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Abstract

This thesis investigates the long-term evolution of rift-bounding normal faults. To first
order, the observed diversity of extensional tectonic styles reflects differences in the
maximum offset that can be accommodated on individual faults during their life span. My
main objective is to develop a theoretical framework that explains these differences in
terms of a few key mechanical and geological controls. I start by laying out the energy
cost associated with slip on a normal fault, which consists of (1) overcoming the
frictional resistance on the fault, (2) bending the faulted layer and (3) sustaining the
growth of topography. In Chapter 2, I propose that flexural rotation of the active fault
plane enables faults to evolve along a path of minimal energy, thereby enhancing their
life span. Flexural rotation occurs more rapidly in thinner faulted layers, and can
potentially explain the wide range of normal fault dips documented with focal
mechanisms. In Chapter 3, I show that surface processes can enhance the life span of
continental normal faults by reducing the energy cost associated with topography build-
up. In Chapter 4, I focus on lithospheric bending induced by fault growth, which is well
described by elasto-plastic flexure models. I demonstrate that numerical models that treat
the lithosphere as a visco-plastic solid can properly predict fault evolution only when the
rate-dependent viscous flexural wavelength of the lithosphere is accommodated within
the numerical domain. In Chapter 5, I consider the interplay of faulting and crustal
emplacement at a slow mid-ocean ridge. I show that a depth-variable rate of magma
emplacement can reconcile the formation of long-lived detachment faults, which requires
a moderate melt supply, and the exhumation of large volumes of lower crustal material.
Finally, in Chapter 6 I investigate the three-dimensional interactions between normal
faults in a lithosphere of varying thickness. I suggest that large along-axis gradients in
lithospheric thickness can prevent the growth of continuous faults along-axis, and instead
decouple the modes of faulting at the segment center and at the segment end.
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Thesis Committee:
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Chapter 1:

Introduction

A fundamental feature of plate tectonics is the rifting of continental lithosphere followed

by the opening of a new ocean basin. These processes are the surface manifestation of

large-scale (103 km) divergent flow in the Earth's mantle, and yet active rifting is focused

within relatively narrow zones ( 102 km) termed extensional plate boundaries. This

discrepancy in scale reflects the ability of the lithosphere to localize deformation through

a combination of ductile creep and brittle failure. In this thesis I examine the long-term

growth of normal faults, which are highly localized brittle shear zones that accommodate

extension in the upper part of the lithosphere. Normal faults display a variety of

morphologies from steep, step-like half-grabens to large-offset detachments exhuming

lower-crustal units in core complexes. My main goal throughout this work is to build a

simple mechanical framework accounting for the diversity of normal fault styles. To do

so, I will investigate key mechanical and geological parameters controlling how much

offset can be accommodated on a single normal fault before it becomes mechanically

favorable to break a new one. Specifically, quantifying the mechanics that control fault

life span is important for understanding rift morphology because they determine whether

an extensional plate boundary is more likely to feature multiple short-offset faults or a

few large-offset detachments.

My thesis is broadly divided into 5 inter-related studies of normal fault evolution.

In Chapter 2, I set up the problem of normal fault growth as an energy balance and

discuss the effect of fault rotation on fault longevity. Chapter 3 focuses on the

gravitational energy cost associated with topography build-up during faulting, and

establishes that erosion and sedimentation can enhance fault life span by relieving a

portion of the topographic forcing. Chapter 4 investigates the flexural response of the
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lithosphere to fault growth from a rheological perspective, and assesses the role of

elasticity in numerical models of tectonic extension. In Chapter 5, this theoretical

framework is applied to faulting at slow-spreading mid-ocean ridges, where crustal

accretion accommodates a significant fraction of the extension in a depth- and time-

variable manner. Finally, Chapter 6 presents preliminary results from 3-D simulations of

fault growth in a lithosphere of varying thickness. The corresponding numerical

methodology is described, and perspectives for modeling rift dynamics in 3-D are

discussed. Below I provide a more detailed description of the fundamental mechanical

problem that underlies this thesis, and outline the contribution of each chapter toward its

resolution.

The Earth's lithosphere behaves as a frictional material, in which there exists an

energetically optimal orientation at which faults form. This orientation is associated with

the lowest deviatoric failure stress. If the least compressive stress is sub-horizontal-a

reasonable assumption near the surface or seafloor in an extensional setting-then the

optimal normal fault dip is about 600 for a friction coefficient of 0.6. While this theory

does a good job at describing the onset of faulting, it cannot predict the evolution of the

fault as it accumulates finite offset. When considered over time scales longer than many

seismic cycles, the long-term displacement field is tangential to the fault in its vicinity

and locally features a significant vertical component. Far from the fault, however, the

displacement field approximates that of a rigid plate undergoing horizontal translation.

This discrepancy between the near field and the far field must be accommodated

by internal deformation of the footwall and hanging wall blocks and the growth of

topography. These processes have an energy cost which accumulates as fault offset grows

and adds to the dissipation of frictional energy along the fault. At some point, it becomes

energetically favorable to break a new fault than to sustain slip on the initial fault. The

longevity of slip on a given normal fault is therefore controlled by the rate at which the

various energy costs increase with increasing fault heave. Assuming that (1) the faulted

layer is best described as an elasto-plastic solid, and (2) the effect of an underlying

viscously creeping layer can be neglected, then it can be shown that the thickness of the

faulted layer is the first-order control on the rate of increase of the various energy

components. This rate is more rapid in thicker faulted layers, leading to shorter fault life
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spans and the development of rifts characterized by multiple small faults. To first order,
this analysis is consistent with the absence of large-offset detachments at young,
immature rifts characterized by a large effective elastic thickness and / or a thick
seismogenic layer. However, it does not explain why oceanic detachment faults are more
commonly found near the ends of slow spreading mid ocean ridge segments, where the
lithosphere is expected to be thicker than at segment centers. This paradox suggests that
in order to fully understand the diversity of faulting modes, additional controls beyond
the faulted layer thickness must be considered, and some of the basic assumptions of
finite extension theory may have to be re-evaluated.

In Chapter 2, I focus on the evolution of fault dip, a central parameter in the
energy budget of a growing normal fault. Recognizing that a shallow-dipping fault
induces less lithospheric flexure while offering more frictional resistance to slip, I
postulate that normal faults evolve along the lowest-energy path that balances these two
effects. This predicts that faults should rotate rapidly toward shallower angles, and that
rotation rates should be faster in thinner faulted layers. I validate these two predictions
using 2-D numerical simulations of fault growth in an elasto-plastic layer. I further
propose that the rotation mechanism at play is a moment imbalance in the displacement

field associated with lithospheric flexure. This potentially explains why most seismically
active normal faults have dips between 30* and 60' as opposed to the 60* angle predicted
by Andersonian theory. Finally, I propose that the similarity in fault dip distributions
across extensional plate boundaries reflects a similarity in the mechanical thickness of the
faulted layer in many rift settings.

In Chapter 3, I focus on the energy cost associated with the growth of topography

during normal faulting, a term that was ignored in the analysis conducted in Chapter 2.
Specifically, I assess whether the redistribution of surficial masses due to erosion and
sedimentation can significantly affect the growth of normal faults by modulating this
energy term. I conduct 2-D numerical simulations of fault growth where the surface

boundary condition models the effect of erosion and short-range sediment transport. I
show that surface processes acting at rates comparable to, or faster than fault slip can
enhance fault longevity by a factor that is greater in thinner faulted layers. I therefore

propose that surface processes are essential in allowing sub-aerial rift-bounding faults to
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accumulate offsets as large as -10 km. Coincidentally, I show that surface processes have

little influence on fault rotation kinematics, which are best explained by flexural

processes. I develop a strictly kinematic model for fault rotation and incorporate it in a

fully consistent force balance model of normal fault longevity that does not rely on

empirical scalings for the bending component.

Based on the results of Chapter 2 and 3, it appears that capturing the physics of

elasto-plastic flexure is essential for predicting the evolution of normal faults. However,

many numerical models of long-term tectonic extension treat the lithosphere as a visco-

plastic solid for ease of implementation. In Chapter 4, I assess the consequences of this

assumption by systematically comparing 2-D numerical simulations of normal fault

growth in an elasto-plastic and a visco-plastic layer. I show that the first-order effect of

faulted layer thickness on rotation kinematics and fault life span is similar in visco-plastic

and elasto-plastic models. However, the visco-plastic description introduces a

dependence of the results on the imposed extension rate. At faster extension rates, visco-

plastic faulted layers tend to behave as rigid solids, which suppresses fault rotation and

enhances fault life span. In order to quantitatively interpret this result, I derive the rate-

dependent bending wavelength of a viscous thin plate undergoing faulting. I show that

the elasto-plastic and visco-plastic models agree best when this wavelength is fully

resolved within the numerical domain. This study has broad implications for numerical

studies of long-term lithosphere dynamics that incorporate localized brittle deformation.

In Chapter 5, I return to the paradox of fault life span at mid-ocean ridges, where

widespread detachment faulting appears to occur preferentially in regions of thicker

lithosphere (contrary to the predictions in Chapters 2 and 3). In these settings, normal

faulting occurs alongside with the emplacement of new oceanic crust, which typically

accommodates a large fraction of the total plate separation. Earlier modeling studies

proposed that magmatic emplacement leads to off-axis migration of normal faults into

thicker lithosphere, resulting in rapid abandonment and short fault life span. These

studies suggested that detachment fault growth was only possible in areas where magma

supply was moderate, allowing faults to grow in thin axial lithosphere without migrating

off-axis. However, moderate melt supply seems inconsistent with the large amounts of

lower crustal material often exhumed in the footwall of oceanic detachment faults. To
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reconcile the theory with the observations, I conduct 2-D numerical simulations of

normal fault growth coupled with depth-dependent rates of crustal accretion. I show that

faulting patterns are controlled solely by the rates of magma intrusion above the brittle-

ductile transition, with moderate rates favoring long-lived faults. Further, I show that

materials intruded beneath the brittle-ductile transition during detachment fault growth

are symmetrically partitioned between the fault side and the conjugate side, and that

detachment fault growth is unaffected by changes in the rates of crust emplacement in the

ductile regime. This suggests that the depth-distribution of melt emplacement may be a

more critical control on detachment fault growth than the total melt supply.

Chapters 2 through 5 are based on two-dimensional models, which assume that

the along-axis dimension of normal fault systems greatly exceeds its vertical and

horizontal length scales, i.e., the thickness and flexural wavelength of the faulted layer.

However, as exemplified by slow-spreading ridges, the faulted layer thickness and

mechanical properties of extensional plate boundaries are inherently three-dimensional.

Developing 3-D numerical models of long-term tectonic extension is challenging due to

their heavy computational requirements and the sharp rheological contrasts that are

typical of localized brittle behavior. In Chapter 6 I report initial results from a new finite-

difference code solving for visco-elasto-plastic flow in a 3-D continuum, which I

developed in collaboration with Pr. Eric Mittelstaedt (University of Idaho). Here I focus

on three-dimensional normal fault growth in a brittle layer that thickens along-axis. I

investigate whether (1) a single continuous fault develops following the 2-D scalings

dictated by the average layer thickness, or whether (2) distinct fault segments develop in

regions of varying thicknesses, with complex linkage structures. I further discuss new

perspectives for 3-D numerical modeling of extensional tectonics.

In summary, this thesis focuses on the long-term evolution of normal fault

systems as they interact with surface processes, magmatic processes, and each other in

two and three dimensions. The models presented here make a number of predictions that

can be tested with a combination of geological observation and geophysical methods.

Conversely, three-dimensional models of normal fault growth hold great potential to

inform the structural interpretation of direct geological observations at the seafloor, or at

continental rifts.
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Chapter 2:

Rapid flexural rotation of normal faults: An explanation for

the global distribution of normal fault dips1

Abstract

We present a mechanical model to explain why most seismically active normal faults

have dips much lower (30-60*) than expected from Anderson-Byerlee theory (60-65*).

Our model builds on classic finite extension theory, but incorporates rotation of the active

fault plane as a response to the build-up of bending stresses with increasing extension.

We postulate that fault plane rotation acts to minimize the amount of extensional work

required to sustain slip on the fault. In an elastic layer, this assumption results in rapid

rotation of the active fault plane from ~60' down to 30-45' before fault heave has

reached -50% of the faulted layer thickness. Commensurate, but overall slower rotation

occurs in faulted layers of finite strength. Fault rotation rates scale as the inverse of the

faulted layer thickness, which is in quantitative agreement with 2D geodynamic

simulations that include an elasto-plastic description of the lithosphere. We show that

fault rotation promotes longer-lived fault extension compared to continued slip on a high

angle normal fault, and discuss the implications of such a mechanism for fault evolution

in continental rift systems and oceanic spreading centers.

1 Published as: Olive, J.-A., and M. D. Behn (2014), Rapid rotation of normal faults due
to flexural stresses: An explanation for the global distribution of normal fault dips, J.
Geophys. Res., 119.
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2.1. Introduction

Normal faults are highly localized zones of brittle shear deformation that accommodate

extension in the crust and lithosphere. Andersonian theory predicts that in an extensional

system normal faults will form with a dip angle of 60-65' [Anderson, 1951],

corresponding to a coefficient of friction of 0.6-0.85 common for most rock types

[Byerlee, 1978]. However, this prediction is not consistent with fault dips inferred from

focal mechanisms of normal faulting earthquakes large enough to rupture a representative

portion of the fault plane. The global distribution of active fault dips resembles a

Gaussian distribution centered on 450 and limited to angles between 20* and 650

[Jackson and White, 1989; Thatcher and Hill, 1991; Collettini and Sibson, 2001; Yang

and Chen, 2008] with a few notable outliers at very low [A bers, 1991; Abers et al., 1997]

and very high [Yang and Chen, 2008] angles (Figure 2-1). A similar pattern of fault dips

is observed at the scale of individual rift systems [Jackson and White, 1989].

One hypothesis to reconcile Andersonian theory with the observed distribution of

fault dips is to assume a low coefficient of friction (< 0.3) associated with the presence of

weak minerals [e.g., serpentine; Escartin et al., 1997] in the fault zone. This could

account for faults initiating at dips closer to 500, but would not allow dips lower than 450

in an Andersonian stress field where the principal stresses are horizontal and vertical.

Alternatively, accumulated elastic stresses in the faulted layer could cause significant

deviation of the principal stresses from the horizontal / vertical [Spencer and Chase,

1989]. Such elastic stresses could arise from uncompensated surface or Moho

topography and/or shear from an underlying viscous layer. Another possibility is that

intermediate-dipping normal faults initiate as the reactivation of thrust faults under an

Andersonian, extensional state of stress. While it is mechanically easiest to reactivate

fault planes dipping at 600, it is not significantly more difficult to reactivate planes

dipping in the 40-80* range [Collettini and Sibson, 2001]. Although reactivation may be

an important process in some continental rifts, it clearly does not apply to oceanic

spreading centers where faulting occurs in newly formed lithosphere. Further, each of

these mechanisms requires a specific set of conditions that relaxes the assumptions of

Andersonian theory. It is therefore unclear to what extent these processes (or any

combination of them) would be reflected in the dip distribution at the scale of both global
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Figure 2-1. Dip distribution of 28 large (Mw>5) dip-slip (rakes within 300 of downdip
direction) normal fault ruptures (modified from Yang and Chen [2008]). Fault dips are

inferred from focal mechanisms where local geology allows the nodal plane that likely

corresponds to the rupture plane to be determined. Data from the compilation of Jackson

and White [1989] and Collettini and Sibson [2001], complemented by data from Abers et

al., [1991; 1997] (low-dip end) and Yang and Chen [2008] (high-dip end).

and individual rifts. It has also been suggested that the 450 mode of the dip distribution

corresponds to the dip of pressure-insensitive ductile shear zones beneath the

seismogenic layer into which faults root [Thatcher and Hill, 1991]. While this process

may affect the dip distribution at all scales, it does not account for the spread of the

distribution and is not well characterized from a mechanical perspective.

Another class of models that have been proposed to explain the observed

distribution of fault dips argues that normal faults initiate at Andersonian angles of 60-

650 but later rotate to shallower angles. One popular mechanism is a domino-style

rotation of a set of parallel normal faults [Proffett, 1977; Jackson and White, 1989] down

to a frictional lockup angle of ~30* [Collettini and Sibson, 2001] at which slip is no

longer permitted, and a new set of steep faults forms to accommodate extension. In an

Andersonian state of stress, slip on faults dipping <300 is only possible when fluid

pressure exceeds the horizontal tensile stress. Such high fluid pressure is difficult to

envision in settings where tensional stress promotes high permeability and drained

conditions, which could explain why the observed range of normal fault dips is largely
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greater than 300. However, the domino model is purely geometric and does not predict

rotation rates or account for the possibility that a fault could become inactive before it

reaches the lockup angle.

An alternative model for fault rotation involves isostatic adjustment of the

footwall in response to tectonic denudation through plastic flow, resulting in low-angle

detachment surfaces exposed as metamorphic core complexes [Buck, 1988; Wernicke and

Axen, 1988]. A similar explanation has been put forward to explain low-angle

detachments (or oceanic core complexes) found at slow- and ultraslow-spreading mid-

ocean ridges, and has been termed the "rolling hinge" model [Buck, 1988; Lavier et al.,

1999]. These models, which emphasize the effect of isostasy, are only valid for faults

that have accommodated very large offsets (10-50 km) and explain the shallow dips of

exposed fault surfaces rather than active fault planes. However, a recent numerical study

of normal fault evolution [Behn and Ito, 2008] reported rotation of active fault planes

from ~55* down to ~35* over less than 4 km of extension and prior to any rollover of the

exhumed fault surface. More recently, Choi and Buck [2012] reported similar rotation in

numerical simulations, which they attributed to flexural processes. They further

proposed that flexural rotation of the active portion of detachment faults to shallower

angles could lead to the formation of splay faults in the hanging wall, provided the

detachment has retained sufficient strength. However, Choi and Buck [2012] did not

investigate the physical mechanism by which flexure of the brittle layer leads to rotation

of the active fault plane.

In this study, we present a simple mechanical framework for understanding rapid

normal fault rotation after initiation at a high angle. We build on the classic finite

extension theory of Forsyth [1992] and Buck [1993], and consider the effect of flexure on

the optimal dip of a fault. Specifically, we derive the simplified energy budget of a

growing fault and propose that fault rotation occurs in a way that systematically

minimizes the external work required to sustain growth. We explore this hypothesis with

a simple semi-analytical model that first considers a purely elastic, infinitely strong

faulted layer. This allows us to identify the key factors that control fault rotation

kinematics and fault life span. We then incorporate a simplified treatment of plasticity in

the semi-analytical model to account for the finite strength of the lithosphere. In order to
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show that our simplified model captures the first-order physics of the system, we then
compare our semi-analytic results with more realistic 2D geodynamic simulations of
normal fault growth in an elasto-plastic layer, which do not explicitly involve the
assumption of "work minimization". Finally, we discuss applications of these models to
fault evolution and the distribution of active fault dips in rift systems worldwide.

2.2 Work-minimization model for fault rotation

Lithospheric flexure in response to slip on a normal fault has long been identified as a

key mechanism to explain the topographical features of grabens and core-complexes [e.g.,

Vening-Meinesz, 1950; Buck, 1988; King et al., 1988]. It is therefore expected that the

associated build-up of flexural stresses should feed back and influence subsequent fault

evolution. Forsyth [1992] showed that flexure of a faulted layer due to finite offset on a

normal fault acts to decrease its optimal dip (i.e., the dip that requires the least horizontal

tension to keep the fault active) down to almost 300 after a few kilometers of extension.

He showed that in order for a fault to remain active, horizontal tension must overcome

frictional resistance as well as the build-up of topography and related flexural stresses.

Forsyth [1992] proposed that faults would be abandoned when it becomes mechanically

easier to break a new fault than to sustain slip on a preexisting fault. Using the

assumption that fault dip does not change during growth, he concluded that only faults

initiated at a shallow angle could accumulate large offsets because they would remain

relatively close to their optimal dip during growth. This force balance model was later

refined by Buck [1993] and Lavier et al. [2000], who treated the faulted layer as an

elasto-plastic rather than purely elastic thin plate. This assumption led to the prediction

that normal faults would stay active longer when the faulted layer is thinner, in agreement

with geological observations [Lavier and Buck, 2002]. However, like Forsyth [1992],

these models did not explicitly consider the possibility that fault dip may readjust to the

build-up of bending stresses, although the models of Lavier et al. [2000] did feature

rotation of the shallowest portion of the active fault due to flexure. Here we present a

mechanism by which flexural stresses could induce a rapid decrease in the dip of a

growing fault, and discuss its implications for fault life span. We propose that faults
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rotate in response to flexure of the footwall and hanging wall, and do so in a manner that

systematically minimizes the amount of work required to sustain slip on the fault.

Let us consider the energy balance on a growing normal fault, following the

approach of Cooke and Murphy [2004]. We assume a fault of dip 6, which cuts through a

layer of thickness H and accumulates a horizontal extension h (Figure 2-2). Far field

tensional forces supply mechanical work WEXT to the system. This work can be related to

the average tensional stress (aR) by
h

Wr = Ja H dhWEY f(2.1)

In order to sustain slip on the fault, the external work must overcome the frictional

resistance along the fault surface (WFRIC), and supply mechanical energy for bending the

hanging wall and footwall (WINT). In addition, work may be done against gravity (WGRAV)

as the fault creates topography, energy may be spent breaking new fault surface (WPROP),

and some work may be dissipated in the form of earthquakes (WSEIS).

Since topography is modeled as the flexural readjustment of rigid displacement

across a fault under gravity (see below and Appendix 2.1), the work required to generate

and sustain topography is included in WINT, and we ignore all other sources of work done

by or against gravity (WGRAV = 0). Further, we assume that extension is accommodated

on a single normal fault and that no new fault surfaces are formed as long as the fault is

actively slipping. We can therefore neglect the energy cost of breaking intact lithosphere

(WPROP = 0). Lastly, the earthquake energy term (WsEIs) integrates the drop in shear

stress that occurs during each seismic rupture over many seismic cycles. This stress drop

corresponds to a drop in fault strength that occurs when transitioning from static to

dynamic friction. Overall, this term can be viewed as an intermittent dissipation of a

portion of the fault's frictional energy. Here we consider only a continuously growing

fault that slips aseismically and neglect WEIS. We note, however, that if the fault grows

by repeated earthquakes, its long-term averaged strength is perhaps best represented by

its dynamic shear strength. This can be incorporated in our model by considering a lower

friction coefficient in a continuously slipping fault.
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Figure 2-2. Schematic set-up of our semi-analytical model for fault evolution in an

elastic / pseudo-plastic layer. A far-field tensional stress, OrR, drives extension along the
fault (of heave h) and the associated deflection of the hanging wall and footwall blocks.

The fault zone has a weak rheology characterized by a friction coefficient y and cohesion

C. Far from the fault, intact rocks (with go, Co) deform elastically or plastically with an

effective elastic thickness Heff. Slip on the fault ceases when UR becomes sufficient to
break a new fault in intact rock.

The simplifying assumptions listed above yield the following work balance:

WEx = WFRIC + WIr (2.2)

The frictional dissipation term is obtained by integrating shear stress multiplied by slip

along the fault surface:

WFRIC= fz(l)s(l)dl (2.3)
0

By considering average stresses through the faulted layer and uniformly distributed slip

on the fault plane, we can write

WFRIC (2.4)

where r is shear stress, s is the fault offset (h/cos6) and L is the fault length (H/sin6). Slip

on the fault is permitted as long as the Mohr-Coulomb criterion is met:

[Ti = joI,,+C (2.5)

where p is the coefficient of friction, on is normal stress on the fault surface, and C is

cohesion. A summary of notations is provided in Table 2-1.
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Symbol Definition Value

H Thickness of the faulted layer
Heff Effective elastic thickness of the faulted layer (:5 H)

h Fault heave

s Fault offset
L Fault length

p Density of the faulted layer (and underlying layer) 2700-3300
kg.m 3

Ap Density constrast between the faulted layer and the 2300-2700
overlying fluid layer kg .m-3

g Gravitational accelaration 9.81 m.s

UP, Horizontal tensional stress needed to sustain faulting,

URBREAK horizontal tensional stress required to break a new fault in

intact rock

FR Horizontal tensional force needed to sustain faulting

(= H aR)

Ir Shear stress resolved on the fault

Un Normal stress resolved on the fault

C, Co Cohesion of the fault zone, of the intact layer

p, YO Friction coefficient in the fault zone, in the intact layer

9, 9o Dip of the fault, initial (optimal) dip of the fault
E Young's modulus 30-100 GPa

v Poisson's ratio 0.25-0.5

r/L Viscosity of the faulted layer (in numerical model) 1024 Pa.s

?7s Viscosity of the ocean layer (in numerical model) 1017 Pa.s

?]A Viscosity of the asthenosphere (in numerical model) 1018 Pa.s

U Spreading half-rate (in numerical model) 1 cm/yr

D Flexural rigidity of the faulted layer

a Flexural wavelength of the faulted layer

w(x) Flexural response of the faulted layer due to offset on the

fault
w*(x) Topography of the faulted layer driven by rigid motion

along the fault
W Total topography induced by offset on the fault

WINT Mechanical work done internally straining (bending)

the faulted layer

WFRIC Work done against friction on the fault

WEXT Total external work supplied to the system = WFRIC + WINT

Table 2-1. Summary of notation and values for reference parameters.
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Assuming an Andersonian stress state and an average lithostatic stress of -pgH/2 in the

faulted layer, the shear stress required for failure along the fault writes:

C+pgH/2 cos0 sine
sin6cos6+ psin2 e (2.6)

The frictional energy dissipated along the fault is therefore written:

WFRC = C+ppgH12 Hh
sin cos9+p sin 0 (2.7)

The second component of work in Equation (2.2) corresponds to the internal

strain energy stored in the faulted layer as the footwall and hanging wall are bent upward

and downward, respectively. WINT is defined as the integral of stress multiplied by strain

over the faulted layer:

WINr= f 4ci dV (2.8)
V2

To estimate WINT, we first treat the faulted layer as a thin elastic plate of thickness H with

Young's modulus E and Poisson's ratio v, overlying an inviscid fluid half-space of the

same density [Buck, 1988; 1993; Forsyth, 1992] (Figure 2-2). The density contrast

between the layer and the overlying fluid (air or ocean) is Ap. This simplifying

assumption allows us to relate WIN' to the deflection of the footwall and hanging wall

blocks w(x):

I C 2,W 2

WI=2D ax2) dx (2.9)

where D is the flexural rigidity of the faulted layer,

D= EH3
12(1-v 2 ) (2.10)

The plate deflection resulting from slip on the fault is modeled by adding the contribution

of (a) rigid motion of the hanging wall and footwall blocks along the fault and (b) flexure

of the footwall and hanging wall blocks in response to gravity [Weissel and Karner,
1989]. If w*(x) denotes the topography resulting from step (a) alone, the deflection w(x)

corresponding to step (b) can be calculated as the flexural response to the load exerted by

w*(x). This is achieved by solving the thin plate equation,
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d~w
D + Apg w=-Apg w*(x) (2.11)

The final topography resulting from steps (a) and (b) is simply wT(x) = w*(x) + w(x).

Details of the solution method are given in Appendix 2.1. Specifically, we show that WIT

can be written as

DhW INT = D tan 2 0 ,T _h
16a a (2.12)

where a denotes the flexural wavelength of the faulted layer

4D )4
A p=g)- (2.13)Apg

and W(y) is a dimensionless function described in Appendix 2.1.

Combining Equations (2.7) and (2.12), we now have an expression for the frictional and

flexural work components as a function of fault heave and dip (see Appendix 2.2 for

details and function definitions).

WT = AF (0) RF (h)+ A,(6) R,(h) (2.14)

WFRIC WINT

We then postulate that flexure acts to rotate the active fault plane such that the energy

required to sustain extensional deformation is minimized. In other words, fault dip

evolves to minimize the increase in tensional work (WEXT) with increasing extension

(Figure 2-3). In mathematical terms, fault dip can be determined for a given amount of

extension by the constraint

~ ~i~x.=0
1a (2.15)

In the framework of the Forsyth [1992] force balance model, this is equivalent to

allowing faults to rotate toward their optimum dip angle. Combining Equations (2.14)

and (2.15) allows us to formulate a nonlinear differential equation that we solve with a 4h

order Runge-Kutta method (Appendix 2.2). The initial fault dip, Go, is assumed optimal

with respect to an Andersonian stress field and therefore only depends on the coefficient

of friction of the host rock:
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Figure 2-3. External work (WEXT) required to keep a normal fault active as a function of

fault dip and heave for increasing amounts of extension in a 10 km thick elastic

(infinitely strong) layer. In our model, faults grow such that their dip evolves to

shallower angles in order to minimize the increase in external work WEXT. This

corresponds to the lowest-energy path represented by the white dashed line.

00 7=---tan -
2 2 p0  (2.16)

Oo is necessarily greater than 450 and is equal to ~60* and ~65* for po = 0.6 and 0.85,

respectively (Figure 2-1). We can then calculate fault dip as well as the various work

terms as a function of increasing heave. The average horizontal tension that drives

extension on the fault can also be obtained from Equation (2.1):

1 aWEX
H Ah (2.17)

A fault is abandoned when UR becomes greater than qRBREAK, the stress required to break

a new fault in intact lithosphere (friction po, cohesion Co) [Forsyth, 1992]:
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BREAK C 0+I 0 pgH / 2
R sin 00 cos60 + go sin 2 0j (2.18)

In all our calculations, we assume a cohesionless active fault plane and focus on the

effects of changing fault zone friction and faulted layer thickness.

2.3. Semi-analytic results for fault rotation

2.3.1. Elastic (infinitely strong) faulted layer

The work minimization hypothesis results in a rapid rotation of faults from steep to

intermediate angles, which constitutes the lowest energy path for the system (Figure 2-3).

