
Order, Disorder, and Protein Aggregation

By

Thomas Gurry

B.Sc. Imperial College London, 2008
M.Phil. University of Cambridge, 2009

ARCHEiS
MASSACHUSETTS INSTITU TE

OF UECHNOLOLGY

FEB 20 2015

LIBRARIES

SUBMITTED TO THE COMPUTATIONAL AND SYSTEMS BIOLOGY PROGRAM IN
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN COMPUTATIONAL AND SYSTEMS BIOLOGY
AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2015

C 2015 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part in any medium

now known or hereafter created.

Signature of the Author:

Certified by:

Accepted by:

Signature redacted
Computational and Ssiems Biology Ph.D. Program

January 14, 2015

Signature redacted
Collin M. Stultz

Professor of Electrical Engineering and Computer Science
and Health Sciences and Technology

Thesis Supervisor
Signature redacted,

Chrstapher B. Burge
Professor of Biology and Biological Engineering

Director, Computational and Systems Biology Ph.D. Program

1



Order, Disorder, and Protein Aggregation

by

Thomas Gurry

Submitted to the Computational and Systems Biology Program
on January 15, 2015 in Fulfillment of
the Requirements for the degree of

Doctor of Philosophy in Computational and Systems Biology

ABSTRACT

Protein aggregation underlies a number of human diseases. Most notably, it occurs widely in
neurodegenerative diseases, including Alzheimer's and Parkinson's. At the molecular level,
neurotoxicity is thought to originate from toxic gains of function in multimeric aggregates of
proteins that are otherwise predominantly monomeric and disordered, fluctuating between a
very large number of structurally dissimilar states on nano- and microsecond timescales. These
proteins, termed Intrinsically Disordered Proteins (IDPs), are notoriously difficult to probe using
traditional biophysical techniques. In order to obtain structural information pertaining to the
aggregation of IDPs, it is often necessary to develop computational and modeling tools, both to
leverage the full extent of the experimental data, and to generate testable predictions for future
experiments. In this thesis, I present three separate computational studies studying the
formation of multimeric aggregates in IDPs, spanning different aspects of the aggregation
process, from early nucleation events to fibril elongation. In the first study, I present a
conformational ensemble of a-synuclein, the culprit protein of Parkinson's disease, constructed
using a Variational Bayesian Weighting algorithm in combination with NMR data collected by
our collaborators. We find that the data fit a description in which the protein predominantly
exists as a disordered monomer but contains small quantities of multimeric states containing
both helical and strand-rich conformations. In the second study, I focus on the process of
amyloid fibril elongation in the Amyloid-P (AP) peptide of Alzheimer's disease. I compute the
free energy surface associated with the fibril elongation reaction, and find that elongation of
both AP40 and A@42 experimental fibril structures occurs on a downhill free energy pathway,
proceeding via an obligate, fibril-associated hairpin intermediate. The fibril-associated hairpin is
significantly more stable (relative to the fibrillar, elongated state) in A142 compared with A$40,
suggesting a potential clinical target of interest. Finally, I present lengthy, all-atom molecular
simulations that suggest that nucleation of the minimum aggregating fragment of c-synuclein
proceeds via a helical intermediate, requiring a structural conversion into a strand-rich
nucleating species via a stochastic process of individual helices unfolding and self-associating via
backbone hydrogen bonds.

Thesis Supervisor: Collin M. Stultz
Title: Professor of Electrical Engineering and Computer Science, and Professor of Health Sciences
and Technology
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Introduction

Much of the work presented in this chapter was included in a review published in

Polymers, Volume 6 (10), pp 2684-2719, October 2 3rd 2014.

Introduction to Intrinsically Disordered Proteins

Proteins are fascinating heteropolymers that play essential roles in virtually all-biological

processes. Their vast importance in biochemistry and medicine explains why a great

deal of effort has been directed at understanding their properties and function.

Traditionally, proteins have been understood to have a well-defined three-dimensional

structure that is inextricably linked to their function. Indeed, knowledge of the structure

of a protein provides a great deal of information about that protein's function (Fig. 1) (1,

2). The importance of protein structure is underscored by the fact that amino acid

mutations in the primary sequence which destabilize the structure often result in disease
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(3). The paradigm that a protein's structure determines its function has guided our

understanding of proteins for decades.

(a) (b) (c)

Figure 1. Examples of the relationship between protein structure and function. (a)

Crystal structure of the Lambda-phage repressor (PDB ID 3BDN), which binds to its

target DNA sequence (red) with high specificity. It achieves this with a helix-turn-

helix motif (shown in orange) that can make sequence-specific contacts through the

grooves in the DNA double-helix. (b) Crystal structure of Tsx (PDB ID 1TLZ), a

nucleoside transporter protein, that transports nucleosides such as uridine (here

shown in red.) across the outer membrane of F. coli. It creates a pore in the

membrane through a P-barrel motif, where the width of the cleft formed by the

barrel, along with the individual side-chains that point into the cleft, determine what

is allowed to travel across the membrane. (c) Crystal structure of keratin (3TNU), a

fibrous structural protein whose toughness and can be attributed to the helical

coiled-coil structure it adopts in its fibers.

Although proteins are often depicted as having static three-dimensional structures,

thermal fluctuations at body temperature enable them to sample different conformations

throughout their biological lifetime (4). Protein motions range from fast (-picoseconds)

small amplitude (-Angstroms) fluctuations, to relatively slow (microseconds to seconds

or longer), large scale motions that involve domain motions and/or folding (5). In
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general, all of these motions enable proteins to perform their prescribed functions.

Given the essential role that protein motion plays in biology, discussions about protein

structure should ideally revolve around the structural ensemble of thermally accessible

states that a given protein can adopt (6).

For a number of proteins, the structural ensemble consisting of its thermally accessible

states contains structures that have only relatively small deviations from the ensemble

average structure. In general, such proteins are categorized as being "folded", and for

these proteins, structures determined by experimental methods such as X-ray

crystallography correspond to the ensemble-averaged structures. Since the folded

ensemble contains structures that have only small deviations from the ensemble average

structure, the ensemble average itself captures many important features of the protein's

structure, and many insights into a protein's function can be garnered from this

ensemble average structure (Fig. 1). By contrast, proteins within the more recently

characterized class of intrinsically disordered proteins (IDPs) sample dissimilar

conformations during their biological lifetime, and therefore the corresponding structural

ensembles are heterogeneous. Given the vast number of structural states that are

accessible to a disordered protein, the ensemble averaged structure for an IDP is typically

not representative of any structure in the ensemble itself and therefore has little utility

for understanding that protein's function.

IDPs are quite prevalent in biology, despite having only been discovered in the last thirty

years. It has been estimated that 25% of proteins encoded in the human genome are

completely disordered and that 40% contain an intrinsically disordered region of at least

30 amino acids in length (7). These proteins have been found to play essential roles in

many pathological processes. For example, aggregates of the IDP -synuclein can be

found in the brains of patients with Parkinson's disease, and these aggregates have been

linked to synaptic dysfunction in dopaminergic neurons (8). Huntington's disease,

another IDP associated neurodegenerative disease, is traceable to aggregation of the IDP

Huntingtin protein, which contains glutamine repeats in its amino acid sequence (9-12).

In the case of Alzheimer's disease, aggregation of the IDPs Amyloid-P peptide (AP) and
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tau protein are pathological hallmarks of Alzheimer's disease (13-15) (16, 17). In

addition to diseases related to aggregation of IDPs, many diseases are caused by errors in

signaling pathways. Mutations in IDPs involved in regulation of the cell cycle can disrupt

gene regulation and cell signaling, mechanisms that are implicated in oncogenesis (18).

Tumor suppressor p53 is a largely disordered protein, which functions in cell cycle

regulation. Deactivating mutations of p53 can facilitate uncontrolled cell division and

oncogenesis; e.g. mutations in the p53 are found in over 50% of cancers (19), including

tumors of the colon, lung, esophagus, breast, liver, and brain (20).

While the importance of IDPs in human biology is not under question, their inherent

structural heterogeneity makes them particularly challenging to study. In what follows,

we first review protein structure in general, focusing on important differences between

folded proteins and disordered proteins. We then introduce computational methods for

studying intrinsically disordered proteins, and discuss examples of where these methods

have been and could be applied to increase understanding of a specific IDP, AP, the

aggregation of which will be considered in a later chapter.

Folded proteins versus IDPs

Proteins are heteropolymers consisting of covalent linkages between consecutive amino

acids monomers, forming a chain. The amino acid sequence of a protein, termed its

primary structure, confers chemical properties to the protein through the unique

properties of the 20 different amino acids. For traditional "folded" proteins, this chain

tends to fold into a unique structure. A central dogma of biochemistry is that a protein's

amino acid sequence determines its structure, which in turn determines its function (1,

21). While this paradigm is 'a propos for folded proteins, it is too simplistic to describe

the vast array of experimental observations that have been made over the past few

decades. Unlike folded proteins, intrinsically disordered proteins sample a variety of

structurally dissimilar states during their biological lifetime, and therefore cannot be

adequately described by a single well-defined structure (22).
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Conformation

(c) Protein with an Intrinsically
Disordered Region

Conformation

Figure 2. Schematic of energy landscapes for (a) a structured protein (human

nucleoside diphosphate kinase (NDPK), PDB ID: 1nsk) and (b) an intrinsically

disordered protein (CcdA C-terminal, PDB ID: 3tcj.). (c) Close-up of the minimal free

energy well for NI)PK, where IDRs are shown in red and structured regions are

shown in white. Lower free energy (dark blue) represents more probable

conformations The IDR structures are shown again enlarged to the right for better

visualization.

The difference between folded proteins and disordered proteins can be understood based

on an analysis of their free energy landscapes (Fig. 2). Folded proteins have a "funnel-

shaped" global free energy minimum, where the lowest energy state corresponds to the
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native structure (23) (24), and the width of the unique global energy minimum

determines the conformational entropy of the native state (Fig. 2A). By contrast,

disordered proteins have multiple local energy minima separated by small barriers (Fig.

2B). Transitions between the different local energy minima occur quickly and often,

leading to an ensemble consisting of a vast number of structurally dissimilar states,

which have approximately equal energies. Thus, a comprehensive characterization of an

IDP consists of an ensemble of states and the transition rates between them (25). In

practice, knowledge of the transition rates between conformers in an IDP ensemble is

very difficult to capture, both experimentally and computationally. Consequently, in

practice, studies of IDPs have focused on modeling the thermodynamically accessible

states alone. As we outline below, while this represents an incomplete picture of these

proteins, a great deal of information and insight has arisen from such studies.

While the above distinction between folded and disordered protein landscapes is

instructive, it misses many of the nuances associated with discussions of protein

structure. As we have alluded to above, all proteins sample a variety of different

structures during their biological lifetime. Thermal fluctuations cause both folded and

disordered proteins to sample a variety of states at temperature above OK. In this regard,

we note that even proteins considered to be folded (and whose structures have been

solved via x-ray crystallography), often contain intrinsically disordered regions (IDRs),

which lack a stable tertiary structure (26). This means that the energy minimum of a

folded protein with an IDR is actually not smooth, but is actually a rough surface with

many smaller minima corresponding to different states sampled by the IDR within the

native state (Fig. 2c). Typical representations of folded and disordered proteins attempt

to capture these inherent differences between the ensemble of states in a minimalist, yet

informative manner. Folded proteins are often depicted as a single ensemble average

structure, while disordered proteins are often represented by an alignment (or overlay)

of energetically favorable, yet structurally dissimilar states (Fig. 3).

Disorder imparts a number of properties to IDPs that would be difficult for folded

proteins to realize. For example, the structural heterogeneity of IDPs (and IDRs) confers
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an ability to be promiscuous in their choice of binding partners (27, 28). This property

explains why IDPs are frequently found to be hubs in protein interaction networks and

are specifically associated with signaling networks (27, 29). In fact, almost 70% of

signaling proteins are predicted to be intrinsically disordered (18). The largely

disordered tumor suppressor p53, for example, is an important signaling hub, binding

hundreds of proteins (29). An additional strength of IDPs in signaling networks is their

fast production and degradation due to lack of stable structure, allowing them to be

quickly activated or deactivated in response to changing cellular environments (30).

Outside of signaling, some structural features are enabled directly through the flexibility

of IDPs, such as the elastic properties of elastin (31).

(a) (b)

Figure 3. Varied degree of order in proteins. (a) Crystal structure of the protein H-

Ras, solved in complex with GTPase-Activating Protein (not shown; PDB ID 3K9J).

H-Ras is a folded protein containing a number of unstructured loops (shown in

green) that have well-defined B-factors. For example, in the top loop, which is

composed of residues 117-126, the backbone atoms have an average B-factor of

44.1 2, which suggests the loop is only somewhat flexible (compared to an average of

13



21.2A2 across the entire protein). These loops are unstructured yet they are ordered

in the sense that they have well defined three-dimensional coordinates. Structured

and ordered regions of the protein are shown in orange and blue according to their

secondary structure. (b) NMR ensemble of a CcdA dimer (PDB ID 2H3A), a protein

with both a folded region and an IDR. The intrinsically disordered C-terminal tail

(shown in green) populates a large number of structurally dissimilar states. Each of

the potential structures is depicted as distinct backbone traces in green, and the

folded regions are shown in orange/blue according to secondary structure.

IDPs commonly obtain a folded structure upon binding their partners. Whether folding

occurs before, during, or after contacting the partner is an oft-studied question, due to its

implication for design of molecules to inhibit or stabilize IDP conformations. The

conformational selection hypothesis proposes that IDPs fluctuate through their bound

conformations while in the unbound state, and their partners selectively bind when the

IDP is in the correct binding conformation (32). Alternatively, the induced fit hypothesis

proposes that IDPs first make low-affinity, non-specific contacts with their partners, and

then fold as they bind (33). Fly-casting, a related supposition that expands on this

principle, states that extended IDP conformations results in a relatively large capture

radius that accelerates the formation rate of these initial, low-affinity contacts. This

provides a kinetic advantage for binding relatively to other structured proteins (34, 35).

According to this hypothesis, the IDP folds into its bound conformation after the initial

weak complex formation. While these hypotheses provide useful models for considering

the formation of a protein complex involving an IDP, it is likely that the extent to which

a binding event involves conformational selection, induced fit and/or fly-casting depends

on the system in question.
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Experimental studies of IDP "structure"

The ensemble average structure of a folded protein is usually determined using X-ray

crystallography or nuclear magnetic resonance (NMR) spectroscopy (via the

measurement of distance constraints between heavy atoms) (36). These methods,

however, cannot be used to obtain a comprehensive picture of the structural ensemble of

IDPs, for the reasons mentioned above. Techniques such as hydrogen-deuterium

exchange NMR experiments aimed at probing the degree of solvent exposure of different

regions of a protein's sequence and useful in discerning loop regions and exposed

surfaces are not applicable to IDPs since the majority of the protein is frequently exposed

to solvent and the signal would be saturated.

Instead, lower resolution experimental methods can be used to find boundaries and

distributions of measurable variables across the ensemble of conformational states

sampled by the IDP, providing some measure of the underlying heterogeneity.

Insights into aspects of an IDP ensemble are typically obtained using a number of

experimental techniques. Two useful methods are secondary chemical shifts

determination and the measurement of paramagnetic relaxation enhancement (PRE).

Secondary chemical shifts, measured with NMR, quantify the deviation between

measured chemical shifts and random coil chemical shifts for each residue, providing

information about secondary structure propensities in IDPs (37). It is important to note

that since IDPs typically fluctuate between dissimilar conformations on a time scale that

is fast relative to the experimental time scale, the measured chemical shifts at each

residue are ensemble averages (38). NMR PREs measure long-range (up to 25 Angstrom)

residual contacts within a protein by tagging a specific amino acid with a paramagnetic

probe, thereby affecting the relaxation properties of nearby nuclei (38, 39).

NMR measurements of the Nuclear Overhauser Effect (NOE) can also provide short

range distance constraints between different nuclei in a structure (38) (36). However,

given the relatively large size of many IDPs and the conformational heterogeneity of

their ensembles, NOEs between residues in the primary sequence are typically not

observed in IDPs; i.e., on average nuclei from different residues are typically separated
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by more than 5 angstroms (the typical limit for observing an NOE between nuclei) (36,

38, 40). Thus, while NOEs can be used to form distance constraints between residues for

determining structure of folded proteins, these are typically not suitable for IDPs (41).

Residual dipolar coupling (RDC) measurements provide long-range information about

the protein's structure by measuring a partial alignment of the protein with respect to an

external magnetic field. The protein of interest is typically embedded in an alignment

medium that reduces the effects of molecular tumbling, after which the dipolar couplings

are measured. RDCs encode information about the overall size of the molecule, and 1H-

15N amide RDCs, to some extent, encode information about secondary structure

propensity (38).

Small angle X-ray scattering (SAXs) experiments provide information about the overall

shape and size of molecules (42). Although these data, again, correspond to ensemble

average information, when combined with structural models, SAXs profiles can provide

important information that can be used to validate and refine models describing the

thermodynamically accessible states of the IDP of interest. Recently, high speed atomic

force microscopy (HS-AFM) has allowed visualization of the topography of proteins at

nanometer resolution through a time-series of topographic images with a frame rate of

more than ten frames per second (43). HS-AFM does not require labeling or staining of

the molecule, but forms a topographic image of an entire system residing on a surface in

a solution with minimal perturbation to the molecule in near physiological conditions

(44). In studies of the 1767 residue heterodimeric protein FACT, which contains two

major IDRs consisting of approximately 200 residues each, a frame-rate of 5 - 12.5

frames per second was sufficient to visualize changes in the IDRs' surface over time (45).

While a higher frame rate would be necessary to visualize transitions between

conformations or instantaneous snap-shots of molecules, these data can be used as

bounds on models of IDPs, for example, in the form of distributions of radii of gyration.

HS-AFM was additionally used to visualize formation of amyloid fibrils in amyloid-prone

fragments of Lithosthatine (46). Again, while higher temporal resolution would be

necessary to observe topographic changes resulting from the molecular processes
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involved in formation of fibrils, these consecutive "snapshots" provide insights into the

fibrillization process.

Computational methods for describing IDP ensembles

Molecular simulations can complement experimental methods, yielding structural

models for the dominant thermodynamically accessible states of IDPs (47). While

experiment usually provides ensemble-averaged information, molecular simulations

provide atomistic, time-resolved information that can clarify experimental observations

and that can provide fodder for future experiments (22).

