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Abstract

Modern complex aerospace systems employ flight deck automation to increase the efficiency and
safety of systems while reducing operator workload. However, too much automation can lead to overtrust,
complacency, and a decrease in operator situation awareness. In an attempt to prevent these from
occurring, the operator and the automation often share responsibility for performing tasks. The tasks
allocated to each agent are rarely fixed; instead, they can be dynamically re-allocated throughout
operations based on the state of the operators, system, and environment. This thesis investigates how
dynamic task re-allocation has been implemented in operational aerospace systems, and investigates the
effect of control mode transitions on operator flying performance, visual attention, mental workload, and
situation awareness through experimentation and simulation.

This thesis reviews the dynamic task allocation literature and discusses the ways in which the concept
can be implemented. It highlights adaptive automation, in which the dynamic re-allocation of tasks is
initiated by the automation in a manner that is adaptive — in response to the state of the operator, system,
and environment — and workload-balancing — with the purpose of keeping the operator in control as much
as possible while remaining at a moderate level of mental workload. Adaptive automation is
enthusiastically supported in the literature; however, for reasons discussed, it has not been deployed in
any operational civilian aerospace system.

In the experiment, twelve subjects sat at a fixed-base lunar landing simulator and initiated transitions
between automatic and two manual control modes. Visual fixations were recorded with an eye tracker,
and subjects’ mental workload and situation awareness were measured using the responses to a secondary
two-choice response task and a tertiary task of verbal call-outs of the vehicle state, respectively. Subjects
were found to re-allocate attention according to the priority of tasks: during mode transitions from
autopilot to two-axis manual control the percent of total attention on the attitude indicator (which was
required for the primary flying task) increased 14% while attention on instruments required for the
secondary and tertiary tasks decreased 5%. Subjects’ conception of task priority appeared to be influenced
by instructions given during training and top-down and bottom-up properties of the tasks and instrument
displays. The attention allocation was also affected by the frequency of control inputs required. The
percent of attention on the attitude indicator decreased up to 13% across mode transitions where the flying
task was not re-allocated because the pitch guidance rate-of-change decreased from -9 to 0 °/s throughout
the trial. Consequently, fewer control inputs and less attention were necessary later in the trial.

An integrated human-vehicle model was developed to simulate how operators allocate attention in the
lunar landing task and the effect this has on flying performance, mental workload, and situation
awareness. The human performance model describes how operators make estimates of the system states,
correct these estimates by attending and perceiving information from the displays, and use these estimates
to control the vehicle. A new attention parameter — the uncertainty in operators’ estimates of system states
between visual fixations — was developed that directly relates attention and situation awareness. The
model’s attention block was validated against experimental data, demonstrating an average difference in
the percent of attention <3.6% for all instruments. The model’s predictions of flying performance, mental
workload, and situation awareness were also qualitatively compared to experimental data.
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When the pilot and airplane exchange
Control over tasks, as arranged,
The pilot makes a decision
How to allocate vision
If'the level of workload has changed.
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1.0 Introduction

Modern complex aerospace systems have flight deck automation capabilities that execute tasks
previously performed by human operators. Commercial transport aircraft can operate almost completely
automatically from takeoff to landing, and fully-autonomous lunar landing vehicles have been proposed
for future uncrewed resupply missions to the Moon (National Aeronautics and Space Administration,
2008). The Apollo Lunar Module had a fully automatic landing capability (Bennett, 1972), but it was
never used. The interaction between operators and these autonomous systems often occurs without
trouble. However, sometimes this interaction can break down with disastrous consequences. Take for
example the 2013 crash of Asiana Flight 214 at San Francisco International Airport (National
Transportation Safety Board, 2014). The pilots believed that the autothrottle was engaged when it was
actually in a “hold” mode. As a result, neither the pilots nor the automation were controlling the airspeed.
The Boeing 777 descended much faster than usual, and the pilots failed to notice the issue until it was too
late. The aircraft impacted the seawall at the end of the runway, causing 181 injuries and 3 fatalities. This
accident, one of many caused in part by poor human-automation interaction, emphasizes that system
designers must work to facilitate effective collaboration between the human pilot and the automated
systems as the aerospace field looks to the next generation of these complex vehicles.

