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Abstract

Developments in online and computer-based training (CBT) technologies have enabled
improvements in efficiency, efficacy, and scalability of modern training programs. The use
of computer-based methods in training programs allows for the collection of trainee as-
sessment metrics at much higher levels of detail, providing new opportunities for training
evaluation in these programs. These resulting datasets may provide increased oppor-
tunities for training evaluation and trainee intervention through the use of descriptive
and predictive modeling. In particular, there is the potential for descriptive approaches
to provide greater understanding of trainee behavior and indicate similarities between
trainees, while accurate prediction models of future performance available early in a
training program could help inform trainee intervention methods. However, traditional
analysis techniques and human intuition are of limited use on so-called "big-data" en-
vironments, and one of the most promising areas to prepare for this influx of complex
training data is the field of machine learning.

Thus, the objective of this thesis was to lay the foundations for the use of machine
learning algorithms in computer-based training settings. First, a taxonomy of training
domains was developed to identify typical properties of training data. Second, the the-
oretical and practical considerations between traditional machine learning applications
and various training domains were identified and compared. This analysis identified the
potential impacts of training data on machine learning performance and presented coun-
termeasures to overcome some of the challenges associated with data from human training.
Third, analyses of machine learning performance were conducted on datasets from two
different training domains: a rule-based nuclear reactor CBT, and a knowledge-based
classroom environment with online components. These analyses discussed the results of
the machine learning algorithms with a particular focus on the usefulness of the model
outputs for training evaluation. Additionally, the differences between machine learning
applications to the two training domains were compared, providing a set of lessons for
the future use of machine learning in training.

Several consistent themes emerged from these analyses that can inform both research
and applied use of machine learning in training. On the tested datasets, simple machine
learning algorithms provided similar performance to complex methods for both unsuper-
vised and supervised learning, and have additional benefits for ease of interpretation by
training supervisors. The availability of process-level assessment metrics generally pro-
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vided little improvement over traditional summative metrics when available, but were
able to make strong contributions when summative information was limited. In partic-
ular, process-level information was able to improve early prediction to inform trainee
intervention for longer training programs, and was able to improve descriptive modeling
of the data for shorter programs. The frequency with which process-level information is
collected further allows for accurate predictions to be made earlier in the training pro-
gram, which allow for greater certainty and earlier application of targeted interventions
in a training program. These lessons provide the groundwork for the study of machine
learning on training domain data, enabling the efficient use of new data opportunities in
computer-based training programs.

Thesis Supervisor: Mary L. Cummings
Title: Visiting Professor of Aeronautics and Astronautics
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Chapter 1

Introduction and Motivation

In its broadest sense, training can encompass a wide range of physical and mental endeav-

ors to acquire knowledge, skills or competencies that are useful to a particular domain.

Learning to play an instrument, practicing for a debate team, or learning to fly an air-

plane can all be characterized as forms of training. Training provides an organized and

directed method for the introduction, acquisition, and retention of the required concepts

and skills for the domain. From an industry perspective, training is usually driven by

the need to increase performance by the employees, whether this be a new employee or

refreshing the knowledge of a veteran employee. Training helps employees to hone their

skills and reduce errors during their work, which can translate into increased efficiency

and improved safety on the job. New employees may not be familiar with the particu-

lar systems, methods, or organizational elements at a new position, and it is standard

practice to have an orientation or initial training period to ensure new personnel have

the appropriate skills and knowledge to safely and efficiently perform their work [1-3].

Additionally, there is a large body of work that demonstrates that skills degrade with

disuse [4-7], and since in almost every domain important skills may not be used regularly,

organizations instead turn to training to maintain or improve performance in all facets

of the job.

The modern ubiquity of computer use and internet access have dramatically impacted

many facets of training. Many training programs are now incorporating computer-based

training (CBT) or online elements. For example, more than 60% of the 5.7 million

hours of training given by The Boeing Company in 2007 were partially or totally online,

and this ratio is expected to continue to rise as the technology behind these systems
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improves [8]. CBT training systems provide benefits beyond traditional classroom-based

settings by allowing for greater numbers of trainees and providing more opportunities

for trainee access to and engagement with the training material. This shift has been

mirrored in the field of education, with a rapid rise over the last decade in the use of

computer-based or online formats either to facilitate (e.g. online distribution of materials)

or conduct higher-education courses. As of 2013 32% of all postsecondary school students

enroll in at least one online course [9]. Primary and secondary schools have also begun

to incorporate online and CBT learning programs into their curricula [10]. Online and

computer-based environments provide new opportunities for gathering data on trainee

behavior and performance both by allowing for the simplified recording of trainee inputs to

the training system and by enabling more interactive assessment techniques. Additionally,

these technologies can reduce the workload of trainers and allow for targeted training

tailored to individual trainees. One distinct advantage of CBT is that data generated in

these settings can be analyzed to provide additional feedback on individual trainees as

well as about the training program itself.

1.1 Training Evaluation and Trainee Assessment

In any training program (both with and without computers), it is important for the

effectiveness of the program to be measureable and monitored. Training programs can

require considerable resources to implement, and often the organization will want to

determine whether the time, cost, and effort put into a training program has met the

desired objectives. The determination of whether or not a training program has met its

goals is termed "training evaluation." The goals of a training program can be varied,

including the acquisition of skills or knowledge by the trainees as well as the achievement

of affective outcomes such as improving trainee motivation [11]. If a training program

fails to meet the intended goals or is not efficient in time or cost, it may be beneficial

for the organization to modify the training program, either to increase the achievement

of outcomes or to reduce costs. To properly make these decisions, it is important for the

training evaluation methods to be timely and accurate. As with methods and metrics

in other domains, if the training evaluation measure does not accurately represent the

'Affective outcomes relate to the moods, feelings, and attitudes of the trainee.
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achievement of goals, it is difficult to use the measure to support organizational decision

making processes.

A fundamental aspect of training evaluation is referred to in this thesis as "trainee

assessment", which focuses on those metrics that identify whether individual trainees

have acquired the desired skills and knowledge from the training material. These metrics

can serve to assist the training evaluation process, as the acquisition of skills and knowl-

edge will typically be an integral part of the goals of the training program. Additionally,

these metrics can provide other benefits, such as supporting training intervention (TI).

TI attempts to improve the acquisition and retention of skills by providing group or indi-

vidually targeted changes to the standard training curriculum. Examples could include

additional practice sessions or one-on-one lessons with the instructor (additional detail on

TI methods is provided in Chapter 2). To determine whether it is appropriate to apply

a TI methodology to a particular trainee, the supervisor must have information about

individual performances.

Figure 1-1 presents a conceptual layout of a typical training program and associated

training evaluation. As trainees complete modules of a training program, assessment

metrics are gathered to determine the progress of each trainee. Based on these metrics,

TI methods may be applied to assist struggling trainees during the training program. The

individual trainee assessment metrics, along with program-level training metrics (such as

percentage of trainees that pass the program), are compared with the program goals in

the training evaluation process. The results of the training evaluation are given to the

appropriate organizational elements (e.g. managers or other decision makers). If the

evaluation indicates that the training program is not meeting its goals or that the costs

outweigh the benefits, the organization may decide to implement changes to the training

program.

The increased use of computers in training has dramatically impacted the availability

of trainee assessment data. Computers can be used to collect information either remotely

or on a more frequent basis (seen in online learning) or can create entirely new learning

interfaces (such as CBT). In online learning, the types of assessments may not significantly

change from traditional training environments, but are easily accessible by the trainees.

Increased accessibility allows trainees to more frequently interact with the instruction

material and thus allow the more frequent collection of assessment data.
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Figure 1-1: Conceptual representation of training program and evaluation.

CBT systems, on the other hand, allow for the development of new training strategies

such as adaptive learning systems or the collection of detailed assessment information.

Specifically, CBT training systems can log every interaction of the trainee with the system,

providing detailed information that can be analyzed. Since many of these interactions will

be sub-steps as part of the process of completing a greater objective, this thesis refers to

this data as "process-level" information. Process-level information provides detail on not

just what the current progress is in the current training module (e.g. the system state),

but how the trainee reached that state. Not only can this information be used to identify

the particular strategies that experts use in completing the training program, it can also

diagnose particular behaviors and tendencies for error in individual trainees. While the

potential benefits of process-level information are clear, collecting this information results

in much larger datasets that are difficult to process by hand. To attempt to extract useful

findings within this information, this thesis utilizes machine learning algorithms to assist

in trainee assessment, training evaluation, and TI.
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1.2 Machine Learning

Machine learning is a branch of artificial intelligence in which algorithms "learn" rela-

tionships in data. These algorithms can be applied in a predictive sense or to investigate

internal relationships of a dataset. These algorithms utilize a database of past evidence

to construct models that best explains the observations, mimicking human pattern recog-

nition processes. For large or high-dimensional datasets, it is often difficult for a human

analyst to develop models, whereas machine learning algorithms excel in this regime by

being able to make use of the vast amounts of available data. These algorithms have been

successfully applied in a wide range of applications, including computer vision, medicine,

robotics, natural language processing, and search engines [12]. If there is limited avail-

ability of past evidence (i.e. a small dataset size), the models created may be inaccurate

or inefficient.

Trainee assessment data from the use of online training and CBT systems fit well

into the machine learning paradigm. Increased numbers of trainees (larger dataset size)

and the availability of process-level information (higher dimensionality) potentially make

machine learning a useful approach in extracting data from these systems. However, the

suitability of applying machine learning in these environments and the impact of the

training methodology on machine learning results must be investigated before the imple-

mentation of these algorithms as part of training evaluation or a targeted intervention

approach.

1.3 Research Approach

Training can vary greatly in structure, methods, and assessment techniques, which may

have important impacts on machine learning performance. Therefore, a taxonomy of

training by task type was developed, utilizing the skills-rules-knowledge (SRK) frame-

work developed by Rasmussen [13]. In this framework, training environments can be

separated based on whether they train for a skill-based, rule-based, or knowledge-based

task. The SRK structure indicates a generally increasing level of cognitive complexity

(skills<rules<knowledge), of which the higher complexity environments (rule, knowl-

edge) are of greatest interest for online and CBT settings. Typically, training methods

and assessment data collected in each of these types of environments will differ from each
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other, and the differences are discussed further in Chapter 2. Therefore, to assess the

applications of machine learning in modern training environments utilizing online and

CBT elements, this thesis focuses on data collected from the latter two of these training

environments: a rule-based nuclear reactor CBT, and a knowledge-based classroom en-

vironment. For each setting, the suitability, advantages, and disadvantages of a range of

machine learning algorithms are considered. Models are then constructed on each dataset

using the most applicable techniques, and the results are analyzed both in terms of the

model results and the implications for training evaluation and trainee assessment.

The first setting is a training environment for a procedure-based task, utilizing data

collected from trainees on a simulated nuclear reactor CBT program. In this setting,

trainees completed several training modules that familiarized them with the system and

procedures before completing an assessment test module. The second training setting ex-

amined follows a more traditional classroom-style lecture approach, with data collected

from a collegiate human-factors engineering course. The course included both theory and

practical elements, and contains both traditional assessment methods such as classroom

examinations as well as online components that allow investigations of process-level in-

formation. This training setting represents a training environment for a knowledge-based

task that utilizes online interaction methods. Together, these two datasets are repre-

sentative of markedly different training environments, and allow for the comparison of

machine learning applications to utilize data generated from CBT and online training.

1.4 Research Questions

This thesis addresses several topics regarding the application of machine learning models

to training data. The primary goals of the thesis are as follows:

1. Determine the typical properties of CBT data, how the training domain impacts the

data obtained in these settings, and the considerations of applying machine learning

algorithms to training data, with an emphasis on procedure-based and rule-based

training environments

2. Assess the usefulness of supervised and unsupervised learning algorithms in example

training datasets from different types of training domains, particularly from the

perspective of a training evaluator.
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3. Determine the importance of the detailed temporal and process-level information

provided by online and CBT formats in the application of machine learning to the

data gathered from the example training environments

1.5 Expected Contributions

In answering the research question above, this work presents a series of contributions

to training, training evaluation and machine learning on datasets generated in human

training programs. These are fully discussed in Chapter 7, and are briefly summarized

here:

1. The development of a taxonomy of training domains based on the training task

based on the SRK framework

2. A comparison and selection of metrics for the measurement of procedure adherence

in procedure-based task environments

3. The identification of appropriate data preparation techniques prior to the applica-

tion of machine learning algorithms to human training data, including dimension-

ality reduction

4. The comparison and selection of appropriate machine learning techniques for unsu-

pervised and supervised learning on datasets from both rule-based and knowledge-

based training environments

5. The identification of how the machine learning results on the example datasets could

be utilized by training supervisors and evaluators to both improve the performance

of the trainees and provide feedback for the training program

6. The comparison of the potential contribution of the more detailed "process-level"

information to traditional assessment metrics for informing training evaluation and

TI when used as part of a machine learning approach

1.6 Thesis Organization

The dissertation is organized as follows:
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" Chapter 1, Introduction and Motivation, presents the motivation, approach, and

goals for the research.

* Chapter 2, Background, presents a review of training, training assessment, and

machine learning literature to inform the discussions of the application of machine

learning to training data.

" Chapter 3, Machine Learning Considerations for Training Applications, discusses

the different types of training, the differences in data provided by these types, and

how these differences impact a machine learning approach.

* Chapter 4, Machine Learning in Rule-Based Training Environments, analyzes the

effectiveness of machine learning algorithms in an exemplary procedure-based CBT

dataset to inform training evaluation and trainee assessment. Chapter 4 also

presents the CBT interface used and a discussion of the procedures and training

program utilized.

* Chapter 5, Machine Learning in Knowledge-Based Training Environments, per-

forms similar analysis as Chapter 4 on an exemplary knowledge-based classroom

dataset with online elements.

" Chapter 6, Model Comparison, compares and contrasts the effectiveness of the ma-

chine learning models in each of the two exemplary training domains, and presents

rationales for the results.

* Chapter 7, Summary and Conclusion, summarizes the findings in the thesis, and

provides a set of general conclusions and recommendations for future research.
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Chapter 2

Background

This thesis focuses on the use of machine learning models in training evaluation, trainee

assessment, and trainee intervention (TI). Developments in CBT and online training

technologies have enabled the availability of large, process-level datasets, and the use

of machine learning approaches may have considerable advantages for informing training

evaluation and TI on these datasets. To provide background to support this research, this

chapter is divided into three main sections that summarize prior work in relevant research

areas. The first presents an overview of training and training assessment. It also high-

lights the advancements in some of the major applications of training research, including

medicine, aviation, and the military. The second section of this chapter presents an

overview of machine learning methods in both unsupervised and supervised approaches.

The third section provides a discussion of the field of Educational Data Mining (EDM),

which covers some machine learning approaches in the field of education. In each of

these sections, background information that is particularly relevant to machine learning

approaches in training is highlighted.

2.1 Training and Training Assessment

Training is an integral part of virtually every profession. Whether a person is working

as a car mechanic or a nuclear reactor operator, training is necessary to prepare them

to perform the duties of the job. As many fields utilize increasingly complex technology,

training on the use of this technology becomes progressively more important. Herein

training is defined as "organized activity aimed at imparting information and/or instruc-
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tions to improve the recipient's performance or to help him or her attain a required level

of knowledge or skill" [14]. The increase in performance may refer to training for a skill or

environment, where the trainee has not been previously exposed to the training subject.

Examples could include training a new employee for the duties of a job, or a current

employee being trained on a new software interface. Training can also refer to refresher

training, where the trainee has already undergone training on the subject. In many

safety-critical fields, refresher training aims to counteract the noted gradual decrease in

performance over time [5,7].

The overarching goal of training is to yield knowledge and skills that are useful,

durable, and flexible, with the intention of improving the performance of the trainee

[15]. These goals focus on the long-term, and extend well beyond the duration of the

training itself. The acquisition of skills and knowledge has been widely studied from

both a theoretical and practical standpoint (e.g. [5, 7, 16-22]). The need for training

evaluation has also been noted in a variety of works (e.g. [11, 15,23-34]). The following

subsections summarize the past and present theories and applications of training and

training evaluation.

2.1.1 Training

From a practical standpoint, training has been an instrumental part of society for cen-

turies, often in the form of apprenticeship. More recently, scholars have been interested in

investigating the details of the physical, psychological, and cognitive aspects of training.

In his pioneering book Hereditary Genius [35] in 1869, Sir Francis Galton recognized the

need for training in order for an individual to achieve maximum potential in a field. He

also indicated that early performance gains were rapid but diminished with the amount

of training, otherwise known as the learning curve. According to Galton, a trainee's max-

imum potential was limited fundamentally based on the innate skills of the individual, a

perspective which remains in more contemporary theories of skill acquisition [21,22].

Figure 2-1 shows a notional graph of the improvement in performance with experience.

Expert performance requires both the development of cognitive and associative skills, as

well as a high level of experience. Without full development of cognitive skills, the trainee

may not reach true expert performance, termed "arrested development" in Figure 2-1.

For skills that are heavily practiced but do not require significant cognitive input, auto-
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maticity of the skill may be developed. In this phase, little or no attention or cognitive

effort is required to perform the skill [22]. The literature discusses the differences between

"procedural" and "declarative" training, which generally separates training by the cogni-

tive complexity of the associated skills [26,36]. This indicates that there are fundamental

differences between the nature and development of skill acquisition dependent upon the

cognitive complexity of the task. While there has been much research on the general

acquisition of skills (e.g. [16,20,37,38]), this area is beyond the scope of this thesis.

2.1.2 Computer-Based Training

Modern training programs have begun to utilize technological advances in CBT and

online training to improve the efficiency and effectiveness of the training program [39-41].

Early research on CBT focused on the comparisons between training through CBT and

traditional learning environments, particularly in military and educational settings [42,

Expert
Performance

Arrested
Development

Everyday Skills

Experience

Figure 2-1: Notional diagram showing development of performance with experience.
Adapted from [16].
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43]. Similar studies have since been carried out in other domains such as medicine [44-46]

and vehicle operation [47,48]. Overall, these studies have pointed to reduced instruction

time and increased cost savings provided by CBT as compared to traditional instruction

methods, but generally do not support increased learning or training transfer through

the use of CBT methods over traditional approaches [41]. More recently, research on

CBT has focused on the structure and design of the training environments to maximize

learning and trainee acceptance [39, 40, 49-51]. However, there is little discussion in

the CBT literature of the differences in advantages of computer-based methods between

procedural and declarative training settings.

Research on CBT has indicated advantages in training program efficiency and scala-

bility which will continue to encourage the increased use of these methodologies, though

the need for increased evaluation of CBT programs is widely reported [41,52,53]. How-

ever, for all training (CBT or otherwise) the methods, assessment data and evaluation

techniques may vary widely dependent upon the domain. An exhaustive list of training

domains is not necessary here, but it is helpful to define a general taxonomy of training

domains.

2.1.3 Taxonomy of Training Domains

There are an immense number of domains that utilize training to improve the performance

of the trainee. These can be divided according to the primary types of tasks involved

using Rasmussen's Skills-Rules-Knowledge (SRK) framework to classify domains by task

type [13]. Briefly, skill-based tasks refer to those for which processing is automatic and

often require little conscious effort [54]. Examples include monitoring an interface for

some change or swinging a baseball bat. Rule-based tasks utilize heuristics to limit the

cognitive effort needed. Examples include usage of procedures or problem diagnostics

such as an operator investigating an error in a nuclear reactor. Knowledge-based tasks

require the greatest amount of cognitive effort, and may have multiple goals or subgoals

that often require assessing open-ended problems, such as completing a physics exam.

Each of these types of tasks requires different proficiencies, and training methods and

objectives will be different for each of these domains.

The latter two groupings (rules and knowledge) overlap well with previous discussion

of the importance of considering the differences between "procedural" and "declarative"
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objectives for training [26, 36]. It is easy to see why the differences between the SRK

domains are important from a training perspective; consider the methods used for training

an athlete, instructing an operator for a nuclear power plant, or teaching aerodynamics to

a student. Athletic training falls primarily under skill training, nuclear reactor operators

work in a highly procedural rule-based environment, and learning aerodynamics is a

knowledge-based task that requires the development of abstract cognitive models. Table

2.1 presents a summarized list of the training considerations in each of the domain types

from the SRK framework.

Table 2.1: Considerations for SRK domains
Task Type Desired Outcomes Typical Training Char-

acteristics
Skills Automaticity of actions, de- High use of repetitions,

velopment of muscle mem- action-focused, sensorimo-
ory tor training

Rules Adherence to standard High use of repetitions,
protocols, development procedural training, opera-
of heuristics, familiarity tional simulations
with diagnostic techniques,
context awareness

Knowledge Development of conceptual Classroom-based lecture
understanding, use of ana- format, no repetition of
lytical techniques, ability to assessment questions
extrapolate skills to novel
situations

In a real-world setting, training may involve multiple types under the SRK framework.

For example, consider training a nuclear reactor operator. There are many procedures

that must be memorized and followed to maintain safety, which would fall under "rules."

However, it is also critical for the operator to have a general understanding of the reactor

system as a whole and the basic science behind the reactor's operation, which would fall

under "knowledge" training. While this would seem to complicate the division of training

and evaluation methods based on the SRK framework, in fact at its elemental level each

task still represents training for a specific domain (e.g. "knowledge"). In this sense, these

tasks represent building blocks for the operational environment.

In the discussion of specific training domains, it is important to consider not only

the typical training methods but also the training evaluation strategies relevant to the

domain. The next section presents background in training evaluation as preparation for
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a discussion of specific training domains.

2.1.4 Training Evaluation

Training evaluation is an integral part of most training programs. It represents the set of

tools and methodologies for assessing the effectiveness of the training program [23], and

can include metrics from both during and after the completion of the training program

(such as performance in the operational environment). Without this type of measurement,

it is impossible to know whether the training program has met the desired goals, such as

improving the performance of the trainees. Evidence of meeting the training goals has

many uses, such as demonstrating the value of the training program [25,55-57]. There are

six general approaches to training evaluation: goal-based evaluation, goal-free evaluation,

responsive evaluation, systems evaluation, professional review, and quasi-legal [58,59]. Of

these, goal-based evaluation and systems evaluation are the most common [23], and will

be briefly discussed here.

Training Evaluation Models

The most recognized methodology for training evaluation is goal-based, described by

Kirkpatrick [60] as having four main levels of evaluation: 1) reactions, 2) learning, 3)

behavior, and 4) results. The first level, reactions, focuses on the reaction of the student

to the training, which influences how much can be learned [25]. The second level focuses

on measuring the evidence of learning, and thus the possibility for changes in operational

behavior. Kraiger et al. proposed a taxonomy for learning outcomes that divides out-

comes into cognitive, skill-based, and affective outcomes [11], as shown in Figure 2-2. The

third level, behavior, focuses on the transfer of knowledge and skills learned in training

to the operational environment, also called "training transfer" or "transfer performance".

Figure 2-3 presents a widely recognized model of training transfer provided by Ford and

Weissbein [27]. The last level, results, measures the organizational impact of the training

program. With increasing levels of Kirkpatrick's typology, the information provides more

detail on the impact of the training program. However, it also represents typically greater

difficulty in measurement. The first level can be measured fairly simply with surveys or

other reporting mechanisms at the time of training, while the fourth level might involve

an organization-wide investigation. Perhaps as a result of the increasing difficulty, it is
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widely reported that organizations typically evaluate training only at the lower levels of

Kirkpatrick's typology. The American Society for Training and Development (ASTD),

indicates that from a set of organizations surveyed, the frequency of measurement of

each of Kirkpatrick's levels are 93%, 52%, 31%, and 28% for levels 1, 2, 3, and 4, re-

spectively [23], with similar statistics reported for Canadian organizations [25]. The lack

of evaluation at the higher levels of Kirkpatrick's typology, and the need for increased

evaluation of training are widely reported in academic literature [23,26,61-66].

Several extensions and modified versions of Kirkpatrick's typology have been intro-

duced more recently. Tannenbaum et al. added post-training attitudes to the model,

and specified a division of the behavior level into training performance and transfer per-

formance [67]. This model formally defines the difference between training and transfer

performance, which relates to the greater issue of the difference between performance and

learning, which has been widely reported in the literature [15,33,65,68-72]. At its heart,

this issue recognizes that strong performance in training does not necessarily translate

Figure 2-2: Classification scheme for learning outcomes. Adapted from [11].
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Conditions of Transfer

Figure 2-3: A model of training transfer. Adapted from [27].

into strong operational performance. That is, a trainee may be able to perform well on

the training task, without any real learning taking place that would result in differences

in behavior in the field. The reverse can also be true, that learning can occur during

times with little measureable performance difference, as demonstrated by studies from

the 1930s-1950s in latent learning [73] and motor learning [74]. The association of train-

ing performance with learning creates misinterpretations of errors during training and

testing of trainees. Training programs may try to minimize errors in training, without

realizing that the improvement in training performance may not transfer into operational

performance [65]. Mottos from the military such as "we do it right the first time" and

"we don't practice mistakes" demonstrate misunderstandings of errors in training. These

misunderstandings can also be prevalent and create issues at the organizational level;

instructors that are also evaluated by their trainees' performance may specifically try to

minimize errors during training and testing (the so-called "teaching to the test") [65].

Unfortunately, many organizations do not evaluate transfer of training (the behavioral
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level of Kirkpatrick's typology) or use measures that lack validity [65,66].

Other extensions of Kirkpatrick's model include those from Holton [75,76] and Kraiger

[77]. In Holton's model, the level of reactions is removed and links are added between

several trainee characteristics and training and transfer performance. Kraiger's model

emphasizes training content and design, changes in learners, and organizational payoffs.

While these newer models attempt to update aspects of Kirkpatrick's original typology,

most academic and organizational sources still utilize the original version for training

evaluation. Despite the common usage of the Kirkpatrick typology in training evaluation,

it is widely reported that advances in training technology (such as online and CBT

settings) require better evaluation methods not only after training but during training

itself [28,32].

Some other commonly used evaluation methodologies are system-based, including

Context, Input, Process, Product (CIPP) [59], Input, Process, Output, Outcomes (IPO)

[78], and Training Validation System (TVS) models [23, 79]. These models help the

evaluator to better consider the contextual and situational aspects of the training as

compared to Kirkpatrick's goal-based model but generally do not represent interactions

between training design and evaluation. They also do not provide detailed descriptions

of the processes behind each outcome and do not provide tools or recommendations on

how to conduct the evaluation. As such, the implementation of these models varies

considerably with a lack of comparability across studies.

General Evaluation Considerations

There are several important considerations that must be made in the evaluation of any

training program. First, the training domain will influence the information and skills to

be learned and the overall goals of the training program. Second, the particular training

methodologies, such as classroom lectures, CBT programs, or simulations will dramati-

cally change the data available for evaluation. Different data types and the granularity

afforded by different methodologies will impact the evaluation strategy, as will be seen

in Chapter 4 and 5. Often, the methodologies used will also be dependent upon the par-

ticular domain. Third, the background and attitudes of the trainees must be considered

in the evaluation, in addition to the objective and subjective performance measures. In

particular, there may be large differences between in evaluation between training and
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re-training programs, as exhibited through the differences between novice and expert

trainees [19,80,81]. An example of the difference in behavior is that experts tend to skip

steps or modify procedures to improve completion efficiency; training evaluation should

account for these behavioral differences.

Training evaluation must also consider the impact of the evaluation itself on the

trainee [82-88]. Trainees will often determine how they are being assessed and will

modify their behavior to match that assessment in an attempt to improve performance.

While this may raise their training performance, it may not transfer into the job, as

noted previously. Thus, any evaluation method must consider the impact of evaluation

on the trainees. It has been proposed that the tendency for trainees to adapt to training

examinations can be utilized through judicious design of the evaluation method, such that

the evaluations focus on aspects that have strong transfer into the field [89]. Due to the

importance of the training domain in training evaluation, several examples of important

domains in training are presented in the following section.

2.1.5 Training Domains

Since most practical application of training and training evaluation comes from particular

domains, it is worth highlighting important results from the more heavily researched do-

mains. The following sections briefly discuss training and training evaluation applications

to commonly reported domains, including medicine, aviation, and the military.

Training in Medicine

Prior to World War II, medical competence was primarily assessed using an apprenticeship

model, where a mentor would be solely responsible for subjectively determining when a

medical trainee was adequately prepared [80]. As the number of medical trainees rose,

this was no longer logistically practical and led to new methods of trainee assessment

including Multiple Choice Questions (MCQs), written simulations including the Patient

Management Problem (PMP) [90] and the Modified Essay Question (MEQ) [91, 92],

learning process measures such as the Triple Jump Exercise [80], and live simulations

such as the Objective Structured Clinical Examinations (OSCEs) [80,93-96], which have

become common in modern medical training [97,98].

MEQs were the solution to the logistical issues associated with the apprenticeship
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model by being scalable to higher numbers of trainees and efficient to score, and have

been supported by the use of computers in modern training programs. However, they

have been challenged for not requiring the active generation of responses, only requiring

the trainee to either identify the correct answer or eliminate the incorrect ones [99-101].

Written simulations such as the PMP and MEQ attempt to measure clinical reasoning,

and sometimes allow branching solution paths or require the trainee to collect data on the

patient [102]. However, these methods have been criticized for being very specific to the

case used in the simulation [103], along with issues of disagreements between evaluators on

the correct pathways and scoring of trainees [104,105]. To try to reduce the dependence

on the case selected, several research groups have suggested a "key feature approach" that

only focuses on the key elements of the simulation rather than every action [106,107].

Learning process measures recognize that an important aspect of training evaluation

lies within the learning process, which was introduced in Chapter 1 as "process-level

measures." While some researchers have recognized the importance of this information,

it has largely been ignored in implementation within medical training programs [80].

Live simulations such as OSCEs are currently the most common evaluation methodology.

These involve trainees rotating through a series of 10-20 simulated cases, collecting patient

information and determining and executing the appropriate actions. By allowing for

many cases in a single simulation, it helps to remove the issue of case specificity seen

in written simulations. These simulations attempt to measure both the procedural skills

of the trainee as they perform the necessary steps, as well as the declarative knowledge

associated with diagnosing the illness and identifying the correct treatment strategy.

Most of these assessment methods still include subjective rating systems that comprise

either part or all of the final assessment metrics. This may be partly an artifact of the

apprenticeship traditions of the profession, or also due to the relative ease with which

ratings can be gathered compared to objective sources. However, these ratings have been

widely criticized due to their lack of accuracy and reliability [98,108,109], and it has been

demonstrated that there is little consistency both between and within raters [110-113].

It is clear that there continues to be a push within the medical training community to

move to more objective measures of trainee performance. Additionally, medical training

environments require both procedural knowledge of the treatment steps and declarative

understanding of the symptoms, diagnoses, and treatments. The greater use of computers
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in modern training programs as part of objective assessment methodologies such as MCQs

and OSCEs have dramatically increased the availability of process-level information, and

this domain is a likely candidate for the use of machine learning algorithms in trainee

evaluation.

Training in Aviation

There are a wide range of roles in aviation that require training, including pilots (or

other operators), maintenance crew, air traffic control (ATC), among others. The Fed-

eral Aviation Administration (FAA) provides guidance on a range of training for aviation

personnel, including Crew Resource Management (CRM) training, Maintenance Resource

Management (MRM) training, electrical systems training, and even the design and imple-

mentation of operational simulations for training [114-117]. For pilots or other operators,

simulation remains the most common training method; flight simulators can be highly

capable, including features such as motion platforms and out-the-window views [118,119].

These simulators allow pilots to practice interacting with the aircraft controls in a wide

range of training scenarios. Evaluation of trainee performance holds many parallels with

medical training, with both objective simulator measurements and subjective self-rating

and expert performance rating utilized as evaluation metrics.

Aviation is another field that requires the use of both procedural and declarative skills.

Aviation environments typically make frequent use of checklists and other procedures

both in the operation and maintenance of aircraft. Additionally, it is important for

operators such as pilots to understand the fundamental physical properties that govern

their vehicle, and training programs will include declarative knowledge elements such as

courses in aerodynamics and aircraft systems (e.g. [120]).

In recent years, a particular emphasis has been placed on CRM training as a field of

research [29,32,121]. CRM training is a form of team training that focuses on the interac-

tions between personnel in the cockpit. Topics typically include teamwork, leadership, sit-

uation awareness, decision making, communication, and personal limitations [29,121,122].

A general review of CRM training programs shows mixed results, with most evidence of

learning coming from changing self-reported attitudes [121]. Evaluations of CRM train-

ing report difficulties in separating behavioral changes due to flight training from those

due to team training. This difficulty may be encountered in other forms of team training,
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where performance metrics are dependent upon learning from both individual and team

training. Despite the challenges, there is a clear need identified for additional research

and development of objective team training methods.

Training in the Military

Training in the military has been an important part of ensuring an effective military force

for millennia. Often this training includes both mental and physical aspects and can cover

all areas of the SRK framework. The full range of training programs implemented by

the US and other militaries is too extensive to present here, however there are several

important aspects of military training that are worth noting. First, military training

programs have readily incorporated new developments in training technologies such as

CBT and advanced simulation environments [119]. This indicates that new datasets are

becoming available within military training settings that are conducive to the applica-

tion of machine learning algorithms. In fact, basic statistical learning algorithms have

been previously used on subjective training data for prediction of pilot performance [123].

However, the clustering and prediction methods were only used on ratings of cognitive

concepts, and not on performance data such as would be available from more modern

computer-based simulation training programs. An important result of this analysis was

the identification of the usefulness of machine learning methods for trainee selection and

evaluation in military domains. Second, military training programs will often consider

more unusual training program design and implementation strategies compared to other

organizations [124]. Military organizations have investigated learning during sleep, accel-

erated learning programs such as Event-Based Approach to Training (EBAT), Suggestive

Accelerative Learning and Teaching Techniques (SALTT), neurolinguistic programming

(NLP), and paraspychology as part of training programs [124,125]. While there may be

little scientific evidence to support many of these concepts [124], it remains an indication

that military training programs may be the most willing to change and adapt to novel

training techniques.

2.1.6 Training Summary

This section has provided an overview of research in training and training evaluation,

and presented some of the differences and similarities across training domains. Some
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important highlights for the consideration of the use of machine learning algorithms in

training evaluation are summarized here:

e Training design, implementation, and evaluation may vary dramatically based on

the task type (e.g. Skills, Rules, Knowledge)

o There remains a large dependence upon subjective rating systems in training eval-

uation, which have been challenged for their reliability and validity

o Evaluation methods should consider not only in-training performance, but attempt

to measure the learning (training transfer) that occurs during the training process

o Models of training performance and training transfer have the potential to assist

with training evaluation, trainee selection, and training design and implementation

With a general knowledge of the common design, implementation, and evaluation

principles, we can now consider the available machine learning models and their appro-

priateness to training. The following section introduces the field of machine learning and

the algorithms used for testing on training datasets in this thesis.

2.2 Machine Learning

Machine learning (or data mining) is a branch of artificial intelligence that focuses on

algorithms that "learn" the relationships between data. These relationships can be de-

scriptive by providing greater understanding of the inherent properties of the data (unsu-

pervised learning), or predictive by being able to estimate values for new data (supervised

learning). These algorithms have risen in popularity in recent years, which likely can be

attributed in part to their flexibility and capacity to process large, high-dimensional

datasets [126]. A well-recognized formal definition of machine learning from Mitchell is:

"A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by

P, improves with experience E" [127]. It is important to note that these algorithms

are not learning in the human sense, but able to construct better models the more data

(experience) provided to the model.
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In this field, algorithms incorporate a set of previously obtained data, called "train-

ing data," to improve the performance of the algorithm. Training data is used to set

parameters in the machine learning models, resulting in the construction of a model that

can then be tested. Model performance is usually measured on a set of data that was

not used for training, and often referred to as "test data." It is important to distinguish

between data collected from training domains discussed earlier and training data, which

is used to train machine learning models.

An important aspect of any machine learning approach is referred to as "feature

selection." Consider a model of basketball player skill. A wide range of data may have

been collected that includes their height, age, vertical leap, and whether or not they

were afraid of monsters as a child. As one can imagine, some of these variables may be

more useful in modeling basketball player skill than others. The determination of which

variables represent important and useful quantities for implementation in the learning

algorithm is feature selection, where the variables are referred to as "features." Selecting

strong features can make a learning algorithm efficient and provide strong prediction

performance, while weak features will result in models that are overly complex or have

poor prediction performance. Feature selection is an important part of any learning

algorithm; choosing a more powerful learning technique will not totally overcome a poor

selection of features.

Machine learning techniques typically make several assumptions about the data used

to train and test the algorithm. The algorithms will result in the best model perfor-

mance (descriptive or predictive) only if these assumptions are met. Some of the major

assumptions are as follows:

" Large amount of data - most machine learning algorithms rely on having a large

number of training examples for the algorithm to learn

" Large number of available features - having sufficiently large feature space will allow

feature selection to identify useful features to use in the models

" Well-characterized noise - like most models, machine learning algorithms assume

that data is generated by a consistent process, and that variations in the data follow

a pattern

Dependent upon the particular dataset and the way in which the data is generated,
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it may or may not meet these assumptions. While machine learning algorithms can be

trained in the absence of one or more of these assumptions, the results may be unpre-

dictable. Understanding how machine learning algorithms behave on atypical datasets is

an important area of research, and determining how datasets from training programs fit

within the standard machine learning paradigm is one of the main focuses of this work.

In the human training domain, it is difficult to meet the standard assumptions of most

machine learning algorithms given above. Typically, only a relatively limited number of

trainees are available for data collection, and the variations in performance may change as

the trainee learns over the course of the program. A more detailed list of the differences

is shown in Table 2.2.

Table 2.2: Differences between human training aand traditional machine learning datasets

Different machine learning methods will have various robustness to datasets depen-

dent upon the properties (data points, features, noise) shown in Table 2.2; that is, the

performance of some algorithms will be impacted more by these properties than others.

One of the goals of this thesis is to investigate the ability of different machine learning al-

gorithms to operate under the characteristics of human training data. Before discussing

the specific applications of machine learning algorithms to training, it is important to

understand the general categories of machine learning algorithms and their uses in other

'The term "data point" used in this thesis refers to an individual instance or observation in the data.
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pertise in the subject
matter



domains. The diverse set of machine learning algorithms can be divided into two main

groups: unsupervised learning and supervised learning. Each of these groups utilizes

different approaches and targets different goals.

2.2.1 Unsupervised Learning

Unsupervised machine learning focuses on finding inherent relationships within a dataset

based on the features provided to the algorithm. These algorithms look for commonalities

or patterns in the data itself. The two most common types of unsupervised learning are

clustering and dimensionality reduction methods.

Cluster Analysis

Clustering algorithms find groupings, or "clusters" within the data. Identifying clusters

in data can be useful in helping to identify particular points in the data that show

similar feature values to each other. When applied to a training setting, the features

correspond to particular performance scores or even individual actions. In essence then,

cluster analysis can be used to find trainees that exhibit similar behaviors or performance

profiles. This can be useful in an assessment and intervention setting, as it is able to

clearly identify a set of trainees with similar behaviors that could be combined for a group

intervention strategy. However, there are several considerations that apply across all

clustering algorithms that must be taken into account before implementing the algorithms

on a dataset. First, different algorithms exhibit different strengths and weaknesses in the

clustering approach. Second, transformations or standardization of the data may be

required as cluster algorithms are highly dependent upon measuring distances in the

feature space. Third, a particular distance measure itself must be selected for the dataset

to determine similarity between points in the data. Once these have been addressed,

cluster algorithm performance may be compared for the dataset. The following sections

outline the algorithms and strategies for cluster analysis.

Clustering Algorithms

There are a wide range of algorithms that have been developed for clustering datasets.

While an exhaustive discussion of all of the clustering algorithms is not possible here,
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this thesis presents four of the most common clustering methods: k-means, agglomera-

tive clustering, Gaussian Mixture Model (GMM), and Self-Organizing Map (SOM). Each

method represents a common form of one of the main types of clustering algorithms:

centroid models, connectivity models, distribution models, and topological models, re-

spectively. The remainder of this section introduces these algorithms in greater detail,

along with outlining the strengths and weaknesses of each algorithm.

The k-means algorithm is generally considered the most popular clustering algorithm.

It solves a specific optimization problem of minimizing the sum of squared distances be-

tween data points and the cluster centroid to which they are assigned. Most commonly

it is calculated in an iterative two-step approach that first updates the cluster centroids

and then reassigns data points to the closest cluster. It can be thought of as a relax-

ation of cluster centroids into a local minimum based on the location of nearby data

points. It is a simple and efficient algorithm, which makes it desirable on large or com-

plex datasets. However, it does require the user to pre-specify the number of clusters,

and determining the optimal number of clusters typically requires the iterative creation

of models and comparison through criteria such as the Bayesian Information Criterion

(BIC). k-means is also sensitive to outliers, as it will heavily penalize the presence of data

points at a far distance from the cluster centroid. Finding the global optimum of cluster

centers and cluster assignments has been identified to be NP-hard (from computational

complexity theory). Briefly, this indicates that algorithms guaranteed to find a solution

typically require high computational effort to solve, and faster algorithms (such as heuris-

tic approaches) are not guaranteed to find the optimal solution. To avoid the difficult

computation in finding the global optimum, a greedy approach is taken for adjusting the

cluster centers and thus any particular run of the k-means algorithm is understood to

find a local optimum. Despite these drawbacks, the simplicity and efficiency of k-means

ensure that it remains a popular selection for clustering.

Agglomerative clustering is a form of hierarchical clustering. It generates a hierarchical

tree of nodes representing clusters, where the lower clusters on the tree are members of

the higher clusters. In this way, a map of cluster assignments is created from the top level

where all data points are in a single cluster, to the bottom level where each data point

is in its own cluster. To create this tree, agglomerative clustering begins at the bottom,

combining the closest clusters until only one cluster exists at the top of the tree. Since
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this method requires the combination of clusters that are "near" each other, a distance

parameter known as the "linkage criterion" must be selected. Examples include single-

linkage clustering, which measures cluster distance by the two closest points from the

clusters, or average linkage clustering which averages all the distances between each pair

of points between the two clusters. Like k-means, agglomerative clustering is simple to

implement and easy to interpret due to the hierarchical tree created and can be visualized

through dendrograms. It also calculates cluster splits for all levels of the tree at once;

to select a specific number of clusters the user merely needs to "cut" the tree at the

desired number of nodes. However, it is of high complexity, being 0(n') in the general

case (where n is the number of data points to be clustered), though it can be shown to

be of O(n2) in particular special cases [12]. Like k-means, hierarchical clustering also

encounters difficulties clustering outliers.

Gaussian mixture models (GMMs) take a distribution approach to clustering. The

user selects a certain number of multivarate Gaussian distributions which are fit to the

data. In this case, each distribution represents a cluster, with points being assigned

to the cluster with the highest probability. Since Gaussian distributions are continuous

over the entire feature space, it provides easy calculation of membership for new points,

and easily fits into "soft clustering" approaches where a point has partial membership

to multiple clusters. It also captures correlation and attribute dependence in the model

creation. As with the other methods, it has weaknesses and is noted for its tendency to

overfit data [12]. As with k-means, it requires user specification of the number of models

k. Additionally, the use of a Gaussian distribution for fitting clusters makes a strong

assumption about the distribution of the data in the feature space.

Self-organizing maps (SOMs) are an artificial neural network (ANN) approach to the

clustering problem. It is a two step process to achieve clustering, requiring a training

of the neural network model as well as a mapping step that maps the data to clusters.

It constructs a set of neurons with connections that each represent a cluster and the

relationships between the clusters. In this way, a topological map of the clusters and

similarities is developed. Additionally, the analysis of weights in the network allows for

the user to obtain a sense of which inputs are contributing heavily to which clusters. It

also is understood to behave similarly to k-means for a small number of nodes [128]. As

with k-means, the random initialization associated with the weights impact the results,
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and the cluster assignments may vary based on the initial parameters. As with ANNs in

other approaches, the rationale behind the setting of weights during optimization in the

training of the algorithm can be difficult to ascertain, and the models contain a level of

complexity that can be difficult for users to understand and interpret.

These clustering algorithms all require the identification of any appropriate transfor-

mation or standardization of the data, as well as the selection of a distance measure. The

details of the implementation of a clustering algorithm must be considered within the

framework of the dataset, and the unique properties of different training domains may

impact cluster algorithm performance. A discussion of these issues given the considera-

tions of different training domain datasets is presented in Chapter 3.

Another important use of unsupervised learning is for dimensionality reduction. As

computer-based training technologies allow the collection of greater numbers of features,

it can be important to trim the feature set prior to the use of supervised learning algo-

rithms to prevent overfitting. The next section discusses dimensionality reduction and

the common methods currently used in other domains.

Dimensionality Reduction

Dimensionality reduction (a form of feature selection) allows for the representation of

data from high dimensional space in a lower-dimensional space. There are two primary

reasons for this transformation: to remove redundant or irrelevant features, or to try to

avoid the "curse of dimensionality." The first is fairly self-explanatory, where it allows the

user to identify and remove features that are not providing useful content, which helps

computation time and can prevent overfitting. The second relates to the idea that as

the number of dimensions increase, the separation between points approaches a constant

value. This creates great difficulties for algorithms that require measurements of distances

or partitions of space, such as clustering algorithms and Support Vector Machines (SVMs,

discussed later in the Supervised Learning section). A discussion of these considerations

with regard to training domain data is discussed further in Chapter 3.

The main strategy for dimension reduction revolves around feature extraction, which

involves the transformation of data from high dimensional space into lower dimensions.

One set of methods that can be used are downselection methods, including forward se-

lection and backward elimination. In forward selection, features are added to the model
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iteratively, adding the feature that provides the best improvement in performance. Back-

ward elimination operates similarly, starting with all features and sequentially removing

the least useful feature each iteration. When a user-specified number of features are met

(which must be fewer than the original number of features), the algorithm terminates.

These methods can help identify which of the current set of features are the best for cre-

ating machine learning models but do not generate new features in themselves. Consider

an example of trying to identify the 20 most important genes for a genetic illness out

of a set of 1000 genes. Forward selection would find the best single gene for predicting

the illness, followed by the second gene that best supports the prediction given the first

gene, and so on until a set of 20 genes were identified. Backward elimination would begin

with the full 1000 genes, and remove the gene that reduced prediction performance by

the least (leaving 999 genes), and continue until only 20 genes remained. As can be seen,

the best choice of algorithm may strongly depend upon the initial and desired number of

features.

A different strategy comes in the form of Principal Component Analysis (PCA), which

performs a linear mapping of the data into lower dimensional space [12]. The objective

of PCA is to obtain a smaller set of orthogonal projections along the original feature

space in a way that the variance of the data along the new dimensions is maximized. By

using the first several components generated, dimensionality reduction can be achieved.

A similar strategy is found in Linear Discriminant Analysis (LDA), which also looks for

linear combinations of variables to express the data. However, LDA explicitly models

the differences between classes (discrete labels) in data, while PCA does not require

the specification of classes during the model construction [129). Thus, LDA is intended

for classification approaches (which use discrete labels) and not for regression approaches

(which use continuous labels). PCA, on the other hand, is appropriate for both strategies.

Since this thesis utilizes dimensionality reduction for input to both classification and

regression, PCA was selected as the primary method for dimensionality reduction in the

analyses presented in later chapters.

Unsupervised learning allows for a descriptive approach to the dataset, providing

greater understanding of the structuire of the data and the relationships between data

points. For training domains, these algorithms could have uses in identifying trainees

that are similar to one another (through clustering) or reducing the high number of

47



features provided by new computer-based training methods prior to supervised learning

(through dimensionality reduction). Another important form of machine learning is su-

pervised learning, which takes a predictive approach by constructing models that allow

for the prediction of values on previously unseen data points. The following section pro-

vides background on supervised learning and some of the common algorithms used for

supervised approaches.

2.2.2 Supervised Learning

Supervised algorithms infer a function that relates a set of input features to labels (also

called "targets"). Supervised learning is directly related to prediction tasks, since once

a model is learned the labels of new data points can be predicted based on their partic-

ular input measurements. For example, in a classroom environment, supervised learning

could be used to identify the relationship between formative assessment measures such

as quizzes to prediction targets such as the final course grade. For the analysis presented

in later chapters, a set of commonly used supervised learning techniques were selected

and are shown in Table 2.3, listed roughly in order of increasing complexity of the models

constructed by the algorithm and covering a range of regression and classification ap-

proaches. These supervised algorithms can generally be divided based on the nature of

the target variables; regression algorithms predict continuous target variables, while clas-

sification algorithms predict discrete target variables. Since training settings may include

both discrete performance targets (such as a course grade) as well as continuous targets

(such as power output from a power plant), both types of methods are considered here.

A brief description of each algorithm is provided below.

Linear regression is one of the most common and simple algorithms in machine learn-

ing. Typically it uses a least squares criterion to find a set of coefficients 3 such that it

minimizes the difference between the target variable y and the linear regression estimate

X0. While simple, it makes several assumptions about the data. First, it assumes that

the observations are i.i.d. (independent and identically distributed). Second, it assumes

that the feature variables have no measurement errors. Third, it assumes that the target

variable is a linear combination of the feature variables. Fourth, it assumes homoscedas-

ticity, or constant variance in the errors of the target variable. Fifth, it assumes that

the errors of the target variable are uncorrelated with each other. Sixth, it assumes that
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Table 2.3: Details of Supervised Learning Techniques
Technique Usage Description
Linear Regres- Regression Identifies linear parameters relat-
sion ing features to target continuous

variable
Logistic Regres- Classification Identifies parameters of logistic
sion function relating features to tar-

get binary variable
Support Vec- Classification Identifies maximum-margin hy-
tor Machines perplane separator, most com-
(SVMs) monly used in classification
Artificial Neural Regression / Creates predictive models us-
Network (ANN) Classification ing layers of neurons that have

weighted connections and activa-
tion functions to produce outputs

there are no redundant features; that is, there is no multicollinearity in the feature space.

Despite all of these assumptions, linear regression is a relatively robust method and has

been found to be very useful in a wide range of domains.

Logistic regression follows a very similar strategy to that of linear regression, but

instead feeds the feature variables through the logistic function. In this way, it produces a

continuous output between 0 and 1. This can be useful in a binary classification approach,

as this value can be interpreted as the probability that the data point is a member of

class 1 (compared to class 0). By applying a cutoff probability (such as 0.5), we can

provide a predicted classification for each data point. Logistic regression generally makes

fewer assumptions about the target variable and assumptions seen in linear regression

such as homoscedasticity are not required. It does, however, still maintain assumptions

that the observations are i.i.d., feature variables have no measurement error, and no

multicollinearity [130].

Support Vector Machines (SVMs) find the maximum-margin hyperplane that sepa-

rates data in the feature space. Specifically, this can be expressed by the optimization

problem shown in Equation 2.1. In this equation, - denotes the dot product, w is the

normal vector to the hyperplane, and b determines the offset of the hyperplane from
Iwi

the origin.
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1
argmin -||w|| 2

w,b 2

subject to (for any i = 1, ... , n): (2.1)

yi(w - x - b) > 1

Typically, SVMs have been used in a classification setting, but more recently have also

been shown to be applicable to regression strategies. They are very flexible in the types of

decision boundaries that can be created, being able to create both linear and non-linear

boundaries through the use of kernels. Kernels allow for the finding of linear separators

in higher dimensional space without the need to explicitly calculate the transformation

of the data into the new feature space (for more information about kernel methods,

see [12]). The assumptions behind SVMs are minimal, only assuming that the data are

drawn independently and identically distributed (i.i.d.) from some unknown probability

distribution [131].

Artificial Neural Networks (ANNs) are a class of algorithms inspired by biological

nervous systems, involving layers of "neurons" that feed information through the network.

The neurons contain adaptive weights that update based on a learning function. They

do not make any a priori assumptions about the data [12], however they do require the

user to specify the network structure which includes selecting the number of layers and

the number of neurons within each layer. ANNs can be used in both classification and

regression approaches, though they have the drawback that the complexity of the model

makes it difficult for the user to understand the relationship between inputs and the

resultant prediction.

2.3 Educational Data Mining (EDM)

In recent years, researchers have begun to apply machine learning algorithms to the

closely related field of education. The use of machine learning in educational datasets

has become a field in its own right and is often referred to as Educational Data Mining

(EDM) (see [132-134] for a review of EDM literature). Much of the focus of this work

has been on the increasing use of online education [135,136], which generates enormous

datasets that machine learning approaches are well-equipped to process. However, to date
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there has not been an in-depth analysis of the nature of data generated in educational

settings, and the impacts of data from these settings on machine learning applicability

and results.

In traditional classroom settings, recording of student's progress is often a combination

of subjective performance reviews and paper records [132]. The resultant data available

for analysis are typically measures of cumulative knowledge (e.g. examinations), and

often are only available at discrete points in the course progression. The increase in

online learning settings has had several major impacts on educational data availability.

Online and computer-based learning settings typically create an electronic log of a wide

array of interactions between the student and the learning system, such as individual

question responses (such as multiple choice or text-based) over an often more prolific set

of homework, quizzes, and examinations. Data collection both in depth and quantity

that would be impractical for traditional classroom settings is easily recorded through

electronic venues. From a practical perspective, in these settings there is greater access to

data at a finer temporal scale, since logs are typically recorded at every student interaction

with the system. Additionally, the increased level of detail contained in the logs also often

allows interpretation of process-level data. Rather than only being able to access the end

result of each student's effort, intermediate pieces of information can provide insights into

the progression of learning. It stands to reason that these qualities could improve the

accuracy and usefulness of machine learning algorithms applied to these datasets, such

as informing the timing and content of Trainee Interventions (TI).

There are several important applications of machine learning models identified by

EDM literature. TI can be assisted by prediction algorithms through the identification

of students that are struggling or are likely to have poor final course performance. In a

targeted intervention approach, it is not only important to have high-accuracy predic-

tions of students, but also to obtain these predictions as early as possible in the course,

so that any interventions can be as impactful as possible in the student's understanding

throughout the course. Another important application focuses not on the students, but

rather on improving the course. The quality control task that identifies aspects of the

course that are unclear or not meeting their learning objectives can also be informed

by machine learning models. By using prediction models from a diagnostic perspective,

those metrics that are the most valuable for student prediction (and therefore assessment)
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can be identified. Additionally, unsupervised learning algorithms can identify patterns

of errors across students, providing insight into those topics or assignments that pose

the greatest difficulty for the students. It should be noted that while both supervised

and unsupervised algorithms can provide insights into the course structure and the ef-

fectiveness of each of the course elements, they do not directly make recommendations

for changes in course structure. Rather, the results must be interpreted by the educator

to determine whether action is needed. These applications that have been identified in

EDM literature have parallels in training, and help inform the potential applications to

training presented in this thesis in Chapter 3.

2.4 Chapter Summary

The first section of this chapter provided a theoretical and practical background in train-

ing and training evaluation. Several training domains were discussed, and important

considerations for training evaluation methods were identified. The second section of

the chapter introduced common machine learning methods and their advantages and

disadvantages. The third section presented applications and lessons drawn from EDM

literature. With this background, Chapter 3 presents considerations in the application

of machine learning algorithms to training data under several types of training domains.

Chapters 4 and 5 then present the results of the application of machine learning ap-

proaches on representative datasets from knowledge-based and rule-based settings, re-

spectively.
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Chapter 3

Machine Learning Considerations for

Training Applications

Chapter 2 presented background research in the areas of training and machine learning.