Molecular dynamics simulations, in particular, can generate trajectories for proteins

using an underlying potential energy function, which is used to calculate the forces on

each atom (and consequently the motion of each atom) in the protein (48, 49). The

potential energy function includes terms describing the energy associated with bond

lengths, bond angles, and torsion angles, as well as long range forces arising from the

Coulombic energy and the van der Waals interactions. The parameters defining each of

these terms are learned either empirically or from ab initio calculations (48, 50).

Several issues arise when applying these methods to IDPs. First, most parameterized

force fields were developed for folded proteins, and therefore it is an open question as to

whether all of the available energy functions are generally applicable to IDPs. While

some more specific force fields have been developed with IDPs in mind (and fruitfully

applied), it is not clear how generally applicable these methods are (51-55). More

importantly, the conformational heterogeneity of IDPs calls for extensive simulations to

ensure that the relevant regions of conformational space have been adequately sampled.

In general, this process is extremely demanding from a computational standpoint.

Another method for conformational sampling, attractive due to its relative computational

efficiency, is the statistical coil model approach in which one samples from empirical

potentials to quickly generate an ensemble of states (56). The computational advantage

of this approach stems from the fact that structures are typically constructed by

independently sampling individual residue backbone dihedral angle conformations for
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each residue in the protein. In this regard the potentials used are much simpler than

molecular dynamics potentials and usually seek to reproduce coarse-grained behaviors,

such as empirical backbone dihedral angle distributions for each residue from the Protein

Databank (PDB) (56-58). Like molecular dynamics potentials, however, the empirical

potentials used in statistical coil-based approaches are usually trained on conformational

propensities of natively folded proteins; e.g., the backbone dihedral angles of residues

designated as coil (e.g., regions not in strand or helical conformations) in the PDB. User-

defined restraints can be included, such as done with the Flexible Mecanno tool (57), to

adapt the potential to the particular peptide in question.

While there is much merit in these approaches, generating an accurate structural

ensemble using these methods alone is not tractable for systems of even modest size.

Computational tools may therefore have their greatest utility when used in conjunction

with experimental data. For example, experimental observables can be used to restrain

molecular simulations to obtain ensembles that have calculated observables that agree

with the corresponding experimental values (59). Such ensemble-restrained simulations

have been used to obtain conformational ensembles of alpha-synuclein by restraining

molecular dynamics simulations with paramagnetic relaxation enhancement (PRE)

measurements, which provide information about the long-range interatomic distances in

the protein (60). These studies find that alpha-synuclein populates an ensemble of states

that have smaller hydrodynamic radii than random coils, suggesting some degree of

residual structure driven by interactions between the charged C-terminus and the

hydrophobic central region of the protein (60). Other approaches first generate

candidates for the thermally accessible states of the protein using an empirical potential

energy function and then compare calculated ensemble averages from the molecular

models to corresponding experimentally determined ensemble averages. Correct models

have calculated averages that agree with experiment (61). These models and their

associated experimental data can be deposited in an openly accessible database termed

pE-DB (62). One example of such an approach is ENSEMBLE, which takes as input a set

of conformations and experimental data, and prunes this large set of conformations to a
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smaller set. Each structure is assigned a weight such that their ensemble average

measurements agree with the data, and structures that do not contribute to fitting the

experimental data are thrown out (63). Another approach for creating an ensemble that

agrees with experimental measurements involves generating structures using a statistical

coil-like model (Flexible-Meccano), a subset of which are selected for the agreement

between their backbone dihedral angles and NMR chemical shifts. The process is then

iterated until no further improvement in the agreement between chemical shifts and

backbone dihedral angles can be obtained (64).

It is important to note that since experimental observables typically correspond to

ensemble averages, it is not clear how to combine experiment with the results of

computational models to arrive at an unfolded ensemble. While the problem of

generating an ensemble that agrees with experiment is mathematically well defined, it

has the uncomfortable consequence that experimental data collected on IDPs are

inherently degenerate. More specifically, the number of experimental restraints one can

obtain from any given experiment pales in comparison to the number of degrees of

freedom associated with even the smallest IDP. In other words, one can generate many

mutually exclusive structural ensembles that have ensemble averages that agree with any

given set of experimental data (61, 65-67).

Several methods have been developed to deal with the degeneracy issue. In the most

straightforward approach, one generates a number of different ensembles for an IDP that

all agree with experiment. Structural features that are in common to all of the

ensembles are interpreted as being those that are most likely to be "true"; i.e., while one

cannot unambiguously determine which ensemble is correct, features that are common

to all of the ensembles are likely to be legitimate (66, 68). A second method bases the

choice of ensemble on a maximum entropy or, equivalently, a minimal information

approach (69, 70) (71). The general principle ensures that the ensemble 1) yields

calculated observables that agree with experiment; and 2) is as similar as possible to

some pre-defined "prior" probability distribution. For example, if the prior distribution is

given by the potential energy of the potential conformers, then the method yields an
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ensemble that agrees with experiment and that minimally differs from what the potential

energy surface says are favorable conformations.

Another method that explicitly tackles the issue of degeneracy is Bayesian Weighting

(BW) (65, 72). The BW method consists of constructing coarse-grained conformational

ensembles, defined as a finite set of representative states , and an associated vector of

weights, , which specifies the relative stabilities of each structure in the ensemble. The

method begins by first generating a set of structures, either through a statistical coil

model or by sampling from a molecular dynamics potential energy function. Predicted

experimental measurements for each of these structures are then obtained using a

variety of available algorithms (e.g. SHIFTX for NMR chemical shifts (73)). Using a

Bayesian formalism, a posterior distribution over all possible weights for each structure is

then computed by maximizing the agreement between the conformational ensemble and

the experimental data. The strength of this approach lies in the fact that it accounts for

both uncertainty associated with the experimental measurements (i.e. measurement

error) and uncertainty in the algorithms used to predict experimental data from a given

structure (i.e. prediction error) when generating the posterior distribution. Furthermore,

it provides a quantitative estimate of the uncertainty in the underlying ensemble in the

form of an uncertainty parameter, which takes a value between 0 and 1 and represents

the extent to which one can assign weights to the structures in differently to agree with

the data (65). This uncertainty parameter was found to correlate well with the error

between reference ensembles and their corresponding constructed BW ensemble (65).

Thus, the BW formalism allows the user to use quantitative experimental measurements,

such as NMR or SAXS data, to construct conformational ensembles that include some

measure of their statistical uncertainty. Given the highly degenerate nature of the data,

it is helpful to construct one's structural library around a particularly quantity of interest,

such as secondary structure content, and select representatives such that they cover the

full range of possible values (61, 74).

To illustrate how computational tools can be used to provide information on the

relationship between IDPs and disease, in the remaining sections we focus on AP, the

20



aggregation of which is linked to Alzheimer's disease. We discuss how the

computational tools mentioned above can aid in the process of garnering detailed

structural insights into the disease process, which can in turn be applied to the rational

design of novel compounds aimed at combating disease.

Aggregation and neurodegeneration

Common to many neurodegenerative disease-related proteins is not only the disordered

nature of the monomeric state, but also a tendency to self-associate to form a diverse

range of aggregate states. The most conspicuous of these aggregates comes in the form

of amyloid fibrils that can be isolated from brain tissue of patients who have died from

one of these diseases, either as intra-neuronal depositions or tangles (in the case of a-

synuclein, polyglutamine and tau) or as extra-cellular inclusions (in the case of AP) (75).

An increasing body of evidence suggests that these fibrillar, amyloid structures are not

the primary mediators of toxicity, but rather play secondary roles in the disease process,

as either inert protein depositions at the end of the aggregation pathway or as secondary

nucleation sites for the formation of smaller soluble aggregates (76). Instead, evidence

suggests that lower molecular weight, soluble oligomeric aggregates are the primary

mediators of toxicity in Alzheimer's and Parkinson's diseases (8, 15, 77-80). Whatever

the precise disease causing species may be, it is clear that the aggregation process itself

plays a pivotal role in the pathogenesis of these neurodegenerative disorders. A

comprehensive understanding of the transition from a disordered state (an unfolded

monomer) to an ordered, multimeric state (an oligomer or amyloid fibril), is therefore

critical if one is to design novel therapeutics aimed at preventing or reversing this

aggregation process (Fig. 4).
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Disordered monomer

Soluble oligomers Amyloid fibrils

Figure 4. Schematic of the different "structures" of the AP peptide. Monomers can

form fibrils, which are highly stable and rarely dissociate back into monomers, but

can also form meta-stable, soluble oligomers. A hypothetical structure of a soluble

oligomer is shown, which was constructed by threading the Af3 sequence to a

published crystallographic structure of a-crystallin oligomers (81). A double-headed

arrow between oligomers and fibrils is shown to illustrate a potential, but relatively

unknown, interplay between the two species.

AP mutations and aggregates

Post-mortem examinations of the brains of patients suffering from Alzheimer's disease

(AD) have led to the identification of extracellular plaques in the cerebral cortex that test

positive for the presence of a small, 4 kDa peptide called Amyloid n-protein (AP). A

was first purified from amyloid fibrils isolated from brain meninges in 1984 (82). It is

the product of targeted proteolysis of the P-amyloid precursor protein (APP), a large

single-transmembrane glycoprotein that is widely expressed in both neural and non-
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neural cells (83). APP is first cleaved in the extra-cellular lumen by P-secretase to

produce a membrane-bound C-terminal fragment, along with an extra-cellular N-

terminal fragment that is secreted. The membrane-bound APP portion is then cleaved by

y-secretase to release the final AP peptide, which in APP is partially buried within the

membrane (84). y -secretase can cleave APP at multiple positions, resulting in AP

peptides of different lengths. These peptides vary in the number of hydrophobic residues

in their C-terminus, and as such have different aggregation propensities (85). Several

mutations have been identified as being related to AD pathology. Some of these

mutations are primarily found at, or directly flanking, the cleavage sites for the secretase

enzymes, resulting in different distributions of cleavage products from the wild-type

(86), while others are located within the central hydrophobic region of the cleaved AP

sequence (87). For example, comparison of the carboxyl-terminal peptides produced

from cleavage of wild-type versus mutant APP, the particular mutations of which have

been linked to familial AD, showed an increase in the fraction of 'long' AP (particularly

AP residues 1-42, or AP42 for short) relative to AP40 in the mutants (88). Studies of

various lengths of AP show that longer AP fragments (AP42 in particular) have an

increased tendency to aggregate and form fibrils than the dominant form (AP40) in wild-

type cells (85).

NMR studies suggest that A@ exists predominantly as a disordered monomer (16, 89).

However, as previously mentioned for aggregating IDPs in general, the disease process in

AP is associated with a transition from this disordered monomeric state to more ordered

multimeric states. AP has been observed, in vitro, to form aggregates of varying

molecular weight, spanning the range from small, low molecular weight soluble

oligomers, through protofibrils (small assemblies of AP that nucleate the formation of

larger amyloid fibrils), all the way to insoluble amyloid fibrils consisting of thousands of

monomers in a highly repetitive configuration.

In the following sections, we first outline current knowledge of each aggregate state of

AP, as well as open questions about each state and transitions between states. We then

discuss how computation has addressed some of these questions.
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AP oligomers

It is proposed that the pathogenesis stems from a toxic gain of function when these

multimeric states are formed (78, 90, 91). A@ appears to exist in a range of different

oligomeric forms, presumably originating from disordered monomeric pools.

Characterization of oligomeric species of AP is particularly nebulous, compared to other

AP species, due to their polymorphic nature. AP oligomers have been known to adopt a

variety of molecular weights, morphologies, and secondary structure content (78, 80, 83,

92). Central questions surrounding the different oligomeric species are whether or not

they constitute toxic entities, and whether their formation is on the pathway towards

amyloid fibril formation, or occurs through independent pathways. Answering these

questions is central to understanding the mechanistic basis behind the disease, and in

addition might provide clues as to how these pathways could be manipulated to prevent

or reverse the disease process.

The mechanistic basis for the neurotoxicity of oligomeric structures remains unclear

(83). Early studies of AP suggest that it can form cylindrical, P-barrel type oligomers

which resemble bacterial porins in electron micrographs (93). It is thought that such

oligomers can create channels in the cell membrane, leading to Ca2+ dysregulation and

disruption of the membrane's partitioning function (94). An analysis of HypF-N

oligomers, which have similar properties to their AP counterparts, found that toxic

oligomers produced an influx of extracellular Ca2+ into the cytosol, in contrast to non-

toxic oligomers produced under different conditions, despite having the same

morphological and tinctorial features (95). The same study found that the toxic forms

differed in the packing of the hydrophobic interactions between adjacent monomers,

suggesting that structural flexibility and hydrophobic exposure are critical determinants

of an oligomer's toxicity (95).

There are very little data pertaining to the conformation of individual monomers in the

toxic oligomers. The formation of soluble oligomers was not disrupted by stabilizing

24



monomeric AP in a P-hairpin state through the introduction of cysteine mutations in

pairs of residues found to be in close contact in a solution NMR structure of the hairpin

in complex with an Affibody, suggesting that these oligomeric species are composed of

monomers in a similar hairpin state (96, 97). Amide-proton exchange NMR experiments

have identified regions of the sequence that have the highest accessibility to the

surrounding solvent when in a toxic oligomeric state. These regions are likely to

correspond to turn conformations, and propose a configuration of strands arranged

according to these turn regions (98). These findings are all consistent with the

formation of cylindrical oligomers composed of individual P-hairpins or sheets, much like

the crystallographic structure of cylindrin, an oligomeric form of alpha-crystallin

fragments (81). Indeed, extrapolating from the structure of cylindrin, Laganowsky et al.

propose a similar model of a trimeric AP oligomer (81). Such a structural arrangement

differs fundamentally from a pre-fibrillar oligomer (e.g. a small protofibril) in that it

cannot be extended naturally to include more monomers. This is because many of the

hydrogen bond donors and acceptors of the polypeptide backbone that are involved in

fibrillar, inter-molecular hydrogen bonds are bonded to each other in an intra-molecular

fashion in the hairpin state (97). Thus, it is unlikely that these structures form the basis

for further aggregation without undergoing some structural changes to adopt the cross-P

arrangement of a prototypical amyloid structure.

By using the technique of photo-induced cross-linking of unmodified proteins (PICUP), it

was found that aggregate-free samples of Af40 contained monomers, dimers, trimers

and tetramers in rapid equilibrium. In contrast, AP42 preferentially forms pentameric

and hexameric 'paranuclei' which assembled further into bead-like structures resembling

protofibrils, arguing that the AP42 assembly pathway involves the formation of distinct

intermediates that gradually rearrange into protofibrils (99). Further studies combining

mutational experiments with PICUP suggest that the side-chain of residue 41 is

important for paranucleus formation and further self-association into larger oligomers,

while the side-chain of residue 42 primarily impacts paranucleus self-association (100).

A different study introducing the technique of ion mobility coupled with mass

25



spectrometry analyzed the in vitro oligomer size distributions for both AP40 and A142

and found that they differed considerably, lending further evidence to the notion that

AP40 and A142 self-assemble along different pathways (101). In silico, coarse-grained

simulations using a four-bead model which includes backbone hydrogen bonding, and

residue-specific interactions due to effective hydropathy and charge, found that AP40

forms significantly more dimers than A042, while AP42 forms more pentamers.

Furthermore, they found that a turn centered around Gly-37-Gly-38 is formed in Aj42

and not in AP40, and was found to be associated with initial contacts formed during

monomer folding (102). A later study using the same simulation technique on Arctic

mutants of AP40 and A142 were used to derive size-distributions in agreement with prior

experimental data, and showed that the AP40 mutant was able to form paranuclei much

like A@42, although the mutations prevented aggregation into higher order oligomers in

both isoforms (103). Using discrete molecular dynamics simulations of wild-type A140

and, Urbanc et al. found that the region D1-R5 is more disordered and exposed to

solvent in A42 than A140, suggesting that the N-terminal region is involved in

mediating toxicity (104).

AP fibrils

Histopathologic analyses of brain tissue derived from post-mortem examinations of

patients that suffered from Alzheimer's disease reveal large inclusions in the neural

tissue that are composed of large quantities of amyloid fibrils (105, 106). It has been

suggested that a propensity to form stable amyloid structures under the right conditions

is wide-spread across the proteome (107). These fibrillar structures are held together

through intermolecular hydrogen bonds between the backbones of adjacent monomers

arranged in s-strands perpendicular to the fibril axis, termed a cross-P structure (107-

109). They are ordered and highly structured, insoluble in nature, and have well-

defined and highly repetitive structural cores. Amyloids thus have proved to be

somewhat more yielding to structure determination techniques (108, 110). Structural
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models of AP fibrils derived from solid-state NMR restraints suggest a high degree of

polymorphism in the different fibrillar structures. These models suggest that fibrils

frequently contain more than one filament, such as the twofold and threefold symmetric

fibrils of AP (108, 109, 111) which can be observed through scanning electron

microscopy to be arranged in helical superstructures termed P-helices (112, 113). The

solid-state NMR restraints used to create the twofold and threefold symmetric fibrils of

AP were compatible with two mutually exclusive models for the relative height of anti-

parallel n-strands within monomers in the fibril for both, termed positive and negative

stagger (109). Extensive molecular simulations conducted on fibrils containing the two

types of stagger found that only negative stagger fibrils formed the left-handed helical

suprastructures observed by electron microscopy (112, 113). Initially, two competing

quaternary structure contacts between the C-terminal strands of the two filaments were

proposed based on molecular simulations: parallel and anti-parallel (114). Further solid-

state NMR data indicated anti-parallel contacts between C-terminal strands (108). When

simulated using coarse-grained molecular simulations, Fawzi et al. found that both

models for the quaternary contacts were stable, but the anti-parallel model was more

likely to elongate (115).

The N-terminal region of AP appears disordered even in the fibrillar state, with the

remaining residues adopting the fibril core cross-P structure. This fibrillar conformation

therefore suggests that, given the appropriate binding partner, there is a strong

propensity for the formation of P-strands in the AP sequence.