Automating tasks that were once completed by a human has the potential to increase the efficiency
and safety of systems while reducing operator workload (Ephrath & Curry, 1977; Wiener & Curry, 1980;
Wickens & Hollands, 2000). However, research has also identified a number of ways in which
automation can create new problems for the human operator. Bainbridge collectively termed these
problems the “ironies of automation” (1983). Operator workload can be increased if automation is applied
at the wrong time (Wiener, 1989) or if the operator does not trust the automation (Lee & Moray, 1992;
Lee & Moray, 1994; Parasuraman & Riley, 1997; Lee & See, 2004; Dixon et al., 2007). Over-reliance can
result in complacency in the short term (Parasuraman et al., 1993) and the loss of manual flying skills in
the long term (Wiener & Curry, 1980), which can both lead to incidents and accidents (Wood, 2004;
Gillen, 2010; Lowy, 2011; Stock et al., 2013; National Transportation Safety Board, 2014). If insufficient
information is presented about the automation’s actions, the operator may lose awareness of the
automation state and have a decreased ability to anticipate the automation’s behavior (Sarter & Woods,
1995; Sarter et al., 1997, Woods & Sarter, 1998). This may result in the operator performing
inappropriate actions without realizing it. The Federal Aviation Administration (FAA) has encouraged
airlines to “provide manual flight operations when appropriate” (Federal Aviation Administration, 2013)
and issued more than two dozen recommendations relating to automation and training in the report of the
Flight Deck Automation Working Group (2013). The National Aeronautics and Space Administration
(NASA) Human Research Roadmap also lists poor human-computer, -robot, and -automation interaction
as potential risks for future planetary exploration that could result in an increase in crew errors, injuries,
and failed mission objectives (National Aeronautics and Space Administration, 2014).
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One solution to mitigate the increased complacency, loss of manual flying skills, and decreased
awareness caused by over-automating is to allocate some, but not all, tasks to the automation. This
removes a portion of the workload burden from the operator but still keeps him in the loop as a way to
preserve awareness of the state of the aircraft and the automation (Kaber & Endsley, 1997). These task
allocations can be described as intermediate levels of automation (Sheridan & Verplank, 1978; Endsley &
Kaber, 1999; Parasuraman et al., 2000). Level of automation (LoA) hierarchies describe a continuum that
spans from fully manual single or multiloop control (low LoA) to full automation (high LoA) where the
operator sets the highest-level goal and trusts the automation to achieve it without further human
monitoring. At intermediate LoAs the operator is involved in “supervisory control” (Sheridan, 1992).
Here, the automation is responsible for the lower-level control loops — gathering information and
performing actions — and the operator is responsible for the higher-level control loops — processing
information, making decisions, and setting intermediate goals. The operator also has the responsibility for
supervising the automation and ensuring that it is performing correctly.

For practical and safety reasons, and because of unanticipated events or subsystem failures, the LoA
cannot be the same in all situations (Airbus SAS & Flight Safety Foundation, 2006). As a result, modern
complex aerospace systems feature dynamic task allocation, where the allocation of tasks between the
human and the automation is not fixed during operations. This re-allocation of tasks is often adaptive,
meaning it responds to the state of the operator, system, and environment. It is possible for dynamic task
allocation to be non-adaptive, as is discussed in Section 2.1.2. This is rare, and in this thesis dynamic task
allocation is assumed to be adaptive unless noted otherwise. It is also possible for systems to be adaptive
without featuring a re-allocation of tasks, as is discussed in Section 3.2.

Current aerospace systems feature dynamic task allocation in the form of control mode transitions
(Boeing, 2003b). Mode transitions during operations are encountered when the vehicle enters'a new phase
of flight, or they can be forced by an equipment failure. Adaptive dynamic task allocation can also be
workload balancing, meaning that it occurs with the intent of keeping the operator in control as much as
possible while remaining at a moderate level of mental workload (Rouse et al., 1987). For example, the
operator may initiate a change from high to low LoA in order to practice flying manually during low-
workload phases of flight, or the automation may decide to remove tasks from an overloaded operator. As
Section 3.2 demonstrates, not all adaptive dynamic task allocation is workload balancing.

This thesis is structured around a fundamental, overarching hypothesis concerning how a human
operator responds to dynamic task allocation (Figure 1). Each of the chapters in this thesis addresses this
hypothesis in a different manner.

Dynamic task allocation o Changein Change in total | Re-allocation | Re-allocation of
Mode transition “1 taskstructure “] mental workload of attention “| situation awareness

Figure 1. Chapters of this thesis are structured around this proposed hypothesis describing
operator response to dynamic task allocation.
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Dynamic task allocation causes a change in the task structure. The task structure describes the
current and future tasks that fall under the responsibility of the human or the automation. Accomplishing
a task at the desired level of performance requires a minimum amount of cognitive and attention
resources, or mental workload (O’Donnell & Eggemeier, 1986). This is different than the physical
workload that an operator must expend to complete a task. Humans have a limited capacity of cognitive
and visual attention resources that they can allocate among the tasks to be performed (Wickens, 1980;
Wickens & Hollands, 2000). When the total cognitive and visual attention demands exceed the limiting
capacity, the operator must sacrifice attention on the lower-priority tasks in favor of the higher-priority
tasks. If attention on a task is reduced below the minimum requirement there will be a noticeable decrease
in performance on this task.

