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Abstract

Over the last several decades of space flight, spacecraft thermal system modeling software has
advanced significantly, but the model validation process, in general, has changed very little.
Although most thermal systems are successful, there is evidence of some model inaccuracy
and thermal system overdesign due to the conservatism of the current (i.e., conventional)
validation process. A significant improvement to the model validation process can result
in the reduction of resource-related (e.g., mass, volume, or power) or process-related (e.g.,
design, verification and validation, operations) mission costs.

This thesis proposes a Bayesian-based Model Validation (BMV) methodology as a tailored
framework that combines the state of the art model validation methods within the fields of
Uncertainty Quantification (UQ) and Design of Experiments (DOE) to improve the thermal
model validation process. In BMV, model uncertainties are rigorously quantified upstream of
the model and propagated through the model to determine their influence on the quantities
of interest (QoIs). Critical system parameters that most significantly create variance in the
QoIs are identified. Optimal parameter inference experiments, implemented prior to system-
level model validation experiments, target the critical system parameters to learn more
about the system earlier in the project lifecycle. Finally, given experimental data, Bayesian
inference methods are utilized to systematically update the model. BMV is model-based
and takes advantages of system-specific information. Furthermore, the validation process is
iterative, and the outcome of each step informs the validation procedures for the subsequent
step.

The first of two case studies is a passive spacecraft radiator. The radiator is a simple,
notional system, and the primary objective of the case study is to demonstrate the basic
aspects of the BMV methodology. Synthetic data are generated for the radiator case study.
It is shown through BMV that analyses, test conditions, and decision-making during the val-
idation process can differ from a conventional validation approach because more information
is available to the engineer. By identifying and reducing uncertainty in the critical system
parameter (the radiator's emissivity) early in the lifecycle, the case study shows that the
final radiator's mass and volume could be lower than a conventional approach.

The second case study of the thesis is the REgolith X-ray Imaging Spectrometer (REXIS)
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Solar X-ray monitor (SXM). In the SXM case study, the driving thermal system parameter,
the maximum interface temperature with the spacecraft, TO-REX, is relaxed to determine
the maximum value to which TO-REX could have been set using BMV. Of the three op-
erational SXM requirements, uncertainty analysis reveals that the detector temperature is
the driving QoL. Global sensitivity analysis reveals that the uncertainty in a conductance
parameter most significantly creates uncertainty in the detector temperature. Both an opti-
mized parameter inference experiment to reduce the conductance's uncertainty and a model
validation experiment are implemented in a thermal vacuum chamber. A model calibration
procedure, utilizing a Markov Chain Monte Carlo (MCMC) method, is used to systemat-
ically update the model parameters. Finally, once the model parameters are updated, a
model discrepancy term is added to the model output to account for the persisting model
inadequacy. The validated SXM model is used predictively to show that the maximum value
of TO-REX could have been set up to 10 'C warmer than the original upper limit.

The primary innovation of BMV is the improvement to the thermal model validation
process. BMV is a rigorous, systematic validation methodology that can identify and reduce
important model uncertainties in a spacecraft thermal system. BMV can increase knowl-
edge of the system early in the project lifecycle when important design- decisions are made by
focusing research and testing efforts on critical system sensitivities. Because model uncer-
tainties are better understood, margin, if needed, can be applied in a system-specific manner
to address particular system or environmental uncertainties.
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Thesis Supervisor: Sheila E. Widnall
Title: Professor of Aeronautics and Astronautics

Thesis Supervisor: Rebecca A. Masterson
Title: Research Engineer

4



Acknowledgments

Beginning my Air Force career by completing a PhD in the MIT AeroAstro department was

a dream, made a reality, by the UT Austin ROTC detachment. The Detachment 825 cadre

spent countless hours making this opportunity possible. I am grateful for their mentorship

and will draw from their leadership lessons for the rest of my career. "Be a leader, all the

time..."

I would like to express my gratitude to the Air Force for my education at both the under-

graduate and graduate levels-my Air Force training has enhanced my academic experience

and makes me a more effective leader. I am excited to pay it forward. Thank you to AFIT

and the MIT AFROTC unit for their support during the PhD program.

Thank you to my extraordinary thesis committee: Prof David Miller, Prof Karen Willcox,

Prof Sheila Widnall, Dr. Rebecca Masterson, Prof Youssef Marzouk; and Mr. Ed Powers, for

their guidance and commitment to this research. Prof Miller and Dr. Masterson welcomed

me to the Space Systems Laboratory and personally guided me through the Masters and

PhD programs. Thank you for believing that this was possible in three short years.

During my time at MIT, I worked on the REXIS project as a thermal engineer. Over

the years, we have experienced the full set of emotions of a flight project, most importantly

the extreme high of testing a system that you helped designed and seeing it work (mostly)

as intended. I am indebted to Dr. Rebecca Masterson (REXIS Program Manager) and

all of my fellow graduate student REXIS-ians (REXonians?). On such a small team, no

individual system can be successful without the entire team-this was particularly true for

the thermal system. Thank you for the opportunity to work on this project, which developed

my thermal skills and the experience necessary to complete this thesis. Also, thank you to

Mr. Ed Powers and Mr. Michael Choi who spent many hours working with the REXIS

project and educating me on the thermal engineering process.

There were many student peers who both helped me navigate the PhD program and

assisted in many technical problems in this thesis. Thank you to Farah Alibay for your

mentorship, time looking over slides, talking about research, and working on class work.

Thank you to Ryan Xun Huan for your assistance in formulating the Optimal Bayesian

5



Experimental Design problems and to Alex Gorodetsky for your advice in Gaussian Process

modeling.

To my wife Andrea, I love you more than I can express through words. You have endless

patience and kindness. Thank you for supporting me in all things.

To God Be The Glory

"But grow in the grace and knowledge of our Lord and Savior Jesus Christ. To Him be the

glory both now and forever! Amen." 2 Peter 3:18

6



Contents

List of Figures 13

List of Tables 17

1 Introduction 23

1.1 Thesis Prim er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 Thermal System Engineering . . . . . . . . . . . . . . . . . . . . . . 25

1.2.2 Thermal Simulation Models . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.3 Traditional Treatment of Model Uncertainty . . . . . . . . . . . . . . 29

1.2.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3.1 Mission Costs Associated with Thermal Systems . . . . . . . . . . . . 32

1.3.2 Evaluation of Current Thermal Model Validation . . . . . . . . . . . 36

1.3.3 Effect of Uncertainty Margin on Thermal System Resources . . . . . 41

1.3.4 Answering the Model Validation Evaluation Questions . . . . . . . . 43

1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.4.1 Model Uncertainty Propagation (UP) . . . . . . . . . . . . . . . . . . 46

1.4.2 Design of Experiments (DOE) . . . . . . . . . . . . . . . . . . . . . . 54

1.4.3 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.4.4 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1.5 Problem Statement, Research Goal, and Thesis Objectives . . . . . . . . . . 65

1.5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7



1.5.2 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . .

1.5.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.5.4 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . .

1.6 Thesis Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Bayesian-based Model Validation (BMV) Methodology

2.1 Step 1: Validation Problem Definition .................

2.2 Step 2: Uncertainty Propagation and Parameter Prioritization . . .

2.3 Step 3: Experimental Goal Setting . . . . . . . . . . . . . . . . . .

2.4 Step 4: Design and Implementation of Experiments . . . . . . . . .

2.5 Step 5: Experimental Model Calibration and Flight Model Update .

2.6 Step 6: Validation Problem Documentation . . . . . . . . . . . . . .

3 Passive Spacecraft Radiator Case Study

3.1 Bayesian-based Model Validation (BMV) . . . . . . . . . . . . . . . . . . . .

3.1.1 Step 1: Validation Problem Definition . . . . . . . . . . . . . . . . .

3.1.2 Step 2:

Pass .

3.1.3 Step 3:

3.1.4 Step 4:

3.1.5 Step 5:

Pass .

3.1.6 Step 2:

Pass .

3.1.7 Step 3:

3.1.8 Step 4:

3.1.9 Step 5:

Pass .

3.1.10 Step 2:

Pass .

Uncertainty Propagation and Parameter Prioritization-First

Experimental Goal Setting-First Pass . . . . . . . . . . . . .

Design and Implementation of Experiments-First Pass . . .

Experimental Model Calibration and Flight Model Update-First

. . . . . 66

. . . . . 66

. . . . . 66

. . . . . 68

69

. . . . . 71

. . . . . 73

. . . . . 78

. . . . . 80

. . . . . 84

. . . . . 87

89

89

89

92

98

98

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Uncertainty Propagation and Parameter Prioritization-Second

. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 106

Experimental Goal Setting-Second Pass . . . . . . . . . . . 107

Design and Implementation of Experiments-Second Pass . . 108

Experimental Model Calibration and Flight Model Update-Second

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Uncertainty Propagation and Parameter Prioritization-Third

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.1.11 Step 3: Experimental Goal Setting-Third Pass . . . . . . . . . . . . 112

8



3.1.12 Step 6: Validation Problem Documentation . . . .

3.2 A Conventional Model Validation Approach . . . . . . . .

3.2.1 A nalysis . . . . . . . . . . . . . . . . . . . . . . . .

3.2.2 Thermal Balance Test . . . . . . . . . . . . . . . .

3.2.3 Model Correlation . . . . . . . . . . . . . . . . . .

3.3 Comparison of BMV vs. A Conventional Model Validation

4 REgolith X-ray Imaging Spectrometer (REXIS)

4.1 Instrument Overview ................

4.2 Mission Thermal Environments . . . . . . . . . .

4.3 Solar X-ray Monitor Thermal Requirements . . .

4.4 Solar X-ray Monitor Thermal Design Description

4.5 Sum m ary . . . . . . . . . . . . . . . . . . . . . .

Approach

Overview

. . . . . . . . . . . . . . . 125

. . . . . . . . . . . . . . . 128

. . . . . . . . . . . . . . . 132

. . . . . . . . . . . . . . . 133

. . . . . . . . . . . . . . . 135

5 REXIS Solar X-ray Monitor (SXM) Case Study 137

5.1 Step 1: Validation Problem Definition ........................... 137

5.1.1 Validation Requirements ...... ......................... 137

5.1.2 Physical Problem Documentation . . . . . . . . . . . . . . . . . . . . 138

5.1.3 Model Development and Documentation . . . . . . . . . . . . . . . . 139

5.2 Step 2: Uncertainty Propagation and Parameter Prioritization-First Pass . 141

5.3 Step 3: Experimental Goal Setting-First Pass . . . . . . . . . . . . . . . . . 151

5.4 Step 4: Design and Implementation of Experiments . . . . . . . . . . . . . . 152

5.4.1 Parameter Inference Experiment . . . . . . . . . . . . . . . . . . . . . 152

5.4.2 Model Validation Experiment . . . . . . . . . . . . . . . . . . . . . . 164

5.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.5 Step 5: Experimental Model Calibration and Flight Model Update . . . . . . 171

5.5.1 TEC Model Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.5.2 Parameter Calibration Overview . . . . . . . . . . . . . . . . . . . . . 176

5.5.3 Calibration Parameter Selection: Gh Only . . . . . . . . . . . . . . . 178

5.5.4 Calibration Parameter Selection: Gh and G,,b . . . . . . . . . . . . . 181

5.5.5 Calibration Parameter Selection: Gh and G,,b, Relaxed G,,b Lower Bound183

9

113

115

115

117

118

120

125



5.5.6 Calibration Parameter Selection: Gh, G,,b and Gb, Relaxed G,,b Lower

B ound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5.7 Parameter Calibration (MCMC): Gh, G,,b and Gb, Relaxed G,,b Lower

B ound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5.8 Parameter Calibration (MCMC): Gh, G,,b and Gb, Relaxed Gh Upper

Bound and G,,b Lower Bound . . . . . . . . . . . . . . . . . . . . . .

5.5.9 Quantify Model Discrepancy . . . . . . . . . . . . . . . . . . ... . . .

5.5.10 Flight Model Update . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.6 Step 2: Uncertainty Propagation and Parameter Prioritization-Second Pass

5.7 Step 3: Experimental Goal Setting-Second Pass . . . . . . . . . . . . . . .

5.8 Step 6: Validation Problem Documentation . . . . . . . . . . . . . . . . . . .

5.9 Comparison of BMV vs. A Conventional Model Validation Approach . . . .

6 Conclusion

6.1 Thesis Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.3 FutureW ork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Bibliography

A Solar X-ray Monitor (SXM) Thermal Test Plan

A.1 Introduction . . . . . . . . . . . . . . . . . . . . .

A.2 Engineering Model SXM Hardware Pictures . . .

A.3 Test Objectives and Success Criteria . . . . . . .

A.4 Personnel and Schedule . . . . . . . . . . . . . . .

A.4.1 Personnel . . . . . . . . . . . . . . . . . .

A.4.2 Schedule . . . . . . . . . . . . . . . . . . .

A.5 Test Program . . . . . . . . . . . . . . . . . . . .

A.5.1 Test Description . . . . . . . . . . . . . .

A.5.2 Test Configuration . . . . . . . . . . . . .

A.5.3 Materials . . . . . . . . . . . . . . . . . .

237

. . . . . . . . . . . . . . . 239

. . . . . . . . . . . . . . . 240

. . . . . . . . . . . ... . . 242

. . . . . . . . . . . . . . . 243

. . . . . . . . . . . . . . . 243

. . . . . . . . . . . . . . . 244

. . . . . . . . . . . . . . . 245

. . . . . . . . . . . . . . . 245

. . . . . . . . . . . . . . . 246

. . . . . . . . . . . . . . . 246

10

186

188

192

196

207

208

211

211

212

217

217

219

222

225



A.5.4 Facility Requirements . . .

A.5.5 Instrumentation . . . . . .

A.5.6 Data Requirement .

Thermal Model Predictions . . .

Red/Yellow Limits . . . . . . . .

Test Procedure . . . . . . . . . .

Documentation . . . . . . . . . .

Safety . . . . . . . . . . . . . . .

A.10.1 Handling of SXM.....

A.10.2 General Safety Practices

A.10.3 Emergency Procedure .

B Solar X-ray Monitor (SXM) Thermal Test Data,

C Solar X-ray Monitor (SXM) Thermal Model Formulation

C.1 Lumped Parameter Formulation .........................

C.2 Conduction ....... ....................................

C .3 R adiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C.4 Thermoelectric Cooler (TEC) .........................

C.5 Model Fidelity and Important Assumptions .................

11

A.6

A.7

A.8

A.9

A.10

261

265

265

267

269

270

272

. . . . . . . 247

. . . . . . . 248

. . . . . . . 252

. . . . . . . 253

. . . . . . . 254

. . . . . . . 255

. . . . . . . 258

. . . . . . . 260

. . . . . . . 260

. . . . . . . 260

. . . . . . . 260



12



List of Figures

1-1 Spacecraft thermal environment . . . . . . . . . . . . . . . . . . . . . . .

1-2 Model development process for complex system . . . . . . . . . . . . . .

1-3 Dry mass distribution of an average earth-orbiting spacecraft . . . . . . .

1-4 TIRS instrument radiator . . . . . . . . . . . . . . . . . . . . . . . . . .

1-5 Comparison of flight data to temperature predictions for two spacecraft

1-6 Comparison of flight data to model predictions for seven GSFC missions

1-7 ISS Heat Rejection System radiator . . . . . . . . . . . . . . . . . . . . .

1-8 UQ toward validating system performance with respect to QoI . . . . . .

1-9 General global sensitivity analysis process . . . . . . . . . . . . . . . . .

1-10 Comparison of model-based DOE methods . . . . . . . . . . . . . . . . .

1-11 Thesis roadm ap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2-1 BMV methodology overview . . . . . . . . . . . . . . . . . . . . . . . . .

2-2 Mapping of physical problem, conceptual model, and simulation model

2-3 Notional variances of parameter uncertainty distribution . . . . . . . . .

2-4 BMV experimental goal setting . . . . . . . . . . . . . . . . . . . . . . .

3-1

3-2

3-3

3-4

3-5

3-6

28

30

33

35

39

40

43

. . 48

51

56

. . 68

70

72

74

78

Physical problem for radiator case study . . . . . . . . . .

Conceptual model for radiator case study . . . . . . . . . .

Notional uniform distribution . . . . . . . . . . . . . . . .

Preliminary uncertainty analysis results for radiator . . . .

Local sensitivity analysis for isothermal radiator . . . . . .

Preliminary global sensitivity analysis results for radiator .

13

. . 4 . . . . . . . 91

. . . . . . . . . . 91

. . . . . . . . . . 93

. . . . . . . . . . 95

. . . . . . . . . . 96

. . . . . . . . . . 97



3-7 Experimental utility, U(d), contour plot of possible experiments . . . . . . . 101

3-8 High fidelity Thermal Desktop radiator model . . . . . . . . . . . . . . . . . 102

3-9 Thermal Desktop model solution for parameter inference experiment . . . . . 103

3-10 Model calibration results for radiator coating emissivity . . . . . . . . . . . . 104

3-11 Contour plot of the joint distribution of # and e . . . . . . . . . . . . . . . . 105

3-12 Uncertainty propagation results for radiator; updated coating emissivity . . . 107

3-13 Model discrepancy distributions from model validation experiment . . . . . . 110

3-14 Uncertainty analysis results following model validation experiment . . . . . . 111

3-15 Sensitivity analysis of heat flux, q, for radiator . . . . . . . . . . . . . . . . . 114

3-16 Thermal Desktop results for thermal balance test . . . . . . . . . . . . . . . 118

3-17 Model predictions of radiator temperature versus heat load . . . . . . . . . . 119

3-18 Timeline of BMV and conventional validation process . . . . . . . . . . . . . 122

3-19 Illustration of BMV on general system over project lifecycle . . . . . . . . . 123

4-1 Spectrometer design overview . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4-2 SXM design overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4-3 Isometric and side views of REXIS instrument on OSIRIS-REx . . . . . . . . 129

4-4 Solar distance versus mission time for entire 7-year mission . . . . . . . . . . 129

4-5 Temperatures of Bennu plotted versus longitude and latitude . . . . . . . . . 131

4-6 Amptek AXR SDD package . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5-1 Nominal thermal predictions for SXM . . . . . . . . . . . . . . . . . . . . . . 144

5-2 Joint cumulative distribution function for Tdd and TO-REX . . . . . . . . . . . 146

5-3 Histograms and CDFs of T,8  conditioned on TO-REX . . . . . . . . . . - . 148

5-4 Probability of satisfying SXM requirements versus TO-REx . . . . . . . . . . 149

5-5 Main effects global parameter sensitivities of SXM model . . . . . . . . . . . 151

5-6 Convergence plot for experimental utility, U(d) . . . . . . . . . . . . . . . . 158

5-7 Histogram of experimental utilities and scatter plots of utilities . . . . . . . . 160

5-8 Heatmap of experimental utility for TO-REx versus VTEC . . . . . . . . . . 161

5-9 SXM sensor correlation coefficients . . . . . . . . . . . . . . . . . . . . . . . 163

5-10 Grid of all SXM thermal test phases . . . . . . . . . . . . . . . . . . . . . . 165

14



5-11

5-12

5-13

5-14

5-15

5-16

T.9d versus VTEC various interface temperatures . . . . . . . . . . . . . .

Tqddversus iTEC for various interface temperatures . . . . . . . . . . . . .

Comparison of Amptek performance estimates with SXM TEC data . . .

Tsdd versus TEC power dissipation for various interface temperatures

Temperature difference between the SDD housing and SXM interface

Temperature difference between the SDD housing and the SXM housing.

5-17 Surface fit for SDD temperature for various VTEC and Th . . . . .

5-18 Surface fit for the TEC current draw for various VTEC and Th . .

5-19 Model calibration process overview . . . . . . . . . . . . . . . . .

5-20 Notional prior or posterior predictive check . . . . . . . . . . . . .

5-21 Prior predictive check for test phase T36; Gh . . . . . . . . . . . .

5-22 Prior predictive check for test phase T36; Gh and G,,b . . . . . . .

5-23 Bottom view of SXM housing . . . . . . . . . . . . . . . . . . . .

5-24 Prior predictive check for test phase T36; Gh and G,,b relaxed

5-25 Prior predictive check for test phase T36; Gh, G,,b relaxed, Gb

5-26 Plot of adaptive MCMC chain pushing up against the upper limit

5-27

5-28

5-29

of Gh.

