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Abstract

Variations in the geometry of compressor blades can be introduced by variability in the
manufacturing process or by in-service erosion. Recent research efforts have focused
on characterizing the impacts of this geometric variability on turbomachinery perfor-
mance and designing blade geometries whose performance is robust to this variability.
Relatively little work has been done to specify the appropriate level of variability by
designing the manufacturing tolerances. This thesis presents new approaches for opti-
mizing tolerances that can be applied to compliment existing geometry optimization
techniques.

Building upon previous research, a Gaussian random field model of manufacturing
variability is developed and used to estimate the statistical performance impacts of
geometric variability on compressor blade performance. Flow mechanisms that dete-
riorate the mean performance in the presence of geometric variability are analyzed for
design and off-design conditions. A probabilistic, gradient-based optimization frame-
work is presented and applied to optimize the tolerances of compressor blades, as well
as to optimize the tolerances and blade geometry simultaneously.

The effectiveness of simultaneous optimization of the geometry and manufacturing
tolerances is compared to a sequential procedure where the nominal blade geometry
is optimized first, followed by the tolerances. Single-point optimization, where the
performance at a single flow incidence is optimized, is found to produce geometries that
are not robust to manufacturing variations. Adopting a multi-point design strategy
results in blades that are robust to both variations in the geometry and incidence,
allowing a sequential design strategy to be used.
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Chapter 1

Introduction

1.1 Motivation

Engineering systems are often optimized using a deterministic approach where the

optimal design describes the system's geometry, material properties and operating

conditions in the absence of variability. We refer to this as the nominal design. When

the system is produced and operated in the real world, deviations from the nominal

design may occur due to noise in the manufacturing process, variations in material

properties, variations in the operating environment, or due to component wear. These

deviations are often undesirable because they can adversely affect the actual system

performance. For example, deviations from the nominal design can degrade the mean

performance of the system or result in an increased probability of system failure. It

may be possible to reduce the impact of these variations by changing the nominal

design of the system. This idea has motivated the use of robust design methodologies,

where the design is selected according to its performance in the presence of variability.

Alternatively, the detrimental effects of variability can be reduced by imposing tol-

erances. For example, manufacturing variability may be reduced by specifying stricter

tolerances on the geometry. Variability in material properties can be reduced by using

materials with less part-to-part variation. Such reductions in variability, however, are

typically associated with increased cost. The cost associated with reducing variability

21



competes with the benefits of improving performance, implying an optimal balance

between the level of variability and the performance of the system.

The motivating applications for this thesis are turbomachinery compressor blades.

The manufacturing processes used to create compressor blades and in-service erosion

introduce geometric variability resulting in manufactured blade geometries that devi-

ate from the nominal, or design intent, geometry. A representative deviation between

the design intent geometry and a set of manufactured blades is illustrated in Figure

1-1. Introducing geometric variability tends to negatively impact the mean perfor-

mance of compressor blades, leading to increased costs over the life of the compressor

blade. For example, Garzon estimated that manufacturing variations decrease the

mean polytropic efficiency of a six stage axial compressor by 1% [27].

- baseineb_491 n
- -masurw onr [ j

Figure 1-1: Illustration of manufacturing variability observed in leading and trailing

edges of measured compressor blades (from [27]). The nominal design is represented

by the solid line, and the measured blades by dashed lines.

Tolerancing is not the only way to reduce the impact of geometric variations on

compressor performance. Blade wear can be reduced by using erosion resistant coat-

ings [14]. A recent survey of high pressure compressor blades found that over the

first 4,000 cycles of operation, the magnitude of geometric variations introduced by

the manufacturing process are more significant than those introduced by erosion [32].

This thesis therefore focuses on mitigating the detrimental impacts of geometric vari-

ations introduced by the manufacturing process as opposed to those introduced by
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erosion.

1.2 Literature Review

This section presents an overview of relevant research, with a focus on work related to

robust design and tolerancing of turbomachinery components. Previous investigations

of methods for modeling variability and its performance impacts are discussed and

robust design methodology and tolerance optimization are reviewed.

1.2.1 Modeling Geometric Variability

Determining the effects of manufacturing variability on compressor blade performance

requires a model of the geometric variability introduced by the manufacturing process.

One approach is to describe the geometric variability using a parametric approach

[36, 41, 46, 51]. In the parametric approach a set of geometric parameters, such

as stagger angle, chord length, leading edge thickness, and maximum camber are

measured for a collection of manufactured blades. A probability distribution for each

geometric parameter is constructed using the measurement data. The advantage of

the parameter based approach is that the geometric variability is described in terms of

design parameters. However, there is no guarantee that the set of parameters selected

to describe geometric variability are sufficient for describing all relevant geometric

variations. Geometric parameters that have an impact on the performance of the

blade may be omitted.

High fidelity probabilistic models of geometric variability have been developed

using principal component analysis (PCA) [27, 35, 48, 71, 75]. The covariance matrix

of surface deviations is constructed using measurement data of manufactured blades,

and a reduced order model of compressor blade manufacturing variability is formed
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from the principal components of the covariance matrix:

K

R = X0 +k i+ Vivi,(1.1)
i=1

where x0 represents the design intent blade coordinates, R represents the mean de-

viation of the measured blades, A1 and vi are the eigenvalues and eigenvectors (or

modes) of the covariance matrix of measured blade coordinates, and i are uncorre-

lated random variables with unit variance. The joint distribution of ( = can be

estimated from measurement data. Some studies have found that the i are distributed

as independent, identically distributed (i.i.d.) Gaussian random variables with zero

mean and unit variance, i.e. ~ .A(0, I) [3, 20, 27, 71]. Other studies have found

that the distribution of deviates substantially from an i.i.d. Gaussian distribution.

Lamb discovered a PCA mode that was bimodally distributed, and two pairs of modes

with dependent distributions [47]. Lange et al. found several modes that were not

normally distributed [48]. Although the distributions of some PCA modes have been

found to deviate from i.i.d. Gaussians, this deviation does not invalidate the PCA

model. Equation (1.1) can still be used to generate sample geometries regardless of

the distribution of .

The dominant PCA modes constructed in [27] using a set of measurement data for

an integrally bladed rotor (IBR) are shown in Figure 1-2. The first mode represents

solid body translation and the second mode represents thickening of the blade. The

ensemble of realizations produced by this model has the same mean and variance as

the set of measured blades [43]. When - N(0, I), the PCA model given in Equation

(1.1) is an example of a Gaussian random field, where the mean and covariance are

constructed empirically. A related approach is to specify the mean and covariance

functions of the Gaussian random field analytically. Schillings et al. and Chen et al.

have modeled geometric uncertainty in airfoil geometries using this approach [7, 12, 69].

Random fields have also been used to model geometric variability by the mechanical

design community [57, 79]. By modeling variations for the entire geometry, random
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Figure 1-2: First two PCA modes computed from IBR measurement data (from [27]).

field models of geometric variability avoid the limitations imposed by the parametric

approach and are therefore used in this thesis.

1.2.2 Performance Impacts of Geometric Variability

The detrimental effects of compressor blade geometric variability have been demon-

strated both experimentally and through numerical simulations. Experiments per-

formed by Reid et al. showed a decrease in adiabatic efficiency when the leading edges

of transonic rotor blades are made blunter as a result of geometric variations [64].

Suder et al. experimentally investigated the effects of surface roughness and thickness

variations on transonic compressor stage performance [73]. They observed up to a 6%

reduction in the adiabatic efficiency at the design pressure ratio and attributed most

of the reduction in efficiency to increased roughness and thickness near the leading

edge of the blade.

Numerical simulation can also be used to assess the performance of many different

geometric variations. To simulate the effect of geometric variability on compressor

performance, a model of geometric variability is constructed using one of the techniques

described previously, an ensemble of blade geometries is generated using this model,
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and the performance quantities of interest are computed for each sample within the

ensemble. The ensemble can be used to estimate the distribution or statistics, e.g.

the mean or variance, of the performance quantities of interest. Geometric variability

is propagated to the engineering quantities of interest using either the Monte Carlo

method [27, 49] or the polynomial chaos method [55, 76].

Simulations have shown that manufacturing variations increase compressor per-

formance variability and degrade mean performance. Lange et al. found that the

isentropic efficiency is negatively correlated with compressor blade thickness, espe-

cially near the leading edge [49]. Variability in the leading edge thickness therefore

leads to variability in the efficiency. Garzon demonstrated that the mean total pressure

loss coefficient of a flank-milled IBR was increased by 23% due to manufacturing vari-

ability [28]. The histogram in Figure 1-3 illustrates both the loss variability and mean

shift in loss coefficient resulting from geometric variability for the IBR considered by

Garzon.

mean
- - - nominal

0.026 0.029 0.032

Loss coefficient

Figure 1-3: Mean shift in loss coefficient due to geometric variability (from [27]).

Goodhand et al. quantified the impact of leading edge manufacturing variations

on compressor blade incidence range, defined as the difference between the positive

and negative flow angles for which the loss is equal to a specified value [32]. When

the leading edge radius of curvature of the nominal blade is reduced, introducing

manufacturing variations reduces the mean incidence range. Flow separation occurs on
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some manufactured blades at positive incidence, reducing the mean positive incidence

range. They point out that nonlinear mechanisms, such as leading edge separation,

are responsible for changing the mean loss. If the loss C is a linear function of the

geometry x, i.e. C4x) = CTx, and the manufacturing variations have mean zero, then

E[(x)] = cTE[x] = CTX = o(x), and no mean shift occurs. We therefore conclude

that a mean shift in loss can only occur when the loss is a nonlinear function of the

geometry.

1.2.3 Robust Design Optimization

For systems whose performance is sensitive to variability, introducing variability can

degrade the statistical performance of the deterministic optimal design. Lack of ro-

bustness has been demonstrated in deterministically optimized compressor blades:

introducing geometric variability to deterministically optimized blades was found to

increase the mean loss by as much as 20% [27}. Goodhand et al. found that determin-

istic design optimization produces a suboptimal design when a "switch" in the flow

mechanism that limits performance occurs on some manufactured blades [33]. They

provide a concrete example by reducing the suction surface curvature near the leading

edge of a rotor blade. When geometric variations are introduced to the nominal ge-

ometry, flow separation occurs at positive incidence for many of the blades, reducing

the mean incidence range.

Robust optimization finds designs whose statistical performance remains unchanged

when the state of the system is perturbed as a result of variability [5]. Common mea-

sures of robustness used in robust design include the mean and variance of performance

quantities of interest. The probability of a quantity of interest exceeding a critical

value, or failure probability, may also be of interest. Robust design optimization prin-

ciples have been applied to design airfoils under uncertain operating conditions. Huyse

et al. consider minimizing the mean drag coefficient of a transonic airfoil subject to

uncertainty in the Mach number with a fixed lift coefficient [39]. The resulting design

produced lower drag than a single-point design at almost all input Mach numbers.
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By adding a term proportional to the variance of the drag to the objective function,

it is possible to construct "risk averse" designs that result in less deviation from the

nominal performance.

Robust design methodology has also been applied to optimize both airfoils and

turbomachinery blades in the presence of geometric variability. Robust optimization

has been applied to the probabilistic design of airfoil sections subject to variability

in the geometric parameters that define the airfoil shape [16, 30, 34, 59]. Garzon

employed a gradient-based technique to minimize the mean and standard deviation

of the loss coefficient in subsonic and transonic compressor blades [29]. Goodhand et

al. redesigned the leading edge of a high pressure compressor rotor by altering only

the pressure surface of the blade. This redesign avoids the region of the design space

where manufacturing variations result in flow separation [33].

1.2.4 Tolerance Synthesis

Tolerance synthesis, or tolerance optimization, is the process of allocating the compo-

nent tolerances that result in a desired performance of the overall system [37]. Most

work in tolerance synthesis is heavily influenced by the pioneering work of Taguchi,

who recognized the need to balance the competing objectives of minimizing production

costs and maximizing product quality [74]. Taguchi defined the quality loss function

which measures the squared deviation of a product feature from its nominal value.

The tolerances can be optimized by minimizing the sum of the manufacturing costs

and the expected quality loss [38, 53, 77].

Taguchi's principles have been extended to perform simultaneous robust and tol-

erance design. For example, Chan et al. consider the design of an RL circuit where

the nominal values of the resistance R and inductance L can be varied continuously

and the tolerances on these component values can take two discrete values [11]. The

nominal values and tolerances are optimized by performing alternating sequential op-

timizations, first optimizing the nominal values of R and L, then optimizing their

tolerances. This process is repeated until the nominal values and tolerances don't
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change.

Little work has been published on compressor blade tolerance optimization. Gar-

zon considered the effects of increasing the amplitude of the manufacturing noise by

altering the contribution of the PCA modes in Equation (1.1) through the noise am-

plitude a:
K

=xo +x + a 'v . (1.2)
i=1

The effect of increasing the manufacturing variability, which is equivalent to relaxing

the manufacturing tolerances, on the mean loss is shown in Figure 1-4, where the red

line represents the loss computed for the mean blade geometry with a = 0, and the

blue line shows the mean loss computed by increasing the noise amplitude. The trend

illustrates that the detrimental impact of manufacturing variability grows nonlinearly

as the amplitude of these manufacturing variations increases. Garzon did not consider

0.038 - -0- E[w(x)]
- (A) oe
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00
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Figure 1-4: Dependence of mean loss on manufacturing noise amplitude (from [27]).

the impact of scaling the manufacturing variability by different amounts in different

regions of the blade. We use this approach to perform tolerance optimization in

Chapters 2 and 3.

Lamb developed a tolerance design approach based on classifying manufactured

compressor blades according to their performance [47]. Blades were characterized as

adequately performing if their incidence range was above a certain value. Tolerances

on a set of geometric parameters, such as leading edge profile and chord length, were
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then chosen to minimize the probability of incorrect classification, i.e. the sum of

the number of inadequately performing blades that are accepted and the number

of adequately performing blades that are rejected divided by the total number of

blades. Lamb found that tolerances that were optimized assuming a given blade

geometry were ineffective when the blade geometry was changed, which suggests that

the optimal tolerances depend on the blade geometry. One limitation of this approach

to tolerancing is that tolerances are imposed on geometric parameters, rather than

specific locations on the blade surface, which limits the resolution of the tolerancing

scheme.

Duffner used linear sensitivity analysis to specify manufacturing tolerances for the

entire surface of a turbine blade [20]. By specifying a maximum allowable performance

deviation, the sensitivity of the performance to geometric perturbations in a particular

region was used to compute a maximum allowable geometric perturbation. This ap-

proach was used to specify a distribution of tolerances to ensure variations in the exit

flow angle and loss coefficient did not exceed a critical value. The main limitation of

this approach is that linear sensitivity analysis cannot capture the mean shift in per-

formance resulting from nonlinear flow mechanisms such as transition and separation.

The tolerance bands constructed by Duffner therefore cannot be optimized to control

the mean performance. Moreover, these tolerance bands do not incorporate the known

patterns of manufacturing variability. The tolerance optimization method developed

in this thesis addresses these shortcomings by incorporating typical manufacturing

variations when optimizing the mean performance.

1.3 Thesis Objectives

The objectives of this thesis are to:

* Develop and apply a framework for tolerance optimization of compressor blades.

This framework should optimize the mean performance of manufactured blades,

and should specify tolerances at every point on the blade surface.

30



* Determine the circumstances under which deterministic design practices are ap-

propriate as opposed to more computationally expensive robust design practices,

and recommend when manufacturing tolerances should be optimized simultane-

ously with the geometry.

1.4 Contributions

The primary contributions of this thesis are:

o The development of a gradient-based tolerance optimization framework. This

framework can be incorporated into a robust geometry optimization framework

to optimize both the design intent geometry and manufacturing tolerances. For

two subsonic blades where flow separation was the dominant mechanism that

increased the mean loss, application of this framework resulted in novel "double

bow-tie" tolerance schemes.

o Assessment of the impact of manufacturing variability on the optimal blade

geometry. The optimal multi-point design is found to be insensitive to manufac-

turing variations, provided the design variables modify the geometry on length

scales larger than the length scale of the manufacturing variations. In this case,

a deterministic geometry optimization approach is appropriate.