The reduction of attention on the lower-priority tasks also causes a decrease in situation awareness
on these tasks. Situation awareness is defined by Endsley as “the perception of the elements in the
environment within a volume of time and space, the comprehension of their meaning, and the projection
of their status in the near future” (1995, p. 36). Endsley did not define what tasks are part of “the
environment,” but the most common interpretation is everything beyond the immediate primary task (e.g.
flying the vehicle), particularly the set of information needed to make appropriate strategic decisions.
Consequently, experimental measures of situation awareness often focus on system states that do not
directly relate to the primary task. This interpretation of situation awareness is narrow, and becomes
problematic when the task structure changes across a mode transition. System states that were involved in
the primary task may become a part of the environment and vice versa. This thesis takes a broader view of
situation awareness, making no distinction between system states that belong to the environment and
those that belong to the primary task. It is assumed that the operator has an internal model of all key
system states and is able to project these estimates into the future based on knowledge of the vehicle
dynamics. It is impossible for operators to have perfect knowledge of the vehicle dynamics, and as a
result these projections have uncertainty. The rate at which the uncertainty grows is proportional to the
accuracy of the operator’s internal model and the rate at which the state is changing. By making
observations of the actual state, the operator can “correct” these estimates, reducing the uncertainty.
However, the uncertainty begins to grow again when the operator looks away.

When an operator reduces his attention on a lower-priority instrument across a mode transition, he
has less frequent opportunities to correct his estimate of the system state. This, in turn, increases the
average uncertainty in the estimate and reduces the operator’s situation awareness of this system state.
This decrease in situation awareness is greatest for the system states that have a high rate-of-change, or
for which the operator has an inaccurate mental model. Like mental workload and attention, the total
amount of operator situation awareness does not decrease. Instead, it is allocated among the tasks in
proportion to the attention that they each receive. As a result, the operator usually has high situation
awareness of higher-priority tasks and low situation awareness of lower-priority tasks.
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This hypothesized operator response to dynamic task allocation (Figure 1) explains how an operator
can continue to satisfactorily perform the primary task even as his workload increases (Yerkes & Dodson,
1908; Hebb, 1955). He is sacrificing attention, performance, and situation awareness on the other tasks.
Performance on the primary task only drops whenever the workload demands of the primary task itself
exceed the total attention capacity, or if the operator fails to re-allocate attention in the proper manner.

Operator response to dynamic task allocation has been investigated in part, but never as a complete
five-stage process as this thesis proposes. Previous research has found that pilots with better situation
awareness, measured as the response to one query, had lower perceived workload and pilots with poor
situation awareness had higher perceived workload (Yu et al., 2014). Other research has shown that
situation awareness of a vehicle state, measured by task performance (Ratwani et al., 2010) or by verbal
situation awareness queries (Moore & Gugerty, 2010), increased as subjects allocated more attention to
the instrument displaying that state. These studies collectively probe the relationship between attention,
mental workload, and situation awareness, but not during dynamic task allocation. Previous work done on
the same project that supported this thesis found that reversion to manual control increased subjects’
mental workload and decreased the measure of situation awareness in proportion to the number of
manually-controlled vehicle axes during simulated lunar landings (Hainley et al., 2013). However, this
prior study did not measure visual attention. Therefore, this thesis investigates the complete operator
response to dynamic task allocation hypothesized in Figure 1 and develops evidence that supports the
connections between changes in the task structure, visual attention, mental workload, and situation
awareness.

1.1 Research Aims and Thesis Organization

The first aim of this thesis is to clearly define dynamic task allocation and explain the ways in which
it can occur. Chapter 2 examines the ways in which adaptive dynamic task allocation can be
implemented in the context of the existing literature. Its primary focus is on the question of decision
authority — the extent to which each agent (the human and the automation) has authority to re-allocate
tasks. Chapter 3 investigates the extent to which dynamic task allocation occurs in current aerospace
systems. It begins with a hierarchical task analysis of approach and landing in the Boeing 767. Then, it
discusses adaptive systems in aircraft of more recent design and considers whether or not they are
examples of workload-balancing, adaptive dynamic task allocation. Finally, Chapter 3 discusses
“associate systems” in military aircraft and rotorcraft and draws general conclusions about why
operational systems do not employ dynamic task allocation as the literature promotes.