Intermediate posterior histograms and scatterplots for calibration parameters

Plot of adaptive MCMC chain showing good mixing after initial burn-in. . .

Final posterior histograms and scatterplots for calibration parameters . . . .

5-30 Posterior predictive check for test phase T36

5-31

5-32

5-33

5-34

5-35

5-36

5-37

5-38

Posterior predictive check for all 43 test phases . . . . . . . . . . . . .

Comparison of GP training points and predictions . . . . . . . . . . .

GP model section for bracket model discrepancy . . . . . . . . . . . .

GP model section for SDD housing model discrepancy . . . . . . . . .

SDD discrepancy samples and histogram . . . . . . . . . . . . . . . .

Posterior predictive check for test phase T36, both with/without 6(x)

Probability of satisfying SXM requirements versus TO-REX . . . . . . .

Illustration of BMV on REXIS SXM over project lifecycle . . . . . .

A-1 SXM structure and component overview . . . . . . . . . . . . .

15

166

167

168

169

170

171

175

175

176

177

180

182

184

185

187

191

192

193

194

. . . . 195

. . . . 196

. . . . 200

. . . . 202

. . . . 203

. . . . 204

. . . . 206

- ... 210

.... 216

239



A-2 Top view of SXM interface plate ................

A-3 SXM structure showing RTD on SDD housing . . . . . . . .

A-4 SXM structure with all SXM RTDs . . . . . . . . . . . . . .

A-5 Final view of SXM test article with MLI blanket . . . . . . .

A-6 SXM test grid ..........................

A-7 SSL thermal vacuum chamber ....................

A-8 Notional SXM thermal test electronics/control configuration

A-9 SXM RTD placement ......................

A-10 Model predictions for the mission Cruise Phase cold case . .

A-11 Model predictions for the mission operational hot case . . .

C-1

C-2

C-3

C-4

C-5

C-6

C-7

. . . . . . . . 240

. . . . . . . . 241

. . . . . . . . 241

. . . . . . . . 242

. . . . . . . . 245

. . . . . . . . 248

. . . . .. . . . 249

. . . . . . . . 250

. . . . . . . . 253

. . . . . . . . 254

Lumped parameter concept . . . . . . . . . . . . . . . .

ID mesh with uniform discretization . . . . . . . . . . .

SDD temperature versus voltage for SXM TEC . . . . .

SDD temperature versus current for SXM TEC . . . . .

Applied voltage versus current draw for SXM TEC . . .

SXM node assignments for the lumped parameter model

Connectivity matrix for SXM model . . . . . . . . . . . .

266

268

270

271

272

273

274

275

278

C-8 Notional SXM MLI heat flow diagrams of the MLI outer cover

C-9 Examination of the absorbed heat through layers of SXM MLI

16



List of Tables

1.1 Spacecraft thermal control component examples . . . . . . . . . . . . . . . . 26

1.2 Summary of flight thermal statistical data . . . . . . . . . . . . . . . . . . . 38

1.3 Nominal values for sample radiator calculation . ... . . . . . . . . . . . . . . 42

1.4 Examples of environmental test condition guidance . . . . . . . . . . . . . . 59

1.5 Comparison of state of the art and conventional methods . . . . . . . . . . . 65

2.1 Observability for parameter inference experiment . . . . . . . . . . . . . . . 83

3.1 Nominal parameter values for sample radiator problem thermal model . . . . 92

3.2 Initial parameter uncertainty characterization . . . . . . . . . . . . . . . . . 93

3.3 Experimental conditions for model validation experiment . . . . . . . . . . . 109

3.4 Summary of uncertainty analysis results . . . . . . . . . . . . . . . . . . . . 112

3.5 Initial model parameters for conventional analysis of radiator . . . . . . . . . 116

3.6 Final parameters for conventional analysis of the radiator . . . . . . . . . . . 120

4.1 Summary of REXIS thermal analysis cases . . . . . . . . . . . . . . . . . . . 132

4.2 SXM steady state component temperature limits . . . . . . . . . . . . . . . . 133

5.1 Temperature limits for validation requirements . . . . . . . . . . . . . . . . . 138

5.2 SXM model nominal parameter values . . . . . . . . . . . . . . . . . . . . . 140

5.3 SXM model parameter prior uncertainty distributions . . . . . . . . . . . . . 142

5.4 Thermal conductance design guidelines . . . . . . . . . . . . . . . . . . . . . 143

5.5 Table of SXM parameter inference experimental conditions . . . . . . . . . . 155

5.6 Calibration parameter prior uncertainty distributions for MCMC . . . . . . . 188

17



5.7 GP model hyperparameter regressed values . . . . . . . .

A.1

A.2

A.3

A.4

A.5

SXM component temperature limits . . . . . . . . . . . .

Personnel schedule for monitoring test chamber . . . . .

List of RTDs for thermal test . . . . . . . . . . . . . . .

SXM survival temperature limits . . . . . ... . . . . . .

SXM operational temperature limits . . . . . . . . . . .

. . . . . . 199

. . . . . . 243

. . . . . . 244

. . . . . . 251

. . . . . . 255

. . . . . . 255

B.1 Stabilized RTD readings for test phases T1 through T43

B.2 Temperature of SDD for test phases T1 through T43 . .

C.1 Parameter values for SXM MLI sensitivity analysis . . .

262

263

276

18



Glossary

aleatory uncertainty: model uncertainty due to intrinsic randomness [55]

complex system: a system with global emergent dynamics resulting from its many interact-

ing elements [18]

epistemic uncertainty: model uncertainty due to lack of knowledge [55]

model calibration: the use of experimental observations of a physical system to learn about

the parameters of the model [26, 27]

model correlation: the process where one gains modeling insight by observing differences in

comparable quantities between model and test [26, 27]

model inadequacy: the inherent inability of the model to reproduce reality [60]

model validation: process of confirming a model is an adequate representation of the physical

system and is capable of predicting the systems behavior accurately with respect to the require-

ments within the domain of the intended application of the model [20, 21]

model verification: process of ensuring the model implementation represents the conceptual

description of the model and the model's solution [20, 21]

parameter: a quantity that determines the characteristics of a model, including external inputs

to the model that are not contained in the system model itself

sensitivity analysis: the determination of how a model's parametric uncertainties contribute

to its output uncertainty [43]
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simulation model: mathematical representation of a conceptualized model of the real system

through which model parameters and operations yield predictions for the physical response of the

system

thermal balance test: dedicated test phases simulating flight conditions to gather steady state

temperature predictions to verify that the thermal control system meets requirements and correlate

thermal models [4, 22, 24]

thermal system: system responsible for maintaining all system component temperatures within

allowable limits for all modes of operation over the entire domain of relevant mission environments

[4, 5]

thermal vacuum test: performance verification of spacecraft components through functional

testing during a number of hot and cold cycles at prescribed test levels in vacuum [4, 22, 24]

uncertainty analysis: the determination of a model's output uncertainty due to its uncertain

parameters and its inadequacy [41]

uncertainty quantification: the quantitative characterization and reduction of uncertainty, in-

cluding forward uncertainty propagation (forward problem) and model calibration (inverse problem)

[17]
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Nomenclature

Mathematical Definitions:

E[.] = expectation

Q = Quantities of Interest (QoI)

R = correlation coefficient

SLj = local sensitivity for jth parameter

Si = main effect global sensitivity for Jh parameter

STj = total effect global sensitivity for jth parameter

U(.) = utility

V[-] = variance

d = experimental conditions

p(.) = probability density

x = model parameters

y = model output

z = experimental data/observations

7 = calibration parameters

6(.) = model discrepancy

= true physical process

= simulation model mapping parameters to output

6 = experimental parameters of interest

A = Gaussian Process characteristic length

p = mean value

- = standard deviation

-o = Gaussian Process output variance

Physical Definitions:

A = surface area

C = heat capacity

G = conductance
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Kp = control gain

Q = heat load

R = electrical resistance

Rt = thermal resistance

T = temperature

V = voltage

C= specific heat

e = process error

i = current

k = conductivity

m =mass

q = heat flux

t = time

a = absorptivity

= emissivity

C* = multi-layer insulation (MLI) blanket effective emissivity

em = observation error

0 = incidence angle

p = density

o- = Stefan-Boltzmann constant

08 = solar flux
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Chapter 1

Introduction

This chapter provides introductory material for this research. Section 1.1 is a thesis primer,

Section 1.2 provides background information, and Section 1.3 explains the motivation for

the work. Section 1.4 reviews the current relevant literature in the area of model validation,

and Section 1.5 shows the thesis objectives for this research. Finally, the thesis roadmap is

given in Section 1.6.

1.1 Thesis Primer

The scope of space-based missions is significantly driven by cost. The cost of a particular

mission is highly correlated to its resource consumption (e.g., mass or volume). Further-

more, resource-related costs are incurred both on the system itself and the launch vehicle.

For example, the NASA and Air Force Cost Model (NAFCOM) [1] is a parametric cost esti-

mation model based on historical data from previous space projects. In NAFCOM, mass is a

significant cost driver in the subsystem-level parametric equations. Massive and/or volumi-

nous spacecraft require large, expensive rockets to reach orbit. Launch vehicle costs persist

as a significant contributor to overall mission cost. Despite the promise of next-generation

launch vehicles, today we are limited to costs ranging from $2,000 to $10,000 per pound to

low-Earth orbit [2, 3]. Process costs (e.g., system analyses, technology development, and

verification and validation) are also highly correlated to mission costs. The time and orga-

nizational resources needed to develop and operate a system comprise a- significant portion
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of overall mission cost. Because simulation model predictions are used to allocate system

resources and develop a system over the entire project lifecycle, it is important to achieve

high confidence in spacecraft simulation models as early as possible. An improvement to the

model validation process means not only improving the form of the system post-validation

but the processes associated with model validation itself.

In spacecraft design, thermal control systems are developed throughout the project life-

cycle and can significantly impact spacecraft form-related and process-related cost. This

research focuses on improving the model validation process for spacecraft thermal systems.

Thermal systems are primarily responsible for maintaining all system component tempera-

tures within allowable limits for all modes of operation over the entire domain of relevant

mission environments [4, 5]. Thermal models are used to predict performance (usually tem-

peratures and heat flows) of the thermal system during flight. Based on these predictions,

system resources, including power, volume, and mass, are allocated to satisfy requirements.

This research introduces a Bayesian-based Model Validation (BMV) methodology to

improve the model validation process for spacecraft thermal systems. BMV combines the

methodologies from the fields of Uncertainty Quantification (UQ) and Design of Experiments

(DOE) to validate thermal models. The BMV methodology was developed with the long

term goal of improving the accuracy of on-orbit predictions, making the model validation

process more rigorous and systematic in addressing model uncertainties, and decreasing the

resources required to meet thermal system requirements. BMV is implemented in two case

studies: a passive spacecraft radiator and on the REgolith X-ray Imaging Spectrometer

(REXIS) instrument solar X-ray monitor (SXM).

1.2 Background

This section introduces background information for the validation of thermal simulation

models. First, an overview of thermal system engineering is discussed to examine typical de-

sign practices and conventions. Next, a description of thermal simulation models is provided.

Finally, the treatment of model uncertainty and simulation model validation is presented in

a general format to introduce how complex models are developed throughout the project
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lifecycle.

1.2.1 Thermal System Engineering

Thermal system engineering begins early in a project's lifecycle with preliminary design

and analysis efforts. The early stage of design is critical because it is when the design

concept develops. As the system concept matures, thermal engineers take inputs from other

disciplines (e.g., structures and avionics) to develop a preliminary design. Simple analysis

models are used to evaluate feasibility and allocate resources to the thermal system. As the

design matures, high fidelity models are developed to predict the response of the system to

its mission environments. The models are correlated with results from thermal testing to

produce the final mission temperature predictions. [4, 5]

There are two main thermal control component classifications for spacecraft: active and

passive. Active control systems regulate the thermal behavior of a component or subsystem

by monitoring its behavior and providing control when required. Passive thermal control sys-

tems regulate the physical response of the system via static design elements such as material

properties, coatings, and multi-layer insulation (MLI) blankets. Passive components cannot

be changed once on-orbit and do not adapt to system or thermal environment conditions to

provide thermal control. The selection of active and passive components is system-specific

and depends on the thermal system requirements and configuration. For example, although

passive control elements can have lower mass and cost [4], active thermal control compo-

nents can have significant analysis or system performance benefits (e.g., louvers can decrease

heater power).

Components selected for thermal control vary widely, ranging from those used to iso-

late certain components in conduction and radiation to those used to directly transfer heat

within the system. Table 1.1 illustrates the spectrum of thermal control components avail-

able to engineers when designing a thermal system. The design spectrum includes compo-

nents commonly implemented on satellites [4, 6] and emerging thermal technologies (e.g.,

electrochromics) [7]. The components in Table 1.1 are divided into the active and passive

control categories and are further subdivided by how the component is typically used within

the system: for isolation, heat transfer, or heat rejection to deep space (radiators). For
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example, a thermal strap is a passive heat transport component used to conduct heat from

a source to a sink, whereas a fluid loop is an active component that uses the fluid to transfer

heat to different parts of the system. In order to achieve a thermal design, engineers select

surface finishes and components to facilitate the desired heat transfer. At the most basic

level, thermal design consists of sizing radiators for the hottest environments and sizing

heaters for the coldest environments [8]. Radiators reject unwanted waste heat to space,

and heaters are strategically placed on components and powered by the spacecraft to warm

components that are nominally too cold. Generally, thermal systems are cold-biased because

it is physically easier and more reliable to warm than cool components.

Table 1.1: Spacecraft thermal control component examples

Isolation

Mult-layer Insulation Lmatw

Heat
Transport Bet Pie Therea Strap Ma pod

HdA Het Exchafger

Radiators
tuctral radiator &ody-inounted _______ RUN___"

1.2.2 Thermal Simulation Models

Feasibility studies and analyses begin as soon as preliminary designs are established through

the use of thermal simulation models. A simulation model is a mathematical representation

of a conceptualized model of the real system through which model parameters and operations

yield predictions for the physical response of the system. The goal of thermal models is to

estimate the solution to the general heat transfer equation, as shown in Equation (1.1):
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aT
PCp = V - k(V -T) + Q(T, t) (1.1)

where p is density, c, is specific heat, k is the conductivity tensor, Q(Tt) is the source heat

term, t is time, and T=T(xy,zt) is the spatial and temporal temperature variation. The

initial conditions and boundary conditions are needed to fully solve Equation (1.1). Model

parameters are quantities that determine the characteristics of the model, including external

inputs to the model that are not contained in the system model itself (e.g., solar flux or

thermal resistance between two components). Parameters include geometries of the system,

component connectivity, and material properties that map to the k, p, and c, terms.

Both conduction and thermal radiation are captured in Equation (1.1). The V -k(V -T)

term captures the conduction through the system. Q(Tt) is both the heat transfer within

the system and the heat transfer between the system and its environment. Components of

Q(T,t) can be categorized as shown in Equation (1.2) [9]:

Q(T, t) = Qext + Qpow + Qrad (1.2)

where Qext captures external heating, Q,, is the power dissipations of components, and Qrad

is radiation within the system. The terms Q,,, and Qrad represent physics associated with

the model itself. Radiation within the system is a function of the geometry. For example, the

view factor from one surface to another directly affects the radiation heat transfer between

the surfaces. Qext refers to the heat fluxes imposed onto the system by the space thermal

environment. Although a given space mission is exposed to a thermal environment that

yields unique external heating factors, there is a general thermal environment that applies

to most spacecraft, as shown in Figure 1-1. Heat inputs come from three major sources:

direct sunlight, radiation in the infrared spectrum from nearby planetary bodies (e.g., a

planet or an asteroid), and sunlight reflected by nearby planetary bodies (i.e., albedo). The

primary method of heat rejection for spacecraft is radiation to deep space. Often, Qext is

given by Equation (1.3):

Qext =-Qsolar + Qaib + QIR (1.3)
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where the heat fluxes are Qsoiar due to direct sunlight, QIR due to light in the infrared

spectrum from a nearby planetary body, and Qalbed, due to reflected, or albedo, light from a

nearby planetary body. Given the thermal environment, component power dissipations, and

system geometry parameters, Q(Tt) is completely specified. Once all parameters, initial

conditions, and boundary conditions are defined, the solution to Equation (1.1) for the

system can be approximated via thermal model(s).

Spacecraft
Sun

Solar Radiation

Albedo diationto
space

ared

Planetary
Body

Figure 1-1: Spacecraft thermal environment [4]. In general, there can be multiple planetary

bodies (e.g., an asteroid and a planet).

The fidelity of thermal models depends on the accuracy required of the model (derived

from the requirements) and the thermal system complexity. Fidelity of the models often

increases over the project lifecycle as design details emerge. Early in the design life cycle,

preliminary analytical models [10] and lumped parameter models [11, 12] are used to evaluate

system concepts, define thermal interfaces, and identify critical sensitivities. Preliminary

models explore the feasibility of early designs and their impact on system resources. Because

the system is immature, accounting for important model uncertainties (e.g., component

power dissipations) is critical for ensuring conservative analyses. Experience and engineering

judgment determine how the preliminary models are used and when to transition to higher

fidelity models. Higher fidelity modeling is almost exclusively performed by commercially

available software packages that offer state of the art techniques to numerically approximate

the solution to Equation (1.1) [13]. While finite element methods are sometimes used [4],
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the most commonly used commercial thermal model computer code is the finite difference

code SINDA [14]. SINDA is commonly interfaced through the NASA standard Thermal

Synthesizer System [15] or Thermal Desktop [13, 16]. Nearly all thermal models, regardless

of the model fidelity and software used, generate predictions based on the parameters and

mission environment.

1.2.3 Traditional Treatment of Model Uncertainty

Model uncertainty is uncertainty in aspects of a simulation model that results in uncertainty

in the model's predictions. Parametric uncertainties are those uncertainties associated with

not knowing the true model parameter values. Model structure uncertainties result in model

error due to limitations with how the physical processes within the system are modeled

(e.g., omitted physics, discretization of components or interfaces, or simplifying assump-

tions). Uncertainty quantification (UQ) is the quantitative characterization and reduction

of uncertainty, including forward uncertainty propagation and model calibration [17]. Com-

plete UQ requires quantification of parametric and model structure uncertainties. UQ is

critical for model validation because the accuracy of a model in predicting the behavior of a

physical system depends on the model's uncertainty.

Currently, a complete quantification of model uncertainties is typically not performed in

the development of spacecraft thermal systems. Thermal systems are considered complex

systems, which are systems with global emergent dynamics resulting from its many interact-

ing elements [18]. The model development process of a typical complex system is depicted

in Figure 1-2 [19]. A serial progression is shown, but the dashed arrows indicate that the

model development processes often occur in parallel. First, the model is built based on the

design of the real world system. Once the model is built, verification and validation ensure

that the model was built to correctly, is in accordance with its intended purpose, and can

adequately predict the real system's behavior. Once the model is finished, the remaining

model uncertainties are quantified, and then the model is put into application. In most cases,

uncertainties are not quantified upstream of a model. Instead, uncertainty margins are often

applied to model output (i.e., downstream of the model) based on design standards and

expert opinion [8] to account for unquantified parametric and model structure uncertainties.
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Although not common, uncertainties are sometimes captured upstream of the model and

are propagated through the model to the output. Even when uncertainties are captured

upstream, uncertainty quantification usually focuses on parametric model uncertainties and

does not address model structure uncertainties. The neglect of model structure uncertainties

can cause important discrepancies between the model and the physical system. A systematic

procedure for addressing model uncertainties upstream of the model is needed to improve

the development process in Figure 1-2.

Real Wold
System

Model Building - -

Model
Vernfication

Model
Validation

Model

Model 

Figure 1-2: Typical model development process for a complex system. Figure modified from
[19, Fig. 1-2].

1.2.4 Model Validation

Model "correctness" is addressed through verification and validation [20]. Model verification

is the process of ensuring that the model implementation is consistent with the model's

output and represents the conceptual description of the model. Model validation is the

process of confirming a model is an adequate representation of the physical system and is

capable of predicting the systems behavior accurately with respect to the requirements within

the domain of the intended application of the model [20, 21]. It is generally not possible to

prove a simulation code correct [21], but industry standard software packages (e.g., SINDA

and Thermal Desktop) are verified to a high confidence level before being put into use. The

verification of a specific model's implementation is primarily achieved through experience,
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expert review, and a comparison with analytical solutions [20]. Once the model is deemed a

faithful representation of what was intended, verification is complete and validation becomes

the primary focus. The focus of this research is on improving the model validation process

and quantifying the uncertainties associated with the validated model's output.

