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ABSTRACT OF THE DISSERTATION 

Three Essays in Applied Microeconomics 

by 

Christopher Paul Steiner 

Doctor of Philosophy in Economics 

University of California, San Diego, 2015 

Professor Richard Carson, Chair 

 These three essays investigate three different cases where naïve good 

intentions – policy or econometric – actually lead to suboptimal policy or 

measurement outcomes. 

 In the first chapter, James Hilger and I investigate bias in the commercial 

passenger fishing vessel (CPFV) industry when a naïve researcher estimates 

willingness to pay estimates (WTP), derived from random utility models 

(RUM), in the context of vessel sellouts.  Using incorrectly estimated WTP 

measures may lead to undervaluation of natural resources. 

 In the second essay, Richard Carson, Melissa Famulari, and I simulate a 

university with a benevolent higher level administrator who wants to keep per-
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student funding roughly the same, or same with adjustment for preferences, 

across the university in a CES-style fashion.  If students also prefer to major in 

departments with high per-student funding, these two goals are in conflict and 

necessitate the higher-level administrator to lower per-student funding for 

popular departments.  Using data from UCSD, we find that departments with 

large numbers of students are less expensive per degree, have higher modified 

student-to-faculty ratios, and graduate students sooner than other departments. 

 In the third essay, I investigate the transition from methyl tertiary-buthyl 

ether- (MTBE-) enhanced to ethanol-enhanced (E-10) fuel in the Northeastern 

United States.  Using a complicated set of phase-ins and phase-outs, I use 

difference-in-difference estimation to show that ambient acetaldehyde pollution 

substantially increased in percentage terms because of E-10 – although this is a 

small level increase, since the level of acetaldehyde is low in the area.  Using a 

stylized calculation based on cancer risk still shows damages of this pollution 

are levels of magnitude lower than the billion dollar water pollution cleanup 

costs from MTBE additive. 



Chapter 1

Hitting Capacity: Implications for

the Valuation of Outdoor

Recreation

1.1 Chapter Abstract

Choices are often limited as the most popular alternatives reach capac-

ity and sell out; thereafter, selection is over less preferred choices. In the con-

text of nonmarket goods, willingness to pay (WTP) welfare measures provide

an estimate of the value of nonmarket characteristics as calculated through the

modeling of preferences using a random utility model framework. Random util-

ity calculations are based on the choice attributes and the observed choices con-

sumers make from a set of options. Such models are estimated under the implicit

assumption that all options are available to all consumers. If choices can “sell

1
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out,” the properly specified choice model would drop unavailable alternatives

from the set of options; however, actual availability is almost never observed at

the individual consumer level. Ignoring capacity constraints can result in biased

parameter and WTP estimates. A solution to this problem that can be imple-

mented using only aggregate level data is provided. We provide an empirical

application of modeling vessel choice in the recreational overnight fishing trip

market in San Diego – where particular boats are often sold out.

1.2 Introduction

Outdoor recreators are often limited in their recreational site choice be-

cause more popular alternatives sell out. Consumer passenger fishing vessel

(CPFV) trips, the focus of this particular paper, sell out. Failure to account for

these sellouts leads to bias in the parameters of random utility models (RUMs)

used to analyze consumer choice from multiple alternatives. For while the ag-

gregate choice-set is known, choice-set data at the individual choice occasion is

rarely available. In the absence of information on the actual choice-set at the

time of decision, the analyst may incorrectly conclude that, for some, the char-

acteristics of the next best alternatives are preferred over the characteristics of

the choices that sell out.

In the basic RUM framework, the consumer’s choice set is constructed

of a static set of alternatives. While early modeling efforts allowed consumers

to face individual choice sets constructed of different alternatives (see Haab and

Hicks (1999) for survey of the literature), they did not account for the possible
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impact that the choices of a subset of consumers may have on the feasible choice

set of the remaining consumers.

For example, let’s assume that there are two recreational fishing vessels

that sportfishers ride for fishing trips; further, they are identical except for one

has a historically higher catch rate for prized fish. If the neither boat sells out,

then the recovered WTP estimates are correct. Here, the analyst assumed that

that both vessels were available to all consumers. However, if the vessel with the

higher catch rate reaches its capacity early, then anglers arriving later will select

the less preferable boat. This will result in a WTP for the catch rate which has a

downward bias since many anglers appear to prefer less catch for more money.

The lack of a price mechanism used by government agencies often allows

for excess demand in many recreational activities. For instance, at Yosemite Na-

tional Park, campers are warned that reservation campgrounds can often fully

book minutes after booking is opened online – and that non-reservation camp-

grounds often fill up before noon1. At the Grand Canyon, campers at the South

Rim are warned that, during the summer, “campgrounds hustle and bustle and

are often filled to capacity.2” While queues and full bookings are not an eco-

nomically efficient way of allocating space, the National Park Service serves the

public and is not a profit-maximizing entity. While the application presented

in this paper happens to be a market-driven sellout largely associated with ad-

vertising practices and landings controlling multiple boats – sellouts also occur

frequently in many outdoor recreation literatures.

1http://goo.gl/dpCVSZ
2http://goo.gl/jlt8O8
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Similarly, preferred beaches often do not run out of space, but they fre-

quently run out of parking – effectively limiting the number of visitors to the

beach. Popular sporting events often sell out – with laws or transactions costs

effectively preventing prices from increasing through scalping. All of these com-

mon, capacity hitting events have implications for choice. In our application,

vessels typically do not do last-minute price adjustments to avoid sellouts.

The operations research literature has long been concerned with stock-

outs from an inventory and marketing perspective, often with papers using mod-

ified RUM’s (i.e., Conlon and Mortimer 2013, Musalem et.al. 2010). This is the

first paper that models sellouts in a recreational setting. It is useful to distinguish

between crowding and sellouts: Many recreational papers look at crowding –

crowded beaches, for instance (i.e., McConnell 1977). Crowding differs from

sellouts in that that crowding is a recreational characteristic – and sellouts repre-

sent a hard constraint forcing the activity out of the choice set entirely.

This paper reports on the modeling of consumer recreational behavior in

the context of the San Diego based sport fishery, which is characterized by a large

number of sold-out boats. We first demonstrate that the standard RUM param-

eter estimates and the corresponding WTP measures are generally biased under

conditions that fail to account for sellouts. We then propose a RUM estimator

which accounts for sellouts and examine its econometric properties. Lastly, we

estimate the proposed RUM that accounts for sellouts and report statistically sig-

nificant and large differences between RUM parameter and WTP estimates when

sellouts are taken into account versus the traditional model.
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Our focus is on five highly migratory species (HMS)3 – and whether

vessels are successful in targeting these species. In order to look at these species,

we limit our analysis to overnight to two-day trips (at least one night out at sea),

as catching HMS on a day trip is rare4.

We look at the proportion of HMS species caught the previous season as

a proxy for the type of fish species anglers are likely catch on the trip. Empirical

results indicate the per trip WTP for successful HMS targeting in the hundreds

of dollars. Parameter and WTP estimates have large biases when sellouts are not

accounted for in the RUM.

The rest of the paper proceeds as follows. Section 1.3 reviews relevant

literature. Section 1.4 presents a sellout simulation. Section 1.5 develops the

framework for empirical estimation. Section 1.6 presents the data. Sections

1.7 and 1.8 present the empirical results for the standard and proposed models.

Section 1.9 concludes.

1.3 Literature

A pair of papers in the recent marking literature has pointed out that es-

timates using data from store shelves or vending machines can be biased if a

sellout occurs and this is not taken into account. Musalem, et.al. (2010) uses

a Bayesian framework to simulate stock-outs of shampoo. Conlon and Mor-

3Bluefin tuna, yellowfin tuna, albacore tuna, dolphinfish, and yellowtail (see Figure 1.1).
4See Figure 1.1. The industry bundles trips into different trip types based on length
of trip, ranging from “half day” trips all the way up to extremely long, multiday
trips. Longer multiday trips are not considered here as they often involve specialized
itineraries.
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timer (2013) looks at vending machines with incomplete product availability

and average all possible combinations of potential choice sets. Both Conlon

and Mortimer and Musalem, et.al. are focused on estimating lost revenues from

stock-outs. The approaches in these papers are both computationally intensive

and difficult to implement5. Further, Conlon and Mortimer require each potential

choice set to be a factor in the likelihood. This leads to 2N different combinations

of sellouts.

The recreational nonmarket valuation literature has undergone consider-

able methodological advances as analysts have addressed a myriad of distinct

markets and local conditions. While these models are applied to many areas of

recreation, sportfishing is a particularly well-studied phenomenon (Boyle, et.al.

1998). Johnston, et.al. (2006) is a meta-analysis of 48 fishery studies in the

United States and Canada. It determined that the methodology of studies influ-

enced WTP values.

Sportfishing continues to be researched because of the relevant policy

particulars. Sportfishing is an extremely popular American pastime that encom-

passes a myriad of issues such as recreational-commercial allocation, impacts to

pollution, climate change, and job creation. For instance, Carson, Hanemann,

and Wegge (2009) discuss their assistance to Alaska to help policy makers de-

termine the consequence of closing fishing sites to avoid overfishing. In the

Alaskan fresh-water salmon fishery, closing one fishery may lead to spillovers

into other areas – the authors use a nested logit framework to predict where the

5An alternative to these methods include maximum score estimation, as suggested by
Fox (2007).
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fishermen would go. Despite all of these advances, this is the first paper we are

aware of in the general areas of recreational economics and non market valuation

that account for sellout bias in parameter and welfare estimates.

Few fisheries studies look at overnight trips because of the challenge

posed to researchers. Many explicitly exclude overnight trips (for instance, Haab

et.al. 2012). McConnell and Strand (1999) is one of the few studies to look at

overnight trips. In Southern California, excluding overnight trips ignores the

recreationally, economically, and environmentally important HMS fishery.

An additional distinction between this study and the fisheries literature

is that we use a census of CPFV trips in Southern California from the Califor-

nia Department of Fish and Wildlife. This census data comes from a manda-

tory logbook program. We pair the vessel census with pricing from the Internet

Archive. Most studies use angler surveys (Shaw and Ozog (1999), Larson and

Lew (2013), and Hauber and Parsons (2000)). Carter and Liese (2010) take

a different approach; they use a hedonic pricing analysis and a survey of boat

pricing.

1.4 A Sellout Simulation

Not accounting for sellouts can lead to biased RUM parameter estimates

and their corresponding WTP estimates. This section briefly simulates a hypo-

thetical example to demonstrate the severity of this bias. Assume that a group of
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anglers have the following utility for a fishing trip:

Ubit = βpricepbt + βcatch fbt + βX cbt + εbit, (1.1)

where i = 1, ...,approximately 100,000 denotes fishermen, b = 1, ...,6 denotes the

vessels in the choice set, pbt and fbt denote the price and predicted fish catch,

respectively, for vessel b and for trip t, and cbt denotes an additional vessel char-

acteristic (such as the age of the vessel). We set βprice = −2.5, βcatch = 7.5, and

βX = 1.25, and we denote the random error as εbit ∼ Type I Extreme Value. We

draw 100,000 customers and divide them into T time periods/queues; we order

them and change the time period every Y people, where Y is a random variable

Y ∼ N (70,152). The last trip, which truncates, is discarded. The vessels have

capacities [20,15,10,100,100,100]′.

We assign different prices and different predicted fish catch for each

time period x vessel combination. Each time period has three random vari-

ables, Ft ∼ U (1.5,2.5), Pt ∼ U (0.9,1.1), and Ct ∼ U (0.95,1.05). Parameters

u•bit ∼U (0,1) are assigned in the following way: Cbit =Ct [(2.5−0.25i)+uCbit],

Fbit = Ft [(18−1.5i)+4uFbit], and Pbit = Pt [(60−5i)+2uPbit]. Vessel 1 has the

highest expected price and the highest catch, and the vessels continue to decline

in price and quality as the index gets higher. However, sometimes, vessel 2

may be more preferable for most people – and for any one angler, the random

component εbit potentially makes any vessel the preferred choice.

Estimation of WTP follows maximum likelihood estimation; following
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McFadden (1974), the probability of selecting boat i is:

exp (vbit )
6∑

j=1
exp
(
vbjt
) (1.2)

Using the above utility function (1.1), its parameters, and the distribution

of vessel attributes, the expected number of passengers that select each vessel as

the utility maximizing choice can be generated by means of maximum likeli-

hood estimation of (1.2). For a moment, assume that there are no sellouts; i.e.,

the capacities are [∞,∞,∞,∞,∞,∞]′. The following table reports the simulated

number of passengers aboard each vessel:

Vessel Passengers

1 54%

2 28%

3 12%

4 4%

5 1%

6 <1%

However, given the capacities are [20,15,10,100,100,100]′, the actual

boarding is as follows:
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Vessel Passengers

1 25%

2 16%

3 8%

4 30%

5 14%

6 6%

The point estimate of the WTP measure for fbt is denoted as WTP =

−βcatch/βprice. If sellouts do not occur (the capacities are [∞,∞,∞,∞,∞,∞]′),

the estimates of the utility function are accurate:

Psuedo R2 = 0.95 βpr ice βcatch βX WTP

Estimate

95% CI

−2.50

(−2.55,−2.44)

7.50

(7.34,7.66)

1.19

(1.09,1.29)

3.01

(3.00,3.01)

Now assume that capacities are [20,15,10,100,100,100]′. The analyst

naïvely estimates the model without adjusting the choice set, as he does not

observe which people had a reduced choice. The parameters are biased.

Psuedo R2 = 0.13 βpr ice βcatch βX WTP

Estimate

95% CI

−0.17

(−0.17,−0.17)

0.32

(0.32,0.32)

0.12

(0.09,0.14)

1.91

(1.89,1.93)

One might be tempted to make some type of post hoc correction using

fixed effects. The appendix, however, shows that even making such a correction

will not generally eliminate the bias in willingness to pay estimates.
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1.5 Framework for Estimation

We start by following a standard random utility model (McFadden 1974).

Denote Ucit to be the utility of a customer i facing a matrix of vessels, trip char-

acteristics, and trips Ct =

[
c1 · · · cC

]
during a time period, t (each trip is

denoted as a vector including a trip identifier and characteristics). Each person

decides between trips on a set of connecting weekdays or the weekend. Each

set of weekdays or days on the weekend are considered one choice occasion. In

this setup, Ucit = vcit + εcit , where vcit is the deterministic component and εcit is

random (Type I Extreme Value) error. The probability of selecting trip c ⊂ Ct is:

exp (Ucit )∑
ĉ∈Ct

exp (Uĉit )
(1.3)

The deterministic component, vcit = x′citβ includes price and fish catch variables.

The willingness to pay for a particular trip attribute, j, is given by −β j/βprice.

A standard framework would estimate (1.3) using maximum likelihood

estimation on the available choice set. However, we do not have information on

the full choice set, so we must predict whether a vessel sells out. Let Nt equal

the number of anglers in the market during the time-frame t with vector of trips

and trip characteristics c. A first stage linear probability model for predicting

sellouts is:

soldoutct = β′Xct + δNt + εct (1.4)

Denote the fitted value as �soldoutct , and the standard error of the forecast as σ̂.



12

Draw a parameter ĝi from U (0,1). Define p as:

pcit =�soldoutct − δĝi Nt (1.5)

Additionally, draw q1cit ∼U (0,1) and q2cit ∼ N (0,1). Trip c is eliminated from

the choice set for person i if q1cit ≤ pcit + σ̂q2cit . We then run equation (1.3)

with the new choice set, and repeat this process 1000 times. We then look at the

distribution of point estimates and their confidence intervals.

1.6 Sportfishing Data

1.6.1 Data

Sportfishers from around the world access near- and off-shore fishing

grounds off Southern California and Baja California through the Commercial

Passenger Fishing Vessel (CPFV) fleet operating out of San Diego. The CPFV

industry in Southern California is an important recreational and economic re-

source; over 500,000 angler days in 2013 alone contributed to over 1500 jobs

(NOAA District 1 only) (Hilger 2014). The recreational fishery (as a whole) in

California is estimated to have added $1.0 billion of value to the economy in

2012 (National Marine Fisheries Service 2014). The industry bundles trips into

different trip types based on length of trip. We will focus on the high season trips

stratified at 24, 36, and 48 hours, which are marketed as overnight, 1½ day, and

2-day trips, respectively. These longer trips specialize in relatively more prized



13

species, including highly migratory species (HMS), the focus of this analysis

(see Figure 1.1).

We apply the preceding model to a unique data set of overnight to two

day CPFV trips in San Diego, California. The primary data consists of manda-

tory trip records compiled from the Skipper’s Log Book, a data collection pro-

gram from the California Department of Fish and Wildlife. For each trip, skip-

pers record the number of passengers, the number of fish kept by species, the

number of hours spent fishing, the days spent fishing, and the departure and

arrival times. The U.S. Coast Guard and the California Department of Fish and

Wildlife have provided vessel characteristics. Our focus will be overnight to two-

day trips porting fish in San Diego, fishing from July 2-September 30, 20126.

Each weekend or set of connected weekdays is considered one time period7.

To determine the price of the trip, we build a dataset from the Internet

Archive and other sources8. In many cases, the prices for each vessel-trip com-

bination exhibited low price variability, in which case we averaged the prices. In

other cases, there were more nuanced price schemes, in which case we brought

the temporal schemes into the data.

Vessels must specialize to some extent. Not all vessels can accommodate

anglers seeking to catch HMS species because long-range trips require sleeping

6July 1 is excluded since it would be the only day in July in the corresponding weekend.
7Friday is considered part of the weekend. For the purposes of choice-set bundling, for
2 day trips, the weekday or weekend status is based off of the first day fished. For
purposes of prices, in general, the price is a combination of the fishing days.

8The Internet Archive’s Wayback Machine is a large database that crawls and stores
websites as they appear during the crawl (archive.org). Most vessels in 2012 booked
through websites. We attempted to use 2012 data to the extent possible; in some cases,
we imputed 2012 prices from inflation-adjusted 2013 or 2014 prices.
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quarters and larger fuel tanks. Furthermore, vessels may reduce passenger ca-

pacity for longer trips for passenger comfort or to take on additional supplies.

The length of the trip is one of the most important variables in terms

of predicting fish catch: Shorter trips are different products than longer trips.

Under normal circumstances, anglers interested in catching an HMS species look

beyond day trips. For instance, HMS species are rarely caught aboard single day

trips (Figure 1.1). However, these species make up a large percentage of fish

catch for trips that stay out for longer periods of time.

This analysis covers 84% of reported overnight to 2 day trips that we

determined were actually overnight to 2 day trips. Vessels were dropped from

the data if they had no sleeping quarters or did not offer trips as described by this

data subset. Vessels occasionally appeared as offering a 2 day trip due to an error

filling out the form, a data entry error, or another error. For a small number of

trips, no price information was available, and these vessels were dropped from

the analysis. The actual price paid is not directly observed, so we assume that

the final price paid was the posted price listed on the ticket for a typical trip or

that specific trip on the vessel-trip-type combination. If the vessel mostly books

charters, and we did not have individual price-level data, the typical charter rate

divided by the number of people on the current trip is used as the price the

individual faced in choosing between trip options.
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1.6.2 Trip Choice Options and Sellouts

A sizable portion of overnight to two-day trip openings sell out. The

marginal cost of adding an angler on a nearly full boat is quite small, so ves-

sels can increase profits by making sure that trips are fully booked. The CPFV

industry is heavily capitalized and very competitive.

The number of available spots on a vessel-trip combination are not record-

ed in the log-book data; as such, we need to make an inference about capacity

using observable data. Fortunately, most of the boats involved are rated for their

maximum capacity in terms of passengers for each trip type. We consider a

vessel to be sold out if it is within two of its maximum capacity to allow for oc-

casional no shows – and, because when there is only one or two spots available

on a boat, many interested groups such as a husband and wife or a husband and

wife and one child will be unable to book a trip on the vessel. We look at all of

the boardings on the vessel-trip type combination. To eliminate a small number

of outliers directly caused by data-entry (i.e., 100 instead of 10), we look at the

highest boarding level for which more than 3% of trips on the trip type-vessel

combination have greater than or equal to that boarding level.

The second stage of our analysis uses the predicted probability that the

vessel was not available in choice sets faced by some anglers. This has the advan-

tage that many vessels usually have a positive probability of not being available

on a particular choice occasion. The possibility of last minute cancellations ef-

fectively makes and erroneous counts effectively make sellouts stochastic from

the perspective of our analysis.
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1.7 Preliminary Analysis

We first estimate model (1.3) without the sellout adjustment and calculate

the WTP between types of trips in a naïve model. Let vibrt be the deterministic

portion of the utility of customer i on a trip r on a vessel b during time period t.

vibrt = βpricepr +γ1½1
{
r is 1½ day

}
+γ21

{
r is 2 day

}
(1.6)

As shown in Table 1.3, the WTP for a 1½ day trip, given by −βprice/γ1½

is $138 over the overnight trip base, and the value of a two-day trip is $257 over

the overnight trip base. However, these prices include all components typical

of a 1½ day or 2 day trip. In other words, we have not yet accounted for the

possible role of HMS species catch.

Let’s look at two specifications of the RUM – first without adjusting for

sellouts. These two specifications are (with additional variables for the longer

specification in parenthesis) below in equation (1.7). Let the proportion of HMS

fish caught on vessel b for trip-type e during the entire season before time period

t be prbet . If the average for the trip types in the previous year-vessel-trip type

combination is not available, we use the average. In this case, we allow hbet = 1

(otherwise 0). Let i represent an individual, r represent a trip, and blb equal the

beam times the length of the vessel. The variable age is the age of the vessel, in

years. Specification (1.7) is:
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vibert =
∑
ι∈1,1.5,2

τιprbet1ιday+
���
∑
ι∈1.5,2

ψι1ιday
��	+ βpricepr + βhhbet+blb+

∑
ι∈1,2

ageιb

(1.7)

As shown in Table 1.3, WTP is $37, $82, and $232, respectively, for

100% catch on overnight, 1½ day, and 2 day trips. This means a change from

40% HMS to 50% HMS would have an additional WTP of $3.71 on overnight

trips. Once we take into account the type of trip taken, however, by adding

the terms in parenthesis above, overnight trips get an additional WTP of $81

for 100% HMS trips, and there is no additional WTP for 1½ day and 2 day

trips. However, these trips already have an additional WTP of $122 and $252,

respectively (over overnight trips) – these are the coefficients for ψ1½ and ψ2.