The rotation rate (degrees per km of horizontal offset) is fastest immediately after fault

initiation and subsequently decreases (Figure 2-4). For example, a fault with a friction

coefficient of 0.6 cutting a 10 km-thick elastic layer will rotate from 60' down to 450

over < 5 km of horizontal extension. Further rotation down to 40' occurs over the next

-5 km of extension (Figure 2-4A). Greater density contrasts between the faulted layer

and the overlying fluid layer, as well as stiffer elastic moduli lead to faster rotation

(Figure 2-5A) down to about 350 after 10 km of extension.

We find that the average fault rotation rate (measured between h=0 and h = H12)

scales as the inverse of the faulted layer thickness (Figure 2-4B, "mean" line).

Consequently, the total amount of rotation experienced by a fault depends directly on its

heave normalized by the thickness of the faulted layer (Figure 2-5). While the exact

functional form of this dependence is not fully resolved here, it appears stronger than the

sensitivity to the elastic parameters of the layer and to the density contrast with respect to

the overlying fluid layer (Figure 2-5A). Due to this effect, faults that cut and flex a 30

km-thick brittle layer will never undergo rotation rates greater than 2' per km of heave,

and will therefore retain dips close to their initiation angles over a comparable amount of

extension (Figure 2-4). Further, although the friction coefficient assumed for the fault

zone sets the initiation angle of the fault, it has very little influence on the total amount of

rotation experienced after a given amount of extension (Figure 2-5B). Low-friction faults

may therefore reach angles as low as 20-25', but only because they initiated at a lower

angle.
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Figure 2-4. A. Dip evolution of a normal fault cutting through a 10 km (black) and 30

km (blue) thick faulted layer layer that is either elastic (lines) or pseudo-plastic with Heff/

H = 0.5. B. Rate of fault rotation immediately following initiation (maximum), at h = H12

(minimum) and averaged between these two stages, as calculated in our semi-analytical

elastic (lines) and pseudo-plastic model (Heff/H = 0.5, dashed lines), and measured from

our numerical elasto-plastic model (open symbols). For the numerical runs the symbols

show the mean rate; error bars indicate maximum and minimum rotation rates.

Fault rotation in response to the accumulation of flexural stresses naturally affects

the force balance on the growing normal fault. Allowing faults to rotate towards their

optimum dip limits the increase in horizontal tension aR that would occur at a fixed dip

(Figure 2-6A). In some cases fault rotation ensures that OR does not exceed the stress

required to break a new fault in intact rock, thereby promoting unlimited fault growth.

This effect dominates in thin brittle layers where fault rotation is rapid (Figure 2-6A, H=5

km case). In a thicker layer, fault rotation is slower and stresses accumulate faster,

leading to fault abandonment and the creation of a new fault after moderate amounts of

extension (Figure 2-6A, H=15 km case). By contrast, when fault rotation is ignored in

the force balance calculation for an elastic plate, fault life span increases very slightly

with brittle layer thickness [e.g., Shaw & Lin, 1996].
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Figure 2-5. Evolution of fault dip as a function of accumulated horizontal offset (h)

normalized by the faulted layer thickness (H) calculated from our semi-analytical model.

A. Effect of changing the stiffness (E, v) and density constrast Ap of a 10 km-thick layer.

A1: default case, E = 30 GPa, v= 0.5, Ap = 2300 kg.m-3. A2: E = 150 GPa, v= 0.25, Ap

= 2300 kg.m-3. A3: E = 150 GPa, v = 0.25, Ap = 2700 kg.m-3. B. Effect of changing fault

friction with parameters from case Al. The blue, black and red curves correspond to H =

15, 10, and 5 km respectively. C. Effect of pseudo-plasticity in a 10 km-thick layer with

parameters from case A1. The ratio Heff/ H is indicated next to each curve.

2.3.2. Elastic /pseudo-plastic faulted layer

So far we have only considered a purely elastic faulted layer in which tensional stresses

can accumulate without limitation. A more realistic description of the lithosphere must

involve a finite yield strength that acts as a maximum allowable stress and promotes

diffuse plasticity that locally weakens the layer at large stress / strains. Below we

incorporate this mechanism into our semi-analytical model in a highly simplified manner

to qualitatively estimate its effect on fault rotation and life span.

We incorporate (pseudo-) plasticity by replacing the true faulted layer thickness H

by a lower effective elastic thickness Heff H in all the terms related to WINT. We use Heff

in Equations (2.10) and (2.13) to define an effective flexural rigidity Deff and an effective

flexural wavelength %g. These parameters act as a crude measure of the amount of

distributed plastic deformation that effectively weakens the faulted layer. In reality Heff is

spatially variable and a direct function of plate curvature and the assumed yield-strength

envelope [Buck, 1988]. Heff will be smallest in the regions of highest curvature because

these regions represent the areas that have accumulated the greatest flexural stresses.
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Figure 2-6. Horizontal tension needed to sustain slip on a growing normal fault

calculated as a function of accumulated heave, for various faulted layer thicknesses H,
from our semi-analytical model of fault growth in a thin, elastic / pseudo-plastic layer.

The multicolored curves correspond to cases where fault rotation is allowed to minimize

the regional horizontal stress. Colors indicate the evolving fault dip. For comparison,
dark red curves show stress increase in cases where fault rotation is not allowed and dip

is held constant at 60*. The stars mark the amount of horizontal extension that can be

accommodated before it becomes easier to break a new fault in intact lithosphere

(requiring a stress shown as horizontal dashed lines) than to sustain slip on the active

fault. The infinity symbols indicate cases where faults can grow indefinitely. A. Elastic

faulted layers. B. Pseudo-plastic layers without rotation. The ratio Heff / H is indicated

next to each curve. C. Pseudo-plastic layers with rotation.

In low-curvature regions, Heff likely retains a value close to H. In our simplified

approach, we use a single Heff value for the entire faulted layer, which represents an

average effective thickness over a distance roughly equivalent to the (reduced) flexural

wavelength of the plate. This approach clearly overestimates the amount of weakening

due to plasticity, but it enables us to illustrate the first-order effects with the least amount

of additional parameters.

The main effect of pseudo-plasticity is to slow down fault rotation with respect to

the elastic case. In a 10 km-thick faulted layer with an effective elastic thickness of 5 km,

a fault will only rotate down to ~50* after 4 km of extension, as opposed to ~45' in the

purely elastic end-member (Figure 2-4A). For a given value of H, reducing the ratio Hff/

H leads to even slower rotation. This effect appears to hold over the entire range of H

(Figure 2-4B). For a given Heff/H, rotation rates in a pseudo-plastic faulted layer scale as

the inverse of the true layer thickness, which is the same as in the elastic end-member

case.

Figure 2-6B and 2-6C illustrate the effect of pseudo-plasticity on fault life span.

In cases where faults are not allowed to rotate, a lower Heff/H promotes longer fault life

span by limiting the buildup of tensional stresses. Interestingly, for a given Heff/ H, fault

life span appears almost insensitive to the true faulted layer thickness H. However, due to

complex feedbacks between inelastic deformation and plate curvature, plastic weakening

tends to be stronger in thinner (true thickness H) plates. In other words, Heff / H will
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achieve lower values in plates that have a smaller initial H [e.g., Buck, 1988]. This effect

is likely responsible for the classic prediction of longer fault life span in thinner faulted

layers [Buck, 1993; Lavier et al., 2000; Lavier and Buck, 2002; Behn & Ito, 2008]. In

cases where faults are allowed to rotate (Figure 2-6C), pseudo-plasticity complements the

effect of rotation in promoting even longer fault life span in thinner layers.

Our semi-analytical approach makes important predictions for dip evolution and

fault life span. It is, however, limited by underlying assumptions that include: (1) the thin

plate approximation for calculating WINT, (2) a simplified treatment of plasticity, and (3)

the hypothesis that rotation acts to minimize the increase in WEXT. Therefore, to test

validity of this approach, we compare our semi-analytical results with more complex

numerical simulations of normal fault growth based solely on conservation of mass and

momentum, which do not incorporate any of the assumptions made thus far.

2.4. Numerical models of fault rotation in an elasto-plastic layer

In this section, we compare our semi-analytical elastic results with numerical simulations

of fault growth in an elasto-plastic brittle layer. We solve for conservation of mass and

momentum in a 2D domain using the finite difference / particle-in-cell technique [Harlow

and Welch, 1965] described by Gerya [2010]. Our model setup (Figure 2-7) involves a

brittle layer of thickness H, viscosity i = 10 Pa-s, Young's modulus E = 30 GPa, and

Poisson's ratio v = 0.5. The brittle layer is situated between a low-viscosity

asthenosphere (i1A = 1018 Pa-s) below and a low-viscosity "sticky ocean" layer (7s = 1017

Pa-s) [Crameri et al., 2012] above. The asthenosphere and ocean layers have thicknesses

similar to that of the brittle layer. The ocean layer has a density of 1000 kg-m 3 ; the

brittle and asthenospheric layers have densities of 3300 kg-m 3 . To insure that flexure is

not influenced by the model boundaries, the width of the box is set to 3 times the (elastic)

flexural wavelength of the brittle layer (Equation 2.13). The height of the box is equal to

50% of its width. We pull on each side of the model domain at a half-rate, U, and

compensate the horizontal outflow of ocean and rock by imposing a matching inflow of

material through the top and bottom boundaries, respectively. Shear tractions are set to

zero on all boundaries.
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Figure 2-7. Schematic setup of our numerical models for fault evolution in an elasto-
plastic layer. The faulted layer is forced to be effectively elastic by setting the viscosity
to be sufficiently large that the Maxwell timescale greatly exceeds the numerical time

step chosen to integrate elastic stresses. Plasticity is implemented following a Mohr-
Coulomb criterion. The fault is seeded at the first time iteration as a thin band of low-
cohesion material dipping at the optimal initiation angle (Equation 2.16), and then

allowed to evolve freely as strain localizes on this narrow shear band. See text for

details.

The brittle layer behaves as an elastic-plastic solid while the other layers are

effectively viscous. Elasticity is implemented following Moresi et al. [2003]. We impose

a Maxwell visco-elastic rheology law in which the time-derivative of the stress tensor is

discretized with a backward finite difference scheme. This allows us to rewrite the

rheological law as a simple viscous law with an effective viscosity that incorporates the

elastic moduli and the time step chosen for the stress approximation (termed

"computational time step" in Gerya [2010]). The terms related to the stresses from the

previous iteration then appear in the discretized momentum conservation equation. The

computational time step is chosen such that the effective viscosity vanishes in the high-

viscosity (7lL) brittle layer, allowing the terms related to past stresses to dominate the

momentum equation rendering the layer effectively elastic.

Plastic failure follows the Mohr-Coulomb criterion (Equation 2.5) with a friction

coefficient of 0.6. Strain localization is promoted by decreasing the cohesion (initially Co

= 100 MPa) linearly with the accumulated plastic strain [Lavier et al., 2000]. The

cohesion in intact material is Co = 100 MPa. We chose such a high value to promote
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longer fault life span (-RBRAK is high), allowing us to follow the growth of a single fault

over longer time scales before a new fault breaks, while still promoting diffuse plastic

yielding in the footwall and hanging wall. Once a critical plastic strain corresponding to

250 m of fault offset is exceeded, cohesion is kept at a minimum value of 0.01 MPa. To

initialize strain localization on a single normal fault at the beginning of each model run,

we impose a rectangular "fault seed" of dip Oo (Equation 2.16) and width equal to 3 cell

diagonals in the middle of the model domain. In this narrow region, plastic strain is set to

the critical value and the cohesion is decreased accordingly. The grid resolution close to

the fault is refined to about 500 x 500 m or less, which enables a mature fault width that

is typically less than 2 km. A "healing" mechanism is implemented in the code to

promote strain localization [Lavier et al., 2000]. This consists in reducing the

accumulated plastic strain by a small amount at every time iteration. In regions of diffuse

plastic yielding the accumulated strain and associated weakening heals within -10,000

years, but keeps building up in regions of localized deformation (i.e., shear zones). Once

all the extensional strain has effectively localized on the fault (which usually takes less

than 4 time iterations), we measure the average fault dip as a function of fault heave by

visually fitting a line to the region of greatest accumulated plastic strain. Fault heave is

estimated as the horizontal distance between the bottom of the hanging wall trough and

the top of the footwall shoulder.

We ran 5 simulations spanning brittle layer thicknesses of H = 2.5 to 15 km. In

each simulation the fault rotated rapidly from its prescribed initiation angle (60*) down to

angles as low as 350 at rates comparable to those inferred from the simple work

minimization models (Figure 2-8, 2-9). Flexural stresses build up in the footwall and

hanging wall, and quickly saturate at the yield stress (Figure 2-8B) resulting in diffuse

yielding within about half a flexural wavelength from the fault. We fit the dip versus

heave curves measured in each simulation between h=0 and h=H/2 with a second-order

polynomial, and measured the average slope of the polynomial to determine a smooth

estimate of the mean rotation rate (Figure 2-4B). Our measurements are consistent with a

rotation rate that is inversely proportional to faulted layer thickness as in the simple

elastic and pseudo-plastic model. In general, our numerically determined rotation rates

tend to plot between
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Figure 2-8. Snapshots of A. accumulated plastic strain and B. horizontal deviatoric stress

(a,') for various amounts of extension in numerical models of fault growth in a 10 km

thick elasto-plastic layer. Strain is highly localized into a < 2 km wide shear zone that

represents the fault. The white line marks the brittle-ductile transition (base of the faulted

layer).

the average rotation rates predicted for an infinitely strong layer and a pseudo-plastic

layer with Heff/ H = 0.5.

2.5. Discussion

2.5.1 Work minimization and dip evolution

The models presented in this study illustrate that normal faults rotate in response to the

flexure they induce in the surrounding elastic or elasto-plastic brittle layer. Complex

numerical simulations yield results that are consistent with the assumption that the system

evolves along the lowest possible energy path (Figure 2-3). Consider a fault undergoing a
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Figure 2-9. Dip evolution of a normal fault cutting through elastic, pseudo-plastic (Heg/i
H= 0.5), and elasto-plastic (colored symbols) brittle layers of varying thickness H

between 15 and 5 km (the gray area represents the corresponding range of dips).

finite amount of horizontal extension Ah. The associated uplift and subsidence of the

footwall and hanging wall will result in (a) accumulation of bending stresses and (b) a

moment imbalance that promotes the rotation of the fault toward shallower angles.

Growing the fault by Ah while allowing it to rotate by an angle AG will result in a smaller

increase in fault throw than if the fault were to retain its initial dip. Smaller fault throw

means less topographic load on the footwall and hanging wall blocks, and therefore a

smaller increase in bending work WINT that must be overcome by an increase in the

external work WEXT. Rotating the fault by too large an amount, however, will increase

the work done by frictional resistance WFRIC, which must also be overcome by WEXT.

Therefore, we argue that AG adopts the value that optimally balances these two effects.

From Equation (2.17) we can see that minimizing the increase in WEXT is equivalent to

minimizing the tensional stress UR, or the tensional force FR =H c7R required to sustain

slip on the fault [e.g., Forsyth, 1992; Buck, 1993]. The first component of WEXT (first term
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in Equation 2.14) corresponds to the frictional resistance of the fault, and is lowest when

0 = Go immediately after fault initiation (h=0*). The second component, initially zero

(second term in Equation 2.14), corresponds to the work done bending the faulted layer

and is a growing function of 0 (Appendix 2.2). The effect of this term is to shift the

minimum in FR toward smaller dip angles with increasing extension (Figure 2-3).

We envision several physical mechanisms that can lead to rotation of the active

fault plane. The most obvious one is passive advection of the fault in the displacement

field induced by continuous flexural readjustment of the footwall and hanging-wall

blocks. It is unclear, however, whether this effect alone can explain the magnitude and

kinetics of rotation observed in our numerical simulations. Another potential mechanism

for rotation is that coseismic stress changes during a normal faulting rupture may induce

a net torque about a pivot located near the middle of the faulted layer [Dempsey et al.;

2012]. In numerical simulations by Dempsey et al. [2012], this torque led to finite

rotation of the active fault plane over many seismic cycles at rates comparable to those

found in this study. In our models we consider continuous slip on a weak fault as opposed

to coseismic and interseismic phases. However, it is possible that a similar mechanism

may be at play in our simulations, which can be regarded as an extremely slow

"coseismic" deformation phase. A third potential mechanism for rotation involves

continuous strain relocalization at progressively shallower angles within the narrow weak

zone that surrounds a fault in our numerical models. In the Earth, this weak zone could

correspond to damage areas that tend to form in the vicinity of faults [e.g., Collettini

2011]. Strain relocalization could be driven by stress rotation due to bending of the

footwall and hanging-wall. We note that bending of the faulted layer is central to all the

mechanisms discussed above, either in terms of displacement field or stress buildup.

We have found that the thickness of the faulted layer, H, exerts the strongest

control on the kinematics of flexure-induced fault rotation. This is likely due to the fact

that WFpjC scales more strongly with H (- H2) than does WINT (- H3 2 if h is small). We

can therefore conclude that in thin layers (small H) the relative increase in WEXT (= WINT

+ WFRJC) corresponding to an increase in fault heave Ah will be comparatively larger, and

more sensitive to a change in fault dip than in thicker layers. In other words, WEXT will

be strongly dependent on the current fault dip if H is small, leading to a larger AO for a
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given Ah. As extension proceeds, topography grows and drives the accumulation of

bending stresses. After large amounts of extension, the stress state of the faulted layer is

primarily due to the flexure that has already occurred, and becomes less and less sensitive

to future changes in fault dip, especially when fault heave becomes comparable to the

layer thickness. This effect leads to a progressive decrease in rotation rates that is seen

both in the semi-analytical and numerical models (Figures 2-4 and 2-9). The semi-

analytical models best predict the results of the numerical simulations when fault heave is

lower than half of the faulted layer thickness. This could indicate a limitation of the thin

plate approximation when fault heave becomes comparable to plate thickness (Figure 2-

9).

2.5.2 Rheologic controls on rotation rate and life span of normalfaults

The rotation rates we measured in the numerical models (with a realistic treatment of

plasticity) agree well with those predicted by our semi-analytic work-minimization model.

Specifically, they tend to plot between the infinitely strong layer (elastic) end-member

and a pseudo-plastic end-member where the effective elastic thickness is decreased to

approximately half the true thickness throughout the layer (Figure 2-4B). This is

consistent with the fact that only a portion of the faulted layer yields in the numerical

simulations. Indeed, non-recoverable deformation accumulates preferentially in a

distributed (i.e., non-localized manner) in regions of high plate curvature [Bodine and

Watts, 1979; Buck, 1988].

The yield stress of the layer acts as an upper bound on the build-up of bending

stresses and limits the increase of ar [Buck, 1993]. Less rotation is therefore required to

adjust to the flexural stresses, accounting for slower fault rotation in elasto-plastic layers

than in purely elastic layers. As fault heave approaches and exceeds H, the bending

stress likely saturates over a large enough region that most of the subsequent deflection

occurs through plastic flow. This phenomenon is thought to shape the domal morphology

of exposed detachment surfaces by "rollover" [Buck, 1988; Lavier et al., 1999]. If the

bending stresses surrounding the fault are fixed at the yield stress, then changes in fault

dip will not strongly affect cR and the fault will remain stuck at the dip it has reached

through past elasto-plastic flexure. The numerical simulations of Choi and Buck [2012]
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showed this kind of behavior when fault heave greatly exceeded H. Namely, they found

that when the top of the active fault surface had rotated by ~20' from its initiation angle

the fault had reached a near-steady-state geometry. Choi and Buck [2012] were also able

to resolve depth-dependent rotation of the fault zone, with little to no rotation occurring

at the base of the fault. Our semi-analytical model averages the lithostatic stress along a

planar fault zone, and thus cannot account for depth-dependent rotation. However, if one

replaces H/2 by depth along the fault in the derivation of the semi-analytical model, one

would indeed expect faster fault rotation at shallower depths and the development of

concave-down faults at very large offsets.

Fault rotation acts in the same manner as plasticity in limiting the increase in

bending stresses during fault growth. Buck [1993] quantified the effect of plasticity alone

and showed that the maximum flexural stress in an elasto-plastic layer scales linearly

with H. Specifically, he showed that a fault will grow indefinitely while retaining its dip

if the layer is thin enough that cm saturates at a value smaller than the stress needed to

break a new fault (Equation 2.18). Lavier and Buck [2002] showed that rift zones

dominated by long-lived normal faults (e.g., oceanic detachments or metamorphic core

complexes) are generally associated with thinner lithosphere than rifts dominated by

shorter-lived "half-graben" style faults. Incorporating our mechanism for fault rotation

yields a similar prediction to that of a normal fault with constant dip in an extending

elasto-plastic layer, namely, in both cases infinite fault growth is permitted in thin enough

lithosphere. However, the additional influence of fault rotation will allow sustained slip

on normal faults formed in thicker lithosphere than would be permitted if fault dip

remained fixed at high angle. This is consistent with previous numerical simulations of

fault development at mid-ocean ridges by Behn and Ito [2008], who found that a force

balance model could only predict fault life span in an elasto-plastic lithosphere if it

incorporated the reduction in fault dip observed in their numerical simulations. This

suggests that both the finite yield strength of the lithosphere and the flexural rotation

mechanism presented here are important components to the physics of normal fault

growth.

The brittle-ductile transition (BDT), which controls the thickness of the layer

affected by faulting, is largely thermally controlled, and has been inferred to correspond
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to temperatures of 400-600*C in the oceanic and upper continental crust [e.g., Hirth et al.,

1998]. The depth, geometry, and evolution of the BDT results from a competition

between heat advection in the solid flow field (underlying ductile flow, overlying brittle
deformation and associated uplift / subsidence) and heat conduction, which can be

enhanced by hydrothermal processes [Phipps Morgan and Chen, 1993; Lavier and Buck,

2002]. For simplicity, the numerical simulations presented here do not account for

temperature evolution and temperature-dependent rheology. Consequently, the
distribution of brittle and ductile materials is solely controlled by advection in the fault-

related velocity field. This corresponds to an end-member scenario in which heat

conduction and hydrothermal circulation are inefficient at extracting heat from the base

of the faulted layer, resulting in a sharp BDT that is offset by the fault. In this scenario

the area of contact between the hanging-wall and footwall blocks and the thickness of the

rock column overlying the fault decreases with increasing fault offset (Figure 2-10A).

Alternatively, if hydrothermal cooling is efficient at extracting heat from the lithosphere

the BDT may remain relatively flat and not mimic the surface topography [e.g., Lavier

and Buck, 2002], which will in turn result in a smaller reduction in the area of contact

during extension.

To investigate whether such changes in the morphology of the BDT will influence

the kinematics of fault rotation, we ran numerical simulations of fault growth in elasto-

plastic lithosphere with a BDT that was forced to remain flat and at a fixed depth (Figure

2-10B). These runs yielded very similar rotation kinematics to the reference runs

presented in Figure 2-9. The reason for this is twofold. First, bending of the brittle layer

affects an area over which the layer thickness is largely unchanged (over a flexural

wavelength a), but that is much larger than the zone immediately affected by the fault,

making flexural rotation relatively insensitive to a net decrease in layer thickness close to

the fault. Second, our model assumes the same density for the faulted layer and the

underlying ductile asthenosphere. This means that gravitational deflection of the

lithosphere is solely controlled by the density contrast at the surface / seafloor, and is

insensitive to the geometry of the BDT. Introducing a buoyancy contrast along the BDT

could introduce a restoring load that limits deflection and introduces asymmetry between
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Figure 2-10. Snapshots of accumulated plastic strain after 2.3 km of horizontal extension

along a fault cutting through a 5 km-thick elasto-plastic layer. In A, the brittle-ductile

transition (BDT, white line) is advected in the ambient solid flow field and therefore

offset by the fault. In B, the BDT is constrained to remain at a fixed depth, representing a

scenario where heat is efficiently extracted through the brittle layer. Evolution of the

BDT does not appear to strongly control the rotation kinematics of the fault.

the footwall and hanging wall [Weissel and Karner, 1989], potentially affecting fault

rotation.

It is generally thought that fault zones progressively weaken as they accumulate

offset, due to effects such as progressive damage and/or precipitation of soft minerals. In

our models the fault is systematically treated as a zone of very low cohesion (<< 1 MPa).

The choice of a low fault zone cohesion, C, has little effect on the evolution of cYR, given

that C << ppgH/2 in the expression of WFRPC (Equation 2.7). By contrast, cohesion of the

unfaulted brittle material is critical in controlling when a new fault breaks and the

previous fault is abandoned (Equation 2.18). Fault friction, however, has a very strong

control on the initiation angle of normal faults (Equation 2.16). To estimate the extent to

which the friction coefficient influences fault rotation, we calculated the dip evolution of
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low-friction faults using our semi-analytical model. We found that fault friction had very

little influence on rotation rates (Figure 2-5B). This is consistent with our interpretation

of rotation kinematics being controlled primarily by flexural processes. Fault friction

does, however, control the range of angles that an active fault will reach because it

controls the angle of fault initiation. If flexure of the brittle layer can account for ~30* of

fault rotation over a total extension of -H, then a low-friction fault may reach angles as

low as 20' if it initiated at 50' (u = 0.2). An important consequence of this result is that a

seismically-active normal fault dipping at an angle of 400 could either be a strong (u =

0.6) fault that has accommodated a significant amount of extension (-30% of the faulted

layer thickness), or a weak (p < 0.3), young normal fault that has accommodated little

offset (Figure 2-5B). While the distinction may be straightforward in the field, it is not at

all obvious when one only considers catalogs of normal faulting earthquakes.

2.5.3 Implications for extensional rift systems

We propose that the dip distribution of normal faulting earthquakes (Figure 2-1) observed

both globally and at individual rifts reflects a ubiquitous process of faults initiating at a

steep angle (~60*) before rapidly rotating toward shallower dips and being abandoned in

favor of a new steep fault. In the framework of our model, the 30-60* range is a

reflection of the typical brittle layer thickness ( ; -15 km) inferred in most extensional

settings [e.g., Chen and Molnar, 1983]. Indeed, a 15 km brittle layer is thin enough to

allow large amounts of rotation over the life span of the fault (Figure 2-6). If fault

segments evolve in relative independence along the axis of a rift, then our model predicts

that intermediate to shallow-dipping faults should be more prevalent than steep faults,

consistent with the high-angle tail in the global distribution (Figure 2-1). Of course the

extent to which the dip evolution of a single normal fault (Figure 2-5) is reflected in the

shape of the global earthquake dip distribution is not straightforward. It depends on (1)

the distribution of heaves within a fault population, which reflects the relative timing of

fault growth (e.g., sequential vs. simultaneous) as well as the degree of along-axis fault

interaction; and (2) how earthquakes sample the true dip distribution. Indeed, Wernicke

[1995] suggested that low-angle fault planes may be characterized by longer earthquake
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recurrence time and therefore be undersampled in global dip catalogs, thereby explaining

the low-angle tail and bell-shape of the distribution shown in Figure 2-1.

Our model makes predictions for fault evolution, which can be tested with

detailed regional studies of fault geometry and lithospheric rheology. For instance, our

model predicts that strong faults (u > 0.6), which initiate at a steep angle in a thick brittle

layer (H> 25 km), will only remain active over a few kilometers of extension before they

are abandoned in favor of a new fault. Over their short life span, these faults will not

experience large rotations from their initiation angle. This is consistent with the steepest-

dipping normal faulting ruptures recorded in Mozambique [51-76* during the 2006

seismic sequence; Yang and Chen, 2008] where the seismogenic layer thickness (-30

km) is notably thicker than is typical in most continental rifts [Chen and Molnar, 1983].

Our model suggests that similar steep (slowly rotating) faults should be prevalent in

regions of high brittle layer thickness such as the Baikal Rift in central Asia [e.g., Watts

and Burov, 2003]. Unfortunately there is not a sufficiently complete record of normal

faulting tensor solutions in which the fault plane can be clearly identified to accurately

sample the dip distribution in such settings. Future studies should focus on assembling

such detailed catalogs on the regional scale in order to systematically constrain fault dip

as a function of lithospheric thickness (e.g., seismogenic layer thickness, equivalent

elastic thickness, thermal models). As a first step in this direction, we compiled

representative heat flow measurements for each region present in the global dip

distribution shown in Figure 2-1, using data from the global heat flow dataset [Pollack et

al., 1993] and the compilation used in Lavier and Buck [2002]. We treat conductive heat

flow as a proxy for brittle layer thickness, with the expectation of greater heat flow in

regions of thinner lithosphere. Figure 2-11 shows event dip plotted against regional heat

flow. Events from Mozambique and the Baikal Rift plot at the high-dip / low heat flow

end. Events from the Woodlark Basin, which are to date the shallowest-dipping normal

faulting ruptures on record, plot on the high heat flux end, which is consistent with our

results. Specifically, we expect that the lowest dip that a normal fault can reach should

be smaller in thinner faulted layers. If this is the case, thorough regional compilations of

unambiguous fault dips may help outline a minimum dip "envelope" on a plot of dip vs.

heat flow (or another proxy for H).
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Figure 2-11. Compilation of normal fault dips making up the distribution shown in

Figure 2-1 plotted against regional heat flow data [Pollack et al. 1993; Lavier and Buck

2002]. Heat flow serves as a proxy for faulted layer thickness, with higher heat flow

expected in regions of thinner brittle layers. The global distribution of fault dips is

reported on the right side of the graph.

Another obvious step in testing the predictions of fault rotation made here are

through detailed geologic studies using paleomagnetism, thermobarometry, and/or

synkinematic sediment sequences to reconstruct the rotational and growth history of

normal fault systems. In practice comparing model predictions of dip versus heave with

individual real-world faults is very challenging. This is mainly because measuring the

total amount of extension accommodated by a fault is not straightforward, especially if

surface processes alter or erase the geomorphological markers of finite extension (e.g.,

erosion of the uplifting footwall).