A range of training domains and training task types were discussed, and machine learning

algorithms and their properties were presented as well. This chapter focuses on the impli-

cations of this background information on the application of machine learning algorithms

to training data. Specifically, what consequences the nature of training data (based on

training domain) will have on machine learning algorithms and how the strengths and

weaknesses of the various machine learning approaches manifest when applied to training

datasets. This chapter is divided into four sections: the first provides a more detailed

discussion of the typical data types provided by each training domain as classified by the

SRK framework, the second presents two example scenarios from rule and knowledge-

based training, the third discusses the use of machine learning algorithms on datasets

from each of these environments, and the fourth presents a set of potential applications

of machine learning approaches to training evaluation and trainee intervention (TI).

3.1 Data from Training Domains

As discussed in Chapter 2, data gathered as part of training evaluation may exhibit

markedly different properties from those typically used by machine learning algorithms.

Briefly, machine learning algorithms typically require a large amount of data, a high

dimensional feature space, and consistent noise. Training data, on the other hand, may
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not meet some or all of these conditions. This section expounds some of the typical

properties of training evaluation datasets.

3.1.1 Number of Data Points

Restrictions on the number of available points (instances) in the data usually arises

from a limited number of trainees completing the training program. Except for very

large organizations, the number of trainees for a particular position may number in the

tens to hundreds, well below the typical datasets used in machine learning approaches

(which typically use thousands of data points). Low number of instances is a common

issue experienced in human subject testing. Compared to the testing of machinery or

computer programs, gathering data on humans typically requires much greater time and

effort. In the case of training, the number of data points will correspond to the number of

trainees completing the training program. While an organization could pay for additional

people to complete a training program just to collect data, thereby increasing the number

of data points available for analysis, usually this will be too expensive and an inefficient

strategy. Changes in training program structure or content also present a problem for

accumulating large numbers of data points. By their nature, machine learning algorithms

rely on learning relationships in data based on a set of features. If the number or nature

of the features change from one trainee to another, the data points cannot be combined to

train the learning algorithm. Consider a case of trying to model the relationship between

trainees' ratings of a course and their final score in the course. If the ratings were only

gathered for half the trainees, only these trainees can be used to create the model relating

these two variables. Since training programs may change frequently, either based on prior

training evaluation or due to changing job requirements, gathering a sizeable dataset that

is usable for machine learning may be challenging.

The particular type of training as defined by the SRK framework will impact the

expected number of data points. Training for skill-based and rule-based domains are

often based upon a high level of repetition. Thus, there will typically be greater oppor-

tunity for multiple trainees to complete the same task or the same trainee to complete a

task multiple times than in knowledge-based domains. Additionally, skill- and rule-based

domains have the highest need for retraining, providing additional opportunities for gath-

ering data on the same training program from experienced personnel. Knowledge-based
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training often focuses on learning abstract concepts or developing mental models to apply

to a wide variety of scenarios. To accomplish this, training programs for these domains

often include novel scenarios or problem solving. Data from training programs that utilize

different assessment methods or questions (e.g. different scenarios and problems) with

each set of trainees will not be as conducive to the use of machine learning approaches.

3.1.2 Number of Features

Features are the variables utilized as inputs to the machine learning models. Whether in

a descriptive or predictive sense, the selection of features will determine the ability of the

models to describe relationships in the data, as they provide the information used by the

models. In a training program, the data is provided by the assessment metrics gathered,

and the set of features must be selected from these metrics. Ideally, these will be features

that are informative: they are able to tell trainees apart, have a relationship with the

target variables (when used for prediction), and do not replicate information contained

in other features.

The number of features in human training datasets will primarily depend upon the

trainee assessment methods used during training and is thus also dependent upon the

domain. As discussed in Chapter 2, skill- and rule-based training is traditionally dom-

inated by subjective feedback, either self-assessment or assessment from an expert in-

structor. These subjective ratings will often have relatively few elements. For example, a

study by the Health Education and Training Institute gathered only 19 ratings made by

trainees [137]). Even when administered multiple times over the course of the training

program, these summative assessment methods will rarely account for greater than tens

to hundreds of features. Datasets from classic machine learning domains (e.g. genetics)

will typically have thousands of features or more.

More recently, the use of simulators and CBT methods allow for the collection of

many more interactions between the trainee and the system. Most commonly this will

come in the form of log files that record time-stamped events in the system. These

events will either be automatically generated by the simulation (such as an intentional

error to challenge the trainee) or created through the interactions of the trainee with

the system (such as clicking on an interface). As discussed in Chapter 2, these logs

contain "process-level" information about how the trainee moves through each module
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in the training program. This information provides a much greater number of features

for use in machine learning approaches by allowing each individual action to be used as a

feature, in addition to the traditional summative assessment metrics. Figure 3-1 depicts

the differences in the specificity of information between traditional and computer-based

training assessment approaches.

While process-level information from computer-based methods can provide a much

higher dimensionality to the feature space, there are additional considerations in using

this information to train machine learning algorithms. In machine learning, it is generally

desirable to have a significantly higher number of points in the data than features in

order to limit overfitting of the training dataset. The problem becomes apparent given

an example: consider a training dataset with 20 trainees who have each completed 20

simulation runs (giving 20 data points and 20 features), and the evaluator wants to

predict post training performance. The algorithm trained on this data can fit one feature

Computer-Based Training Approaches

Action Level Module Level Program Level

Individual inputs from -Aggregate performance -Overall performance

trainees to system metrics (e.g. time to metrics (e.g. modules

complete module, completed, overall grade)
Temporal information examination grade)

(e.g. time to complete a -Program-level subjective
subtask) -Module-level Subjective ratings (self or instructor)

ratings (self or Instructor)

Fine Detail Coarse Detail
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(simulation run) to each trainee (data point) to exactly predict everyone in the training

dataset. In this case, the model has used all available features as part of the modeling,

including modeling any noise in the data. While this model would perform perfectly on

the training dataset, its generalization performance on a previously unseen test dataset

would be very poor. The concept behind this issue is typically referred to as the "bias-

variance tradeoff" [138]. Briefly, as the complexity of a model increases (i.e., number of

features), the model tends to use all available degrees of freedom to train the algorithm.

Any real-world data set contains both true information (signal) and variation (noise)

within it, and these available degrees of freedom are used to fit the noise within the data

set. Thus, while it is beneficial to have a high number of features, having too many

features relative to the number of data points can also generate poor performance for a

given model. It is very difficult to define an exact ideal ratio of features to data points,

since it will depend upon the signal-to-noise ratio in the data. However, it is generally

accepted that if given m features and n data points, it is desirable to have n > m.

Thus, while there may be useful information contained within the process-level fea-

tures, additional adjustments have to be made in the application of a machine learning

approach. Specifically, there are two main strategies for dealing with a low instances-to-

features ratio. The first, feature selection methods, has already been discussed in Chapter

2. In this approach, features are either removed or combined to reduce the number of

available features in the model. The second strategy, boostrapping, creates duplicate

datasets from the original instances of data to help control for overfitting when using a

larger number of features [139]. Bootstrapping makes the assumption that the original

dataset is representative of the population, which may be a difficult assumption to meet

in a small and high-noise dataset such as is seen in training data (the following section

provides additional discussion of noise). Therefore, for the purposes of incorporating

process-level information into machine learning approaches in this thesis, feature selec-

tion methods are utilized to reduce the number of features used and thus increase the

instances-to-features ratio.

3.1.3 Noise

As mentioned in the previous section, the signal-to-noise ratio plays an important role

in model performance. Noise in the data also plays other roles in machine learning
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approaches, particularly with respect to the assumptions of machine learning algorithms.

Some of the algorithms described in Chapter 2 assume homoscedasticity, or constant

variance in the data. This assumption is very difficult to meet in human performance

data, as the variances in performance data across trainees are very unlikely to be equal.

Additionally, by the nature of training, performance data will not be consistent over

time. As a trainee completes the program, it is expected that average performance will

improve and variation in performance will decrease as the trainee becomes more familiar

and more practiced with the system. Thus, the nature of noise in training data may

not be conducive to machine learning methods that have hard assumptions about data

variance.

Another aspect of noise in training data that is unusual in machine learning ap-

proaches is the change in variance across features. Assuming the performance data can

be fit to a distribution, some trainee assessment metrics may follow a normal or nearly

normal distribution (such as the attitude error in a flight simulator). However, other

metrics might follow other patterns like a lognormal distribution (such as time to no-

tice a deviation in a monitoring task). While machine learning approaches can be run

using features that are generated under fundamentally different processes, this violates

assumptions of most algorithms about the nature of noise in the dataset. One strategy

to help with this issue would be to transform or normalize the data (discussed later in

this chapter), although implementing a transformation that is fundamentally different

than the underlying distribution does not guarantee the success of a machine learning

approach.

While issues relating to number of data points, number of features, and noise may

occur in data sets generated from any training environment, the severity will depend

upon the specific domain and assessment methods. To illustrate these issues and provide

specific examples of typical assessment techniques and the resultant data, the next section

presents two example scenarios from rule- and knowledge-based training domains.

3.2 Example Training Datasets

As discussed above and in Chapter 2, the increase in the use of simulators and CBT as

part of training programs may improve the suitability of machine learning approaches
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on training datasets. These elements have been primarily implemented in rule-based

and knowledge-based training environments, such as training for pilots, nuclear reactor

operators, Air Traffic Control (ATC) operators, or students through Massive Open Online

Courses (MOOCs). There have also been advancements in computer technology and

simulation in skill-based environments, such as instrumentation of sports equipment or

optical tracking data of player position (e.g. [140]), but these systems are typically recently

deployed and use proprietary data. While machine learning approaches may also be

applicable to datasets collected by these systems as they mature, this thesis focuses on

particular cases from the more established technologies in rule-based and knowledge-based

training.

To illustrate the typical training dataset properties described above, two examples

are provided here. The first focuses on simulator training for commercial pilots, generally

a rule-based environment. The second is a principles of flight course, which focuses

more on knowledge-based training. These two training areas are fundamentally related

in topic (aircraft) but take markedly different approaches to training methodology. As a

result, the typical training data available from each of these sources will exhibit different

properties, potentially impacting the usefulness of machine learning approaches.

3.2.1 Pilot Training

For pilots in commercial aviation, a significant amount of training is required before a pilot

is allowed to fly an aircraft, and even experienced pilots must undergo frequent refresher

training. There are a wide range of training programs for pilots mandated by aviation

authorities such as the US Federal Aviation Administration (FAA) and the UK Civil

Aviation Authority (CAA). This example will focus on a particular part of commercial

pilot training, known as Line-Oriented Flight Training (LOFT). LOFT makes use of high-

fidelity flight simulators to recreate scenarios that may be experienced during operational

flying. Some basic elements of LOFT are listed below [141]:

" LOFT should take place in a line operational environment with a complete crew

* LOFT should contain scenarios of real-world, line operational situations, which

progress in real time
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* The simulation is allowed to continue without interruption, even when mistakes are

made

The FAA specifies four phases of LOFT: briefing, preflight planning and activities,

flight segment, and debriefing [141]. In the briefing phase the instructor informs the

crew of the training objectives, environmental settings, role of the flight crew, and role of

the instructor. During the preflight planning phase, documents such as weather reports

and baggage weight are provided to the crew, allowing them to prepare the appropriate

flight plan. The flight segment includes taxi, takeoff, flying, and landing as well as

communication with Air Traffic Control (ATC). Debriefing provides feedback to the crew

on their performance from the instructor both to individuals and the team as a whole.

Trainee assessment in LOFT is primarily done by the instructor and is provided

as feedback during the debriefing phase. To prevent employees from modifying their

behavior due to concerns about losing their employment, it is understood that the pilot

or crew will not be disqualified even if a serious error is made during the simulation

(e.g. crashing the airplane) [142]. Rather, LOFT is intended primarily as a learning

exercise, and even with serious errors a "satisfactory completion" rating is achievable,

so long as the mistakes were obvious to the trainee and were judged to not need further

attention. The instructor will inform the crew of any concerns during debriefing, but it

is extremely rare for a crew to "fail" a LOFT scenario. This subjective feedback given by

the instructor comprises the majority of trainee assessment during LOFT. The simulator

is also capable of recording the states of the system in log files, and objective performance

could be obtained for the purposes of machine learning approaches; however, this data is

not currently used for assessment.

For this example a Pan Am LOFT scenario of an A-310 flight from Washington-Dulles

International Airport (airport code IAD) to John F. Kennedy International Airport (air-

port code JFK) is selected [142]; the details of the scenario can be found in Appendix

A. This scenario consists of thirty-four elements, including two problems built into the

scenario. These thirty-four elements can be grouped into a set of main stages. First, the

simulation is set up with all the appropriate parameters for the scenario. Next, the crew

completes their preflight checklist, while communicating with ATC and ground crew to

receive clearance for starting the engines and pressurizing the hydraulic systems. During

this stage the crew encounters the first problem, an engine hot start (improper combus-
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tion). After addressing this problem and completing the preflight checklist, the crew is

given clearance to push back from the gate and taxi to the runway. After arriving at

the runway, the crew requests clearance to take off and completes the takeoff checklist.

After takeoff, the crew follows the planned flight path and ATC guidance to JFK airport.

While nearing JFK airport, the crew encounter their second problem, either an emer-

gency landing at an alternate airport, a passenger threat, or a communication failure.

Depending upon the issue, the crew resolves it and lands the aircraft while completing

the approach checklist and communicating with ATC. The scenario ends after arriving

at the gate, communicating with ground control, and completing the arrival checklist.

Based on this scenario layout, there will be several important aspects of the scenario

that can be used for assessment, beyond the current assessment methods that only use

instructor feedback. It is apparent that the pilots use a multitude of checklists during

their normal flying routine. The completion of these checklists, which represent rule-based

training, can be analyzed in several ways to generate features for a machine learning

approach. The number of checklist items that were skipped or transposed could be

counted, as well as actions that are added during checklist completion that were not

intended to be performed. These actions could include modifications to the system (such

as turning on a hydraulic pump), communications to ATC or ground control, or internal

communications and checks for the crew. These are all measures of the accuracy to

which the checklists are followed and are termed "procedure adherence" measures. In

addition to procedure adherence measures, temporal metrics can be examined, such as the

completion time for a particular action or checklist. In a rule-based training environment,

these procedure adherence and temporal metrics are important features to consider for

machine learning approaches. A further development of the analysis of these features is

described later in this chapter.

Another aspect that could be utilized for machine learning are the flight performance

characteristics during the scenario. These could include the heading, airspeed, attitude,

descent/ascent rate, GPS position, flaps settings, or even the individual yoke movements

made by the pilots. Deviations from the expected values of these parameters can be

recorded and used as assessment metrics. Since the recording of these values can be done

relatively frequently (>1Hz), they can provide high-density performance information.

As features in a machine learning approach, however, it would be illogical to include
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all recorded events as separate features, due to issues with overfitting. Instead, these

performance metrics could be condensed through feature selection techniques or could be

aggregated over more meaningful periods of time, such as the average error in heading

during the flight segment of the scenario.

This setting provides an example scenario for a primarily rule-based training environ-

ment and the assessment metrics that would commonly be generated in such an envi-

ronment. The use of machine learning methods on data from this training example will

be further discussed later in this chapter . The next section presents the other example

scenario, a knowledge-based training environment from a principles of flight course.

3.2.2 Principles of Flight Course

The example case selected for the knowledge-based training environment is a course in

Principles of Flight from the Joint Aviation Authorities (JAA) [120]. This course covers

a wide range of theoretical knowledge related to flight. The main topics of the course

are: subsonic aerodynamics, high speed aerodynamics, stability, control, limitations, pro-

pellers, and flight mechanics. Within each of these topics are many subtopics relating to

concepts such as stall or drag, each with their own learning objectives. While these are

too numerous to list here, an example section on drag and lift is shown in Table 3.1.

From the learning objectives provided by this course section, it is apparent the goals

of the program relate to the theoretical and conceptual understanding of the trainees.

Assessment techniques will therefore aim to assess the understanding of the trainees as

they move through the course. As discussed in Chapter 2, summative measures are

traditionally used to assess the comprehension of the trainee and the ability of him/her

to extrapolate the knowledge into new scenarios. This could take the form of quizzes,

projects, presentations, or examinations that require the trainee to utilize the knowledge

they have gained. Typically, the specific questions used in assessment will not have

previously been seen by the trainees (or at least not heavily practiced), requiring the

trainee to draw upon long term memory and cognitive models to answer. For written

assessments, common formats include multiple choice, short answer, or essays. For oral

assessments or passive assessment (without direct input from the trainees), subjective

ratings by the instructor remain the most common. Subjectivity still plays a fundamental

role in written assessments as well (except for multiple choice); the instructor must judge
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how well the trainee answered the question or demonstrates the desired understanding.

Usually the assessment scores are placed upon a numeric scale, such as 0-10 or 0-100

(often representing a percentile). Compared to rule-based environments, scores across

trainees may tend to better approximate a normal distribution. However, summative

measures by definition intend to broadly assess topics and are usually only captured

at certain distinct points in the course. Thus, in a typical knowledge-based course the

number of possible features to use in a machine learning approach may be limited.

More recent developments in knowledge-based training such as MOOCs typically pro-

vide assessment after short presentations of material [143, allowing for the collection of

much finer detail of the learning process of the trainee. In these methods assessment

would be taken during and after each topic and subtopic discussed above (e.g. identify

the significant points on the lift and angle of attack graph), providing a large number of

features for use in machine learning approaches. If they contain useful information about

the learning of the trainee, these "process-level" features could contribute to the accu-

racy and usefulness of machine learning models in these datasets. The implementation of

machine learning algorithms on these datasets is discussed further in the next section of

this chapter, while the results of the applications of these methods on an example dataset

is presented in Chapter 4.

Table 3.1: Sample Learning Objectives from Priciples of Flight Course
Topic Learning Objectives

List two physical phenomena that cause drag.
Describe skin friction drag.

Drag and wake Describe pressure (form) drag.
Explain why drag and wake cause a loss of energy (momentum)

Influence of angle of attack Explain the influence of angle of attack on lift.

Describe the lift and angle of attack graph.

The lift - a graph Explain the significant points on the graph.
Describe lift against graph for a symmetrical aerofoil.

3.3 Machine Learning on Training Data

The previous section introduced example datasets from the rule-based and knowledge-

based training domains and discussed the typical properties and assessment measures
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available for machine learning approaches. This section discusses some of the considera-

tions of applying machine learning approaches given these properties. The first subsection

discusses selecting features from each dataset, while the second provides a discussion of

the other preparations needed when applying machine learning approaches to each ex-

ample dataset.

3.3.1 Features

Rule-based training focuses on repetition and is often conducted using simulation envi-

ronments. Logs of interactions between the trainees and the training system allow for a

variety of possible machine learning features and techniques to be used. This section out-

lines some of the details of selecting features from these datasets and other considerations

in the application of machine learning approaches.

Rule-based Training

As previously discussed, the two main data types that arise in rule-based domains such

as the pilot training example involve procedure adherence and simulation performance

metrics. In a procedural setting, there is a specific order to the actions to be taken, as

indicated by the procedures. Procedure adherence metrics can be collected by action (i.e.

"was this action the correct one?") or at the end of a procedure or module, such as total

number of skipped actions. At the action level, the simplest assessment metric would be

a binary of whether the action performed was correct or incorrect. However, if the action

is incorrect, this basic metric does not provide a gradation of how wrong the action taken

was. Consider a case where the trainee is supposed to check the hydraulic pressure and

then check the pump status. If the trainee first checks the pump status and then the

hydraulic pressure, one could argue that, while incorrect, these errors might not be as

serious as if they had incorrectly shut off a pump. It is not easy to define a scale for the

"incorrectness" of an action, but two possible strategies include considering how similar

the action was to the correct action and the safety implications of executing the incorrect

action. In either case, this provides an alternative metric for each action, indicating not

just whether the action was correct or incorrect, but a gradation of the correctness of the

action. In Chapter 4, which analyzes data from a rule-based environment, both of these

strategies are considered. There are also summative procedure adherence metrics that
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are available at the end of each module or at the end of the program. These could include

agglomerative versions of the prior metrics discussed, such as total or average error from

the action-level.

Another set of assessment features that could be included are the performance metrics

of the trainee in a simulation environment. In the pilot training example, this could in-

clude metrics such as heading deviation or descent rate at landing. These will be specific

to the domain and the simulation environment used in the training, and it is difficult to

suggest general performance metrics for use as features for machine learning. However, a

few overall observations can be made about performance data in the context of machine

learning. First, the objective nature of the data make them well suited for machine learn-

ing approaches, as there may be more consistency in the measurement across trainees.

Second, since the simulator itself has control of the training environment, these metrics

are unlikely to have large measurement error. Many machine learning approaches assume

no measurement error, and performance data may fit that assumption. Third, in a real

time simulation environment such as the pilot training described earlier, the frequency

of recording performance measures may be quite high. This creates both benefits and

difficulties for machine learning approaches. High frequency recordings allow for a high

number of features, which is generally beneficial to machine learning approaches. How-

ever, if the number of trainees (data points) is limited as in many training domains, too

many features can create issues of overfitting as discussed earlier in this chapter. There-

fore, it is appropriate to determine summative performance measures or utilize feature

selection techniques as described in Chapter 2 to limit the size of the feature space while

still making use of the information contained in the peformance data.

Traditionally the most common assessment technique in cases such as pilot training

relate to instructor subjective ratings of trainees. These could be utilized as features in a

machine learning approach but have been shown to have difficulties in consistency across

trainees [110-113]. In particular, if there is error in the measurement of these metrics (i.e.

variations in the judgment of the rater between or within trainees), these features may not

be as useful in a machine learning approach. However, these features certainly maintain

their usefulness in addition to machine learning in training evaluation. Maintaining these

rating systems would not only improve the consistency and familiarity of the instructors

with the trainee assessment process, but they may still be used in the decision making
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process of the instructor about the progress of the trainee and any possible need for TI.

A further discussion of the relationships between traditiional metrics such as ratings and

machine learning outputs in the context of instructor decision making is presented in the

last section of this chapter.

Knowledge-based Training

In knowledge-based training environments, the most common data type available is a

scaled score, usually on a scale of 0-100. For each assessment (quiz, test, project, presen-

tation), the trainee is assigned a scaled score. While these scores can be objective when

using assessment methods such as multiple choice questions, often these are subjectively

evaluated by the instructor. Thus, many of the features inherent to knowledge-based

environments will have the same issues with consistency and validity associated with

subjective rating systems, as discussed in Chapter 2. As presented in the previous rule-

based section, subjective data may result in reduced machine learning performance due

to the presence of measurement noise. But since these subjective metrics remain the

dominant assessment technique in knowledge-based domains, they will play an impor-

tant role in machine learning on these datasets. Thus, any machine learning approach

in a knowledge-based training environment must address the limitations associated with

this type of data.

An additional consideration that arises in knowledge-based domains is that usually the

overall assessment of the trainee will be based upon a combination of unequally-weighted

individual measurements. Specifically, summative measures such as examinations usually

have more weight in determining the overall performance of the trainee than quizzes on

individual topics. In a machine learning approach, the unequal importance of these

features must also be incorporated to avoid skewing the results. While there may be

cases where it is desired to treat all features equally, in most knowledge-based domains

the assessment methods are designed to have differential importance in assessing learning.

From a machine learning perspective this is particularly important in cluster analysis,

which is discussed further in the section on distance measures below.
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3.3.2 Other Considerations

Once features have been identified and the algorithms have been selected (both unsuper-

vised and supervised algorithms identified in Chapter 2), there remain several additional

considerations that must be addressed prior to the creation of the machine learning

models. These are data standardization, selecting a distance measure for unsupervised

approaches, and selecting metrics for the comparison of performance across models.

Data Standardization

For any machine learning method, the relative scaling along any particular feature may

dramatically impact the weights associated with those features. One possibility to reduce

the influence on arbitrary scaling is to standardize or transform the data. This approach

is particularly important in unsupervised clustering methods. Any clustering approach

requires that the algorithm compute distances in the feature space. Without weighting,

it would be inappropriate to directly calculate a distance measure (such as Euclidean

distance) where one feature has a range of 0-1 while another has a range of 0-10000. There

are two main options to address the potential lack of comparability of features: feature

weighting (which has already been mentioned) and standardization. Standardization

involves the normalization of all features to a common scale, such that distances along

each feature carry similar meaning. The most common standardization strategies include

range transformation and z-score transformation. The range transformation is given in

equation 3.1

) if - min(f)
max(f) - min(f) (3.1)

where xif is the fth feature value for the ith data point, min(f) is the minimum value

of the feature in the dataset, and max(f) is the maximum value.

The equivalent z-score transformation formula is given in equation 3.2

Z(Xif) = Xif - mf (3.2)
Sf

where Xif is the fth feature value for the ith data point, mf is the mean value of the

feature across all data points, and sf is the sample standard deviation of the feature

across all data points.
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In range standardization, all data points are mapped to a value between 0 and 1 on all

features, with 1 being the maximum and 0 being the minimum. In z-score standardization,

the feature is fit to a standard normal distribution, and transformed values for the data

points on this distribution are calculated. The z-score transformation generally operates

well when the feature values tend to naturally fit to a normal distribution. For unusual

distributions of values over the feature, range standardization may be preferred.

In a rule-based environment such as the pilot training described above, transforma-

tions on procedure adherence data are only appropriate for summative metrics or action-

level metrics that are graded by "correctness" as described earlier. For both of these

types, the selection of standardization strategy will depend upon the relative normality

of the distribution over trainees. In general, it would be expected that since all trainees

are striving for perfect adherence, it is unlikely that the distribution of actual adher-

ence metrics would generally fit a normal distribution (i.e. an "average" error plus or

minus some deviations). The intent of these environments is not to confuse the trainees

and induce errors, and as the trainees gain practice in these environments their perfor-

mance will tend towards perfect adherence. Therefore, it is generally anticipated that a

range transformation would be most appropriate for adherence data. Alternatively, per-

formance data such as mean-squared-error (MSE) have been shown in flight simulators

to have much better approximations to normal distributions across trainees. Thus, it

is worth considering z-score transformations on performance type data from rule-based

training.

In knowledge-based training environments, much of the data will be provided on

a scale of 0-10 or 0-100. For most of the features that fall on these scales, a z-score

transformation is appropriate and is commonly used in education for providing statistics

about assessments (e.g. average and standard deviation of scores on an examination).

However, as will be discussed in Chapter 4, the use of frequent low-value assessments in

online courses may create difficulties in using a z-score transformation. Specifically, if

some trainees do not complete an assessment (and therefore receive a score of 0 for that

metric), this clearly is generated under a different distribution than the scores of those who

completed the assessment. In these cases, a z-score transformation is not appropriate and

a range transformation should be used. A general heuristic that can be used is considering

whether all data for the feature was generated under a consistent process. If so, a z-score
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transformation may be appropriate; otherwise a range transformation will be more robust

to unusual distributions across trainees.

While these general rules may be considered for rule-based and knowledge-based do-

mains, an empirical investigation can be conducted to determine which transformation

performs better in machine learning approaches. Empirical results for two example cases

can be found in Chapters 4 and 5.

Distance Measures

The selection of an appropriate distance measure is important for unsupervised learning

approaches. There are a wide range of distance measures that have been proposed for use

in clustering algorithms, and in fact virtually any norm function that assigns a positive

length to each vector in a vector space can be used as a distance measure. A selection of

the most common measures are presented in Table 3.2.

Generally, for a given set of differences between two trainees, Euclidean distance will

penalize more heavily when the differences are on few features, while the Manhattan

distance will provide the same penalty whether the deviations are across many features

or only a few. To better illustrate this difference, consider a case from the Principles of

Flight example above, where two trainees (Bob and Jenny) have taken two quizzes, one

on lift and one on drag. If Bob scores 80 out of 100 on both quizzes, while Jenny scores

90 out of 100 on both quizzes, the Manhattan distance would simply sum the differences

and rate the two trainees as having a distance of 20. The Euclidean distance, however,

would calculate the square root of squares of individual feature distances would result in

Table 3.2: List of Common Distance Measures
Distance Formula (assuming d features) Usage
Measure

Euclidean dist(xi, xj) = Most common dis-
Distance (xu - xj 1)2 + ... + (xid - Xjd) 2  tance measure
Manhattan dist(xi, xj) =| xii - I + ... + lXid - Xidl Common distance
Distance measure, also called

"city block" distance
Chebychev dist(xi, xj) = max(Ixi -xj1|+. . .+Ixid-xdl) Equivalent of the
Distance number of moves it

would take a king in
chess to move from xi
to x.
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a distance of /102 + 102 = v/20 ~ 14.14. Thus, by having the 20 points spread over

two features, the Euclidean distance treats the two trainees as being more similar than

the Manhattan distance. Calculating the Chebychev distance results in simply finding

the greatest difference in score across all assessments (in the example given, this would

simply be 10). However, the Chebychev distance may have difficulties in cases where

not all trainees complete every metric. A trainee who skips a single assessment (and

is assigned a score of 0) would immediately have a large distance from all trainees who

did not skip the same assessment. It is undesirable to have the distance metric become

dominated by individual cases, particularly when process-level data is included in the

analysis.

The difference between Manhattan and Euclidean distance increases with increasing

numbers of features. The distance as measured by Manhattan distance will increase

linearly: increasing from 10 to 20 dimensions will double the distance. This has the

advantage of maintaining a clear meaning to the observer: it directly translates into

the sum of differences in scores across the students in question. Regardless of feature

space dimensionality, an increase on a single score by one student of 1 point compared

to the other student will result in an increase in Manhattan distance by 1. However,

this may not always be beneficial at high numbers of features. In both rule-based and

knowledge-based training, inclusion of process-level information will dramatically increase

the dimensionality of the feature space. In these spaces, Manhattan distance will become

dominated by the process-level features. Euclidean distance will be impacted, but as the

dimensions increase the impact of any particular feature will be lessened. Consider our

example of the Bob and Jenny who tend to score 80 and 90, respectively. At 1, 2, 3,

and 4 features, the Manhattan distance will be 10, 20, 30, and 40 as described. The

corresponding Euclidean distance will be 10, 14.14, 17.32, and 20. Thus the impact of

each added feature on the distance measure is depressed, which may be desirable if each

individual process-level metric may not be as important as summative metrics.

Another strategy for addressing the differences in relative frequency and importance

between process-level metrics and summative metrics can be handled by weighting. Pro-

viding weights to features in the calculation of distance can account for qualitative differ-

ences between the features. This strategy particularly makes sense in many knowledge-

based environments, where the final performance in the course may be determined based
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on a cumulative scoring across many assessment metrics. However, typically some as-

sessments (such as examinations) make up a greater proportion of the final score than

others (such as quizzes). Weighting features can specifically input these differences into

the machine learning approach. Chapters 4 and 5 provide additional empirical results

behind the selection of distance measures and the use of weighing of features.

Metrics for Comparison

The metrics used to compare machine learning approaches will differ fundamentally based

on the type of algorithm, particularly between unsupervised and supervised algorithms.

In supervised algorithms, the prediction of labels is the primary objective and prediction

accuracy is almost always used as a performance metric for comparing machine learning

approaches. Prediction accuracy takes on different forms dependent upon whether the

labels are continuous (regression) or discrete (classification). In regression, the most

common metrics give information on the "goodness of fit" of the model on the data,

typically given as the coefficient of determination (R 2 ). For the analyses in later chapters,

R2 on the test dataset is used as the primary metric for comparison of model performance.

The formula for R 2 is given in Equation 3.3.

R = 1 - ~, f) (3.3)
E(y, -9)2

where yi is each data point, fi is the model prediction for that data point, and 9 is

the mean of the observed data.

In classification, the most common metric for prediction performance is classification

error. For each data instance in the test dataset, the model prediction of the class

label is compared to the actual label, resulting in a binary "correct" or "incorrect".

The percentage correct is computed, and this is reported as the classification error rate.

For the analyses in later chapters, the classification error rate is used as the metric for

comparisons of supervised classification model performance.

In unsupervised learning, defining metrics to compare models is more difficult. Since

there is no "ground truth" provided by the labels in supervised learning, other strategies

for model evaluation and comparison must be used. Generally, these can be divided into

two categories: external, which are reliant on exterior data sources for comparison, and

internal, which analyze the properties of the clusters created. Specifically, the external
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measures of entropy and purity and the internal measures of compactness and isolation

represent a set of common metrics for comparison [144]. For the purposes of the analyses

in Chapters 4 and 5, all of these metrics are analyzed. In addition, it is widely recom-

mended for the modeler to inspect the resultant cluster formations and provide subjective

judgment on the performance of the algorithms as well. These judgments are included

in the analysis in later chapters as well. A brief description of the external and internal

measures utilized is provided next.

Entropy is an external metric for measuring cluster algorithm performance, which

means that it makes use of the knowledge of "true" clusters. When labeled classification

data is available (as in a supervised approach), the membership to the clusters found in

unsupervised learning can be compared to the classes of the labeled points as a reference.

In this sense, the classes are assumed to represent the "correct" cluster assignments. The

entropy generally measures the randomness of the distribution of the classes amongst the

clusters. Low entropy indicates that the distribution of classes among the clusters is fairly

specific and thus indicates good cluster algorithm performance. The entropy associated

with each cluster can be found as shown in equation 3.4.

k

entropy(Di) - Pri(c)log2Pri(cJ) (3.4)
j=1

where Di are the points in cluster i, cj are the points in the jth class (from classifica-

tion), and Pri(cj) is the proportion of class c2 in cluster i. In this formula, the minimum

possible entropy (zero) is only achievable if all members of each class are placed only into

a single unique cluster. If there are more clusters than classes, this can only occur if some

of the clusters are empty. Thus, entropy is most appropriate in cases where the number

of classes and clusters are the same. The entropy for each individual cluster can then be

combined to find a total measure of entropy using the formula in equation 3.5.

entropytota1(D) = E entropy(Di) (3.5)

As another external metric, purity also compares the clusters to the true classes in the

data. Purity measures the extent to which each cluster contains only one class of data.

High purity indicates good cluster algorithm performance. The purity of each measure

can be found by the formula shown in equation 3.6.
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purity(Di) = max(Pri(c))
3

(3.6)

The total purity across all clusters can be calculated as shown in equation 3.7.

puritytotai(D) = entropy(Di) (3.7)

Compactness and isolation are internal measures of cluster algorithm performance in

that they do not require the use of additional labels. Compactness measures how near

the data points in each cluster are to the cluster centroid, with algorithms that result in

greater compactness being preferable. Compactness is usually calculated by sum-squared-

error (SSE) of the data points within a cluster to the corresponding cluster centroid. This

is formally expressed in equation 3.8.

k

compactness(D) = 1 E(j - Zi) 2  (3.8)
i=1 jEpi

where k is the number of clusters, and iii is the centroid of cluster i.

Isolation measures the separation between the cluster centroids, as clusters that are

far apart are desirable. Therefore, greater isolation is preferable in a clustering setting.

This is typically found simply by the sum-squared-distance between the cluster centers.

A formal definition is shown in equation 3.9.

k

isolation(D) = S (pi - A)2 (3.9)
i=1 joi

where pi and [tj are the cluster centroids of clusters i and j, respectively.

Expert judgments are also useful in analyzing clustering approaches, as the user may

be able to identify particular characteristics or behaviors of the algorithms that tend to

be desirable, such as strong clustering performance on an important group. All of these

metrics are used in the comparison of the clustering algorithms presented in Chapter 2.

3.3.3 Summary

This section has discussed additional considerations for the application of machine learn-

ing algorithms to both rule-based and knowledge-based training data. Options for the
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standardization of data, distance measures, and metrics for model comparison were pre-

sented. Empirical results from the use of these methods are presented for example

knowledge-based and rule-based training data in Chapters 4 and 5, respectively. However,

before the algorithms are tested on these datasets, it is useful to establish hypotheses for

the potential applications of machine learning algorithms to training evaluation. Then,

the performance of the algorithms can be compared against the desired applications. The

remainder of this chapter presents the process for developing a set of potential applica-

tions that may be tested using the example training data presented in Chapters 4 and

5.

3.4 Applications of Machine Learning in Training

Evaluation

As previously discussed in Chapter 2, there are a variety of improvements desired by

the human training domain as discussed in the literature. One of the clearest is closing

the gap between in-training assessment and post-training performance [15, 65]. More

generally, the set of training needs can be divided into two categories: improvements

to individual trainee evaluation and improvements to training program evaluation. The

first is relevant to ensuring that each trainee that completes the program meets the

performance requirements desired. The second focuses on feedback and improvement of

the training program for all current and future trainees.

3.4.1 Individual Trainee Assessment

Individual trainee evaluation is a critical element of any training program and improved

methods for evaluation are desired [28,32]. These could take the form of novel metrics

or improved analysis methods for metrics already used. Novel metrics include both those

metrics that are not currently gathered by the training program as well as those that are

gathered but not currently utilized for evaluation.

An ideal training evaluation metric will have several properties:

9 Predictive - the metric relates well to post-training performance
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* Discriminative - the metric can separate trainees from each other, thereby allowing

trainees to be ranked according to performance

" Consistent - the metric has limited noise associated with the readings

" Convenient - the metric requires little effort to collect and analyze

A metric that meets all of these properties will be able to accurately and consis-

tently assess trainees, and allow for the identification of trainees who will be successful

in the field. These properties can be used to evaluate current metrics, and an example is

presented below.

Consider training for a knowledge-based task such as the Principles of Flight example

presented earlier in this chapter. Written examinations are one of the common assessment

metrics for this environment. These types of assessments are highly discriminative and

often provide a wide range of possible scores (often out of 100). These also represent

cumulative knowledge accrued and aim to measure the capacity to which the trainee can

apply the course material later in their educational and professional career [145]. However,

written examinations are not as strong as evaluation techniques for the other properties.

A particular student's performance may vary widely dependent on the specific topics

or questions addressed in the examination [80]. While good trainees should generally

perform better than poorer trainees, scores on any particular exam may fluctuate and

this variation may have a strong impact on the interpretation of the trainee's learning.

There may even be cases where not every trainee is evaluated by the same supervisor, or

not every question within the examination is graded by the same person. Subjectivity

of current evaluations is a widely reported issue (as discussed in Chapter 2) and it is

apparent that new objective metrics that meet the desired properties would be useful to

modern trainee assessment.

3.4.2 Assessing the Predictive Capability of an Evaluation Met-

ric

As previously mentioned, an ideal training metric will be predictive of future performance.

That is, by measuring data during training, one can get an idea of how the trainee will

perform later on. Since training programs across all domains tend to be increasing in
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complexity or difficulty with time (basic concepts are learned first), it seems logical that

understanding a trainees mastery of the early material might give insight into how they

will perform in the future.

There are several time horizons of interest for the consideration of predictive capabil-

ities. First is post-training performance. This is the most desirable prediction to have,

as it directly relates to efficiency, safety, and productivity in the field. However, it is also

the hardest to assess, as the availability of field data may be far less than training data

due to their cost and difficulty to collect. Predictions are of course tied to the data used,

and performance predictions made in subsequent years from training completion become

increasingly unreliable. If useful field data is available, there may also be administrative

hurdles to using it in trainee evaluation. Such data collection would require significant

use of on-the-job employee monitoring, and there are ethical and social implications that

will no doubt arise.

The second time horizon of interest is predicting the final training program perfor-

mance of a trainee. This still has high value for training programs if performance early in

a training program can act as a predictor of final performance. If a trainee is having diffi-

culties with material near the beginning of the training program, early recognition of this

issue can allow the problem to be addressed in a timely fashion through TI. Since many

training programs are typically long and costly, early intervention can result in savings

of time or resources. Several possible interventions may be appropriate dependent on the

case, including: attrition, where the trainee is removed from the program, or retraining,

where the trainee is returned to earlier concepts to reinforce understanding. In either

intervention case, the earlier the trainee is identified, the more savings can be obtained

by the training program.

3.4.3 Improvements to Program Evaluation

The evaluation of the training program itself is also a critical element of training eval-

uation. Under the training paradigm, an investment of money and time is made in the

trainee, in the hopes of obtaining benefits in the future. Ideally these benefits include

efficiency, safety, or productivity. To justify the investment, there must be some method

of assessing whether the benefits have been achieved across all trainees. This falls under

the domain of training program evaluation.
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At the highest level, training evaluation focuses on results: the changes in knowledge,

behaviors, and ultimately the impacts to the organization. At a lower level, the elements

that make up a training program can be dissected and analyzed. Typically, a training

program is comprised of a series of training sessions, which herein are referred to as "mod-

ules". Each module usually covers a different topic and assists in the development of the

overall skills and knowledge desired through training. One possible path to training pro-

gram evaluation is to evaluate at the module level: is each module achieving its training

objectives, and are these objectives useful in the completion of the entire program? If we

continue to dig further, we could consider evaluating the usefulness of each data metric

collected during each one of the modules. Another aspect of a training program that can

be analyzed for improvement is training intervention. Both the timing and the content

of interventions must be carefully planned to maximize their effectiveness.

While there are a variety of needs in the evaluation of training programs, it is not

clear whether the capabilities of machine learning algorithms can meet these needs. The

next section discusses the principal capabilities of different machine learning approaches,

so that a set of potential applications to meet the needs of training evaluation can be

derived.

3.4.4 Machine Learning Capabilities

There are numerous capabilities of machine learning algorithms, and some of their general

characteristics have already been described in Chapter 2. Some additional specifics for

each type of algorithm are detailed here.

Unsupervised learning algorithms generally fall under clustering and feature selection

algorithms. In short, clustering algorithms ask: "given a metric, what are the similarities

between data points?" while feature selection algorithms ask: "what metric should be

used for judging similarity?" In clustering, the user provides a distance metric and all

data points are compared and grouped using this distance metric. In its most direct

application, these algorithms can be used to determine where natural groupings exist

within the data; revealing these patterns and groupings to a training supervisor could

have utility in a human training domain. Additionally, one could consider the inverse

meaning to the clustering algorithms: rather than identify data points that are close

together, we can identify those that are most unlike the others. In this way, we can
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find outliers easily in high-dimensional space. Feature selection algorithms identify those

features that provide the greatest separation in the data, which can be useful as an input

into supervised learning algorithms.

The primary application of supervised learning algorithms is to make predictions on

the labels of new data based on learned relationships in the training data. As with unsu-

pervised algorithms, we can also consider an alternate interpretation of this information:

given a prediction (and a prediction accuracy), what were the most important relation-

ships in developing the prediction? Both making the predictions themselves as well as

identifying the key features in obtaining accurate predictions could be useful in a human

training setting. A brief summary of the general capabilities discussed here is presented

in Table 3.3

Table 3.3: Capabilities of machine learning techniques

Machine Learning Technique Capabilities

Identify natural groupings in the data

Unsupervised Learning Identify outliers in high dimensional space
Select metrics for high data separation

Make predictions on labeled data
Supervised Learning Identify features important to accurate prediction

3.4.5 Potential Applications

In considering both the needs of human training and the capabilities of machine learning

algorithms, a set of possible applications of machine learning to the human training

domain can be proposed. These applications include both direct and indirect use of

the capabilities of machine learning algorithms, and are described in detail below. A

hierarchy of applications based on which types of algorithms are used in the application

can be constructed and is shown in Figure 3-2. These are generally divided by whether

they make use of unsupervised learning, supervised learning, or a combination of both

methods. The following sections discuss each potential application in greater detail.

Improve Label Definiton

In a human training setting, defining the labels for supervised learning (that is, the per-

formance scores of interest) is not always a trivial task. Consider the following scenario:
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Label Defrnt on Hm Trngd
Prediction Models

Identify High Error Assess Trainee
Modues/Steps Evaluation Methods

Feature Selection

bnform Intervention
Timing/ Content

Figure 3-2: Hierarchy of Potential Machine Learning Applications to Human Training by
Algorithm Type.

a training supervisor has received a set of performance scores from a group of trainees.

As part of the assessment, the supervisor must separate trainees based on whether they

have successfully completed the program or are in need of TI. Commonly, this ends up

being a problem of needing to divide a continuous performance variable (or multiple

variables) into a categorical classification, such as turning a numerical grade into a letter

grade. Typically the trainer will use a set of cutoff performance values to determine which

trainees fall into which category. Selecting these cutoffs can be challenging; one option

might be to use subjective judgment of the trainees' performances. This could either be

at a trainee-by-trainee decision level or subjectively deciding that a certain score deter-

mines the category of the trainee (e.g. >90% is an "A"). These types of determinations

are simple to implement but as discussed in Chapter 2 have been challenged for their

reliability [98]. Another option could be to use a subjectively-selected percentage-based

determination, e.g. using three categories, and placing the top 1/3 in one category, the
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middle 1/3 in another, and the bottom 1/3 in the last category. This strategy converts

the data into an ordinal form, neglecting the actual performance values and instead rely-

ing on the performance of a trainee relative to his/her peers. A third option would be to

objectively base the cutoffs on the data itself, finding natural divisions in the data that

appropriately categorizes trainees. This falls directly into the capabilities of unsupervised

clustering algorithms, which can identify natural groupings (and the splits between these

groupings) using a data-driven approach.

When using clustering algorithms to assist with label definition, the hum-an supervisor

is needed to interpret the results. The machine learning algorithm will attempt to find

the statistically optimal groupings of trainees and will do so regardless of the nature

of the input data. Consider a case where there is a single extreme performance outlier

compared to the rest of the trainees. The algorithm may determine that the statistically

optimal grouping is to have the single outlier be its own group. Given this output from

the algorithm, it is up to the supervisor to determine whether it is appropriate to treat

that individual as a different category from the other trainees or whether to exclude the

outlier from the analysis. Despite this need for interpretation of the results, for general

human training datasets, clustering algorithms may be able to help objectively determine

appropriate locations for the category cutoffs.

Identify High Error Modules/Steps

A module or step for which performance is poor across many trainees can have several

interpretations. One possibility is that the module represents one of the more difficult

topics in the training and results in greater performance separation between the strong

trainees and the weak trainees. Additionally, by identifying the topics of greatest dif-

ficulty, it can assist with selecting and designing interventions for struggling trainees.

Another interpretation is that the high error is created by the module not meeting its

training objectives. This could be indicative that a redesign of the module is necessary

to improve performance.

Based on these interpretations, the identification of topics or areas of high error for

trainees can be useful to training programs in several ways. First, they allow for the

identification of topics that may need intervention for the trainees. Second, they may

be the most important predictors in identifying future performance. Third, high-error
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modules may be indicative that the module is poorly designed. Each of these uses will

be discussed further later in this chapter, but the remainder of this section focuses on

the process of identifying these high-error modules. The identification of outlying values

(such as "high-error" here) typically falls under the purview of unsupervised learning.

Under assumptions of the distribution, one can determine outliers based on heuristics

of variance, such as > 3a for a normal distribution. It is easy to compute these measures

for simple distributions, but as the complexity of the distribution and the dimensionality

increase, statistical learning such as clustering can become a more efficient method. Using

clustering algorithms can separate the continuous error data generated by modules or

individual steps into categories based on the error. Clusters associated with large errors

can be used to define the outlying "high-error" values. As with other applications of

unsupervised learning, the algorithms are guaranteed to produce a cluster assignment for

all data points, but the interpretation of the clusters as "high-error", etc. must be left to

the training supervisor or training program manager.

Improved Prediction Models

The most direct application of supervised learning is for the prediction of labels on new

data based on the feature values. In a human training setting, this involves using measures

taken during the training process to make predictions of performance either later in the

course or post-training. This has immense value to the human training domain, as was

discussed in Chapter 2. Due to the investment of time and money into training programs,

identifying those trainees that will not pass the program as early as possible can save

resources for the organization.

Currently, many of the techniques used to estimate final performance are based on

the simple assumption that future performance will be the same as past performance.

An example from a knowledge-based environment would be using a mid-term grade as

a direct prediction of final grade. Simple statistical learning models have also been

previously utilized in this capacity. In the classroom, teachers have used techniques

such as linear regression to make predictions on performance later in the course. These

methods can identify basic trends in the data, and allow for the extrapolation about

final student performance based on those trends. However, these techniques typically

make strong assumptions about the data, such as a linear trend. More flexible supervised
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learning techniques such as SVMs and ANNs could allow for fitting complex relationships

in data but have not yet been applied in the human training domain.

There is a fundamental tradeoff between the accuracy and timing of these predictions

in a human training setting. As more data is collected (which requires being later in

the course), the accuracy of the predictions of final performance will increase. The most

accurate predictions will include all data up until the end of the course. However, these

predictions, while accurate, will have relatively little utility-having a prediction of the

final performance at the end of the program does not allow for intervention to improve

struggling trainees or attrition that will save the program resources. Therefore, an ap-

propriate balance must be found between accuracy of the prediction by the additional

collection/use of data and the emphasis on trying to make predictions early on in the

program. This tradeoff will be further discussed in the analyses of the example datasets

in Chapters 4 and 5.

Assess Trainee Evaluation Methods

An additional retrospective analysis can be performed using supervised learning algo-

rithms that is of use to training programs. As discussed previously, there is effort and

cost committed in collecting data metrics for use in training evaluation, and the collection

of data is sometimes disruptive for the trainee [82-88]. Therefore, it seems logical that

a training program would want to ensure that the metrics used have a high efficiency,

that is, high utility of information gained relative to the effort spent in collection. On the

reverse side, a program would like to limit the number of inefficient metrics. To determine

a metrics efficiency one has to be able to both quantify the benefit of the metric as well

as the cost of collection. Supervised learning techniques can assist with the former task.

When a supervised learning algorithm is applied to a set of data, not only are the

parameters of the model learned, but the user gains some insight into how important

each of the inputs are in the final model. The specifics will vary by the machine learning

technique used, but typically there is a learned weighting of the inputs involved in the

creation of a prediction of the output. If a weighting is small, this implies that the input

is not heavily used in the prediction, whereas if it is large this input plays a major role

in the prediction. In this way, the training program can obtain an objective assessment

of the impact of each input metric. This represents a quantification of the benefit of
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the metric as determined by its usefulness in a predictive capacity and thus useful for

determining whether each metric justifies the cost of its collection. Consider two features

that are used as part of a larger model in a regression analysis. If the removal of one

feature results in the reduction of the model R2 by 0.01, this feature is not providing much

information to the model. If the removal of the other feature results in a reduction of

0.4, this feature is important for model accuracy and should likely be kept in the training

program for its predictive value.

Feature Selection

As discussed above, unsupervised learning methods can assist in the identification of

features that provide the greatest separation in the data. An additional use for this

strategy is to utilize the highest variance features as an input into supervised learning

algorithms (i.e. dimensionality reduction). Supervised learning algorithms (on both

classification and regression problems) require some amount of variability in the data

along each feature to be able to discriminate between data points. If a relationship exists

(such that labels are dependent upon features), having a high level of discriminability on

the features will allow for a more accurate model.

In a human training context, this means that we can downselect from the initial large

set of features to utilize the features that are most useful for the supervised learning

algorithms. While it is difficult to improve accuracy over the "kitchen-sink" approach

that uses all possible inputs, developing a parsimonious model that focuses on the most

important aspects can maintain a high level of accuracy while requiring less effort to

train the algorithm and improving the ease of the interpretation of results. This type

of feature downselection is particularly important in the human training domain. As

previously discussed, the number of data points (trainees) may be relatively limited and

in machine learning it is important to have a greater number of data points n than

features m (n > m, dependent on the signal-to-noise ratio of the data).

The reason for this becomes apparent in considering general modeling in high dimen-

sional space. If there are as many dimensions as datapoihts, the model can simply fit

the weight for each dimension to capture one data point, and ignore the other features.

This produces a trivial result that is a perfect fit in training the model, but tells the user

little about how each feature is useful in the prediction. Additionally, this represents a
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major overfitting of the data, and will result in poor generalization performance. Thus,

the ability to identify and downselect appropriate features for use in supervised learning

will provide models that are both relatively accurate and generalizable.

Inform Intervention Timing/Content

An important human training application of these methods involves combining two of the

previous applications: identifying high-error modules and improved prediction models.

If we have an accurate early prediction that a trainee is likely to fail the program, it is

important to consider possible interventions that would either remove the trainee from the

program early or to provide retraining of some of the critical material. As discussed in the

high-error module section, one interpretation of a high-error module is that it highlights

the most difficult material in the course. These areas can provide topics for the training

supervisor to review with a struggling trainee. By combining both unsupervised and

supervised approaches, we can identify the "who," "what," and "when" for intervention:

the trainees that are predicted to fail, the difficult material, and the earliest that a high

accuracy prediction can be made.

Additionally, we can take an individualized intervention approach by using supervised

learning as a flag. If a trainees prediction of failure reaches a certain accuracy, this would

indicate need for TI. By looking back at the specific errors on modules committed by

that trainee, the training supervisor can get some idea of the areas that were of great

difficulty to that individual trainee.

3.5 Chapter Summary

This chapter addressed the considerations in the applications of machine learning ap-

proaches to assist with training evaluation. First it discussed the properties of training

data in greater detail, particularly focusing on data from rule-based and knowledge-

based environments. Next, several example environments were presented to frame the

discussion of machine learning approaches. Third, the implications of training data on

machine learning algorithms were discussed, including options for data standardization,

distance measures, and metrics for model evaluation and comparison. Last, the capabil-

ities of machine learning algorithms were discussed in the context of training program
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needs, resulting in a set of proposed applications of machine learning to training datasets.

Empirical results for these applications for both knowledge-based and rule-based environ-

ments are presented in Chapters 4 and 5, respectively. After these results are discussed,

Chapter 6 presents a comparison of the machine learning results across these two training

domains.
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Chapter 4

Application of Machine Learning to

Rule-Based Training Environments

Chapter 2 presented a taxonomy of training domains, generally dividing training based

on the task type required by the operational environment: skill-based, rule-based, and

knowledge-based. These task types are listed in increasing order in terms of the cognitive

complexity associated with the tasks; skill-based tasks typically require little to no cogni-

tive effort, rule-based tasks require some effort, while knowledge based tasks require deep

cognitive understanding to complete. With higher cognitive complexity, greater varia-

tion and novelty of the assessment metrics are expected, which may create challenges for

machine learning applications to these datasets.

Therefore, the first training environment selected for analysis (presented in this chap-

ter) is representative of a supervisory control rule-based environment. Machine learning

analysis on the higher cognitively complex knowledge-based training dataset is presented

in the following chapter, Chapter 5.

In rule-based environments, there is a heavy focus on repetition of tasks during train-

ing to achieve a high level of familiarity and expertise in executing the procedures used

in the task. Unlike training for knowledge-based settings where assessments may involve

situations that have not been previously seen by the trainees, rule-based training will

often use the same tasks in training as seen in the operational environment. This seems

particularly logical in cases where the trainees will be performing the task regularly in an

operational setting, such as the shutting down of an engine. However, this strategy also

impacts the nature of the data collected during training assessment, which must be con-
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sidered during the interpretation of trainee performance and errors. As computer-based

training (CBT) technologies are incorporated into rule-based settings, opportunities for

higher frequency assessment and new metrics will create larger and more complex datasets

that suggest the use of machine learning approaches. In this chapter, a dataset represen-

tative of a rule-based training setting is used to test the application of machine learning

for informing training evaluation.

This chapter is divided into five sections. The first section presents a brief discussion

of the rule-based environment chosen for this analysis: nuclear power plant operation.

The second section provides a brief overview of the typical assessment techniques used

in rule-based environments, and the expected set of features that would be available for

machine learning analysis. The third section presents the details of a data collection

experiment that incorporates a range of trainee assessment metrics that would typically

be used in rule-based CBT environments. This section also specifies the features and

targets to be considered for machine learning approaches. The fourth section discusses

the methods and results of both unsupervised and supervised learning on this rule-based

dataset. The final section of this chapter provides some lessons and conclusions from the

analysis.