1.8 Analysis Accounting For Sellouts

In this section, we report on the specification with a sellout correction.

Because of the sellouts, we run specification (1.7) through RUM (1.3) but with

the sellout adjustment described in section 1.4, equation (1.4). Let Mm be a fixed

effect for month m, Ee be a fixed effect for trip-type e, and Vb be a fixed effect

for vessel b. The first-stage specification of this sellout model9 is:

soldoutbemrt = δ1Nt +α1Vb+α2Mm +α3Ee+α4pr Ee + εbemrt +
(
δ2N2

t

)
(1.8)

9Charters are not included in the first-stage regression and are considered an available
choice in the second stage.
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The term
(
δ2N2

t

)
is only used in a robustness check, with the selected

probability equal to �soldoutibemrt − δ1ĝi Nt − δ2
(
ĝi Nt
)2. The R2 of the regression

with the restriction δ2N2
t = 0 is 0.28 and is reported in Table 1.4; very little

additional explanatory power is gained by the square term. Additionally, the

AIC is slightly lower for the restricted model.

The first draw is shown in Table 1.5, and the results of the the two spec-

ifications in (1.7) with adjustment (1.8) are shown in Figure 1.2. The medians

are summarized in the table below, and they are compared to the WTP estimates

in the standard model.

Table 1.1: Medians of Sellout Model vs. Standard WTP Model.

Short Short Long Long

Naïve Model Sellout Model Naïve Model Sellout Model

Pr X Overnight $37 $161 $81 $198

Pr X 1.5 Day $82 $209 -$19 $52

Pr X 2 Day $232 $434 -$10 $274

WTP 1.5 Day $122 $166

WTP 2 Day $252 $166

The medians for the runs on the short specification (1.7) are $161, $209,

and $434 for −τ1/βprice, −τ1½/βprice, and −τ2/βprice, respectively. In the naïve

model, these estimations were $37, $82, and $232. When we run the long speci-

fication (1.7), thus accounting for trip type, the medians change to $198, $52, and

$274, respectively. The $52 is statistically non-different than zero; −τ1/βprice
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and −τ2/βprice are statistically different than zero. When we account for sell-

outs as opposed to running the naïve model, the premium for the trip-type (over

overnight trips) jumped from $122 to $166 for 1½ day trips and dropped from

$252 to $166 for 2 day trips. We run a formal test of the sellout model, as

contrasted to the naïve model, in section 1.8.2.

1.8.1 Interpretation of Coefficients

The coefficients τ1, τ1 1
2
, and τ2 in specification (1.7) tell us the additional

utility of a trip that spends overnight, 1½ days, and 2 days on the water and

spends 100% of the time targeting – and succeeding to catch – HMS species.

First, 100% catch means something different for each type of trip. A 100%

HMS target means more hours targeting HMS on a two day trip, which means

more HMS fish. Thus, even if every vessel only targeted HMS fish, τ2 would

inherently have a different utility value – as it would represent a catch of more

fish than τ1.

When we take into account trip type, the value of 100% HMS catch goes

down in 1½ and 2 day trips – but goes up for overnight trips. As shown in Figure

1.1, the targeting of HMS species is part of the journey and is likely part of the

included value of $170 and $161. For overnight trips, catching a high proportion

of HMS species is likely a strong signal that the vessel does well and is capable

of catching prized fish.

The variable prbet has a few advantages over using just fish catch. First,

crowding on vessels is correlated with number of customers (and thus WTP) –
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but is negatively correlated with per-capita fish catch. Using a targeting metric

such as prbet reduces these correlations – targeted fish will show up in the propor-

tion regardless of how crowding impacts catch. Additionally, different vessels

may target different angler skills – if we assume that catch is proportional only

to angler skill and targeted location, then the appropriate measure is prbet .

1.8.2 Formal Test of Model

We combine the results of the naïve estimation with those of the soldout

adjustment. First, we combine the RUM model results in a seemingly unrelated

estimate framework. Denote the estimates on the coefficient for characteristic j

in the naïve regression as α j and in each of the draws i of the soldout adjustment

as βi j . We estimate the following statistic for characteristic j 1000 times – with

standard errors from the delta method.

βi j

βprice
−
α j

αprice
(1.9)

The results of the draws are in Figure 1.3. All values are statistically

different when we account for sellouts.

1.9 Conclusions

We have developed a predictive two-stage RUM model that controls for

sellouts in the second stage RUM using first stage sellout predictions. We have

demonstrated through a simulation exercise the left unaccounted for, sellouts can
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lead to biased RUM parameter estimates and the corresponding welfare mea-

sures. We have applied the two-stage model to analyze consumer choice for

overnight to multi-day recreational fishing trips and report WTP estimates for

increases is the catch proportion of preferred HMS fish that are significantly

higher that those from the standard naive model.

While many activities experience frequent sellouts, these sellouts have

often not been accounted for in empirical models used to estimate WTP. While

recent advances have been made in the marketing literature, these advances are

currently computationally burdensome for large choice set with a large num-

ber of sellouts. With no information on sellouts, the analyst may incorrectly

assume that the consumer has chosen their utility maximizing choice, when in

fact they may be choosing from a less-preferred subset of the choice set. Left

unaccounted for, sellouts may lead to biased RUM parameter estimates and the

corresponding welfare measures. In extreme cases, the sign of the estimated

welfare measure may flip. This paper is the first we are aware of that tackles

this issue in the resource economics context of nonmarket valuation. As welfare

measure estimates are used frequently in resource management as a component

of cost-benefit analysis or damage assessment, it is important to get them correct.

The method presented identifies a probabilistic model on sellouts that

has several advantages over other alternatives. The proposed method works with

both a large number of choice alternatives and a large number of sellouts, while

the methods employed in the marketing literature have been limited to applica-

tions with a small number of infrequently changing sellouts (or “stock-outs”).
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Additionally, the proposed method is computationally straightforward relative

to competing models.

As an empirical application we model recreational sportfishing CPFV

trip choice as a function of the proportion of catch that is comprised of high

value HMS target fish while controlling for vessel and other trip characteristics.

Estimates of the amount that consumers would be willing to pay for increases

in the proportion of high value HMS species landed from the naïve model were

generally lower than those from the proposed model which accounts for sellouts.

WTP estimates in a naïve model were different from the sellout model by $284

for a two-day trip only catching HMS species versus a two-day trip only catching

non-HMS species (i.e., $28.40 for a 10 percentage point increase). This large

discrepancy can be explained by the fact that these vessels are very popular –

so popular that they often sellout. Accounting for sellouts with the proposed

two-stage model resulted in statistically significant differences in the parameter

estimates from the naïve model and statistically different WTP estimates for

changes in the catch proportion.

Areas for future research include measuring the comparisons of differ-

ent methods of accounting for sellouts, and analyzing the relationship between

the size of the sellout bias using the naive model and the size of the choice-set

and the proportion of sellouts in the market. Additional research can analyze

business structures to identify the underlying factors which characterize markets

with a high proportion of sellouts.



23

1.10 Tables

Table 1.2: Willingness to Pay Estimates in the Naïve Model (Parameter Es-
timates). The next two tables show WTP for different types of trips, without a
sellout adjustment. The first table shows parameter estimates. Columns (4) and
(5) are numerically identical. **Pr not available described in text; if a Pr was not
found, we used the average for Pr and a binary variable. The coefficient for the
binary variable is shown. (WTP next page.)
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(1) (2) (3) (4) (5)
RUM RUM RUM RUM RUM

One and One Half Day Binary 0.337∗∗∗ 0.229∗∗ 0.229∗∗

(17.90) (3.25) (3.25)

Two Day Binary 0.627∗∗∗ 0.474∗∗∗ 0.474∗∗∗

(23.55) (4.87) (4.87)

Price -0.00244∗∗∗ -0.00223∗∗∗ -0.00174∗∗∗ -0.00188∗∗∗ -0.00188∗∗∗

(-33.44) (-31.71) (-23.02) (-23.21) (-23.21)

Pr X Overnight -0.162∗∗∗ 0.0647 0.153∗∗

(-3.91) (1.48) (3.25)

Pr X 1.5 Day 0.254∗∗∗ 0.143∗∗∗ -0.0354 -0.188∗

(8.56) (4.66) (-0.48) (-2.17)

Pr X Two Day 0.558∗∗∗ 0.404∗∗∗ -0.0190 -0.172
(16.21) (11.16) (-0.19) (-1.55)

Last Year Pr Not Available** 0.0697∗∗∗ 0.0981∗∗∗ 0.0915∗∗∗ 0.0915∗∗∗

(4.30) (5.83) (5.40) (5.40)

Beam X Length 0.000648∗∗∗ 0.000648∗∗∗ 0.000648∗∗∗

(32.34) (32.30) (32.30)

Vessel Age 0.0116∗∗ 0.0138∗∗∗ 0.0138∗∗∗

(3.24) (3.60) (3.60)

Square Vessel Age -0.000111∗∗ -0.000136∗∗ -0.000136∗∗

(-2.68) (-3.08) (-3.08)

Pr 0.153∗∗

(3.25)
N 707277 707277 707277 707277 707277
Pseudo R2 0.0124 0.0122 0.0203 0.0206 0.0206
AIC 130179.1 130203.5 129141.3 129114.9 129114.9
Log Lik. -65086.6 -65096.8 -64562.7 -64547.4 -64547.4

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 1.3: Willingness to Pay Estimates Derived from the RUM on the Pre-
vious Page. Based on the random utility model in the basic specification, will-
ingness to pay for a 1½ day trip is $138, and willingness to pay for a 2 day trip
is $257 – over an overnight base. Columns (4) and (5) are numerically identical.

(1) (2) (3) (4) (5)
WTP 1.5 Day 138.1*** 121.9** 121.9**

(18.90) (3.28) (3.28)
WTP 2 Day 256.8*** 252.1*** 252.1***

(32.05) (5.11) (5.11)
Pr X Overnight -72.57*** 37.13 81.27**

(-3.92) (1.47) (3.23)
Pr X 1.5 Day 114.0*** 82.23*** -18.83 -18.83

(8.53) (4.73) (-0.48) (-0.48)
Pr X 2 Day 250.2*** 231.8*** -10.09 -10.09

(17.81) (12.73) (-0.19) (-0.19)
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 1.4: First Stage Sellout Model. This is the result of the first stage of the
sellout model – in-text specification (1.8). Regressions include robust standard
errors. The standard deviation of the forecast does use regular standard errors;
however, both standard errors are very close, and the standard deviation of the
forecast is larger than the robust alternative standard deviation of prediction. The
table on the right includes the square of the numbers of anglers in the market.

(1) (2)
Soldout Binary Soldout Binary

Number of Anglers in Market 0.000248 0.000565
(1.88) (1.06)

Sq. Number of Anglers in Market -0.000000195
(-0.61)

July Binary -0.238** -0.209*
(-3.06) (-2.26)

August Binary -0.0553 -0.0498
(-1.12) (-0.99)

One and One Half Day Binary -0.418 -0.421
(-0.94) (-0.95)

Two Day Binary 0.809 0.809
(1.39) (1.39)

Price X Overnight -0.00163 -0.00159
(-1.62) (-1.56)

Price X 1.5 Day 0.000101 0.00015
(0.06) (0.09)

Price X 2 Day -0.0022 -0.00219
(-1.66) (-1.64)

Constant 0.212 0.0649
(0.84) (0.18)

N 557 557
R2 0.277 0.277
AIC 681.9 683.5
Log Lik. -303.9 -303.8
t statistics in parentheses
Vessel Fixed Effects Included
* p<0.05, ** p<0.01, *** p<0.001
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Table 1.5: One draw of the soldout model. All draws (with confidence inter-
vals) are available in Figure 1.2.

RUM Coeff. WTP RUM Coeff. WTP RUM Coeff. WTP
Price -0.00274*** -0.00189*** -0.00200***

(-40.26) (-25.31) (-25.22)
Pr X Overnight -0.145*** -52.99*** 0.306*** 161.7*** 0.397*** 198.6***

(-3.51) (-3.53) (6.85) (6.44) (8.29) (7.87)
Pr X 1.5 Day 0.568*** 207.1*** 0.396*** 209.5*** 0.0938 46.92

(19.17) (17.93) (12.84) (12.25) (1.26) (1.25)
Pr X 2 Day 0.927*** 338.2*** 0.824*** 435.5*** 0.559*** 279.6***

(27.38) (28.07) (22.76) (22.79) (5.42) (5.18)
Pr N/A, Used Avg 0.124*** 0.235*** 0.226***

(7.56) (13.40) (12.79)
Beam X Length 0.00113*** 0.00113***

(55.55) (55.58)
Vessel Age 0.0274*** 0.0317***

(7.58) (8.29)
Sq. Vessel Age -0.000303*** -0.000350***

(-7.29) (-8.03)
1.5 Day Binary 0.341*** 170.4***

(4.82) (4.86)
2 Day Binary 0.325** 162.4***

(3.26) (3.37)
N 485919 485919 485919 485919 485919 485919
Psuedo R 2 0.0284 0.0548 0.0551
AIC 115015.5 . 111897.9 . 111871.7 .
LL -57502.7 -55941.0 -55925.9
t statistics in parentheses
* p<0.05 ** p<0.01 *** p<0.001
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1.11 Figures
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Figure 1.1: Trip Types – Fish Caught. Here, we illustrate the proportion within
species group of fish caught by trip type. Shorter trips catch more rockfish and
bass, while longer trips carry highly prized HMS species. (Other tuna includes
bigeye, longtail, skipjack, blackskip jack, and unspecified.)
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Figure 1.2: Figures of WTP with Sellouts. Above and on the following pages,
we show the 1000 draws of specifications of the sellout model with long or short
versions of in-text specification (1.7) and short specification (1.8).
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Figure 1.2: Figures of WTP with Sellouts, continued.
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Figure 1.2: Figures of WTP with Sellouts, continued.
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Figure 1.3: Formal Test of Model. Above and on the following pages, we
show statistic (1.9) using long and short specification (1.7). All estimates are
significant different from zero. We note that this process is different than testing
whether the sellout model estimate is different than a particular number without
standard deviation – for these estimates, see Figure 1.2.
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Figure 1.3: Formal Test of Model, continued.
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Figure 1.3: Formal Test of Model, continued.
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1.12 Chapter 1 Appendix

1.12.1 Appendix

An alternative approach to approximating a sellout event would be to

adjust for the sellout using fixed effects. Empirical justification follows.

1.12.1.1 Approximation of the Log Likelihood Function

In one respect, adding fixed effects for sellouts would be an approxi-

mation of the log-likelihood function. Following Conlon & Mortimer (2013),

given i = 1, . . .,N possible choice set probabilities with probabilities α1, . . ., αN

for a person who selects vessel q from vessels v = 1, . . .,V , the log likelihood

contribution is:

�i =

N∑
i=1

αi log
�����

exp
[
X′qβ

]
∑
j∈i

exp
[
X′jβ

] ����	
=

N∑
i=1

log
�����

exp
[
X′qβ

]
∑
j∈i

exp
[
X′jβ

] ����	

αi

= log
N∏

i=1

�����
exp

[
X′qβ

]
∑
j∈i

exp
[
X′jβ

] ����	

αi

= log
N∏

i=1



(
exp

[
X′qβ

] )αi
(∑

j∈i
exp

[
X′jβ

])αi
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= log
exp

[
X′qβ

]
N∏

i=1

(∑
j∈i

exp
[
X′jβ

])αi

The contribution to the denominator from each utility is linearly approxi-

mated. If the vessel does not sell out, it appears in each factor of the denominator,

and will be approximated as equal to 1. Otherwise, it receives a formal correction

term. Denote the set of possibly sold out vessels as S. Then, an approximation

of the above equation comes to:

�i = log
exp

[
X′qβ

]
N∏

i=1

(∑
j∈i

exp
[
X′jβ

])αi

≈ log
exp

[
X′qβ

]
∑

w∈{1,...,V }\S
exp

[
X′wβ

]
+
∑

u∈S
exp

[
X′uβ

]
e−γu

=

exp
[
X′qβ

] ∏
u∈S

exp
(
γu
)

∑
w∈{1,...,V }\S

exp
[
X′wβ

] ∏
u∈S

exp
(
γu
)
+
∑

u∈S
exp

[
X′uβ

] ∏
t∈S,t�u

exp
(
γt
)

1.12.1.2 Allude to McFadden (1974)

There are many choices of vessels, V1, . . .,VN ∈ V. Each vessel has char-

acteristics σ1, . . .,σN ∈ σ. The modified independence of irrelevant alternatives

states that:

P (V2 |σ, {V1,V2})
P (V1 |σ, {V1,V2})

=
γ2

γ1

P (V2 |σ,V)
P (V1 |σ,V)

(1.10)

Here, γ2 < 1 is a modification to correct for whether V2 is in the choice
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set. Denote P (Vm | σ, {Vm,Vn}) as pmn. Then, rearranging the above equation,

P (V2 |σ,V) =
p21

p12

γ1

γ2
P (V1 |σ,V) (1.11)

Continuing with McFadden (1974), this can be arranged thusly, if we

assume that there is a third vessel:

P (V1 |σ,V)
∑
Vi∈V

pi1

p1i

γ1

γi
= 1

P (V1 |σ,V) =
1∑

Vi∈V

pi1
p1i

γ1
γi

P (V1 |σ,V) =
1

∑
Vi∈V

pi3/p3i
p13/p31

γ1
γi

P (V1 |σ,V) =
p13/p31∑

Vi∈V

pi3
p3i

γ1
γi

From the McFadden assumption of additive separability of the utility

function and denoting utility appropriately, we have:

P (V1 |σ,V) =
exp (U (V1,σ1))∑

Vi∈V

γ1
γi

exp (U (Vi,σi))
(1.12)

The denominator here reflects the choice set availability. Denote the

soldout vessels as the set S. In the log likelihood function, the contribution of
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a person p who selects vessel p is:

�p =
exp
(
U
(
Vp,σp

))
∑

Vi∈V

γp
γi

exp (U (Vi,σi))

=
exp
(
U
(
Vp,σp

))
∑

Vj∈V\S
exp
(
U
(
Vj,σ j

))
+
∑

Vi∈S
γ−1

i exp (U (Vi,σi))

=

exp
(
U
(
Vp,σp

)) ∏
Vi∈S
γi

∑
Vj∈V\S

exp
(
U
(
Vj,σ j

)) ∏
Vi∈S
γi +

∑
Vi∈S

exp (U (Vi,σi))
∏

Vk∈S\Vi

γk

Let U (Vi,σi) = X′iβ, where Xi = σi are the characteristics of the vessel,

and let γi = e−θi . Then, this equation becomes:

exp
(
Xp
′β−

∑
Vi∈S
θi

)

∑
Vj∈V\S

exp
(
X j
′β−

∑
Vi∈S
θi

)
+
∑

Vi∈S
exp
(
Xi
′β−

∑
Vk∈S\Vi

θk

) (1.13)

The issue regarding the approximation is that of the mathematical struc-

ture of the approximation. For those who do not have a vessel in their choice set,

the approximation requires that the modification fixed effects term drives the

sold out choice set to zero. This is a heavy burden. Let’s denote the denominator

as in Section 1.12.1.1:

∑
w∈{1,...,V }\S

exp
[
X
′
wβ

]∏
u∈S

exp
(
γu
)
+
∑
u∈S

exp
[
X
′
uβ

] ∏
t∈S,t�u

exp
(
γt
)

(1.14)

Here, if we look at the likelihood in a probabilistic sense, as in Bronnen-
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berg and Vanhonacker (1996), we could interpret γ as the log of the probability

that someone “notices” a vessel on the market. However, with large number of

sellouts, this has a distinct disadvantage... for each individual person, the ratio

between the terms is infinite. For vessels that sell out regularly and right away,

this will lead to bad behavior. Further, in this application, this approximation

requires a large amount of power, and given the instability of the estimates, an

estimation using this approximation was not successful.
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1.12.2 Simulation

To look at the bias from taking this approach, we run a simulation.

Initially, Ninit = 30,000 observations are made. A random draw from

N (0,1) is given for each observation, and, iteratively, from 1, . . .,Ninit , a new

trip is created if the PDF value is over 1.975. Then, trips are capped at 200

passengers. Trips below 15 passengers are dropped. Trips between 15-30 pas-

sengers are duplicated four times.

Four vessels, A, B, C, and D are available for passengers to choose. The

spots on vessels B, C, and D are 200, but the spots available on A varied. The

catch per unit effort (CPUE) and price (p) for trip t and vessel v is given by:

CPUEtv = Avαt + etv

pvt = ρvt

With the following parameters:
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Simulation 1 Simulation 2

AA = 2.7 AA = 3.1

AB = 2.1 AB = 2.7

AC = 1.7 AC = 2.5

AD = 1.4 AD = 2.3

αt =max (0, k) ; k ∼ N
(
1, .0172

)
αt =max (0, k) ; k ∼ N

(
1, .0172

)

etv =max
(
0, j
)

; j ∼ N
(
0, .012

)
etv =max

(
0, j
)

; j ∼ N
(
0, .012

)

ρAt ∼ N
(
1.2, .052

)
ρAt ∼ N

(
1.2, .12

)

ρBt ∼ N
(
1.1, .052

)
ρBt ∼ N

(
1.1, .12

)

ρCt ∼ N
(
1.0, .052

)
ρCt ∼ N

(
1.0, .12

)

ρDt ∼ N
(
0.9, .052

)
ρDt ∼ N

(
0.9, .12

)

Customer i chooses vessel V if it is available and gives her the most utility

out of all other available choices. Let ε tv ∼ Type I Extreme Value. The utility is

given by:

Simulation 1 Simulation 2

−2pvt +2CPUEtv +1.3ε tv −0.5pvt +1.5CPUEtv + ε tv

The simulation goes through each individual, in queue order, and selects

their most favored vessel. However, the spots on vessel A vary from 25 to 60.