Transition between monomer and aggregate

Very little is known about the structural basis of the transition from the disordered

monomeric state to the ordered multimeric states. Based on our current understanding

of the putative toxic oligomeric species, it is likely that the folding pathways that lead to

the pathology associated with Alzheimer's are pathways involving the formation of P-

strands (78, 83). A mechanism has been proposed involving the sampling of extended,
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strand-based conformations of monomeric AP and alpha-synuclein that lead to exposure

of the hydrophobic segments, which prefer to self-associate than to interact with the

surrounding solvent (116, 117). Indeed, mutations that are associated with early-onset

Parkinson's disease have been shown to decrease the rate at which the backbone of the

alpha-synuclein protein changes its configuration, which would prolong the exposure of

such segments (117). This type of mechanism could involve the formation of fibril-like,

intermolecular hydrogen bonds between two colliding monomers with temporarily

exposed backbones. The presence of a neighboring AP molecule in a particular

conformation may alter the conformational landscape of the incoming protein,

increasing its propensity to a particular P-strand state by an induced-fit type of

mechanism, such that it would lead to the formation of oligomers and/or protofibrils

which can then progress down the amyloid pathway. Indeed, 'seeding' an in vitro

monomeric solution of AP with pre-formed amyloid fibrils causes these fibrils to extend

readily (118). Moreover, fibrillar AP has proven to behave like a prion: when mice

brains are inoculated with AP in a fibrillar form, rapid cell-cell transmission of the

pathological species was observed (119, 120). This prion-like quality suggests that the

presence of AP fibrils can alter the propensity of the monomer pool to adopt the fibrillar

conformation. In contrast, currently available data for oligomeric AP suggest that

oligomer-prone conformations may be sampled directly in the monomeric state (81, 96-

98, 121). These suggest that aggregation could occur through conformational selection

from the native monomeric ensemble, i.e. pre-formed states such as hairpins associate

directly without major modification upon binding. Since A142 is known to form

oligomers more readily than AP40, it is therefore interesting to look for clues in the

monomeric ensembles of each construct.

While the strand segments within each hairpin correspond to segments that are also in a

strand conformation in the fibrillar state, the tertiary structural arrangement of these

strands is different, since they are involved in intramolecular hydrogen bonds with either

other (97), in contrast to the fibrillar conformations which contain no intramolecular

contacts (108-111, 122). An oligomeric species composed of hairpin-type monomers
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containing intramolecular hydrogen bonds would have to undergo significant structural

rearrangements to form amyloid protofibrils, a process likely to involve a large kinetic

barrier. For this reason, it seems unlikely that hairpin-based oligomeric species and

protofibrillar oligomers are on the same folding pathway. However, monitoring the

aggregation of a di-cysteine mutant of A40 in vitro by the selective binding of the

latent fluorophore FlAsH to oligomers and fibrils showed that AP40 forms spherical

oligomers that can slowly convert to amyloid fibrils through a nucleated conformational

conversion mechanism (123). Furthermore, discrete molecular dynamics simulations of

both A40 and AP42 showed assembly of elongated protofibrils from spherical oligomers

(103). These results are consistent with a number of studies having provided evidence

for the formation of oligomers prior to the appearance of fibrils (99-101, 124).

More recently, kinetic studies of A142 showed that the formation of toxic, soluble

oligomers occurs as a secondary nucleation process, in which oligomers are formed in

two phases: the first is in the absence of any amyloid aggregates, and the second in their

presence (76). The second phase results in an increased rate of oligomer formation, and

radiolabeling experiments confirmed that oligomers formed were derived from the

monomeric pool of A42 rather than by breaking off fibrils directly. Thus, amyloid fibrils

and toxic oligomers may form through distinct folding pathways, but the kinetics of

oligomer formation is enhanced in the presence of fibrils. These data highlight the

complex interplay between the monomeric, oligomeric and fibrillar pools of AP that is

likely to underlie the disease state (Fig. 4).

Insight into AP through computation

Several studies have applied brute-force, unbiased molecular dynamics simulations of

the AP peptide to explore the conformational preferences of the disordered monomer.

One study, which totaled over 200ps of simulation time for each peptide, found that

AP40 and A42 have crudely similar characteristics, in that they can both adopt strand-

based conformations, but that AP42 has an increased propensity to form hairpins in its C-
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terminus when compared to Af40 (125). The conformational ensembles of the AP40 and

AP42 monomers were constructed using BW with NMR data to learn the states sampled

by each monomer (121). A set of structures s , generated through both REMD

simulations of both full-length AP42 and overlapping A142 peptide segments, used to

construct both ensembles (with the last two residues of A142 truncated to form the AP40

structure set), and weights w were computed for both ensembles using their respective

NMR data (121). Comparison of these two ensembles suggested a statistically

significant, tenfold increase in the relative stability of a hairpin conformation in the A342

isoform versus its shorter counterpart, which provides a potential mechanism for its

increased aggregation propensity (121) and correlates well with findings from unbiased

molecular dynamics simulations of these two peptides (125). This finding is consistent

with a conformational selection hypothesis involving hairpin structures (121). As

discussed above for binding of the p53 termini to their interaction partners, evidence of

the bound state in the unbound ensemble supports the role of conformational selection

in binding, but does not explain the role of induced fit. Further studies probing the

conformational landscape of AP in the presence of additional AP molecules could provide

insight to the role of induced-fit in the formation of oligomers or protofibrils.

Furthermore, computational studies could be employed to investigate the role of

flexibility in toxic oligomers, as well as the different pathways to oligomer and fibril

formation.

Conclusions

IDPs play a central role in many cellular processes, as their disordered nature provides

them with the ability to bind many partners, thereby regulating many biochemical

processes. Because of this central role, the malfunction of IDPs can disrupt proper

cellular function and lead to disease. Unfortunately, their disordered nature, which

makes them so relevant in cellular networks, also makes them difficult to study with
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traditional experimental methods that were initially designed to study folded proteins.

We discussed recent studies that have employed computational methods to analyze the

conformational preferences and mechanisms of IDPs. We focused on AP, which is found

in an aggregated state in the brains of patients who died of Alzheimer's disease.

Understanding how AP transitions between disordered monomers and the different

species mentioned above is a pre-requisite to controlling the early events of the

Alzheimer's disease processes. We have shown that computational tools can provide

some measure of leverage when analyzing quantitative, experimental structural data

about the disordered state. This can be achieved by using empirical molecular

mechanics force fields to understand the unfolded state of these polymers, as well as by

computing a distribution for the ways in which one can weight a given set of structures

with experimental data to generate a conformational ensemble, as in the Bayesian

Weighting approach. Computational data are helpful in understanding the properties of

the monomeric state and the mechanism of aggregation or abnormal signaling. Single-

molecule experiments are showing promise in their ability to investigate the kinetics of

conformational changes in a given monomer, which may lead to new insights into the

aggregation process. Due to the highly ordered and structurally repetitive nature of

amyloid fibrils, it has been possible for high resolution models of different fibrillar states

to be developed. These results suggest that even the amyloid state is polymorphic and

likely to be dependent on the nucleation species (108, 109, 111). The species that have

proved most resistant to characterization unfortunately appear to be the most important:

soluble oligomeric aggregates. We have discussed how current data suggest that hairpin-

type conformations are present within the toxic oligomeric states of AP, thus

distinguishing them from amyloid pathways due to the structural dissimilarity between

hairpins and monomers in fibrillar conformations. Despite all of this, high resolution

information about the transition from a flexible monomer to a folded, relatively rigid

oligomer or fibril have proved elusive so far. Part of the difficulty may stem from the

fact that monomers and oligomers are in fast exchange with one-another, as suggested

31



by data collected from multimeric alpha-synuclein, and computational studies could be

targeted towards overcoming this obstacle.

One difficulty in characterizing IDPs stems from a lack of experimental and

computational tools for studying folding events that occur on a timescale that is too fast

to be probed with traditional experimental methods, and too slow to be tractable by

traditional molecular simulations. A comprehensive understanding of this transition will

therefore require improvements in the experimental methods available for structural

characterization of short-lived intermediate states, coupled with a creative use of

computational methods to obtain mechanistic insights into the transitions between these

states.

The remainder of this thesis details three separate studies involving aggregated states of

IDPs at various stages of the aggregation process. The first chapter investigates the

existence of different types of oligomers in recombinant alpha-synuclein, an IDP involved

in Parkinson's disease, by constructing what we believe is the first conformational

ensemble of an IDP that contains multimeric states as well as monomeric. The second

chapter proposes a molecular mechanism for the elongation of experimentally-derived

models of AP amyloid fibrils. Finally, the third chapter performs an all-atom simulation

of the early events of nucleation in the aggregation of an 11-residue alpha-synuclein

fragment that is known to be disordered in the monomeric state, induces toxicity in cells

and aggregates to form fibrils. All three chapters concern themselves with the formation

of ordered aggregates in an otherwise monomeric IDP. The latter two chapter

emphasize the characterization of the transition between a disordered monomer and a

folded, ordered aggregate.
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The dynamic structure of alpha-synuclein multimers

The work presented in this chapter was published in the Journal of the American

Chemical Society, Volume 135 (10), pp 3865-3872, on February 1 1 th, 2013. It

represents the combined work of all co-authors on the paper.

Abstract

Alpha-synuclein, a protein that forms ordered aggregates in the brains of patients with

Parkinson's disease, is intrinsically disordered in the monomeric state. Several studies,

however, suggest that it can form soluble multimers in vivo that have significant

secondary structure content. A number of studies demonstrate that alpha-synuclein can

form beta-strand rich oligomers that are neurotoxic, and recent observations argue for

the existence of soluble helical tetrameric species in cellulo that do not form toxic

aggregates. To gain further insight into the different types of multimeric states that this

protein can adopt we generated an ensemble for an alpha-synuclein construct that

contains a 10 residue N-terminal extension, which forms multimers when isolated from

E. coli. Data from NMR chemical shifts and residual dipolar couplings were used to

guide the construction of the ensemble. Our data suggest that the dominant state of this

ensemble is a disordered monomer, complemented by a small fraction of helical trimers

and tetramers. Interestingly, the ensemble also contains trimeric and tetrameric

oligomers that are rich in beta-strand content. These data help to reconcile seemingly

contradictory observations that indicate the presence of a helical tetramer in cellulo on

the one hand, and a disordered monomer on the other. Furthermore, our findings are

consistent with the notion that the helical tetrameric state provides a mechanism for

storing alpha-synuclein when the protein concentration is high; thereby preventing non-

membrane bound monomers from aggregating.
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Introduction

Alpha-synuclein is a 140-residue protein that has been implicated in the pathogenesis of

a number of neurodegenerative diseases, collectively known as synucleinopathies, the

most well-known of which is Parkinson's disease(126). The most notable pathological

characteristic of these diseases is the aggregation of alpha-synuclein into amyloid fibrils,

which have significant beta-sheet secondary structure(105, 127). Although there is

disagreement regarding whether the soluble oligomeric aggregates or insoluble

aggregates are the most neurotoxic species, it is clear that alpha-synuclein self-

association plays an integral role in neuronal dysfunction and death(8, 77, 128-130).

Given the importance of this protein in these neurodegenerative disorders, studies that

help to elucidate its structure are of paramount importance.

However, the conformational landscape of alpha-synuclein is notoriously difficult to

study, earning it the moniker of 'chameleon' due to its tendency to adopt different

conformations under different experimental conditions(131, 132). This has led to

seemingly contradictory data about the dominant putative states in solution versus those

under physiologic conditions(92, 133, 134). While it is clear that monomeric alpha-

synuclein is an intrinsically disordered protein(135) in solution, recent data suggests that

it can adopt a tetrameric state that has a relatively high helical content under physiologic

conditions(92, 134, 136). By contrast, others have suggested that alpha-synuclein

retains its monomeric disordered state in cellulo(133, 137).

Recently, NMR studies on an alpha-synuclein construct isolated from F. coli, which

contains a 10 residue N-terminal extension, suggested that the protein can exist as a

"dynamic tetramer"(134). In short, these data are consistent with a model where the

protein rapidly interconverts between different conformers, where some of these

conformations are multimeric structures (trimers and tetramers) that contain significant

helical content. To obtain a more comprehensive view of the types of structures that this

particular alpha-synuclein construct can adopt, we generated an atomistic model for

alpha-synuclein in its multimeric form. While we recognize that it is not possible to
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capture all possible monomeric and multimeric conformations that this protein can adopt

in solution, our hope was to build a low-resolution description of the dominant states of

the protein. More precisely, we define a conformational ensemble to consist of a

structural library S = {, n, where S' is the Cartesian coordinates of structure i, and a

corresponding set of weights ii' ={w,} , where w, is the population weight of structure

i. In this sense, the number of structures in the ensemble, n, is a function of the

resolution with which one wishes to view the conformational landscape of the system.

As prior studies on this construct suggest that the purified protein contains primarily

monomers, trimers and tetramers, we focused on these specific forms for our

ensemble(134). Since we had previously constructed an ensemble for monomeric alpha-

synuclein using NMR chemical shifts, RDCs and SAXS data(138), we used these

structures to represent the disordered, monomeric fraction. Using NMR chemical shifts

and NH RDCs obtained on an alpha-synuclein construct, which contains a 10 residue N-

terminal extension, we determine the relative fractions of different multimeric forms

within the ensemble.

Materials and Methods

Generation of seed structures

Our previous study on alpha-synuclein suggested that the monomeric, protein can

sample amphipathic helices, which could in principle self-associate to form helical

trimers and tetramers(138).

All simulations used a model of alpha-synuclein that did not include the 10-residue N-

terminal extension. An initial trimeric structure of the protein was generated by taking a

monomer from the monomeric alpha-synuclein ensemble that has an amphipathic helix

between residues 52 and 64 and threading the helix to a three-helix bundle from a
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crystal structure of myosin (PDB ID code 3GN4) (139), where the hydrophobic faces of

the amphipathic helix were oriented such that they face inwards. An initial tetrameric

structure was generated by threading the same monomer to a four-helix bundle from a

crystal structure of ferritin (PDB ID code 1FHA) (140, 141). These structures were

chosen from the PDB such that the helix bundles in the structure used for threading the

monomer were of sufficient length to accommodate the entire 12-residue helix in our

monomer structure, while retaining a high enough resolution to be informative. A

second initial helical tetrameric model was constructed using the available NMR

data(134). The model derived from the NMR data was obtained from a limited set of

NOEs; i.e., we were not able to identify a sufficient number of sequential (Ha-HN i, i+3)

NOEs in "5N-edited NOESY spectra (see below). Consequently, the resulting model is not

intended to represent a "high-resolution" structure of the helical tetramer. Instead, its

only purpose is to serve as a structure (derived from limited experimental data) that is

the starting point for additional simulations. More generally, each seed structure serves

as a starting point from which to begin more extensive sampling.

Generation of alpha-synuclein structural library

The conformational space of alpha-synuclein was sampled by subjecting the initial seed

structures to replica exchange molecular dynamics (REMD) simulations(142). Each

initial structure underwent REMD with the EEF1(143) implicit solvent model as

implemented in the CHARMM(144) force fieldENREF_23. Sixteen replicas were used,

with temperatures equally spaced in 5K increments over the 293-368K range. Prior

studies of IDPs with this implicit solvent model have yielded useful insights(65, 68, 138).

Initially, higher temperature replicas were explored, along with quenched molecular

dynamics simulations at higher temperatures, but we found that these led to dissociation

of multimers into monomers free of intermolecular contacts. We therefore limited the

highest temperature to 368K(134), ensuring Each replica was run for 20 ns, and

structures were collected at each picosecond. A total of 20,000 conformations per REMD
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simulation were collected, all from the 298K window, making a total of 60,000

conformations for the trimeric and tetrameric structures.

The set of 60,000 structures was pruned down by enforcing a minimum pairwise RMSD

of 9A to ensure that the resulting library would span a range of heterogeneous

conformations. The resulting set contained 234 structures. These were then combined

with 299 monomer structures from a previously constructed monomeric ensemble of

alpha-synuclein (138) to yield our structural library S = of 533 conformers.

Generation of the ensemble and calculation of confidence intervals

To obtain the set of weights associated with each conformer in our structural library, we

employ the Variational Bayesian Weighting algorithm (VBW) previously described(72),

which is a variational approximation to a Bayesian Weighting formalism used in the

past(65, 138). This algorithm generates a posterior distribution f ~(' I Fs( ,S) for the

weights, conditioned on the set of 533 structures, and the provided experimental

measurements. The form of the posterior distribution is dictated by Bayes' rule:

frl , -vI , iS) =_ fAws (Fn I i, S)f -s(iv- I S) (1)
f- (lS)= ()IS)

where the term fs (i I S) is the prior distribution and fw's (i I iv,S) is the likelihood

function for the experimental observations Fn, whose full descriptions can be found in

the original publication of the method(72). Experimental observables, specifically Ca,

CO, N, H and Ha chemical shifts from a previous work(134) in combination with

backbone NH residual dipolar couplings (RDCs), were used (Supplemental Information

Table Si). Predicted measurements for each conformer were generated using

SHIFTX(145) for chemical shifts and PALES(146) for residual dipolar couplings.

Residual dipolar couplings were uniformly scaled to account for uncertainty in the

magnitude of the alignment tensor. Similarly, like-atom chemical shifts were uniformly
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offset to account for uncertainty in chemical shift referencing.

computational efficiency and analytical tractability, an approximation from variational

Bayesian inference was applied by choosing a simpler probability density function

(PDF)(72), which approximates the full posterior distribution, calculated from equation

(1). For a vector of weights, a natural choice is the Dirichlet distribution with

parameters {a > _ . This results in an approximate PDF for the weights (72):

F(a) 
g(wih i p a,S)s= t wit wigd

n I(a ,) i=>I

where a, is the Dirichlet parameter associated with weight i and ao =I a,.

(2)

The

Kullback-Leibler distance (i.e., the KL divergence) between g(v I 6,S) and fe1 fs(-F n,S)

is then minimized to find the optimal set of Dirichlet parameters, '=a N, which

provides an approximation to the true posterior from which one can easily calculate

quantities of interest.

We then compute the Bayes estimate for the weights iv- ={wB , which is the expected

value of the vector of weights over the new approximate posterior distribution:

fB = fdg(iv 16 ',S)i (3)

The Bayes estimate can be calculated from the Dirichlet PDF according to:

a'
wB ___)

'a'

The uncertainty parameter rBl,w
called the posterior expected

divergence, corresponds to the average distance from the Bayes weights over the entire

space of weights:
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V , V V22B ,,S) (5)

where j2 iV-) is the Jensen-Shannon divergence, a metric which quantifies the

distance between td maders (65).

The covariance between the weights of conformers i and j can be calculated analytically

from:

a'a'-a..-a'
cov(w,,w 1)= i ' j (6)

a'2 (a'+l)

where 8, is the Kronecker Delta function. Any quantity D that can be calculated for a

given conformer can then be assigned a variance across the ensemble according to:

var(D)= XDD, cov(w,, w,) (7)

95% confidence intervals can then be computed using a Gaussian approximation from

CI=l.54x1.96x4var(D), where 1.54 is an empirical factor relating the variational

approximation of the posterior distribution to the true posterior distribution under the

complete BW formalism(72).