1.5 Outline

This thesis is organized into four chapters. Chapter 2 presents a Gaussian random

field model of manufacturing variability that is used to determine the impact of manu-

facturing variability on mean compressor performance. A tolerance design framework

is presented and applied to two blade geometries. In Chapter 3, optimization of the

blade geometry and tolerances is performed, and the impact of manufacturing vari-

ability on the optimal design is determined. Chapter 4 presents a summary of the

thesis and offers suggestions for future work.
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Chapter 2

Compressor Blade Manufacturing

Tolerance Design

This chapter presents a framework for designing compressor blade manufacturing tol-

erances. Tolerance design is cast as an optimization problem with the objective of

improving the mean performance of the manufactured compressor blades. A diagram-

matic representation of the tolerance optimization procedure is shown in Figure 2-1.

The proposed framework is probabilistic: the mean performance of compressor blades

that are statistically similar to measured blades is used to define the performance

objectives. The mean performance is controlled by specifying the distribution of man-

ufacturing tolerances on the blade surface, and a gradient-based optimizer is used to

design the distribution of manufacturing tolerances.

The manufacturing tolerances are optimized for two subsonic compressor blades.

The optimal tolerance scheme for both geometries is found to follow a "double bow-tie"

pattern that reduces tolerances on both the pressure and suction side of the leading

edge. This tolerance scheme reduces the extent of flow separation at positive and

negative incidence angles, and shifts the mean transition location on both sides of the

blade towards the trailing edge at the design incidence.
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Figure 2-1: Block diagram illustrating the tolerance optimization framework.

2.1 Random Field Model of Manufacturing Vari-

ability

Compressor blade manufacturing variability is an example of spatially distributed

uncertainty, and is therefore modeled as a random field. Given a probability space

(e, F, P) and a metric space S, a random field is a measurable mapping e : E -+ Rs [2].

The manufacturing error, defined as the distance between the manufactured surface

and the nominal surface in the direction normal to the nominal surface, is modeled as

a random field e(s, 0). The coordinates of the manufactured surface x are given by

x(s, 0) = Xd(S) + e(s, 0)h(s), (2.1)

where h is the surface normal. The surface of the nominal blade is parameterized by

an approximate arc length coordinate -1 < s < 1, with negative values along the

pressure side and positive values along the suction side, as illustrated in Figure 2-2.

The leading edge falls directly on s = 0. Although the pressure and suction sides

of the blade may have different lengths, this difference is small relative to the total

arclength for thin blades, and the difference in length between the two sides is ignored

when parameterizing the blade surface.

The use of Gaussian random fields to model compressor blade manufacturing vari-
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Figure 2-2: Arc length coordinate convention and mapping of manufacturing error
field.
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ability is motivated by the measurement data from the works cited in Chapter 1, which

show that manufacturing variations in blade geometries are often normally distributed.

The defining characteristic of Gaussian random fields is that for any si, ... , sa, the vec-

tor {e(si, 0), ... , e(sa, 9)} is distributed as a multivariate Gaussian. Gaussian random

fields are uniquely defined by their mean E(s) and covariance function C(si, S2):

e(s) = E[e(s, 0)],

C(si, s2) = E[(e(s1 , 0) - e(si))(e(s2, 0) - E(S2))],

where the expectations are taken over 0. The covariance function describes the smooth-

ness and correlation length, i.e. the characteristic length scale over which the correla-

tion function decays, of the random field.

The covariance function used to model compressor blade manufacturing variations

captures both the smoothness and non-stationarity of measured manufacturing vari-

ations. The smoothness of a random field is determined by the smoothness of its

sample paths. A random field e has k-times continuously differentiable sample paths

with probability one if

P ({9 : e(s,O ) E Ck})

where Ck is the class of k-times continuously differentiable functions on S [1]. The

surfaces of manufactured compressor blades do not change discontinuously or have

any sharp edges [32]. We therefore expect that the sample paths of the random field

e(s, 9) are at least C1 continuous with probability one.

The continuity of a Gaussian random field is determined by the choice of mean and

covariance function. The mean (s) must be k-times continuously differentiable for the

sample paths of the random field e(s, 9) to be k-times continuously differentiable. If

the covariance function C(s1, s2) is also k-times continuously differentiable at s, = S2,

then the random field e(s, 0) is k-times continuously differentiable with probability

one [1].
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Another characteristic of compressor blade manufacturing variability is that it is

non-stationary. A random field is stationary if its joint probability distribution does

not change when shifted in space, i.e. for any shift t,

E(s + t) = 1 (s),

C(s 1 + t, s2 + t) = C(s1 , s 2 ).

Previous PCA models of compressor blade variability show that the correlation length

of the manufacturing variations is non-stationary. Near the leading and trailing edges,

the correlation length is smaller than on the rest of the blade. This results in different

bluntness and radius of curvature at the leading and trailing edges for different man-

ufactured blades. This is observed in the dominant PCA modes computed in [27] and

[48], where these modes are more oscillatory near the leading and trailing edges.

To produce compressor blades with these features, the squared exponential co-

variance function with a non-stationary correlation length is used. The form of the

correlation function (the covariance function divided by the variance) is

P(S1, S2) = exp (s1 -S 2  , (2.2)

where the correlation length is given by L = L'(si)L'(s2 ), and

L'(s) = Lo + (LLE - Lo) exp[-(s/w) 2]. (2.3)

At the leading edge, the correlation length is LLE, and the correlation length smoothly

increases to LO away from the leading edge. The parameter w describes the extent of

the leading edge and is chosen to be equal to the radius of curvature of the leading

edge. The distribution of the correlation length is shown in Figure 2-3. The covariance

function given by Equation (2.2) can be shown to produces sample paths that are C

continuous with probability one by using Theorem 2.3 in [1] and noting that the

correlation function (2.2) is infinitely differentiable at si = s2 . Figure 2-4 shows
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When these realizations are mapped to the compressor blade surface,

edge of some blades is made blunter, and others made sharper, a feature

manufactured blades.
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Figure 2-3: Correlation length distribution for a compressor blade.

To select an appropriate noise level, we use the results from Appendix B of [27],

where measurement data from both point-milled and flank-milled production com-

pressor blades is presented. Point milling uses a ball-nose cutter to follow a path

defined by the interpolating surface of blade design curves. In flank milling, the entire

blade surface is shaped in a single pass of the cutting tool, which produces smaller

manufacturing deviations than point milling [78]. This is consistent with the data

presented in [27], which is reproduced in Figure 2-5.

The random deviation in the leading edge thickness 6 tLE is the sum of two devi-

ations on the suction side and pressure side, i.e. 6 tLE = 6ss + 6ps. Assuming the

deviations are normally distributed with zero mean, variance a2 , and correlation p, the

deviation in the leading edge thickness will be normally distributed as well. Specif-

ically, tLE ~A(0, 2 E), where V-tLE = 2(1 - p)c-. From the point-milled data

provided in Appendix B of [27], the standard deviation of the leading edge thickness
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Figure 2-4: Realizations of a random process with non-stationary correlation length.
The resulting leading edge shape corresponding to each realization is shown at the
bottom, with the design intent geometry shown in black.
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Figure 2-5: Measured deviations in leading edge thickness (from [27]).

is estimated to be tLE C = 10-, where c is the chord length. Thus, an upper bound

on the standard deviation of manufacturing variations produced by point milling is

cPM/c = 3.5 x 10-4. Similar analysis gives an upper bound of O-FM/C = 6.0 x 10-

for flank-milled blades.

The scaling study performed by Garzon in [27] showed that for realistic levels of

manufacturing variability, the mean shift in the loss coefficient resulting from changes

in the mean geometry account for less than 15% of the total mean shift. Since the

performance impact of changes in the mean geometry are small compared to the impact

associated with increased variability, changes in the mean geometry are not modeled

and the error field is assumed to have zero mean.

2.1.1 The Karhunen-Loeve Expansion

There are a number of methods for simulating random fields, including methods based

on the fast Fourier transform (FFT) [70] and the local average subdivision method [23].

We use the Karhunen-Loeve (K-L) expansion since the sensitivity information required

for performing tolerance optimization is readily computed from the K-L expansion.

The Karhunen-Loeve expansion, also referred to as the proper orthogonal decom-

position (POD), represents a random field as a spectral decomposition of its covariance
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function:

e(s, 9) = E(s) + 1 V'AI# i(s) i(0), (2.4)
i>1

where Ai and #i(s) are the eigenvalues and eigenfunctions of the covariance function,

respectively, and the ( (0) are mutually uncorrelated random variables with zero mean

and unit variance [54]. For a Gaussian random field, the #(() are i.i.d. standard

normal random variables [52]. In Equation (2.4), the eigenvalues are arranged in

descending order such that A1  A\ 2  ... -+ 0. A detailed derivation of the K-L

expansion is provided in Appendix A.

The truncated K-L expansion results from truncating (2.4) at a finite number of

terms NKL:
NKL

6(s, 0) = E(s) + VA&#oji(s) #((). (2.5)

The decay of the eigenvalues determines the rate of convergence of the truncated K-L

expansion. Specifically, the mean squared error of the truncated expansion is given by

E [Ile(s, -) -6(S, -)112]
i>NKL

The level of truncation NKL is set equal to the smallest k such that the partial scatter

Sk exceeds some threshold, where the partial scatter is defined as

k A-
Sk -Z=A

Samples of the random field &(s, 9) are generated by sampling NKL i.i.d. Gaussian

random variables (6) and constructing the realization according to (2.5). In this

thesis, we choose NKL to ensure that Sk > 99.9%.
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2.2 Probabilistic Axial Compressor Performance Anal-

ysis

An axial compressor consists of alternating rows of rotating blades (rotors) and sta-

tionary blades (stators). A simplified, two-dimensional representation of a single stage

is illustrated in Figure 2-6. The rotor row does work on the flow to increase its total

Rotor Stator

2

V17 I2V 3
VV

Figure 2-6: Two-dimensional representation of a typical axial compressor stage. Rel-
ative velocities are indicated in red, and absolute velocities are indicated in black.

pressure. Assuming the compression process is adiabatic, the rate of work done on a

streamtube of flow is

tb = rh(h 2 - h01) = TAh0,

where rh is the mass flow through the streamtube, h is the enthalpy, and the subscript

() denotes a stagnation quantity. The change in total enthalpy across the rotor row
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is computed using the Euler turbine equation:

Aho = Q(r2v 2 - rivj),

where r is the streamtube radius, Q is the angular velocity of the rotor, and v is the

tangential velocity. If the change in the streamtube radius is small relative to ri, the

Euler turbine equation simplifies to

Aho = Qr[u2 tan(3 1 + AB) - u1 tan(#,)},

Assuming that the change in axial velocity is small compared to the axial velocity

ui and that the rotational speed of the rotor is fixed, the work done by the rotor is

determined by the flow turning A.

The stator removes the flow swirl introduced by the rotor to align the flow for the

rotor of the next stage. It is important for a stator row to produce the correct outflow

angle since the performance of the following rotor row is sensitive to the flow incidence

angle produced by the upstream stator. The outflow angle ,2 of the stator is therefore

a relevant performance metric.

To quantify the losses across a rotor or stator row, we use the total pressure loss

coefficient:
isen

C = Po2 Po2 (2.6)
Pol Pi

where pi2" is the total pressure downstream of the blade assuming isentropic flow.

The over-bar notation in C refers to a mixed-out flow state. The over-bar notation

denotes the mean for all other quantities in this thesis.

2.2.1 MISES Flow Solver

The MISES (Multiple blade Interacting Streamtube Euler Solver) turbomachinery

analysis code is used to compute the loss coefficient and flow turning for the man-

ufactured blade geometries. MISES utilizes a zonal approach to compute the flow
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solution. The boundary layer and wake are modeled by solving the integral boundary

layer equations [18]. In the inviscid regions of the flow field, the steady state Eu-

ler equations are discretized over a streamline conforming grid. MISES can be used

for both 2D and quasi-3D analysis, in which case the Euler equations are projected

onto an axisymmetric stream-surface. The inviscid and viscous regions of the flow are

coupled through the boundary layer displacement thickness. The Newton-Raphson

method is used to solve the set of nonlinear equations describing the flow field and

any user specified boundary conditions or airfoil shape modifications [80]. MISES

was modified to include a user specified geometric mode describing the manufacturing

error. As part of the flow solution, MISES applies the specified manufacturing error

perturbation in the surface normal direction.

A convenient feature of MISES is its solution speed. A typical flow solution re-

quires 10-20 Newton-Raphson iterations to converge, which are completed in a few

seconds. MISES also offers the option to reconverge a flow solution after perturbing

the blade shape. Since the perturbations in the geometry introduced by manufactur-

ing variability are small relative to the blade chord, the flow field corresponding to

manufactured blades can be reconverged from the flow field of the nominal geometry

with an order of magnitude fewer Newton-Raphson iterations than were required to

converge the original flow solution.

Another attractive feature of MISES is its ability to model laminar-turbulent tran-

sition in the boundary layer. This feature is important to accurately model the perfor-

mance of blades where viscous loss is the dominant loss mechanism, since the viscous

loss depends on whether the flow is laminar or turbulent. MISES includes both e'

and Abu-Ghannam-Shaw (AGS) bypass transition models [19]. MISES can also model

shock-induced and trailing edge separation.

In MISES, the total pressure loss coefficient w is computed using the mixed-out

state (density, velocity and pressure) downstream of the blade where the flow state is

uniform in the annular direction. The mixed-out state is assumed to have the same

total mass flow, momentum and total enthalpy as the flow at a user specified plane
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downstream of the blade. MISES uses a blunt trailing edge model, which assumes a

semi-circular trailing edge profile [19]. Thus, geometric variability in the trailing edge

is not considered.

2.2.2 Monte Carlo Uncertainty Propagation

The performance impact of manufacturing variability is quantified in terms of the

statistics of the outputs of interest. Given the distribution of the geometric variability,

i.e. the distribution of C() = {,(1(), ... , 4NKL(G)} in the K-L expansion (2.5), the

statistics of the loss coefficient and turning are computed using the Monte Carlo

method [66]. These statistics include the mean

pc := E[O( )] = j8f3( ) P(d ),

pAO := E[A#(3)] = 18 ,1WP )

and variance

of :Var[O(C)] = j[(c) - p]2 P(dC)

OA, := Var[A3()] = j[Af() - pt12 IP(d).

The direct dependence of A and A/3 on is not explicitly known, so these integrals

cannot be computed analytically. The Monte Carlo method approximates these inte-

grals by repeatedly drawing i.i.d. samples ("), n = 1, ... , N from the joint distribution

of and computing the corresponding output quantities of interest C(((n)) for each

sample. Unbiased estimates of the mean loss coefficient and mean turning are

n

N
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Each Monte Carlo sample is processed using the following steps:

" Generate i.i.d. Gaussian vector

" Construct the random error field using the K-L expansion given by Equation

(2.5)

" Construct the "manufactured" blade geometry using Equation (2.1)

" Compute the flow solution for the manufactured blade using MISES

" Evaluate the performance quantities of interest, i.e. the loss and flow turning,

from the flow solution

The evaluation of the performance statistics is illustrated diagrammatically in Figure

2-7.

Design I ntent

m trGeometry

-Performance

Random Manufactured Geometry 2
paoField 1 - Geometry 1 Performance

el (8, 61) X1 (8, 1) i01( (1)

01

Karhunen-Loeve 02 Random Manufactured CFD Geometry 2 Performance
Expansion Field 2 - Geometry 2 Performance Statistics
Ti(s), M C e2(s, 02) X2a(n , 2) r02 (2) E[i()]

t
Covariance ON.
Function
C(81, 82)

Random Manufactured CFD Geometry N Z
Field N 0Geometry N -- Performance

eN(8, ON) N (S, ON) CVN(ON)

Figure 2-7: Block diagram illustrating the propagation of manufacturing variability
to estimate performance statistics.