The probability of the vessel being soldout across individuals is recorded. We

run the following estimations:

Naïve Estimation: The estimation run is a standard conditional logit model with

no fixed effects.
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Naïve Estimation with Fixed Effect: This estimation is run with a fixed effect

for boat 1 to try to alleviate the sellout error.

Estimation on Low Customer Days: This estimation is the correct estimation

on days that are not sold out.

Market Restriction: We run the regression with modified independence of ir-

relevant alternatives (see attached). Since the distribution of the error on the

utility may not be Type I Extreme Value in this case, there may be some theo-

retical difference in the estimate. However, the estimate does well. See below

for some comparisons to traditional logit models. In this setup, we define the

sellout modification γ to be determined by the size of the market (divided by a

mean market measure, which WLOG is not necessary; for ease of programming,

this mean was done across individual selection decisions and not across trips),

whether there were no empty spots on vessel 1, and whether the market was

larger than the number of spots on vessel 1. Thus, a conditional error term was

added equal to:

Total Anglerst

T A
×1
{
Total Anglers that Day > Total Spots Boat 1

}

×1 {Vessel A Sold Out} ×0 {Vessel 1}
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1.12.2.1 Simulation Results

The following chart plots the probability of being sold out against the

estimate of WTP for the four methods under simulation 1. The correct WTP

estimate is $1.
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The following chart plots the probability of being sold out against the

estimate of WTP for the four methods under simulation 2. The correct WTP

estimate is $3.
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Chapter 2

An Analysis of the Cost of an Undergraduate

Degree and the Incentives of the State, the

University, and the Student

2.1 Chapter Abstract

To expand undergraduate enrollments or to make decisions regarding rule

changes for degrees, administrators need information on how much expansions

and contractions in each department cost. This paper presents several methods of

accounting for per-credit hour cost across departments. Using internal data from

UCSD, we find that most social sciences are relatively cheap and engineering is

relatively expensive.

This paper then simulates the university’s allocation of funding to under-

graduate departments and the student response. We find that a university with

48
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static undergraduate fund-per-student preferences will allocate funds-per-student

away from departments with large number of students to discourage them from

majoring in those departments and instead majoring in a less-filled field. Using

data from UCSD, we show that departments with large numbers of graduates are

cheaper per degree, have higher modified student-to-faculty ratios, and graduate

sooner than their colleagues in a different program at the university.

2.2 Introduction

2.2.1 Instruction-Related Cost per Degree

Decades of higher-than CPI education inflation in higher education have

led administrators and policy makers to look inward at cost. For bachelors de-

grees, which are the focus of much of the policy debate on the cost of edu-

cation, we can measure many aspects of instruction-related costs. The first is

instruction-related cost. The other two other large categories would include are

largely fixed costs: first, the cost of running the university, such as building main-

tenance, libraries, police, and utilities. The second is contract and grant related

research. Our goal in this study is to determine how much money it costs to add

students to the university; thus, we are concerned with instruction related costs.

Few studies attempt to deconstruct cost on a department basis (an at-

tempt is found in Johnson (2009)). However, policy makers have discussed or

hypothesized about the cost of different departments. These statements have of-

ten generated controversy, as did one made by former University of California
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President James Yudolf:

Many if our, if I can put it this way, businesses, are in good shape.
We’re doing very well there. Our hospitals are full, our medical
businesses, our medical research, the patient care. So, we have this
core problem: Who is going to pay the salary of the English depart-
ment? We have to have it. Who’s going to pay it in sociology, in the
humanities? And that’s where we’re running into trouble (Michels
2009).

Yudolf may not have been engendering any sympathy from the humanities. He

mentions a system, the Responsibly Controlled Management System (RCM),

which showed that the humanities were among the most efficient users of uni-

versity money. Watson implies in the article that the RCM was mysteriously

abandoned when it found that Yudolf’s “businesses” were using the system least

effectively.

2.2.2 Funding

Higher education in the United States is funded at the individual and

household, state, and federal levels. In 2008, the U.S. spent a combined 2.7% of

its GDP on tertiary education, which was virtually unchanged since 2000 (OECD

2011). What had changed, however, was the level of student indebtedness, the

direct cost of education to the students, and the late-2000’s recession. Student

debt in the first quarter of 2007 amounted to $363 billion; seven years later, this

had ballooned to $920 billion (NY Fed).

Part of the problem in public education is state funding; state funding for

the University of California fell from an inflation-adjusted per-student outlay of
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$16,430 in 1990-91, to $8,220 in 2010-11 (UC Office of the President 2011).

Increasing cost and decreasing state funding has led universities to raise tuition.

Tuition increases, however, leverage students’ future earnings and are unsustain-

able in the long-run. As an example, likely in response to worse hiring outcomes

and higher law school tuition, those taking an LSAT dropped dramatically from

2009-10 to 2011-12 – 25%, or around 42,000 test takers (Segal 2012).

This paper will model resources allocated to students within a university.

Students themselves are both a resource and a cost. Bound and Turner (2007)

find that states that have abnormally large college cohorts in comparison to other

states that year graduate less students. Further, large universities experience

very little outflow to other schools; more commonly, students change majors. A

university can be seen to be a customer-locked institution (Arcidiacono 2004).

2.2.2.1 Funding: Differential Tuition

States, however, also face large budget shortfalls and are questioning the

wisdom of funding higher education – and what to fund. Some majors take

longer to complete (Babcock and Marks 2011), and some majors earn more than

others as well, leading to potentially higher net tax revenues. California has

provided subsidies on a per-student basis, but other states are exploring pro-

viding more funding for students who major in STEM fields (science, technol-

ogy, engineering, and mathematics). Florida considered stopping increases in

STEM fields while allowing non-STEM tuition to increase (Webley 2013). This

is clearly controversial.
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Differential tuition has only recently been in the direction of encouraging

enrollment in more expensive STEM majors (Webley 2013, Carter and Curry

2011). This is because the actual delivery system of educating these majors is

(perhaps) higher. However, it is not clear that this policy is rational for the state

that is funding public institutions. Particularly in the light of same per-student

allocations, there is little, besides salary, in the university-student relationship to

encourage study of high paying majors. Could it be rational for the state to fund

STEM majors at a higher rate?

Recent work on differential tuition has shown that students are price con-

scious of tuition; however, the elasticity of this response in respect to enrollment

ratios is controversial. Carter and Curry (2011) attribute this to the setup of var-

ious studies. In their analysis, they look at an individual’s choice to major in a

particular major instead of a cross-school analysis.

2.3 Measuring the Cost

In the first part of this study, we quantify the resources needed to train

additional undergraduate students in each particular field. Our hope here is to

provide a summary statistic that encompasses small (but not infinitely small)

desires to increase undergraduate enrollments in particular departments, holding

the essential departmental characteristics intact. Here, we assume the additional

students in these departments will provide little additional cost to the broadly

cost-distributed university goods, such as libraries, gyms, roads, etc.

One particularly challenging problem is that of the marginal student. We
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are not calculating the cost of the marginal student; her contribution to a large

department is essentially zero, but not quite. The theoretical underpinnings of

adding one additional student to a department are outlined in Hoenack, et.al.

(1986). In the case of dropping an additional student in a lecture, the only

marginal cost is the cost of meeting with that particular student, grading that

particular student’s exams, and any other minor administrative cost which is di-

rectly attributed to that student (such as the small burden of record keeping, etc.).

This marginal cost is clearly small.

Continuing with Hoenack, et.al., once lectures need to be increased, how-

ever, the university can operate through several channels. They can have instruc-

tors repeat a course twice, which raises the cost, but not quite at the level of

adding a completely new instructor. They can lower the marginal cost by ensur-

ing that the faculty member teaches a subject they enjoy teaching.

The university can also raise teaching loads and decrease research and

other activities. This essentially is a work increase and, equivalently, a pay de-

crease, as faculty will still have to be competitive in the same fields they were

before the increase. As noted in Nelson and Hevert (1992), and applicable to our

study.

It would be inappropriate to assume that one could reduce the marginal
costs to their allocated level by cutting faculty salaries or increasing
teaching loads in proportion to the percentage of time allocated to
research. Many faculty view the ability to do research as partial
compensation for relatively low academic salaries: salaries would
thus have to increase to attract sufficient numbers of faculty to posi-
tions with higher teaching loads.

Our analysis works at a more extensive margin. In this paper, we assume that
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the university wants to expand a department to accommodate a large number

of students – but not so large that the university needs to add cost-distributed

resources. An assumption that makes it possible to calculate this cost is that

departments could scale up to teach a new block of students at its current average

cost.

2.3.1 Cost Simulation

We create a simulation to explain how undergraduate spending on in-

struction. As mentioned, the university is a customer-locked institution (Arcidi-

acono 2004). In this simulation, we look at the attractiveness of majors, we lock

students in the university, and we look at the post-admitted behavior of students

after the university assigns funding.

In terms of undergraduate education, assume that the university is only

concerned about the funds it allocates per student to each department; these

funds per student are a measure of the amount of faculty that the department

can hire per student, the quality of instruction it provides, etc. In this scenario, a

dynamic relationship exists between the students and the university. Because the

university allocates funds based on students, the students are actually interpreted

by the university as a “cost.” The university can manipulate this cost by increas-

ing or decreasing the funds and making different majors more or less attractive.

The results show that higher salaries and fun majors actually lead to less

funds per student, not more. Students pack these majors, and the university

finds less costly majors to increase the quality and prestige of the undergraduate
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program at the university. Furthermore, it costs more to lure students away from

majors with high salary or high utility.

2.3.1.1 Students

Students file into majors based on salary, funds-per-student, and likeabil-

ity of majors. Denote students s = 1, . . ., S as choosing a major from a variety

of majors, m = 1, . . .,M . Denote year 1 as the year in which students enter, and

all actors discount years 25 and further infinitely. Each major comes with an

average time to graduation, Gm. The tuition payment per year is ptm. Denote γm

as the exogenous non-salary appeal of each major. Also denote the exogenous

salary over the career years Gm+1 to 24 as wtm. Each student has an exogenous

discount rate of rs, and βrs =
1

1+rs
. The university provides funds fm to each

major, and the number of students in each major is denoted Sm. Each major has

an exogenous inefficiency factor of σm. This σm maps funds-to-students to ef-

fective quality of instruction. For instance, a major may have a high cost to teach

– this implies a large σm. The quality of instruction is denoted by ρm =
fm
σmSm

.

Here, ρm is a modified funds-per student ratio, which tells us the amount of in-

structional funds allocated to a student – but adjusted for cost of instruction. The

mean-adjusted salary of students is:

wm =
1
w̄


���

24∑
t=Gm+1

βt
rswtm

��	−
��

Gm∑
t=1

βt
rs ptm�	

 (2.1)

Here, w̄ is the average discounted income stream. The proportion of
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students in each major i given a funding allocation is given by:

Si |f =
S

M∑
m=1

[
γm

γi

] b1
1+b2

[
wm

wi

] b3
1+b2

[
σm

σi

]− b2
1+b2

[
fm

fi

] b2
1+b2

(2.2)

We derive equation 2.2 in section 2.6.2.3. This proportion is similar to

a multinomial logit framework, with the caveat that we assume that the propor-

tions are given as in this equation instead of idiosyncratic. The equivalent utility

function for each student is b1 logγm + b2 log ρm + b3 logwm. Here, b1, b2, and

b3 are exogenous.

2.3.1.2 The University

We assume that a benevolent administrator will want to allocate cost-

adjusted per-student funds relatively equally across departments so that the qual-

ity of instruction is as equal as possible across the university, subject to perhaps

a known, exogenous administration preference parameter built into her util-

ity function. The university administrator decides to spend ξ < 1 of its funds

f1+ . . .+ f M = F on undergraduate instruction, and 1− ξ on other utility enhanc-

ing services, such as administration, consistent with Cobb-Douglas utility. For

now, assume that F is given. The total quality of undergraduate departments is
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given by:
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Here, f̃ i and S̃i are the fractions of funds and students (respectively) in

each major. The outer 1/r is not relevant to the maximization. The price of Q

can be manipulated through student filing and the fraction of funds devoted to

each major. The price of Q can be given by:

F =Q
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(2.4)

Additionally, we start with the assumption that there is no tuition or state-

funding differential. This implies that the only relevant part of the maximization

problem is maximizing Q
(
ρ
)
, and because F and S are endogenous, only maxi-

mizing the utility over the fractional students and funds. We thus have a bounded

problem and will perform a maximization search.

Let M = 3, b = (1,0.5,3), and r = 0.25. Let total funds for undergrad-

uates equal $500 million, and let the number of undergraduates equal 30,000

($16,667 per degree). For simplicity, call the majors economics, engineering,
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and psychology (in that order, m = 1,2,3). We will vary α, γ, and w to show

how differently the university responds. This procedure is run using the Nedler-

Mead simplex algorithm for local minima, with a grid search of initial points

(0.01-0.97 per major). The local maximum are compared, and the global max-

imum is selected. We ignore behavior at the far extremes where one major is

incredibly unattractive to students such that it is not a viable major.

Assume
∑
αi = 1 and w̄ = 1. Here, letting

∑
αi = 1 will allow the utility to

be a standard weighted average, and allowing the average income stream, w̄ = 1,

will make interpretation easier as well. Here is a table of initial values; we will

systematically vary these throught the simulation:

α σ γ w

Economics 0.33 1.5 0.33 1.0

Engineering 0.50 3.0 0.17 1.2

Psychology 0.17 1.0 0.50 0.8

• University Preference

First, lets vary α. We set α3 = 1/6, and we vary α1 from 0.001 to 0.83. For

engineering, α2 is simply 1−α1 −α3. Firstly, as α1 increases, funding in engi-

neering drops and funding in economics increases. Funding in psychology is not

constant, even though α3 is constant.

As funds are shifted into economics, more students want to major in

economics, eroding some of the increased funds. The modified funds per student

ratio, ρ1, also increases. As α2 dips, ρ2 goes down as well.
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Figure 2.1: The University Preference Parameter and Modified Funds-Per-
Student. The university’s department preference parameter on economics, α1, is
varied from 0.001 to 0.83, and the engineering parameter, α2, changes in tandem
so that α1 +α2 +α3 = 1 with fixed α3 =

1
6 . In the picture, we see the effective

funds per student in economics, ρi =
f i

Siσi
, increases in tandem with its relative

preference parameter. This happens even given given the larger number of stu-
dents in economics (see Figure 2.2).
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Figure 2.2: The University Preference Parameter and Student Major
Choices. The university’s department preference parameter on economics, α1, is
changed from 0.001 to 0.83, and the engineering parameter, α2, is also changed
so that α1+α2+α3 = 1 and α3 =

1
6 . In the picture, we see the number of students

in economics increases as the university begins increasing effective per-student
funds into this department.
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Figure 2.3: The University Preference Parameter and Funds Given to Each
Department. The university’s department preference parameter on economics,
α1, is changed from 0.001 to 0.83, and the engineering parameter, α2, is also
changed so that α1 +α2 +α3 = 1 and α3 =

1
6 . In the picture, we see, unsurpris-

ingly, the funds in engineering drop and the funds for economics rise.

• Cost of Education Parameter

Next, we vary the cost of delivering effective undergraduate economics educa-

tion. In this simulation, we vary σ1, but we do not alter σ2 or σ3. As the

cost increases, the university decides to change the funding proportions out of

economics and into the other two majors. In response, students leave economics,

and, in this simulation, not enough students leave to increase the modified funds-

per-student ratio. The increased cost also has a negative effect on engineering
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and psychology; increased costs are bad for all majors.

One important note should be made in this section: Often, high costs

are associated with high salaries for students after school. This is an important

point. Most of the discussion around higher paid professors are around cost – but

this simulation shows that this association both results in fewer majors through

the cost channel and more majors through the salary channel. The end result

will depend on the sum of these effects (and hence underlying parameters). But

methods that universities use to control costs could result in students shifting out

of high-paying departments.
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Figure 2.4: Modified Funds-per-Student Based on Economics Cost Param-
eter (Sigma). As σ�1 (economics) increases, the effective funds per students drop
– in all majors but in particular, in economics.



64

1.0 1.5 2.0 2.5 3.0 3.5 4.0

60
00

10
00

0
14

00
0

Economics Cost Parameter (Sigma)

N
um

be
r 

of
 S

tu
de

nt
s

Number of Students in Each Major Based 
 on Economics Cost Parameter (Sigma)

Econ
Eng
Psych

Figure 2.5: Number of Students in Each Major Based on Economics Cost
Parameter (Sigma). As σ�1 (economics) increases, the effective funds per stu-
dents drop – in all majors but in particular, in economics. This leads students
who are on the margin of majoring in economics to leave economics and join the
other majors.
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Figure 2.6: Number of Students in Each Major Based on Economics Cost
Parameter (Sigma). As σ�1 (economics) increases, the effective funds per stu-
dents drop – in all majors but in particular, in economics. In our simulation, the
university also drops funds to economics.

• Student Preference Parameter

Next, we vary γ1. We keep γ3 = 0.5, but we vary γ2 = 1−γ1−γ3. At extremely

low γ1, the university gets a great deal for students who actually do major in eco-

nomics. For low funding, the university awards a few very high quality degrees

to students who really like the field relative to their colleagues in engineering

and psychology. On the other hand, having university preferences so out of line

with student preferences may not be desirable.

After an initial drop in funding as γ1 increases, increased students in
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economics drive total funding of the department higher. Still, it is not enough

to increase the total funding per student. Students liking economics have major

impacts on ρ2 and ρ3.
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Figure 2.7: Modified Funds-per-Student Based on Student Preference Pa-
rameter (Gamma). In this simulation, we vary γ1 (student preference parameter
on economics) so that γ3 = 0.5 and γ2 = 1− γ1 − γ3. Economics (major 1) ex-
periences an influx of majors, making the funds-per-student more expensive for
that major. This leads to decreased ρ1, as the university tries to lower its cost for
funds-per-student by making the other majors more attractive.
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Figure 2.8: Number of Students in Each Major Based on Student Prefer-
ence Parameter (Gamma). In this simulation, we vary γ1 (student preference
parameter on economics) so that γ3 = 0.5 and γ2 = 1−γ1−γ3. Economics (major
1) experiences an influx of majors, making the funds-per-student more expensive
for that major. This leads to decreased ρ1 and increased S1, as the university tries
to lower its cost for funds-per-student by making the other majors more attrac-
tive.
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Figure 2.9: Proportion of Funds Given to Major Based on Student Prefer-
ence Parameter (Gamma). In this simulation, we vary γ1 (student preference
parameter on economics) so that γ3 = 0.5 and γ2 = 1−γ1−γ3. Economics (major
1) experiences an influx of majors, making the funds-per-student more expensive
for that major. The university, at very low levels of γ1, first lowers funding as
students start to come in. Over more reasonable relative γ1’s, the funds increase,
but not enough to make up for the students in the major (Figure 2.8).

• Salary Parameter

Similarly, we see what increased salary does in terms of attracting students to

major in economics. As we increase w1, more students flow into the major.

The dynamics of this simulation are similar to γ1, as the parametrization is the

same with different parameters. In this simulation, we set w3 = 0.8 and w2 =

3−w1−w3.
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Figure 2.10: Modified Funds-per-Student Based on Salary of Economics
(Salary). As we increase the salary of economics and decrease the salary of
engineering, the modified funds-per-student (ρ) increases in engineering and de-
creases in economics. This is even with more total funds entering in economics
(see Figure 2.12.)
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Figure 2.11: Number of Students in Each Major Based on Salary of Eco-
nomics (Salary). As we increase the salary of economics and decrease the salary
of engineering, more students enter economics – even students who once ma-
jored in psychology.
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Figure 2.12: Proportion of Funds Given to Major Based on Salary of Eco-
nomics (Salary). As we increase the salary of economics and decrease the salary
of engineering, the impact on the actual proportions of funds in each department
is ambiguous.

2.3.1.3 Differential Payments

To evaluate the impact of differential tuition, we need to look at two fac-

tors. Overall, we find that the results of the simulation are ambiguous. This may

seem counter-intuitive; most economists view differential tuition in the prism of

(a) higher tuition leads to less students in the major and (b) higher payments will

let the university provide more resources to allow more students into the major.

However, in the context of our model, higher tuition payments lead to an
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incentive for the university to offer higher ρi to the department to attract more

students. This may outweigh the loss in wi. Thus, these differential payments

are parameter dependent and ambiguous.

We have already shown what happens in our simulation with changed

wi under particular parameters. However, we have not shown what happens

to the university with an influx of variable money. To do this, we run a separate

simulation where the state differentially funds engineering majors. We will show

that the university devotes more resources to engineering, leading to an increased

enrollment in engineering.

To simulate the impact differential state funding would have on the uni-

versity, we must first look at the maximization problem of the university. The

university picks both the price of Q and the resulting amount of funds it receives

from the state (under the prediction that it can forecast student enrollment). Sum-

marizing, the university finds:

max
f

Q
(
ρ
) ζO1−ζ

s.t. :

pOO+ pQQ = S(B+ bS̃2)

F ≡ S(B+ bS̃2)
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List of variables and initial parameters:

M = 3,b = (1,0.5,3), and r = 0.25

α σ γ w

(1) Economics 0.33 1.5 0.33 1.0

(2) Engineering 0.50 3.0 0.17 1.2

(3) Psychology 0.17 1.0 0.50 0.80

Parameter Initial Value Description

B $16,667 Base payment, regardless of major.

b (will vary)
Additional payment per student

enrolled in engineering.

f = ( f1, f2, f3) Funds devoted to each department.

f̃ = ( f̃1, f̃2, f̃3)
Fraction of funds devoted to

each department.