In the development of spacecraft thermal systems, rules and guidelines are in place to

verify the system design and validate the models. Guidance includes processes for thermal

model development and testing (at prototype, subsystem, and system level) for both military

programs [22, 23] and NASA Goddard programs [24, 25]. Analyses focus on worst-case

scenarios that are built for the hottest and coldest thermal environments in each mission

phase. Thermal design margins are applied directly to the worst-case temperature predictions

to account for model uncertainty. Design margins are consistent with Figure 1-2 because they

are applied downstream of the model and account for both parametric and model structure

uncertainties. For passive systems, military programs apply a recommended 17 'C margin

(which may be reduced to 11 'C after model validation) [22] and many NASA programs

must demonstrate a 5 'C margin [25] (though can be raised to 10 *C based on the specific

application [8]). For active thermal control elements, heat load margin may be used in lieu

of temperature margin.

The guiding philosophy for design verification testing is "test like you fly, and fly like

you test" [25]. Testing in an evacuated chamber with heat sources to emulate mission envi-

ronment fluxes is considered the best possible simulation of the space thermal environment.

Thermal vacuum and balance tests are commonly used experimental techniques to validate

a thermal system design and model. Thermal vacuum testing is performance verification of

spacecraft components through functional testing during a number of hot and cold cycles at

prescribed test levels. Thermal balance tests are dedicated test phases simulating flight con-

ditions to gather steady state temperature predictions to verify the thermal control system

and correlate thermal models [4, 22, 24]. From experimental data, models are calibrated and

correlated. Model calibration is the use of experimental observations of a physical system

to learn about the parameters of the model; model correlation is the process to gain model

insights by observing differences in comparable quantities between model and test [26, 27].

The final thermal system design is realized only after models are correlated to test results
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and predict that requirements are met with adequate margin. If correlated models predict

that requirements are not satisfied, additional resources can be allocated (e.g., radiators

made larger) to achieve required temperatures with margin. A design change late in the

project lifecycle due to unexpected thermal system performance during testing (e.g., power

dissipations significantly larger than expected) is expensive and can have significant schedule

impacts.

1.3 Motivation

Long term, improving the spacecraft thermal model validation process can result in a re-

duction in form-related and process-related mission costs. This section will first discuss why

the thermal system is an important component of a spacecraft's overall cost. Significant

mission costs are associated with the form of the spacecraft and processes involved in its

development. Next, evidence is presented that suggests current model validation practices

can result in overly conservative on-orbit predictions [8, 28, 29, 30, 31]. As a result of the

conservatism, thermal systems are intentionally overdesigned and consume additional mass,

volume, and power. Furthermore, model inaccuracies are seen in some systems where a

conventional model validation process did not reveal inadequacies with the model, analyses,

and/or testing. This section will conclude by introducing and answering model validation

evaluation questions to determine the effectiveness of current validation practices.

1.3.1 Mission Costs Associated with Thermal Systems

Reductions in mission costs associated with the system's resource consumption (i.e., form)

and processes required to develop the spacecraft are possible by improving the thermal model

validation process. The goal of this section is to explain the coupling between thermal

systems and mission costs. Form-related costs are discussed first, followed by a discussion of

process-related costs.

Often, thermal systems are thought to not drive the consumption of spacecraft resources

relative to other systems (e.g., structures). Consequently, resource consumption reduction

efforts (e.g., design optimization to minimize mass) tend to focus less on thermal systems
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compared to other systems. As an example of how the thermal system impacts resources at

the spacecraft level, Figure 1-3 shows the results of a study [32] that examined the composi-

tion of an average spacecraft's mass. The study found that the thermal system can comprise

approximately six percent of a spacecraft's dry mass. The study in Figure 1-3 contains data

from diverse mission types, including the Global Positioning System, communications satel-

lites, and science missions. At face value, statistics such as those shown in Figure 1-3 seem to

indicate that thermal systems are of second-order importance with respect to a spacecraft's

overall resources (in this case mass is shown but similar statistics can be shown for power

and volume). However, there can be significant physical couplings between the thermal sys-

tem and other spacecraft systems (i.e., systems are not independent). Although Figure 1-3

shows that six percent of mass is only thermal system mass, there is mass that exists in

other portions of the pie chart for thermal reasons. For example, a spacecraft bus structure

receives design inputs from thermal analysis and also serves as a primary mechanism for heat

transfer within a system. A component can be both a structural element and a significant

thermal path of a spacecraft [9]. The thermal system's impact on spacecraft resources can be

larger than six percent when considering the interconnectivity to other spacecraft systems.

Figure 1-3: Dry mass distribution of an average earth-orbiting spacecraft. Figure from [32,
Fig. 1].

Furthermore, system-specific factors such as those systems with significant thermal con-

trol challenges, those that are highly resource-constrained systems, and those that carry

large uncertainty margins due to risk aversion are not captured in Figure 1-3. Such systems
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often require more resources to achieve thermal requirements. For example, the James Webb

Space Telescope (JWST) sun shield, only a portion of the thermal system, is approximately

12 percent of the total system mass and must be deployed in the space environment because

its volume is too big to be open in the launch vehicle fairing [33]. Thermal control drives

the JWST system design. For highly resource constrained systems (e.g., small satellites or

payload instruments), small decreases in resource consumption are very beneficial because

the power, volume, and mass budgets are very restrictive. Although the thermal system may

comprise a small portion of the overall resources, design to minimize a resource on a highly

resource constrained system (e.g., volume of instrument radiator) should not be overlooked.

The REXIS instrument, discussed in Chapter 4, is an example of a resource-constrained

instrument.

The TIRS instrument on the Landsat Data Continuity Mission [34] is a recent exam-

ple of how thermal model validation can affect cost associated with resource consumption.

On TIRS, an aggressive schedule, a need to procure long-lead items early, and large heat

load uncertainties led to a risk reduction philosophy that emphasized large thermal design

margins. In particular, the TIRS thermal team devoted significant efforts to character-

izing the heat loads into the cryogenic subsystem via analysis, hand calculations, and a

complex prototype-level test'. Once the flight design was tested in thermal vacuum, better-

than-expected-performance of the cryocooler led to considerable margin on the cryocooler

radiator. Before launch, ;60% of the radiator's surface area was covered with MLI blankets

to ensure that components did not violate minimum temperature limits, as shown in Figure

1-4. The excess cryocooler radiator surface area on TIRS is not only increased mass, volume,

and heater power attributed to the thermal system, but the effect of the excess resources

propagates through to the resources used by other subsystems (e.g., the TIRS structure must

support a radiator with significantly larger mass than is needed). Reduction in the resource

consumption of thermal systems is an important component of reducing a spacecraft's overall

use of mass, power, and volume and thus, reducing form-related costs.

Although form-related mission costs are sometimes easier to quantify, process-related

costs can be just as, if not more, significant. Process cost refers to the cost associated with

'Veronica Otero, GSFC Thermal Engineering Associate Branch Head. Personal Interview. April, 2014.
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Figure 1-4: TIRS instrument radiator with multi-layer insulation blankets covering ~60%

of radiator surface area [35]

spacecraft development and operation such as technology development, system analyses,

system verification and validation, and on-orbit mission control operations. To illustrate the

significance of anticipated process-related costs for an interplanetary mission, the operations

and data analysis costs comprised approximately $175 million of the $680 million budget

of the Mars Reconnaissance Orbiter [36]-a significant portion of the overall MRO mission

budget. Model-based design and model validation play an important role in spacecraft

development and operation processes and can adversely affect missions when performed

inadequately.

For example, insufficient instrument-level thermal model validation led to high process-

related costs on the Juno mission immediately after launch. Juno was launched in 2011

and is an interplanetary mission that accomplishes its science objectives in a polar orbit

about Jupiter [37]. Soon after launch, two payload instruments began encountering warmer

temperatures than expected. A conventional model validation approach did not reveal inad-

equacies with the thermal model, analyses, thermal balance testing, and communication of

results. Extensive analyses and test efforts were made after launch to detect and mitigate
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the problem. Janis Chodas, Juno Project Manager, stated 2:

"An improved understanding of the Juno instruments' thermal interactions with the space-

craft, and better instrument thermal model validation, would have decreased the amount of

post-launch investigative work that the Juno team had to do when some instruments encoun-

tered thermal problems inflight."

The instrument problems incurred during the Juno mission are just one example of the im-

portance of model validation in the context of process costs. An improvement to the model

validation process can result in not only reducing form-related costs but also a reduction in

process-related costs, which can be just as if not more significant.

1.3.2 Evaluation of Current Thermal Model Validation

Given the high demand for mission success and resource efficiency, it is prudent to once

again review model validation practices for current systems [38]. While Section 1.2 provides

high-level information and context for the thermal model validation process, we are left with

the question: how effective are current thermal model validation practices? Since model

validation requires a comparison of the modeling world with the real world, we can evaluate

our validation processes by looking at final thermal model predictions versus actual flight

data. The following model validation evaluation questions arise:

" How close are post-validation model predictions and flight temperature data?

" Are there trends in the model predictions and/or data that suggest an opportunity to

improve the validation process?

" Are design uncertainty margins appropriately conservative? Is there a better way to

quantify and reduce the uncertainty?

" Why buck the status quo?

2Janis Chodas, Juno Mission Project Manager. Personal Interview. November, 2013.
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The comparisons of thermal model predictions and flight data lead to answers for each

question. The answer to each is shown in Section 1.3.4.

Current thermal model validation practices, relatively unchanged over several decades,

have a long history of leading to successful space missions. However, a comparison of on-orbit

temperature data and model predictions reveals limitations with the validation process. In

the late 1960-70s, initial comparisons were made between thermal model predictions, thermal

vacuum test data, and flight temperatures [30, 31]. Results showed that by correlating a

model to test results, the standard deviation to flight data reduced from 9 "C to 5.6 'C [28].

Based on these early examinations of correlated models and flight data, the temperature

margins currently in place for military programs (see Section 1.2.4) were adopted.

In 2006, Welch [28] sought to revisit the military standards [22, 23] established in the

1970s by looking at more recent programs. Thermal model predictions and on-orbit tem-

perature data from different space programs were analyzed statistically. The study includes

spacecraft from DOD programs, ESA programs, an Iridium satellite, and the NASA Ther-

mosphere Ionosphere Mesosphere Energetics and Dynamic (TIMED) mission. The results

of the study are shown in Table 1.2. The second column in the table indicates the mean

difference between the model predictions and temperature data, plus/minus two standard

deviations. The third column shows the derived thermal uncertainty margin to capture 95%

of the flight temperatures and model prediction discrepancies. The third column is derived

from the second column. DOD Programs A and B are programs from the 1980s and serve

as a basis for comparison to the more recent programs shown.

The main takeaway from Table 1.2 is that the data suggest that the thermal models

are not accurately predicting the flight temperatures for all missions. The derived thermal

uncertainty margin refers to the error bounds on the mean of the predictions required to

capture the flight temperatures. On average, the derived uncertainty margin to meet the

95% threshold is above 10 *C. For some programs, exceeding a derived uncertainty margin

of 10 *C was due to a mean that was far from zero (e.g., NASA TIMED) and for others it

was due to a large variance about a near-zero mean (e.g., DOD Program D). Between DOD

Programs A and B and more recent missions (from the late 1990s and early 2000s), there is no

obvious accuracy improvement even though modeling software tools have greatly improved
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Table 1.2: Summary of flight thermal statistical data. Table from [28, Table 4].

Model vs. Flight Derived Thermal
Flight Program Temperature Uncertainty

Difference Margin (0C)
p 2a (0C)

DOD Program A +5.9 10.0 15.9
DOD Program B +1.3 8.4 9.7
Iridium -3.3 11.9 15.2
NASA TIMED +4.3 11.2 (cold) 15.5

-13.5 15.6 (hot) 29.1
DOD Program C +6.6 9.0 15.6
DOD Program D +0.5 10.0 10.5

ESA Italsat-1 +2.2 7.8 10.0

ESA Italsat-2 -1.5 7.7 9.2
ESA SAX -3.1 6.6 9.7

over the last two decades (i.e., modeling tool capabilities are not driving the accuracy of

thermal models).

However, Table 1.2 is not a complete story. In terms of mission success, inaccurate models

are not necessarily bad. As long as temperature requirements are satisfied, the mission can

still be successful. To illustrate this point, Figure 1-5 shows the predictions versus flight

data for the NASA TIMED and DOD Program D missions from Table 1.2. Red triangles

correspond to the hot cases, and blue diamonds correspond to the cold cases. The center

red line is the point of reference marking zero discrepancy between model prediction and

flight temperature. The outer blue lines are the 11 'C model uncertainty margin for military

programs.

Figure 1-5 highlights two different explanations for the uncertainty margin thresholds in

Table 1.2. Figure 1-5a shows the NASA TIMED mission flight data near beginning of life.

In this case, the thermal model was significantly biased (i.e., the mean of the predictions

is shifted, for both the hot and cold cases in a stacked, worst-case fashion). In most cases,

cold environment data were warmer than predicted temperatures, and hot environmental

data were colder than predicted temperatures. The derived uncertainty margin to account

for the model-data discrepancy is large due to the model bias, but the direction of the bias

is conservative for both the warm and cold cases. In the NASA TIMED case, the bias for

the hot cases (the difference between the hot case data mean and the red line) is approxi-

mately 14 'C. If the 11 0C uncertainty margin was used for design, the thermal system is
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Figure 1-5: Comparison of flight data to temperature predictions for two spacecraft. Figures
from [28, Fig. 4 and Fig. 6]. Red triangles indicate hot cases, and blue diamonds indicate
cold cases.

successful in terms of meeting requirements for mission success. There are drawbacks to this

very conservative modeling approach. For example, sizing the thermal system components

(e.g., radiator) based on model simulations with stacked, worst-case conditions can lead to

excessive overdesign. The overdesigned system increases spacecraft resource consumption

(e.g., increased radiator size means more heater power usage).

DOD Program D in Figure 1-5b tells a different story than the TIMED mission. In

this case, the mean of the difference between model and flight temperatures was nearly

zero, indicating a very small thermal model bias toward either hot or cold temperatures.

While a 10.5 'C uncertainty margin was required to meet the 95% threshold in Table 1.2,

no hot or cold case predictions exceeded the temperatures limits with the 11 'C margin

applied. That is, similar to the TIMED case, all temperatures satisfy requirements if it

is assumed that requirements are at the 11 'C uncertainty bound for the hot and cold

cases. That the discrepancy between model and flight temperatures is large is evidence of

model inaccuracy. Although most missions are still successful, relatively large uncertainty

margins, which impact system resources, are needed to account for system and environmental

uncertainties.

In 2012, Karpati et al. [8] presented an investigation (original analysis by Garrison [39])

of seven recent Goddard Space Flight Center (GSFC) missions to make a similar comparison
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of flight temperatures to model predictions. For this investigation, only the daily or orbit

max cases were sampled over the course of the entire mission life. Regardless of the system

modes and environments from which the temperatures were measured, the temperature data

is compared to the worst-case scenario model predictions. Figure 1-6 shows the results of

this sampling for all seven GSFC missions, grouped by the component type: electronics,

solar arrays, actuators, and structure. In Figure 1-6, entries in quadrant I mean that the

predictions were warmer than actual flight temperatures, and entries in quadrant II mean

that the predictions were cooler than actual flight temperatures.

Actual > Prei redIcts > Actual -ElectrwOks

-Arrys

Quadrant II -A~~^a"o"
-Stucture

30~

Quadrant I

(2) (1)
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Figure 1-6: Comparison of flight data to model predictions for seven recent GSFC missions.
In (1), actuators tend to run warmer than predicted by 2 'C 1% of the time, and (2) one
solar array on one mission ran much warmer due to bad modeling practices. Figure from [8,
Fig. 3-1].

In Figure 1-6, the mean of all the data is 16 'C (i.e., the average predicted hot case

temperature was 16 'C warmer than the temperatures seen during flight). As Karpati et

al. [8] notes, in all cases the predicted temperatures were greater than observed with two

exceptions: (1) actuators tend to run warmer than predicted by 2 'C 1% of the time, and

(2) one solar array on one mission ran much warmer due to bad modeling practices. The
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study shows that the current model validation approaches result in hot case simulations that

are conservative (i.e., at or above actual flight temperatures). However, there are significant

differences (greater than the 5 *C NASA uncertainty margin) between worst-case predicted

and actual flight temperatures, suggesting that the biased models can be too conservative.

Furthermore, because the hot case model predictions are used to size components of the

thermal system, significantly biased models can lead to too much overdesign.

Also in 2012, Peabody et al. [29] investigated the effects of biasing model parameters on

thermal margin for the Global Precipitation Measurement (GPM) mission. The goal of the

study was to examine the likelihood or frequency of the worst-case hot and cold conditions

given that they are often used to size the thermal system. By systematically varying the

conservatism of the values for important biasing parameters (e.g., power dissipations, beta

angles, or optical property values), Peabody et al. [29] showed the effects of particular bi-

asing parameters on thermal margin for various components of GPM. Among the biasing

parameters, the power dissipations were found to be the largest driver of reduced thermal

margin. The driving hot component had 18 *C margin for 95% of the mission time, whereas

the stacked worst-case scenario (corresponding to 100% of the mission time) had only 7 'C

margin. The study by Peabody et al. [29] indicates that the conservative approach of analy-

ses using stacked, worst-case conditions can have a significant impact on analytical thermal

margin, and thus, significantly impact the design of a thermal system.

1.3.3 Effect of Uncertainty Margin on Thermal System Resources

Before revisiting the model validation evaluation questions, we can investigate how uncer-

tainty margins impact resource consumption (at the first-order) through example. Karpati

et al. [8] estimated that the 5 'C NASA uncertainty margin [25] to hot operational limits

will result in radiator mass growth between 0.3-0.7 kg per 100 W heat load; this radiator

growth maps to a power draw increase of 4-6 W per 100 W heat load for survival heaters.

Four radiator designs for current GSFC missions, two already built and two in preliminary

design stages, were used to generate these estimates. To demonstrate this mass increase

through simple example, consider the 5 "C NASA uncertainty margin. Assume a homoge-

nous, isothermal aluminum radiator plate with surface area, A, thickness, t, and with a full
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view to deep space (assumed 0 K). The required surface area and radiator mass are given

by Equation (1.4) and Equation (1.5), respectively:

A = Q(1.4)
a-eT4

m= pAt (1.5)

where Q is the heat rejected, a is the Stefan-Boltzmann constant, e is the radiator emissivity,

and p is the radiator density. Given the required performance characteristics, Q and T, we

can determine the corresponding surface area and mass directly. By changing the nominal

T value by the 5 *C uncertainty margin value, we can see the effect on mass in this simple

case. Table 1.3 shows the nominal values assumed in this example.

Table 1.3: Nominal values for sample radiator calculation

Parameter/Constant Nominal Value Units

Heat load, Q 100 W
Stefan-Boltzmann constant, o 5.67x10~ 8

Emissivity, e 0.90
Temperature, T 280 K

Density, p 2,700

Thickness, t 3.18x10 3  m

Using Equation (1.4), Equation (1.5), and the values in Table 1.3, the radiator surface

area is 0.319 M2 , and the radiator mass is 2.73 kg. If the temperature is reduced by 5 *C to

reflect a minimum uncertainty margin value, the radiator temperature becomes 275 K. The

inflated radiator surface area is 0.343 M2 , and the radiator mass is 2.94 kg. The radiator

mass increases by 0.21 kg. The 5 "C uncertainty margin maps to an approximate 8%

increase in radiator mass in this simple example. The increase in radiator size will

also increase heater size (i.e., system power consumption). This result is of the same order of

magnitude but at the lower end of the range reported by Karpati et al. [8]. While a 0.21 kg

increase may be a relatively small increase, an 8% increase in the mass of a much larger

thermal system component would be significant. Although the scaling may be different for
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larger systems due to geometry, material, and component interaction complexities, the 8%

comparison provides a first-order approximation.