The scientific aim of this thesis is to investigate how experimental subjects re-allocated visual
attention when performing control mode transitions in a simulated lunar landing task. This is covered in
Chapter 4. To the author’s knowledge, this experiment is the first to concurrently measure mental
workload, situation awareness, flying task performance, and visual attention across control mode
transitions. This allows for an analysis of how the attention re-allocation across a mode transition affects
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other aspects of an operator’s performance and cognitive state. These experimental results are used to
hypothesize the factors that motivated subjects to re-allocate their attention in the manner that they did.

The engineering aim of this thesis is to develop a closed-loop human operator-vehicle model that
simulates operator visual attention, flying performance, mental workload, and situation awareness during
control mode transitions. This is the focus of Chapter 5. To the author’s knowledge, the attention block
in this integrated model is the first to predict the attention allocation for both supervisory and manual
control tasks, and to capture changes in the attention allocation across mode transitions as tasks vary in
priority and shift between supervisory and manual control. The chapter concludes by comparing the
model’s predictions of attention, mental workload, situation awareness, and flying task performance to
experimental data obtained in Chapter 4.

The final aim of this thesis is to provide recommendations for future research. This is one of the foci
of Chapter 6, along with an executive summary of the entire thesis. These recommendations are intended
to help bridge the gap between the findings of the existing research and how aircraft manufacturers
currently implement dynamic task allocation.
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The questions this chapter expands
Are how; when, and at whose command
There may be some refinement
Of tasks and their assignment
To both automation and man.
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2.0 Implementation of Workload-Balancing Dynamic Task Allocation

through Adaptive and Adaptable Automation

As described in Chapter 1, dynamic task allocation is a necessity in real-world operational systems.
A task re-allocation may be forced by a system failure, or it may be an adaptive response to keep the
operator’s mental workload at a moderate level. This chapter focuses on the latter and addresses the key
questions of how, when, and under whose command the task structure can be dynamically re-allocated. It
cites a number of possible answers for these questions from the existing research and, when available,
highlights recommendations from the current body of research.

2.1 Model of Dynamic Task Allocation

Figure 2 shows a conceptual model of an aerospace system with a human operator and automation.
Tasks in the task structure are allocated to both agents, who make control inputs to the system and receive
information about the system state and the environment. The allocation of tasks to the human and the
automation can change based on the answers to the following three key questions:

e Who or what decides to dynamically re-allocate tasks?
e  What factors trigger the dynamic re-allocation of tasks?
¢ How should tasks be dynamically allocated to the operator and the automation?

The remainder of this chapter addresses each of these questions in turn.
2.1.1 The Decision Authority

The agent — the operator or the automation — that chooses to re-allocate tasks during operations is
called the decision authority. When the dynamic task allocation is both adaptive and workload balanced,
two specific terms are used in the literature to distinguish between the decision authority: adaptable
automation when the operator is the decision authority and adaptive automation' when the automation is
the decision authority (Oppermann, 1994). Adaptable automation keeps the authority to allocate tasks
with the operator, who is ultimately responsible for system safety. This is the stated goal of Boeing and
Airbus’s automation philosophies, which guide the design of automation in their aircraft (Abbott, 2001).
Although both manufacturers use flight control computers to simplify their aircraft handling qualities and
incorporate some degree of flight envelope and load protection, both philosophies leave much of the final
authority for automation use to the pilots. As detailed in the Chapter 3, most autoflight automation used in
aircraft cockpits today remains adaptable, and not adaptive.

! Note that “adaptive systems” are not necessarily examples of “adaptive automation,” which specifically refers
to adaptive, workload-balanced dynamic task allocation. Section 3.2 provides examples of this distinction. These
terms come from prior literature, which is why they are used in this thesis despite the potential for confusion.
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Figure 2. Conceptual model of an aerospace system that responds to inputs made by a human
operator and automation. Each agent can each perform tasks and suggest new task allocations with
a certain degree of authority.

One concern with adaptable automation is that it loads the operator with an additional task —
evaluating his workload and the situation and determining whether or not to re-allocate tasks — at a time
when his mental workload may already be high (Bailey et al., 2006). As a result, the operator may make
an expedited or uninformed decision and fail to employ automation in the best way to maximize system
performance. Furthermore, there are situations when the operator may be unable to re-allocate tasks. He
may not have enough time or he may be physically unable to do so (e.g., due to high g-loads) (Scerbo,
1996; Scerbo, 2007). Adaptive automation is not without its limitations either. Automation surprise and
mode confusion become a concern when the automation’s actions are not transparent and understandable
to the operators (Sarter & Woods, 1995; Woods & Sarter, 1998).