An additional complication is that surface processes may influence the force

balance on a growing normal fault, either by adding load (deposition of sediments on the

subsiding hanging wall), and/or by removing / redistributing load through footwall

erosion, which would feed back onto the topographic and bending stresses. In the

numerical models of Choi and Buck [2012], incorporating basin infill on the hanging wall
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side of a growing fault indeed results in faster and overall greater amounts of fault

rotation. Quantifying the effect of such processes on the build-up of flexural stresses and

the subsequent readjustment of normal faults is beyond the scope of this study, but would

constitute an interesting next step with potential implications for tectono-climatic

interactions.

Finally, we emphasize that the models presented here are generally well suited for

mid-ocean ridge settings. We have considered an end-member of rifting where a single

normal fault dominates the strain field, which is often the case at asymmetric mid-ocean

ridge segments where long-lived detachments accommodate most of the tectonic

extension [Escartin et al., 2008]. Our model predicts that very large offset (h > H)

detachment faults displaying flat, domal footwalls should dip at a relatively shallow angle

(<450) where they root at the ridge axis. The subsurface geometry of oceanic

detachments is still a matter of debate, and to date the only direct constraint is from a

single microseismicity study at the TAG segment of the Mid-Atlantic Ridge [DeMartin et

al., 2007]. Their study argues for a shallow dipping exhumed fault surface that roots into

a steep (~70*) active fault. In the conceptual framework of our model this would only be

possible in an extremely weak elasto-plastic lithosphere, where rollover of the footwall

occurs through widespread plastic flow and there is limited stress build-up to drive

significant rotation of the active fault. Another possibility is that fault rotation is strongly

depth-dependent and leads to a concave-down fault that retained a steep dip at depth

while its upper portion rotated by 200 or more.

It is noteworthy, however, that TAG does not feature a fully formed, corrugated oceanic

core-complex and has only accommodated about 4 km of horizontal extension between

termination and breakaway. It is also unclear whether the steep cluster of seismicity

observed at the axis is actually linked to the exhumed fault surface or whether it

constitutes the initiation of a new fault at a high angle that marks the recent abandonment

of the older TAG fault.

Additional studies of detachment microseismicity are needed to resolve the debate

on active detachment roots, which has strong implications on the total amount of rotation

recorded by exhumed lower-crustal units in the footwall of oceanic core complexes. We

propose that footwall rotation recorded by paleomagnetic tracers [e.g., Garce's and Gee,
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2007; McLeod et al., 2011] may record both rollover of the exhumed footwall [Buck,
1988; Lavier et al., 1999] and rotation of the active fault plane explored in this study.

While these two components may be of similar magnitude, we expect rotation of the

active fault plane to occur immediately after fault initiation, and therefore to be recorded

in units closest to the detachment breakaway.

2.6. Conclusions

We have shown that fault rotation in response to the evolving stress field associated with

plate flexure provides a mechanism to explain the distribution of active normal fault dips

observed globally and at the scale of individual rift systems. In our model, the fastest

rotation rates occur immediately following fault initiation, and the average rotation rates

scale as the inverse of the faulted layer thickness. Predicted fault dips span the entire 30-

60* dip range documented in earthquake catalogs, except in cases where the faulted layer

is > 25 km, in which case it rapidly becomes easier to initiate a new fault than to continue

extension and rotation of the active fault. The predictions of our model can be tested

through careful regional compilations of normal faulting mechanisms where one of the

two nodal planes can be clearly identified as the rupture plane. Such compilations should

be complemented by independent estimates of the thickness of the faulted layer and more

generally of the local strength profile of the lithosphere. Fault-induced flexure and

topographic stresses are essential controls on fault dip, which must be considered

alongside fault strength and faulted layer strength. Finally, the sensitivity of topographic

and bending stresses to surface processes (e.g., erosion and deposition) opens a range of

implications for the long-term evolution and short-term seismogenic behavior of normal

fault systems.
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Appendix 2.1. Calculation of the bending work term WINT

To estimate the mechanical work required to bend the faulted layer, WIAT, from Equation

(2.9) we first calculate the deflection of the faulted layer w(x) due to finite extension on

the fault. This is done by convolving the right-hand side of Equation (2.9) with the

Green's function describing the response of an infinite elastic thin plate to a point load:

w(x)= fG(x,s)(-Apgw*(s))ds

where G(xs) is written

G(x,s)= exp - I cos +sin(
8D a a j(2.S2)

and w*(x) is defined as

- tan9, Vx < --
2 2

w*(x)= xtanO, Vxe - ,) (2.S3)

+ tan6, Vx >+
2 2

This yields the total fault-induced topography wT(x) = w(x) + w*(x)

w xfx-h/2 xh/2 (2aS4)

w'x) - t (6f f a | (2.S4)

wheref(x) is a dimensionless function defined as

f(x)= exp(-x)(sinx - cosx) (2.S5)

From Equation (2.9), we can now write

W tan2  (( x-h/2 x+h/2(2.S6)

which can also be expressed as

W = D tan2 0 ,(
16a a} (2.S7)

Where IF(y) is related tof(x) by
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I(y) = f'"x- y J-(f x+ y dX (2.S8)

The function IF (y) is estimated numerically with the trapezoidal method. Its graphical

representation is shown in Figure 2-S IA.

Appendix 2.2. Equations for fault dip, work and stress as a function of heave

Each term in Equation (2.14), WFRJC and Wmr, can be written as the product of a function

of dip, A(6), and a function of heave, R(h). Specifically,

AF(O= n 2sin Cos+p sin 6 (2.S9)

RF(h)=(C+ pgH /2)Hh (2.S1O)

A,(6)= tan26 (2.Sll)

R,(h)= D (hV
16a a (2.S12)

To determine the fault dip that minimizes the increase in total extensional work (WExT)

with increasing extension, we differentiate WEXT with respect to h and 0-

(AF"(e)RF(h)+ AF "()RF(h)) +AF'()RF'(h) + A'()R,'(h)
aO ah ah(2.S13)

and this equal to zero to obtain the following nonlinear ODE:

aO AF'(O)RFh I A'(0) R,'1(h)
Ah AF"(6)RF(h) +A "(0)R,(h) (2.S14)

Equation (2.S 14) is solved with a 4th order Runge-Kutta method with the initial condition

6(h=O)= o. Below are the expressions of the first and second order derivatives of

functions A and R.

AF'(,) csc 4 6(cos 20 + p sin 29)
(p+cot6)' (2.S15)

2csc2 6
AF + co) 3 ( 2 + 3,2 c 2 6+ 1pcut+63'cot'0co36)3 16)4

(p +cot 0) (2.SI6)
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A'(6)=2tan6sec 2
o (2.S17)

A,"(6)=-2(cos20-2)sec4e (2.S18)

RF'(h)=(C+pypgH / 2)H (2.S19)

R,'(h) ( D n c ing16j2 a2.S20)

The graphical representation of 'P'(x) (estimated numerically) is shown in Figure 2-S IB.
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Figure 2-S1. Graphical representation of dimensionless function F (x) (A) and its first
derivative (B). W (x) is used in the calculation of Wr (Equation 2.12), and F'(x) is used
in the calculation of aR through Equation (2.S20).
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Chapter 3:

Modes of extensional faulting controlled by surface processes2

Abstract

We investigate the feedbacks between surface processes and tectonics in an extensional

setting by coupling a 2D geodynamical model with a landscape evolution law. Focusing

on the evolution of a single normal fault, we show that surface processes significantly

enhance the amount of horizontal extension a fault can accommodate before being

abandoned in favor of a new fault. In simulations with very slow erosion rates, a 15 km-

thick brittle layer extends via a succession of crosscutting short-lived faults (heave < 5

km). By contrast, when erosion rates are comparable to the regional extension velocity

deformation is accommodated on long-lived faults (heave >10 km). Using simple scaling

arguments, we quantify the effect of surface mass removal on the force balance acting on

a growing normal fault. This leads us to propose that the major range-bounding normal

faults observed in many continental rifts owe their large offsets to erosional and

depositional processes.

2 Published as: Olive, J.-A., Behn, M. D., and L. C. Malatesta (2014b), Modes of
extensional faulting controlled by surface processes, Geophys. Res. Lett., 41(19).
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3.1. Introduction

Erosion, sediment transport, and deposition can strongly affect the state of stress and

deformation at plate boundaries through the redistribution of surficial masses. These

processes are well documented and have been extensively modeled in active orogens

[e.g., Koons, 1989; Molnar and England, 1990; Avouac and Burov, 1996; Willett, 1999],

where surface processes affect the balance of tectonic forces at the scale of the orogenic

wedge. Specifically, it has been established that active surface processes favor strain

localization along a few long-lived thrusts and back thrusts that are active

synkinematically, thereby promoting sustained exhumation of deep crustal units [e.g.,

Mugnier et al., 1997; Willett, 1999; Konstantinovskaia and Malavielile, 2005]. By

contrast, the morphology of extensional environments is largely controlled by the

geometry of a succession of lithospheric-scale normal faults that accommodate most of

the strain near the axis of the rift. Potential feedbacks between surface processes and

extensional tectonics should therefore be investigated in terms of a force balance at the

scale of these individual faults. This study presents a simple mechanical framework

quantifying the effect of surface processes on fault geometry and longevity, which is

currently lacking in extensional settings.

Earlier studies of the long-term (0.1-10 Myr) coupling between erosion and

rifting largely focused on the plate boundary scale and investigated complex feedbacks

between surface processes and viscous flow in a multi-layered lithosphere. Burov and

Cloething [1997], and Burov and Poliakov [2001] showed that erosion of the rift shoulder

and sedimentation in the rift neck lead to greater lithospheric thinning and basin widening

by affecting lithospheric strength profiles. More recently, Bialas and Buck [2009] used

numerical models to argue that enhanced sedimentation in the northern Gulf of California

promotes a transition to narrow rifting compared to the wider, more distributed rifting in

the south. They attributed this result to sediments decreasing the change in gravitational

force caused by the growth of topography during extension; thereby promoting prolonged

extension in a narrow region. Unfortunately, due to their large-scale approach, their

models did not properly resolve individual normal faults, and therefore could not test how

changes in gravitational force affected the behavior of a specific normal fault.
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Indeed, a key parameter in the evolution of extensional plate boundaries is the

amount of offset that can be accommodated by a single normal fault before being
abandoned in favor of a new one. Broadly speaking, fault life span determines whether

the "building block" of a rift system is a half-graben structure (characteristic offset
smaller than the faulted layer thickness, typically a few km), a long-lived, low-angle
detachment fault (with offset in the 10-50 km range, resulting in surficial exposure of
lower crustal units), or a combination of both [e.g., Morley, 1995; Lavier et al., 2000;

Lavier and Buck, 2002; Whitney et al., 2013]. Over the past two decades a robust

conceptual framework has been assembled to identify the first-order controls on the

modes of extensional faulting [e.g., Forsyth, 1992; Buck, 1993; Lavier et al., 2000;

Lavier and Buck, 2002; Behn and Ito, 2008; Olive and Behn, 2014]. These authors

considered the mechanical cost of sustaining slip on a single normal fault, which requires

an increase in tensional force as extension proceeds. The necessary force increase was

shown to be faster in thicker elasto-plastic faulted layers. Consequently, the force

threshold for breaking a new fault is met sooner in thicker layers, and extension proceeds

by a succession of short-lived normal faults. If the faulted layer is sufficiently thin, the

force build-up is moderate and the threshold may never be reached, favoring a succession

of large offset faults.

A major limitation of this theory is that for brittle layer thicknesses typical of

most continental rift zones only small offset faults are predicted, yet faulting in these

regions range from short-lived faults to long-lived detachments forming metamorphic

core complexes [e.g., Whitney et al., 2013]. Additional controls such as rapid

hydrothermal cooling [Lavier and Buck, 2002] and magmatic processes [Buck et al.,
2005] have been proposed to explain large offset faulting, but those are more relevant to

mid-ocean ridge settings and thus cannot explain this discrepancy between the models

and observations in continental rifts. On the other hand, sub-aerial rifts are subjected to

surface processes that rework topography more or less efficiently depending on climatic

parameters and basement lithology. By redistributing mass at the surface, these processes

have the potential to modify the stress state of the lithosphere and thus influence fault

evolution.
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The aim of the present study is to quantify the effect of surface processes on fault

life span in an extensional regime. To do so, we conduct 2D geodynamic simulations of

fault evolution coupled to a parameterized erosion and deposition model. We

complement this numerical approach with a force balance model that explicitly considers

the gravitational contribution of topography, a term that was previously parameterized

only in combination with footwall and hanging wall flexure [e.g., Forsyth, 1992; Buck,

1993] or ignored [Olive and Behn, 2014]. We find that when acting at rates comparable

to fault slip, surface processes can significantly enhance fault life span by relieving a

fraction of the topographic forcing. We identify faulting regimes controlled by the

efficiency of surface processes and faulted layer thickness, and discuss their applicability

to natural rift systems.

3.2. Numerical experiments

We solve for conservation of mass, momentum, and energy in a 2D domain using the

finite difference / marker-in-cell technique [Harlow and Welch, 1965] described by

Gerya [2010]. Our model setup (Figure 3-la) is similar to that of Olive and Behn [2014]

and treats the brittle upper crust as an elasto-plastic layer of thickness H, Young's

modulus E (100 GPa), and Poisson's ratio v (0.5). The brittle layer lies above a weak

viscous lower crust (Newtonian, with viscosity 1018 Pa-s), and beneath a low-viscosity

"sticky air" layer (viscosity 10 17 Pa-s) [Crameri et al., 2012]. The base of the faulted

layer corresponds to the 600'C isotherm and evolves with temperature. Thermal

conductivity is artificially enhanced such that thermal diffusion occurs faster than fault-

induced advection, thereby allowing the faulted layer to retain its initial thickness during

fault growth [Lavier and Buck, 2002]. This allows us to isolate the effect of

redistributing surficial mass from that of advective thinning of the brittle layer.

The air layer has a density of 102 kg-m 3 ; the brittle and lower crustal layers

have densities of 2700 kg-m 3 . To insure that deformation is not influenced by the model

boundaries, the width of the box is set to 3 times the (elastic) flexural wavelength of the

brittle layer. We pull on each side of the domain at a half-rate, V, and compensate the

horizontal outflow of air and rock by imposing a matching inflow of material through the
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Figure 3-1. a. Setup of the numerical and force balance model. An elasto-plastic layer of
thickness H with a weak fault initially seeded at a 0= 60* angle undergoes extension at a

half-rate V. The layer has density p and is sandwiched between two weak / inviscid layers

(not shown). As the fault accumulates horizontal offset h, the hanging wall and footwall

blocks undergo flexure (over a wavelength a), which results in topography growth and

fault rotation. The material upwelling beneath the footwall has the same lithology as the

brittle layer, but acquires its brittle nature through thermal equilibration as it cools below

600*C. Surface processes cause footwall erosion and partial filling of flexural basins. b-
d. Snapshots of numerical simulations after 22 km of extension in a 15 km thick layer

extending at a half-rate of 1 mm.yr 1. Surface topography is subjected to erosion rates

(calibrated on a 200 mean elevation slope) of (b.) 0.015, (c.) 1.0, and (d.) 15 mm.yf1 .
Yellow dashed lines indicate faults that have been abandoned in a sequence indicated by
the numbers. Blue faults are actively growing at the time of the snapshot. Colored areas

indicate the material that deposited while the fault of corresponding color was active. In

the case of panel (b), where faults are short-lived and closely spaced, the blue material

integrates deposits associated with the successive growth of fault #2 and fault #3. The

solid white line marks the top of lower crustal units.

top and bottom boundaries of the numerical domain, respectively. Shear tractions are set

to zero on all boundaries.

Localized plastic failure (i.e., faulting) occurs spontaneously in our simulations

following a Drucker-Prager criterion that approximates an inscribed Mohr-Coulomb yield

surface with a friction coefficient of 0.6. Strain localization is promoted by decreasing

the material cohesion (initially Co = 100 MPa) linearly with accumulated plastic strain

[Lavier et al., 2000] down to a value of 0.01 MPa after a critical plastic strain

corresponding to -200 m of fault offset has been exceeded. To initialize strain

localization on a single normal fault we impose a rectangular "fault seed" of dip Oo = 60*

and width equal to about 2 grid cells in the middle of the domain within the brittle layer

at the beginning of each model run. In this narrow region, plastic strain is set to the

critical value and cohesion is decreased accordingly. A "healing" mechanism is

implemented to promote strain localization [Poliakov and Buck, 1998].

Surface topography, y(x), is tracked using a chain of closely spaced markers that

separate the air layer from the brittle rock layer. At the end of each "tectonic" time step

(At), the topography is advected using the current velocity field. We then modify the
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topography by solving a landscape evolution law on the surface marker chain over the

time At. All markers located above the updated topography become of type "air" (i.e.,
acquire the density and rheological properties of the weak air layer), while markers

located beneath become "rock". This new marker distribution is then used to calculate

the next "tectonic" velocity field.

The first step in our landscape evolution model consists of eroding topography to

create a surface that reflects the mean elevation profile of a mountain range. The 2-D

nature of our approach simplifies the average of the profiles of concave-up trunk rivers

and convex-up ridgelines to a largely constant slope that relaxes to shallower angles

across the foothills. To do so, we scale the erosion rate with the local slope:

a y =(- K

at ax (3.1)

Because the profile of mean elevations differs from that of the trunk river, we omit the

upstream drainage area component used in stream power models [e.g., Whipple, 2004,

and references therein]. We set n = 1.3, which was empirically found to generate realistic

topographies across a range of K values. The coefficient K accounts for erosional

resistance and climatic conditions, and can be calibrated at field sites where mean

elevation slope and erosion rate are known. For simplicity, we hereafter refer to various

values of K (the main control on the efficiency of surface processes) in terms of the

corresponding erosion rate in a 200 sloping mountain front, E20, defined as

E20 = K tann(200) (3.2)

Following the erosion step, we identify watersheds across the model domain by

first locating the topographic highs. We calculate the volume of eroded material in each

watershed and then deposit that volume horizontally at the bottom of the same watershed.

The flat deposition at the toe of the slopes simulates sediment redistribution processes in

floodplains or playas. Deposition ceases if the eroded volume exceeds the current basin

capacity. In this scenario, the filled basin is then integrated with the neighboring

watershed at the next erosion step. Negligible sedimentation occurs in watersheds that

border the model domain because the edges of the model act as sinks allowing the

material to leave the domain.
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We conducted 21 numerical simulations in which we systematically varied E20

between 0.015 and 150 mm-yr-', with an emphasis on the geologically relevant interval

of 0.015-10 mm-yr-1 [e.g., Herman et al., 2013]. We chose a brittle layer thickness of 15

km extending at a half-rate of either 1 or 10 mm-yf~1, which is representative of many

continental rifts [e.g., Chen and Molnar, 1983; Strak, 2012]. We also examined cases

with a 25 km thick layer, representing colder rifts such as certain portions of the East

African Rift or the Baikal Rift [Lavier and Buck, 2002]. A summary of our simulation

parameters is given in Table 3-1. In each run, we measure the total amount of horizontal

extension (hmbx) accommodated on the initial fault when (if) the next fault breaks; or

more precisely when accumulated plastic strain starts to heal on the initial fault and build

up on the new fault. We also monitor the progressive rotation of the initial fault and

characterize the modes of faulting (e.g., multiple, short-lived faults vs. a single long-lived

detachment) over -40 km of total extension.

3.3. Results

In all numerical simulations, shear deformation localizes rapidly along the seeded fault,

inducing flexural uplift and subsidence of the footwall and hanging wall blocks,

respectively (Figure 3-la). The exposed fault scarp systematically features the steepest

slopes and is therefore subjected to the fastest erosion. The corresponding erosion

products deposit in the flexural basin formed by the subsiding hanging wall, while the

ridge of the footwall retreats away from the basin. As extension proceeds on the fault, an

equilibrium topography consisting of a footwall high and a partially filled hanging wall

basin is reached in cases where E20 and V are of the same order of magnitude.

Topography is essentially suppressed when E20 exceeds -5 times the extension half-rate

V.

Our numerical simulations reveal that for a given layer thickness and extension

rate, increasing the erosion rate E20 can have a dramatic effect on the modes of faulting.

Figure 3-lb-d shows snapshots of layer deformation after 22 km of total extension in a 15

km thick layer at a half-rate V = 1 mm-yr~ 1. At very low erosion rates (E20 = 0.015

mm-yf1, Figure 3-1b), the initial fault accommodates -3.7 km of extension before an

antithetic fault breaks and takes up the next -6 km of extension, uplifting and
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E20 (mm.yrf') V (mm.yr-1 ) E20 / S H (km) OMI (0) hmAx (km)

0.015 1 0.005 15 47.4 3.6
0.15 1 0.05 15 44.7 4.0
0.5 1 0.18 15 43.5 4.8
0.75 1 0.27 15 41.2 6.1
1.0 1 0.35 15 32.6 14.5
1.5 1 0.53 15 33.1 11.0
2.5 1 0.88 15 33.6 11.2
5 1 1.77 15 33.1 12.5
7.5 1 2.65 15 31.9 infinite
10 1 3.54 15 32.0 infinite
15 1 5.30 15 32.7 infinite

0.015 1 0.005 25 47.6 4.0
0.5 1 0.18 25 45.8 5.6
1.0 1 0.35 25 40.1 8.3
5.0 1 1.77 25 39.2 9.4
15 1 5.30 25 36.1 14.3

0.015 10 0.0005 15 48.0 3.7
1.0 10 0.04 15 46.1 4.1
10 10 0.35 15 35.5 10.6
15 10 0.53 15 32.2 13.3
150 10 5.30 15 30.9 infinite

Table 3-1. Summary of parameters and results of our numerical experiments.

subsequently eroding the sediments deposited in the hanging wall of the first fault. A

third antithetic fault then forms, and new sediments begin infilling the basin formed by

the 3 rd active fault and the topographic high inherited, but not yet eroded, from the second

fault. Extension therefore proceeds as a succession of short-offset antithetic faults.

By contrast, at a higher erosion rate of 1 mm-yf1 , the initial fault remains active

longer and accommodates more extension. In this case, the first -10 km of extension are

taken up on the initial fault, followed by the development of two blind antithetic faults in

the footwall block. Over the next few km of extension, the two small faults (1' and 2 in

Figure 3-1c) accommodate a significant fraction of the total plate separation, until the

fault dipping parallel to the master fault cuts through the entire layer and localizes all the
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Figure 3-2. a. Maximum heave accommodated on the initial normal fault in the
numerical model, as a function of erosion rate (E20, calibrated on 200 mean elevation
slopes) normalized by the long-term fault slip rate (S = 2V / cos 0, assuming a mean fault
dip of 450). Data points span various brittle layer thicknesses and extension rates (see
legend). Arrows indicate cases where faults grew indefinitely. The error bars correspond
to 3 cell sizes near the fault (-1.5 km), which sets the uncertainty in our measurement of
fault life span. The red, black and blue curves illustrate the behavior expected from our
force-balance model, with the color key indicated in the legend. b. Lowest dip reached by
the initial normal fault (initially dipping 60*) when it becomes abandoned in favor of a
new fault (or for an "infinite" amount of offset). The red and blue curves correspond to
our kinematic model of fault rotation (see Appendix 3.1) in a 15 km and a 25 km-thick
faulted layer, respectively. c. Force needed to sustain slip on a normal fault as a function
of accumulated heave, for various faulted layer thicknesses H. The thick and thin lines
show the total force with and without the component corresponding to topography growth
FTOpO, respectively. The red stars mark the amount of horizontal extension that can be
accommodated when the force threshold to break a new fault in intact lithosphere
(horizontal red line) is reached. The infinity symbols indicate cases where faults can grow
indefinitely. d. Conceptual regime diagram showing fault life span hMw as a function of
faulted layer thickness and the ratio of erosion rate to long-term slip rates, as inferred
from our force balance model. Representative parameter values are indicated for various
extensional settings.

extension (Fault 2 in Figure 3-1c), resulting in abandonment of the initial master fault.

Fault 2 becomes the next master fault, and the same pattern repeats. Extension is

therefore taken up by a succession of large offset (10-15 km) sub-parallel faults. A

topographic high can only be sustained in the footwall of the actively growing fault since

erosion rapidly levels the topography once a fault is abandoned.

Finally, at very high erosion rates (E20 = 15 mm-yr') (Figure 3-id) the initial fault

remains active indefinitely, accommodating ;> 50 km of extension (corresponding to the

extent of the simulation). Significant flexural deformation occurs in the footwall, and

lower-crustal units become exposed at the surface. However, no characteristic topography

can develop as the (unrealistically) high erosion rates force the surface to remain flat

throughout the experiment.

Figure 3-2a (and Table 3-1) shows the life span hwx of the initially seeded fault

plotted against the reference erosion rate E20 normalized by the average fault slip rate S.
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Faults in a 15 km-thick brittle layer subjected to slow erosion rates (E20 < 0.15 mm-yfr)

accommodate -4 km of extension before being abandoned, regardless of extension rate.

Fault life span is weakly sensitive to very slow erosion rates, but increases sharply when

the ratio of erosion rate to long-term fault slip rate E2o / S exceeds - 0.1. E20 / S > -2

promote infinite growth of the initial normal fault and the suppression of all topography.

Brittle layer thickness strongly modulates the sensitivity of fault life span to surface

processes. Consistently with earlier studies, fault life span is systematically shorter in a

25 km-thick layer than in a 15-km thick layer, across the entire range of E20 / S (Figure 3-

2a). Moreover, while extremely fast normalized erosion rates (E2o / S >-2) lead to infinite

fault growth in a 15 km-thick layer, these rates only extend fault life span to 15 km in a

25 km-thick lithosphere.

In addition to topography and fault life span, we also monitor the evolving fault

dip by visually fitting a line to the region of greatest accumulated plastic strain (Figure 3-

2b). When fault offset becomes comparable to the thickness of the faulted layer, the fault

develops significant concave down curvature [e.g., Choi and Buck, 2012]. In these

situations, we restrict our visual fit to the upper-half of the faulted layer to yield an upper

estimate of fault rotation. Faults rotate rapidly from their initial angle (~60') down to

dips of 30-45', in accordance with a model in which the fault rotates to minimize the

total extensional work [Olive and Behn, 2014]. We find that fault rotation is slower in a

25 km thick faulted layer than in a 15 km thick layer, consistent with the predictions of

Olive and Behn [2014]. Rotation progressively slows with total extension, reaching a

minimum dip when the total fault heave exceeds the faulted layer thickness. The amount

of rotation at a given time depends solely on the faulted layer thickness and the amount of

extension accommodated on the fault. Thus, surface processes act to prolong fault life

span, but do not strongly influence the kinematics of fault rotation.

3.4. Topographic forcing on fault life span

To further quantify the influence of surface processes on fault life span, we complement

our numerical approach with a simple force balance model for a growing normal fault

[Buck, 1991; Lavier et al., 2000; Behn andIto, 2008]. The basic assumption of this class

of models is that an active fault will be abandoned when the force required to keep it
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active exceeds the threshold force needed to break a new fault. The total force, F,
represents the depth-averaged deviatoric stress acting on the fault [Forsyth, 1992], and

can be decomposed into the force required to sustain frictional slip on the fault, FFRIC, the

force required to bend the footwall and hanging wall blocks as the fault accumulates

offset, FBEND, and the force required to sustain topography, FTopo.

By definition, the work done by the bending and topographic forces corresponds

to the internal strain energy stored in the faulted layer, and to the change in gravitational

potential energy associated with topography build-up, respectively. FBEND and FToPo can

therefore be expressed as the derivative of those work terms with respect to horizontal

extension [Forsyth, 1992; Buck, 1993; Olive and Behn, 2014]. We estimate these forces

by treating the faulted layer as an elasto-plastic thin plate [Buck, 1988; 1993] with a

triangular yield strength envelope approximating that used in the numerical simulations.

Fault topography, after a given amount of horizontal extension h, is modeled as the

flexural readjustment to the rigid uplift / subsidence of the footwall and hanging wall

[Weissel and Karner, 1989; Olive and Behn, 2014]. Plate rigidity is decreased iteratively

in regions of high plate curvature, until the effective elastic bending moment matches that

of the elasto-plastic plate [Buck, 1988]. The flexure equation with spatially varying

rigidity is then solved with finite difference to obtain the fault induced topography y(x).

The bending work WBEND is obtained by integrating the bending stress times the bending

strain over the entire layer. The topographic work corresponds to the change in

gravitational potential energy associated with offsetting the air-rock density contrast, Ap,
from its initial flat state.

It has long been recognized that fault dip plays a key role in modulating the forces

acting on a fault [Forsyth, 1992]. Here we incorporate fault rotation to the force balance

model using a simple kinematic approach. Following Olive and Behn [2014], we assume

that fault rotation results from passive advection of the fault in the displacement field

induced by flexure of the footwall and hanging-wall blocks. The rotational component of

this displacement field is due largely to the decreasing magnitude of vertical motion that

occurs over approximately one flexural wavelength from the fault (Figure 3-la). The

average rotation rate therefore inversely scales with the flexural wavelength, and is

slower in stronger, thicker layers.
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Once the modeled fault topography is obtained for a given amount of extension h,

we infer the effective flexural wavelength of our elasto-plastic thin plate and use it to

update the fault angle at step h+Ah (see details in Appendix 3.1). To prevent the fault

from reaching very low dip angles in the force balance model, which are not observed in

the numerical models, we assume that rotation ceases once the heave becomes

comparable to the faulted layer thickness. This corresponds to faults that have acquired

significant curvature after footwall rollover has occurred [Choi and Buck, 2012]. This

approach is simpler to implement in an elasto-plastic layer than the energy minimization

model of Olive and Behn [2014] and predicts similar rotation kinematics, suggesting that

flexural rotation allows faults to stay close to their lowest energy configuration (see

Appendix 3.2). Our predictions of fault rotation are shown in Figure 3-2b, and match the

results of our numerical simulations. In particular, slower rotation in the thicker 25 km

layer is well explained by the scaling of rotation rates with the inverse of flexural

wavelength (- H3"4).