For example, one Heat Rejection System (HRS) radiator for the International Space

Station is shown in Figure 1-7. Each HRS radiator has a mass of approximately 1,100 kg

and measures 76 ft long and 11 ft tall [40]. Drawing from the sample calculation above, an

8% increase to the HRS radiator's mass or volume is significant. The sample calculation does

show how current uncertainty margins can affect system resources; it does not capture how

complexity in the radiator design (e.g., fluid loop radiators) can further increase resource

consumption, nor does it capture second-order effects such as the structural or payload

requirements to support the larger radiator. The radiator example is a demonstration of how

the uncertainty margins required by military and NASA programs can lead to significantly

increased resource consumption. An improvement to the thermal model validation process

that allows for important system uncertainties to be systematically identified and managed

throughout the project lifecycle could allow for reduced uncertainty margins, or margins

applied in system-specific manner.

Figure 1-7: International Space Station Heat Rejection System radiator during deployment
testing [40]

1.3.4 Answering the Model Validation Evaluation Questions

Having reviewed comparisons between model predictions and recent flight data and examined

the effect of the uncertainty margin through example, we can now return to the model
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validation evaluation questions introduced at the beginning of this section:

* How close are post-validation model predictions and flight temperature data?

Based on the flight temperature data, no generalizations can be made about final ther-

mal model accuracy. Model accuracy is mission-specific and depends on the engineer-

ing practices of the organization developing the system. Welch [28] concludes that

no appreciable improvement has been made over the last three decades in our ability

to accurately predict on-orbit temperatures and recommends the continued use of the

11 *C uncertainty margin for military programs to bound 95% of all actual flight tem-

peratures. From recent NASA-based studies [8, 29], evidence indicates that worst-case

scenario predicted temperatures are often more than 10 "C different than those temper-

atures seen during flight in intermediate thermal environments or system modes. Even

though the models are often accurate to less than 10 *C, designing to the worstrcase

scenarios can lead to excessive overdesign with respect to the majority of the environ-

ments/system modes.

" Are there trends in the model predictions and/or data that suggest an opportunity to

improve the validation process?

Yes; current practices focus on building stacked, worst-case scenarios involving the

hottest and coldest environments; uncertainty margins are then applied to these worst-

case predictions. Thus, current practices can result in overly conservative model pre-

dictions, which are used to design the thermal system. A better understanding of the

system concept, uncertainties, and sensitivities earlier in the design lifecycle would

facilitate a reduction in conservatism during preliminary design.

" Are design uncertainty margins appropriately conservative? Is there a better way to

quantify and reduce the uncertainty?

Sometimes and yes; given that important uncertainties are addressed by assigning mar-

gin to model output instead of being quantified and propagated through the thermal

model, it is challenging to determine the source of the discrepancy between model pre-

dictions and flight data. For many missions, there is evidence to suggest that the

worst-case scenarios (which are used for design) have low likelihood and/or low fre-
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quency. The evidence indicates that the difference between actual flight temperatures

sampled randomly over many orbits is often more than 10 * C different than the worst-

case predictions, which suggests that the worst-case scenarios are too conservative in

some cases. By systematically identifying important model parameter uncertainties

early in the design lifecycle, and furthermore focusing model validation efforts through-

out the design lifecycle on reducing important uncertainties, we can allocate uncertainty

margin in a system-specific manner based on expected temperature variations and the

mission's risk posture.

* Why buck the status quo?

A significant improvement to the model validation process means increasing system

knowledge earlier in the design lifecycle (e.g., greater knowledge of thermal system

concept, identification of critical sensitivities, or reduced model uncertainty) and/or a

more efficient, systematic validation approach. Improved model validation can decrease

reliance on stacked, worst-case analyses and design margin which can result in system

overdesign. The validation process can be more rigorous in characterizing uncertain-

ties upstream of the model and more systematic in managing uncertainties throughout

the project lifecycle. With the driving environmental/system uncertainties quantified,

thermal margin can be allocated in a system-specific manner to address particular un-

certainties. Long term, improving the thermal model validation process can reduce

overall mission costs that are both form-related and process-related.

The bottom line is that because worst-case thermal model predictions are often more

than 10 'C different than actual temperatures from intermediate power modes and environ-

ments, designing to worst-case conditions with uncertainty margins can result in too much

conservatism (depends if the worst-case scenarios actually happen on-orbit and if it is ac-

ceptable to exceed thermal requirements during the worst-case scenarios). Although thermal

systems are typically successful, the heavy reliance on conservative analyses and uncertainty

margins can lead to overdesigned systems. An improvement to the model validation process,

under the cost/schedule constraints of a flight program, can result in thermal models that

more accurately predict flight temperatures for specific power modes and environments.
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1.4 Literature Review

This literature review will categorize the fields of uncertainty quantification (UQ) and de-

sign of experiments (DOE) into three areas: forward uncertainty propagation (UP), design

of experiments (DOE), and model calibration. Whereas UP can be seen as the forward UQ

problem, model calibration is the inverse UQ problem. The three literature review areas

comprise the simulation model validation process and are discussed in Sections 1.4.1-1.4.3.

While each area is discussed individually, none are independent: the methods of UP, DOE,

and model calibration all influence one another as part of the validation process. Each of the

following sections compares the state of the art model validation techniques with conven-

tional thermal system techniques. In this thesis, a conventional validation approach refers to

methods that are typically performed in practice to develop thermal systems. Although the

exact conventional methodologies can vary between organizations and between engineers,

the central themes of conventional validation approaches are discussed. Section 1.4.4 sum-

marizes the differences between the state of the art and the thermal convention and presents

the research gap.

1.4.1 Model Uncertainty Propagation (UP)

UP examines the effects of a model's uncertainty on its output through uncertainty and

sensitivity analyses. Uncertainty analysis (UA) is the determination of a model's output

uncertainty due to its uncertain parameters and its inadequacy [41]. Discussed later in this

section, model inadequacy refers to any model error that cannot be described by parametric

uncertainty [42]. Sensitivity analysis (SA) is the determination of how a model's parametric

uncertainties contribute to its output uncertainty [43].

Uncertainty Propagation (UP)-State of the Art

Although the process does not have to be serial, the general flow of UP in the analysis of

complex systems is outlined by Allaire [19]:

* UP goal setting
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* Model selection and documentation

* Uncertainty classification

" Uncertainty characterization

" Uncertainty analysis

* Sensitivity analysis

The relevant literature for each component of the list is reviewed below.

Common UP model development goals address identification and reduction of parameters

that most significantly create variance in the model output [19]. Quantities of Interest (QoIs)

are model output quantities that map directly to requirements of the system. As an example,

Figure 1-8 shows an UA product for a certain QoI for three different designs. Figure 1-8

demonstrates how this type of analysis could indicate the need for uncertainty reduction

efforts for a QoL. The dots in Figure 1-8 indicate the nominal performance of each design

and the brackets around the dots show the uncertainty in the QoL. Design A does not meet

requirements nominally (but could meet the requirement, given its uncertainty), Design B

meets requirements nominally but has uncertainty such that it might not meet requirements,

and Design C meets requirements, even in a worst-case scenario. There are two ways to

address the unsatisfactory performance predicted for Design B: (1) translation of the QoI

nominal performance and uncertainty bounds below the requirement or (2) reduction of the

width of the uncertainty bounds on the Qol. While (1) might entail allocation of resources to

improve the design (e.g., increase radiator size in thermal system), approach (2) could entail

experimentation to reduce important parameter uncertainties. For Design A, the nominal

design must be improved because it is not predicted to meet the requirement for the QoL. SA

could further focus research efforts to improve the variance or mean of a QoI by attributing

the undesired behavior to a particular model parameter. The nature of the problem and the

specific goals selected for UQ drive both the computational approach and the presentation

of the results [44, 45].

Model selection refers to the choice of which model(s) will be used to simulate the system

throughout the project lifecycle. Often the choice of model boils down to a trade between
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Figure 1-8: Uncertainty Quantification toward validating system performance with respect
to a particular Quantity of Interest. The dots indicate nominal performance. Figure from
[46, Fig. 1].

model fidelity and computational cost. Large scale simulation models are often difficult to

document, are often a black box for the user (i.e., a model that can only be viewed through

its inputs, outputs, and transfer characteristics), and are computationally expensive. Many

system models cannot be fully utilized for all analyses because the scale and complexity

are large. Howell [47] sought to balance computational cost with model fidelity by using

a fidelity metric that estimated how well a finite element model approximated structural

eigenvalues based on a certain mesh size. Physics-based tuning of a model's mesh size can

improve computational burden, but it is not always possible to achieve the accuracy required

of a model strictly by reducing the mesh size.

Surrogate models are a common alternative, offering an approximation to the full system

model at reduced complexity and computational costs. According to Eldred et al. [48],

surrogate models can be divided into three categories:

" Data-fit models [49]

* Reduced-order models [50, 51]

" Hierarchical models [52, 53, 54]

Hierarchical models are low fidelity models that are derived from higher fidelity models

through simplification (e.g., simplified mathematical model, relaxed convergence criteria,

coarser grid, or neglected physics). Hierarchical models are a common surrogate model

choice for complex system modeling because of the dimensionality issues associated with

48



data-fit methods and the general requirement for the governing equations to be known for

projection-based reduction methods.

There are many sources of uncertainty when modeling a physical process, but uncertain-

ties in the model itself can be organized into two areas: parametric and model structure.

While parametric uncertainty refers to the lack of knowledge of the true parameter values,

model structure uncertainties are due to model inadequacy [42]. Model inadequacy is the

model's inability to match reality with its output and includes errors caused by model fidelity,

convergence, or unmodeled physical behavior. A common convention is to classify uncer-

tainties as either epistemic or aleatory [44, 55, 56]. Kiureghian and Ditlevsen [55] examined

epistemic and aleatory uncertainties in the context of model-based design and analysis: epis-

temic uncertainty is due to lack of knowledge, and aleatory uncertainty is due to intrinsic

randomness. Although the distinction between the two classifications is not always clear,

epistemic uncertainties are reducible, whereas aleatory uncertainties are not. For example,

the uncertainty in the emissivity of a surface coating can be seen as epistemic, and the value

of dice when rolled has aleatory uncertainty. In a typical Bayesian setting, epistemic uncer-

tainties are defined probabilistically using the maximum uncertainty principle [56]. Allaire

[19] states that in practice, all uncertainties are often treated as epistemic (i.e., each model

parameter is assigned a probability distribution according to the uncertainty in its value,

and if all uncertainty were reduced, the parameter's value would be fixed at the true value).

Uncertainty characterization focuses on how the model uncertainties, both parametric

and those associated with the model structure, will be quantified. There are two general

ways to characterize parametric uncertainties: probabilistically and nonprobabilistically [57].

Convex models, a nonprobabilistic approach, align with the maximum uncertainty principle:

the worst-case parameter values are considered to build conservative performance predictions

at the bounds of operation [58]. However, information is lost in the presentation of the results

regarding the likelihood and frequency of the worst-case scenario. Probabilistic models

use distributions for each parameter that capture the expected variance and mean value.

Probabilistic models are utilized in many engineering applications because they fit well into

many uncertainty and sensitivity analysis methods and enable users to state probabilistically

if requirements will be met for the system [19, 46]. While the literature is dense for parametric
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uncertainty characterization, considerably less work addresses model inadequacy. Riley and

Grandhi [59] assert that fully addressing model inadequacy means quantifying uncertainty

between multiple models and addressing discrepancies between model predictions and the

real system. The latter is typically quantified after experimentation, though recent work by

Moser and Oliver [60] has sought to predict model inadequacy by modeling the inadequacy

itself (e.g., including a discrepancy function with a model parameter that is the suspected

source of the model inadequacy).

Uncertainty analysis is performed by propagating model uncertainties through the model

to observe the resulting uncertainty in the QoIs. The output of UA is typically the distribu-

tions of the QoIs, including mean values, variances, and histograms [45]. Various methods

exist to propagate parameter uncertainties through a model, including nonsampling-based

and sampling-based methods. Nonsampling-based techniques include mean-value methods

[61], analytic reliability methods [62], and stochastic expansion methods (e.g., polynomial

chaos [63]). For example, Gutierrez [64] used the results of local sensitivity analysis dur-

ing uncertainty analysis via a constrained optimization approach to predict the worst-case

RMS performance of a disturbance model of a reaction wheel assembly. While nonsampling-

based methods can be more computationally efficient for linear models where the model

structure is known, sampling-based methods are most commonly used for large, nonlinear

models. Model parameters are often treated as independent random variables. However,

if the parameters have known correlations, the covariance is used and propagated through

the model [65]. Sampling-based methods are a popular choice in uncertainty analysis due

to their general applicability and effectiveness [19, 44]. Monte Carlo (MC) simulations use

many samples to approximate the expected value of the model output given the model's

parameter uncertainties and inadequacy. Two popular methods for generating the samples

are random sampling and Latin Hypercube sampling (LHS) [41].

Sensitivity analysis attributes the QoI uncertainty to the uncertainty of individuals or

groups of parameters. Model parameter importance analyses generally focus on two types:

local sensitivities and global sensitivities. Local sensitivity analyses examine the change in

the response of the QoI due to a small variation in a single model parameter [66]. How-

ever, local sensitivities provide no global information regarding the effects of the parameter
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uncertainties. Global sensitivity analysis (GSA) addresses many of the limitations of local

sensitivity analysis [67]. Figure 1-9 illustrates the general GSA process. GSA apportions the

observed output variance, given by V[y], to the model parameter contributors, Xj.

V[y]

X1  X2

Model Inputs

Model Sensitivity
Analysis

S Distribution of y

Ely I

Figure 1-9: General global sensitivity analysis process. Figure modified from [67, Fig. 1].

In the context of model-based design, GSA can guide research aimed at reducing model

parameter uncertainties that significantly affect expected performance and allow engineers to

neglect model parameters that do not significantly affect a QoI. GSA can be broadly catego-

rized into two groups: regression-based methods and variance-based methods (i.e., Analysis

of Variance (ANOVA) methods) [45, 68]. Variance-based methods are most popular and are

based on a decomposition of the model into main effects and interactions [69, 70]. The goal

of most variance-based GSA is to approximate the main effect and total effect sensitivities

for a given model parameter; these sensitivity indices are well established expressions for use

in importance assessment and guiding future research [43, 67, 68, 69, 70, 71]. Saltelli and

Tarantola [71] outline procedures for prioritizing model parameters to guide future research

in cases with or without interactions (i.e., an additive model) and parameter correlations.
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Uncertainty Propagation (UP)-Thermal Convention

In industry, UP is uncommon. Instead, design margins are commonly used to account for

model uncertainties. While modeling and margin policies depend on the scope of the project

and the governing organizations, the NASA GOLD Rules [25] summarize the philosophy

invoked by most programs, including military programs. The thermal design margin policy,

per GOLD rules, is summarized below:

Rule: Thermal design shall provide adequate margin between stacked worst-case flight

predictions and component allowable flight temperature limits.

Rationale: Positive temperature margins are required to account for uncertainties in power

dissipations, environments, and thermal system parameters.

Important language in the thermal design margin rule, shown above, includes predictions,

stacked worst-case, and margin.

Predictions refer to the output of thermal models that are constructed and updated

throughout a project's lifecycle. Geometries, material properties, and component power

dissipations are all parameters that determines the model's output. The stacked worst-

case conditions refer to a convex approach to uncertainty where the focus is on the model

parameters' bounding values. For a particular mission phase hot or cold case, the most

conservative model parameters are selected so that the model's output is biased to create a

worst-case scenario. Model parameters and factors that are biased using the convex approach

include [8, 72, 73]:

" Component power dissipations

" Material optical properties

" Environmental heat loads

* Beta angles

" Critical conductances
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. MLI blanket effective emissivities

The above list is not all-inclusive, and if a critical model parameter exists that heavily

drives thermal system performance, it too is biased in similar fashion. For an example of

this biasing, consider a radiator's emissivity. Maximum emissivities, often Beginning of Life

(BOL) values, are used for cold case simulations, and minimum emissivities, often End of

Life (EOL) values, are used for hot case simulations. These assumptions ensure that the

predicted temperatures of component(s) cooled by the radiator are conservative for both

cold and hot cases.

The final critical element of the thermal design rule concerns the application of margin.

Margin is applied directly to the model output to account for uncertainties in the model

parameters and model inadequacy. Early in a project lifecycle, preliminary analyses use

larger design margins. Once the thermal models have been correlated to thermal balance test

results, design margins can be relaxed under the assumption that model uncertainty has been

reduced. Guidance from the thermal design standards and handbooks [4, 72, 73] suggests

that thermal engineers conduct sensitivity analyses and compare worst-case predictions with

nominal cases, though no specific processes are specified. Thus, the industry thermal system

convention is rooted in building very conservative models where uncertainty margins are

applied to predictions to account for parameter uncertainty and model inadequacy.

Although few published references could be found on the topic, model uncertainty factors

(MUFs) are often used in industry to account for model uncertainties either upstream or

downstream of the model. MUFs (and test uncertainty factors (TUFs) for thermal balance

testing) are essentially factors of safety to account for predictive uncertainty or design ma-

turity (see Blair et al. [74] for example of MUFs on structural dynamic modes). MUFs are

typically larger at the beginning of the life lifecycle and reduced over time. The application

of MUFs directly to model parameter(s) relies heavily on experience, and if applied to the

model output, MUFs are analogous to design margin. While recent work has looked at

characterizing and quantifying all parametric uncertainty in spacecraft thermal models [75],

the state of the art UP techniques have not been extended to a full system thermal model

nor the model validation process.
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Limitations

In general, UP is uncommon in the analysis of spacecraft thermal systems. Instead of rig-

orously addressing model uncertainty upstream of the model, uncertainties are addressed

downstream and margin is applied directly to the model output. Historically, the conven-

tional approach has been successful, but there is evidence of occasional model inaccuracy and

overdesign for some systems. Consideration is rarely given to the likelihood or frequency of

all these parameters actually occurring simultaneously during the mission [29]. Furthermore,

it is not always clear which parameter values yield worst-case conditions. State of the art

UP techniques can improve upon current thermal practices by:

" Probabilistically characterizing model parameter uncertainties and propagating uncer-

tainties through the model

" Predicting the expected temperature uncertainty and variability

* Identification of true worst-case thermal scenarios

" Creating a general procedure to rigorously determine the importance of model parame-

ters and prioritizing future research (e.g., experimentation) based on global sensitivity

analysis

" Quantifying model inadequacy and creating basis for system-specific uncertainty mar-

gins consistent with the level of QoI uncertainty and mission risk posture

1.4.2 Design of Experiments (DOE)

Testing is a fundamental part of the model validation process. It is through experiments

that the model is compared directly to a real system. This comparison reveals important

information, such as the need to adjust model parameters/structure or the ability of the

system to meet requirements. Design of Experiments (DOE) is the process of selecting

experiments to obtain relevant information and test hypotheses. The following section will

discuss classical DOE methods and more recent model-based DOE work, which focuses on

Optimal Experimental Design (OED) approaches. Next, the conventional thermal system
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experimental design is discussed in light of the state of the art OED approaches to identify

the research gap.

Design of Experiments (DOE)-State of the Art

DOE is a comprehensive field encompassing the choice of experimental hardware, when and

where to measure, measurement accuracy, and experimental conditions [76]. While DOE

has origins dating back hundreds of years ago, the seminal work by Ronald Fisher [77, 78]

effectively established the field. Over the last several decades, classical DOE methods have

developed into the most popular approach to experimentation and should adhere to four

principles [79]:

" Randomization: minimize the effect of all potential biases in the experiment

" Replication: repeat an entire experiment under the same conditions and procedures

" Blocking: isolate the effect of a particular unwanted input

" Orthogonality: contrast the effects of uncorrelated inputs

Popular classical DOE methods include full factorial and central composite designs [80]. Hu

[79] comments that classical DOE methods generally use predefined experimental designs and

empirical models based on the data. There is no unifying strategy to design experiments in

the classical approach [81]. Taguchi methods offer an alternative methodology to classical

DOE and are effective at designing an experiment around a single characteristic in the

presence of "noise parameters" to identify main effects [82]. For a complete treatment of

classical DOE in a general context, please see Montgomery [81].