The Monte Carlo estimates ^Q and ftN are random variables, with mean pac and
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pa8, respectively. The standard error of these Monte Carlo estimates are

= Var(D)

and

= ~Var(A#).

Thus, the error in the Monte Carlo estimates decreases like N-1/ 2 . Since the distribu-

tions of CD and AL are not known, the variance term in the expression for the standard

error is replaced by an unbiased estimate:

N-2 _:C((l 1
-r N i 1-j

n=1

&.2 1 N

S N -1
n=1

Estimates for higher moments can be constructed, but in robust optimization, the

mean and variance are used most commonly. It is also possible to estimate the proba-

bility density function of the outputs of interest from the Monte Carlo samples using

techniques such as kernel density estimation [60].

2.2.3 Impact of Manufacturing Variability on an Exit Guide

Vane and Rotor Blade

2.2.3.1 UTRC Fan Exit Guide Vane

The first geometry we consider is a two-dimensional fan exit guide vane developed by

UTRC. Following reference [72], the design inlet Mach number is M = 0.73, and the

design inflow angle is #1 = 43.2'. The Reynolds number based on the blade chord

is 1.0 x 106, and a turbulence intensity of 4% was selected to reflect conditions in

a typical compressor stage [9]. To replicate the streamtube contraction measured in

[72], an axial velocity density ratio (AVDR) of 1.12 is specified. At the design intent
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conditions, the loss coefficient computed by MISES is CD = 2.24 x 10-2, which is in

good agreement with the experimental results reported in [72]. The Mach contours

and pressure coefficient over the blade are plotted for three different incidence angles

in Figures 2-8 and 2-9, respectively. At the design incidence, a weak shock forms on

the suction surface of the blade at 18% of the chord. At negative incidence the shock

increases in strength and moves towards the trailing edge. The shock strength also

increases at positive incidence, but the shock location moves towards the leading edge.

1 2 6 1.2 6

0.96 0O.96

0.81
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(a) Mach contours at 31 = 38.70

(c) Mach contours at #1 = 47.70

Figure 2-8: Mach contours from MISES simulations of

M1 = 0.73, AVDR = 1.12, Re = 1.0 x 106.
the UTRC exit guide vane,

The manufacturing noise model was applied to determine the impacts of man-
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Figure 2-9: Pressure coefficient from MISES simulations of the UTRC exit guide vane,
M1 = 0.73, AVDR = 1.12, Re = 1.0 x 106. The dots indicate the transition location.

ufacturing variability on the UTRC blade. The level of noise was specified to be

u/c = 8.0 x 10-4, roughly twice the level of noise found for point-milled blades in [27].

Choosing a level of noise larger than that produced by a known, high noise manufac-

turing process is motivated by the tolerance optimization framework. The proposed

framework, described in the next section, starts from a set of loose manufacturing

tolerances and restricts the tolerances in the regions where geometric variations have

the largest impact.

At the leading edge, the correlation length is four times smaller than the leading

edge radius of curvature to give LLE = 0.01 in Equation (2.3), ensuring realizations

with varying bluntness are produced. The other correlation parameters were w = 0.04

(equal to the leading edge radius of curvature) and LO = 0.4 (ten times the leading

edge radius of curvature). All lengths are nondimensionalized by the blade arclength.

The number of Monte Carlo samples was chosen such that the standard error of the

mean loss coefficient is less than 5.0 x 10-5, so that the Monte Carlo estimates of the
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loss coefficient are accurate to within 1.0 x 10-4 with 95% confidence. For the UTRC

blade, N = 5, 000 samples were found to be sufficient.

Figure 2-10 shows the relation between the loss coefficient and incidence angle

a = #- ode, for the UTRC blade, referred to as the loss bucket. The blue line

shows the loss coefficient for the nominal blade, and the red line shows the mean loss

coefficient of the manufactured blades. The shaded red region spans the 2.5% - 97.5%

quantiles, illustrating both the amount of variability in the loss coefficient and any

asymmetry in the distribution of the loss coefficient. At the design incidence, the

shift in the mean loss coefficient is 1% of the nominal loss coefficient. Both the shift in

mean loss and the amount of loss variability grow on either side of the design incidence,

which agrees qualitatively with the loss bucket of a transonic compressor subject to

manufacturing variations reported by Goodhand et al. [32]. For the incidence angles

considered, the largest increase in the mean loss is 16%, which occurs at a = -4.8',

and the average increase in mean loss is 3%.

.0le-2

Nominal
Mean

4.5 - - ----- -2.5%-97.5% Quantiles

0

V)

2.5 - -- --A

-4 -3 -2 -1 0 1 2 3 4

Incidence, a (deg)

Figure 2-10: Loss coefficient versus incidence angle for the UTRC exit guide vane.

Histograms of the loss coefficient for three different inflow angles, #1 = 38.70,
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01 38.70 43.20 47.70

Do 3.16 x 10-2 2.24 x 10-2 2.76 x 10-2
E[iD] 3.35 x 10-2 2.27 x 10-2 2.84 x 10-2

#2 -0.760 -0.630 -0.270
E[0 2] -0.720 -0.630 -0.260

Table 2.1: Nominal and mean performance of the UTRC blade for three incidence
angles.

#1 = 43.20 , and # = 47.7' are shown in Figure 2-11. The distribution of loss is

positively skewed at each incidence angle, which leads to a mean shift in the loss

coefficient. Table 2.1 summarizes the nominal and mean performance of the UTRC

blade. At each incidence angle, the mean shift in the outflow angle #2 is negligible.

This is unsurprising since variability in blade stagger angle is not modeled.

0.020 U

- 1~ =38.70

* - /0i = 43.20
M -1 =347.70

V. 0.045 0.050

Figure 2-11: Histograms of loss coefficient at three different incidence angles for the
UTRC blade. The solid lines indicate the nominal loss, and the dashed lines indicate
the mean loss.

2.2.3.2 SC10 Rotor

The second geometry is the two-dimensional Standard Configuration 10 (SC10) rotor

blade, which is a modified NACA0006 airfoil with a circular camber line [26]. The
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design inlet Mach number is M = 0.7 and the design inflow angle is f#1 = 53.5'.

Following reference [61], the Reynolds number based on the blade chord is 1.26 x 106.

No streamtube contraction was assumed, so the AVDR was set to 1.0. At the design

conditions, the loss coefficient is C = 1.52 x 10-2. The Mach contours and pressure

coefficient profiles are plotted for three different incidence angles in Figures 2-12 and

2-13, respectively. At the design inlet Mach and inflow angle, the flow is free of any

shocks. At positive incidence, a shock is present on the suction surface near the leading

edge.
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(a) Mach contours at 31 = 48.50 (b) Mach contours at
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(c) Mach contours at 31 = 58.50

Figure 2-12: Mach contours from MISES simulations of the SC1O
0.7, AVDR = 1.00, Re = 1.26 x 106.

rotor blade, M1 =
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Figure 2-13: Pressure coefficient from MISES simulations of the SC10 rotor blade,
M1 = 0.7, AVDR = 1.00, Re = 1.26 x 106. The dots indicate the transition location.

For the SC10 geometry, the level of variability was specified to be O-/c = 6.0 x 10-.

The level of variability is lower than the level applied to the UTRC blade since the SC1O

blade is thinner, and larger levels of variability resulted in realizations with invalid

leading edge shapes. The correlation length was four times smaller than the leading

edge radius of curvature to give LLE = 0.0095. The other correlation parameters were

w = 0.038 (equal to the leading edge radius of curvature) and LO = 0.4. For the SC1O

blade, N = 5, 000 Monte Carlo samples were again found to be sufficient to estimate

the mean loss to an accuracy of 1.0 x 10-4 with 95% confidence. The loss bucket for

the SC1O blade is plotted in Figure 2-14. Qualitatively, the loss bucket of the SC10

rotor is similar to that of the UTRC exit guide vane: the mean shift in loss is 1%

of the nominal loss at the design incidence, and increases as the incidence is either

increased or decreased. For the incidence angles considered, the largest increase in the

mean loss is 16%, which occurs at a = 5.60, and the average increase in mean loss is

6%.
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Figure 2-14: Loss coefficient versus incidence angle for the SCiG rotor blade.

#1 48.50 53.50 58.50

w0 2.02 x 10-2 1.52 x 10-2 1.96 x 10-2
E[_] 2.19 x 10-2 1.53 x 10-2 2.25 x 10-2

#2 42.460 42.630 43.910
E[# 2] 42.540 42.640 44. 100

Table 2.2: Nominal and mean performance of the SC10 rotor for three incidence angles.

Histograms of the loss coefficient for three different incidence angles, #1 = 48.50,

01 = 53.5', and #1 = 58.50 are shown in Figure 2-15. As was the case for the

UTRC blade, the distribution of loss is positively skewed at each incidence angle. The

nominal and mean performance of the SC1O blade is summarized in Table 2.2. At each

incidence angle, the mean shift in the outflow angle #2 is small, meaning the changes

in the mean rotor work can be ignored.
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Figure 2-15: Histograms of loss coefficient at three different incidence angles for the
SC10 blade. The solid lines indicate the nominal loss, and the dashed lines indicate
the mean loss.

2.3 Manufacturing Tolerance Optimization Frame-

work

2.3.1 Variance Based Tolerance Specification

The precision of a manufacturing process is specified in terms of its spread, defined

as some multiple of the standard deviation of the dimension of interest, where a

dimension refers to the size of a particular feature [44]. To specify manufacturing

tolerances around a compressor blade surface, we specify the process spread, equal

to the standard deviation -(s), at every point on the blade surface. The relation

between tolerances and variance is illustrated in figure 2-16. The leading edge of

the nominal blade geometry is shown in black. The 2u(s) bounds on the geometric

variability are shown in dashed red lines, and sample realizations of manufactured

blade geometries are plotted in color. The left figure demonstrates loose tolerances,

where larger variations are allowed as compared to the case where strict tolerances are

imposed, shown on the right. The variance is also non-stationary, decreasing near the
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leading edge in both cases.

(a) (b)

Figure 2-16: Illustration of loose (a) and strict (b) tolerances in the leading edge of a
compressor blade.

To represent the standard deviation field, we introduce a basis {Bj,"(s)}Na and

represent u(s) as a linear combination of the basis functions. The basis functions are

chosen to be B-spline basis functions of degree n = 3. The B-spline basis is constructed

from a knot vector k E RNk, with ki < ki+1, dividing the interval [-1,1] into knot

spans. Each of the B-spline basis functions is a piecewise polynomial function of

degree n, and are non-zero on n + 1 knot spans. The B-spline basis functions are

(n - m - 1) times continuously differentiable at a knot with multiplicity m ( n) [62].

The standard deviation field o(s) is expressed in terms of the B-spline basis as:

Na

o(s) = Zu Bi, ,(s).
i=1

Figure 2-17 illustrates a cubic B-spline basis and the knots used to construct them.

For clarity, the knot spacing is chosen to be equal in Figure 2-17.

Although any real valued function u(s) results in a valid random field, the standard

deviation is constrained to be positive everywhere. If u(s) goes to zero at some location

sO, this implies that there is no geometric variability at so, i.e. that the manufacturing

process has infinite precision. It is assumed that no manufacturing process can achieve
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Figure 2-17: Collection of cubic B-spline basis functions, with knot locations shown
on the abscissa.

infinite precision, and thus -(s) is constrained to be greater than zero everywhere.

The proposed tolerance model is related to the scaling study performed by Garzon

as described in Chapter 1. The parameter a multiplying the PCA modes in Equation

(1.2) scales the standard deviation of the manufacturing variations everywhere on the

blade surface. In the proposed model, the scaling is allowed to vary in different regions

of the blade, allowing the impact of manufacturing variations in different regions of

the blade to be compared.

2.3.2 Objectives and Constraints for Tolerance Optimization

In the proposed tolerance optimization framework, the mean compressor performance

is controlled by specifying u(s). We focus on optimizing the mean performance, as

opposed to other statistics such as the variance, since evidence from previous robust

optimizations of compressor blades found that optimizing the mean performance tends

to also reduce the performance variability relative to the baseline design [4, 27]. As

the results of the last section illustrated, the change in the mean turning due to

manufacturing variations is small relative to the baseline turning. We therefore do
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not constrain the mean turning when optimizing the manufacturing tolerances.

Since the mean shift in loss coefficient is sensitive to the flow incidence, we design

the manufacturing tolerances to minimize the mean loss coefficient over a range of

incidence angles by adopting a multi-point design strategy similar to that used in [6]

and [45]. A set of N, design points is chosen, each corresponding to an incidence angle.

A weighted objective function is defined as the weighted sum of the loss coefficient at

each incidence angle, i.e.
N,

J= wi (0),

i=1

where the weight vector w = {wi, ... , WN,} weights the relative importance of different

incidence angles. The weight vector is chosen so that the multi-point objective function

J approximates a weighted integral of the loss coefficient:

N,

Wico(#4) W W(#)Co(0) d,
i=1

where W(3) is a weighting function and B = [#3, #3] is the incidence range of interest.

Choosing N, = 3 equispaced points and a loss weight vector w = {1/4, 1/2, 1/4}

approximates the average loss computed using a trapezoidal integration rule.

The tolerance design process determines where on the blade surface the tolerances

should be reduced to have the most benefit, i.e. to provide the greatest reduction in

the mean loss coefficient. This is achieved by constraining the level of manufacturing

variability, and minimizing the weighted mean loss E[J]. To quantify the level of

variability, we introduce the function V(or), equal to the integral of the standard

deviation of the random field that models the manufacturing variations over the blade

surface:

V(0) = f a-(s; cr) ds. (2.7)

Reducing V implies stricter tolerances and therefore increased manufacturing cost. In

the optimization, the standard deviation is also bounded from above by a specified

value omat to ensure that the optimizer does not trade increases in the variability in
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regions of low mean loss sensitivity for decreases in high sensitivity regions and drive

o-(s) to zero.

The optimization problem for designing the tolerances is summarized below:

*= arg min E[J(9,u )]

s.t. V(0) = V (2.8)

0 < o(s) < .max-

This optimization problem is solved using the sample average approximation method,

which is described subsequently.

2.3.3 Sample Average Approximation

The sample average approximation (SAA) method, also referred to as sample path

optimization, is used to compute an approximate solution of (2.8). The SAA method

replaces the objective function E[J(6, o)] with a Monte Carlo estimate j() (o) com-

puted using a fixed set of random inputs, i.e. a fixed set of realizations {(,) }N of the

random input vector used to generate realizations of the error field e(s, 0). Fixing the

random inputs transforms the stochastic optimization problem (2.8) into a determin-

istic optimization problem. The solution of the deterministic optimization problem,

denoted &*v, is an estimator of the true solution a*, converges to the true solution

at an asymptotic rate of O(N-/ 2 ), and can be shown to be asymptotically normally

distributed [67].

We use the sequential quadratic programming (SQP) method to solve the deter-

ministic optimization problem that approximates the stochastic problem (2.8). The

SQP method updates the approximate solution by solving a quadratic subproblem

[63]. At each SQP iteration, the quadratic subproblem is formed by constructing the

Lagrangian function from the objective and constraint functions. The Lagrangian is

approximated by its second-order Taylor series expansion, where the Hessian is esti-

mated using a quasi-Newton update formula, such as the Broyden-Fletcher-Goldfarb-
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Shanno (BFGS) formula [8]. The solution of the quadratic subproblem produces a

search direction, and a linesearch is applied to determine the step length.

2.3.4 Pathwise Sensitivity Estimates

To apply the SAA method, we need to compute gradients of the approximate objective

function, i.e. VA(N). To do this, we use the pathwise sensitivity method. The path-

wise sensitivity method relies upon interchanging the differentiation and expectation

operators, thereby constructing an unbiased estimator of the gradient by taking the

gradient of an unbiased estimator. To compute an unbiased estimator of the gradient

of the objective function E[J(O, o-)] with respect to the design vector c-, we interchange

differentiation and integration:

aE[J(O, o-)] = E J(O, 0').

Sufficient conditions that allow for this interchange are given in Appendix B.