Armed with a self-consistent force balance model that incorporates fault rotation,

we can now quantify the effect of topographic growth on fault life span. In Figure 3-2c

we plot the increase in the total force acting on a growing fault with and without the

topographic component FTOPo (thick and thin black lines, respectively). Ignoring FTopo

in the force balance is analogous to cases in which erosion and deposition rapidly

suppress topographic growth, i.e., E20 >> S in our numerical simulations. Consistent with

Buck [1993] and Lavier et al. [2000], we find that faults growing in thin layers (H < ~10

km) remain active indefinitely as the force required to sustain fault slip never exceeds the

threshold to break a new fault. This occurs regardless of the incorporation of FToPo. By

contrast, thicker (> 10 km) layers only produce small offset (-2 km) faults when FTopo is

included in the force balance. However, removing FTopo (as would correspond to more

rapid erosion and deposition rates) causes a dramatic increase in fault life span. In

particular, for layer thicknesses of 15-25 km, removing FToPo has a significantly greater

effect on fault life span than does brittle layer thickness. Finally, we note that the

topographic force accounts for a smaller proportion of the total force acting on a fault

when the brittle layer is thicker. This explains why very active surface processes promote
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infinite fault growth in 15 km thick layers, while only extending fault life span to - 15 km

in 25 km-thick layers.

3.5. Application to rift systems

The conceptual regime diagram shown in Figure 3-2d summarizes our findings. This is

analogous to the regime diagrams proposed by Lavier et al. [2000] and Lavier and Buck

[2002] with a new parameter accounting for the efficiency of surface processes at

relieving topographic loads. Continental rifts are frequently characterized by a brittle

layer thickness of -15 km, as inferred from seismicity, flexural and heat flow constraints

[Chen and Molnar, 1983]. Models that do not include surface processes predict that

faulting in a 15 km-thick brittle layer (i.e., the upper continental crust) should proceed by

a succession (or synkinematic slip) of moderate-offset (hMAx 3-5 km) normal faults

leading to the formation of grabens and half-grabens. However, significant offset has

been observed along major faults of the Basin and Range province. For instance, the

Wasatch fault in Utah has accumulated as much as 11 km of vertical offset [Parry and

Bruhn, 1987]. As shown above, such large offsets in 15-25 km-thick lithosphere can only

occur if surface processes relieve a portion of the topographic forcing, provided that

erosion acts at rates comparable to tectonic slip. Thermochronologic studies suggest long-

term slip rates on the Wasatch fault of -0.4 mm.yf1 over the last -10 Myrs [Naeser et al.,
1983] and erosion rates ranging from 0.07 to 0.14 mm.yr 1 in Wasatch Mountains river

catchments along the Weber segment [Stock et al, 2009]. These erosion rates can be

extrapolated to a representative E20 value of -0.16 mm.yr 1 after calibration against local

mean elevation slopes. This yields a ratio of E20 / S - 0.4, which in our models promotes

fault life span as large as 10-15 km. Thus, we propose that the Wasatch fault owes its

significant life span to the coupling between tectonics and surface processes. Further, by

ensuring a longer fault life span, surface processes promote further rotation away from a

steep Andersonian initiation angle and indeed dips as low as ~30-45* have been proposed

for the Wasatch fault [Harris et al., 2000].

Some rift zones (e.g., the Baikal Rift, portions of the East African Rift, the Gulf

of Suez) are associated with thicker brittle layers (25-30 km) potentially inherited from a

cratonic lithosphere and / or associated with lower heat flow [e.g., Chen and Molnar,
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1983; Lavier and Buck, 2002]. Along the East-African Rift, for instance, many half-

grabens feature valley-bounding faults that accommodate only a few km of extension

before deformation jumps to another locus [e.g., Morley, 1995] and large-offset normal

faults are absent. This is consistent with the slow erosion rates (< 0.1 mm.yf-1) inferred

over the East African Rift [Herman et al., 2013]. However, active glacial erosion may

have locally contributed to anomalously high displacement (> 6 km) on horst-bounding

faults, as proposed in the Rwenzori Mountains [Ring, 2008].

Finally, we note that mid-ocean ridges are generally characterized by thin (< 10

km) lithosphere, and very limited erosion and sedimentation. Thus, fault evolution and

the frequency of large-offset oceanic detachment faults in these environments are likely

controlled by the thin lithosphere and the kinematic effects of dike emplacement [Bucket

al., 2005; Tucholke et al., 2008]. However, Choi & Buck [2012] showed that volcanic

infill of flexural basins can influence pattems of fault evolution at ridges, and thus even

in these environments surface mass redistribution may play a role in controlling the mode

of faulting.

3.6. Conclusions

In conclusion, we have shown that surface processes can significantly enhance the life

span of an individual normal fault, provided they act on a time scale comparable to, or

faster than, long-term tectonic rates. We suggest that erosion and deposition are essential

in sustaining slip on large-offset range bounding normal faults at continental rifts which

would otherwise have been abandoned after a few km of offset. Future challenges

include: (1) parameterizing the effects of erosion in a way that can be linked to climatic

parameters [e.g., Willett, 2009], and (2) investigating the three-dimensional feedbacks

between fault growth and surface processes, which may include controls on fault

segmentation and linkage.
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Appendix 3.1. Kinematic model of fault rotation

In the second chapter of this thesis [Olive and Behn, 2014], we presented a conceptual

framework for understanding the rapid rotation of normal faults from a steep 60*-

initiation angle down to dip angles in the 30-45* range, over a few km of offset. We

proposed that fault evolution proceeded in a manner that systematically minimized the

mechanical work required to sustain fault slip, and showed that (1) this assumption

results in rotation rates that scale roughly as the inverse of the faulted layer thickness, and

(2) accounting for rotation is essential to correctly predict fault life span in a force

balance model. Here we adopt a complementary approach, which is significantly less

computationally challenging to implement, but produces very similar rotation rates (see

below). Specifically, instead of assuming work minimization, we model fault rotation as

the passive advection of the fault plane in the displacement field induced by flexural

relaxation of the footwall and hanging wall blocks.

If we denote L1 the average rotation rate of the near-fault displacement field, then the

fault rotation rate will scale roughly as

at (3.Sl)

To first order, the main source of rotation in the flexural displacement field is the lateral

gradient of vertical motion (Figure 3-la), which is maximal at the fault and equal to V

tan9, and becomes negligible a fraction of the flexural wavelength (ya, the lever arm,

where y is a scaling factor and a is the flexural wavelength) away from the fault. We

therefore write

I lv VtanO

2 ax 2 )a (3.S2)

Plugging (3.S2) into (3.S1) with the constraint h = 2Vt yields

a9 tanG

Ah 4)" (3.S3)

Which can be integrated into

6 = sin- (sin6o exp I f dl (3.S4)
(-4y 0 a(h) (.4

71



In addition, we taper the rotation rate at heaves greater than 80% of the faulted layer

thickness so that rotation ceases at large offsets, when the fault has become curved and

the idealized fault geometry depicted in Figure 3-la no longer applies.

Fault rotation enters the force balance model in several ways. As extension

proceeds, the elastic-plastic iterations predict the fault-induced topography [Buck, 1988;

1993]. At every extension step (h), we fit this topography with the elastic solution of

Weissel and Karner [1989] and determine an equivalent elastic thickness for the entire

plate. We then use it to calculate an equivalent flexural wavelength, a(h), which enters

into the calculation of the next fault dip at step (h+Ah) following Equation (3.S4). We

find that a scaling factor y = 0.25 provides a good fit to the numerical models, regardless

of layer thickness and other parameters. In other words, the lever arm associated with

fault rotation corresponds to about a fourth of the effective flexural wavelength of the

faulted layer.

Once fault dip has been updated, it enters the calculation of the frictional force

FFRC, following [Behn and Ito, 2008]

F = ypgH/2+HC
FRIC 2 

sin26+sin6cos6 (3.S5)

For reference, the threshold for breaking a new fault is given by

,ppgH I 2+ HCO
BREK 2 

sin20 +sin 0 cos0 (3.S6)

where Oo corresponds to the Andersonian dip for a new fault breaking intact lithosphere.

(All notations are summarized in Figure 3-la).

Fault dip also enters the calculation of the bending and topographic forces. A fault

that rotates as it accumulates offset generates less throw than if it were to retain its initial

angle. We therefore slightly modify the method of Weissel and Karner [1989] by using

an effective dip 9 EFF in the loading term of the flexure equation (w*(x) in Olive and Behn,

2014). For a given amount of heave (h) this effective dip yields the amount of throw that

would have been reached by a rotating fault, and can be written:

OEFF = tan-1 fjtan0(h)dh (3.S7)
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OEFF then enters the calculation of the fault-induced topography and the associated work

terms. Specifically, the bending work WBEND is obtained by integrating the bending stress

times the bending strain over the entire layer [Olive and Behn, 2014], while the

topographic work WTopo corresponds to the change in gravitational potential energy

associated with offsetting the air-rock density contrast, Ap, from its initial flat state, and is

written

W7 0  f &pg Y2 (X)dX (3.S8)

Appendix 3.2. Comparison with the energy minimization model of Chapter 2

In the second chapter of this thesis [Olive and Behn, 2014], we suggested that fault

rotation proceeds in a manner that minimizes the work needed to sustain fault slip, but

did not explicitly consider the physical mechanism that causes rotation. The present

approach suggests that passive advection of the fault plane in a flexural displacement

field provides a good candidate to explain the kinetics of rotation observed in numerical

experiments. Indeed, this new model predicts the rotation kinematics observed in our

simulations (Figure 3-2b). Much like the energy minimization model, it accounts for

rapid rotation of normal faults down to dip angles of 30-45* over fault heaves shorter

than half of the faulted layer thickness. Further, the inverse scaling of rotation rate with

layer thickness is evident from Equation (3.S3) and is derived from the fact that thicker

layers bend on a larger wavelength, making faults rotate about a longer lever arm.

Finally, we find that the present kinematic model for fault rotation predicts dips

that remain close to the lowest energy configuration throughout fault evolution, even

though energy minimization was not assumed. Figure 3-Si compares the kinematic

elastic-plastic solution for a 15 km thick layer (red line in Figure 3-2b) to an energy

minimization model where plasticity is accounted for by assuming an effective elastic

thickness of 7.5 km. Colors indicate the total amount of work required to sustain slip on

the fault. The kinematic rotation model predicts slightly slower rotation then the energy

minimization model for small offsets, which provides a better fit to numerical

experiments (Figure 3-2b).
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Figure 3-S1. Total external work (WEXT = WFpjC + WBEND + WTOPO) required to keep a

normal fault active as a function of fault dip and heave for increasing amounts of

extension in a 15 km thick elastic pseudo-plastic layer with an effective elastic thickness

of 7.5 km. The white dashed line indicates the lowest energy path computed following

the model of Olive and Behn [2014] taking into account all energy terms: WFRJC, WBEND,

and WTOPo, the last of which was previously ignored. The thick white line shows the

kinematic rotation model used in this study.
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Chapter 4:

The role of elasticity in simulating long-term tectonic extension

Abstract

While elasticity is a defining characteristic of the Earth's lithosphere, it is often ignored in

numerical models of long-term tectonic processes in favor of a simpler visco-plastic

description. Here we assess the consequences of this assumption on a well-studied

geodynamic problem: the growth of individual normal faults at an extensional plate

boundary. We conduct 2-D numerical simulations of extension in elasto-plastic and

visco-plastic layers using a finite difference, particle-in-cell numerical approach. Our

models span a wide range of faulted layer thicknesses and extension rates, which allows

us to quantify the role of elasticity on three key observables: fault-induced topography,

fault rotation, and fault life span. In agreement with earlier studies, simulations carried

out in elasto-plastic layers produce rate-independent lithospheric flexure accompanied by

rapid fault rotation and shorter fault life spans in thicker faulted layers. By contrast,

models carried out with a visco-plastic lithosphere produce results that depend strongly

on extension rate. At slow extension rates and moderate lithospheric viscosities, fault

evolution is qualitatively similar to the elasto-plastic cases. However, fast rates and high

lithospheric viscosities generate little deformation of the footwall and hanging wall

blocks, suppress fault rotation, and promote long-lived faults associated with

unrealistically flat topography. To help interpret these results, we adapt a classic

analytical model for fault-induced elastic flexure to the case of a thin viscous plate. By

doing so we elucidate the rate-dependence of the flexural wavelength of a viscous plate,
and quantify the length scale over which topography decays away from the fault as a

function of extension rate. We show that visco-plastic numerical simulations qualitatively

mimic the behavior of their elasto-plastic counterparts only if the horizontal dimension of

the model domain accommodates -2 viscous flexural wavelengths. When this criterion is

not met, the rate-dependence of visco-plastic plate behavior produces unrealistic

deformation patterns that can hinder geological interpretations, especially in models of

long-term lithosphere evolution that involve sequential faulting.
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4.1. Introduction

The Earth's lithosphere is commonly defined as the outermost mechanical layer that can

withstand deviatoric stresses as large as ~102 MPa before it yields, either through brittle

failure or localized viscous creep [e.g., Murrell, 1976; Goetze and Evans, 1979; Watts

and Burov, 2003]. Consequently, it does not undergo diffuse viscous deformation at time

scales characteristic of mantle convection or plate boundary processes. In fact, when

subjected to stresses below the brittle strength, the lithosphere is best described as an

elastic medium. Short-term tectonic processes (seconds to months) such as seismic wave

propagation or coseismic stress changes are well accounted for by linear elastic models

[e.g., King et al., 1994; Segall, 2010]. This is also true for some long-term processes (105-

-10 7 yrs) including lithospheric flexure in response to seamount loading, subduction, and

active faulting, which are all well modeled by the deflection of a thin elastic plate [e.g.,

Watts, 2001]. Interestingly, elastic models often do a good job at predicting flexural

patterns even in regions where brittle failure is known to be pervasive. For example, the

long-wavelength topography of outer rises near subduction trenches is well predicted by

elastic plate models [e.g., Turcotte and Schubert, 2002] even though widespread normal

faulting is well documented in these settings, indicative of brittle failure of the

lithosphere [e.g, Ranero et al., 2003; Zhang et al., 2014]. Elastic rheology therefore

underlies the behavior of the lithosphere over a range of spatial and temporal scales, and

stress conditions.

In spite of its importance in plate tectonic processes, elastic rheology is absent

from many numerical geodynamic models, which treat the lithosphere as a high-viscosity

visco-plastic solid. This description can be simpler to implement in a Stokes flow solver

because it does not require keeping track of the build-up of stresses over time. A common

justification for this simplification is that the duration of these simulations (1-100 Myrs)

exceeds the Maxwell time scale expected for the lithosphere (< 0.3 Myr). For example,

Kaus and Becker [2007] showed that elasticity has little influence on the development of

Rayleigh-Taylor instabilities with viscosities and density contrasts representative of

mantle convection and sub-lithospheric flow conditions. However, they pointed out that

incorporating elasticity significantly changes the patterns of stress accumulation

throughout the model domain. One might therefore expect a key role of elasticity in
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problems involving plate flexure, buckling instabilities, and strain localization

[Schmalholz and Podladchikov, 1999; Kaus and Podladchikov, 2006]. In particular,

models of long-term lithospheric deformation that involve faulting (e.g., mountain

building and rifting) may be especially sensitive to the incorporation of elasticity. Here

we focus on extensional plate boundaries, and particularly on the growth of individual

rift-bounding normal faults, which involves both strain localization and lithospheric

flexure.

Many numerical studies of rifting do not include elasticity [e.g., Behn et al.,

2002b; Gerya 2010b; 2013; Aliken et al., 2011, 2012; 2013; Puthe and Gerya, 2013] and

treat the oceanic lithosphere or brittle upper crust as a high viscosity visco-plastic layer.

However, in the context of long-term tectonic rifting models, the importance of elasticity

may be twofold. First, the relevant time scale in such models is not the duration of the

simulation, but the life span of individual normal faults, which can be as short as -104 yrs

depending on geological parameters and extension rate. The visco-plastic approximation

routinely applied to mantle convection models may therefore not apply here. Second,

numerous studies, including Chapters 2 and 3 of this thesis have shown that normal fault

evolution is controlled by the build-up of elasto-plastic stresses in the faulted layer. This

build-up is generally attributed to the flexural readjustment of the footwall and hanging

wall blocks in response to fault growth [Buck, 1988; Weissel and Karner, 1989; King et

al., 1988], and has consequences for both fault rotation [Olive and Behn, 2014; Olive et

al., 2014b] and fault life span, hereafter defined as the amount of horizontal offset that

can be accommodated on a fault before it is abandoned in favor of a new fault [Forsyth,
1992; Buck, 1993; Lavier et al., 2000; Behn and Ito, 2008]. It is therefore unclear to what

extent a visco-plastic description of the lithosphere can produce behaviors that are

relevant for understanding geological systems.

To address this issue, we compare numerical simulations of extension carried out

within the same numerical code, but with a visco-plastic vs. elasto-plastic brittle layer.

We identify and interpret the discrepancies between the two sets of simulations with the

help of semi-analytical models of flexure in elastic and viscous thin plates. Specifically,

we show that a key to avoiding unrealistic rate-dependence of model results that do not

incorporate elasticity is to resolve the time-evolving viscous flexural wavelength of
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visco-plastic layers within the model domain. We conclude with recommendations for the

numerical modeling community and guidelines for interpreting visco-plastic models.

4.2. Methods

To assess the effect of elasticity on the development of normal faults, we performed 29

simulations of extension on a single fault in uniform brittle layers of varying thicknesses

over a range of extension rates, both with and without elasticity. We systematically

characterized fault-induced topography, fault dip, and fault life span from each of these

simulations.

4.2.1. Numerical methodology

Our simulations were carried out using a 2-D finite-difference / particle-in-cell code

[Harlow and Welch 1965; Gerya and Yuen 2003; 2007] that we developed based on the

methodology of Gerya [2010a]. This code relies heavily on Matlab's built-in functions

and capabilities for vector operations, and achieves computation speeds on par with

standard serial compiled language codes. We solve for conservation of mass, momentum

and energy in a 2D continuum assuming material incompressibility:

av.0
'=0

ax, (4.1)

ac-' BP

axg ax, 0 (4.2)

DT = a k3T
p Dt ax, ax, (4.3)

where vi, a'y, and T denote velocities, deviatoric stresses, and temperature, respectively

(See Table 4-1 for a summary of all variables). Repeated indices imply summation and

the first term in (4.3) is the material time-derivative of T. These equations are discretized

on an Eulerian grid using a conservative finite difference scheme on a fully staggered

grid [Gerya 2010a; Duretz et al., 2011]. The matrix equation for the discretization is then

solved with Matlab's direct "backslash" solver. Advection is handled by moving tracer

particles, which carry material properties, passively, in the velocity field with a fourth-

order Runge-Kutta method over an advection time step Atm. This time step is set so that
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markers do not move by more than a fraction of the smallest cell size at each iteration.

Properties are passed between nodes and particles through bilinear interpolation.

4.2.2. Implementation of visco-elasticity

In order to close the system of conservation equations (4.1-4.3), we assume a Maxwell

linear stress-strain relationship of the form

1 , Dal

21" 2G Dt (4.4)

This type of material behaves elastically when deformed over a time scale shorter than its

Maxwell characteristic time TM

M G (4.5)

Following Moresi et al. [2003], we discretize the Eulerian part of the material derivative

Da'

Dt using backward finite difference and a "visco-elastic" time step At (referred to as

"computational time step" by Gerya [2010a]), yielding

1, 1 -'

" 2r7 " 2G At (4.6)

Advection and rotation of the deviatoric stresses are handled separately on the particles

[Gerya, 2010a; Keller et al. 2013]. From Equation (4.6), we can rewrite the stress-strain

relationship at time t:

C,' =2 Ze., +(I_-Z)j '

(4.7)

in which we introduce a visco-elastic ratio Z

Z =GAt
GAt + 1(4.8)

Upon inserting Equation (4.7) into Equation (4.2), conservation of momentum can be re-

written as

(2ZL)-- +pg.- a(-Z '?-.9axi. Y ax, axi. Y (4.9)
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Symbol Definition Value

Vi Velocity field
P Pressure field

-', Deviatoric stress tensor

g Gravitational acceleration 9.81 m.s-2

p Density field

pR Density of the faulted layer and underlying asthenosphere 3300 kg.m3

PO Density of the ocean layer 1000 kg.m

Ap Density contrast between the faulted layer and the 2300 kg.m-3

overlying fluid layer
T Temperature field

Cp Heat capacity
k Thermal conductivity
Atm Advection time step
At Visco-elastic time step
Z Visco-elastic ratio
G Shear modulus 10 GPa

v Poisson's ratio 0.5

E Young's modulus 30 GPa

1 Viscosity field

L Viscosity of the faulted layer (in numerical model) 1024 Pa.s

jO Viscosity of the ocean layer (in numerical model) 1017 Pa.s

qA Viscosity of the asthenosphere (in numerical model) 10" Pa.s

U Full extension rate
H Faulted layer thickness
h Fault heave
C Cohesion 0.01-100 MPa

j Friction coefficient 0.6
0 Dip of the fault
E Young's modulus 30-100 GPa

V Poisson's ratio 0.25-0.5

qL Viscosity of the faulted layer (in numerical model) 1024 Pa.s

?s Viscosity of the ocean layer (in numerical model) 1017 Pa.s

IA Viscosity of the asthenosphere (in numerical model) 1018 Pa.s

aE Flexural wavelength of the elastic faulted layer

av Flexural wavelength of the viscous faulted layer

L Width of the numerical model

y Ratio of the flexural wavelength of the faulted layer
to the domain width

YF Value of y below which flexure is accommodated

Uc Extension rate below which flexure is accommodated if the

_ box width is set to 3 aE

Table 4-1. Summary of parameter notations.
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In this formulation, the elasticity terms appear as a modified viscosity (QZ) in the stress

divergence term and as a stress history term on the right-hand side. If one chooses a

computational time step much shorter than the Maxwell time (At << rM), the material

effectively behaves elastically (Z 0). By setting At >> rM, all elastic effects are turned

off (Z ~ 1). The computational time step must, however, be resolved by the advection

time step (Atm < At). This framework allows direct comparisons of simulations with and

without elasticity.

4.2.3. Implementation ofplasticity

In addition to the modifications due to the elastic terms, the effective viscosity q used in

Equation (4.9) can also be modified to account for non-linear material creep (power-law

rheologies) and plasticity. For simplicity, we restrict ourselves to Newtonian rheologies

in this study, however, we account for material plasticity by lowering the effective

viscosity wherever the second invariant of the deviatoric stresses (a',,) exceeds the yield

stress (ay):

[i where a' < a,

71kVEP a (4.10)
where a' > 

Accumulated plastic strain is updated at every iteration wherever a'11> ay, following

P+ P m IIf

(4.11)

The yield stress is calculated using a Drucker-Prager failure criterion written as a smooth

approximation of the Mohr-Coulomb criterion with a friction coefficient u = 0.6 and

initial cohesion C = 100 MPa. To promote strain localization, cohesion is weakened

linearly with accumulated plastic strain [e.g., Lavier et al., 2000] until a critical plastic

strain SCRIT corresponding to 100 m of slip on a 3 element-wide fault is exceeded.

Cohesion cannot decrease below a minimum value of 0.01 MPa. We also implement a

healing mechanism [Poliakov et al., 1998], which progressively reduces the accumulated

plastic strain over a long time scale TH such that plastic strains builds up preferentially in

regions of sustained localized shear (high strain rate) and heals in regions of diffuse

yielding.
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Figure 4-1. Schematic setup of our numerical models for fault evolution in an elasto-

plastic or a visco-plastic layer sandwiched between two viscous layers. A single 60*-

dipping fault is seeded at the first time iteration as a thin band of low-cohesion material,

and then allowed to evolve freely as strain localizes along this narrow shear band.

4.2.4. Model setup

The model consists of a brittle lithosphere layer of thickness H = 10-30 km sandwiched

between two weak layers of equal thicknesses representing the overlying ocean [Crameri

et al., 2012] and the underlying asthenosphere (Figure 4-1). Horizontal extension is

imposed on the two vertical sides at full rates U = 0.02-20 cm/yr. All boundaries are free

slip, with prescribed influx of material through the top and bottom to compensate the flux

out the sides. Ocean and rock densities are po = 1000 kg m 3 and PR = 3300 kg m

respectively. The brittle "faulted" layer has a viscosity 1/L = 10 -10 Pa-s, while the

ocean and asthenosphere have viscosities of 1017 and 1018 Pa-s, respectively. The

Young's modulus E and Poisson's ratio v are set to E = 30 GPa and v = 0.5

(incompressible) throughout the domain, yielding G = 10 GPa. This results in a short

Maxwell time in the weak layers (0.3-3 years) and a long Maxwell time in the faulted

layer (0.3-30 Myrs). Simulations with an elasto-plastic faulted layer were conducted with

a visco-elastic time step At equal to 10- times the Maxwell time of the brittle layer.

Simulations with a visco-plastic (no elasticity) faulted layer were carried out with a

visco-elastic time step At equal to 108 times the Maxwell time of the faulted layer. In all

cases, both the weak ocean and asthenosphere layers behave viscously (At >>TrM).
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To ensure a single normal fault develops in the center of the model domain, we

initialize the model with a rectangular (three element-wide) "fault seed" dipping at an

angle Oo = 600 throughout the faulted layer, which is the optimal orientation with respect

to a friction coefficient of 0.6 in an Andersonian stress state. In the fault seed, plastic

strain is set to its critical value ECRIT, and cohesion is weakened accordingly. The box

width (L) is set to three times the elastic flexural wavelength of the faulted layer aE,
which is given by

4D
ME ( (4.12)~Apg)

where Ap = 2300 kg m3 is the density contrast between the faulted layer and the

overlying ocean, and D is the flexural rigidity of the elastic layer:

EH3

12(1-V 2 ) (4.13)

The height of the box is L12. The grid resolution close to the fault is refined to -1 km or

less (<500 m in cases with H <15 km), ensuring a mature fault width typically narrower

than 3 km. Finally, the plastic strain healing time scale TH is scaled with the extension rate

so that U x rH = 6300 m. This is done to prevent excessive fault healing in simulations

with very slow extension rates.

For simplicity, we do not solve for conservation of energy and ignored any

temperature-dependence of material properties. The faulted layer is therefore consistently

offset and bent by the growing normal fault. This simplification emphasizes the effect of

flexure on fault evolution [Olive and Behn, 2014], and allows more direct comparisons

with simple thin plate bending models.

4.3. Numerical results

Numerical simulations were performed for 29 cases varying different model parameters

including H, U and IrL. Model parameters for all simulations are summarized in Table 4-

2. Note that the "slow" (U:< 0.2 cm/yr) elasto-plastic runs require a higher IL (1025 Pas)

to ensure that the duration of the entire simulation remains shorter than the Maxwell time

of the faulted layer (and the layer therefore remains elastic throughout the run). The

observables of interest throughout this study are fault topography, dip and life span.
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Run name Rheo 'iL H U L Deformation Second fault
logy (Pa.s) (km) (cm/yr) (km) mode breaks?

ElOslow EP 1i0o 10 0.2 84 NA No

ElOref EP 1024 10 2 84 NA No
EIOfast EP 102 10 20 84 NA No
E15slow EP 10r 15 0.2 112 NA No
EI5ref EP 1024 15 2 112 NA No

E15fast EP 102 15 20 112 NA No

E20slow EP 10- 20 0.2 140 NA No

E20ref EP 1024 20 2 140 NA No
E20fast EP 102 20 20 140 NA No

E30slow EP 1 30 0.2 190 NA FS
(h= km)

E30ref EP i 6 2 30 2 190 NA FS
(h = 10 km)

E30fast EP i24 30 20 190 NA FS
(h = 12 km)

ViOveryslow VP I0F- 10 0.02 84 PAF No

ViOslow VP 1024 10 0.2 84 PAF No
VIOref VP 1024 10 2 84 RBD No

V10fast VP 0'T 10 20 84 RBD No

V15slow VP 1024 15 0.2 112 PAF FS
(h = 5.2 km)

V15ref VP W24 15 2 112 RBD No

V15fast VP 1024 15 20 112 RBD No

V20slow VP 1024 20 0.2 140 PAF FS

(h = 4.4 km)
V20ref VP 1024 20 2 140 RBD No

V20ref_23 VP 10" 20 2 140 PAF FS
(h=5.1 km)

V20fast VP 1024 20 20 140 RBD No
V20fast 23 VP 102 20 20 140 RBD No

V30slow VP 10T 30 0.2 190 PAF FS
(h = 5.1km)

V30ref VP 1024 30 2 190 PAF FS & HS
(h = 8.5 km)

V30ref_23 VP 1o3 30 2 190 PAF FS
(h =4.0 km)

V30fast VP io24 30 20 190 RBD No

V30fast_23 VP 1o3 30 20 190 PAF FS & HS
(h=8.6 km)

VIOref 23LB VP 1o3 10 2 146 PAF No

V10fast 23LB VP 103 10 20 260 PAF No

V20ref_23LB VP 102 20 2 246 PAF FS

2 P I 20 (h=4.6 km)
V20fast 23LB VP 10" 20 20 436 1PAF HS

I I I -(h=6.4 km)
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Table 4-2. Summary of numerical simulations. Lithospheric rheology is indicated as EP
(elasto-plastic) or VP (visco-plastic). PAF and RBD refer to "Progressively
Accommodated Flexure" and "Rigid Block Deformation", respectively. h indicates the
amount of heave accumulated by the initial fault when a new fault breaks. FS = Footwall
Snapping. HS = Hanging wall snapping, following the definition of Lavier et al. [2000].