4.1 Nuclear Power Plant Operation and Training

Training for nuclear power plant operation was selected as a representative supervisory

control rule-based environment for the collection of a training dataset. Rule-based envi-

ronments such as the operation of nuclear power plants are characterized by their use of

procedures and heuristics in the completion of tasks. In nuclear power plants, the proce-

dures act as a guide for operators to monitor and control the plant. These procedures are

typically paper-based, and necessarily complex to address problems that may arise with

the complicated plant system [146]. In modern nuclear power plants, operators utilize

these procedures to complete both normal (Standard Operating Procedure, or SOP) and

off-nominal operations. The operators are expected to follow the procedures as they mon-

itor and operate the plant. Thus, this environment typically makes the assumption that

the procedures are well designed and can be used to address any issue. If the procedures

are considered to be the "correct" path, then adherence to the procedures will relate to
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improved performance and safety on the job. Therefore, training operators to use and

maintain procedure adherence skills is of great interest to training programs in these

environments. It should be noted that there may be cases of poorly designed procedures

that do not represent an optimal action path. However, investigating the optimal design

of procedures is beyond the scope of this thesis, and thus in this analysis the adherence

to procedures is assumed to indicate strong trainee performance.

As discussed in Chapter 3, training for these rule-based environments typically focuses

on a high level of repetition to prepare for the operational environment. For rule-based

environments such as the nuclear reactor dataset presented in this chapter, assessment

metrics typically include subjective and objective metric types. Subjective metrics are

currently widely used in domains such as nuclear power plant operation, and include

ratings given by both the training supervisor as well as self-ratings by the trainees. Ob-

jective metrics include performance data such as the power output of the reactor during

a training module or other assessments such as written examinations.

The use of computer-based training (CBT) technologies allows for operator practice

in a simulated environment of the real-world system and the potential development of

a wide range of training scenarios. Because the following of procedures is particularly

important in rule-based settings, the ability to monitor the process-level data of the

trainees as they perform each action on the system allows for the collection of new types

of assessment data that measure the procedure adherence of the trainees. While not

currently used in rule-based training assessment, these metrics are enabled by the use

of CBT technologies and provide new opportunities for training evaluation. Procedure

adherence metrics are also objective by nature but are separately discussed here since

they are metrics that are specifically enabled by the use of CBT environments. Each

of the three types of assessment information from rule-based environments (subjective,

objective, and procedure adherence) are gathered in the collected dataset and compared

in the machine learning analysis later in this chapter.

Prior to the presentation of the specific data collection methods for the rule-based

dataset, it is useful to consider the properties of data collected from each of these three

types of assessment metrics. Understanding the types of data that arise from rule-based

environments is important not only to frame the data collection experiment, but also

informs the selection of machine learning algorithms and the interpretation of results.
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4.2 Features in Rule-Based Training

Currently, environments such as the nuclear reactor operator training often utilize sub-

jective assessment as an important part of determining trainee progress. Typically, there

are two main types of subjective assessment: self-assessment and supervisor assessment.

Self-assessment requires the trainee to provide their own perceptions of performance and

progress, and could be collected at the end of each training module or at the end of the

program. Supervisor assessment provides similar ratings of performance, based on the

experience and knowledge of the instructor. Both self- and supervisor assessment are of-

ten gathered either as ratings (such as on a Likert scale), or through expository writing.

The latter requires significant interpretation, and would be difficult to include as features

in a machine learning approach. Subjective ratings, on the other hand, can be readily

incorporated as discrete numeric features in machine learning by using the integer values

(e.g. 1-5 for a 5-point Likert scale).

Objective performance metrics may also be collected during rule-based training, and

will highly depend upon the training domain. Traditional non-CBT objective metrics

usually represent summative performance at the level of a module, such as whether or not

the trainee successfully resolved an emergency. CBT training in nuclear reactor operation

typically relies on a simulation of the reactor system which allows the trainee to practice

in a realistic setting under a variety of conditions. Use of a simulation allows trainees

to encounter situations and perform actions that dramatically affect the performance of

the reactor. Thus, measurements of the reactor performance (such as power output or

length of time reactor is inactive) represent objective metrics that can be collected during

the training program. While these are not always collected in current training programs,

the use of CBT allows easy collection of these measures. As mentioned in Chapter 3,

since these metrics can vary widely in numeric range, the use of data standardization

techniques may be particularly important for objective performance metrics.

Procedure adherence metrics are also enabled by the use of CBT in rule-based envi-

ronments through the gathering of individual actions or sets of actions. Two types of

procedure adherence are of interest in nuclear reactor operation: the ability to identify

the correct procedure (termed "procedure selection"), and the fidelity to which the pro-

cedure is followed (termed "adherence"). The correct selection of procedure could simply

be expressed through a binary of whether the trainee did ("1") or did not ("0") choose the
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correct procedure. However, there are no current standard methods for the measurement

of adherence, and thus it is worth considering a range of potential adherence metrics.

Appendix Q provides a detailed discussion of possible measurements of adherence, and

the selection of appropriate adherence metrics that could be used as features in machine

learning analysis.

The analysis in Appendix Q establishes that a procedure can treated as a sequence,

and comparing the set of steps the trainee actually performs to the set of intended steps

can be accomplished through sequence distance techniques. Three potential sequence

distance metrics were compared as possible adherence metrics: two sequence-based met-

rics (Levenshtein distance and suffix arrays), and a novel model-based metric (Procedure

Adherence Metric, or PAM). The Levenshtein distance directly measures trainee errors

through the number of additions, omissions, and substitutions. Suffix arrays measure

similarity between trainee actions and intended actions through the longest matching

subsequence. The PAM uses action frequencies to provide a measure of "correctness" of

the trainee sequence. A theoretical comparison indicated that the PAM may be more

sensitive to the order of actions, while the Levenshtein distance has greater ease of in-

terpretability (see Appendix Q for details). Therefore, both the PAM and Levenshtein

distance metrics are considered as possible adherence metrics in the machine learning

analysis presented later in this chapter.

Adherence metrics are dependent upon the individual actions that the trainee per-

forms, and thus represent the detailed "process-level" information discussed in Chapter

1. Specifically, by measuring adherence at each action, these metrics monitor not just

whether an overall task was completed but whether the individual actions taken to com-

plete the task was correct. These metrics can also be combined into a module-level

"summative" form, that tracks the overall adherence for each module. In the analysis

presented later in this chapter, the value of the process-level and summative forms of

adherence measurement are compared. The process-level metrics at any particular ac-

tion can be calculated for Levenshtein distance and PAM using Equations C.1 and C.6 in

Appendix C, respectively. The summative form uses the same calculation for the entire

trainee and prescribed sequences for the module.

A representative dataset for testing machine learning approaches should incorporate

all three of these types of data: subjective, objective, and procedure adherence metrics.
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The next section describes the collection of an example dataset that contains all of these

elements, for use as features and targets in machine learning presented later in this

chapter.

4.3 Data Collection Experiment

An experiment to collect an example rule-based training dataset was conducted using a

simulated nuclear power plant computer-based training (CBT) interface. The training

program consisted of a series of four modules in two phases: a training phase with three

training modules and a test phase with a single test module. The training modules were

constructed with generally greater guidance than the test module, and were intended

to familiarize the trainees with various aspects of power plant operation and emergency

resolution. The test module was designed to mimic an operational setting, where the

trainees acted as operators monitoring normal reactor operation and were responsible for

solving any problems that arose. In both training and test modules, participant were

required to utilize different sets of procedures to complete the modules; that is, both

procedure selection and adherence were important to completing the modules. The full

procedures used in the experiment are included in Appendix E.

Training modules were labeled T-1, T-2, and T-3, and designed to be of increasing

difficulty as the participants progressed through the training program. T-1 introduced

the participants to the reactor interface (shown in Figure 4-1) and walked them through

the process of a shut-down and start-up of the reactor. T-2 introduced the participants

to the controls for the coolant system on the reactor and had a series of goals that

the participant needed to achieve though the use of coolant system controls. It further

challenged participants by presenting them with an initial reactor state that did not match

the conditions required for starting the training module. Participants had to realize

the discrepancy without it being explicitly pointed out and correct it before starting

the training module. T-3 provided instruction on how to diagnose a problem with the

reactor and the use of emergency procedures. The actual problem was unknown to the

participants at the beginning of the module, and over the course of the module the

participants diagnosed the issue from one of several possible diagnoses through the use

of the procedures.
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The procedures were designed in a two-column format based upon Nuclear Regulatory

Commission (NRC) procedures. Figure 4-2 shows an example page from the procedures.

These columns are entitled "Action / Expected Response" and "Response Not Obtained".

The Action / Expected Response column specifies the action for the operator to perform

to complete that step. If there is a condition that must be satisfied (such as a check

that a pressure is below a particular value), this value is also specified in the Action /

Expected Response column. After completing the action for that step, the operator either

continues to the next step if the expected conditions are met or performs the actions in

the Response Not Obtained column if the conditions were not. As can be seen in Step 8

of the procedures in Figure 4-2, the Response Not Obtained column might also specify

moving to a different procedure (in this case E-2).

A single test scenario placed participants in a seemingly normal operational scenario

in which they were instructed to note any problems and respond accordingly. Partic-

ipants were tested in their ability to perform tasks similar to what they had done in

Figure 4-1: Simplified nuclear reactor interface used in data collection experiment
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E-0 Reactor Scram or Safety Injection

ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

Verify Secondary Coolant Flow for
ALL Loops - GREATER THAN 720
GPM

IF flow less than 720 GPM, THEN:

a. Ensure secondary coolant pumps
are activated

b. Stop dumping steam

6 Check RCS Temperature:

* IF any RCP running, THEN check
RCS average temperature -
STABLE BETWEEN 5570 AN D

5620

OR

E IF no RCP running, THEN check
reactor coolant temperature -
STABLE BETWEEN 5570 AND
562*

IF temperature less than 557* and
dropping, THEN:

a. Stop dumping steam

b. IF cooldown continues, THEN
close main steamline valves

IF temperature greater than 562* and
rising, THEN open ALL steam
dump valves

7 Check if RCPs should be stopped:

a. Check RCPs - ANY RUNNING

b. RCS pressure - LESS THAN
1360 psig

a. Verify steam dumps in steam
pressure mode. Go to Step 8

b. Go to Step 8

c. Stop all RCPs

d. Place steam dumps in steam
pressure mode

8 Check if SGs are not faulted:

a. All SGs - PRESSURIZED

IF pressure in any SG is dropping in
an uncontrolled manner OR any SG
is depressurized, THEN go to E-2,
FAULTED STEAM
GENERATOR ISOLATION,
Step 1

5
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Figure 4-2: Example procedures from nuclear reactor training data collection experiment.



the training modules in a less structured format that required procedure selection in

addition to procedure adherence. For the operational test module, participants were pro-

vided a binder similar to those typically used in nuclear reactor operations, containing

maintenance procedures (M-1), emergency procedures (E-0, E-1, E-2, E-3), anomalous

operating procedures (AOP-1, AOP-2, AOP-3, AOP-4, AOP-5, AOP-6), and several ap-

pendices containing nominal ranges of values for the reactor components (see Appendix

E for full procedures).

4.3.1 Interface

The interface used in the experiment was a simplified nuclear power plant interface which

contained four power-generating loops (see Figure 4-1). Users could control different

subsystems of the plant, including pumps, valves, turbines, safety systems, and control

rods. Displays on the interface indicate different states of the four power-generating loops,

the reactor, position of the control rods, and various alarms which may be activated during

abnormal states of the reactor. The lower-central part of the interface contains a text

chatbox with which the user may be given updates or instructions. These instructions

took the form of pre-programmed responses in the interface software. Users could also

refer to a reference screen which provided labels to all the system elements. The same

interface was used for both training and test modules.

Participants interacted with the interface through the computer mouse and keyboard.

To change system states (such as turning on a pump), the participant could left-click

on the desired element in the interface. Some procedures also called for "verifications"

which indicate that the operator has noted a particular system value, such as verifying

a pressure reading. To represent the deliberate checking of these elements, participants

were instructed to right-click on elements that were being verified. Additionally, certain

procedures required the use of the chatbox to report particular system values or request

maintenance services, and the keyboard was used to enter these messages.

4.3.2 Participants

The experiment participant pool consisted of 47 individuals, 21 females and 26 males,

ages 18 to 43. The average age was 21.64 with a standard deviation of 5.53. participants

were recruited by posters, emails, and by word of mouth. Participants were paid $100
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for completion of the experiment. See Appendix L for the consent form used in the

experiment.

An initial demographic survey revealed that four participants had experience with

nuclear power systems, none had colorblindness, and all had 20/20 or corrected-to 20/20

vision. Two percent of participants played video games daily, 10% played a few times a

week, 14% played weekly, 32% played monthly, and the rest rarely played. See Appendix

M for the survey used in the experiment.

4.3.3 Task

Training Phase

During the training phase of the experiment, participants were instructed in the use of

the nuclear reactor interface and allowed to interact with the simulation as part of that

training. First, a PowerPoint introduction to the nuclear interface and the operation of

the reactor was given (see Appendix N for the tutorial slides used). Participants were

allowed to go through the slides individually at their own pace. After the introduction,

the participants began the three training modules. Each training module was designed

to last no more than 30 minutes. Each module consisted of:

" Watching a narrated video showing the reactor interface and explaining the pro-

cedures involved in that particular module. The videos became progressively less

specific; the first guided the participant through all the steps, while the latter two

increasingly focused on the general principles behind the procedures.

" Carrying out the training procedures using the interface by following a set of instruc-

tions. Instructions used in these modules were based on the Nuclear Regulatory

Commission's standard operating procedures for nuclear power plants.

" Rating the module on procedural clarity and difficulty of the module.

" Taking a brief multiple-choice quiz on the procedure they just performed to assess

their understanding of the module.

This video, simulation, rating, quiz sequence was repeated for each of the three mod-

ules (see Appendix 0 for the quizzes used in the experiment). During this training
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period, participants were allowed to ask the experiment supervisor for clarification of the

interface or procedures, but were not provided help on the quiz. All participants went

through the same training procedure and were given the same quizzes. Quiz solutions

were provided after the completion of each quiz to ensure that all participants had the

same information before going into the following module.

Test Phase

During the test phase of the experiment, participants were given a set of operating pro-

cedures consisting of emergency operating procedures, anomalous operating procedures,

maintenance procedures, and reference appendices. They were instructed to act in the

role of a nuclear reactor operator doing routine supervision of the reactor, and monitor

the operation of the plant for any unusual activity and carry out instructions given to

them via the communications chatbox. Five minutes into the test phase, a steam valve

leak was simulated as a system anomaly, resulting in a gradual drop in performance of

one of the loops. Successful resolution of the scenario involved diagnosing the problem

and using the correct Anomalous Operating Procedure to attempt to solve the problem,

followed by use of a separate Maintenance Procedure to complete the solution. All par-

ticipants were given the same problem in the testing scenario. Participants were given

a 90-minute time limit to complete this scenario. No assistance was provided to the

participants by the experiment supervisor during the test phase.

Data Collection

Each click on the interface was recorded in a log file along with an identification code and

time stamp. Since participants' observation of reactor status displays was not directly

recorded, participants were asked to note the completion of "verification" actions by right-

clicking on a display panel or control, rather than the normal left-click used to interact

with controls. Ineffective actions such as clicks on inactive parts of the interface were also

recorded, along with interactions with the chatbox and use of the help screen. A screen

recording of each session was also taken as a separate record of the participant behavior.

A survey of the participants was also taken after the experiment that was primarily a

self-assessment of performance in the experiment, but also allowed for comments about

the interface and procedures to be given. The post-experiment survey is included in
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Appendix P.

The assessment metrics that were considered for use as features and targets in ma-

chine learning approaches are listed in Table 4.1. As discussed earlier, these features

are generally divided into categories of subjective, objective, and procedure adherence.

Many of the features apply to all modules, but several additional features were designed

into particular modules and can also be used in machine learning approaches. The exact

number of features for process-level adherence metrics depended upon the number of ac-

tions in each module. The summative adherence features shown in Table 4.1 refer to the

adherence value at the end of each module, rather than action-by-action. In the machine

learning analysis presented later in this chapter, the assessment metrics collected dur-

ing the training modules were used as features while the metrics during the test module

were used as targets. It may be noted that the post-experiment survey is only available

after the completion of the training program, and is therefore only appropriate to in-

clude in post-hoc predictions during supervised analysis and unsupervised learning such

as clustering.

While there are an extremely large number of variations on many of these features

(such as the measurement choice for procedure adherence), this list contains a selection

representative of the different types of data gathered during the data collection experi-

ment. With the dataset collected and the potential features identified, the next section

presents the results of both unsupervised and supervised machine learning algorithms on

this dataset.

4.4 Methods and Results

As discussed in Chapter 3, both unsupervised and supervised machine learning algorithms

have potential benefits for training evaluation in procedure-based training environments.

As a reminder, unsupervised algorithms are a descriptive approach that identifies rela-

tionships and natural groupings that exist within a dataset. This could be useful for

identifying trainees that exhibit similar behaviors to each other or topics/modules that

are of particular difficulty for the trainees. Additionally, feature selection methods can

reduce the dimensionality of the feature space while attempting to maintain the most

relevant information in preparation for supervised learning methods. Supervised learning
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Table 4.1: Features and Targets from Nuclear Reactor CBT experiment

Name Type Dimensions Description

Levenshtein Adherence 372 Process-level Levenshtein distance
Distance at each action during training mod-

ules
Levenshtein Adherence 3 Final Levenshtein distance for each
Distance training module

(summative)

PAM Adherence 372 Process-level PAM at each action
during training modules

PAM (summa- Adherence 3 Final PAM for each training module
General tive)

Features Quiz scores Objective 3 Score for each post-module quiz
based on number of correct ques-
tions (0-5 or 0-6)

Demographics Objective 10 Various demographic information,
such as age, gender, and experience
with procedures

Module Rat- Subjective 6 Ratings of procedural clarity and
ings difficulty for each training module

Post- Subjective 7 Ratings of overall confidence, reac-
Experiment tions, and procedural clarity
Survey

Initial Condi- Objective 1 Binary of whether trainee identified
tion Check initial condition deviation in Mod-

Module- ule 2
Specific Correct emer- Objective 1 Binary of whether trainee correctly

gency diagnos- diagnosed emergency in Module 3
tic
Levenshtein Adherence 1 Final Levenshtein distance for test
Distance module

(summative)

PAM (summa- Adherence 1 Final PAM for test module
tive)

Correct Proce- Objective 1 Binary of whether trainee selected

Targets dure Selection correct procedure first

Completed So- Objective 1 Binary of whether trainee com-
lution pleted all parts of the problem so-

lution

Reactor Power Objective 1 Average power output from reactor
Output over test module
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can be useful as a predictive approach to training evaluation, when labels are defined to

be trainee performance metrics at a later point in the training program. This can be

useful in a post-hoc approach to identify assessment metrics that contribute to predic-

tion performance, and also can be used partway through a training program to determine

which trainees may need early intervention.

4.4.1 Unsupervised Learning

As discussed in Chapter 2, unsupervised learning techniques can generally be divided into

clustering and feature selection methods. Clustering techniques find natural groupings

in the data based on similarities across the feature set. In training evaluation, clustering

algorithms can help to identify groups of trainees with similar behavior and then used

to select a subset of trainees that may all benefit from the intervention. Additionally,

clustering algorithms can assist with the selection of labels when converting a continuous

performance metric (such as power output) into a discrete category (such as "good" and

"poor") to further classify performance.

Feature selection methods analyze the features themselves to identify useful inputs to

machine learning models or create new inputs (through combination or transformation)

that describe the variability in the data with as few features as possible. This is par-

ticularly important for the rule-based dataset described here, due to the large number

of features available through the process-level information in comparison the number of

trainees. To prevent overfitting during supervised learning, dimensionality reduction (a

form of feature selection) can be utilized to condense the features into a smaller feature

space. In this section both clustering and feature selection methods are applied to the

rule-based dataset, and a range of algorithms are tested for their usefulness.

On the rule-based training dataset presented in this chapter, there is no a priori in-

formation on the usefulness of particular features. Therefore, it is appropriate to take

an iterative approach to unsupervised learning and feature selection. Sets of features

can be tested in the algorithms, and then refined to identify the features and feature

types that provide the best machine learning model performance. In later sections, this

approach is taken for selecting appropriate feature sets to be used in both unsupervised

and supervised learning, by comparing performances between adherence metrics, across

adherence, objective, and subjective metrics, and investigating the usefulness of dimen-
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sionality reduction on process-level features.

Clustering Algorithms

A selection of common clustering methods of varying complexity was presented in Chapter

3, and the same set was applied to the rule-based dataset. As a reminder, the methods

include k-means, hierarchical clustering, Gaussian Mixture Models (GMMs) and Self-

Organizing Maps (SOMs). These methods represent a range of clustering algorithm

types: a centroid model, connectivity model, distribution model, and topological model,

respectively. An analysis of these methods on the nuclear reactor CBT dataset described

here provides insight into which methods (if any) are useful on data from a typical rule-

based training domain.

As discussed in Chapter 3, there are several necessary preparatory steps prior to the

use of clustering approaches. These include any necessary data pre-processing (including

standardization), selecting an appropriate distance measure, and identifying appropriate

metrics for cluster algorithm comparison. These topics are discussed in the following

sections.

Data Standardization and Pre-Processing

The features included in the rule-based dataset have a wide range of measurement scales,

from binary measures (0 or 1) to continuous measures that range from zero to values in

the hundreds. Thus, data transformation is critical to ensure that each feature is able to

be treated approximately equally during clustering. To empirically determine the best

transformation, both z-score and range transformations were tested for clustering perfor-

mance using a basic k-means algorithm across all features from Table 4.1 (see Appendix

F for full results). For most feature sets, the cluster algorithm performance using a range

transformation outperformed those based on a z-score transformation. This is likely at-

tributed to the lack of normally-distributed data along most features, particularly the

procedure adherence features. In particular several trainees had a tendency to become

lost in the procedures, and resorted to seemingly random interactions with the interface.

These cases resulted in particularly large adherence deviations compared to trainees who

tended to stay adherent to the procedures even after slight deviations (creating a bimodal

distribution). Based on these results, the range transformation was selected for use in
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the subsequent clustering analyses.

For this rule-based dataset, a large number of features are available, as can be seen

from Table 4.1. This presents a major concern for unsupervised learning techniques as

discussed in Chapter 3 (the "curse of dimensionality"). As a reminder, this can present

challenges to cluster algorithms by reducing the discriminability of distances between

points. To address this issue, only summative (end of module) adherence metrics were

used in the cluster analysis. While this has the disadvantage of being unable to group

trainees based on single actions taken during the modules, it dramatically reduces the

dimensionality of the feature space and allows for a more meaningful measurement of

cluster distances.

Distance Measure

The set of potential distance measures presented in Chapter 3 were considered for this

dataset: the Euclidean distance, Manhattan (or city-block) distance, and the Chebychev

distance. The nature of the features included in the analysis has a strong impact on

the selection of an appropriate distance measure, and the nuclear reactor CBT dataset

has a wide range of feature types. As seen in Table 4.1, these generally fall under the

categories of adherence, objective performance, and subjective performance. Since a

distance measure should be consistent for the entire feature space, it is important to

consider all these feature types in the selection of an appropriate distance measure.

Adherence data are measured on a scale of 0 to oc, where 0 represents no deviations

from the prescribed procedures. The maximal deviation is potentially infinite, as the

trainee could continue to add actions far beyond the intended termination of the proce-

dure. Consider a module using a procedure with 30 intended actions. If a trainee actually

performs 100 actions while completing this module, the minimum Levenshtein distance

for this trainee is 70, even if all of the additional actions are repeats of correct actions on

the procedure. These features provide the potential for large differences between trainees

which has important implications for the Chebychev distance, which identifies the largest

difference along any feature between trainees. While adherence may be a reasonable way

to differentiate or cluster trainees, Chebychev distance might do so at the exclusion of

other metrics such as objective assessments. For Euclidean and Manhattan distance, the

main differences will depend upon the number of features. Specifically, Manhattan dis-
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tance increases linearly with the number of features, while Euclidean distance depresses

the impact of each feature on distance as more features are added. By considering only the

summative adherence metrics in clustering, either the Euclidean or Manhattan distance

is appropriate for these features.

There are several objective performance metrics collected in this dataset, including the

quiz scores, module-specific items such as correctly diagnosing problems with the system,

and the power output from the reactor during the test module. These features vary in

their ranges of values: quizzes were scored based on the number of questions correct (0-5 or

0-6), power output ranged from 0-34, and other features such as correct diagnostics were

recorded as a binary (either 0 or 1). Unlike adherence metrics, these objective metrics are

all bounded with maximum and minimum values. This creates an interesting contrast

with the adherence metrics, which are theoretically unbounded. Since Chebychev distance

will select the highest difference among all features, it is inappropriate to use this distance

on features generated under radically different processes (such as bounded vs. unbounded

metrics). With only a few features, there will likely be little difference between Euclidean

and Manhattan distances for these metrics. The subjective performance features, which

included the module ratings and post-experiment survey (measured on a 5-point Likert

scale) will exhibit similar properties to some of the objective metrics and have the same

concerns with using Chebychev distance. They will also similarly have little expected

difference between Euclidean and Manhattan approaches. Given that the differences

between these distance measures are likely small for the types of data in this dataset, the

more common metric of Euclidean distance was selected for clustering approaches.

Weighting of features could also be used on this dataset if it was determined that

certain features were more important than others in determining similarity of trainees.

However, there is not an obvious weighting strategy given the wide range of feature

types in this dataset. It is likely that the summative adherence metrics are of higher

importance to training supervisors than the individual process-level metrics, but choosing

a specific weighting strategy would require a subjective assessment from the supervisor,

and it is not clear in these early stages of this research whether such assessments are

accurate. Additionally, in any procedure there are typically steps or actions that may

be more important than others relative to system performance or safety. For example,

the action of lowering the control rods when the reactor is in an emergency is likely
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more important than checking the temperature of a steam generator. In fact, it is known

that expert operators often skip actions that they have learned have little impact on the

task [19,80,81]. However, the relative "importance" of any particular step or action is

typically a subjective judgment of the subject matter expert (SME), such as an operator

or supervisor. This then provides little guidance into the specific weighting to be used in

the calculation of distances between trainees, and the quantification of the importance

of individual actions is beyond the scope of this thesis. Thus, for the purposes of this

analysis, the standard Euclidean distance was used rather than a weighted form. However,

it should be noted that future work could make use of SMEs to attempt to quantify

weights for individual actions in procedural training settings.

Metrics for Cluster Algorithm Comparison

To compare the algorithms, a set of measures of performance must be selected. As

discussed in Chapter 3, both external and internal metrics can be used. As a reminder,

external metrics utilize labels as in supervised data to indicate "true" clusters, while

internal metrics provide performance characteristics about the clusters themselves. In

this analysis, the external metrics of entropy and purity as well as the internal metrics

of compactness and isolation are used. Both summative adherence and objective targets

from the test module as shown in Table 4.1 were used for the calculation of external

metrics.

Prior to any cluster analysis, a set of features must be selected as the inputs to the

algorithm and the number of clusters must be chosen. For the rule-based training dataset

presented here, there is not a clear selection for either of these requirements. Specifically,

ideally features for clustering should provide useful separations of the data, and without

initial testing it is unclear as to which training metrics collected in this dataset provide

strong clustering performance. The selection of the number of clusters is likewise difficult

on this dataset. This selection could be done subjectively, such as a training evaluator

that would like trainees to be split into a certain number of groups. Sometimes the

domain suggests a certain number of performance categories, such as in education when

using a letter grading scale ("A", "B" ,"C", "D" , "F"). On this rule-based dataset, such a

natural division is not clear.

This issue reveals some of the fundamental iterative nature of clustering on an un-
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familiar dataset. To determine the ideal features for clustering, a particular number of

clusters must be selected. Likewise, to identify the appropriate number of clusters, a

certain set of features must be used in the analysis. Therefore. the general strategy

of analysis presented below represents a series of analyses to identify both an appropri-

ate number of clusters and -identifying ideal clustering features. The following sections

describe a sequence of four analyses:

1. Identify number of clusters based on final performance

2. Given a number of clusters, determine which adherence metric (Levenshtein or

PAM) provide better clustering performance - only one adherence metric should be

used in clustering and supervised learning as they contain redundant information

3. Given an adherence metric, compare cluster performance between adherence, ob-

jective, and subjective metrics

4. Compare clustering performance of process-level adherence features to summative

adherence to determine the advantages of temporally-based data collection on clus-

ter algorithm performance

While a different starting point could have been selected for these analyses, this repre-

sents a logical flow for the identification of both number of clusters and the identification

of features that provide high separation of data in the feature space. These investigations

could be performed in an iterative fashion to isolate the best features and parameters

for both unsupervised and supervised learning, as shown in Figure 4-3. After selecting

a number of clusters, a series of feature selection analyses can identify which features

provide the best clustering performance. Note that since strong cluster performance is

indicative of good separation in the data, these analyses also suggest the use of these

features for supervised approaches. Once a set of features have been selected, the analyst

can return to the original assumption on number of clusters and repeat the process. In

this chapter, one iteration of the process is presented for brevity, beginning with the

selection of the number of clusters.

Selecting number of clusters

For the purposes of identifying an appropriate number of clusters on this dataset, using

final performance to select an appropriate number of groupings is an intuitive place to
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Figure 4-3: Schematic of Iterative Approach to Unsupervised Learning On Rule-Based
Dataset.

start. This has the advantage of carrying more meaning for training evaluators; clusters

can be associated with performance categories (e.g. "good", "poor"). While this could be

subjectively selected based on the needs of the evaluator, it can be objectively determined

through the use of model selection techniques. In model-selection, a set of cluster models

are created with differing numbers of clusters, and the best model is identified through a

chosen criterion.

The most common criterion for selecting the number of clusters uses the Bayesian In-

formation Criterion (BIC) [121. The BIC calculates model performance while accounting

106

Feature Selection



for the increase in complexity associated with increased numbers of clusters. A descrip-

tion of the calculation of BIC is given by Pelleg and Moore [147], and is also presented

in Appendix G. Briefly, it calculates the likelihood of the data under the model (which

generally improves with increasing k) but applies a penalty based on the number of free

parameters (which also increases with k). It is desired to select the BIC whose value is

minimum, which represents the highest likelihood relative to the penalty.

In this approach, the target performance variables from the test module (e.g. adher-

ence, power output) are used with BIC to determine an appropriate number of perfor-

mance groupings. Figure 4-4 shows the BIC for a simple k-means algorithm run on all

targets in this dataset from 1-20 clusters (using Levenshtein distance for adherence, a

similar result is seen using PAM). As can be seen, on this dataset the BIC is a strictly

increasing function. This implies that this dataset favors the use of as few clusters as

possible, and the optimal (lowest) BIC indicates only a single cluster. This is an in-

teresting finding, and indicates that the performances across the metrics in the dataset

are similar enough that there are no natural groupings separating trainees. If it is hard

to separate performances of trainees into groups, this may also indicate that supervised

learning techniques may also encounter difficulties on this dataset (presented later in

this chapter). However, while the BIC recommends the use of only a single cluster, this

result has relatively little practical value for assessment. Grouping all trainees together

provides little help in identifying groups of trainees that may be in need of training in-

tervention (TI), as it only indicates the intervention should be applied to all trainees or

none. However, this result does indicate that clustering approaches may have difficulty

with this dataset, and may suggest the potential for future difficulties with classification

approaches.

To find meaningful cluster assignments that are useful for training evaluation, other

model selection techniques can be used. Figure 4-5 shows the sum of within-cluster dis-

tances for a simple k-means algorithm run on all targets (using Levenshtein distance for

adherence, similar results for PAM). As the number of clusters increases, the overall dis-

tances between data points and their cluster centers will tend to decrease. However, the

marginal gain for including an additional cluster will be low if data are already well fit

by current clusters. Figure 4-5 demonstrates that the gain by adding additional clusters

begins to fall off (the so-called "elbow method") at 3 clusters. Therefore, three clusters
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Figure 4-4: Selection of Appropriate Number of Clusters Through BIC.

are used in the creation of the models for the analysis in the following section. While

trainees are not always consistent across all performance metrics, comparing these cluster

assignments to the performance values can be interpreted as general performance cate-

gories. The cluster assignments indicated 8 trainees in the poorest performance category,

15 trainees in the middle performance category, and 23 trainees in the top performance

category. Note that these assignments are over all of the test module performance vari-

ables, and thus represent clusters in 4-dimensional space.

To illustrate how these clusters identify performance categories, Figure 4-6 shows

boxplots of the scores for each performance metric in the test module by clusters. The

boxplots in Figure 4-6 represent the average performances for 30 runs of the k-means

algorithm on the test module performance metrics. In the figure, it can be seen that

Group 1 generally corresponds with the "poor" performers (having the lowest scores

across all metrics), Group 2 with the "moderate" performers, and Group 3 with the

"good" performers. While there is some variation in the groupings based on the particular
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initialization of the k-means algorithm (represented by the variation in each boxplot),

overall it is clear that these groupings could be used to generally divide trainees for

targeted intervention techniques.

The clustering results on the full dataset (including metrics from the training mod-

ules) are presented in the following sections and are split into three investigations. The

first is intended to identify which of the two adherence metrics (Levenshtein distance or

PAM) provides better clustering performance on the nuclear reactor CBT dataset. Since

cluster results are based on the ability to separate data in the feature space, this compar-

ison can indicate the best adherence metric to utilize in later supervised analyses. For

both Levenshtein and PAM, the targets used for external metric comparison were both

the corresponding summative adherence metric and the power output in the test module.

The second investigation considers the contribution of adherence, objective, and subjec-

tive information in cluster algorithm performance. The third investigation (presented

in the dimensionality reduction section below), utilizes the ability of dimensionality re-
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Figure 4-6: Boxplot of Performance Metrics in Test Module by Group. Median values are
shown as central marks, edges of the box represent 25th-75th percentile. Whiskers are
shown for data up to 1.5 times the interquartile range. Outliers are plotted individually
with a "+".

duction to condense the action by action process-level information into a form that can

be directly utilized by clustering techniques. In this investigation, the usefulness of the

reduced process-level adherence features is compared to summative adherence features

in cluster algorithm performance. The results of these investigations then contribute to

the identification of which unsupervised algorithms have the best performance on this

dataset, which metrics provide for the best clustering performance, and the usefulness of

the process-level information provided by CBT environments.

Adherence Cluster Analysis

The first investigation compared clustering performance between models built on the Lev-

enshtein distance and the PAM, to determine which metric provides better separability in

the data given the 3 clusters determined by the elbow method. Table 4.2 shows the results
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of this investigation, when using external metric comparisons with adherence and power

output information. There are several important conclusions from these results. First,

clustering techniques based on the Levenshtein distance tend to perform better than with

the equivalent PAM models, due to their generally lower entropy and compactness scores.

Therefore, it seems that the sequence-based Levenshtein distance may be preferable in

unsupervised learning than the model-based PAM. Second, most of the better performing

models across all metrics occur with simple clustering methods (k-means and hierarchical

clustering). This indicates the more complex methods do not provide sufficiently better

performance to justify their use, and it seems that on procedure-based datasets simple

unsupervised algorithms are preferable.

The differences between k-means and agglomerative clustering can be teased out by

looking at the resultant cluster assignments (an example set of assignments is shown in

Appendix H). K-means tends to result in a more equal split between the clusters, which

tends to result in greater compactness but low purity. Hierarchical clustering on this

data tends to form a single large cluster, resulting in high purity and isolation (since

the other clusters are used to fit outlying values). It is clear that for the power output

external metrics, hierarchical clustering results in better performance. This is largely

due to the nature of the power output variable; most trainees achieved a power output

close to the maximum output, and only a few people received low power scores. Thus,

hierarchical clustering which fits most trainees into a single cluster tends to perform well

relative to this variable. However, from an evaluation perspective it is undesirable to have

most trainees grouped into a single cluster. If most or all trainees are grouped together,

there can be little to distinguish between trainees. From an intervention perspective,

an intervention might be applied to a particular group; if most trainees are in the same

group, the intervention would need to be applied to everyone. Thus, the more equal

divisions provided by k-means are more useful for training evaluation, and thus k-means

seems the optimal choice on this dataset. Therefore, in the comparison of adherence,

objective, and subjective information in clustering performance, k-means is used as the

underlying algorithm for comparison.
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Table 4.2: Cluster Performance Comparison Between Adherence Metrics and Clustering
Methods. Models with the best performance across clustering methods for each cluster
performance metric are marked in gray.

Target Features Evaluation K-means AgglomeratiseGaussian Mix- SOM
Clustering ture Model

Inspection General Favors sin- Data Incom- Confusion
Confusion gle cluster patibility between

two clusters
Entropy 1.23 1.52 Data Incom- 1.31

patibility
Purity 0.33 0.28 Data Incom- 0.39

Levenshtein patibility
Distance Compactness 2.46 3.05 Data Incom- 2.66

Adherence patibility
Isolation 2.36 6.41 Data Incom- 1.33

patibility

Inspection Cluster Favors sin- Cluster Ambi- Cluster
Ambiguity gle cluster guity Ambiguity

Entropy 1.33 1.54 1.37 1.37
PAM Purity 0.33 0.44 0.36 0.36

Compactness 2.75 5.81 3.44 2.72
Isolation 2.53 4.12 3.51 2.19

Inspection Cluster Favors sin- Data Incom- Cluster
Ambiguity gle cluster patibility Ambiguity

Entropy 1.12 1.02 Data Incom- 1.12
patibility

Purity 0.33 0.7 Data Incom- 0.39

patibility
Levenshtein Compactness 2.46 3.05 Data Incom- 2.66
Distance patibility

Isolation 2.36 6.41 Data Incom- 1.23

Power patibility

Output Inspection Cluster Favors sin- Good overall Cluster
Ambiguity gle cluster performance Ambiguity

Entropy 1.13 1.02 1.08 1.15
PAM Purity 0.33 0.7 0.44 0.28

Compactness 2.75 5.81 3.92 2.72
Isolation 2.51 4.12 3.51 2.22
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Clustering by Feature Type

In the second investigation, k-means was then used to investigate the contributions of

different feature sets to cluster performance. This can indicate to training supervisors

which metrics are the most informative for separating trainees into groups, which can help

inform trainee intervention (TI) as discussed in Chapter 3. Specifically, features were di-

vided into adherence (Levenshtein distance), objective (quiz scores and demographics),

and subjective (model ratings and post-experiment survey) data types. Table 4.3 shows

the cluster performance of each data type, using both adherence and reactor power output

variables from the test module for the determination of "classes" in external metric cal-

culations (entropy and purity). There is little difference in the external metrics between

clustering with the adherence, objective, and subjective data types, as seen by looking

across the entropy and purity values in Table 4.3. For internal metrics, it is clear that the

adherence information provides better compactness, while the objective and subjective

metrics provide greater isolation. This is partly a result of the higher dimensionality of

the feature space for objective and subjective metrics. When downselected to the equiv-

alent number of dimensions, the clustering algorithm returns empty clusters, indicating

that the full dimensions are needed to fit the model. Thus, the adherence metrics appear

to provide the greatest information per feature. However, there are considerably greater

numbers of adherence features provided by the process-level information. The high di-

mensionality of these features prevent them from being used directly for clustering or

supervised learning, and thus it is useful to turn to dimensionality reduction methods to

trim down the feature set size.

Dimensionality Reduction

Dimensionality reduction (a form of feature selection) is another form of unsupervised

learning that allows for the representation of data in high dimensional space in a lower-

dimensional space. There are two primary reasons for this transformation: to remove

redundant or irrelevant features and to try to avoid the curse of dimensionality. The

first is fairly self-explanatory, where it allows the user to identify and remove features

that are not providing useful content, which helps computation time and can prevent

overfitting. The second relates to the idea of the curse of dimensionality, which states

that as the number of dimensions increase, the separation between points approaches a
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Table 4.3: Cluster Performance Comparison Between Adherence, Objective, and Subjec-
tive Metrics. Models with better performance are marked in gray.

Target Evaluation Adherence Metrics Objective Metrics Subjective Metrics

Inspection Slight general General Confu- Favors single
confusion sion class

Entropy 1.23 1.23 1.23
Adherence Purity 0.33 0.33 0.33

Compactness 2.47 40.6 33.18
Isolation 2.31 8.36 8.23

Inspection Confusion be- General Confu- Favors single
tween two sion class

Power clusters

Output Entropy 1.12 1.13 1.12
Purity 0.34 0.33 0.34
Compactness 2.46 40.6 33.16
Isolation 2.37 8.34 8.23

constant value. This creates great difficulties for algorithms that require measurements

of distances or partitions of space, such as clustering algorithms and Support Vector

Machines (SVMs).

The main strategy for dimension reduction revolves around feature extraction, which

involves the transformation of data from high dimensional space into lower dimensions.

The most common technique is Principal Component Analysis (PCA), which performs

a linear mapping of the data into lower dimensional space. The objective of PCA is

to obtain a smaller set of orthogonal projections along the original feature space in a

way that the variance of the data along the new dimensions is maximized. By using the

first several components generated, dimensionality reduction can be achieved (for further

information on PCA, see [12]).

As previously mentioned, dimensionality reduction is particularly important on this

dataset, due to the high number of features provided by the process-level adherence

information. Dimensionality reduction can be used here for two different approaches: to

assist with cluster analysis and to condense data prior to supervised analysis. The first

approach utilizes dimensionality reduction to assist with cluster algorithm performance.

As mentioned in the previous cluster analysis, the process-level adherence features could

not be used directly due to the curse of dimensionality, and summative forms were used

instead. However, it is possible that the summative adherence information does not
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capture useful information contained within the process-level data. Instead, it is possible

to use dimensionality reduction techniques instead as an alternate way to compress the

adherence information. Thus, clustering could be performed again on a set of PCA

reduced features, to see if the information contained in the process-level information

provides benefits to cluster algorithm performance.

Cluster Analysis on PCA-reduced Features

A third clustering investigation was conducted utilizing the PCA-reduced features. To

identify any benefits of dimensionality reduction in clustering on this dataset, the adher-

ence, objective, and subjective metrics were each processed using PCA, and the first three

principal components were used to repeat the cluster analysis comparison shown in Table

4.3. The results are presented below in Table 4.4. It can be seen that as expected the

compactness and isolation ratings decreased for the objective and subjective metrics, due

to the reduced dimensionality of the feature space. However, it is clear that the adherence

metrics still achieve better compactness, while the other metrics provide better isolation

performance. There are three major conclusions from these results. First, the PCA-

reduced adherence performance (shown in Table 4.4) was identical to that of summative

adherence (shown in Table 4.3) for both external and internal metrics. This indicates

that there is no advantage to the use of the action-based adherence information compared

to the module-level summative adherence information in the cluster analysis. Second, all

three metric types show similar performance in clustering approaches, and thus it may be

useful to collect all these metric types when clustering procedural training data. Second,

the performance of the clustering algorithms by inspection (compared to "classes" based

on test module performance) was generally relatively poor. So while clustering may be

able to find groups of similar trainees based on training features, these do not appear

to provide a good match to test module performance. This indicates that there may be

difficulties with relating training module performance to test module performance, which

is investigated in supervised learning later in this chapter.

Dimensionality Reduction for Supervised Approaches

The second dimensionality reduction approach relates to the reduction of the number of

features prior to supervised learning to prevent overfitting. Since the primary contributor
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Table 4.4: Cluster Performance Comparison Between Adherence, Objective, and Subjec-
tive Metrics, Normalized to Three Features. Models with better performance are marked
in gray.

Target Evaluation Adherence Metrics Objective Metrics I Subjective Metrics

Inspection General confu- General Confu- General Confu-
sion sion sion

Entropy 1.23 1.22 1.23
Adherence Purity 0.33 0.33 0.34

Compactness 2.47 18.81 13.82
Isolation 2.31 7.77 7.94

Inspection Confusion be- General Confu- General Confu-
tween two sion sion
clusters

Power Output Entropy 1.12 1.13 1.13
Purity 0.34 0.32 0.34
Compactness 2.46 18.96 13.81
Isolation 2.37 7.75 7.95

to feature space dimensionality on this dataset is the process-level information, PCA

was applied to the process-level Levenshtein distance features to create new features for

supervised learning. While the intent is to reduce the number of features prior to use

in supervised learning, there is little obvious guidance as to how many features should

be used. However, general guidelines can be drawn from the discussion of overfitting in

Chapter 3. Specifically, it is desired for the number of features to be much less than

the number of data points. Given 47 trainees in this dataset, it would be undesirable

for the number of features to exceed 10-20. Thus, to be able to combine these process-

level adherence features with other objective and subjective features, it is preferable to

reduce the number of these features to less than 10. Given that there are three modules,

it seems reasonable to allow for three features each to be derived from PCA on the

process-level adherence metrics. Using this strategy, new features were generated based

on the first three principal components from each module. The details of these three

principal components are given in Appendix I. These features are identical to the PCA-

reduced adherence features used in cluster analysis above, but are considered specifically

as features in supervised learning. In the later sections on supervised learning, these

metrics are referred to as "process-level adherence" in the analysis.

116



4.4.2 Summary of Unsupervised Analysis

This section presented the results of two unsupervised learning approaches on the rule-

based dataset: clustering and dimensionality reduction. Clustering can find groupings

amongst the trainees, which could assist training evaluators in selecting groups of trainees

for intervention. On this dataset, the BIC indicated the use of a single performance clus-

ter, which may indicate that there may not be clear performance groups that emerge in

the data. The Elbow method discussed here here was used as an alternative method for

selecting an appropriate number of clusters (in this case three clusters), which provided

a more meaningful cluster distribution for training evaluators. Specifically, these clus-

ter assignments were able to generally separate trainees into "poor", "moderate", and

"good" overall performance categories. Since each group had similar performance, any

intervention needed could be applied to an entire performance category.

The results from the series of clustering investigations provided insights into the se-

lection of particular parameters and features for clustering on this dataset. Specifically,

the first investigation using the elbow method indicated the use of three clusters. The

results from the second investigation (shown in Table 4.2) indicated that simple cluster-

ing methods have equivalent or better performance to more complex methods, strongly

suggesting the use of simple algorithms on similar rule-based training datasets. Addition-

ally, the clustering results indicated that the Levenshtein distance provided equivalent

cluster performance to the PAM, indicating that it may be preferred computationally in

machine learning approaches. The third investigation demonstrated that all three fea-

ture types (adherence, objective, and subjective) were equally useful to cluster algorithm

performance. The final investigation demonstrated that the module-level summative ad-

herence metrics were more useful for clustering than the action-level metrics.

Based on these results, we can suggest an "ideal" set of features from the dataset to

be used in unsupervised analysis. In particular, this model would include the summative

Levenshtein adherence metrics, the objective metrics (quiz scores and demographics), and

the subjective metrics (module ratings and post-experiment survey). Using these metrics,

the trainees can be clustered into three groups. As previously mentioned, these groups

could serve as indicators for group TI. However, the question arises of how well groups

based on these metrics (from the training modules) are good separators of test module

performance. To test this, this "ideal" model was used to separate trainees on this datset
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into three groups. A set of boxplots (each representing 30 runs of k-means) using these

splits was created similar to Figure 4-6 on the test module performance metrics, and is

shown in Figure 4-7. While the separations between groups are not as clear as in Figure

4-6 (which was based on the final performance metrics directly), it can still be seen that

the training metrics can still be used to create clusters that still have meaning to training

supervisors as indicative of performance categories. These groups could then be used by

the supervisor to inform training intervention techniques.

While the clustering methods were able to separate the data into three groups, the

algorithms do not specify meaning to these groups. Any interpretation of a cluster as

"good" or "poor" performers would have to be made by a training evaluator, such as the

interpretation provided above based on analyzing the cluster assignments with respect

to the performance scores. Additionally, since the BIC on the final performance metrics
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indicated the presence of only a single cluster, it is possible that the clusters of trainees

may contain differences in behavior during training modules, but little difference in test

module performance. This presents an important lesson from this dataset: while clus-

tering algorithms will generate a result given any dataset, clusters on complex training

datasets such as the rule-based dataset presented here may not have useful interpretations

for a training evaluator.

Dimensionality reduction was also applied to this dataset through the use of PCA,

which was particularly useful for reducing the number of features associated with process-

level procedure adherence metrics. It was demonstrated that PCA could be utilized to

condense the process-level features prior to use in supervised learning models. Without

dimensionality reduction, these features could result in overfitting in supervised learning

approaches. The methods and results for supervised learning on the rule-based dataset

utilizing the PCA-reduced features are presented in the following section.

4.5 Supervised Learning

As discussed in Chapter 2, supervised learning utilizes labeled data to form relationships

between features and labels in the data. If the labels represent a state at a future time

compared to the features, this can be interpreted as a predictive approach. In training,

supervised learning can use in-training features to predict later-training or post-training

performance. This is useful in several applications as discussed in Chapter 3, particu-

larly for informing TI by providing early feedback on trainees that are predicted to have

poor performance. Supervised learning can include both regression and classification

techniques, dependent upon the nature of the target variable (continuous and discrete,

respectively). As identified in Table 4.1, there were both continuous targets (adherence

and power output) and discrete targets (correct procedure selection and solution comple-

tion) in this rule-based dataset. Therefore, it is appropriate to utilize both regression and

classification techniques on this dataset to analyze prediction of all the target variables.

There were several main goals of this analysis. The first was to identify which super-

vised machine learning algorithms resulted in the best prediction performance, as tested

by post-hoc analysis. The second goal focuses on temporal prediction, or the improve-

ment in prediction over time as the trainees move through the training program. This
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second analysis is able to inform the usefulness of these methods in informing training

intervention. The following sections present the methods and results of the supervised

learning algorithms relative to each of these goals.

4.5.1 Supervised Algorithms

A range of supervised learning algorithms were introduced in Chapter 2 that cover the

most common types of algorithms. As a reminder, these are linear regression, logistic

regression, support vector machines (SVMs), and artificial neural networks (ANNs), listed

roughly in order of increasing complexity. Linear regression and ANNs are commonly used

for regression problems, where the labels are measured on a continuous scale. ANNs are

also well suited for classifications approaches, as are logistic regression and SVMs. In a

classification problem, the labels are discrete. Each of these algorithms were investigated

for use on the knowledge-based dataset, in both regression and classification approaches

as appropriate.

In this rule-based dataset, there are two continuous targets that represent final train-

ing outcomes: Levenshtein distance (adherence) and power output in the test module.

In the analysis below, two regression methods were tested on the these targets: linear

regression and artificial neural networks (ANNs). For the discrete targets (correct pro-

cedure selection and solution completion), classification methods used included logistic

regression, SVMs, and ANNs. For both regression and classification, generalization per-

formance was assessed using a Leave-One-Out (LOO) strategy, where a single data point

is held out from each model as a test point, and the remaining data points are used for

training and validation of the model. For ANN models, which require validation data

to adapt the model weights, the remaining data (without the single test point for each

model) was split with 80% training, 20% validation. For all other model types, all of the

remaining data points were used in the training of the model.

Both SVMs and ANNs also have model parameters that must be selected during the

creation of these models. In SVM models, the choice of kernel (such as linear, polynomial,

or Gaussian) can impact the capability to fit functions. In this analysis, the standard

linear kernel was implemented to maximize the simplicity of the resultant models. For

determining the structure of the ANN models, several heuristics can be used. For nearly

all mappings of the input space into the output space, one hidden layer is sufficient
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to characterize the mapping [148] and therefore was selected to be used for the ANNs

created in this study. The optimal number of neurons in the hidden layer depends on

several variables including the size of the training set, the complexity of the underlying

function, the noise, and the activation function selected [149]. However, general heuristics

have suggested that the number of training data should be between 2 and 10 times the

sum of the size of the input, hidden, and output layers (e.g. [150]). In this study, given

the number of data available and the general range of the input layer, a moderate network

size of 10 hidden neurons was selected.

In both regression and classification approaches, two prediction strategies were an-

alyzed: post-hoc prediction accuracy and temporal prediction accuracy. Post-hoc pre-

diction utilizes all of the data available throughout the entire training program, and

attempts to achieve the highest accuracy relationships between the features from the

training modules and the targets from the test module. This strategy can identify the

prediction algorithms that result in the best prediction performance across the available

feature sets. In this way, the analysis can suggest the appropriate supervised learning

algorithm to use on similar rule-based training datasets or further analyses, such as the

temporal analysis presented later in this chapter. It may also be useful from a qual-

ity assurance perspective to training designers by identifying which features provide the

greatest contribution to prediction accuracy. By understanding which metrics are useful

for prediction, the designer can adjust the program to focus on these elements and/or

remove assessment metrics that provide little predictive value.

An analysis of temporal prediction accuracy compares the prediction accuracy of mod-

els created as the trainee moves through the training program. In a realistic prediction

setting, the training evaluator would like to have an accurate prediction of a trainee's

performance early in the training program, when only some of the features are available

for the model. To investigate the development of prediction accuracy over time, models

can be created after each training module, incorporating only the information from that

module and prior modules. This approach can provide a sense of how these prediction

models can be used to inform TI. If accurate predictions of future trainee performance

are available early in a training program, the evaluator can apply intervention techniques

to improve learning when needed. In particular, CBT environments able the collection

of more frequent process-level information (such as the adherence information in this
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dataset), and it is of interest to determine whether these elements are able to contribute

to TI over traditional summative metrics. In the following sections on regression and

classification, both post-hoc and temporal analyses are conducted to test the usefulness

of supervised learning algorithms in training evaluation settings.

4.5.2 Regression Results

As previously discussed, the target variables used in regression approaches were the Lev-

enshtein distance and the power output in the test module. This section presents both

the results of a post-hoc analysis to analyze the prediction accuracy of each method, as

well as a temporal analysis of the benefits of process-level information in the regression

setting.

Post-hoc Prediction Results

The selected regression methods (linear regression and ANN regression) were compared

based on the model fit of the data on the test set (generalization performance), as mea-

sured by Mean Squared Error (MSE) between the predicted values and the true values.

Table 4.5 shows the results of the post-hoc regression analysis. In this table, "Sum-

mative Adherence" refers to the Levenshtein distance at the end of each module, while

"Process-Level Adherence" refers to the PCA-reduced set of features generated from the

process-level (action-by-action) adherence measurements. As a reminder, both of these

metrics are generated using action-level data, but in summative form only the module-

end value is used while for the process-level form the values at each action are included

as features. "Total Summative" refers to the combined use of objective, subjective, and

summative (end of module) adherence metrics as features, while "Total Process-level"

refers to the use of objective, subjective, and PCA-reduced adherence metrics. Note that

the scale of MSE is much larger for the models predicting adherence than those predicting

power output. This relates to the scale of the target variables, which ranged from 0-168

for adherence and 0-32 for power output on this dataset. Thus, it is anticipated that

errors will be larger for adherence, and correspond to generally higher MSE.