Replacing the objective function with its Monte Carlo estimate, and exchanging

summation and differentiation gives

a A.(N) 1N
-E[J(, O')] ~ J = .

n=1

Since we are using the SAA method, the derivatives aJn/ao represent the sensitivity

of the random functional J(6, a) for a particular realization of the random field en =

e(s, f")) where all random inputs are held fixed. The sensitivity aJ,/9a is computed

using the chain rule:
-9J- = - = 1 N
au- o en ali'9

To compute the sample path sensitivity aen/a, we first define the random field

i(s, 0) = e(s, 0)/-(s). The random field (s, 0) has the same correlation function as

e(s, 0), and the variance of E(s, 0) is equal to one everywhere. Realizations of the

random field e(s, 0), which has variance o'2 (s), can be produced by simulating the unit
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variance random field i(s, 0) and scaling the realizations by a(s). The sample path

sensitivity of a realization e,(s) with respect to the tolerance design variable o- is

computed using the chain rule:

Oe,(s) _ Oe(s) 9Oc(s) = _ (S)B.(s)
ao'i au (s) 19oi'

where Bi,n(s) is the ith B-spline basis function used to represent a(s).

The sensitivity of the objective function Jn (corresponding to the nth Monte Carlo

sample) to the tolerance design variable oa is computed using a second order accurate

finite difference:
c Jn Jn(or + h) - J(oa - h) + 0(h2),
aBli 2h

where the step size h is small relative to oa. Computing the full gradient requires

two additional flow solutions to be computed for each tolerance design variable. The

computational cost of estimating the gradient with finite differences was reduced by

perturbing each design variable and reconverging from the unperturbed flow solution.

An alternative approach to computing shape sensitivities is the direct sensitivity

method [80]. In the direct sensitivity method, the Jacobian used in the Newton-

Raphson iteration is factored, and the sensitivity of the quantities of interest with

respect to geometric perturbations is computed using back substitution. In MISES,

the linearization with respect to the variables describing the computational grid are

inexact to prevent crossing of adjacent grid lines and ensure solution convergence.

This inexact linearization introduces errors into the sensitivities computed using the

direct sensitivity method. Relative errors of up to 20% compared to finite difference

sensitivities were observed, which motivated the use of the finite difference method for

computing all shape sensitivities.

2.3.5 Tolerance Optimization for a Model Problem

The methods described in this chapter are now applied to a model problem whose

analytic solution is available. In this problem, the design variables control the variance
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of a zero-mean Gaussian random field e(s, 0), defined on the domain S = [0,1]. The

correlation function is chosen to be the squared exponential function:

p(s1 , S2) = exp [- -82)2]

with correlation length L = 0.1. The variance a.2(s) of the random field is a spatially

dependent function. We seek to minimize the sum of two competing cost functions that

depend on a(s) as a (spatially varying) parameter. The first cost function penalizes

variability:

fi = E [] e2 (s, 9)w(s) ds] , (2.9)

where w(s) is a non-negative weighting function that is larger in regions that are

more sensitive to variability. The second cost function is inversely proportional to the

variability:

f2 = ds

We determine the standard deviation field u*(s) that minimizes the sum of the two

cost functions:

c-*(s) = arg min f := fl + f2 (2.10)
a(s)

This model problem is analogous to a tolerance optimization problem, where the im-

provements in the mean performance are balanced by the costs of reducing tolerances.

Reducing tolerances (decreasing the variance a.2 (s)) improves the mean performance

of the system, which is reflected in the cost function fi. Introducing variability into

certain regions of the domain has a larger impact on the mean performance, as ex-

pressed by the weight function w(s). It is also costly to reduce tolerances, and the

cost of reducing tolerances increases monotonically, as reflected in the form of f2.

The optimal solution to (2.10) can be derived using the calculus of variations. The

expectation and spatial integration can be interchanged in Equation (2.9) to give

fi = E[2(S, 9)]w(s) ds = j .2 (s)w(s) ds. (2.11)
J0 J O

62



The first variation of f can then be computed directly:

6f= j (2(s)w(s) - 1) 6oc(s) ds.

Enforcing stationarity by setting 6f = 0, the optimal standard deviation field is found

to be

0.*(s)=.
2w(s)]

This optimum is unique because both fi and f2 are convex functionals of u(s).

The weight function is chosen to be positive and spatially varying. As an example,

we choose the weight function to be w(s) = 2 + sin(27rs). The standard deviation field

is discretized with N, = 20 cubic B-spline basis functions. The mean performance of

engineering systems typically cannot be computed in closed form, and instead must

be estimated. We therefore use the Monte Carlo method to compute an unbiased

estimate of fi, rather than computing it directly from Equation (2.11):

N = 10 en(s)w(s) ds.
n=1

For each Monte Carlo sample, the integral is evaluated using composite Gaussian

quadrature with 20 intervals and a third order rule on each interval. The same quadra-

ture rule is used to compute f2. The SAA equivalent of (2.10) results from replacing

the objective function f, with its unbiased estimate:

-* (s) = arg min fi + f2.
a(s)

This optimization problem is solved using the SQP method with a BFGS update to

approximate the Hessian as implemented in the NLopt package [42]. The pathwise es-

timate of the sensitivity Sfi/6a(s), which is an unbiased estimate of the true gradient,

is computed as

2w(s)en(s) 6- ds.
60, N O oe
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Figure 2-18 compares sample optimal solutions, shown in blue, with the true solu-

tion, shown in red. The shaded blue 95% confidence region is computed by estimating

the Hessian matrix B and covariance E using the Monte Carlo samples used to com-

pute the optimal solution:
N

B= N EV2j(*),
n=1

N

= J*
n=1

where
J = j + e2 (s, 9)w(s) ds.

0)-(s) ds

The standard error of the optimal solution is then EN = [diag($i $~f'1)/NJI/ 2 [67].

To illustrate the convergence rate of the SAA optimal solution to the true optimal

solution, we conduct M = 10' independent optimization runs for different values of N.

Figure 2-19 shows histograms of the error of the SAA optimal solution evaluated at the

center of the domain. The histograms resemble Gaussian distributions with standard

deviation proportional to N~-1/ 2 . Figure 2-20 illustrates the convergence of the entire

optimal solution and optimal value as N is increased. The standard deviation of the

optimal solution error &*y(s) - o-*(s) is plotted on the left, and the standard deviation

of the optimal objective function error f(&* ) - f(o-*) is plotted on the right. Both

the optimal solution error and the error in the objective function converge like N11 2:

increasing the number of Monte Carlo samples by a factor of 100 gains a one decimal

improvement in solution accuracy.
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Figure 2-18: Optimal solutions for the model problem obtained with increasing number
of Monte Carlo samples.
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Figure 2-19: Histograms of the solution error at the center of the domain &*(0.5) -
u*(0.5) for increasing number of Monte Carlo samples.
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Figure 2-20: Standard deviations of the optimal solution (a) and optimal objective
function value (b).

2.4 Tolerance Optimization of an Exit Guide Vane

and Rotor Blade

2.4.1 UTRC Fan Exit Guide Vane

We first optimize the manufacturing tolerances for the UTRC exit guide vane. We

use Np = 3 design points at #1 = 38.70, 43.20, and 47.7' and a loss weight vector w =

{1/4, 1/2, 1/4}. The total variability, as quantified by Equation (2.7), is constrained

to be 98% of the baseline total variability, and the standard deviation is constrained to

be below the baseline value of -/c = 8.0 x 10-' at all points on the blade surface. The

standard deviation is represented using N, = 41 basis functions, and the knot spacing

is reduced near the leading edge, since previous studies of the impact of geometric

variability on compressor performance suggest that most of the increase in loss results

from imperfections near the leading edge [28].

Since each evaluation of the objective function requires Monte Carlo simulation,

the total computational cost of optimizing the tolerances grows with the number of

Monte Carlo samples used to approximate the mean loss. To offset this cost, we follow

the approach outlined by Garzon and use a small number of Monte Carlo samples to
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construct "surrogates" of the performance statistics. N = 500 Monte Carlo samples

are used to estimate the mean loss when optimizing the tolerances, 10% of the number

of Monte Carlo samples to evaluate the mean performance in Section 2.2.3. This

number was found adequate to successfully redesign blade tolerances in the presence of

geometric variability. The optimization was terminated when the mean loss converged

within an absolute tolerance of 10-. The performance statistics of the optimal design

were then estimated using N = 5, 000 Monte Carlo samples.

The convergence history of the mean loss is shown in Figure 2-21. The tolerance

optimization converged after 31 SQP iterations, and the mean loss was evaluated

62 times, requiring a total of 31,000 MISES flow solutions. The optimal tolerance

scheme is plotted in Figure 2-22. We only show the leading edge since the optimal

standard deviation away from the leading edge is equal to the baseline value of a/c =

8.0 x 10'. The optimal tolerance scheme is found to have a "double bow-tie" pattern:

the standard deviation decreases on the pressure side of the blade, increases towards

the stagnation point, decreases again on the suction surface before increasing to the

baseline value. The tolerances are reduced more on the pressure side than on the

suction side. The improvement in the mean loss coefficient resulting from optimizing

the tolerances is summarized in Table 2.3, and the loss bucket of the UTRC blade

with optimized tolerances is plotted in Figure 2-23. Tolerance optimization reduces

the mean shift in loss by an average of 49% over the range of incidence angles shown.

Baseline Optimized

E[C(01)] 3.35 x 10-2 3.22 x 10~2
E[C(#0)] 2.27 x 10-2 2.25 x 10-2
E[c(#)] 2.84 x 10-2 2.83 x 10-2

ZwiE [(j)] 2.68 x 10-2 2.64 x 10-2

Table 2.3: Comparison of the mean loss for the UTRC blade with baseline and opti-
mized tolerances with 98% of the baseline variability.

At every incidence considered, the shock losses comprise less than 5% of the total

loss. We therefore examine the viscous losses generated in the boundary layer to de-

68



2.680 e-2

2 .6 7 5 -- - - - -.-.-.---.-.-..

2 .6 7 0 --- ----- - --- ---- - --- --- -- --- --- - - -... ..-... .-... ... ... ..... ... .. -.

2 .6 6 5 - - - - - ---- ----- ---.-. -

2 .6 6 0.--- - - - -- ---.- -..-.-

2 .655 - - - - - - -- - - - ---- - -

2 .6 5 0 --- -- - --- ---- - - -- - --- - ----- ---- -

2.645 ------ - - -- - - - -- - - ------

2.640

2.635 10 20 30 40 50 60 70
Objective Function Evaluations

Figure 2-21: Convergence history for the tolerance optimization of the UTRC blade.
The dots indicate SQP iterations.

termine the benefit of optimizing the manufacturing tolerances. To quantify the losses

generated in the boundary layer, we use the boundary layer dissipation coefficient,

defined as

CE= 1 cr a dy,PeUe 1 a
where Pe and Ue are the density and streamwise velocity at the edge of the boundary

layer, respectively, T is the shear stress, and y is the surface normal coordinate. The

rate of entropy generation per unit span up to the point s is computed from the

dissipation coefficient:

= Peue Cds,

where T is the boundary layer edge temperature [15]. Since the streamwise variations

in Te are moderate, we examine the cumulative integral of PeU3CV to determine where

the greatest losses are generated [27]. The cumulative integral of PeUeCV is plotted in

Figure 2-24 for the UTRC blade with uniform and optimized tolerances. The percent

change in the mean total entropy is within 15% of the percent change in the mean

loss coefficient for each incidence angle considered.
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Figure 2-23: Loss coefficient versus incidence angle for the UTRC exit guide vane with
optimized tolerances with 98% of the baseline variability.

At negative incidence, the reduced tolerances on the pressure side of the blade pre-

vent pressure side flow separation from occurring for all but two of the 5,000 Monte

Carlo samples, whereas pressure side flow separation occurs for 50% of the blades with

uniform tolerances. Manufacturing variations that make the leading edge blunter cre-

ate leading edge pressure spikes, as shown on the left of Figure 2-25. The adverse

pressure gradient produced by these pressure spikes induces flow separation on the

pressure side of the blade. The optimized tolerances reduce the manufacturing vari-

ability on the pressure side of the blade, eliminating the pressure spikes, as shown on

the right of Figure 2-25. The effect of preventing pressure side separation is illustrated

at the top of Figure 2-24: the mean shift and variability in the pressure side entropy

generation is lower with optimized tolerances.

The plots at the top of Figure 2-24 show the effect of the suction side shock that

forms at s = 0.4. The variability and mean shift in the suction side entropy is a

result of variability in the strength of this shock. Figure 2-26 shows that higher shock
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Figure 2-24: Boundary layer entropy generation rate for the UTRC blade with uniform
and optimized tolerances with 98% of the baseline variability. Solid lines indicate the
nominal, dashed lines indicate the mean. The pressure side (PS) is plotted in red and
the suction side (SS) is plotted in blue.
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Figure 2-25: Leading edges and pressure side pressure coefficient profiles for six manu-
factured UTRC blades at #1 = 38.70. The left plots correspond to blades with uniform

manufacturing tolerances, and the right plots correspond to blades with optimized tol-
erances.
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strength, as quantified by the peak Mach number, corresponds to higher entropy

generation. This dependence is nonlinear, resulting in a mean shift in the suction side

entropy generation. Before optimizing the tolerances, shock induced separation occurs

for 35% of the manufactured blades, which are plotted with colored dots in Figure 2-

26. The color indicates the location of separation, normalized by the arclength of the

suction side of the blade. Optimizing the tolerances reduces the number of blades with

flow separation by 5%, which reduces the mean shift in the suction side losses.
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Figure 2-26: Entropy generation versus peak suction side Mach number for the man-
ufactured UTRC blades at /1 = 38.70. The black dots correspond to blades with no
separation, and the colored dots correspond to blades with separation. The colors
indicate the location of separation.

For blades with uniform manufacturing tolerances, a leading edge pressure spike

forms on some manufactured blades at the design incidence. Flow transition occurs

after these leading edge spikes, as shown at the top left plot of Figure 2-27. The plot

at the bottom left of Figure 2-27 shows that earlier transition corresponds to higher

entropy generation, which is a result of increased turbulent wetted area. The optimized

tolerances shift the mean transition location toward the trailing edge on both sides of

the blade. This reduces the mean turbulent wetted area on both sides of the blade,

which reduces the mean loss coefficient. The effect of optimizing the tolerances on the

suction side transition location is illustrated on the right of Figure 2-27. The mean
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transition location moves towards the trailing edge and the mean entropy generation

is reduced. Similar shifts in the mean transition location and entropy generation are

observed on the pressure side of the blade. The reductions in both the variability and

mean shift in the entropy generation are shown in the center plots of Figure 2-24.

0.7 -- Nominal

0.7-e Transition

0.6-

0.5-

0.4--

0.3-

0.2 -- -

0.1-

0fS0-0 0.01 0.02 0.03 0.04 0.05

(a) Leading Edge Cp, Uniform Tolerances

0.02 0.04 0.06 o.oa 0.10
SS Transition Location (s.,

(c) Manufactured Blades, Uniform Toler-
ances

-- Nominal

0.7

0.6

0.5

0.4-

0.3

0.2

0.
0.00 0.01 0.02 0.03 0.04 0.05

(b) Leading Edge Cp, Optimized Toler-
ances

le-4

7.4

S7.2

0 7.0

LU

6.8

6.6

0.02 0.04 0.06 0.06 0.10
SS Transition Location (aak)

(d) Manufactured Blades, Optimized Tol-
erances

Figure 2-27: Top: suction side pressure coefficient profiles for six manufactured UTRC
blades at 01 = 43.20. Bottom: suction side entropy generation versus transition
location for all 5,000 manufactured blades. The color indicates probability density.

At positive incidence, optimizing the tolerances has a smaller impact on the mean

loss than at negative incidence. The reduced tolerances on the suction side of the

blade reduce the fraction of blades with separation from 31% to 29%. This results in a

reduction in the mean loss coefficient of only 0.6% at #1 = 47.7' relative to the uniform
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tolerances. Since the mean shift in loss at this incidence is smaller than the mean shift

at the negative incidence design point (A1 = 38.70), the optimizer focuses on reducing

the mean shift at negative incidence resulting from pressure side separation.