A backward elimination procedure starting with our initial structural library of 533

conformers was used to ensure that the ensemble only contained essential structures.

The procedure computed the VBW posterior distribution iteratively. After each iteration,

all non-essential structures were identified by finding the largest set I such that the joint

probability that each weight of the structures in I fell below a cut-off exceeded a chosen

confidence level, i.e. HP(w, ! c) 1-0 where P(.) denotes the cumulative distribution
i

function of the weights. The cut-off (c) and confidence level (0) were set to 0.005 and

0.05 (95%), respectively. Each of the non-essential structures in I were removed and the
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weighting procedure repeated. This process was iterated until convergence, i.e. until the

cardinality of I was zero.

Secondary structure assignments

Secondary structure was assigned using DSSP(147). A residue was assigned to the class

of 'helix' if it was assigned as -helix, 7r-helix or 3-10 helix by DSSP. Similarly, a residue

was assigned to the class of 'strand' if it was assigned as a bridge or extended by DSSP.

The remaining assignments were grouped into the class of 'other'. Structures appearing

in the uppermost quartile of tetramers ranked by helical content were classified as helical

tetramers, and structures in the uppermost quartile of tetramers ranked by strand

content were classified as strand tetramers. Trimers were classified in the same manner.

Solvent accessibility calculations

Solvent accessible surface area (SASA) was calculated for each conformation using

CHARMM(144). Since only the backbone atoms N, H, C, Ca and 0 are involved in the

formation of secondary structure, only SASA values for these atoms were considered.

The solvent accessibility for the entire protein was computed by summing each atom's

SASA value and normalized by dividing the result by the SASA of the alpha-synuclein

backbone atoms when in a fully extended conformation.

NMR studies

It is important to note that these NMR studies were insufficient to uniquely determine

the structure of a helical tetrameric state (primarily due to an insufficient number of

measured NOEs). Hence, the structure arising from these studies represents a model

that only serves as the starting point for further simulations, as opposed to a well-defined

structure for the helical tetramer.

Samples of 15N and C labeled aSyn for NMR spectroscopy were prepared using

uniformly "C- and 15N-labeled media (supplemented M9 media, C source being
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glucose). NMR samples were typically prepared to a final concentration of -0.5 mM in

100 mM TriseHCl pH 7.4, 100 mM NaCl, 0.1% BOG, 10% glycerol, 10% D 2 0. All NMR

spectroscopy was performed on a Bruker Avance 800 NMR spectrometer operating at

800.13 MHz (1H), 81.08 MHz ("5 N) and 201.19 MHz (13C) and equipped with a TCI

cryoprobe and pulsed field gradients. Experiments used for sequential resonance

assignments include three-dimensional (3D) experiments HNCA, HNCACB, 15N-HSQC

TOCSY and 15N-HSQC NOESY. Quadrature detection was obtained in the '5 N dimension

of 3D experiments using sensitivity-enhanced gradient coherence selection(148), and in

the "C dimension using States-TPPI, with coherence selection obtained by phase cycling.

In all cases, spectral widths of 8802.82 Hz (1H) and 2920.56 Hz (15N) were used. For

13c, spectral widths of 6451.61 Hz (HNCA) and 15105.74 Hz (HNCACB) were used. All

experiments were performed at 298 K unless otherwise noted. NMR data were

processed using TOPSPIN (Bruker Biospin Inc.), and data analyzed using either TOPSPIN

or SPARKY (149).

'H-1 5N, 1 3C'-15N and ' 3 C'-' 3Ca residual dipolar couplings (RDCs) were recorded for a 15N-

and 1
3C-labeled wild-type aSyn oligomer sample in the presence and absence of

alignment media using a standard IPAP-HSQC sequence or a variation of a standard

HNCO pulse sequence. Sample alignment was accomplished using a 5% polyacrylamide

stretched gel. We chose to use PA rather than bicelle or liquid crystalline phases for

alignment because such phases contain long chain hydrocarbon moieties that might be

expected to bind cLSyn and could interfere with oligomer formation.

The stretched gel was prepared using a commercial apparatus (New Era, Vineland, NJ)

according to the manufacturer's protocol and following guidelines by A. Bax.(150) After

polymerization was complete, the gel was dialyzed against water overnight at room

temperature, and then incubated with a 0.5 mM aSyn sample in standard NMR buffer

for 48 h at 4 *C. The diameter of the gel was 6.0 mm before and 4.2 mm after

stretching. Alignment was confirmed by observing the residual quadrupolar splitting

(9.4 Hz) of the 2 H water signal.
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We used solution NMR to localize the transient formation of a-helices in aSyn.

Resonance assignments were made using standard methods (HNCO, HN(CO)CA, HNCA,

HNCACB, 15N-edited NOESY and TOCSY). Although a high degree of spectral overlap is

present even in three-dimensional data sets, we were able to identify a number of

sequential (Ha-HN i, i+3) NOEs in 15N-edited NOESY spectra to confirm the transient

existence of a-helical structure between residues Phe4-Thr43 and His5O-Asn1O3. In

many cases, these NOEs are quite weak, consistent with fractional occupancy, however,

only the most reliable (strongest) experimental NOEs were used in model construction

(Figure 1). Note that if long stretches of NOEs interrupted by several residue pairs

without NOEs were observed, the missing pairs were included in the helical restraints

applied in XPLOR-NIH. A total of 73 unique inter-residue NOEs per monomer were used

to construct a model for the helical tetramer.

10 20 30 40
MDVFMKGLSK AKEGVVAAAE KTKQGVAEAA GKTKEGVLYV

50 60 70 80
GSKTKEGVVH GVATVAEKTK EQVTNVGGAV VTGVTAVAQK

90 100 110 120
TVEGAGSIAA ATGFVKKDQL GKNEEGAPQE GILEDMPVDP

130 140
DNEAYEMPSE EGYQDYEPEA

Figure 1. Regions of aSyn fractionally occupying helical structures as defined by i,

i+3 Ha-HN NOEs. The experimentally determined NOEs used to construct the initial

model are indicated by solid lines.

Given the relatively small number of NOEs any structure arising from these data merely

represents a model (derived from limited experimental data) that serves as fodder for
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additional simulations, rather than a detailed high-resolution structure of the tetrameric

state.

A combined torsional and Cartesian dynamics simulated annealing method was used to

calculate an average tetramer structure using XPLOR-NIH v. 2.18(151). Secondary

structural restraints were applied to those regions of the polypeptide identified as

forming a-helical structure from sequential NOEs. RDC restraints were applied for

residues 1-103 and in some cases, non-crystallographic symmetry restraints were applied

to residues 4-36, 47-85 and 89-98. Preliminary structures were crafted manually using

PyMOL(152), and initial values for alignment tensors determined by singular value

decomposition (SVD) using the program PALES(146). As refinement proceeded, best-fit

structures were used to recalculate the alignment tensors via a combined SVD-least

squares fit which permits the rhombic terms to be fixed at zero. This was applied

iteratively until no further improvements of fit were observed. PyMOL was also used for

visualization of the structures generated by XPLOR-NIH. Proton chemical shifts were

referenced directly to the water signal at 4.7 ppm, while 15N and13 C shifts were indirectly

referenced (153). All NMR experiments were performed by Iva Perovic and Thomas

Pochapsky. NMR data are available in the Supplementary Information of the published

work (Table Si), available in print at

http:/pubs.acs.org/doi/suppl/10.1021/-a3105--p.

Results and Discussion

To generate a set of energetically favorable multimers for the ensemble, we began with a

set of "seed" structures that served as starting points from which a diverse library of

multimeric structures could be built. Our previous study on alpha-synuclein suggested

that the monomeric protein can sample amphipathic helices, which could in principle

self-associate to form higher order structures (138). Hence, we constructed trimeric and

tetrameric structures using amphipathic helices from the monomeric ensemble.

Structures for both the trimeric and tetrameric species were obtained by threading these
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amphipathic helices onto three- and four-helix bundles, respectively, from the Protein

Data Bank (PDB) such that the hydrophobic faces of these helices form the contact-

interface (see Methods). A second helical tetrameric model was constructed using the

available NMR data (134). The model derived from the NMR data was obtained from a

limited set of NOEs because a high degree of spectral overlap is present even in three-

dimensional data sets. Consequently, the resulting model is not intended to represent a

"high-resolution" structure of the helical tetramer. Instead, it is a model, constructed

from limited experimental data, which serves as a starting point for additional

simulations. Indeed, all seed structures represent initial structures (derived from

experimental data and from prior studies on the monomeric state) from which to begin

sampling, rather than high-resolution structures for trimeric and tetrameric structures.

Each seed structure was subjected to replica exchange molecular dynamics(142) (16

replicas, each replica run for 20ns). Structures from the 298K window were output

every picosecond and added to the structural library. In total, the structural library

contained 60,000 structures (monomers, trimers and tetramers). All of these structures

were then clustered using a crude pruning algorithm to ensure that the final set of

structures largely retained the structural heterogeneity present in the original 60,000.

The final set of structures, including monomers, trimers and tetramers, contained 533

conformers.

We note that each of the replica exchange simulations began with a predominantly

helical seed structure because several studies suggest that alpha-synuclein multimers had

significant helical content(92, 134, 136). However, many of the helical multimers

rearranged to form strand-rich conformers during the course of the simulations. Hence

the final set of 533 structures constitutes a heterogeneous set of conformers that have a

range of both helical and strand content.

The final step in our ensemble construction procedure was to assign population weights

to each of the 533 structures. One approach to accomplish this is to obtain a single set of
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weights, ={w,} ', such that calculated observables from the final ensemble agree with

the corresponding experimentally determined values. However, as we have previously

shown, agreement with experiment alone is insufficient to ensure that the constructed

ensemble is correct(61, 65). This is because the construction of ensembles for

disordered systems is an inherently degenerate problem; i.e., the number of

experimental constraints pales in comparison to the number of degrees of freedom for

the system. To overcome this limitation, we used a previously developed formalism,

grounded in Bayesian statistics, to compute the population weights. This Bayesian

Weighting (BW) algorithm computes the full posterior distribution over all possible ways

of weighting structures in the structural library. From this posterior distribution we can

compute an uncertainty measure, 0< a_ <1, which describes the spread of the posterior

distribution - a metric that is akin to the standard deviation of a Gaussian

distribution(65, 72). Our prior work suggests that the numeric value of C, B is correlated

with model correctness. When a., =0, we can be relatively certain that the model is

correct. By contrast when aGB =1, it is likely that the ensemble is far from the truth.

Nevertheless, when a-, # 0, we can construct rigorous confidence intervals for quantities

of interest that are calculated from the ensemble. The ability to calculate rigorous

confidence intervals enables us to perform rigorous hypothesis tests and therefore

determine what conclusions we can make from the ensemble with statistical significance.

The final Bayes' ensemble consists of a set of weights, wVB = {wf}, which corresponds to

the expected value of the weights calculated from the posterior distribution, and the

structural library S ={} . The algorithm also ensures that we restrict our analysis to

the most important conformers. More precisely, ith structure is excluded from the

ensemble when we can say with 95% confidence that w ! c. In the end, a total of 311

structures survived this criterion. While the resulting Bayes' ensemble achieves a good

fit to the NMR experimental data (Figure 2), the corresponding uncertainty parameter is
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non-zero: u-,B = 0.47. Consequently, we express ensemble average values along with

their corresponding 95% confidence intervals.
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Figure 2. Calculated ensemble averages vs. experimental measurements. (A) N, Ca

and CP chemical shits; (B) N-H residual dipolar couplings. Correlation coefficients

for each plot are explicitly shown.
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The ensemble is composed mostly of monomeric species (64.1% 6.4%) with tetrameric

species making up the next most common species (28.2% 6%), and trimeric structures

making up only 7.7% 3.6%. Since we have already reported on the types of structures

that are sampled in the monomeric protein(138), here we focus on the types of

multimeric structures that appear in the ensemble. Both trimeric and tetrameric

structures mainly come in two forms, either predominantly helical, or predominately

strand. A small fraction of multimeric structures contain so little secondary structure

that they fall into neither category. Representative structures from each species are

shown in Figure 3.

A

58-70%

B

E

C-

'A4

2-8%

< 3%

2-8%

4-10%

/
/

Figure 3. T'pes of alpha-synuclein structures in our ensemble. Monomers are aligned

to each other (A) to demonstrate that they form a structurally heterogeneous set. For

the multimeric species, the top 8 structures from each category in terms of secondary

structure content are shown: (11) helical-rich trimers; (C) strand-rich trimers; (D)

helical-rich tetramers; and (1) strand-rich tetramers.
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To determine how each of these multimers may influence alpha-synuclein self-

association, we focus on the position and conformation of the subsequence NAC(8-18),

which corresponds to the minimal segment of alpha-synuclein that can initiate the

formation of toxic beta-strand rich aggregates in vitro(154). This is of particular interest

because toxic soluble oligomers of alpha-synuclein and other related IDPs contain

significant beta-structure(81, 155). Of all the multimeric species in the ensemble, the

normalized solvent accessibility of the NAC(8-18) region in helical tetramers is

significantly lower than for other types of structures, with an expected value of only

30.6% 1.0% (Figure 4). For comparison, the solvent exposure of the NAC(8-18) region

in the monomeric fraction is 58.6% 4.2%. Consequently, helical tetrameric species bury

the NAC(8-18) segment relative to the monomeric state. Our findings are consistent

with a model where the NAC(8-18) segment initiates the formation of beta-rich

structures, which then progress to form higher order aggregates. In the beta-rich

conformers, the NAC(8-18) segment has already been incorporated into beta sheet and

therefore it is not surprising that their solvent accessibility is reduced. In the helical

tetramer the NAC(8-18) segment is hidden in a non-amyloidogenic conformation and is

therefore not available to initiate the formation of beta-strand rich multimers.
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NAC(8-18) %
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41.1 0.6%

30.6 * 1.0%

43.9 1.5%

Figure 4. Normalized solvent accessibility ( 95% confidence intervals) for the

NAC(8-18) region and N-terminal residues 1-48 for (A) helical-rich trimers, (B)

strand-rich trimers, (C) helical-rich tetramers and (D) strand-rich tetramers.

Representative structures are shown on the left. The N-terminal residues are shown

in cyan, the NAC(8-18) in red and the remaining residues in green.
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Several studies also suggest that the N-terminal region of alpha-synuclein may act as an

initiation site for the formation of strand-rich oligomeric aggregates. The observation

that aggregation-inhibiting small molecules bind preferentially to the N-terminal region

of human alpha-synuclein is consistent with this notion(156). More importantly, 1 5N

relaxation experiments performed on monomeric mouse alpha-synuclein (which has

faster aggregation kinetics than the human homolog) suggest that the N-terminal region

of the protein has decreased backbone flexibility as compared to both a random coil

model as well as measurements on human alpha-synuclein - a finding suggesting that

secondary structure formation is more prevalent in the mouse form of the protein(157).

It has further been proposed that KTK(E/Q)GV, which are mainly found within the first

48 residues of the protein, can serve as initiation sites for aggregation in mouse alpha-

synuclein(157). Therefore, we computed the average solvent accessibility of the N-

terminal 48 residues in each multimeric state to explore the conformation of the N-

terminal region of alpha-synuclein in each of these multimeric states, as shown in Figure

3. Helical trimers and tetramers preferentially place the N-terminal region of alpha-

synuclein in positions that are hidden from solvent; i.e., the solvent exposure of these

regions is 28.9% 0.7% and 34.1% 1.0% for helical trimers and tetramers, respectively.

We note that several studies suggest that the N-terminal region of alpha-synuclein plays

a critical role in the formation of helical structures(158-160), hence this region may be

important for assembly of the helical tetramer. By contrast, the solvent exposure for the

monomeric state is 52.5% 3.6%. Figure 4 shows two structures that involve the N-

terminal residues in beta-sheet formation, highlighting the beta-strand propensity of

these residues.

Interestingly, however, beta-strand rich trimers and tetramers, preferentially have the N-

terminal residues 1-48 involved in a sheet that contains the NAC(8-18) segment; i.e., the

segment that can initiate alpha-synuclein aggregation in vitro (Figure 5). Although it is

not clear whether the NAC component or the N-terminal region provides the primary
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impetus behind the oligomerization propensity of alpha-synuclein, our data are

consistent with a model whereby the initial stages in toxic oligomer formation is the

formation of an N-terminal rich beta-strand region that contains the NAC(8-18) segment.

In this regard, it is interesting that the helical tetrameric species sequesters both of these

regions from the surrounding solvent by involving them in the formation of helices, as

shown in Figure 4, supporting the notion that this structure acts as a non-toxic storage

mechanism.

A

Figure 5. Two representative structures of strand-rich tetramers. The N-terminal

residues 1-48 of the monomers participating in sheets are shown in cyan. NAC 8-18

residues participating in sheets are shown in red.

Conclusions

In this study we constructed an ensemble for the multimeric state of alpha-synuclein.

Our data reveal a number of important insights into the types of structures that

multimeric forms of the protein can adopt. Given that generating a comprehensive list of

the thermally accessible states of both the monomeric and multimeric protein is not

tractable, our goal was to generate a low-resolution description of the dominant states

that are available to the protein. However, even with this proviso additional
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assumptions are needed to make the calculations feasible. In this regard we restricted

our sampling of multimeric states to trimers and tetramers; i.e., the primary multimeric

states that have been observed when alpha-synuclein constructs are isolated from E. coli,

red blood cells and human neuroblastoma cell lines(92, 134). Replica exchange

molecular dynamics (REMD) simulations were used to generate a representative set of

heterogeneous set of energetically favorable conformers that served as the template from

which a structural ensemble could be built. Given that earlier studies had described the

existence of helical trimers and tetramers forms of alpha synuclein, the REMD

simulations began using a predefined set of seed structures that were intended to

capture conformations that were observed in earlier experiments on alpha-synuclein

multimers. Given that our previous study suggested that the monomeric alpha-synuclein

can sample amphipathic helices, we generated a model for helical trimers and tetramers

assuming that multimeric structures were formed from self-association of these

amphipathic helices. A second model seed structure was derived from limited NMR data

on alpha-synuclein at high concentrations. Given the limited number of NOEs obtained,

it was not possible to uniquely determine the structure of any tetrameric state; therefore

the resulting seed structure serves as fodder for additional simulations, rather than a

detailed high-resolution structure of the tetrameric state. Although the REMD

simulations began with these seed structures, the resulting trajectories sample a wide

region of conformational space leading to the generation of some structures that are very

different from the initial seeds (Figures 6 and 7). The Bayesian Weighting (BW) method

is then used to construct a probability density over all possible ways of assigning

population weights to structures arising from the trajectories (65). These data are then

used to calculate ensemble average properties with their corresponding confidence

intervals.
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Figure 6. Conformational heterogeneity of a single REMD simulation. Shown is the

Ca-RMSD of a structure at time t in the 298K temperature replica compared to the

original seed structure (in this case the threaded helical tetramer).
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Figure 7. Conformational heterogeneity of a single REM) simulation. Shown is the

Ca-RMSD of a structure at time t in the 298K temperature replica compared to the

original seed structure (in this case the structure derived from limited NMR data).