O
Amount of spending not related

to Q(ρ).

pO $50,000 Price of O.

pQ Price of Q.

S 30,000 Number of students.

Si Number of students in each major i.

S̃i Fraction of students in each major i.

ζ 2/3

Proportion of funds devoted to

Q(ρ); which is also the Cobb-

Douglas parameter.
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This maximization is simulated and proceeds the following way:

1. A previous utility, the current maximum, is stored. If this is the first round,

set to zero.

2. An initial funding vector, f̃ = ( f̃1, f̃2, f̃3), is selected.

3. S̃2 is determined from the funding vector, f̃.

4. Price pQ is determined from the initial vector.

5. F is found.

6. 2/3 of F is devoted to Q, 1/3 to P. This is based on prices pO = $50,000,

and pQ from step 4.

7. The utility function is calculated. If higher than it was in step 1, this is the

new calculation.

The results of the simulation show that as a state-funded subsidy of engineering

occurs, funds increase and more students major in engineering. The modified

funds-per-student improves in every major, but it grows fastest in engineering.

An important point: per-student allocation increase not just in engineering –

some of the subsidy is going to educate students in other majors. Further, by

assumption, some of the money is going to other (O) parts of the university.
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Figure 2.13: Simulation: Level of Funding and Total Funding Based on
Per-Student State Bonus Payment for Engineering. As the state increases b,
the per-engineering differential subsidy, total funds increase, and the university
decides to grow engineering spending faster than other departments.
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Figure 2.14: Simulation: Level of Funding and Total Funding Based on
Per-Student State Bonus Payment for Engineering. As the state increases b,
effective funds per student increase in all fields, not just engineering – although
the differential is much larger in engineering.
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Figure 2.15: Simulation: Number of Students in Each Major Based on
Bonus Payment for Engineering. As the state increases b, the per-engineering
differential subsidy, more students fill in engineering as ρ2 increases more dif-
ferentially than other fields.

2.4 Education Funding Research

How does our simulation explain what is happening with actual data?

Many of the impacts of increasing tuition, differential tuition, major choice,

school choice, and departmental funding are already well-researched. Hoxby
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(1997) looks at increasing tuition throughout the latter half of the 20th cen-

tury and concludes that increased competition led to higher price tags, better

matched students, higher quality education, lower variance in student abilities at

schools, higher variance between schools, and increased diversity in geography

at schools. She made no decomposition into effects by departments.

Very few studies attempt to dissect cost into departments. One recent

attempt to do this is Johnson (2009). Johnson looks at five different ways to

compute cost of a bachelors degree. The first estimates the cost of the degree if

a student follows the prescribed catalog and does not fail any courses. The sec-

ond looks at the actual classes that students in each major take. The third (“Full

Cost Contribution”) includes students who fail out of the program or waste time

taking classes not attributable to their degree and transfer to a different (often,

easier) field. The fourth takes IPEDS data on institutional costs and does a large

regression. The final looks at the sticker price for the student. Estimates do

not change between the various calculations, with engineering uniformly higher

than other fields in virtually all of the calculations. The Full Cost Attribution is

notable because of students in the State University System of Florida who end

up in Leisure Studies, only 9% started off wishing to finish in that field, dramat-

ically decreasing the cost of the degree in the Full Cost Attribution calculation.

Johnson’s method finds Florida’s costs per bachelors degree of $26,485 for the

Catalog Cost, $31,764 for the Transcript Cost Method, and $37,757 for the Full

Cost Attribution.

The question though is what to include in the calculation. What is the
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relevant margin? In the Johnson paper, notably, capital costs are excluded. In the

IPEDS analysis, costs include funds from “contracts, grants, endowment income

and gifts,” which are not included in the other cost analyses, which include,

“direct and indirect” costs, and not “auxiliary” activities, such as housing.

The Johnson paper is a framework for a working paper by Romano,

Losinger, and Millard, who look at the cost of a community college degree.

Surprisingly, the more expensive community college degrees are very expen-

sive, even compared to four year degrees. At the upstate New York community

college they looked at, Broome Community College, the Full Cost Transcript

method yielded $47,968, for the Dental Hygiene Degree. Clearly, the college

is losing money on these degrees; they are being subsidized by lower-cost lib-

eral arts degrees. Another working paper by Romano and Djajalaksana actually

finds it is cheaper per full-time equivalent to educate students at a masters-level

university than it is to educate them at a community college.

Part of what may be driving low-cost masters-level university teaching is

economies of scale and scope. Readily available college-level data proliferated a

large number of studies on the marginal cost of activities on campus. Nelson and

Hevert (1992) find that economies of scale occur if colleges decide to increase

class size. It also finds laboratory courses are associated with higher cost. Dun-

dar and Lewis (1995) are also concerned with economies of scale and scope. In

the process, they discover that social science courses have the lowest cost and

engineering the highest. They find economies of scale and scope in at the de-

partmental level that differ between types of departments (i.e., social sciences)
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but not within type; they also control for quality using departmental rankings. de

Groot, et.al. (1991) also finds economies of scale for U.S. universities in 1983.

In contrast to previous studies, Fu, et.al. (2011) finds that Taiwanese universities

are too large and are experiencing diseconomies of scale.

Another way to compare departments is to use a multidimensional mi-

croeconomic analysis, such as data envelopment analysis. Kao and Hung (2006)

does this for a Taiwanese university, and a working paper by Halkos, Tzeremes,

and Kourtzidis does this for a Greek university. One fatal downfall of this ap-

proach when comparing departments is that outputs are different across majors.

While scientists may take pride in publishing papers, art faculty may both pub-

lish papers and put on exhibits. Since all departments could have different out-

puts, the efficiency scores are near one, particularly at a school with few aca-

demic departments.

2.5 Data Analysis

2.5.1 UCSD

The University of California, San Diego, is a highly-ranked “very high

research activity” public university in La Jolla, CA – a northern outlying neigh-

borhood of San Diego. There are over 23,000 students, multiple graduate pro-

gram, and a medical school (U.S. News and World Report 2015 and Carnegie

Classification of Institutions for Higher Education). UCSD is a residential uni-
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versity with six colleges1 – the academic “home” of students. These colleges

determine the general education requirements for the students. Any student in

any college can major in any of the departments on campus, as long as they meet

the requirements for that department. UCSD has strict guidelines2 for students

who want to transfer colleges, and this happens infrequently. Colleges house

their own freshman writing programs, which are hybrid courses where colleges

introduce their themes and students write about them.

Academic departments are divided into divisions3. Divisions also have

budgets, which we will include in the cost per credit hour.

2.5.2 Cost Data

We download the list of all courses taken by all students in FY2008 and

FY2009 (years 2007-8 and 2008-9) from the university’s database. The number

of students comes from the query “Campus Classlist Statistics 3rd Week” (the

drop date for classes is in the third week). Since some courses have more than

one credit hour option, we also find the average credit hours taken in the course

by downloading the query “Campus Classlist 3rd Week.” We assign the courses

to the department listed, with a few exceptions, some of which are listed below,

and some of which are noted in the Appendix.

Each course has both a department code and a subject code. In the admin-

istration of the university, the subject code is uniquely in a particular department.

1Thurgood Marshall, Earl Warren, Eleanor Roosevelt, Revelle, Muir, Sixth
2See “The College System: FAQ” for more details on these requirements.
3Undergraduate majors are in Art, Biology, Social Sciences, Engineering, and Science
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The theater department has a code “THEA,” and the Dance and Movement sub-

ject within theater has a subject code “TDMV.” However, some instructors teach

outside of their department code (i.e., cross-listed courses), so in our calcula-

tions, some subject codes may span multiple departments.

Most undergraduate independent and lab courses are not included in the

initial department code calculation, including many practicum courses. These

are, however, included when we find the cost for each subject code; some sub-

ject codes are clearly only for independent study purposes and thus have cost $0.

Department code calculations do not reflect “independent” courses – these are

assigned $0, but when we aggregate to subject code, these $0’s are reinserted to

lower the cost per credit hour for the final cost of the degree and to reflect actual

cost. We relegate the technical description of this calculation to the appendix.

The calculation is done in this way because any undergraduate receiving credit

for laboratory experience or independent research is contributing to the research

goals of the university, which is a worthy goal but not what we are trying to cal-

culate here. However, the calculation of the subject code will reflect the basket

of research and non-research courses in that particular subject code and will be

a good comparison. Furthermore, we can take this average to student-by-student

data containing lower and upper division hours and subject code to compute

the cost of a degree: Our data for this purpose has total hours by subject codes

including and not separating independent study courses.

We find cross-listed courses based on similarities on the course schedule,

and we assign these courses to the department of the faculty which taught the
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course as they are listed in the UCSD General Catalog. If the faculty home is

not listed, we assign it to the listed department as a last resort.

Weighted Penner-ratios are a UCSD measure for student-to-faculty ratios

and are adjusted for whether instructional hours are lower division undergradu-

ate, upper division undergraduate, early graduate, or late doctoral. The factors

for the weighting of the hours are, respectively, 1, 1.5, 2.5 × (15/12), and 3.5 ×

(15/12). The latter two have an adjustment for the fact that a full-time graduate

student is considered 12 hours instead of 15. Since this is the university’s way

to adjust for the difficulty of and issues related to teaching the course, and we

do not have finer data (such as total amount of time preparing for each type of

course), we defer to the university approach to adjust core units. As a sidenote,

the Penner-ratio, after all adjustments, is divided by a campus-wide average, so

that departments with an average student-to-faculty ratio will have a ratio of 1.0.

2.5.3 Cost Calculation

We have four methods to compute these costs, which are highly corre-

lated (see Table 2.3). The data is from UCSD Academic Affairs Resource Pro-

files for FY2008 and FY2009, the Office of Graduate Studies, and UCSD’s Blink

System. Except for Winter 2009 tuition4, all calculations are inflated to FY2009

dollars5. There were a few additional quid-pro-quos to these data, which we

relegate to the appendix.

4Tuition for each quarter is nearly the same, payments are available, so this is nearly
equivalent to the FY2009 calculation.

5We define FY2009 dollars as the average CPI-U over months July 2008-June 2009.
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We relegate the formal formulation of cost to the appendix, section 2.6.2.2.
There are several variables added to all of the cost calculations. These are:

1. Budgeted support funds.

2. Faculty salaries.

3. Lecturer salaries.

4. Teaching assistant salaries.

5. Tutor and reader salaries.

6. Diversity awards.

7. Block grant awards.

8. OGS non-specified awards.

9. Teaching assistant tuition waivers.

Four cost measures are computed. Measure one includes no space. The first
three have various amounts of space included in addition to the costs above.
Measure two includes the following space at $36/year6:

1. Office space allocated to department.

2. Classroom space allocated.

3. Teaching labs.

Measure three includes the three space requirements measures above and the
following space measures at $36/year:

6Christopher Beliare from the real estate firm Newmark Grubb Knight Frank assisted us
in lease data for the UCSD area.
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1. Assembly space.

2. Research space.

3. Other space.

The fourth measure uses the same space as the second measure, but it does not

do the Penner adjustment explained in Subsection 2.5.2.

First, a cost per credit hour is found per department by dividing the cost

measure by the hours awarded in the department code in FY2008 and FY2009

(summer excluded). As described earlier in Section 2.5.2, independent courses

are excluded and valued at $0 in the department code run, but will be bundled

appropriately at the subject code level. We do this for all of the departments

and separately for divisions. We then sum the money used in each subject code

by computing the hours awarded times the sum of division cost plus department

costs. We then divide by the hours awarded by subject code (thus independent

courses are awarded some monies at the end). We then get a cost per credit hour

for each subject code. All cost per credit hours are in the Appendix, Tables 2.1

and 2.2.

2.5.4 Cost at the University of California, San Diego

To determine the cost of an undergraduate degree, and to assign benefits

to the state, the university, and the student, we first use the cost per credit hour

calculations from section 2.5.3. Denote the set of courses each student S takes as

kS, which is a vector of courses (k). The subject code of each course is κ(k), the
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number of hours for that course is hk , and the Penner parameter of the course is

Pk .

The Penner parameter is a university-assigned weight for the level of the

course. Upper division courses, in this calculation are considered harder to teach

and more costly per hour than lower division courses. The Penner parameters

used in this calculation are 1 [Lower Division Undergraduate], 1.5 [Upper Di-

vision Graduate], 2.5 × (15/12) [Lower Graduate], and 3.5 × (15/12) [Upper

Graduate].

The cost of the degree
(
cκ(k)
)

is given by
∑

k∈kS

cκ(k)hk Pk . The cost per

credit hour, by subject code, are listed in Table 2.2.

We begin an analysis of the cost of each degree at UCSD in the spirit of

Johnson (2009). In our analysis, we look at the courses that students take and

the degrees with which they graduate. Say a student fails out of engineering and

enters economics. This throws the cost of the now non-contributing engineering

courses into the economics major. We trade this bias for another bias – one

where only the required courses are included. A cost measure which only looks

at the required courses does not allow us to compare majors where students are

likely to take non-required courses, for any particular reason.

Our student-level degree awarded data tracks non-transfer students who

entered in year 2006 as freshmen, and graduated by Spring 2012. We see dropouts,

and we consider those not earning their degrees at the end of this period as not

earning a degree. We have lower division, upper division, and graduate hours by

subject code. We do not use AP credit in the cost calculations, as these are not
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costs to the university.

We compute costs for summer courses as if they were during-the-year

courses separately and report these. The default measure presented in the re-

gressions in this report includes the summer-session hours. The summer session

has a fundamentally different cost structure and is run by UCSD extension, not

the school itself. Although not relevant to the cost calculation – the funding for

the session is also different (tuition is assigned per credit hour and the funding

mechanism between the university is also different). However, one can argue that

the summer session utilizes the same type of instruction (with perhaps a higher

lecturer percentage), the same buildings, and other resources – all for required

courses which would have appeared in the degree anyways.

We do not have data on inter-school transfer hours, which are generally

small at UCSD.

Each degree has a particular code, and we combine some degrees and

treat them as one degree in our analysis. For instance, an econ-coded Joint Math-

Econ degree is the same as a math-coded Math-Econ degree; we bundle several

literature majors, etc. A listing of these majors that are bundled as one are in the

appendix, Section 2.6.2.1. In aggregate analysis, some information is only avail-

able for departments; for instance, salary per faculty FTE will not be available

for programs without faculty. For the most part, programs do not have faculty

independent of departments. Much of the analysis is thus restricted to degrees in

departments. The number of observations in the analysis is in each table.

A listing of the degrees and the costs are available in the appendix, Sec-
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tion 2.9. Biology at UCSD is an enormous major, in fact, taking its own division,

and has many majors in this table, all of them fairly low-cost. Also of low-cost

are many of the social science majors. Humanities are not on the whole cheap;

there are few of these majors,.

2.5.4.1 Explaining Cost

Next, we use a regression framework to look at the role of factors in

explaining cost. The dependent variable in these regressions is the log of costs.

Independent variables include (a) the log of the salary per FTE faculty member

in the department, (b) the log of the students graduating in the department in

the dataset, (c) the log of the adjusted Penner Ratio [an adjusted student-faculty

ratio; different from the Penner parameter7], (d) the log of the indirect funds per

FTE faculty measure, (e) the log of the office space per FTE faculty member,

and (f) the log of the number of hours8.

Since the definition of cost is functionally dependent in a non-linear way

with adjusted hours, we also take the cost and subtract off Average Cost per

Adjusted Hour × Adjusted Hours. This helps wash out the hours portion of

the discrepancy and then the regressand only reflects additional cost above and

beyond the hours. We regress this adjusted cost on the non-log measures in the

7The Penner ratio is an adjusted student-faculty ratio. We will use the term Penner ratio
to contrast it with what we term the Penner parameter, which was discussed earlier
in the paper. The Penner parameter is actually used in the calculation of the adjusted
Penner ratio.

8We adjust logs by a trivial fraction of a dollar to avoid zeros and small, negative num-
bers. While this is a fairly controversial procedure, we also do an adjusted-mean pro-
cedure.
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previous paragraph. This should create confidence in the log regression if the

signs are similar.

Additionally, we have indicators for a double major, one Bachelors of

Science, and colleges. “Transfer” students are students who transfer from one

college to another. UCSD is a residential college with six colleges9 – the aca-

demic “home” of students. These colleges determine the general education re-

quirements for the students. Any student in any college can major in any of the

departments on campus, as long as they meet the requirements for that depart-

ment. UCSD has strict guidelines for students who want to transfer colleges, and

this happens rarely.

Information on the data is relegated to the appendix.

The cost-regression results are consistent with the presented model and

are presented in Tables 2.4 to 2.6. The student-faculty ratio, the salary, and the

number of students are the only department-level significant variables when we

account for hours. The coefficient on adjusted hours is not surprising; the cost

is a function of hours. This paper does find a (very small) increasing return to

scale – but the coefficient, while significant, is economically small. A doubling

of students would yield a <4% increase in degree price. Notably, most of the

returns to scale that much of the education literature finds may be occurring

through lower-quality education: once we control for the Penner ratio, the cost

savings elasticities in the hours regressions go from -0.07 to -0.03.

If we do not control for hours, double majors are clearly more expensive;

Bachelors in Science Degrees do not appear significantly more expensive, but

9Thurgood Marshall, Earl Warren, Eleanor Roosevelt, Revelle, Muir, Sixth
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the signs are mostly positive and non-trivially small. Once we control for hours,

however, this washes away; double majors are actually cheaper controlling for

hours.

Removing the Penner ratio from the regression yields expected results.

The percent taught by faculty, which is negatively correlated with the Penner (see

Table 2.8), become significant. The returns to scale increase significantly. More

importantly, we must include the Penner to even see the impact on FTE faculty

salary. This is the most surprising result; our simulation predicts a negative

coefficient: That if you do not take into account faculty per student, you should

see a lower funds-per-student in higher salary departments. This in fact is true.

A regression of log cost of degree on log salary (and other binary variables) is

negative, not positive, and fairly large (-20.0%; see regression (14) in Table 2.5).

However, it is not significant at the 10% level. Higher paid faculty in expensive

departments teach more students to more than make up for their higher salaries.

Next, let’s look at time-to-completion, shown in Table 2.7. While the

elasticity is small, higher Penners are associated with lower time-to-degree. This

has the implication that higher Penner departments are also better from a time

perspective. However, we must be careful in assigning too much to the faculty-

student ratio. The effects are small, and the explanatory power of virtually all

relevant variables is incredibly small.
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2.5.5 Conclusions

Universities and students face substantially different incentives in pro-

curement of bachelor’s degrees. The university, if state funds are not allocated

towards majors differentially and tuition is equal, will face incentives to fund

popular majors at lower levels relative to unpopular majors. This is because

marginal students are a cost to the university. On the other hand, the state wants

students to major in hard, heavy-return majors. Students want to balance their

future potential salary against how difficult or enjoyable the major is.