Model-based DOE uses the model to design experiments customized to the specific sys-

tem. There are two types of model-based methods, hereafter referred to as Optimal Exper-

imental Design (OED) and Optimal Bayesian Experimental Design (OBED). Figure 1-10

summarizes how both OED and OBED fit into the larger decision theory framework for

DOE. The important elements of Figure 1-10 are discussed below for both OED and OBED.

The takeaway is that OED does not utilize prior parameter information, and OBED is a

more general process that states outcomes probabilistically.
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Optimal Only use the Deterministic Skipped Fisher Utility
Designs model optimization Information
Safesian Models and Optimization Simulate Bayesian statistics Utilltyand
Designs Uncertainty under Uncertainty Datasets Shannon Information Risk metric

Figure 1-10: Comparison of model-based DOE methods. Figure from [79, Fig. 5-1].

OED is a commonly applied model-based experimental design method. OED does not

utilize prior parameter information. Experimental design solutions are written as functionals

of the Fisher information matrix [83], stated in terms of alphabetic optimality conditions [76].

The solutions are not dependent on the expected results of an experiment. Thus, the Collect

Data step from Figure 1-10, which refers to the expected data collected from a particular

experiment, is skipped, and the Design of Experiments step is a deterministic optimization

problem. While OED improves on classical DOE by utilizing the system simulation model,

OBED is needed to fully address model parameter uncertainties. Furthermore, OBED meth-

ods can be used for large systems with black box, nonlinear models to accurately calculate

expected utilities of experiments. For more information on OED methods, see Atkinson and

Doney [84].

Whereas in OED the experimental utility was measured by the Fisher information matrix,

the utility function selection in OBED depends on the goals of the experiment. Common

OBED experimental goals include [83, 85, 86]:

" Model parameter inference

" Generation of accurate model predictions

" Model discrimination

In the context of simulation model validation, model parameter inference is an important

goal for calibrating models from experimental data [42].

OBED utility is formulated in a Bayesian setting where inferences are made from noisy, in-

direct, and incomplete data [83]. Given the prior knowledge of model parameter uncertainty,
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the results of an experiment, and the likelihood of observing the result, Bayes' Theorem indi-

cates the change in the state of knowledge of the model parameters. In this Bayesian setting,

Lindley [87] suggested measuring an experiment's utility based on the expected result of an

experiment, the updated model parameter knowledge, and a suitable utility function. For

parameter inference, a common choice of utility function is the Kullback-Leibler (KL) diver-

gence, a measure of relative entropy [83, 85, 88, 89]. The KL divergence is analogous, but

not equal to, differential entropy and is a scalar value indicating the difference between two

distributions [79]. Once the experimental utility measure is in place, the expected utility

must be optimized over the design space of experimental conditions.

Hu [79] asserts that often organizations lack a rigorous treatment of uncertainty in DOE:

test cases are designed to best-case, worst-case, or baseline scenarios. The thermal system

convention for DOE is consistent with both Hu's assertion and classical DOE, where test

cases are built around worst-case scenarios expected on-orbit.

Design of Experiments (DOE)-Thermal Convention

In practice, thermal simulation models are validated through thermal balance testing. The

General Environments Verification Specification (GEVS) [24] and MIL-STD-1540 [23] are

standards that govern the DOE for space-based thermal systems for NASA and military

programs, respectively. While MIL-STD-1540 is a general requirements document, MIL-

HDBK-340 (MIL340) [22] are guidelines that supplement the requirements and provide more

instruction regarding practices of thermal balance testing. NASA programs [90, 91, 92] and

military programs, such as those studied by Welch [28], must rigorously adhere to their

respective standards to demonstrate validated thermal models. Furthermore, other programs

that are not held to either standard, such as university space systems [93, 94], typically adhere

to the same thermal model validation testing philosophy. Thus, the standards of GEVS

and MIL-STD-1540/MIL-HDBK-340 represent the thermal model validation test convention

philosophy for spacecraft thermal systems.

Thermal balance testing is typically performed to validate the system level model. Prototype-

level thermal tests are recommended in situations when analysis uncertainty is large or for

mission critical components (e.g., thermally-induced structural distortions of a structure)
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[22]. The following describes the minimum requirement and objective for system level ther-

mal balance, per GEVS and MIL340:

Minimum Requirement: At minimum, two test conditions shall be imposed: one at

the mission hot case and one at the mission cold case. For NASA programs, GEVS requires

one additional case selected by the thermal engineer.

Primary Objective: Validate the thermal model so that it can be used to predict tested

and untested conditions spanning the entire domain of environmental conditions that the

system will experience on-orbit.

At minimum, thermal balance testing for military programs and NASA programs requires

two and three cases, respectively. MIL340 further suggests that if practical, additional

tests including a transient and another mid-point mission case are useful for better model

validation. In summary, any spacecraft or space-based system required to conform to GEVS

or the instruction of MIL340 must perform pre-defined thermal tests to validate the thermal

models.

GEVS and MIL340 further define not only the test cases, but also test levels and envi-

ronmental conditions that should be applied to create the conservative hot/cold worst-case

environments. Furthermore, each standard specifies a recommended thermal stabilization

criteria for thermal balance. Since the actual space environment is not precisely reproducible

in a thermal vacuum chamber, thermal models are modified to match the test configuration.

Table 1.4 describes a few examples of how the environmental conditions are imposed. Ther-

mal radiation heat sources, such as the sun or a planet, are simulated in test by heaters

and lamps. In conduction, cold/hot plates held at a fixed, worst-case temperature are used

to simulate system interfaces to payloads. Test level and environmental conditions guid-

ance is meant to be generally applicable to any thermal balance test. While the guidelines

are consistent and intuitive for engineers to apply, there are inherent limitations to these

standards.
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Table 1.4: Examples of environmental test condition guidance from GEVS and MIL340
[22, 24]

Environmental Heat Transfer Implementation
Condition Type
Solar Input Radiation Mercury-xenon, xenon, or carbon arc source, cry-

opanels, and/or heaters

Planetary Input Radiation Skin heaters, cryopanels/heat plates, quartz lamps

Interface Conduction Cold/hot plates and isolation standoffs

Limitations

Thermal balance testing aligns well with classical DOE. Thermal balance tests are designed

around worst-case scenarios corresponding to the hottest and coldest environments expected

on-orbit. Although the goal of thermal balance testing is model validation, experiments are

not designed specifically for each system. In model-based DOE, experiments are optimally

designed to achieve the specified experimental goal. Limitations associated with thermal

system DOE that are addressed by OED/OBED include:

* Important model parameters that significantly contribute to QoI variability are ne-

glected in the design of the experiment.

" Test levels and environmental conditions are predetermined and can be suboptimal for

model validation and parameter inference.

" More experiments may be required to validate the thermal model. No explicit guidance

is given if the single thermal balance test was insufficient (ambiguous success criteria).

1.4.3 Model Calibration

Once the experiment is designed and executed, models must be calibrated to the experimental

observations. The model calibration problem is commonly referred to as the inverse problem

for UQ. The following sections review the literature for the state of the art model calibration

and the thermal system convention.
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Model Calibration-State of the Art

Over the last decade, a popular technique to calibrate thermal models to experimental data

is to formulate the calibration as a parameter optimization problem. For space-based sys-

tems, one advantage of working with the physical parameters instead of working with a

measurement model is the straight-forward transition from the experimental model to mis-

sion model [95]. Cullimore [96] formulates the thermal model calibration process as an

optimization problem where model parameters, such as conductances, optical properties,

and MLI performance, are automatically adjusted to find the best fit to experimental data.

Similar approaches to Cullimore's explore the use of genetic algorithms [97] and particle

swarm algorithms [98] in the optimization problem.

Parameter optimizations are limiting because all prior estimates of a parameter's value

are neglected in pursuit of the best set of parameters to fit the data. Often, many parameter

sets exist that satisfy the minimum requirement for the fitness function (e.g., root mean

squared error). Thus, there is ambiguity in selecting the best parameter set that physically

represents the real system. Isoperformance [99] seeks to address this issue (though introduced

in the context of system design) by identifying acceptable parameter sets and choosing from

among them the set that is optimal with respect to other criteria. However, establishing

the criteria for parameter set selection, in, the context of model calibration, is challenging

because it is not always clear what the criteria should be. For example, if the parameter sets

contain values outside of the parameter bounds, it is unclear how to establish the selection

criteria-are the parameter values correct, even though they are outside of the expected

range, or are the out-of-bounds values evidence of model inadequacy? Masterson [100]

implemented a model updating methodology based upon isoperformance to select parameter

values from sets of parameters that yield the same hardware performance. While parameter

optimizations can be effective for parametric uncertainties, they neglect model inadequacy

during the calibration process.

The development of Bayesian calibration techniques started in the 1980s and gained

popularity for model validation throughout the 1990s. These calibration techniques rely upon

Bayesian inference, a technique that exploits Bayes' Theorem, to update the distribution
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of a random variable in light of evidence. Romanowicz et al. [101] proposed a Bayesian

calibration approach that accounts for parametric uncertainties called Generalized Likelihood

Uncertainty Estimation (GLUE). In GLUE, Monte Carlo (MC) sampling of input prior

distributions are weighted by a likelihood function to produce estimates of the posterior

predictive distribution. Similar approaches in the literature focus on finding best fit model

parameters primarily associated with parametric uncertainties [102, 103]. Cox et al. [104]

introduced a surrogate model interpolator in a similar fashion to improve computation time.

Despite these advances, model inadequacy was not captured in the model calibration process.

The fundamental limitation of this strategy is that model parameters are calibrated to match

the experimental data instead of capturing the true physics of the real system.

The seminal paper in the Bayesian calibration of models is by Kennedy and O'Hagan

[42]. The "Kennedy and O-Hagan approach" (K-O approach) uses a general Bayesian model

calibration framework that allows for parameter and model uncertainties. The K-O approach:

" Treats the model as a black box (i.e., no exploitation of model structure).

" Identifies model parameters as either known control parameters or calibration param-

eters whose distributions are to be updated.

" Accounts for model inadequacy independent of the parametric uncertainties and defines

inadequacy as the difference between the true process and the modeled process.

" Includes observation error to capture the uncertainties associated with an experiment

(e.g., sensor error).

The K-O approach has been used for problems in disciplines such as engineering [105, 106,

107], health sciences [108], experimental physics [109], astrophysics [110], and climate mod-

eling [111, 112]. Higdon et al. [113] applied the K-O approach to a thermal problem using a

Gaussian Process model.

Since its introduction, several notable improvements to the K-O approach have been

made. Brynjarsdottir and O'Hagan [26] sought to improve on the K-O approach by modeling

the model inadequacy, albeit simplistically (e.g., constraining the shape of the inadequacy

distribution). It was shown that without capturing model inadequacy during calibration,
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models are persistently biased. By modeling the inadequacy in simplistic ways, interpolations

within the input domain are unbiased but extrapolations are typically biased. Higdon et

al. [114] further expanded the K-O approach to high dimensional output problems. The

multivariate output is representative of systems with many QoIs and with models that are

computationally expensive. Qian and Wu [115] developed a methodology for using multiple

Gaussian process models to adjust models based on multiple experiments of different fidelity

in a Bayesian calibration setting. Bayarri et al. [116], an extension of the work by Higdon

et al. [117], generalized the K-O approach into a model validation framework. Although UP

is introduced as a supplemental tool to be used for model calibration efforts, model-based

DOE is not addressed. The Bayarri et al. [116] framework does not specify how experiments

can be designed in a system-specific manner based on UP.

Model Calibration-Thermal Convention

Despite the state of the art model calibration techniques presented above, Kennedy and

O'Hagan [42] assert that the traditional way of estimating unknown parameters is an ad

hoc search for the best fitting parameter values. The thermal system convention aligns with

this ad hoc search method. In industry, thermal model calibration is often referred to as

correlation between the test data and model predictions. In order to prepare for the thermal

balance test, the system model is modified to capture the environmental conditions and

ground support equipment in the thermal balance test. Once the thermal test has occurred,

model correlation begins (though it is often performed during later phases of testing to debug

or make test environment changes, as necessary). Gilmore [4] outlines the conventional model

correlation process followed by thermal system engineers:

1. Update the test chamber conditions, and rerun the model to update temperature and

power predictions

2. For a single test phase, compare the model predictions with test data, and first adjust

the model for large temperature discrepancies. Common adjustments to the model

include:

9 Addition of physics that were previously omitted
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* View factor geometries

" Conductances

" Optical property values

3. Correlate all temperature differences between model and test data to less than some

threshold value (e.g., t3 0C per MIL340 [22])

4. Repeat 2-3 for the remaining test phases, ensuring that changes made in each remaining

phase do not undo the correlation from a previous phase

Any unresolved discrepancies persisting after the correlation process must be completely

understood and documented. There are many examples in the literature of model correlation

for space-based thermal systems [91, 118, 119, 120] that follow the general process outlined

by Gilmore [4]. In general, industry thermal model calibration techniques do not rely on

the state of the art techniques for correlation. Instead, the ad hoc search for the best fitting

model parameters is completed with engineering experience and intuition. Once correlation

is complete, the validated flight model is used to generate updated mission temperature

predictions.

Limitations

Thermal model correlation relies heavily on engineering expertise. The model adjustments

needed for proper correlation are not obvious, particularly for complex system models. Often

adjustments to model parameters or the model structure can have the same desired effect of

reducing the discrepancy. Thus, there is ambiguity in selecting the correct model parameter

values for correlation purposes. Limitations of the thermal system model correlation process,

in light of the state of the art calibration approaches, include:

* Model parameters are tuned to the thermal balance test data instead of representing

the real system's parameters.

" Prior model parameter estimates are discarded after correlation, and no rigorous frame-

work exists to update model uncertainties following correlation.
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* Model inadequacy is. not explicitly quantified.

" Multiple test cases are considered sequentially instead of simultaneously.

" Manual correlation procedures rely heavily on engineering experience and judgment.

1.4.4 Research Gap

In practice, the state of the art methods are either rarely used or used in limited capacity.

There is no existing framework to combine the state of the art methods to validate the model

of a complex thermal system.

The preceding sections presented the literature in the fields of UQ and DOE, divided into

three areas: UP, DOE, and model calibration. These areas comprise the major elements of

model validation. The literature review summarized important techniques for both the state

of the art and those currently practiced by thermal system engineers in industry. Table 1.5

summarizes the literature review for all three areas.

The state of the art techniques for model validation shown in Table 1.5 include a proba-

bilistic characterization of uncertainty, implementation of UA, and the use of GSA to identify

important model parameters that greatly contribute to QoI uncertainty. OED/OBED is used

to design model-based parameter inference experiments suited for a particular system. Fi-

nally, the K-O approach is used to calibrate models to experimental results, quantifying

parametric uncertainties and model inadequacy.

In contrast to the state of the art techniques, the thermal system convention for model

validation shown in Table 1.5 consists of building stacked worst-case scenarios within the

model, applying margin to model output, and designing experiments to these worst-case

scenarios. Models are correlated to the experimental results through a process that is largely

based on manual model adjustments made by the engineer. State of the art techniques can be

highly automated and are consistent in their rigorous treatment of uncertainties, whereas the

conventional thermal system techniques rely heavily on engineering intuition and experience.
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Table 1.5: Comparison of state of the art methods and thermal system conventions in
Uncertainty Propagation, Design of Experiments, and Model Calibration

Discipline State of the Art Thermal Convention

Uncertainty Prop- Probabilistic uncertainty charac- Convex uncertainty characteri-
agation terization; UA and GSA zation; margin applied "down-

stream" of model

Design of Experi- OED and OBED Classical DOE
ments
Model Calibration Bayesian (K-O approach) Manual model correlation

1.5 Problem Statement, Research Goal, and Thesis

Objectives

Sections 1.2 and 1.3 provided the background and motivation for this research. The current

validation process can lead to overly conservative or inaccurate thermal models. Now we

can examine the main research topic: improving model validation for spacecraft thermal

systems.

1.5.1 Problem Statement

Given the importance of validating thermal models:

How do we improve simulation model validation for spacecraft thermal systems

to facilitate reduced resource consumption, efficient model validation processes,

and more accurate on-orbit predictions?

More specifically, can we formulate a methodology to:

" quantify the effects of thermal model uncertainty on the mission temperature predic-

tions?

" reduce important model uncertainties and validate the thermal design and model via

experiments?
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* update model parameters based on new information?

o tailor state of the art model validation methods to validate thermal system models?

1.5.2 Research Goal

The research goal for this thesis flows from Table 1.5. This research will improve the thermal

model validation process by developing a tailored methodology that combines the state of

the art validation methods of UQ and DOE. The research will rigorously and systematically

show the effects of model uncertainty on predictions, identify important model uncertain-

ties, produce system-specific, optimally designed experiments to learn more about important

model uncertainties, and update the model following experimentation to reduce model un-

certainty. The methodology will be implemented on a real thermal system (see REXIS SXM

case study in Chapter 5) to demonstrate the process-related benefits to the thermal model

validation process.

1.5.3 Scope

This thesis primarily deals with developing the Bayesian-based Model Validation (BMV)

methodology for improving the thermal model validation process. The architecture of the

thermal system designs will be considered and analyzed to some degree (for some systems,

design changes may be required to validate the thermal design and/or thermal model), but

previous design trades and design decisions are not evaluated in this thesis. Instead, the

focus will be on validating the models of the thermal systems that are already in place (i.e.,

a frozen design, unless a small design change is needed).

1.5.4 Thesis Objectives

The objective of this research is to improve the thermal model validation process by creating

a methodology to validate thermal simulation models using state of the art methods in UQ

and DOE. Specific objectives include:

1. Quantify thermal model uncertainty associated with both the parameters and model
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structure to investigate effects on thermal model predictions and identify the model

parameters that require uncertainty reduction.

2. Reduce important model parameter uncertainties using optimally designed parame-

ter inference experiments, and validate the system-level model via model validation

experiments.

3. Update thermal model parameters based on experimental data while accounting for

both model and experiment uncertainties.

4. Implement the methodology in industry-relevant case studies and demonstrate im-

provement to thermal model validation process.

As a result of the proposed methodology, the improvement to thermal model validation can

be both form-related and process-related. The primary innovation of the methodology is in

the improvement to the validation process. At the end of each case study, the process for

the research methodology will be compared to a conventional approach to highlight areas of

improvement. Improvement areas include:

* Information that is made available to the engineer through the new methodology that

was previously unavailable following a conventional approach

" Computational techniques that are more efficient or require less thermal engineering

expertise

* System-specific validation activities that might not have occurred following a conven-

tional approach (e.g., a thermal test configured to certain experimental conditions)

An improvement to the validation process can also result in system form-related savings.

Where applicable, direct comparisons will be made between the research methodology and

a conventional approach in terms of resources (e.g., mass, power, or volume) gained or lost.
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1.6 Thesis Roadmap

This thesis is organized into six chapters. The thesis roadmap structure is shown in Figure

1-11. Chapter 1 is the thesis introduction, including the background, motivation, literature

review, and thesis objectives. Chapter 2 generally describes the Bayesian-based Model Val-

idation (BMV) methodology used in this thesis. The first of two case studies is presented

in Chapter 3 where BMV and a conventional thermal validation approach are applied to a

passive spacecraft radiator. In Chapter 3, synthetic data are used in lieu of actual test data

during the validation process. The REXIS instrument solar X-ray monitor (SXM) is the

basis for the second case study. A general REXIS overview is given in Chapter 4. Chap-

ter 5 presents the SXM case study where BMV is implemented, and real experiments are

performed in a thermal vacuum chamber to validate the thermal model. Lastly, Chapter 6

concludes with a thesis summary, contributions, and future work.

Ch.1

Introduction
Case Studies

Ch.2 ------------------------

Bayesian-based Ch.3

Model Validation Passive Spacecraft
(BMV) Radiator Ch.6

Concluso
Ch.4 Ch.5

REXIS REXIS Solar
Overview X-ray Monitor

Figure 1-11: Thesis roadmap
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Chapter 2

Bayesian-based Model Validation

(BMV) Methodology

This chapter describes the Bayesian-based Model Validation (BMV) methodology developed

to improve simulation model validation for spacecraft thermal systems. The methodology

overview is shown in Figure 2-1. There are six main steps: (1) validation problem definition,

(2) uncertainty propagation (UP) and parameter prioritization, (3) experimental goal setting,

(4) design and implementation of experiments, (5) experimental model calibration and flight

model update, and (6) validation problem documentation. The main steps are discussed in

the sections below.