To examine the trend in the optimal tolerances as the level of allowed variability

decreases, we perform another tolerance optimization where the total variability V

is constrained to be 96% of the baseline total variability. A comparison between the

performance of the UTRC blade with baseline and optimized tolerances is presented

in Table 2.4. The mean loss at the positive incidence design point is decreased as

a result of reducing the allowable variability. The optimized tolerances, shown in

Figure 2-28, further reduce the variability on the suction side of the blade relative to

the tolerance scheme shown in Figure 2-22. This reduces the number of blades with

regions of separation at the positive incidence design point, lowering the loss.

Baseline Optimized

E[Cv(O1)] 3.35 x 10-2 3.22 x 10-2
E[C(02)] 2.27 x 10-2 2.25 x 10-2

E[_ ()] 2.84 x 10-2 2.80 x 10-2

E wiE[CD()fl] 2.68 x 10-2 2.63 x 10-2

Table 2.4: Comparison of the mean loss for the UTRC blade with baseline and opti-
mized tolerances with 96% of the baseline variability.

2.4.2 SC10 Rotor

For the SC10 rotor blade, Np = 3 design points are selected to fall at #1 = 48.50,

5350 , and 58.5' and the loss weight vector is again chosen to be w = {1/4, 1/2, 1/4}.

The total variability is constrained to be 98% of the baseline value, and the standard

deviation is constrained to be below the baseline value of oc = 6.0 x 104 at all

points on the blade surface. N = 500 Monte Carlo samples were used to estimate the

mean loss during the optimization, and N = 5, 000 samples were used to estimate the

performance statistics for the optimized design.

The tolerance optimization converged after 23 SQP iterations and required 59
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Figure 2-28: Optimal standard deviation for the UTRC blade with 96% of the baseline
variability. The lower surface is the pressure side, and the upper surface is the suction
side.
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evaluations of the mean loss coefficient, for a total of 29,500 MISES flow solutions. The

convergence history of the mean loss is shown in Figure 2-29. The optimal distribution

of the standard deviation, plotted in Figure 2-30, follows a "double bow-tie" pattern.

Table 2.5 summarizes the reduction in the mean loss at the design points as a result of

optimizing the tolerances. The tolerance optimization process reduces the mean shift

in the loss coefficient over the entire incidence range considered for the SC10 blade,

as illustrated in Figure 2-31, with an average reduction of 78%.

1.88

1.86

1.84

1.82

1.80

1.78

le-2

10 20 30 40 50

Objective Function Evaluations
60

Figure 2-29: Convergence history for the tolerance optimization

The dots indicate SQP iterations.

Baseline Optimized
E[0(#3)] 2.19 x 10-2 2.04 x 10-2
E[0(#?)] 1.53 x 10-2 1.52 x 10-2

E[CO(#3)] 2.25 x 10-2 2.04 x 10-2

Zwi E[C01)] 1.88 x 10-2 1.78 x 10-2

of the SC10 blade.

Table 2.5: Comparison of the mean loss for the SC10 blade with baseline and optimized
tolerances with 98% of the baseline variability.

At the negative incidence design point, the flow separates on the pressure side of

the nominal blade due to an adverse pressure gradient. Pressure side flow separation
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Figure 2-31: Loss coefficient versus incidence angle for the SC10 rotor with optimized
tolerances with 98% of the baseline variability.

occurs on 93% of the manufactured blades with uniform manufacturing tolerances.

The optimized tolerances result in pressure side flow separation for 2% more of the

blades. However, the optimized tolerances reduce the length of the separation bubbles.

The effect of reducing the pressure side manufacturing tolerances is illustrated in

Figure 2-33. Reducing the mean separation bubble length reduces the mean entropy

generation, as shown in Figure 2-34. The top plots in Figure 2-32 show that the

optimized tolerances also reduce the variability in the pressure side entropy generation.

At the design incidence, optimizing the tolerances has the same effect on the SC10

blade as on the UTRC blade. The mean transition location moves towards the trailing

edge on both sides of the blade, reducing the mean shift and variability in the entropy

generation, as shown in the middle plots of Figure 2-32.

At the positive incidence design point, flow separation occurs on 50% of the man-

ufactured blades with uniform tolerances. For 10% of the manufactured blades, sepa-

ration occurs at a shock that forms on the suction side of the blade, while separation
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Figure 2-32: Boundary layer entropy generation rate for the SC10 blade with uniform
and optimized tolerances with 98% of the baseline variability. Solid lines indicate the
nominal, dashed lines indicate the mean. The pressure side (PS) is plotted in red and
the suction side (SS) is plotted in blue.
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Figure 2-33: Leading edges and pressure side pressure coefficient profiles for six manu-
factured SC1O blades at 01 = 48.50. The left plots correspond to blades with uniform
manufacturing tolerances, and the right plots correspond to blades with optimized
tolerances.
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Figure 2-34: Comparison between separation bubble length and entropy generation
on the pressure side of the SC10 blade at #1 = 48.5' with uniform and optimized
tolerances with 98% of the baseline variability (colors indicate separation location).

occurs on the aft 10% of the blade for the other 40% of the blades. The left plot in

Figure 2-35 shows that the entropy generation increases as the length of the separa-

tion bubble increases. With optimized tolerances, flow separation occurs on 10% of

the blades. The reduction in flow separation, and the consequent reduction in entropy

generation is illustrated in the right plot of Figure 2-35.

We also perform an optimization where the total variability V is constrained to

be 96% of the baseline total variability. A comparison between the performance of

the SC1O blade with uniform and optimized tolerances is presented in Table 2.6.

The optimized tolerances, shown in Figure 2-36, further reduce the variability on

the suction side of the blade from the tolerance scheme shown in Figure 2-30. Suction

side flow separation does not occur at the positive incidence design point for any of

the blades with these manufacturing tolerances.

2.5 Chapter Summary

In this chapter, we have presented a probabilistic, gradient-based optimization frame-

work for designing compressor blade manufacturing tolerances. A novel "double bow-
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Figure 2-35: Comparison between separation bubble length and entropy generation
on the pressure side of the SC10 blade at #1 = 58.50 with uniform and optimized
tolerances with 98% of the baseline variability (colors indicate separation location).

Baseline Optimized

2.19 x 10-2 2.02 x 10-2
E[C(02)] 1.53 x 10-2 1.52 x 10-2
E[CO(3)] 2.25 x 10-2 1.98 x 10-2

ZwiE[C'(o3j)] 1.88 x 10-2 1.76 x 10-2

Table 2.6: Comparison of the mean loss for the SC1O blade with baseline and optimized
tolerances with 96% of the baseline variability.
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tie" tolerance scheme was found to be optimal for two subsonic blades. At the positive

and negative incidence design points, flow separation was the dominant mechanism

that led to an increase in the mean loss for manufactured compressor blades. Reducing

variability near the leading edge reduced the extent of flow separation occurring at the

leading edge, as well as at shocks and at the trailing edge. At the design incidence,

the optimal tolerance scheme moves the mean transition location towards the trailing

edge on both sides of the blade. By reducing the total variability by 2%, tolerance

optimization reduced the average mean shift in loss by 49% for the UTRC exit guide

vane and 78% for the SC10 rotor blade. The optimal distribution of U(s) differed

for these two geometries, illustrating that the optimal tolerance scheme is geometry

dependent.

In practice, the framework presented in this chapter can be used to select manu-

facturing processes that achieve the required process spread at every location on the

blade, and to construct tolerance bands for rejecting or reworking blades. Our ap-

proach determines the optimal process spread a(s), which varies continuously around

the blade. In reality, only finitely many manufacturing processes are available, so -(s)

changes discontinuously at the point where one manufacturing process is replaced by

another. Further work is required to determine how to translate the continuous process

spread to a set of manufacturing processes in different regions of the blade.

Tolerance bands can also be constructed from the process spread by choosing con-

stant factors ki and k, corresponding to inner and outer tolerance bands. Blades

whose surface falls within the inner tolerance band Xd(s) - kia(s)h(s) are rejected,

and blades whose surface falls outside the outer tolerance band Xd(S) + kU(s)i(s)

are reworked. Rejecting and reworking blades that fall outside the tolerance bands

truncates the distribution of the manufactured blade variability, as opposed to scaling

the distribution according to the process spread. Future work should recommend how

to select ki and k0, and compare the mean performance of blades toleranced according

to bands constructed from a(s) to the mean performance of blades with scaled process

spread.
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Chapter 3

Compressor Blade Geometry and

Tolerance Design

In this chapter, we integrate geometry optimization into the tolerance optimization

process. We illustrate that the interdependence of the optimal blade geometry and

optimal manufacturing tolerances determines whether the geometry and tolerances

should optimized simultaneously. Section 3.1 describes the optimization problems

that are solved to obtain the optimal blade geometry, and Section 3.2 formulates the

simultaneous geometry and tolerance optimization problem. In Section 3.3, conditions

are provided to determine whether the tolerances should be optimized simultaneously

with the blade geometry. The geometry and tolerances of the blades considered in

Chapter 2 are optimized in Section 3.4.

3.1 Formulations of Compressor Blade Geometry

Optimization

3.1.1 Single-point Deterministic Design

Deterministic optimization minimizes the loss coefficient of the design intent geometry.

The inflow angle is held fixed, and the flow turning is constrained to its baseline value,
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denoted as A/3b. The deterministic optimal blade geometry is determined by solving

the following optimization problem:

min Lo(d)
dED

s.t. A/(d) = A#3.

Here d E RNd

and D C RNd

placed on the

is a vector parameterizing the design intent geometry of the blade Xd(S),

is the design space which takes into account any geometric constraints

blade profile.

3.1.2 Single-point Robust Design

Robust design optimization minimizes the mean loss coefficient. Replacing the nominal

values of the loss coefficient and flow turning with their mean values gives the single-

point robust design optimization statement:

min E[co (d)]
dED

s.t. E[A#(d)] = A3b.

This optimization statement is identical to that used in [27] to perform robust opti-

mization of rotor blade sections.

3.1.3 Multi-point Deterministic Design

For fixed inflow Mach number, a design point is defined by the incidence angle. Per-

forming single-point optimization at the nominal incidence can produce geometries

that reduce the loss near the nominal incidence angle, but increase the loss at other

incidences. We therefore use the multi-point design strategy introduced in Chapter 2

to reduce the loss over a range of incidence angles. The weighted loss is minimized,
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and the turning at the nominal incidence is constrained to its baseline value:

N,

mm wD(d,#If)
dED 

C
i=1

s.t. AO(d, #3e) = 3#" .

3.1.4 Multi-point Robust Design

For the blade geometries considered in Chapter 2, the mean shift in loss at the nom-

inal incidence is small relative to the loss of the design intent blade, and grows as

the incidence is either increased or decreased. This suggests that performing robust

multi-point optimization will be beneficial, since the multi-point objective function

incorporates design conditions where the shift in mean performance is an order of

magnitude larger than the mean shift at the design incidence. This motivates the

following robust multi-point formulation:

N,

min wiE[Cj(d, i,; 0)]
dED

s.t. E[AO(d, /3 ie; 0)] = Ab

Multi-point robust optimal designs are robust with respect to manufacturing variations

and variations in the flow incidence.

3.2 Simultaneous Geometry and Tolerance Design

The proposed tolerance optimization framework can be incorporated to perform si-

multaneous optimization of both the nominal blade geometry and manufacturing tol-

erances using any of the formulations presented in the previous section. Reducing the

level of geometric variability tends to improve the mean performance, but increases

the cost of manufacturing the blades. Figure 3-1 illustrates the trade-off between ge-

ometric variability, quantified by V(o-), and mean loss. The gray region represents
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all feasible designs, and the solid black line shows the set of Pareto optimal designs.

A design is Pareto optimal if the mean loss cannot be reduced without relaxing the

manufacturing tolerances (increasing V) and the tolerances cannot be relaxed without

increasing the mean loss. Both the deterministic and robust optimal designs fall on

this Pareto front: in the absence of geometric variability (V = 0), optimizing the ge-

ometry produces the deterministic optimal design d* t, and optimizing the geometry

in the presence of manufacturing variations, e.g. with standard deviation , results

in the robust optimal design d*o.

E[C&(d*, Emax)]

E[W(d*, o*)]

W(d*j~

0 Vb V(Crmax)

Figure 3-1: Pareto front illustrating the trade-off between performance and variability.

Additional points that lie on the Pareto front can be found by solving an opti-

mization problem: For a given level of variability Vb, both the tolerances and design

intent geometry are optimized to minimize the mean loss coefficient. The optimization

problem used to simultaneously optimize the geometry and tolerances is summarized

below:

(d*, *)= arg min E[C- (d, o)]
d,o-

s.t. E[A/3(d; 0)] = Mb

V(0)=V

0-(s) < 0max.
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The multi-point design strategy replaces the objective and constraints with the weighted

mean loss and mean turning.

The geometry optimization and geometry/tolerance optimization problems are

solved using a gradient-based approach. For the robust optimizations, the SAA

method is applied by replacing the mean loss and mean turning by their Monte Carlo

estimates. The SQP method is used to solve the resulting nonlinear programs, and the

gradients with respect to all design variables are computed using the finite difference

method. The geometry/tolerance optimization process is represented diagrammati-

cally in Figure 3-2.

Optimizer 
-

Manufacturing Design Intent
Tolerances Geometry +--

a(s; a) Xd(s; d)

Manufacturing Manufactured es: the seriormance
Errors a-+u Geometries aF Foltio ge Objectives
e(s, 0) H X(S, 0) SutnsE[J(cr, d)]

Figure 3-2: Block diagram illustrating the geometry and tolerance optimization frame-
work.

3.3 Simultaneous vs. Sequential Geometry and Tol-

erance Design

There are two alternative approaches for optimizing compressor blade geometry and

manufacturing tolerances: the simultaneous design approach, in which the nominal

geometry and manufacturing tolerances are optimized together, or a sequential design

approach, in which the nominal geometry is optimized with presumed tolerances, and

the tolerances are then optimized with the geometry fixed.

91



The results of Chapter 2 show that the optimal manufacturing tolerances depend

on the blade geometry. The optimal, minimum mean loss geometry may depend on

the manufacturing tolerances, in which case the deterministic optimal geometry and

robust optimal geometries differ. Simultaneous optimization is required in this case,

since optimizing the nominal geometry first will result in a sub-optimal design when

the level of variability is changed by the tolerance optimization step. If the optimal,

minimum mean loss geometry does not depend on the manufacturing tolerances, the

geometry can be first optimized deterministically.

The sensitivity of the optimal geometry to the level of noise depends on the prop-

erties of the objective function at the deterministic optimal solution. We analyze the

case where the performance is determined by a single geometric design variable d,

and assume the geometry is subject to additive Gaussian noise with zero mean and

variance v := a.2 , so that the manufactured design is given by dm = d+e, e - K(O, v).

The loss coefficient is assumed to be a locally convex function of d, which is true for

some region around the deterministic optimal geometry d*, which corresponds v = 0.

The sensitivity of the optimal geometry with respect to the variance can be derived

using perturbation analysis [24]. Expanding the stationarity condition around the

deterministic optimal solution (d, v) = (d*, 0), we have

0
OF 0 2F + 2F

0= + a d+ a v
d a d0 OdOvo

where the objective function F = E[cu(d; v)] is the mean loss coefficient. This implies

that
ad* [ 2F -1 a2 F

~v [d2 OdOv'

The second term can be expanded for small v by introducing the noise variable ~
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A(O, 1):

a2 F E (d*
OdOv = v \d

[ ( 2, 2 5dV)) 2V]

= ad2 0 2 Vfv d3 2 d4 0 4 +LOIV)

1 (C
= 2 d3 l +0(v).

A series expansion for the optimal geometry is

ad*
d*(v) = d*(0) + Od* v +O(v 2).