In Table 4.5, simple linear regression models show better performance (as measured by

MSE) than the equivalent ANN models on all feature sets except the total process-level

feature set. This result is found for both adherence and power output prediction targets.
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This indicates that despite the complexity of this rule-based dataset, the simple models

are able to capture the relationships between features and targets as well as the more

complex models. While the ANN models perform better than linear regression when using

the total process-level feature set, it can be seen that the MSE for these models is higher

than other models for the same target, indicating poorer generalization performance. For

linear regression, a similar finding is shown by the other combined feature sets (objective

+ subjective and total summative), which generally have higher MSE than models using

adherence, objective, and subjective feature sets individually. A possible explanation for

the poorer performance of the linear regression models with the larger feature sets comes

from overfitting. By utilizing a larger number of features, the linear regression models

may be fitting the noise in the training data, which results in poorer performance on

previously unseen data. The ANN approach does not show this same trend, which could

be due to the greater flexibility of ANNs for larger feature sets, or could also be impacted

by the use of separate validation data to adapt the model weights. However, since linear

regression resulted in the models with the best overall generalization performance for

both targets, and generally better MSE than equivalent ANN models, linear regression is

selected as the algorithm for use in the temporal analysis presented later in this section.

A comparison between the model performance shown in Table 4.5 and the ranges of

the target variables of interest can give an idea of the overall usefulness of the models. By

selecting the best performing models for both targets (linear regression using subjective

features), the MSE is shown to be 1583 for adherence and 41.84 for power output. By

taking the square root, these can be put back into the units of the original variables,

and indicate that the adherence predictions were off by an average of 39.8 for adherence

and 6.5 for power output. While these are much smaller than the ranges observed for the

respective variables (0-168 for adherence, 0-32 for power output), it represents a relatively

high error relative to the distributions of the target variables across trainees (standard

deviation 33.5 and 5.5 for adherence and power output, respectively). Thus, the average

model error is greater than one standard deviation of the data, and this indicates that the

model would have difficulty separating trainees with similar performance. This indicates

that for the rule-based dataset, there is general difficulty in relating training performance

in modules 1-3 to adherence and reactor power output during the final test module.

The information contained in Table 4.5 can also provide indications of the contribu-
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Table 4.5: Post-hoc Regression Results. Models with better performance between the
two algorithms are marked in gray.

Target Feature Set Linear Regression MSE ANN Regression MSE

Summative Adherence 1112 +/- 1391 4631 +7- 1374

Process-Level Adherence 3168 +7- 3819 11868 +7- 4090

Adherence Objective 1785 +7- 712 12368 +/- 2274

Subjective 1583 +/- 734 6008 +7- 1221

Objective + Subjective 5040 +/- 1834 7339 +7- 1264

Total Summative 4943 +/- 1615 6681 +7- 1279

Total Process-Level 24164 +/- 10996 8551 +/- 1510

Summative Adherence 29.54 +/- 44.04 121.68 +7- 38.67

Process-Level Adherence 181.45 +/- 300.17 289.53 +7- 127.41

Power Output Objective 49.95 +/- 25.82 312.95 +7- 77.42

Subjective 41.84 +/- 26.84 178.78 +7- 34.12

Objective + Subjective 112.69 +/- 32.20 264.34 +/- 49.16

Total Summative 99.69 +7- 25.16 187.51 +/- 33.04

Total Process-Level 625.03 +7- 490.41 209.85 +/- 41.31

tions of each feature type to prediction accuracy. Of particular interest are the contri-

bution of adherence information, the collection of which is enabled by the use of CBT

technologies. In looking at the individual feature sets in Table 4.5 (first 4 rows), it ap-

pears that the highest prediction accuracy is provided by summative adherence metrics,

followed by subjective metrics, while objective metrics provide the least prediction accu-

racy when used alone. The contribution of adherence information can be further noted

by comparing the models with and without adherence information. By comparing the

last three rows for each target in Table 4.5, we can see that the models that include

summative adherence information perform better than the models using only objective

and subjective information, while process-level adherence features appear to have much

worse performance. For example, the linear regression MSE for models without adher-

ence information (5040 and 112.69 for adherence and power output targets, respectively)

are higher than those that include summative adherence information (4943 and 99.69)

while much lower than those with process-level adherence information (24164 and 625.03).

This indicates that summative adherence metrics contribute to post-hoc prediction accu-
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racy beyond the objective and subjective metrics alone, while the action-level adherence

metrics are not predictive of later performance. Since the performance of the individual

metric models are generally better than the combined models, the individual summative

adherence models result in the best prediction performance on this dataset. The top

three feature sets that result in the best prediction performance for each algorithm are

summarized in Table 4.6.

An important application of supervised learning to training datasets includes the

prediction of future trainee performance. While the post-hoc analysis presented above

can help to identify the features that are most informative once the program is completed,

to assist with TI predictions must be made prior to the end of the training program. Thus,

it is worthwhile to investigate the development of prediction accuracy over the course of

the training program to determine the usefulness of supervised approaches in informing

the timing of TI.

Temporal Prediction Results

A second investigation was conducted to explore the development of model fits over time

using linear regression to fit power output in the test module as a target variable. As the

trainee moves through the training program, more information becomes available to an

evaluator. Thus, datasets were created that were representative of information available

after each module. For example, after Module 1, the module 1 adherence information,

module 1 quiz score, module 1 subjective ratings, and demographic information would

Table 4.6: Feature Sets with Best Regression Performance. Targets are performance
metrics from the test module, while the feature sets listed are drawn from the training
modules.

Algorithm Target #1 #2 #3

. Adherence Summative Subjective Objective
Linear RegressionAdenc Adherence

Power Output Summative Subjective Objective
Adherence

. Adherence Summative Subjective Total Sum-
Adherence mative

Power Output Summative Subjective Total Sum-
Adherence mative
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already be available. However, the equivalent information for later modules would not

yet be available. Figure 4-8 shows model generalization performance (using the same

LOO strategy) at the end of each module using only the information available both with

and without the process-level adherence information.

There are several important findings from Figure 4-8. First, the model error actually

increases as more information is incorporated into the model construction. This is an

interesting finding on this dataset, as it indicates that the best time to make predictions

of future performance is after the first module. This seems counterintuitive, but the result

follows one of the most important challenges that was identified in Chapter 3: overfitting.

As more features are included in the model, they may be used to fit noise within the

training data rather than the underlying relationships. The increasing error shown in

Figure 4-8 indicates that the extra features from additional modules are contributing to

overfitting, and create sensitive models that have trouble predicting previously unseen
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data. Therefore, Figure 4-8 does not necessarily suggest that the features in Module 2 and

Module 3 are not useful at all, but rather that through overfitting the increased number

of features creates difficulties in generalization performance. This result does create

difficulties in utilizing this method for recommending intervention timing for training

evaluators, and rather suggests that the evaluator use fewer rather than more features

when predicting performance.

Second, similar to the post-hoc analysis, the summative adherence models have bet-

ter performance than those using the process-level adherence information for all three

modules. Third, at Module 2 the process-level model error increases dramatically as

compared to the summative model, and shows very wide error bars. This indicates that

the model accuracy varies widely from trainee to trainee, and a more detailed explanation

can be found by looking at the model predictions. In Module 1 (the simplest module),

all trainees were able to generally follow the procedures, and thus generated action-level

data that was similar to each other. In this case, the model is making predictions for

previously unseen data that has feature values in the same range as those used for train-

ing the model. In Module 2, a few trainees became very lost early on in the procedures,

and began performing actions seemingly randomly with the interface. The resultant ad-

herence behavior of these trainees was markedly different than the rest of the trainees.

Thus, when the model tries to predict the performance of one of the poorly-performing

trainees, it struggles to use the same simple relationships used to train the model on

feature values that are well outside the expected range.

However, this raises the question of why the summative adherence information did not

have this same difficulty? A probable explanation lies in the nature of each feature. At

the summative level, any trainees that get lost will have similarly poor adherence scores,

and can be used to help make predictions on other struggling trainees. In the process-level

information, trainees who get lost may have radically different feature values dependent

upon when they became lost in the procedure. For example, if one trainee gets lost at

step 1, s/he will have a very poor adherence for step 1. If another trainee becomes lost

at step 4, s/he will similarly have a poor adherence value for step 4. When the process-

level information is included in the model training, it treats these cases differently (e.g.

"Trainee A became lost at step 1"). At the summative level, where the trainees have

similarly poor adherence scores, this information essentially tells the model that "the
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trainee became lost."

This result provides an important lesson for training evaluators attempting to use

machine learning on training data. The models created assume that the behaviors of new

trainees will be similar to those of prior trainees (used in the training of the model). If

features are selected that make trainees unique from each other, as with the process-level

information here, the generalization performance of the model will be poor. In Figure

4-8, it is clear that the summative adherence information is better able to avoid this

issue of features that make some trainees different from all other trainees, maintaining

the generalizability of the model.

4.5.3 Classification Results

As previously discussed, there are several discrete targets on this dataset (correct proce-

dure selection and solution completion) that require the use of classification approaches

for supervised learning. Thus, the regression analysis was repeated using these categorical

target variables and classification techniques: logistic regression, SVMs, and ANNs. The

primary performance variable of interest in this analysis was the classification error rate.

Table 4.7 shows the post-hoc results for each classification technique. There are several

important conclusions from these results. First, ANNs seem to result in generally the

best performance across the three algorithms tested, primarily using the largest feature

sets (total summative and total process-level). This may be due to the greater flexibility

of the algorithm to fit non-linearities in the more complex feature sets. Second, logis-

tic regression runs into computational difficulties when utilizing the combined datasets,

while SVMs and ANNs do not. This issue relates to the rigidity and assumptions made

by logistic regression compared to the more flexible SVM and ANN methods. Overall,

on complex datasets such as from the procedure-based environment presented here, it

appears that the flexibility of ANN algorithms is useful in classification tasks. Third, it

is apparent that while the combined feature sets generally offer the best performance,

reasonable performance is able to be achieved though each of the individual feature sets

(adherence, objective, and subjective). This indicates that all of the metric types used

may contribute to model fits in classification approaches.

Last, there are major differences between the prediction accuracy of the various target

metrics. Procedure selection generally has the poorest prediction accuracies. The lowest
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Table 4.7: Post-hoc Classification Results. Data indicate classification error (%) using
each feature set to predict each target listed. Best performing methods across algorithms

are shown in gray.

Feature Set Target Logistic Regres- SVM ANN
sion

Summative Procedure Selec- 43.2 +/- 0.126 46.0 +/- 1.43 44.44 +/- 1.656
Adherence tion

Solution Comple- 17.3 +/- 0.108 20.0 +/- 1.33 22.22 +/- 1.171
tion

Process- Procedure Selec- 51.4 +/- 0.132 43.0 +/- 1.160 53.328 +7- 1.147
Level tion
Adherence Solution Comple- 22.2 +/- 0.128 28.0 +/- 1.033 21.109 +/- 0.820

tion

. Procedure Selec- 38.0 +/- 1.229 52.0 +/- 1.549 54.439 +/- 2.694
Objective to

tion

Solution Comple- 23.0 +/- 1.767 17.0 +/- 1.160 11.11 +/- 1.047
tion

. Procedure Selec- 43.0 7- 1.703 34.0 +7- 1.578 35.552 +/- 1.366
Subjective totion

Solution Comple- 28.0 +/- 1.932 21.0 +/- 0.876 16.665 +/- 1.309
tion

Total Procedure Selec- Data Incompati- 49.0 +/- 0.994 52.217 7- 1.576
Summative tion bility

Solution Comple- Data Incompati- 14.0 +7- 0.843 17.776 7- 1.500
tion bility

Total Procedure Selec- Data Incompati- 52.0 +/- 1.751 42.218 +7- 1.366
Process- tion bility
Level Solution Comple- Data Incompati- 18.0 +/- 0.789 15.554 +7- 1.405

tion bility

error rates are achieved on predicting solution completion (15-25%) However, it is infor-

mative to compare these accuracies to a more "naive" approach. For example, a natural

strategy might be to classify all trainees into the most common class in the variable. For

the variables presented, this would result in an overall error rate of 48.9%, and 17.0% for

procedure selection and solution completion, respectively. When comparing the outputs

of the algorithms to these "naive" models, it is clear that there is little to no improve-

ment from the machine learning methods. Thus, even though the results indicate that

ANNs performed the best of the three classification methods tested, the classification

approach overall does not yield meaningful results over even simpler percentage based

models. Since the post-hoc models (using all information available from training) do

not improve predictions over naive approaches, models based on subsets of these features
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in a temporal analysis demonstrate similar poor prediction performance. Thus for this

dataset, the classification approach was not able to aid evaluators in informing TI timing

over simple naive models.

4.5.4 Discussion of Prediction Results

The results indicate several important findings for the use of machine learning algorithms

in this rule-based training setting. Post-hoc regression results revealed the importance of

summative adherence information for post-hoc prediction. As seen in Tables 4.5 and 4.6,

the models using summative adherence alone resulted in the best overall generalization

performance across all the feature sets for both methods. This result was not found for the

models with process-level adherence information, which generally had poorer prediction

performance than all other feature sets. Given that both the summative and process-

level adherence information are fundamentally generated in a similar way, it is interesting

that one version of adherence would result in the best performance while another the

worst. There are several possible explanations for this result. First, the process-level

information could not be included in the models in its raw form, due to the high number

of features it contains. It is possible that the PCA process to reduce the dimensionality

of the process-level information removed a considerable amount of useful information for

prediction. Second, the process-level metrics measure performance for individual actions

or mistakes on steps by the trainees, while the target performance metrics represent an

overall measure of the trainee performance on the final module. Thus, there may be

little relationship between individual mistakes in the training modules and patterns of

overall performance on the test module. Using the same logic, it seems reasonable that

overall (summative) measurements of adherence during training would correlate well with

adherence behavior during the test module. This is important from a training evaluation

standpoint, as it indicates that adherence (an important part of safety in rule-based

environments) as well as other performance metrics are consistent with adherence to

procedures during the training process itself.

For all of the methods and targets in Table 4.6, using summative adherence rather

than the process-level adherence improved prediction performance. However, as a re-

minder the calculation of the module-level "summative" adherence still requires the mea-

surement of adherence for each action, as described in Equation C.1. This indicates that
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the action-level adherence information is useful for trainee performance prediction, but

only when modeled using an overall, module-level form. Since the summative form of ad-

herence provided the lowest generalization prediction error rates, process-level adherence

information should be collected as part of the assessment regimen, but converted to sum-

mative form prior to use as features in supervised learning. Additionally, the post-hoc

regression analysis showed that the simpler linear regression algorithm out-performed the

more complex ANN algorithm every feature set and target except for the prediction of

adherence in the final module based on summative adherence from the training modules

(see Table 4.5). This finding indicates that on similar rule-based datasets, simple linear

regression may be preferred to ANN regression.

A temporal analysis of prediction performance over time indicated similar results as

the post-hoc analysis, showing that the summative adherence information was preferable

to the process-level information for generalization performance. Specifically, it was found

that the nature of the process-level information created uniqueness across trainees that

created difficulties in prediction accuracy for a few struggling trainees. Additionally,

it was clear from the temporal analysis that overfitting is a major issue on this rule-

based dataset, and using fewer features improved generalization performance. Due to the

overfitting issues, the ability of this method to make recommendations for the timing of

TI is limited, as it merely suggested that the most accurate predictions could be made

at Module 1 due to the fewest features being used at that time.

The classification analysis provided different results from regression in the selection

of machine learning algorithms. In Table 4.7 it is seen that the simplest method (logistic

regression) encountered numerical difficulties when using the larger feature sets, while the

more complex SVM and ANN models did not have similar difficulties. While it would

be possible to reformat the data to remove these errors, the purpose of this analysis

is to investigate these algorithms on a typical dataset as would be used by a training

evaluator. In its basic form, the dataset is not compatible with the logistic regression

algorithm, which indicates a potential weakness of the algorithm on similar rule-based

datasets. Rather, the results presented in Table 4.7 indicate that the ANN approach

provides the lowest classification error and therefore best performance on this dataset.

However, there is an important caveat to the classification findings. The performance

of the models for all feature sets were not noticeably better than the naive error rates of
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48% and 17% that are obtained by assigning a single class to all trainees. This indicates

that the classification approach was not appropriate for this dataset, and could be the

result of the nature of the targets (procedure selection and solution completion), or could

be related to the features themselves. In particular, a lesson may be drawn from the

unsupervised analysis presented earlier in this chapter. The BIC indicated the presence

of only a single cluster based on the features in this dataset. It is possible that this

mirrors the classification results, indicating that in this dataset there do not exist strong

predictive relationships to separate trainees into categories. It also sends an important

lesson to training evaluators using these predictive methods on similar datasets: the

model will output a prediction value for any dataset, but this does not guarantee that

the resultant model is useful for prediction. Since the classification models cannot provide

better prediction than the naive models, it would be inappropriate to use these models

to drive quality assurance or TI.

4.6 Summary

This chapter presented the selection, methods, and results of both unsupervised and

supervised approaches on a rule-based dataset. The findings from this analysis has pro-

vided insights into the usefulness of these methods for assisting with training evaluation

in rule-based environments. The main takeaways from this work include:

1. The performance of the simpler clustering algorithms (k-means and hierarchical

clustering) in external and internal metrics indicate that these methods are preferred

to more complex GMM and SOM clustering approaches on this rule-based dataset.

All three types of metrics (adherence, objective, subjective) contributed to cluster

algorithm performance.

2. The BIC analysis indicated that this dataset may be best represented using a single

cluster, and splitting trainees into categories based on performance may be diffi-

cult on datasets similar to the one presented here. This finding was reflected in

the results of the supervised classification analysis, which indicated that the most

favorable model performances was equivalent to predicting all trainees into a single

performance category.
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3. An alternative strategy using the "elbow" method identified three clusters, which

provides a more useful split for training evaluators. Cluster algorithm results using

three clusters were able to divide trainees into "poor", "moderate", and "good"

performance categories. A series of analyses indicated that cluster performance

was best on this dataset when using summative Levenshtein distance along with

objective and subjective metrics.

4. Dimensionality reduction was critical on this datset to allow for the use of process-

level adherence metrics in supervised analysis. Similar datasets that collect action-

by-action information will likely need to use similar approaches to reduce the di-

mensionality of the feature space to prevent overfitting.

5. Summative adherence metrics from the training modules provided the best overall

performance in prediction of adherence and power output in the test module. This

indicates that adherence measurement as described in this data collection experi-

ment is predictive of future procedure adherence and overall performance.

6. Process-level adherence information did not improve prediction over summative ad-

herence or other feature types (subjective, objective). While the information may

be useful in summative form, the inclusion of action-by-action adherence informa-

tion is not useful for prediction models or descriptive clustering approaches.

7. Regression results suggested that the simpler linear regression approach was pre-

ferred to the more complex ANN models. However, as shown in the classification

analysis, the assumptions in the simpler models can create numerical difficulties on

complex datasets such as the rule-based dataset presented here.

There are several important limitations of this analysis based on the properties of

the dataset used. First, the number of trainees was very limited, which likely played

a major role in the issues related to overfitting in supervised approaches. Second, the

collected dataset was limited based on logistical considerations, and the training program

only utilized three training modules followed by a test module. The shortened training

program as compared to typical rule-based environments may have limited the ability

to see temporal benefits of process-level information. Third, the trainees used in the

data collection process described in this chapter were generally novices to nuclear power

133



plant environments. Thus, these results may not generalize well to retraining of veteran

operators.

This chapter has presented findings from machine learning approaches on a rule-based

training setting: a procedure-based training environment. The procedure-oriented task

structure, high numbers of process-level features and the selection, and use of adherence

metrics in this environment impacted the results of machine learning approaches on this

dataset, which showed mixed success. This raises questions about how such approaches

will generalize to knowledge-based environments, or if the changes in training structure

and metrics will alter the results of applying machine learning approaches to a knowledge-

based dataset. To answer these questions the next chapter, Chapter 5, presents a similar

analysis to this chapter, utilizing data from a representative knowledge-based training

setting: a classroom training environment.
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Chapter 5

Application of Machine Learning to

Knowledge-Based Training

Environments

As discussed in Chapter 1, one of the important types of training environments to consider

for trainee assessment is structured around knowledge-based tasks. These environments

commonly focus on a traditional classroom style of training, utilizing summative metrics

for assessment such as projects, presentations, or examinations. Chapter 2 introduced

the changing landscape of knowledge-based training due to the rising popularity of online

and computer-based training methods. The larger, process-level data sets that can be

obtained from these newer systems may have assessment benefits in addition to the tra-

ditional summative information (e.g. examinations) in terms of accuracy, consistency, or

timing. To determine the usefulness of machine learning algorithms in knowledge-based

settings for assessment both with and without process-level information, an exemplary

classroom dataset was obtained that incorporates both traditional classroom elements

as well as online components. Both unsupervised and supervised machine learning algo-

rithms were then applied to this dataset to investigate the applicability of the algorithms.

This chapter is divided into three main sections. The first section provides a brief

overview of the data collection methods and the dataset used in the analysis. The second

section outlines the unsupervised learning approaches and results on the dataset. The

third section reports the equivalent methods and results from the supervised approaches.

Within each of the latter two sections, a set of conclusions and recommendations is

135



presented based on the results for each machine learning approach.

5.1 Classroom Dataset

De-identified data was obtained from a mixed graduate and undergraduate Human Com-

puter Interaction (HCI) course. Most of the course was conducted in a traditional class-

room format, however a set of online daily quizzes were incorporated to assess comprehen-

sion of the reading material prior to each class. For the purposes of this study, the quiz

data are utilized for its temporal and process-level information. As such, the process-level

models include these features, while the traditional models created only utilize the sum-

mative features. The students that completed the course for a grade included 9 graduate

students and 31 undergraduate students (40 total). A variety of student assessment data

were collected in the course and a full list is presented in Table 5.1. All data in Table 5.1

were graded on a scale of 0-100, and the remainder of the grade for graduate students

was based on an additional term project. The final grade was available both as a raw

numeric score on a scale of 0-100, as well as on an ordinal scale (A,B,C, etc.).

Additional grade contribution was available from several additional sources beyond

those shown in Table 5.1. These included the graduate project, a case study presentation,

course evaluation, and extra credit opportunities. As these were either only available for

a small subset of the students or only peripherally related to the subject material, these

were excluded from the machine learning analysis. By summing over the column of

instances in Table 5.1, the collected dataset represents 27 individual metrics for use in

machine learning. For the machine learning prediction algorithms, the final grade (either

numerical or ordinal) represents the primary prediction target for supervised learning

approaches. In this dataset, the ordinal grade only contained examples of A, B, and

C (no D or F), and therefore represent three classes for classification approaches. The

remaining 26 metrics were available to be used directly as features in the machine learning

models. Additionally, for each category an agglomerative feature was created by taking

the average of that category (e.g. "project average"), resulting in five additional features.

Records were also available for excused and unexcused absences for each student,

which resulted in a recorded score of "0" for the daily quiz on that day. However, since

excused absences were not included in the calculation of the final grade, the five students
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Table 5.1: Assessment Techniques used in human factors course dataset. * indicates
grade contribution for graduate students
Metric Type Description Number Total Con-

of In- tribution
stances to Final
in Course Course

Grade
Daily Process- Quiz questions regarding 19 10%,7%*
Quizzes Level comprehension of the read-

ing homework assignments,
multiple choice (10 ques-
tions)

Projects Summative Projects that focused on the 3 33%,27%*
understanding and applica-
tion of the course concepts

Problem Summative Quantitative homework 2 12%,8%*
Sets problem sets
(Psets)
Tests Summative Cumulative examinations 2 40%,25%*

covering all prior course
material

that had excused absences (all students had 2 or more absences) were excluded from the

analysis for simplicity in the application of machine learning models. A boxplot of the

dataset after removing the excused absentees is shown in Figure 5-1.

The resultant total possible features for machine learning (31, from 26 individual

metrics plus 5 agglomerative metrics) is nearly equivalent to the number of individual

students (35). This scenario of high number of features to data points poses significant

challenges to the machine learning approach [151]. For small datasets, the primary con-

cern is the tendency for machine learning models to overfit training data. Consider a

case with 100 unique features and 100 students in the training set. In a linear regres-

sion model, a single feature for each student could be used to perfectly predict the final

grade. However, the weights associated with these fits would be specifically tailored for

the training data and would have difficulty in predicting previously unseen student data.

To counter this tendency to overfit data, feature selection (dimensionality reduction)

methods can be utilized to reduce the number of features. In cases where domain knowl-

edge is available, ad-hoc feature selection or reduction can be an effective method [152].

In this case, it is apparent by the number of instances that the largest contributor to

feature vector size are the daily quizzes (19 instances). Therefore, one way to approach
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Figure 5-1: Boxplot of dataset after removing excused absentees. Median values are
shown as central marks, edges of the box represent 25th-75th percentile. Whiskers are
shown for data up to 1.5 times the interquartile range. Outliers are plotted individually
with a "+".

the dimensionality reduction is by creating reduced feature sets of quizzes. Unsuper-

vised learning contains a set of algorithms that perform feature selection and reduction

by analyzing the relationships between the features and the data. The results of these

algorithms on this dataset are shown in the unsupervised learning section below.

5.2 Unsupervised Learning

As discussed in Chapter 2, unsupervised learning techniques can generally be divided into

clustering and feature selection methods. Clustering techniques find natural groupings in

the data based on similarities across the feature set. Feature selection methods analyze

the features themselves to identify useful inputs to machine learning models or create

new inputs (through combination or transformation) that describe the variability in the
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data with as few features as possible. In this section both of these types of methods are

applied to the classroom dataset, and a range of algorithms are tested for their usefulness.

5.2.1 Cluster Analysis

Identifying clusters in data can be useful in helping to identify particular data points

that show similar feature values to each other. Thus, cluster analysis can be used to find

trainees that exhibit similar behaviors or performance profiles. This can be useful in an

assessment and intervention setting, as identifying a set of trainees with similar behaviors

could identify a group intervention strategy. However, there are several considerations

introduced in Chapter 3 in the application of clustering approaches on a dataset. First,

the specific clustering algorithm(s) must be selected. Second, transformations or stan-

dardization of the data may be required as cluster algorithms are highly dependent upon

measuring distances in the feature space. Third, a particular distance measure for the

dataset must be selected. Once these have been addressed, cluster algorithm performance

may be compared for the dataset.

Clustering Algorithms

There are a range of clustering algorithms, and a selection of common methods of varying

complexity were presented in Chapter 3. As a reminder, these are k-means, hierarchical

clustering, Gaussian Mixture Models (GMMs) and Self-Organizing Maps (SOMs). These

methods represent a range of clustering algorithm types: a centroid model, connectivity

model, distribution model, and topological model, respectively. An analysis of these

methods on the classroom dataset described here provides insight into which methods

(if any) are useful on data from a typical knowledge-based training domain. Prior to

running the algorithms on the dataset, it is important to select a data standardization

technique and distance measure as discussed in Chapter 3. The following sections discuss

the selection of these parameters for the clustering analysis.

Data Standardization

As discussed in Chapter 3, it can be important for cluster analysis to standardize across

different feature types to create consistency in distances measured in the feature space.

The two main methods for standardization are the z-score transformation, which fits data
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to a standard normal distribution, and the range transformation, which scales values along

each feature to a value between 0 and 1. For the classroom dataset presented, both z-score

and range transformations were tested for clustering performance using a basic k-means

algorithm (excluded here for brevity, see Appendix J for results). For most feature sets,

the models created using range-transformed features outperformed those created from

z-score transformations. This was particularly observed for feature sets containing the

process-level quiz scores, as these values tended to often carry values of 80-100 or 0

when an unexcused absence occurred. With unusual value distributions such as this, it

is not surprising that the range transformation produced better performance. Based on

these results, in the following sections the analyses are based on models using a range

transformation for the input features.

Distance Measure

Chapter 3 also discussed the importance of selecting a distance measure when using clus-

tering algorithms. Since similarity between data points in the feature space is based

upon the distance between these points, the choice of distance measure can have a strong

impact on clustering algorithm performance. In knowledge-based settings such as the

classroom dataset used here, distances are calculated based on the scores from the vari-

ous assessments (usually graded on a scale of 0-100 as in this dataset). In this sense, the

Manhattan distance simply represents the sum of differences in scores across each assess-

ment. As an example, consider a student that has a (pre-transformed) score of 80 on each

of the two tests, while a second student received a 90 on both tests. In the Manhattan

paradigm, the distance would simply be calculated as 10+10 = 20 points difference. The

Euclidean distance would treat the two features as orthogonal, calculating a cross-feature

distance of V200 ~ 14.14. Thus, Euclidean distance will calculate a lower distance for

differences across multiple features than will the Manhattan distance.

In this simple example, Euclidean distance will treat the difference of 10 across both

tests as approximately equivalent to a distance of 14 on a single test. For the classroom

dataset, Chebychev distance results in simply finding the greatest difference in score

across all assessments (in the example given, this would simply be 10). However, the

Chebychev distance would generally not result in a useful measure on this dataset, as all

students that had an unexcused absence (and thus a score of 0) would immediately be
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assigned a large distance to all students who did not have an absence on that same day.

Given that missing a single class is unlikely to be the largest factor in determining overall

student performance, it is not prudent to use Chebychev distance on this dataset.

For the classroom dataset, the advantages and disadvantages between using Euclidean

distance and Manhattan distance are less clear, but can again be illustrated with an

example. Consider a student that gets a score of 80 on all assessments compared to

one that gets 90 on all assessments. As the number of features used in the feature

space increases, the distance as measured by Manhattan distance will increase linearly.

That is, increasing from 10 to 20 dimensions will double the distance. This has the

advantage of maintaining a clear meaning to the observer as it directly translates into

the sum of differences in scores across the students in question. Regardless of feature

space dimensionality, an increase on a single score by one student of 1 point compared

to the other student will result in an increase in Manhattan distance by 1. However,

this may not always be beneficial at high numbers of features. Consider the data set

presented here, with two test scores and 19 quiz scores. On feature sets that include the

quizzes, Manhattan distance will be particularly dominated by the quiz scores. This may

be contrary to the intention of training evaluators, as other scores (such as the tests)

may be deemed to be more important than quizzes for judging similarity. In fact, due to

the differing contributions to the final grade across the features, it suggests that not all

features should be treated as equally important.

The Euclidean distance has a non-linear relationship with increasing features, such

that the increase in distance is depressed relative to the linear relationship seen with

Manhattan. Consider our example of the 80s and 90s students. Table 5.2 shows the

progression of Manhattan and Euclidean distances for this case for 1, 2, 3, and 4 features.

As can be seen in the table, the impact of each added feature on the Euclidean distance

measure is depressed relative to the linear progression of the Manhattan distance. Given

that the largest feature set in the classroom dataset is the quizzes (which have lower grade

contribution than other measures), this depression with increasing number of features may

be desirable.

Another strategy to increase the importance of higher-value assessments such as tests

is through unequal weighting of features in the calculation of distance in the feature

space. Classroom datasets lend themselves particularly well to this approach, as the
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Table 5.2: Progression of Manhattan and Euclidean Distance For Example Case

Distance Measure Number of Features

1 2 3 4
Manhattan Distance 10 20 30 40
Euclidean Distance 10 14.14 17.32 20

intermediate assessments during the course are used in the calculation of the final grade.

Thus, the relative contribution of each assessment to the final grade can be directly used

to weight each feature in the feature space. In this way, trainees that score similarly on

highly weighted features such as tests will be measured as closer in the feature space than

trainees who score similarly on quizzes. A simple example can illustrate this distinction.

Consider three example trainees, Bob, Sam, and Jenny. Bob scores an 80 on a test and a

90 on a quiz, Sam scores a 90 on the test and an 80 on the quiz, and Jenny scores a 90 on

both test and quiz. In an unweighted environment, Bob and Sam will have equal similarity

with Jenny, even though Sam differed on the highly important test, while Sam differed on

the much less important quiz. With weighting, Sam would be considered closer to Jenny

than Bob. There may be special circumstances in which it may be desirable to weight all

features equally, but in most cases similarity on important summative measures such as

tests is likely more informative than similarity on less significant simpler measures. Based

on these arguments, a weighted Euclidean distance using the relative contribution of each

feature to the final grade was selected for use in the cluster analysis presented below. For

example, each test was 20% of the final grade, while all 19 quizzes together comprised

10% of the final grade. Thus in the weighted format, each test was weighted as equivalent

to 38 quizzes. With the algorithms, data transformation, and distance measure selected,

the algorithms can now be analyzed for their relative performance. The following section

reviews the metrics used in the analysis of clustering algorithms.

Metrics for Comparison

To compare the algorithms, a set of measures of performance must be selected. As dis-

cussed in Chapter 3, both external and internal metrics can be used. As a reminder,

external metrics use knowledge of target classes (from supervised learning) to represent

an underlying "truth", while internal metrics focus on the properties of the clusters them-

selves and do not require any outside information. In this analysis, the external metrics of
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entropy and purity as well as the internal metrics of compactness and isolation are used,

which are a range of common metrics used for judging cluster algorithm performance.

Additionally, subjective judgment from a subject matter expert (SME) was included in

the comparison to provide qualitative insight on which clustering algorithms resulted

in better performance. The results for the comparisons of the clustering algorithms is

presented in the following section.

Cluster Algorithm Comparison

Each cluster algorithm was run with a variety of feature sets, including summative fea-

tures only, process-level (quiz) features only, and combined features. Summative features

included tests, projects, and problem sets. The only process level feature used in this

analysis were the quizzes. Additionally, both individual scores (e.g. quiz 1, quiz 2) and

averaged scores (e.g. average quiz score) for each feature type were run. For external met-

rics, the categorical final grade (A,B,C) was used for reference. Since the external metric

calculation is simplest where the number of clusters is equal to the number of classes,

three clusters were used in this analysis. Additionally, this had the benefit of allowing for

significant membership in each cluster (>6-8), which allows for more meaningful inter-

pretation by a training evaluator. For algorithms with random initializations (k-means

and SOM), 1000 algorithms runs were computed and the average value is shown. The

results of the analysis are shown in Table 5.3. In this table, "Summative Averages" refers

to the average of each of the summative metrics (problem sets, projects, tests), "Summa-

tive Individual" refers to the individual scores for each summative metric, "Process-level

Averages" uses only the quiz average, while "Process-level Individual" uses each quiz

score separately. The final two rows, "Total Averages" and "Total Individual" refer to

datasets that include both process-level and summative information, either using only

average values or individual scores.
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Table 5.3: Unsupervised Algorithm Comparison. For clarity, the highest performing algorithms for each
metric are shaded

Features Evaluation K-means Agglomerative Gaussian Mixture SOM
Clustering Model

Inspection Slight cluster am- Tends to combine Slight cluster am- Slight cluster am-

Summative biguity classes 1 and 2 biguity biguity
Averages Entropy 1.509 1.52 1.502 1.526

Purity 0.333 0.399 0.333 0.362
Compactness 2.959 4.043 4.304 2.953
Isolation 3.1675 2.989 3.303 3.17

Inspection Slight cluster am- Tends to combine Error between Slight error be-

Summative In- biguity classes 1 and 2 classes 1 and 2 tween classes 2
and 3

dividual Entropy 1.51 1.574 1.517 1.512
Purity 0.334 0.365 0.336 0.343
Compactness 12.164 14.112 13.17 11.946
Isolation 4.554 8.022 4.914 4.451

Inspection Empty clusters Tends to combine Tends to combine Moderate cluster

Process-level classes 1 and 2 classes 1 and 2 ambiguity
Averages Entropy Empty clusters 1.547 1.526 1.541

Purity Empty clusters 0.423 0.362 0.376
Compactness Empty clusters 0.339 0.36 0.331
Isolation Empty clusters 1.97 1.97 1.491

Inspection Moderate cluster Tends to combine Data Incompati- Tends to combine

ambiguity all classes bility all classes
Process-level Entropy 1.513 1.403 Data Incompati- 1.57
Individual bility

Purity 0.337 0.211 Data Incompati- 0.359
bility

Compactness 25.346 27.42 Data Incompati- 27.31
bility

Isolation 12.363 25.467 Data Incompati- 17.038
bility

Inspection Slight error for Moderate error Slight error for Slight error at
class 2 for class 2 class 2 class boundaries

Total Averages Entropy 1.51 1.539 1.509 1.526
Purity 0.334 0.323 0.33 0.362
Compactness 4.664 4.95 6.073 4.536
Isolation 3.315 3.526 2.398 3.481

Inspection Error between Tends to combine Data Incompati- Tends to combine
classes 2 and 3 all classes bility into 2 classes

Total Individ- Entropy 1.508 1.W Data Incompati- 1.45
ual bility

Purity 0.331 0.447 Data Incompati- 0.281
bility

Compactness 42.303 46.582 Data Incompati- 44.004
bility

Isolation 11.418 30.582 Data Incompati- 19.749
bility



There are several observations that can be made from Table 5.3. First, as evidenced by

feature sets that utilize averages have generally better performance than those that utilize

the equivalent individual feature sets. Second, several algorithm/feature set combinations

resulted in numerical difficulties, and failed to converge on a set of clusters. Specifically,

the k-means algorithm resulted in empty clusters when run only on process-level averages,

and the GMM algorithm failed on both process-level and combined individual metrics due

to data incompatibilities. The difficulty encountered by k-means implies that for just the

quiz average (only a single feature), it was not possible to divide into three unique groups.

Given that this was only a single feature, it is entirely possible that the data are not well

represented by three groups (a weakness of the feature rather than the algorithm). For the

GMM difficulties, duplicated information across several features prevented the algorithm

from finding a unique solution. While these duplicated values could be manually removed,

this work focuses on the use of machine learning algorithms by training evaluators, who

may not be aware of or able to make the necessary modifications to the data. Therefore,

the data was left unaltered, and this result indicates a weakness of using GMMs on this

type of training dataset. Third, k-means and SOM tend to outperform the other two

algorithms used, in terms of subjective inspection as well as by entropy and compactness.

Agglomerative clustering generally performed the best in purity, but did not perform

as well as the other algorithms for most other measures. This is due to the algorithm's

tendency to combine classes together into larger clusters, which is not ideal for evaluation

as it reduces the separability of trainees for intervention.

Based on these results and the advantages and disadvantages of each algorithm dis-

cussed in Chapter 3, the k-means algorithm is identified as the optimal algorithm on this

dataset, both for its simplicity and efficiency, as well as the strong performance of the

clusters generated relative to the other algorithms. The following section investigates the

properties of clusters generated by the k-means algorithm on this dataset.

Cluster Analysis

Using the k-means algorithm selected, clusters were created over a variety of features,

primarily those shown in Table 5.1. To determine the optimal number of clusters (one

of the requirements for using k-means as discussed earlier), the Bayesian Information

Criterion (BIC) was calculated for a range of number of clusters from 1 to 20. The
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results are shown in Figure 5-2, noting that lower BIC is preferable. Based on these

results, we can see that 3-4 clusters (or even potentially 6 clusters) have the lowest BIC.

Given this, and that there are three grade classifications in the dataset (A,B,C), it was

selected that three clusters should be used for k-means modeling. Therefore, the results

presented in Table 3 for each feature set remain useful for analyzing the performance of

the models.

As previously mentioned, the feature sets that utilized averages generally resulted

in better performance than those using individual measures. Additionally, the feature

sets that included summative assessments (rows 1-2 and 5-6) showed dramatically bet-

ter performance by inspection than did those with process-level assessment alone. In

particular, the models created using summative averages and combined (total) averages

demonstrated the best clustering on the set, particularly as compared to the grade clas-

sifications. Interestingly, since the performance of k-means was relatively high even for

internal metrics, the selection of three groups and the division of students could have
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Figure 5-2: BIC analysis of k-means by number of clusters.
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been achieved even without the knowledge of the true grade classification. In essence, this

methodology lends some objective support to the idea that the selected grade divisions

match well with natural divisions in the data. When the clusters are directly compared

to the classes, only 2 of 35 students are different between the cluster assignments using

k-means and the grade assignments (A,BC).

Cluster Analysis for Feature Selection

In addition to the feature sets shown in Table 5.3, a cluster analysis was conducted

to identify features to be used in supervised analyses presented later in this chapter.

Particularly, the number of individual quiz features (19) is the largest contributor to

feature set size. If certain quizzes can be selected as particularly informative, a subset of

quizzes could be used as features for supervised learning. To this end, the following steps

were used:

" Average the quiz score data across all students for each quiz

* For each quiz, subtract this average from 100 to obtain the average error

* Run k-means with 2 groups on the average errors to separate based on higher or

lower average error

The results are presented in Table 5.4, for running k-means with 2 clusters. In this

way, a set of "high error" quizzes can objectively be identified that exhibit the highest

variability. The topics for each of the "high error" quizzes are shown in Table 5.5.

Overall, these topic areas may have represented more technical and calculation-intensive

areas than the topics quizzes in the low-error group (such as workload, decision making,

and situation awareness). By utilizing a subset of the most influential quizzes, we can

limit the size of the feature space used in the supervised learning models. Therefore,

these features were tested for usefulness in a supervised learning approach. The results

of the supervised testing with these "high error" quizzes is presented in the supervised

learning section later in this chapter.

Summary

In summary, a set of clustering techniques were tested on the classroom dataset, and

k-means was identified as a useful clustering approach. The cluster analysis using this
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Table 5.4: K-means clustering results on average quiz error
Cluster Cluster Center Member Quizzes
Normal Error 4.05 1,4,7,8,9,11,12,13,15,16,17,18,19
High Error 10.53 2,3,5,6,10,14

Table 5.5: High-Error Quizzes and Associated Topics
Quiz Number Topics Covered
2 Vision
3 Research Methods
5 Vestibular / Spatial

Disorientation
6 Displays
10 Error
14 Controls

technique revealed an independent objective assessment for grade distribution (in this

case confirming the instructor's distribution). Additionally, it was shown that clustering

methods could be used as part of a dimensionality reduction process that can feed into

supervised learning approaches. In the next section, additional unsupervised feature

selection analysis is presented, followed by the supervised results.

5.2.2 Dimensionality Reduction

Dimensionality reduction (a form of feature selection) allows for the representation of

data in high dimensional space in a lower-dimensional space. There are two primary

reasons for this transformation: to remove redundant or irrelevant features, or to try

to avoid the curse of dimensionality. The first is fairly self-explanatory, where it allows

the user to identify and remove features that are not providing useful content, which

helps computation time and can prevent overfitting. The second relates to the idea of

the curse of dimensionality, which states that as the number of dimensions increase, the

separation between points approaches a constant value. This creates great difficulties

for algorithms that require measurements of distances or partitions of space, such as

clustering algorithms and Support Vector Machines (SVMs). Typically these issues only

arise when the number of features is in the range of 100s to 1000s or more, and thus in

this dataset, the first reason (relating to overfitting) is the primary driver for performing

dimensionality reduction.

The main strategy for dimension reduction revolves around feature extraction, which
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involves the transformation of data from high dimensional space into lower dimensions.

The most common technique is Principal Component Analysis (PCA), which performs

a linear mapping of the data into lower dimensional space. The objective of PCA is

to obtain a smaller set of orthogonal projections along the original feature space in a

way that the variance of the data along the new dimensions is maximized. By using the

first several components generated, dimensionality reduction can be achieved (for further

information on PCA, see [12]). For this dataset, the daily quizzes represent the largest

contributor to the dimensionality of the feature space. Therefore, PCA was applied to

the 19 quizzes and the detailed results can be found in Appendix K.

The major sources of variation in the dataset are indicated by their high contribu-

tion to the first few principle components generated by PCA. While the full principal

component vectors are available in Appendix K, Table 5.6 shows the top five quizzes

contributing to each of the first three principal components, as determined from their

respective coefficient values. It is interesting to note that many of the quizzes that are

major contributors to the principal components were previously identified as "high-error"

quizzes through the clustering methods. In fact, all of the high-error quizzes appear ex-

cept for quiz 2. There are also several other quizzes that appear multiple times in the

first three components, none of which were labeled as high-error: quizzes 1, 8, and 9.

Since these are influential in the PCA model but were not identified as high-error, there

must be other aspects to these quizzes that allow differentiation between trainees.

There is an important additional result from the comparison between the "high-error"

quizzes as determined by clustering and the results of PCA. In the cluster-based approach,

the particular quizzes that are of greatest importance are explicitly identified by the

nature of the method. The assessments and topics associated with the high error quizzes

suggest to the evaluator topics with which the trainees have difficulty. PCA, on the

other hand, requires the evaluator to analyze the resultant components from the analysis

to identify the quizzes that make the largest contributions to the component scores.

Table 5.6: Largest Contributing Quizzes to Principal Components. Quizzes that were
identified in clustering as "high-error" are bolded.
Component Top Five Quizzes
1 9,14, 1, 13, 8
2 5,6, 17,4,3
3 1, 9, 15,10, 8
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Additionally, the quizzes (such as identified in Table 5.6 are based on their contributions

to the variance in the data, not on the errors committed by the trainees. Thus, while it is

seen that there is some overlap between the high error quizzes and the top contributors

to the principle components, it would be inadvisable to assume that all of the topics

associated with the quizzes in Table 5.6 should be included in an intervention. This means

that PCA requires greater interpretation by the training evaluator than the cluster-based

approach, and is a disadvantage of using PCA as part of training evaluation.

Overall, this method can be useful to training evaluation in two ways: it can highlight

particular assessment metrics (such as the individual quizzes from this dataset) that are

particularly descriptive of the data, and the resultant principal components can be used

as features in supervised learning prediction of later trainee performance. To determine

the effectiveness of PCA as a dimensionality reduction technique on this dataset, the

features derived from the first three principal components were used as features in the

supervised learning analysis in the next section. The formula shown in Equation 5.1

can be used to calculate the principal component scores for any particular trainee. Note

that in this equation, the data X is a 1 x 19 vector, and the weights W is a 19 x 3

vector, resulting in a 1 x 3 vector representing three principal component scores T for

each trainee.

T=XW (5.1)

In the next section on supervised learning, the features generated from PCA are

referred to as "PCA-reduced". Since only quizzes were used in the PCA analysis, these

features only act as a replacement for the quiz features. Note that in the supervised

learning testing, the calculation of features was based on the full PCA result across all

quizzes, not just the top five quizzes listed in Table 5.6. In the following section, the

performance of the PCA-reduced quiz data is compared to models built using all the quiz

information as well as those using just the high-error quizzes.

5.3 Supervised Learning

As discussed in Chapter 2, supervised learning utilizes labeled data to form relationships

between features and labels in the data. If the labels represent a state at a future time
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compared to the features, this is easily interpreted as a predictive approach. In training,

supervised learning can use in-training features to predict later-training or post-training

performance. This is useful in several applications as discussed in Chapter 3, particularly

for informing trainee intervention (TI) by providing early feedback on trainees that are

predicted to have poor performance. This section provides an analysis of how supervised

learning approaches can meet the proposed applications in a knowledge-based training

setting. The section begins with an overview of the supervised learning algorithms used

in the analysis, with a particular focus on the knowledge-based training dataset.

5.3.1 Supervised Algorithms

A range of supervised learning algorithms were introduced in Chapter 2 that cover the

most common types of algorithms. As a reminder, these are linear regression, logis-

tic regression, support vector machines (SVMs), and artificial neural networks (ANNs),

listed roughly in order of increasing complexity. Linear regression and ANNs are com-

mon methods for regression, where the labels are measured on a continuous scale. ANNs

are also well suited for classification approaches, as are logistic regression and SVMs.

In a classification problem, the labels are discrete. Each of these algorithms were in-

vestigated for use on the knowledge-based dataset, in both regression and classification

approaches as appropriate. Both regression and classification predictions are useful for

training evaluation in knowledge-based settings, as final grades are typically represented

both by numeric scores and by letter grades.

For the regression techniques discussed, the numeric final course grade was used as the

target for prediction. For the classification techniques listed, the letter grade (A,B,C) in-

stead used as the prediction target. An accurate prediction of continuous measures (such

as the numeric course grade) has a higher level of precision over discrete measures such

as the letter grade. However, it may not be possible to achieve accurate prediction of the

continuous numeric grade using regression techniques. Additionally, it could be argued

that from an intervention perspective, the educator does not care about the exact numeric

grade and only cares whether the student falls into a category of "needs intervention" or

"does not need intervention". Thus for the purposes of informing intervention, the clas-

sification approach may be preferable. Due to these considerations, both regression and

classification techniques were included in the analysis. The particular methods chosen
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represent some of the most common and flexible methods used in machine learning, and

have been used successfully in a wide variety of domains [12].

Generalization performance was assessed for all methods using the Leave-One-Out

(LOO) strategy described in Chapter 4. For non-ANN methods, the remaining data

was used for training the model. For ANN methods (which require verification data for

setting model weights), the remaining data was randomly split using 80% training and

20% validation. The use of the LOO strategy helps to mitigate the issues associated with

having a small dataset, by attempting to maximize the training set size used in model

construction.

Both SVMs and ANNs have parameters that must be selected in the creation of these

models. In SVM models, the choice of kernel (such as linear, polynomial, or Gaussian)

can impact the capability to fit functions. In this analysis, the standard linear kernel was

implemented to maximize the simplicity of the resultant models. For determining the

structure of the ANN models, several heuristics can be used. For nearly all mappings of

the input space into the output space, one hidden layer is sufficient to characterize the

mapping [148] and therefore was selected to be used for the ANNs created in this study.

The optimal number of neurons in the hidden layer depends on several variables including

the size of the training set, the complexity of the underlying function, the noise, and the

activation function selected [149]. However, general heuristics have suggested that the

number of training data should be between 2 and 10 times the sum of the size of the input,

hidden, and output layers (e.g. [150]). In this study, given the number of data available

and the general range of the input layer, a moderate network size of 10 hidden neurons

was selected. While fewer neurons could have been used to meet the heuristic value for

larger feature sets, using too few neurons also runs the risk of creating a bottleneck of

information in the model, limiting the flexibility of the ANN approach.

5.3.2 Regression Results

As previously discussed, the target variable used in regression approaches was the numeric

course grade for the student. This section presents both the results of a post-hoc analysis

to analyze the prediction accuracy of each method, as well as a temporal analysis of the

benefits of process-level information in the regression setting.
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Post-hoc Prediction Results

The selected regression methods (linear regression and ANN regression) were compared

based on the model fit of the data on the test set, as measured by MSE (lower MSE

indicates better model generalization performance). Table 5.7 shows the average perfor-

mance results on the test set over 10 runs using a variety of combinations of features with

each technique, including both agglomerative and individual metrics. Cumulative grade

percentage of features used in model construction are presented in the third column of

the table.

The data in Table 5.7 reveals several relationships about the feature sets and the

machine learning techniques used. By comparing MSE values within a column, the rela-

tive contribution of different feature sets to final grade prediction can be observed. The

test metrics provide the greatest predictive fits for the final grade relative to the other

individual metrics. It also indicates that for all feature sets except the quiz scores, the

linear regression models outperform the equivalent ANN model. For the model using

only quiz scores, linear regression showed the worst performance among all feature sets,

possibly due to overfitting when using the full 19 quiz score features. However, it is inter-

esting to note that the performance when including the other scores (tests, projects, and

problem sets), the MSE improves considerably over the quiz scores alone (22.8 and 288,

respectively). This indicates that overfitting cannot fully explain the poor performance

of linear regression on the quiz score feature set, as including additional features typically

will make overfitting issues worse. A more complete explanation can be found in the com-

bination of the contribution of the features to prediction accuracy and their contribution

to overfitting. The equivalent model including all scores except the quiz scores achieved

an average MSE of 1.53, which is considerably better than the 22.8 seen when quiz scores

are included. Therefore, the full model with all scores (22.8) is able to take advantage

of the explanatory power contained in the tests, projects, and problem sets to improve

performance over the quiz score only model (288), but shows worse performance due to

overfitting from the model that does not include quiz scores at all (1.53).

This result is also seen across reduced versions of the quiz score data using linear

regression, with the models that include the other metrics (MSE 1.67 and 1.44 for "high-

error" and PCA-reduced, respectively) performing better than the models using quiz

information alone (55.6 and 45.1, respectively). Overall, this result points to the im-
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Table 5.7: Regression results. * indicates only "high error" quizzes used. "+" indicates
multiple features used in model creation. PCA-reduced refers to the first three principal
components from the quiz scores as determined by PCA. MSE shown

dard error from LOO generalization performance. Shading indicates

best performance across algorithms for each feature set.

is mean +/- stan-

methods with the

Features Used Number of Grade Contribu- Linear Regres- ANN Regression
Features tion sion MSE MSE

Quiz Average 1 10% 40.4 t 7.02 100 21.4

Test Average 1 40% 7.14 + 1.91 64.8 38.9

Project Average 1 33% 46.4 8.01 126 66.7

Problem Set Av- 1 12% 33.9 t 6.20 63.9 21.8
erage

Quiz Average + 4 95% 2.81 1.06 160 29.5
Test Average +
Project Average
+ Problem Set
Average

Test Scores + 7 85% 1.53 0.821 158 30.3
Project Scores
+ Problem Set
Scores

Quiz Scores 19 10% 288 104 75.3 t 19.6

Quiz Scores + 26 95% 22.8 t 14.3 183 45.3
Test Scores +
Project Scores
+ Problem Set
Scores

Quiz Scores (*) 6 3.2% 55.6 t 9.89 - 104 34.0

Quiz Scores (*) 13 88.2% 1.67 0.676 171 34.0
+ Test Scores
+ Project Scores
+ Problem Set
Scores

PCA-Reduced 3 10% 45.1 8.85 T401 127

PCA-Reduced 10 95% 1.44 0.740 139 24.8
+ Test Scores +
Project Scores
+ Problem Set
Scores
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portance of the test scores and other traditional assessment metrics over the online quiz

information in post-hoc prediction. While the highest performing model in Table 5.7

was linear regression using the PCA-reduced quiz set in addition to the traditional met-

rics, the performance was not much better than the equivalent model without any quiz

information (1.44 and 1.53, respectively). Therefore, it appears that either in reduced

or un-reduced form, the quiz information does not provide significant benefits to post-

hoc prediction. While ANNs are able to make better use of the quiz score information

alone, since the process-level quiz information provides little explanatory power over the

summative metrics there is little evidence to support the use of the more complex ANN

techniques over simple linear regression on this dataset.

An additional important insight that can be drawn from Table 5.7 is the relative

grade contribution of the feature set in comparison to the model fit using those features

(see Table 1). Since the target variable is a function of the input variables, certain

model predictions may be more useful than others by providing additional information

about the final grade over the inherent grade contribution. Consider the linear regression

models using individual metrics of quiz average compared to project average. Since the

project average accounts for 33% of the grade, it would be expected to provide more

explanatory power of final performance than the quizzes that only contributed 10% of

the final grade. However, the generalization performance of the models based on project

average (MSE 46.4 and 126 for linear regression and ANN, respectively) are similar to

those based on quiz average (40.4 and 100 for linear regression and ANN, respectively).

This indicates that the quiz information provides more explanatory power compared to

the contribution of the quizzes to the final grade. Since a principal objective of prediction

of trainee performances focuses on the early prediction of trainee performance to inform

intervention, the ability of metrics such as quizzes to make accurate predictions when

not much of the grade is yet accounted for indicates that these metrics may be useful for

temporal prediction, and this analysis is presented later in this chapter.

The subset of "high error" quizzes seem to show the highest proportion of explana-

tory power to grade contribution among all feature sets. This is an important finding for

several reasons. First, this indicates that these "high-error" quizzes are able to capture

most of the information contained in the quiz scores while reducing the number of fea-

tures from 19 to 6, which reduces the potential for the model to overfit the data. Second,
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since the "high-error" quizzes comprise a smaller percentage of the final grade, this in-

dicates that the relative explanatory power of these features (MSE 55.6 and 104 for 6%

contribution) is high compared to the superset of all quizzes (MSE 288 and 75.3 for 10%

contribution). However, the low explanatory power of models based on quiz scores alone

indicates that while the quizzes may provide a high explanatory power relative to their

grade contribution, a successful model will include other features (e.g. tests, problem

sets) in addition to the quiz scores.

