation in which we docked CITPP to the most open structure of apo DPPS
(Figure 3-5). In this simulation, the active site has an initial volume of 756 A’ (Figure 3-5B), but it
rapidly decreases during the simulation as the pocket closes (Figure 3-5B and 5C), with the closed
structure having a volume of ~ 230 A®. Thus, the substrate-like ligand induces formation of a closed
state with helix o3 in the bent conformation. Similar effects are also seen with the substrate-like ligands
in UPPS and are important in the context of virtual screening and enzymatic catalysis, as described in

more detail below.
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Figure 3-5. (A) Rapid closure of the expanded active site of monomer B in E,Z-DPPS upon
incorporation of CITPP. (B) Binding pocket of the apo starting structure (V=756 A®). (C) Pocket in the
closed state of the active site after MD in the presence of CITPP (V=229 A®). The helix bend illustrated
helps close the pocket.

E,Z-FPPS, producing the C;s isoprenoid E,Z-FPP, has not unexpectedly a smaller active site
than DPPS, which synthesizes the Csy compound, E,Z-DPP. As a result, the active site of £,Z-FPPS
during the MD simulations remains in a relatively closed state, fluctuating only up to a volume of ~ 480
A%, even in the absence of ligands (Figure 3-3D). In the presence of the small, substrate-like inhibitor
CITPP in both monomers, the active site volume remains constant around 300 A® (Figure 3-3E). CITPP
is a known inhibitor of E,Z—FPPS,30 and as with CTIPP binding to E,Z-DPPS, it stabilizes the closed
conformation through polar and hydrophobic interactions. With the non-native substrate E,E-FPP, the
active site volume is larger as shown in Figure 3-3F, but again does not approach the much larger
volumes seen in apo E,Z-DPPS.

Rv3378c shows quite different dynamics from E,Z-DPPS or E,Z-FPPS, as shown in Figure 3-
3G and 3H. The enzyme has an inherently bigger active site with a volume larger than 1,000 A*. The
enzyme in complex with a bisphosphonate inhibitor BPH-629A stays in a widely open state with a
volume as large as ~ 2,300 A®. The large active site of Rv3378c can be traced to its different enzymatic
function from those of E,Z-DPPS or E,Z-FPPS. Based on the X-ray crystallographic structure that
contains tuberculosinyl diphosphate (TPP) substrate, the reaction catalyzed by Rv3378c may take place
around the top region of the active site, rather than along the helical channel as isoprenoid synthases. In
addition, it is possible that Rv3378c adopts the expanded conformation due to its nucleophilic reaction

involving adenosine in addition to TPP, as suggested recently. "



54

Our results highlight different conformational flexibility of E,Z-DPPS, E,Z-FPPS, and
Rv3378c¢ that all adopt the same {-fold. The enzyme synthesizing longer product, i.e., DPPS, has more
pronounced plasticity in its active site while the ones producing a shorter chain remain more rigid. In
the next section, we compare the conformational states of these enzymes to that of UPPS, which
synthesizes even longer Css product, and further relate the conformational dynamics to the enzymatic
functions.

Pocket volume fluctuation and principal component analyses

As the first characterized enzyme with the {-fold and due to its essential role in the bacterial
cell wall biosynthesis across different species, UPPS has been extensively studied in terms of its
structural dynamics and inhibitor design. In our previous work, we showed that UPPS has a very
dynamic nature around its active site and exists in distinct conformational states depending on the
presence and type of the bound ligand in the active site.'™* Inspired by the high structural similarity of
E,Z-FPPS and E,Z-DPPS to UPPS, we compare the conformations of E,Z-FPPS, E,Z-DPPS, and UPPS
using a criterion of the active site volume and principal component analyses (PCA).

Table 3-1 shows the pocket volumes for E,Z-FPPS, E,Z-DPPS, UPPS, and Rv3378c, using
both X-ray crystallographic and in some cases, MD-derived structures. There is a broad range in
volumes for each system: for E,Z-FPPS, the volume ranges between 240 A’ to 537 AB; for E,Z-DPPS,
227 A’to 882 A’; for UPPS, 155 A’ to 1,440 A’; and for Rv3378c, 131 A’ to 1,436 A’. In Table 3-1,
UPPS structures are clustered into three different conformational states based on its pocket volume:
closed stated, semi-open, or ajar, state, and open state. Contingent on the clustering of UPPS structures,
the small volumes of E,Z-FPPS and E,Z-DPPS active sites resemble the closed state of UPPS with the
volume of 270-315 A* (Table 3-1) where substrate-like ligands are bound. The open structures of E, Z-
FPPS and E,Z-DPPS from the MD simulations have active site volumes of 537 A® and 882 AB,
respectively, and thus are more similar to the ajar or open state of UPPS. However, the active sites of
E,Z-FPPS and E,Z-DPPS are clearly smaller on average than that of UPPS, likely due to the fact that
UPPS have multiple bound ligands in many cases in its four binding sites while E,Z-FPPS and FE,Z-

DPPS do not.
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Table 3-1. Computed active site volumes and PC values and corresponding conformational states for
E,Z-FPPS, E,Z-DPPS, UPPS, and Rv3378c.

Conformation and

System PDB ID g?)ﬁl(z:e ( A;;) bt)gl?ll::e ( A;;) PC1 PC2 ?;{g)rage pocket volume
2VFW 240 0 -10.77 242 Closed
2VGOo 241 272 -11.14 -1.48
269 £ 50
E,Z-FPPS  2VGlI 327 344 -10.26 -2.42
2VFW Open (MD)
Open state 337 0 ) ) 537
2VG2 227 189 -9.53 2.03 Closed
2VG4 455 0 -9.24 1.77 381 5 133
E,Z-DPPS 2VG3 461 272 -8.94 1.63
2VG4 Open (MD)
Open state 882 0 -4.62 1.29 382
SaUPPS 155 344 -10.87 4.2
}ig; ;7)2 }gg _iggé 112186 Closed (substrate-bound)
272+ 68
1X06 312 353 -9.75 -1.41
1X08 315 353 -10.58 -1.13
3SGV 456 351 0.99 -0.55
4H2M 581 397 1.71 1.69 .
4H2J 672 430 1.97 2.08 bAiJszgh((E)lsppO}igﬁgt-e-boun o
3THS 765 338 0.61 4.01 726 + 167
4H38 804 387 1.87 1.70
4H3C 870 342 2.60 1.60
3SHO 932 329 4.57 2.29
2E9A 948 357 2.34 -3.90 Open (bisphosphonate-
2E99 987 366 4.04 -4.80 bound)
UPPS 2E9D 1010 357 3.22 -3.15 982 + 31
4H3A 1048 309 2.52 1.49 Ajar (apo/non-
4H20 1079 414 1.73 2.50 ll’:)sé’f“pho“ate‘bound)
Open (bisphosphonate-
2E98 1082 355 5.45 -6.09 bound)
1082 +£22
3QAS 1169 0 1.00 1.72 Ajar (apo/non-
bisphosphonate-bound)
3SGX 1213 393 4.19 6.11 1205 + 32
3SGT 1232 327 2.03 -0.13
Open (bisphosphonate-
2E9C 1440 445 2.90 -4.18 bound)
1440
4CMX 131 246 1c§c1>sed
3WQK 714 0
3IWQM 808 355
Rv3378¢c  4KT8 905 412 Open
3WQN 1051 412 1546i256
4CMV 1171 152
3WQL 1240 0
4CMW 1436 152
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PCA is an attractive methodology for structure comparison by reducing the dimensionality of
variables observed. In previous work on UPPS, we found three conformational clusters of UPPS from
PCA using available X-ray crystallographic structures, which correspond to our clustering based on the
pocket volumes: closed state containing substrate-like ligands; ajar, or semi-open, state for either apo or
non-bisphosphonate bound structures; and open state with bound bisphosphonate ligands, often with
multiple bound (circled as A, B, and C respectively, in Figure 3-6A).'° Projection of X-ray structures of
E,Z-FPPS and E,Z-DPPS onto the PC space of UPPS shows that E,Z-FPPS and E,Z-DPPS are close to
the closed state of UPPS while the ajar and open states of UPPS are solely populated by UPPS (Figure
3-6A). On the other hand, projection of MD trajectories of E,Z-FPPS and E,Z-DPPS indicates that a
large conformational space is sampled in the simulations (Figure 3-6B). However, the spaces sampled
do not quite overlap with the ajar or open state of UPPS (Figure 3-6B). This is presumably due to the
fact that the product of UPPS, i.e., UPP (Cs;s), is slightly larger than those of E,Z-FPPS and E,Z-DPPS.

Our PCA results well characterize the existence of distinctive conformational states for
different enzymes that synthesize the products with unique length. This indicates a high correlation
between the structural dynamics around the active site and enzymatic functions. In the next section, we
further investigate the chain elongation mechanisms of E,Z-FPPS and E,Z-DPPS predicted by means of

computational docking of prenyl molecules with different chain lengths.
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Figure 3-6. Separation of conformational states for different enzymes revealed by principal component
analysis. (A) Projection of X-ray crystallographic structures of E,Z-FPPS (blue) and E,Z-DPPS (red)
onto UPPS PC space. Distinctive conformational states corresponding to UPPS structures are marked.

(B) Projection of trajectories of £, Z-FPPS (green) and £,Z-DPPS (yellow) onto UPPS PC space.
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Chain elongation mechanisms of E,Z-FPPS, E,Z-DPPS, and UPPS

The length of the product synthesized have been used as an indicative of protein function in
E,E-prenyl transferases.”® In principle, one hypothesizes that the larger the active site, the longer will be
the prenyl hydrocarbon chain produced by the enzyme. However, the active site volume calculations
and PCA results described above indicate that the X-ray crystallographic structures of E,Z-FPPS and
E,Z-DPPS correspond to the closed state of UPPS, in which case, certainly with E,Z-DPPS, it would
potentially not be possible to accommodate the Csy product, as we indeed found experimentally (data
not shown). Motivated by the structural flexibility of these enzymes observed in the MD simulations,
we thus next probed the chain elongation mechanisms by docking a set of prenyl diphosphates with
various chain lengths, i.e., Cio to Css, using the MD-derived structures of E,Z-FPPS, E,Z-DPPS, and
UPPS. This approach is similar in sprit to that used by Wallrapp ef al.,”® but here we incorporated the
MD structures to account for the protein flexibility.

Docking poses for the corresponding products to each enzyme are shown in Figure 3-7A-C,
and docking score as a function of the prenyl chain length is plotted in Figure 3-7D. While E,Z-FPPS
was able to accommodate the prenyl diphosphate up to Css in its active site, the docking scores indicate
the strongest binding with C,o, with C;s (i.e., product of E,Z-FPPS) and C,, both being ~ 2-3 kcal/mol
higher. Any prenyl molecules longer than C,s failed to dock into even the most open E, Z-FPPS structure

due to the small size of the binding pocket, as indicated by docking scores of 0 kcal/mol (Figure 3-7D).
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Figure 3-7. Docking poses of the products of the enzymes synthesizing prenyl molecules with various
chain lengths. (A) E,Z-FPPS + FPP. (B) E,Z-DPPS + DPP. (C) UPPS + UPP. (D) Docking scores for the
prenyl molecules with various chain lengths upon docking into E,Z-FPPS, E,Z-DPPS, and UPPS. The
“P” signs indicate the products of three enzymes.

For E,Z-DPPS and UPPS, we see an expected U-shaped curve in which the best docking scores
are found around chain lengths slightly shorter than the enzymes’ own products; the energy minimum
for the docking score is found at C; for E,Z-DPPS and Cs, for UPPS, which is not the normal product
chain length (Csy and Css, respectively). The score becomes then slightly worse with an increase in
chain length, and both enzymes failed to dock any prenyl molecules longer than their products (Figure
3-7D). Interestingly, E,Z-DPP (Csj), the enzyme’s final product, could not be docked to the X-ray
crystallographic structure of E,Z-DPPS (data not shown) while it was able to fit into the most open MD-

derived structure (Figure 3-7B). The docking score for E,Z-DPPS with the Csy product is about 4
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kcal/mol higher than with C;,, which showed the strongest binding. Likewise, with UPPS, the energy
minimum locates at Csy with the Css product being ~ 1.5 kcal/mol higher. However, the expanded
structures of both E,Z-DPPS and UPPS could not dock the prenyl diphosphates longer than their own
products. Clearly, these results indicate that once the chain becomes sufficiently long, its binding
energy increases, which results in product being released from the enzyme. In the mean time, the
flexible nature of the active site, potentially induced by the bending motion of helix a3, likely enables
the expansion of the binding pockets of E,Z-DPPS and UPPS, which is essential for synthesis of long
prenyl diphosphates. Also, our method used here combining two computational techniques, i.e.,
molecular docking and MD simulations, suggests future application to predict unknown enzymatic
mechanisms for chain elongation.

Inhibition of E,Z-DPPS and receptor flexibility

While E,Z-FPPS and E,Z-DPPS work sequentially to produce E,Z-DPP in M. tuberculosis cell
wall biosynthesis, E,Z-DPPS is able to substitute the role of E,Z-FPPS in the absence of the latter.
While DPPS normally converts E,Z-FPP to E,Z-DPP (Figure 3-1), it can also utilize GPP, the substrate
of E,Z-FPPS, as substrate. Ideally, then, an inhibitor should target E,Z-DPPS with either GPP or E,Z-
FPP as substrate. Therefore, we screened our in-house library of putative prenyl synthase inhibitors
against E,Z-DPPS using GPP, E,Z-FPP, and E,E-FPP as substrate; E,E-FPP, as with GPP, can be
converted to the long chain prenyl diphosphates. This resulted in 43 inhibitors with ICs, values in the 30
nM to 20 uM range when using GPP as substrate (Figure 3-S1), 19 inhibitors with ICs, in the 600 nM to
~ 100 pM range when using E,Z-FPP as substrate (Figure 3-S2), and 53 inhibitors with ICs, as low as
650 nM using E, E-FPP as substrate (Figure 3-S3).

As well established, accounting for receptor flexibility in computational docking can
significantly improve the results in structure-based drug discovery.™® In UPPS, it was found that the
rarely sampled structures in the MD simulations show the binding modes that are not observed with the
static X-ray crystallographic structures.” Therefore, as we found a high degree of conformational
plasticity of DPPS and several potent inhibitors of the enzyme with various substrates, we carried out a

virtual screening (VS) with an ensemble of the receptors with varying active site volumes in order to
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address the receptor flexibility. The receptor structures were taken from the apo E,Z-DPPS MD
trajectory as it showed the largest fluctuation in the active site volume, in addition to the X-ray
crystallographic structure.

As a preliminary examination of the ability to recover the crystallographic binding pose of the
ligand, we first carried out self-docking of the co-crystallized ligand CITPP into E,Z-DPPS receptor.
The docking pose shown in Figure 3-S4 confirmed the validity of the receptor grid center we used. We
also investigated the possibility of the existence of other binding sites in E,Z-DPPS using FTMap.” The
results of FTMap analysis shown in Figure 3-S5 suggest that DPPS does not have other binding sites.
Therefore, we proceeded to perform the VS with the grid center located at the native binding site.