Plugging in,

d*(v) = d*(0) - 1[ 2 1 1 3 ( I V + O (v 2). (3.1)

In multiple dimensions with uncorrelated noise factors, this generalizes to

d*(v) = d*(0) - 1 H1'Tv + O(v 2),2

where v = [of . .. uNd]T, H is the Hessian matrix:

H -- = Od a 1

and the third derivative matrix T is given by

Wddj o m

When the noise factors are correlated with correlation matrix R, the expansion for the
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optimal design is

di*(v) = di*(0) + I E E -0 0a2ci j~k + 0(v2),

where
2d* w3C R jk

19Ua m OdmOdjOdk o

Thus, to first order, the change in the optimal design is proportional to the third

derivative of the loss function multiplied by the variance of the noise factors, normal-

ized by the Hessian matrix. The third derivative quantifies the asymmetry of the loss

function. The above derivation shows that if the loss function is locally symmetric at

the deterministic optimal design, the optimal geometry is not affected by symmetri-

cally distributed variability. If the loss function increases more slowly in a particular

design direction near the deterministic optimum, the robust optimum will move in the

direction that the loss increases more slowly as the level of noise is increased.

Figure 3-3 shows two convex loss functions, one symmetric and one asymmetric.

The blue curves show the loss function in the absence of variability, and the green and

red curves show the mean loss function for increasing levels of normally distributed

variability in the design variable d. The minimum loss geometry, indicated by the solid

dot, does not change as the noise level is increased for the symmetric loss function on

the left. For the asymmetric loss function on the right, the optimal geometry moves

in the direction that the loss increases more slowly. The dependence of the optimal

solution on the noise level for the asymmetric function is plotted in Figure 3-4, along

with the linear extrapolation from the deterministic optimal computed using Equation

(3.1).

To first order, the change in the optimal geometry is given by Ad* := d*(a) -

d*(O) = Sda., where the non-dimensional sensitivity Sd. is given by

1 r I I 
2 O 1 0. 5d3 0

94



1.5-

LW.C

0.5

-- =0.0
-- =0.25
-- 1 0=0.5

-.. -. -.. -. -..--..--

- ~ ~ ~ ~ ~ .-.. --. -... --- -- -- -

=2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
d

(a)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

15 2.0

- u=0.5

-- 3 3. .0

- - - --.-.-.- -.-.-.-.- .

0 =.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
d

(b)

Figure 3-3: Symmetric (a) and asymmetric (b) loss functions with increasing levels of
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If ISd*. > 1, then IAd*I > -, and the robust optimal geometry differs from the

deterministic optimal geometry by an amount larger than the standard deviation of

the manufacturing error. Otherwise, the difference between the robust optimal and

deterministic optimal geometries is on the order of the manufacturing error, obviating

the need to perform robust design. For the function on the left of Figure 3-4, Sd* = 0,

indicating that the optimal design is insensitive to variability. For the function on

the right, Sd* = 3.08-, indicating that the location of the optimal design moves to

the right as the level of variability is increased, and that for - > 1/3.08 = 0.325, the

change in the design is of the same order of magnitude or larger than the standard

deviation.

The primary limitation of this sensitivity index is that it is only accurate when

higher order terms, i.e. terms that are 0(v2) in Equation (3.1), can be ignored. The

results presented in Chapter 2 show that manufacturing variations lead to increases

in loss as a result of flow separation or changes in the transition location. When

these flow features appear, the loss increases nearly discontinuously, and the higher

order terms dominate in Equation (3.1). In this case, the sensitivity index does not

provide an accurate estimate of the change in the optimal design when manufacturing

noise is introduced. However, the conclusions regarding the asymmetry of the loss

still apply: if the mean shift is uniform for geometries in a neighborhood of designs

near the deterministic optimal geometry, then the optimal geometry is insensitive to

the level of variability. Otherwise, the optimal geometry moves in a direction of the

design space that decreases the mean loss. This asymmetry occurs when the dominant

loss mechanism switches for some manufactured blades. For example, Goodhand et al.

showed that manufacturing variations result in flow separation for some manufactured

blades when the leading edge radius of curvature is reduced. The optimal design moved

to avoid this switch in the dominant loss mechanism by increasing the leading edge

radius of curvature, preventing flow separation from occurring on the manufactured

blades [33]. If the switch in dominant loss mechanism occurs for all manufactured

blades, we can conclude that the loss function is symmetric at the deterministic optimal
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design, and the deterministic and robust designs will be the same.

3.4 Application to Compressor Blade Geometry and

Tolerance Optimization

3.4.1 Design Intent Geometry Parameterization

The design intent surface geometry is constructed by adding a set of shape functions

Tkl(s), k = 1, ... , N to the baseline geometry. Each shape function moves the baseline

geometry Xb(s) in the surface normal direction, so that the coordinates of the design

intent geometry x(s) are given by

Ng

x(s) = Xb(S) + h(s) E dkTk(s),
k=1

where the dk are the amplitudes of the shape functions and -1 < s < 1 is the arc

length coordinate defined in Chapter 2. To allow for changes in the blade stagger

angle, a rotation angle design variable is included. The design vector d E RNd thus

consists of the set of shape function amplitudes dk, k = 1,..., N. and the rotation

angle.

The shape functions are chosen to be modified Chebyshev polynomials of the first

type:

i 1 - 2s - cos[(k + 1) arccos(1 - 2s)], k even

k + k 1 - cos[(k + 1) arccos(1 - 2s)], k odd

The first five modified Chebyshev modes are plotted in Figure 3-5. Figure 3-5 shows

that the modified Chebyshev polynomials become more oscillatory as k increases. To

prevent the appearance of localized features in the geometry, it is important to use

a small number of design modes. This prevents the optimizer from exploiting the

flow at the smallest significant physical scales and producing geometries that perform

poorly away from the given set of design points [17]. For all optimizations, N. = 5
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Figure 3-5: Modified Chebyshev polynomials Tk'(s), k = 1, ... , 5.

Chebyshev modes are used to parameterize the surface geometry. The blade solidity is

held constant to keep the blade loading constant. The cross-sectional area of the blade,

which is proportional to its tensile stiffness, is also constrained during optimization.

To constrain the cross-sectional area to be equal to the baseline thickness, equal and

opposite perturbations are applied to the pressure and suction sides of the blade.

3.4.2 UTRC Fan Exit Guide Vane

3.4.2.1 Single-Point Optimization

The design point is placed at the design intent inflow angle of 13de, = 43.20. Sequential

optimizations of the geometry and tolerances were performed using both the deter-

ministic and robust geometry design approaches. A simultaneous optimization of the

geometry and tolerances was also performed. The optimizations were terminated when

the mean loss converged within an absolute tolerance of 10-. N = 500 Monte Carlo

samples were used to approximate the mean loss and mean turning, and the total

variability was constrained to be 98% of the baseline value. The standard deviation

was constrained to be less than the baseline value cb/c = 8.0 x 10-4 everywhere on
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the blade. Table 3.1 summarizes the number of SQP iterations, objective evaluations,

and MISES flow calculations required to perform each optimization. The number of

MISES flow calculations indicates that the robust geometry design approach is orders

of magnitude more computationally expensive than the deterministic geometry design

approach. The convergence histories of the optimizations are compared in Figure 3-6.

Det. Det. Robust Robust
Geometry Tolerance Geometry Tolerance Simultaneous

N - 500 500 500 500
# SQP iter 14 35 10 24 41

# Obj. evals 18 45 16 39 86

# MISES runs 18 22,500 8,000 19,500 43,000

Table 3.1: Number of Monte Carlo samples, SQP iterations, objective/constraint eval-
uations, and MISES flow calculations for the single-point optimizations of the UTRC
blade.
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Figure 3-6: Convergence history for the single-point optimizations of
The dots indicate SQP iterations.

the UTRC blade.

Table 3.2 summarizes the performance of the single-point optimized designs. The

second row gives the mean loss calculated using uniform manufacturing variability

(Ub/c = 8.0 x 104), and the last row gives the mean loss calculated using optimized
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tolerances. In the absence of variability, the deterministic optimum has the lowest

loss coefficient, 11% lower than the loss of the baseline design. The robust geometry

optimization reduces the mean loss by 8%, and has the lowest mean loss at the baseline

level of manufacturing variability. The simultaneous optimization has lower mean loss

than the other designs with optimized tolerances, and reduces the mean loss by 11%

relative to the baseline geometry with uniform tolerances.

Baseline Deterministic Robust Simultaneous
C 2.24 x 10-2 2.00 x 10-2 2.06 x 10-2 2.03 x 10-2

E[J(Ob)] 2.27 x 10-2 2.14 x 10-2 2.09 x 10-2 2.10 x 10-2
E[C'(a*)] 2.25 x 10-2 2.06 x 10-2 2.06 x 10-2 2.05 x 10-2

Table 3.2: Performance comparison of the baseline UTRC, single-point deterministic
optimal, single-point robust optimal, and single-point simultaneous optimal designs.

The optimal blade geometries are compared in Figure 3-7. In the lower plot, all

blades are rotated to the same stagger angle to facilitate comparison of the blade

camber. Figure 3-8 compares the pressure coefficient profiles for the three blades in

the absence of geometric variability. The deterministic optimization eliminates the

shock by reducing the camber of the front 75% of the chord. The elimination of the

suction side shock eliminates the shock losses and reduces the shape factor of the

resulting boundary layer, as illustrated in the left plot of Figure 3-9. The right plot of

Figure 3-9 shows that the dissipation coefficient C is an increasing function of shape

factor ft for the range of shape factors observed. A reduction in dissipation reduces

the suction side entropy generation for all redesigned blades, as shown in Figure 3-10.

The deterministic blade also reduces the pressure side entropy generation, giving it

the lowest loss in the absence of manufacturing variability.

The pressure profiles for the robust and simultaneous optimal blades are similar,

with a shock forming on the suction side for both nominal geometries. The peak

Mach number on the suction side of the robust and simultaneous optimal blades are

1.15 and 1.14, respectively, compared to 1.32 for the deterministic optimal blade and

1.26 for the baseline blade. The reduction in shock strength reduces the shape factor
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downstream of the shock relative to the baseline geometry, resulting in lower boundary

layer losses.

The loss bucket for the deterministic optimal blade is shown in Figures 3-11. At

the nominal incidence, a 7% increase in the mean loss is observed when manufacturing

variations are introduced. The deterministic optimization eliminates the suction side

shock, but also increases the peak suction side Mach number. Introducing manufac-

turing variations results in a switch in the dominant loss mechanism: shock induced

separation occurs for 10% of the manufactured blades. The top right plot of Figure

3-10 illustrates the mean shift in entropy generation due to shock induced flow sepa-

ration. The appearance of a suction side shock is also responsible for increasing the

loss at positive incidence, and this shock is stronger than the shock observed on the

baseline blade at each incidence. Less than 98% of the MISES runs converged above

an incidence of a = 3.3', so the mean performance is not plotted in this region.

The robust design avoids the switch in flow mechanisms by reducing the peak

suction side Mach number. Introducing manufacturing variations results in shock

induced flow separation on 5% of the blades, resulting in a 2% increase in mean

loss. Reducing the peak Mach number also improves the performance of the robust

design at positive incidence by delaying the onset of shock induced separation, which

is reflected in the loss bucket shown in Figure 3-12. Simultaneous optimization also

avoids the switch in flow mechanisms by changing the geometry and reducing the

manufacturing variability, and the flow remains attached for all manufactured blades.

The loss bucket of the simultaneous optimal, plotted in Figure 3-13, has lower mean

shift and variability than the loss bucket of the robust design.

The optimized tolerances are plotted in Figure 3-14. The reduction in variability

on the deterministic optimal blade extends further down the suction side of the blade

than for the other geometries. This reduces the percentage of blades with suction

side flow separation to 3%. The optimal tolerances for the robust optimal blade are

distributed according to a "double bow-tie" pattern, but the reduction in variability

on the pressure side is small relative to that on the suction side. The pressure side
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Figure 3-7: Single-point optimal redesigned UTRC blades.
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Figure 3-8: Pressure coefficient profiles for the baseline and single-point optimized
UTRC blades. The dots denote the location of transition.
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Figure 3-9: Left: suction surface shape parameter profiles for the baseline and single-
point optimized UTRC blades. Right: dependence of dissipation coefficient on shape
factor.
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Figure 3-10: Boundary layer entropy generation for the baseline and single-point opti-
mized UTRC blades. Solid lines indicate the nominal, dashed lines indicate the mean.
The pressure side (PS) is plotted in red and the suction side (SS) is plotted in blue.
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Figure 3-11: Loss coefficient versus incidence angle for the single-point deterministic
optimal redesigned UTRC blade. The quantiles are plotted for the optimized blade.
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Figure 3-12: Loss coefficient versus incidence angle for the single-point robust optimal
redesigned UTRC blade. The quantiles are plotted for the optimized blade.
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Figure 3-13: Loss coefficient versus incidence angle for the single-point simultaneous
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tolerances ensure flow separation does not occur on any manufactured blades. To

quantify the error between two tolerance schemes Ti(s) and qj(s), we compute the

integrated error:

I[Omax - Us(s)] - [0-max - oj (s)]j ds
eijy =

j[Ormax - Ui(s)] + [Umax - oj(s)] ds

The largest error between the three optimal tolerance schemes is 37%, illustrating that

the optimal tolerance scheme is geometry dependent.

3.4.2.2 Multi-Point Optimization

To perform multi-point optimization, we use Np = 3 design points at #1 = 38.7',

43.2 , and 47.7 and a weight vector w = {1/4, 1/2, 1/4}. Comparing Tables 3.3 and

3.1 illustrates that the multi-point optimizations are roughly three times as computa-
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Figure 3-14: Optimal standard deviation -(s)/c for the single-point optimized UTRC
blades. The lower surface is the pressure side, and the upper surface is the suction

side.
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tionally expensive as the equivalent single-point optimizations. The number of SQP

iterations and objective/constraint evaluations remains nearly unchanged between the

single-point and multi-point optimizations, but each objective/constraint evaluation

is three times more expensive since three design points are used in the multi-point

approach. The convergence histories for the multi-point optimizations, plotted in Fig-

ure 3-15, indicate that all three designs attain the same weighted mean loss. The

performance of the multi-point optimal designs is summarized in Table 3.4.

Det. Det. Robust Robust
Geometry Tolerance Geometry Tolerance Simultaneous

N - 500 500 500 500

# SQP iter 12 32 13 26 53

# Obj. evals 14 42 16 36 110
# MISES runs 42 63,000 24,000 54,000 165,000

Table 3.3: Number of Monte Carlo samples, SQP iterations, objective/constraint eval-
uations, and MISES flow calculations for the multi-point optimizations of the UTRC
blade.
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Figure 3-15: Convergence history for the multi-point optimizations of the UTRC blade.
The dots indicate SQP iterations.
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Baseline Deterministic Robust Simultaneous
Zwi2 i 2.60 x 10-2 2.22 x 10-2 2.22 x 102 2.22 x 10-2

Z wiE [i(Ub)] 2.68 x 10-2 2.29 x 10-2 2.29 x 10-2 2.29 x 10-2

Z wiE [i(o*)] 2.64 x 10' 2.23 x 10- 2.23 x 10-2 2.23 x 10-2

Table 3.4: Performance comparison of the baseline UTRC, multi-point deterministic
optimal, multi-point robust optimal, and multi-point simultaneous optimal geometries.

The multi-point optimal geometries are shown in Figure 3-16. The surfaces of the

optimized geometries are within 0.5% of the chord length. We therefore analyze the

multi-point deterministic optimal geometry, since the same conclusions hold for the

robust and simultaneous optimal geometries. The multi-point optimal geometries are

similar to the single-point robust geometry: the optimizer reduces the camber of the

blade, and decreases the blade stagger.

The pressure coefficient profiles for the baseline and multi-point deterministic op-

timal geometries are compared in Figure 3-17, showing that the optimizer shifts the

loading toward the trailing edge which reduces the strength of the suction side shock.