For systematic comparisons between runs we consider a simulation to be complete when

the total throw on the fault is equivalent to the thickness of the brittle layer H, or when a

new fault has spontaneously localized in the footwall or hanging wall of the initial fault.

4.3.1. Fault-induced topography

In our simulations, the relief associated with fault growth systematically features a

short wavelength (- h) component corresponding to the fault scarp, and a longer

wavelength decay of topography away from the fault. In all the elasto-plastic cases, the

latter component is well described as the flexure of a thin elastic plate under gravity [e.g.,

Weissel and Karner, 1989; Olive and Behn, 2014], with deflection that is anti-symmetric

about the fault and small at distances > -1.5 flexural wavelengths away from the fault

(Figure 4-2). In addition, in all elasto-plastic runs topography appears to be solely a

function of the amount of horizontal extension (h) accommodated on the fault, and is

largely insensitive to the rate of extension. By contrast, in the visco-plastic simulations

without elasticity, the long-wavelength topography is viscously supported but mimics

flexure with a flexural wavelength that is strongly sensitive to the extension rate. To

allow systematic comparisons among visco-plastic runs, we adopt the following

convention. We consider the model width to adequately accommodate the flexural signal

when the vertical displacement on the edges of the box is less than 7.5% of the fault

throw. In practice, this means that the relief is able to sufficiently decay away from the

fault scarp within the model domain. None of the visco-plastic simulations meet this

criterion at small heaves (less than 1 km) or for U> 2 cm/yr and IL = 1024 Pa-s (Figure 4-

2, panel C2 and C3). For these situations the topography is flat on either side of the fault,

as if the fault was offsetting two rigid blocks. However, for all runs carried out at U5 0.2

cm/yr, the footwall and hanging wall bend on progressively shorter length scales as
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Figure 4-2. Topography induced by 1.5, 2.5, and 5 km of horizontal offset on a normal
fault growing at different extension rates in a 1 0-km thick layer of varying rheology: (A)
elasto-plastic (numerical model), (B) purely elastic (analytical, with a displacement
discontinuity at the fault), (C) visco-plastic (numerical) and (D) purely viscous
(analytical).

extension proceeds and the flexural signal is eventually accommodated within the model

domain. This is particularly apparent in panel Cl of Figure 4-2, where the topography is

flat on both sides of the fault scarp after 1.5 km of extension, but later develops

significant curvature. After 5 km of extension the decay of topography away from the

fault has become pronounced.

In the following, we refer to these two modes of deformation as "rigid block

deformation" (RBD) and "progressively accommodated flexure" (PAF). Figure 4-3

highlights the transition between the two styles of deformation, which appears weakly

sensitive to layer thickness. Specifically, the transition corresponds to a critical extension

rate Uc between 0.2 and 2 cm/yr. When reducing the faulted layer viscosity by a factor of

10 (IL = 1023 Pa's), this critical rate appears to increase by an order of magnitude

(between 2 and 20 cm/yr).

4.3.2. Fault dip

In the elasto-plastic cases, all faults are found to rotate rapidly to a shallower dip. To

assess the effect of lithospheric rheology on rotation kinematics, we measured the

evolving dip of the seeded fault throughout all the runs by visually fitting a line through

the region of greatest accumulated plastic strain. In all elasto-plastic simulations, we

measured faster rotation rates (i.e., change in angle per unit of accumulated heave) in the

thinner brittle layers, which is consistent with the mechanical models presented in

Chapters 2 and 3. However, for a given layer thickness, the rotation rate expressed in

terms of total fault heave aO/8h does not change with extension rate U in a systematic

manner (Figure 4-4A).

In visco-plastic layers, no significant fault rotation occurs at fast extension rates

or higher lithosphere viscosity; the fault retains a steep angle while offsetting the rigid
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Figure 4-3. Summary of the modes of deformation observed in our numerical visco-
plastic models, plotted as a function of faulted layer thickness H and full extension rate
U. The "progressively accommodated flexure" (PAF) mode corresponds to cases where
pronounced flexure-like topography develops either immediately or with time in the
calculations such that the vertical displacement the model edge (measured from its initial
position) becomes lower than 7.5% of the fault throw. By contrast, in "rigid block
deformation " (RBD) mode, the footwall and hanging wall blocks are vertically offset
with little to no internal deformation. The vertical dashed lines indicate the critical
extension rates bounding the two modes as calculated using Equation (4.18) assuming
fault heaves of 2 and 8 km. All runs correspond to a layer viscosity of r/L = 102 Pas,
except those shown in the inset, which are carried out with rL = 1023 Pa-s.

footwall and hanging wall (e.g., cases with H = 10 km and U > 2 cm/yr in Figure 4-4B).
An interesting transition occurs in simulations with slower extension rates. With H = 10
km and U = 0.2 cm/yr, the fault initially retains a steep dip of ~58* over the first 2.5 km

of horizontal extension. Then, rotation suddenly initiates at a rate of about 5*/km (Figure

4-4B). By contrast, in the U = 0.02 cm/yr case, fault rotation starts immediately from the

onset of fault growth (h ~ 0, Figure 4-4B) at a rate of about 2.7*/km. In summary, all

visco-plastic simulations that evolved in the RBD mode featured no significant fault

rotation, whereas those that evolved in the PAF mode saw an onset of fault rotation either

immediately or at some time after the onset of extension.
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Figure 4-4. Kinematics of fault rotation in a 10 km-thick (A) elasto-plastic and (B) visco-
plastic lithosphere for different extension rates (color code). Panels C and D show the
flexural wavelength of the faulted layer normalized by the width of the box for a 10 km
thick purely elastic (C) and purely viscous (D) layer, as predicted analytically (Equation
4.16). In visco-plastic numerical simulations, fault rotation begins when the ratio of the
long-wavelength (flexural) topography and box width becomes lower than yF - 0.4. Panel
E shows the topography from visco-plastic run ViOslow (dark-blue curves in panels B
and D) for different amounts of horizontal offset on the fault, indicated as circles on panel
D (gray color code).

4.3.3. Fault life span

To characterize the long-term evolution of the faults, we define two fault life-span

regimes following Lavier et al. [2000]: (1) a "prolonged slip" regime, in which the

seeded fault remains active long enough to offset the brittle layer by its entire thickness H
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in the vertical direction, and (2) a "limited slip" regime, in which a new fault breaks the

hanging wall or the footwall ("hanging wall / footwall snapping" in Lavier et al. [2000]).

In these runs we keep track of the total amount of horizontal extension accommodated on

the initial fault when the new fault forms, i.e., when accumulated plastic strain starts to

heal on the initial fault and build up on the new fault.

In elasto-plastic layers, the transition between the life span regimes occurs at a

brittle layer thickness H between 20 and 30 km and appears insensitive to extension rate

(Figure 4-5). In layers thinner than 20 km, no second fault forms, but for H = 30 kin, a

new normal fault systematically breaks through the footwall, starting from the base of the

brittle layer, which flexes in tension. This result is consistent with findings of previous

studies that larger offsets occur on an individual fault in thinner elasto-plastic layers

[Buck, 1993; Lavier et al., 2000; Lavier and Buck, 2002; Behn and Ito, 2008].

The transition between the two life span regimes is more complex in the visco-

plastic simulations (Figure 4-6). A striking observation is that whenever the lithosphere

behaved as rigid blocks (Figure 4-3, as defined in Section 4.3.1) slip on the fault was

prolonged, and no second fault initiated. In cases where the lithosphere deformed

dynamically (and flexure was progressively accommodated), both life span regimes

occurred. For example, in the visco-plastic run with H = 10 km and U = 0.2 cm/yr the

long wavelength lithospheric flexure signal is accommodated within the model domain,

but no new fault localizes. By contrast, when H = 15 km and U = 0.2 cm/yr the

lithosphere deforms in the PAF mode, and we see a new fault develop in the footwall

block after 5.2 km of extension on the initial fault (Figure 4-6 B 1).

In all runs evolving in the PAF mode, thicker layers promote the formation of

second faults, and thinner layers favor prolonged slip on the initial fault. The maximum

offset achieved by the initial fault in the "limited slip" regime appears weakly sensitive to

layer thickness, but strongly sensitive to extension rate, with larger offsets attained at

faster extension rates. Most new faults initiate through footwall snapping, except in the

fastest extension rate cases of the "limited slip" regime, where the initial fault was

abandoned in favor of two new faults that broke simultaneously in the footwall and

hanging wall (runs V30ref and V30fast_23 in Table 4-2). Finally, we found that reducing

the faulted layer viscosity by a factor of 10 (qi = 1023 Pa-s) shifted the life span regime
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transition toward faster extension rates (Figure 4-6), suggesting that decreasing i/L by an

order of magnitude is equivalent to decreasing U by an order of magnitude.

To summarize our numerical results, we find that fault topography, dip evolution

and life span in elasto-plastic layers are essentially insensitive to extension rate, and

closely follow the predictions of previous studies [Lavier et al., 2000; Behn and Ito,

2008; Olive and Behn, 2014]. By contrast, in simulations that treat the lithosphere as a

visco-plastic solid, the wavelength of fault-induced dynamic topography decreases over

time. Under certain conditions, a fast extension rate (and / or a high layer viscosity)

produces no significant decay of topography away from the fault within the numerical

domain. In these cases the initial fault: (1) offsets the lithosphere in two rigid blocks, (2)

retains its initial dip, and (3) undergoes prolonged slip independent of brittle layer

thickness. In the following section, we use a simple scaling approach to quantitatively

explain the extension rate-dependence of the visco-plastic simulations. By doing so, we

aim to determine what controls the style of deformation (PAF vs. RBD) and fault life

span in simulations with a visco-plastic lithosphere.

4.4. Semi-analytical approach: simple scalings to guide the interpretation of

numerical simulations

4.4.1 Fault-induced topography

In all our elasto-plastic simulations topography grew in a rate-independent manner,

suggesting that topography is driven entirely by elastic flexure. The fault-induced,

flexural topography wT(x) is well-explained by the thin plate solution of Weissel and

Karner [1989] and detailed in Chapter 2:

1x-h/2 _ x+h/2
w T (xh)=-aEtan E

4 (4E1E

withf defined as

f(x)= ex(sinx - cosx) (4.15)

In the numerical models the faulted layer bends on a wavelength equal to or shorter than

aE (Figure 2B, Equation 4-12). Cases where the actual bending wavelength is less than

aE are caused by diffuse plastic yielding of the plate.
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Figure 4-5. Regime diagram for the life span of normal faults in elasto-plastic lithosphere

as a function of faulted layer thickness H and full extension rate U. The "prolonged-slip"

regime describes the case in which the initially seeded fault accumulates enough

extension to offset the entire lithosphere; the "limited slip" regime is when a second fault

(NF) begins to form on the hanging wall or footwall of the first fault. Numbers denote the

maximum horizontal extension accommodated on the initial fault. The black dashed line

marks the approximate location of the regime transition. Insets Al, A2, BI and B2 show

model snapshots of accumulated plastic strain ep normalized by the critical weakening

strain SCRIT - Maximum values Of Ep / ECRIT are (A1) 4.3, (A2) 4.0, (B1) 3.9, (B2) 26.2.
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Figure 4-6. Same as Figure 4-5, but for a visco-plastic lithosphere. All runs correspond
to a layer viscosity of qL = 1024 Pa-s, except those shown in the inset to the right, which
are performed with I/L = 1023 Pa-s. Maximum values of Cp / ECRIT in the model snap shots
are (A1) 15, (A2) 90, (B1) 38, (B2) 42. An asterisk near the infinity sign denotes a model
run that evolved in the "rigid blocks deformation" mode (See Figure 4-3).
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We note that in our numerical elasto-plastic models plastic yielding does not induce

significant rate-dependent deformation.

Our numerical results indicate that in the visco-plastic simulations the length scale

of topographic decay is not always accommodated within the numerical domain. In cases

where the dynamic topography was too broad for the domain size, topography appeared

flat on both sides of the fault, and the footwall and hanging wall effectively behaved as

two rigid blocks. The flat topography is likely due to the free-slip boundary condition

allowing free uplift / subsidence along the sides of the box. However, a no-slip boundary

condition is not preferable, because pinning the edges of the layer often results in

spurious strain localization along the sides of the model domain. In simulations carried

out at a lower extension rate, topography initially appears flat but eventually starts to

decay away from the fault scarp. In this "progressively accommodated flexure" mode of

deformation the characteristic length scale of topographic decay appears to decrease with

time or increasing extension, as illustrated in panel E of Figure 4-4.

To understand the transition between the deformation accommodated by

"progressively accommodated flexure" versus "rigid block deformation" (Figure 4-3), we

derive an analytical solution for fault growth in a thin viscous plate. This is effectively a

re-derivation of the classic Weissel and Karner [1989] model with a viscous (Newtonian)

rheology [Biot, 1961; Turcotte and Schubert, 2002] and is detailed in Appendix 4.1. The

key result is that flexure in a viscous plate is well described by an elastic model (Equation

4.14) with an effective flexural wavelength av that decreases over time (i.e., with

increasing fault heave) and depends on extension rate:

ay(h)= 1 J (4.16)
Apgh

The flexural wavelength corresponds to the length scale of topographic decay away from

the fault scarp. The analytical result of a decreasing av with increasing extension is in

agreement with the observation of topographic decay becoming more and more

pronounced throughout the PAF runs. We postulate that runs that show "rigid block

deformation" have parameters such that av is never fully accommodated within the

horizontal extent of the domain during the simulation.
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To quantify this assumption, we introduce a parameter y, which defines the ratio

of the flexural wavelength of the faulted layer to the width of the numerical domain. This

ratio systematically decreases with increasing extension in a viscous plate (Figure 4-4D).

It is therefore possible that a visco-plastic run would start with too large a y ratio to

feature topographic decay, but would develop it if y has time to become sufficiently small

during the simulation (as seen in Figure 4-4E). We next define a critical ratio yF below

which flexure is accommodated and attempt to estimate it. For example, a critical ratio yF

= 0.5 means that one flexural wavelength must be accommodated on each side of the

fault within our model domain. In all our elasto-plastic simulations the domain width is

set to 3aE, though as noted above, diffuse plasticity can locally decrease the effective

flexural wavelength resulting in y : 1/3 (Figure 4-4C). Elastic flexure is well expressed

in all our elasto-plastic simulations, therefore yF is likely greater or equal to 1/3. For

simplicity we will assume yF= 0.5 in the rest of Section 4.4.1, but will improve our

estimate in Section 4.4.2. The condition for accommodating flexure in our visco-plastic

simulations can be written

av YFL (4.17)

Using Equations (4.12), (4.16), and the fact that L = 3aE, we can rewrite Equation (4.17)

as:

Eh
U ! (3yF 4 E 2) = UC

3(1- v ) (4.18)

This relation shows that for a given fault heave, h, viscous flexure can only be

accommodated within the numerical domain if the extension rate is less than a critical

rate Uc, which does not depend on the faulted layer thickness.

Equation (4.18) can be used to predict the transition between models that deform

by PAF versus RBD. For a faulted layer of viscosity /L = 1024 Pa-s, Equation (4.18)

predicts the critical extension rate to be 0.4 cm/yr and 1.7 cm/yr assuming a fault heave

of 2 and 8 km, respectively, and yF= 0.5 (vertical dashed lines in Figure 4-3). These

predictions are consistent with the numerical results, which yielded a critical rate between

0.2 and 2 cm/yr for fault heaves less than 10 km. Further, Equation (4.18) readily

explains the increase in the critical rate Uc by an order of magnitude when the layer

viscosity is decreased by an order of magnitude (qL = 102 Pa-s inset in Figure 4-3).
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However, numerical experiments carried out with a 30 km thick brittle layer yielded a

greater Uc (between 2 and 20 cm/yr) than simulations with thinner layers (Figure 4-3),

even though according to Equation (4.18), lithospheric thickness, H, should have no

effect on Uc. We attribute this to the fact that if no new fault is to develop in a thick

layer, the original fault will be able to accumulate more heave, further decreasing the

viscous flexural wavelength (Equation 4.16), and eventually allowing the flexural

wavelength to be accommodated in the model domain.

We can also use the scalings above to determine the minimum box size required

to fully accommodate viscous flexure for a given set of extension parameters. To

demonstrate this we take four simulations that produced rigid block deformation with the

original domain size and re-run them in a wider domain (runs ending in "23LB" in Table

4-2). We set the model width to two viscous flexural wavelengths (Equation 4.16)

calculated at a fault heave of 100 m, which is the critical slip required to fully weaken the

fault zone (see Section 4.2.3). If yF is equal to 0.5, the model width should be sufficient to

ensure that a simulation will evolve in the "progressively accommodated flexure" mode.

More precisely, bending should be accommodated by the time the fault has fully

localized. To avoid very large domain sizes, we choose a faulted layer viscosity /L = 1023

Pa-s and use wider boxes for runs carried out at faster extension rates (Table 4-2). In

these simulations, the height of the box is no longer set to half of the width, but is chosen

such that the ocean layer, rock layer and asthenosphere are of commensurate thickness.

All these runs produce a well-expressed decay of topography away from the fault scarp,

(i.e., evolve in the PAF mode) and therefore support (1) the relevance of our analytical

scalings, and (2) the assumption that yF= 0.5. As an example, Figure 4-7 shows the

difference in topography between two identical visco-plastic runs (U = 20 cm/yr, H = 20

km) after 5 km of extension, except one simulates a 140 km-wide box and the other a 436

km-wide box (with L chosen based on the scalings above). Pronounced flexure in the

wider-box runs produces smaller fault throws for the same amount of heave. Models of

adequate width also show fault rotation, which is discussed in detail below.
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Figure 4-7. Model topography obtained in visco-plastic simulations V20fast_23 and
V20fast_23LB (Table 4-2) after 5 km of extension at 20 cm/yr in a 20 km-thick layer
with /L = 1023 Pa-s. Simulations were performed in a 140 km-wide box (black curve)
and a 436 km-wide box (blue curve). The wider box can fully accommodate the decay of
viscously supported topography away from the fault.

4.4.2 Fault rotation

In all elasto-plastic simulations, the initially steep fault rotates rapidly towards a

shallower dip in the 30-45* range (Figure 4-8A). We interpret this behavior as passive

advection of the fault plane in the displacement field induced by flexure of the footwall

and hanging wall, which simultaneously acts to minimize the total work done by the

system, as proposed in Chapters 2. In Chapter 3, we demonstrated that with this

mechanism, the fault rotation rate (aO/h, in degrees per unit of accumulated extension)

scales as the inverse of the flexural wavelength of the faulted layer. This model thus

accounts for the lack of fault rotation in runs where visco-plastic lithosphere behaves as

rigid-blocks (i.e., very large flexural wavelength leading to very slow rotation rates).

However, as soon as the flexural wavelength decreases with heave such that it becomes

accommodated within the model domain, rotation can proceed. This is well illustrated by

visco-plastic simulation VI Oslow, with H = 10 km and U = 0.2 cm/yr (Table 4-2). In this

simulation, the onset of rotation occurs after 2.5 km of extension, which is roughly the

time when topography starts to feature significant off-fault decay (Figure 4-4E). This is

also consistent with the offset at which y decreases below 0.4 based on our analytical

scalings (Figure 4-4D).
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Figure 4-8. Kinematics of fault rotation in (A) elasto-plastic and (B) visco-plastic layers
where the box width encompasses the flexural wavelength (Table 4-2, visco-plastic runs
ending in "23LB"). The dots and dashed lines indicate numerical results and the solid
lines refer to analytical models (Section 4.4.2). The color code corresponds to varying
extension U rates and faulted layer thicknesses H.

Interestingly, in the ViOveryslow simulation with U = 0.02 cm/yr, y becomes smaller

than 0.4 after only -200 m of extension (Figure 4-4D). In this simulation, fault rotation

immediately follows the onset of extension (h ~ 0, Figure 4-4B), suggesting that the value

of yF = 0.4 may be appropriate over a range of extension rates.

For a more quantitative understanding of rotation kinematics in a viscous faulted

layer, we focus on the four simulations carried out in wide boxes (Table 4-2). In these

runs, the onset of fault rotation is immediate, and the kinematics of rotation depend on

the extension rate, with faster extension and thicker faulted layers coinciding with slower

rotation rate per unit heave (Figure 4-8B). To explain this observation, we incorporate the

time-dependent flexural wavelength derived in Appendix 4.1 into the kinematic fault

rotation model of Chapter 3. As described in Appendix 3.1, the fault rotation rate in

degrees per unit time should roughly scale with the average rotation rate of the near-fault

displacement field, n:
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at (4.19)

To first order, the main source of rotation in the flexural displacement field is the lateral

gradient of vertical motion, which is maximal at the fault (equal to 0.5Utan9), and

becomes negligible a fraction (v) of the flexural wavelength a away from the fault. Oa

can thus be though of as the lever arm involved in the rotation of the fault. We therefore

write

~1 v l UtanO
2 ax 4 (Da (4.20)

Plugging Equation (4.20) into Equation (4.19) with the constraint h = U t yields

ae tan0
ah 4(Da (4.21)

which can be integrated to yield

0 = sin- sin00 exp dh
40 a(h) (4.22)

With these assumptions, we can predict the evolution of fault dip as a function of heave

for a given extension rate. In a purely elastic lithosphere, the flexural wavelength is a

constant given by Equation (4.12), and Equation (4.22) simplifies to

6= sin-1 sin00 exp- _ (423
4Da E (4.23)

By contrast, for a purely viscous lithosphere, we substitute Equation (4.16) into Equation

(4.22) to yield

e=sin- sinOo)exp Apg

\501LUH) J(4.24)
Following the approach of Chapter 3, we assume a scaling factor 0 = 0.25, which was

empirically found to accurately predict fault rotation rates in elasto-plastic simulations

across a range of faulted layer thicknesses. A value of 0.25 means that the lever arm

associated with fault rotation corresponds to about a fourth of the effective flexural

wavelength of the faulted layer (Equation 4.20). Figure 4-8 shows the comparison
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between our analytical prediction of fault rotation and numerical results. The rate-

independent rotation observed in elasto-plastic runs is well explained by our simple

elastic model (Figure 4-8A); it also indicates that the diffuse plasticity outside of the fault

zone does not significantly influence fault rotation. The analytical model for fault rotation

in viscous layers also does an excellent job predicting the rotations in visco-plastic

models that were wide enough to encompass the flexural wavelengths. The analytic

model captures the slower rotation with heave associated with thicker layers and faster

extension, both of which produce larger flexural wavelengths. This agreement between

the numerical and analytical models strongly supports our initial assumption that fault

rotation is driven primarily by the flexural displacement field, and therefore becomes

extension rate-dependent when the lithosphere is assigned a visco-plastic rheology.

4.4.3 Fault life span

The control of layer thickness H on fault life span in elasto-plastic layers is well

explained by the build-up of elastic (rate-independent) stresses associated with

lithospheric flexure and topographic growth [Forsyth, 1992; Buck, 1993; Lavier et al.,

2000; Olive and Behn, 2014; Olive et aL., 2014b]. Stresses accumulate more rapidly with

fault offset in thicker layers, and trigger earlier initiation of new faults in the adjacent

lithosphere. Interestingly, while plasticity limits the build-up of stresses and allows

infinite fault growth in thin layers, it does not produce significant extension rate-

dependence of our numerical results, even though diffusely yielded portions of the

lithosphere locally behave viscously.

The tendency of faster extension rates to promote prolonged slip in visco-plastic

cases may seem counter-intuitive given that faster extension and higher qL produce

greater flexural stresses within the faulted layer (Equation 4.7). We interpret this to be a

consequence of the model domain not adequately encompassing the flexural wavelength,

given that av is greater in rapidly extending, high-viscosity layers. When the footwall and

hanging wall blocks are rigidly offset they do not develop significant flexural stresses due

to the lack of bending, which would otherwise promote the formation of new faults.

However, in visco-plastic simulations carried out with wide boxes (Table 4-2, runs

ending in "23LB"), a new fault broke in all the 20 km-thick lithosphere cases regardless
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of extension rate. This suggests that if the numerical domain is sufficiently wide to

encompass the viscous flexural wavelength, the regime transition is less sensitive to

extension rate, and more closely resembles the elasto-plastic cases. We note, however,

that within the "limited slip" regime, faster extension rates result in a longer life span of

the initial fault both in narrow (Figure 4-6) and wide box simulations (Table 4-2). One

possible explanation is that the viscous flexural wavelength will always be larger than the

model domain at the beginning of a simulation when h = 0 km (Equation 4-16; Figure 4-

4D). This could delay or hinder the build-up of flexural stresses and artificially prolong

fault life span, even though more rapid extension tends to generate higher viscous

stresses. In short, the complex transition between the "prolonged slip" and "limited slip"

regimes in visco-plastic layers (Figure 4-6) can be thought of as the convolution of (1)

the lithospheric thickness control characteristic of both elasto-plastic and visco-plastic

cases, and (2) spurious effects arising when the model domain cannot fully accommodate

the evolving wavelength of viscous flexure.

4.5. Concluding remarks

This study addresses the differences between numerical simulations of tectonic rifting in

an elasto-plastic vs. a visco-plastic lithosphere. We focus on the long-term evolution of

individual normal faults, which constitute the building blocks of extensional plate

boundaries. We have shown that elasticity promotes rate-independent deformation

resulting in rift geometries (topography and fault rotation) that only depend on the total

amount of extension and not on the extension rate. Specifically, fault life span, and

therefore the style of extensional faulting (multiple short-offset faults vs. long-lived

detachments) are also unaffected by extension rate in elasto-plastic simulations, however

they are strongly controlled by lithospheric thickness.

We have shown that under certain conditions, a visco-plastic rheology can

reproduce the qualitative behavior of elasto-plastic simulations, i.e., faults that rotate

rapidly after they localize and remain active longer in thinner layers. This occurs when

the numerical domain is wide enough to accommodate 2 to 2.5 times (yF= 0.4-0.5) the

flexural wavelength of the viscous layer at fault heaves equal to the amount of slip

necessary to fully weaken the fault. However, we find that fault rotation rate (Figure 4-8)
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and life span (Table 4-2) depends on the extension rate applied to the visco-plastic

simulations, even when viscous flexure is fully accommodated in the domain. This rate-

dependence is never observed in the elasto-plastic runs.

The elasto-plastic prediction of rate-independent fault evolution is most relevant

to real continental rift and mid-ocean ridge settings, given that the characteristic

topographic signature of elastic flexure is found near normal faults over a wide range of

spreading rates [e.g., Weissel and Karner, 1989; King et al., 1988; Armyo et al., 1996;

Schouten et aL., 2010]. Further, the differences in rift morphology across spreading rates

are generally well explained by rheological factors (i.e., lithospheric thickness) and

external controls such as magmatism [Buck et al., 2005; Behn and Ito, 2008; Ito and

Behn, 2008] and surface processes [Olive et al., 2014b].

Some authors have proposed that extension rate itself may exert a rheological

control on mid-ocean ridge morphology and the development of transform faults [Gerya,

2010b; 2013; Pithe and Gerya, 2013]. However, this suggestion is supported by

numerical models that do not include elasticity, and should therefore be examined in light

of our new results and scalings. In the case of the Puthe and Gerya [2013] study, the

moderate viscosity (~ 1022 Pa-s) and thickness (-10 km) of the lithosphere guarantees that

the viscous flexural wavelength of the lithosphere be rapidly accommodated within the

model domain (-100 kin). These simulations can therefore produce topography that

qualitatively resembles elastic flexure, yet the results of the present study raise questions

as to what extent the prediction of spreading rate-dependent ridge morphology results

from the use of a visco-plastic approximation to the natural rheology of oceanic plates.

In a broad sense, the analogies between elasto-plastic and visco-plastic models

result from mathematical similarities between linear elasticity (stress proportional to

strain) and Newtonian viscosity (stress proportional to strain rate). However, these

similarities are at risk of breaking down in a problem-dependent manner when key

parameters such as lithospheric thickness or velocity boundary conditions are changed.

Further, the incorporation of elasticity in a numerical model can significantly affect the

spatial and temporal evolution of deviatoric stresses, which in turn control the onset of

strain localization. Elasticity is therefore especially important in long-term geodynamic

simulations that involve faults forming in a sequence and significantly deforming the
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surrounding lithosphere. Happily, visco-elasto-plastic codes are becoming widely

available to the long-term tectonics community [e.g., Cundall, 1989 (FLAC); Gerya and

Yuen, 2003; 2007; Gerya, 2010a (I2ELVIS and I3ELVIS); Moresi et al., 2007

(Underworld); Choi et aL., 2008 (SNAC); Choi et aL., 2013 (DynEarthSol2D); and

Chapter 6 of this thesis (HiPStER). Possible improvements to these codes include the

routine incorporation of compressible elasticity and the development of new schemes to

keep track of the stress history of the lithosphere, potentially accounting for a "memory"

of past deformation events [e.g., Bercovici and Ricard, 2014].
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Appendix 4.1. Fault-induced topography in a viscous lithosphere

The plate deflection resulting from slip on a fault is modeled by adding the contribution

of (a) rigid motion of the hanging wall and footwall blocks along the fault and (b) flexure

of the footwall and hanging wall blocks in response to gravity [Weissel and Karner,

1989]. If w*(xt) denotes the topography resulting from step (a) alone, the deflection

w(x,t) corresponding to step (b) can be calculated as the flexural response to the load

exerted by w*(x,t). In a viscous faulted layer, w(xt) is a solution to the thin viscous plate

equation [Biot, 1961; Turcotte and Schubert, 2002]

F + Apgw = Apgw* (4
ax4 (4.Sl)

where F denotes the viscous equivalent to the elastic flexural rigidity D (Equation 4.13)

1
F=-lLH3

6 (4.S2)

and w*(x,t) is

Ut Ut
-- tan6, Vx---

2 2

UtUt U
w*(x,t)= . x tanO, Vx E -- ,+-U (4.93)

12 2

+-tanO, Vx > +--
2 2

The resulting, fault-induced topography wT(x,t) is then obtained by adding increments of

w*(x,t) and w(x,t), following

awT aw dw*

at at at (4.S4)

In the following, we outline a semi-analytical method to solve (4.S1)-(4.S4) using

Laplace and Fourier transforms. The problem is reduced to the calculation of an inverse

Fourier transform, which can be estimated numerically. We then propose an approximate

solution that captures the behavior of the exact solution and is easier to implement in

simple scaling models.