Given that construction of an ensemble for an intrinsically disordered protein is an

inherently degenerate problem, it is important to provide estimates of one's uncertainty

in the resulting ensemble(61, 65). One advantage of the BW formalism is that it has a

built in measure of uncertainty, 0 aB <1 , that is correlated with model

correctness(65). When a = 0, we can be relatively certain that the model is correct. By

contrast when aB =1, it is likely that the ensemble is far from the truth. In the present

case, this uncertainty parameter is non-zero: aB =0.47. However, even when the

uncertainty parameter is non-zero, one can still quantify the uncertainty in calculated

ensemble average quantities via the use of confidence intervals. In this work, we present

ensemble averages +/- 95% confidence intervals. Confidence intervals comprise a

standard statistical method to quantify uncertainty in an underlying model. The

meaning of the confidence interval for the ensemble average (M) , is that if one
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calculated (M) from many different ensembles (that also fit the experimental data),

then those values would fall within the 95% confidence intervals approximately 95% of

the time. The 95% confidence interval therefore provides a quantitative measure for the

range of values one would see if they constructed many different ensembles. Overall we

find that helical tetramers represent a relatively small fraction (5.1% 2.9%) of an

otherwise predominantly disordered, monomeric, ensemble. These findings are

consistent with recent bacterial in-cell experiments that suggest that alpha synuclein is

predominantly disordered within the crowded intracellular environment(13 7).

Our data suggest that the multimeric ensemble contains tetrameric states that have

significant helical content. However, while some groups have been able to isolate helical

tetramers by using gentle purification protocols, the isolation of such structures by other

groups has remained elusive(92, 133, 161). These latter experiments have led some to

conclude that alpha-synuclein predominantly exists as a disordered monomer under

physiologic conditions(133). We believe our data help to reconcile these seemingly

contradictory observations. Our findings argue that helical tetramers are present within

the unfolded ensemble, albeit at very low concentrations. Successful isolation of helical

tetramers would therefore require additional measures to increase the relative

population weight of these states. Indeed, it has been shown that the tetrameric species

elute from purification columns in a concentration-dependent manner when the protein

is acetylated at its N-terminus(136). This suggests that the relative abundance of this

species is a function, in part, of the post-translational state of the protein, the

purification protocol, and the protein concentration. These observations are consistent

with the notion that the helical tetramer provides a mechanism for in cellulo alpha-

synuclein storage when the protein concentration is high. Formation of aggregation

resistant helical tetramers may provide a method to sequester non-membrane bound

monomers in a form that both prevents them from aggregating and preserves them in a

conformation amenable to lipid binding upon dissociation.
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To understand why helical states are aggregation resistant, we focus on the minimal

segment, NAC(8-18), needed to initiate alpha-synuclein aggregation in vitro(154). Of

all the multimeric states in our ensemble, the solvent exposure of the NAC(8-18) is the

lowest for the helical tetramer. Burying the NAC(8-18) segment ensures that is not

available to initiate the formation of beta-strand rich oligomers. In the beta-rich

tetramer conformers, the NAC(8-18) segment has already been subsumed in a central

beta sheet and therefore it is not surprising that its solvent accessibility is reduced

relative to the monomeric state. Our findings are consistent with a model where the

NAC(8-18) segment initiates the formation of beta-rich tetramer structures, which then

progress to form higher order aggregates.

The appearance of strand-rich states in our ensemble is somewhat surprising given that

previously published CD spectra of multimeric alpha-synuclein suggested that the protein

had considerable helical content on average(92, 134). Although the reported CD spectra

have distinct minima at 208nm and 222nm - a finding indicative of considerable helical

content - estimating the precise helical content from CD spectra alone is

problematic(162, 163). For example, we used several different algorithms to quantify

the helical content from the published CD spectrum of alpha-synuclein isolated from

human red blood cells(92), and depending on the algorithm used, the amount of helix

varied from 10% to 80%. Hence, while the CD spectrum suggests that the helical

content of the tetrameric species is higher than that of the monomeric protein,

quantifying the amount of helicity from the CD spectrum alone is a non-trivial exercise.

In addition, the multimeric ensemble was generated using data from NMR experiments

that were performed at a concentration (0.5mM) that was at least an order of magnitude

greater than the concentration used for the CD experiments (-0.02mM). This is

important because the concentration of alpha-synuclein in vitro can influence its

secondary structure propensity and the precise effect may vary on the post-translational

state of the protein(136, 164, 165). Therefore it is not clear whether the published CD

spectrum reflects the structure of alpha-synuclein under the conditions used for the NMR

experiments.
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Lastly, we note that a limitation of our study is that the NMR data were obtained on an

alpha-synuclein construct that contains a 10-residue N-terminal extension relative to the

wild-type protein. While the experimental data provided useful constraints that could be

fruitfully applied to generate an ensemble, alpha-synuclein isolated from human

neuroblastoma and red blood cell lines does not have an N-terminal extension and

instead is acetylated at the N-terminus(92). Nevertheless, our construct shares

important characteristics with the N-acetylated protein. First, the monomeric form of the

construct bearing a 10-residue N-terminal extension has a CD spectrum that is similar to

that of the monomeric N-terminal acetylated form of alpha-synuclein(133) and both

constructs form tetrameric structures with increased alpha-helical content(92, 134, 136).

Lastly, monomeric forms of both constructs have similar aggregation profiles while the

tetrameric forms of both constructs do not aggregate(92, 134). These similarities

suggest that acetylation of the N-terminal and the 10 residues elongation of the N

terminal region in alpha-synuclein serve a similar purpose with regard to their effect on

the alpha-synuclein, albeit N-terminal acetylation may result in more dramatic effects to

the conformational distribution of the protein relative to the N-terminal extension.

Nonetheless, since the sequence of this construct differs slightly from the wild-type

protein, we cannot exclude the possibility that wild-type alpha-synuclein isolated from

other cell types, such as neurons or red blood cells, may not be well described by the

ensemble presented here.
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The Mechanism of Amyloid-P Fibril Elongation

The work presented in this chapter was published in the journal ACS Biochemistry,

Volume 53 (44), pp 6981-6991, on October 2 0 th 2014.

Abstract

Amyloid-P is an intrinsically disordered protein that forms fibrils in the brains of patients

with Alzheimer's disease. To explore factors that affect the process of fibril growth we

computed the free energy associated with disordered Amyloid-3 monomers being added

to growing amyloid fibrils using extensive molecular dynamics simulations coupled with

umbrella sampling. We find that the mechanisms of Af40 and AP42 fibril elongation

share many features in common, including the formation of an obligate on-pathway P-

hairpin intermediate that hydrogen bonds to the fibril core. In addition, our data lead to

new hypotheses as to how fibrils may serve as secondary nucleation sites that can

catalyze the formation of soluble oligomers - a finding in agreement with recent

experimental observations. These data provide a detailed mechanistic description of

Amyloid-P fibril elongation and provide a structural link between the disordered free

monomer and the growth of amyloid fibrils and soluble oligomers.
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Introduction

The amyloid-P (AP) protein, a 39-42 residue intrinsically disordered peptide(16), has

long been implicated in the etiology of Alzheimer's disease.(13) It is formed through

directed proteolytic cleavage of the Amyloid Precursor Protein by 1- and y-secretase

enzymes(83). A142, the 42 residue cleavage product, has been identified as the most

prone to forming aggregates, both in the form of low molecular weight soluble

oligomers, and insoluble amyloid fibrils.(15, 166-168) While it is most conspicuously

deposited in extracellular plaques composed of amyloid fibrils, a growing body of

evidence suggests that soluble oligomeric aggregates, rather than fibrillar aggregates, are

responsible for the neurotoxicity observed in Alzheimer's disease, leading to a shift in

focus away from the latter and towards the former in the effort to combat the

disease.(83, 169) Recently, however, it has surfaced that the rate of formation of these

oligomeric species of AP42 is dependent not only on the concentration of available

monomeric AP, but also of amyloid fibrils, suggesting that fibrils act as catalysts for the

formation of toxic oligomeric aggregates(76), and reinstating the fibrillar species as a

protagonist in the disease process.

The mechanistic details of the interplay between monomers, toxic oligomers and

insoluble fibrils remain unknown. Some studies have suggested the existence of a

common pathway in which oligomers are on-pathway intermediates in fibril formation,

while others propose that oligomers and fibrils are generated through independent

pathways.(170) It is likely that therapeutic strategies aimed at stopping the formation of

fibrils, which exhibit lower polymorphism than the oligomeric states, will be more

tractable in the short- to medium-term.(80) As such, it is of interest to map out the

process of transitioning from a disordered monomer of AP to a folded amyloid fibril in

order to identify key intermediates along the pathway that could form viable therapeutic

targets. In this article, we present a detailed computational analysis of AP42 and A140

fibril elongation using atomistic simulations. In-so-doing, we recover several

independent experimental observations, integrating them into a common pathway, and

60



ascribe a critical role to a p-hairpin intermediate in the process of fibril elongation.

Furthermore, we find parallels between the process of amyloid fibril elongation in the

context of a disordered protein, and the process of globular protein folding in general.

Materials and Methods

Model system

For the Af42 fibrils, the PDB ID '2BEG' structure was used as a starting point.(58, 110)

The structure contains 5 monomers, and was extended to 8 total monomers in the same

configuration (by extending the even end of the fibril) to separate the two ends of the

fibril by a greater distance. For the A140 fibrils, structures for the twofold positive- and

negative-stagger fibrils (2LMN and 2LMO in the PDB) were used as starting points.(108)

Molecular dynamics simulations were performed using a polar hydrogen model.(144)

Atoms within the fibril core are fixed while atoms in the free monomer were allowed to

move.

Reaction coordinates and umbrella sampling

The reaction coordinate was computed as the mean of the heavy-atom (N-O) distances

between the atoms involved in the intermolecular hydrogen bonds of the A142 (110)

and AP40 fibril models (108) (Fig. 1).

61



a
410

02

131

b

12

01

41N 390 39N

400 40N 380

370 37N 350 35N

38N 360 36N 340

330

34N

33N

320

310 31N

32N 300
N

18N 180 20N 200 22N 220 24N 240 26N 260

170 19N 190 21N 210 23N 230 25N 250 27N

N36 034 N34 032 N32 030

17N 170 19N 190 21N 210

160 18N 180 20N 200 22N
V

Figure 1. Schematic of the heavy atoms involved in inter-molecular hydrogen bonds

in the fibril core. The reaction coordinate t is defined as the mean of all the N-O

distances depicted. The two strands within a bound monomer are labeled P, and P2

Heavy atoms defining for the AP42 fibril are shown in (a), while those for AP40

fibrils are shown in (b).

We compute fA according to the continuous function developed by Vitalis et al. (12),

iN

1) 2,2,--,,, V), where N=24 for AP42 and N=30 for AP40,

corresponding to the number of residues in the system that have both a p and / angle

(the first and last residues have undefined p and 4 angles, respectively), and
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where (qpp, i/u) is the center of circular region in Ramachandran space with radius ri;

~~2

D) = (- - +)2+(, - Yi) 2 -r (the square Euclidean distance between ((i, 40)) and

the boundary of the basin); and Tp is a decay constant. Since differences between

angles can take two possible values due to their periodic nature, any distance in

Ramachandran space, including Di) and angle differences, e.g. (- -p) is interpreted

as the minimum possible distance in this space. The center of the basin (qpp, i/b) was

defined by cp3 = -152.O0o and /,~ = 142.000; i.e., the values used by Vitalis et al.(12)

The parameters Tp and rp were chosen to optimize agreement with strand assignments

made by DSSP. (147) More precisely, for a given structure in the PDB one can calculate

f- which corresponds to the fraction of residues that adopt extended structure

consistent with a beta strand - and one can compute the beta strand percentage using

DSSP. The parameters Tp and rp were chosen to ensure that these calculated values

would be similar for a relatively large set of structures chosen from the PDB. Only

structures consisting of a single chain (with no ligands were used). Moreover, we

ensured that any two structures in the final set had less than 30% sequence identity.

This resulted in 5827 structures. A grid-search was performed for values of T between

0.t bdeg 2 and 0.04deg 2 in increments of 0.Oaydeg 2 , and for values of r between 200

and 1000 in increments of 10.

In practice agreement with the DSSP strand content values were achieved by minimizing

1
the objective function ft =k -+k 2 m-1, where p is the correlation between the f, and

p

DSSP scores, m is the gradient of the linear regression of f against the DSSP-E score,

and kb and k2 are normalizing constants to ensure that the correlation term (1/p) and

the gradient term (m -1) have similar ranges over the dataset. Minimizing this function

yielded final parameters were o= 0.0029deg 2 and r = 620. With these values we
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obtained a correlation of 0.93 between f, and the DSSP scores, and the corresponding

linear regression had a gradient of 0.96.

The final potential energy function is of the form U,,b,,,,,,=Uc . +U+U where

g=kg ({- )2 and Uf =k (ff -f 0)2 , (defining a sampling window centered about

the values to and f,) and UCHARMM is the CHARMM potential energy function.(171) To

use this function for dynamical simulations, the U potential (along with its derivative,

which is needed for the force calculations) needs to be added to the CHARMM code.

This is described in detail in the Appendix. However, while one can use the form of

equation (1) for dynamical simulations, this is not optimal because it is not continuous at

the basin boundary, r.. This leads to unstable trajectories. Consequently, we also

developed an alternate form for f") (, y,) based on a continuous, two-dimensional

Gaussian function forff,:

f M (0i,V,)=exp - 0 2 +(i 2 (2)

The center and standard deviation of this alternate form were chosen to again match

agreement with calculated DSSP results (as outlined above). Preliminary data suggest

that both methods yield similar results, while the latter method had greater numerical

stability.

The harmonic force constants kf and k, were chosen to obtain adequate overlap

between histograms arising from adjacent umbrella sampling windows. Sampling was

initiated from reaction coordinate values closest to the fibril model configuration. In the

AP42 model, this corresponds to a value of f,=0.75 and =2.73A, i.e. f,=10/13 and

(=3A. fp was sampled with values of fo between 0 and 1 in increments of 1/13 (-0.08)

for the AP42 fibril, which roughly translates into biasing the monomer along its strand

contents two residues at a time, while for the A140 fibrils, increments of 1/6 (-0.17)

were used. t was sampled between values of 0=3A and 0=70A in both cases.

Increments of to were spaced by 0.5A for 3A to < 17A, and spacing increased to A
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between 17A to 42A, and to 2A onwards until to=70A for A142, while for AP0

increments of to were spaced by 0.5A for 3A < to < 10A and spacing increased to 1A

thereafter. k was fixed at 350 kcal mol'. kt was set to 1 kcal mol' A: for 3A o <

42A and to 0.01 kcal mol- K2 for 42A to s 70A. Initial data suggested that in certain

regions, sampling was insufficient in the reaction coordinate. In those cases additional

sampling was performed at additional values of t (Fig. S7).

The umbrella potential for the t reaction coordinate was included by using the RESD

(REStrained Distances) command in the CHARMM molecular dynamics package

(v36b2).(171) For each pair of values (fo, 0) (i.e., a "window") the system was

equilibrated for 5ns followed by a 45ns production run (Fig. S8 and Fig. S9). All

simulations utilized an implicit model for solvent. While simulations with explicit

solvent may provide a more realistic representation of the solvent environment, they

result in lengthy production runs to achieve convergence because relaxation of explicit

water at each value of the reaction coordinate can be very long. For this reason most

umbrella sampling simulations with explicit solvent have been applied to systems that

are considerably smaller than that considered in the present study, or have utilized a

one-dimensional reaction coordinate.(172-174) To reach the simulation timescales

needed to ensure convergence of the reaction coordinates in our umbrella sampling

windows, we conducted these simulations using the implicit solvent model EEF1(143)

because: 1) prior work suggests that one can obtain free energy profiles (for peptides

that form aggregates) with this model that is similar to what would obtain with explicit

solvent (175); and 2) other studies which looked at dimerization of peptides that form

amyloid precursors suggest that EEF1 produces results that are the closest to experiment

(relative to generalized born and analytic continuum electrostatic models).(176)

The initial systems were linearly heated to 310K over 100ps and then coupled to a Nose-

Hoover thermostat of the same temperature.(177) (Bond lengths involving hydrogens

were fixed using SHAKE, and simulations were performed using the CHARMM package

version 36b2 with a 2fs timestep (171). The total simulation time for both the A140 and

AP42 models was -100Lps. Values of the reaction coordinates from the trajectories were
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saved every 5ps, yielding 9,000 data points each per window. The resulting biased

probability distributions were recombined to generate the final unbiased PMF using

Grossfield's standard implementation of the two-dimensional Weighted Histogram

Analysis Method (2D-WHAM). (178, 179)

In addition to the potential of mean force calculations outlined above, we performed

unrestrained simulations for both Af40 and AP42 models. In each case the setups were

identical to the umbrella sampling simulations, except that the systems were linearly

heated to 450K, also over 100ps, after which production runs of 1gs were performed,

and no biasing potentials were employed.

Results

Our calculations began with a model of the AP(17-42) fibril core that was constructed

using constraints arising from different experimental observations (e.g.,

hydrogen/deuterium exchange, mutagenesis studies and solid-state NMR) (PDB ID

2BEG).(58, 110) This structure is composed of two intermolecular, in-register and I-
sheets formed by residues 18-26 (strand P1) and 31-42 (strand p2), with the first 16 N-

terminal residues being disordered and external to the fibril.(110) To study the process

of fibril elongation, we began with this model that we refer to as the "fibril core"

(consisting of residues 17-42), and calculated the free energy for the folding of an AP

monomer being added to the odd end of the fibril core (Fig. 2A). In practice, the free

energy calculations begin with the folded state (i.e., with the A342 monomer already

bound to the fibril core) and the free energy profile for unbinding (or unfolding) of an

A142 monomer is calculated, thereby enabling the simulations to begin with a well-

defined structure. Since the free energy itself is a state function, the final free energy

surface, in principle, is not determined by the order in which the calculations proceed.