Looking at UCSD, what we have shown in the model simulation seems

to be what is actually happening. The major, relevant factor in the analysis is

the modified student-to-faculty ratio. The paper shows that much of the so-

called returns to scale in education, at least at UCSD, is actually a reduction

in faculty time with students. Surprisingly, faculty salary across departments

does not impact the cost of education unless we account for the amount of per-

capita students the faculty member must bear; higher paid faculty deal with more

students. Indeed, a lone regression on faculty salary and other binary parameters

shows that higher paid fields lead to less costly degrees.
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2.6 Appendix, Education Paper

2.6.1 Tables

Table 2.1: Cost per Credit Hour (Department Code). This is the listing of
cost per credit hours for departments and programs as described in the text. Pro-
grams are highlighted in grey, and writing programs are highlighted in black.
The table is sorted by Measure II and does not include division costs.
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Department or Program Measure I II III IV
Basic Writing Program Admin $12.89 $20.57 $20.57 $20.57
Making of the Modern World $60.09 $63.48 $63.48 $63.60
Culture, Art, Technology $67.05 $74.54 $74.85 $83.28
Dimensions of Culture $79.09 $86.53 $86.53 $87.03
Revelle Humanities $84.25 $92.68 $92.68 $93.91
Muir College Writing Program $95.49 $107.25 $107.25 $111.89
Warren College Writing Program $99.02 $115.83 $115.83 $115.83
Science, Technology, Public Affairs $40.83 $40.83 $40.83 $46.30
Critical Gender Studies $41.44 $41.44 $41.44 $52.96
International Studies Program $52.80 $52.80 $52.80 $79.19
Urban Studies & Planning $49.69 $56.08 $56.08 $78.23
Third World Studies $55.38 $59.04 $59.04 $59.71
Earth Systems $65.94 $70.65 $70.65 $98.41
Human Development Program $59.87 $79.34 $79.34 $106.63
Linguistics Language Program $86.19 $93.68 $93.68 $98.66
Academic Internship Program $98.22 $135.64 $135.64 $203.47
Psychology $69.93 $79.17 $93.39 $115.79
History, CAESER $79.49 $85.82 $85.91 $121.24
Economics $80.64 $86.02 $86.23 $126.08
Biology $87.18 $103.95 $132.94 $166.39
Chemistry $84.14 $108.08 $139.01 $166.27
Political Science $102.92 $109.24 $109.24 $163.27
Educational Studies $96.14 $110.35 $110.42 $275.86
Bioengineering $88.21 $115.55 $142.76 $293.31
Communications $104.53 $115.66 $115.83 $181.55
Mathematics $107.67 $118.98 $119.55 $146.61
Sociology $120.24 $130.75 $130.75 $204.51
Cognitive Science $111.55 $131.95 $152.75 $193.21
Ethnic Studies $125.22 $137.90 $137.90 $204.85
Mechanical & Aeronautical Engineering $123.67 $143.73 $159.98 $266.26
Structural Engineering $120.75 $144.64 $188.81 $289.81
Computer & Science Engineering $129.69 $159.75 $175.98 $326.19
Visual Arts $131.54 $161.27 $196.05 $232.65
Anthropology $148.51 $165.26 $178.61 $287.44
Music $132.75 $167.88 $183.59 $230.82
Literature $155.62 $170.91 $171.35 $246.72
Linguistics (not FLP) $146.14 $172.93 $192.58 $265.22
Electrical & Computer Engineering $149.36 $178.29 $216.39 $461.49
Theater $143.94 $190.76 $220.86 $293.87
Physics $163.52 $200.01 $239.55 $260.53
Philosophy $198.75 $216.80 $216.80 $287.29
Rady School of Management $197.24 $246.93 $249.64 $646.12
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Table 2.2: Cost per Credit Hour (Subject Code). [includes division cost]

Subject Code Measure I Measure II Measure III Measure IV
Academic Internship Program AIP 98.22$    135.64$    135.64$     203.47$     
Anthropological Archeology ANAR 151.49$  168.54$    181.90$     292.41$     
Anthro/Biological Anthropology ANBI 148.12$  165.11$    179.18$     285.77$     
Anthropology/Sociocultural ANSC 151.49$  168.54$    181.90$     292.41$     
Anthropology ANTH 146.46$  162.94$    175.86$     284.82$     
Bioengineering BENG 98.83$    129.15$    155.87$     319.79$     
Biology/Biochemistry BIBC 91.37$    108.46$    137.35$     173.54$     
Biol/Genetics,Cellular&Develop BICD 91.25$    108.32$    137.32$     173.39$     
Biol/Ecology, Behavior, & Evol BIEB 91.25$    108.32$    137.32$     173.39$     
Biology/Lower Division BILD 91.11$    108.16$    137.11$     173.13$     
Biology/Molec Biol, Microbiol BIMM 91.31$    108.41$    137.39$     173.62$     
Biology/Animal Physiol&Neurosc BIPN 91.25$    108.32$    137.32$     173.39$     
Biology/Special Studies BISP 14.25$    16.91$      21.44$       27.07$       
Culture, Art, and Technology CAT 118.34$  142.94$    145.48$     159.87$     
Chemical Engineering CENG 136.88$  161.00$    177.79$     303.66$     
Critical Gender Studies CGS 47.69$    48.63$      48.64$       63.38$       
Chemistry and Biochemistry CHEM 86.99$    111.20$    141.89$     170.62$     
Chinese Studies CHIN 82.74$    89.69$      89.78$       126.74$     
Classical Studies (Hon Thesis) CLAS -$        -$         -$           -$           
Communication and Culture COCU 107.50$  118.94$    119.12$     186.52$     
Communication/General COGN 103.56$  114.58$    114.75$     181.36$     
Cognitive Science COGS 111.63$  131.81$    152.09$     194.06$     
Communication/Human Info Proc COHI 107.50$  118.94$    119.12$     186.52$     
Communication Media Methods COMT 90.26$    99.86$      100.01$     156.60$     
Communication as Social Force COSF 107.50$  118.94$    119.12$     186.52$     
Computer Science & Engineering CSE 142.12$  175.95$    192.65$     362.12$     
Dimensions of Culture DOC 141.69$  165.69$    165.69$     167.96$     
Education Abroad Program EAP 110.63$  129.01$    142.71$     195.91$     
Electrical & Computer Engineer ECE 162.14$  194.96$    233.20$     495.73$     
Economics ECON 83.40$    89.09$      89.31$       130.73$     
Education Studies EDS 98.46$    112.18$    112.60$     260.31$     
Engineering ENG 110.63$  129.01$    142.71$     195.91$     
Environmental Studies ENVR 120.14$  142.62$    148.01$     161.61$     
Eleanor Roosevelt College ERC 77.07$    89.88$      99.42$       128.23$     
Environmental Systems ESYS 62.05$    68.39$      70.72$       98.24$       
Ethnic Studies ETHN 128.10$  142.23$    143.12$     209.94$     
Exchange Programs EXPR 110.63$  129.01$    142.71$     195.91$     
Film Studies FILM 120.37$  142.90$    148.30$     161.89$     
Family and Preventive Medicine FPM -$        -$         -$           -$           
Human Development Program HDP 59.60$    77.18$      77.20$       106.15$     
History of Africa HIAF 82.80$    89.76$      89.85$       126.81$     
History of East Asia HIEA 82.76$    89.71$      89.80$       126.74$     
History of Europe HIEU 82.76$    89.71$      89.80$       126.74$     
History of Latin America HILA 82.80$    89.76$      89.85$       126.81$     
History, Lower Division HILD 82.80$    89.76$      89.85$       126.81$     
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Table 2.2. Cost per Credit Hour (Subject Code), continued.

Subject Code Measure I Measure II Measure III Measure IV
History of the Near East HINE 82.57$    89.50$      89.60$       126.45$     
History of Science HISC 82.69$    89.64$      89.73$       126.64$     
History Topics HITO 69.40$    75.23$      75.31$       107.00$     
History of the United States HIUS 82.98$    90.31$      90.40$       127.04$     
Human Rights HMNR 132.17$  146.38$    156.01$     245.84$     
Humanities HUM 157.84$  183.60$    184.67$     186.03$     
Computing and the Arts ICAM 129.11$  157.92$    184.61$     226.25$     
International Studies INTL 55.05$    55.35$      55.36$       83.08$       
Japanese Studies JAPN 82.64$    89.59$      89.68$       126.64$     
Judaic Studies JUDA 80.64$    87.41$      87.51$       124.31$     
Latin American Studies LATI 107.10$  124.91$    138.17$     191.57$     
Law and Society LAWS 110.63$  129.01$    142.71$     195.91$     
Linguistics/Arabic LIAB 89.16$    96.96$      96.97$       103.63$     
Linguistics - Directed Study LIDS 89.16$    96.96$      96.97$       103.63$     
Linguistics/French LIFR 89.16$    96.96$      96.97$       103.63$     
Linguistics/German LIGM 89.16$    96.96$      96.97$       103.63$     
Linguistics/General LIGN 146.44$  172.93$    192.07$     265.75$     
Linguistics/Heritage Languages LIHL 89.16$    96.96$      96.97$       103.63$     
Linguistics/Italian LIIT 89.16$    96.96$      96.97$       103.63$     
Linguistics/Portuguese LIPO 89.16$    96.96$      96.97$       103.63$     
Linguistics/Amer Sign Language LISL 89.16$    96.96$      96.97$       103.63$     
Linguistics/Spanish LISP 89.16$    96.96$      96.97$       103.63$     
Literature of Africa LTAF 158.94$  174.85$    175.29$     252.28$     
Literature of the Americas LTAM 158.94$  174.85$    175.29$     252.28$     
Literature of China LTCH 158.94$  174.85$    175.29$     252.28$     
Literature/Cultural Studies LTCS 158.46$  174.33$    174.77$     251.63$     
East Asian Literature LTEA 158.35$  174.20$    174.64$     251.35$     
Literatures in English LTEN 157.45$  173.45$    174.06$     250.47$     
Literature/European & Eurasian LTEU 136.98$  150.37$    150.72$     217.07$     
Literature/French LTFR 158.94$  174.85$    175.29$     252.28$     
Literature/Greek LTGK 131.14$  143.83$    144.15$     217.95$     
Literature/German LTGM 121.74$  133.28$    133.55$     203.47$     
Literature/Italian LTIT 125.34$  137.30$    137.59$     208.71$     
Literature/Korean LTKO 158.94$  174.85$    175.29$     252.28$     
Literature/Latin LTLA 86.36$    93.74$      93.85$       131.27$     
Literature / Portuguese LTPR 158.94$  174.85$    175.29$     252.28$     
Literature/Russian LTRU 82.56$    89.49$      89.59$       126.51$     
Literature/Spanish LTSP 158.43$  174.29$    174.72$     251.71$     
Literature/Theory LTTH 100.26$  109.27$    109.44$     155.58$     
Literatures of the World LTWL 146.73$  161.21$    161.60$     233.57$     
Literature/Writing LTWR 150.80$  165.90$    166.32$     241.22$     
Mechanical & Aerospace Engin MAE 137.73$  162.09$    179.64$     305.78$     
Mathematics MATH 111.11$  122.87$    123.43$     151.98$     
Muir College Writing Program MCWP 174.41$  208.71$    214.11$     220.81$     
Medicine MED -$        -$         -$           -$           
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Table 2.2. Cost per Credit Hour (Subject Code), continued.

Subject Code Measure I Measure II Measure III Measure IV
Rady School of Management MGT 197.24$  246.93$    249.64$     646.12$     
Making of the Modern World MMW 96.35$    123.34$    126.14$     123.62$     
Muir College MUIR 102.76$  119.84$    132.57$     181.17$     
Music MUS 134.06$  168.85$    184.04$     233.47$     
Neurosciences NEU -$        -$         -$           -$           
Ophthalmology OPTH -$        -$         -$           -$           
Orthopaedics ORTH -$        -$         -$           -$           
Pathology PATH -$        -$         -$           -$           
Pediatrics PEDS -$        -$         -$           -$           
Pharmacology PHAR -$        -$         -$           -$           
Philosophy PHIL 172.89$  188.58$    188.60$     258.42$     
Physics PHYS 166.74$  203.62$    243.09$     265.68$     
Political Science POLI 103.34$  110.13$    110.15$     164.40$     
Psychiatry PSY -$        -$         -$           -$           
Psychology PSYC 69.77$    78.90$      92.51$       115.96$     
Radiology RAD -$        -$         -$           -$           
Religion, Study of RELI 99.18$    112.97$    121.23$     169.96$     
Revelle College REV 107.93$  125.87$    139.23$     191.13$     
Reproductive Medicine RMED -$        -$         -$           -$           
San Diego Community College SDCC 16.20$    24.51$      24.51$       26.13$       
Structural Engineering SE 135.13$  162.96$    205.76$     327.70$     
Scripps Inst of Oceanography SIO 108.25$  126.24$    139.64$     192.74$     
Soc/Theory & Methods SOCA 119.85$  130.34$    130.36$     202.59$     
Soc/Cult, Lang, & Soc Interact SOCB 124.43$  136.48$    137.86$     215.45$     
Soc/Soc Organiz & Institutions SOCC 123.02$  133.85$    133.86$     209.20$     
Soc/Comparative & Historical SOCD 116.10$  126.24$    126.27$     194.93$     
Soc/Ind Research & Honors Prog SOCE 61.98$    67.42$      67.42$       105.37$     
Soc/Lower Division SOCL 123.21$  134.03$    134.04$     209.48$     
Sci, Technology&Public Affairs STPA 186.05$  223.92$    229.17$     231.09$     
Surgery SURG -$        -$         -$           -$           
Theatre / Acting TDAC 146.82$  194.13$    224.15$     298.72$     
Dance/Choreography TDCH 147.25$  194.70$    224.80$     299.44$     
Theatre / Design TDDE 146.65$  193.91$    223.89$     298.46$     
Theatre / Directing&Stage Mgmt TDDR 139.35$  184.25$    212.74$     283.37$     
Theatre / General TDGE 145.87$  192.88$    222.70$     297.43$     
Dance/History TDHD 97.36$    113.79$    120.94$     166.50$     
Theatre / History & Theory TDHT 131.83$  169.59$    192.51$     266.50$     
Dance/Movement TDMV 147.25$  194.70$    224.80$     299.44$     
Dance/Performance TDPF 147.25$  194.70$    224.80$     299.44$     
Theatre Dance/Practicum TDPR 140.67$  186.00$    214.76$     289.61$     
Theatre / Playwriting TDPW 144.56$  191.14$    220.70$     295.16$     
Dance/Theory TDTR 147.25$  194.70$    224.80$     299.44$     
Thurgood Marshall College TMC 109.32$  127.49$    141.02$     193.98$     
Third World Studies TWS 58.70$    62.98$      62.98$       65.27$       
Urban Studies & Planning USP 61.70$    68.87$      68.88$       97.41$       
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Table 2.2. Cost per Credit Hour (Subject Code), continued.

Subject Code Measure I Measure II Measure III Measure IV
Visual Arts VIS 129.91$  158.28$    190.14$     229.61$     
Warren College WARR 100.07$  116.71$    129.10$     181.34$     
Warren College Writing Program WCWP 244.24$  298.92$    304.17$     300.62$     



98

Table 2.3: Correlation Between Measures.

Department   |   I        II       III      IV 
-------------+------------------------------------ 
           I |   1.0000 
          II |   0.9867   1.0000 
         III |   0.9509   0.9786   1.0000 
          IV |   0.8432   0.8698   0.8463   1.0000 

Subject      |   I        II       III      IV 
-------------+------------------------------------ 
           I |   1.0000 
          II |   0.9875   1.0000 
         III |   0.9573   0.9864   1.0000 
          IV |   0.8773   0.8989   0.9095   1.0000 
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Table 2.4: Regression of Log Cost, Including Adjusted Hours as a Variable.

(1) (2) (3) (4) (5) (6) (7)
Log(Adjusted Penner Ratio) -0.407*** -0.460*** -0.484*** -0.487***

(0.0582) (0.0503) (0.0426) (0.0420)
Log(Indirect Funds per FTE) 0.00475* 0.00442 -0.00305 0.00490* 0.00594*** -0.0110*

(0.00267) (0.00259) (0.00390) (0.00248) (0.00184) (0.00564)
Log(Office Space per FTE) 0.0130 0.0315 0.0125 0.0255

(0.0418) (0.0436) (0.0542) (0.0393)
Log(Percent Taught by Faculty) 0.0388 0.0360 0.220***

(0.0503) (0.0523) (0.0627)
Log(Salary Per FTE) 0.268*** 0.306*** 0.0989 0.301*** 0.280*** -0.0698 -0.0363

(0.0658) (0.0723) (0.0867) (0.0685) (0.0668) (0.180) (0.0765)
Log(Adjusted Hours) 1.011*** 1.016*** 1.014*** 1.018*** 1.023*** 1.097*** 1.019***

(0.0254) (0.0244) (0.0353) (0.0250) (0.0241) (0.0530) (0.0405)
Log(Students Graduating in Dept) -0.0168* -0.0567*** -0.0769***

(0.00875) (0.0106) (0.0116)
Double Major -0.0570*** -0.0584*** -0.0483*** -0.0588*** -0.0591*** -0.0498*** -0.0479***

(0.00788) (0.00675) (0.0118) (0.00687) (0.00700) (0.0134) (0.0142)
One B.S. -0.000355 -0.0177 0.0519 -0.0160 -0.00931 0.0593 0.0585**

(0.0184) (0.0190) (0.0313) (0.0189) (0.0176) (0.0414) (0.0269)
Muir College 0.0287*** 0.0267*** 0.0370*** 0.0259*** 0.0273*** 0.0299*** 0.0311***
(ERC is the base.) (0.00486) (0.00490) (0.00679) (0.00485) (0.00454) (0.00658) (0.00662)
Revelle College 0.0364*** 0.0347*** 0.0405*** 0.0342*** 0.0361*** 0.0318*** 0.0317***

(0.00680) (0.00692) (0.00786) (0.00704) (0.00660) (0.00780) (0.00940)
Sixth College 0.0499*** 0.0482*** 0.0655*** 0.0473*** 0.0482*** 0.0719*** 0.0643***

(0.00421) (0.00417) (0.0101) (0.00429) (0.00425) (0.0138) (0.00937)
Thurgood Marshall College 0.0279*** 0.0270*** 0.0322*** 0.0266*** 0.0277*** 0.0297*** 0.0274***

(0.00538) (0.00556) (0.00643) (0.00560) (0.00504) (0.00769) (0.00696)
Transfer 0.0505*** 0.0480*** 0.0671*** 0.0484*** 0.0485*** 0.0864*** 0.0792***

(0.0113) (0.0112) (0.0140) (0.0112) (0.0110) (0.0236) (0.0164)
Warren College 0.0574*** 0.0557*** 0.0715*** 0.0558*** 0.0578*** 0.0927*** 0.0750***

(0.00753) (0.00745) (0.0118) (0.00761) (0.00804) (0.0186) (0.0147)
Constant 1.785* 1.143 3.955*** 1.213 1.582** 5.151** 5.530***

(0.919) (0.903) (1.166) (0.830) (0.711) (2.061) (0.918)
Observations 3,616 3,616 3,616 3,616 3,616 3,616 3,616
R-squared 0.890 0.887 0.840 0.886 0.886 0.707 0.802

STANDARD ERRORS CLUSTERED BY DEPARTMENT.

*** P<0.01, ** P<0.05, * P<0.1
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Table 2.5: Regression of Log Cost without Hours.

(8) (9) (10) (11) (12) (13) (14) (15)
Log(Adjusted Penner Ratio) -0.417*** -0.514*** -0.565*** -0.582***

(0.0862) (0.0858) (0.0881) (0.0827)
Log(Indirect Funds per FTE) 0.00392 0.00331 -0.00407 0.00436 0.00946** -0.0108

(0.00393) (0.00391) (0.00490) (0.00404) (0.00388) (0.00754)
Log(Office Space per FTE) 0.102 0.136** 0.102 0.124**

(0.0595) (0.0623) (0.0733) (0.0561)
Log(Percent Taught by Faculty) 0.0821 0.0774 0.268***

(0.0757) (0.0848) (0.0863)
Log(Salary Per FTE) 0.368*** 0.436*** 0.195 0.426*** 0.325** -0.0947 -0.202 -0.0143

(0.108) (0.125) (0.121) (0.119) (0.127) (0.237) (0.149) (0.107)
Log(Students Graduating in Dept) -0.0303** -0.0712*** -0.0998***

(0.0115) (0.0138) (0.0150)
Double Major 0.102*** 0.101*** 0.112*** 0.101*** 0.103*** 0.129*** 0.126*** 0.116***

(0.0194) (0.0182) (0.0225) (0.0181) (0.0188) (0.0264) (0.0257) (0.0241)
One B.S. 0.0565 0.0256 0.110** 0.0293 0.0639 0.153** 0.0946 0.163***

(0.0367) (0.0348) (0.0513) (0.0355) (0.0398) (0.0661) (0.0604) (0.0368)
Muir College 0.0131 0.00932 0.0216 0.00771 0.0138 0.0158 0.0113 0.0202
(ERC is the base.) (0.0143) (0.0145) (0.0165) (0.0145) (0.0159) (0.0170) (0.0174) (0.0169)
Revelle College 0.0218 0.0185 0.0259 0.0174 0.0266 0.0205 0.0115 0.0244

(0.0182) (0.0187) (0.0189) (0.0187) (0.0214) (0.0203) (0.0205) (0.0206)
Sixth College 0.0763*** 0.0735*** 0.0924*** 0.0717*** 0.0770*** 0.108*** 0.109*** 0.0948***

(0.0158) (0.0161) (0.0208) (0.0158) (0.0163) (0.0261) (0.0262) (0.0206)
Thurgood Marshall College 0.0282 0.0265 0.0326 0.0256 0.0309 0.0336 0.0292 0.0318

(0.0193) (0.0196) (0.0204) (0.0196) (0.0203) (0.0223) (0.0220) (0.0203)
Transfer 0.0835* 0.0793* 0.101** 0.0802* 0.0814* 0.130** 0.133*** 0.116**

(0.0437) (0.0436) (0.0448) (0.0434) (0.0442) (0.0475) (0.0465) (0.0459)
Warren College 0.0722*** 0.0693*** 0.0867*** 0.0696*** 0.0795*** 0.124*** 0.121*** 0.0989***

(0.0116) (0.0112) (0.0130) (0.0113) (0.0149) (0.0181) (0.0168) (0.0189)
Constant 5.665*** 4.536*** 7.899*** 4.697*** 6.613*** 11.38*** 12.57*** 10.91***

(1.359) (1.510) (1.556) (1.395) (1.456) (2.726) (1.734) (1.222)
Observations 3,616 3,616 3,616 3,616 3,616 3,616 3,616 3,616
R-squared 0.428 0.419 0.375 0.416 0.400 0.141 0.116 0.325

STANDARD ERRORS CLUSTERED BY DEPARTMENT.

*** P<0.01, ** P<0.05, * P<0.1
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Table 2.6: Regression of Mean-Hour Adjusted Cost on Variables.

(1) (2) (3) (4) (5) (6) (7)

-8,326*** -8,169*** -9,286*** -10,085***

(1,663) (1,800) (1,589) (1,629)

Indirect Research Funds ($ per FTE) 0.00904 -0.0230* -0.0382 -0.0199 -0.00161 -0.0390*

(0.0211) (0.0118) (0.0336) (0.0119) (0.00739) (0.0203)

Office Space -0.976 4.478* 4.976 4.023

(Assigned Square ft. per FTE) (3.522) (2.362) (5.608) (2.365)

Percentage Taught by Faculty 2,003 3,873 14,293***

(3,631) (3,370) (3,703)

Salary per FTE 0.0792*** 0.0698** -0.0160 0.0749** 0.0876*** -0.0734** -0.0411

(0.0256) (0.0294) (0.0279) (0.0298) (0.0286) (0.0279) (0.0308)

Number of Students in Dept. -3.158** -2.528

(1.405) (2.393)

Double Major -1,594*** -1,637*** -1,219*** -1,667*** -1,667*** -965.6** -1,092**

(255.1) (253.6) (324.0) (254.8) (257.7) (427.8) (435.0)

One B.S. 1,130 871.7 2,608* 788.3 635.4 3,396 261.1

(936.9) (936.3) (1,316) (928.1) (787.2) (2,002) (1,571)

Muir 1,095*** 1,053*** 1,257*** 998.3*** 1,021*** 1,075*** 794.7***

(ERC is omitted) (194.2) (199.3) (226.2) (190.3) (180.6) (241.7) (196.8)

1,387*** 1,420*** 1,519*** 1,370*** 1,378*** 1,331*** 697.0***

(254.7) (258.2) (266.3) (256.8) (244.3) (262.2) (222.7)

Sixth 1,843*** 1,864*** 2,313*** 1,805*** 1,835*** 2,584*** 2,533***

(256.8) (261.1) (406.4) (253.6) (262.0) (511.8) (576.1)

1,020*** 1,046*** 1,130*** 1,014*** 1,034*** 1,093*** 814.9**

(177.4) (181.4) (222.8) (179.8) (173.3) (297.7) (301.4)

Transfer 1,409*** 1,544*** 1,971*** 1,536*** 1,524*** 2,737*** 2,865***

(395.4) (392.3) (455.9) (394.9) (389.1) (674.7) (908.0)

Warren 1,878*** 1,916*** 2,408*** 1,896*** 1,981*** 3,275*** 2,902***

(287.7) (287.2) (440.6) (288.0) (300.5) (625.2) (574.0)

Constant 2,282 -997.5 -8,806** 2,430 3,929* 7,318** 3,359

(4,023) (3,841) (4,254) (2,548) (2,033) (3,439) (3,646)

Observations 3,616 3,616 3,616 3,616 3,616 3,616 3,616

R-squared 0.667 0.653 0.522 0.647 0.631 0.208 0.091

Standard errors are clustered by department.