For any functionf(x,t) we write f(k,t) its Fourier transform defined as
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f(k,t)= f(x,t) edx
(4.S5)

In addition, the inverse Fourier transform is defined by

1 +*0f(x,t)=;-- 1kd2~~ )= f(k,t ) e- k
-00 (4.S6)

The Laplace transform f(x,s) is defined as

f(x,s)= f(x,t) e- dt (4.S7)

Taking the Laplace and Fourier transforms, successively, of Equation (4.S 1) yields

n -Apg z
k 4Fs-+Apg (4.S8)

In order to calculate the Laplace transform of w*(xt) (Equation 4.S3), we rewrite it as an

explicit function of time:

Ut 2x
sgn(x)-tan6, Vt s

2 U
w*(x,t) =

x tan0, Vt 2 (4.S9)

Piece-wise integration yields

_U ( -I' (2xs
w~ * (x, s) = 2 tan6 0 - 1 X sgn x

2S ) -e U (4.S1O)

Finally, the Fourier transform of Equation (4.S 10) is found to be

Uitan8 1
iw- *((k,s) = ki2k)( X i (4.Sl)

2 )( 2)

Using Equation (4.S8), we can now write i(k,s)

- iUApg tan6 1
wv(k, s)= - x-k"F4r _Pg s+i s _ (4.S12)

k 4F 2 )Si2

We note that the s-dependence of Equation (4.S12) is a rational fraction that we can

expand into a sum of partial fractions. We can then identify a sum of tabulated Laplace
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transforms, which are readily inverted into time domain. By applying the inverse Fourier

transform formula (Equation 4.S6), we can reduce the calculation of w(xt) to the

estimation of an integral, which can be performed numerically.

iUApgtanO 1_ 1 -+

2xF T iUk (A(k)+ iUk (A(k)- (4.S3)
. 2  

- ~ )2 +Bke'd

with

A(k)Apg
k4F (4.S14)

and

1 k)=k)1

( A(k)+ Uk)(A(k)- Uk) (4.S15)

We note that the use of the Laplace transform makes this derivation very similar to the

case of an elastic thin plate, which would be characterized by the following flexure

equation:

a4W
D 4 + Apgw =-Apgw (4.S6)

which can be expressed in Fourier domain:

-Apg (4.S17)

k 4D+ Apg

Equation (4.S17) has the same form as Equation (4.S8) provided D is replaced by Fs.

This suggests that the elastic solution with a time-dependent flexural rigidity is a good

approximation for the viscous problem. From dimensional analysis, we propose an

equivalent viscous rigidity of the form

F _lLH
3

t 6t (4.S18)

By analogy, we define a time-dependent viscous bending wavelength as

ay = (4.S19)
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where C is a scaling factor. We next recall the elastic solution to Equation (4.S17)

outlined in Chapter 2:

w =xh/2 _ x+h/2

4 aE E (4.S20)

with f defined as

f(x)= e-x (sinx - cosx) (4.S21)

We compare our exact solution (4.S13) to the elastic solution using the time-dependent

wavelength av defined in Equation (4.S19) instead of the elastic wavelength aE. We find

that equation (4.S20) provides the best approximation for the exact solution when av is

calculated with a scaling factor C 6 (Figure 4-S1). We therefore propose the following

definition for the viscous bending wavelength, which is used throughout the main text:
1

av Apgt (4.S22)

Finally, because fault heave (h) is more useful than time to describe experiments carried

out at different extension rates, we rewrite (4.S22) as

av pUH3 4 (4.S23)a=Apgh (4)3
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Figure 4-S1. (A) Illustrative RMS misfit between the exact solution to the viscous

faulting problem (calculated from Equation 4.S13 through numerical integration) and the

approximate solution (Equation 4.S20 using the viscous flexural wavelength av from

Equation 4.S19 instead of aE) using various scaling factors . This example corresponds

to a fault heave of 2.5 km in a 10 k-thick layer with a viscosity of 1024 Pa-s extended at a

full rate of 2 cm/yr. (B) and (C) Topographies predicted by the exact solution (red) and

the approximate solution using { = 6 (blue) for a range of layer thicknesses H and

extension rates U.
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Chapter 5:

Oceanic core complex structure controlled by the depth

distribution of magma emplacement 3

Abstract

Recent modeling studies suggest that long-lived (>1-2 Myr) detachment faults form

oceanic core complexes (OCCs) at mid-ocean ridges when magma is supplied to the

spreading axis within a restricted 'window' of intrusion rates equal to about 30-50% of

the total plate separation. This is paradoxical when considered in the context of field

observations, which show that detachments exhume rock types ranging from extensive

tracts of mantle peridotite (i.e., entirely amagmatic conditions) to exclusively intrusive

gabbroic bodies (i.e., fully magmatic conditions). Here we show that the magmatic

window required to drive detachment fault growth can be reconciled with this extreme

range of magmatism by allowing different rates of magma intrusion above and below the

brittle-ductile transition. We find that while the rate of magma intrusion in the brittle

layer controls fault evolution, the rate of intrusion below the brittle-ductile transition has

no influence on fault development. Further, although magma accretion in the brittle layer

is focused to the opposite side of the ridge axis from the detachment, magma

emplacement in the ductile layer is symmetric about the ridge axis, and the emplacement

rate below the brittle-ductile transition controls the volume of gabbro exhumed in OCCs.

3 Published as: Olive, J.-A., Behn, M. D., and B. E. Tucholke (2010), The structure of
oceanic core complexes controlled by the depth-distribution of magma emplacement,
Nature Geoscience, 3, 491-495.
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5.1. Introduction

Mid-ocean ridges (MORs) are divergent plate boundaries representing the surface

expression of large-scale upwellings in the convecting mantle of the Earth, where

adiabatic decompression triggers partial melting over wide areas. As buoyant melt

ascends within the asthenosphere, it is collected and focused toward the ridge axis, where

it is eventually emplaced as new oceanic crust. Magmatic heat drives vigorous

hydrothermal circulation that cools the ridge axis forming a rigid layer of oceanic

lithosphere, where normal faults develop in response to tensional stresses.

It has long been acknowledged that fault styles and ridge morphology are highly

dependent of spreading rate [Small, 1998]. At fast-spreading ridges such as the East

Pacific Rise, where magmatic input is elevated, most of the extension in the shallow

lithosphere is accommodated by intrusion of basaltic dikes, and faulting is limited

[MacDonald and Fox, 1988]. At slow-spreading ridges such as the Mid-Atlantic Ridge

(MAR), the colder thermal regime results in spatially and temporally variable, but overall

limited magmatic input [Lin et al., 1990; Tucholke et al., 1997]. In those settings, faulting

generally contributes to a higher percentage of extension.

Along the MAR, first-order segment centers are often characterized by an axial

valley bounded by symmetric, high-angle normal faults [Tapponnier and Francheteau,

1978]. This mode of spreading has long been envisioned as dominant at slow-spreading

ridges. Recent evidence, however, points to the existence of a fundamentally distinct

mode of spreading involving long-lived, low-angle normal faults termed "detachments"

that accommodate most of the extension asymmetrically, on one side of the ridge axis

[Escartin et al., 2008].

The observation of large tracts of serpentinized mantle and various lower-crustal

units directly exposed at the seafloor first led Dick et al. [1981] to infer the existence of

low-angle normal faults exhuming deep lithologies in the vicinity of ridge-transform

intersections. Since then, many authors have reported the exposure of such lithologies

within dome-shaped, corrugated massifs termed oceanic core complexes (OCCs), which

were interpreted as the exposed footwalls of fully developed detachment faults (Figure 5-

1) [Cann et al., 1997; Tucholke et al., 1998]. While OCCs were first thought to form in

purely amagmatic conditions [Tucholke and Lin, 1994], geologic studies involving direct
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Figure 5-1. Morphology of the Mid-Atlantic Ridge axis at 26.6*N, looking to the
southeast. Dante's Domes OCC is at left, showing domed structure, flowline-parallel

surface corrugations, and other structural features characteristic of OCCs formed by long-

lived detachment faults. The box is 60 km across-axis, 17 km along-axis and about 8 km
deep. Distribution of crustal lithologies and mantle is shown schematically in cross
section. The distribution assumes that the detachment initiated in response to a reduction
in melt supply to the brittle lithosphere (MB reduced to ~0.5-0.3) and that melt input was
variable within this range during fault growth. The detachment appears to no longer be
active, and may have been terminated because of an increase in melt supply as indicated

by thickened crust at the ridge axis. Figure courtesy of B. Tucholke, bathymetry data

from Wang et al. [submitted].
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observation, sampling at the fault surface and drilling in the footwall later established that

plutonic rocks were being emplaced as the detachment was actively growing [Dick et al.,

2000; MacLeod et al., 2002; Ildefonse et al., 2007; Dick et aL., 2008]. Furthermore,

Tucholke et aL. [1998] reported that OCCs were most commonly found within a narrow

range of spreading rates and were virtually absent from magma-starved ultraslow

spreading centers. They therefore proposed that magmatic processes play an essential role

in sustaining the growth of a detachment fault over long periods of time.

Numerical models have recently established that the amount of melt supplied to a

MOR spreading segment is a key control on the development of normal faults [Buck et

al., 2005; Behn and Ito, 2008; Tucholke et aL., 2008]. Maintaining slip on a normal fault

involves continuously bending the lithosphere and sustaining the build-up of topography,

both of which require a greater tensional force when the lithosphere is thicker [Forsyth,

1992; Buck, 1993; Lavier et aL., 2000]. The amount of extension accommodated by

diking at the ridge axis (expressed as a fraction M of the total spreading rate) controls the

rate at which an active fault migrates off-axis and encounters thicker and thicker

lithosphere. For example, elevated rates of diking at the ridge axis (e.g., M> 0.6) lead to

rapid fault migration toward thick off-axis lithosphere, where sustaining slip quickly

becomes less favorable than breaking a new fault at the axis. This simple kinematic effect

leads to an inverse correlation between fault life span and the magmatic fraction M.

As M decreases toward a critical value of 0.5, faults can accumulate more and

more offset. They then have to undergo flexural rotation to maintain isostatic equilibrium,

resulting in the formation of a dome-shaped footwall [Lavier et al., 1999]. Models that

incorporate the magmatic component of spreading predict the occurrence of OCCs within

a limited range of magmatic budgets (M - 0.3-0.5) [Tucholke et aL., 2008]. However, a

major shortcoming of these models is that they only account for diking in the shallow

lithosphere and can therefore not explain the high variability in the volume of plutonic

rocks exposed in OCCs.

At the apparently magmatic end of the spectrum, Atlantis Bank on the Southwest

Indian Ridge exposes a continuous gabbro section that extends > 10 km along plate flow

lines and is > 1.5 km thick [Dick et aL., 2000]. By contrast, extensive exposures of

mantle peridotite with a few imbedded gabbro plutons occur in OCCs on the Mid-
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Atlantic Ridge (Figure 5-1), suggesting reduced and/or more intermittent magma supply

[Blackman et al., 2002; MacLeod et al., 2002; Dick et al., 2008; Xu et al., 2009]. Further,

although hanging-walls of OCCs have been poorly studied, they seem to show little

structural/morphologic variation, which suggests that they may have relatively uniform

composition compared to variations in the OCC footwalls. These features suggest not

only that melt supply to detachment footwalls is strongly four-dimensional, but also that

melt may be partitioned differently above and below the brittle-ductile transition (BDT).

The aim of this study is to incorporate magmatic injection below the brittle

lithosphere in a numerical model of mid-ocean ridge faulting, in order to assess whether

the wide range of magmatic inputs documented by OCCs can be reconciled with the idea

that detachment faults form within a narrow window of melt supply to the brittle

lithosphere.

5.2. Numerical simulations of melt emplacement near a growing fault

We use the Fast Lagrangian Analysis of Continua (FLAC), an explicit inertial technique,

to solve for conservation of mass, momentum, and heat [Cundall, 1989; Poliakov and

Buck, 1998; Lavier and Buck, 2002] in a 60 km wide by 20 km deep domain representing

a vertical cross-section of a mid-ocean ridge that is spreading symmetrically at a half-rate

Us = 2.5 cm/yr (Figure 5-2). Top and bottom boundaries are stress-free and hydrostatic,

respectively.

Material deforms following a dry diabase rheology [Mackwell et al., 1998], which

is effectively elastic-plastic above the 600*C isotherm (equivalent to the BDT) and visco-

elastic below. Plastic yielding occurs in the brittle layer wherever a Mohr-Coulomb

criterion is met. Cohesion is rapidly reduced in the corresponding elements as plastic

strain accumulates, which allows the development of localized shear bands (faults).

The FLAC method employs a lagrangian description of the deformation field.

This results in the distortion of model elements as they accumulate strain due to faulting

or magma injection, and causes a loss of numerical accuracy. To circumvent this

problem, we regrid the model domain whenever the distortion of an element reaches a

critical threshold. All variables of interest are then linearly interpolated from the old

(deformed) grid to the new (undeformed) grid. This process is illustrated in Figure 5-3.
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MAGMA
INJECTION ZONE

- Usus =2.5 cm/yr

60 km across-axis

Figure 5-2. Synthetic model geometry. Symmetric stretching is applied on the sides of

the domain. The brittle-ductile transition (600*C isotherm) separates a visco-elastic

(ductile) asthenosphere from an elastic-plastic (brittle) lithosphere where faults can

initiate spontaneously. New materials are continuously being added to the model space

from a central, fixed injection zone. The brittle portion of the injection zone (yellow)

emplaces brittle-injected crust (BIC) at a rate Ma over a height HB, while its ductile

portion (orange) emplaces ductile-injected crust (DIC) at a rate MD over a height HD.

Both crustal lithologies (and the upwelling mantle) are tracked as they are advected off-

axis.

Magma injection is modeled by applying an elastic stress perturbation on a fixed

central column of elements over one numerical time step [Behn and Ito, 2008]. Heat is

simultaneously added to the ridge axis, accounting for both the injection temperature of

the magma (1200'C) and the latent heat of crystallization. No heat diffusion is allowed

through the sides. Temperature along the bottom boundary is taken from a half-space

cooling model at the corresponding depth, with a maximum temperature of 13000C. The

top of the model space is set to 0*C. Thermal diffusivity is enhanced by a Nusselt number

(Nu, typically 2-10) within the first 8 km below seafloor, in order to model efficient heat

extraction by hydrothermal circulation, and to provide some control on the thermal

structure (higher Nu produces thicker lithosphere).

The effective "magmatic spreading" can be regarded as the relaxation of the

quantum elastic perturbation, which results in net horizontal widening of the column,

pushing on the surrounding material at a rate proportional to the spreading half-rate.

Above the BDT, "brittle-injected crust" (BIC) is added at a rate UB = 2 MB Us, while
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d. t
RESETTING / INTERPOLATION

Figure 5-3. Numerical procedure for continuously injecting new materials and tracking
them throughout a model run. Each element is assigned an identity number (1 = BIC, 2 =
DIC, 3 = mantle). As materials are advected off-axis, they tend to distort (a-b) until a
critical threshold is met (when the smallest angle of a quadrilateral element becomes
:50). All variables of interest - including the identity number - are then linearly
interpolated (c-d) from the old (deformed) grid to a new orthogonal grid. During each
regridding, the identity numbers are automatically reset to 1 and 2 within the brittle- and
ductile- portions of the injection zone, respectively. Regriddings are frequent enough that
this results in continuous BIC and DIC injection.

"ductile-injected crust" (DIC) is added below at a rate UD = 2 MD Us. The total height of

the injection zone (H = HB + HD) is defined for each model run, but the relative heights of

the brittle (HB) and ductile (HD) injection evolve with the thermal structure. Magma

injection is therefore fully described by a set of four independent parameters, namely the

vertical height and rate of brittle (HB and MB) and ductile (HD and MD) injection (see

Figure 5-2 and Fig. 5-4 a-b). We consider that the BIC is representative of upper-crustal
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volcanics and sheeted dikes, while the DIC represents gabbroic plutons intruded beneath

the BDT. This simplified formulation takes into account the mechanical and thermal

effects of gabbro intrusion, and as such may represent a wide range of potential lower-

crust emplacement mechanisms.

To effectively track lithologies throughout a model run and investigate the crustal

emplacement patterns, we assign an identity number (Figure 5-3) to new materials at each

location where they enter the model space: (1) BIC, (2) DIC and (3) new mantle, which

upwells through the base of the domain.

5.3. Results

A series of simulations was performed with different combinations of injection

parameters (HB, MB, HD and MD). Consistent with previous studies, we find that OCCs

develop by detachment faulting in simulations where MB~ 0.3-0.5. At MB= 0.5, OCC

formation results in a systematic pattern of crustal emplacement in which BIC is accreted

solely on the conjugate side, leaving a remnant BIC hanging-wall block adjacent to the

seafloor trace of the detachment fault that forms the OCC (Figure 5-4). DIC, however, is

distributed equally between the OCC side, where it is exhumed in the footwall of the

detachment, and the conjugate side, where it is emplaced below the BIC. Numerical

smearing associated with regridding produces the artifact of a thin (-2 element size)

carapace of BIC on the footwall of long-lived faults (visible in Figure 5-4). Imposing a

sudden change in MB to a value 0.5, whether higher or smaller results instantaneously

disrupts the growth of the detachment fault.

Detachment fault growth is not affected by the imposed value of MD, (Figure 5-4

a-b) or by changes in MD through time (Figure 5-4c). However, changes in MD directly

control the amount of DIC that is exhumed in the OCC and emplaced in the ductile layer

on the conjugate side. Similarly, changing only HD (not shown) affects the thickness of

the DIC layer in the OCC as well as the ratio of BIC versus DIC emplaced on the

conjugate side, but it does not change the overall pattern of faulting.

We quantified our results over a range of injection parameters (e.g., HB, MD, and

HD) by comparing the total crustal thickness (BIC + DIC) 10 km off-axis on the

detachment (td) and conjugate (t) sides of the ridge axis for a series of model runs with

120



hanging
a. 0

-- 5
E

-10

0. ~~~M ___________

-15

-30 -20 -10 0 10 20 30

-- 5
E
.c -10

-15 M_ _ _ _ _
-o~~~0 -15 0.5__________IS___

-30 -20 -10 0 10 20 30

C 0

- -5
E

0

o 

-15M.0
-30 -20 -10 0 10 20 30

across-axis distance (km)

Figure 5-4. Modeled faulting and partitioning of volcanic, plutonic, and mantle materials

during OCC growth. Distribution of brittle-injected crust (BIC, black), ductile-injected

crust (DIC, gray), and mantle (green) lithologies after 1.5 Myrs of spreading in cases

where MB = 0.5 and a detachment fault develops continuously. MD varies from (a) 0.3 to

(b) 0.8, and in (c) it oscillates between 0.1 and 0.9 with a period of 0.5 Myrs. In these

runs, HB + HD = 10 kin, with HB - 3 km. The BDT separating BIC and DIC (yellow and

orange parts of the central dike, respectively) corresponds to the 600*C isotherm (thick

black line).

MB held fixed at 0.5 (Figure 5-4a). A simple mass balance calculation is used to predict

crustal thickness variations across an OCC as a function of HB, MD, and HD. Assuming

symmetric spreading about the ridge axis, the total thickness of BIC and DIC emplaced

within the injection zone will be 2 MB HB and 2 MD HD, respectively. However, because

the hanging wall of the detachment does not grow, the BIC must accrete solely on the

121



a. b. c.
10 12S

6W .. 6...

00

0 2 4 6 8 2 4 6 8 10 0 2 4 6 8 10

MD HD MD HD + HB td

M = 0.2 0.5 0.6 {0.8 1.0

Figure 5-5. Predicted crustal thicknesses as a function of the injection parameters. Total

crustal thickness (BIC + DIC) on the detachment (td) and conjugate (t) sides of the ridge

axis from a suite of model runs with fixed MB = 0.5 and varying MD (0.2-1.0), HB (1-3

km) and HD (1-7 km). Panels (a) and (b) illustrate the scaling laws (1:1 line) predicting td

and te, while (c) compares DIC thickness in the footwall of the detachment (D) vs. the

conjugate side (C). The 1:1 line corresponds to symmetric DIC emplacement while the

other two lines show 40% and 60% asymmetry on either side, respectively. Error bars

measure uncertainties associated with numerical smoothing when assigning material

identities to the elements, and are typically 1 or 2 x element-size.

conjugate side, while the DIC is equally partitioned across the ridge axis. Thus, for MB

0.5 the crustal thickness expected on the detachment side is

td = MDHD (5.1)

while on the conjugate side

t, = H B + MD HD (5.2)

These simple mass balance relations do an excellent job of predicting the numerical

results over a wide range of HB, MD, and HD. (Figure 5-5).

We also investigated several cases where MB t 0.5 (Figure 5-6). For simplicity,

we fixed MB = MD = M in these simulations, but we note that emplacement may be more

complex when MB : MD. For MB = 0.4, a long-lived detachment forms, but the

detachment surface is dissected by steep, mostly outward-dipping normal faults that

offset both the BIC and DIC layers (Figure 5-6b). Total crustal thickness on each plate

remains fairly constant through time, but a portion of BIC that normally would accrete on
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Figure 5-6. Modeled faulting and partitioning of volcanic, plutonic and mantle materials
as a function of melt supply. Model snapshots are at 1.5 Myrs for cases where MB = MD

= (a) 0.2, (b) 0.4, and (c) 0.7. In these runs, HB + HD = 9 kin, with HB8 2-3 km. First-
and second-generation fault surfaces are shown in red and blue, respectively. Other
conventions are indicated in the caption of Figure 5-4.

the conjugate is transferred to the 0CC. This is apparently caused by the detachment

migrating toward the axis and crossing the injection zone where it takes up, by tectonic

extension, the accretion deficit on the conjugate side. As MB decreases further to 0.2

(Figure 5-6a), random on-, off-, and cross-axis faulting becomes the normal style of

extension, both DIC and BIC are transferred irregularly between plates, and mantle can

be exhumed. This results in a very complex structure and distribution of lithologies. By

contrast, when MB is > 0.5, a continuous crustal layer is produced on both plates. In this
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case, the thickness of the DIC layer is essentially constant but the BIC is thinned by faults

that alternate back and forth across the ridge axis (Figure 5-6c).

5.4. Discussion

The key finding in this study is that differing rates of magma intrusion in the brittle and

ductile regimes control both the patterns of faulting and the distribution of igneous

lithologies at mid-ocean ridges in a systematic manner. Specifically, we show that the

entire range of synkinematic DIC intrusion rates (MD = 0-1) is compatible with

detachment fault growth, provided that BIC intrusion rates are in the critical range (MB

CRIT) of 0.5 to - 0.3. Introducing a depth-variable rate of magma intrusion reconciles the

intermediate rate of diking needed to allow detachment faulting in the lithosphere with

either amagmatic exhumation of large tracts of mantle (MD ~ 0) or synkinematic

emplacement of gabbroic bodies at virtually any scale (MD =f(t) > 0) in the footwalls of

OCCs. A corollary to this result is that emplacement of a large gabbro body will trigger

OCC termination only if it results in increased rates of diking (MB> 0.5) in the brittle

lithosphere. It also suggests that (1) an OCC may terminate solely by vertical

redistribution of a constant melt supply, e.g. if a larger portion of the total melt input is

erupted in the brittle lithosphere, and (2) that a sudden increase in magma supply may be

initially accommodated by the ductile asthenosphere, which would delay the disruption of

the detachment fault, as suggested by MacLeod et al. [2009].

We propose two end-member scenarios that could lead to variations in magma

injection with depth (Figure 5-7). In the first, shown Figure 5-7a, dike intrusion in the

brittle lithosphere occurs by along-axis propagation from a magma-rich segment center

toward the segment end [Fialko and Rubin, 1998]. In this scenario, MB declines into the

detachment-forming range, MB CRIT, toward segment ends, where most OCCs are found

[Tucholke et al., 1998]. Dikes above the detachment are not fed from below because the

colder thermal regime inferred in these areas favors melt crystallization at depth rather

than eruption [Cannat, 1996]. As a consequence, primarily mantle is exhumed by a

detachment fault that is located at the dike/mantle transition. This kind of structural /

lithological relationship has been interpreted at the Kane OCC on the MAR [Dick et al.,

2008].
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Figure 5-7. End-member models for detachment faulting and melt distribution at the

segment scale. In these along-axis scenarios, a long-lived detachment fault (bold line)

forms at the along-axis position where melt supply to the brittle layer is in the critical

range (MB CRIT= 0.5 to ~ 0.3) needed for detachment faulting. In (a), melt is supplied

entirely by along-axis dike propagation from the segment center, little or no melt is

derived from below the detachment, and mantle is exhumed along a dike/mantle contact.

In (b), MB CRIT is achieved by melt derived from intrusions below the detachment, and

gabbro plutons are exhumed in the OCC along a dike-gabbro contact.

In the second scenario, dikes are fed from underlying gabbro intrusions (Figure 5-

7b). MB CRIT could be satisfied anywhere within the segment, but is more likely to be

achieved away from the more magmatically robust segment center, and thus toward the

segment end. Of course MB CJT could also be achieved by some combination of lateral

and vertical diking represented by these two end members. It is noteworthy that this

spectrum of scenarios accommodates a wide variety of temperature and intrusion

conditions in the detachment footwall, which may explain why very different kinds of

temperature/deformation histories have been documented in different OCCs [Dick et aL.,

2008; Escartin et aL., 2003].
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Although our simulations involve continuous crustal layers, OCCs tend to

exhume discrete gabbro bodies surrounded by serpentinized peridotite [Blackman et al.,

2002; Dick et al., 2008]. This likely reflects both spatial (along-axis) and temporal

(across-axis) variations in gabbro intrusion rates. Along-axis variations in gabbro layer

thickness can be accounted for in our simulations by variations in either MD (reflecting

differences in melt supply) or HD (reflecting variations in axial thermal structure, which

will in turn be influenced by magma supply and/or the efficiency of hydrothermal

cooling). Our model also predicts that gabbro exhumed in an OCC should be matched by

an equal volume of gabbro in the conjugate plate, below volcanics and sheeted dikes of

the upper crust, provided that far-field extension is symmetric about the ridge axis, which

may not be the case for all OCCs. This prediction can be tested by detailed seismic and

gravity studies across both an OCC and its conjugate hanging wall [e.g., Planert et al.,

2010], which are still rare at the moment.

Temporal variability in melt supply in slow-spreading crust is well established.

Cycling between relatively magmatic and amagmatic conditions often appears to occur

on the Mid-Atlantic Ridge at periods of ~ 2-4 Myr [Bonatti et al., 2003; Tucholke et al.,

1997] possibly reflecting heterogeneities in mantle fertility. Interestingly, most fully-

matured OCCs have developed over about 1-2 Myr [Tucholke et al., 1998], which may

suggest that MB CRIT is achieved over about half the duration of long-period magmatic

cycles. Shorter-period magmatic cyclicity also occurs on time scales down to 80-160 kyrs

[Canales et al., 2000] and may be associated with the dynamics of magma ascent,

storage, and eruption. These fluctuations are likely responsible for the development of

discrete gabbro bodies within OCCs, as illustrated by the model in Figure 5-4c. Our

model predicts that a detachment formed under these fluctuating conditions will display

small oscillations in OCC footwall topography, as seen in panel c of Figure 5-4, because

of the density contrast between the gabbro plutons and the surrounding mantle. Modeled

oscillations are on the order of 150 m for 4-km variations in gabbro layer thickness, when

one would expect -500 m from full isostatic compensation. This argues for a strong

flexural component in the compensation. Even though there seems to be no correlation

between topography and lithology at the Kane OCC [Dick et al., 2008], it is plausible that
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the flexural stresses associated with gabbro emplacement may contribute to high-angle

off-axis faulting of the footwall, which is often observed [Tucholke et al., 1998].

If OCCs are indeed representative of a unique "asymmetric" mode of seafloor

spreading [Escartin et al., 2008], then our modeling may shed new light on the segment-

scale interrelations between tectonic, magmatic, and hydrothermal processes that favor

one mode of faulting over another. Symmetric spreading is well accounted for by robust

magmatic injection in the lithosphere, keeping normal faults short-lived and closely

spaced (Figure 5-6c). In our framework, asymmetric spreading does not require a

significantly different magmatic input, but rather a different vertical distribution of melt

emplacement, with more magma being trapped at depth and less injected within the

lithosphere. This could result from an overall colder thermal regime that inhibits crystal-

liquid separation within plutonic bodies and limits their eruptibility [MacLeod et al.,

2009].