The free energy associated with folding was calculated as a function of two reaction

coordinates: the average heavy-atom (N-0) distance between pairs of atoms that form

inter-molecular hydrogen bonds between the AP monomer and the strands at the odd

end of the fibril core, t, and the fraction of residues in the AP monomer adopting P-

strand secondary structure, fp. The former acts as a proxy for measuring the distance of
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the AP monomer from the fibril (Fig. 2B), and the latter ensures that we sample a wide

range of P-strand content as the monomeric disordered protein folds to the fibrillar state

(Fig. 2C) (91). The resulting free energy surface (FES) is a function of these two reaction

coordinates, and is also referred to as a potential of mean force.(180)
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Figure 2. Schematic of the elongation reaction and the reaction coordinates used.

The backbone trace of the AP monomer is shown red while the backbone trace of the

"fibril core" is shown in cyan. Strands in the bound state (A) are labeled as 11 (N-

terminal) and P2 (C-terminal). Different values of and f, are shown to illustrate

the reaction coordinate and the even and odd ends of the fibril core (B and C

respectively).

To construct a free energy surface we use umbrella sampling with implicit solvent. The

approach requires us to generate continuous "umbrella" potentials to ensure that a wide

range of values for the reaction coordinates are sampled.(180) A simple harmonic

function is used to restrain the average N-O distance to any desired value. To construct a

continuous function that would restrain the fraction of residues that would be in a

strand conformation, ff, we used a previously developed formalism that defines a 1-
basin in dihedral angle space(12) (cf. Methods). Once this function is specified, a simple

harmonic function can also be applied to restrain the system to any particular P-strand

content. By restraining the simulation to specified values of t and f, we can ensure that

a wide range of conformational space is sampled. Moreover, while sampling is employed

on a biased energy surface, the final calculated free energy is independent of the choice

of the umbrella potentials chosen and therefore represents the true free energy profile

calculated from an unbiased energy surface.(179, 180)

The resulting free energy surface has a broad global energy minimum corresponding to

the bound, fibrillar state, F (Fig. 3). From these data we identify the minimum free

energy path from the unbound state to the bound, folded state (centered about =3A);

i.e., the path that minimizes the work associated with moving from one state to the other

(Fig. 3). We can also identify paths that are within 3kT of the lowest energy path,

thereby providing information about the diversity of states that are sampled as the

system proceeds from the unfolded to the folded state.

Low energy paths connecting the unfolded state to the final folded state have many

features in common. To illustrate this we can identify 6 states that are sampled along
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the lowest energy path and corresponding structures that are at least 3kT from these

states (a, b, c, H, T* and F (Fig. 3). As the monomer approaches the fibril core it

preferentially makes contacts with residues 25-31 in the fibril that form turns between

the strands (Fig. 4, state a). Essentially, the monomer "rolls" along the fibril making

non-specific interactions between the monomer and exposed side-chain of Asn 27, as

well as the backbone carbonyl of Lys 28 and backbone nitrogen of Ala 30 (Fig. 5).

Association with the odd end of the fibril then ensues, followed by the formation of a

strand (P1) at the odd end (Fig. 4, state b) with the release of roughly 15kcal/mol (Fig.

3). While the 11 strand (residues 18-26, Fig. 1) of the monomer remains bound at the

odd end, the C-terminal residues sample a range of distinct conformations, some of

which continue to make contact with the turn residues in the fibril core. Progressive

formation of intramolecular hydrogen bonds eventually leads to the formation of

structures that contain a P-hairpin (Fig. 4, states c and H). Interestingly, structure (c)

contains turns at residues found to be solvent exposed in amide exchange NMR

experiments performed on AP42 oligomers, and closely resembles the proposed structure

in that same study, highlighting the possibility that soluble oligomers and fibrils share

common intermediates to their formation.(98) To reach the final folded state from H, a

free energy barrier of approximately 4kcal/mol has to be overcome. In the associated

transition state T*, intramolecular hydrogen bonds between strands P1 and P2 in the

hairpin are broken (Fig. 4 and Fig. 7). In the final state, these intramolecular

interactions are replaced with intermolecular hydrogen bonds between the AP monomer

and the fibril core (Fig. 7).
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Figure 3. Contour plot of the free energy surface of monomeric Afi(1 7-42) as a

function of proximity to the fibril bound state (t) and P strand content (fd), shown

for values of smaller than 35A. Points (a, b, c, H, T* and F) along the minimum

energy path between the unbound and the bound state are explicitly shown. Dotted

black lines represent a 3kT envelope around the minimum energy path. Only free

energies of states that have an average N-0 distance between the AP monomer and

the fibril core less than 35A are shown. The full PMF can be found in Figure 6.
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Figure 4. Structures for states a, b, c, H, T* and F. The middle structures are on the

lowest energy path and flanking structures have free energies that are at least 3kT

higher.

A B C

Figure 5. Example of non-specific interactions between the unbound monomer

(shown in Van der Waals representation) and the turn between strands (1 and P2 in

the fibril core (shown in liquorice representation) for 33A <<42A. The side-chain of

Asn 27, as well as the backbone carbonyl of Lys 28 and backbone nitrogen of Ala 30,

are exposed to solvent, and are therefore available for forming hydrogen bonds with

an unbound monomer. Hydrogen bonds involving the Asn 27 side-chain are shown

in panel B, while those involving the backbone nitrogen of Ala 30 are shown in panel

C. All hydrogen bonds shown in green have heavy atom distances smaller than 3.5 A.
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Figure 7. Transition from hairpin structure (H) through the transition state (T*) to

the fibrillar state (F). The minimum free energy path as a function of for t < 1 7A is

shown. Intermolecular hydrogen bonds are shown in green, while intramolecular

hydrogen bonds are shown in dark blue. In the hairpin state H, strand f1 (residues

18-26) forms the intermolecular hydrogen bonds with the adjacent strand in the

fibril core, while P2 strand (residues 31-41) forms intramolecular hydrogen bonds

with (1. In the transition state T*, most of the intramolecular hydrogen bonds

between strands P, and P2 are broken, and intermolecular hydrogen bonds. between

P2 and the fibril core form. In the bound state F, all hydrogen bonds are

intermolecular.

To explore how our findings depend on the choice of starting structure, and AP

sequence, we recomputed free energy surfaces using a different structure for the fibril

core. Since a number of fibril structures in the structural database are composed of two

or more filaments (108, 109, 122), we chose two structural models of Ap40 fibers that

were built using experimental constraints arising from solid-state NMR experiments.

While both structures consist of residues 9-40 as the N-terminal 8 residues were

disordered and contain two filaments, they differ with respect to the relative positions

and orientations of the P-sheets (PDB ID 2LMN and 2LMO, respectively).(58, 108) In

particular, the restraints used to construct these fibril structures were compatible with

both positive- and negative-stagger models and therefore two models could be built from

the data.(108) However, recent computational studies on models of A140 fibrils suggest

that only the negative stagger can form left-handed helical superstructures - the twist

that has been observed in scanning electron microscopy studies of amyloid

superstructures.(112, 113) Indeed our own data are consistent with these observations

as we find that the global free energy minimum for the AP40 structure with positive

stagger is not the fibrillar state (Figs. 8 and 9).
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Figure 8. Contour plot of the PMF for the association of AP(9-40) with a twofold-

symmetric, positive-stagger fibril as a function of proximity to the fibril-bound state

(t) and P-strand content (fd. Points (U, a, b and H) along the minimum energy path

between the unbound and the hairpin state are explicitly shown. Note that the

global free energy minimum corresponds to the hairpin state.
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Figure 9. Representative structures from the folding pathway of AP(9-40) on a

positive-stagger twofold symmetric fibril. Structures were taken from the umbrella

sampling windows corresponding to free-energy minima along f, at values of t

labeled in Fig. S5. The lowest potential energy structure within that umbrella

sampling window was taken as the representative.

The free energy surface for the negative-stagger, twofold-symmetric AP40, fibril has a

broad global energy minimum corresponding to the bound, fibrillar state (Fig. 10). As

before, we identified the minimum free energy path from the unbound state to the

bound, folded, state (centered about =3.5A) (Fig. 10), along with paths that are at

least 3kT from the minimum energy path.
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Figure 10. Contour plot of the PMF for the folding of Af(9-40) as a function of

proximity to the fibril bound state (t) and P strand content (f), shown for values of 4

smaller than 22A. Points (a, b, H, TI and F) along the minimum energy path

between the unbound and the bound state are explicitly shown. Dotted black lines

represent states that are at least 3kTfrom the lowest energy path. Only free energies

of states that have an average N-O distance between the AP monomer and the fibril

core less than 22A are shown. The full PMF" can be found in the Supporting

Information.

Low energy paths from the unbound state to the bound, folded, state share many

features in common with one another. The incoming monomer initially interacts with

the second filament of the fibril (state a, Figs. 10 and 11). The N-terminal P1 strand

then associates with the odd end of the first filament (state b, Figs. 10 and 11). Next,

the P2 strand forms intramolecular hydrogen bonds with the P1 strand, forming a

hairpin intermediate, H (Fig. 11, state H). The reaction then proceeds through several

states in which the intramolecular P1-P2 hydrogen bonds break and are replaced with

intermolecular hydrogen bonds between adjacent P2 strands at the odd end of the fibril,

ending in the fibrillar conformation, F (Fig. 12).
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Figure 11. Structures for intermediate states a, b, H, T1 and F. The A1340 structure

is composed of two filaments. The first filament is shown in cyan and the second is

shown in transparent blue. Regions of the incoming monomer (red) that are

associated with the second filament are shown as transparent as well. The middle
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structures are on the lowest energy path and flanking higher energy structures

having free energies that are at least 3kcal/mol higher.
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Figure 12. Transition from hairpin structure (H) through the transition states (T1

and T2) to the fibrillar state (F). The minimum free energy path as a function of g

for < 15A is shown. Intermolecular hydrogen bonds are shown in green, while

intramolecular hydrogen bonds are shown in dark blue.

Calculating a free energy surface requires one to pre-specify a set of reaction coordinates.

While the calculated free energy difference between the unbound and bound (folded)

state is independent of the path, the intermediates sampled along the path will depend

on the choice of the reaction coordinates. To test whether the observed intermediates

are artifacts of the choice of reaction coordinates, we performed unbiased unfolding

simulations of both the AP(17-42) and the AP(9-40) fibril core models. Although these

simulations do not allow us to calculate precise free energy differences between states
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(as opposed to the detailed free energy simulations described above), they do allow us to

probe the dynamics of unrestrained monomers as they unbind, without any bias

introduced by a pre-specified choice of reaction coordinate.

We performed a 1is unbiased simulation at 450K on the same Aj(17-42) fibril core used

in the umbrella sampling simulations, again with the EEF1 implicit solvent model. Over

the course of the unfolding simulation, we observe a transition from the fibrillar state, F,

to a hairpin state, H, in which strands P1 and P2 form intra-molecular hydrogen bonds,

which are then broken upon returning to the fibrillar state (Fig. 13). This is consistent

with an intermediate, hairpin state H which has a lower stability than F but which is

within thermal reach of F - observations in agreement with the lowest energy path on

our free energy surface (Fig. 7). Similar unbiased simulations at 450K of the A(9-40)

fibril core were performed, again using the EEF1 implicit solvent model. Conformations

sampled during the simulation are consistent with those derived from the free energy

surfaces (Fig. 14). More specifically, the trajectory proceeds from the fibrillar state F by

breaking the inter-molecular hydrogen bonds of the P2 strand via states TI and I1,

followed by association of the P2 strand with the second filament of the fibril structure

(state b) and subsequent dissociation - data in good agreement with states observed on

the calculated free energy surface (Fig. 12). We note that no hairpin state was

significantly sampled during the course of our A140 simulations - a finding consistent

with the observation that this state has a relatively high energy on the free energy

surface.

F T* H T* F

Figure 13. Structures sampled during the 1ips unfolding simulation at 450K of the

Af(1 7-42) fibril core. The states are presented in chronological order, and were

sampled at the following times: 500ns, 550ns, 600ns, 700ns and 850ns.
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4
Figure 14. Structures sampled during the ips unfolding simulation at 450K of the

AP(9-40) fibril core. The states are presented in chronological order, and were

sampled at the following times: Ons, 50ns, 125ns, 350ns, and 550ns.
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Figure 15. Contour plot of the PMF for the association of AP(9-40) with a twofold-

symmetric, negative-stagger fibril as a function of proximity to the fibril-bound state

(t) and P-strand content (f). Points (U, a, b, c, H, T1 and F) along the minimum

energy path between the unbound and the bound state are explicitly shown. Dotted

black lines represent a 20kT envelope around the minimum energy path. Note that

the global free energy minimum corresponds to the fibrillar state F.
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Discussion

AP aggregation lies at the heart of Alzheimer's disease pathology, in the form of amyloid

fibrils and lower molecular weight soluble oligomers. Through extensive umbrella

sampling simulations performed on experimentally-derived models of fibril structures,

we compute a free energy surface for the process of A142 and A140 fibril elongation.

We find that fibril elongation occurs on downhill free energy pathways, ending in the

fibrillar conformation, F, which corresponds to the global minimum on the free energy

surfaces of both AP42 and negative-stagger AP40 fibrils, but not in positive-stagger A340

fibrils. The inability of the positive-stagger A140 fibril to elongate is consistent with

prior data that suggest that positive stagger filaments cannot adopt the superstructural

helical twist that has been observed in scanning electron microscopic studies of amyloid

fibrils; i.e., positive-stagger protofibrils would not grow to form mature fibrils with the

correct helical twist. (112, 113)

Our results for both AP42 and AP40 suggest features that are common to the elongation

process for both proteins: 1) monomer associates with the odd end of the fibril by

forming an N-terminal P1 strand that forms intermolecular hydrogen bonds with the

fibril core; 2) association with the odd end of the fibril is followed by the formation of a

common intermediate, H, which takes the form of a P-hairpin where strand P1 forms

intermolecular hydrogen bonds to the fibril core and the P2 strand forms intramolecular

hydrogen bonds with the P1 strand; 3) disruption of the intramolecular hydrogen bonds

within the hairpin leads to formation of the final bound state where the monomer only

forms intermolecular hydrogen bonds with the fibril core. For both sequences, a P-

hairpin is an obligate intermediate on the folding pathway. These data are consistent

with the observation that sequestration of a P-hairpin conformation of A140 slows

aggregation. (97) Additionally, stabilizing the bend between the two beta strands leads

to a significant increase in the rate of fibrillogenesis - a finding also consistent with our

results. (181)

Several studies suggest that aggregation-prone states are sparsely populated in the

absence of fibril cores, and that stabilization of these states leads to an increase in the
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rate of fibril formation.(181-183) Indeed, in a previous study we generated structural

ensembles for AP42 and Ap40, in the absence of a fibril core, using a number of

experimental observables as a guide, and observed that p-hairpin conformations were

infrequently sampled for both AP42 and AP40.(121) Although these states are not

highly populated, an analysis of the ensembles suggests that AP42 is approximately 10

times more likely to adopt p-hairpin structures relative to AP40. Taken together, these

data help to explain why AP42 forms fibrils much faster than AP40; i.e., AP42 is more

likely to populate intermediates along the folding pathway. This observation becomes

even more pronounced in the presence of the fibril core. When the fibril is present, P-

hairpin structures for AP42 have energies that are only a few kT higher than that of the

native, folded, state while p-hairpin structures AP40 have energies that are significantly

higher than the native state energy (Figs. 7 and 12). These data highlight at least one

mechanism whereby the presence of fibrils can accelerate fibrillogenesis. More precisely,

when fibrils are present, some AP isoforms may be more prone to adopt aggregation-

prone structures that can be incorporated into a growing fibril.

A number of studies have attempted to isolate key molecular features involved in fibril or

oligomer growth of A40 or smaller amyloidogenic peptides derived from the A40

sequence. (184-186). A common feature that arises from these studies is that addition of

monomer to P-rich template representing either a soluble oligomer or a protofibril,

occurs via a "dock-lock" mechanism that is similar to the scheme originally proposed by

Esler et al. (187). Docking consists of an incoming monomer loosely associating to the

template in a manner such that it can readily dissociate. Locking involves the formation

of hydrogen bonds to the template, yielding a structure where monomer dissociation is

unlikely. In our studies, monomer initially interacts with the template via non-specific

interactions (Fig. 4 and 11, state a) that can involve regions other than the odd end of

the fibril. Locking (a relatively slow process) occurs when the P1 strand of the incoming

monomer binds to the odd end of the fibril. Subsequent structural rearrangements in the

monomer lead to the formation of the final folded structure.

83



The free energy surfaces were calculated as a function of two reaction coordinates: t, the

average N-O distance between the free monomer and the odd end of the fibril; and fp,
the fraction of residues that have phi-psi angles that are consistent with a beta strand.

Since the addition of a monomer to the odd end of the fibril can be viewed as a ligand

binding reaction, where the ligand changes its structure upon binding, we chose a

reaction coordinate, , which quantifies the distance of the monomer to the fibril core,

and that ensures that the monomer samples states that have the correct hydrogen

bonding pattern. The second reaction coordinate, fp, which quantifies the P-strand-

content of the incoming monomer, ensures that we sample a variety of P-strand-content

at any given distance from the fibril core. Indeed, similar reaction coordinates have been

used to study ligand binding and protein association.(175, 188-190) Nevertheless, it is

important to note that while the calculated free energy difference between the unbound

and bound (or folded) state is a function of state, and therefore independent of the path

chosen to go from the unbound to the bound state, the observed intermediates are

dependent on the choice of reaction coordinates. Although the relatively lengthy

simulation time for these calculations (-100 pts total for both the A140 and AP42

models) enables the system to sample a variety of different structures during the

umbrella sampling runs (e.g., Fig. 16a and b), the choice of the reaction coordinates will

influence the structures sampled on the lowest energy path.

a b c

2N40 N38 360 3 N 3 3 2N7-2

170 19N 190 21M 210 23N 230 25N 250 27M

Figure 16. Examples of structures sampled outside the minimum energy path. While

the reaction coordinate is a function of distances between atoms that are in close

contact in the hydrogen bonds register adopted in the fibrillar state F, alternate
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registers can be sampled even at small values of t,, as shown in the negative stagger

AP(9-40) fibril structure in (a), taken from the window centered about 0=3. OAand

fo= 1/6; (b) Hydrogen bonding pattern associated with figure shown in part (a); (c)

While the fo reaction coordinate we employed only explicitly considers fl-strand-

content, helices were nonetheless sampled in windows centered about a low fo, as in

the AP1(17-42) (structure taken from the window centered about to=22A and

fo=4/13).