*** p<0.01, ** p<0.05, * p<0.1

Adjusted Penner Ratio

Revelle

Thurgood Marshall
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Table 2.7: Regression of Log Time in Years.

(TIME 1) (TIME 2) (TIME 3) (TIME 4)
Log(Adjusted Penner Ratio) -0.0493 -0.0554** -0.0413**

(0.0289) (0.0261) (0.0175)

Log(Indirect Funds per FTE) 0.000643

(0.00198)

Log(Office Space per FTE) 0.0365

(0.0287)

Log(Percent Taught by Faculty) 0.00633 -0.00295

(0.0274) (0.0299)

Log(Salary Per FTE) 0.0573 0.0373 -0.0199

(0.0372) (0.0403) (0.0331)

Log(Students Graduating in Dept) -0.00365

(0.00428)

Double Major 0.0412*** 0.0430*** 0.0434*** 0.0450***

(0.00983) (0.00985) (0.00965) (0.00983)

One B.S. 0.0173 0.0369** 0.0372** 0.0349**

(0.0204) (0.0139) (0.0146) (0.0136)

COLLEGE FIXED EFFECTS YES YES YES YES

Constant 0.566 0.997** 1.428*** 1.644***

(0.532) (0.467) (0.0116) (0.388)

Observations 3,596 3,596 3,596 3,596

R-squared 0.038 0.031 0.030 0.023

Standard errors clustered by department.

*** p<0.01, ** p<0.05, * p<0.1
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Table 2.8: Regression of Log Penner Ratio on Other Variables.

(1) (2)
Log(Percent Taught by Faculty) -0.898***

(0.150)
Log(Students Graduating in Department) 0.174***

(0.0477)
Constant -0.575** -0.178*

(0.237) (0.0952)

Observations 3,616 3,616
R-squared 0.477 0.520

Standard errors are clustered by department. *** p<0.01, ** p<0.05, * p<0.1
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Table 2.9: Cost per Degree.

Major(s) N Cost (Academic Year) Cost (Summer) Full Cost Time to Degree (yrs)
Did not graduate. 635 $16,448.77 $1,199.78 $17,648.55 2.81
History 45 $23,874.82 $819.04 $24,693.86 3.92
International Studies-Econ 53 $23,380.92 $1,544.56 $24,925.48 4.07
Joint Math-Econ 17 $24,371.09 $1,130.17 $25,501.27 3.87
International Studies-History 17 $24,001.92 $1,929.34 $25,931.26 4.25
Urban Studies and Planning 31 $24,179.09 $1,835.81 $26,014.90 4.25
Psychology 207 $24,719.81 $1,566.09 $26,285.90 4.30
Psychology 83 $24,696.48 $1,735.07 $26,431.54 4.11
International Studies-Poli Sci 63 $25,475.86 $1,088.10 $26,563.96 4.15
Human Development 90 $25,813.61 $1,265.64 $27,079.25 4.12
Economics 216 $25,385.83 $1,817.36 $27,203.20 4.20
Management Science 213 $25,650.79 $1,613.07 $27,263.87 4.19
Political Science and Specialties 256 $26,122.42 $1,274.13 $27,396.55 4.07
Microbiology 9 $26,269.37 $1,492.50 $27,761.87 4.14
History & Political Science and Specialties 7 $26,004.42 $1,850.23 $27,854.65 4.25
Economics & Political Science and Specialties 15 $25,614.44 $2,589.98 $28,204.42 4.27
International Studies-Sociol 31 $27,213.99 $1,104.28 $28,318.27 4.27
International Studies-Linguist 5 $27,153.27 $1,328.75 $28,482.02 4.20
Molecular Biology 40 $26,943.91 $1,547.18 $28,491.09 4.21
Human Biology 305 $27,039.56 $1,682.87 $28,722.44 4.23
Mathematics (Applied) 10 $27,828.17 $1,195.19 $29,023.36 3.98
Environmental Systems and Specialties 5 $27,935.87 $1,227.98 $29,163.86 4.70
General Biology 252 $27,223.66 $2,057.29 $29,280.96 4.35
Communications 148 $27,932.40 $1,368.70 $29,301.11 4.08
Mathematics 14 $27,852.94 $1,596.73 $29,449.67 3.96
Communications & Political Science and Specialties 7 $27,998.80 $1,508.89 $29,507.68 4.07
Physiology & Neuroscience 114 $27,762.95 $1,756.51 $29,519.46 4.27
Biochemistry and Cell Biology 257 $27,642.97 $2,049.69 $29,692.66 4.29
Ecology, Behavior & Evolution 29 $28,600.88 $1,294.61 $29,895.49 4.44
Biochemistry/Chemistry 45 $28,073.75 $1,954.66 $30,028.41 4.21
Environmental Systems and Specialties 40 $28,234.96 $1,957.20 $30,192.16 4.35
Sociology and Specialties 58 $29,117.89 $1,226.02 $30,343.91 4.25
Pharmacological Chemistry 52 $28,837.81 $2,244.80 $31,082.60 4.39
Chemistry 20 $30,494.16 $1,225.09 $31,719.25 4.39
International Studies-Anthro 7 $29,122.59 $2,673.74 $31,796.33 4.43
Political Science and Specialties & Sociology and Specialties 8 $30,778.45 $1,866.02 $32,644.47 4.19
Anthropology and Specialties 23 $31,124.18 $1,689.37 $32,813.55 4.13
Cognitive Science and Specialties 80 $30,943.50 $1,909.21 $32,852.71 4.35
Joint Math-Econ 9 $29,670.18 $3,590.83 $33,261.01 4.94
Probability & Statistics 7 $30,705.91 $2,918.23 $33,624.14 4.25
Visual Arts (Media) 37 $32,367.08 $1,281.13 $33,648.21 4.18
Ethnic Studies 28 $32,034.24 $1,935.84 $33,970.08 4.74
Literature (French, Spanish, English, World), Lit/Writing, or Lit Cultural 74 $32,604.37 $1,519.13 $34,123.50 4.18
Linguistics and Specialties, except Language Studies 13 $33,856.66 $941.75 $34,798.42 4.23
Visual Arts (Studio) 11 $32,399.66 $2,511.31 $34,910.97 4.57
Bioengineering and Specialties 114 $33,549.85 $1,553.45 $35,103.30 4.31
Visual Arts(Art Hist/Criticsm) 15 $34,021.72 $1,340.12 $35,361.84 4.37
Cognitive Science and Specialties 10 $33,112.10 $2,520.93 $35,633.03 4.56
Philosophy 16 $34,706.30 $2,341.40 $37,047.70 4.55
Interdisc Computing & the Arts 16 $35,893.48 $1,518.77 $37,412.24 4.52
Mathematics 8 $36,592.74 $1,864.12 $38,456.86 4.88
Chemical Engineering 40 $36,273.87 $2,338.92 $38,612.79 4.39
Computer Science 91 $36,719.21 $2,043.44 $38,762.65 4.46
Interdisc Computing & the Arts 14 $38,091.79 $823.80 $38,915.59 4.45
Theatre 16 $37,984.48 $1,392.05 $39,376.52 4.34
Structural Engineering 72 $39,483.88 $2,268.06 $41,751.94 4.60
Environmental Engineering 9 $37,309.38 $4,515.03 $41,824.41 4.56
Physics and Specialties 16 $41,146.91 $917.95 $42,064.86 4.05
Aerospace Engineering 55 $39,382.63 $3,015.68 $42,398.31 4.41
Mechanical Engineering 126 $39,127.46 $3,292.05 $42,419.51 4.65
Computer Engineering 14 $41,698.22 $1,058.53 $42,756.76 4.38
Electrical Engineering 59 $41,756.24 $1,514.85 $43,271.09 4.53
Music 8 $42,221.32 $1,872.81 $44,094.13 4.50
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2.6.2 Technical Appendix

2.6.2.1 Bundled Majors

This listing reflects majors that we bundled into one major. Some majors
have the same title but are under different codes – for instance, some Math-Econ
majors are classified under math, whereas others are classified under Economics.
Additionally, some specialized majors have very small enrollments – instead
of showing the actual cost of a small number of students, these students were
included along with other majors in their department.

1. Anthropology, Anthropology(Conc in Bio Anth), Anthropology(Conc in
Archaeol), Anth (Conc Sociocultural Anth)

2. Bioengineering, Bioengineering: Pre-Medical, Bioengineering (Biotech-
nology), Bioengineering: Bioinformatics

3. Cognitive Science, Cogn Sci w/Specializ Human Cog, Cogn Sci w/Specializ
Neurosci, Cogn Sci w/Spec Hum Comp Inter, Cogn Sci w/Spec Clin Asp
Cogn

4. Two differently coded Computer Engineering Degrees

5. Joint Major Mathematics & Econ (Home: Econ Dept), Joint Major Math-
ematics & Econ (Home: Math Dept)

6. Environ Sys (Earth Sciences), Environ Sys (Ecol,Behav&Evol), Environ
Sys(Environ Chemistry), Environ Sys (Environ Policy)

7. Linguistics, Linguistics(Spec Lang&Society), Linguistics(Spec Cogn &
Lang)

8. French Literature, Spanish Literature, Literature/Writing, Literatures in
English, Literatures of the World, Literature/Cultural Studies

9. Political Science, Political Sci/Amer Politics, Political Sci/Compar Poli-
tics, Political Sci/Intntl Relations, Political Sci/Political Theory, Political
Sci/Public Law, Political Sci/Public Policy

10. Two differently coded Communication Degrees
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11. Physics-Biophysics, Physics, Physics w/Specializ Mtrls Phys, Phys w/Spec
Computational Phys, Physics w/Specializ Astrophys

12. Sociology, Sociology-American Studies, Sociology-Culture/Communic,
Sociology-Economy and Society, Sociology-International Stu, Sociology-
Law and Society, Sociology-Social Inequality

13. Two differently coded Computer Science Degrees



107

2.6.2.2 Technical Description of Cost Calculation

In order to compute the cost, we use the following variables:

1(k)
Identity function equal to 1 if course k is not a graduate teaching

course or an undergraduate independent study course.

1(k,m) Identity function equal to 1 if course k is taught by department m.

BGm Block grant awards for department m (FY2008-9).

Cq
m Budget of department or division m, measure q.

cm,q Cost per credit hour for major m, measure q.

cκ,q Cost per credit hour for subject code κ, measure q.

d,qc Cost per credit hour for division d, measure q.

D(m) Division of major m.

DIVm Diversity awards for graduates in department m.

F1
m Office space allocated to department m (assigned ft2 FY2008-9).

F2
m Classroom space allocated to department m (assigned ft2 FY2008-9).

F3
m Teaching labs allocated to department m (assigned ft2 FY2008-9).

F4
m Assembly space allocated to department m (assigned ft2 FY2008-9).

F5
m Research space allocated to department m (assigned ft2 FY2008-9).

F6
m Other space allocated to department m (assigned ft2 FY2008-9).
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hk Non-adjusted average credit hour taken for course k.

k Course

kκ Set of courses in subject code κ.

km Set of courses in major m.

κ Subject code

κm Set of subject codes in department m.

LECm Lecturer salaries in department m.

m Department

M(k) Function returning departmental home of course k.

OGSm OGS non-specified awards for department m.

Pk Penner measure for course k.

Sk Number of students in a course k.

SFm Budgeted support funds for department m (FY2008-9).

SALm Faculty salaries for department m (FY2008-9).

T Am Teaching assistant salaries for department m (FY2008-9).

T ATm Teaching assistant tuition waivers for department m (FY2008-9).

TUm Tutor and reader salaries (FY2008-9).

The cost per credit hour calculation is given by:

C1
m = SFm+SALm+LECm+T Am+TUm+DIVm+BGm+OGSm+T ATm (2.6)

C2
m = C4

m = C1
m +36

3∑
t=1

Ft
m
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C3
m = C1

m +36
6∑

t=1

Ft
m

cm,q =



q � 4 Cq
m∑

κ∈κm

∑
k∈kκ

Sk hk Pk ×1(k,m)1(k)

q = 4 Cq
m∑

κ∈κm

∑
k∈kκ

Sk hk ×1(k,m)1(k)

(2.7)

d,qc =



q � 4
Cq
d∑

κ∈κd

∑
k∈kκ

Sk hk Pk ×1(k,d)1(k)

q = 4
Cq
d∑

κ∈κd

∑
k∈kκ

Sk hk ×1(k,d)1(k)

cκ,m =



q � 4

∑
k∈kκ

1(k)× Sk hk Pk
(
cM (k),q +d(k),q c

)

∑
k∈kκ

Sk hk Pk

q = 4

∑
k∈kκ

1(k)× Sk hk
(
cM (k),q +d(k),q c

)

∑
k∈kκ

Sk hk
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2.6.2.3 Student Utility Problem

We take the ratio of students as implied by a logit utility function as given

instead of idiosyncratic. The utility function is Ums = b1 log γ̃m + b2 log ρm +

b3 log wm

w̄ + εms. The ratio of the students is given by:

Si |f
Sj |f =

exp
(
b1 log γ̃i+b3 log wi

w̄

)
exp(b2 log ρi)

exp
(
b1 log γ̃ j+b3 log

wj
w̄

)
exp(b2 log ρ j )

= exp
(
b1

[
log γ̃i − log γ̃ j

] )
exp
(
b2

[
log ρi − log ρ j

] )
× exp

(
b3

[
log wi

w̄ − log w j

w̄

] )
=

[
γ̃i
γ̃ j

]b1
[

wi
w̄
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2.6.2.4 Some Additional Remarks Concerning Treatment

Cost calculation: T ATm in Section 2.6.2.2 should be assigned to the de-

partment offering the stipend, but the data feed is based on where the student

is located. For instance, if a student in Economics is a teaching assistant for

Culture, Art, and Technology, we see lines related to ECON, but we only see

the line for CAT where the CAT program budget specifically funds the student.

Many of the other lines are from general funds, even though the CAT program

has initiated these expenses. To assign costs to the proper department, we take

this group of perhaps one or more students and assign the tuition and fee waiver

to the departments in proportion to the instructional stipend paid by each depart-

ment. We do not include the stipend in T ATm, as this is included in TUm and/or

T Am.

Student-level data for T ATm is unavailable for FY200810; for FY2008,

we regress (without a constant) the FY2009 stipend on FY2009 TA salaries, and

then we use the inflation-adjusted TA salary for FY2008 to estimate the FY2009

tuition waiver.

For SALm, we were unable to obtain non-salary benefits package sum-

maries for departments at UCSD until late in the research. In actuality, these

costs are assigned department-to-department by a formula which has little rele-

vance to the benefits actually received or to the burden implied by any particular

faculty or staff member.

10We received this data, but the student-level data for FY2008 does not match the sum-
mary statistics for FY2008 by a large margin, whereas a check for a few departments
on the FY2009 data against summary statistics match within rounding, so we are cer-
tain FY2009 is accurate.
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Variables BGm, DIVm, and OGSm come from a data feed from the Of-

fice of Graduate Studies. Block grants are a department-by-department sum

of money allocated by OGS; for more information on BGm, see Arovas, et.al.

(2010). The Material Science and Bioinformatics programs receive an allocation

of BGm, DIVm, and OGSm; we reassign these costs across relevant departments

based on the course makeup of the graduate students in those departments.

On occasion, the department m is ambiguous. Firstly, the History De-

partment is combined with the CAESER Program. This is because the CAESER

Program, which includes majors such as Classical Studies, Russian & Soviet

Studies, and others, is administered by the History Department. Secondly, we

have separated out the Linguistics Department, which is a true academic de-

partment, from the Linguistics Language Program, which teaches undergraduate

foreign language courses. While they are administered in the same department,

they have separate budgets, and so many students take courses in the language

program that it is worth separating. Next, the Nanoengineering department is

created in the middle of the dataset. Thus, we combine it with a similar depart-

ment that taught many of the courses prior to its founding, the Mechanical and

Aerospace Engineering Department.

We do not have data for some departments. For instance, the Scripps In-

stitute of Oceanography is a part of UCSD but is assigned a completely different

budget process. These department codes, usually located in specialty depart-

ments, are assigned the average cost per credit hour11.

11Department codes ERTH, LAWS, LATI, RELI, SOE, SIO, and UNAF. Code ERTH
is different than ESYS; we do have data for ESYS. We use average adjusted under-
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The $36 figure comes from lease information on office and research

space for similar buildings in the nearby Torrey Pines area in San Diego; this

information was provided by Newark Grubb Night Frank.

Provost and division calculations are meant to include administrative

costs, but often include courses taught by those provosts and divisions as well.

We do have information to properly separate several of these departments (i.e.,

writing programs, Muir Interdisciplinary and Critical Gender Studies), but for

some specific courses, there is no information. Unfortunately, this biases both

courses taught by those departments and the divisional administrative cost. In

a degree aggregation, these costs will aggregate properly as long as the student

taking these college-specific courses is in the college. Secondly, some division-

unidentifiable courses were assigned the average divisional cost.

Information on Right-Hand Side Variables: Most right-hand side data is

from Academic Affairs’ Resource Profiles and averaged across two years (we do

not average the averages; we take the numerator as the sum of the figures and

the denominator as the sum of the faculty over both years). However, the per-

centage of courses taught by faculty is taken from “Teaching Statistics for the

UCSD General Campus Academic Year 2007-2008, Excluding Summer Ses-

sions.” Since many programs have 0 FTE Faculty Members, many students

graduating in these programs are not included in the regression. Mechanical

Engineering and Nanoengineering are combined into one department. History

is combined with CAESER for the cost-per credit hour calculation (and for lo-

graduate hours to weight these parameters, except in measure 4, which we use average
unadjusted undergraduate hours.
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cation of degree to determine department size), but for most right-hand side

variables, we use only History funds. This is because there are no FTE faculty

in CAESER, so adding extra office space in the numerator for a large, linked,

but technically different, operation would make the combined History-CAESER

department a strange outlier. A similar rationale works for Linguistics and the

Linguistics Language Program.

A note on inflation: All data from FY2008 is inflated by 1.0140 (using

an average of July-June CPI for both years). We refer to this figure as FY2009

dollars.
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Chapter 3

Pollution Whack-a-Mole: Ambient

Acetaldehyde and the Introduction

of E-10 Gasoline in the Northeast

3.1 Chapter Abstract

This paper uses a complicated set of phase-ins and phase-outs of oxy-

genated motor fuel in the Northeast to determine whether E-10 ethanol-enhanced

fuel contributes to acetaldehyde air pollution over the pre-ethanol methyl tertiary-

buthyl ether (MTBE) fuel. Oil companies phased out MTBE because of ground-

water pollution concerns, and now E-10 is the standard fuel in EPA reformulated

gas areas. Using a difference-in-difference approach, I find a large percentage

increase in acetaldehyde pollution is associated with the switch from MTBE to

E-10. Using EPA carcinogenic estimation techniques, I find that the cost of this

119
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increase in acetaldehyde pollution is around $3 million annually for the New

York City Metropolitan area. This smaller cost estimate comes from a pollution

increase that – while large in percentage terms – is small in level terms.

3.2 Introduction

The make-up of motor vehicle fuel impacts the air we breathe. Increas-

ingly complicated phase-ins and phase-outs of gasoline oxygenate requirements

occurred from 1973-2006. In this paper, I explain how one particular phase-

out and phase-in can be used to measure the impact of E-10 gasoline – on one

particular air pollutant, acetaldehyde – in one particular region, the Northeast

United States. Because of the complexity of the regulations, I begin the paper

with an overview of the regulatory environment followed by a brief overview of

acetaldehyde.

This paper agrees with scientific papers which find small, positive in-

creases in acetaldehyde from E-10. This study does find large percentage im-

pacts, however, as prior acetaldehyde pollution is low in this region. Here, I use

a changing regulatory environment and monitor data to compare E-10 gasoline

to MTBE-enhanced gasoline. Previous scientific work on the problem has not

utilized social counterfactuals; I will use a control group of states as a counter-

factual. Additionally, this paper will also compute approximate acetaldehyde

pollution costs for a large city. Since I only look narrowly at this one type

of pollution, I cannot make a larger determination about air pollution from E-

10; however, few economic papers have considered novel air pollutants from
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ethanol-enhanced motor fuels.

3.3 Regulatory Framework

The United States phased out lead gasoline beginning in 1973, leading

to, “one of the great environmental achievements of all time,” preventing large

amounts of lead poisoning (U.S. EPA 1996). Lead was an octane enhancer;

octane helps prevent engine knocking. Oil companies needed a substitute to keep

octane levels high, so they began adding methyl tertiary-buthyl ether (MTBE)

(U.S. EPA [7]).

In 1990, the Clean Air Act Amendments (CAAA90) compelled oil com-

panies to add even higher amounts of MTBE. In 1996, however, Santa Mon-

ica, CA, discovered MTBE leaked out of underground fuel tanks and polluted

groundwater. This lead many states to ban MTBE, and the industry phased out

MTBE in 2006. In the process, the industry switched to E-10, a 10%-ethanol en-

hanced gasoline, which also met reformulated gasoline requirements (U.S. EPA

[3]; U.S. EPA [7]).