Adaptive and adaptable automation are not the only possible decision authorities; rather, they are the
two extremes of a continuum with intermediate degrees of operator and automation authority in between
(Clamann & Kaber, 2003; Hancock, 2007; Sauer et al., 2011). For example, the automation may suggest a
certain task allocation that the user can confirm or choose to ignore. This is known as “pilot command by
initiation” (Hancock, 2007) or “management by consent” (Billings, 1996a). Or, the automation may
suggest a certain task allocation that will automatically go into effect unless the operator vetoes it. This is
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called “pilot command by negation” (Hancock, 2007) or “management by exception” (Billings, 1996a).
Another possibility is for the automation to wait for the operator to take an action, warn him if the action
has not been performed close to the deadline, and then only perform the action itself when the deadline
arrives and the operator has not responded. In these three examples both the pilots and the automation
share decision authority to different degrees.

Much of the existing dynamic task allocation literature has focused on enabling adaptive automation
and investigating the benefits it provides for the human operator. In particular, researchers have examined
the factors that the automation can use to trigger a dynamic re-allocation of tasks (Section 2.1 .2) and how
the automation should re-allocate tasks between itself and the operators (Section 2.1.3).

2.1.2  Triggering Dynamic Task Allocation in Adaptive Automation Systems

If the automation in a complex aerospace system has any degree of authority to re-allocate tasks, it
needs some criteria to determine when to do so. The process by which the automation makes this decision
is called the frigger. Numerous triggers have been investigated theoretically and experimentally.
However, it remains difficult to measure vehicle and/or operator state during real-time operations.

One option for triggering a task re-allocation is to alternate periods of manual and automated control
over a certain time interval without any regard to the state of the system, environment, or operator. This
has been shown to increase subjects’ detection of automation failures (Parasuraman et al., 1993;
Parasuraman et al., 1996). In these experiments, transferring control to the subjects prevented them from
becoming complacent when control was returned to the automation, and encouraged them to supervise the
automation more carefully.

Alternating periods of manual and automated control is an example of non-adaptive dynamic task
allocation. As a result, this trigger is only beneficial for operations with continuous, unchanging tasks,
like the cruise phase of flight. If this trigger were implemented during a phase of operations in which new
tasks were always beginning, like approach and landing, the tasks might be re-allocated at an
inappropriate time. For example, the operator could regain control at the very moment that a difficult task
begins, causing him to quickly become overloaded.

The most common adaptive triggers described in the literature are various proxy metrics of operator
mental workload. These triggers are workload balancing, as described in Chapter 1. The goal is to remove
enough tasks from the operator so that his cognitive and attention resources are not exceeded and he will
be able to devote the necessary amount of resources to each task for which he is responsible. Prior
research in laboratory settings has found that adaptive automation is able to provide a performance benefit
to operators when it is matched to their workload — providing more automation assistance during times of
high operator workload and less during times of low workload (Parasuraman et al., 1999).
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One can define six classes of operator workload triggers, which assess or predict workload in
different ways: 1) detection of critical events, 2) use of subjective mental workload assessment scales, 3)
measurement of operator primary task performance, 4) measurement of operator secondary task
performance, 5) psychophysiological assessments, and 6) use of operator performance models.

2.1.2.1 Critical Events

When triggering on critical events, the amount of automation increases or decreases when certain
pre-defined events occur that are anticipated to raise or lower the operator’s workload (Parasuraman et al.,
1999; Scallen & Hancock, 2001; de Visser & Parasuraman, 2011). Example critical events include the
appearance of an unidentified target on a military aircraft’s radar, which initiates a shift from a
monitoring phase to an investigation phase, or the beginning of the final approach in commercial aviation.
Triggering on critical events is the simplest workload trigger, as it does not require the automation to take
any measurements from the operator. However, this trigger may only partially or implicitly reflect the
operator’s true workload. If the assumptions about the operator’s workload after the critical event are
incorrect, the automation may be inappropriately applied.

2.1.2.2 Subjective Assessments

Subjective assessments help the operator to rate his own level of mental workload using a structured
scale. These techniques ask the operator a series of questions and use the responses to give an estimate of
mental workload. The Modified Bedford Workload Scale gives a single overall measure of workload and
assesses the amount of spare attention an operator has while performing a flying task (Roscoe & Ellis,
1990). On the other hand, the NASA-TLX technique assesses six different dimensions of workload:
mental demand, physical demand, temporal demand, performance, effort, and frustration level (Hart &
Staveland, 1988). This gives a more detailed picture of a task’s workload demands, but requires the
operator to answer many more questions. Strengt