An important feature of the methodology is that the validation process is iterative, and

the outcome of each step informs the validation procedures for the subsequent step. For

example, a parameter inference experiment in step four can be performed to infer the value

of parameter(s) that the forward uncertainty propagation in step two identified as being

most important in creating uncertainty in the QoIs. In Figure 2-1, a system redesign is

necessary if, in the process of experimenting with the system hardware or during calibration,

it is learned that the design is architecturally flawed such that requirements cannot be met

with small design modifications. In these cases, a redesign is necessary before validation can

occur.
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2.1 Step 1: Validation Problem Definition

Validation problem definition is the first step of the BMV methodology. The components

include:

1. Enumerate requirements for validation

2. Physical problem documentation

3. Model development and documentation

The first component is enumerating the requirements relevant to validating the model. For

the thermal system, we are not concerned about the complete set of requirements for a

spacecraft but only those requirements that pertain to validating the thermal system. For

example, performance or functional requirements of the thermal system are relevant, whereas

a requirement on material selection is not relevant because the design is considered frozen

for the validation process. Understanding the requirements that the thermal system must

meet is critical because uncertainty propagation will indicate the probability of satisfying

the requirements. Acceptable designs are judged by comparing the mean and variance of the

QoIs to the requirements. In step four of BMV, the goal of potential experiments depends

on whether the QoI mean and variance are sufficient to meet the requirements.

The second component is to document the physical problem. The physical problem

includes the system and the mission environment. Design information relevant to the thermal

design is documented. Ultimately, a thermal model is created from this information so it is

important to have a complete set of the thermally relevant design information. For example,

the geometries, material properties, and surface coatings are relevant pieces of information,

but the housekeeping software information is not relevant. The mission environment is

equally important to document. Typically, the most extreme hot and cold environments

drive the system design and analysis efforts. An understanding of the mission phases during

which it is most difficult to achieve requirements is crucial to focus model validation efforts

(uncertainty analysis, discussed in step two, helps to identify the driving mission thermal

environments).
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The third component is model development and documentation. Figure 2-2 shows how

the physical problem maps to the simulation model [20]. The physical problem is how the

physical system will perform during the mission. The conceptual model is an approximation

of the physical problem and is what the engineer intends to capture with the simulation

model. For example, physics (e.g., radiation from a surface) can intentionally be omitted

from a model because it is thought to be insignificant. The simulation model approximates

the solution of the conceptual model to provide insight into the behavior of the physical

system in the mission environment. The decision of whether to include certain aspects of

the physical problem into the conceptual and physical models impacts model fidelity, and

model structure uncertainty.

Insight Approximation

Figure 2-2: Mapping of physical problem, conceptual model, and simulation model. The
conceptual model is an approximation of the physical problem and is what the engineer
intends to capture with the simulation model. The simulation model predictions provide
insight into the physical behavior of the system during the mission. Figure modified from
[20, Fig. 2].

Prior to step two of BMV, the simulation models are constructed to provide initial indica-

tions of whether requirements will be met by the design. Equation (2.1) shows the structure

of a simulation model:

y =r(x) (2.1)
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where y is the model output, x = [x1i, x 2 , ..., Xn]T is the vector of parameters, and r7 is the

model. QoIs, denoted by Q, are identified in y that map to system requirements. In the

context of this research, the QoIs are considered a subset of the model output, Q c y.

Documenting the model structure (including fidelity of rq), parameters, assumptions, and

mission environments is necessary to ensure that model is implemented appropriately and is

understood.

2.2 Step 2: Uncertainty Propagation and Parameter

Prioritization

Once the validation problem is defined, the second step in BMV is the uncertainty propa-

gation (UP) and model parameter prioritization process. In BMV, the UP process typically

consists of the following components:

" UP goal setting

" Uncertainty classification

" Uncertainty characterization

* Uncertainty analysis

" Sensitivity analysis

The UP goal is to determine if there is adequate confidence that the requirements are met

by the design, as predicted by the model. If there is insufficient confidence that a requirement

will be satisfied, a prioritized list of model parameters is generated using the results of a

global sensitivity analysis to target the parameters that are most influential in producing

unsatisfactory Qol values. Later, additional research (e.g., experimentation) is performed to

reduce the uncertainty in important parameters' distributions.

Before UP analysis begins, the uncertainty must be classified and characterized. Unless

otherwise noted, all model parameter uncertainties are characterized probabilistically in

BMV. Depending on the model parameter, information for initial parameter distributions
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comes from different sources. For example, optical property values for surface coatings can

be assigned initial distributions based on measured values or mission historical data. In

contrast, the initial distribution for the power dissipation of an electronics board might

come from analyses or developmental testing.

It is critical to ensure that the variance of the initial parameter distributions is appropri-

ately conservative. The variance of a prior uncertainty distribution should be large enough

to ensure that the true parameter value is captured, but not too large as to artificially inflate

the parameter's importance during uncertainty and global sensitivity analysis. Figure 2-3

notionally depicts two distributions for a parameter, xj. If in reality the true variance of a pa-

rameter (blue, dashed curve) is larger than the initially assumed variance (red, solid curve),

the model output is not only incorrect, but it is challenging to recover the true distribution

variance during model calibration. If there is doubt as to whether an initial parameter distri-

bution is conservative, a sensitivity analysis (manual adjustment of the uncertainty bounds)

of the uncertainty to the QoI(s) can indicate the importance of the parameter's variance. In

some cases, it may not matter that a parameter has a large initial variance because it has

little effect on the QoIs.

Assumed prior

Actual distribution

Parameter x

Figure 2-3: Notional depiction of a parameter, xj, with an assumed uncertainty distribution

(red, solid curve) whose variance is smaller than the actual distribution (blue, dashed curve).

In BMV, all models are assumed to be inadequate (i.e., having model structure errors).

If there is prior knowledge of model inadequacy, a model discrepancy term, 6(x), can be

included in the uncertainty and sensitivity analyses. For example, Equation (2.2) shows an
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-additive discrepancy function (i.e., accounted for in the model output), which accounts for

all model inadequacy:

y =(x) + (x) (2.2)

where 6 is dependent on the model parameters, x. In practice, 6(x) can be represented in

any form, though modeling 6(x) as a zero-mean Gaussian Process is common [26]. If there is

no prior estimate of a model's inadequacy, the inadequacies of the model can be quantified

and/or updated after experimentation. The final uncertainty propagation includes both

parametric and model structure uncertainty.

Uncertainty and sensitivity analysis methods are used to examine the effect of uncer-

tainty on the model output and guide future research. Uncertainty analysis (UA) indicates

the expected mean and variance of the QoI(s) due to the parameter and model structure

uncertainties. Monte Carlo (MC) simulations are one commonly used UA technique where

many samples are drawn from the parameter distributions to approximate the characteristics

of QoI distributions. To formulate MC simulations generally, the MC sample mean for an

arbitrary function h(X) is given by Equation (2.3):

N

TN = Nh h(xi) (2.3)

where hN is the MC estimator and the samples, xi, are randomly drawn from the parameter's

probability distribution, xi ~ px (x). As the number of samples, N, goes to infinity, Equation

(2.3) converges to the expectation in Equation (2.4) according to the law of large numbers:

E[h(X)] = Jh(x)px(x)dx (2.4)

For example, X could be a parameter of a thermal model and h(X) could be the thermal

model output, 77(X). The MC sample mean in Equation (2.3) approximates the mean output

value of a thermal model. Additionally, finding the variance of the thermal model evaluations,

h(xi), performed during a MC simulation will provide the expected variance of the model

output.
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Sensitivity analysis is used to attribute the majority of the variance in the QoI(s) to

the most influential parameters. Depending on the problem, sensitivity analyses consist of

both local and global sensitivities. Local sensitivities explore how small perturbations in a

parameter around a nominal or baseline parameter set affects model output (e.g., how a small

change in a thermal conductance affects a component temperature). A common expression

for the local sensitivity of a parameter to a single, scalar QoI, Q, is given by Equation (2.5):

&Q x~
SL,j = 9x d'0  (2.5)

axj Q0
where xj is the jth parameter in x and !q is the analytical gradient (i.e., slope) of Q in

the xj direction. Q0 and xj,o are the nominal QoI and parameter values, respectively. The

xhO term is included in Equation (2.5) to normalize SL,j so that different local parameter

sensitivities can be compared non-dimensionally. Local sensitivities provide no global infor-

mation regarding the effects of model uncertainties. Consequently, global sensitivity analysis

(GSA) is a commonly used method for exploring global effects on model sensitivities.

GSA methods propagate parameter uncertainties through a model to capture a prescribed

parameter's effect on the model output not just near a baseline solution but considering

many possible solutions and the influences of many uncertain parameters. Many types

of global sensitivities are used including "one-factor-at-a-time" methods (OAT) methods,

Fourier Amplitude Sensitivity Test (FAST), and regression methods [45]. Variance-based

GSA methods are used for guiding future research [70]. Variance-based methods rely on

decomposition of the model, i, into main effects and interactions. The model is decomposed

dimensionally as shown in Equation (2.6), which leads to a variance decomposition shown

in Equation (2.7) [19, 69, 70]:

n n n

i=1 i=1 .j=i+1

n n n

total V+Vij ---+Vl,2,...,n (2.7)
i=1 i=1 j=i+1
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where the V are the main effect variances and the Vij and higher order terms are the variances

due to the parameter interactions. From this variance decomposition, Equation (2.8) and

Equation (2.9) are the main effects and total global sensitivities, respectively, referred to as

the Sobol' indices [121, 122]:

S- - - V[E[Qlx-]] (2.8)
V[Q] V[Q]

_ E[V[Qx] (2.9)

where the sensitivities are expressed for a single, scalar QoI, Q. The Si's are the main

effects sensitivity indices, and the ST's are the total effects sensitivity indices. In Equation

(2.9), xj. are all the parameters except for the jth parameter. If no interactions between

parameters exist, then En V = V[Q] = Votij. In general, the sum of main effects indices

is less than or equal to one (i.e., EnU Sj < 1), and the sum of total effects indices is greater

than or equal to one (i.e., En ST > 1).

Once the global sensitivities are found, the model parameters are prioritized by selecting

those that most significantly contribute to the QoI variance. One method of prioritizing,

Saltelli and Tarantola [71] outline specific procedures for using the main and total effects

indices to select parameters to study. A limitation of Saltelli and Tarantola's [71] parameter

prioritization procedure is that it relies on the assumption that the parameter(s) uncertainty

can be completely reduced such that its value can be fixed to some point. Often, it is not

possible to completely reduce a parameter's uncertainty. Allaire and Willcox [123] developed

a variance-based sensitivity index function that prioritizes parameters based on the original

main effects sensitivity, per Equation (2.8), and the amount that a parameter's variance can

be reduced through future research. The sensitivity index function relaxes the assumption

that a parameter's value can be fixed after future research and relies on previous model

evaluations computed during the calculation of the original main effects sensitivities. The

prioritized parameters are used to focus experimentation and calibration efforts in subsequent

BMV steps.
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2.3 Step 3: Experimental Goal Setting

The framework for experimental goal setting is shown in the cloud in Figure 2-1. Based

on the results of UP and parameter prioritization, Figure 2-4 shows the decision tree for

determining the experimental goal. There are four distinct outputs of the experimental goal

setting step: (1) parameter inference experiment, (2) system-level validation experiment, (3)

small redesign, or (4) validated system-level model(s).

Experimental Goal Setting

- Uncertainty analysis
- Global sensitivity analysis (4)
- Prioritized parameter list YES YES - - - e

Aequate cofidence that ystem-level thermalalidated
requirements are met? model validated? Models

NO NO

Small YES Small redesign to satisy

redesign requirements?

(3)

NO

Experimental Goal: Experimental Goal:
Parameter Inference (2) System-level model

validation

Figure 2-4: Experimental goal setting procedure for BMV methodology

The first decision gate is whether UA indicates that all QoI distributions meet require-

ments. While nominal QoI values must meet requirements, it is also important that there is

sufficient confidence the requirement will be satisfied given the variance in the QoIs uncer-

tainty. For example, a QoI variance that meets the requirement with 99% probability could

be sufficient for a certain system. If there is not adequate confidence that the requirement is

met, the next decision gate is whether to perform a small redesign to increase the probability

of meeting requirements. A small redesign (e.g., surface coating change resulting in optical

property changes in model or a small increase in radiator size) refers to a minor change in the

thermal system design such that the system does not architecturally change, and there are

little or no changes to the thermal model structure. Whether to perform a small redesign is
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an engineering decision that must balance figures of merit such as the risk of change, impact

to spacecraft resources and development efforts, marginal utility, and cost. For example, a

change in a surface's coating could be a small change if thermally and mechanically feasible,

but a change from a heat pipe to a mechanically-pumped fluid loop is a larger change with

many system design implications at the spacecraft level.

The decision whether to implement a small redesign prior to a parameter inference ex-

periment must consider both the potential increase in system knowledge by performing the

parameter inference experiment and the cost/schedule impacts of implementing the experi-

ment. If a small redesign is not performed, a parameter inference experiment is performed

with the experimental goal of decreasing the uncertainty of an important parameter's true

value. Parameter importance has already been determined from the prioritized parameter

list in the previous BMV step. By measuring the parameter through the experiment, the pa-

rameter's uncertainty is decreased, reducing uncertainty in the QoL. In some cases, a small

redesign may no longer be necessary after the parameter inference experiment. In other

cases, a small redesign may still be necessary, but the increase in knowledge of a critical

system sensitivity can be used to better inform a design change.

If there is adequate confidence that the requirement is met, the next decision gate is to

answer whether the system-level thermal model has been validated. If the thermal model has

not been validated, the experimental goal is to validate the model at the system level. To

validate the model, the focus is demonstrating that the model is an adequate representation

of the physical system in its mission environment. Finally, if the system-level thermal model

is validated upon entering the second decision gate, no more experiments are conducted and

the BMV validation steps one through five are complete.

In BMV, there are several important characteristics of a validated model:

" A model is calibrated to system-level test results where the test phases span the domain

of its intended application of the model (i.e., the model is not used for extrapolation).

" With respect to the requirement(s), a validated model is accurate and the effects of

uncertainty are understood and acceptable.

" Model inadequacy quantified by a discrepancy term(s), 6, either within the model, 77,
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or applied to the model output as in Equation (2.2).

In many cases, it may not be possible to complete a system-level test over the entire domain of

intended application of the model. For example, there are physical limitations (e.g., thermal

vacuum chamber wall temperatures are achieved via liquid nitrogen or helium, which have

boiling points warmer than the 2.73 K deep space temperature) and cost/schedule limitations

(e.g., a single test phase for a spacecraft could require multiple days of testing and to span all

possible operational modes/environments would require many test phases) with validation

tests. In many cases, analysis can be done to show that extrapolation in the untested system

modes/environements are very small sensitivity with respect to the QoIs. An accurate model

with respect to requirements means that the predictive accuracy of the model is at least as

good as the accuracy specified by the requirement. For example, model that can predict the

temperature of a component to t3 *C is insufficient for a thermal requirement that specifies a

component be held to a temperature +0.1 'C. Finally, the model inadequacy is quantified via

a model discrepancy function using the results of the model validation experiment to account

for persisting model uncertainties (e.g., parametric or model structure uncertainties). The

model discrepancy function provides insight into the magnitude and direction of the model

error and can be used to improve the model's predictive accuracy.

2.4 Step 4: Design and Implementation of Experiments

The objective of step four is to design and implement an experiment according to the exper-

imental goal set in step three. Step four of BMV contains three components:

1. Adjust thermal model for experiment

2. Design of Experiments (DOE)

3. Experiment implementation

The first two components are often completed in parallel because aspects of the thermal

model cannot be set until the experiment is designed. For example, the experimental power
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dissipation values are a parameter of the thermal model but also can be a design condition

used to maximize the experimental utility during experimental design.

The flight thermal model is modified to capture the physics of the experimental configura-

tion. These modifications are necessary because the thermal configuration of the experiment

is different than that of the mission. For example, a radiator might see a temperature of

deep space of approximately 2.73 K during the mission, but the model should be modified to

match the temperature of the thermal vacuum chamber walls (e.g., a radiation sink of %80 K

if the walls are cooled via liquid nitrogen). Furthermore, if the experiment is performed on

only a portion of the system, the components of the system that will not be included in the

experiment must be removed from the model. The modifications to the model must also

include ground support equipment that change the heat transfer physics of the system (e.g.,

temperature sensor leads to a cold portion of the system can introduce conductive parasitic

heat loads that are not present on the flight model). Once modified, the thermal model is

used to make predictions for the system during the experiment.

Two categories of experiments are performed based on the experiment goal: (1) parameter

inference and (2) system-level thermal model validation. Parameter inference experiments

use OED/OBED techniques to design system-specific experiments that reduce uncertainty

in a critical system parameter(s). By reducing uncertainty in a critical parameter, system

knowledge increases and uncertainty in the QoIs decreases. Parameter inference experiments

are prototype-level experiments performed with hardware that is flight-like. System-level

validation experiments are used to generate data to. calibrate the model and quantify the

model discrepancy at the system level over domain of intended application of the system.

Validation testing requires the full system flight hardware.

For parameter inference experiments, Bayes' Theorem underpins all OBED techniques.

To develop OBED generally, let 0 be the parameters of interest, identified in step two of

BMV, to be updated by the experimental data. Let d be experimental design variables (i.e.,

the conditions selected to perform the experiment). Bayes' Theorem, given by Equation

(2.10), gives the change in the state of knowledge about the parameters of interest:

p(O1z, d) = p(zl9, d)p(9) (2.10)
p(zid)
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where the experiment was held at conditions, d, to obtain the experimental result/data, z.

That is, p(OIz, d) are the updated values of the parameters of interest, 6, after the experiment.

In Equation (2.10), p(O) is the prior knowledge of the parameters of interest, p(zjd) is the

experimental evidence, and p(z 1, d) is the likelihood function for observing z.

In OBED, an experiment's utility is defined to find a d that is optimal with respect to the

experimental goal. Using a decision theory approach, Lindley [87] developed an expression

for an experiment's expected utility, shown in Equation (2.11), which is the foundation for

most OBED approaches:

U(d) = u(d, z, 9)p(O z, d)p(zld)d~dz (2.11)

z e

where U(d) is the expected utility, Z is the support of z, E is the support of 9, and u(d,z,9)

is the utility function. The utility function is selected based on the experimental goal. For

parameter inference experiments, a common utility function is the Kullback-Leibler (KL) di-

vergence, a measure of relative information gain [79, 83]. Other experimental utilities include

the variance of a parameter's posterior, V[9Iz, d], and the posterior predictive variance of the

QoI(s), V[Qlz, d]. The experimental utility functions, such as the utility in Equation (2.11),

are generated by sampling the thermal model and provide a numerical value for experiments

at different thermal conditions, d. The parameter inference experiment that is feasible and

yields the highest utility is selected to reduce uncertainty in the thermal parameter(s) of

interest.

For parameter inference experiments, it is important to select z such that the parameters

of interest are highly observable in the experimental data. In general, it is not necessary

that the experimental data, QoIs, and requirements all refer to the same physical quantity.

In some cases, it may be advantageous to define a quantity or metric to measure that

improves the parameter inference because it is more observable for a given test (i.e., z is not

necessarily the measured values for Q). For example, Table 2.1 provides an example of how to

select observable quantities for a good parameter inference experiment. The first parameter

of interest is a thermal resistance, Rt, and the second parameter of interest is a specific

heat, cp (i.e., 9 = [Re, cp]T). An experiment is performed with the goal to measure both
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parameters, and there are two quantities that can be measured: a steady state temperature,

T(t = oo), and system time constant, r. The heat capacities and thermal resistance both

affect the transient response of a thermal system (and thus, the time constant), but only the

thermal resistance affects the steady state response. The selection of observable quantities,

z = [T(t = oo), r]T, is good because each parameter of interest has an independent influence

on the parameters of interest.

Table 2.1: A parameter inference experiment to measure the value of two parameters. The
first parameter is a thermal resistance, Rt, and the second parameter is a specific heat, cp.
It is possible to measure two physical quantities: a steady state temperature, T(t = oc),
and system time constant, r. A check indicates that the observable quantity depends on the
parameter of interest.