The phase-in and phase-out of MTBE occurred in several stages. While

MTBE was used in much of the country, in actuality, several additives were

available. After the CAAA90, in the Midwest, oil companies used ethanol, and

elsewhere, they used MTBE (U.S. EPA [7]; U.S. EPA [9]). Ethanol has one

particular disadvantage that caused these separate markets – it is not easily mixed

into gasoline and must be added close to sale (U.S. EIA 2006).

After the Santa Monica water pollution discovery, states moved to ban
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MTBE. Connecticut and New York did this in 2004, so they began receiving E-

10 while the rest of the Northeast continued receiving MTBE-enhanced gasoline

(U.S. EIA 2003; U.S. EIA 2006; U.S. EIA Office of Oil and Gas 2003; U.S. EPA

[9]). This changed in 2006 when oil companies moved rapidly to rid the system

of MTBE, fearing pollution liabilities. This was realized in 2013 when a New

Hampshire jury fined Exxon Mobil $236 million for MTBE-related pollution

(Tuohy 2013, U.S. EIA 2006; U.S. EPA [9]).

3.4 A Description of Acetaldehyde

Acetaldehyde (CH3CHO) is a “probable human carcinogen” that causes

skin, eye, and lung irritation (U.S. EPA 2000). Scientific models predict large

increases in this substance when ethanol is burned. One of these studies, Jacob-

son (2007), found a 2000% increase in acetaldehyde pollution in Los Angeles in

2020 if the city switched from a baseline gasoline to E-85.

In contrast, none of the papers on E-10 find these large increases. A

public review draft on the California transition to ethanol predicted only small

increases in acetaldehyde over non-ethanol fuels (Allen et al. 1999). Anderson,

Lanning and Wilkes (1997) used an ARIMA model and found no impact on

acetaldehyde when Denver, CO, switched from MTBE to E-10.

Several papers look at acetaldehyde pollution in Brazil, which has high

ethanol consumption. Goldemberg, Coelho and Guardabassi (2008) look at the

transition to ethanol and do not find a concerning level of acetaldehyde pollu-

tion in the São Paulo region. An earlier paper, however, Grosjean, Miguel and



123

Tavares (1990) finds high levels of acetaldehyde in the same region.

Acetaldehyde has a very fickle atmospheric residence time. During the

day, it is relatively short. In St. Louis on a clear July day, acetaldehyde has a

3 hour residence time; in New York, it is 5 hours. On a cloudy or rainy July

day, this ups to 6 hours in St. Louis and 11 hours in New York. However, this

rapidly increases to 170 hours (St. Louis) and 40 hours (New York) at night on

a clear July day. On a clear January night, it has a 3000 hour residence time in

St. Louis and New York (U.S. EPA Technical Support Branch 1993). Thus, in

the summer, there is a short residence time during the day and a long one in the

evening.

3.5 Environmental Economics Research on Pollu-

tion

Environmental economists have utilized monitor data and economic tools

to answer regulatory and economic questions. These studies have looked at a

variety of air pollution topics – the impact of total suspended particulates on

infant mortality (Chay and Greenstone 2003), whether the Clean Air Act and

Amendments had an impact on SO2 levels (Greenstone 2004), and even whether

agricultural workers in California’s Central Valley are less productive when there

are high levels of ground-level ozone (Graff Zivin and Neidell 2012).

More specifically to this paper, gasoline and driver regulations have been

studied extensively. High levels of air pollution in Mexico City led to the city
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passing Hoy No Circula, a policy which required drivers to avoid using their

cars a particular day of the week based on their license plates. Davis (2008)

finds that drivers utilized different cars and taxis to get around the regulation,

and no criterion pollutant in the study went down. Chakravorty, Nauges and

Thomas (2008) finds that market segmentation in the United States increases

cost. Finally, this paper takes one approach used in Auffhammer and Kellogg

(2011). In this paper, the authors find that gasoline regulations in the United

States have not largely lowered ozone levels with the exception of regulations in

California.

3.6 Natural Experiment and Data

Connecticut and New York phased out MTBE in 2004, so they began re-

ceiving E-10 while the rest of the Northeast continued receiving MTBE-enhanced

gasoline (U.S. EIA 2003; U.S. EIA 2006; U.S. EPA [9]). I use EPA’s reformu-

lated gas survey from 2004-2006 to generate levels of ethanol in the gasoline

by metropolitan area (U.S. EPA [9]), and I match monitors from EPA’s AQS

Datamart (U.S. EPA [2]) to metropolitan areas using an online lookup tool (Sil-

ver Biology) and metro data from the U.S. Government Accountability Office

(2004). From both an internet archive of the survey explanation (U.S. EPA [6])

and personal communication (Lenski), the gasoline survey reflects the gas sold

in each metro area. Figure 3.1 shows the percentage ethanol in the gasoline in

each metro area.

The survey and the report from the EPA (U.S. EPA [6]) indicate that
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MTBE was transitioned during the Winter 2006 driving season. From the sur-

vey, all of the MTBE was out by Summer 2006 and was perfectly substituted to

ethanol. So, while there was some variation from 2004-2006, all areas received

treatment in 2006. Because of the transition, I focus on summer gasoline. Fur-

ther, in 2005, Hurricane Katrina resulted in a waiver of summer gasoline require-

ments (Kumins and Bamberger 2005), so I drop all observations after August 22

(Dyre 2005; U.S. EPA [5]).

I must focus on the Northeast for another particular reason in this setup.

No other area of the country is free from ethanol plants, which are likely sources

of acetaldehyde pollution. The EPA is monitoring acetaldehyde, for instance,

in Lynn County, IA (Kintz, Lundberg, and Dodge 2011). Figure 3.2 shows

the ethanol plants that were operated according to a 2006 snapshot of Ethanol

Producer. As expected, the Midwest is awash in ethanol production, which in-

creased in the 2006 season (Renewable Fuels Association). California’s RFG

surveys are not available for a portion of the study (U.S. EPA [9]), and other

areas of the country pose other problems, not least of which is the fact that these

are completely different air spaces.

Other data used in this analysis includes annual per-capita gross metropoli-

tan product from the U.S. Bureau of Economic Analysis (2013) in chained 2005

dollars. Monthly miles traveled were downloaded by state from the U.S. Na-

tional Highway Safety Administration through Pro Quest Statistical Datasets,

and these were divided by the estimated state population from the United States

Census Bureau through Pro Quest Statistical Datasets. Metro area populations
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were from the U.S. Census Bureau. MSA’s were determined from a listing map-

ping counties to MSA (U.S. GAO). RFG counties were from a listing archive

from the EPA (U.S. EPA [8]). I exclude 24 observations from a monitor in rural

Essex County, NY, near Whiteface Mountain1(Foy 1994; U.S. Code of Federal

Regulations 2003, 40 §80.70).

Acetaldehyde monitors used in the report are shown in Figure 3.3. To

be included in the analysis, the monitor must have had at least one sample be-

fore and after the main ethanol transition in 2006. Acetaldehyde monitors were

matched to weather monitors through a canned distance matching algorithm.

First, I downloaded a set of monitors from the National Oceanic and Atmo-

spheric Administration National Climate Data Center database. However, the

closest monitor often did not have the requisite weather variables. Thus, while I

found the closest monitor from this database for each variable, I also downloaded

weather monitor data for nearby airports. Since the monitors are in locations that

are highly urban, there are airport weather stations sufficiently close to the ac-

etaldehyde monitors (the maximum distance from the algorithm is 27.6 miles;

the mean is 10.5 miles). Because of the reliability of airport monitors is excel-

lent, I will use this data for the exposition in this paper. Using the alternative

weather variables do not change the results substantially, and using them also

requires a complicated algorithm and assumptions about the time of day highs

occurred.
1From Paul Foy of Albany, NY’s Daily Gazette, December 7, 1994: “It is one of the odd
mandates of the state’s clean-air program that only reformulated gasoline can be sold
above 4,500 feet on Whiteface mountain.

“There are no gas stations on Whiteface Mountain.”
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Monitors reported either every 24 hours or every 3 hours. AQS Datamart

has collocated monitors in the same location on occasion, per personal com-

munication with the EPA (Mangus). If the “Data Source Reference ID” was

different, I considered this a separate monitor for the purposes of the analysis.

For the purposes of matching to weather data only, the date was moved back one

day if the monitor was a three hour and began at 5 A.M. or earlier. The date was

moved forward one day if the monitor was a 24 hour reporting monitor begin-

ning 1:01 P.M. or after; in this case, the majority of the day was actually the next

day. This was only for purposes of matching these to weather variables; for the

main analysis, the actual day was used.

3.7 Data

A plot of median acetaldehyde measures are shown in Figures 3.4 and

3.5. These are arranged by state – except for New York and New Jersey, where

the New York City metropolitan area is separated from the rest of the state (these

are separated because the New York metropolitan area starts out with around half

E-10, half MTBE in 2004).

Figure 3.4 shows that New Jersey is a major outlier, even ignoring the

unusually high acetaldehyde readings in the New Jersey suburbs of Philadelphia

in 2004. Figure 3.5 excludes New Jersey. I run the model with both New Jersey

and without it. Notably, from Figure 3.5, the controls, New York and Con-

necticut start out above other states and trend downward in 2006. Some states

trend upward, such as Virginia. The monitors are reporting very low levels of
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acetaldehyde, in the 0-3 ppbC range.

3.8 Specification

I run a difference-in-difference setup for all of the monitors, only the

24 hour monitors, and only the three hour monitors. Additionally, I estimate

the model with a weighting scheme to try to control for over-sampling of some

areas. The long-form specification is as follows:

Aimt = 10δEmt +Tt + Ii + Rmt + β
′Weatherit +γ

′Regionalmt + εimt (3.1)

Here, Aimt is the level of acetaldehyde in ppbC for monitor i, metro area

m, and time t, Emt is the amount of ethanol in the gasoline as a decimal. Here, δ is

the impact of E-10. Tt is a time dummy, either annual or monthly. Ii is a monitor

fixed effect. Weatherit is a set of weather variables from airport monitors, and

Regionalmt is a set of controls. εimt is error.

Table 3.1 shows this regression on levels. In columns (5) and (6), the

impact of E-10 is a 1.03 ppbC increase in acetaldehyde levels. Including New

Jersey seems to increase the δ coefficient, from columns (1)-(4). I report both

robust standard errors and standard errors clustered by metropolitan area, which

is the level of analysis across many of the explanatory variables.

In specification (7) in table 1, I exclude controls and the ethanol coeffi-

cient. I then run the regression to see which years had the highest acetaldehyde

levels. From the regression, weather and monitor-controlled acetaldehyde levels
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were trending downwards in 2004-2005, but they spiked in 2006 (the absorbed

year).

Results for other demographic variables in Regionalmt are not reported

in Table 3.1. They are reported for log-log regressions, which I will discuss later;

however, the small variation in regional variables between years do not absorb

much of the variation and lead to numerical issues. The monitor fixed effects

over-fit the model to accommodate the new, numerically unidentified variable.

If the monitors are in a fixed spot and these values do not change substantially

over the three year window, then monitor fixed effects will absorb much of the

variation of the effect of Regionalmt . Let ρi denote the approximate regional

values for monitor i. Then, if Regionalmt does not change substantially over

time:

ρi ≈ Regionalm1 ≈ · · · ≈ RegionalmN

Aimt ≈ 10δEmt +Tt + Ii + Rmt + β
′Weatherit +γ

′ρi + εimt

Aimt ≈ 10δEmt +Tt + Rmt +
(
Ii +γ

′ρi
)
+ β′Weatherit + εimt

(3.2)

Adding metro population and GDP to the regression changes the estimate

on δ to 0.946 (a difference of 0.09 ppbC), but it also changes the monitor fixed

effects to unreasonable values ranging from -2.6 to 90.9 ppbC. Since I am not

interested in γ per se, allowing monitor fixed effects to take care of this is fine.

Tables 3.2 to 3.5 use log specifications instead of levels. A total of 138

(out of 4,574) data points read 0 ppbC acetaldehyde (none in New Jersey). In

this case, I specified two different modifications. The first is simply adding 0.001
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pbbC acetaldehyde to all observations before logging, and the other is setting the

reading equal to log(max(pbbC acetaldehyde,0.1)). Specification (8) in Table 3.2

shows an estimate of exp(0.641), or a near doubling of acetaldehyde pollution

under E-10. Notably, this agrees with the level specification, as acetaldehyde

pollution remains low in both regressions. It does, however, increase substan-

tially in percentage terms.

Table 3.3 is slightly different. Here, I have substituted Tt with a time

trend, θt. Notably, day-to-day, acetaldehyde seems to be going down, but when

ethanol is introduced, it rebounds. However, this effect is not statistically sig-

nificant when clustered by metro area. In Table 3.4, I drop monitor fixed effects

to try to identify regional variables. However, I get little fit from the regression,

and the impact does not change substantially.

Lastly, in Table 3.5, I add weights to the regression to balance over-

sampling in some regions. Let Z equal the number of counties in the analysis.

Let NCO equal the observations in the analysis for a particular county (CO), and

let N equal the total number of observations. Then, the weight is2:

wCO =
1/Z

NCO/N
(3.3)

The numbers change slightly, but they still indicate a large positive per-

centage change but small level change in acetaldehyde pollution.

2I consulted http://www.atlas.illinois.edu/support/stats/resources/spss/create-post-
stratification-weights-for-survery-analysis.pdf for a description of how to form weights
from survey data.
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3.9 Robustness Checks

The regression on levels suffers from having values near zero. It is not

possible to have negative values. Additionally, some monitors have detection

limits as high as 0.6 ppbC acetaldehyde. The regression on logs somewhat ame-

liorates this; however, as a robustness check, I also run a Poisson regression.

Here, I “count” the number of units of 0.6 ppbC acetaldehyde; the dependent

variable is �Aimt/0.6�. While this is clearly inferior to the log regression in that

continuity is lost, it has a few advantages – numbers below any monitor’s de-

tection limit are bundled together, and there is no probability of values less than

0.

Table 3.6 lists two Poisson regressions, one with robust standard errors

and one with clustered by metro area. The estimate for the ethanol variable

is 0.581, with a corresponding IRR of 1.79, indicating a near 80% increase in

acetaldehyde pollution with E-10. Thus, the findings are robust to the MDL.

Next, define the following:

Θm = Em(t∈year 2006) −
Em(t∈year 2004) +Em(t∈year 2005)

2
(3.4)

Here, Θm is an intensity of treatment measure. Higher values of Θm indi-

cate larger values of ethanol change from 2004-2005 to 2006. To test whether the

treatment areas are different from non-treatment areas, I also run the following
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regression.

Aimt =
10ω1Θm +10ω2Θm1

(
t ∈ year 2006

)
+ Rmt + θt +Montht+

β′Weather,Milesmt + ε imt

(3.5)

In equation 3.5, I cannot identify monitor fixed effects because metro

area m contains many monitors. Thus, a regression of Θm on Ii yields an R2

of 1. I am interested in both ω1 and ω2. If ω1 is statistically significant, then

the change in ethanol is correlated with acetaldehyde measures. Now, ω2 is the

intensity-controlled measure.

I do find thatω1 is statistically significant and negative. Here, I am taking

the conservative approach to not reject ω1 of using robust (as opposed to metro-

area clustered standard errors). However, even including ω1 in the regression, I

findω2 is statistically significant, even using metro-area clustering, which is now

the conservative choice. The value for ω2 is 0.641, which is 62.1% of estimate

Table 3.1, specification (5).

Since equation 3.5 cannot identify monitor fixed effects, the new difference-

in-difference regression does not control for monitors – it’s not possible to know

whether the actual answer is 0.641 or 1.033 ppbC acetaldehyde. However, as I

mention in the conclusion section, both answers are incredibly small in compar-

ison to the amount of damage MTBE causes to the water table.
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3.10 Cancer Risk & Conclusions

In the specification in Table 3.1, Specification (5), and Table 3.7, Spec-

ification (7), I find that E-10 likely increased by around 1.033 ppbC and 0.641

ppbC, respectively. This translates to 0.516 ppbV acetaldehyde and 0.321 ppbV

acetaldehyde (Holland 2001). From the EPA’s approximation of 1 ppm acetalde-

hyde = 1.8 mg / m3 and U.S. EPA 2000; Satterfield 2004, 0.516 ppbV = 0.000516

ppbV = 0.000929 mg / m3 and 0.321 ppbV = 0.000321 ppbV = 0.000577 mg /

m3. The EPA estimates that the risk of developing cancer over a lifetime is equal

to this final figure divided by 500 (U.S. EPA 2000). This is equal to 1.86 × 10−6

in the first case, and it’s equal to 1.15 × 10−6 in case 2. Using 78.54 years as

life expectancy (World Bank 2010), a metro of 19 million (like New York (U.S.

Census Bureau)), this would equal one cancer every 2.2 years in the first case –

and one cancer every 3.58 years in the second case. An upper bound assuming

mortality for each cancer and a Department of Transportation Value of Statistical

Life of $9.1 million (Trottenberg and Rivkin 2013), this policy costs $4.09 mil-

lion annually in the first case – and $2.54 million annually in the second case.

If the U.S. switched to E-10 and faced similar impacts to the urban Northeast

environment, assuming 310 million people, the annual cost is $66.8 million in

the first case and $41.5 million annually in the second case.

While I have compared pollution to MTBE here, it’s difficult to make a

general conclusion here about the use of E-10 because it is difficult both to de-

termine which gasoline should be the comparison. Firstly, it is possible to pro-

duce high-quality gasoline without oxygenates. In 2004, oil companies provided
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California-standard gasoline without oxygenates to the non-EPA RFG-required

San Francisco Bay Area (Fong et.al. 2005).

Secondly, if MTBE-enhanced gasoline is in actuality the next best gaso-

line for comparison, E-10 may be the better additive. There are other unknowns

in MTBE use, but even the knowns indicate extreme cost. It is still uncertain

whether MTBE is carcinogenic. According to the EPA, “. . . the data support the

conclusion that MTBE is a potential human carcinogen at high doses” (U.S. EPA

2012). This study does not look at MTBE groundwater pollution and its carcino-

genic impact. Further, MTBE groundwater pollution is very costly, but the cost

estimates very substantially. The American Water Works Association (2005)

estimates the costs could range from $4 billion to $85 billion. Based on the as-

sessment here, even assuming groundwater pollution in their current locations,

and switching E-10 to the entire country, $4 billion would pay for 59.9 non-

discounted payments of $66.8 million. Additionally, the point estimates used in

this calculation may suffer from large pharmacokinetic variances not available

because of lack of variance data on point estimates (Rogers, et.al. 2011).

While I emphasize that the impact of E-10 on acetaldehyde pollution ap-

pears small, the U.S. has made a decision to rid one pollution at the expense of

another. This was true when the U.S. ridded itself of lead gasoline for MTBE-

enhanced gasoline. While both of this switch and the latter switch to ethanol

may have been better for the environment at the time, policy makers should be

aware of the tradeoffs and the new consequences of different fuel additives. Ad-

ditionally, economic non-pollution factors are also a consideration. And, from
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Chakravorty, Nauges, and Thomas (2008), the U.S. has severe market segmenta-

tion in gasoline. All of these factors need to be considered in the decision about

gasoline in the near-future.
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3.11 Figures
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Figure 3.1: Percentage of Ethanol Present in Fuel by Metro Area. The
difference-in-difference setup in this paper relies on a differential ethanol fuel
regulatory regime. This data comes from (U.S. EPA [9]), and from personal
communication and the EPA (Lenski 2013; U.S. EPA [6]), the surveys are rep-
resentative of fuel sold in the region. Hartford, CT, is an obvious control, but
other metro areas also had some ethanol content in their gasoline before 2006.
The super thick line in the center is Springfield, MA.
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Figure 3.2: U.S. Ethanol Plants in 2006. This is a snapshot of ethanol plants
(black dot) and ethanol plants under construction (white dot) in 2006. The data
comes from Ethanol Producer magazine, and dots indicate the city where the
plant was located, not the plant itself – cities were matched to coordinates with a
matching routine in R (Loecher 2013) with Google Maps (2015). Ethanol plants
are concentrated in the Midwest, and ethanol production has increased through-
out the 2000’s (Renewable Fuels Association). Under reasonable assumptions,
this would lead to an increase in acetaldehyde, and an attenuation of the treat-
ment effect, if I used the Midwest as a control.
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Figure 3.3: Acetaldehyde Monitors. This is a map of the EPA acetaldehyde
monitors used in the report. All of the monitors are in urban areas. An interactive
Google Map of the monitors is available on the author’s website.
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Figure 3.4: Median Acetaldehyde Measures in Each State. This scatterplot
shows the median acetaldehyde monitor reading in ppbC for each state – with
the New York metro area separated from other parts of New York and New Jer-
sey. Ignoring the extreme outlier in the New Jersey suburbs of Philadelphia,
acetaldehyde readings are really low. However, New Jersey, including the New
Jersey suburbs of New York, appears to be an outlier. Figure 3.5 shows the same
plot with New Jersey excluded.
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Figure 3.5: Median Acetaldehyde Measures Outside of New Jersey. This
scatterplot, unlike Figure 3.4, excludes New Jersey and shows the median ac-
etaldehyde monitor reading in ppbC for each state. Acetaldehyde readings are
very low, and, as a group, there is no discernible trend among the treatment
group. However, New York and Connecticut trend downward in the period.
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3.11.1 Tables

Table 3.1: Regression on Levels. From specification (5), E-10 likely adds 1.03
ppbC acetaldehyde in the atmosphere for the typical urban area studied during
the summer. Hour × Duration Bins are fixed effects where the monitors are
separated into 6 bins based on the time of day and the duration of the mon-
itor. Including monitors in New Jersey raised the coefficient between (1)-(2)
and (3)-(4), but New Jersey is an outlier, as described in the text. Specifica-
tion (7) excludes the ethanol coefficient and the control states. Notably, 2006
had the regression-controlled highest level of acetaldehyde. Hour × Duration
Bins are 3-hour: (a) 12:00-18:59:59, (b) 19:00-22:59:59, (c) 23:00-5:59:59, (d)
6:00-11:59:59, 24-hour: (e) 0:00 or 23:00, and (f) 12:00.
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(1) (2) (3) (4)
VARIABLES ppbC Acetaldehyde ppbC Acetaldehyde ppbC Acetaldehyde ppbC Acetaldehyde

Robust Clustered - Metro Robust Clustered - Metro
All Data All Data NJ excluded NJ excluded

10% Ethanol = 1 1.466*** 1.466* 0.844*** 0.844**
(0.140) (0.697) (0.0677) (0.336)

Year Dummy (2004) 1.320*** 1.320 0.584*** 0.584
(0.161) (0.762) (0.0771) (0.362)

Year Dummy (2005) 1.201*** 1.201* 0.626*** 0.626*
(0.141) (0.603) (0.0737) (0.279)

Constant 0.489*** 0.489 1.044*** 1.044**
(0.148) (0.746) (0.0788) (0.453)

Observations 4,574 4,574 4,431 4,431
R-squared 0.032 0.032 0.024 0.024
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.1. Regression on Levels, continued.