We evaluated the receptor performance in each VS using the receiver operating characteristic
(ROC) curve and area under the curve (AUC) metrics. Figure 3-8A-C shows the AUC results of the
MD-derived receptor structures using the inhibitors tested using GPP, E,Z-FPP, and E,E-FPP as
substrate, respectively (individual ROC curves are shown in Figures 3-S7-S9). The populations of the
sampled E,Z-DPPS structures as functions of the active site volume are shown in red and indicate that
the most probable receptor volume is ~ 250 A*. When GPP is used as substrate, the AUC results show
that the top scoring receptors all have volumes smaller than ~ 300 A* (Figure 3-8A, in blue). This cutoff
is more pronounced when E,Z-FPP is used as substrate (Figure 3-8B, in blue), where there is a clear
step function behavior: The receptors with volume less than ~ 300 A® does not have predictive power in
selecting the actives from decoys while 90% of the receptors with volume bigger than 300 A® have
AUC greater than 0.5, with the best MD-derived receptor conformers f having AUC near 0.7 — a
considerable enrichment in the actives. The presence of enrichment observed for the receptors with V <
300 A* with GPP or E,E-FPP as substrate is due to the highly ranked small inhibitors used, while the
inhibitors tested with £,Z-FPP are generally larger (Figures 3-S7-S9). Therefore, we speculate that the
initial step in GPP chain elongation may be targeted by the small bisphosphonate inhibitors that can
bind to a smaller receptor pocket, while with E,Z-FPP as substrate, the normal chain elongation step is

being targeted. In all cases, however, neither the most populated conformations nor the X-ray
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crystallographic receptors provide better enrichments in the actives than random selection of the

compound in the library.

A B ~ C

bl iR

Active Site Violume {Ang®)
Figure 3-8. Active site volume of E,Z-DPPS and predictive performance in screening the compound
library tested with (A) GPP substrate; (B) E,Z-FPP substrate; and (C) E, E-FPP substrate.
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Detailed examination of docking poses of the actives in several high performance receptors
provides a significant role of receptor flexibility. For example, when E,Z-FPP, the native substrate, was
used, the receptors 10, 22, and 30 show the AUC values of 0.710, 0.726, and 0.662 (Figure 3-S7), with
corresponding active site volumes of 331 A®, 654 A°, and 882 A’ respectively. This gives first insight
that the binding pocket size may not be a critical factor. However, high enrichment observed in the
small receptors is mainly due to the small inhibitors ranked high on the list, as mentioned above, in
addition to location of the docked inhibitors far from the active site, i.e., either limited to the top,
solvent-exposed region of the active site or near the interface of two monomers, leading to the
erroneously high enrichment. On the other hand, the large receptors are able to accommodate both large
and small inhibitors in the binding pocket, enabling more realistic prediction of the binding modes of
the inhibitors.

Overall, our results clearly show that there is remarkable improvement in VS upon using an
ensemble of MD-derived receptor conformers, most of which, interestingly, are rarely sampled in the
MD simulations. The enrichment of VS is noticeably enhanced upon utilizing the receptors with the
expanded binding pocket compared to the poor performance when the most populated or X-ray

crystallographic structures were used, emphasizing the significance of accounting for the receptor
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flexibility in the structure-based drug discovery. Approaches using different metrics such as RMSD
clustering to generate the receptor ensemble can possibly yield good results as well in application of the
relaxed complex scheme.

Toward multi-target inhibition of E,Z-FPPS, E,Z-DPPS, and Rv3378c

In previous work, we reported the X-ray crystallographic structure of Rv3378c in the presence
of its substrate, TPP, as well as in the presence of a bisphosphonate inhibitor, BPH-629 (Figure 3-1B)."*
Bisphosphonates are often found to be good inhibitors of prenyl synthases as they contain a diphosphate
group isostere, a bisphosphonate. For example, bisphosphonates are known potent inhibitors of UPPS
and E E-FPPS, where inhibitors of the latter being used clinically to treat bone resorption diseases.
However, there has been little progress in developing bisphosphonates that act against bacteria since
they do not penetrate the bacterial cell wall. On the other hand, there are many other known UPPS
inhibitors, and many of the E,Z-DPPS inhibitors shown in Figure 3-S1 also inhibit UPPS."’ Therefore,
we tested several of these inhibitors for activity against E,Z-FPPS (Figure 3-S9) and three for activity
against Rv3378c (Figure 3-S10) using TPP and adenosine as substrates.

The most potent inhibitor for Rv3378c was BPH-629, which had an ICs, of 210 nM. This
compound was also active against E,Z-DPPS with an ICsy of 610 nM when E,Z-FPP was used as
substrate. However, BPH-629 was inactive against the M. tuberculosis model, M. smegmatis. In
contrast, we found that the bisamidine BPH-1417 (Figure 3-1B) had an activity against DPPS with an
IC5 0of 0.5 to 20 uM, depending on substrate used, and Rv3378c with an ICsy of 660 nM. In addition, it
also inhibited E,Z-FPPS with an ICs, of 4.8 mM (Figure 3-S9). The binding modes of BPH-1417
predicted by docking are shown in Figure 3-9; in each case, the native binding site, i.e., site 1, is likely

to be occupied.
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Figure 3-9. Predicted docking poses for BPH-1417. (A) E,Z-FPPS. (B) E,Z-DPPS. (C) Rv3378c.

While we previously showed that a bisamidine BPH-1358 (Figure 3-S10) was a potent UPPS
inhibitor that also had in vivo activity in S. aureus mouse model of infection,'’ the compound was
inactive against Rv3378c. However, the bisamidine BPH-1417 has potent in vitro as well as in vivo
activity against S. aureus, and has also been reported to have an MIC in the range of 0.3 mg/mL to 1.3
mg/mL against M. tuberculosis.> 1t is also possible that DNA is a major target in these organisms, as
with other bisamidines. Clearly, the ability of BPH-1417 to potentially target DNA, cell wall
biosynthesis catalyzed by E,Z-FPPS and E,Z-DPPS, and virulence factor formation by Rv3378c is of

particular interest in the context of multi-target inhibitor development for drug-resistant infections.*

Conclusions

In this work, we examined the structural plasticity of three prenyl synthases from M.
tuberculosis by performing molecular dynamics (MD) simulations: E,Z-farnesyl diphosphate synthase
(E,Z-FPPS), E,Z-decaprenyl diphosphate synthase (E,Z-DPPS), and tuberculosinol/tuberculosinyl
adenosine synthase (Rv3378c), all of which contain a characteristic {-fold. In particular, E,Z-DPPS and
Rv3378c are of special interest as new drug targets in treatment of tuberculosis. Through binding
pocket volume calculations, we showed that the apo state of £,Z-DPPS exhibited the large structural
flexibility around the active site, showing several transitions between open and closed states
characterized by bending motion of helix o3. E,Z-FPPS sampled a limited conformational space and
Rv3378c showed distinctive dynamics in the active site due to its different enzymatic function despite

the highly similar structural motif. The structures were clustered based on the computed active site
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volume and further analyzed on the basis of three distinctive conformational states of undecaprenyl
diphosphate synthase (UPPS) by means of principal component analysis. The X-ray crystallographic
structures of E,Z-FPPS and E,Z-DPPS resembled most closely the closed structures of UPPS where
substrate-like ligands were bound. We speculate this to be due to many UPPS structures that have
multiple bound ligands as in its semi-open or open states, while E,Z-FPPS and E,Z-DPPS typically have
a single ligand bound.

We further incorporated the structural flexibility to probe the chain elongation mechanisms of
E,Z-FPPS, E,Z-DPPS, and UPPS by docking prenyl phosphates with various chain lengths to the MD-
derived structures. The prenyl molecules with chain lengths shorter than products showed the most
favorable binding. Use of the most open MD conformer suggested that the conformational transition to
the expanded state is essential for the chain length regulation in catalysis.

To address to the increasing attention to E,Z-DPPS as a promising drug target, we reported the
experimental analysis of inhibition assays against £,Z-DPPS using both native and non-native substrates,
finding several potent leads in UM to nM range in each case. Motivated by the large structural plasticity
of DPPS, we combined the MD results with our drug discovery protocol to address the receptor
flexibility in computer-aided drug discovery. We showed that use of an ensemble of receptor
conformers with various binding pocket volumes in virtual screening largely improved the receptor
predictive performance in distinguishing the known actives from decoy compounds. Particularly, the
MD-derived structures with the pocket volume greater than 300 A® exhibited the highly enhanced
enrichment. We also tested several of the E,Z-DPPS inhibitors for activity against E,Z-FPPS and
Rv3378c and found several bisphosphonates and bisamidines were active against several targets. In
particular, the compound BPH-1417 was a 660-nM inhibitor of Rv3378c, a 4.8-uM inhibitor of E,Z-
FPPS, and a 1.3-uM inhibitor of E,Z-DPPS, opening up the possibility of multi-target inhibition in
which both cell wall biosynthesis and virulence factor formation may be inhibited. Our study shows the
conformational flexibility of three essential M. tuberculosis enzymes and connects the functional

mechanisms to structural dynamics. Also, the results reported here highlight the significance of
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accounting for the receptor flexibility in the structure-based drug design, and further propose a

possibility for multi-target inhibition as new generation drug development.
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Figure 3-S4. Comparison of the docking pose of the co-crystallized ligand CITPP self-docked into the
receptor grid center (green) with its crystallographic orientation in the 2VG3 crystal structure (pink).

Figure 3-S5. Potential ligand binding sites of £,Z-DPPS predicted by FTMap.
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Chapter 4

Protocols utilizing constant pH molecular
dynamics to compute pH-dependent binding free

energies

Abstract

In protein-ligand binding, the electrostatic environments of the two binding partners may vary
significantly in bound and unbound states, which may lead to protonation changes upon binding. In
cases where ligand binding results in a net uptake or release of protons, the free energy of binding is
pH-dependent. Nevertheless, conventional free energy calculations and molecular docking protocols
typically do not rigorously account for changes in protonation that may occur upon ligand binding. To
address these shortcomings, we present a simple methodology based on Wyman’s binding polynomial
formalism to account for the pH dependence of binding free energies and demonstrate its use on
cucurbit[7]uril (CB[7]) host-guest systems. Using constant pH molecular dynamics and a reference
binding free energy that is taken either from experiment or from thermodynamic integration
computations, the pH-dependent binding free energy is determined. This computational protocol
accurately captures the large pK, shifts observed experimentally upon CB[7]:guest association and
reproduces experimental binding free energies at different levels of pH. We show that incorrect

assignment of fixed protonation states in free energy computations can give errors of > 2 kcal/mol in
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these host-guest systems. Use of the methods presented here avoids such errors, thus suggesting their

utility in computing proton-linked binding free energies for protein-ligand complexes.

Introduction

The changes in the electrostatic environment that accompany binding of small molecules,
nucleic acids, or other proteins may thus induce changes in the protonation states of titratable groups in
the protein."® Recently, Aguilar ef al. conducted a computational survey of various protein-protein,
protein-small molecule, and protein-nucleic acid complexes to ascertain the prevalence of protonation
change in the protein receptor upon biomolecular association. Notably, in 60 percent of the protein-
small molecule complexes considered, at least one titratable residue in the protein was found to assume
different protonation states in its free and bound states.” Furthermore, protonation changes that
accompany small molecule binding to proteins are not limited to the protein partner: an estimated 60-80
percent of orally-administered drugs are weak acids or bases, whose protonation states can also be
tuned by the cellular pH and electrostatic environment of their protein binding partners.'”"* In cases
where protein-ligand binding accompanies a net transfer of protons to either binding partner, the
binding process is pH-dependent, i.e. the observed binding free energy is a function of pH.

Conventionally, both computational docking and more rigorous free energy computations,
such as the thermodynamic integration (TT) and free energy perturbation (FEP) methods, employ fixed
protonation states that are identical for free and bound states in the computation of binding affinities.
Clearly, in cases where ligand binding is linked to the (un)binding of protons, such approximations will
lead to error. Improper assignment of protonation states in binding free energy computations may result
in significant errors, making correct assignment of pK, and protonation state essential to obtaining
accurate free energies.

As stated, simulations of protein-ligand systems are typically preceded by the assignment of
fixed protonation states to titratable groups on the two binding partners, often using programs such as
H++"*' and PROPKA'? to do so. Further, docking studies often employ empirical prediction

algorithms, which sometimes use Hammett and Taft relations, to assign fixed protonation states to the
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free ligands being docked.”"** These approaches, however, fail to account for changes in protonation
that may follow from the altered electrostatic environment surrounding the two binding partners upon
complex formation. Several computational methods, however, have been developed that permit the
protonation of titratable residues to respond to changes in the electrostatic environment.” >2® For
instance, various flavors of constant pH molecular dynamics (CpHMD) methodologies have emerged to
incorporate pH as an added external thermodynamic parameter to conventional molecular dynamics
(MD) simulations, allowing fluctuations in the protonation of titratable residues to accompany

conformational sampling.”’>** To date, CpHMD simulations have been used to successfully predict pK,

29-37 38-40

values of titratable groups in proteins and nucleic acids, as well as to explain the mechanism
behind the pH-dependent conformational changes critical to the function of proteins such as
nitrophorin®' and rhodopsin.**

The CpHMD method provides a framework through which the pH dependence of binding
processes can be examined. To the best of our knowledge, there is currently no standard protocol
available to rigorously account for proton-linked ligand binding. Multiple experimental and
computational groups, however, have utilized the binding polynomial formalism devised by Wyman®
to calculate the changes in binding free energy that accompany binding-induced protonation changes for

344 and protein-nucleic acid binding.* **** Motivated by Mason and Jensen’s

both protein-protein
usage of this binding polynomial formalism to estimate the free energies of binding for protein-protein
complexes using the PROPKA web server," we adopt a similar approach in conjunction with the
CpHMD method by Mongan er al.** to obtain pH-dependent free energy profiles in silico for the
binding of small molecules to the cucurbit[7]uril (CB[7]) host.

CBJ7] is a synthetic molecule with seven repeating glycoluril units bridged by methylene
groups (Figure 4-1).**® This 7-fold symmetric host has gained much attention due to its ability to
encapsulate drug-like small molecules with high affinity as a stable host-guest complex.*
Benzimidazole (BZ) and a series of its derivatives (Figure 4-2) comprise a class of widely used

56-58

fungicides and anthelmintic drugs that have been shown to bind to the CB[7] host and undergo the

pK, shifts as large as 4 pK units upon complex formation (Table 4-1).>> At neutral pH, these weakly
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acidic guests are predominantly deprotonated when free in solution, but each binds a single proton upon
encapsulation by CB[7]. Both the acid/base behaviors of BZ-derived guests and the small size and
relative rigidity of CB[7] compared to a typical biomolecule make the CB[7]:BZ complexes ideal
model systems to test theoretical methods for computing pH-dependent binding free energies.

In this work, we accurately reproduce the pK, shifts of the various BZ derivatives upon
binding to CB[7], using CpHMD simulations. Coupling these pK, data with reference binding free
energies taken either from experiment or from TI computations allows us to obtain a full description of
CBJ7]:guest binding free energies as functions of pH. Additionally, we show that improper assignment
of guest protonation states in binding free energy computations can produce errors in excess of 2
kcal/mol at neutral pH, highlighting the importance of accurately accounting for the pH effects in free

energy calculations or docking.

A
0

LA o~

—N

N
=
LN N

0

T

Figure 4-1. Structure of cucurbit[7]uril (CB[7]) host. (A) Glycoluril unit. (B) Top view of CB[7].
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Figure 4-2. Chemical structures of benzimidazole and its derivatives.