Our model predicts a symmetric pattern of emplacement for all lithologies

intruded below the BDT in asymmetric settings. However, an increasing body of

evidence points to systematically faster extension on the OCC side than on the conjugate

side [Baines et aL., 2008; Dick et al., 2008; MacLeod et al., 2009], which should be a

major focus of future modeling studies. Symmetric emplacement of the lower-crust in our

model is a direct consequence of two assumptions that will have to be relaxed in future

studies. First, the symmetric stretching applied on the sides of our model generates a

symmetric corner flow extending into the OCC footwall (the detachment fault acts as a

kinematic upper-boundary condition) and below the conjugate upper-crust. We expect

that asymmetric spreading should result in a systematic migration of the ridge axis

toward the OCC side relative to the underlying mantle. This would add a lateral

component to the corner flow away from the OCC, and would then advect more plutonic

rocks to the conjugate side, a prediction again testable by seismic and gravity studies. The

second assumption lies within the choice of our rheological parameters, and specifically

of our fault-weakening law. This law only allows localization of deformation within the

lithosphere, but the recovery of mylonites and ultramylonites from OCC footwalls argues

for localization of deformation within the ductile regime. If that is the case, then

detachments may root deeper than the BDT at the axis, and possibly cross-cut the ridge
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axis, exhuming a volume of plutonics not necessarily matching that emplaced on the

conjugate side. This is testable by incorporating new weakening laws (e.g. melt-assisted

strain localization) into our model.

5.5. Conclusions and perspectives

Our modeling results provide a new conceptual framework for interpreting relations

between magmatism and faulting at slow- to intermediate-spreading MORs. Specifically,

we argue that fault style is primarily controlled by the rate of diking in the brittle

lithosphere, while lithological variations in both the brittle lithosphere and in the

underlying ductile asthenosphere are controlled separately by intrusion rates that are

unique to each layer. Our results allow us to interpret OCC formation in the context of

both rate and location of melt supply at the segment scale and in a four-dimensional

framework. The model could be made more relevant to MOR settings by incorporating

more coupling between thermal structure and melt emplacement. For instance, instead of

being fixed at the center of the domain, the injection zone could be allowed to move

freely across the model domain, spontaneously localizing above the shallowest point of

the melting region. It would therefore be sensitive to lateral shifts in the thermal structure

driven by asymmetric extension. Furthermore, one could introduce some degree of

coupling between the M parameter and the volume of melt predicted from the ridge

thermal structure. The thermal structure could also be used to infer how much melt

should be trapped and emplaced in the ductile asthenosphere vs. in the brittle lithosphere.

Finally, the next major step in numerical modeling of MOR tectonics will be the

development of three-dimensional thermo-mechanical models, which has only recently

been made possible by advances in computing power [Gerya, 2010b]. Such a model

would enable us to investigate: (1) the 3D geometry of normal faults and their

interactions at the segment-scale, (2) their response to along-axis variations in the rates of

magma intrusion, lithospheric thickness, rate of off-axis lithospheric thickening, and (3)

the effect of a transform boundary condition on the development of detachment faults and

inside-corner highs.
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Chapter 6:

The effect of lithospheric thickness variations

on the three-dimensional growth of normal faults

Abstract

Normal faulting at extensional plate boundaries is by essence a three-dimensional process

that is modulated by spatial variations in lithospheric properties and magmatic activity.

This chapter presents simulations of three-dimensional normal fault growth in a

lithosphere that thickens along- and across-axis at variable rates. These simulations are

carried out using HiPStER (Highly-Parallel Stokes with Exotic Rheologies), a newly

developed particle-in-cell finite-difference code that solves for incompressible flow with

spontaneous localization of deformation in a 3-D visco-elasto-plastic continuum. We

explore the effect of lithospheric geometry on fault development by varying (1) the

average along-axis thickness of the lithosphere, (2) the gradient of along-axis lithospheric

thickening, and (3) the gradient of across-axis thickening. For all lithospheric geometries

with off-axis thickening, we find that strain first localizes onto two inward facing normal

faults. These faults define an axial valley that gets wider as the lithosphere thickens

toward the segment ends. However, in cases where the average lithospheric thickness is <

15 km, extension is also accommodated on two additional inward-facing faults at the thin

segment center. These auxiliary faults then propagate toward the segment ends at a rate

that correlates negatively with the gradient of along-axis lithospheric thickening. In the

simulation characterized by the highest relative along-axis thickening (thickness

increasing from 6 to 14 km over 40 km), faults nucleate in both the thin and the thick part

of the segment, but do not link with one another. Deformation is relayed along-axis

through a complex en ichelon structure. In light of these new results, we discuss the

applicability of 2-D scalings to three-dimensional systems, and outline the future work

toward realistic 3-D models of tectono-magmatic interactions at mid ocean ridge and

continental rift segments.
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6.1. Introduction

Extensional plate boundaries are linear features that span distances much greater than

their characteristic width (10-100 km). For several decades, this characteristic has

warranted the use of 2-D cross-axis numerical models to elucidate the first-order

mechanics of rifting. However, over such distances (103 km) the lithosphere often

displays variability in its properties and 3-D geometry on a variety of scales.

A spectacular manifestation of intermediate-scale variability (~102 km) is the

along-axis segmentation of mid-ocean ridges (MORs) [Searle and Laughton, 1977;

Macdonald et al., 1984; 1988; 1991; Tucholke and Lin, 1994] and continental rifts [Mohr

and Wood, 1976; Bosworth, 1985; Morley et al., 1990; Hayward and Ebinger, 1996]. At

young, magma-poor portions of continental rifts (e.g., southern and central Main

Ethiopian Rift), segmentation is defined by along-axis discontinuities in the traces of the

major rift-bounding faults (Figure 6-1) [Hayward and Ebinger, 1996], and there is

limited lateral offset between segments. At more magmatically robust rifts and MORs,

discrete rift or ridge segments are laterally offset from one another by a zone of shear

deformation. Discontinuities between MOR segments can take the form of either a

transform fault bounding first-order segments or a non-transform offset bounding higher-

order segments [Macdonald et al., 1991] (Figures 6-lb and 6-2). While the origin of

these segment-bounding offset zones is debated, short wavelength (10-102 km)

variability in lithospheric thickness at the segment scale is well documented, especially at

slow-spreading MORs [e.g., Kuo and Forsyth, 1988; Tolstoy et al., 1993; Cannat, 1996].

Such short wavelengths are commensurate with the characteristic across-axis length

scales of individual normal faults, i.e., the flexural wavelength of the lithosphere.

Extensional faulting at the segment scale is therefore a three-dimensional process that is

likely modulated by along-axis gradients in lithospheric properties, as well as gradients in

the activity of geological processes such as magmatism or hydrothermal cooling [Shaw

and Lin, 1996].

The example of slow-spreading MOR segments perfectly illustrates the need for

3-D models of fault evolution (Figure 6-2). A defining characteristic of slow-spreading

MOR segments is their strong along-axis variability in morphology and fault style, with

wider axial valleys and more widely spaced, longer-lived faults close to segment ends
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Figure 6-1. a. Tectonic map of the Main Ethiopian Rift (MER), modified from Agostini
et al. [2011]. (al) Major plate boundaries in the vicinity of the Afar Triple Junction. (a2)
Fault pattern of the MER superimposed on a digital elevation model (Shuttle Radar
Topography Mission (SRTM) data). Border faults are shown in black and the Wonji Fault
Belt (WFB, a set of faults affecting the rift floor) in red. A, Lake Abijata; Ab, Lake
Abaya; Aw, Lake Awasa; C, Lake Chamo; K, Lake Koka; L, Lake Langano; S, Lake
Shala; Z, Lake Ziway. (a3) Digital elevation model (SRTM data) of the Ethiopian Rift
showing the main rift sectors (from south to north): southern Main Ethiopian Rift
(SMER), central Main Ethiopian Rift (CMER), northern Main Ethiopian Rift (NMER),
Afar. b. Schematic bloc diagrams of the evolution of rift segmentation in the sectors of
the Main Ethiopian Rift and Afar rift system from south to north (bottom to top), with a
slow-spreading mid-ocean ridge case (seafloor spreading) for comparison. Reproduced
from Hayward and Ebinger [ 1996].

[e.g., Tucholke and Lin, 1994; Rabain et al., 2001]. These features have been linked to

segment-scale variations in lithospheric properties and thermal regime, as inferred from

residual gravity anomalies [Kuo and Forsyth 1988; Lin et al., 1990; Detrick et al., 1995],

seismic velocity structure [Tolstoy et al., 1993; Hooft et al., 2000], and microseismicity

[Kong et al., 1992; Barclay et al., 2001]. Specifically, segment centers are typically

characterized by thicker magmatic crust and a hotter thermal regime leading to thinner

lithosphere [Phipps Morgan and Forsyth, 1988], while segment ends are characterized by

large tracts of exhumed serpentinized mantle and thicker lithosphere [Cannat, 1996].

Shaw and Lin [1993]; Shaw and Lin [1996], Escartin et al. [1997] and Behn et al.

[2002a] used mechanical models to relate along-axis changes in fault styles to changes in

lithospheric thickness, lithologies and strength. This problem was also addressed with 2-

D numerical models that spontaneously localize deformation [Poliakov and Buck, 1998;

Behn et al., 2004]. This class of models became particularly successful at predicting fault

spacing and offset when the effects of magmatic injection at the ridge axis were

considered [Buck et al., 2005; Tucholke et al., 2008; Behn and Ito, 2008; Ito and Behn,

2008]. These studies suggest that the main effect of magmatism is to set the rate at which

normal faults migrate off-axis through thicker lithosphere where it becomes mechanically

difficult to sustain slip. Consequently, as detailed in Chapter 5 of this thesis, elevated

rates of melt injection above the brittle-ductile transition favor the growth of numerous
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Figure 6-2. a. Bathymetry of the Mid-Atlantic Ridge between the Fifteen-Twenty and
Marathon Fracture Zones, which consists of three segments outlined by brackets on the
left side of the map. The colored lines indicate the ridge axis. Following the classification
of Escartin et al. [2008], a red line denotes a portion of the ridge characterized by
symmetric accretion, and a blue line indicates asymmetric accretion along multiple
detachment faults (white stars). b. Close up on the 14*N symmetric segment, which
features a typical hourglass shape with multiple closely spaced faults near the shallow
segment center. The dashed black box indicates the horizontal extent of the numerical
models presented in this chapter (- half a segment).

short-lived faults near the segment center, while moderate rates of melt emplacement

close to segment ends enable the formation of long-lived detachments. However, the

mechanism by which extensional deformation is relayed along-axis between these two

end-member fault styles is still unknown, as it cannot be addressed with 2-D models. One

possibility is that long-lived detachments have a limited along-axis extent, and do not link

with steeper, short-offset faults that span greater along-axis distances. This scenario could

explain why mature detachments form isolated oceanic core complexes that have a finite

extent along-axis and a characteristic spacing of -20 km (Figure 6-2a). Such a model

would require very steep along-axis gradients in fault offset along detachment faults, and

complex relay structures. An alternative scenario, put forward by Reston and Ranero

[2011], proposes that low-angle detachments have a large along-axis extent, and underlie

steep short-offset faults characteristic of segment centers. While a long-lived detachment

cutting through the entire segment constitutes a straightforward geometry for along-axis

fault linkage, 2-D models suggest that sustaining the growth of a detachment while

accommodating more than 60% of the full spreading rate by magmatic injection at

segment centers is mechanically difficult.

Computational geodynamic modeling provides a means to assess the mechanical

feasibility of these different scenarios, however to date a fully consistent 3-D numerical

model of faulting at the segment scale is still lacking. The reason for this is that

modeling the evolution of normal faults in 3-D is a computationally challenging

endeavor. To date, only a handful of codes have been developed to model extension in

three dimensions. Early efforts consisted of visco-elastic models that did not allow strain

136



localization along discrete faults [e.g., van Wjk and Blackman, 2005]. Since then, most

codes have focused on large-scale (>102 km) processes such as rift segmentation,

interaction among individual segments, and the growth of transform faults [e.g., Beutel,

2005; Choi et al., 2008; Gerya, 2010b; Puthe and Gerya, 2013]. Due to their large-scale

approach, these models could not properly resolve individual near-axis normal faults.

Allken et al. [2011; 2013] considered lower-scale systems and successfully modeled the

interactions between individual rift-bounding normal faults. However, Allken et al.

[2011; 2013] approximated the brittle faulted layer as a visco-plastic medium, which

raises questions regarding the geological applicability of their results, as detailed in

Chapter 4 of this thesis. Finally Le Pourhiet et al. [2012], also using a visco-plastic

approximation, studied the 3D geometry of deformation around a continental detachment

fault, but did not focus on fault interactions in 3D, and instead localized detachment fault

growth along-axis by imposing varying rates of extension.

In this chapter we are concerned with three-dimensional normal fault growth and

the degree of along-axis continuity of faults at the scale of an individual extensional

segment (<;102 km), which is characterized by both along- and across-axis variations in

lithospheric properties. We start by presenting our numerical approach to modeling 3-D

flow in a visco-elasto-plastic continuum, and apply our models to an elasto-plastic

lithosphere of varying along-axis thickness that undergoes axis-perpendicular extension.

We interpret these models in terms of the resulting patterns of strain localization and

along-axis fault growth. Finally, we discuss the applicability of our results to real ridge

systems, and outline future steps toward fully consistent 3-D models of tectonic faulting

at slow MORs and continental rifts.

6.2. Numerical methodology: the HiPStER approach

Modeling Stokes flow with visco-elasto-plastic rheologies is the central problem in

computational geodynamics, and poses numerous challenges. In general, to reach

reasonable resolution, -50 elements are needed in each direction, with (ideally) more

elements in regions of highly localized deformation (faults). This means that four

equations (Continuity and Stokes in 3 directions) must be discretized and solved on ~105

grid points, which places strong memory requirements on the hardware and requires
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parallel computation. Further, such large problems render the use of direct solvers

commonly used for 2-D models (e.g., LU decomposition) highly impractical due to their

limited scalability. Iterative solvers therefore constitute the method of choice. However,

the efficacy of a given method is highly problem-dependent, and identifying solvers that

are well suited for the discretized Stokes flow equations is an active area of research [e.g.,

May and Moresi, 2008]. Here we outline our choice of discretization method (finite

difference with Lagrangian markers), rheological parameterization, and iterative solvers

(Krylov method with field splitting-based preconditioning).

6.2.1. Governing equations and discretization

Our simulations were carried out using HiPStER (Highly-Parallel Stokes with Exotic

Rheologies), a 3-D finite-difference / particle-in-cell code [Harlow and Welch, 1965;

Gerya and Yuen, 2003; 2007] that was developed based on the methodology of Gerya

[2010a] and relies heavily on the PETSc (Portable Extensible Toolkit for Scientific

computing) computational library [Balay et al., 1997]. HiPStER solves for conservation

of mass and momentum in a 3-D continuum assuming material incompressibility. The

corresponding (Stokes) equations are written:

--=0
ax, (6.1)

axi ax, ' (6.2)

where vi, a-'y,, and P denote velocities, deviatoric stresses, and pressure, respectively, and

repeated indices imply summation from i = 1 to i= 3.

We treat the material as an incompressible Maxwell visco-elastic solid of

viscosity q and shear modulus G. Following the procedure outlined in Section 4.2.2 of

Chapter 4, we discretize the Eulerian component of the deviatoric stress change involved

in the expression of the total strain rate (Equation 4.4), over a visco-elastic time step At.

Stress advection and rotation is handled by markers. This approach yields the following

stress-strain relation:
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a' = 21Ze,. +(I-- Z)-

(6.3)

where Z denotes a visco-elastic ratio:

Z =GAt
GAt+1 (6.4)

The visco-elastic time step At can be chosen such that certain portions of the domain

behave elastically (At << Maxwell time scale; Z = 0) or viscously (At >> Maxwell time

scale; Z= 1).

Plasticity is implemented by weakening the material viscosity wherever the

second invariant of the deviatoric stresses exceeds a yield stress. The failure law is a

smooth approximation of the Mohr-Coulomb criterion where cohesion decreases with

accumulated plastic strain. A healing mechanism favors the build-up of plastic strain in

localized shear zones as opposed to broad regions of yielding [Poliakov and Buck, 1998].

The detailed implementation of plasticity is described in Section 4.2.3 of Chapter 4.

Upon inserting Equation (6.3) into Equation (6.2), conservation of momentum can

be expressed as

a 7Z av, 1.avi aP a {-)0'*
ax ax. ax ax. - (x< '> (6.5)

It should be noted that under geological conditions, the numerical values of the unknowns

(vi, P) expressed in S.I. units likely differ by many orders of magnitude (e.g., v, ~ 10~10

m/s compared to P ~ 108 Pa). Further, the coefficients multiplying the unknowns in

Equations (6.5) and (6.1) scale either as the inverse of a length or as a viscosity over a

length squared, and thus can also differ by many orders of magnitude. These properties

typically result in poor conditioning of the linear systems involved in solving Equations

(6.1) and (6.2) numerically, and make it difficult to assess errors with norms that involve

the entire solution vector X= [vi, p]T. To prevent such problems, we rewrite Equations

(6.1) and (6.2) in non-dimensional form adopting the conventions listed in Table 6-1.
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Parameter Scale

Length HO, height of domain

Viscosity ,qo, highest viscosity in domain

Density po, highest density in domain

Velocity Vo, representative velocity boundary condition

Pressure, stresses, qo Vo /Ho, viscous stress scale
and elastic moduli
Time Ho / Vo

Table 6-1. Characteristic scales chosen to non-dimensionalize the Stokes and continuity
equations.

The system of equations to be solved becomes:

-- =0af1. =

~X. (6.6)

and

Z + -' +Stp=- ((I_-Z)&'

ai. aij. ai, ai ' (6.7)

where the tilde denotes variables that are non-dimensional and St denotes the ratio of the

characteristic Stokes velocity to the chosen velocity scale:

St = p gH0
)7o0 (6.8)

Equations (6.6) and (6.7) are discretized using a conservative finite difference

scheme on a three-dimensional staggered grid [Gerya, 2010a]. However, rather than

assembling a matrix of coefficients as in the 2-D method employed in Chapters 2-4, we

make use of the PETSc framework and write our discrete system in the form:

F(X)= 0 (6.9)

where F is a residual function and X the solution vector containing the velocity and

pressure values attached to all grid points. In the present version of HiPStER, the

effective viscosity (i ) that appears in Equation (6.7) is calculated outside the residual

140



function and then supplied to F prior to solving Equation (6.9). This approach consists of

performing several "Picard iterations" on viscosity (i ) within a single time step.

Each Picard iteration consists of solving Equation (6.9), and using the velocity

and pressure solution to calculate the corresponding strain rate and stress fields. These are

used to update the viscosity field following the appropriate creep / plasticity laws. This

updated viscosity field is then fed to the residual function in order to generate the next

solution, and so on. After several of these Picard iterations the system converges to a

solution where stresses, viscosities and strain rates are consistent with one another. For

the class of problems presented in this paper, we found that performing three Picard

iterations per time step was sufficient to allow consistent solutions.

While the residual function F changes with each new Picard iteration (due to the

updated viscosity field), it remains a first-order polynomial function of the discrete

unknowns through the entire process. Consequently, each Picard solve can be carried out

with a single iteration of Newton's method with a zero initial guess. This amounts to

solving the linear system

JX= F(0) (6.10)

where J refers to the Jacobian of F

=F (X(k))
J..= '

' aX (k) (6.11)

The Jacobian is calculated exactly via finite difference, given the linearity of F. While

conceptually this approach is no different than the matrix approach of Chapters 2-4, the

residual formulation enables (1) the use of matrix-free operators, which are more

computationally efficient when dealing with large systems, and (2) a straightforward

implementation of a non-linear residual to be solved with a full Newton's method for

future applications. This can all be done within PETSc's SNES (Scalable Nonlinear

Equations Solver) framework.

The detailed numerical strategy to solve the linear system in Equation (6.10) is

presented in Section 6.2.2. Once enough Picard iterations have been performed and an

acceptable solution has been obtained, stresses and plastic strain are updated on

Lagrangian particles (markers). The new velocity field is used to advect the markers with

a simple first-order Euler scheme over an advection time step At, which serves as the
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actual step for time evolution in the model. At. is set so that markers do not travel further

than 60% of the smallest cell size at each advection step. Finally, the advected marker

properties are interpolated back to the grid to prepare for the next time step solve [Gerya,

2010a].

6.2.2. Numerical strategy for solving the linear system

In order to solve the large sparse linear system in Equation (6.10) we rely on the GMRES

algorithm, which is a Krylov subspace method well suited for iteratively solving non-

symmetric systems using matrix-vector multiplications only. The rate of convergence

and, ultimately, the success of a Krylov method is largely dependent on the spectral

properties of the matrix J. Broadly speaking, Krylov methods work best on matrices

whose eigenvalues do not differ by many orders of magnitude. Such matrices are termed

"well conditioned". A common strategy to improve the conditioning of a matrix is to

apply a preconditioning operator to the system. The idea is to multiply both sides of

Equation (6.10) by a preconditioner Pc and solve

(PcJ) = PcF(O) (6.12)

with Pc carefully chosen so that (PcJ) is better conditioned (and is therefore easier to

invert with a Krylov method) than J. Ideally Pc should resemble f'.

To assemble an efficient preconditioner for Equation (6.10), we take a closer look

at the structure of J, which represents a saddle-point Stokes system of the form:

JX=K G )(v _ rhs)J GL T 0 P 0 (6.13)

where K, G, and GT are blocks representing the discrete stress divergence, gradient and

divergence operators, respectively. Following the methodology of May and Moresi

[2008], we precondition J by applying a Schur complement approach, which rearranges J

as an upper-triangular matrix

J= K G)(0 S (6.14)

where the Schur complement block S writes

S =-GT KG (6.15)
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We note that the calculation of S requires inverting the K block. However, once this is

done, the only remaining task to fully invert . is to invert S. This is because upon

inverting S, the pressure solution can be substituted into the first row of ., and the

velocity solution can be obtained by applying K, which has already been calculated to

obtain S. We make use of PETSc's fieldsplit preconditioner [Brown et al., 2012] to target

the various blocks of J individually. Specifically, we obtain K' by applying the GMRES

algorithm on K preconditioned by the Jacobi iterative method. We then invert the Schur

complement S via another application of GMRES, this time preconditioned by a least-

squares commutator (LSC), which is known to perform well with Stokes problems

involving spatially variable viscosity with sharps contrasts [Elman et al., 2006; May and

Moresi, 2008]. The basic idea of LSC preconditioning is that a good approximation of S

can be obtained from

S= (G'Gf GTKG(GTG) (6.16)

For viscous incompressible flow problems, L = GTG is a discrete Laplacian operator. A

low-accuracy estimate of (GTG)- is obtained with the Jacobi method.

The succession of operations outlined above enables us to assemble a

preconditioner Pc that approximates 11. Once this is done, the preconditioned system

(Equation 6.12) is solved with a GMRES method, which we refer to as "outer GMRES"

to distinguish it from the two "inner GMRES" necessary to assemble Pc.

6.3. Numerical experiments of fault evolution in a brittle layer of varying thickness

To investigate the initiation and growth of normal faults in a lithosphere of varying

thickness, we conducted 6 simulations of faulting in a 3-D box (Figure 6-3) spanning 100

km along the extension direction (x-direction, divided into 100 cells) axis, 40 km

perpendicular to the extension (y-direction, 30 cells), and 40 km vertically (z-direction,

40 cells). It should be noted that while the code operates on non-dimensional quantities,

for clarity we shall refer to the various simulation parameters in their dimensional form

through the rest of this chapter.

Our model lithosphere is a brittle incompressible elasto-plastic layer of density

3300 kg-m 3 , viscosity 1024 Pa-s and shear modulus 33 GPa (the visco-elastic time step is

143



set so that Z-0 in this layer, see Equation 6.4). Its initial thickness H(xy) varies spatially,

but is systematically thinnest along an extension-perpendicular line in the middle of the

domain, which defines the ridge axis. The lithosphere is sandwiched between two weak

(1021 Pa-s) viscous layers: a 10 km-thick ocean (density 1000 kg-m~ 3) and an underlying

asthenosphere (density 3300 kg-m-3). Incorporating a weak viscous ocean layer is an

indirect way to model a stress-free seafloor, as detailed by Crameri et al. [2012].

Symmetric extension in the x-direction is applied orthogonally to the axis-parallel

boundaries at a half-rate of 1 cm-yr-1. The axis-normal sides of the box are free-slip. A

prescribed inflow of material through the top and bottom boundaries (also free-slip)

compensates the outflow of ocean and rock through the sides.

Contrary to Chapters 2-4, we do not seed a weak fault in the lithosphere at the

beginning of each run. Instead, we let deformation localize spontaneously along narrow

shear bands within the first few time steps. In our formulation of plasticity, intact

lithosphere has 100 MPa of cohesion, and cohesion decreases linearly with accumulated

plastic strain Sp. When cp has reached a critical value of 0.01 (roughly equivalent to a few

tens of meters of slip on a shear zone with a width of a few elements), cohesion is

reduced to 1 MPa. Such rapid weakening favors the spontaneous localization of many

faults, which facilitates the study of fault interaction. Finally, a healing mechanism is

implemented to reduce Fp over a characteristic time scale of ~3000 years in regions where

it is not sustained by localized deformation [Poliakov and Buck, 1998]. This favors

localized over diffuse yielding. Currently, we have not implemented any mechanism that

would counteract the tectonic thinning of the lithosphere, such as conductive /

hydrothermal cooling, or magma emplacement. The simulations are therefore conducted

until the axial lithosphere has thinned such that individual shear zones can no longer be

properly resolved. This typically occurs after -25 km of total extension for an average

initial lithospheric thickness of 10 km along the axis. Each simulation is performed using

18 processors on WHOI's high performance computing cluster "Scylla", and takes -1.5

hours per time step (equivalent to - 1 km of extension).
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Figure 6-3. Schematic setup of our numerical simulations. Extension is applied in the x-

direction on both sides of the domain, symmetrically. Compensating inflow of ocean and

rocks is applied through the top and bottom. All boundaries are free-slip.

Our simulations investigate the effect of changing the rates of off-axis and along-axis

lithospheric thickening (&xH and ayH, respectively), as well as the average lithospheric

thickness along the axis (H). A summary of our run parameters is given in Table 6-2.

Most of our simulations investigate the first-order geometry of half of an extensional

segment, where the axial lithosphere is thinner at the center (H = HTHIN at y = 0) and

thicker at the end (H = HTHICK at y 40 km). In one simulation (NOTCH), the geometry

is defined for a full 40 km-long extension segment, where the axial lithosphere is thinnest

at y = 20 km. A reference run (FLAT) features no variation in lithospheric geometry along

axis. Our analysis of the model results focuses on (1) the geometry of the first faults that

localize at the axis, (2) the sequence of faulting and degree of along-axis continuity of the

various faults, and (3) the amount of curvature developed on individual faults.
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Run HTHIN HTHICK R axH LD ayH RAT Faults
Title (km) (km) (km) (kam) continuous

along-axis?

FLAT 10 10 10 0.17 118 0 0 Yes

SS 8 12 10 0.17 94-141 0.1 0.4 Yes

LS 6 14 10 0.17 70-164 0.2 0.8 No

SST 15 20 17.5 0.08 375-500 0.125 0.29 Yes

LST 10 20 15 0.08 250-500 0.25 0.67 Yes

NOTCH 8, at 12, on 10 0.17 94-141 0.2 0.4 Yes
center sides
of box of box

Table 6-2. Summary of simulation parameters and results. LD is the across-axis distance
over which the lithosphere doubles its thickness from the axial value. RAT is the relative
along-axis thickening, as defined in Section 6.5.2.

6.4. Results

The results of our numerical simulations are presented in the form of strain rate maps

highlighting strain localization (i.e., fault development) as a function of total extension

(Figures 6-4 to 6-9). Interpretative maps showing the sequence of fault development in

each simulation are presented in Figures 6-10 and 6-11. In the following, we number

faults by their order of nucleation, with "w" and "e" referring to their location on the west

or east side of the axis (Figure 6-3), corresponding to x < 50 km and x > 50 km,

respectively.

6.4.1. Variations in along-axis slope with constant average fithospheric thickness

We first report the results from simulations with the same average lithospheric thickness

along-axis (H = 10 km) and rate of across-axis thickening ( 'H = 0.17), but increasing

along-axis lithospheric slopes (FLAT, SS, LS; Table 6-2). The FLAT run has a constant

axial lithospheric thickness of 10 km and features no variability in the along-axis

direction.

146



a.
0

20Z 1
20

10

110

40

b.

total extension = 5 km

E
40

30

y 20

10

C. d.
0
5

Z 10
151e

20 2

401004

0203
010 y

100 0

e. 0
5

Z 10
15

0

02

30

40

70 40

0 210 y3
100 0

f.

total extension = 10 km

E E E E

X

total extension = 15 km

E E

40

30

Y 20

10

X

h.g. 2
0

5 w

Z 10
15 l
20

10

20
30

70 40

80 20 3
9100 0 0 y

total extension = 20 km

: E E E

30

Y 20

K

-17 -16 -15 -14 -13 -12

log10 strain rate (s-1)

147

FLAT

100



Small Slope (SS)
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Large Slope (LS)
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Small Slope, Thick lithosphere (SST)
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Large Slope, Thick lithosphere (LST)
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Figure 6-4. (p. 147) Snapshots of the strain rate field at 5, 10, 15 and 20 km of total
extension in the x-direction from run FLAT (Table 6-2). In this run the axial lithosphere
retains a 10 km thickness along the entire segment. The left column (a, c, e, g) shows
strain rate plotted on markers selected along three vertical cross-axis slices at y = 0, 20
and 40 km. In the right column (b, d, f, h) strain rate is plotted along a sloping plane

cutting the sloping axial lithosphere at mid-level. The black dashed lines indicate

contours of equal lithospheric thickness. Faults are numbered according to the

chronology of their localization; "w" and "e" refer to the eastern and western side of the
domain, respectively. All distances are in km.

Figure 6-5. (p. 148) Snapshots of the evolving strain rate field from run SS (Table 6-2),
where the axial lithosphere thickens from 8 to 12 km over 40 km along-axis. See caption

of Figure 6-4 for details.