(5) (6) (7)
VARIABLES ppbC Acetaldehyde ppbC Acetaldehyde ppbC Acetaldehyde

Robust Clustered - Metro Robust
NJ excluded NJ Excluded NJ, NY, CT excluded

10% Ethanol = 1 1.033*** 1.033***
(0.0979) (0.159)

Year Dummy (2004) -0.236***
(0.0495)

Year Dummy (2005) -0.262***
(0.0477)

1 = 062004 1.339*** 1.339***
(0.120) (0.146)

1 = 072004 1.118*** 1.118***
(0.107) (0.0871)

1 = 082004 1.106*** 1.106***
(0.111) (0.139)

1 = 062005 1.408*** 1.408***
(0.103) (0.183)

1 = 072005 0.942*** 0.942***
(0.102) (0.131)

1 = 082005 0.651*** 0.651***
(0.104) (0.106)

1 = 062004 0.815*** 0.815***
(0.105) (0.219)

1 = 072004 0.212*** 0.212
(0.0788) (0.135)

Airport Daily Maximum Temperature 0.0114*** 0.0114*** 0.00945***
(Tenths Degrees Celcius) (0.000468) (0.00157) (0.000435)
Airport Daily Average Wind Speed -0.0177*** -0.0177** -0.0156***
(Tenths m/s) (0.00184) (0.00584) (0.00186)
Per Capita Miles Traveled -0.139 -0.139 -3.268***
(1000s) (0.574) (1.602) (0.558)
MONITOR FIXED EFFECTS YES YES YES
HOUR X DURATION BINS YES YES YES
Constant -0.334 -0.334 0.290

(0.694) (0.955) (0.327)
Observations 4,431 4,431 3,945
R-squared 0.325 0.325 0.276
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.2: Log Levels. Two separate log formulations (to deal with zero read-
ings) were regressed on policy variables. In specification (8), E-10 nearly dou-
bled at exp(.641), and in specification (9), the result was exp(.553). Since the
average acetaldehyde levels in the region were low, these results are consistent
with the level specifications. [log(ppbC Acetaldehyde + 0.001) is LOG M-I,
log(max(ppbC Acetaldehyde, 0.1)) is LOG M-II]
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(8) (9) (10) (11)
VARIABLES LOG M-I LOG M-II LOG M-1 LOG M-II

Robust Robust Clustered - Metro Clustered - Metro
NJ excluded NJ excluded NJ excluded NJ excluded

10% Ethanol = 1 0.641*** 0.553*** 0.641* 0.553**
(0.0880) (0.0588) (0.312) (0.229)

1 = 062004 0.862*** 0.752*** 0.862** 0.752***
(0.112) (0.0721) (0.307) (0.207)

1 = 072004 0.785*** 0.699*** 0.785** 0.699***
(0.110) (0.0693) (0.311) (0.182)

1 = 082004 0.883*** 0.677*** 0.883** 0.677***
(0.102) (0.0680) (0.330) (0.198)

1 = 062005 0.759*** 0.701*** 0.759*** 0.701***
(0.0912) (0.0627) (0.232) (0.125)

1 = 072005 0.650*** 0.508*** 0.650** 0.508***
(0.0971) (0.0650) (0.244) (0.127)

1 = 082005 0.373*** 0.328*** 0.373 0.328**
(0.0991) (0.0670) (0.205) (0.118)

1 = 062004 0.321*** 0.378*** 0.321 0.378**
(0.0955) (0.0578) (0.192) (0.162)

1 = 072004 0.0951 0.132*** 0.0951 0.132**
(0.0793) (0.0500) (0.119) (0.0547)

Log(Airport Daily Maximum Temperature) 1.684*** 1.634*** 1.684*** 1.634***
(Tenths Degrees Celcius) (0.119) (0.0724) (0.249) (0.222)
Log(Airport Daily Average Wind Speed) -0.249*** -0.224*** -0.249* -0.224*
(Tenths m/s) (0.0823) (0.0447) (0.129) (0.105)
Log(Per Capita Miles Traveled) -0.140 0.192 -0.140 0.192
(1000s) (0.361) (0.233) (0.804) (0.554)
MONITOR FIXED EFFECTS YES YES YES YES
HOUR X DURATION BINS YES YES YES YES
Constant -6.979*** -7.220*** -6.979*** -7.220***

(0.805) (0.508) (1.440) (1.321)
Observations 4,431 4,431 4,431 4,431
R-squared 0.362 0.438 0.362 0.438
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.3: Log Levels with Other Variables. Specifications (12)-(15) show
a time trend control along with the ethanol coefficient and other variables of
interest. There is not enough power to detect a difference between E-10 and
MTBE fuel in this specification; however, results are similar to those found in
tables 3.1 and 3.2. [log(ppbC Acetaldehyde + 0.001) is LOG M-I, log(max(ppbC
Acetaldehyde, 0.1)) is LOG M-II]
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(12) (13) (14) (15)
VARIABLES LOG M-I LOG M-1 LOG M-II LOG M-II
*** p<0.01, ** p<0.05, * p<0.1 Robust Robust Robust Robust

NJ Excluded NJ, NY, CT Excluded NJ Excluded NJ, NY, CT Excluded
10% Ethanol = 1 0.445*** 0.475*** 0.424*** 0.441***

(0.0758) (0.0963) (0.0442) (0.0545)
Day Time Trend (Each Day = +1) -0.000721*** -0.000766*** -0.000587*** -0.000621***

(0.000118) (0.000162) (6.43e-05) (8.62e-05)
Log(Airport Daily Maximum Temperature) 1.513*** 1.624*** 1.454*** 1.529***
(Tenths Degrees Celcius) (0.113) (0.121) (0.0693) (0.0730)
Log(Airport Daily Average Wind Speed) -0.207*** -0.236*** -0.181*** -0.196***
(Tenths m/s) (0.0789) (0.0881) (0.0436) (0.0481)
Log(Per Capita Miles Traveled) -0.714*** -0.893*** -0.610*** -0.699***
(1000s) (0.267) (0.265) (0.199) (0.202)
MONITOR FIXED EFFECTS YES YES YES YES
HOUR X DURATION BINS YES YES YES YES
Constant 6.378*** 2.764 3.792*** 0.855

(1.884) (2.537) (1.063) (1.398)
Observations 4,431 3,945 4,431 3,945
R-squared 0.357 0.347 0.426 0.414

(16) (17) (18) (19)
VARIABLES LOG M-I LOG M-1 LOG M-II LOG M-II
*** p<0.01, ** p<0.05, * p<0.1 Clustered - Metro Clustered - Metro Clustered - Metro Clustered - Metro

NJ Excluded NJ, NY, CT Excluded NJ Excluded NJ, NY, CT Excluded
10% Ethanol = 1 0.445 0.475 0.424 0.441

(0.270) (0.354) (0.237) (0.299)
Day Time Trend (Each Day = +1) -0.000721 -0.000766 -0.000587* -0.000621

(0.000405) (0.000579) (0.000288) (0.000421)
Log(Airport Daily Maximum Temperature) 1.513*** 1.624*** 1.454*** 1.529***
(Tenths Degrees Celcius) (0.210) (0.193) (0.193) (0.178)
Log(Airport Daily Average Wind Speed) -0.207* -0.236* -0.181* -0.196
(Tenths m/s) (0.106) (0.115) (0.0948) (0.104)
Log(Per Capita Miles Traveled) -0.714 -0.893 -0.610 -0.699
(1000s) (0.800) (0.828) (0.750) (0.821)
MONITOR FIXED EFFECTS YES YES YES YES
HOUR X DURATION BINS YES YES YES YES
Constant 6.378 2.764 3.792 0.855

(6.528) (9.201) (4.933) (7.132)
Observations 4,431 3,945 4,431 3,945
R-squared 0.357 0.347 0.426 0.414
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Table 3.4: Log Levels with Other Variables. I exclude monitor fixed effects to
check the variables which do not change enough within the time period to iden-
tify. Here, GDP has a positive and significant coefficient. The values are similar
to previous specifications in Tables 3.1 to 3.3; however, the policy variable is not
significant with clustered standard errors. [log(ppbC Acetaldehyde + 0.001) is
LOG M-I, log(max(ppbC Acetaldehyde, 0.1)) is LOG M-II]
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(20) (21) (22) (23)
VARIABLES LOG M-I LOG M-II LOG M-I LOG M-II

Robust Robust Clustered - Metro Clustered - Metro
NJ Excluded NJ Excluded NJ Excluded NJ Excluded

10% Ethanol = 1 0.764*** 0.554*** 0.764 0.554
(0.0958) (0.0662) (0.676) (0.483)

Year Dummy (2004) 0.925*** 0.612*** 0.925 0.612
(0.103) (0.0663) (0.735) (0.469)

Year Dummy (2005) 0.681*** 0.414*** 0.681 0.414
(0.0843) (0.0589) (0.565) (0.365)

Log(Airport Daily Maximum Temperature) 0.919*** 0.894*** 0.919** 0.894**
(Tenths Degrees Celcius) (0.126) (0.0806) (0.381) (0.298)
Log(Airport Daily Average Wind Speed) 0.804*** 0.492*** 0.804 0.492
(Tenths m/s) (0.0911) (0.0505) (0.493) (0.298)
Log(Per Capita Miles Traveled) -0.772*** 0.423*** -0.772 0.423
(1000s) (0.263) (0.162) (2.611) (1.754)
Log(Real GDP) 0.428*** 0.247*** 0.428 0.247
Millions of Chained 2005 $ (0.119) (0.0845) (0.813) (0.635)
Log(Metro Population) -0.827*** -0.496*** -0.827 -0.496

(0.168) (0.116) (1.042) (0.775)
HOUR X DURATION FIXED EFFECTS YES YES YES YES
Constant -1.780 -2.434** -1.780 -2.434

(1.529) (0.980) (8.093) (5.212)
Observations 4,431 4,431 4,431 4,431
R-squared 0.066 0.091 0.066 0.091
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.5: Weighted Regressions. I weigh observations as described in the text
in order to control for over-sampling of particular counties. The results remain
consistent with the previous analysis. Additionally, I weigh and run regressions
on only 3- and only 24-hour monitors. [log(ppbC Acetaldehyde + 0.001) is LOG
M-I, log(max(ppbC Acetaldehyde, 0.1)) is LOG M-II]
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(24) (25) (26) (27)
VARIABLES LOG M-I LOG M-I LOG M-II LOG M-II

Robust Clustered - Metro Robust Clustered - Metro
NJ Excluded NJ Excluded NJ Excluded NJ Excluded

County Weighted County Weighted County Weighted County Weighted
10% Ethanol = 1 1.173*** 1.173* 0.768*** 0.768**

(0.241) (0.524) (0.159) (0.267)
1 = 062004 1.004*** 1.004* 0.729*** 0.729**

(0.231) (0.458) (0.170) (0.238)
1 = 072004 1.092*** 1.092** 0.759*** 0.759***

(0.240) (0.460) (0.173) (0.206)
1 = 082004 1.047*** 1.047** 0.657*** 0.657***

(0.236) (0.443) (0.171) (0.192)
1 = 062005 0.762*** 0.762* 0.587*** 0.587**

(0.227) (0.397) (0.165) (0.183)
1 = 072005 0.950*** 0.950** 0.599*** 0.599***

(0.273) (0.368) (0.192) (0.143)
1 = 082005 0.716*** 0.716* 0.368** 0.368*

(0.253) (0.355) (0.182) (0.177)
1 = 062004 0.0866 0.0866 0.225** 0.225

(0.164) (0.249) (0.102) (0.159)
1 = 072004 -0.379** -0.379 -0.0426 -0.0426

(0.177) (0.530) (0.104) (0.237)
Log(Airport Daily Maximum Temperature) 0.630*** 0.630 0.757*** 0.757
(Tenths Degrees Celcius) (0.244) (0.691) (0.169) (0.544)
Log(Airport Daily Average Wind Speed) -0.126 -0.126 -0.211*** -0.211***
(Tenths m/s) (0.130) (0.0874) (0.0793) (0.0618)
Log(Per Capita Miles Traveled) -0.274 -0.274 0.108 0.108
(1000s) (0.491) (1.312) (0.372) (0.865)
MONITOR FIXED EFFECTS YES YES YES YES
HOUR X DURATION FIXED EFFECTS YES YES YES YES
Constant -4.288*** -4.288 -3.948*** -3.948

(1.488) (3.558) (1.022) (3.138)
Observations 4,431 4,431 4,431 4,431
R-squared 0.406 0.406 0.474 0.474
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.5. Weighted Regressions, continued.

(28) (29) (30) (31)
VARIABLES LOG M-I LOG M-I LOG M-II LOG M-II
*** p<0.01, ** p<0.05, * p<0.1 Robust Clustered - Metro Robust Clustered - Metro

NJ Excluded NJ Excluded NJ Excluded NJ Excluded
3 Hour Data 3 Hour Data 3 Hour Data 3 Hour Data

County Weighted County Weighted County Weighted County Weighted
10% Ethanol = 1 0.882*** 0.882* 0.829*** 0.829*

(0.0862) (0.385) (0.0591) (0.392)
Year Dummy (2004) 0.766*** 0.766** 0.669*** 0.669**

(0.0800) (0.301) (0.0511) (0.237)
Year Dummy (2005) 0.355*** 0.355** 0.354*** 0.354***

(0.0505) (0.129) (0.0422) (0.0934)
Log(Airport Daily Maximum Temperature) 1.529*** 1.529*** 1.436*** 1.436***
(Tenths Degrees Celcius) (0.174) (0.273) (0.0951) (0.198)
Log(Airport Daily Average Wind Speed) -0.0592 -0.0592 -0.0591 -0.0591
(Tenths m/s) (0.118) (0.113) (0.0596) (0.103)
Log(Per Capita Miles Traveled) -1.322*** -1.322 -0.871*** -0.871
(1000s) (0.495) (1.343) (0.307) (1.087)
MONITOR FIXED EFFECTS YES YES YES YES
HOUR X DURATION FIXED EFFECTS YES YES YES YES
Constant -8.972*** -8.972*** -8.286*** -8.286***

(1.110) (1.852) (0.619) (1.284)
Observations 3,462 3,462 3,462 3,462
R-squared 0.355 0.355 0.461 0.461

(32) (33) (34) (35)
VARIABLES LOG M-I LOG M-I LOG M-II LOG M-II
*** p<0.01, ** p<0.05, * p<0.1 Robust Clustered - Metro Robust Clustered - Metro

NJ Excluded NJ Excluded NJ Excluded NJ Excluded
24 Hour Data 24 Hour Data 24 Hour Data 24 Hour Data

County Weighted County Weighted County Weighted County Weighted
10% Ethanol = 1 1.101** 1.101** 0.518 0.518**

(0.551) (0.341) (0.340) (0.211)
Year Dummy (2004) 1.506*** 1.506*** 0.529 0.529**

(0.545) (0.264) (0.342) (0.210)
Year Dummy (2005) 1.284** 1.284*** 0.485 0.485**

(0.519) (0.175) (0.326) (0.148)
Log(Airport Daily Maximum Temperature) 0.530 0.530 0.575*** 0.575
(Tenths Degrees Celcius) (0.325) (0.808) (0.186) (0.572)
Log(Airport Daily Average Wind Speed) -0.166 -0.166 -0.192* -0.192**
(Tenths m/s) (0.201) (0.114) (0.104) (0.0705)
Log(Per Capita Miles Traveled) -0.687 -0.687 -0.822* -0.822
(1000s) (0.697) (1.507) (0.433) (0.857)
MONITOR FIXED EFFECTS YES YES YES YES
HOUR X DURATION FIXED EFFECTS YES YES YES YES
Constant -3.475* -3.475 -2.857** -2.857

(1.900) (4.745) (1.166) (3.550)
Observations 969 969 969 969
R-squared 0.489 0.489 0.568 0.568



153

Table 3.6: Poisson Regression. As a robustness check, I run a Poisson regres-
sion to see whether specifying the measure values as floor(ppbC acetaldehyde /
0.6) impacts the analysis. This is done to check the results robustness to zeros in
the regression and values below the highest mdl (0.6 ppbC). The results remain
similar to the original analysis.
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(1) (2)
VARIABLES Acetaldehyde Count Acetaldehyde Count

floor(ppbC acetaldehyde / 0.6) floor(ppbC acetaldehyde / 0.6)
NJ Excluded; Robust NJ Excluded; Clustered - Metro

10% Ethanol = 1.0 0.581*** 0.581***
(0.0608) (0.109)

Airport Daily Max Temp 0.00785*** 0.00785***
(Tenths Degrees Celcius) (0.000302) (0.000668)
Airport Daily Average Wind Speed -0.0136*** -0.0136***
(Tenths m/s) (0.00118) (0.00314)
Per Capita Miles Traveled -0.137 -0.137
(1000s) (0.343) (1.047)
1 = 062004 0.761*** 0.761***

(0.0764) (0.138)
1 = 072004 0.656*** 0.656***

(0.0689) (0.0902)
1 = 082004 0.644*** 0.644***

(0.0734) (0.111)
1 = 062005 0.824*** 0.824***

(0.0652) (0.0948)
1 = 072005 0.524*** 0.524***

(0.0665) (0.0898)
1 = 082005 0.332*** 0.332***

(0.0686) (0.0696)
1 = 062006 0.482*** 0.482***

(0.0653) (0.117)
1 = 072006 0.127** 0.127*

(0.0514) (0.0716)
HOUR X DURATION FIXED EFFECTS YES YES
MONITOR FIXED EFFECTS YES YES
Constant -0.472 -0.472

(0.334) (0.744)
Observations 4,431 4,431
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.7: Controlling the Controlls. To test whether or not the controls are
different from other monitors, I run specification (3.5). Indeed, the monitors that
have highest ethanol increases are different than the controls. This explains part
of the level-specification ethanol coefficient. However, the results are still robust
to this specification, and E-10 seems to be increasing acetaldehyde pollution by
0.641 ppbC in the northeast, according to specification (7).
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(1) (2) (3) (4)
VARIABLES ppbC Acetaldehyde ppbC Acetaldehyde ppbC Acetaldehyde ppbC Acetaldehyde
*** p<0.01, ** p<0.05, * p<0.1 Clustered - Metro Clustered - Metro Clustered - Metro Robust

NJ Excluded NJ Excluded NJ Excluded NJ Excluded
10ΔEthanol X 1(Year = 2006) 0.264** 0.398 0.398 0.622***

(0.110) (0.281) (0.281) (0.0778)
10ΔEthanol -0.439 -0.490 -0.490 -0.533***

(0.396) (0.448) (0.448) (0.0622)
Day Time Trend -0.000262 -0.000262 -0.000742***

(0.000486) (0.000486) (9.88e-05)
Airport Daily Maximum Temperature 0.00811***
(Tenths Degrees Celcius) (0.000467)
Airport Daily Average Wind Speed 0.000558
(Tenths m/s) (0.00171)
Per Capita Miles Traveled 0.818***
(1000s) (0.238)
MONTH OF YEAR FIXED EFFECT NO YES YES YES
HOUR X DURATION FIXED EFFECTS NO NO NO NO
Constant 2.116*** 6.329 6.329 11.74***

(0.331) (8.230) (8.230) (1.627)
Observations 4,431 4,431 4,431 4,431
R-squared 0.013 0.019 0.019 0.084

(5) (6) (7) (8)
VARIABLES ppbC Acetaldehyde ppbC Acetaldehyde ppbC Acetaldehyde ppbC Acetaldehyde
*** p<0.01, ** p<0.05, * p<0.1 Clustered - Metro Robust Clustered - Metro Clustered - Metro

NJ Excluded NJ Excluded NJ Excluded All Data
10ΔEthanol X 1(Year = 2006) 0.622** 0.641*** 0.641*** 0.853**

(0.199) (0.0773) (0.191) (0.312)
10ΔEthanol -0.533 -0.499*** -0.499 -1.143**

(0.495) (0.0653) (0.502) (0.504)
Day Time Trend -0.000742** -0.000790*** -0.000790** -0.00143*

(0.000317) (9.81e-05) (0.000300) (0.000668)
Airport Daily Maximum Temperature 0.00811*** 0.00812*** 0.00812*** 0.00944***
(Tenths Degrees Celcius) (0.00186) (0.000466) (0.00183) (0.00196)
Airport Daily Average Wind Speed 0.000558 0.000556 0.000556 0.00282
(Tenths m/s) (0.00993) (0.00169) (0.00950) (0.00946)
Per Capita Miles Traveled 0.818 0.698*** 0.698 -0.818
(1000s) (2.550) (0.244) (2.617) (2.689)
MONTH OF YEAR FIXED EFFECT YES YES YES YES
HOUR X DURATION FIXED EFFECTS NO YES YES YES
Constant 11.74** 12.14*** 12.14** 24.24*

(4.756) (1.609) (4.660) (11.11)
Observations 4,431 4,431 4,431 4,574
R-squared 0.084 0.096 0.096 0.097
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