Table 4-1. Experimental pK, shifts of benzimidazole guests upon binding to CB[7].”® pK," denotes the
pK, of the free guest and pK.," represents the pK, of the guest in complex with CB[7].

Guest pK." pK, &P ApK
Bz 5.5 9.0 35
TBZ 4.6 8.6 4.0
FBZ 4.8 8.6 3.8
ABZ 35 6.1 2.6

CBz 4.5 7.0 25
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Theory

Binding polynomial formalism for computing the pH dependence of binding free
energies

Mason and Jensen recently examined the pH dependence of protein-protein binding® through
an application of the binding polynomial formalism developed by Wyman® and used by Tanford to
describe protein folding/unfolding.®® Following the theoretical foundations of these groups, the binding
of a titratable ligand (L) to a general macromolecular receptor (R) can be considered through a general

equation for ligand association governed by the apparent equilibrium constant, K,p:

(1) R+{L}(%{RL}’

where the curly braces indicate that the ligand and complex (RL) ensembles may contain different
protonated forms of the titratable ligand species. In the case of a ligand with a single titratable site

binding to CB[7], which itself does not titrate in the biological range of pH levels, K,,, can be written as

) K - LRJ+[HLRT]
 [R]([L]+[HL'])

where the concentrations, rather than activities, of the given species are reported assuming ideal dilute
solutions. Building from the thermodynamic cycle used to describe the proton-linked ligand binding to
CB[7] (Scheme 4-1), K, can be rewritten according to Eq. 3, in which the concentrations of all species
are presented in binding polynomials with respect to the concentrations of the deprotonated complex

and ligand species:

R+L —=—= R:L

) e

R + HL' —*— R :HL'

Scheme 4-1. Thermodynamic cycle for complex formation between a receptor (R) and a titratable
ligand (L).
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! [R][L](1+—[HL+]J [1+—[HL+])
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Using the acid dissociation constants for the free ligand (K,") and ligand-receptor complex

(K,O), as illustrated by the vertical reactions in Scheme 4-1 (Eqgs. 4 and 5):

@ gl

¢)  ge-HLRT
* ~ R,

where the proton activity is denoted by ay’, Eq. 3 can be rewritten in terms of the overall free energy of

binding for the ligand L to the receptor R (AG®):

6 “(pH) = — -
(6) AG (pH)=-k,TInK, kBTln[ Ry

14107 J

pK{—pH
) sa, f_kBTh{L],
1+10""

where the proton activity and acid dissociation constants have been converted to their respective
logarithmic constants, pH and pK,. The pH dependence of the binding free energy can thus be obtained
having only the pK, values of the ligand molecule free in solution (pK,") and in complex with the
receptor (pK.©), as well as the free energy of binding for a reference reaction shown in Eq. 6 (the top
reaction in Scheme 4-1), AG®.y, in which there is no net uptake or release of protons. This formalism
for obtaining AG® as a function of pH can further be applied to cases where multiple ligand and receptor
groups titrate in the pH range considered, assuming that proton binding occurs independently. In other
words, Eq. 6 can only be applied when all titratable groups are uncoupled from each other.

As protein active sites often contain multiple titratable groups whose protonation states are
coupled to perform a given function, it will sometimes be wrong to assume that all titratable groups
remain uncoupled upon ligand binding. In such cases, Wyman*®' derived a relation between Kapp and

pH such that

7 dlnK_
(N m=A\}H+=ZLR—(ZL+ZR)’
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where, using the notation used by Tanford,*® Avy; is the change in the number of bound protons in the
receptor-ligand complex, relative to the number of protons bound to the ligand and receptor
individually. Utilizing the unit charge of a proton, this relation is equivalent to the difference in total
charge, Z, between reactants and product in Eq. 1. With AZ = Z;r — (Zy + Zy), integration of Eq. 7
provides a thermodynamic relation that holds for proton-linked ligand binding in cases where titratable

sites may interact (Eq. 8):
8 : : "
®) AG (pH)=AG —kBTln(IO)ij {Z,,(PH)~Z, (pH)}dpH -

where Zy is omitted since the CB[7] receptor under consideration does not titrate in the pH range
considered in this study. Since the integration is performed with respect to pH in the second term in Eq.
8, the reference binding free energy corresponds to the binding free energy at a specific pH.

Both Egs. 6 and 8 thus provide frameworks for computing the pH-dependent binding free
energy by adding a correction term to the reference free energy of binding. In the case of Eq. 6, the
reference free energy, AG®., is obtained for receptor-ligand binding with protonation states fixed, such
that no net change of protonation occurs. Analogously, the reference free energy in Eq. 8 is required to
be the free energy of binding at a given value of pH. These two reference free energies are not
necessarily equivalent; however, the reference reaction can be chosen such that they have the same
value.

Constant pH molecular dynamics

Baptista and co-workers developed constant pH molecular dynamics (CpHMD) with stochastic
titration to enable concurrent sampling of both conformational and protonation spaces according to the
semi-grand canonical ensemble.’ Here, we use the simplified CpHMD formulation implemented in the
standard release of AMBER 12% that is similar to Baptista’s formulation except that the simulation is
performed in implicit solvent with generalized Born electrostatics.* In this method, an MD simulation
is propagated from initial sets of coordinates and protonation states. After a chosen number of MD
steps, the simulation is halted, at which point a Monte Carlo (MC) step evaluates whether a random

titratable residue in the system should change protonation states. The acceptance of this new
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protonation state is contingent on the application of the Metropolis criterion to the computed transition
free energy, AGy.s, Obtained using Eq. 9, where pH enters as an external thermodynamic parameter and

kgT is the Boltzmann constant multiplied by the temperature of the system.

) AG_ =k, T(pH-pK

trans

)In10+AG . —AG

aref elec 7 elecref

For the value of pH at which the simulation is conducted, the difference in electrostatic free energy that
accompanies the change in protonation being considered, AGe., is computed with respect to the
difference in electrostatic free energy that accompanies the analogous change in protonation for a model
compound, AGgjecrer, Which has a known pK, value (pK,rf). In this manner, any non-classical
contributions to the transition free energy cancel. For a given CB[7]:guest system, the model compound
that enters Eq. 9 is the guest molecule free in solution, its pK,,er is the experimentally obtained pK,
value of the free guest (pKaF , Table 1), and AGejecrer is defined to be the electrostatic free energy that
equally populates the protonated and deprotonated forms of the free guest when the solution pH is equal
to the experimental pK, of the free guest. If the transition is accepted, then MD is continued with the
new protonation state for the titratable residue; otherwise, MD continues without change in the
protonation state. Repeated application of these steps builds an ensemble of protonation states along the

MD trajectory.

Use of constant pH molecular dynamics in the binding polynomial scheme

The CpHMD method is applied to obtain values for pK," in Eq. 6 and AZ in Eq. 8 to provide
pH-dependent correction terms to the reference binding free energies. In the case of Eq. 6, values of
pK." are obtained from simulating the CB[7]:guest system at a range of pH values. Each CpHMD
simulation obtains a fractional protonation for the titratable guest being considered. By tabulating the
fraction of deprotonated guest species (s) computed at each value of pH, application of the Hill equation

can be used to predict pK,© as the midpoint of the titration, as well as the Hill coefficient, n (Eq. 10):

1
10 -
W0 =g
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This method can reliably extract the pKa when the titratable residue exhibits typical titration behavior.*

In all fits, the Hill coefficient obtained is approximately one, which is anticipated in the absence of
cooperativity.

In the case of Eq. 8, the partial charges for the guest free in solution, Z;, and the partial charges
for the guest in complex with CB[7], Zi, can similarly be obtained from CpHMD simulations. BZ and
its derivatives have charges of +1 when protonated and 0 when deprotonated. Consequently, Z;r and Z,
are equivalent to the fraction of protonated species (I — s) obtained from CpHMD simulations

performed on the CB[7]:guest complex and the free guest, respectively.

Methods

Parameterization of CB[7] and benzimidazole ligands for molecular dynamics
simulations

Partial charges for the CB[7] host have previously been derived® using the restrained
electrostatic potential (RESP) procedure,”®” conventionally used to parameterize nonstandard residues
for molecular simulations performed with AMBER force fields. Analogously, the geometries of
benzimidazole (BZ), albendazole (ABZ), carbendazim (CBZ), fuberidizole (FBZ) and thiabendazole
(TBZ, Figure 4-2), were optimized at the B3LYP/6-31G(d) level of theory® "' using the Gaussian 09
suite of programs.” Subsequently, the electrostatic potentials (ESP) associated with the optimized
geometries of these guests were computed using MK radii” at the HF/6-31G(d) level of theory. The
ESPs of the different guest molecules were submitted to the antechamber module®’ in the AmberTools
12 suite of programs,”® which applies the RESP procedure to extract atomic point charges for use in
molecular dynamics (MD) simulations. All other CB[7] and guest ligand force field terms, including

Lennard-Jones parameters, were taken from the general AMBER force field (GAFF).™
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Docking of guest molecules to CB[7]

To generate starting coordinates for MD simulations of different CB[7]:guest complexes, the
various BZ-derivatives were docked rigidly into the CB[7] cavity using the extra precision mode (XP)
in Schrodinger’s Glide program.””” Each CB[7]:guest docking experiment yielded a single pose for the
CBJ[7]:guest complex, and all guest molecules bound CB[7] similarly. For illustrative purposes, the
resulting CB[7]:FBZ complex obtained from Glide is shown in Figure 4-3. It is also worth noting that
the docked poses of deprotonated and protonated guests in complex with CB[7] are similar. The
hydrophobic core of the BZ guests is encapsulated by the CB[7] cavity, orienting the ligands similarly
regardless of protonation, while additional furanyl, thiazole, amido, or thioether R-groups seen in the
BZ derivatives protrude outside of the entrance to CB[7]. All poses show good agreement with

: 59
experiments.

Figure 4-3. Structure of CB[7]:fuberidazole complex generated by docking.

Constant pH molecular dynamics simulation details

CpHMD simulations were performed using the AMBER 12 suite of programs for the range of
pH values between 2 and 12 at increments of 0.5.%* All simulations employed the OBC generalized
Born (GB) implicit solvent model (igb=5)"® with a salt concentration of 0.1 M. Starting from the docked

CBJ7]:guest structures, all systems were minimized for 5,000 steps while applying positional restraints



95

to all heavy atoms with a force constant of 20 kcal/mol A”. Following minimization, the system was
heated to 300 K over the course of 500 ps using a Langevin thermostat” while maintaining the
positional restraints applied to all heavy atoms with a force constant of 5 kcal/mol A% After heating, a 1
ns equilibration simulation was performed at 300K. Production simulations were then performed for 5
ns, with MC steps taken every 10 fs. In all equilibration and production steps, the bonds involving
hydrogen were constrained using the SHAKE algorithm,™ and a cutoff of 30 A for the computation of
nonbonded interactions was enforced.
Computing absolute binding free energy with thermodynamic integration

The calculation of the pH-dependent binding free energy requires a reference binding energy
obtained either in the absence of protonation change (Eq. 6) or at a specified pH value (Eq. 8). TI
computations were performed to obtain the absolute binding free energy between CB[7] and guest
molecules that are deprotonated both free in solution and in complex using the double decoupling

method.® In TI the free energy change is evaluated as

(1) AG, = j:l<%>dx,

where U is the total potential energy of the system coupled to A, which varies smoothly between the

initial state of A=0 and the final state of A=1.%

The reference binding free energy was obtained from the
thermodynamic cycle shown in Scheme 2 and was calculated using

(12)  AG,,,=-AG —-AG,-AG,+AG, »

where AGj is the free energy for gradually turning on restraints (see below), AG, is the free energy for
decoupling the guest while bound to the host in the presence of the restraints, AG;° is the free energy
for turning off the restraint and correcting for the standard state, and AGy is the solvation free energy for

the decoupled guest (Scheme 4-2).
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Scheme 4-2. Thermodynamic cycle for an absolute binding free energy calculation. The outer circle
represents a CB[7] host and the inner blue circle shows a guest molecule in the reference deprotonated
state. AG; is the free energy for gradually turning on the restraints; AG, is for decoupling the guest from
the host in the presence of the restraints; AGs° is the analytical correction for removing the restraints;
and AGy is the solvation free energy for the guest.

The electrostatic and van der Waals (vdW) contributions to AG, and AG, are computed
separately, the latter using the softcore potential algorithm.®® To improve the convergence for these
computations, the virtual bond algorithm developed by Karplus and co-workers was applied, where a
set of restraints were used to fix the position and orientation of the guest relative to CB[7]. The free
energy for turning on the restraint, AG,, was computed using TI. The free energy for turning off the
restraint, AG;°, was calculated using an analytical expression, which corrects for the presence of

restraints and also accounts for the standard state:™
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Here V° is the standard state volume of 1661 A® for ideal gas, Ta, SinB,, sinbp are the distance and
angle values used for each restraint, having corresponding harmonic force constants (K’s in Eq. 13),
which are 5 kcal/mol A? for the distance restraint and 20 kcal/mol rad® for the angle and dihedral
restraints. The second term in Eq. 13 accounts for the symmetry in the system, where Gg...., Or and o
are the symmetry numbers for the host-guest complex, CB[7] and the guest molecule, respectively. For
our system, Og.... and o are 1, and oy is 14.

The pmemd implementation of TI in AMBER 14 was used to calculate the reference binding
free energy AG®rr, 1 for each guest to CB[7].¥* The reference ionization state was chosen to be
deprotonated because all experimental values of AG®.; were measured with the guests deprotonated.”
For the calculation of the electrostatic contribution to AG, and AGy, 11 equally spaced A values were
used (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). For the calculation of the vdW contribution to
AG, and AGy, 21 A values were used (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.725, 0.75, 0.775, 0.8, 0.825,
0.85, 0.875, 0.9, 0.925, 0.95, 0.975, 1.0). For the computation of the free energy for turning on the
restraints, AGy, 16 A values were used (0.0, 0.01, 0.02, 0.03, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0). The unequal spacing of A windows was needed to capture a smoother transition of
OU(L)/O\ along the A parameter and reduce errors in integration. Integration was performed numerically
using the trapezoidal rule, and uncertainties in the free energies were propagated as standard deviations.

Each CB[7]:guest complex was solvated with TIP3P water” with a region of 12 A in any
direction using tleap program.”’ The system was minimized for 5,000 steps and heated to 300 K over
500 ps in the NVT ensemble using a Langevin thermostat,”® followed by an equilibration for 500 ps in
the NPT ensemble using a Berendsen barostat’' with isotropic position scaling to bring the system to a
stable density. All production simulations were performed in the NVT ensemble and were extended
until the cumulative free energy computed for each individual transformation converges (changes in AG

<0.01 kcal/mol).