The effect of reducing the suction side shock strength on the entropy generation is

shown in Figure 3-18, which compares the baseline and optimized blades with uniform

manufacturing tolerances. At negative incidence (!3 = 38.70), reducing the shock

strength reduces the nominal entropy generation and the mean shift in entropy gener-

ation, since the flow separates on the suction surface for only 5% of the manufactured

blades, whereas suction side flow separation occurs on 35% of the manufactured base-

line blades.

On the pressure side of the blade, the design changes have the largest impact at

negative incidence. Decreasing the blade stagger reduces the number of blades with

pressure side flow separation from 50% down to 14%. As a result, the mean shift in

the pressure side entropy generation is 40% lower for the optimized blade.

Figure 3-19 shows that the multi-point optimal designs reduce the nominal and

mean loss over the entire incidence range considered. The "kink" in the loss bucket

of the nominal blade near a = 2.3' is a result of the suction side transition location
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Figure 3-16: Multi-point optimal redesigned UTRC blades.
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Figure 3-17: Comparison between the baseline (left) and multi-point deterministic op-
timal (right) pressure coefficient profiles for the UTRC blade. The transition locations
are indicated by dots.

shifting towards the trailing edge as the leading edge pressure spike disappears with

increasing incidence. The multi-point optimal geometry reduces the nominal and

mean loss by an average of 10% over the incidence range considered. Optimizing the

geometry and tolerances reduces the mean loss by an average of 13%.

The single-point deterministic optimal design eliminated the shock at the nominal

incidence, but increased the shock strength at positive incidence relative to the baseline

design. The multi-point deterministic optimal does not eliminate the suction side

shock at any of the design points. Including variations in incidence has a similar

effect as including, manufacturing variations: the multi-point optimal design avoids

regions of the design space where a switch in the dominant loss mechanism occurs.

For the multi-point optimization, robustness to flow incidence implies robustness to

manufacturing variations, since changes in incidence have a larger effect on the mean

performance than manufacturing variability.

Multi-point deterministic and robust designs are not always found to be similar.

Goodhand et al. demonstrated that for design changes on the same length scale as

the manufacturing variations, deterministic and robust multi-point design approaches

result in different optimal designs [33]. The similarity between the multi-point opti-
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Figure 3-18: Comparison of the boundary layer entropy generation rate for the baseline
and multi-point deterministic optimal UTRC blades. Solid lines indicate the nominal,
dashed lines indicate the mean. The pressure side (PS) is plotted in red and the
suction side (SS) is plotted in blue.
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Figure 3-19: Loss coefficient versus incidence angle for the multi-point deterministic
optimal redesigned UTRC blade. The quantiles are plotted for the optimized blade.
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Figure 3-20: Loss coefficient versus incidence angle for the multi-point simultaneous
optimal redesigned UTRC blade. The quantiles are plotted for the optimized blade.
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mized geometries found in this thesis is a result of using design variables that alter

the geometry on length scales larger than the manufacturing variations.

The insensitivity of the optimal multi-point geometry to manufacturing variations

implies that sequential tolerance design should give similar results to tolerances pro-

duced by the simultaneous approach. The largest error between the optimal tolerances,

plotted in Figure 3-21 is 8%, four times smaller than the maximum error between the

single-point optimal tolerances. The multi-point optimal tolerances decrease the stan-

dard deviation near the leading edge of the blade, resulting in a "double bow-tie"

tolerance pattern. The greatest decrease is on the suction side of the blade, since

most of the mean shift arises due to suction side separation occurring at positive

incidence.

Figure 3-22 compares the entropy generation between the baseline UTRC blade

with optimized tolerances presented in Chapter 2 and the multi-point simultaneous

optimal design. The mean shift and variability in entropy generation is lower at each

incidence for the simultaneous optimal design, illustrating the benefits of optimizing

both geometry and tolerances.

3.4.3 SC10 Rotor

3.4.3.1 Single-Point Optimization

For the SC10 blade, the single-point optimizations minimize the loss at the nominal

inflow angle of Od* = 53.5', and constrain the turning to be equal to the turning

of the baseline blade at the design incidence. To optimize the tolerances, the total

variability was constrained to be 98% of the baseline value, and the standard deviation

was bounded above by a/c = 6.Ox 104. Table 3.5 shows that the computational cost of

these optimizations is roughly the same as the single-point UTRC optimizations. Table

3.6 compares the performance of the baseline and optimized blades. The deterministic

optimal blade has 9% lower loss than the baseline blade, and the robust optimal blade

reduces the mean loss by 9% relative to the baseline blade.
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Figure 3-21: Optimal standard deviation u(s)/c for the multi-point optimized UTRC
blades. The lower surface is the pressure side, and the upper surface is the suction
side.
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Figure 3-22: Comparison of the boundary layer entropy generation rate for the baseline
UTRC blade with optimized tolerances and the multi-point simultaneous optimized
blade. Solid lines indicate the nominal, dashed lines indicate the mean. The pressure
side (PS) is plotted in red and the suction side (SS) is plotted in blue.
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Det. Det. Robust Robust
Geometry Tolerance Geometry Tolerance Simultaneous

N - 500 500 500 500
# SQP iter 9 43 11 36 45

# Obj. evals 15 83 21 65 98
# MISES runs 15 41,500 10,500 32,500 49,000

Table 3.5: Number of Monte Carlo samples, SQP iterations, objective/constraint eval-
uations, and MISES flow calculations for the single-point optimizations of the SC10
blade.

Baseline Deterministic Robust Simultaneous
c 1.52 x 10-2 1.39 x 10-2 1.39 x 10-2 1.39 x 10-2

E[C(Orb)] 1.53 x 10-2 1.42 x 10-2 1.40 x 10-2 1.41 x 10-2

E[iD(u*)] 1.52 x 10-2 1.39 x 10-2 1.39 x 10-2 1.39 x 10-2

Table 3.6: Performance comparison of the baseline SC1O, single-point deterministic
optimal, single-point robust optimal, and single-point simultaneous optimal designs.

The single-point optimized blades are plotted together in Figure 3-23. The stagger

angles of the optimized blades are between 1.8' and 2.1' lower than the baseline blade.

The camber of the trailing 80% of the optimal blades is reduced, resulting in blades

with flat pressure surfaces. The deterministic optimal blade is the flattest and has the

lowest stagger.

The pressure distributions of the baseline and optimized blades are compared in

Figure 3-24. The pressure profiles of the optimized blades are typical of controlled

diffusion airfoils [13]. The flow on the suction surface is accelerated to the transition

location, with a peak Mach number of 1.11, and then decelerated to the trailing edge

without the formation of a shock. The pressure profile on the pressure side remains

flat. Comparing the suction side entropy generation, plotted in Figure 3-25, shows

that more entropy is generated over the first half of the optimized blades. The entropy

generation rate slows over the rear of the blade, so that the nominal and mean suction

side boundary layer losses are within 1% for the baseline and optimized blades.

The reduction in loss achieved by the optimized blades is primarily a result of

lower pressure side boundary layer losses. The flatter pressure side pressure profile
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Figure 3-23: Single-point optimal redesigned SC1O blades.
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delays transition, resulting in a 3% reduction in the pressure side boundary layer

entropy generation for the deterministic optimal blade relative to the baseline blade.

A 3% reduction in the mean pressure side entropy generation is achieved by the robust

optimal blade.

1

0

0.

-0.

-1.
0.0 O.2 O4 0.6 0.8 1.0

x

Figure 3-24:
SC1O blades

Pressure coefficient profiles for the baseline and single-point optimized
at 01 = 53.5'. The dots denote the location of transition.

The loss buckets for the optimized blades, shown in Figures 3-26 to 3-28, are

shifted relative to t-he loss bucket of the baseline geometry, with higher loss at positive

incidence. This is a result of shock-induced flow separation on the suction side of the

blade that occurs at positive incidence.

To understand why the deterministic and robust optimal SC1O blades differ, we

compare the change in entropy generation for the nominal geometries and the change

in the mean entropy generation for the manufactured blades in Figure 3-29. Suction

side flow separation occurs on 6% of the manufactured deterministic optimal blades,

resulting in a 2% increase in the mean suction side entropy generation. The entropy

generation is three times higher on the suction side of the blade than on the pressure

119

- Baseline
.0 - Deterministic

Robust
- Simultaneous

.5

0

.5 .... .... ...... ....... .................. ...

-



3

S2

1

-Baseline, SS
-- Mean, SS
-Baseline, PS
-- Mean, PS
E 2.5%-97.5% Quantiles, SS

2.5%-97.5% Quantiles, PS. . .... ...-..-.-.-.

-. ...-......

W0 0.2 0.4 0.6 0.8 1.0
8

(a) Baseline

le1-4

TO 0.2 0.4 0.6 0.8 1.
8

(b) Deterministic

r 1e-4

3

2

1

-Robust, SS
-- Mean, SS
-Robust, PS
-- Mean, PS
m 2.5%-97.5% Quantiles, SS
am2.5%-97.5% Quantiles, PS-- ..- - .- ..- . --.-..-.-.-. .-.-.-.

b.0 0.2 0.4 0. 0.8 1.0 b.08

(c) Robust

0.2 0.4 0.6 0.8 1.0

(d) Simultaneous

Figure 3-25: Boundary layer entropy generation for the baseline and single-point opti-
mized SC1O blades. Solid lines indicate the nominal, dashed lines indicate the mean.
The pressure side (PS) is plotted in red and the suction side (SS) is plotted in blue.
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Figure 3-26: Loss coefficient versus incidence angle for the single-point deterministic
optimal redesigned SC1O blade. The quantiles are plotted for the optimized blade.

le-2
- - Baseline Nominal
- - Baseline Mean
- Optimized Nominal

4.0 - Optimized Mean
2.5%-97.5% Quantiles

C

2 .5 -. .. -.. .... ..- ----...... ..

3 .2 0 --.... -

1.2

1.01
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Incidence, a (deg)

Figure 3-27: Loss coefficient versus incidence angle for the single-point robust optimal
redesigned SC10 blade. The quantiles are plotted for the optimized blade.

121



4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0
3 4 5 6

Figure 3-28: Loss coefficient versus incidence angle for the single-point simultaneous
optimal redesigned SC10 blade. The quantiles are plotted for the optimized blade.

side, so the suction side losses are the dominant design driver in the presence of

manufacturing variability. The robust design reduces the acceleration around the

leading edge of the suction side of the blade, which shifts the mean transition location

2% closer to the trailing edge.

The switch in design drivers from pressure side loss to suction side loss is reflected in

the optimal tolerance schemes, shown in Figure 3-30. The optimized tolerance schemes

are all distributed according to the "double bow-tie" pattern. The optimal tolerances

for the deterministic design are reduced more on the suction side to delay the mean

transition location in the presence of manufacturing variations. The tolerances on the

robust design are reduced more on the pressure side, where most of the mean shift in

loss occurs for this design. The integrated error between the deterministic and robust

optimal tolerances is 66%, reflecting a strong dependence of the optimal tolerances on

the geometry.

122

5.01le-2

G
4-J
C

0
U

0
-j

- - Baseline Nominal
- - Baseline Mean

- Optimized Nominal
- Optimized Mean

2.5%-97.5% Quantiles

,'

.. ..... .. .

.. .... .. . .. .

I' S

-5 -4 -3 -2 -1 0 1 2
incidence, a (deg)

-----------

6



Deterministic

0 0

-- -0 -l

-1 -
(G 0

-..32 -2t-on Otmzto

0 0

were~...... perf.rme -sn ..=..dsg.p.ns.t.. 8. , 5 .5 ,a d ... ...We.

C C

o 0
2 2

o 0o

a-)

Zm PSzEntropy f SS Entropy b A Entropy A RSMeanEntropy ASS Mean Entropy aMeanEntropy
Baseline Entropy Baseline Entropy Baseline Entropy Baseline Mean Entropy Baseline Mean Ento Baseline Mean Entropy

(a) Nominal Geometry (b) Manufactured Geometries

Figure 3-29: Percent change in the nominal (left) and mean (right) entropy genera-
tion for the single-point deterministic and robust optimal SC1 blades relative to the
baseline SCIG blade.

3.4.3.2 Multi-Point Optimization

To improve the off-design performance of the SC1 blade, multi-point optimizations

were performed using N = 3 design points at pm = 48.50, 53.50 and 58.50. We

use the same weight vector w = { 1/4, 1/2, 1/4} used to perform the multi-point

optimizations of the UTRC blade. The total variability Vb was constrained to 98%

of the baseline value, and the standard deviation was constrained to be less than

a/c = 6.0 x 10-4 in the tolerance optimizations. The computational cost of the multi-

point optimizations are compared in Table 3.7. The convergence histories are plotted

in Figure 3-31, and the performance of the optimized blades is summarized in Table

3.8.

The multi-point optimized SC10 geometries are plotted in Figure 3-32. The dis-

tance between the optimized blade surfaces is less than 0.4% of the blade chord, and

the optimal blades are similar to the single-point optimized SC10 blades, with a re-
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Figure 3-30: Optimal standard deviation -(s)/c for the single-point optimized SC10
blades. The lower surface is the pressure side, and the upper surface is the suction
side.
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Det. Det. Robust Robust
Geometry Tolerance Geometry Tolerance Simultaneous

N - 500 500 500 500
# SQP iter 12 24 11 27 46

# Obj. evals 16 64 15 71 95

# MISES runs 48 96,000 22,500 106,500 142,500

Table 3.7: Number of Monte Carlo samples, SQP iterations, objective/constraint eval-
uations, and MISES flow calculations for the multi-point optimizations of the SC10
blade.
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Figure 3-31: Convergence history for the multi-point optimizations of the SCiG blade.
The dots indicate SQP iterations.

Baseline Deterministic Robust Simultaneous

Zwics 1.75 x 10-2 1.55 x 10-2 1.55 x 10-2 1.55 x 10-2

E wiE [Ci(Ob) 1.88 x 10-2 1.64 x 10-2 1.64 x 10-2 1.64 x 10-2

E wiE[C i(a*)] 1.78 x 10-2 1.57 x 10-2 1.57 x 10-2 1.57 x 10-2

Table 3.8: Performance comparison of the baseline SC1O, multi-point deterministic
optimal, multi-point robust optimal, and multi-point simultaneous optimal geometries.
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duction in the blade stagger angle and decreased camber over the aft 80% of the blade.

The stagger angle of the optimized blades is 1.00 lower than the baseline blade, half

of the average change in stagger made by the single-point optimization.

At the negative incidence design point (i1 = 48.50), the majority of the. perfor-

mance improvement is a result of lower losses generated on the pressure side of the

blade, which reduces the loss coefficient by 23%. Comparing the baseline and op-

timized pressure coefficient profiles plotted in Figure 3-33 shows that the pressure

gradient over the first 20% of the pressure surface is less adverse for the optimized

blades at all three design points. This reduces the extent of flow separation at nega-

tive incidence. Flow separation occurs for 72% of the optimized manufactured blades,

compared to 93% of the baseline manufactured blades. Comparing the entropy gen-

eration at negative incidence, shown at the top of Figure 3-34, the optimized blades

have lower nominal and pressure side loss. At the nominal incidence (/1 = 53.50), the

optimized blade has lower pressure side losses, reducing the loss by 8%. At the positive

incidence design point (#1 = 58.50), the optimized blade reduces the loss by 7%. The

plots at the bottom of 3-34 show that the optimized blade has higher boundary layer

losses, indicating the improvement in performance is a result of lower mixing losses in

the wake. The same behavior is observed in the mean entropy generation, where the

mean suction side entropy is higher for the optimized blades, but the mean loss is 6%

lower. Trailing edge flow separation occurs for 60% fewer of the optimized manufac-

tured blades compared to the baseline geometry, which lowers the mean mixing losses

in the wake.

The loss buckets of the deterministic and simultaneous optimal designs are shown

in Figures 3-35 and 3-36, respectively. The multi-point optimal geometry reduces the

nominal and mean loss by an average of 11% over the incidence range considered.

Optimizing the geometry and tolerances reduces the mean loss by an average of 13%.