System-level thermal model validation experiments test the system over the domain of

thermal environments and modes of the mission to quantify the uncertainty in the model

predictions. Validation experiments for a system are different from the parameter infer-

ence experiments in that they necessarily occur at the system level. Validation experiments

include multiple test phases in order to: (1) demonstrate that a design will meet system

requirements and (2) generate data that allow for validation through model calibration pro-

cesses. The system-level experiment is critical because the system-level model's inadequacy

is quantified from the results. For the thermal system, system-level validation can be for-

mulated along the lines of classical DOE (i.e., following GEVS or MIL340) or OBED can be

used. As Huan and Marzouk [83] comment, an experimental goal of making accurate pre-

dictions can be satisfied by formulating the design objective around the distribution of the

model outputs conditioned on the data. Regardless of the DOE approach, the system-level

validation experiment should test the system over the entire domain of its intended mission

application so that once the model is calibrated, the flight predictions are not extrapolations

of calibrated parameters.
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Finally, the experiment is implemented to gather experimental data. Implementation

includes:

" Procurement and assembly of system

" Instrumentation of the system and test bed

* Configuration of the data acquisition software and hardware

" Personnel to monitor the experiment and perform real time analyses of results (problem

diagnosis, if necessary)

Based on the experiment design and modified thermal model predictions, the experiment is

conducted according to detailed plans that outline all actions required in each phase of the

experiment. All discrepancies during the experiment are documented and later investigated.

The output of the design and implementation of experiments step includes an adjusted model

representing the system under test and experimental data.

2.5 Step 5: Experimental Model Calibration and Flight

Model Update

In the experimental model calibration and flight model update step of BMV, experimental

results from step four are used to update the model. To calibrate a parameter, calibration

parameters, y, are identified in x to be updated in the calibration process. The calibration

parameters can include the experimental design parameters of interest, 0, from step four as

well as other parameters identified for calibration (i.e., 0 9 7 and y 9 x). The remaining

parameters in x and not in -y are the control parameters (i.e., fixed model parameters not

identified as calibration parameters) whose values are not updated by the calibration.

The general model form for the calibration and correlation follows the K-O approach

[42], shown in Equation (2.12) and Equation (2.13):

Z = '7(X + (x) + Em (2.12)
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C(x) = n(x) + 6(x)

where z are the data, q(x, -y) is the model prediction, ((x) is the true physical process, x is

the vector of all model parameters, and Em is the observation error. Although y 9 x, -y is

written explicitly in Equation (2.12) and Equation (2.13) to emphasize both the focus of the

calibration and the model's dependency on -y. The persisting model inadequacy is grouped

into the model discrepancy term, 6(x). The true physical process, C(x), refers to the actual

thermal system QoIs during the mission (e.g., actual mission component temperatures).

The model discrepancy is equal to the difference between the true physical process and the

model predictions, ((x)-q(x, -y). If the model were to perfectly predict the behavior of the

system, the model discrepancy would be zero, 6(x)=0. For this research, 6(x) is additive

(i.e., included with the model output), as shown in Equation (2.12). Alternatively, 6(x)

could be included within q (x, -y) [60].

Bayes' Theorem is utilized as the basis for updating prior parameter information. Rewrit-

ten into the calibration problem framework, Bayes' Theorem is given by Equation (2.14):

p*ylz,x) = p(z1Yx)p(Y) (2.14)
p(zlx)

where p(71z,x) is the posterior distribution for the calibration parameters, p(zI'y,x) is the

likelihood, p(y) is the prior distribution, and p(zIx) is the evidence. Using this formula-

tion, prior parameter distributions are updated based on experimental evidence through an

inferential process. For large models, computing p(-yjz,x) is typically done numerically us-

ing methods such as Markov chain Monte Carlo (MCMC) methods [116] since analytical

solutions are not available.

During calibration, it is not always clear whether a difference between z and 77(x) is

due to parametric uncertainty in x or model inadequacy in 77. Two example approaches to

determine the existence of significant model inadequacy are:

* Calibrate the parameters first without 6(x). After calibration, 6(x) is introduced to

account for the remaining model-data discrepancy. If there is no parameter set within

the bounds set by the prior parameter distributions that cause the model to match the
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data, this is evidence of significant model inadequacy.

* Define independent calibration data sets and evaluation data sets from the experiment

(i.e., set up a cross-validation problem). Calibration sets are used to calibrate y and

the evaluation sets determine how well the model predictions, 7(x, y) match the data,

z. The evaluation sets are used to quantify 6(x).

Whether to quantify 6(x) after calibration, perform cross-validation, or implement a dif-

ferent approach, the process for identifying model structural errors during calibration is an

engineering decision that depends on the nature of the specific problem. Accurately quanti-

fying the inadequacy term is important so that the calibration parameters approximate the

true physical values of the system. If model structural errors are neglected, the calibrated

parameter distributions will be biased. The SXM case study in Chapter 5 will show how

Bayesian calibration techniques can provide evidence of whether a difference between z and

q(x) is due to parametric uncertainty or model inadequacy. Furthermore, Chapter 5 will

show how the model discrepancy can be quantified to use for prediction to account for model

inadequacy.

Once the experimental model is updated, it is used to update the flight model. Because

the emphasis during calibration was on learning the true physical parameter values, the

parameter values (e.g., thermal strap conductance) are updated directly. However, model

adjustments that apply only to the experimental configuration are omitted. For example, test

temperature sensor leads that were modeled in the experiment to account for the parasitic

heat load through wires are not included in the flight model since they are not present during

the mission. Furthermore, environmental factors (e.g., thermal vacuum wall emissivity) are

not updated in the flight model since the mission thermal environment is different.

There are two possible outcomes of the experimental model calibration and flight model

update step. First, if experimental results reveal major architectural system design flaws or

model errors, redesign may be necessary if small design changes (e.g., slightly increasing a

radiator's surface area) are not sufficient to show that the design will meet requirements. In

this redesign scenario, the BMV methodology is exited to redesign the system. The second

(and preferred) outcome of the experimental model calibration and flight model update step
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is an updated flight model. The flight model contains the posterior distributions from the

model calibration process. Furthermore, if the experimental goal is system-level validation of

the model, the model's inadequacy is quantified (i.e., there is understanding of how well the

model approximates the behavior of the real system). Finally, based on the insight gained

from the experiment, small design changes can be considered, as necessary, to improve the

system performance.

2.6 Step 6: Validation Problem Documentation

Validation problem documentation is the sixth and final step of the BMV methodology.

Having completed steps one through five, the thermal model(s) is now validated. This step

has three components:

1. Documentation of efforts made during steps one through five BMV methodology

2. Documentation of updates to requirements, the physical problem, and model

3. Recommendations for small design changes

The validation problem documentation step is included to communicate what was done

during validation and how it changed the thermal design and/or models. Once steps one

through five of BMV are documented (including all actions taken and outcomes), the ele-

ments of BMV step one must be revisited. If requirements, the physical problem, or the

model have changed, the change and its effects must be well understood. For example, if

based on the validation process physics that were originally omitted from the model are now

included, the model structure and parameters for these physics must be added to the model

documentation.

Finally, based on the validated thermal model and final UP results, small design changes

may be desired. In this case, small design changes are those that require minor changes in

a design to achieve better system performance. For example, small changes include a small

increase to a radiator's size, more thermal gap filler between interfaces, or slightly more

thermal isolation between hot and cold components. These small changes, based on infor-

mation learned during the validation process, could be inexpensive from a system resource
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perspective but offer large performance benefits. Large changes due to architectural flaws

in a design result in models that cannot be validated for the current system. Thus, large

changes are outside the scope of this step and are associated with system redesign.

Documentation is any written report, spreadsheet, code, or presentation that conveys

information about the requirements, system, model, or validation process. To ensure that

detailed information is captured accurately, it is critical to document throughout the val-

idation process. Any change to a system requirement or resource parameter is typically

managed by the systems engineer and must be communicated at the systems and discipline

level. Milestone review presentations (e.g., Critical Design Review) are necessary but in-

sufficient forms of documentation of the thermal system validation process. For a typical

spacecraft thermal system, written reports are produced to document the model structure

and parameter assumptions, thermal balance testing, and thermal model calibration after

testing.
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Chapter 3

Passive Spacecraft Radiator Case

Study

The first case study in this thesis considers model validation for a passive spacecraft radiator.

The primary objective of the radiator case study is to demonstrate the BMV methodology

on a simple system. A secondary objective is to compare the implementation of BMV to

a conventional validation approach and discuss the differences in the validation processes

and in the final form of the radiator. Section 3.1 presents BMV implemented on a passive

spacecraft radiator, and Section 3.2 presents a conventional model validation approach (i.e.,

model validation as it could be implemented in practice) on the same passive spacecraft

radiator. The analyses in Sections 3.1 and 3.2 are independent. Section 3.3 reviews the

important lessons from Sections 3.1 and 3.2 and compares BMV to conventional model

validation.

3.1 Bayesian-based Model Validation (BMV)

3.1.1 Step 1: Validation Problem Definition

Validation Requirements

Consider a small, body-mounted aluminum spacecraft radiator shown in Figure 3-1. There

is one relevant thermal requirement:
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There shall be a probability of at least 95% that the maximum steady state radiator tem-

perature be less than -60 "C = 213.15 K.

There are two parts to the requirement: an absolute temperature and a minimum probability.

In order to satisfy the radiator's thermal requirement, both parts of the requirement must

be satisfied (i.e., even if nominal performance satisfies the absolute temperature part of

the requirement, the minimum probability must be satisfied when model uncertainties are

included in the analysis).

Although it is convention to use temperature units of Celsius (*C), sometimes it is con-

venient in this case study to express temperatures within the model in Kelvin (K). Where

model predictions are compared to the requirements, both units are used. The mapping

between units is translational: Tcelsius = TKelvin - 273.15.

Physical Problem Documentation

The physical radiator problem is shown in Figure 3-1. Assume that the radiator is fixed

to a truss panel via low thermal conductivity standoffs such that conduction through the

standoffs is negligible. Furthermore, assume that the radiator has a distributed heat load at

its center, Qij,, and has a full view of deep space. The radiating surface, with heat rejection,

Qrai,out, has been painted with a highly emissive white paint. There is a single mission

phase under consideration corresponding to these steady state conditions. The mission life

is assumed to be short such that degradation of the radiator surface coating is not a factor.

The numerical values of the geometry, material properties, heat loads, and coatings are set

based on the design shown in Figure 3-1.

Model Development and Documentation

Based on the physical problem in Figure 3-1, the conceptual model shown in Figure 3-2 is

developed. In the conceptual model, the radiator is assumed to be isothermal (i.e., Qrad,out

does not vary spatially). By neglecting in-plane conduction, the conceptual model is known

to be inadequate. In the general case, all model inadequacies in the conceptual model are
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Aluminum radiator

Qin Qrad,out

White paint

Figure 3-1: Illustration of physical problem for radiator case study

not known and those that are known are difficult to quantify prior to experimentation.

Aluminum radiator

Qin =Qrad,out

White paint

Figure 3-2: Illustration for conceptual model of radiator case study

Using the conceptual model in Figure 3-2, a thermal model is constructed to predict

the maximum radiator temperature given certain model parameter values. The thermal

model for the case study is the Stefan-Boltzmann equation, arranged to provide the radiator

temperature as shown in Equation (3.1):

Trad - rrad(X) = + Tpace (3.1)

where rad is the radiator model, Q, is defined above as the input heat load, - is the
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Stefan-Boltzmann constant, 6 is the radiator emissivity, A is the area of the radiator, Tad

is the temperature of the radiator, and T,,ce is the temperature of space (i.e., the sink

temperature for the radiator). There are four parameters such that x = [Qi,,, 6, A, Tspace ]T.

Tad is the QoI for this problem and maps to the thermal validation requirement. The

nominal thermal model parameters are shown in Table 3.1. The Stefan-Boltzmann constant,

o- = 5.67x10- 8 m 4, is a physical constant. Given a set of parameter values, the thermal

model (Equation (3.1)) will yield an estimate for Trad.

Table 3.1: Nominal parameter values for sample radiator problem thermal model

Parameter/Constant Nominal Value Units

Heat load, Qin 10 W

Emissivity, 6 0.90 -

Temperature of Deep Space, Tpae 2.725 K

Area, A 0.1 m2

3.1.2 Step 2: Uncertainty Propagation and Parameter Prioritiza-

tion-First Pass

The radiator case study traverses BMV steps two through five more than once to validate

the radiator model, as shown in Figure 2-1. The following sections present each step of BMV

sequentially and each step pass is denoted (e.g., the second time step two is performed is

referred to as step two, second pass).

The first component of the UP process and parameter prioritization is to characterize the

uncertainty. In this case study, all parametric uncertainty is characterized probabilistically.

All parameter values are initially defined as having uniform distributions of the form shown

in Figure 3-3. The uniform distribution of a parameter, x, is given by:

- X E [a, b]
p(X) = ;ea](3.2)

0 ; b i a,b]

where a is the minimum parameter value, b is the maximum parameter value, and p(X)
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is the probability density value. Table 3.2 characterizes the uniform distribution for each

parameter. The distribution for Qin is based on the maximum and minimum variation

expected in the input heat load arbitrarily selected as a parameter of the larger spacecraft

system. The distribution for E is based on conservative beginning of life values for white paint

[4]. Finally, the variability assumed for Tspace is based on measurements made by the FIRAS

instrument on the COBE mission [124], and the variability of A is based on the tolerance to

which the radiator is machined. The Stefan-Boltzmann constant, a, is a physical constant

and does not exhibit variation.

P(x)

b- a

o a b X

Figure 3-3: Notional uniform distribution form for initial parameter distributions in radiator
case study

Table 3.2: Initial parameter uncertainty characterization for radiator thermal model. All
parameter uncertainty distributions are uniform distributions. From Figure 3-3, a is the
minimum value, and b is the maximum value of a parameter.

Parameter Nominal Value Min Value, a Max Value, b Units

Qin 10 9.5 10.5 W
6 0.90 0.80 0.93 -

Tspace 2.725 2.723 2.727 K
A 0.1 0.0998 0.1002 m2

Using Equation (3.1) and the nominal model parameter values in Table 3.2, the temper-

ature of the radiator, Trad, is approximately -62.8 'C. Nominally, the radiator design meets

the required -60 'C absolute temperature. However, the parametric uncertainties, which

have not yet been considered, must be propagated through the model to determine if the

minimum probability of the thermal requirement is satisfied.
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With the uncertainty distributions for the model parameters defined, evaluating the

effects of the parameter uncertainty is next. Although the radiator model is known to

be an inadequate representation of the real system during the mission, model structure

uncertainties are temporarily ignored. In this case study, model inadequacy is quantified

later following a model validation experiment. To perform an uncertainty analysis, a Monte

Carlo (MC) simulation is performed to propagate the parameter uncertainties through the

model. By tailoring Equation (2.3) for the radiator model, the expected output value is

given by Equation (3.3):

N

Thrad,N = N Z 7rad(Xi) (3.3)

where ??rad,N is the MC estimator, the number of samples is N = W09 (shown to be sufficient

via convergence analysis), and each sample, xi = [Qin, e, Aj, T,,i]', is a realization of the

model parameters sampled from the parameter distributions. Figure 3-4 shows the MC result

for the radiator case study. Figure 3-4 is an empirical cumulative distribution function (CDF)

for the QoI, Trad, and the temperature requirement for the QoI value (-60 *C = 213.15 K)

is shown. The probability is 42% that the radiator temperature requirement will not be met

based on the model parameter uncertainty.

Although it is clear that the probability does not satisfy the thermal requirement, sen-

sitivity analysis is needed to prioritize the model parameters according to those that most

significantly create variance in Trad. First, the local sensitivities per Equation (2.5) are found

to evaluate the effects of small perturbations about the nominal solution. Furthermore, the

local sensitivity analysis will demonstrate the limitations of such an approach for guiding

future uncertainty reduction efforts. Equation (3.4) shows Equation (2.5) tailored for the

radiator model used to find the local sensitivities:

__ aTrad Xj,o
SLj = &Xi Trad,o (3.4)

where xj is the jth parameter in x and -r is the analytical gradient (i.e., slope of Trad

in the xj direction). Trad,o and xj,O are the nominal QoI and input values, respectively.

Although analytical gradients are available in this case study, analytical gradients are often
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Radiator Temperature, Trad (0 C)

Figure 3-4: Preliminary uncertainty analysis results for radiator problem. CDF indicates

the probability of the radiator temperature being less than or equal to a temperature, Tref,

given the radiator model's parametric uncertainty.

not available or difficult to compute. To maintain applicability for a more general case, a first-

order, forward finite differencing scheme, shown in Equation (3.5), is applied to approximate

the analytical gradient in Equation (3.4) using a small perturbation in the nominal value of

xj:

9Trad. Trad(Xj,o + Axj) - Trad(Xj,o) (3.5)
9xj Ax3,o

Each parameter's local sensitivity index, per Equation (3.4), is shown in Figure 3-5.

The normalized local sensitivities in Figure 3-5 indicate how a 1% increase in the pa-

rameter's value affects the radiator temperature in the neighborhood of the nominal design.

Based on the radiator's local sensitivities about the nominal design, it is observed that the

coating emissivity, area, and heat load are nearly equal in importance, whereas the temper-

ature of space is insignificant. The coating emissivity, area, and heat load have the same

magnitude because each parameter has the same order in Equation (3.1). Using Figure 3-5

to select parameter(s) for uncertainty reduction is misleading because it does not include the

uncertainty distributions of the parameters. Local sensitivities provide no global information
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Emissivity Area Heat Load Temperature of Space

Radiator Model Parameter

Figure 3-5: Local sensitivity analysis for isothermal radiator model parameters about nom-
inal design

regarding the effects of model parameter uncertainties. Global sensitivities are needed to

prioritize the model parameters.

A "one-factor-at-a-time" (OAT) approach is used to compute the global sensitivities for

the radiator model. In an OAT setting, one parameter is perturbed while all other parameters

are held at the nominal or baseline value. Saltelli and Annoni [125] explain several practical

reasons for why OAT is a commonly used approach:

" The nominal values for parameters are generally the best estimate or expected values

" The approaches systematically explores the effects of one parameter at a time on model

output

" The approaches are often simple to implement

Under the assumption of parameter independence, Equation (3.6) shows the sensitivity for

the jth model parameter using the OAT approach:

Si = V[Tradxj,o] (3.6)
V [Trad]

where V[TradIX~j,o] is the variance of Trad due to only the variation of the jth parameter, and

V[Trad] is the variance of Trad due to all parameter uncertainty in x. The xj,o term indicates
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that all parameters except for the jth parameter are fixed at their nominal values. V[Trad]

normalizes the sensitivity so that Sj E [0,1]. As V[Trad x, 0 ] increases toward V[Trad], Si

goes to one.

The OAT approach shown in Equation (3.6) is implemented on the four parameters of

'rlrad using random sampling of the jt' parameter's distribution and the values in Table 3.1

for the nominal parameter values. Figure 3-6 shows the global sensitivities for the radiator

thermal model. The sensitivities for A and Tspace are negligible due to the small variance of

their initial distributions. From this point forward in the case study, the parameter values

for A and Tapace will be fixed at their nominal values. Both the radiator coating, E, and

the input heat load, Qr, are important parameters in contributing to the variance of Trad.

Based on the global sensitivities, the prioritized list of model parameters are:

1. Radiator coating emissivity

2. Input heat load

The above list indicates the order in which research should be devoted toward model param-

eters to reduce the unsatisfactory variance in Trad.

< 1%
A

30%

MCoatn Enissivity, F,
MSurfacc Area, A

E:DHeat Load, Qn
M Tcxnperaturc of Deep Space, T

< 1%

70% space

Figure 3-6: Preliminary "one-factor-at-a-time" global sensitivity analysis results for radiator

problem
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3.1.3 Step 3: Experimental Goal Setting-First Pass

In Figure 3-4, UA indicates that there is a 42% probability that the radiator temperature

requirement will not be met. Furthermore, the global sensitivities in Figure 3-6 show that the

radiator coating emissivity is the most significant contributor to the radiator temperature

uncertainty. In Figure 2-4, the first decision gate is whether there is adequate confidence

that the requirements are met. The answer is no because the 58% probability of achieving

the -60'C radiator temperature is too low (requirement is 95%).