The information in Table 5.7 can also be used to compare the use of dimensionality

reduction through the determination of "high error" quizzes by clustering and the PCA-

reduced quiz scores. As can be seen in rows 9 and 11 of the table, the PCA-reduced

quiz information results in slightly better generalization performance (MSE = 1.44) than

the equivalent models from the "high error" quizzes (MSE = 1.67). This indicates that

there is still valuable information for prediction contained within the lower error quizzes,

which the PCA transformation is able to utilize. While this suggests that PCA is a better

strategy for prediction accuracy, as discussed earlier it also introduces an additional level

of interpretation for training evaluators. From an intervention perspective, it is not only

useful to identify which trainees are in need of intervention (prediction accuracy) but

also which topics should be included in the intervention. This makes the comparison of

PCA and cluster-based approaches to dimension reduction more difficult. PCA seems

to provide the best prediction accuracy, while cluster-based reduction allows for easier

identification of topics to include in intervention.

When making a recommendation about the best algorithm to use in knowledge-based

settings, there are additional considerations beyond just the prediction accuracy. As a

reminder from Chapter 3, there are two primary applications for supervised learning in

training evaluation: improving prediction models and evaluating assessment metrics. For

the first application, the prediction performance is indeed the best indicator for identifying

the best algorithm. However, evaluating assessment metrics requires that the evaluator

be able to understand the contribution of each feature (metric) to the prediction accuracy.

Since the main goal of assessment metrics is to be predictive of operational performance,

this information can help the evaluator make decisions on which metrics should be added,

modified, or removed for future implementations of the training program. The ability of

the supervised learning algorithm to help in this task depends upon the simplicity and
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clarity of relationships between the features and targets in the model.

The two algorithms tested, linear regression and ANNs, differ markedly in the clar-

ity of the relationships between features and targets. In linear regression, the weights

associated of each feature directly correspond to the contribution of that feature to the

prediction value. This makes it clear to the evaluator by looking at the model as to which

features had the strongest impact on the prediction. In ANNs, however, information is

passed through the hidden layer of the model, which complicates the ability to be able

to see direct connections between input and output layers. Features which may be domi-

nant in some neurons may be of lesser importance for other neurons, obscuring the overall

contribution of the feature to prediction accuracy. Additionally, since ANNs are typically

trained by an iterative method called "back-propagation" (similar to gradient descent),

the resultant model and weights will depend upon the initialization of the network pa-

rameters. In cases where there is multicollinearity, this can be particularly dangerous for

interpretation. Rather than indicating any errors in model construction, an ANN will

arbitrarily assign weights to collinear features to meet the appropriate total contribution

to the final output. Given two features that provide similar information, the model may

assign a much higher weighting to the first feature in one run of the algorithm, and a

higher weighting to the second feature in another run. Thus, it would be dangerous for

the evaluator to assume from the first run that the first feature is of much greater im-

portance to prediction than the second feature. Based on these reasons, the use of more

complex models such as ANNs reduces the benefits of supervised learning for evaluating

particular assessment metrics.

Predictions of performance have greater value the earlier they can be obtained. Thus,

an investigation of the usefulness of process-level information over time is conducted in

the next section. As discussed previously, there appear to be few advantages of ANN

models over linear models. There are also disadvantages in utilizing ANNs over linear

regression models due to the difficulty in determining a clear link between the created

model and the contribution of each input. This is a particularly important consideration

for this application, as targeted interventions rely on the educator's understanding of

which topics or areas are difficult for students. In ANN models, the relationship between

individual features and final grade prediction may be difficult to ascertain, and may limit

the usefulness of ANNs in a targeted intervention approach. Therefore, for the temporal
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analysis presented in the following section, linear regression models were selected for the

further analysis.

Temporal Prediction Results

A second investigation was conducted to analyze the capacity of regression models to

make predictions of the final grades as early as possible in the course. At each class

session of the course, additional assignments or examinations are completed and thus

more information is available to the models. Table 5.8 lists the class sessions for which

quizzes, projects, problem sets, and test scores were assigned. For a prediction task at

any given timepoint, information would be available from assessments at or below that

class number. For example, for predictions at class 12, ten quizzes, one project, and one

problem set would be available to use as features for prediction.

When considering the temporal progression of the class, quiz grades are accumulated

far earlier in the course progression than the other measures. Therefore, this information

may be of assistance in making early predictions relative to those based on the traditional

classroom measures. To test the predictive assistance provided by quiz scores, three sets

of models were created: 1) a model that only utilized the traditional discrete classroom

measures (projects, problem sets, and tests), 2) a model that incorporated all quiz scores

as features, and 3) a model that incorporated the "high error" quizzes. Note that the

PCA-reduced quiz set was not included in this analysis, as it requires knowledge of all

19 quizzes and thus is of limited usefulness in a temporal setting.

Figure 5-3 shows the comparison in generalization performance (as calculated by MSE)

over time between the three models used. In Figure 5-3, the data points indicate MSE

over the LOO runs for each model, and the error bars show the standard error for the

model performance.

Table 5.8: Timing of availability of assessment information. Numbers indicate the class
number (out of 23 classes in the semester) at which an assessment was taken. There were
no cases in which multiple assessments of the same type were taken in a single class.

Assessment Type Classes with Assessment
Quizzes 2-7, 9-12, 14-22
Projects 11,14,18
Problem Sets 7, 21
Tests 13, 23
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Figure 5-3: Comparison of generalization performance over time of linear prediction
models using varying levels of quiz information. Error bars indicate standard error.

There are several important observations from Figure 5-3. First, it can be seen that

the trend of the performance across models is the opposite of what would be expected.

Specifically, the model with the least available information (without any quiz data), has

the best average performance, followed by the model with some quiz information (the

"high error" quiz model), and the worst performance is found with the model that in-

cludes all quiz data. This result is consistent across all time points in the course, and

indicates that more information actually hurts the model performance. However, there is

a clear explanation for this: overfitting. While it is counterintuitive that additional infor-

mation would hurt performance, the model performance shown in Figure 5-3 represents

generalization performance on data that was not used to train the model. Thus, if addi-

tional information included in a model is used to fit the noise in the training set rather

than the true underlying relationships, the generalization performance can decrease. It

appears that this is a severe problem when including all quizzes, as these models show
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much higher error than either the no-quiz or "high-error" quiz model at the later parts of

the course. The use of the "high-error" quizzes helps to mitigate this problem, and has

similar performance to the no-quiz model. The overfitting problem is created through

the small dataset size associated with this dataset (only 35 trainees), and indicates that

in these cases the inclusion of the higher frequency process-level quiz information is not

helpful for future prediction, even early in the course when few other metrics are available.

Second, the error bars on the data for the all-quiz models indicate relatively high

variability in the models. Since these were generated based on a LOO procedure, this

indicates that there is very high sensitivity of these models to the particular datapoint

that is being left out of the model training process. This can be further interpreted that

there are data points in the data set that are unique; that is, the rest of the data set

is not representative of similar behavior to that data point (and thus models are unable

to correctly predict the behavior of the unseen data point). This is another limitation

of a small data set: if too few data points are included, there is a higher chance that

the dataset is not representative of the true distribution of the underlying population.

Additionally, the error bars are large enough that it is difficult to unequivocally argue

that the inclusion of quiz information hurts performance. For many of the stages of the

course, the model performance across the feature sets are similar. Thus, while it is clear

that the inclusion of all of the process-level features (the all-quiz model) does not appear

to help with early prediction performance, models with some quiz information (such as

the "high-error" models) perform similarly to the no-quiz model.

It is clear from Figure 5-3 that overfitting is a problem on this data set even at the

early stages of the course, and the modeling approaches are severely limited by the size

of the collected dataset. In other CBT settings, such as massive open online courses

(MOOCs), this problem may be alleviated through the availability of thousands or more

students. This then raises the question of whether process-level information (such as the

"high-error" quiz model) is advantageous when the data set size is not so limited, and the

data set is truly representative of the underlying population. To address this question,

an additional analysis was conducted that investigated the potential improvement using

the process-level quiz information through model fit.
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Overall Temporal Prediction

While generalization performance is the standard for reporting prediction performance,

an alternative strategy can indicate the potential predictive capacity of features through

looking at overall model fit (including both training and test data). Since it includes the

training data, models created in this way should not be interpreted as indicative of true

prediction performance. However, they do indicate the potential information content in

the features, assuming that the data set size is essentially unlimited and thus the training

and test set are virtually identical. In this way, the potential for these techniques when

the dataset size is not as constrained can be investigated.

Figure 5-4 shows the overall model performance for the same three feature sets over

time as previously shown in Figure 5-3. In Figure 5-4, the performance of the models is

objectively assessed by Sum-Squared Error (SSE) of the model prediction (a variant of

MSE), given in equation 5.2. On this dataset, both the MSE and SSE are highly skewed

distributions (non-normal) over the LOO model runs. Thus, in Figure 5-4 the points

shown represent median SSE and the error bars show a single standard deviation of SSE.

SSE = (i - yi) 2  (5.2)
i=1

where is the predicted final grade by the model, and y is the actual final grade. Lower

SSE indicates closer predictions to the actual values, and thus better model performance.

The timing of the problem sets, projects, and tests are labeled on Figure 5-4, and it

can be seen that for the traditional model (without quiz data), model performance stays

constant until new information from one of these sources is available.

Several observations can be made based on these results. First, the process-level

models (that include quiz data) exhibit a lower SSE than the traditional model, which is

expected since the feature sets of the process-level models are a superset of that of the

traditional model. Second, it is apparent that the improvement in performance varies

over time (as measured by the vertical distance between the traditional and process-level

SSE), which is indicative that not all quizzes contribute equally to prediction performance.

Consider the change in model performances for the all-quiz model between classes 2 and

3. At class 2, the performance is nearly identical to the other two models, and thus

the quiz data available at that time (quiz 1) does not make a major contribution to
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Figure 5-4: Comparison of overall performance over time of linear prediction models
using varying levels of quiz information. Error based on predicted final grade compared
to actual final grade.

reducing prediction error. By contrast, at class 3 this model improves considerably in

performance, indicating that the new set of quiz information (quizzes 1 and 2) allows the

model to achieve a much more accurate prediction of final grade. Interestingly, this effect

is not solely the result of quiz 2, as the model of high-error quizzes does not see similar

improvement at the availability of quiz 2 data. This indicates that it is not merely quiz

2, but the combination of the information from quizzes 1 and 2 that allow the all-quiz

model to outperform the others.

Additionally, a comparison can be drawn between the two models that include quiz

data in Figure 5-4. As expected, the model with all quizzes is able to achieve a better

fit of the data than the model that includes only the "high error" quizzes. For some

time periods of the class (e.g., classes 4-6) the two models have very similar prediction

performance. However, there are other time periods (e.g., class 11) where the model that
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includes all quizzes has a much lower SSE than the "high-error" model.

Based on the results in Figure 5-4, we can also begin to answer the question of when

accurate predictions of grade can be made with each of these models. The figure demon-

strates that the quiz information improves the prediction over the traditional model, but

does this allow for accurate predictions to be made earlier? The determination of how

much accuracy is necessary to make a prediction is a complex topic. As has been stated

earlier, prediction information has greater value the earlier it is available, but predictions

become more accurate with time. Therefore the concepts of model accuracy and time are

highly intertwined. Early, accurate predictions have great value for informing targeted

intervention approaches. However, the nature of the intervention, cost, and efficacy over

time will also play a role in choosing the appropriate model accuracy.

Therefore, the exact performance level necessary to inform intervention is domain

dependent. However, we can still draw useful conclusions about the results of the specific

temporal analysis in Figure 5-4. A horizontal line on the graph in Figure 5-4 indicates

the time at which each model reaches any particular performance threshold. Consider the

performance level represented by an SSE of 800. The all-quiz model achieves this level

of performance by class 11, while the other two models do not reach this performance

level until class 13, just after the first test. There are important implications of this

timing difference. The prediction accuracy level that can be achieved after the first test

with the no-quiz and high-error-quiz models can be achieved prior to the first test with

the all-quiz model. This is very valuable from a targeted intervention approach, as an

intervention prior to the first test could improve test performance for struggling students

(such as through an extra study session, etc.). In the consideration of both the accuracy

and temporal advantages provided by the process-level information, it is clear that this

information provides considerable benefits to educators and students.

Overall, the temporal analysis has indicated several important findings. First, the size

of the presented knowledge-based data set created major challenges for generalization

performance through overfitting. On the presented dataset, the analysis indicated that

the few summative level features were more useful for prediction than the process-level

quiz data. Second, when the limitations of the data set size are removed, it is clear the

process level information does have key performance improvements over the summative-

only models, and on larger data sets could be used to inform the timing of training
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intervention.

On the classroom dataset, the final grade target is commonly represented as both

a continuous numeric value and as a letter grade. Thus, predictions of letter grade

could also be useful for training supervisors. On discrete targets such as letter grade, a

classification prediction approach is necessary. A similar analysis was conducted for the

classification approach and is presented in the following section.

5.3.3 Classification Results

As previously discussed, prediction results of ordinal grade (A,B,C) may be as informative

as predictions of continuous grade for the purposes of targeted intervention. If higher

accuracy can be achieved through a discrete classification approach on course datasets,

this method may be a useful alternative to regression.

Post-hoc Prediction Results

A similar approach was taken to classification as the regression analysis presented earlier.

An overall analysis was conducted to determine the best techniques for classification using

a variety of feature sets. Table 5.9 shows the results of using a variety of combinations of

features with each classification method used, using 10 random data splits (60% training,

20% validation, 20% test) to reduce the importance of random assignment to training,

validation, and test sets. In Table 5.9, the standard classification algorithm performance

measure of classification error is used. Note, however, that since this is a measure of error,

lower values represent better performance. Alternatively a "naive" misclassification rate

can be calculated based on simply classifying all students under the class with the highest

membership. Since there are 16 students in the largest class in this dataset out of 35 total

students (16 "B" grades), this "naive" strategy would result in the misclassification of 19

of 35 students, or a misclassification error rate of around 54%. For some of the feature sets

(particularly the quiz-only and project-only feature sets), the algorithms do not perform

appreciably better than this "naive" strategy, which indicates that these feature sets have

insufficient information to allow for useful application of machine learning classification

techniques.

Several conclusions are apparent from the results in Table 5.9. First, when comparing

the quiz scores (row 7) to the dimensionality reduced quiz datasets (row 9 for cluster-
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Table 5.9: Classification results. * indicates only "high error" quizzes used. "+" indicates
multiple features used in model creation. PCA-reduced refers to the first three principal
components from the quiz scores as determined by PCA. Shading indicates algorithm(s)
with the lowest error for each feature set.

Features Used Number of Grade Logistic SVM Clas- ANN Clas-
Features Contribu- Regression sification sification

tion Classifica- Error (%) Error (%)
tion Error

(%)
Quiz Average 1 10% 55.14 50.00 t 50.86 t

0.56 0.65 1.44

Test Average 1 40% 19.43 t 23.71 23.14 t
0.20 0.23 1.68

Project Average 1 33% 53.43 55.43 50.29 t
0.91 0.57 0.76

Problem Set Av- 1 12% 44.57 t 50.00 39.14
erage 1.05 0.25 2.25

Quiz Average + 4 95% 6.29 0.78 18.00 12.00
Test Average + 1.05 1.65
Project Average
+ Problem Set
Average

Test Scores + 7 85% 0.086 t 0.114 0.154
Project Scores 0.006 0.007 0.031
+ Problem Set
Scores

Quiz Scores 19 10% 27.71 t 34.00 t 53.43 t
0.65 0.66 0.97

Quiz Scores (*) 6 3.2% 43.71 + 52.00 t 50.29 t
0.85 0.68 1.63

Quiz Scores (*) 13 88.2% 13.14 t 10.00 t 11.14 t
+ Test Scores 0.69 0.80 2.00
+ Project Scores
+ Problem Set
Scores

PCA-Reduced 3 10% 51.70 t 50.00 t 51.7 + 1.20
0.50 0.50

PCA-Reduced 10 95% 14.30 14.00 + 10.9 1.50
+ Test Scores + 0.40 0.40
Project Scores
+ Problem Set
Scores
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based reduction and row 11 for PCA-reduced), it appears that the full quiz score models

generally result in considerably better performance than the reduced models as measured

by classification error. Additionally, the PCA-reduced set does not perform better than

the "high-error" quiz models from clustering. Both of these findings are in contrast to the

regression results, which found that the PCA-reduced feature set provided the best post-

hoc performance. Second, no single classification algorithm appears to be consistently

superior in prediction performance to the other two. Both logistic regression and ANNs

tended to outperform SVM models across most feature sets. This may be due to the use

of the standard linear kernel in the SVM algorithm, which will have difficulties modeling

non-linearities in the data. For any particular feature set, the resultant ANN model will

have a higher complexity than the corresponding logistic regression model. As with re-

gression analysis, the increased complexity and difficulty in drawing connections between

inputs and outputs makes ANNs less desirable for informing targeted intervention. Based

on the similar classification performance between ANNs and logistic regression models

and the greater interpretability of logistic regression, logistic regression was selected for

further temporal analysis.

Temporal Prediction Results

For the classification approach, the same set of features over time was used from Table

5.8. At each point in time, three models were constructed: a model without process-level

quiz data, a model including all quiz data, and a model including only the "high-error"

quizzes. Figure 5-5 below compares the logistic regression model performances over time

through classification error.

The data in Figure 5-5 show a similar result to that of Figure 5-3 from the regression

results. In generalization performance on this dataset, the quiz information seems to not

be helpful in predictions early in the course. The generally worse performance of the

models that include the process-level quiz data are likely attributed to overfitting due

to the small data set size. Additionally, until after the first test the error rates of all

of the models (including the best-performing no-quiz model) are not markedly different

than the naive error rate (54%). This is largely due to the difficulty in the convergence of

the maximum likelihood estimation calculations, and all of the models in this time range

exceeded the iteration limit specified (10,000 iterations). This is an important result as
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Figure 5-5: Comparison of generalization performance of logistic prediction models using
varying levels of quiz information.

well, as the indication is that for few features without high correlation to the targets, the

classification approach may not be reasonable.

All in all, it seems that the same overfitting issues that were seen in regression also arise

in the classification approach. Similarly to the regression models, it may be worthwhile to

view the overall model fit over time to analyze the potential contribution of process-level

features in larger datasets (such as MOOCs). The next section presents the results for

overall model fit.

Overall Temporal Prediction

A similar analysis was conducted as the regression analysis above, which studied the

overall model fit on both training and test data. The results for this analysis are shown

in Figure 5-6. In Figure 5-6, we can see that prior to the introduction of the first problem

set, the behavior of the models is erratic and is near the naive error rate (54%) for all
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three models. This is largely due to the difficulty in the convergence of the maximum

likelihood estimation calculations, and all of the models in this time range exceeded the

iteration limit specified (10,000 iterations). This is an important result as well, as the

indication is that for few features without high correlation to the targets, the classification

approach may not be reasonable.

Beyond the first problem set, we can see the models begin to diverge in performance,

with the models that include quiz data showing lower classification error than the tradi-

tional model. The all-quiz model maintains the best performance, while the "high-error"

quiz model has performance in between the all-quiz model and the traditional model.

This result is expected as the information included in the model increases from the no-

quiz model to the high-error model to the all-quiz model. The models including quiz

data show similar performance near the beginning of the course (e.g. classes 6-10), but

diverge in performance just before the first test (classes 11-12). At the end of the course,
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the "high-error" quiz model again demonstrates moderate performance, achieving perfect

classification before the traditional model but after the all-quiz model.

The results show similar implications to those from the overall model fit regression

analysis, such that the models that include process-level quiz information offer poten-

tial advantages for both accuracy and timing. For example, the all-quiz model is able

to achieve approximately the same classification performance before the first test as the

traditional model achieves after the first test, which could be immensely useful for inter-

ventions. Additionally, we can note that perfect classification is achievable immediately

after the first test with the process level model, while only occurs near the end of the

course for the traditional model, indicating that accurate classifications can be made with

the all-quiz model 8 classes before the traditional model. The additional time lends these

predictions considerably more value over those of the traditional model, as it allows for

earlier intervention in the course. From these temporal results, it is clear that the quiz

information allows for accurate predictions to be made earlier in the course, providing ad-

ditional benefits to educators and students. The decision of when an intervention should

be applied given this dataset is complex and requires knowledge of the nature of the

intervention, and is discussed further in the next section along with other implications of

the supervised learning results.

5.3.4 Discussion of Prediction Results

The results indicate several important findings. For post-hoc prediction, the quiz data

does not significantly contribute to prediction performance. This is visible from Tables 5.7

and 5.9, where the models constructed using either only the agglomerative quiz average

metric or the individual quiz scores did not achieve strong fits of the data. In regression,

these models exhibited r2 < 0.3, while for classification these models did not perform

better than simple naive models. Other features appear to be far more useful in post-hoc

prediction accuracy, such as the tests in this dataset. This provides an important lesson

for training evaluators: when summative metrics such as test data are available, these

may be more useful to prediction accuracy than process-level metrics.

However, one of the advantages of the quiz data is the increased frequency of these

assessments over the summative metrics. On the small dataset presented here, the gen-

eralization performances shown in Figures 5-3 and 5-5 indicate that despite the higher
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frequency of collection, the process-level features provide no additional benefits in gener-

alization performance. However, this result is likely due to the small size of the dataset

which results in overfitting when using the process-level quiz features. While the "all-

quiz" model showed markedly worse performance than the "no-quiz" model, it is interest-

ing to note that the "high-error" quiz models had similar performance to the "no-quiz"

model, and thus may be a better way to incorporate process-level information without

the same overfitting issues. When the overfitting problem is removed (such as in a much

larger dataset), it is clear from Figures 5-4 and 5-6 that the models with quiz information

(both "high-error" and "all-quiz") provide benefits to improving the accuracy of the pre-

dictions made earlier in the course (in both SSE and classification error). In short, while

the summative assessment techniques have better overall correlation to the final course

grade, the process-level quiz data can improve prediction performance when these other

metrics are not yet available. The temporal analysis indicates that process-level infor-

mation may be very useful to educators to inform targeted intervention, as the earlier an

intervention can be made the greater the potential impact on the outcome of the course.

The temporal analysis for overall model fit also indicates that the advantages are

greatest when using the full set of process-level information (all quizzes). The use of

"high-error" quizzes (to reduce the feature space) appears to improve performance over

the traditional model but does not provide as strong benefits as the inclusion of all

quiz information through time. This is particularly prominent in Figure 5-4, where the

performance of the all-quiz model is much better than the "high-error" quiz model just

before the first test. This result has important implications for intervention on this

dataset, as it means that students in need of intervention could be identified prior to

the first major summative assessment. However, due to the overfitting issue seen in the

generalization performance, the advantages of the entire process-level feature set may

only be realized on much larger datasets.

The analysis also allows for the comparison of the regression and classification ap-

proaches. Both Tables 5.7 and 5.9 indicate that summative information (e.g. tests or

test average) is important to have strong post-hoc performance, and there may be lit-

tle difference between the approaches when both summative and process-level data are

available. A more interesting comparison is available in the overall temporal analysis,

through the comparison of Figures 5-4 and 5-6. In both cases, error is observed to
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decrease with time. However, the progression of prediction errors are quite different.

Consider the prediction values for the all-quiz model just before and after the first test.

In the classification approach, the error drops from 17.14 (misclassifying 6 students) to

0. Qualitatively this seems to be a large change in prediction accuracy. In the regression

approach, the SSE drops from 751 to 483. If we extract the average error from this value

(by dividing by 35 students and taking the square root), we can see the average error per

student change from 4.63 to 3.71. This difference seems far less important, as it seems

unlikely that this average error change would drastically affect the educator's targeted

intervention planning. This indicates that the classification approach experiences greater

changes in prediction accuracy through time and more rapidly approaches near-perfect

prediction. Regression, on the other hand, progresses more slowly in prediction accuracy,

and this indicates that predictions earlier in the course may hold similar accuracy as

those made later in the course. Therefore, it appears that there may be advantages to

the classification approach later in the course, while regression may be more consistent in

performance earlier in the course. From an intervention perspective, on this dataset the

classification approach is preferred to regression when high certainty of trainees needing

intervention is needed (such as a high cost of intervention), while regression would be

preferred if the evaluator wants to identify trainees in need of intervention earlier in the

program. Ultimately, the utility of either approach will likely depend upon the particular

training context.

However, there are several important caveats to these results: the determination of

what model accuracy is needed and the exact timing and nature of any intervention is

dependent upon the domain. Therefore, it is necessary to have subject-matter experts

(ideally, the educators themselves) provide interpretation to the prediction results. These

experts have knowledge of the potential benefits and costs associated with an interven-

tion, and can apply this knowledge to the rates of model accuracy over time. Consider the

data shown in Figure 5-6. If the cost of an intervention is very high relative to the cost

of a failed student or trainee, it would be appropriate to wait until the model is able to

achieve near-perfect classification prior to performing an intervention. This would result

in the earliest possible intervention timing to be class 13 with the all-quiz model, class 17

with the "high-error" quiz model, and class 21 with the traditional model. Under different

assumptions of the cost/benefit properties of intervention and the costs associated with
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having a student finish the course with poor performance, the appropriate time for in-

tervention requires interpretation. However for this dataset, under all circumstances, the

process-level quiz data allowed for greater certainty in intervention earlier in the course.

For both regression and classification analysis on this dataset, simpler models (linear

regression and logistic regression) were able to achieve similar prediction performance to

more complex models (ANNs and SVMs). This may indicate simpler (or in particular,

linear) relationships between the features and the targets for this dataset. For more

complex datasets, it is yet to be shown whether models such as ANNs that can handle non-

linearities will perform stronger in a similar prediction task. In the selection of particular

methods for regression and classification on the presented dataset, it is important to

remember that one of the primary goals of modeling work is to preserve parsimony,

hearkening back to principles such as "Occam's Razor". With this in mind and the similar

performance of linear and logistic regression to more complex models, the results clearly

recommend the use of linear regression for regression analysis, and logistic regression for

classification.

5.4 Summary

This chapter described the selection of appropriate machine learning algorithms on a

knowledge-based training dataset, and the results of the application of these methods for

both unsupervised and supervised learning approaches. There are several main takeaways

from this work:

1. The performance and simplicity of k-means make it a better fit for the knowledge-

based classroom dataset among clustering techniques. Summative measures proved

more informative than process-level measures for clustering.

2. Unsupervised learning provides for dimensionality reduction prior to applying su-

pervised learning on the dataset. In this case the reduced set of quizzes based on

cluster analysis provided similar post-hoc performance in prediction through super-

vised algorithms compared to the PCA-based dimensionality reduction. However,

the cluster-based "high-error" quizzes provide more direct insight into which topics

or modules that are difficult for trainees than PCA-based methods, and thus may

be more useful from a quality control perspective.
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3. Unsupervised learning can provide objective feedback to instructors on categori-

cal splits of student or trainee performance, by providing an optimal number of

performance clusters and the appropriate cluster assignments.

4. The use of process-level information on the small dataset presented did not im-

prove summative prediction either post-hoc or temporally (the "high-error" quizzes

maintained similar generalization performance), but an analysis of the potential

benefit of the process-level information in a larger dataset indicated that it could

provide better accuracy predictions earlier in the course either through the use of

all process-level information or the reduced "high-error" feature set.

5. Simpler supervised learning algorithms are able to achieve similar or better gen-

eralization performance to more complex models, indicating that methods such as

linear and logistic regression may be preferable on these types of datasets.

This chapter has presented findings from machine learning approaches on an impor-

tant training setting: a knowledge-based training environment. The focus of knowledge-

based training on the development of high-level cognitive knowledge and skills, the lower

dimensionality (as compared to the rule-based dataset) and the lack of repetition of

assessments influenced the utility of the machine learning algorithms. There are both

similarities and differences between the findings in this chapter compared to the previous

chapter, Chapter 4. The comparison of the rule-based and knowledge-based settings and

the overall lessons for training evaluators are discussed in the following chapter, Chapter

6.
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Chapter 6

Comparison of Training

Environments

Chapter 4 and Chapter 5 described the process and results of applying machine learn-

ing algorithms to training datasets from rule-based and knowledge-based environments,

respectively. Each investigation provided insights into the difficulties and potential appli-

cations of machine learning approaches for each environment. The datasets from the two

training domains have distinct properties which impacted the required data preparation

and the results of the machine learning analysis. The rule-based dataset was notable for

its low number of modules (3) and the relatively high number of process-level features

(372). In some respects, it could be considered a more complex dataset due to the dif-

ficulty of adherence measurement and the action-level detail of the adherence metrics

collected. The knowledge-based dataset represented a longer training program, but the

process level information contained in the quiz scores was not as detailed as that of the

rule-based dataset. The properties of each dataset present unique challenges to the use of

machine learning algorithms, and this chapter discusses the findings from each analysis

with respect to the training environment and training evaluation.

This chapter serves to compare and contrast the results from Chapters 4 and 5,

discussing applications of machine learning in other datasets from similar environments

and to general training evaluation. It is divided into three main sections. The first

section provides a comparison of results between the two environments with respect to

each application. The second section covers the implications of the findings from this

research for training evaluators. The third section presents the limitations of the present
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study, and additional considerations for the interpretation of the results.

6.1 Applications of Machine Learning to Training

Evaluation

Chapter 3 proposed that there are six primary applications of machine learning algorithms

to training evaluation, presented in Figure 3-2 and reproduced here as Figure 6-1. These

applications were generally divided based on the use of unsupervised learning, supervised

learning, or a combination of both strategies. It was proposed that unsupervised learning

could contribute to label definition and the identification of high-error modules/steps,

supervised learning could provide improved prediction models and help assess trainee

evaluation methods, and the combination could improve feature selection for prediction

and inform intervention timing/content. Each of these applications are reviewed below,

in the context of the findings from the two environments presented in Chapters 4 and 5.

6.1.1 Label Definition

The first application of unsupervised learning techniques was to assist training evaluators

with label definition. As a reminder from Chapter 3, label definitions (such as the deter-

mination of a cutoff value to give a "pass" vs "fail" to trainees) can be difficult to identify.

Most commonly, these definitions are based upon subjective judgment by training evalu-

ators or chosen to split the trainees into groups of specific sizes (e.g. give the top 20% of

the class an "A"). These subjective judgments may not result in optimal cutoff values,

such that either good trainees do not pass the program, or poor trainees are able to do

so. There could be considerable debate over which of these scenarios is preferable to the

other, and it will typically depend upon the domain. If the operational environment is

hazardous or in which an operator error could have large economic or safety implications,

it is likely that the program would want to favor being conservative in graduating trainees,

with only the best trainees allowed to enter the operational environment. Alternatively,

when the training program is long and expensive, attrition of trainees can result in a

significant loss of resources, and it may make more sense to let marginally performing

trainees enter the workforce. Often, the domain may contain elements of both of these
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Figure 6-1: Hierarchy of Potential Machine Learning Applications to Human Training by
Algorithm Type.

factors, and the benefits of each strategy must be weighted. However, since these will be

domain specific, this work cannot make general recommendations across all domains in

this area.

Regardless of the optimal strategy, it is advantageous to select cutoff values that pro-

vide clear splits in the performance data. When there are few trainees with performance

near the cutoff value, there is less chance of trainees being on the incorrect side of the

cutoff. This is the advantage of using unsupervised learning for informing label defini-

tion. By the nature of the algorithms, they attempt to find clusters that are far apart

(high isolation) and where within-cluster distances are small (high compactness). In or-

der to fulfill these requirements, they tend to find natural splits in the data, in which

the separation of points in different classes is high. Choosing a cutoff with high class

separation may be apparent in simple cases, but in high dimensional space with unusual

distributions of trainee performance it may not be as clear to find natural splits in the
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data. Clustering methods objectively determine good places for these cutoffs, and thus

can inform the selection of cutoff values for labeling by training evaluators.

The results from Chapters 4 and 5 not only provide an evaluation for the effectiveness

for the clustering methods on each dataset, but also which clustering algorithms provide

the best cluster performance (and thus most confident selection of labels on the data). In

both the rule-based and knowledge-based datasets, there was a wide range of performance

across the different clustering algorithms. Specifically, the simpler methods (k-means

and agglomerative clustering) generally resulted in the best clustering performance as

determined by both external and internal metrics. The performance of SOM models

were typically similar or slightly worse than these simpler methods, while the distribution-

based GMMs struggled the most with both datasets.

These results provide some overall insights to clustering on these types of training

datasets. First, the poor results of GMMs suggest that even with the data transformations

to try to standardize the different features, the distributions over features are not well fit

with normal distributions. Since this results from both environments, it suggests this may

be an endemic property of human training data. Assessment data from many training

environments may not fit a normal distribution well, either due to the noise associated

with human behavior or due to the nature or difficulty of the task. Thus, clustering

methods that are agnostic to distribution are likely more flexible to deal with these types

of training datasets.

Second, there appear to be simple, high-level groupings that emerge amongst trainees

that are able to be captured by the basic k-means and agglomerative clustering algo-

rithms. While SOMs (which make use of ANN architectures) are able to have higher

flexibility to fit complex structures within the data, it appears that these structures do

not exist within these datasets, or at least are not significant enough to improve the

performance of SOMs over the more basic algorithms. It should be noted that this may

relate to the small size of the datasets, and it is possible that with larger numbers of

trainees more complex structures within the data would begin to form. However, as

discussed in Chapter 3, small dataset size is one of the principal constraints of current

training evaluation, and understanding the properties of algorithm performance on these

typical dataset sizes is important.

However, the results across both environments differ in terms of the usefulness of
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unsupervised clustering techniques for the selection of labels. For the knowledge-based

training dataset, clustering techniques were able to determine that three groupings were

appropriate, and the cluster assignments of trainees was a close match to the final grade

assignments ("A", "B","C"). This agreement lends support to the idea that the clustering

techniques are mimicking the decision making process of the training evaluator, and that

the evaluator made judgments for grade assignments that are in line with the objective

recommendations provided by the clustering algorithms. However, it is important to

remember that while there is good agreement on this dataset, fundamentally the cluster

results do not assign order to clusters, while the grade categories are by their nature

ordered. Thus, clustering for the purposes of label definition should be done with care in

cases where the labels have a natural ordering.

On the rule-based dataset, there were no natural performance groupings and thus

no baseline for comparing labels provided by unsupervised learning techniques. The

BIC indicated that that only a single performance group existed across all performance

metrics, but this result has little practical value for training supervisors for informing

trainee intervention (TI). While an alternate method ("elbow method") provided another

means for defining labels, these labels cannot be directly translated into performance

categories on this dataset. An additional analyis using the 4-dimensional test module

performance vector did indicate that these cluster could be loosely interpreted as overall

"poor", "moderate" and "good" categories for labeling. Without the knowledge of the

actual performances, it would be difficult to assign these qualitative labels to the groups.

6.1.2 Identify High-Error Modules/Steps

The second application of unsupervised learning was to help training evaluators identify

high-error modules or steps. As discussed in Chapter 3, the nature of computer-based

training data may create cases where a high number of features are available, but the

dataset is still heavily limited in number of trainees. In these cases, dimensionality re-

duction is critical prior to any prediction to prevent overfitting. It operates by identifying

current features or transformations of features that have high separation of the data in

the feature space. This has the additional benefit for training evaluators that it can

identify important modules or assessments that provide the greatest insight into trainee

performance (such as high-error modules/steps), and may be the most important topics
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to be included in TI.

For the knowledge-based dataset, a k-means clustering approach was used to separate

quizzes into "low error" and "high error" based on trainee performance. This was able to

identify a set of six "high error" quizzes that had greater overall performance separation

between trainees than the "low error" quizzes. This subset of high-error quizzes could

be utilized in two ways: as a form of dimensionality reduction (discussed later in the

section on feature selection), and to assist with the identification of potential topics for

intervention (discussed later in the section on intervention timing/content). Overall, on

the knowledge based dataset clustering was able to efficiently identify high error quizzes

that could be utilized in training evaluation. In addition to topics of intervention, these

high error quizzes could be targets for redesign by the evaluator to improve performance

in future iterations of the training program. However, the designer must be careful to

avoid improving training performance without improving comprehension and transfer, as

discussed in Chapter 2.

In the rule-based dataset, the equivalent use of k-means to separate process-level

action data into "low error" and "high error" was difficult due to the high dimensionality

of the process-level feature space and the nature of the data. As discussed in Chapter

3, the curse of dimensionality reduces the effectiveness of clustering algorithms in sparse

feature spaces, which may have contributed to the difficulty of utilizing this method on

the rule-based dataset. Additionally, the initial cluster comparison through the Bayesian

Information Criterion (BIC) indicated that the performance data across all variables may

be best represented by a single cluster. In this case, it would be difficult to separate the

data into "high error" and "low error" steps, and may have contributed to the difficulty

of this approach on the rule-based dataset.

Due to the differing success of this approach in these two environments, it can be con-

cluded that the usefulness of this application of unsupervised learning may highly depend

upon the dataset (and therefore domain). In particular, it seems to have been useful for

the lower-dimensional knowledge-based dataset, while not on the high-dimensional rule-

based dataset. This could indicate that this approach is best utilized only when utilizing

few features (such as module-level features) rather than individual process-level features.

In other words, this strategy may be better at identifying overarching topics with which

the trainees have difficulty rather than individual actions.

180



6.1.3 Improved Prediction Models

The first proposed application for supervised learning algorithms to training evaluation

was in the creation of improved prediction models. From a training evaluation perspec-

tive, these models have two important uses. The first is that strong prediction models

could provide a prediction of future trainee performance, which is a key goal of training

evaluation. An important part of developing strong prediction models includes select-

ing the appropriate modeling techniques and feature sets. Second, predictions of trainee

performance later in the course could provide the basis for identifying trainees that are

in need of intervention. The first is addressed through the post-hoc analyses conducted

in Chapters 4 and 5 and is discussed here, while the second through the temporal anal-

yses in those chapters and is discussed later in the section on informing intervention

timing/content.

The post-hoc analyses in both knowledge-based and rule-based environments provide

an indication of which supervised learning strategies (regression vs. classification) and

which algorithms (e.g. linear regression) provide the highest prediction performance on

these datasets. By comparing algorithm performance across a variety of feature sets, the

best modeling approaches for trainee performance prediction can be identified. Note that

these post-hoc analyses required full datasets over each training program, and thus could

not be implemented on an incomplete training dataset.

In regression analyses on both datasets, the simpler linear regression algorithms either

performed equivalently or better than the more complex ANN regression models, as

measured by MSE. This is a similar finding to the unsupervised results: fitting the basic

relationships contained in the data is sufficient for prediction purposes. While there may

be more complex underlying relationships in the data, the dataset size is not large enough

for the ANN models to have an advantage over the simple linear models. Additionally,

due to the structure of ANN models it is much more difficult for an evaluator to determine

which features were the major contributors to the prediction value, which is an important

aspect of assessing evaluation methods. For the training evaluator to understand which

assessments are the best predictors of final performance, the relationship between the

features and targets must be clearly defined. Thus, even if with larger datasets the

complexities in the data allow ANN methods to provide a slightly better fit than linear

regression, it is unlikely that the improvement in model fit would justify the increase in
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difficulty of interpretation.

For classification, a slightly different picture appears. In the knowledge-based dataset,

the same result arises that favors the simple method (logistic regression for classification)

over SVM and ANN methods. However, for the rule-based dataset, numerical difficulties

for logistic regression suggest that the flexibility of ANNs is able to better handle the

more complex dataset. Despite the preference for ANNs, results indicated that the classi-

fication approach in general struggled on the rule-based dataset, only providing marginal

gains in performance over "naive" prediction models. It is possible that the difficulty on

this dataset arises from the complexities of measuring adherence and other performance

metrics in rule-based environments, which suggests that the development of novel metrics

could help to improve prediction performance on these datasets.

6.1.4 Assess Trainee Evaluation Methods

The second application of supervised learning algorithms provides a quality assurance

aspect to the evaluation process by providing feedback on the assessment metrics col-

lected during the training program. The goal of assessment metrics is to be predictive of

future performance, and thus those metrics that are not predictive may be candidates for

modification or removal from future iterations of the training program. By comparing the

contributions of the relative feature sets in the post-hoc prediction analyses in Chapters

4 and 5, it is possible to identify metrics that provide the greatest prediction performance

in each training environment. In particular, this analysis can be used to investigate the

contribution of the new process-level metrics enabled in computer-based training settings

in comparison to traditional summative assessment metrics.

The importance of process-level information in post-hoc prediction performance dif-

fered across the two environments. In the rule-based dataset, summative information pro-

vided the largest contribution to prediction performance, and the inclusion of process-level

features did not improve prediction performance for both adherence and power output

target variables. However, the summative (module-level) form of adherence provided the

strongest post-hoc prediction accuracy. Since adherence was required to be measured

at an action-by-action level, even though the process-level features were not useful in

modeling, the results suggest that the gathering of process-level information is useful in

rule-based environments. However, for the knowledge-based dataset, summative features
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(particularly the test scores) provided the majority of post-hoc prediction performance.

When these features were included in the models, the addition of process-level information

did not further improve prediction performance.

These results provide mixed evidence for the importance of collecting process-level

information to support training evaluation. The findings suggest that when the summa-

tive measures provide strong post-hoc predictions of final performance, the addition of

process-level information may not provide significant benefits. However, when the post-

hoc prediction performance using summative information alone is relatively weak (as was

seen in the rule-based dataset), process-level information can be useful to improve the

models when calculated at the module-level. This result could be extrapolated even fur-

ther, such that in well-established training programs where the assessment methods are

well understood to relate to final performance, collecting additional process-level informa-

tion may not have benefits for post-hoc prediction. In newer training programs where the

assessment methods and their relation to final performance is not well understood, it may

be useful to build process-level assessment metrics into the training program. Addition-

ally, there may be benefits to the trainee by incorporating high-frequency process-level

assessments into the training program. Beyond these post-hoc findings, the temporal

analyses conducted also provide insights into the relative importance of process-level

information.

6.1.5 Feature Selection

The first combined application of unsupervised and supervised learning utilizes the di-

mensionality reduction techniques to prepare appropriate features prior to supervised ap-

proaches. This is a particularly important application for training programs that utilize

CBT technologies to gather larger and more complex datasets. In particular, the avail-

ability of process-level information has the potential to improve prediction performance

as described earlier, but can create issues of overfitting by increasing the dimensional-

ity of the feature space if used directly. Therefore, the analyses in Chapters 4 and 5

investigated the use of several dimensionality reduction approaches and the impact on

prediction performance of supervised learning models created using the reduced feature

sets.

On the rule-based and knowledge-based datasets, the primary method of dimensional-
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ity reduction was principal components analysis (PCA). Additionally for the knowledge-

based dataset, k-means was used to separate quiz scores into "low error" and "high error"

quizzes. These reduced datasets were then used as features for the supervised analyses.

In the knowledge-based dataset, it was possible to include the full quiz score data as a

comparison to the reduced quiz set. However, in the rule-based dataset the process-level

data based on individual actions was too high dimensionality for direct use in supervised

learning, so no equivalent comparison was possible. Additionally, with only three training

modules, the separation of module-level performance into "high-error" and "low error"

was not appropriate for this rule-based dataset but could be utilized on longer training

programs.

The comparison from the knowledge-based dataset indicated that the models built on

the reduced set of quiz information was able to capture much of the post-hoc prediction

accuracy achieved by models built from the full quiz information. However, in a temporal

analysis, the reduced quiz feature set was not able to achieve the early prediction results

obtained by using the full model. This indicates an important lesson for machine learning

on these datasets: information is lost during the dimensionality reduction process. While

this may be obvious based on the smaller number of features after the process, it is

important to recognize that this has downstream impacts on the prediction performance

using these features. It can be a useful way to condense information in cases with limited

number of trainees, but is not as effective as using the full feature set when possible.

6.1.6 Inform Intervention Timing/Content

The second combined application of unsupervised and supervised learning focuses on

TI. In particular, supervised learning algorithms that predict performance later in the

training program could be used to identify struggling trainees early in the program,

such that interventions can be the most effective. Additionally, the use of unsupervised

techniques (through the identification of high error modules discussed earlier) can suggest

possible topics for the intervention. The temporal analyses in Chapters 4 and 5 investigate

the ability of machine learning approaches to address this application.

The results from the temporal analysis in generalization performance were generally in

agreement across the two datasets collected. Due to overfitting, the prediction accuracy

on previously unseen datapoints was not improved by the inclusion of process-level infor-
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mation. While this strongly indicates that the process-level data should not be included

in prediction models using such small datasets, the usefulness in the summative adherence

information in the rule-based dataset do suggest the collection of process-level metrics.

The lack of early prediction benefits for the rule-based environment could be compounded

by the shortened training program, which only included three modules. With a longer

training program and additional trainees, it is possible that the process-level information

could be useful.

When the limitation of a small dataset is removed the importance of the high-

frequency availability of process-level information changes considerably. When looking at

overall model fit on the knowledge-based dataset, it is clear that there are significant po-

tential benefits from using the process-level information on prediction performance part-

way through the training program, even though there was little performance increase over

summative-only models for post-hoc predictions. This suggests that for larger datasets

(such as from MOOCs), the availability of process-level information could allow train-

ing evaluators to identify trainees in need of intervention much earlier than without this

information.

6.1.7 Summary

The previous sections have compared and contrasted the findings from the rule-based and

knowledge-based datasets. Table 6.1 below presents a summary of these findings. Over-

all, the use of machine learning algorithms had greater success on the knowledge-based

dataset. This may be due to the shortness or the relative complexity of the rule-based

dataset as compared to the knowledge-based dataset. However, it was demonstrated that

machine learning approaches could be used to improve training evaluation across both

training domains. There are several lessons that have been learned in the process of the

analyses presented in this work that could assist training evaluators in future uses of ma-

chine learning approaches. The next section presents these implications of the findings

for training evaluators.
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Table 6.1: Summary of Comparison between Rule-based and Knowledge-based Datasets

Application Rule-Based Knowledge-Based

Label Definition Difficulty defining labels for Able to objectively define
continuous metrics, related labels that supported the
to low separation of perfor- instructor letter grade as-
mance data signments

Identify High- Difficulty with high dimen- Able to identify "high-
Error Mod- sionality of process-level error" quizzes. Useful
ules/Steps data for suggesting intervention

topic but not useful for pre-
diction approaches

Improved Pre- Simple regression methods For both regression and
diction Models (linear regression) preferred classification, simpler meth-

to complex methods, diffi- ods (linear and logistic re-
culty for classification meth- gression) preferred to com-
ods plex methods

Assess Trainee Process-level information Summative metrics were
Evaluation was an important contribu- more informative than
Methods tor to prediction accuracy, process-level metrics,

suggests the collection of process-level metrics more
process-level information in useful for TI
rule-based CBT

Feature Selec- Dimensionality reduction PCA and cluster-based di-
tion (PCA) required due to mensionality reduction did

high dimensionality of not provide as strong pre-
process-level data. Reduced diction performance as full
features did not improve process-level features for
clustering performance both post-hoc and temporal

analyses

Inform Interven- Process-level metrics not Process-level metrics useful
tion Timing / able to improve early pre- for improving early predic-
Content diction, related to the short- tion accuracy, "high-error"

ened training program quizzes provide recommen-
dations of intervention topic

6.2 Implications for Use by Training Evaluators

These results suggest a number of implications for the use of machine learning algorithms

in training domains. A specific list is provided here, for use by training evaluators and

future researchers:
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6.2.1 Training Data

The nature of the dataset has been shown to have major impacts on the machine learn-

ing algorithm preparation, selection, and results. It is important for the evaluator to

understand the type of training (skill-based, rule-based, knowledge-based), as well as the

structure and assessment metrics used in the training program. This aids not only in the

preparation and selection of machine learning algorithms, but is critical to the interpre-

tation of the outputs of the algorithms. Additionally, in the analyses presented in this

thesis, data compatibility was an important factor in the selection of machine learning

models.

6.2.2 Data Preparation

Prior to the use of machine learning techniques, there are several preparatory steps that

may be necessary. These include data transformation, selection of a distance measure

(for cluster analysis), and feature selection (including dimensionality reduction).

Data Transformation

On the training datasets used in the analysis in this thesis, the variations of data types

(subjective vs. objective, summative vs. process level, continuous vs. discrete, etc)

encouraged the use of the more flexible range transformation. On both datasets, the

cluster performance metrics of compactness and isolation supported the use of the range

transformation over the z-score transformation. This is likely due to the variability in

assessment metric types in both training environments analyzed here. It is anticipated

that datasets for most training programs will exhibit similar properties and thus the use

of the range transformation will likely extend to these datasets.

Distance Measure

The increased number of features available in the process-level information provided by

CBT and online training programs make the properties of the Euclidean distance measure

a good option for these training datasets. The nature of the Manhattan and Chebychev

distances tend to result in the process-level metrics dominating the distance measurements

in the feature space. The use of weighting may also be necessary to temper the impact
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of process-level information on distance measurements, and can either be selected based

on inherent relationships in the data (such as the grade contribution for the classroom

dataset) or can be informed by subject matter experts (SMEs).

Feature Selection

As modern training programs begin to collect greater and greater numbers of assessment

features, it becomes critical to attempt to identify particularly useful features and remove

less-informative features. Several potential methods were demonstrated in the analyses

in these methods, including PCA, a cluster-based k-means approach, and agglomerative

techniques. These methods help to prevent overfitting in supervised analysis when using

the many features available in the process-level data, and will become more important

with the increased use of CBT and online training programs.

6.2.3 Clustering

In cluster analyses on both datasets presented here, cluster performance favored the

use of simple clustering methods (k-means and agglomerative clustering) based on the

external metrics of entropy and purity, and the internal metrics of compactness and

isolation. As larger datasets with higher numbers of trainees become available, it may

be worth revisiting more complex clustering methods, but on datasets similar to those

presented here (<50 trainees) the simple clustering methods are better able to capture

the relationships in the data.

6.2.4 Supervised Model Selection

In the majority of cases, supervised learning results also supported the use of simple

models on these datasets. The findings generally support the use of simple techniques

such as linear and logistic regression over more complex methods such as SVMs and

ANNs on training datasets such as those collected here. While the relationships within

the collected datasets are best supported by simple methods, this result may not extend to

larger and more complex datasets that become available in the future through increased

use of computer-based environments.
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6.2.5 Regression vs. Classification

Careful consideration must be given to the use of regression vs. classification approaches

for trainee performance prediction. This primarily relates to the selection of the target

variables, and it is important for the evaluator to ensure that the target variable is

appropriate and useful as a performance metric for evaluation. There may be cases where

a discrete variable is acceptable (such as "A","B", "C" grade or "good" vs. "poor"), but

other situations where a finer gradation of performance is needed. The selection of the

target variable must be carefully considered based on the needs of the training program

and the usefulness to training evaluation. The domain was also shown to have an impact

on the comparison between regression and classification results, and rule-based settings

such as the one examined in this thesis may be more suited to regression rather than

classification approaches.

6.2.6 Process-Level Information

There were important advantages provided by the availability of process-level information

through the use of CBT and online training in both datasets presented here. However, the

advantages differed in each domain, providing improved quality control through post-hoc

analyses on the rule-based dataset and potential improved TI timing on the knowledge-

based dataset. The results indicate that the length of the training program may have a

strong impact on these differences in utility of process-level information. Despite the lack

of a consistent effect, the results suggest that training program designers and evaluators

should incorporate process-level assessment into the training program in computer-based

environments.

6.2.7 Interpretation

In all results presented in this thesis, it was important to provide interpretation of the

machine learning outputs. While these algorithms are powerful and will produce a model

given almost any dataset, the meaning behind the relationships described in the model

and any actions that need to be taken (such as TI or redesigning elements of the program)

require the insights provided by a human evaluator. As such,while it is important to

recognize the machine learning algorithms can act as a tool to assist in training evaluation,
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but should not replace the evaluator.

These lessons can help inform the use of machine learning algorithms in future training

evaluation, and ensure that the creation, use, and interpretation of these methods are

appropriate for the training domain.

6.3 Limitations

There are several inherent limitations in the results presented in this thesis. First and

foremost, the results are limited by the datasets used in the analyses in Chapters 4

and 5. These datasets were collected to be representative of rule-based and knowledge-

based training settings, respectively. The results discussed here by definition apply to

training datasets similar to those collected, and may not apply to datasets collected

under markedly different training program structures or styles. In particular, a skill-based

training dataset was not tested in this thesis, and the results presented here cannot be

assumed to apply to skill-based training without additional validation.

Additionally, due to logistical considerations, the rule-based dataset collected here

only included three training modules, in addition to a test module. This represents a

shorter training program than many rule-based training environments currently utilize.

Due to the limited number of modules, it is difficult to extract more definite conclusions

regarding the temporal predictions and timing of TI on this dataset.

Another limitation relates to the selection of machine learning techniques used in the

work. In machine learning as a field, there are countless algorithms and variations of

algorithms. The analysis presented in this thesis attempted to select a variety of some

of the most commonly used machine learning methods for testing on training data. It

is possible that other algorithms or strategies (e.g. decision trees, nearest neighbors,

bayesian statistics, boosting, ensembles, etc.) could achieve different or stronger per-

formance results than the algorithms tested here. Additional testing on these and other

datasets could investigate the effectiveness of additional algorithms in training evaluation

settings.

A final limitation relates to the requirements of the machine learning algorithms,

particularly for supervised learning approaches. As discussed in Chapter2, supervised

learning algorithms utilize a known dataset including both features and labels to train the
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model ("training data") which allow the model to make predictions on previously unseen

data ("test data"). This means that in order to use the methods as presented here, the

organization must gather a preliminary dataset with both features and labels to train the

models before they can be used for prediction. Additionally, these algorithms typically

assume the use of the same features across all datapoints. Therefore, any changes to a

training program that alter the assessment metrics collected mean that a new dataset

must be collected, and old data with different features cannot be combined with this new

data to train the models. Thus, these methods cannot be used in a prospective sense

to investigate the usefulness of novel assessment metrics or previously untested changes

to the training program. Rather, these methods as discussed are only applicable in an

established training program that consistently utilizes the same assessment metrics.

6.4 Chapter Summary

This chapter combined the results from Chapters 4 and 5 to extract a set of useful

findings and lessons for the application of machine learning algorithms in a variety of

training domains. It addressed the potential applications for machine learning in training

evaluation discussed in Chapter 3, utilizing evidence from the rule-based and knowledge-

based datasets collected. Finally, it identified limitations for the work, based both on

the datasets and the methods utilized in this thesis. These elements lay the groundwork

for the use of machine learning for training evaluation, and identify the strengths and

challenges of machine learning approaches on typical training datasets. The final chapter

of this thesis, Chapter 7, presents the conclusions of this work. It discusses the impact

and contributions made by this thesis, and potential areas of future work to extend the

findings and mitigate some of the limitations identified in this chapter.
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Chapter 7

Conclusions

This thesis has presented the considerations (both theoretical and applied) for the use

of machine learning algorithms to inform human training evaluation. Chapter 1 intro-

duced the motivation behind the application of machine learning for informing training

evaluation, particularly its ability to utilize new process-level information resulting from

the increased use of online and computer-based training (CBT) methodologies. Chapter

2 presented background on training and training evaluation, machine learning, and ed-

ucational data mining (EDM) to frame the discussion of how data types from training

programs may impact machine learning approaches. Chapter 3 then discussed relevant

factors based on the types of datasets that can arise from training, and the necessary

changes to machine learning approaches on these datasets. Chapter 4 presented the first

of two example datasets for machine learning testing: a rule-based nuclear reactor CBT.