The differences between the single-point optimized SC10 blades were a result of

changes in the transition location that result in small changes in loss compared to

the changes resulting from varying the incidence angle. Both the deterministic and
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Figure 3-32: Multi-point optimal redesigned SC1O blades.
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Figure 3-33: Comparison between the baseline (left) and multi-point deterministic
optimal (right) pressure coefficient profiles for the SC1O blade. The transition locations
are indicated by dots.

robust multi-point approaches optimize the performance at negative incidence, where

the pressure side losses dominate, and at positive incidence, where the suction side

losses dominate. This prevents a switch in the design driver from occurring between

deterministic and robust design optimization, so the same optimal design is obtained

using either approach.

The sequential and simultaneous optimal tolerances are plotted in Figure 3-37. The

maximum error between the optimal tolerances is 4%, which is unsurprising given the

similarity of the multi-point optimal geometries. The greatest reduction in variability

is specified on the suction side of the blade near the leading edge, which reduces the

mean loss at the positive incidence design point by 75%. The optimizer focuses on

reducing the mean shift at the positive incidence design point since it is six times

larger than the mean shift at the negative incidence design point.

3.5 Chapter Summary

This chapter extended the framework presented in Chapter 2 to perform probabilis-

tic optimization of compressor blade geometry and manufacturing tolerances. This
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Figure 3-34: Comparison of the boundary layer entropy generation rate for the baseline
and multi-point deterministic optimal SC1O blade. Solid lines indicate the nominal,
dashed lines indicate the mean. The pressure side (PS) is plotted in red and the
suction side (SS) is plotted in blue.
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Figure 3-35: Loss coefficient versus incidence angle for the multi-point deterministic
optimal redesigned SC10 blade. The quantiles are plotted for the optimized blade.
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Figure 3-36: Loss coefficient versus incidence angle for the single-point robust optimal
redesigned SCIG blade. The quantiles are plotted for the optimized blade.
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Figure 3-37: Optimal standard deviation o-(s)/c for the multi-point optimized SC1O
blades. The lower surface is the pressure side, and the upper surface is the suction
side.
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Figure 3-38: Comparison of the boundary layer entropy generation rate for the multi-
point simultaneous optimal SC10 blade. Solid lines indicate the nominal, dashed lines
indicate the mean. The pressure side (PS) is plotted in red and the suction side (SS)
is plotted in blue.
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framework was used to design blades that were robust to variations in geometry and

flow incidence.

For the two geometries considered, the single-point optimal geometry was found to

be sensitive to the level of manufacturing variability. This sensitivity was a result of a

switch in the dominant loss mechanism that occurred on some manufactured blades,

resulting in an asymmetric loss function: perturbing the geometry in a particular

direction produced larger loss than perturbing in the opposite direction. For the

UTRC exit guide vane, shock induced separation caused by manufacturing variations

increased the mean loss of the deterministic optimal design by 7%. For the SC10

rotor blade, deterministic optimization reduced the pressure side loss relative to the

baseline design. Introducing manufacturing variations led to flow separation on the

suction side of the blade, and robust optimization changed the design to reduce the

mean suction side loss. The single-point optimal tolerances were found to depend on

the optimal geometry for both cases.

For the fan exit guide vane, multi-point geometry optimization reduced the suction

side shock strength by reducing the blade camber and stagger angle, reducing the

nominal entropy generation downstream of the shock. For the manufactured blades,

this design change decreased both the variability and mean shift in the suction side

losses. The optimized rotor blade is flatter than the baseline design over the aft 75%

of the blade, which reduced the pressure side entropy generation at negative incidence.

Optimizing the nominal geometry reduced the number of manufactured blades with

flow separation at negative incidence by 21%, which decreased the variability and

mean shift in the loss. Geometry optimization reduced the nominal and mean loss

by an average of 10% for the exit guide vane and 11% for the rotor blade. The

optimal tolerances for the multi-point optimal geometries followed the "double bow-

tie" pattern, resulting in a 13% reduction in the average mean loss for both cases.

Multi-point geometry optimization was found to be effective at reducing loss over a

range of incidence angles for an exit guide vane and rotor blade. Deterministic multi-

point optimization resulted in blades that were robust to both variations in incidence
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and geometry. In these optimizations, the dominant loss mechanism was determined

by the flow incidence, blade camber, and blade stagger. Since the multi-point optimal

geometries do not depend on the level of geometric variability, a deterministic design

approach is recommended, followed by tolerance optimization.
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Chapter 4

Summary and Recommendations

This chapter presents a summary of the findings of this thesis, and suggests direc-

tions for future work. In Chapter 2, a Gaussian random field model of manufacturing

variability was developed that incorporates the non-stationary correlation structure

observed in manufactured compressor blades. This model was applied to an exit guide

vane and rotor blade with subsonic inlet Mach numbers. At the design incidence an-

gle, manufacturing variations move the average transition location towards the leading

edge, increasing the mean turbulent wetted area and increasing the mean loss. Away

from the design incidence, manufacturing variations result in the formation of separa-

tion bubbles that increase the mean boundary layer mixing losses. These separation

bubbles form in regions of strong adverse pressure gradients resulting from shocks and

leading edge pressure spikes. For the two geometries considered, flow separation led

to an increase in the mean loss of up to 16% relative to the nominal loss. The changes

in the mean turning were found to be less than 2% for all incidence angles considered.

Chapter 2 illustrated that tolerance optimization can improve the mean perfor-

mance by reducing variability in the regions where manufacturing variations have the

largest impact on the mean loss. For both geometries considered, a "double bow-tie"

tolerance scheme that tightens manufacturing tolerances on either side of the lead-

ing edge was found to be optimal. This tolerance scheme reduces the extent of flow

separation at positive and negative incidence, and shifts the mean transition location
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towards the trailing edge at the design incidence. Reductions in the average mean

shift in loss of up to 78% were obtained by reducing the total variability by 2%.

Chapter 3 incorporated geometry optimization to the tolerance optimization frame-

work. Single-point deterministic geometry optimization produced designs that where

neither robust to manufacturing variations nor to variations in flow incidence. A switch

in the dominant loss mechanism degrades the performance of the single-point deter-

ministic optimal designs when manufacturing variations are introduced. Multi-point

deterministic optimization produces optimal blade geometries that are robust with

respect to flow incidence and manufacturing variations, provided the design variables

modify the geometry on length scales larger than the length scales of the manufactur-

ing variations. Such design variables include those that alter the camber and stagger

of the blade. When modifying the geometry at smaller length scales, the design pro-

cedures recommended by Goodhand et al. in [33] should be adopted.

Recommendations for Future Work

As discussed in Chapter 2, more work is required to connect the tolerance optimiza-

tion framework presented in this thesis to blade manufacturing practice. Future work

should recommend the appropriate manufacturing processes to use given the optimal

process spread u(s), which requires detailed knowledge of the process spread produced

by different manufacturing processes. A method for constructing tolerance bands from

the optimal process spread would also be of great use to blade manufacturers. The

differences in the mean performance due to truncating the distribution of manufac-

turing variations versus scaling the distribution of manufacturing variations, as was

done in this thesis, should be quantified as part of this work.

The multi-point robust optimal compressor blades are robust to geometric vari-

ability introduced by the manufacturing process and to incidence variations. Future

work should investigate the impact of variability in the inflow Mach number on the

robust optimal design. Variability in the inflow Mach number can be incorporated to
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the design framework using Monte Carlo to sample from a distribution of Mach num-

bers as was done to incorporate variations in the geometry, or using quadrature as

was done to incorporate variations in the flow incidence. Results presented in Chapter

3 for the single-point optimized exit guide vane showed that the formation of shocks

can cause a switch in the dominant loss mechanism of manufactured blades, and the

same switch could be triggered by variations in the inflow Mach number. Future work

should address this possibility and recommend design practices in such cases.

A natural extension of the work presented in this thesis is to consider optimizing the

geometry and tolerances of 3D blades subject to manufacturing variability. This would

require modeling the correlation between manufacturing variations in the spanwise

direction of compressor blades, which has been studied to some extent in [27] and [47].

Geometric variations in the hub and shroud profiles, as well as in rotor tip clearance

could also be included.

In this thesis, the blading was assumed to be axisymmetric with identical manufac-

turing variations applied to each blade. Recently, Lange et al. examined the effects of

geometric variability on non-axisymmetric blading by simulating eight rotor blade ge-

ometries in tandem [50]. They found that assuming axisymmetric blading overpredicts

the mean shift in the loss coefficient. Incorporating the effects of non-axisymmetric

blading by simulating multiple blade passages in tandem would improve the accuracy

of estimates of the performance impact of manufacturing variability, and would eluci-

date the interaction effects between manufacturing variations on neighboring blades.

Future work on geometry and tolerance optimization should incorporate the adjoint

method to reduce the computational cost of computing shape sensitivities. The adjoint

method, which computes sensitivities by solving a set of adjoint equations derived from

the linearized governing equations, has been applied to optimize wings [22, 40, 65] and

turbomachinery blades [10, 21, 56]. The computational cost of computing sensitivities

with the adjoint method grows with the number of objectives and constraints, but is

independent of the number of design variables. The adjoint method would therefore be

beneficial in performing simultaneous design and tolerance optimization, especially in
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3D, where the number of design variables is more than an order of magnitude greater

than the number of objectives and constraints.

Finally, it would be useful to obtain data relating gas turbine component manu-

facturing costs to dimensional tolerances. If reducing tolerances in particular regions

of a compressor blade incurs higher manufacturing costs than others, this information

could be used to guide the tolerance specification by optimizing some combination of

the manufacturing cost and blade performance statistics. The key challenge would be

the development of accurate manufacturing cost models. The quality loss model intro-

duced in Chapter 1 would be useful in developing an objective function that balances

the competing objectives of improving performance and reducing production costs.
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Appendix A

The Karhunen-Loeve Expansion

The Karhunen-Loeve expansion represents the random field e(s, 0) in terms of its mean

E(s) and a basis constructed from its covariance function C(s1, s2). The random field

is assumed to be continuous in the mean square sense:

lim E[(e(sl, 0) - e(s 2 , 0))2] = 0 Vs 2 E S.
81-+82

Then, the covariance function C is continuous and

/ 

J C(s1 s2) ds1 ds2 < co.

We can therefore define the covariance kernel K as

(Kv, w) = Jj C(si, s2)(s)w(s) ds1 ds2 ,

which is a symmetric semi-positive definite operator equipped with inner product

(-, -), and v, w E L2(S). By Mercer's theorem [52], it follows that C has the spectral

decomposition

C(si, S2) = Z Aiki(si)Oi(s2 ),
i>1
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where each pair of eigenvalues Ai and eigenfunctions /i (s) are computed from the

following Fredholm equation:

jC(si, s 2)4i(s 2)ds2 = Ai#4(si). (A.1)

Moreover, the eigenfunctions are chosen orthonormal such that (#j, 0j) = Jij, and the

eigenvalues are real, non-negative, and satisfy

A2< oo.
i>1

By the Karhunen-Loeve theorem [52], the decomposition of the random field is given

by:

e(s, 9) = e(s) + E \/#4o5(s) #(),
i>1

where the eigenvalues are arranged in descending order such that A1  A2  . -+ 0.

The distribution of the random variables #(9) are determined by taking the inner

product of the random field with each of the eigenfunctions:

1
j (0) = (e(s, 0) - i(s), 4(s)).

The random variables #() are mutually uncorrelated with zero mean and unit vari-

ance:

E[ j] = E (e - E, # (s))] = (E[e - e], #4(s)) = 0,[I 1/jVA
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E[ ]= E [ i (e(s1, 0) - 1(s1))(e(s2, 0) - E(s2))Oi(s1)#j(s2) dslds 2
V/--jf s s

1 j E[(e(si,9) - -((s))(e(s2,0) -(S2))] Oi(s1)#5(s2) dsids2

1
j [ C(si,s 2 )#i(si) ds] #5(s 2) ds2

For a Gaussian random field, the 6(0) are independent, identically distributed (i.i.d.)

standard normal random variables [52].

To construct the K-L expansion numerically, the domain S is first discretized. For

example, if dim S = 1 and S = [Smin, Smax], N, nodes are chosen on the interval so

that si = smin < S2 < ... < SN . = smax The Nystr6m method is then used to solve

(A.1) and determine both the eigenvalues and the value of the eigenvectors evaluated

at the nodes {si}1i<;N, [581.
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Appendix B

Interchanging Expectation and

Differentiation

The pathwise sensitivity method interchanges differentiation and integration so that

the gradient of the mean objective function E[F(p, C())] with respect to the parameter

p is computed as the mean of the gradient of F:

aE[F(p, (0))] - E F(p,(())~

The objective function F is a functional of the random field e(s, 0; p). We now provide

conditions on the objective function and parameters that ensure that this interchange

is justified. The first requirement is that the random vector t must be independent of

the parameters p. We assume that the parameters p only affect the eigenvalues and

eigenvectors in the K-L expansion of e(s, 0; p), and do not affect the random vector t.

The second requirement is on the regularity of the function F(9, p). For simplic-

ity, we only consider one parameter p. Interchanging differentiation and integration

requires that the following interchange of limit and integration is justified:

S F(, p+ h) - F(9, p) 1F(O, p+ h) - F(, p)E _im = limE . (B.1)
h-+O h h0h
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A necessary and sufficient condition for this interchange to be valid is that the differ-

ence quotients Qh = h-[F(9,p + h) - F(6,p)] are uniformly integrable, i.e. that

lim supE[QhIl{IQhj > c}] = 0,
C-+0 h

where 1 {Qh > c} is the indicator function [31]. This condition is not readily verified

for practical problems, since the analytical distribution of F is typically unknown.

We instead provide a set of sufficient conditions that are more straightforward to

verify in practice, following reference [31]. Denote the set of points in 0 where F is

differentiable with respect to e by DF C RIel. The following are sufficient conditions

for the interchange of the limit and expectation in (B.1).

(B1) For every p E P and s E S, Oe(s, 0; p)/op exists with probability 1.

(B2) For every p E l, P[e(s, 0; p) E DF = 1-

(B3) F is Lipschitz continuous, i.e. there exists a constant kF < 00 such that for all

u(s), v(s),

IF(u) - F(v)| kFpU - vii-

(B4) For every s E S, there exists a random variable ke such that for all pi, P2 E P,

le(s, 0; p2) - e(s, 0; pi)I kelp2 - pi 1,

and E[ke] < oo.

Conditions (B3) and (B4) imply that F is Lipschitz continuous in p with probability

one. Taking KF = kF sup8 ke,

|F(9, p 2) - F(, pi)I KFIP2 - P1|I
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We can then bound the difference quotient:

F(O, p+ h) - F(9, p) < F,
h F

and apply the dominated convergence theorem to interchange the expectation and

limit in (B.1).

Conditions (B3) and (B4) together determine if F is almost surely Lipschitz con-

tinuous, and thus determine what type of input parameters and output quantities

of interest can be treated with the pathwise sensitivity method. Output functionals

that may change discontinuously when smooth perturbations are made to the random

field are not Lipschitz continuous almost surely. Thus, condition (B3) excludes failure

probabilities, e.g. P(F > c) = E[1{F > c}], since the indicator function 1{F > c} is

discontinuous when F = c. This difficulty can be remedied to some degree by using a

smoothed version of the indicator function, but this introduces additional error to the

sensitivity [25]. Conditions (B2) and (B3) do permit functions that fail to be differen-

tiable at certain points, as long as the points at which differentiability fails occur with

probability zero, and F is continuous at these points. In this case, the expectation

operator smooths the function F, so that E[F] is differentiable.

Optimizing the nominal geometry and tolerances is equivalent to optimizing the

mean and covariance of the manufacturing error e(s, 0), in which case p = {d, -}.

Applying the pathwise sensitivity method requires that the output quantities of inter-

est, e.g. the loss coefficient and flow turning, are continuous with respect to geometric

perturbations. Even in the presence of shocks, these quantities are continuous (al-

though possibly not everywhere differentiable) functions of the blade geometry, since

they are computed from integrals of functions of the flow states downstream of the

blade.
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