98

Results

Review of experimental results

Previously, Koner et al. observed enhancements in stabilities and solubilities of benzimidazole
(BZ) derivatives upon encapsulation by the cucurbit[7]uril (CB[7]) host.” The authors obtained values
of pK," and pK,° by fitting the data from UV titrations and '"H NMR spectroscopy.”> Henceforth pK,
and pK,““ will differentiate experimental pK, values from their respective computed values, pK,
and pK,““"*. The experimental data showed large shifts in pK, ranging between 2.5 to 4 pK units upon
complex formation with CB[7] (Table 5-1). Additionally, association constants of the complexes were
obtained at basic pH where guests were presumably deprotonated in both bound and unbound states;
association constants were also obtained for the binding of protonated guests through application of the
thermodynamic cycle (see Scheme 2 in ref. 59). In all cases, measurements of the binding free energies
for different CB[7]:guest complexes indicated that the protonated guests are favored in the CB[7] cavity
(discussed later; see Table 5-3).
pK. Shifts upon CB[7]:guest complex formation

To compute the pK, values of various BZ derivatives in complex with CB[7], we perform
constant pH molecular dynamics (CpHMD) simulations on five CB[7]:guest complexes. In Figure 4-4,
representative titration curves are shown for benzimidazole (BZ) and albendazole (ABZ), both in
complex with CB[7] and free in solution. Similar curves corresponding to the other guests can be found
in Figure 4-S1. Titration of the free guest in solution offers preliminary examination of the ability of the
CpHMD to reproduce the experimental pK,; for example, in the case of BZ, the pK, " value matches
pK."* value of 5.5, indicating proper calibration of the CpHMD method. From the titration curve of
BZ free in solution (Figure 4-4A, green curve), it is apparent that free BZ is protonated at values of pH
less than 4.5 and deprotonated at pH levels above 6.5. Between these pH levels, an ensemble of
protonated and deprotonated states exists. Relative to the titration curve for free BZ, the titration curve
for the CB[7]:BZ complex is shifted toward more basic values of pH (Figure 4-4A, purple curve).

Indeed, the value of pK,“*™ for BZ is found to be 8.7 — a shift of more than 3 pK units above its pK,"
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(Table 4-2); consequently, complexed BZ is protonated at pH below 7.5, indicating the preferred
protonation state of BZ at neutral (typical physiological) pH differs depending on its bound state. The
observed preference for the protonated guest in the cavity of CB[7] is due to the additional hydrogen
bond between the titratable proton on BZ and one of the carbonyl oxygens at the entrance to the CB[7]
cavity (Figure 4-5). It is worth noting that the Hill equation provides a reasonable estimate of the pK,
values for BZ both free and in complex with CB[7], with fitting errors of ~ 0.01 pK units. Furthermore,
the pK,"“™ value for BZ underestimates its pK,~® by only 0.3 pK units (Table 4-2).
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Figure 4-4. Titration curves from constant pH MD simulations of the guests free in solution (green) and
in complex with CB[7] (purple). (A) Benzimidazole. (B) Albendazole.



100

Table 4-2. Comparison of pK,* values obtained from CpHMD simulations (pK,"**") with experimental
data (pK,“*).” The corresponding Hill coefficients (n) are also shown.

Guest pK, &P pK, & n

BZ 9.0 8.71 £0.01 0.99
TBZ 8.6 8.19+0.01 1.01
FBZ 8.6 8.61 +£0.01 1.01
ABZ 6.1 7.10+0.01 0.99
CBZ 7.0 7.40 £0.01 1.03

Figure 4-5. Hydrogen bonds formed between the protonated benzimidazole with the carbonyl oxygens
of CB[7].

The chemical structure of ABZ differs from that of BZ by the presence amido and thioether R-
groups attached to the BZ core. Additionally, the experimentally determined pK, for the CB[7]:ABZ
complex remains acidic (pK,**"=6.1). The titration curves obtained from CpHMD simulations of free
and complexed ABZ are shown in Figure 4-4B. Qualitatively, the titration behavior of ABZ appears
similar to that of BZ, as its pK,~“ of 7.1 is shifted toward a more basic value from its pK, " of 3.5.
At neutral pH, these data suggest that ABZ is fully deprotonated when free in solution, whereas both its
protonated and deprotonated forms are significantly populated when in complex with CB[7]. While the

errors obtained for fitting the Hill equation to the titration data are minimal with errors observed for BZ
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and all other guests of less than 0.01 pK units, the value of pK,“* for the CB[7]:ABZ complex has the
greatest deviation from the experiment (ApK=1.0, Table 4-2).

The titration curves for the other guests follow a similar trend, where formation of the
CBJ7]:guest complex increases the pK, of the guest (Figure 4-S1). These shifts are in line with the
experimentally determined pK, values (Table 4-2), with the largest deviation seen for ABZ as stated
above. Overall, the CpHMD method provides accurate predictions of pK,““ values, with a mean
average error (MAE) of 0.42 pK units with respect to experiment (pK,“*, Table 4-2).
pH Dependence of the binding free energy

As discussed above, the pK, values of the BZ-derived guests differ when bound to CB[7] and
when free in solution (Figure 4-4, Table 4-2). Since there are no other titratable groups in the
CBJ7]:guest complexes in the pH ranges studied here, the binding of the guests to CB[7] can have a net
uptake of protons, which makes their binding free energies depend on the solution pH. In this section,
we compute binding free energies as functions of pH using Egs. 6 and 8. Both of these equations can be
used to obtain the pH-dependent binding free energy by adding a pH-dependent correction term to a
reference binding free energy. In Eq. 6, this reference free energy corresponds to the free energy of
binding in the absence of proton binding. In contrast, Eq. 8 requires that the reference free energy be
obtained at a specific pH. The reference binding free energies in these two equations can be identical if
obtained at a specific value of pH where the protonation states do not change. Since experimental
association constants were obtained at pH levels where both the free and bound guests are
deprotonated”, we use reference binding free energies for the association of deprotonated guests with
CBJ7] in this work.

As a simple illustration of how pH-dependent binding free energies may be obtained, we first
use the binding free energy measured experimentally for each of the different CB[7]:guest systems
(AG® erexp) as the reference free energy term in Eqs. 6 and 8. We refer to this as a “hybrid” approach, as
it obtains a pH-dependent binding free energy (AG®ypriq) from the experimental reference binding free

energy (AG®fexp) and CpHMD-derived terms. These terms are either the pK, for the complex, pK, &,
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used in Eq. 6 or charge differences between the binding partners in complex and free in solution, AZ in
Eq. 8. While all results described here have been obtained using Eq. 6 with pH-dependent corrections
requiring values of pK,“", identical results have also been obtained using Eq. 8 (Figure 4-S3 and
Table 4-S1).

Plots of binding free energies as functions of pH for CB[7] complexes with BZ, FBZ and ABZ
are shown in Figure 4-6A-C. While these binding free energies are referenced to AG®efexp (Figure 4-6,
red line), the use of pK,“* in Eq. 6 and AZ in Eq. 8 to generate the full curve as a function of pH can
be assessed by how well the computed binding free energy at acidic pH (AG°+hybrid in Table 4-3)
matches the analogous value derived from experiment (AG":xp, blue line in Figure 4-6). For all
CBJ7]:guest complexes, the values of AG"ﬂ,ybrid deviate less than 1.35 kcal/mol from the respective
experimental values (Table 4-3), with the greatest error observed for ABZ. These errors are entirely due
to the errors in computing values of pK,“*™, as the value for AG"+exp was derived using experimentally

obtained values of pKaC, pKaF ,and AG"ref.59
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Figure 4-6. Binding free energies as functions of pH (black line). The top row is computed by the
hybrid approach using the experimental reference binding energies (AG®texp, red line) and the bottom
row uses the full computational approach with the reference binding energies computed by

thermodynamic integration (AG®¢ 1, green line). Experimentally derived binding free energies for the
protonated guests are shown in blue. (A), (D) Benzimidazole. (B), (E) Fuberidazole. (C), (F)
Albendazole.

Table 4-3. Binding free energies of the guests upon complex formation with CB[7], computed using the
hybrid approach with Eq. 6. All energies are reported in kcal/mol. AG®pfey, is the experimental®
binding free energy for the reference deprotonated guest; AG°+exp is the binding free energy for the
protonated guest derived from the AG® g exp; and AG°+hybrid is the free energy obtained by using pKaC’calc
with AG®feyp in Eq. 6.

Guest A(;Qref,e)(p A(;Cﬂ—exp A(;Cﬂ—hybrid A(;Qref,e)&p (PH 7) A(;Ohybrid (PH 7)
Bz -4.4 9.2 -8.8 -7.1 -6.7
TBZ -3.0 -8.6 -7.9 -5.2 -4.7
FBZ -2.3 -7.6 -7.6 -4.5 -4.6
ABZ -6.6 -10.2 -11.5 -6.7 -7.1

CBz -6.0 -9.5 -10.0 -6.4 -6.8
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From Figure 4-6A-C, it is evident that all guests bind more favorably when protonated. Indeed,
the binding free energies observed for deprotonated guests (at extremely basic pH) are 3.4 to 5.6
kcal/mol more positive (less favorable) than those obtained at acidic pH when the guests are protonated.
This tendency is most pronounced in CB[7]:FBZ complex (Figure 4-6B), for which the binding free
energy obtained when FBZ is predominantly protonated (-7.56 kcal/mol) is over 5 kcal/mol more
favorable than its respective value when FBZ is deprotonated (-2.33 kcal/mol). This observation is
consistent with experiment®® and stems from the favorable hydrogen bond between the guest and CB[7]
(Figure 4-5).

Taking a closer look at the pH-dependent binding free energies of the CB[7]:BZ complex, it is
apparent that the binding free energy spans 4.8 kcal/mol between pH levels 4.5 to 10, a range that
essentially encompasses the pH levels of most biological reactions (Figure 4-6A).”* At physiological pH
(~7), free BZ is predominantly deprotonated, whereas BZ in complex with CB[7] is protonated (Figure
4-4A). In conventional free energy computations, ligand protonation states are typically assigned as the
preferred protonation state for the free ligand. Consistent with this convention, BZ would be considered
deprotonated in free energy computations performed at pH 7. In making this assumption, the binding
free energy deviates from the pH-dependent binding free energy obtained here by ~ 2.3 kcal/mol for the
CB[7]:BZ complex. Similar deviations are noted for the binding of other guests as well, with the
magnitudes ranging between 0.4 to 2.3 kcal/mol (Table 4-3, Figure 4-S2).

Full prediction of the pH-dependent free energy profile

To demonstrate the utility of our method when experimental binding free energies are
unavailable, we perform thermodynamic integration (TI) computations based on the thermodynamic
cycle shown in Scheme 4-2 to obtain AG°.¢7, the reference binding free energies of the CB[7]:guest
complexes with the guests deprotonated. The pH-dependent correction terms obtained either with Eq. 6
or § are then referenced to AG®.¢1 to obtain a full computational prediction (CpHMD/TI) of the pH-

dependent free energy profiles.
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The free energy profiles of CB[7]:guest complexes using AG® ¢t are shown in Figure 4-6D-F,
while the computed values of AG°.sr; are reported in Table 4-4 for comparison with experiment
(AG®eexp, Table 4-4). All values of AG®.¢r agree well with experiment, showing absolute errors that
are less than 1.3 kcal/mol. Further, the error with respect to experiment (AG":XP) in the predicted values
for the binding free energy of protonated guests (AG® ) are similarly low (< 1.4 kcal/mol). Errors in
AG®"yy arise from both the computation of pK,““° (or AZ, when using Eq. 8; Table 4-S2) using the
CpHMD method and the binding free energy computation with TI. These errors are not always of the
same sign; for example, the deviation from AG°+eXp obtained for ABZ decreased from 1.4 kcal/mol
when using AG°.tep in the hybrid approach to 0.7 kcal/mol when using the AG°.sm reference,
indicating some cancellation of error in the full computational approach. In contrast, the deviation for
TBZ increased from 0.7 kcal/mol when using the experimental AG® ¢, reference to 1.4 kcal/mol when
using AG®¢11. Regardless, results obtained using the full computational approach with AG®.¢ show
errors that are similar in magnitude to those observed using AG°efeq, in the hybrid
experimental/computational approach. Furthermore, the errors associated with the full computational
protocol can be lower than the errors that arise from performing binding free energy computations with

fixed protonation states assigned to the unbound CB[7] and guest molecules (Table 4-4).

Table 4-4. Binding free energies of the guests, computed using full computational approach
(CpHMD/TI) and compared to experiment.”’ All energies are reported in kcal/mol. AG®texp 15 the
experimental59 binding free energy for the reference deprotonated guest; AG®.rr; is the absolute
binding free energy obtained from TI computations for the reference state; AG°+exp is the binding free
energy for the protonated guest derived from the AG®cfey; and AG®* is the binding free energy
obtained by using pK,~* with AG®¢ 1 in Eq. 6.

Guest A Goref,exp A Goref,Tl A G°+exp A G°+Tl A Goref,exp (PH 7) A Goref,Tl (PH 7)

Bz -4.4 4120 -92 -8.5 -7.1 -6.4
TBZ -3.0 -23+£26 -8.6 -7.3 -5.2 -4.0
FBZ -2.3 21+£26 -7.6 -7.3 -4.5 -4.3
ABZ -6.6 -6.0£3.0 -10.2 -11.0 -6.7 -6.5

CBz -6.0 4827 -95 -8.7 -6.4 -5.5




106

Discussion

Changes in the pK, values and, consequently, the protonation states of ionizable species
participating in biomolecular association processes are well documented. To address this phenomenon,
we present a simple methodology for obtaining the pH dependence of binding free energies for a series
of cucurbit[7]Juril (CB[7]):guest complexes. Based on Wyman’s binding polynomial formalism,*
binding free energies are computed as pH-dependent corrections to a reference binding free energy.
Combining this formalism with constant pH molecular dynamics (CpHMD) simulations and free energy
computations yields a reasonable protocol for evaluating the pH-dependent binding free energies of
biomolecular systems.

Focusing on the application of CpHMD to Eq. 6 in order to obtain pH-dependent relative
binding free energies, we assess how well CpHMD simulations can capture the pK, of BZ guests in
complex with CB[7] (Table 4-2). With the exception of albendazole (ABZ), the values of pK,~**
obtained for the different CB[7]:guest complexes deviate from experiment by less than 0.41 pK units.
The pK,“* value obtained for the CB[7]:ABZ complex, however, exhibits an error of 1.0 pK unit.
Since the CpHMD simulations conducted in this study are only 5 ns long, we extended the simulation
of CB[7]:ABZ to 25 ns to ascertain whether the value of pK,“““ had converged; however, the resulting
pK.““ remains unchanged. Further, the process of fitting titration data obtained from CpHMD
simulations of CB[7]:guest complexes to the Hill equation is achieved with very little statistical error (<
0.01 pK units, Table 4-2). Both of these findings indicate that the error in the pK,“** values is not due
to convergence problems in the CpHMD simulations. Instead, it is possible, though not explicitly
demonstrated in this work, that inaccuracies in the computed pK,* values stem from problems with the
force field due to the accuracies of similar magnitude to those seen in the previous CpHMD runs.’* *°

Since CpHMD simulations can reliably compute the values of pK,“* (and, similarly, AZ in
the case of Eq. 8) for the CB[7]:guest systems, we proceed to incorporate these pK, " values in Eq. 6

along with a reference experimental binding free energy (AG°®rfexp) to obtain binding free energies as

functions of pH. This hybrid experimental/computational approach is followed and shown for
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CBJ7]:guest systems (Figure 4-6A-C). To evaluate the accuracy of this approach, we compare the
computed value of AG°+hybrid to experiment (AG":xp) and observe good agreement, with errors of < 1.4
kcal/mol arising from the computation of pK,“".