This chapter described the methodology, results, and implications for the use of machine

learning in rule-based environments. Chapter 5 presented the second example dataset,

from a knowledge-based classroom training environment. It provided a similar discussion

of the results of the application of machine learning to this dataset. Chapter 6 compared

and contrasted the results from the two environments, provided a set of recommendations

for training evaluators on the use of machine learning, and discussed the limitations of

the work. This chapter discusses the implications of this thesis, outlining potential areas

of future work and finishing with the major contributions of the work.

193



7.1 Machine Learning In Computer-Based Training

Environments

The landscape of modern training has been rapidly changing with the introduction of new

technologies. Online and computer-based training (CBT) have begun to make training

more flexible, adaptive, and scalable. New training programs are able to be conducted

across the world and with far greater numbers of trainees at once. Some of the benefits

of computer-based technologies have already been illustrated by the recent popularity of

massive open online courses (MOOCs), and organizations have recognized the applica-

tions of these technologies in their training programs. However, along with the benefits

of CBT programs come unique challenges posed by the nature of these technologies. In

particular, training programs are able to generate vast amounts of data, both in terms

of the number of trainees and the higher specificity of the assessment metrics that can

be gathered. Supervisors and evaluators of training programs are entering the world of

"big data" where traditional analysis techniques and human intuition have difficulty in

drawing meaning from the data.

To address this issue, this thesis has proposed the use of machine learning techniques.

With the rise of large datasets in other fields, machine learning has become one of the

primary tools for analyzing these datasets in an efficient and meaningful way. However,

the nature of human training data is unique from the typical machine learning domains,

and it is important to understand both the potential applications of machine learning

to training as well as the implications of training data on the algorithms. This thesis

first introduced background information on typical training domains and on machine

learning techniques. In particular, a taxonomy of training domains was developed based

on whether the target training tasks fell under Skill, Rule, or Knowledge (SRK) domains.

Each of these domains contains properties specific to that domain in the typical training

methods and assessment data collected. The problem of applying machine learning to

training datasets was broken down into addressing the applications to each of these

domains.

Chapter 3 then investigated the impact of the properties of training data from each

of these domains on machine learning approaches. It identified challenges that arise in

the limited datasets, feature set size, and noise properties of training data that differ
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from traditional machine learning datasets. There are also several considerations that

must be taken into account prior to the use of machine -learning on training data, such

as data standardization, selection of a distance measure in the feature space, the par-

ticular algorithms to be tested, and the metrics by which algorithm performance can be

compared. A set of representative machine learning algorithms of varying complexity

was selected for both unsupervised and supervised learning approaches. Unsupervised

algorithms included k-means, hierarchical clustering, Gaussian Mixture Models (GMMs),

and Self-Organizing Maps (SOMs). The supervised algorithms tested were linear regres-

sion, logistic regression, Support Vector Machine (SVMs) and Artificial Neural Networks

(ANNs). These were selected as a range of some of the most common machine learning

techniques and spanning a range of complexity in implementation and interpretation. A

set of potential applications of machine learning to the training domain were also iden-

tified, making use of unsupervised algorithms in a descriptive fashion and supervised

algorithms as a predictive approach.

Due to the differences in datasets across different domains in the SRK framework,

example datasets were collected for both rule-based and knowledge-based environments

to test these applications. The analysis focused on these domains due to the greater use

of CBT methods and higher cognitive complexity as compared to skill-based domains.

The rule-based dataset used was gathered from a simulated nuclear reactor CBT envi-

ronment and was dominated by the use of procedures that are common in rule-based

settings. The knowledge-based dataset was taken from a collegiate course that included

online elements in addition to traditional classroom assessment techniques such as tests,

projects, and problem sets. Analysis of machine learning on these datasets allowed not

only the determination of whether the potential applications could be realized, but also

the comparison of machine learning results across training domains.

The analysis of these datasets, which were presented in Chapters 4 and 5, revealed sev-

eral important findings about the use of machine learning on training datasets. First, an

important challenge arose in both datasets relating to limited size of the datasets. While

computer-based training technologies allowed for the collection of much greater detailed

assessments than were available through traditional methods, the number of trainees are

small compared to traditional machine learning settings. Thus, the use of dimensionality

reduction techniques was critical in reducing the feature space and preventing overfitting
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of the data. In the future, larger and larger datasets may become available as organi-

zations take advantage of the benefits in scalability of CBT technologies, such as seen

in massive online open courses (MOOCs). However, most current training programs will

encounter limitations of dataset size, and this work has demonstrated the effectiveness of

several types of dimensionality reduction, including clustering techniques and principal

component analysis (PCA). This will be an important element of future applications of

machine learning approaches to training datasets.

Another important finding of this work was that in both datasets simpler machine

learning techniques (such as k-means, linear and logistic regression) generally performed

as well or better than more complex methods (such as SOMs, SVMs, and ANNs). These

simpler algorithms offer additional advantages in ease of interpretability compared to

more complex models. When utilizing machine learning techniques to inform training

evaluation, it is important for the evaluator to be able to understand the relationships

between the inputs and the outputs of the model. This can be important from a pro-

grammatic perspective such as identifying inefficient assessment metrics to be removed in

future iterations of the training program, or from a trainee assessment perspective such

as determining the appropriate timing for trainee intervention (TI).

A significant advantage of using computers in training is the ability to efficiently

collect process-level information in addition to traditional summative assessment met-

rics. The collected datasets allowed for the comparison of the contributions of each of

these assessment types to model performance. In general, it was found that process-level

metrics are useful when summative metrics are not available. This was seen in the rule-

based setting where the truncated training program allowed for process-level metrics to

make contributions to post-hoc prediction. It was also observed in the knowledge-based

dataset where the process-level information improved the accuracy for predictions early

in the training program when summative metrics were not yet available. The ability of

the process-level information to improve the accuracy of early predictions has important

implications on TI. When selecting the timing and trainees for intervention, it is useful

not only to have accurate predictions of later performance, but to have these predic-

tions earlier in the training program. Through early identification of trainees in need of

intervention, the training program can save money and improve trainee success rate.

A recurring theme throughout this research was the importance of human interpre-
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tation of the model outputs. While the machine learning techniques can allow for the

greater description and prediction of trainee performance, the decision of how to use this

information still must be made by a human. These algorithms are not a replacement

for training supervisors; they instead act as a tool that can improve the efficiency and

effectiveness of training evaluation as training programs adapt to utilize computer-based

elements.

7.2 Future Work

This work has provided the foundation for the study of machine learning techniques in

training, but is by no means exhausts the possibilities of research in this area. This

section outlines some extensions of this work that could provide even greater benefits for

training evaluation.

7.2.1 New Datasets

Obtaining appropriate datasets is a major challenge to research in this area. Training

data are often proprietary, as it relates to performance of the trainee in the operational

environment. Consider the example of nuclear reactor operator training. Both the orga-

nizations and trainees typically do not want their training data to be made public, due to

the concern that errors contained in the data could be used as evidence against the orga-

nization or the trainee. Therefore, obtaining large, real-world datasets can be challenging,

which leaves considerable future work that can be done with additional datasets.

Thus, an important area of extension includes the collection of new and larger datasets.

As training programs scale to include much greater numbers of trainees by utilizing

computer-based technologies, new datasets can be collected that mitigate some of the

challenges encountered in the datasets presented in this thesis. Specifically, larger datasets

could reduce the need for dimensionality reduction and could exhibit additional complex-

ities that algorithms such as ANNs could exploit.

Additionally, the present work did not analyze a skill-based training dataset. As

technologies such as video capture systems in sports become more developed and are used

in training programs for athletes, it may become possible to utilize machine learning on

these datasets as well. The burgeoning field of sports statistics is already recognizing
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the potential for new technologies to generate vast datasets of player movement and

performance (an example from basketball is shown in Figure 7-1), and machine learning

may play an important role in the analysis of these datasets.

7.2.2 Novel Evaluation Metrics

The nature of the assessment metrics collected as part of a training program has been

shown to strongly impact the usefulness of machine learning methods on those features.

The development of metrics that are better at assessing performance and learning may

dramatically improve the ability of machine learning methods to aid in training evalu-

ation. Thus, research on novel metrics closely parallels the continued study of machine

learning techniques on training data. The rule-based dataset presented in this thesis was

particularly challenging for machine learning algorithms, which could have been a re-

sult of poor assessment metrics. Better measurements of procedure adherence as well as

Figure 7-1: Example positional data from the SportVU player optical tracking system.

Reproduced with permission from STATS LLC.
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greater use of system performance metrics could improve the prediciton accuracies over

those achieved in Chapter 4. As new metrics become available, it will likely be worth

revisiting the algorithms tested in this work on the new feature types.

7.2.3 Additional Algorithms and Strategies

The field of machine learning has developed a vast set of tools for analyzing large and

complex datasets, of which the algorithms tested here comprise only a small subset. Fu-

ture research could utilize analyses similar to those presented here to investigate different

machine learning algorithms or strategies. For example, Bayesian statistics focus on a

probabilistic approach to machine learning, which could be useful in addressing the noise

associated with human performance data [12]. Decision trees are another common simple

machine learning method, and the advantages of simple models on training data shown

in this thesis imply that decision trees could be a successful technique. Additionally, the

strength of simple methods on the presented datasets also implies that strategies such

as ensembles or boosting that utilize multiple simple models to improve prediction may

have success on similar training datasets. Other more complex models such as "deep

learning" would likely struggle on the datasets presented here, but could take advantage

of larger datasets as they become available.

Additionally, feature weighting in unsupervised learning could improve cluster algo-

rithm performance if some features are known to be more important than others. The

importance of particular features or trainee behaviors could be provided by subject matter

experts (SMEs) to inform weighting strategies during clustering. Further investigations

could be conducted to analyze the usefulness of subjective weightings provided by SMEs

in unsupervised algorithm performance on training data.

7.2.4 Interface Design

This thesis has presented the potential applications of machine learning algorithms to

training datasets for the purposes of assisting training evaluators. In a real-world setting,

it would be useful to training evaluators for these algorithms to be wrapped in a user-

friendly interface that allows for the easy input of data and clear presentation of results.

Future research could investigate constructing a user interface tool for training supervisors

that implement the algorithms discussed in this work.
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7.2.5 Datasets with Missing Features

As discussed in Chapter 6, an important limitation of the work presented in this thesis is

that the methods are restricted to cases where the same assessment metrics are consis-

tently collected. If the training program frequently changes in terms of modules, learning

material, or metrics, it is difficult to create a dataset sufficient to train the machine learn-

ing models. Specifically, if the measurement types used as features in the model vary,

a model created on all of the possible features will have missing data for some features.

Several data preprocessing methods that have been developed to handle datasets with

missing information which could be utilized to address combining datasets with different

features (e.g. [153]). These along with semi-supervised learning techniques could allow

the methods presented in this work to be expanded to cases where changes in training

program create missing information in the dataset [154]. These strategies could be inves-

tigated in future research to extend the findings in this thesis to training programs that

frequently modify the assessment metrics used.

7.2.6 Reinforcement Learning

Machine learning also offers an entirely different strategy that could be useful to training

evaluation, termed reinforcement learning. These algorithms do not focus on description

or prediction as the unsupervised and supervised algorithms presented in this work, but

instead construct models that attempt to take optimal actions given the current state

of the system. These algorithms are commonly used in robotics or path planning, but

could be applied to training as well. In training, reinforcement learning could be used to

develop models that do not analyze what the trainee does, but rather indicate what they

should do. In this way, these models could act similarly to an expert trainee (when a

human is not available), and allow for comparison between a trainee's performance and

the "optimal" performance as indicated by the model. Additionally, these models could

be used to inform procedure design by identifying shorter or alternate paths through the

procedure.
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7.2.7 Models of Learning

The research presented in this thesis focused on describing and predicting trainee per-

formance (also called "training transfer" in training evaluation literature). That is, it

utilized the actions that the trainees actually performed in an attempt to predict actions

or mistakes that might occur in the future. This performance-level modeling ignores

the underlying cognitive states of the trainee, and does not directly assess the learning

that takes place. While the performance in the operational environment is of paramount

importance, it may be of interest to researchers to link these results with the cognitive

processes of the trainees. These resulting models could be particularly important for

knowledge-based training settings, where the development of abstract representations

and mental models by the trainees is an important part of the training program.

7.3 Contributions

The overall objective of this thesis was to identify and test the theoretical considerations

and applications of machine learning algorithms to assist with training evaluation. In

working towards this objective, several contributions were made to the fields of training,

training evaluation, and machine learning on human behavior. This thesis acts as a foun-

dation for the research of machine learning on training datasets, and provides important

lessons for both future researchers and practitioners in this area. The contributions in-

clude both theoretical considerations for the use of machine learning in training, as well

as findings from the testing on rule-based and knowledge-based datasets.

Chapter 1 presented three specific research goals to be covered by this thesis. The

first goal was to "determine the typical properties of CBT data, how the training domain

impacts the data obtained in these settings, and the considerations of applying machine

learning algorithms to training data." In addressing this goal, this thesis makes the

following contributions:

9 The development of a taxonomy of training domains based on the training task:

Skill-based, Rule-based, and Knowledge-based. In this taxonomy, there are strong

commonalities in the training methods and assessment techniques within a par-

ticular domain. This taxonomy was instrumental in this research for identifying
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different properties of training data and could be a useful taxonomy to compare

training domains for other fields.

e CBT methods allow for the collection of action-by-action adherence information

in rule-based domains. This thesis provided a discussion of potential measurement

techniques for procedure adherence. It proposed treating a procedure as a sequence,

enabling the use of sequence distance techniques for the comparison of the trainee

actions to the prescribed actions in the procedure. Additionally, this work described

the creation of a model-based Procedure Adherence Metric (PAM) for the measure-

ment of procedure adherence in rule-based environments. Computationally, simpler

sequence distance metrics (such as Levenshtein distance) out-performed the PAM

in machine learning analyses, but the PAM offers advantages in sensitivity to ac-

tion ordering that may merit further investigation of model-based techniques for

measuring procedure adherence in rule-based domains.

9 The identification of necessary preparations on training datasets prior to use in ma-

chine learning approaches. The variation in training data types and limited dataset

sizes must be addressed prior to use in machine learning. Data standardization, se-

lection of a distance measure, and dimensionality reduction must all be considered

prior to the application of unsupervised and supervised approaches.

* Due to the importance of dimensionality reduction on these datasets, this thesis

introduced several potential methods for reducing the dimensionality of the feature

space. For post-hoc analyses, aggregate metrics could be used, such as averag-

ing over quizzes or other process-level metrics. Cluster-based techniques were also

tested, as demonstrated by the separation of quizzes in the knowledge-based dataset

into "high-error" and "low-error" categories. PCA was also used as a traditional

machine learning dimensionality reduction technique. Both could have utility to

training supervisors: PCA methods demonstrated benefits to supervised prediction

accuracy, while cluster-based strategies were able to suggest potential topics for TI.

The second goal presented in Chapter 1 was to "assess the usefulness of supervised

and unsupervised learning algorithms in example training sets from different types of

training domains, particularly from the perspective of a training evaluator." A set of

potential applications of machine learning to training were presented in Chapter 3, and
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these were demonstrated on both rule-based and knowledge-based datasets. This thesis

makes the following contributions towards this goal:

" Clustering approaches were demonstrated to be able to inform labeling for discrete

targets. In knowledge-based datasets, a letter grade is commonly used in addition

to a numeric grade and often is subjectively determined by the training supervisor.

In the example knowledge-based dataset collected, it was shown that clustering was

able to objectively identify natural splits in the data for grade assignments. This

could assist training supervisors in determining where to set grade cutoffs. When

combined with supervised learning that predicts trainees in need of intervention,

the cluster results could be used to select trainees with similar performance for

combined intervention.

" In post-hoc prediction analyses, it was demonstrated that supervised learning algo-

rithms could indicate to a training designer as to which assessment metrics provide

the highest predictive capacity. Since a principal goal of training assessment met-

rics is to be predictive of operational performance, this information could be used

to inform future iterations of the training program design, by focusing on metrics

that are predictive of future performance and eliminating inefficient metrics.

* Supervised learning algorithms were shown to be able to achieve accurate predic-

tions of future trainee performance early in a training program. A temporal analysis

of overall prediction accuracy indicated that trainees could be selected for interven-

tion prior to important assessment landmarks in the training program (such as be-

fore the first test in the knowledge-based dataset). The predictions were improved

by the inclusion of process-level information, discussed further below. Overall, these

predictions have great value to training supervisors, as the earlier an intervention

is applied the greater the potential effect on performance and cost savings.

The third goal introduced in Chapter 1 was to "determine the importance of the

detailed temporal and process-level information provided by online and CBT formats

in the application of machine learning to training data." As previously mentioned, an

important advantage to the use of computer-based technologies in training is the oppor-

tunity to gather assessment metrics at a more detailed level of data specificity, such as

process-level data. In addressing this goal, the following contributions were made:
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" This work resulted in an improved understanding of the relative contributions of

summative and process-level assessment metrics to prediction performance. Specif-

ically, summative metrics were shown to provide greater prediction performance

than process-level metrics on both rule-based and knowledge-based datasets. Thus,

when available these metrics dominate the prediction performance and thus are a

critical part of the training program. However, when summative information is

limited typically earlier in a training program, process-level information has the

potential to significantly contribute to prediction performance.

* Process-level information was shown to have the potential to improve early predic-

tions of final performance over summative metrics alone. Since process-level infor-

mation is collected much more frequently than summative metrics, it was shown that

predictions could be made earlier and with greater accuracy by utilizing process-

level information (which is important for TI). Thus, this work suggests that the

collection of these process level metrics should be incorporated into future training

programs.

This dissertation provides the groundwork for the use of machine learning algorithms

to inform training evaluation in modern training environments. There are two primary

populations to which this work applies. The first are researchers, from both training

evaluation and machine learning fields. For training evaluation researchers, this work

suggests the basis for how machine learning algorithms can improve the success of train-

ing programs and the trainees that come out of those programs. For machine learning

researchers, the analyses contained in this work comprise an interesting example of the

use of machine learning on datasets representing human behavior. Future research at-

tempting to use machine learning models on humans in other settings can make use of the

findings presented here. The second group are training practitioners, for whom this work

represents a framework for the implementation of these algorithms in their own domains.

Following the lessons and recommendations contained here could mitigate the challenges

these practitioners encounter in the introduction of these methods in their programs.

Training programs exist in almost every organization, and while useful can be ex-

pensive and time consuming to implement. As modern training programs incorporate

computer-based elements, it is important for these programs to be able to take advan-

tage of improvements in scalability and data collection provided by these elements. These
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benefits provide new opportunities for training evaluation, which can improve the effi-

ciency, efficacy, and cost-effectiveness of the programs. This dissertation has provided one

method for utilizing the larger, more complex datasets arising from these new training

environments: machine learning. In doing so, it has provided a set of lessons for the

future use of these algorithms on human training data and paved the way for future re-

search in this area. Future directions could focus on the use of new datasets or alternative

algorithms that build off of the foundations in this thesis. This dissertation and future

work should pave the way for improving the efficiency and cost effectivness of training

programs that will reach wider audiences and train the next generation of professionals.
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Appendix A

LOFT Scenario

This appendix presents the details of the LOFT scenario discussed in Chapter 3. This

scenario is reproduced from [1421. The scenario itself is first presented starting on the

following page, followed by the decriptions of the problems to be inserted into the scenario.

207



Flight Crew Training: Cockpit Resource Management (CRM) and Line-Oriented Flight Training (LOFT)

PAN AM LOFT SCENARIO (9-26-88)

CLIPPER 594 "HEAVY" IAD-JFK (A-310)

Problems 1, 5, 6,7 (See problem menu)

Dulles runway 01R (# ), Gate #3, taxi weight 233 900 lb, fuel
22 500 lb, take-off CG 29.2%, ceiling 1 000 ft, cloud tops 3
000 ft, visibility 10 000 RVR, OAT 30F (-2C), altimeter 29.59 Hg
(1 002 mb), wind 020/8, QXI/OCI #1: Green-to-blue hydraulic
PTU INOP QXI/OCI #2: Left inner fuel tank pump 1 INOP
Insert Problem 1.

2) Dep ATIS 134.85 "This is Washington Dulles departure information ZULU.
Ceiling measured 900 overcast, visibility 2 miles in light snow,
temperature 30, dew point 28, wind 020 at 8, altimeter 29.59.
Departures expect runway 01 right. Inform clearance or
ground control on initial contact that you have received
information ZULU."

3) Clearance delivery 12735 "Clipper 594 "Heavy", cleared to JFK, capital two departure as
filed, maintain 4 000 ft, expect 17 000 ft ten minutes after
take-off Departure control frequency is 125.05, squawk 0523,
contact ramp control on 129.55 prior to taxi."

4) Routing Radar vectors direct Baltimore, V-44, V-229 MORTN, V-44
CAMRN, direct JFK.

5) Ground support Clearance to pressurize hydraulics, remove external electric
(as appropriate).
Clearance to start engines when requested.
Remove external connections when directed.
"Standby for hand signals on your left."

6) Ramp control 129.55 Receive pushback request.
"Clipper 594 "Heavy", cleared to push back, face east."
Receive taxi request.
"Clipper 594 "Heavy", taxi eastbound to taxiway Echo-1, turn
right and taxi south, then contact Dulles ground control
frequency 121.9."

7) Ground control 121.9 "Clipper 594 "Heavy", continue taxi and hold short of runway 01
right."

8) Atlanta flight support 130.9 Receive blocks departure message.

9) PANOPS 129.7 Receive off blocks time and gallons of fuel added.

10) Load control 129.7 "Clipper 594 "Heavy", load control. Your zero fuel weight is
210.6 with a CG of 272; your take-off weight is 233.1 with a
CG of 29.2. Passenger load is 12 first class, 21 clipper, and 103
coach. Stabilizer setting is 0.1 up."

11) Ground control 121.9 (Approaching runway 01R)
"Clipper 594 "Heavy", contact Dulles tower, frequency 120.1."

12) Tower 120.1 "Clipper 594 "Heavy", wind 330 at 15 maintain runway heading,
cleared for take-offt"

13) Tower 120.1 "Clipper 594 "Heavy", turn right heading 080, vectors on
course, contact departure control frequency 125.05."
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Flight Crew Training: Cockpit Resource Management (CRM) and Line-Oriented Flight Training (LOFT)

14) Departure control 125.05 "Clipper 594 "Heavy", radar contact, continue heading 080,
vectors to Baltimore, climb to and maintain 6 000 ft, receiving
Baltimore cleared direct."

15) Departure control 125.05 (Approximately 20 miles west of Baltimore VOR)
"Clipper 594 "Heavy", continue climb, maintain 17 000 ft,
contact Washington Centre on 133.9."

16) Washington Centre 133.9 "Clipper 594 "Heavy", radar contact, maintain 17 000 ft and
cleared via flight plan route."

17) Atlanta flight support 131.25 Receive airborne message.

18) Washington Centre 133.9 (Approximately 41 miles west of Sea Isle)
"Clipper 594 "Heavy", contact Washington Centre on 1277"

19) Washington Centre 1277 "Clipper 594 "Heavy", radar contact, maintain 17 000 ft."

20) ARVL ATIS 115.4" "This is Kennedy International Airport information WHISKEY
Sky condition 800 overcast, visibility 1 and 1/4 mile in snow
Temperature 29, dew point 27 wind 310 at 3 knots, altimeter
29.75. Arrivals expect VORIDME approach runway 22L. Notice
to airmen, ILS 22L out of service. Departures expect runway
22R. Inform New York approach control on initial contact that
you have received Kennedy arrival information WHISKEY"

21) Washington Centre 1277 (Overhead Atlantic City)
"Clipper 594 "Heavy", descend and maintain 10 000 ft,
Kennedy altimeter 29.75 Hg (1 0075 mb)."

22) Washington Centre 1277 (5 miles northeast of Atlantic City)
"Clipper 594 "Heavy", contact New York Centre on 128.3."

23) New York Centre 128.3 "Clipper 594 "Heavy", radar contact, maintain 10 000 ft, cleared
CAMRN one arrival JFK."

24) SIM setup JFK runway 22L (# ), ceiling 800 ft, cloud tops 6 000 ft,
visibility 8 000 RVR, temperature 29F (-6C),
altimeter 29.75 Hg (1 0075 mb), wind 210/04.

25) Problem (10 miles northeast of Atlantic City)
Insert Problem 5 or 6 or 7

26) PANOPS 131.37 (Receive in-range message)
"Clipper 594 "Heavy", you can expect gate number 3, enter via
taxiway KILO."
Provide assistance as requested.

27) New York Centre 128.3 (5 miles southwest of CAMRN)
"Clipper 594 "Heavy", contact New York approach control on
frequency 1274."

28) New York approach 1274 Clipper 594 "Heavy", radar contact, fly heading 040 and
control descend to 3 000 ft. Vectors for the VOR final approach course

runway 22 left."
(on final vector)
"Clipper 594 "Heavy", cleared for the approach, contact
Kennedy tower on frequency 119.1."

29) Kennedy tower 119.1 "Clipper 594 "Heavy", wind 210 at 4 knots, cleared to land on
runway 22 left."
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Flight Crew Training: Cockpit Resource Management (CRM) and Line-Oriented Flight Training (LOFT)

30) Kennedy tower 119.1 (During rollout)
"Clipper 594 "Heavy", turn right first available taxiway, hold
short of runway 22 right, remain this frequency'

31) PANOPS 131.37 Provide assistance as requested.

32) Kennedy tower (Approaching runway 04 left)
119.1 'Clipper 594 'Heavy", cross runway 22 right, left on the inner,

contact Kennedy ground control on frequency 121.9.'

33) Kennedy ground 121.9 'Clipper 594 'Heavy", taxi via the inner to your gate."

34) Atlanta flight support 131.25 Receive blocks arrival message.

LOFT profile codes: LFT = Normal route between airports

LRR = Abnormal route between airports

LTB = Turnback or diversion

Alternate Weather Reports (If Requested)

Newark: 300 obscured. Visibility 1/2 mile, snow, fog. Temperature 30, dew point 29, wind 350
at 5 knots, altimeter 29.72.

Philadelphia: 400 obscured. Visibility 1/2 mile, snow, fog. Temperature 31, dew point 29, wind 010
at 4 knots, altimeter 29.70.

Boston: Measured 800 overcast. Visibility 3 miles, snow. Temperature 15, dew point 11, wind
010 at 7 knots, altimeter 29.58.

Bradley: Measured 400 overcast. Visibility 3/4 mile, snow. Temperature 20, dew point 17,
wind 020 at 5 knots, altimeter 29.68.

Baltimore: Estimated 400 overcast. Visibility 1 mile, snow, fog. Temperature 30, dew point 27,
wind 020 at 7 knots, altimeter 29.59.

Andrews AFB: Measured 400 overcast. Visibility 1 mile, snow. Temperature 31, dew point 27, wind
020 at 5 knots. Altimeter 29.60.
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Flight Crew Training: Cockpit Resource Management (CRM) and Line-Oriented Flight Training (LOFT)

PAN AM LOFT PROBLEM MENU (A-310)

REVISED (9-26-88)
Problems and/or situations

1 Engine potential hot start

2 Engine stall

EGT exceeds 644 degrees

Engine shut down

3 Engine oil low pressure

Engine shutdown

4 Green hydraulic system failed

5 Bravo Whiskey Direct

"Clipper 594, New York, contact your company immediately on
frequency ."(Company frequency)

(When contacted)

"Clipper 594, flight control, we have just been notified by Security of a Bravo
Whiskey Direct for your flight. Security has confirmed the threat to be valid. We
advise you to land immediately at (Planned destination airport)."

Provide assistance as requested.

Provide priority ATC handling.

Any runway available for landing.

6 Passenger threat

Flight attendant reports that a passenger has barricaded himself in an aft lavatory;
he claims to have a gasoline bomb device (or hand grenade) which he continually
threatens to detonate; he is demanding that the flight divert to
(Nicaragua, Beirut, Tehran, etc. as appropriate).

7 Communication failure

Crew loses all communications with air traffic control on normal VHF frequencies;
also unable to establish contact on 121.5 or receive on VOR frequencies; maintain
loss of communications as long as possible; attempted communications with
approach control are successful; instructions are for the flight to "continue last
assigned clearance"; give holding instructions if requested.

NOTE: Reason for loss of all radios is massive explosion in the air traffic control
building.

8 Passenger incapacitation (or intoxication)

Flight attendant reports that certain individual has suffered massive seizure of
unknown type (or is extremely unruly and is purposely obstructing cabin crew
duties).

9 Brake explosion/green system hydraulic failure

Brakes hot indication (any wheel) followed shortly thereafter by a green system
hydraulic failure; flight attendant reports loud noise below floor; possible damage
in the wheel well.
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Flight Crew Training: Cockpit Resource Management (CRM) and Line-Oriented Flight Training (LOFT)

10 Suspicious object

Flight attendant finds device in lavatory area which resembles a bomb; device
looks like two sticks of dynamite with ticking object attached with tape.

LOFT profile codes: LFT = Normal route between airports

LRR = Abnormal route between airports

LTB = Turnback or diversion
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Appendix B

Measuring Procedure Adherence

and Development of the Procedure

Adherence Metric (PAM)

B.1 Measuring Procedure Adherence

Procedure adherence represents the faithfulness to which the operator follows the pre-

scribed procedures. Prior research on adherence to procedures has primarily been part

of studies on human error in rule-based environments [155-157]. This research has fo-

cused on the theoretical aspects of errors while following procedures and the modeling

of human error in these cases, such as the Memory For Goals (MFG) model [158,159].

This work identifies differences in tendencies for adherence across cultures and levels of

experience, and often utilizes interviews with operators rather than experimental studies

(e.g. [155, 160]). A few experimental studies have been conducted, primarily focusing

on the nature of errors in procedure-following or improvement of adherence through the

design of procedures or new interfaces [161,162]. There are few sources that discuss

the measurement of procedure adherence, and these do not discuss the implications of

procedure adherence as an assessment metric in training. Thus, one of the important

contributions of this work includes the discussion of potential measures of procedure ad-

herence, and their use both as a training assessment metric and as features in machine

learning approaches. These topics are covered in this and the following sections.

Adherence to procedures can have several interpretations dependent upon the partic-
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ular domain in which the procedures are used. In nuclear power plant operation, there are

often many procedures available contained in either binders or more recently in comput-

erized checklist systems. Thus, an important aspect of adherence in nuclear power plants

is the ability to select the correct procedure to be used based on the current system state.

This ability is referred to in this appendix as "procedure selection." When an incorrect

procedure is selected, subsequent actions performed in the following of that procedure

are unlikely to be appropriate for the situation.

Once a procedure is selected, a second type of adherence (simply termed "adherence"

here) arises relating to the accurate completion of all appropriate steps contained in that

procedure. Sometimes procedures will be branched, in which case not all steps will be

used. In these cases, adherence can be measured to following all the steps along one set

of sequential actions, i.e. the "path" through the procedure. Sometimes only a single

path is correct given the system state; other times there may be multiple "correct" paths

for appropriate operation. In the former case, the procedure is linear, and at any time

during the course of completing the procedure there is only one intended action for the

next step in the procedure. Thus, adherence can be measured based on whether the next

action is the intended action. When multiple correct paths exist, adherence is much more

difficult to measure, as actions that are incorrect for one path may still be correct along

a different path.

There are a variety of metrics that could be used to measure procedure selection and

adherence. For procedure selection, the primary information of interest is whether or not

the correct procedure was selected. The simplest assessment metric in training could then

be a binary of whether the trainee did ("1") or did not ("0") choose the correct procedure.

Another option would be to apply a performance penalty to those trainees who did not

select the correct procedure, which would typically manifest itself as a weighted case of the

binary metric (e.g. "-10 points if they did not select the correct procedure"). In machine

learning, any transformation used (such as range or z-score transformations described in

Chapter 3) automatically reweights features to an approximately equal scale and would

thus account for any weighting applied to the binary metric. Thus, procedure selection

in this analysis is assessed by the simple binary metric rather than any weighted form.

In the consideration of adherence, it is useful to think about a procedure as a se-

quence, defined as an "ordered set of events." An SOP defines a series of actions for the
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user to take, typically under a certain set of initial conditions that make the procedure

appropriate. The set of actions contained in a procedure can be translated into a se-

quence, with each action having a previous action and a subsequent action (see Figure

Q-1). A trainee similarly generates an ordered sequence of actions as s/he attempts to

complete the procedure as part of the training module. In a sequence of actions, common

errors include omission of an action, performing actions out of order, or substitution of

an action with an incorrect one. These errors create mismatches between the procedure

sequence and the trainee sequence. Typically in a complex system, there are more ac-

tions available to the user than are needed for any particular procedure. Consider the

aircraft training example given in Chapter 3; during the pre-takeoff checklist the pilot is

not required to press every button in the cockpit. With more actions available than used

in the procedure, it is possible for a trainee sequence to contain actions that are never

observed in the procedure sequence.

In this framework, procedure adherence can be measured by the difference between a

Figure B-1: Viewing a procedure as a sequence.
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SOP sequence and the trainee sequence. Numerous methods that measure the distance

between sequences have been developed, including sequence-based methods (e.g. Leven-

shtein distance [163]) and model-based methods (e.g. Kullback-Leibler divergence [164]).

Sequence-based methods focus on the direct comparison of the sequences, while model-

based methods model each sequence and then compare the similarity of the models as a

proxy for sequence distance. To select the best method for the calculation of sequence

distance, four elements important to procedure adherence measurement are:

e Ability for different types of errors to be penalized separately (i.e. error weighting)

e Non-equal sequence length between the observed and expected sequence of actions,

i.e., where the user performs a different number of actions than the prescribed

procedure

* Sensitivity to number of deviations between the observed versus expected sequence

of actions

e Sensitivity to trainee action order: the ability to distinguish between correct and

incorrect ordering

Three methods that calculate sequence distance were considered as possible features

for machine learning approaches to measuring procedure adherence: two sequence-based

methods (Levenshtein distance and suffix arrays [165]) and one model-based method

(Kullback-Leibler divergence). The details of the calculation of each method and their

comparison on the four criteria presented above can be found in Appendix C. Briefly, the

Levenshtein distance is calculated by the minimum number of edits (insertions, deletions,

or substitutions) to change the trainee sequence into the intended sequence. It is able

to handle sequences of unequal lengths and is sensitive to the number of deviations of

the trainee, and provides easy interpretation of the resultant distance values. However,

it weights all errors equally and only considers action order at the level of transposition

of two adjacent actions. Suffix arrays are able to identify matching subsequences bete-

ween the trainee and prescribed sequence, and thus account for the ordering of actions.

However, the distance measure focuses on the largest matching subsequence, and thus

does not account directly for the number of deviations. The Kullback-Leibler (KL) ap-

proach exhibits similar adherence detection properties to the Levenshtein distance, but
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additionally accounts for action ordering and weights errors based on the frequencies of

actions and transitions encountered in the prescribed sequence. Thus, the KL divergence

is able to meet all four criteria specified above.

Two metrics stand out as potential candidates for measuring adherence in training:

the Levenshtein distance for its simplicity and ease of interpretation, and the KL di-

vergence by meeting all of the desired criteria. However, the KL divergence requires

additional modifications before it can be used directly for measuring procedure adher-

ence. Thus, a new metric was created, termed the Procedure Adherence Metric (PAM),

that captures the benefits of using the KL divergence approach but is able to be cal-

culated directly from sequences generated by trainees in rule-based environments. The

following section details the calcuation of the PAM.

B.1.1 Procedure Adherence Metric (PAM)

The main goal of measuring procedure adherence is to assess trainees' performance against

the SOP. Additionally, trainees can be objectively compared against each other based on

their training performance, and tracking procedure adherence can indicate struggling

trainees that need re-training. The Procedure Adherence Metric (PAM) was based on

the KL divergence between the trainee and intended action sequences. Formally, the KL

divergence between two sequences can be calculated as shown in Equation Q.1.

DKL(PIIQ) = Zln( ( )P(i) (B.1)

where P(i) is the probability of observing the transition from action i - 1 to action i in

one sequence (such as the intended sequence), and Q(i) is the probability of observing

the transition from action i - 1 to action i in the other sequence (such as the trainee

sequence). As can be seen from this formula, the KL divergence requires at least two

actions in the sequence, as no transitions exist with sequences containing only one action.

Also, the basic form of the KL divergence is not symmetric, meaning that DKL(PI IQ) is

not necessarily equivalent to DKL(Q|IP). For calculating adherence, it is useful to have

a metric that does not depend upon which sequence is used for P and Q, and thus a

symmetrized form can be used, as shown in Equation Q.2.
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DsymmetricKL = DKL(PIIQ) + DKL(Q|IP)

In this symmetrized form, the divergence will be the same regardless of which sequence

is used for P and Q. An adherence metric based on this divergence could use a single

final value calculated after the trainee has completed the module, or could utilize KL

divergence partway through the the training module. Consider a trainee who completes

30 actions during a training module. At any given point during the training module,

the "current" KL divergence between the trainee sequence and the intended sequence at

that point in the module can be calculated. Thus a sequence of KL divergences can be

generated over time, but it is unclear which aspects of this divergence sequence are the

most useful for measuring adherence.

KL divergence can be measured in many ways: maximum KL divergence, the mean

KL divergence, the final KL divergence (using only the full sequence), and the sum of

the KL divergences in the sequence. It was determined that using the sum of the KL

divergence values over all actions in a training module provided the closest rankings of

trainees (from best to worst) as compared to an expert evaluator (Appendix D). Using

the sum of KL divergences as the basis for the adherence metric, the PAM value can then

be calculated as shown in Equation Q.3.

N

PAM = ZDKL (B.3)
i=1

where N is the number of events or actions in the training sequence, and DKL represents

the symmetrized Kullback-Leibler divergence between the trainee sequence of states 1i

and the intended sequence of states of equivalent length. If N is greater than the number

of states in the intended sequence (M), the complete intended sequence is used for all

i > M. It is important to recognize that as the PAM is based on divergence, and a lower

score indicates better performance.

A potential issue that arises in the use of the KL divergence for the PAM is zero-

probability values in the transition matrix. This transition matrix represents the prob-

ability of all transitions between states in the model. For a model based on a sequence,

the maximum likelihood estimate simply counts the number of times a consecutive action

pair is found (e.g. action 1 to action 2), and normalizes by the number of transitions.
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An example based on three possible actions is shown in Figure Q-2. If a particular set of

actions are never observed consecutively (such as action 1 to action 3 in Figure Q-2), the

count (and therefore the probability estimate) for that transition is zero. The size of the

state transition matrix is heavily dependent on the number of existing actions (NxN for N

actions), and can be large for CBT settings. Even with only three actions in Figure Q-2,

it would take a sequence of at least length 10 (9 transitions) to have no zero-probability

transitions.

Often the set of actual transitions in any particular training procedure will not cover

the entire set of possible transitions. When included in the model, these zero probability

events send the KL divergence to infinity. Instead a small (but non-zero) probability can

be assigned to transitions that do not occur in the intended procedure. This results in a

large divergence score (poor performance) in the PAM but does not send the divergence

to infinity. Frequency estimation is a set of statistical techniques that provide estimates

Sequence: 1,1,2,2,3,3

Transition Counts

Ending State

1 2 3
1 1 1 0

Starting State 2 0 1 1

3 0 0 1

Transition Probabilities

Ending State

1 2 3
1 0.5 0.5 0

Starting State 2 0 0.5 0.5

3 0 0 1

Figure B-2: Example action sequence with transition counts and probabilities. In the
sequence, the numbers represent individual actions performed by the trainee.
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of the probabilities of unobserved events, such as the zero-probability events in the tran-

sition matrix. Some of the most common frequency estimation methods include additive

smoothing and Good-Turing estimation. Additive smoothing simply adds new transition

counts such that there are no zero-probability transitions. This strategy works well when

there are only a few unobserved events, but can dramatically alter the overall distribution

if there are many zero-probability events such as is observed in CBT data. Good-Turing

estimation estimates the probability of novel events based on the number of infrequently

observed events, and thus self-corrects for cases where the transition matrix is sparse (few

non-zero values). Thus for the PAM, Good-Turing smoothing was selected based on its

ability to handle large numbers of novel events.

B.1.2 Adherence Metrics as Features

Of the wide range of adherence metrics that can be used as features in machine learning,

the Levenshtein distance was selected for its simplicity in interpretation, and the PAM

was selected for its ability to meet the four criteria stated earlier in this appendix. PAM

is calculated as described above, while Levenshtein distance is calculated by the minimum

number of edits (insertions, deletions, or substitutions) to change the trainee sequence

into the intended sequence. For each of these metrics, the value after each action was

calculated, representing the process-level features. The final value at the end of the

module provided the summative-level features.

Adherence metrics such as the PAM or Levenshtein distance can be utilized as features

both at a process-level (for each action) or at a summative-level (end of module). While

calculating the metric at each action would provide a high number of features for use in

machine learning methods, as discussed in Chapter 3, having too many features compared

to data points may cause overfitting of the models. Thus, two approaches can be taken:

using only summative-level metrics or a reduced set of process-level metrics based on

feature selection techniques. In this analysis, both approaches were taken and the results

are presented in Chapter 4.

To illustrate the calcuation of these values, consider an example where the prescribed

sequence is AABBCC, and the trainee sequence is ABBCDC. In this example, the trainee

has made several mistakes: they have omitted an "A" action and have included an

extraneous "D" action that does not show up in the prescribed sequence. Both the
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Levenshtein distance and PAM can be used as example adherence metrics to describe the

timing and severity of the errors. Table Q. 1 shows the progression of both the Levenshtein

distance and PAM over the course of this sequence. Both Levenshtein and PAM increase

as the trainee moves through the sequence and commits the errors. The Levenshtein

distance essentially acts to "count" the number of errors made by the trainee. At action

2 where the trainee omits an "A" action and at action 5 where the trainee includes an

additional "D" action, the Levenshtein distance increases by one, resulting in a final value

of 2. The PAM shows additional fluctuations based on comparing the flow of the sequences

as a whole, through the comparison of the transitions between actions. By accounting for

transitions (and thus action ordering), there is a relatively small penalty for the PAM at

action 4, where the subsequence ABBC is seen in both the trainee and intended sequences.

A much harsher penalty is given by the PAM to the added "D" action, as it results in

transitions both to and from the "C" action which are unseen in the intended sequence.

Both are valid representations of the adherence of the trainee through time, and thus

were included as potential features in machine learning approaches. Note that if this

sequence comprised the full module, the resultant summative adherence scores would be

2 and 5.99 for Levenshtein distance and PAM, respectively. Both the summative and

process-level (action by action) values for the adherence metrics are utilized as possible

adherence features in the machine learning sections presented in Chapter 4.

Table B.1: Progression of Levenshtein and PAM over example sequences

Action Number 1 2 3 4 5 6
Intended Action A A B B C C
Trainee Action A B B C D C

Levenshtein Distance 0 1 1 1 2 2
PAM 0 2.04 2.68 1.70 5.06 5.99
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Appendix C

Comparison of Sequence Distance

Metrics

Because procedures can be seen as a set of actions sequentially ordered towards the

accomplishment of a task, they may be described as sequences of steps or events that

must occur in a given system ensuring its proper operation. Each sequence contains

a number of events, available from an event space, called a vocabulary list. Typically,

this vocabulary list is known or can be elaborated through a Cognitive Task Analysis

(CTA) [166]. The events generated by a user may not necessarily match in number or

type the steps prescribed by the intended protocol, but all possible events are contained

in the vocabulary list.

Protocol adherence can be measured by the difference between the procedure ex-

pected to be followed and the actual procedure adopted by the user or trainee. If these

procedures are represented as sequences, then the task becomes one of determining the

difference between two sequences. This section elaborates on existing algorithms used to

measure similarities between sequences through two approaches: sequence- and model-

based. These represent two commonly implemented types of methods for treating and

comparing sequential data. The section closes with the presentation of the proposed

algorithm for measuring protocol adherence in training scenarios.
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C.1 Sequence-Based Methods

Algorithms that directly employ the sequences of events generated are defined as sequence-

based. These are commonly used in string comparison and genetic association. In partic-

ular, the Levenshtein distance is introduced as a common sequence-based method from

language processing. Another method that uses suffix arrays is also analyzed, being a

successful sequence distance metric in online search filters. The usefulness of each of these

techniques in measuring procedural adherence is discussed.

C.1.1 Levenshtein Distance

Levenshtein distance is a measure of similarity between two sequences, usually strings

of characters. It counts the smallest number of changes required to make the target se-

quence, equal to the source sequence. It is also known as edit distance. The types of edits

allowed are character insertion, deletion and substitution. The Levenshtein algorithm is

a valuable tool for genome analysis [167], spell checking and fraud detection [168]. As

an illustrative example, consider the following source and target strings: MAED and

FADES. The smallest editing distance in this case, according to Levenshtein, is 4. There

are three substitutions in the source string ("M", "E" and "D" which are replaced by "F",

"D" and "E" respectively) and one character insertion ("S") at the end. Mathematically,

the Levenshtein distance between two sequences a and b can be calculated in a recursive

function as shown in Equation C.1.

max(i, j) if min(i, j) = 0

leva,b(i, j) - levab(i - 1, j) + 1 (C.1)
min levab(i, j - 1) otherwise

leva,b(i - lj - 1) + 1 (ai#bj)

where 1(ai$b,) is an indicator function equal to zero when ai = b, and equal to 1 otherwise.

Modified versions of this algorithm have been widely used, namely with the inclusion

of transpositions [168], inversions or both [167]. Transposition is a simple switch of two

elements in the same sequence. Inversion is a change in a segment of the sequence that
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reverses the order of the elements within the segment. While inversions are unlikely in be-

havioral data sequences, transpositions may be common occurrences between sequences.

The inclusion of transpositions was considered in the Damerau-Levenshtein [168] variant.

Using the same example from above, we can recalculate the edit distance according to the

Damerau-Levenshteins distance. There is one substitution at the beginning, one trans-

position (of characters E and D) and one insertion at the end, yielding an edit distance

of 3. An overview of the Levenshtein distance and Damerau-Levenshtein measure can be

found respectively in [163] and [168].

In case of procedure adherence the Levenshtein measures can quantitatively inform

of how many steps were different from the protocol. This is the most common type of

objective procedural adherence analysis currently performed in the field. However, it does

not account for the nature of any deviations. If there is a step of the procedure that was

not supposed to be taken, the Damerau-Levenshtein distance marks this dissimilarity as

1 unit of distance between the two sequences. However, if there is a transposition of two

adjacent steps which were both expected to occur, the Damerau-Levenshtein also marks

this as a 1 unit of distance. This measurement is then insensitive to the type of deviations

and does not penalize event variations differently. In protocol adherence, different steps

from the procedure may have markedly different impacts on the safety of a system and

thus should be treated differently. Therefore, the standard Levenshtein distance was used

in the analyses presented in Chapter 4.

C.1.2 Suffix Arrays

Another algorithm which can be used to identify sequence matches is a method based on

suffix arrays. Generally employed in word comparison applications, such as on-line search

filters [165], the technique applies mainly to sequences of strings. A suffix array for a set

of strings is a lexicographically ordered array for all suffixes of all strings. Consider the

following string: "Andromeda". It has 9 suffixes: "andromeda", "ndromeda", "dromeda"

and so on, until "da" and "a". Lexicographically, the suffixes are arranged as shown in

Table C.1.

Note the alphabetic ordering of the suffixes. If the original string is known, each

suffix can be identified by its index. The suffix array is the array of indices of suffixes

sorted in lexographical order, which in this case corresponds to: 9,1,8,3,7,6,2,5,4. The
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Table C.1: Example of Suffix Array
Index Sorted Suffix

9 a

1 andromeda

8 da
3 dromeda

7 eda

6 meda

2 ndromeda

5 omeda

4 romedae

lexicographic ordering allows similar substrings to be grouped together for comparison.

Malde et al. [169] decomposed the Suffix Array algorithm into three stages. The first

one identifies pairs of sequences that contain matching blocks. Two sequences have a

matching block if they have contiguous segments that match exactly. The second step

uses the information generated in the previous process to calculate a score for pairs of

sequences, which in the final stage, will be used to perform hierarchical clustering.

The score of a pair of sequences defines a measure of their similarity. Consistent

matching blocks are a set of non-overlapping and co-linear (i.e. arranged in the same

order) matching blocks in the sequences. Because this section focuses on establishing a

metric for adherence, only the first and second stage of this method will be addressed.

The scoring process comprises of the following substeps:

Create Suffix;

Sort Suffix into SuffixArray;

Clique = Group of Suffixes that share a prefix;

for (Each Clique) {

Find maximal matching blocks

if (#MatchingBlocks >= 1) {

Group matching blocks

}

}

Score = Sum of largest set of matching blocks

A description of the Suffix Array method is given by Manber & Myers [165] and

Malde [169] explains its usefulness in clustering sequences. Clustering is performed hi-

226



erarchically, with rules for cluster merging and creation of new leaves. This results in a

set of clusters that are binary trees, with the sequences as leaves. The lowest branches

represent the strongest connected sequences, decreasing in strength of connection further

up the tree. For example, consider the sequences shown in Table C.2.

Using the suffix array method, we can find many matching blocks between the target

sequence and Source 1. The largest matching blocks are of length 4 (AABB, BBCC,

CCDD). However, the longest set of consistent blocks is AABB and CCDD. Therefore,

the suffix array method would assign a score of 8 to this sequence.

The Suffix Array approach only accounts for the consistent matching blocks when

generating scores for pairs of sequences (non-matching blocks are ignored). This repre-

sents a considerable weakness of this method in human behavior applications. In the

example above, it is apparent that Source 1 did not exactly follow the target sequence.

However, the suffix-array method assigns a score of 8 to this source sequence, which is the

same score as if the user had performed the intended sequence exactly. It is important for

procedural adherence purposes for the metric to be able to distinguish between perfect

performance and sequences such as Source 1 given above.

An even more salient example arises if one considers the Source 2 sequence from above.

In this sequence, the middle section has been substituted for four "E states that do not

exist in the target sequence. However, the same AABB and CCDD subsequences are still

intact, and the suffix array method would still assign a score of 8 to this source sequence.

For human behavioral analysis and procedural adherence measurement, it would be very

important to be able to distinguish a user that followed the target sequence exactly from

the two example source sequences described above. In short, the suffix array method

identifies the similarities between two sequences, but ignores the number and nature of

deviations. This makes it less desirable as a metric for measuring procedural adherence

in training.

In summary, sequence-based algorithms track mainly the number of similarities or

Type
Target

Source 1
Source 2

I
Table C.2: Example Sequences for Suffix Array Comparison

Sequence
AABBCCDD

AAAABBBBCCCCDDDD
AAAABBEEEECCDDDD
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deviations between two sequences but suffer from a major shortcoming in that they are

insensitive to the nature of deviations. In contrast, an alternate set of methods use models

to account for the nature of deviations between sequences and are described in the next

section.

C.2 Model-Based Methods

In behavioral assessment it is important not only to account for the number of protocol

deviations, but also how the events deviated from the expected. To accomplish this,

sequences can be modeled as a set of transition probabilities between events. In a training

scenario, these events are known and observable to the system user.

Model-based methods offer particular advantages in training scenarios: they are sen-

sitive in changes in the sequence of states (based on changes in the transitions between

states) and can predict the next event based on the current one. Mathematically this

can be expressed by Markov models, representing the series of events as a succession of

states.

The simplest instantiation of Markov models are discrete Markov chains [170], which

can be used to represent the set of operator events as N different states S1, S2, , SN. The

states are linked by a set of transition probabilities A = aij. Between time t and t +1, the

system undergoes a state transition, possibly returning back to the same state, according

to these probabilities. An illustration of an example system is given in Figure D-1. Being

a discrete process, the instants at which the states change are designated as t = 1, 2,...

and the present state at time t as st. The model in question follows first-order Markov

assumption, which states that the current state st at time t is only dependent on the

value of the system at time t - 1 and no other value before. Formally, this probability

description at time t can be expressed as shown in Equation C.2.

P(st = S Ist_1 = Si, st-2 = Sk, .. .) = P(st = SjIst-i = Si) = aij(t), 1ijN (C.2)

Assuming that the transition probabilities aij are stationary (time-independent), the

Markov assumption holds so that:
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a21

S, a12 S2

41

a14 a24a2
a13

a34

33

Figure C-1: Markov chain with four states and the respective transitions probabilities

N

P(st = S st-1 = Si) = aij(t) > 0, <i, j < Nand Iai= 1 (C.3)
j=1

An overview of Markov Chains can be found in [170]. In procedural training, it is

assumed that the states are observable, and a Markov Chain can be constructed for each

sequence using transition probabilities learned from the sequence.

In contrast with sequence-based algorithms which use sequences directly, there are al-

gorithms capable of measuring the distance between two models from a statistical stand-

point. Such methodologies can then be used to approximate the statistical distance

between two sequences as the distance between two models trained on those sequences.

C.2.1 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence, also known as relative entropy, attempts to pro-

vide a quantification of statistical distance between models or probability distributions
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[164]. It has been previously applied to Hidden Markov Models (HMMs), which are a

more complex type of generative Markov models. In Hidden Markov Models, the states

are hidden, the user has only access to an output set of observable variables [170-172].

In proceduralized settings, the states are assumed to be observable, and thus are more

appropriately fit by a Markov Chain. While the KL divergence has not previously been

applied to Markov Chains, a similar strategy to HMMs can be used.

To apply the KL divergence to Markov Chains, a set of models A are first trained for

each of the data sequences T. A likelihood matrix L is obtained from modeled sequences

and whose element lij defined as shown in Equation C.4.

1
ii length(T) 2f(T; A), 1 < ij N (C.4)

where T is the jth sequence, Ai is the ith model trained for the ith sequence and fT(-; Ak)

is the probability density function (pdf) over sequences according to the model Aj. This

is to say that the ith column of 1 represents the likelihood of sequence T under each of

the trained models.

By normalizing L such that each column adds up to one, the columns become proba-

bility density functions over the trained model space A of each individual sequence. The

formulation for the discrete case is given in Equation .

DKL(fP fQ) Z P(i flogp (C.5)

where fp and fQ are two discrete pdfs representing Markov models based on the sequences

P and Q. Note that due to the normalization, the divergence becomes now the measure

of dissimilarity between pdfs. This KL divergence is also asymmetric, so by symmetrizing

it, one obtains Equation C.6.

1
DKLsYM(fP IIfQ) =[DKL(fP IfQ) + DKL(fQ|fP)] (C.6)

2

In short, the KL distance is based on the calculation of the likelihood of the sequences

given the models. A similar model-based algorithm is the BP metric [171,172]. The

difference between these two metrics lies in the fact that the BP bases its sequence

distance on the likelihood matrix L, instead of normalizing and treating the likelihood

data as probability density functions. Both consider the quality of modeling fit of each
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trained model to a sequence by estimating the normalized difference between the sequence

and the training likelihood [171,172]. However, the KL metric was selected based on

having shown superior clustering performance in the literature [164]. Table C.3 presents

a comparison of the presented metrics with respect to particular qualities of interest for

measuring sequence distance. As shown in this table, the KL divergence meets all of the

needs for a procedure adherence metric, and therefore was used as the basis for the PAM.