Ideally one could gain insight into the folding pathway from unbiased simulations

starting from the unfolded (unbound) state under conditions where the folded state is

stable. Since folding occurs on time scales that are typically beyond the reach of

atomistic simulations, such simulations are typically not tractable. Information about the

folding pathway can sometimes be garnered from unfolding simulations, where folded

protein structures are subjected to conditions where the unfolded state is the most

stable; e.g., simulations at high temperatures. While it is clear that unfolding at high

temperatures is different than folding (which occurs at lower temperatures), a number of

studies suggest that high temperature unfolding simulations can capture qualitative

aspects of the folding process.(191, 192) In this regard we note that unbiased high

temperature unfolding simulations of the A142 and AP40 fibril core models sample

structures that are similar to those sampled on low energy paths from the calculated free

energy surfaces (Figs. 7 and 13 & Figs. 12 and 14). The fact that the unfolding

simulations yield observations that are similar to those arising from the lowest energy

paths, on the calculated free energy surfaces, argues that the lowest free energy paths

are not simply an artifact of the chosen reaction coordinates. Nevertheless, to further

assess the significance of these observations, it is important to compare observations

arising from the lowest energy path to known experimental observables.

In a recent study, Fawzi et al. performed dark-state exchange saturation transfer (DEST)

experiments on AP protofibrils, providing new insights into the dynamics of monomeric

AP on the surface of protofibrils (193). While these data suggest that residues in the P1
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and P2 strands are essentially equally likely to make direct contacts with the protofibril,

measured 15N transverse relaxation rates argue that residues in the P1 strand of A340 are

less flexible than residues in the P2 strand. Our findings are consistent with these

observations in that we find that AP40 binds to the odd end of the fibril through its P1
strand while residues in the P2 strand remain unstructured and make non-specific

contacts with the fibril core (Fig. 11, state b). Indeed, preferential association of the N-

termini of an incoming AP peptide was observed in another work examining the

energetics of fibril growth.(185) Moreover, a comparison of 15N transverse relaxation

rates of A140 and A142 further suggests that residues in the P2 strand of A340 are more

flexible than residues in the P2 strand of AP42.(193) Our data are also consistent with

these findings because folding pathways for A$42 contain hairpin structures that are not

present in the AP40 folding pathways (Fig. 4, state c). In these structures, residues in

the 12 strand of A@42 make a series of intramolecular hydrogen bonds that further limit

their flexibility. Lastly, a number of mutations have been described that are known to

affect the kinetics of fibril formation. For example, one study found that the Flemish

mutant A21G decreases the kinetics of fibril extension relative to wild type, while the

Dutch mutant E22Q increases it.(194) Another found that the Arctic mutation E22G

increased the rate of protofibril formation.(195) It is interesting to note that these

mutations and several others cluster in a region of the AP peptide that corresponds to the

P1 strand of the fibril structures we study (Fig. 1).(195) Since our data suggest that the

P1 strand associates first and most stably with the odd end of the fibril, it is likely that

mutations that increase or decrease the propensity for strand formation in this region

would affect fibrillization kinetics.

While the free energy surfaces for A142 and A@40 fibril elongation share common

features, there are significant differences between them. The main difference is that the

AP42 monomer undergoes a phase where it essentially "rolls" along the fibril, making

contacts with fibril residues that form turns in the structure, before attaching to the odd

end, while this behavior is not seen in low energy paths associated with AP40 folding.

Moreover, the A142 folding pathway involves the formation of an S-shaped hairpin
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structure (Fig. 4, state c) - a structure that does not occur in the A@40 fiber elongation

pathway. Recent experimental data, in the form of kinetic assays, selective radiolabeling

and cell viability experiments, suggest that AP42 fibrils catalyze the formation of soluble

oligomers through a secondary nucleation pathway (76). Rolling of AP42 monomers on

the fibril surface may provide a mechanism for increasing the local concentration of

monomeric states. In this sense the fibril surface, particularly regions that form turns in

the fibril structure, may provide a secondary nucleation site that enables monomers to

self-associate at a higher rate than would be allowed in the surrounding solvent.(76)

Moreover, the AP42 folding pathway involves the formation of an S-shaped structure

that has been postulated to exist in AP42 oligomers(98), a process likely facilitated by

the additional 2 hydrophobic C-terminal residues in A142. These data are consistent

with the notion that soluble oligomers and fibrils share common intermediates with

regard to their formation. Since soluble oligomers can induce fibril formation, the

presence of the fibril can induce additional fibril deposition via catalyzing the formation

of soluble oligomers.(196)

While these results are encouraging, it is important to note that some of these differences

between the folding pathways of AP40 and AP42 may be due to the fact that the AJ40

starting structure has two filaments while the AP42 starting structure has one filament

(the only available fibril structure for AP42 at the time that this study was performed).

It is difficult to know how our results would generalize if these calculations were

performed on Af42 structures that have multiple filaments. In this vein, we note that

after the completion of this work a structural model of A140 fibrils was reported that

was derived from seeded fibril growth using brain extracts from a patient with

Alzheimer's disease.(111) Since this structure is significantly different from the other

fibril structures that have been described in the literature, it is not clear how our findings

for Af40 would generalize to these data.

An additional limitation of our study is that the free energy surfaces were computed

using an implicit solvent model. Although the solvent model was chosen because it has

been shown to yield calculated free energy profiles that are similar to what would be
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obtained with explicit solvent (at least for some amyloidogenic peptides)(175, 176),

explicit water molecules may play an important role in the kinetics and thermodynamics

of AP peptides.(183) Nonetheless, these simulations provide useful insights into the

aggregation process and, more importantly, a set of hypotheses that provide fodder for

future experiments. For example, our data also suggest that mutations affecting the

bend between the P1 and @2 strands (residues 23-31) may hinder rolling of incoming

monomers and consequently the rate of soluble oligomer formation, albeit it is unclear

how this observation generalizes to different fibril morphologies and AP isoforms. In

addition, our results argue that longer fibrils would present a larger surface area on

which monomers could self-associate, thereby suggesting that the rate of soluble

oligomer formation would be increased in the presence of larger the fibrils.

Overall the calculated free energy surfaces provide a new testable hypothesis regarding

the mechanism of AP fibril elongation. Indeed, we argue that fibril growth involves the

formation of an obligate intermediate, corresponding to a hairpin structure, which forms

hydrogen bonds to the odd end of the fibril core. Identification of such an intermediate

provides a tunable, druggable pivot in the folding pathway to fibril elongation, and

provides a check-point that can be exploited for basic research aiming to elucidate the

mechanisms underlying the aggregation process.
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All-atom simulations suggest that nucleation of an

amyloidogenic peptide proceeds through a helical oligomeric

intermediate

Abstract

The aggregation of proteins into amyloid superstructures lies at the heart of several

human diseases. Aggregation in vitro occurs in two phases: a lag-phase, where nuclei

that seed aggregation are formed, and a growth phase, where existing amyloid fibrils are

elongated. In this study we explore the early stages of nucleation for an amyloidogenic

peptide derived from the non-amyloid-P component of -synuclein using all atom

molecular dynamics simulations in explicit solvent. Simulations are notable for the rapid

formation of a helical multimer that unfolds and refolds on the microsecond timescale.

During unfolding monomers in the oligomeric unit sample extended states consistent

with a P-strand. From these data we derive a model for the nucleation of amyloidogenic

peptides where P-sheets form in a stepwise manner via the association of extended

monomers arising from unfolding of a dynamic helical oligomer. These data provide

new insights into early stages of the nucleation process.
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Introduction

Protein aggregation is a wide-spread phenomenon that figures prominently in many

human diseases. The most commonly described form of aggregation-related disorders,

collectively termed amyloidoses, involve the formation of protein deposits in the form of

amyloid fibrils, which are highly repetitive protein superstructures enriched in p-sheets

(108, 110, 111, 122, 197). The formation of amyloid aggregates is one of surprising

generality, and occurs in a number of otherwise unrelated diseases, including Type 2

diabetes (198, 199), prion disease (200) and various forms of dementia (75). In

particular, the aggregation of intrinsically disordered proteins (IDPs) into amyloid fibrils

is believed to play a role in the pathogenesis of neurodegenerative diseases. For

example, the pathological hallmarks of Alzheimer's and Parkinson's diseases are the

presence of amyloid aggregates of Amyloid-P and Tau on the one hand (201, 202), and

a-synuclein on the other (105), all of which have been shown to be intrinsically

disordered in the monomeric state (16, 135, 203). Several studies suggest that the

primary toxic species in these diseases are soluble oligomeric aggregates rather than

amyloid fibrils (8, 15, 79). While the precise mechanism of toxicity has yet to be

elucidated, it is evident that aggregation of otherwise disordered, predominantly

monomeric proteins plays an important role, and the process appears to be of great

generality across different diseases (75). As a result there is considerable interest in

understanding the aggregation process.

Amyloid formation occurs in two phases, an extended lag phase in which little detectable

fibrillar material is formed but during which nucleation occurs, followed by a rapid

growth phase in which amyloid fibrils are produced until the surrounding monomeric

pool is depleted (204). Thus far, the end products of this process, amyloid fibrils, have

proven to be the most amenable to structural characterization due to their highly

repetitive and stable nature (108, 109, 197, 205). The events occurring during the

earlier phases, however, remain a mystery. While it is likely that the nucleation process

ends in protofibrillar species that can form the basis for fibril growth, the structural
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events leading to the formation of P-strand rich protofibrils from individual monomers

are unclear. This is in large part due to the technical difficulties associated with

characterizing metastable species that are likely to occur on timescales that are too short

to be tractable by traditional methods for structure determination. In the present study.

we present a 34.6ps all-atom simulation of a system of consisting of amyloidogenic

peptide monomers at a concentration known to promote the formation of amyloid fibrils.

Our goal is to gain insight into the earliest events in the nucleation process.

Results and Discussion

We chose to simulate the non-amyloid-P component region, NAC(8-18), of a-synuclein,

an 11 residue hydrophobic segment, having the sequence GAVVTGVTAVA, which has

been shown to be the minimum fragment of a-synuclein to induce toxicity and aggregate

into amyloid fibrils in vitro (154). Circular dichroism experiments indicate that this

peptide natively adopts a random coil structure (206). Two sets of simulations were

performed. We first performed simulations of a single peptide in TIP3P water to study

the conformational preferences of the peptide alone. In a second set of simulations we

placed four copies of the peptide into a TIP3P cubic solvent box approximately 80A

across, corresponding to a concentration of 5mM - a concentration that is 5 times larger

than what is needed for fibers to form in vitro (154). These latter simulations were

chosen to see how conformational preferences of this amyloidogenic peptide changes

under conditions that favor fibril formation. In both cases salt was included to achieve a

concentration of 150mM NaCl. Both systems were equilibrated for 2ns before being

loaded onto a 512-node Anton special-purpose supercomputer, designed specifically for

molecular dynamics simulations, for production dynamics (207).

Simulations of the isolated NAC(8-18) peptide reveal that the peptide samples

conformations that are enriched in both helical and strand content (Fig. 1). The average

helical and strand contents of the monomer are 0.44 0.35 and 0.11 0.13,

respectively (Fig. 1). In addition to the fully unfolded state (U, fractional secondary
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structure content < 0.2), two types of helical conformations are sampled during the

trajectory - a partially helical conformation (P, helical content 0.2-0.7), and a fully

helical state (H, helical content >0.7). State P is sampled most frequently and accounts

for 43.3% of structures sampled. State H occurs in 25.6% of structures sampled from the

trajectory, and state U occurs in 12.5% of structures (Fig.1). In addition, the system

occasionally samples more extended states: structures with a strand content of more

than 0.5 (E, for extended) are sampled 1.2% of the time, suggesting that extended states

are accessible to the monomer but are less favorable than the helical conformations (Fig.

1).
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Figure 1. Helical and strand contents (red and blue, respectively) of monomeric

NAC(8-18) over the course of the 7.6ps production run, as determined by DSSP. Also

shown are representative structures for the different states discussed in the text.

Helices are represented in red and strands in blue.
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Simulations of the high concentration system display markedly different behavior. In

these simulations monomers assemble into helical structures within 3ps and a helical

tetramer is formed by 51ps (Figs. 2A and B). The average helical and strand content of

the system consisting of four-monomers is 0.87 0.24 and 0.02 0.07, respectively.

These data suggest that at high concentrations helical states are favored, relative to the

isolated peptide simulations.

A 0 B
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*

o * 0
* 0

o * 0

Figure 2. (A) Initial state of the four monomer system at the beginning of the

production run. Monomers are represented by cartoons, Na' and Cl~ ions are shown

as yellow and green spheres, respectively, and bulk TIP3P solvent is shown in

transparent. (B) Snapshot of the helical tetrameric state, taken after 5 ys of

simulation time.

Once the helical tetramer is formed, stochastic unfolding and refolding of monomers in

the tetramer occurs on the microsecond time scale. Over a total of 34.6p1s, several

distinct partially unfolded states can be identified: the folded helical tetramer, Hn,

occurring in 57.2% of structures sampled from the trajectory; structures containing one

partially unfolded monomer (Hn 1 -P, occurring in 33.4% of structures) or fully unfolded
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monomer (Hn 1 -U, occurring in 6.8% of structures); and structures containing a monomer

that adopts an extended conformation, (H 1 -E), occurring in 0.8% of structures (Fig. 3).
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Figure 3. Secondary structure contents of each of the four NAC(8-18) monomers over

the course of the 34.6ps production run, as determined by DSSP. Helical content is

shown in red, and strand content in blue. Also shown are the dominant states

discussed in the text (whose secondary structural elements correspond to their DSSP

assignments): H,, H,-P]j, Hn.,-U and H,-E. The arrows indicate both the time points

from which these species were extracted.

Based on these observations we propose a model for the stochastic events leading to the

nucleation of NAC(8-18) and the formation of protofibrils (Fig. 4). Freely-floating

monomers fluctuate between states U, P and H. Random encounter of monomers leads
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to the formation of dynamic helical aggregates, H., composed of n monomers in state H.

Stochastic unfolding of helical monomers to states P or U occurs while the monomers

themselves remain in contact with the helical oligomer (e.g., states Hn1 -P, Hn 1-U, Hn1 -E)

- a mechanism that allows monomers to sample additional states while remaining in

close proximity to other monomers. Most of the time, the structure containing an

extended monomer, Hn1 -E, folds back into state H, (Fig. 3). However, in the extended

state a monomer is available to make backbone hydrogen bonds with other nearby

monomers that are in the helical oligomer. In this model conversion from an entirely

helical oligomer Hn to a strand-based oligomer Sn occurs in a stepwise fashion.

Stochastic unfolding of individual helices occurs one by one, allowing their backbone

donors and acceptors to become exposed and available for the formation of inter-

molecular backbone hydrogen bonds (Fig. 4).

H P U

H,, HI-P H,- HaE Sn

H 2-S2 --

Figure 4. Proposed model ftr the early stages of aggregation of the NAC(8-18)

peptide. States H, P, U, H., H,-P, Hn, -U and Hn_-E are described in the text. Hn-2 -S2

corresponds to a state in which two adjacent monomers are extended, and form a

sheet through backbone hydrogen-bonds. S, corresponds to a state in which all

monomers within the oligomer nucleus are extended and arranged in a sheet.
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This offers an explanation for the slow nature of nucleation, which is dependent on

stochastic process requiring the crossing of multiple, reversible check-points before

reaching a (meta)stable nucleus S, that can form the basis for further aggregation by

acting as a template.

While the literature on the early stages in the nucleation process is sparse, early

formation of helical structures prior to the formation of beta-strand rich fibrils has been

experimentally described for some systems. The myostatin precursor protein, for

example, whose aggregation has been linked to sporadic inclusion body myositis, showed

a distinctly helical CD spectrum for early-stage soluble aggregates, which turned into a

spectrum indicating a sample rich in strands after overnight incubation (208). Similarly,

a class of synthetic tri- and hexapeptides, rationally designed to simulate fibril assembly,

also progressed through helical oligomeric intermediates. These helical species appeared

in a concentration-dependent manner starting at roughly 1mM and turned into strand-

rich aggregates over time (209). Secondary structure content was determined by

circular dichroism spectroscopy and the concentration-dependence of aggregate

formation was inferred from X-ray fiber diffraction studies (209). Our model is also

consistent with observations arising from a simulations arising from a simplified tube-

like model of a peptide whose native state is helical but that is known to from amyloids

(210).

The current study argues that the formation of helical aggregates is an early step in the

formation of amyloid structures even if the amino-acid sequence in question does not

have a strong preference for helical structure. The formation of a dynamic helical

oligomer occurs rapidly, followed by stochastic unfolding and refolding of its constituent

monomers on the microsecond timescale. Stochastic unfolding facilitates the sampling

of extended monomeric structures that can, in principle, self-associate. These

observations form the basis for a physically viable model that we hope will fodder

additional studies of the early stages in the nucleation process.
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Materials and Methods

An all-atom model of the NAC(8-18) peptide, with sequence GAVVTGVTAVA, was

created and minimized in CHARMM. The N-terminus was capped with an acetyl group

and the C-terminus was capped with an N-methylamide group, in order to mimic the

behavior of NAC(8-18) fragments in the context of the full-length NACP or even full-

length a-synuclein and avoid spurious self-association occurring due to do interactions

between charged termini. The monomer system was solvated in a cubic TIP3P lattice

and 150mM NaCl. The four monomer system was created by placing the monomers in a

plane, with their centers of mass translated 25A in separate directions from the starting

structure before adding TIP3P water and 150mM NaCl. Both systems were then

equilibrated for 2ns in CHARMM, before being loaded onto a 512 node Anton special-

purpose machine for the production runs. Production runs were performed in the

CHARMM22 forcefield (211) with periodic boundary conditions, using 2.5fs timesteps

and the Multigrator integrator at constant pressure and temperature. Anton uses the k-

space Gaussian split Ewald method to compute electrostatic interactions: short-range

electrostatics were computed directly using Coulomb's law, while long-range interactions

were computed on a particle mesh using an Ewald sum (207). Structures were sampled

from the trajectory every 240ps. Secondary structure contents were computed using the

DSSP program (147).
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Conclusions and future directions

This dissertation details three separate studies of aggregation in IDPs related to

neurodegeneration. In all three studies, we observe a similar phenomenon: a

polypeptide chain that is not prone to adopting ordered, stable structure in its

monomeric state can nonetheless adopt it when in the proximity of a binding partner,

which in the aggregation process is usually at least one other protein of the same type.