Having established that Eq. 6 can successfully recapitulate pH-dependent binding free energies
with an experimentally determined reference binding free energy, we consider the use of
thermodynamic integration (TI) computations to remove this dependence on experiment. TI
computations effectively reproduce the reference binding free energies observed from experiment
(AGP® et exp) With absolute errors less than 1.3 kcal/mol (AG® i, Table 4-4). The resulting pH-dependent
free energy profiles using AG® 1y are similar to those computed with AG®yescyp, as shown in Figure 4-6.
Furthermore, the absolute errors in predicting the free energies of the protonated guests, AG® 1, using
the AG®,r1y reference are less than 1.3 kcal/mol. These errors arise from both AG®.s1 and the use of
CpHMD simulations to obtain pKaC’calc values. In regard to the computation of AG®¢1;, we do observe
large statistical uncertainties for all CB[7]:guest complexes considered, which stem largely from the
van der Waals decoupling simulations (Table 4-S3); however, the free energies computed for every
transformation in the thermodynamic cycle shown in Scheme 4-2 have all converged, with the
cumulative computed AG < 0.01 kcal/mol.

The use of our CpHMD/TI approach to provide a full computational prediction of pH-
dependent binding free energies is particularly advantageous when experimental association constants
are not available, as most experimental measurements face the limitations at extreme pH levels due to
the highly possible destabilization or denaturation of the proteins under such severe conditions.
Therefore, when combined with computational free energy calculations, our method is free from such
concerns, eliminating the reliance on the availability of experimental data. While the CpHMD/TI
computation of pH-dependent binding free energies is prone to greater error than the hybrid
experimental/computational approach described previously, we find the absolute errors in the CpHMD-
derived pK.© values and reference binding free energies obtained from TI computations are not

necessarily of the same sign for the CB[7]:guest systems considered and may cancel out. Further, the
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observed errors with respect to the AG"+exp are relatively low (< 1.4 kcal/mol). In contrast, the error in
assigning incorrect protonation states in free energy computations without correcting for the pH
dependence of the binding free energy can give errors in excess of 2 kcal/mol (Table 4-3). This
observation underscores the importance of accounting for the linkage of proton binding or release to
ligand binding in free energy computations and demonstrates the high utility of the CpHMD/TI
approach.

Our results highlight the significant changes in pK, and free energy of binding upon complex
formation that accompanies a net proton uptake. Noting that the guests used here have a single titratable
site, corresponding changes in free energy may sometimes be larger in protein-ligand binding where
multiple titratable groups exist. Therefore, we believe that our method will have great utility in
computer-aided drug discovery, where early stages of the structure-based drug design often focus on
finding a high-affinity binder to a target protein. Extensions of our methodology to such more complex
protein systems may require improvements to the computational protocols employed. The simple
framework developed here allows for trivial incorporation of CpHMD methods that incorporate explicit
solvent models® and/or enhanced sampling techniques, such as accelerated molecular dynamics®’ or
replica exchange®® to improve pK, computations in systems where convergence is difficult.”” Similarly,
our protocol accommodates the use of alternative methods for obtaining the reference binding free
energy required by Eqs. 6 and 8. Thus the computational methodology for performing CpHMD/TI
computations can be chosen to best address the system under consideration.

While we have focused on the results obtained using Eq. 6, which assumes all titratable groups
are decoupled, the CpHMD/TI method is also compatible with the expression for obtaining the pH-
dependent binding free energy given in Eq. 8, and these two expressions yield identical results in the
case of the CB[7]:guest systems considered here. We intend to build on the computational protocol
developed here, with a natural extension being the application of the CoHMD/TI method to obtain pH-
dependent binding free energies of protein-ligand complexes. As protein-ligand systems are more
complicated than the CB[7]:guest systems considered in this work, we believe the use of Eq. 8 will have

high utility to address potential interactions between titratable groups.
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Given the magnitude of errors in computed binding free energies obtained with fixed
protonation states in the CB[7]:guest systems, our computational protocol represents a promising
approach to remove these errors, thus implicating its utility in drug discovery workflows.”® Though not
specifically addressed in this work, similar philosophies may also be applicable to the scoring functions

in docking protocols.

Conclusions

In this work, we determined the pH-dependent changes in binding free energies for complex
formation between cucurbit[7]uril (CB[7]) and a series of benzimidazole guests. Using constant pH
molecular dynamics simulations combined with experimental data, we developed a hybrid protocol that
could capture the significant changes in the CB[7]:guest binding free energies with high accuracy.
Subsequently, we combined our method with thermodynamic integration (TI) to enable a full
computational prediction of the pH-dependent free energy profiles. This protocol successfully
accounted for the pH-dependent changes in the binding free energies during complex formation. Future

work will include examination of pH-dependent binding free energies for protein-ligand complexes.
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Figure 4-S1. Titration curves from constant pH MD simulations of the guests free in solution (green)
and in complex with CB[7] (purple). (A) Thiabendazole. (B) Fuberidazole. (C) Carbendazim.
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Figure 4-S2. Binding free energies as functions of pH (black line). The top row is computed by the
hybrid approach using the experimental reference binding energies (AG°fexp, red line) and the bottom
row uses the full computational approach with the reference binding energies computed by

thermodynamic integration (AG®¢ 1, green line). Experimentally derived binding free energies for the
protonated guests are shown in blue. (A), (C) Thiabendazole. (B), (D) Carbendazim.
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computed by thermodynamic integration (AG°es1i, green line). Experimentally derived binding free
energies for the protonated guests are shown in blue. (A), (B) Benzimidazole. (C), (D) Thiabendazole.
(E), (F) Fuberidazole. (G), (H) Albendazole. (I), (J) Carbendazim.
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Table 4-S1. Binding free energies of the guests upon complex formation with CB[7], computed using
the hybrid approach with Eq. 8. All energies are reported in kcal/mol. AG®sexp is the experimental®
binding free energy for the reference deprotonated guest; AG°+exp is the binding free energy for the
protonated guest derived from the AG®fexp; and AG°+hybrid is the free energy obtained by using pKaC’Calc

with AG®fexp in Eq. 8.

Guest A(;Qref,e)(p A(;Cﬂ—exp A(;Cﬂ—hybrid A(;Qref,e)(p (PH 7) A(;Ohybrid (PH 7)
Bz -4.4 9.2 -8.8 -7.1 -6.7
TBZ -3.0 -8.6 -7.9 -5.2 -4.6
FBZ -2.3 -7.6 -7.6 -4.5 -4.6
ABZ -6.6 -10.2 -11.4 -6.7 -7.1
CBz -6.0 -9.5 -10.0 -6.4 -6.8

Table 4-S2. Binding free energies of the guests, computed using full computational approach
(CpHMD/TI) and compared to experiment.”® All energies are reported in kcal/mol. AG®texp 15 the
experimental59 binding free energy for the reference deprotonated guest; AG®.sr; is the absolute
binding free energy obtained from TI computations for the reference state; AG°+exp is the binding free
energy for the protonated guest derived from the AG°efeyp; and AG®*y is the binding free energy
obtained by using pK,~* with AG®¢ 1 in Eq. 8.

Guest A(;Qref,e)(p A(;Qref,Tl A(;Cﬂ—exp A(;Cﬂ—Tl A(;Qref,e)&p (PH 7) A(;Qref,Tl (PH 7)
Bz -4.4 -41+20 -92 -8.5 -7.1 -6.4
TBZ -3.0 -23+2.6 -8.6 -7.3 -5.2 -4.0
FBZ -2.3 21+26  -7.6 -7.3 -4.5 -4.3
ABZ -6.6 -6.0+3.0 -10.2 -10.8 -6.7 -6.5
CBz -6.0 -48+27 95 -8.7 -6.4 -5.5
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Table 4-S3. Free energy for each segment in the thermodynamic cycle (Scheme 4-2) for absolute
binding free energy computations for the guests. All energies are reported in kcal/mol. AG; is the free
energy for gradually turning on restraints on; AG, is the free energy for decoupling the guest while
bound to the host in the presence of the restraints; AGs;° is the free energy for turning off the restraint
and correcting for the standard state; and AG, is the solvation free energy for the decoupled guest.
Statistical errors are reported as standard deviations. Following Scheme 4-2, AG® 1 is computed as -
AGj - AG; - AG;° + AGy.

System Segment  AGg. AGygw AG, AG3° AG® e AG® e exp
AG 6.14 16.22
CBITIBZN ? +0.60 110 628 lagg A7 436
[73: AG 10.13 0.16 +0.74 o +2.05 o
4 +0.85 +1.16
AG -36.45 16.10
2 +0.82 +1.51 4.48 233
CB[7]:TBN -14.36 -2.99
AG -33.68 .12+ +0.62 £2.58
4 +0.97 1.55
-10.64 40+
AG, 15.40
+0.76 1.50 434 2.05
CB[7]:FBN -14.36 233
AG -7.88 0.59 + +0.59 £2.52
4 +0.92 1.54
AG 249.13 17.65
2 +0.94 +1.84 3.61 -6.00
CB[7]:ABN -14.85 -6.61
AG 248.75 0.79 + +0.57 £3.01
4 +1.05 1.83
257.78 63+
AG, 16.63
CB[7:CBN +0.89 1.54 4.42 1469 -4.76 601
' AG 258.17 121+ +0.62 o +£2.69 e
4 +1.11 1.56
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Chapter 5

Conformational dynamics and binding free
energies of inhibitors of BACE-1: From the

perspective of protonation equilibria

Abstract

BACE-1 is the B-secretase responsible for the initial amyloidogenesis in Alzheimer’s disease,
catalyzing hydrolytic cleavage of substrate in a pH-sensitive manner. The catalytic mechanism of
BACE-1 requires water-mediated proton transfer from aspartyl dyad to the substrate, as well as
structural flexibility in the flap region. Thus, the coupling of protonation and conformational equilibria
is essential to a full in silico characterization of BACE-1. In this work, we perform constant pH replica
exchange molecular dynamics simulations on both apo BACE-1 and five BACE-1-inhibitor complexes
to examine the effect of pH on dynamics and inhibitor binding properties of BACE-1. In our
simulations, we find that solution pH controls the conformational flexibility of apo BACE-1, whereas
bound inhibitors largely limit the motions of the holo enzyme at all levels of pH. The microscopic pK,
values of titratable residues in BACE-1 including its aspartyl dyad are computed and compared between
apo and inhibitor-bound states. Changes in protonation between the apo and holo forms suggest a
thermodynamic linkage between binding of inhibitors and protons localized at the dyad. Utilizing our
recently developed computational protocol applying the binding polynomial formalism to the constant

pH molecular dynamics (CpHMD) framework, we are able to obtain the pH-dependent binding free

121
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energy profiles for various BACE-1-inhibitor complexes. Our results highlight the importance of
correctly addressing the binding-induced protonation changes in protein-ligand systems where binding
accompanies a net proton transfer. This work comprises the first application of our CoHMD-based free
energy computational method to protein-ligand complexes and illustrates the value of CpHMD as an

all-purpose tool for obtaining pH-dependent dynamics and binding free energies of biological systems.

Introduction

Alzheimer’s disease is a neurodegenerative disorder characterized by loss of memory and
failure in cognitive abilities, resulting from synaptic dysfunction and neuronal death in the brain.'”
Major damages found in the brains of Alzheimer’s patients include cerebral and vascular deposits of
insoluble amyloid plaques, consisting of aggregates of amyloid B-peptide (Al3).6'8 AP occurs in two
different forms, A4y and A4, and the overproduction and oligomerization of APy, is associated with
the early onset of Alzheimer’s disease.”' AP is produced by sequential proteolytic cleavage of the type
1 transmembrane protein amyloid precursor protein (APP) by B- and y—secretases.”’ ' While Y-secretase
generates several AP peptides varying in the length of C-termini, B-secretase, or B-site APP cleaving
enzyme 1 (BACE-1), cleavage precisely gives the fibrillogenic A[342.13’15 Therefore, as it catalyzes the
initial site-specific hydrolysis step of AP production, BACE-1 is an attractive therapeutic target for the
treatment of Alzheimer’s disease.'” '’

As an aspartyl protease, the catalytic mechanism of BACE-1 involves two highly conserved
aspartyl residues, Asp32 and Asp228, which form a symmetric dyad at the base of the catalytic cleft of
the enzyme (Figure 5-1).'° Analogous aspartyl dyads are found in the aspartyl protease family including
pepsin, cathepsin D, renin, and HIV-1 protease.'®' The dyad is central to the hydrolytic cleavage of the
substrate through a nucleophilic attack of water bound to the dyad."* Due to the general acid-base
catalytic nature of the mechanism, the enzymatic activity of BACE-1 is maximal at pH 4.5 and strongly

depends on solution pH.**#
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Figure 5-1. Structure of BACE-1, highlighted with titratable residues considered here and flap region
(residues 67 to 77) in green.

The active site of BACE-1 is covered by an antiparallel B hairpin (henceforth referred to as the
flap region; residues 67 to 77 shown in green in Figure 5-1) that is characteristic of aspartyl proteases.'®
2629 The X-ray crystal structures of other aspartyl proteases indicate that the flap is inherently
flexible.** The flexibility of the flap region is likely utilized in catalysis, with transitions between
open and closed conformations facilitating the entrance of substrates into the active site and release of
hydrolytic products.?*>' The conserved Tyr71% located at the tip of the flap region is particularly
essential for the conformational transitions of the flap. Observations from X-ray crystallographic
structures and molecular dynamics (MD) simulations suggest that variation in hydrogen bond patterns
between Tyr71 and surrounding residues such as Lys107, Lys75, Gly74, Glu77, and Trp76 enables the
flexible motions of the flap.”"?**'3 In the presence of inhibitors, Tyr71 can directly interact with

bound inhibitors and lock the flap in the closed state.>" >
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Given that the enzymatic activity of BACE-1 depends on solution pH and that the structural
flexibility is intrinsic to catalysis, a comprehensive understanding of the pH dependence of BACE-1
dynamics would greatly benefit drug design efforts. A detailed description of the protonation state of
the aspartyl dyad is also important as all known bound inhibitors directly contact the dyad. Several
computational efforts have attempted to determine the protonation state of the dyad, employing
methods such as molecular mechanics (MM),> quantum mechanics (QM),** QM/MM,*" molecular
docking,”® and continuum electrostatics calculations.” However, the conformational flexibility of
BACE-1 was not rigorously addressed in these computations.

The importance of accounting for conformational flexibility in pK, computations has been well
established.**> The instantaneous pK, of a titratable group is determined by its electrostatic
environment, which is affected by the given conformation of protein and protonation states of other
titratable residues.*® Changes to the conformation of the protein can alter the electrostatics, which may,
in turn, induce a shift in the pK, of titratable groups. The prevalence of such coupling of protonation
and conformational equilibria has been observed in various systems both computationally and
experimentally.** ¥ Furthermore, complex formation between protein and small molecules can also
induce changes in the pK, values of titratable groups on either binding partner.’® >

Consequently, several computational methods have been developed to explicitly account for
conformational changes in pK, computations.”® ’> Among these, various flavors of constant pH
molecular dynamics (CpHMD) methodologies have emerged to incorporate pH as an additional
external thermodynamic variable to the conventional MD framework.*”">”"” CpHMD simulations have

47, 73-79

been successfully applied to predict pK, values of titratable groups in proteins and nucleic

80-82

acids, as well as to explain the acid-base catalysis by RNase A* and to understand the mechanisms

behind the pH-dependent conformational changes.*®
Conventional molecular simulations or free energy computations typically employ fixed
protonation states that are identical for both free and bound states, set prior to the computations. This

assumption ignores the possibility of protonation states changing upon binding and can lead to

significant errors when protein-ligand binding is a pH-dependent process.”’ Furthermore, the pH-
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dependent conformational dynamics cannot be appropriately addressed if the protonation states are
fixed while conformational fluctuations propagate.