Table C.3: Comparison of Sequence Distance Metrics
Characteristics Levenshtein Suffix Array Kullback-

Distance Leibler
Variable importance No No Yes
of errors
Non-equal sequence Yes Yes Yes
length
Sensitivity to number Yes No Yes
of deviations

Sensitivity to transi- No No Yes
tions between events
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Appendix D

Selection of KL Divergence Features

A set of potential features were identified for the calculation of the PAM metric based

on the KL divergence over the course of a training module. These included the terminal

(final) KL value at the end of the module, the mean KL value, the median KL value, the

area under the KL graph over the course of the module, the peak (maximum) KL value,

and the ratio of the terminal to peak value. In order to identify the features that could

be the most informative of good/poor trainees, the subjects were ranked from best to

worst performers based on each feature. In comparison, an expert with full knowledge of

the procedure was asked to analyze the volunteers data to act as the gold standard. The

expert ranked the volunteers from top to worst performers based on subjective assessment

of their performance. The sum of rank differences between the feature rankings and the

expert rankings were calculated for each feature. The area feature was found to have

the lowest sum of differences, and this was statistically significant from all other features

other than mean by Mann-Whitney U Test. Figure ?? shows the sum of rank differences

for each feature, and Table D.1 shows the statistical test results. Based on this analysis,

the area below the graph was the selected feature of the KL to be used in the score

computation.
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Figure D-1: Graph of the sum of rank differences between each feature and the expert
ranking. P values indicate significant difference from the lowest error (Area) by Mann-
Whitney U test.

Table D.1:
calculated
differences

Statistical analysis of varying features of the KL graph. The values were
by comparing the sum of rank differences of each feature to the sum of rank
based on area.

Feature P-value of Mann-Whitney U Test

Terminal Value 0.0394
Area N/A
Mean 0.0541

Median 0.0322
Peak 0.0042

Terminal/Peak 0.0121
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Appendix E

Rule-Based Experiment Procedures

This appendix provides the procedures used in the simluated nuclear reactor Computer-

Based Training (CBT) experiment. The procedures for each training and test module

contained different content, but maintained a similar structure. There were 4 types of

procedures contained in the experiment, as noted by the procedure number in the upper

left corner of the procedure. These were:

" E = Emergency procedures, used in the case of a reactor SCRAM

" M = Maintenance procedures, used for contacting and coordinating with mainte-

nance

" AOP = Anomalous Operating Procedures, used in case of unusual behavior but no

SCRAM

" T = Training procedures, used for training modules

For the training modules, the participants were only provided the associated training

procedures. In the test module, the participants were provided a binder containing the

E, M, and AOP procedures, as well as appendices providing department codes nominal

value ranges for the system parameters. In the following pages, the training procedures

are presented first, followed by the binder used in the test module.
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Number Title Rev./Date

T-1  I Startup and Shutdown Rev.7 7/11/2011

A. PURPOSE

This training procedure provides actions to shut down the active reactor, to start up the
inactive reactor, and to verify the conditions in which the reactor is being shut down or
started up.

B. SYMPTOMS OR ENTRY CONDITIONS

Condition I Description
1 Check Rod Insertion State - 0%
2 Check ALL Power Output > 0



Number Title Rev./Date
T-1 Startup and Shutdown Rev.7 7/11/2011

Step Action/Expected Response | Response Not Obtained
1 Initiate Rod Insertion

-Set rod insertion control - AUTO ON
-Set rod insertion rate - 50 steps/min
-Initiate rod insertion
-Verify rod insertion

2 Verify Power Reduction
-Reactor Temp - DROPPING
-RCS Pressure - DROPPING
-RCS Temp -DROPPING
-ALL SG Pressure - DROPPING
-ALL SG Temperature - DROPPING
-ALL SG Coolant Level - STABLE OR
DROPPING
-ALL Power Output - DROPPING

3 Halt Power Production
-ALL RCPs to Intact SGs - DEACTIVATED

-Verify Power Output - DROPPING
-Verify Turbine Steam Press - DROPPING
-Verify SG Temperature - DROPPING
-Verify SG Pressure - DROPPING
-Intact SGs Steamline Valves - CLOSED
-Intact SGs Secondary Coolant Pumps
DEACTIVATED

-Deactivate Turbines for intact loops - indicators
LIT RED

-Verify Expected Alarm - B3 Turbine Auto Trip
LIT RED

4 Initiate Rod Extraction
-Verify rod extraction control - AUTO ON

-Verify rod extraction rate - 50 steps/min

-Initiate rod extraction

-Verify rod extraction

-Manually insert rods -25
steps/min

-Go to Step 1

-Deactivate RCPs to intact
SGs

-Close SGs Steamline Valves
-Deactivate SGs Secondary
Coolant Pumps

-Set rod insertion control
AUTO ON
-Set rod insertion rate - 50
steps/min

-Manually extract rods - 25
steps/min



Number Title Rev./Date

T-1  I Startup and Shutdown Rev.7 7/11/2011

Step I Action/Expected Response I Response Not Obtained
5 Initiate Power Production

-Intact SGs RCPs - ACTIVATED
-Intact SGs Steamline Valves - OPEN

-Intact SGs Secondary Coolant Pumps
ACTIVATED

-Activate intact SGs RCPs
-Open intact SGs Steamline
Valves
-Activate intact SGs
Secondary Coolant Pumps

-Activate Turbines for intact loops - indicators LIT
GREEN



Number Title Rev/Date
T-2 Managing Coolant Flow Rev.9 8/15/2011

PURPOSE

A. This training procedure provides actions to manage the coolant system of the reactor,
which involves both the reactor coolant pumps, secondary coolant pumps, and the various
coolant flows and levels associated with them. The procedure provides several goals that
may be achieved by managing the coolant system, given as examples of tasks that may be
required of a reactor operator.

Goals are accomplished by the steps in each box. Do not go on to the next step or
box until the goal condition has been met.

B. SYMPTOMS OR ENTRY CONDITIONS

Condition I Description
Check Rod Insertion State - 0%
Check ALL Power Output > 0
Check ALL RCPs - ACTIVATED
Check SI Trains -ACTIVATED
Check ALL SCPs - ACTIVATED

1
2
3
4
5



3 Deactivate SI Trains
-Deactivate SI Train A pump
-Deactivate SI Train B pump

4 Activate Loop 1 RCP
-Activate Loop 1 RCP

Number Title Rev./Date

T-2  I Managing Coolant Flow Rev.9 8/15/2011

Step I Action/Expected Response I Response Not Obtained

GOAL: Lower Loop 1 SG Temperature to under 450
degrees

I Deactivate Loop 1 RCP
-Deactivate Loop 1 RCP
-Verify SG Pressure - DROPPING
-Verify SG Temp - DROPPING
-Verify Turbine Steam Pressure - DROPPING
-Verify Power Output -DROPPING

GOAL: Raise Reactor Coolant Level to at least 75.

2 Activate SI Trains
-Activate ALL SI Train pumps
-Verify Reactor Temp - STABLE OR DROPPING
-Verify RCS Temp - STABLE OR DROPPING
-Verify RCS Pressure - STABLE OR DROPPING
-Verify Coolant Level - STABLE OR RISING
-Verify Expected Alarm - A3 SI Auto Injection
LIT RED



Number jTitle Rev./Date
T-2  Managing Coolant Flow Rev.9 8/15/2011

GOAL: Raise Loop 2 Turbine Steam Pressure to at
least 865.

5 Deactivate Loop 2 Cooling
-Deactivate Loop 2 Secondary Coolant Pump
-Verify Coolant Temp - STABLE or RISING
-Verify Turbine Steam Pressure - STABLE or
RISING

-Verify SG Temperature - STABLE OR RISING
-Verify SG Coolant Level - STABLE OR
DROPPING

6 Activate Loop 2 Cooling
-Activate Loop 2 Secondary Coolant Pump

GOAL: Lower Loop 3 SG Pressure to less than 1000.

7 Open Loop 3 Steam Dump Valve
-Open Loop 3 Steam Dump Valve
-Verify SG Pressure - DROPPPING
-Verify SG Temperature - DROPPING
-Verify Turbine Steam Pressure - DROPPING
-Verify Power Output - DROPPING

8 Close Steam Dump Valves
-Loop 3 Steam Dump Valve - CLOSED



Number Title Rev.Date

T-3 Diagnosing an Emergency Rev.7 7/11/2011

A. PURPOSE

This training procedure provides actions to diagnose the cause of reactor or loop system
malfunctions following an automatic scram of the reactor.

B. SYMPTOMS OR ENTRY CONDITIONS

Condition I Description
1 Check Rod Insertion State - 100%
2 Check Reactor Scram Annunciator (A2) - LIT



Number Title Rev/Date

T-3 I Diagnosing an Emergency Rev.7 7/11/2011

Step I Action/Expected Response I Response Not Obtained
1 Verify Reactor Scram Th

-Verify all rods at 100% insertion
-Verify neutron flux - DROPPING

2 Verify Turbine Trip
-All turbine RED indicators - LIT

3 Verify SI Status
-Verify SI system is actuated: Annunciator A3
LIT

-Verify both trains of SI - ACTUATED
-Verify both SI Pumps - ACTIVATED

4 Verify Containment Pressure HAS REMAINED
LESS THAN 30 PSIG

5 Verify Secondary Coolant Flow for ALL Loops -
GREATER THAN 720 GPM

6 Verify RCS Temperature
-IF any RCP running, THEN verify RCS average
temperature - STABLE BETWEEN 557* AND
5620

-IF no RCP running, THEN verify reactor coolant
temperature - STABLE BETWEEN 5570 AND
5620

-DO NOT CONTINUE
MODULE

-Manually switch indicators
to RED

-Check if SI is required: If
RCS pressure is less than
1807 psig

-Stop all RCPs
-Place steam dumps in steam
pressure mode
-Verify CONTAINMENT
ISOLATION WARNING:
Annunciator A4 - LIT

-Ensure secondary coolant
pumps are activated
-Stop dumping steam

-IF temperature less than
5570 and dropping, THEN:

a) Close any open steam
dump valves

b) IF cooldown
continues, THEN
close main steamline
valves

-IF temperature greater than
562* and rising, THEN open
ALL steam dump valves



Number Title Rev/Date

T-3 Diagnosing an Emergency Rev.7 7/11/2011

Step | Action/Expected Response I Response Not Obtained
7 Check if SGs are not faulted

-Verify all SGs - PRESSURIZED

8 Check if SG Tubes are not ruptured
-Verify condenser radiation level - NORMAL

-IDENTIFY FAULT AS
FAULTED STEAM
GENERATOR ON POST-
TEST

-THIS ENDS THE
MODULE- DO NOT
CONTINUE

-IDENTIFY FAULT AS
STEAM GENERATOR
TUBE RUPTURE ON POST-
TEST

-THIS ENDS THE
MODULE- DO NOT
CONTINUE

9 Check if RCS is intact
-Verify containment radiation - NORMAL
-Verify containment pressure - NORMAL
-Verify containment temperature - NORMAL } -IDENTIFY FAULT AS

LOSS OF REACTOR OR
SECONDARY COOLANT
ON POST-TEST

-THIS ENDS THE
MODULE- DO NOT
CONTINUE

10 Check if SI Trains Reset
-Verify Train A sequencer status lights - LIT
GREEN

-Verify Train B sequencer status lights - LIT
GREEN

} -Go to Step 1
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Nuclear Reactor Operating Procedures

Maintenance Procedures
M-1 Contacting Departments for Maintenance

Emergency Procedures
E-0 Reactor Scram or Safety Injection
E-1 Loss of Reactor or Secondary Coolant
E-2 Faulted Steam Generator Isolation
E-3 Steam Generator Tube Rupture

Anomalous Operating Procedures
AOP-1 Power Excursion
AOP-2 Loop Data Loss
AOP-3 Reactor Data Loss
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Number Title Rev./Date

M-1 I Contacting Departments for Maintenance Rev.6 6/17/2011

A. PURPOSE
This Maintenance Procedure provides actions contact different departments for maintenance
purposes.

B. SYMPTOMS OR ENTRY CONDITIONS

Condition I Description
1 Operator is directed by a procedure to contact a department.



Number Title Rev./Date
M-1 Contacting Departments for Maintenance Rev.6 6/17/2011

Step I Action/Expected Response I Response Not Obtained
1 TVe the NAME OF THE DEPARTMENT in Wait for rennnt

the chatbox and press enter.
2 Type the ERROR CODE in the chatbox and

press enter.
3 Wait for confirmation.



Number Title Rev./Date
E-0 Tte Reactor Scram or Sa Ifety Injection I Rev. I

Purpose

This procedure provides actions to verify proper response of the automatic protection
systems following manual or automatic actuation of a reactor scram or safety injection, to
assess plant conditions, and to identify the appropriate recovery procedure.

Symptoms or Entry Conditions

The following are symptoms of a reactor scram and/or safety injection:
1. Reactor scram annunciator (A2) lit.
2. All control rods fully inserted. Rod bottom lights lit.
3. Annunciator A3 lit.
4. SI Train A and/or B pumps activated.

1



Number Title Rev./Date

E-0 Reactor Scram or Safety Injection Rev.1

FOLDOUT PAGE FOR E-0

1. RCP TRIP CRITERIA

a. Trip ALL Reactor Coolant Pumps (RCPs) if BOTH conditions below exist:

a. AT LEAST ONE Safety Injection (SI) pump is running.

b. RCS pressure LESS THAN 1360 PSIG.

2. CONTINUOUS ACTION STEPS

Check Containment Pressure (Step 4)

Check RCS Temperature (Step 6)

Check if RCPs should be stopped (Step 7)

2



Number Title Rev./Date

E-0 Reactor Scram or Safety Injection Rev.1

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

1 Verify Reactor Scram:

* Rod bottom lights - LIT

" Reactor scram annunciator (A2)

- LIT

* Neutron flux - DROPPING

Verify Turbine Trip:

a. All turbine RED indicators - LIT a. Manually switch indicators to
RED

a. Check if SI is actuated:

Annunciator A3 - LIT

b. Verify both trains of SI -
ACTUATED

Train A & B sequencer status
lights - LIT RED

Both SI Pumps activated

4 Check Containment Pressure HAS
REMAINED LESS THAN 30 PSIG

a. Check if SI is required:
If RCS pressure is less than 1807
psig

b. Manually actuate SI

Perform the following:

a. Stop all RCPs

b. Place steam dumps in steam
pressure mode

c. Verify CONTAINMENT
ISOLATION WARNING:
Annunciator A4 - LIT

3

2

3 Check SI Status:



E-0 Reactor Scram or Safety Injection Rev./Date

FOLDOUT PAGE FOR E-0

1. RCP TRIP CRITERIA

a. Trip ALL Reactor Coolant Pumps (RCPs) if BOTH conditions below exist:

a. AT LEAST ONE Safety Injection (SI) pump is running.

b. RCS pressure LESS THAN 1360 PSIG.

2. CONTINUOUS ACTION STEPS

Check Containment Pressure (Step 4)

Check RCS Temperature (Step 6)

Check if RCPs should be stopped (Step 7)

4



Number Title Rev./Date
E-0 i Reactor Scram or Safety Injection Rev. 1

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

5 Verify Secondary Coolant Flow for IF flow less than 720 GPM, THEN:
ALL Loops - GREATER THAN 720
GPM a. Ensure secondary coolant pumps

are activated

b. Stop dumping steam

6 Check RCS Temperature:

* IF any RCP running, THEN check
RCS average temperature -
STABLE BETWEEN 5570 AND
5620

OR

* IF no RCP running, THEN check
reactor coolant temperature -
STABLE BETWEEN 5570 AND
5620

IF temperature less than 557' and
dropping, THEN:

a. Stop dumping steam

b. IF cooldown continues, THEN
close main steamline valves

IF temperature greater than 562* and
rising, THEN open ALL steam
dump valves

7 Check if RCPs should be stopped:

a. Check RCPs - ANY RUNNING

b. RCS pressure - LESS THAN
1360 psig

c. Stop all RCPs

d. Place steam dumps in steam
pressure mode

a. Verify steam dumps in steam
pressure mode. Go to Step 8

b. Go to Step 8
c.

5



Number Title Rev./Date

I E-O Reactor Scram or Safety Injection Rev.1

FOLDOUT PAGE FOR E-0

1. RCP TRIP CRITERIA

a. Trip ALL Reactor Coolant Pumps (RCPs) if BOTH conditions below exist:

a. AT LEAST ONE Safety Injection (SI) pump is running.

b. RCS pressure LESS THAN 1360 PSIG.

2. CONTINUOUS ACTION STEPS

Check Containment Pressure (Step 4)

Check RCS Temperature (Step 6)

Check if RCPs should be stopped (Step 7)

6



Number Title Rev./Date
E-0 Reactor Scram or Safety Injection Rev. I

8 Check if SGs are not faulted:

All SGs - PRESSURIZED

IF pressure in any SG is dropping in
an uncontrolled manner OR any SG
is depressurized, THEN go to E-2,
FAULTED STEAM
GENERATOR ISOLATION,
Step 1

7



Number Title Rev./Date

E-0 Reactor Scram or Safety Injection Rev.1

FOLDOUT PAGE FOR E-0

1. RCP TRIP CRITERIA

1. Trip ALL Reactor Coolant Pumps (RCPs) if BOTH conditions below exist:

a. AT LEAST ONE Safety Injection (SI) pump is running.

b. RCS pressure LESS THAN 1360 PSIG.

2. CONTINUOUS ACTION STEPS

Check Containment Pressure (Step 4)

Check RCS Temperature (Step 6)

Check if RCPs should be stopped (Step 7)

8



Number TiR ev./lbate
E-0 Reactor Scram or Safety Injection Rev.1

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

9 Check if SG Tubes are not ru tumh Cyntn 1'A QT1FAMQ1PNFDATnR

a. Condenser radiation level -
NORMAL

10 Check if RCS is intact:

" Containment radiation - NORMAL

" Containment pressure - NORMAL

* Containment temperature -
NORMAL

11 Check if SI Trains Reset:

a. Verify both trains of SI -
RESET

TUBE RUPTURE, Step 1

Go to E-1, LOSS OF REACTOR
OR SECONDARY COOLANT,
Step 1

Go to Step 1

Train A sequencer status lights -
LIT GREEN

Train B sequencer status lights -

LIT GREEN

9



Number Title Rev./Date

E-1 ILoss of Reactor or Secondary Coolant I Rev. I

Purpose

This procedure provides actions to terminate leakage or loss of reactor coolant or
secondary coolant following a reactor scram and an abnormal containment reading.

Symptoms or Entry Conditions

This procedure is entered from:

1. E-0, REACTOR SCRAM OR SAFETY INJECTION, Step 10, when containment
radiation, containment pressure, or containment temperature is abnormal.

1



Number Title "ar j Rev./Date
E-1 -Loss of Reactor or Secondary Coolant I Rev.1

FOLDOUT PAGE FOR E-1

1. SI REINITIATION CRITERIA

Manually stop SI pumps if RCS core exit temperature - LESS THAN 25* F

2. SECONDARY INTEGRITY CRITERIA

Go to E-2, FAULTED STEAM GENERATOR ISOLATION, Step 1, if any SG
pressure is dropping in an uncontrolled manner or if any SG has completely
depressurized, and that SG has not been isolated.

3. CONTINUOUS ACTION STEPS

Check if RCPs should be stopped (Step 1)

Check Intact SG(s) Levels (Step 3)

Check Secondary Radiation - NORMAL (Step 4)

2



Number Title Rev./Date

E-1 Loss of Reactor or Secondary Coolant Rev.1

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

1 Check if RCPs should be stopped:

a. Check RCPs - ANY RUNNING

b. RCS pressure - LESS THAN
1360 psig

c. Stop all RCPs

d. Place steam dumps in steam
pressure mode

2 Check if SGs are not faulted:

a. All SGs - PRESSURIZED

a. Verify steam dumps in steam
pressure mode. Go to Step 2

b. Go to Step 2

IF pressure in any SG is dropping in
an uncontrolled manner OR any SG
is depressurized, THEN go to E-2,
FAULTED STEAM
GENERATOR ISOLATION,
Step 1

3 Check Intact SG Levels:

a. Coolant Level - GREATER
THAN 7%

b. Control secondary coolant pump
to maintain level between 7%
and 70%

4 Check Secondary Radiation -
NORMAL

a. IF coolant level LESS THAN
7%, THEN engage secondary
coolant pump until SG level
greater than 7%

b. IF level in any intact SG
continues to rise in an
uncontrolled manner, THEN go
to E-3, STEAM GENERATOR
TUBE RUPTURE, Step 1

Go to E-3, STEAM GENERATOR
TUBE RUPTURE, Step 1

a. Condenser radiation - NORMAL

3



Number Title Rev./Date

E- 1 Loss of Reactor or Secondary Coolant Rev. I

FOLDOUT PAGE FOR E-1

1. SI REINITIATION CRITERIA

Manually stop SI pumps if RCS core exit temperature - LESS THAN 25* F

2. SECONDARY INTEGRITY CRITERIA

Go to E-2, FAULTED STEAM GENERATOR ISOLATION, Step 1, if any SG
pressure is dropping in an uncontrolled manner or if any SG has completely
depressurized, and that SG has not been isolated.

3. CONTINUOUS ACTION STEPS

Check if RCPs should be stopped (Step 1)

Check Intact SG(s) Levels (Step 3)

Check Secondary Radiation -NORMAL (Step 4)

4



Numbsr Title Rev./Date

E-1 Loss of Reactor or Secondary Coolant Rev.I

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

5 Check if SI Flow Should be
Terminated:

a. RCS Pressure - STABLE OR
RISING

b. At least ONE intact SG coolant
level - GREATER THAN 7%

6 Check RCS and SG Pressures:

* Check pressure in all SGs - STABLE
OR RISING

* Check RCS pressure - STABLE OR
DROPPING

7 Check if RCS Cooldown and
Depressurization is Required:

" RCS Pressure - GREATER THAN
250 PSIG

" RCS Temperature - GREATER
THAN 3900

8 Check if SI Trains Should be Reset:

a. At least two SG temperatures -
LESS THAN 3900

b. Reset SI Trains - STATUS
LIGHT GREEN

9 Check if Intact SG(s) Should be
Depressurized to RCS Pressure:

a. RCS pressure - LESS THAN
INTACT SG PRESSURES

a. Go to Step 6

b. Go to Step 6

Go to E-0, REACTOR SCRAM
OR SAFETY INJECTION, Step 1

Go to Step 8

a. Continue with Step 9. WHEN at
least two SG temperatures less
than 3900, THEN perform Step
8b.

a. Go to Step 10

5



Number I Title Rev/Date
E-1 Loss of Reactor or Secondary Coolant Rev.1

Step 9 continued on next page

FOLDOUT PAGE FOR E-1

1. SI REINITIATION CRITERIA

Manually stop SI pumps if RCS core exit temperature - LESS THAN 25* F

2. SECONDARY INTEGRITY CRITERIA

Go to E-2, FAULTED STEAM GENERATOR ISOLATION, Step 1, if any SG
pressure is dropping in an uncontrolled manner or if any SG has completely
depressurized, and that SG has not been isolated.

3. CONTINUOUS ACTION STEPS

Check if RCPs should be stopped (Step 1)

Check Intact SG(s) Levels (Step 3)

Check Secondary Radiation - NORMAL (Step 4)

6



Number Title Rev./Date

E-1 Loss of Reactor or Secondary Coolant Rev.1

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

Step 9 continued

b. Check SG radiation levels

* Condenser radiation levels -
NORMAL

c. Dump steam to condenser from
intact SG(s) until SG pressure less
than RCS pressure

10 Check if SI Flow Should be
Terminated:

a. RCS Pressure - STABLE OR
RISING

b. At least ONE intact SG coolant
level - GREATER THAN 7%

11 Stop Both SI Pumps

12 Check RCP Status:

a. Verify RCP(s) to intact SG(s)
are running

b. Verify RCS Pressure and
Temperature - NORMAL

13 Initiate Rod Extraction:

a. Place rod extraction control in
AUTO

b. Set rod extraction rate - 10
STEPS PER MINUTE

b. Do not dump steam from an SG
with an unacceptable radiation
reading.

a. Continue SI

a. Manually start RCP(s) for intact
SG(s)

7



Number Title Rev./Date
E-1 Loss of Reactor or Secondary Coolant Rev.

Step 13 continued on next page

FOLDOUT PAGE FOR E-1

1. SI REINITIATION CRITERIA

Manually stop SI pumps if RCS core exit temperature - LESS THAN 25* F

2. SECONDARY INTEGRITY CRITERIA

Go to E-2, FAULTED STEAM GENERATOR ISOLATION, Step 1, if any SG
pressure is dropping in an uncontrolled manner or if any SG has completely
depressurized, and that SG has not been isolated.

3. CONTINUOUS ACTION STEPS

Check if RCPs should be stopped (Step 1)

Check Intact SG(s) Levels (Step 3)

Check Secondary Radiation - NORMAL (Step 4)

8



Number Title Rev./Date

E-1 Loss of Reactor or Secondary Coolant Rev.1

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

Step 13 continued

c. Verify rod extraction c. Manually extract rods - 10
STEPS PER MINUTE

a. Verify intact SG(s) Temperature
-NORMAL

b. Intact SG(s) Steamline Valves -
OPEN

c. Intact SG(s) Secondary Coolant
Pumps - ACTIVATED

d. Place Steam Dump Valves in
CLOSED position

e. ACTIVATE turbine(s) for intact
loop(s) - Indicators LIT GREEN

- END -

a. Verify intact SG(s) RCPs -
ACTIVATED

b. Open intact SG(s) Steamline
Valves

c. Activate intact SG(s) Secondary
Coolant Pumps

14 Initiate Power Production:

9

M



Number Title - Rev./Date
E-2 Faulted Steam Generator Isolation I -Rev.1

Purpose

This procedure provides actions to identify and isolate a faulted steam generator
following a reactor scram and uncontrolled or full depressurization of one or more steam
generators.

Symptoms or Entry Conditions

This procedure is entered from:

1. E-0, REACTOR SCRAM OR SAFETY INJECTION, Step 8, when one or more
steam generators are depressurized or depressurizing.

2. E-1, LOSS OF REACTOR OR SECONDARY COOLANT, Step 2, when any SG
is dropping in an uncontrolled manner OR any SG is depressurized.

1



NFlber Title Rev./Date

E-2 Faulted Steam Generator Isolation Rev.1

FOLDOUT PAGE FOR E-2

1. SI REINITIATION CRITERIA

Manually stop SI pumps if RCS core exit temperature - LESS THAN 25*

2. MULTIPLE FAULTED STEAM GENERATOR CRITERIA

Stabilize the plant by returning to E-2, FAULTED STEAM GENERATOR, Step
1, if any intact SG level falls in an uncontrolled manner or any intact SG has
abnormal radiation.

3. CONTINUOUS ACTION STEPS

Identify Faulted SG(s) (Step 2)

Check Secondary Radiation (Step 7)

Check if SI should be terminated (Step 10)

2



Number Tut aRev./ .te

E-2 Faulted Steam Generator Isolation Rev.

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED
1 Check if Any SG Not Faulted:

a. Check pressures in all SGs -
WITHIN LIMITS

a. IF all SG pressures dropping in
an uncontrolled manner, THEN
go to E-0, REACTOR SCRAM
OR SAFETY INJECTION,
Step 1

a. Check pressures in all SGs:

* ANY SG PRESSURE
DROPPING IN AN
UNCONTROLLED MANNER

OR

* ANY SG COMPLETELY
DEPRESSURIZED

a. WHEN faulted SG(s) are
identified, THEN perform Step 3.

3 Isolate Faulted SG(s):

a. Place steam dump valve(s) from
ruptured SG(s) in CLOSED
position

b. Check steamline valve(s) from
ruptured SG(s) - CLOSED

c. Check secondary coolant
pump(s) from ruptured SG(s) -
STOPPED

d. Verify RCP from ruptured SG(s)
- STOPPED

b. Manually close ruptured SG
steamline valve(s)

c. Manually stop ruptured SG
secondary coolant pump(s)

d. Manually stop ruptured SG
RCP(s)

2 Identify Faulted SG(s):

3



Number Title Rev.fDate

E-2 Faulted Steam Generator Isolation Rev. I

FOLDOUT PAGE FOR E-2

1. SI REINITIATION CRITERIA

Manually stop SI pumps if RCS core exit temperature - LESS THAN 25*

2. MULTIPLE FAULTED STEAM GENERATOR CRITERIA

Stabilize the plant by returning to E-2, FAULTED STEAM GENERATOR, Step
1, if any intact SG level falls in an uncontrolled manner or any intact SG has
abnormal radiation.

3. CONTINUOUS ACTION STEPS

Identify Faulted SG(s) (Step 2)

Check Secondary Radiation (Step 7)

Check if SI should be terminated (Step 10)

4



Number Title Rev./Date
E-2 Faulted Steam Generator Isolation Rev. 1

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

4 Check Remaining SG Levels - Go to E-0. REACTOR SCRAM
GREATER THAN 9%

5 Reset SI Trains A and B

6 Check Containment Levels:

a. Containment Radiation -
NORMAL

b. Containment Pressure -
NORMAL

c. Containment Temperature -
NORMAL

7 Check Secondary Radiation:

a. All Condenser Radiation Values
-NORMAL

8 Verify Isolation of Ruptured SG(s):

a. Ruptured SG(s) pressure -
STABLE OR RISING

b. Verify steam dump valve(s)
from ruptured SG(s) in CLOSED
position

c. Check steamline valve(s) from
ruptured SG(s) - CLOSED

OR SAFETY INJECTION, Step 1

a. Manually close ruptured SG
steamline valve(s)

b. Manually stop ruptured SG
secondary coolant pump(s)

c. Manually stop ruptured SG
RCP(s)

Go to E-3, STEAM GENERATOR
TUBE RUPTURE, Step 1

c. Manually close ruptured SG
steamline valve(s)

Step 8 continued on next page.

5



Number Title Rev./Date

E-2 Faulted Steam Generator Isolation Rev.1

FOLDOUT PAGE FOR E-2

1. SI RElNITIATION CRITERIA

Manually stop SI pumps if RCS core exit temperature - LESS THAN 25*

2. MULTIPLE FAULTED STEAM GENERATOR CRITERIA

Stabilize the plant by returning to E-2, FAULTED STEAM GENERATOR, Step
1, if any intact SG level falls in an uncontrolled manner or any intact SG has
abnormal radiation.

3. CONTINUOUS ACTION STEPS

Identify Faulted SG(s) (Step 2)

Check Secondary Radiation (Step 7)

Check if SI should be terminated (Step 10)

6



Number Title Rev./Date
E-2 Faulted Steam Generator Isolation Rev.

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

Step 8 continued

d. Check secondary coolant
pump(s) from ruptured SG(s) -
STOPPED

e. Verify RCP from ruptured SG(s)
- STOPPED

9 Check RCS Pressure - RISING

c. Manually stop ruptured SG
secondary coolant pump(s)

d. Manually stop ruptured SG
RCP(s)

Activate SI Train A and B

OR

Continue SI

10 Check if SI Flow Should be
Terminated:

a. RCS Pressure - STABLE OR
RISING

a. Continue SI

b. At least ONE intact SG coolant
level - GREATER THAN 7%

11 Stop Both SI Pumps

12 Check RCP Status:

a. Verify RCP(s) to intact SG(s)
are running

b. Verify RCS Pressure and
Temperature - NORMAL

a. Manually start RCP(s) for intact
SG(s)

7



Number Title Rev./Date

E-2 I Faulted Steam Generator Isolation Rev.1

FOLDOUT PAGE FOR E-2

1. SI REINITIATION CRITERIA

Manually stop SI pumps if RCS core exit temperature - LESS THAN 25*

2. MULTIPLE FAULTED STEAM GENERATOR CRITERIA

Stabilize the plant by returning to E-2, FAULTED STEAM GENERATOR, Step
1, if any intact SG level falls in an uncontrolled manner or any intact SG has
abnormal radiation.

3. CONTINUOUS ACTION STEPS

Identify Faulted SG(s) (Step 2)

Check Secondary Radiation (Step 7)

Check if SI should be terminated (Step 10)

8



Number Title 
Rev./Date

E-2 Faulted Steam Generator Isolation I Rev. I

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

13 Initiate Rod Extraction:

a. Place rod extraction control in
AUTO

b. Set rod extraction rate - 10
STEPS PER MINUTE

c. Verify rod extraction c. Manually extract rods - 10
STEPS PER MINUTE

14 Initiate Power Production:

a. Verify intact SG(s) Temperature
-NORMAL

b. Intact SG(s) Steamline Valves -
OPEN

c. Intact SG(s) Secondary Coolant
Pumps - ACTIVATED

d. Place Steam Dump Valves in
CLOSED position

e. ACTIVATE turbine(s) for intact
loop(s) - Indicators LIT GREEN

- END -

a. Verify intact SG(s) RCPs -
ACTIVATED

b. Open intact SG(s) Steamline
Valves

c. Activate intact SG(s) Secondary
Coolant Pumps

9



Number Title ReviDate

E-3 ISteam Generator Tube Rupture - I Rev. I

Purpose

This procedure provides actions to terminate leakage of reactor coolant into the
secondary system following a steam generator tube rupture.

Symptoms or Entry Conditions

This procedure is entered from:

1. E-0, REACTOR SCRAM OR SAFETY INJECTION, Step 9, when condenser
radiation is abnormal.

2. E-1, LOSS OF REACTOR OR SECONDARY COOLANT, Step 3 or Step 4
3. E-2, FAULTED STEAM GENERATOR ISOLATION, Step 7

1



Number Title 
RevDate.

I E-3 Steam Generator Tube Rupture Rev.

FOLDOUT PAGE FOR E-3

1. SI REINITIATION CRITERIA

Manually stop SI pumps if RCS core exit temperature - LESS THAN 25' F

2. MULTIPLE TUBE RUPTURE CRITERIA

Stabilize the plant by returning to E-3, STEAM GENERATOR TUBE
RUPTURE, Step 1, if any intact SG level rises in an uncontrolled manner or any
intact SG has abnormal radiation.

3. CONTINUOUS ACTION STEPS

Check if RCPs should be stopped (Step 1)

Check Ruptured SG(s) Coolant Level (Step 4)

Check Intact SG(s) Levels (Step 7)

2



Number Title Rev./Date

E-3 Steam Generator Tube Rupture Re Rev. I

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

1 Check if RCPs should be stopped:

a. Check RCPs - ANY RUNNING

b. RCS pressure - LESS THAN
1360 psig

c. Stop all RCPs

d. Place steam dumps in steam
pressure mode

2 Identify Ruptured SG(s):

a. High radiation from any SG

OR

b. High radiation from any SG
steamline

a. Verify steam dumps in steam
pressure mode. Go to Step 2

b. Go to Step 2

CAUTION: At least one SG must be maintained available for RCS cooldown.

3 Isolate Flow from Ruptured SG(s):

a. Place steam dump valve(s) from
ruptured SG(s) in CLOSED
position

b. Check steamline valve(s) from
ruptured SG(s) - CLOSED

c. Check secondary coolant
pump(s) from ruptured SG(s) -
STOPPED

d. Verify RCP from ruptured SG(s)
- STOPPED

b. Manually close ruptured SG
steamline valve(s)

c. Manually stop ruptured SG
secondary coolant pump(s)

d. Manually stop ruptured SG
RCP(s)

3



Number Title Rev.e
E-3 Steam Generator Tube Rupture Rev.

FOLDOUT PAGE FOR E-3

1. SI REINITIATION CRITERIA

Manually stop SI pumps if RCS core exit temperature - LESS THAN 25' F

2. MULTIPLE TUBE RUPTURE CRITERIA

Stabilize the plant by returning to E-3, STEAM GENERATOR TUBE
RUPTURE, Step 1, if any intact SG level rises in an uncontrolled manner or any
intact SG has abnormal radiation.

3. CONTINUOUS ACTION STEPS

Check if RCPs should be stopped (Step 1)

Check Ruptured SG(s) Coolant Level (Step 4)

Check Intact SG(s) Levels (Step 7)

4



Number Title Rev./Date

E-3 Steam Generator Tube Rupture Rev.

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

4 Check Ruptured SG(s) Coolant Level:

a. Coolant Level - GREATER
THAN 7%

a. IF coolant level LESS THAN
7%, THEN engage secondary
coolant pump until SG level
greater than 7%

b. Verify coolant level - STABLE

5 Check Ruptured SG(s) Pressure -
GREATER THAN 270 PSIG

6 Initiate RCS Cooldown:

a. Determine required core exit
temperature:

b. Dump steam to condenser from
all intact SG(s)

c. Intact SG Temperature(s) -
LESS THAN REQUIRED
TEMPERATURE

d. Maintain core exit temperature -
LESS THAN REQUIRED
TEMPERATURE

Go to E-0, REACTOR SCRAM
OR SAFETY INJECTION, Step 1

c. Continue to Step 7

d. Dump steam as needed to
maintain core exit temperature
less than required temperature

5

LOWEST RUPTURED SG PRESSURE

(PSIG) CORE EXIT TEMPERATURE (*F)

1000-1200 5100
800- 1000 4700
600 -800 4390
400-600 3980
270 -400 3630



Number Title Rev./Date

E-3 Steam Generator Tube Rupture R/Rev.Dt

FOLDOUT PAGE FOR E-3

1. SI REINITIATION CRITERIA

Manually stop SI pumps if RCS core exit temperature - LESS THAN 25* F

2. MULTIPLE TUBE RUPTURE CRITERIA

Stabilize the plant by returning to E-3, STEAM GENERATOR TUBE
RUPTURE, Step 1, if any intact SG level rises in an uncontrolled manner or any
intact SG has abnormal radiation.

3. CONTINUOUS ACTION STEPS

Check if RCPs should be stopped (Step 1)

Check Ruptured SG(s) Coolant Level (Step 4)

Check Intact SG(s) Levels (Step 7)

6



Nmber Title Rev./Date

E-3 I Steam Generator Tube Rupture Rev.I

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

7 Check intact SG Levels:

a. Coolant Level - GREATER
THAN 7%

b. Control secondary coolant pump
to maintain level between 7%
and 70%

8 Reset SI Train A and B

9 Verify Isolation of Ruptured SG(s):

a. Ruptured SG(s) pressure -
WITHIN LIMITS

b. Verify steam dump valve(s)
from ruptured SG(s) in CLOSED
position

c. Check steamline valve(s) from
ruptured SG(s) - CLOSED

d. Check secondary coolant
pump(s) from ruptured SG(s) -
STOPPED

e. Verify RCP from ruptured SG(s)
- STOPPED

10 Check RCS Pressure - RISING

a. IF coolant level LESS THAN
7%, THEN engage secondary
coolant pump until SG level
greater than 7%

b. IF level in any intact SG
continues to rise in an
uncontrolled manner, THEN
return to Step 1

c. Manually close ruptured SG
steamline valve(s)

d. Manually stop ruptured SG
secondary coolant pump(s)

e. Manually stop ruptured SG
RCP(s)

Activate SI Train A and B

OR

Continue SI

7



Number Title Rev./Date
E-3 I Steam Generator Tube Rupture Rev. I

FOLDOUT PAGE FOR E-3

1. SI REINITIATION CRITERIA

Manually stop SI pumps if RCS core exit temperature - LESS THAN 25* F

2. MULTIPLE TUBE RUPTURE CRITERIA

Stabilize the plant by returning to E-3, STEAM GENERATOR TUBE
RUPTURE, Step 1, if any intact SG level rises in an uncontrolled manner or any
intact SG has abnormal radiation.

3. CONTINUOUS ACTION STEPS

Check if RCPs should be stopped (Step 1)

Check Ruptured SG(s) Coolant Level (Step 4)

Check Intact SG(s) Levels (Step 7)

8



Number Title Rev./Date

E-3  Steam Generator Tube Rupture Rev.I

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

11 Check if SI Flow Should be
Terminated:

a. RCS Pressure - STABLE OR
RISING

a. Continue SI

b. At least ONE intact SG coolant
level - GREATER THAN 7%

12 Stop Both SI Pumps

13 Check RCP Status:

a. Verify RCP(s) to intact SG(s)
are running

a. Manually start RCP(s) for intact
SG(s)

b. Verify RCS Pressure and
Temperature - NORMAL

14 Initiate Rod Extraction:

a. Place rod extraction control in
AUTO

b. Set rod extraction rate - 10
STEPS PER MINUTE

c. Verify rod extraction c. Manually extract rods - 10
STEPS PER MINUTE

a. Verify intact SG(s) Temperature
-NORMAL

b. Intact SG(s) Steamline Valves -
OPEN

c. Intact SG(s) Secondary Coolant
Pumps - ACTIVATED

a. Verify intact SG(s) RCPs -
ACTIVATED

b. Open intact SG(s) Steamline
Valves

c. Activate intact SG(s) Secondary
Coolant Pumps

15 Initiate Power Production:

9



Number Title Rev./Date
E-3 Steam Generator Tube Rupture Rev. 1

Step 15 continued on next page

FOLDOUT PAGE FOR E-3

1. SI REINITIATION CRITERIA

Manually stop SI pumps if RCS core exit temperature - LESS THAN 25* F

2. MULTIPLE TUBE RUPTURE CRITERIA

Stabilize the plant by returning to E-3, STEAM GENERATOR TUBE
RUPTURE, Step 1, if any intact SG level rises in an uncontrolled manner or any
intact SG has abnormal radiation.

3. CONTINUOUS ACTION STEPS

Check if RCPs should be stopped (Step 1)

Check Ruptured SG(s) Coolant Level (Step 4)

Check Intact SG(s) Levels (Step 7)

10



Number ITitle Rev./Date

E-3 Steam Generator Tube Rupture Re Rev.

STEP ACTION / EXPECTED RESPONSE RESPONSE NOT OBTAINED

Step 15 continued

d. Place Steam Dump Valves in
CLOSED position

e. ACTIVATE turbine(s) for intact
loop(s) - Indicators LIT GREEN

-END-

11



Number Title Rev./Date

AOP-1 I Power Excursion Rev.6 6/17/2011

A. PURPOSE

This Anomalous Operating Procedure provides actions to rectify loop malfunctions in case of an
unexpected power excursion.

B. SYMPTOMS OR ENTRY CONDITIONS

Condition I Description
Check Condenser Radiation Level - RISING
Check SG Temperature - RISING
Check Turbine Steam Pressure - RISING
Check Cooling Tower Temp - RISING
Check Power Output - GREATER THAN 10 MW

1
2
2
4
5



Number itle Rev./Date
AOP-1 Power Excursion Rev.6 6/17/2011

Step I Action/Expected Response | Response Not Obtained
I IF Power Output - GREATER THAN 12 MW THEN

Contact Generator Maintenance Department - ERROR
CODE: AOP-1A AND Halt Power Production for leaking
loop ONLY

-ALL RCPs to affected SG - DEACTIVATED
-Verify Power Output - DROPPING
-Verify Turbine Steam Press - DROPPING
-Verify SG Temperature - DROPPING
-Verify SG Pressure - DROPPING
-Affected SGs Steamline Valves - CLOSED
-Affected SGs Secondary Coolant Pumps -
DEACTIVATED

-Deactivate Turbines for affected loop - indicators LIT
RED

-Verify Expected Alarm - Turbine Auto Trip LIT RED
2 IF Power Output - LESS THAN 12 MW THEN Identify

affected loop as undergoing MINOR POWER
EXCURSION

-RCP for affected loop - DEACTIVATED
-Verify Condenser Radiation Level - STABLE OR
DROPPING
-Verify SG Temperature - STABLE OR DROPPING
-Verify Turbine Steam Pressure - STABLE OR
DROPPING

-Verify Coolant Tower Temperature - STABLE OR
DROPPING
-Verify Power Output - DROPPING

-Deactivate RCPs to affected SG

-Close SG Steamline Valves
-Deactivate SG Secondary
Coolant Pumps

-Deactivate RCP for affected
loop

-Contact Generator Maintenance
Department - ERROR CODE:
AOP-IB



Number Title Rev./Date

AOP-2 Loop Data Loss Rev.6 6/17/2011

A. PURPOSE

This Anomalous Operating Procedure provides actions to rectify the unexpected loss of data
feeds from reactor cooling towers.

B. SYMPTOMS OR ENTRY CONDITIONS

Condition I Description
1 Check one or more loop status indicators - NONFUCTIONAL



Number Title Rev./Date
AOP-2 I Loop Data Loss Rev.6 6/17/2011

Step I Action/Expected Response I Response Not Obtained
I Contact Generator Maintenance Department - ERROR

CODE: AOP-2



Number Title Rev./Date
AOP-3 I Reactor Data Loss Rev.6 6/17/2011

A. PURPOSE

This Anomalous Operating Procedure provides actions to rectify the unexpected loss of data
feeds from the reactor.

B. SYMPTOMS OR ENTRY CONDITIONS

Condition I Description
1 Check one or more reactor status indicators - NONFUCTIONAL



Number Title Rev./Date

AOP-3 Reactor Data Loss Rev.6 6/17/2011

Step | Action/Expected Response Response Not Obtained
I Contact Reactor Maintenance Department - ERROR

CODE: AOP-2
2 Contact Containment Building Management - ERROR

CODE: ASO-2001
3 IF data loss is in Reactor Temperature, Containment

Radiation, Containment Pressure, or Containment
Temperature indicators, THEN lower rods 50%

-Rod insertion control - AUTO
-Rod insertion rate - 25 steps/min
-Rod insertion control - AUTO OFF when rod insertion is
at 50%

-Verify rod insertion
-Manually insert rods -25
steps/min
-Stop inserting when insertion is
at 50%



Number Titie Rev./Date

AOP-4 I Rod Insertion Data Loss Rev.6 6/17/2011

A. PURPOSE

This Anomalous Operating Procedure provides actions to rectify the unexpected loss of data
feeds from the rod sensors.

B. SYMPTOMS OR ENTRY CONDITIONS

Condition I Description
Check rod insertion control - AUTO
Check rod insertion display - NONFUNCTIONAL

1
2



Number Title Rev./Date
AOP-4 Rod Insertion Data Loss Rev.6 6/17/2011

Step I Action/Expected Response | Response Not Obtained
Rod insertion control - AUTO OFF
Rod insertion control - AUTO ON
Verify rod insertion display - FUNCTIONAL -Contact Reactor Maintenance

Department - ERROR CODE:
ISD-424238

1
2
3



Number Title Rev./Date
AOP-5 Turbine Power Generation Malfunction Rev.6 6/17/2011

A. PURPOSE

This Anomalous Operating Procedure provides actions in the event of a malfunction of Turbine
Power Generation

B. SYMPTOMS OR ENTRY CONDITIONS

Condition I Description
Check SG Pressure - STABLE OR RISING
Check SG Temperature - STABLE OR RISING
Check Turbine Steam Pressure - STABLE OR RISING
Check Power Output - DROPPING

1
2
3
4



Number Title Rev./Date
AOP-5 I Turbine Power Generation Malfunction Rev.6 6/17/2011

Step I Action/Expected Response I Response Not Obtained
I IDENTIFY FAULT AS FAULTED TURBINE IN

AFFECTED LOOP
2 Halt Power Production for affected loop ONLY

-ALL RCPs to affected SG - DEACTIVATED
-Verify Power Output - DROPPING
-Verify Turbine Steam Press - DROPPING
-Verify SG Temperature - DROPPING
-Verify SG Pressure - DROPPING
-Affected SGs Steamline Valves - CLOSED
-Affected SGs Secondary Coolant Pumps -
DEACTIVATED

-Deactivate Turbines for affected loop - indicators LIT
RED
-Verify Expected Alarm - Turbine Auto Trip LIT RED

3 Contact Reactor Maintenance Department - ERROR
CODE: AOP-5

-Deactivate RCPs to affected SG

-Close SG Steamline Valves
-Deactivate SG Secondary
Coolant Pumps



Number Title Rev./Date

AOP-6 Loop Temperature/Pressure Anomaly Rev.6 6/17/2011

A. PURPOSE
This Anomalous Operating Procedure provides actions to diagnose and rectify anomalies in
reactor cooling loop temperature or pressure.

B. SYMPTOMS OR ENTRY CONDITIONS

Condition I Description
Check SG Pressure - DROPPING
Check SG Temperature - DROPPING
Check Turbine Steam Pressure - DROPPING
Check Power Output - DROPPING

1
2
2
4



Number Title Rev./Date
AOP-6 I Loop Temperature/Pressure Anomaly Rev. 6/17/2011

Step I Action/Expected Response | Response Not Obtained
Check Reactor Coolant Pump

-Deactivate RCP in affected loop
-Activate RCP in affected loop
-Verify SG Pressure - RISING
-Verify SG Temperature - RISING
-Verify Turbine Steam Pressure - RISING
-Verify Power Output - RISING
-IF the conditions have been verified, THEN IDENTIFY
FAULT AS FAULTED REACTOR COOLANT PUMP
AND DO NOT CONTINUE THIS AOP

2 Check Steam Dump Valve
-Open Steam Dump Valve in affected loop
-Close Steam Dump Valve in affected loop
-Verify SG Pressure -RISING
-Verify SG Temperature -RISING
-Verify Turbine Steam Pressure -RISING
-Verify Power Output -RISING

-IF the conditions have been verified, THEN IDENTIFY
FAULT AS FAULTED STEAM DUMP VALVE AND
DO NOT CONTINUE THIS AOP

3 Halt Power Production for leaking loop ONLY
-Deactivate all RCPs to affected SGs
-Verify Power Output - DROPPING
-Verify Turbine Steam Press - DROPPING
-Verify SG Temperature - DROPPING
-Verify SG Pressure - DROPPING
-Close affected SGs Steamline Valves
-Deactivate affected SGs Secondary Coolant Pumps -
-Deactivate Turbines for affected loop - indicators LIT
RED

4 Contact Reactor Maintenance Department - ERROR
CODE: AOP-6

I

-- Continue on to next step

-- IDENFITY FAULT AS STEAM
DUMP VALVE LEAK AND
CONTINUE TO HALT POWER
PRODUCTION STEP



Appendix Title Rev./Date

A Normal Operating Meter Values Rev.1 7/18/2011

A. PURPOSE

This appendix provides guidelines for the values that would be considered normal during

optimal nuclear reactor operations. While these values are present on meters, the limit
indicator will show them as being normal (a thin dash). If meter values are below the

lower limit, a thick dash will appear. If meter values are above the upper limit, a plus sign

(+) will appear.

Meter values follow their corresponding units.

B. Normal Operating Meter Values

Meter Type I Units I Range
Reactor Temperature
RCS Temperature
RCS Pressure
Coolant Level
Neutron Flux
Containment Radiation
Containment Pressure
Containment Temperature

Condenser Radiation Level
Secondary Flow Rate
Cooling Tower Temperature
Coolant Temperature
SG Temperature
SG Coolant Level
SG Pressure
Turbine Steam Pressure
Power Output

*F
*F
PSIG

mrad
mrad
PSIG
*F

mrad
GPM
*F
*F
OF

PSIG
PSIG
MW

350-550
350-550
250-1300
40-85
100-981
0-10
20-30
60-110

0-2
600-1200
40-100
70-250
350-550
15-45
250-1300
250-1000
0-10



Appendix Title Rev./Date

B I Power Plant Departments Rev.1 7/18/2011

A. PURPOSE

This appendix provides an overview of power plant departments that a reactor operator may need
to contact. A description of each department's role, as well as their abbreviations will be
provided.

B. Relevant Power Plant Departments

Reactor Maintenance (RM)
The Reactor Maintenance Department is in charge of ensuring the normal operations of the

nuclear reactor core, including handling of fissile material, ensuring normal flow of working fluid to and
from the reactor, and maintaining the steam generators.

Generator Management (GM)
The Generator Management Department is in charge of the power generation portion of the plant.

This department deals with any problems pertaining to the turbines, cooling towers, and related plant
components.

Containment Building (CB)
The Containment Building Department manages the shielding and isolation of the reactor core

from the outside environment. Safety considerations regarding internal and external breaches to the
containment structure are handled by this department.



Appendix F

Data Transformations in Rule-Based

Environment

This appendix presents the analysis for selecting the appropriate data transformation for

the rule-based dataset using a k-means algorithm. In addition to a subjective assessment

of the clustering results, k-means clustering using each range and z-score transformations

were compared using the external metrics of entropy and purity, and the internal met-

rics of compactness and isolation. For both external metrics, performance was similar

across both transformations and thus provided little evidence towards selecting a tran-

formation. Internal metrics (compactness and isolation) provided more variation across

the two transformations. However, due to the different scaling factors they could not be

directly compared between the range and z-score transformations.

It is understood that a high average inter-centroid distance (isolation) and low SSE

(compactness) are desirable, and therefore the ratio of isolation to compactness was

used to compare the transformations. The results are presented in Table F.1. In the

table, the z-score transformation performs better (as determined by a higher isolation

to compactness ratio) for adherence features, while the range transformation performs

better for all other metrics. A single transformation should be used for all features, and

thus it must be determined which feature sets are more "important" for the clustering

algorithms. In this case, the adherence metrics proposed here are not currently used in

rule-based settings, while the other metrics are common in current training programs.

Therefore, it seems appropriate to select the range transformation which provides the

best utility for currently gathered assessment metrics.
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Table F.1: Comparison of Isolation to Compactness Ratio for Range and Z-Score Trans-

formations.
Features Range Transformation Z-Score Transformation

Levenshtein Distance 0.894 1.059

PAM 0.923 1.019

Objective Metrics 0.206 0.161

Subjective Metrics 0.248 0.202

Targets 1.138 0.67
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Appendix G

Calculation of BIC

This appendix discusses the calcuation of the Bayesian Information Criterion (BIC),

a common method for the selection of model parameters to minimize both the model

complexity and model error. BIC has been shown to be useful in the selection of the

number of clusters in K-means [147], .and a similar method was implemented in this

research. The basic formula for BIC is given by Kass and Wasserman [173], and is

reproduced as Equation G.1. This and the following equations assume given the data D,

and a family of models Mj which correspond to different numbers of clusters K which

have Rj data points assigned to that cluster.

BIC(Mj) = ij(D) - -logR (G.1)
2

Under the identical spherical Gaussian assumption, the maximum likelihood estimate

(MLE) of the variance is given in Equation G.2.

R- K Z(xi - Pf()) (G.2)

Just focusing on the set of points D, which belong to centroid n, the estimate of the

log-likelihood for that centroid can be found as given in Equation G.3.

l(Dn) = - log(27r) - 2 log(&2) _ n + RnlogRn - RjlogR (G.3)
2 E G

Calculating Equation G.3 for each centroid (cluster) and summing over these likeli-

303



hood values provides the estimate for the total likelihood of the model 1(D) in Equation

G.1. The number of free parameters p3 for each model is found as the sum of K - 1

class probabilities, M. K centroid coordinates, and a single variance estimate. With R

representing the number of data points in the entire dataset, Equation G.1 can then be

used to calculate the BIC for that particular K-means model.
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Appendix H

Example Cluster Assignments from

K-means and Hierarchical Clustering

This appendix provides an example set of cluster assignments from k-means and hier-

archical clustering on the rule-based dataset. Table H.1 shows the cluster assignments

for k-means and hierarchical clustering for the 47 participants for a single run of the

algorithm using levenshtein distance. It can be seen that hierarchical clustering almost

exclusively favors putting the trainees into a single cluster, with only one trainee in each

cluster 1 and cluster 2. On the other hand, k-means, provides a much more even split

between clusters across the trainees in the dataset.