Figure 6-6. (p. 149) Snapshots of the evolving strain rate field from run LS (Table 6-2),
where the axial lithosphere thickens from 6 to 14 km over 40 km along-axis. See caption

of Figure 6-4 for details.

Figure 6-7. (p. 150) Snapshots of the evolving strain rate field from run SST (Table 6-2),
where the axial lithosphere thickens from 15 to 20 km over 40 km along-axis. See caption

of Figure 6-4 for details.

Figure 6-8. (p. 151) Snapshots of the evolving strain rate field from run LST (Table 6-2),
where the axial lithosphere thickens from 10 to 20 km over 40 km along-axis. See caption

of Figure 6-4 for details.

Figure 6-9. (p. 152) Snapshots of the evolving strain rate field from run NOTCH (Table
6-2), where the axial lithosphere is thinnest (8 km) in the middle of the box and thickens
toward the sides (up to 12 km). See caption of Figure 6-4 for details.
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Figure 6-10. (p. 154) Interpretative maps showing the sequence of normal faulting in
runs (a) FLAT, (b) SS, and (c) LS (see Table 6-2). Faults are indicated as colored lines,
with barbs indicating the downthrow side. The color code corresponds to increasing
amounts of total extension applied on the box, and indicates the chronology of fault
development. Arrows indicate along-axis fault propagation that took place over more
than 5 km of total extension. The axial profile of the initial lithosphere is shown on the
side of each map.

Figure 6-11. (p. 155) Interpretative maps showing the sequence of normal faulting in
runs (a) NOTCH, (b) SST, and (c) LST (Table 6-2). See caption of Figure 6-10 for details.

At the onset of extension deformation spontaneously localizes along two inward-dipping

conjugate faults (faults lw and le, Figure 6-4a, b). After -10 km of extension a second

pair of inward-dipping normal faults localizes 25 km off-axis (2w and 2e, Figure 6-4c, d).

This does not result in the abandonment of the initial fault pair, but instead partitions the

extensional strain onto 4 faults, which significantly thin the axial lithosphere down to -6

km over a 15 km wide zone on either side of the axis. After 20 km of extension, a set of

symmetric outward-dipping faults breaks through the thinned axial region (3w and 3e,

Figure 6-4g). In all fault sets, the east and west faults localize synchronously along-axis,

and are perfectly aligned in the extension-perpendicular direction (Figure 6-1Oa).

Next, we consider a case with a small along-axis lithospheric slope (Model SS,

aH = 0.1), which results in a lithospheric thickness that initially varies from 8 km at the

segment center to 12 km at the segment end. In this simulation, strain partitioning varies

along-axis from the onset of extension. Extension is initially accommodated on two

conjugate inward-dipping faults that extend along the entire segment (le and lw). These

central faults define a V-shaped axial valley that widens toward the segment end. At the

segment end extension is accommodated entirely on the V-shaped faults. By contrast, at

the center of the segment where the lithosphere is thinnest, two-inward dipping conjugate

faults emerge -25 km off-axis and take up the remainder of the extension not

accommodated on the V-shaped faults (l'w and 1'e, Figure 6-5a, b). Initially, these

additional faults extend only along the central half of the segment strike, but eventually

propagate toward the thick end and break through the entire domain after 10 km of total
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extension (Figure 6-5c, d). This corresponds to an along-strike fault propagation rate of

-4 km per kilometer of extension. This pattern then holds through 20 km of total

extension, when a new pair of outward-dipping faults (2w and 2e) forms at the segment

center and propagates along-axis toward the segment end. These faults form immediately

outboard of the central V-shaped faults that bound the axis (Figure 6-5g, h). Finally, after

25 km of total extension, an outward-dipping pair of faults (3w and 3e) starts to form at

the end of the segment (where the axial lithosphere has been thinned to < 10 km). These

faults slowly propagate toward the segment center (Figure 6-1Ob).

The third scenario we consider incorporates an even larger along-axis lithospheric

slope (Model LS, yH = 0.2), which results in a lithospheric thickness that initially varies

from 6 km at the segment center to 14 km at the segment end. The initial pattern of strain

localization is similar to run SS, but with a more pronounced decrease in strain

accommodation on the central V-shaped faults (1w and le) from segment end to segment

center (Figure 6-6a, b). The outer set of inward dipping faults that initially localize at the

segment center (1'w and 'e) therefore accommodate more strain than their counterparts

in Model SS. Faults 1'w and 1'e also propagate toward the thick end, but at a

comparatively slower rate of -2 km per kilometer of extension. Their propagation is

accompanied by the localization of two outward dipping faults 2w and 2e close to the

segment center. Interestingly, the propagation of 1'w and 1'e is not axis-parallel, but

slightly axis-ward as they break further toward the segment end (Figure 6-6d, f). The key

difference between Models LS and SS occurs next. Before the slowly propagating 1'w and

1'e faults can reach the segment center, corresponding to -15 km of total extension, two

pairs of conjugate faults (3w, 3e, 3'w, and Ye) break symmetrically -30 km off-axis at

the segment end (Figure 6-6e, f). Rather than linking with faults 1'w and 1'e, these two

pairs of faults grow independently, and after 20 km of total extension the tips of faults 1',

3, and 3' (and their symmetrical counterparts on the conjugate side) overlap near y = 30

km (Figure 6-6h). This is particularly evident from a plot of the extension parallel

velocity field halfway through the lithosphere (Figure 6-12), which illustrates how

extensional deformation is relayed near the fault tips (see Section 6.5.3 for discussion).

This pattern continues over the next 5 km of extension, and we do not observe any

linkage between the three faults.
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Figure 6-12. Rightward velocity (v,) of run LS after 20 km of extension on the right side

of the axis (x > 50 km) along a horizontal slice cutting through the thick half of the

lithosphere (y > 20 km) at -4 km below seafloor. The velocity is normalized by the

spreading half rate. Faults correspond to sharp jumps in the velocity field and are

numbered consistently with Figure 6-6 and 6-1 Oc. Note that in the thick segment end (y =

40 km) extension is taken up on 3 faults (le, 3'e, and 3e) on the right side of the axis

whereas closer to the segment center (y = 20 km) extension is only taken up on faults 1 e

and 'e. Regions of constant vy represent rigid blocks bounded by faults.

6.4.2. Variations in average lithospheric thickness

We next investigate the effect of increasing the average lithospheric thickness on fault

behavior. Model SST (F = 17.5 km, 8yH = 0.125, axH = 0.08) considers a case where

the lithospheric thickness increases slowly from 15 km to 20 km over 40 km along-axis.

In run LST (F = 15 km, OyH = 0.25, axH = 0.08), it increases from 10 km to 20 km.

Models LST and SST produced comparable faulting patterns, with a few notable

differences, compared to Models SS and LS. The first key difference is that strain

localization at the onset of extension in runs SST and LST occurs along a single pair of

inward-dipping faults (lw and le, Figures 6-7 and 6-8) that accommodate the same

amount of strain along the entire segment. By contrast, in runs LS and SS, faults 1w and
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le take up less extension in the segment center as they are complemented by faults 1'w
and 'e. In run LS, faults 1'w and l'e localize simultaneously with lw and le, while in
runs LST and SST it takes another 5 km of extension for inward dipping faults (2w and
2e) to localize after the nucleation of faults 1w and le. These secondary faults appear far
off-axis (-45 km), right next to the outer boundaries of the model domain. This fault
geometry holds for another 10 km of extension, until a new pair of faults (3w and 3e)
breaks at the axis, within the axial valley bounded by the primary faults lw and le. In

Model SST, faults 3w and 3e are relatively well-defined inward dipping faults running

throughout the segment. Faults 3w and 3e root deeper in the lithosphere and therefore

emerge further from each other at the thick end of the segment (Figure 6-7g, h). By
contrast in Model LST, the along-axis continuity of faults 3w and 3e is ambiguous

(Figure 6-8g, h and Figure 6-1 lc). At the segment end they are clearly inward dipping

whereas at the segment center they are outward dipping. As one moves closer to the

segment center, we find that the inward dipping faults cross at a shallower and shallower

level, until they transition into outward dipping structures. In short, large along-axis

slopes generate contrasting fault behavior from the center to the end of the segment.

However, runs involving a greater average lithosphere thickness do not produce the same

patterns of discontinuous faulting seen in Model LS.

6.4.3. Fault evolution around an along-axis notch

Finally, we investigated a "notched" case with an average lithospheric thickness of 10
km, but with the thinnest lithosphere placed in the middle of the extensional segment, and

lithospheric thickening imposed on either side with a strong gradient of t'yH = 0.2

(Model NOTCH). The initial faulting pattern resembles that of runs SS and LS, with two

inward dipping conjugate faults (1w and le) defining an hourglass-shaped axial valley at

the segment scale (Figure 6-9a, b). These faults are accompanied by two small inward

dipping faults (1'w and l'e), which form at the segment center and immediately propagate

toward the thicker lithosphere at the segment ends at a rate of at least -3 km per

kilometer of extension (Figure 6-9c, d). Once both sets of primary faults cut through the

entire segment, a stable pattern establishes itself where extension is distributed on the

four faults, with faults l'w and 'e outlining an hourglass shape. As deformation
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proceeds, thinning of the axial lithosphere is more rapid at the segment center (as

indicated by the lines of equal lithospheric thickness on panels b, d, f and h of Figure 6-

9), and this differential stretching reverses the curvature of faults 1w and le. This

mechanism also affects faults 1'w and 'e, but only locally, near the segment center. At

the segment scale, faults 1'w and 1'e retain their initial curvature and the fault surfaces

develop a pronounced downward concavity.

6.5. Discussion

6.5.1. Patterns of initial strain localization

In all simulations, most, if not all, of the deformation initially localizes along two inward

dipping conjugate faults that root at the base of the layer where the lithosphere is thinnest,

and outline an axial valley. This pattern is similar to that of many 2-D simulations [e.g.,

Behn et al. 2002b; Behn et al., 2004; Behn and Ito, 2008], in which greater across-axis

gradients in lithospheric thickness favor the focusing of a few faults near the axis as

opposed to distributed faulting extending far off-axis. Intriguingly, the 3-D cases where

initial faulting was least focused (NOTCH, SS, and LS) were characterized by the highest

rates of across-axis thickening (&2H). However, these cases also had the lowest average

on-axis lithospheric thickness (Table 6-2). It is therefore possible that the degree of initial

fault focusing results from a competition between on-axis lithospheric thickness (with

thinner lithosphere promoting distributed faulting) and the fast rate of off-axis thickening

(with faster rates promoting focused deformation). To better quantify these competing

effects, we introduce a length scale LD corresponding to the across-axis distance over

which the lithospheric thickness doubles from its axial value (Table 6-2). Since it is

mechanically favorable for faults to form in regions of thinnest lithosphere, we envision

that LD could act as a proxy for the width of the region where faults can easily form. A

lower LD would therefore result in more focused faulting. Surprisingly, Models NOTCH,

SS and LS, which all feature distributed initial deformation correspond to the lowest LD.

Our runs seem to indicate the opposite correlation (Table 6-2).

This being said, distributed initial deformation in runs NOTCH, LS, and SS was

only observed in the thin segment center, where strain was partitioned onto 4 faults (1w,
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le, 1'w, and 1'e), while extension at the segment end was accommodated on 2 faults (1w

and 1 e). This suggests that three-dimensional effects may be a key control on the degree

of focusing, and that the intuition developed from 2-D models may not be applicable

here.

We note that each segment sees a variation in LD from LDTHIN = 2HTHIN/a.H to LDTHICK

2HTHICKIaxH from segment center to segment end. Since our runs assume constant OxH

along-segment, the variation in LD directly reflects the along-axis variation in axial

thickness. Models SS, LS and NOTCH are therefore characterized by the largest relative

along-axis change in LD, which may be the key to differing degrees of focusing along

segment. Testing this hypothesis will require a more systematic exploration of parameter

space. Further, by studying the degree of focusing in 2-D simulations with LD

characteristic of the segment center and segment end, we should be able to decipher the

effect of across-axis lithospheric slopes from three-dimensional effects.

It should be noted that as extension proceeds, the lithosphere thins and the rates of

across-axis thickening diminish near the axial region (see for example the evolution of

the lines of equal lithospheric thickness in panels b, d, f, and h of Figure 6-4). Both of

these effects act jointly to defocus the deformation, and lead to extensive faulting

reaching tens of km off-axis in all our simulations.

Lithospheric thickness is also a direct control on the width of the axial valley

outlined by the central V-shaped faults (lw and le). Earlier studies have attempted to

quantitatively relate rift half-width to the rheology of the lithosphere, which is controlled

by its compositional layering and geothermal gradient [Shaw and Lin 1996; Behn et al.

2002a; 2004]. In the present study the lithosphere is treated as a uniform brittle layer of

varying thickness, and we find a similar correlation between the width of the axial valley

and the thickness of the axial lithosphere. This relation is straightforwardly explained by

the fact that the primary faults lw and le in all simulations root along the location of

thinnest lithosphere, and do not show significant change in dip along-axis. A good

illustration is provided in Figure 6-8a and b (Model LST). The traces of the primary faults

lw and le form two parallel straight lines at depth, but emerge at the seafloor with a

wider spacing on the thick end of the domain. This may contribute to the classic

hourglass shape of axial valleys observed at many slow mid-ocean ridge segments
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(Figure 6-2). The class of 3-D models presented here could therefore be applied in future

studies to quantitatively relate along-axis variations in axial valley width to variations in

lithospheric properties.

6.5.2. Continuity offaults along an extension segment

In this section we focus on the parameters controlling the along-axis continuity of

individual faults along an individual extension segment. We specifically examine the

conditions that favor the growth of faults that do not propagate along the entire segment

and interact with each other in complex deformation relay zones (Figure 6-12).

Hereafter, we refer to this faulting regime as "discontinuous". From the results of Models

FLAT, SS, and LS (Figure 6-10), it appears that large along-axis slopes in the brittle-

ductile transition favor discontinuous faulting, as seen in Model LS (,H = 0.2).

However, Model LST, which involved a greater average lithospheric thickness, produced

continuous faults along-axis, despite having the largest along-axis slope of all our

simulations (8,H = 0.25). This suggests that fault continuity is not controlled by 8aH

alone, but rather the absolute change in lithospheric thickness from segment center to

segment end (8,H multiplied by the segment half-length) normalized by the average

thickness H. We call this ratio the relative along-axis thickening (RAT), which is zero in

the FLAT case, and asymptotes 2 for very large values of 8aH or very long segments. In

Figure 6-13, we map each simulation in a diagram of RAT versus the horizontal length

scale over which the axial lithospheric thickness doubles (LD), which characterizes the

relative rate of across-axis thickening.

We find that the simulation that produced discontinuous faulting (Model LS) is

associated with the highest RAT. A high-RAT configuration corresponds to an overall

thin lithosphere that thickens rapidly along-axis. These two characteristics act

successively in the development of discontinuous fault populations in the segment center

vs. segment end. As seen in Section 6.5.1, the small average lithospheric thickness of

Model LS compared to Models LST and SST does not favor strong focusing of the

deformation near the axis. Instead, it leads to partitioning the extension onto 4 faults (1w,

le, 1'w, and 1'e) at the segment center, while runs with higher F (SST, LST) see the
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Figure 6-13. Regime diagram highlighting the combination of parameters that favor

discontinuous faulting at the segment scale. The rate of along-axis thickening (RAT) is

the absolute change in the thickness of the axial lithosphere from segment center to

segment end normalized by the average thickness. LD is the across-axis distance over

which the lithosphere thickness doubles from its axial value. Runs that produced

continuous and discontinuous faulting are plotted as white and gray circles, respectively.

The horizontal bars crossing the circles indicate the full range of LD from segment center

to segment end. The solid, dotted, and dashed black lines indicate possible regime

transitions, which are discussed in Section 6.5.2.

extension partition onto two faults throughout the segment. The onset of discontinuous

faulting then depends on whether faults 1'w and 'e can reach the end of the segment

before a new fault nucleates there. This is achieved in Model SS, where faults 1'w and 1'e

propagate at ~4 times the extension rate. In Model LS, which features twice the along-

axis slope of Model SS, propagation is -2 times slower and faults 1'w and 1'e never reach

the thick side, where extension is partly accommodated on tertiary faults 3w and 3e. The
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strong along-axis slope therefore causes discontinuous faulting by delaying the

propagation of auxiliary faults 1'w and l'e. By contrast, a low-RAT configuration

characterized by thicker average lithosphere immediately focuses the deformation onto

two faults. No auxiliary fault can therefore form and propagate, which enables along-axis

continuity.

The relative rate of across-axis thickening may also affect fault continuity.

Unfortunately, our exploration of parameter space remains too sparse to map a clear

transition between a continuous and discontinuous faulting regime in RAT vs. LD space.

Specifically, it remains unclear how LD may affect along-axis continuity. Intuitively, it is

possible that rapid across-axis thickening favors fault continuity by forcing most of the

faults to remain close to the axis, as discussed in Section 6.5.1. Doing so would limit the

possibility of developing along-axis offsets between faults and / or force along-axis fault

linkage. This scenario corresponds to a regime transition with a negative slope (dotted

line in Figure 6-13). However, this negative slope would have to be small in order to

accommodate the difference between Models LST and LS. On the other hand it is possible

that the rates of across-axis thickening used in this study are so high that changing them

does not significantly affect the run behavior. This would produce a horizontal regime

transition (solid line in Figure 6-13). Finally, while the available data points appear

compatible with a regime transition that has a positive slope (dashed line in Figure 6-13),

it seems mechanically difficult to explain why faster off-axis thickening would favor

discontinuous faulting. The solution may have to involve three-dimensional effects

related to the relative changes in LD along segment, as discussed in Section 6.5.1 for the

degree of initial fault focusing. Future work will begin with refining our exploration of

parameter space to clearly outline the regime transition.

If the strongest control on along-axis fault continuity is the RAT parameter, what

prediction can we make for faulting at typical continental rift or slow MOR segments?

Conversely, can we infer lithospheric properties from faulting patterns? The geometry of

fault discontinuities and deformation relays obtained in run LS are surprisingly similar to

the conceptual model of Hayward and Ebinger [1996] in which the segmentation of the

Main Ethiopian Rift is set by the finite along-rift extent of graben-bounding faults (Figure

6-1). If the along-rift extent is set by variability in lithospheric thickness as suggested by
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our numerical models, then the Main Ethiopian Rift should be characterized by an
elevated RAT > -0.75. Therefore, if we assume a representative faulted layer thickness of

-15 km as inferred from the thickness of the seismogenic layer [Chen and Molnar, 1983],
our models would require oscillations in thickness to the order of 11 km over the length

scale characteristic of segmentation (-50-100 km).

At slow-spreading MORs, the maximum depth of microseismicity used as a proxy

for lithospheric thickness predicts a systematic increase from -4 km at segment centers to

-8 km at segment ends [Kong et al., 1992; Barclay et al., 2001]. This yields a RAT value

of 0.6, which on Figure 6-13 would plot in the "continuous faulting" regime. However

small uncertainties (1 km) on these estimates place large uncertainties on the RAT value

(between -0.4 and -0.9), which could potentially overlap into the "discontinuous

faulting" regime. Our initial results are therefore ambiguous in terms of whether distinct

fault populations are predicted to develop at the segment center versus the ends of slow-

spreading ridge segments. We expect, however, that at slow-spreading MORs, along-

segment variability in fault characteristics should be strongly controlled by the fraction M

of total extension that is accommodated by magmatic emplacement at the axis [Buck et

al., 2005; Behn and Ito, 2008].

We are currently developing a numerical methodology to impose dike injection as

an internal boundary condition in the finite difference / marker-in-cell framework. Our

goal is to impose a variable rate of magma injection along-axis in order to model the

scenarios shown in Figure 5-7. By pushing faults off-axis through thicker lithosphere,
dike injection should simplify the sequence of faulting and force new faults to break

systematically axis-ward of the earlier faults. It may also inhibit the growth of outward-

dipping faults by sustaining steep across-axis thermal gradients that will focus faulting

near the axis. It is possible that the segment center and segment end will behave in a

similar fashion to 2-D models [Buck et al., 2005; Behn and Ito, 2008], but that the along-

axis gradients in lithospheric geometry investigated in the present study will be the

controlling factors on the modes of transferring deformation along axis. This hypothesis

will be tested by systematically varying R and 8,M in conjunction with HI, 8,H, kxH,

and eventually lower-order parameters such as a,(8 H).
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6.5.3. Fault displacement profiles and fault linkage

We now return to the only run that produced discontinuous faulting (LS) and briefly

discuss the relay of deformation between faults 3e-3'e and I'e (and their symmetric

counterparts 3w-3'w and 1'w on the conjugate side, Figure 6-6f, h, and Figure 6-10c).

These faults adopt a characteristic en echelon configuration with about 5 km of overlap in

the along-axis direction. However, we see no linkage occurring during the simulation,

which would take the form of a fault-oblique region of localized strain connecting fault

1'e and 3'e [Cowie, 1998 and references therein]. This could be due to the fact that the

overlap is too large, and precludes strong stress concentration near the fault tips. This is

consistent with the models of Crider and Pollard [1998], which showed that the

Coulomb shear stress increase in between echelon normal faults is maximized for a given

non-zero overlap. The Crider and Pollard [1998] geometry is however not directly

applicable here because our closest overlapping faults (Ye and 1'e) have opposite dip

directions. Alternatively, the opposing dip geometry could be the reason why fault

linkage did not occur.

In Figure 6-12, we see that -25% of the total extension is accommodated by faults

3e and 3'e. This amount transitions smoothly along-axis to -50% of the total extension

accommodated on fault 1'e alone. Further, the total displacement accommodated on

individual faults decays smoothly, for instance at the tip of fault 1'e. Our simulation is

therefore capable of resolving variable displacement along faults that do not cut along the

entire domain. This suggests that this class of models should prove helpful to explain and

eventually extract information from fault displacement vs. length scalings [Schlische et

al., 1996; Cowie and Scholz, 1992a; 1992b; Carbotte and Macdonald, 1994;

Bohnenstiehl and Kleinrock, 1999].

6.5.4. On the applicability of 2-D scalings to 3-D fault growth

In Chapters 2-5, the results of 2-D numerical models of normal fault evolution are well

explained by simple 2-D force (or energy) balance models. The essential prediction of

this analytical approach is that faults cutting through thinner elasto-plastic layers should

be able to accommodate larger offsets [Buck, 1993; Lavier et al., 2000]. The three-

dimensional models presented here provide a unique opportunity to test the applicability
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of this prediction to systems where the brittle layer thickens along-axis. Unfortunately,
our initial simulations used a very fast weakening rate, which favored the nucleation of

many simultaneous faults symmetrically about the axis, and has not allowed us to see

clear abandonment of a fault in favor of another one. Instead, we see extension being

partitioned on more and more faults. Interestingly, in the only run (LS) where faults

evolved independently in the segment center versus the segment end, we find that after

20 km of extension more faults have developed at the segment end (n=8) than at the

segment center (n=6). This is consistent with the 2-D prediction that new faults break

more rapidly in thicker lithosphere due to a faster accumulation of stresses in the hanging

wall and footwall blocks. Two-dimensional scalings may therefore be applicable to the

variability of normal fault styles along a segment, provided the fault populations

characteristic of segment ends are decoupled from the population characteristic of

segment ends.

In addition, future work should focus on extending the 2-D energy budget model

that underlies Chapters 2 and 3 into the third dimension. The mechanical cost of fault

growth in 3-D can be divided into (1) overcoming the frictional resistance on the fault,

(2) bending the lithosphere and sustaining topography, and (3) breaking new fault surface

in intact lithosphere as the fault propagates along-axis. As detailed in Chapters 2 and 3,
the key to achieving fault longevity is to limit the increase of each of those terms with

increasing extension. By analogy with our 2-D model, the increase in the bending and

topographic terms is likely controlled primarily by the average lithospheric thickness.

The third energy term can be though of as the product of a strain energy release rate and

the surface area of the fault. It therefore depends on both the average lithospheric

thickness and the along-axis geometry of the lithosphere. If we assume that the increase

in energy required to break a new fault surface results primarily from along-axis fault

propagation (i.e., the energy release rate and the vertical extent of the fault stay roughly

constant throughout fault evolution), then its rate of increase with increasing extension

should scale with the along-axis propagation rate of the fault. Our simulations (SS and LS,

see Section 6.4.1) suggest that this rate is slower when the along-axis lithospheric slope is

greater. Consequently, the ability of a fault to break through the entire segment from thin
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center to thick end could result from a competition between the fault propagation velocity

and the rate at which the bending and topographic terms increase.

6.5.5. Potential comparisons between models and observables

The class of 3-D simulations presented in this chapter holds potential for direct

comparison with observables. The present section outlines relevant datasets that can be

used to validate or invalidate model assumptions using the example of a slow spreading

MOR setting.

Seafloor bathymetry is the most straightforward observable to be compared to

model outputs. At the segment scale, characteristic length scales such as the width and

depth of the axial valley, the along-axis extent of a long-lived fault, or the spacing

between successive faults can be extracted and compared with model predictions where

lithospheric thickness and magma injection rates are varied systematically. In particular,

comprehensive 3-D models should provide unprecedented insight into the along-axis

component of the flexural processes that accompanies fault growth. For example, the

mechanisms leading to the dome shape of oceanic core complexes have not yet been

explored with 3-D models. It is therefore currently unknown whether the dome shape

arises naturally from 3-D flexural readjustment to prolonged slip on a fault, or whether it

requires additional controls such as a non-planar fault at depth, or a specific along-axis

displacement profile on the fault perhaps accommodated with variable rates of melt

intrusion along-axis. At a finer scale, detailed studies of individual fault scarps may be

used to infer fault throw and curvature of the fault trace provided the bathymetry has not

been substantially reworked by mass wasting.

Geophysical methods are necessary to image faults beyond their seafloor

expression. Fault microseismicity as recorded by temporary OBS arrays can outline the

sub-seafloor geometry of detachment systems, and shed some light on the maximum

depth of brittle faulting as well as the curvature, concavity, and lateral extent of the fault

at depth. To date, such a dataset is only available on a 2-D cross-axis section of the TAG

detachment [DeMartin et al., 2007]. New 3-D datasets on well-developed oceanic core

complexes (e.g., at 13*20'N on the Mid-Atlantic Ridge) are expected to become available

by early 2016. If the results of the NOTCH case hold over a wide range of parameter
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values, a promising application of 3-D numerical models could be to quantitatively relate

fault curvature and concavity to along-axis gradients in brittle layer thickness, which

could then be confronted with the spatial distribution of microseismicity. If oceanic

detachments develop their curvature from rooting in a "notched" lithosphere, the

maximum depth of microseismicity should be greater near the along-axis edges of the

fault than at the center.

In addition to microseismicity, passive seismic imaging methods can yield useful

constraints for numerical models. While seismic reflection is notoriously difficult to

apply to rugged axial terrains, it can prove useful to image fossil detachment systems that

retain many characteristics of their active counterparts [Reston and Ranero, 2011]. This

method has proven particularly helpful to identify rider blocks consisting of hanging wall

material dissected by small steep faults that overlie a low-angle detachment. Numerical

models can be used to determine the conditions that favor the formation of such rider

blocks by extending the study of Choi and Buck [2012] into three dimensions. The

necessary degree of weakening on the detachment fault that allows rider blocks to

develop without terminating its growth is of particular interest, as are the along-axis

extent and linearity of the steep faults that bound rider blocks.

Finally, 3-D generalizations of the models developed in Chapter 5 could make

predictions of crustal architecture (in relation with faulting patterns) that are testable with

seismic refraction studies, which have been shown to resolve lithological heterogeneities

between ultramafic and gabbroic units exhumed in a detachment footwall on a fine (- 5

km) scale [Xu et aL, 2009]. Additional insight regarding lateral variations in crustal

thickness and lithologies can be gained from potential field methods (gravity and

magnetism). Because numerical models can keep track of crustal lithologies and tectonic

rotation of magnetized units, a promising approach is to calculate the gravity and

magnetic signature corresponding to a model output (using simple forward procedures),

and to confront those directly with observations.
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6.6. Conclusions and perspectives

We have conducted a three-dimensional study of spontaneous fault localization,

propagation and interaction in a lithosphere of spatially varying thickness. The 3-D

simulations presented here constitute an initial step toward complex 3-D modeling of

rifting and seafloor spreading dynamics. The next step will consist of implementing a

more realistic lithospheric rheology coupled with an evolving thermal structure. This will

allow us to quantitatively investigate the tectonics of magma-starved continental rifts and

ultraslow spreading ridges. Specifically, we will seek to extend the results of Chapter 2 to

three dimensions and investigate the 3-D dynamics of fault rotation in relation to a 3-D

energy balance model that incorporates along-axis fault propagation. Further, 3-D models

can be straightforwardly coupled to realistic landscape evolution laws that need not make

simplifying assumptions to represent erosion and sedimentation in the across rift

dimension only. We will therefore attempt to generalize the results of Chapter 3 and

focus on the effect of surface processes on fault propagation and linkage. Then, we will

incorporate magma emplacement at spatially variable rates, and extend the results of

Buck et al. [2005]; Behn and Ito [2008]; Ito and Behn [2008]; and Chapter 5 of this thesis

to three-dimensions, in an attempt to produce self-consistent models of tectono-magmatic

interactions at the segment scale.

An important part of the future work necessary to tackle complex 3-D problems

will consist in improving the computational efficiency of our numerical code HiPStER.

Implementing mesh refinement near the ridge axis coupled to a multigrid approach

should significantly improve the computation speed. A major strength of the PETSc

framework is that it allows great flexibility in the choice of solvers used to invert the J

matrix (Section 6.2.2), and that those choices can be specified at run time. We will make

use of this framework to systematically explore solver combinations and identify efficient

strategies to solve for Stokes flow in a spatially heterogeneous visco-elasto-plastic

medium, which is an open line of research in computational fluid dynamics.
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