Recognizing the lack of a standard protocol to rigorously account for proton-linked ligand
binding to protein, we recently developed a protocol utilizing CpHMD to compute pH-dependent
binding free energies.® In our computational method, the binding polynomial formalism devised by
Wyman® is applied with the CpHMD framework to obtain a pH-dependent correction to a reference
free energy of binding obtained at a given level of pH (AG®pn). The proton-linked binding free energy

then can be expressed using the notation used by Tanford:®’
1 ‘~ : o
(1 AG (pH) = AG ,, —k,TIn(10) ij {z, (pH)-2Z,(pH)-Z, (pH)}dpH »

where Zp, Zp, and Z; are the total charges of the protein-ligand complex, protein, and ligand,
respectively, as obtained from the CpHMD simulations. In this work, Z; is omitted from consideration
since the inhibitors considered here do not titrate in the physiological pH range (Figure 5-2). The
integral in the second term in Eq. 1 provides a thermodynamic relation that holds for pH-dependent
ligand binding in cases where proton binding to different titratable sites may be cooperative (i.e., no
assumptions are made about sites titrating independently). When applied to binding of small molecules
to the cucurbit[7]uril host, this CpHMD-based free energy method accurately obtained the pH-
dependent binding free energy profiles.*> Also, the method demonstrated that the traditional use of fixed
protonation states for both free and bound states predicted based on pH 7 in free energy computations
could give errors larger than 2 kcal/mol in the host-guest systems with a single titratable site.*® Given
the complexity of protein environment where multiple titratable groups exist, the corresponding error in
free energy may be even larger in protein-ligand binding, highlighting the significance of accurate

description of the binding-induced pK, shifts in free energy computations.
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Figure 5-2. Chemical structures of BACE-1 inhibitors considered in this study. The PDB IDs are shown
for complex structures of BACE-1 bound with respective inhibitors.

In this work, we have performed constant pH replica exchange molecular dynamics (pH-
REMD) simulations to study the proton-linked conformational dynamics and binding free energies of
inhibitors to BACE-1. The conformational changes of the flap region of BACE-1 in the absence and
presence of inhibitors are analyzed with respect to solution pH, which is found to act as a
conformational switch. The microscopic pK, values of ten titratable residues including the aspartyl dyad
in BACE-I-inhibitor complexes are obtained from the pH-REMD simulations and compared with those
computed for free enzyme. The results show significant binding-induced shifts in the pK, values. We
further apply our CpHMD-based computational protocol to these results, computing the pH-dependent
binding free energy profiles of various inhibitors to BACE-1. The results demonstrate that incorrect

assignment of protonation state to the titratable groups can result in errors of over 8 kcal/mol in free
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energy computations for the systems considered here, highlighting the significance of correctly
addressing the binding-induced protonation changes. To the best of our knowledge, this work presents
the first application of CpHMD simulations to quantify binding in protein-ligand systems and shows

high utility for addressing pH effects in computer-aided drug discovery workflows.

Methods

Constant pH replica exchange molecular dynamics

Baptista et al. developed the constant pH molecular dynamics (CpHMD) method to enable
concurrent sampling of discrete protonation states and conformational space according to the semi-
grand canonical ensemble.”* In this work, we apply the flavor of CpHMD coupled with replica
exchange (pH-REMD)®® implemented in the AMBER 14 suite of programs® with generalized Born
(GB) electrostatics. In the CpoHMD simulations, a conventional molecular dynamics (MD) simulation is
periodically interrupted by a Monte Carlo (MC) step, in which a change in the protonation state of a
random titratable residue is considered.”” Acceptance of the new protonation state is contingent on the

computed transition free energy, AGiaps:

(2) AG_ =k, T(pH-pK

trans

)In10+AG . —AG

aref elec T elec,ref ?

where pH enters as an external thermodynamic parameter and kgT is the Boltzmann constant multiplied
by the temperature of the system. For a given value of pH, the difference in electrostatic free energy
that accompanies the change in protonation being considered, AGe, is computed with respect to the
difference in electrostatic free energy that accompanies analogous change in protonation for a model
compound, AGgjecrer, Which has a known pK, value (pK, f). As all titratable residues in this study are
protein residues, the model compounds referenced in Eq. 2 are individual amino acids in GB solvent.
The respective pK, rr values for CoHMD in AMBER 14 are 4.0 for Asp, 4.4 for Glu, 6.5 and 7.1 for

His, 9.6 for Tyr, and 10.4 for Lys.89 Computing AGy.,s With respect to these model compounds enables

cancellation of non-classical terms. The Metropolis criterion is then applied to AGy.,s to determine
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whether to accept the proposed change in protonation, and the MD simulation is resumed. Repeated
application of these steps builds an ensemble of protonation states along the MD trajectory.

In pH-REMD, the exchange between adjacent replicas is achieved in the pH dimension at a
fixed conformation, whose acceptance ratio is dependent on the MC exchange probability for replicas i

and j:
3) P_. =min{1,exp[ln10(Ni—Nj)(pHi—ij)]},

where N; is the number of titratable protons in replica i and pH; is the pH of replica i prior to the
exchange attempt.*® *° By enhancing the sampling through an application of replica exchange scheme,
the method has been shown to achieve faster convergence and better sampling in both conformational
and protonation spaces compared to original CpHMD."* %

From the pH-REMD simulations, the pK, of a given residue is computed as the midpoint of

titration by fitting titration data to the Hill equation:

@ s !

T+ 107

where s is the fraction of deprotonated species for a given residue and n is the Hill coefficient. The
fraction of deprotonated species (s) for a titratable group is obtained at each value of pH from the pH-
REMD simulations. In using Eq. 1 shown in Introduction, the fractions of protonated species (1-s) of
the protein-inhibitor complex and protein can be translated into Zp and Zp, respectively.
Computing the pH dependence of protein-ligand binding free energies

The binding polynomial formalism devised by Wyman® was used by Tanford to study protein
denaturation®” and by Mason and Jensen to examine the pH dependence of protein-protein binding.”'
Following their theoretical foundations, we recently applied it to binding of a general receptor to a
ligand with a single titratable site, and the detailed derivation of the formalism can be found therein.®

Here we briefly outline the theoretical basis of the method and show its usage for protein-ligand binding

with multiple titratable sites.
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First, consider complex formation between a protein (P) with a single titratable site and a
ligand (L) that does not titrate in the biological range of pH levels. The association can be expressed as
a general equation with the apparent equilibrium constant, Ky

(5) {P}+Le==(PL}.

where the curly braces indicate that the ensembles of protein and protein-ligand complex (PL) may
contain different protonated forms of the titratable species. K, can be expressed in terms of binding
polynomials through an application of the thermodynamic cycle for proton-linked ligand binding shown
in Scheme 5-1:

P+L —=—= p.L

X [

HP' + L —=—= Hp*: L

Scheme 5-1. Thermodynamic cycle for complex formation between a protein (P) with a single titratable
site and a ligand (L).

( +[HPL*]]
(6) K = [PL]+[HPL"] _K [PL]
" ((P1+[HP)IL] b[H[HP*]]

[P]

El

where the concentrations of the given species, instead of activities, are shown assuming ideal dilute
solutions and K°®, is the equilibrium constant of binding for a reference reaction in which net proton
transfer is ignored.

The overall free energy of binding (AG®) can then be expressed by using logarithmic

representations of the acid dissociation constants for the free protein (pK, ) and protein-ligand complex

(PK.O):

K -pH
(N AG'(pH)=AG —kBTln(Ljy

1+10""

where AG®¢ is the free energy of binding for the reference reaction.
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In cases where proton binding to different titratable sites may be cooperative, Wyman®’

derived a relation between K,,, and pH such that

g kK,
(3) mzA\/H‘r:ZPL_(ZP*_ZL)

where, using the notation used by Tanford,®” Avy. is the change in the number of bound protons in the
protein-ligand complex, relative to the number of protons bound to the protein and ligand individually.
With AZ = Zpp — (Zp + Zy), integration of Eq. 8 provides a thermodynamic relation for proton-linked

ligand binding where titratable sites may interact:
9 ‘~ : o
) AG (pH) = AG ,, —k,TIn(10) ij f{ZPL(pH) ~Z,(pH)-Z, (pH)}dpH -

where Zp, Zp, and Z; are the total charges for protein-ligand complex, protein, and ligand, respectively,
obtained from the pH-REMD simulations. Eq. 9, or Eq. 1, provides framework for computing the pH-
dependent binding free energy through a correction term to the reference free energy of binding. In this
work, Z; is omitted from consideration since the inhibitors considered here do not titrate in the
physiological pH range.
Preparation of the BACE-1 systems for simulations

The X-ray crystallographic structures of BACE-1 in complex with inhibitors N-[(1S,1R)-
bnezyl-3-(cyclopropylamino)-2-hydroxypropyl]-5-[methyl(methylsulfonyl)amino-N’-[(1R)-1-
phenylethyl]isophthalamide (PDB ID 2BSL);” N-[(1S,2S,4R)-2-hydroxy-1-isobutyl-5-({(1S)-1-
[(isopropylamino)carbonyl]-2-methylpropyl}amino-4-methyl-5-oxopentyl]-5-
methyl(methylsulfonyl)amino]-N’-[(1R)-1-phynylethyl]isophthalamide (PDB ID 2P4J]);* N~2~-
[(2R,4S,5S)-5-{[N-{[3,5-dimethyl-1H-pyrazol-1-yl)methoxy]carbonyl}-3-(methylsulfonyl)-| -
alanyl]amino} -4-hydroxy-2,7-dimethyloctanoyl]-N-isobutyl-| -valinamide (PDB ID 2G94);” 3,{5-
[(1R)-1-amino-1-methyl-2-phenylethyl]-1,3,4-oxadiazol-2-yl}-N-[(1R)-1-(4-fluorophenyl)ethyl]-5-
[methyl(methylsulfonyl)amino]benzamide (PDB ID 2IRZ);*® and NI1-((2S,3S,5R)-3-amino-6-(4-
fluorophenylamino)-5-methyl-6-oxo-1-phenylhexan-2-y1)-N3,N3-dipropylisophthalamide (PDB ID

2FDP)” were used to study the pH-dependent inhibitor binding to BACE-1. The chemical structures of
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the inhibitors are shown in Figure 5-2. A segment between residues Gly158 and Ser169 is not solved in
2B8L, 2IRZ, and 2FDP crystal structures and hence this loop was built by homology modeling using
the Structure Prediction Wizard module of Schrédinger’s Prime program.”'® The FASTA sequence of
protein including the missing loop region for each X-ray structure was obtained from UniProt.'”" The
mutation AWA that exist in 2B8L and 2IRZ structures made for crystallography were corrected to the
original sequence of KWE.”? Using the homologs found by BLAST search algorithm,'”® a chimera
model containing the missing loop region was built for each structure. The homology-modeled loop
region was energy-refined for relaxation using the Refine Loops panel of the Prime program.” Apo
structure of BACE-1 was generated by removing the bound inhibitor from the refined 2B8L structure to
even out any effects that may arise from homology modeling.

The geometries of the inhibitors were optimized at the B3LYP/6-31G(d) level of theory'®'%
using the Gaussian 09 suite of programs.'”” The electronic potentials (ESP) for the optimized
geometries of the inhibitors were computed using MK radii'® at the HF/6-31G(d) level of theory.
Subsequently, the atomic point charges were computed from the ESPs by applying the RESP procedure

19 in the AmberTools 14 suite of programs.® All other force field terms

using the antechamber module
including Lennard-Jones parameters for use in molecular dynamics (MD) simulations were taken from
the general AMBER force field (GAFF).'"
Conventional molecular dynamics simulations

Prior to the pH-REMD simulations, each system was subject to short conventional molecular
dynamics (cMD) simulations for equilibration purposes. Protonation states of the titratable groups are
assigned using the PROPKA web server.”" "'"!* All protein force field parameters are taken from the
AMBER ff14SB force field,* while the ligand parameters are taken from the AMBER GAFF force
field.""® Each system was solvated with TIP3P water'"* and counterions were added to neutralize the
system by tleap program.'’> Water molecules were first minimized and simulated for 150 ps in the NPT
ensemble with a harmonic restraint of 2.0 kcal/mol A%on the protein and ligand heavy atoms to relax

the water. The entire system was then minimized and heated to 300 K over 500 ps. Two equilibrations

with respective duration of 200 ps were performed. First, the system was equilibrated at constant
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volume and temperature (NVT) using a Langevin thermostat.''® Following this, the second equilibration

17 with

was carried out at constant pressure and temperature (NPT) using a Berendsen barostat (ntp=1)
isotropic position scaling to bring the system to a stable density. A 100 ns cMD production was then
performed in the NVT ensemble. The Particle Mesh Ewald summation method was used to compute

118119 and short-range non-bonded interactions are truncated at 8 A

long-range electrostatic interactions,
in the periodic boundary conditions. All dynamics are conducted using the pmemd.cuda module of
AMBER 14 suite of programs.® ''® 2 The RMSD of the apo structure indicated a convergence to the
starting conformation after first 20 ns, ensuring the stability of the system (Figure 5-S1).
Constant pH replica exchange molecular dynamics simulations details

Preliminary investigation of the pK, shift of the titratable groups of BACE-1 upon inhibitor
binding was carried out using the PROPKA web server by submitting the apo and holo structures.”" """
'3 The results indicated binding-induced pK, shifts for a number of ionizable residues, with the most
pronounced shift for the aspartyl dyad (data not shown). A total of ten ionizable residues within 12 A of
the active site were chosen for titration, Asp32, Asp106, Asp138, Asp223, Asp228, Glul16, Glu265,
Glu339, His45, and Tyr71. As the titratable groups in the inhibitors considered in this study have pK,’s
above 12, the titration was carried out on the chosen protein side chains only.

pH-REMD simulations were performed using the pmemd.cuda. MPI module of AMBER 14
suite of programs for the pH range between 1 and 12 stepped by 1 pH unit.*®® * All simulations

121 - .
with a salt concentration

employed the generalized Born (GB)-Neck 2 implicit solvent model (igh=8)
of 0.1 M. To ensure equilibration in the implicit solvent, a 5,000 step minimization was carried out for
each system starting from the conformation obtained from the ¢cMD simulations, with positional
restraints on all heavy atoms with a force constant of 20 kcal/mol A”. The system was then heated to
300 K over 500 ps using a Langevin thermostat while maintaining the positional restraints applied to all
heavy atoms with a force constant of 5 kcal/mol A?, followed by a 1 ns equilibration. The Monte Carlo
(MC) moves for titration were performed during the production stage only, where the MC steps taken

every 10 fs and exchange between replicas at adjacent pH attempted every 100 steps, i.e., 200 fs with a

2 fs time step. The production simulations were carried out for 60 ns and data from last 50 ns were used
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for analyses. In the equilibration and production steps, the bonds involving hydrogen atoms were
constrained using the SHAKE algorithm.'*
Simulation analyses

RMSF and clustering analyses, and reconstruction of the pH-based trajectories from the pH-
REMD simulations were performed using cpptraj program in the AmberTools 14 suite of programs.*
Clustering analyses for the pH-based trajectories used pairwise RMSDs computed for Co atoms
between frames to divide the trajectories into five clusters using the average-linkage algorithm.'”