Often, these neighboring proteins will need to be in a particular conformation in order to

facilitate association with the incoming monomer. In the first study, we showed that

NMR data suggests the existence of a small amount of multimeric conformations of

alpha-synuclein containing extensive secondary structure content, a property that is not

observed in the free monomeric protein. In the second study, we showed that the

relatively flat free energy landscape of a disordered monomer of A@ is transformed

through proximity to an amyloid fibril in such a manner as to then have a well-defined

global free energy minimum corresponding to the folded, bound state. Finally, we

showed in the third study that while the minimum aggregating fragment of alpha-

synuclein only adopts a small amount of secondary structure in isolation, it becomes

much more prone to adopting a conformation rich in secondary structure when in the

presence of other monomers at a concentration known to lead to aggregation. These

findings highlight the fact that the free energy landscape of a protein (and particularly

an IDP) can only be defined for a particular physico-chemical environment. If this

environment changes, the energy landscape changes, and therefore so does the set of
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thermally accessible conformations and their relative frequencies. This concept should

not be unfamiliar to people who consider prion proteins, which operate on this very

principle, and indeed there is evidence to suggest that alpha-synuclein behaves like a

prion by inducing aggregation in neurons through the influx of aggregation-prone

conformations from their neighbors. However, most studies of IDPs are performed in

vitro in relatively homogeneous samples, so it is likely that the observed energy

landscapes differ significantly from the crowded environment of the cell. One could

argue that this renders the concept of a free energy landscape rather ill-defined for an

IDP in anything but the most dilute and homogeneous sample, but this difficulty can in

part be overcome by appropriate consideration of specific, well-defined environments the

protein might experience in its biological lifetime, such as the presence of lipids,

neighboring aggregates or binding partners of an entirely different type, and restricting

the discourse of the protein's energy landscape to that particular environment. In

addition, improvements of in vivo experimental techniques, such as in-cell NMR (137),

will allow us to hone in on clinically relevant environments.

While it is the author's opinion that these studies show that useful insights can be

generated by considering the energy landscape of IDPs in different situations, either by

leveraging experimental data with computation, or with computational modeling alone,

it is clear that we are far from a complete description of the aggregation pathway of even

a single IDP. Models of these pathways and their constituent intermediates remain

highly speculative and coarse-grained in nature, and experiments are often inconclusive.

This is not for want of trying, but rather is an inevitable consequence of the limitations in

the state-of-the-art in both experimentation and computation relative to the magnitude

of the challenge of characterizing an IDP.

Difficulties in studying these systems arise from the fact that IDPs, like all proteins, are

too small to observe directly and in addition, change shape very rapidly, adopt a very

large set of structurally dissimilar states, and aggregate on very slow timescales. Thus,

improvements in our ability to characterize IDPs will have to rest on our ability to obtain,
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on the one hand, very high resolution measurements in both time and space in order to

capture the conformational propensities of individual monomers, and to bridge the gap

with the slow timescales of aggregation on the other. As far as spatio-temporal

resolution is concerned, the advent of time-resolved, single-molecule techniques such as

single-molecule FRET are promising in their ability to observe the backbone dynamics of

individual IDPs in vitro (117), and maybe even in cellulo, though the quality of the

structural information these techniques could offer will depend on the extent to which

the covalent attachment of fluorophores at different sites on the polypeptide chain

affects the underlying energy landscape of the protein. While we know that the

wavelength of visible light places a hard limitation on what can be observed directly with

our eyes, it is not impossible that alternate forms of microscopy may one day allow the

direct observation of conformational changes in an individual protein, as evidenced by

the increasing development of nanometer-level resolution single-particle tracking

techniques (212). As experimental data improve in quality and resolution, they will

become less and less degenerate, and describe the protein's conformation more uniquely

at specific time points. This could allow for the construction of higher resolution

conformational ensembles with lower uncertainty using the same formalism described in

the first study. These Bayesian weighted ensembles could further be strengthened by

inclusion of previously obtained structural data on the same system in the same

conditions into the prior distribution for the weights (in the first study, the prior was

chosen to be an uninformative prior, reflecting a state of ignorance about the underlying

weights).

Bridging the gap between the timescales of individual monomer dynamics and

aggregation events will likely involve advances in computing as well as experiment.

Increasing molecular dynamics forcefield accuracy with better benchmarking to

experimental IDP systems in combination with improvements in application-specific

computing hardware will allow for atomistic investigations of molecular events at ever

increasing timescales, but the fact that the aggregation events pertaining to

neurodegeneration occur on the timescale of a human life (as evidenced by the fact that
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neurons are more susceptible to housing aggregated forms than other cells due to their

longevity) casts a looming shadow over these efforts by highlighting the number of

orders of magnitude separating the timescales of these two regimes. The extent of this

timescale separation can presumably be reduced through appropriate tweaking of the

experimental conditions, much as is done in amyloid aggregation assays (e.g. by

artificially increasing the concentration of protein in vitro), and through an artful

distillation of the essential features of the system into simpler, more tractable

computational models. Ultimately, however, we need not be disheartened by the extent

of the difficulty in studying IDPs, as they showcase the most sophisticated, naturally-

occurring nanotechnology in existence in the known natural world, and are likely to

continue to fascinate and bewilder us for many years to come.
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Appendix

Al - Definition offe, a reaction coordinate quantifying strand content

We define the fraction of strand content in a polypeptide chain composed of N amino

acids, computed as a function of its backbone dihedral angles, as the average strand

content of each residue:

f13(011,Y/1,2,Y/29--0N ,Y N N -2 i2f O I

where the sum omits the contents of the first and last residue, i.e. residues that do not

have both p and 'T angles that are well defined. The content of an individual residue is

defined according to Vitalis et al. (12):
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f)8 if(,-p1)2 +(y,- y,)2<r2
f8 ( 0,,, =

exp (-r,D g ) otherwise ,(1.2)

where

D (, 8p)2 + (Vf -8)2 -r8 (1.3)

the square of the Euclidean distance between (cPi, i) and the boundary of the basin.

Equation (1.2) defines a circular basin in Ramachandran space, with center (#pa, ipp) and

radius r,, in which the strand content for that residue has a value of 1. Outside this

basin, the strand content decays exponentially with decay constant To. Note that due to

the periodic nature of dihedral angles, any distance in Ramachandran space, including

angle differences and D), is assumed to be the minimum possible distance in that space.

The parameters used in works described in this document were (op, P) = (-152.0*,

142.0*), r, = 62.00 and 'p = 0.0029deg-2.

The circular basin for strand content does not assign a 'preferred' set of dihedral angles

for strand content, but rather considers any angles within the basin to be equal in this

regard. This is based on the understanding that the probability distribution g( ,f) of

backbone dihedral angles across protein structures deposited in the Protein Data Bank

(PDB) (58) is similarly flat in this region. In contrast, inspection of the helical region of

g(j,#) shows a clear peak, and a non-zero skewness. Thus, a definition for the fraction

of helical content, f., based on dihedral angles would better fit the helical region of the

probability distribution across the PDB with a function that has a clear maximum, such

as a 2-dimensional Gaussian. If one wished to capture the skewness observed in the

helical region of g(,f), however, a distribution with a non-zero third moment would

be required.
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A2 - Derivation of molecular dynamics forces arising from introducing

umbrella potentials in fp
Umbrella sampling is performed by adding 'umbrella potentials' to the potential energy

being used to evaluate your system (e.g. a molecular dynamics potential):

U,,,a, = U,,e + Umbrella .An umbrella potential will typically involve applying a harmonic

restraint to a reaction coordinate of choice , where the harmonic well is centered about

a specific value (o. A potential of mean force (PMF), or free energy surface (FES), can

then be computed from the umbrella sampling windows, to obtain the free energy of the

system as a function of the reaction coordinate, G( ). When constructing a FES as a

function of fp, an umbrella potential would take the form U., = k, f, - f0 )U If the

umbrella sampling is to be performed using molecular dynamics (MD), it is necessary to

differentiate the umbrella potential in order to compute the forces acting on the system.

In the case of simple reaction coordinates such as inter-atomic distances, molecular

dynamics packages will frequently contain pre-packaged functions that can be used to

introduce restraints (e.g. RESIistance in CHARMM (171)), and the forces will added to

the pre-existing forcefield automatically. In the case of a more elaborate reaction

coordinate such as f,, the forces need to be hardcoded into the molecular dynamics

forcefield. This subsection will detail the calculation of these forces and how they can be

applied to the already existing CHARMM forcefield.

The forces acting on a given atom at position i are calculated from F'o, = -VUto.,. After

introducing an umbrella potential to the CHARMM forcefield, our total potential energy

is Utl = UCHARMM + U . Since the gradient V is a linear operator, it is clear that

FH= FCHARMM f

In other words, if we can compute the negative gradient of the umbrella potential,

-VUf , for a given atom, it can simply be added to the force already acting on that atom

by the CHARMM forcefield. We find that
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dU
-V U=

f/fSdi

=-2kf(ff - 0 )

2kfN 0

0 ifD(,) <0

dD2
-To exp (-TpD () x

dQD2

dx-

2 D2  F

0( ) 2 +(Vi 
[_rVY2

(2.4)
ay]

Thus, after application of the chain rule, we are left with the gradients of each backbone

dihedral angle i with respect to Cartesian coordinates, -oi and
Di

i . These can be

computed using the procedure for computing a dihedral angle derivative first
aJi

described by Arnaud Blondel and Martin Karplus in 1996 (213), detailed below.

A proper dihedral (or torsion) angle is defined for four connected atoms with

coordinates r., r., r, and r,. We define a first set of intermediate vectors

F=r-r. G=r-r H = r,-r ,

from which we can construct a second set of intermediate vectors as

A=FOG B=H®G
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(2.2)

d I
and

(2.3)

(2.5)

(2.6)
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The dihedral angle of interest, q, can be defined by the angle between A and B as

A-B

We can then calculate the derivative of p by using the derivative of cos(gp) as follows:

Co ( P -c os (2
or acosq, ar

Since

- (P (2.1
acosp sinV

7)

.8)

.9)

10)

we obtain

aT -1 acos.
ar sinp ar

(2.11)

In order to evaluate from
ar

(2.11), we apply the chain rule sequentially to

break it down to derivatives with respect to the second intermediate vectors A and B,

followed by derivatives with respect to F, G and H. Using the definition of cos(g) in

(2.7), we find:

acosp -B A-B a(1 AI

aA "AIB' JB aA
(2.12)

Using the identity
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aA A'
(2.13)

we obtain

cOs _ 1 (2B -(A -B)A).
' A B/

(2.14)

In addition, using the double cross product formula, we have the identity:

AO(BOA)=A2B-(A-B)A. (2.15)

Plugging (2.15) into (2.14) and comparing with (2.8), using the fact that G is orthogonal

to both A and B, we obtain:

acosp _ 1 sin()AOG.
aA A2 G

We can then replace r with A in equation (2.11), and substituting for acos(9 )

we find:

= 1 G A.
3A A2 G

(2.16)

in (2.16)

(2.17)

This step involves sin(p) ,SO
smnp)

(2.17) is true for all p with sin(p)# 0. However, (2.17) is

independent of vectors H and B and thus is independent of .p, which means that it also

extends to the case sin(p) =0. This lack of discontinuity in the torsional derivative is the

motivation behind this method for computing forces relating to a torsional potential

(213). Appealing to the vector definitions in (2.5) and (2.6), interchanging i <-1 and

j <- k leads to the symmetries F <- H, G <- -G, A <- -B and p < -(p. Using this fact, we

have the corresponding equation:
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-=P BOG.
aB B2 G

(2.18)

Next, we determine the derivatives with respect to F, G and H through application of the

chain rule. Using (2.6), we find:

aA a(F®G) _
aF aF

(2.19)

where I is the identity matrix and I ®G is defined such that I G* V = V ® G, where V is

any vector. Using equations (2.17) and (2.19) and the chain rule, we obtain:

aqp _apV A 1
aF aA aF A2GJ (G®A).IOG.

The transpose sign on is used to emphasize the importance of the order of the terms
. A

in the chain rule because
aA.-is antisymmetric. Evaluating
aF

(2.20) using the definition of

IG yields:

-= 1 (G@A)®G.
aF / G

(2.21)

The minus sign occurs due to the antisymmetry of (2.20). With equation (2.15) and the

identity A -G=0, (2.21) reduces to:

a(p G
F A2 A.

(2.22)

By symmetry, we have

-=-B.
JH B2

(2.23)
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Using the chain rule, the equivalent of (2.19) to obtain -=F®&I and
WG

-=H®DI and
aG

their antisymmetry, we find that

aG aA aG aB aG (2 94)
1 (G®DA)®F- 1 (GOB)@ H

A2 GI B2 IG

We replace A and B by (2.6) and use (2.15) to obtain:

a_ (G2F-(F-G)G)®F (G2H-(H-G)G)®H

aG A2|GI B2 GI

Using F ®F=0 , H ®H =0 and (2.6), we obtain:

a~p (F-G) A H -G)= 'A-2'B . 2
GA2G B2GI

Finally, we evaluate the derivatives of F, G and H with respect to r, to obtain the final

25)

26)

expressions for .
i3r

The non-zero terms can be seen from (2.5):

aF I F
-=1, -- =-I,

ar r.

3G 3G
-=1,--=-I,

ar. arkI

= -I
ar,

and -=I.
ar,

Combining all the above results, we obtain:

a(pG
- A

ar A 2

a G (F.G (H.G
I=-A+ )A- B

ar A2 A 2 GI B2 G
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a1  (H-G) (F-G) -- B (2.30)
= B- A B-230

ar, B2 G A2 G B 2

- B . (2.31)
ar, B 2

A3 - Implementation in CHARMM

These equations (2.28-2.31) can be plugged into (2.4) to complete the overall derivative,

by replacing for -VU 1 , where (i, j, k, 1) correspond to (Cmi, Nm, CAm Cm) for the 4 angle

and (Nm, CAm, Cm, Nm+1) for the * angle of residue m's backbone, respectively. For each

backbone atom in residues that have well-defined 4 and * angles, these expressions can

be added to the force arrays in the already existing CHARMM forcefield. These arrays

describe the forces acting on each atom in the system. In addition, the total potential

energy must be updated by adding the potential energy arising from the additional

calculations to the already existing CHARMM potential energy. Both of these tasks are

accomplished by populating the otherwise blank USERE subroutine in the

source/charmm/usersb.src source file of the CHARMM source code. This subroutine

allows the user to specify additional calculations that will be performed at every timestep

of the simulation. Its inputs can be modified to include the force arrays or any other

global CHARMM variable, provided calls to this subroutine are appropriately updated

throughout the CHARMM source code.

In the code, one specifies a minimum f, for the umbrella potential Uf =k fp -fo).

The whole CHARMM package can then be recompiled to yield an executable that will

implement the desired umbrella potential. In order to perform umbrella sampling, the

user would have to recompile separate executables for each increment in fo between 0

and 1 that one wishes to consider. The above method can be implemented across the

entire polypeptide chain (i.e. from the second to the penultimate residue), or for specific
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regions of it, as desired. It goes without saying that the number of residues considered

should be an integer multiple of the number of increments in increments fo for the

reaction coordinate to be interpretable.

A4 - Theoretical foundations of umbrella sampling

In this section we outline the motivation behind the umbrella sampling method for free

energy calculations. The goal is to compute the free energy of the system under study,

G(t), as a function of a chosen reaction coordinate t. Umbrella sampling provides a

formalism for combining a set of biased probability distributions, each generated by

introducing an umbrella potential, typically of the form U umbrella =k- ) as described

in the previous sections, that applies a harmonic restraint to the system t about a given

value of to. To avoid confusion with the total potential energy of the system U, we will

use the notation V mrela for an umbrella potential throughout the remainder of this

section. The degrees of freedom of our system form a set D = {x 1 ,...,X 3 N } representing the

Cartesian coordinates of the atoms in the system. A transformation can be performed on

the set D such that the system is described according to the degrees of freedom

D'= {'Y,...,Y3N-1}, where t is the reaction coordinate and yl,, Y3N-1 are transformed

degrees of freedom which are complicated functions of the elements of D. We can

therefore express the probability of observing a value of t by integrating out all other

degrees of freedom in the set D', such that

PW-fexp(-#U(4y1,...,y3N-1 ))d''*dy3N-1

fexp(-PU(gy...,y3 N-1 ))ddy1'dy3N-1 (4.1)

exp(-#U(g))

z

where #=1/ kBT , the reciprocal of the thermal energy, U((,yi,..'Y3N-1) is the total

potential energy of the system in a given configuration defined by the elements of D', Z
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is the canonical partition function for our system and U(g) the internal energy of the

system in window i as a function of . In a given window i, we have a biasing potential

v ( ) and an unbiased probability p, ( ) of observing t in that window. The partition

function Z is a constant statistical mechanical property of the system, so we can write

this probability as

(4.2)exp-#U,(
P, W = Z z

Multiplying by one twice, we can write (4.2) as

(4.3)exp(-#U,(4))-exp(-V(4))-exp(#V()) Z.
Pi ( )= Z Z,'

where we define Z* to be the partition of the biased system, according to

(4.4)

Equation (4.3) can be rewritten as

exp(-# (U,(4
Pi Z=

) + ())exp(#v,(4)) z

z (4.5)

where the left-most term of the right-hand side is the biased probability p (4). If we

write the partition functions explicitly, it becomes clear that
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- exp(-P(u. ( 'l*'YN ) (4)))d~dy..yNz exp(-i(U y,...y3N-1)) d 1""dy3N-1

z f exp(-PU, (4,y1,...,y3N-1 )dy1-d3N-1

exp(-#U,4(4,y) ,..y3N-1 eXp(- d dy..dY3N-1

Jexp(-PUi (,Py,,...,Y 3N-1 ))dgdy 1 .dY 3N-1

(exp(-#V (4)))

where the angle brackets denote the ensemble average value of exp(-pV (4)) for the

system. Thus the unbiased probability p, () in (4.5) becomes

Pj (4)= p ()-exp (#V(0).- exp (-# (4))(47

=p PW-exp(#V (4)).-exp(PF)

which defines the quantity F, the average free energy introduced by adding the biasing

potential V ( ). We have therefore formulated the unbiased probability p, ( ) as an

explicit function of the biased probability p (), which we obtain from our umbrella

sampling windows. The value of V, ( ) can be computed directly from its definition.

One is then left with the quantity F, for each window. These can be computed directly

from the data using the Weighted Histogram Analysis Method (214), for which there

exist standard implementations (178).
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