The assignment of trainees into a single cluster creates significant challenges for a

training supervisor. With most or all trainees grouped together, it is difficult to select

a subset of trainees to apply a training intervention (TI). Therefore, while hierarchical

clustering provides other advantages compared to k-means (such as measured by purity),

the resultant cluster assignments are not useful from an intervention perspective. Given

this, it is preferable to utilize k-means over hierarchical clustering on this dataset.
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Table H.1: Comparison of Cluster Assignments for K-means and Hierarchical Clustering
on Rule-based Dataset

Trainee K-means Hierarchical Clustering

1 2 3
2 1 1
3 3 3
4 3 3
5 3 3
6 1 3

.7 3 3
8 2 3
9 3 3
10 2 3
11 3 3
12 2 3
13 2 3
14 2 3
15 1 2
16 1 3
17 1 3
18 1 3
19 1 3
20 1 3
21 1 3
22 3 3
23 2 3
24 3 3
25 2 3
26 2 3
27 2 3
28 3 3
29 2 3
30 2 3
31 2 3
32 2 3
33 3 3
34 2 3
35 2 3
36 2 3
37 1 3
38 2 3
39 2 3
40 2 3
41 2 3
42 2 3
43 2 3
44 2 3
45 2 3
46 3 3
47 2 3



Appendix I

PCA Components from Rule-Based

Dataset

Table 1.1: PCA Components from Rule-Based Dataset

Module Action Component 1 Component 2 Component 3

1 1 9.22E-05 0.001554 -0.00241

1 2 0.000604 0.000883 -0.00739

1 3 0.001058 0.00166 -0.01217

1 4 0.001662 0.003144 -0.01844

1 5 0.002453 0.00513 -0.02626

1 6 0.003184 0.007121 -0.0345

1 7 0.003887 0.008881 -0.04253

1 8 0.004566 0.010818 -0.05023

1 9 0.005306 0.013389 -0.05367

1 10 0.006068 0.015858 -0.05692

1 11 0.006865 0.018331 -0.06346

1 12 0.007641 0.019984 -0.06623

1 13 0.008318 0.022023 -0.07329

1 14 0.009132 0.025555 -0.07938

1 15 0.010014 0.028497 -0.08273

1 16 0.010887 0.031012 -0.08796

Continued on next page
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Table 1.1 - continued from previous page

ModuleI Action [Component 1 Component 2 [Component 3

0.011763

0.012627

0.01349

0.014264

0.014962

0.015664

0.016503

0.017403

0.018272

0.019072

0.019953

0.020878

0.021808

0.022719

0.023607

0.024523

0.025394

0.026209

0.027092

0.027825

0.028563

0.029337

0.030068

0.030758

0.031483

0.032175

0.033005

0.033872

0.034623

0.033976

0.037574

0.040639

0.042727

0.044305

0.0462

0.048648

0.050123

0.05173

0.053303

0.056378

0.059143

0.06154

0.064489

0.067231

0.069748

0.072571

0.075491

0.078726

0.081208

0.084015

0.087668

0.091062

0.093271

0.095973

0.099393

0.102181

0.104076

0.106765

-0.09025

-0.09258

-0.0965

-0.10021

-0.10132

-0.10425

-0.10846

-0.10736

-0.10715

-0.10444

-0.10449

-0.107

-0.10541

-0.10318

-0.10392

-0.10329

-0.10455

-0.10614

-0.10517

-0.10902

-0.11297

-0.11475

-0.11702

-0.11613

-0.11815

-0.12017

-0.11764

-0.11361

-0.11218

Continued on next page
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Table I.1 - continued from previous page

Module Action Component J Component 2 Component 3

0.035383

0.03616

0.036932

0.037827

0.038674

0.039326

0.039903

0.04071

0.041567

0.042225

0.042783

0.043412

0.044077

0.044763

0.045574

0.046397

0.047035

0.047645

0.048439

0.04932

0.050097

0.050763

0.051365

0.052144

0.052642

0.053179

0.053692

0.054405

0.05514

0.109118

0.111115

0.111857

0.113679

0.115778

0.116598

0.116014

0.116924

0.119236

0.1209

0.121327

0.121863

0.123304

0.12484

0.125797

0.125852

0.126921

0.128371

0.131199

0.132275

0.13186

0.130861

0.130836

0.128649

0.124336

0.120561

0.116756

0.111775

0.107923

-0.10923

-0.1078

-0.10395

-0.10114

-0.09872

-0.08912

-0.08377

-0.08076

-0.08006

-0.07259

-0.06562

-0.05978

-0.05514

-0.05018

-0.04937

-0.04644

-0.0418

-0.03768

-0.03236

-0.02811

-0.0219

-0.01315

-0.00248

0.006625

0.018473

0.030359

0.041494

0.051913

0.061834

Continued on next page
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Table I.1 - continued from previous page

Module Action Component 1 Component 2 Component 3

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

Continued on next page
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0.055899

0.056798

0.057147

0.057548

0.058208

0.058551

0.059075

0.059435

0.059966

0.060375

0.060747

0.061196

0.06158

0.061897

0.061877

0.062077

0.062276

0.06254

0.062803

0.062949

0.063286

0.063506

0.063726

0.064066

0.064286

0.064563

0.064968

0.065309

0.065649

0.10342

0.104535

0.101189

0.099763

0.097667

0.097098

0.094878

0.092857

0.09176

0.08975

0.088031

0.08594

0.083229

0.080893

0.080424

0.077933

0.075442

0.073108

0.070775

0.068286

0.06642

0.064399

0.062377

0.059672

0.057651

0.054788

0.052239

0.049534

0.046828

0.074072

0.077005

0.081178

0.085204

0.094164

0.102223

0.10716

0.114369

0.122807

0.125497

0.129928

0.130737

0.131568

0.130726

0.129872

0.127525

0.125177

0.124798

0.12442

0.122535

0.122548

0.121054

0.11956

0.115559

0.114065

0.108094

0.106063

0.102061

0.09806



Table I.1 - continued from previous page

Module Action Component 1 Component 21 Component 3

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

0.06599

0.066331

0.066672

0.067013

0.067134

0.067255

0.067596

0.067937

0.068278

0.068619

0.068959

0.0693

0.069421

0.069762

0.070103

0.070444

0.070565

0.070906

0.071247

0.071588

0.071928

0.072269

0.07261

0.072951

0.073171

0.073171

0.07339

0.073731

0.073731

0.044122

0.041416

0.038711

0.036005

0.03532

0.034636

0.03193

0.029224

0.026519

0.023813

0.021107

0.018402

0.017717

0.015011

0.012306

0.0096

0.008915

0.00621

0.003504

0.000798

-0.00191

-0.00461

-0.00732

-0.01002

-0.01205

-0.01205

-0.01407

-0.01677

-0.01677

0.094058

0.090057

0.086056

0.082054

0.079547

0.077039

0.073038

0.069037

0.065035

0.061034

0.057033

0.053031

0.050524

0.046522

0.042521

0.03852

0.036012

0.032011

0.028009

0.024008

0.020007

0.016005

0.012004

0.008003

0.006509

0.006509

0.005015

0.001014

0.001014
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Table 1.1 - continued from previous page

Module Action Componenti Component 2 Component 3

Continued on next page

312

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

1

2

3

4

5

6

7

8

9

10

11

12

0.074072

0.074193

0.074292

0.07439

0.07461

0.074829

0.074829

0.075049

0.075269

0.075488

0.075488

0.075708

0.075928

0.076147

0.076367

0.076587

0.076806

0.000439

0.00132

0.002224

0.003265

0.004422

0.005567

0.006743

0.007915

0.008631

0.009147

0.010026

0.010859

-0.01948

-0.02016

-0.0215

-0.02284

-0.02486

-0.02688

-0.02688

-0.0289

-0.03092

-0.03294

-0.03294

-0.03496

-0.03698

-0.039

-0.04103

-0.04305

-0.04507

0.003838

0.008886

0.014181

0.019409

0.027569

0.035291

0.042174

0.049038

0.052284

0.05438

0.060314

0.06491

-0.00299

-0.0055

-0.00448

-0.00347

-0.00496

-0.00646

-0.00646

-0.00795

-0.00944

-0.01094

-0.01094

-0.01243

-0.01392

-0.01542

-0.01691

-0.01841

-0.0199

-0.00712

-0.00647

-0.00425

-0.00144

0.004847

0.013983

0.024004

0.033598

0.040373

0.047662

0.061525

0.074479
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Module Action Component 1 Component 2 Component 3

0.011912

0.013088

0.014189

0.015156

0.015834

0.016633

0.017591

0.018302

0.01917

0.019959

0.020793

0.021847

0.022988

0.023975

0.024902

0.025915

0.026897

0.028032

0.029175

0.030189

0.031061

0.032125

0.03346

0.03395

0.035018

0.035534

0.035767

0.03658

0.037463

0.070767

0.076848

0.082205

0.087791

0.091365

0.09574

0.102017

0.108943

0.1124

0.114706

0.116444

0.120989

0.125919

0.1313

0.135776

0.139576

0.143688

0.149462

0.153909

0.157794

0.160725

0.164396

0.169641

0.167655

0.164882

0.16485

0.163453

0.158125

0.153765

0.083264

0.092088

0.102794

0.110455

0.117798

0.12061

0.125515

0.140611

0.145754

0.148276

0.147356

0.150147

0.151068

0.14934

0.146525

0.143132

0.142154

0.140379

0.133257

0.128766

0.122409

0.109939

0.099961

0.071078

0.054587

0.034416

0.021352

0.008218

-0.00514

Continued on next page
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Module Action Component 1 Component 2 Component 3

0.038218

0.038959

0.039615

0.040314

0.041173

0.041651

0.042299

0.043094

0.043888

0.044646

0.045403

0.046094

0.046858

0.047622

0.048313

0.048919

0.049596

0.050273

0.05095

0.051627

0.052303

0.053065

0.053827

0.054588

0.05535

0.056111

0.056873

0.057634

0.058396

0.149251

0.144631

0.138327

0.13288

0.129945

0.13107

0.127347

0.125797

0.124248

0.122244

0.12024

0.116376

0.113147

0.109919

0.106054

0.100507

0.096304

0.0921

0.087897

0.083694

0.079491

0.076971

0.074451

0.071932

0.069412

0.066892

0.064372

0.061852

0.059332

Continued on next page

314

-0.01548

-0.02963

-0.04415

-0.05361

-0.06476

-0.07966

-0.0787

-0.07752

-0.07634

-0.07515

-0.07396

-0.07942

-0.08549

-0.09156

-0.09702

-0.10285

-0.10639

-0.10993

-0.11347

-0.117

-0.12054

-0.12371

-0.12688

-0.13005

-0.13321

-0.13638

-0.13955

-0.14272

-0.14589
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Module Action [Component 1 Component 2 Component 3

0.059157

0.058844

0.05898

0.059741

0.060503

0.060951

0.061399

0.061848

0.062296

0.062745

0.063193

0.063642

0.06409

0.064538

0.064987

0.065435

0.065884

0.066332

0.066781

0.067229

0.067677

0.068126

0.068574

0.069023

0.069471

0.069919

0.070368

0.070816

0.071265

0.056812

0.056723

0.054024

0.051504

0.048984

0.046375

0.043766

0.041157

0.038547

0.035938

0.033329

0.030719

0.02811

0.025501

0.022892

0.020282

0.017673

0.015064

0.012455

0.009845

0.007236

0.004627

0.002018

-0.00059

-0.0032

-0.00581

-0.00842

-0.01103

-0.01364

-0.14905

-0.14061

-0.12689

-0.13006

-0.13323

-0.12796

-0.12268

-0.11741

-0.11213

-0.10686

-0.10158

-0.09631

-0.09103

-0.08576

-0.08048

-0.07521

-0.06994

-0.06466

-0.05939

-0.05411

-0.04884

-0.04356

-0.03829

-0.03301

-0.02774

-0.02246

-0.01719

-0.01191

-0.00664

Continued on next page
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Module j Action j Component 1 Component 2] Component 3

100

101

102

103

104

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
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0.071713

0.072162

0.07261

0.073058

0.073507

2.34E-05

0.000297

0.000542

0.000597

0.000853

0.001074

0.001294

0.001472

0.001911

0.002651

0.003226

0.003594

0.003882

0.004081

0.004704

0.005469

0.005738

0.00595

0.006368

0.006916

0.007543

0.008039

0.008295

0.008484

-0.01625

-0.01886

-0.02147

-0.02408

-0.02668

0.004954

0.009335

0.014247

0.019637

0.023843

0.027944

0.034112

0.040331

0.046955

0.051705

0.056526

0.062579

0.068329

0.073021

0.076877

0.081019

0.082789

0.083694

0.08846

0.091725

0.094548

0.098282

0.103266

0.109328

-0.00137

0.003909

0.009183

0.014458

0.019733

0.004429

0.010497

0.014589

0.01988

0.025153

0.031977

0.039721

0.046186

0.051108

0.054524

0.059458

0.067415

0.075526

0.084403

0.089826

0.094583

0.094165

0.097898

0.102237

0.10596

0.110288

0.115701

0.120805

0.127839
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Module Action Component 1 Component 2 Component 3

0.008724

0.009017

0.009075

0.009608

0.009994

0.010445

0.011197

0.01192

0.012722

0.013448

0.013934

0.014322

0.014938

0.0159

0.016604

0.01724

0.017905

0.018577

0.019378

0.020222

0.021122

0.022395

0.023696

0.025026

0.026124

0.027407

0.028585

0.029738

0.030972

0.115077

0.118644

0.123075

0.128118

0.132817

0.135451

0.137856

0.137214

0.137085

0.136104

0.136166

0.137388

0.137274

0.136673

0.136652

0.136331

0.136941

0.138217

0.138828

0.139398

0.140076

0.139662

0.13908

0.138548

0.137702

0.136242

0.133846

0.130857

0.129202

0.133512

0.139586

0.14724

0.148652

0.151508

0.149654

0.147781

0.143904

0.137241

0.127658

0.119118

0.110954

0.101875

0.089931

0.080748

0.072477

0.063777

0.056741

0.049729

0.041369

0.032798

0.024015

0.015361

0.005694

-0.00683

-0.0164

-0.02464

-0.03439

-0.04394
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Module Action Component 1 [Component 2 Component 3

0.031982

0.033225

0.034539

0.035541

0.036657

0.037773

0.038915

0.040127

0.041206

0.042284

0.043496

0.044707

0.045807

0.046892

0.048062

0.049232

0.050318

0.05131

0.052192

0.053074

0.053957

0.054839

0.055722

0.056604

0.057486

0.058369

0.059251

0.060134

0.061016

0.128066

0.126604

0.125672

0.123703

0.120658

0.117613

0.115354

0.11378

0.110688

0.107597

0.105912

0.104227

0.101771

0.099079

0.097308

0.095538

0.093446

0.090873

0.087712

0.084551

0.08139

0.078229

0.075068

0.071906

0.068745

0.065584

0.062423

0.059262

0.056101

Continued on next page
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-0.05542

-0.06334

-0.07289

-0.08529

-0.09252

-0.09974

-0.1047

-0.11017

-0.11422

-0.11827

-0.12214

-0.12602

-0.12768

-0.12984

-0.13202

-0.13419

-0.13369

-0.13205

-0.12941

-0.12676

-0.12412

-0.12148

-0.11883

-0.11619

-0.11355

-0.1109

-0.10826

-0.10562

-0.10297
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Module Action Component 1 Component 2 Component 3

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

0.061899

0.062781

0.063663

0.064317

0.06497

0.065853

0.06662

0.067387

0.068154

0.068922

0.069689

0.070331

0.070973

0.071615

0.072256

0.072898

0.07354

0.074182

0.074824

0.07535

0.075876

0.076267

0.076658

0.077049

0.07744

0.077831

0.078222

0.078613

0.079004

0.05294

0.049778

0.046617

0.043754

0.040891

0.03773

0.034593

0.031457

0.028321

0.025184

0.022048

0.019233

0.016418

0.013604

0.010789

0.007974

0.00516

0.002345

-0.00047

-0.00251

-0.00455

-0.0059

-0.00726

-0.00861

-0.00996

-0.01132

-0.01267

-0.01402

-0.01538

-0.10033

-0.09769

-0.09504

-0.09505

-0.09505

-0.09241

-0.08939

-0.08638

-0.08336

-0.08034

-0.07733

-0.07347

-0.06962

-0.06576

-0.06191

-0.05805

-0.0542

-0.05034

-0.04649

-0.04239

-0.03829

-0.03423

-0.03018

-0.02612

-0.02206

-0.01801

-0.01395

-0.0099

-0.00584
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Module Action Component 1 Component 2 Component 3

3 112 0.079395 -0.01673 -0.00178

3 113 0.079786 -0.01808 0.002272

3 114 0.080177 -0.01944 0.006328

3 115 0.080568 -0.02079 0.010384

3 116 0.080959 -0.02214 0.01444

3 117 0.08135 -0.02349 0.018496

3 118 0.081579 -0.02379 0.021145

3 119 0.081808 -0.02409 0.023794

3 120 0.082037 -0.02439 0.026444
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Appendix J

Data Transformations in

Knowledge-Based Environment

This appendix presents the analysis for selecting the appropriate data transformation

for the knowledge-based dataset using a k-means algorithm. In addition to a subjective

assessment of the clustering results, k-means clustering using each range and z-score

transformations were compared using the external metrics of entropy and purity, and the

internal metrics of compactness and isolation. Across the two tranformations, the z-score

transformation had a greater tendency to combine clusters together (such as grouping "A"

and "B" together, or "B" and "C" together). For the external metrics performance was

similar across both transformations, and thus provided little evidence towards selecting

a tranformation. Internal metrics (compactness and isolation) provided more variation

across the two transformations. However, due to the different scaling factors they could

not be directly compared between the range and z-score transformations.

It is understood that a high average inter-centroid distance (isolation) and low SSE

(compactness) are desirable, and therefore the ratio of isolation to compactness was used

to compare the transformations. The results are presented in Table ??. It can be seen

that the range transformation tends to perform better (as measured by a high ratio) when

summative and average information is used, while z-score transformation performs better

when individual process-level metrics are available. Given the much greater relative grade

contribution of the summative metrics, this indicates that it is desirable to utilize the

range transformation to capture this information.
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Table J.1: Comparison of Isolation to Compactness Ratio for Range and Z-Score Trans-
formations.

Features I Range Transformation I Z-Score Transformation I

322

Summative Averages 1.069571 0.919112
Summative Individual 0.375329 0.371393

Process-Level Averages Empty Clusters Empty Clusters
Process-Level Individual 0.487769 0.83028

Total Averages 0.708137 0.593149
Total Individual 0.272575 0.407062



Appendix K

PCA Results from Knowledge-Based

Dataset

This appendix presents the full results of the PCA analysis on the knowledge-based

dataset discussed in Chapter 5. The first three principal components are shown in Table

K. 1. These principle components represent the orthogonal dimensions in which the data

show the greatest variability. We can see that in the first component, the major players

are primarily quizzes (Quiz 9, Quiz 14, Quiz 13, Quiz 1), though the later more cumulative

measures also show some contribution (Problem Set 2, Test 2). In the second principle

component, we find similar results, with Quiz 5, Quiz 6, Quiz 17, Quiz 4, and Test 2

being the major elements. The third principle component focuses on Quiz 1 as a major

source of variation, and has little other contribution.

Since supervised learning algorithms have an easier time forming decision boundaries

or other models for data with higher variance, we can use the PCA results to help inform

reasonable choices for inputs into the supervised learning approach. In this case, it is

apparent that the quizzes contain considerable variation across the trainees, and may be

useful as features for supervised models. Additionally, the tests (particularly test 2) may

offer some advantages as a feature as well.
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Table K.1: First three principle components on classroom dataset by PCA

Feature

Quiz 1

Quiz 2

Quiz 3

Quiz 4

Quiz 5

Quiz 6

Quiz 7

Quiz 8

Quiz 9

Quiz 10

Quiz 11

Quiz 12

Quiz 13

Quiz 14

Quiz 15

Quiz 16

Quiz 17

Quiz 18

Quiz 19

Project 1

Project 2

Project 3

Problem Set

Problem Set

Test 1

Test 2

Component 11 Component 2 |

2

0.254

0.115

0.046

-0.084

0.000

0.009

0.109

0.198

0.686

0.114

0.009

0.039

0.288

0.372

0.171

0.109

0.049

-0.006

0.083

0.029

0.009

0.023

0.075

0.227

0.075

0.202
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-0.143

0.024

0.086

0.311

0.615

0.568

-0.012

0.07

-0.003

-0.04

0.037

0.065

-0.016

-0.039

0.071

0.004

0.323

0.069

0.003

0.004

-0.035

0.006

-0.001

-0.05

0.056

0.197
II

31Component

0.829

0.081

0.007

-0.177

0.121

0.148

0.028

-0.051

-0.217

-0.19

0.035

0.023

0.037

0.08

-0.097

-0.014

0.154

-0.162

-0.014

-0.084

-0.036

-0.028

-0.036

-0.209

-0.078

-0.151



Appendix L

Consent to Participate Form

This appendix provides the consent form for the experiment for the collection of the rule

based dataset. The following pages reproduce the full consent form used.
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CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

Predicting Procedural Training Effectiveness in Supervisory Control

You are asked to participate in a research study conducted by Professor Mary Cummings, Ph.D.
from the Aeronautics and Astronautics Department at the Massachusetts Institute of Technology
(M.I.T.). You were selected as a possible participant in this study because the expected
population this research will influence is expected to contain men and women between the ages
of 18 and 50 with an interest in using computers. You should read the information below, and
ask questions about anything you do not understand, before deciding whether or not to
participate.

. PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose whether to be
in it or not. If you choose to be in this study, you may subsequently withdraw from it at any time
without penalty or consequences of any kind. The investigator may withdraw you from this
research if circumstances arise which warrant doing so.

. PURPOSE OF THE STUDY

The purpose of this study is to investigate procedural adherence in training and operational
environments.

* PROCEDURES

If you volunteer to participate in this study, we would ask you to do the following things:

* Participate in a training period to learn the nuclear power plant control simulation
interface and complete a 10 minute practice session to familiarize yourself with the
power plant parameters.

" Participate in three 30-minute training sessions in which you will gain further
understanding of the control of the power plant. You will work alongside two or three
other participants to simulate a training course with multiple trainees, though you will
each have your own workstations with your own nuclear power module to control.

" Participate in a 90-minute test session in which your performance will be evaluated to
assess the learning that has taken place in the training sessions. You will need to use
some of the skills and information learned in training for this test session.

* You will be awarded a score for the trial based on your accuracy in following procedures
in the test session.

* All testing will take place at MIT in room 35-220.
" Total expected time: 4.5 hours



. POTENTIAL RISKS AND DISCOMFORTS

There are no anticipated physical or psychological risks involved in this study.

* POTENTIAL BENEFITS

While you will not benefit directly from this study, the results from this study will assist in the
evaluation of training for supervisory control systems.

. PAYMENT FOR PARTICIPATION

You will be paid $25/hr to participate in this study, which will be paid upon completion of your
debrief. Should you elect to withdraw in the middle of the study, you will be compensated for
the hours you spent in the study. An additional $200 gift certificate to Best Buy will be awarded
to the participant with the highest performance score.

* CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be identified with you
will remain confidential and will be disclosed only with your permission or as required by law.
You will be assigned a subject number that will be used on all related documents to include
databases, summaries of results, etc.

. IDENTIFICATION OF INVESTIGATORS

If you have any questions or concerns about the research, please feel free to contact the Principal
Investigator, Mary L. Cummings, through phone: (617) 252-1512, e-mail: missyc(mit.edu, or
mailing address: 77 Massachusetts Avenue, Room 33-311, Cambridge, MA, 02139. The
investigators are Alexander Stimpson and Hosea Siu. They may be contacted at (352) 256-7455
or via email at aistimps(mit.edu and hoseasiu~mit.edu respectively.

. EMERGENCY CARE AND COMPENSATION FOR INJURY

If you feel you have suffered an injury, which may include emotional trauma, as a result of
participating in this study, please contact the person in charge of the study as soon as possible.

In the event you suffer such an injury, M.I.T. may provide itself, or arrange for the provision of,
emergency transport or medical treatment, including emergency treatment and follow-up care, as



needed, or reimbursement for such medical services. M.I.T. does not provide any other form of
compensation for injury. In any case, neither the offer to provide medical assistance, nor the
actual provision of medical services shall be considered an admission of fault or acceptance of
liability. Questions regarding this policy may be directed to MIT's Insurance Office, (617) 253-
2823. Your insurance carrier may be billed for the cost of emergency transport or medical
treatment, if such services are determined not to be directly related to your participation in this
study.

RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, rights or remedies because of your participation in this
research study. If you feel you have been treated unfairly, or you have questions regarding your
rights as a research subject, you may contact the Chairman of the Committee on the Use of
Humans as Experimental Subjects, M.I.T., Room E25-143B, 77 Massachusetts Ave, Cambridge,
MA 02139, phone 1-617-253 6787.



SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE

I understand the procedures described above. My questions have been answered to my
satisfaction, and I agree to participate in this study. I have been given a copy of this form.

Name of Subject

Name of Legal Representative (if applicable)

Signature of Subject or Legal Representative Date

SIGNATURE OF INVESTIGATOR

In my judgment the subject is voluntarily and knowingly giving informed consent and possesses
the legal capacity to give informed consent to participate in this research study.

Signature of Investigator Date

11
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Appendix M

Demographic Survey

This appendix provides the demographic survey for the experiment for the collection of

the rule based dataset. The following pages reproduce the survey form used.
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DEMOGRAPHIC SURVEY

1. Subject number:

2. Age:

3. Gender: M F

4. Color Blindness: N Y If yes, type:

5. Occupation:

if student, (circle one): Undergrad Masters PhD

expected year of graduation:

6. Nuclear or conventional power plant experience (circle one): No Yes
If yes, which plant:

Level of Training Licensed? Y N Years of experience:

7. Have you used detailed procedures before (e.g. checklists, model-building)?

No Yes

If yes, please briefly explain:

8. How often do you play computer games?

Rarely Monthly Weekly A few times a week Da

Types of games played:

9. Rate your comfort level with using computer programs.

Not comfortable Somewhat comfortable Comfortable Very Comfi

10. What is your perception toward nuclear power plants?

Intense dislike Dislike Neutral Like Really L

ily

rtable

ike



Appendix N

Powerpoint Tutorial Slides

This appendix provides the powerpoint slides for the experiment for the collection of the

rule based dataset.
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Nuclear Power Plant Control
Simulator Familiarization

Primary Task

The experiment is divided into two sections:
1) Operator training (three 30-min modules)

- In this section you will be shown how to perform specific
tasks as a reactor operator

- You then will have a chance to perform those tasks on
your own (though you may ask questions)

- After each module you will take a brief quiz to check your
understanding of the procedures (including details in this
presentation)

2) A test module (90 min) to assess what you have
learned in training

- In this section your objective is to monitor the reactor
and appropriately deal with any issues that may arise by
correctly following the appropriate procedures

Basics of a Nuclear Reactor

This is the reactor.
Nuclear fission
within the reactor
produces heat
that is used to
generate
electricity.

Overview

These slides will familiarize you with the
interface and procedures you will be using
over the next several hours. If you have
questions at any time during the
familiarization session, please ask the
experimenter.

- Ask questions if you have them

- Take your time

Reactor

* For both training and test modules, you control
your own simplified reactor
- Participants in the room will work independently, and

your actions will not affect any reactor other than
your own

* Your score will be based in part on how well you
follow the procedures given to you
- Try to follow these procedures as closely as possible

for each module
* First we will go over the basic operation of the

nuclear reactor

Basics of a Nuclear Reactor

These are the control
rods, which can slow
or stop the reaction.
when fully extracted
(at level 0), the
reaction and heat
production is at
maximum. When
fully inserted (at level
100), the reaction
halts and very little
heat is produced.
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Basics of a Nuclear Reactor

This is a Steam
Generator Loop.
It produces power
from heat
generated in the
reactor. Note that
there are 4
independent

-- loops for the
single reactor.

Basics of a Nuclear Reactor

The hot water from
the RCS boils water

- - in the Steam
Generator (SG)

Basics of a Nuclear Reactor

Cool water pumped
from the cooling
tower condenses the
steam coming out of
the turbine.

Basics of a Nuclear Reactor

The fission reaction
in the core heats
water that is

pumped through the
Reactor Coolant
System (RCS).

Basics of a Nuclear Reactor

The steam from the
SG flows through
the steamline valve
into the turbine,
which produces
power.

Basics of a Nuclear Reactor

The condensed
water returns to the
Steam Generator to
be boiled again.

6/7/2014
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Main Interface
- Each component will be reviewed in detail in

the following slides.

Annunciator Panel: Shows the warnings present in the
nuclear power plant. When active, the tile will turn
red. Each annunciator is identified by a letter-number
combination (e.g. A3l.

Control Rods: Control rods control the nuclear reaction
n the reactor. They can be adjusted either
automatically using the Step/min options or manually
by clicking the up/down arrow.

Safety injection (SI) trains: 51 trains are an important
safety feature. The status lights indicate whether the
SI train is active (green) or in standby (red). Both the
SI trains and the SI train pumps need to be active for
the Si system to cool the reactor.

teactor gauges: The gauges over the reactor are
important measurements that should be monitored for
safety.

eactor Gauges
The reactor has a variety of RatrTmeaueia
measurements that are taken poer tpoftereactoronce every second It is important re
Important to monitor these uncontrolled increases could

measurements. result In a meltdown.

Too low reactor coolant level
will cause the reactor
temperature to rise

RCS is the Reactor Coolant Neutron flux Is related to the

System, This system provides power output of the reactor.

cooling to the reactrcr. It is Important to ensure
radiation levels do not become
unstable.

The arrows in the gauges
represent the trend of the
measurement. These arrows

The contaInment area Indicate the measurements are
encapsulates the reactor and RCS steady.
systems.I

The middle of the interface represents the reactor, which is central to the nuclear
power plant operation. We will now review this section of the interface.

Control Rod Controls

The step buttons indicate the rate at which
the rods will be automatically The Auto button turns the
extracted/inserted in steps per minute. automatic retraction of rods
This function is only active if the AUTO ON on or of.
button is active. There are 100 steps
between fully extracted and fully inserted.

The arrows move ALL the rods
The rod positions are indicated by a in or out to change the
bank of lights. All rods move as one reaction.
unit. This position directly Influences
the nuclear reaction in the reactor.

The interface has 4 loops that operate in the same way. Each loop depends upon the reactor
but operates independently. We will review the features of one loop in the newt slides.
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Turbine controIs indicate
whether the turbine is active
(able to produce power),

Coopigoge indicate

water so steam may be
condensed quickly.

Condenser coolant
pump circulates chilled
water from the cooling
condenser.

Loop gauges indicatmets
important measurements
for this loop.

Loop Details
Voea ln vov alows

ste t--h turbine. I

Steam Dump Valve will allow
steam to escape frotm, the
staline if opened (green).
Yellow is the steam pressure
mode. Red indicates closed.

This is the Steamlne
It drects the flow of
s tea to the turbine.

This is the Steam
Generator (SG). It is
a pressurized vessel
in which water is

/turned to steam.

Ipmps suprhated wae
through the SG to generate

Gauge Details
Gauges have 4 components, from left to right: the gauge name, the measurement (in
the box), whether the measurement is within limits or out, and the trend of the
measurement. Examine the examples below.

This gauge Indicates that the Cooling Tower
Temperature Is below limits (bold - sign)

J~l04tljQ*0tMP W 7*f but Is increasing over time (up arrow).

This gauge Indicates that the Turbine Steam
Pressure is above limits (bold + sign) and is
steady at that pressure (horizontal arrow).

Thisgaugeindicates thut theCoolant
Temp ratu e is witn mits and Is steady
at that temptrature (horizontal arrow).

A downward trend is also possible, indicated by an arrow pointing down
and to the right.
NOTE: The limits for each of the gauges on the interface are given in
Appendix A of the Nuclear Reactor Operating Procedures contained in the
white binder

Pumps and Valves
- The main reactor controls are:

- Pumps
- Valves
- Control rod controls (covered previously)
- SI trains
- Turbines

- For pumps and valves, simply click the pump
or valve to change its status.

- For SI trains and Turbines, click the associated
box with the lights on it to change its status

SI Trains and Turbines

- Below is an SI Train. Red means inactive (off).
Green means active (on).

S lTrul

- Below is a Turbine. Red means inactive (off).
Green means active (on). When inactive, the
loop will produce no power.

- Below is a pump. Red means active (on).
Green means inactive (off)- note that this is
the only exception to the normal red/green
off/on scheme.

" Below is a valve. Red means closed. Green
means open.

SCRAM

- A SCRAM refers to an emergency shutdown of
the reactor

- When a major problem is detected, the
reactor may automatically fully insert the
control rods (to level 100) to stop the reaction
- this is a SCRAM

* There are several possible causes for a
SCRAM, and these are covered in training
module 3

6/7/2014
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Reactor Procedures

* Please look at the white Procedures binder
located at your workstation.

- Procedures are carefully written to guide you
step-by-step through situations you may
encounter.

- Follow them closely to complete the training
modules and fix any problems with the reactor,
should they arise

- Remember that part of your score will be based
on how well you follow the procedures

- Each procedure has entry conditions for use,
which will be discussed next

Types of Procedures

- The nature of the procedures can be identified by the
category in the upper left
- E = emergency procedures, only to be used if there is a reactor

SCRAM
- M = maintenance procedures, used for contacting and

coordinating with maintenance crews
- AOP = Anomalous Operating Procedures, to be used if the

system is exhibiting unusual behavior but has not ScRAMed
- T = Training procedures, used in the completion of the training

modules (these will be given to you as you reach each module)

Indicates that
this is an
emergency sUP "M MnUlssesitoaseocslsx stSUnOMM
procedure ~hO41LL .e- GKFAIUftftM N,

Action/Expected Response Example
1) Check to see if this is true 2)1 f not, move to this column

E_.. " - .. A., .A-

3) After all items Inthe previous step have s. s
been completed, move to the next step.

-P -STALTS soTwrs'u AND .os~c., ~

chb4 dRP.1b. .PPW .

Entry Conditions

e Each procedure in the manual has a set of entry conditions
* You should only use a procedure set if you have met the entry conditions

Entry conditions involve information gathering only, no interaction with
the interface is necessary
Once entry conditions have been met, turn the page to start the
procedure

- d- -

%I* . A .4 . 5e . d

Action/Expected Response

* Procedure steps have 2 parts:
- Action / Expected Response
- Response not obtained

* Follow the step in the left column (Action / Expected
Response).

* If those conditions or actions are not true, go to the right
hand column (response not obtained)to complete that step.

* Continue with the next step in the Action column.

ALLL-e GfOATVUTRXI-
GPMi

Response Not Obtained

* Move to the "response not obtained" column
as soon as any step or sub-step within the
"action/expected response" column is not
true

" Once you have completed the "response not
obtained" procedure, move on to the
"action/expected response" column for the
next step... do not return to the
"action/expected response" column for the
same step

5



Verification
- Several of the procedures will ask you to verify states

of the loops or the rods

- In order to complete the verification for that step,
please right click on the item to be verified

* You will hear a tone indicating that the item has been
verified, and meters will flash black

- Example: "Verify RCS Temp"

Right-Click
on RCS Temp

Verification
- Entry conditions also ask for you to check

states of the interface

" However, do NOT click the interface when
checking entry conditions (checking is NOT the
same as verifying)

* Even if the obiect you are verifying is not in
the expected state, be sure to right click on it
to indicate that you have completed the
verification - then move to the "response not
obtained" column

Chat Box
start
RO reahm rratfnanc
SRO: Oeparmnnt caled
RU. Readol ralsnane hftr. w&ra the
problem,

The chat box allows you to communicate with
the supervisor and the maintenance
departments. Note that standard procedures
for contacting maintenance are contained in
procedure M-1 in your binder.

* RO = Reactor Operator (you)
- SRO = Senior Reactor Operator
(supervisor)
- RM = Reactor Maintenance

You may be required to communicate using the chat box. Monitor the box
throughout the test module, and respond as clearly and concisely as possible when
appropriate. Type any needed messages into the white box and press ENTER. There
are other departments besides RM that you may have to contact. A listing of relevant
departments is provided in Appendix B of your operating procedures binder.

Typing in "help" to the chat box will pull up a labeled diagram of the reactor interface
for your reference. Exit this interface with the ESC key. A sample screenshot of the
reference interface is shown on the next slide.

Scoring

* Your score will be based two elements:
- How accurately you follow the procedures given

- Average power output (for the final test module)

* Any deviations from the given procedures will
result in point deductions

- You will not be penalized for using the
reference screen by typing "help" in the
chatbox

Training Modules

- Each of the 3 modules are divided up into five parts
- Training video - provides information about the module's

topic
- Practice Session - uses the procedures that will be given to

you for each module
- Post-session survey - asks you to rate some of the aspects

of the module
- Multiple choice test - assesses your learning for that

module
- Review slides - reviews the material on the test

- If you are finished with one part of the module, let the
training supervisor know so he can start you on the
next part or next module

6/7/2014
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Review

- The next slide summarizes all the components
in the interface.

Summary

- Your performance will be assessed by how
well you follow the procedures and the power
output on the test module

- Therefore, try to follow the procedures as
closely as possible

- Your performance score will be used to
determine the winner of the $200 Best Buy
gift card

- Do NOT close any windows.

7



Appendix 0

Post-Module Quizzes

This appendix provides the post-module quizzes in the experiment for the collection of

the rule based dataset. The following pages reproduce the survey form used.
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Module 1 Test Questions

INSTRUCTIONS: Circle the BEST answer for each question.

QUESTION 1: If instructed to insert control rods into the reactor and automatic insertion is not

functional, which of the following steps would be your first course of action?

a) attempt to manually insert the control rods

b) enter a maintenance module

c) leave control rods where they are and proceed with normal operations

d) attempt to automatically extract rods completely, then try automatic insertion again

QUESTION 2: Which one of the following is not directly associated with power output reduction?

a) decreasing reactor coolant system pressure

b) turbines deactivated
c) rod insertion
d) rising SG pressure

QUESTION 3: Which of these transports hot water from the reactor to the steam generators?

a) Secondary Coolant Pumps (SCPs)
b) Reactor Coolant Pumps (RCPs)
c) turbines
d) steam dump valves

QUESTION 4: Which color indicates that a pump is activated?

a) red
b) green

QUESTION 5: Which color indicates that a valve is open?

a) red
b) green

QUESTION 6: Why do SG steamline valves have to be open to initiate power production?

a) they allow radiation from the reactor to enter the cooling towers

b) they allow steam from the steam generator tanks to pass through the turbines

c) they allow the reactor to be turned on
d) they allow reactor coolant levels to rise



Module 2 Test Questions

INSTRUCTIONS: Circle the BEST answer for each question.

QUESTION 1: What is an expected response to deactivating an RCP?

a) reactor temperature would decrease
b) condenser radiation levels would increase
c) SG pressure for that loop would decrease
d) Turbine Auto Trip indicator would turn red

QUESTION 2: What is the main purpose of the Safety Injection system?

a) to cool down the reactor core in case of extreme overheating
b) to reinforce the containment building in case of a radiation leak

c) to decrease power generation
d) to increase reaction rate for higher reactor temperatures

QUESTION 3: Which of the following alarms should result from the activation of SI trains and pumps?

a) Core Damage Warning
b) Turbine Auto Trip
c) SCRAM

d) SI Auto Injection

QUESTION 4: What is an expected response to deactivating a loop's secondary coolant pump?

a) rising SG temperature
b) rising condenser radiation levels
c) SCRAM alarm

d) increased power output fluctuations

QUESTION 5: What is an expected response to a running loop if one were to open a steam dump valve?

a) power output for that loop would rise
b) power output for that loop would drop
c) condenser radiation levels would drop
d) containment radiation levels would drop



Module 3 Test Questions

INSTRUCTIONS: Circle the BEST answer for each question or fill in the correct response.

QUESTION 1: What was the issue that caused the SCRAM?

QUESTION 2: Which of the following conditions must be met for Module 3 to be used?

a) Reactor Scram Annunciator is lit and the containment pressure is rising

b) control rods have been fully inserted and the Reactor Scram Annunciator is lit

c) control rods have been fully inserted and the Reactor Scram Annunciator is off

d) reactor temperature dropping and the Core Damage Warning is lit

QUESTION 3: Once a scram has been verified, what state should the turbine indicators be in?

a) turbine trip (red light)

b) turbine trip (green light)

QUESTION 4: Which of the following should be done if Secondary Coolant Flow for all loops is less than

720 GPM after a reactor scram?

a) call for maintenance on the most affected loop

b) deactivate turbines

c) open any closed steam dump valves

d) close any open steam dump valves

QUESTION 5: If condenser radiation levels are not normal, which of the following is likely to be

responsible?

a) faulted steam generator

b) steam generator tube rupture

c) loss of reactor

d) loss of secondary coolant

QUESTION 6: Which indicator color shows that SI Trains have been reset?

a) green

b) red



Appendix P

Post-Experiment Questionnaire

This appendix provides the post-experiment questionnaire used in the experiment for the

collection of the rule based dataset..
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POST EXPERIMENT SURVEY

1. How confident were you about the actions you took?

Not Confident Somewhat Confident Confident Very Confident Extremely Confident

Comments:

2. How would you rate your performance?

Very Poor Poor Satisfactory Good Excellent

3. How stressed did you feel during the alarm situation?

Not Stressed Somewhat Stressed Stressed Very Stressed

4. How busy did you feel during the alarm situation?

Idle Not Busy Busy Very Busy Extremely Busy

5. Do you feel that the training sufficiently prepared you for the test? No

Comments:

6. How well do you feel you understand nuclear power plant operation?

Very Poorly Poorly Satisfactory Well Very Well

7. Were the procedures easy to understand? No

Comments:

Yes

8. Other comments:

Extremely Stressed

Yes



Appendix Q

Measuring Procedure Adherence

and Development of the Procedure

Adherence Metric (PAM)

Q.1 Measuring Procedure Adherence

Procedure adherence represents the faithfulness to which the operator follows the pre-

scribed procedures. Prior research on adherence to procedures has primarily been part

of studies on human error in rule-based environments [155-157]. This research has fo-

cused on the theoretical aspects of errors while following procedures and the modeling

of human error in these cases, such as the Memory For Goals (MFG) model [158,159].

This work identifies differences in tendencies for adherence across cultures and levels of

experience, and often utilizes interviews with operators rather than experimental studies

(e.g. [155, 160]). A few experimental studies have been conducted, primarily focusing

on the nature of errors in procedure-following or improvement of adherence through the

design of procedures or new interfaces [161, 162]. There are few sources that discuss

the measurement of procedure adherence, and these do not discuss the implications of

procedure adherence as an assessment metric in training. Thus, one of the important

contributions of this work includes the discussion of potential measures of procedure ad-

herence, and their use both as a training assessment metric and as features in machine

learning approaches. These topics are covered in this and the following sections.

Adherence to procedures can have several interpretations dependent upon the partic-
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ular domain in which the procedures are used. In nuclear power plant operation, there are

often many procedures available contained in either binders or more recently in comput-

erized checklist systems. Thus, an important aspect of adherence in nuclear power plants

is the ability to select the correct procedure to be used based on the current system state.

This ability is referred to in this appendix as "procedure selection." When an incorrect

procedure is selected, subsequent actions performed in the following of that procedure

are unlikely to be appropriate for the situation.

Once a procedure is selected, a second type of adherence (simply termed "adherence"

here) arises relating to the accurate completion of all appropriate steps contained in that

procedure. Sometimes procedures will be branched, in which case not all steps will be

used. In these cases, adherence can be measured to following all the steps along one set

of sequential actions, i.e. the "path" through the procedure. Sometimes only a single

path is correct given the system state; other times there may be multiple "correct" paths

for appropriate operation. In the former case, the procedure is linear, and at any time

during the course of completing the procedure there is only one intended action for the

next step in the procedure. Thus, adherence can be measured based on whether the next

action is the intended action. When multiple .correct paths exist, adherence is much more

difficult to measure, as actions that are incorrect for one path may still be correct along

a different path.

There are a variety of metrics that could be used to measure procedure selection and

adherence. For procedure selection, the primary information of interest is whether or not

the correct procedure was selected. The simplest assessment metric in training could then

be a binary of whether the trainee did ("1") or did not ("0") choose the correct procedure.

Another option would be to apply a performance penalty to those trainees who did not

select the correct procedure, which would typically manifest itself as a weighted case of the

binary metric (e.g. "-10 points if they did not select the correct procedure"). In machine

learning, any transformation used (such as range or z-score transformations described in

Chapter 3) automatically reweights features to an approximately equal scale and would

thus account for any weighting applied to the binary metric. Thus, procedure selection

in this analysis is assessed by the simple binary metric rather than any weighted form.

In the consideration of adherence, it is useful to think about a procedure as a se-

quence, defined as an "ordered set of events." An SOP defines a series of actions for the
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user to take, typically under a certain set of initial conditions that make the procedure

appropriate. The set of actions contained in a procedure can be translated into a se-

quence, with each action having a previous action and a subsequent action (see Figure

Q-1). A trainee similarly generates an ordered sequence of actions as s/he attempts to

complete the procedure as part of the training module. In a sequence of actions, common

errors include omission of an action, performing actions out of order, or substitution of

an action with an incorrect one. These errors create mismatches between the procedure

sequence and the trainee sequence. Typically in a complex system, there are more ac-

tions available to the user than are needed for any particular procedure. Consider the

aircraft training example given in Chapter 3; during the pre-takeoff checklist the pilot is

not required to press every button in the cockpit. With more actions available than used

in the procedure, it is possible for a trainee sequence to contain actions that are never

observed in the procedure sequence.

In this framework, procedure adherence can be measured by the difference between a

Procedure

1. Perform Action 1
2. Perform Action 2
3. Perform Action 3
4. Perform Action 4

nconistency

Figure Q-1: Viewing a procedure as a sequence.
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SOP sequence and the trainee sequence. Numerous methods that measure the distance

between sequences have been developed, including sequence-based methods (e.g. Leven-

shtein distance [163]) and model-based methods (e.g. Kullback-Leibler divergence [164]).

Sequence-based methods focus on the direct comparison of the sequences, while model-

based methods model each sequence and then compare the similarity of the models as a

proxy for sequence distance. To select the best method for the calculation of sequence

distance, four elements important to procedure adherence measurement are:

9 Ability for different types of errors to be penalized separately (i.e. error weighting)

e Non-equal sequence length between the observed and expected sequence of actions,

i.e., where the user performs a different number of actions than the prescribed

procedure

9 Sensitivity to number of deviations between the observed versus expected sequence

of actions

* Sensitivity to trainee action order: the ability to distinguish between correct and

incorrect ordering

Three methods that calculate sequence distance were considered as possible features

for machine learning approaches to measuring procedure adherence: two sequence-based

methods (Levenshtein distance and suffix arrays [165]) and one model-based method

(Kullback-Leibler divergence). The details of the calculation of each method and their

comparison on the four criteria presented above can be found in Appendix C. Briefly, the

Levenshtein distance is calculated by the minimum number of edits (insertions, deletions,

or substitutions) to change the trainee sequence into the intended sequence. It is able

to handle sequences of unequal lengths and is sensitive to the number of deviations of

the trainee, and provides easy interpretation of the resultant distance values. However,

it weights all errors equally and only considers action order at the level of transposition

of two adjacent actions. Suffix arrays are able to identify matching subsequences bete-

ween the trainee and prescribed sequence, and thus account for the ordering of actions.

However, the distance measure focuses on the largest matching subsequence, and thus

does not account directly for the number of deviations. The Kullback-Leibler (KL) ap-

proach exhibits similar adherence detection properties to the Levenshtein distance, but
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additionally accounts for action ordering and weights errors based on the frequencies of

actions and transitions encountered in the prescribed sequence. Thus, the KL divergence

is able to meet all four criteria specified above.

Two metrics stand out as potential candidates for measuring adherence in training:

the Levenshtein distance for its simplicity and ease of interpretation, and the KL di-

vergence by meeting all of the desired criteria. However, the KL divergence requires

additional modifications before it can be used directly for measuring procedure adher-

ence. Thus, a new metric was created, termed the Procedure Adherence Metric (PAM),

that captures the benefits of using the KL divergence approach but is able to be cal-

culated directly from sequences generated by trainees in rule-based environments. The

following section details the calcuation of the PAM.

Q.1.1 Procedure Adherence Metric (PAM)

The main goal of measuring procedure adherence is to assess trainees' performance against

the SOP. Additionally, trainees can be objectively compared against each other based on

their training performance, and tracking procedure adherence can indicate struggling

trainees that need re-training. The Procedure Adherence Metric (PAM) was based on

the KL divergence between the trainee and intended action sequences. Formally, the KL

divergence between two sequences can be calculated as shown in Equation Q.1.

DKL(P IQ-npi)P 1

where P(i) is the probability of observing the transition from action i - 1 to action i in

one sequence (such as the intended sequence), and Q(i) is the probability of observing

the transition from action i - 1 to action i in the other sequence (such as the trainee

sequence). As can be seen from this formula, the KL divergence requires at least two

actions in the sequence, as no tr'ansitions exist with sequences containing only one action.

Also, the basic form of the KL divergence is not symmetric, meaning that DKL(PI IQ) is

not necessarily equivalent to DKL(QIIP). For calculating adherence, it is useful to have

a metric that does not depend upon which sequence is used for P and Q, and thus a

symmetrized form can be used, as shown in Equation Q.2.
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DsymmetricKL =DKL(PIIQ) + DKL(Q IP) (Q.2)

In this symmetrized form, the divergence will be the same regardless of which sequence

is used for P and Q. An adherence metric based on this divergence could use a single

final value calculated after the trainee has completed the module, or could utilize KL

divergence partway through the the training module. Consider a trainee who completes

30 actions during a training module. At any given point during the training module,

the "current" KL divergence between the trainee sequence and the intended sequence at

that point in the module can be calculated. Thus a sequence of KL divergences can be

generated over time, but it is unclear which aspects of this divergence sequence are the

most useful for measuring adherence.

KL divergence can be measured in many ways: maximum KL divergence, the mean

KL divergence, the final KL divergence (using only the full sequence), and the sum of

the KL divergences in the sequence. It was determined that using the sum of the KL

divergence values over all actions in a training module provided the closest rankings of

trainees (from best to worst) as compared to an expert evaluator (Appendix D). Using

the sum of KL divergences as the basis for the adherence metric, the PAM value can then

be calculated as shown in Equation Q.3.

N

PAM = DKL (Q.3)
i=1

where N is the number of events or actions in the training sequence, and DKL represents

the symmetrized Kullback-Leibler divergence between the trainee sequence of states 1i

and the intended sequence of states of equivalent length. If N is greater than the number

of states in the intended sequence (M), the complete intended sequence is used for all

i > M. It is important to recognize that as the PAM is based on divergence, and a lower

score indicates better performance.

A potential issue that arises in the use of the KL divergence for the PAM is zero-

probability values in the transition matrix. This transition matrix represents the prob-

ability of all transitions between states in the model. For a model based on a sequence,

the maximum likelihood estimate simply counts the number of times a consecutive action

pair is found (e.g. action 1 to action 2), and normalizes by the number of transitions.
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An example based on three possible actions is shown in Figure Q-2. If a particular set of

actions are never observed consecutively (such as action 1 to action 3 in Figure Q-2), the

count (and therefore the probability estimate) for that transition is zero. The size of the

state transition matrix is heavily dependent on the number of existing actions (NxN for N

actions), and can be large for CBT settings. Even with only three actions in Figure Q-2,

it would take a sequence of at least length 10 (9 transitions) to have no zero-probability

transitions.

Often the set of actual transitions in any particular training procedure will not cover

the entire set of possible transitions. When included in the model, these zero probability

events send the KL divergence to infinity. Instead a small (but non-zero) probability can

be assigned to transitions that do not occur in the intended procedure. This results in a

large divergence score (poor performance) in the PAM but does not send the divergence

to infinity. Frequency estimation is a set of statistical techniques that provide estimates

Sequence: 1,1,2,2,3,3

Transition Counts

Ending State

1 2 3
1 1 1 0

Starting State 2 0 1 1

3 0 0 1

Transition Probabilities

Ending State

1 2 3
1 0.5 0.5 0

Starting State 2 0 0.5 0.5

3 0 0 1

Figure Q-2: Example action sequence with transition counts and probabilities. In the
sequence, the numbers represent individual actions performed by the trainee.
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of the probabilities of unobserved events, such as the zero-probability events in the tran-

sition matrix. Some of the most common frequency estimation methods include additive

smoothing and Good-Turing estimation. Additive smoothing simply adds new transition

counts such that there are no zero-probability transitions. This strategy works well when

there are only a few unobserved events, but can dramatically alter the overall distribution

if there are many zero-probability events such as is observed in CBT data. Good-Turing

estimation estimates the probability of novel events based on the number of infrequently

observed events, and thus self-corrects for cases where the transition matrix is sparse (few

non-zero values). Thus for the PAM, Good-Turing smoothing was selected based on its

ability to handle large numbers of novel events.

Q.1.2 Adherence Metrics as Features

Of the wide range of adherence metrics that can be used as features in machine learning,

the Levenshtein distance was selected for its simplicity in interpretation, and the PAM

was selected for its ability to meet the four criteria stated earlier in this appendix. PAM

is calculated as described above, while Levenshtein distance is calculated by the minimum

number of edits (insertions, deletions, or substitutions) to change the trainee sequence

into the intended sequence. For each of these metrics, the value after each action was

calculated, representing the process-level features. The final value at the end of the

module provided the summative-level features.

Adherence metrics such as the PAM or Levenshtein distance can be utilized as features

both at a process-level (for each action) or at a summative-level (end of module). While

calculating the metric at each action would provide a high number of features for use in

machine learning methods, as discussed in Chapter 3, having too many features compared

to data points may cause overfitting of the models. Thus, two approaches can be taken:

using only summative-level metrics or a reduced set of process-level metrics based on

feature selection techniques. In this analysis, both approaches were taken and the results

are presented in Chapter 4.

To illustrate the calcuation of these values, consider an example where the prescribed

sequence is AABBCC, and the trainee sequence is ABBCDC. In this example, the trainee

has made several mistakes: they have omitted an "A" action and have included an

extraneous "D" action that does not show up in the prescribed sequence. Both the
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Levenshtein distance and PAM can be used as example adherence metrics to describe the

timing and severity of the errors. Table Q.1 shows the progression of both the Levenshtein

distance and PAM over the course of this sequence. Both Levenshtein and PAM increase

as the trainee moves through the sequence and commits the errors. The Levenshtein

distance essentially acts to "count" the number of errors made by the trainee. At action

2 where the trainee omits an "A" action and at action 5 where the trainee includes an

additional "D" action, the Levenshtein distance increases by one, resulting in a final value

of 2. The PAM shows additional fluctuations based on comparing the flow of the sequences

as a whole, through the comparison of the transitions between actions. By accounting for

transitions (and thus action ordering), there is a relatively small penalty for the PAM at

action 4, where the subsequence ABBC is seen in both the trainee and intended sequences.

A much harsher penalty is given by the PAM to the added "D" action, as it results in

transitions both to and from the "C" action which are unseen in the intended sequence.

Both are valid representations of the adherence of the trainee through time, and thus

were included as potential features in machine learning approaches. Note that if this

sequence comprised the full module, the resultant summative adherence scores would be

2 and 5.99 for Levenshtein distance and PAM, respectively. Both the summative and

process-level (action by action) values for the adherence metrics are utilized as possible

adherence features in the machine learning sections presented in Chapter 4.

Table Q.1: Progression of Levenshtein and PAM over example sequences

Action Number 1 2 3 4 5 6
Intended Action A A B B C C
Trainee Action A B B C D C

Levenshtein Distance 0 1 1 1 2 2
PAM 0 2.04 2.68 1.70 5.06 5.99
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