Fitting of titration data to the Hill equation (Eq. 4) to obtain the pK, values was carried out using

Matlab.'**

Results

pH-Dependent conformational dynamics of apo BACE-1

231 we first

As conformational transitions of BACE-1 are suggested to play a role in catalysis,
examine the dynamics intrinsic to apo BACE-1 before exploring the effect of inhibitor binding in the
following section. Conventional molecular dynamics (cMD) simulations of duration 100 ns are carried
out prior to constant pH molecular dynamics (pH-REMD) simulations in order to provide equilibration
phase for apo and three inhibitor-bound systems prepared by homology modeling (see Methods). Using
the protonation states assigned using the PROPKA program,”" '''"'"* the ¢cMD simulations provide a
benchmark for comparing pH-REMD simulations.

In order to quantify the extent to which each residue fluctuates, we compute the root-mean-
square fluctuation (RMSF) of each residue in apo BACE-1 from the cMD trajectory. As shown in
Figure 5-3A, higher RMSF values are noted for the flap region (residues 67 to 77), consistent with the
suggestion by others.” *'* Taking a closer look at the flap region, we measure the distance between the
center of mass of the aspartyl dyad and Tyr71, which is located at the tip of the flap region. From the
change of the dyad-flap distance plotted in Figure 5-3B, it is evident that the flap region undergoes

transitions between open and closed conformations, within the distance range of 10 A (closed) to 30 A

(open). In the closed conformation of the flap, we observe a water-mediated hydrogen bond network
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that includes the dyad, Ser35, Tyr71, Argl28, Thr231, and Thr329 (Figure 5-3C), agreeing with the
findings from previous studies.”*"3* On the other hand, when the flap is open, the dyad forms contacts

mediated by water with Ser35, Thr231, and Arg235, while Tyr71 is entirely exposed to solvent (Figure

5-3Q).
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Figure 5-3. (A) RMSF of apo BACE-1 from the cMD simulations. (B) Change in distance between the

dyad and Tyr71 in the flap region. (C) Open and closed conformations of the flap and interactions
between the dyad and surrounding residues in each conformation.

While the cMD simulation is performed with fixed protonation states, we choose to examine
the effect of protonation equilibria on the conformational flexibility of apo BACE-1 as the enzymatic
activity of BACE-1 is shown to be pH-dependent.”* > We focus this investigation on a comparison of
the dynamics of the flap region at acidic (pH 1 to 3) and basic (pH 9 to 11) pH levels. The
conformational space of the flap region sampled at these differing levels of pH is quantified by
measuring the distances between the center of mass of the dyad and Tyr71 (Figure 5-4A). Since the pH-

based trajectories reconstructed from the pH-REMD simulations are not time-dependent, distributions
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of the measured distances are presented here. The distance between the dyad and Tyr71 exhibits a
bimodal distribution at acidic pH, with the flap sampling both open and closed states. When the flap is
closed, an average distance between the dyad and flap is about 8 A, while open conformations are also
populated, having an average dyad-flap distance of ~ 17 A. In order to visualize structural
characteristics typical at varying solvent environments, we carry out a clustering analysis on the
conformations sampled at acidic and basic pH. We find three dominant conformers that encompass 86%
of total conformations sampled at acidic pH. The flap regions from representative structures of these
three clusters are shown in red in Figure 5-4B, further illustrating the flap region sampling both open
and closed conformations at acidic pH.

At basic pH, the flap exhibits noticeably different dynamics compared to acidic pH. The flap
region remains over 10 A away from the dyad and most frequently found in the open conformation with
a distance of about 17 A from the dyad (Figure 5-4A). From the clustering analysis, a single conformer
is found to represent 82% of total conformations sampled at basic pH. In this typical conformer, the flap
is in widely open state with a distance of 17.6 A from the dyad and completely exposed to the solvent

area, as shown in blue in Figure 5-4B.
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Figure 5-4. (A) Distributions of distances between the dyad and Tyr71 in apo BACE-1 at acidic (pH 1
to 3; red) and basic (pH 9 to 11; blue) pH. (B) Conformations of the flap region in the cluster
representative structures of apo BACE-1 at acidic and basic pH. The distances between the dyad and
flap of the representative structures are 9.17 A, 11.0 A, and 15.7 A at acidic pH; and 17.6 A at basic pH.

Conformational dynamics of BACE-1 in complex with inhibitors

We continue to probe the changes in dynamics of BACE-1 that accompany inhibitor binding.
While the shifts between open and closed conformations of the flap region are observed in the cMD
simulations of apo BACE-1, the flap remains in a closed state in the inhibitor-bound cMD simulations.
The distances between the center of mass of the dyad and Tyr71 observed in the cMD simulations of
BACE-1 in complex with the inhibitors 2B8L and 2FDP, respectively, are shown in Figure 5-5A. In
comparison to the distribution of distances observed in the cMD simulation of apo BACE-1 (Figure 5-

3B), we observe significantly less flexibility in the flap region in the 2B8L and 2FDP systems.
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Fluctuation of the dyad-flap distance in the 2B8L system during the early stage of the simulation is
likely due to structural instability arising from the homology modeling. However, after 40 ns, the flap
region in the 2B8L complex achieves a stable state and remains closed at a distance of about 15 A from
the dyad. It is worth noting that the measured dyad-flap distances in the inhibitor-bound systems are
inherently longer than that in apo enzyme due to the presence of the inhibitors in the active site.
Similarly, the flap region in the 2FDP system maintains an average dyad-flap distance of ~ 11 A. The
bound inhibitors have hydrophobic interactions with Tyr71 and Phe108 while forming hydrogen bonds
with the polar residues including the dyad, Tyr71, Thr231, and Ser325. These hydrogen bond networks
effectively lock the flap in the closed state, as shown in Figure 5-5B for the 2B8L system. Similar

trends in the dyad-flap distance are observed in other inhibitor-bound systems (Figure 5-S2).
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Figure 5-5. (A) Change in distance between the dyad and flap region in the 2B8L (purple) and 2FDP
(green) systems in the respective cMD simulations. (B) Interactions between the bound inhibitor in the
2B8L complex and surrounding residues.

As we observe the pH-controlled dynamics of the flap region in apo BACE-1, we also carry
out similar analyses on the holo systems to examine the effect of pH on conformations of the flap in the
presence of inhibitors. Unlike the apo system, a clear distinction in the dynamics of BACE-1 contingent
on pH levels is not found in the inhibitor-bound systems. The distances between the center of mass of
the dyad and Tyr71 indicate that a closed state of the flap is dominant in the 2BSL system at both pH,
with average distances of 15.1 A and 17.5 A, respectively (Figure 5-6A). From the clustering analysis,
the flap is in closed state in the typical structure representing 67 to 77 % of the total conformations

sampled at both pH conditions, as shown in Figure 5-6C, forming similar contacts with the bound
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inhibitor and dyad as observed in the cMD simulations (Figure 5-5B). Other cluster representative
structures also exhibit similarly closed conformations the dyad-flap distances varying in the range of 15
to 19 A. In the 2FDP system, the flap region exhibits essentially identical dynamics regardless of
solvent pH. The flap is found primarily in a closed conformation where the dyad-flap distance is 15.2 A
on average (Figure 5-6B). Consistent with these findings, the cluster representative structures of the
2FDP system at both acidic and basic pH have the flap in closed state, similar to the 2B8L complex
(Figure 5-6C). Similar trends in the distributions of the dyad-flap distance in varying pH conditions are

observed in other inhibitor-bound systems (Figure 5-S3).
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Figure 5-6. Distribution of distances between the dyad and flap at acidic (pH 1 to 3; red) and basic (pH
9 to 11; blue) pH. (A) 2BSL. (B) 2FDP. (C) Conformations of the flap in the cluster representative
structures of the 2B8L system at acidic and basic pH.
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Computation of pK, values of apo BACE-1

We further investigate the acidic properties of the aspartyl dyad and surrounding titratable sites
in both apo and holo BACE-1. The pK, values of the different titratable residues considered are
obtained by fitting the Hill equation (Eq. 4; see Methods) to titration data obtained from the pH-REMD
simulations conducted at different levels of pH (Table 5-1). We first analyze the computed pK, values
of the titratable groups in apo BACE-1 and compare the values obtained for inhibitor-bound systems in

the following section.
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Table 5-1. pK, values obtained from pH-REMD simulations. The corresponding Hill coefficients are
shown in parentheses.

Apo 2BSL 2P4] 2G94 2IRZ 2FDP
Asp32 50+02 97+02 87+0.6 9.54+0.05 8.4+0.7 89+0.7
(0.51) (1.72) (0.34) (2.19) (0.40) (0.33)
Aspl06 3.99+0.01 3.94+0.01 4.00+0.01 391+0.01 3.85+0.01 3.85+0.01
(1.05) (0.89) (0.97) (0.97) (0.96) (0.99)
Asp138 6.26+0.01 6.10+£0.02 5.59+0.04 572+001 6.16+0.01 6.40+0.01
(1.16) (0.93) (0.86) (0.92) (1.04) (1.11)
Asp223 520+0.03 5994003 5.03+0.02 534+0.01 4.53+0.03 5.46+0.02
(0.91) (1.07) (0.92) (0.95) (1.02) (1.06)
Asp228 59405 8.4+0.1 83+0.1 8.1+02 83+0.1 9.7+0.6
(0.41) (1.26) (1.75) (0.90) (0.79) (0.30)
Glull6 723+0.02 7.9+0.1 751+0.04 7.08+0.01 7.42+0.04 8.27+0.09
(1.02) (0.77) (0.86) (1.26) (0.77) (1.34)
G265 4314001 439+001 428+0.01 432+001 432+001 4.33+0.01
(0.96) (0.95) (0.95) (0.97) (0.98) (0.98)
Glu330 6.6+0.1 701+0.07 7.46+0.02 6.16+0.03 735+0.02 6.88+0.02
(0.73) (0.88) (1.01) (1.03) (1.66) (1.00)
Hiods 56+0.1 43+0.1 6.33+0.02 626+0.02 599+0.08 5.95+0.02
(1.15) (0.91) (1.06) (1.16) (0.87) (1.17)
_— 9.68+0.01 9.4+03 9.62+0.02 9.71+0.03 9.4+0.03  9.92+0.09
(1.02) (1.05) (1.13) (1.99) (0.86) (0.85)

The predicted pK, values of the aspartyl dyad, Asp32 and Asp228, are 5.0 £ 0.2 and 5.9 = 0.5,
respectively. Titration curves for the dyad are shown in Figure 5-7, plotted as fraction of deprotonated
species of each residue as a function of pH. From the titration curves, both aspartates are completely
protonated at acidic pH levels (pH < 3), while fully deprotonated at basic pH (pH > 8). Between pH 4
and 8, Asp32 and Asp228 exist in an ensemble of protonated and deprotonated forms. To illustrate this,
Asp32 and Asp228 are approximately 20% and 40% deprotonated, respectively, at pH 4.5, the pH at
which BACE-1 is most active. These observed shifts from the typical pK, of Asp residues (4.0)*"'%
may aid in the proton transfer step required in BACE-1 catalysis. The Hill coefficients of the dyad
deviate from one, suggesting that titration of Asp32 and Asp228 is coupled. The coupled titration
observed for these residues also contributes to greater noise in their respective titration curves, leading

to larger errors in in their pK, (Table 5-1).
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Figure 5-7. Titration curves from the pH-REMD simulations of apo BACE-1. (A) Asp32. (B) Asp228.

The pK, values of the remaining titratable residues are also reported in Table 5-1. All ionizable
residues besides the dyad appear to titrate independently of each other, as suggested by their Hill
coefficients that are approximately one. Furthermore, the statistical errors from fitting procedure to
obtain the pK,’s of these residues are minimal. Similar to those of the dyad, the computed pK, values of
Aspl38, Asp223, Glull6, and Glu339 are shifted higher than the canonical pK, values for Asp (4.0)
and Glu (4.4),% '® whereas Aspl106 exhibits titration behavior in line with model Asp. As these
residues are distant from the active site, these deviations in the computed pK, values arise mainly from
the microenvironments surrounding them. For instance, Glul 16 and Glu339 are buried in the protein

interior (Figure 5-1), where the microscopic dielectric constants can be different from that of the bulk
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solvent.*> ¥ 126127 1 this case, the neutral, protonated forms of the glutamates are favored at the
solution pH where they would normally be charged if they were exposed to the bulk solvent. Titration
curves for the remaining titratable residues are provided in Figure 5-S4.

Binding-induced pK, shifts of titratable residues in BACE-1

Having observed the pK, values of various titratable groups in apo BACE-1, we shift our
attention to the inhibitor-bound systems. First considering the dyad, the pK, values of Asp32 and
Asp228 are shifted toward more basic values of pH when various inhibitors are present, with computed
pK, values greater than 8.1. Representative titration curves for the dyad in 2B8L and 2FDP systems
(purple curves) are compared with those in apo BACE-1 (green curves) in Figure 5-8. Similar curves

corresponding to other inhibitor-bound systems are shown in Figures 5-S5-S7.
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Figure 5-8. Titration curves for the aspartyl dyad in the 2B8L and 2FDP systems, shown in purple. (A)
Asp32, (B) Asp228 in the 2B8L system. (C) Asp32, (D) Asp228 in the 2FDP system. Respective
titration curves of the dyad in apo BACE-1 are shown in green.
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In the 2B8L system, Asp32 and Asp228 have pK, values of 9.7 £ 0.2 and 8.4 + 0.1,
respectively (shifted + 4.7 and + 2.5 pK units relative to their values in apo BACE-1). From the titration
curves in Figure 5-8A and 8B, it is apparent that both Asp32 are Asp228 are significantly protonated
under pH 8 — 9 in the 2B8L system. Above this pH, the dyad exists in an ensemble of different
protonation states between pH 8 and 10. Similar binding-induced pK, shifts are observed for the dyad in
2FDP system. In this case, the computed pK,’s of Asp32 and Asp228 are 8.9 £ 0.7 and 9.7 £ 0.6,
respectively. As shown in Figure 5-8C and 8D, in the 2FDP complex, both aspartates are predominately
protonated at the pH levels below 7, and exist as an ensemble of different protonated forms at basic pH.
In both cases, as in the apo enzyme, we observe the coupled titration behavior of the dyad and relatively
large errors during the fitting of titration data to the Hill equation.

The remaining titratable groups examined, all of which are distant from the binding site, do not
undergo pK, shifts larger than 1.3 pK units upon inhibitor binding (Figures 5-S5-S9). The narrow pK,
shifts of these titratable groups upon complex formation suggest that binding of inhibitors to BACE-1 is
thermodynamically linked to a proton transfer that is primarily localized at the catalytic dyad.
pH Dependence of the binding free energies of inhibitors

The large shifts in pK,’s of the aspartyl dyad upon binding of inhibitors to BACE-1 indicate
that proton binding is linked to complex formation in BACE-1 systems. Utilizing our recently
developed computational protocol,® we present the pH-dependent changes in free energies of binding
of inhibitors to BACE-1. Application of the binding polynomial formalism to the results obtained from
the pH-REMD simulations provides pH-dependent corrections to the reference binding free energies
obtained for a given pH, AG®.spn (Eq. 1). The reference free energies of binding of inhibitors for
BACE-1-inhibitor systems are obtained from experimental association constants measured at pH 4.5.”>
97,128,129

Binding free energy profiles as functions of pH of the 2B8L and 2FDP complexes are shown
in Figure 5-9. Significant changes in binding free energies from the reference free energies at pH 4.5 are
observed as solution pH increases. Considering the 2FDP complex, we see that binding is most

favorable at acidic pH, where the maximum affinity is -11.2 kcal/mol. As pH increases, binding
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becomes less favorable. This is most pronounced in the pH range of 5 to 10, where the aspartyl dyad
that interacts directly with the bound inhibitor begins to populate deprotonated states, leading to an
ensemble of protonated and deprotonated species of the dyad at the pH levels between 5 and 10 (Figure
5-8B). As the deprotonated forms of the dyad develop, hydrogen bonds made between the diprotonated
dyad and bound inhibitors at low pH are lost, and consequently, the binding affinity becomes weaker in
this pH range and is least favorable with an affinity of 2.2 kcal/mol at pH 12. Similar binding free

energy profiles as functions of pH for other inhibitor-bound systems can be found in Figure 5-S10.
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Figure 5-9. Binding free energy profiles of inhibitors as functions of pH. (A) 2B8L. (B) 2FDP.



147

In Table 5-2, the binding free energies are compared in the pH ranges that are most relevant to
biological conditions. The binding free energy for the 2FDP system changes by 5.1 kcal/mol between
pH 4.5 and 7. Comparison to the binding free energy at pH 10 leads to more dramatic changes; for
instance, the binding affinity differs by 10.8 kcal/mol between pH 4.5 and pH 10 for the 2FDP complex.
As mentioned above, such large changes are due to the shifts in protonation state of the dyad at these
pH levels from the diprotonated state observed at pH 4.5, and further highlight the significance of
correctly accounting for the protonation states of the titratable groups which accompany a net proton

transfer upon inhibitor binding.

Table 5-2. Binding free energies of the inhibitors upon complex formation with BACE-1. All energies
are reported in kcal/mol.

AG° ref,pH (PH 4°5) AG® (pH 7) AAG® pH7-ref AG® (PH 10) AAG® pH10-ref

2BSL 9.1'58 -6.6 2.5 -1.3 7.8

2P4) -12.31%8 -8.7 3.6 -4.0 8.3

2G94 -13.1% 94 3.7 49 8.2

2IRZ -10.1'% -6.1 4.0 2.6 75

2FDP -10.4”7 53 5.1 0.4 10.8
Discussion

The dependence of BACE-1 enzymatic activity on solution pH and the need for
conformational change to accompany the catalysis are both well established.****3%3"3* A5 a promising
therapeutic target for the treatment of Alzheimer’s disease, understanding the detailed mechanism
underlying the pH dependence of BACE-1 dynamics and enzymatic activity is imperative for structure-
based drug design. In this work, we have performed constant pH replica exchange molecular dynamics
(pH-REMD) simulations to examine the proton-linked conformational dynamics and inhibitor binding
properties of BACE-1.

Significant flexibility of the flap region (residues 67 to 77), resulting in transitions between
open and closed conformations, is noted for apo BACE-1 during conventional molecular dynamics
(cMD) simulations (Figure 5-3). As we further probe the effect of pH on conformational flexibility of

apo BACE-1, distinctive conformations that are characteristic of different pH environments are
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captured from the pH-REMD simulations. At acidic pH, both open and closed conformations of apo
BACE-1 are significantly populated, whereas a single conformer with the flap closed predominates in
basic conditions (Figure 5-4).

While we observe the flexible nature of apo BACE-1, the presence of inhibitors at the active
site of BACE-1 greatly reduces conformational mobility of the enzyme (Figure 5-5). The bound
inhibitors form various hydrophobic and polar interactions with the surrounding residues, holding the
flap in a tightly closed state. Similarly closed conformations of the flap are observed regardless of the
varying pH conditions, indicating that the structural flexibility of BACE-1 is largely limited by the
presence of bound inhibitors.

We determine the microscopic protonation states of the dyad residues and surrounding
titratable residues to further probe the mechanism underlying the pH dependence of the catalytic
activity of BACE-1. First, the pK, values of ten titratable residues in various BACE-1 systems are
obtained from the pH-REMD simulations (Table 5-1). The computed pK, values of Asp32 and Asp228
in apo BACE-1 are 5.0 £ 0.2 and 5.9 £ 0.5, respectively, shifted from the typical pK, of Asp (Figure 5-
7). At acidic pH, protonated states are dominant for both aspartates of the dyad. This allows the dyad to
form hydrogen bonds with the flap residues, i.e., Tyr71 and Thr72 and allows for closed conformations
to be sampled at low pH. On the other hand, open conformations of the flap are also populated at acidic
pH; these open conformations likely aid in substrate binding and product release in the course of
catalysis.”>! When we solvate the open and closed conformers from the pH-REMD simulations, which
are performed in implicit solvent, similar water occupancies to those in the cMD simulations are
observed (Figure 5-3C). When the flap is open, the active site becomes largely accessible to water,
which is needed to act as nucleophile for the hydrolytic catalysis by BACE-1. Also, water molecules
entering the active site help to compensate for the breaking of hydrogen bonds between the dyad and
flap by forming alternative hydrogen bonds and mediating the hydrogen bond networks with
surrounding charged residues such as Ser35 and Arg235. Therefore, conformational transitions between
open and closed states of the flap at acidic pH allow for channeling of solvent, substrates, and

hydrolytic products to and from the active site in catalysis. With the pK, values near the pH of optimal
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enzymatic activity, i.e., pH 4.5, the dyad is also able to easily gain and release proton(s) during the
catalytic cycle. Hence the pK, values of the dyad of BACE-1 shifted from the typical value may be an
evolutionary result to achieve the maximal activity at pH 4.5.

As pH increases, deprotonated species of both the dyad and Tyr71 start to emerge.
Consequently, the hydrogen bond networks observed in acidic conditions no longer persist and are
instead replaced by water molecules, leading to the primarily open conformation of the flap at basic pH.
While this open state of the flap is stabilized energetically through water-dyad interaction, it is likely
that the persistence of the open conformation at basic pH disables the enzyme’s ability to corral the
substrate into the binding site for catalysis. Therefore, observation of the invariably open state of the
flap at basic pH is consistent with the suggested role of flexibility of flap in the catalysis at acidic pH.*"
' Our results thus indicate that the conformational dynamics intrinsic to the enzymatic catalysis of
BACE-1 are modulated by solution pH, further suggesting the enzyme’s structural adaptation during the
evolution for its maximal activity.

The Hill coefficients for fitting the titration data to the Hill equation suggest the titration for
the aspartyl dyad is cooperative in both free and complexed BACE-1, while independent, uncoupled
titrations are observed for other residues considered. Such coupled titration behavior makes computing
the microscopic pK, values difficult. Hence, the statistical errors associated with computing the pK,’s of
the dyad are higher than those of other titratable residues.

At pH 4.5, the aspartyl dyad exists in an ensemble of protonated and deprotonated species in
apo BACE-1 (Figure 5-7). Upon binding of inhibitors, however, significant shifts in the pK, values are
observed for the dyad, with both Asp32 and Asp228 having pK, values between 8 and 10 (Table 5-1).
Inhibitor binding effectively alters the protonation state of the dyad at pH 4.5 to its diprotonated form in
all cases studied here. The protonated forms are preferred for both aspartates in the presence of
inhibitor. This diprotonated state likely compensates for the unfavorable energetics associated with
desolvation upon inhibitor binding, allowing for hydrogen bonds between the dyad and the bound

inhibitor. The minimal pK, shifts observed for the remaining titratable residues of BACE-1 upon
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complex formation imply a thermodynamic linkage between inhibitor binding and proton transfer
primarily localized at the dyad.

Among several computational efforts to determine protonation state of the aspartyl dyad in
BACE-1, a recent work by Dominguez ef al. also examined the pK,’s of buried titratable groups in the
2BSL and 2IRZ systems,” whose computed values are compared with ours in Table 5-3. At first glance,
the predicted pK, values differ the most between the two works for Asp138 and Asp228. In Dominguez
et al., the pK, of Asp228 does not deviate much from pK, s of Asp (4.0) in both systems compared,
while Asp32 was predicted to undergo more significant pK, shift relative to its dyad partner. On the

other hand, pK,’s of both aspartates in the dyad shifted to more basic values of pH in our calculations.

Table 5-3. Comparison of computed pK, values of the titrable groups in 2B8L and 2IRZ.

2BSL 2IRZ
This work Dominguez et al. ¥ This work Dominguez et al. ¥
Asp32 9.7+0.2 8.35 84+0.7 6.88
Aspl138 6.10 +£0.02 3.23 6.16 £0.01 3.38
Asp228 84+0.1 4.47 8.3+0.1 4.01
Glull6 79+0.1 5.95 7.42 £0.04 6.09
Glu339 7.01 £0.07 6.10 7.35+£0.02 6.26

When comparing the results in Table 5-3, several distinctions in the methods used in two
studies for pK, prediction should be noted. First, the GB-OBC implicit solvent model™® was used in
Dominguez et al."*' while the GB-Neck 2 model, in which improved results have been obtained with
the added parameters to the GB-OBC,"*! was employed in the pH-REMD method used here. Also, the
internal dielectric constant of 10! was used in their work while the GB-Neck 2 implementation in
Amber 14 employs 1.'*' In addition to the difference in the force fields utilized, perhaps more
importantly, the conformational changes upon inhibitor binding were not rigorously accounted for in
their study. Although the detailed comparison of the algorithms used for pK, calculation is beyond the
scope of this work, addressing the conformational aspect is particularly important for studying BACE-1
due to its flexible dynamic nature. This is especially crucial when computing the pK, values of the
titratable groups in the absence of bound inhibitors, as the conformational fluctuations in the flap also

imply the change in solvent accessibility. Hence, the dielectric response of the aspartyl dyad can be
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different in the presence and absence of bound inhibitors, which in turn can affect the computed pK,
values. Consequently, it is evident that conformational transitions accompanying binding of inhibitors
should be accounted for in calculation of pK, values of BACE-1. As all previous attempts to compute
the pK,’s of the titratable groups in BACE-1 have been largely limited to the use of static X-ray
crystallographic structures, our results obtained from concurrent sampling of protonation and
conformational spaces by pH-REMD provide a new insight into the microscopic pK, values of BACE-
1.

Application of our recently developed constant pH molecular dynamics (CpHMD)-based
computational protocol,” which applies the binding polynomial formalism to address the pH
dependence of binding free energies, enables us to obtain proton-linked binding free energy profiles of
various inhibitors. As shown in Figures 5-9 and 5-S10, all inhibitors bind most strongly at acidic pH.
The changes in binding free energies are most pronounced in the pH range of 4 to 10, which essentially
encompasses most biological reactions. The deviations in binding free energies within this pH range
from the reference binding free energies at pH 4.5 arise from the shift in populations of major
protonated species of the titratable residues, primarily those of the dyad. Between pH 5 and 10, the dyad
starts to populate the deprotonated species (Figure 5-8), and as the deprotonated forms of the dyad
develop, hydrogen bonds made between the diprotonated state of the dyad and bound inhibitors at low
pH break. Subsequently, the binding free energies of the inhibitors become very unfavorable as pH
increases. Such observations are impossible with cMD simulations where the protonation states are
fixed and fractional protonation is not allowed. This highlights the benefit of using CpHMD method in
order to address cases in which changes in protonation states are critical.

Furthermore, our results emphasize the importance of correctly addressing the binding-induced
changes in protonation states in protein-ligand systems where binding accompanies a net proton
transfer. In conventional molecular modeling or free energy computations, the protonation states of the
titratable groups, which are set ahead of time, are fixed and assumed to be identical for both free and
bound states. Consistent with this convention, consider a hypothetical scenario in which both Asp32

and Asp228 are assumed to be completely protonated in both apo and holo states. In the case of 2B8L
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system, such protonation state of the dyad will result in binding free energy of the inhibitor of -9.3
kcal/mol (Figure 5-9A). On the other hand, when both aspartates are considered fully deprotonated, the
binding free energy of the inhibitor is -1.3 kcal/mol. In these two extreme scenarios where the identical,
discrete protonation state of the dyad is assumed for both free and bound states, the binding free
energies deviate from the true free energy in which the protonation states are considered separately for
apo and holo states and fractional protonation is allowed. The errors are as large as 8 kcal/mol for the
2B8L system and similar deviations are noted for other inhibitor-bound systems considered here,
ranging between 8 and 12.6 kcal/mol. Such errors are nontrivial and the magnitude is in great excess of
typical errors from free energy computations.'** '**

In addition, we note the lack of binding free energies of inhibitors to BACE-1 that are
experimentally measured at pH levels other than pH 4.5. For BACE-1, the inhibition assays are
traditionally carried out at pH 4.5 where the catalytic activity of BACE-1 is maximal. However, from a
free energy computational standpoint, it would be greatly beneficial if binding free energies were
measured at other pH levels to incorporate the effect of pH into free energy computations. Availability
of experimental reference binding energies at various pH will be of great importance to pushing the free
energy computation field forward.

The results presented here demonstrate the dynamics of BACE-1 controlled by solvent pH.
The flexible motions of the flap region at low pH, assisted by the diprotonated state of the aspartyl
dyad, enable the enzyme’s optimal catalytic mechanism at acidic environment, implying a linkage
between the protonation equilibria, conformational dynamics, and catalytic activity of BACE-1. In
addition, we show the thermodynamic relation between binding of inhibitors and protons at the active
site of BACE-1. Our results highlight the importance of accurately accounting for the protonation states
of the titratable groups in protein-ligand systems where ligand binding is pH-dependent. Furthermore,
we show that the CpHMD method can be used as an all-purpose tool to assess the pH-dependent
dynamics and to quantify the binding free energies for protein-ligand systems where the protonation
equilibria play an important role. To the best of our knowledge, this work presents the first application

of our CpHMD-based free energy method to protein-ligand systems. In using the method, absolute
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binding free energies obtained by computational free energy calculations such as thermodynamic
integration can be used in cases where experimental association constants are not available. Our results
highlight high utility of CpHMD method to address the effect of pH on conformational dynamics and

inhibitor binding in computer-aided drug discovery workflows.
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Figure 5-S1. RMSD of apo BACE-1 in the cMD simulation.
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Figure 5-S3. Distribution of distances between the dyad and flap at acidic (pH 1 to 3; red) and basic (pH
9 to 11; blue) pH. (A) 2P4J. (B) 2G94. (C) 2IRZ.
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Figure 5-S4. Titration curves from the pH-REMD simulations of apo BACE-1.
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Figure 5-S5. Titration curves from the pH-REMD simulations of the 2P4J system, shown in purple.
Respective titration curves of the dyad in apo BACE-1 are shown in green.
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Figure 5-S6. Titration curves from the pH-REMD simulations of the 2G94 system, shown in purple.
Respective titration curves of the dyad in apo BACE-1 are shown in green.
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