Although the radiator could be made larger to increase the probability of meeting the

requirement, the sensitivity analysis indicates that because the emissivity value so strongly

affects the radiator temperature, a reduction in the emissivity's uncertainty could increase

the probability of meeting the requirement. Answering the second decision gate in Figure 2-4

(whether a small redesign will be performed), a small design change in the form of increasing

the radiator's size will not be performed. Thus, the experimental goal is to infer the true

value of the most critical parameter, the radiator coating emissivity, to reduce its variance,

whereby reducing the radiator temperature variance.

3.1.4 Step 4: Design and Implementation of Experiments-First

Pass

Thermal Model Modification and Experimental Design

In step four of BMV, the radiator case study shows how to modify the thermal model and

design the optimal parameter inference experiment. The radiator model in Equation (3.1)

is modified to match the conditions of the experiment. An important assumption of the

parameter inference experiment is that the thermal configuration has the same architecture

as the flight configuration (e.g., full view factor to thermal vacuum wall chamber and no

conductive parasitics to radiator plate due to instrumentation/fixtures). The experimental

design problem will consider the values of different experimental conditions, but not differ-

ent experiment architectures. There is only one modification to the model formulation: a

measurement error term, Cm, is added to capture the temperature sensor error associated

with measuring the QoI, Trad. The experimental model is given by Equation (3.7):
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Trfa = +T4 + Em (3.7)

where the vacuum chamber wall temperature, T., replaces T8 ,a because the test is not in

the space environment. Equation (3.7) is of the form of Equation (3.8):

Trad(, d,em) = + d2 + Em (3.8)

where d =[d, d2 ]T = [Qi, TW]T are the experimental design conditions (the only controllable

parameters to create different experiments), 0 is the parameter of interest (radiator coating

emissivity), and a is a constant equal to the product of A and o-. Both the parameter of

interest and experimental design parameters are parameters of the model (i.e., 9,d C x).

Values for the quantities in d are selected from the set of all possible experiments.

In designing an experiment to reduce uncertainty in the coating emissivity, it is important

not to artificially constrain d. In the experiment, we are not limited to the range of values

expected during the mission, and the optimal experiment might lie outside the mission values

for d. The range of values considered for each experimental design condition is shown below:

" Heat load, d, = Qin: 0 to 50 W

" Thermal vacuum wall temperature, d2 = Tw: 1 to 300 K

The range of values for Qin and T, exceeds the ranges in Table 3.2 to explore regions of the

feasible experimental design space that could yield higher parameter inference utility. Based

on the earlier results of GSA, A is fixed at the nominal design value 0.1 m2 . The sensor

error, Em, is assumed to be normally distributed with zero mean and standard deviation of

0.15 K, em ~ M(0, 0.152) "C. Given the experimental model form in Equation (3.8) and the

range of possible experimental conditions shown above, d must be selected for the optimal

experiment.

To design an optimal parameter inference experiment, the experimental utility function

is set to the variance of Trad conditioned on d. That is, at conditions d, the experimental

utility is given by Equation (3.9):
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U(d) = V[Tradld] (3.9)

where TradId is the conditional radiator temperature given experimental conditions d. Trad,

given d, is uncertain due to uncertainty in 9 and Em. The experimental utility in Equation

(3.9) is analogous to the high response variance criterion [126]. The optimal experiment for

the radiator will maximize U(d) to find the optimal experiment, d*. An experiment at d*

means that the variability in the parameter of interest, 9, creates the maximum variability

in Trad such that 9 is easiest to infer (i.e., the utility function makes the observable quantity

very sensitive to the value of the parameter of interest).

To find d*, a brute force approach is used. A MC simulation is performed at each set

of possible experimental conditions to build up Tradld by storing Trad(Oi, d, Em,) for each ith

sample. The Oi,Em,i terms are drawn from their respective probability distributions. Once

each conditional distribution Tradld is built, the variance of each distribution, V[Trad d], is

evaluated. By varying d over the many possible experiments (resolution of 5 K in T. and

1 W in Qin), an experimental utility contour map is constructed as shown in Figure 3-7.

The optimal experimental conditions, d*, axe found to be Qij, = 50 W and T = 1 K. At

temperatures below approximately 100 K, T has little effect on the utility. The experiment

is improved mostly by increasing Qin below 100 K. However, T is increasingly important

for temperatures above 100 K and large heat loads, an intuitive trend because T" is raised

to the fourth power in Equation (3.7). In Figure 3-7, the nominal design for the radiator is

shown by the blue point to illustrate how a test at these experimental conditions would be

suboptimal in terms of U(d). There are two important considerations:

" Since the experiment's design is model-based and the model is only an approximation

to reality, the results are not guaranteed to be the actual optimal experiment for the

real system.

* Although the optimal experiment is at Qin = 50 W and T = 1 K, these conditions are

difficult to achieve (1 K is near absolute zero). In the neighborhood of these conditions

in Figure 3-7, there are conditions that are easier to achieve and will yield nearly

the same utility (e.g., Qin = 40 W and T = 80 K, where 77 K is the boiling point
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temperature of liquid nitrogen).
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Figure 3-7: Experimental utility, U(d), contour plot of experiments at d=[Qi, TWIT. Units
of U(d) in 'C. Number of MC samples to build Tradld is 10'. The boiling point temperatures
for liquid nitrogen and helium are shown; also, room temperature is shown.

Experiment Implementation

Synthetic data are created in lieu of implementing the experiment with hardware. A numer-

ical experiment is performed at Qin = 40 W and T = 80 K. It is assumed that there is a

minimum of one sensor (at the radiator center), and a heater applied to the radiator backside

to generate the input heat load of 40 W with a footprint of approximately 20 x 20 cm. The

thermal effects of instrumentation are neglected in the numerical experiment. Because the

conceptual model is physically inadequate, there is an opportunity to include additional sen-

sors to capture the in-plane gradients. From this information, the model inadequacy could

be quantified for a particular x, and the model structure can be modified, if necessary.

To generate the synthetic data for the experiment, a high fidelity radiator model is created

using Thermal Desktop. The high fidelity model, shown in Figure 3-8, has 225 nodes and

includes the effects of in-plane conduction within the radiator. To create the experimental
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results for the parameter inference experiment, the high fidelity model is used in the following

way:

1. Assume an arbitrary truth emissivity within the bounds of the prior uncertainty dis-

tribution

2. Store emissivity value and simulate parameter inference experiment at [di,d2] = [40 W, 80 K]

3. Record the center radiator temperature to simulate the measurement and use the

temperature as synthetic data to update the isothermal radiator model emissivity

Figure 3-8: High fidelity Thermal Desktop radiator model (225 node model). Red arrows

denote input heat load with footprint size 20 x 20 cm.

Following the process outlined above, the truth emissivity from the parameter inference

experiment is assumed to be 0.92. The truth emissivity is within the bounds of the initial

coating emissivity distribution. Figure 3-9 shows the temperature map of the radiator for the

parameter inference experiment, where the warmest areas are at the radiator's center where

the heat load is applied. A single steady state temperature is recorded from center of the

radiator equal to 25.25 'C. In this case, it is clear that the isothermal radiator assumption

is a poor assumption because the in-plane gradient is approximately 5 'C from the center to

the edge of the radiator. However, the effect of in-plane gradients on validating the model

may not ultimately matter. Before changing the structure of the model to increase accuracy,

the effects of the model inadequacy are quantified later to determine their significance.
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Figure 3-9: High fidelity Thermal Desktop radiator model solution for parameter inference
experiment with [d ,d2] = [40 W, 80 K]

3.1.5 Step 5: Experimental Model Calibration and Flight Model

Update-First Pass

In step five of BMV, the thermal model is calibrated to the experimental data. On this

pass, the coating emissivity of the radiator is updated based on the results of the parameter

inference experiment in step four. Using the K-O approach framework in Equation (2.12),

the following is the nomenclature for calibration problem:

" The temperature measurement is the data/observation, z = 25.25 'C

" The radiator coating, e, is the single calibration parameter, y

" The radiator area, A, thermal vacuum chamber wall temperature, T., and input heat

load, Qj, are the control parameters, x

" The temperature sensor measurement error is the observation error, 6m

" The inadequacy term, J(x), is neglected (quantified later, following model validation

experiment)
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Although 6(x) is currently unknown, if additional sensors are included in the experiment to

capture in-plane gradients of the radiator, there is more information available to estimate

the inadequacy of the model since the model currently assumes an isothermal radiator.

Using Bayes' Theorem as written in Equation (2.14) and a brute force, random sampling

(of E and cm) approach to build up each p(zyi, x), the uncertainty distribution for the

radiator coating emissivity is updated. Figure 3-10 shows the uniform prior distribution

and the posterior distribution. The prior distribution is the initial uncertainty distribution

assigned to the parameter, and the posterior distribution is the uncertainty distribution that

has been updated based on new information (e.g., experimental data). The posterior has a

significantly smaller variance than the prior and is centered on an emissivity of approximately

0.895. Compared to the true emissivity, the emissivity is smaller because the emissivity

found via the isothermal radiator model is an effective emissivity that includes the in-plane

conduction implicitly.
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Radiator Coating EmIsuvity, a

Figure 3-10: Model calibration results for radiator coating emissivity based on numerical
experiment at [di,d 2] = [40 W,80 K] and a temperature measurement of 25.25 'C.

Although Figure 3-10 illustrates an effective reduction in variance from the parameter in-

ference experiment, the model inadequacy is neglected. Strictly following the K-O approach

[42], the parameter values and a model discrepancy function, 6(x), are inferred simulta-
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neously. Since it is known that 6(x) is nonzero (i.e., that the model is inadequate), it is

important to ask, how does the presence of a nonzero 6(x) affect the calibration shown in

Figure 3-10? To answer this question, an additive discrepancy function is temporarily in-

cluded in the evaluation of p(zK-y, x) and assumed to be normally distributed with zero mean

such that 6(x) = 6(3) = A(O,32) where / is a constant scalar. For a nonzero 3, we are

interested in the posterior distribution of E (i.e., the conditional distribution of the posterior

p(E16(o))). Figure 3-11 shows a contour map of the of the joint distribution of / and E

showing the density values for the radiator coating emissivity, E, for given values of /3. At /3

= 0, the distribution for E is equivalent to Figure 3-10. It is clear from Figure 3-11 that as

/ values increase, the variance of the coating emissivity posterior increases.
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Figure 3-11: Contour plot of the joint distribution of / and E showing the effect of increasing
the variance of an additive model discrepancy, 6(O), on the posterior distribution for the
radiator coating emissivity. Figure 3-10 shows the posterior distribution of e for 3 = 0.

The posterior distribution from Figure 3-10 is carried forward in the case study. Although

the effects of a nonzero 6(x) are shown in Figure 3-11 to be significant, there is no prior

knowledge of the variance of 6(x). Furthermore, the parameter inference experiment is

performed outside the domain of parameter values expected for the mission (for Tp,,ace and

Qi,) so any attempt to quantify 6(x) from the experiment is an extrapolation of x. Because
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the model inadequacy is neglected here, a validation experiment that seeks to quantify 6(x)

is still needed. Furthermore, if 6(x) is found to be significant, the posterior shown in Figure

3-10 is significantly biased and could be recalculated to include 3(x). Ultimately, 6(x) will be

included in the final uncertainty analysis to show that, with the effects of model inadequacy

included, the radiator temperature requirement is satisfied.

3.1.6 Step 2: Uncertainty Propagation and Parameter Prioritiza-

tion-Second Pass

Following Figure 2-1, the next BMV step is to repeat step two with the updated thermal

model. Using the posterior radiator coating emissivity shown in Figure 3-10, the initial

UP from Figure 3-4 and Figure 3-6 is updated. Using Equation (3.3) and Equation (3.6)

to complete the UA and GSA as before, Figure 3-12 shows updated empirical CDF and

global sensitivities for the radiator problem. Whereas before UA indicated a 42% proba-

bility that the -60 'C temperature wouldn't be met, there is now a 95% probability that

the temperature is met. Furthermore, Figure 3-12b indicates that majority of the remaining

uncertainty is due to the uncertainty in the input heat load. The parameter inference ex-

periment increased the probability of meeting the required -60 *C temperature and reduced

the sensitivity of the coating emissivity, E.
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Figure 3-12: Uncertainty and global sensitivity analysis (OAT sensitivities) results for ra-

diator problem with updated radiator coating emissivity distribution. CDF indicates the

probability of the radiator temperature being less than or equal to a temperature, Tref,
given the radiator model's parametric uncertainty.

3.1.7 Step 3: Experimental Goal Setting-Second Pass

With the results of step two of BMV updated, the next step is revisiting the experimental

goal setting framework in BMV step three. In Figure 3-12, the UA indicated that there is

a 95% probability that the radiator temperature requirement will be met. For the radiator

case study, the answer to the first decision gate in Figure 2-4 is yes because the minimum
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probability specified by the radiator requirement is satisfied. The second decision gate is.

whether the system-level thermal model has been validated. The answer to the second

decision gate is no because the parameter inference experiment is performed outside the

domain of application of the radiator (heat load, Qj, is 40 W but the maximum expected

on-orbit is 10.5 W) with the goal of reducing uncertainty in the coating emissivity. Thus,

the experimental goal is to validate the radiator model.

3.1.8 Step 4: Design and Implementation of Experiments-Second

Pass

On this pass of design and implementation of experiments, the experimental goal is to vali-

date the isothermal radiator model. Because the calibration of the radiator coating emissiv-

ity, e, does not include uncertainty due to model structure errors, validation in this context

requires a quantification of a model discrepancy, 6(x), to account for persisting model inad-

equacy. The earlier definition of model validation is included here for convenience:

model validation: process of confirming a model is an adequate representation of the

physical system and is capable of predicting the systems behavior accurately with respect to

the requirements within the domain of the intended application of the model [20, 21]

For this case study, the key phrase is within the domain of the intended application of the

model. Only the parameter ranges from Table 3.2 are relevant because experimental design

for model validation considers interpolation, not extrapolation. The model is to be validated

over the range of parameter values expected during the mission. Thus, the range of experi-

mental conditions considered in the parameter inference experiment (Qin = 0 - 50 W and

= 1 - 300 K) does not apply.

Experimental conditions for the model validation experiment are selected that bound the

range of conditions seen on-orbit. Two test phases are performed, summarized by Table

3.3. The values for e and A are not included in Table 3.3 because they are not controllable

experimental conditions but are aspects of the radiator design. Although the temperature
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of deep space, Tp8 ce = 2.73 K, is significantly lower than the lowest possible chamber wall

temperature of T = 80 K, the chamber wall temperature for the experiment is 80 K since

it is the lowest achievable temperature. In Section 3.1.11, a sensitivity analysis is performed

to show that the effect of testing at 2.73 K versus 80 K is negligible with respect to the

radiator's temperature due to the fourth order of the temperature of deep space in the

Stefan-Boltzmann equation. Values for Qi,, are selected at its upper and lower limit and are

the only difference between the two test phases. The DOE for the validation experiment is

the same as the hot and cold test cases in a conventional validation approach.

Table 3.3: Experimental conditions for each test phase of the model validation experiment

Parameter Nominal Value Test Phase #1 Test Phase #2 Units

Qin 10 9.5 10.5 W

Tspace 2.725 80 80 K

Following the same approach as the parameter inference experiment, the high fidelity

Thermal Desktop model is used to generate synthetic data for the model validation exper-

iment. The experiment with conditions shown in Table 3.3 is implemented using the true

emissivity of 0.92 in the high fidelity model in Figure 3-8. By simulating the two validation

test phases, the temperature values to be used as synthetic data are shown below:

e Test Phase 1: T1 = -64.8 *C = 208.4 K

* Test Phase 2: T2 = -59.6 0C = 213.6 K

The above temperatures are used to quantify the model discrepancy for the radiator model

in step five of BMV.

3.1.9 Step 5: Experimental Model Calibration and Flight Model

Update-Second Pass

Using the model validation experiment data points, z = [T1,T2 ]T, and the calibrated ther-

mal model, the model inadequacy is quantified via an additive model discrepancy function.

Rearranging Equation (2.12) to solve for 6(x):
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6(xi) = T(xi) - rrad(Xi) - Em

where T = T(xi) are the temperature measurements (scalar), rad (Xi) is the model prediction

(distribution due to variability in E), and Em is the measurement noise (distribution). To

calculate 6(x1 ) and J(x 2 ), the posterior distribution for the emissivity shown in Figure 3-10

and the sensor measurement uncertainty are used. Because qrad(xi) and E are distributions,

6(xi) are also distributions.

The model discrepancy distributions, 6(xi), found using Equation (3.10) are shown in

Figure 3-13. 6(x1 ) is nearly identical to 6(x 2 ) because the difference between x1 and x 2

is small but representative of the range of conditions expected for flight. Thus, from this

point it is assumed that 6(x1 ) ~ 6(x 2 ) = 6 avg. Furthermore, because the parameter inference

experiment updated the emissivity distribution under the assumption of an isothermal radi-

ator, the effective emissivity found turned out to be conservative. The discrepancy, J,,g, is

nearly always negative and approximately -0.8 'C on average. Physically, this means that

temperature of the radiator is likely slightly colder than predicted.
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Figure 3-13: Model discrepancy distributions from model validation
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3.1.10 Step 2: Uncertainty Propagation and Parameter Prioriti-

zation-Third Pass

The Ja, distribution from Figure 3-13 is added to the model output to predict the true

physical process, (,ad(X), according to Equation (2.13). Equation (3.3) is once again used

for the uncertainty analysis, but irad is replaced with (,,d as shown in Equation (3.11):

N

(rad,N = N 4rad(Xi) (3.11)

where 4rad,N is the MC estimator for the expected value of the true physical process. The

true physical process is the summation of the model, r7rad, with the model discrepancy, 6ag,

as shown in Equation (2.13). Figure 3-14 shows the final uncertainty analysis for the radiator

case study. With 6 ag included, the probability that the -60 'C requirement is met is 99%.

The probability that the -60 'C temperature is met increased following the model validation

experiment because 6ag is nearly always negative.

1------------------------------------------------

-CDF

0.8 - QoI Requirement

99% probability of satisfying
-60 OC absolute temperature

VI 0.6

0.4-

0.2-

0
-69.15 -67.15 -65.15 -63.15 -61.15 -59.15

Radiator Temperature, Trad (C)

Figure 3-14: Uncertainty analysis results including model discrepancy, 6 avg, for radiator fol-
lowing model validation experiment. CDF indicates the probability of the radiator temper-
ature being less than or equal to a temperature, Tref, given the radiator model's parametric
uncertainty and model discrepancy.
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To summarize the uncertainty analysis results for each pass of BMV step two, Table

3.4 shows the probability of satisfying the required -60 'C absolute radiator temperature

for each pass. In both pass one and pass two, the uncertainty analysis considers only the

parametric uncertainty in the radiator model. The probability increases from 58% to 95%

due to the uncertainty reduction in the radiator's coating emissivity following the parameter

inference experiment. Once the model inadequacy is quantified following a model validation

experiment via an additive model discrepancy function, the probability again increases to

99% because the discrepancy is nearly always negative.

Table 3.4: Summary of uncertainty analysis results for during each pass of BMV. Table shows
how BMV increases the probability of satisfying the required -60 *C radiator temperature
during each pass.

BMV Pass BMV Procedural Uncertainties Included in Probability of Satisfying -60 OC
Number Location Uncertainty Analysis Absolute Temperature (%)

1 Peiiay Parameter only 58

2 After parameter Parameter only 95inference experiment

After model validation Parameter and model
1 __ 3 experiment discrepancy 99

3.1.11 Step 3: Experimental Goal Setting-Third Pass

In Figure 3-14, the UA results indicate that there is a 99% probability that the radiator

temperature requirement will be met when model discrepancy is included. The answer to the

first decision gate in Figure 2-4-whether there is adequate confidence that the requirement is

met-is yes. The answer to the second decision gate in Figure 2-4-whether the system-level

model has been validated-is yes, because a model validation experiment that sufficiently

exercised the model over the domain of expected power dissipations has been completed.

Although it is infeasible to perform a model validation experiment with thermal vacuum

chamber wall temperatures equivalent to deep space (leading to extrapolation of the validated

model with respect to radiation sink temperature), analysis can show that not testing with a

radiation sink temperature below 80 K is a very small sensitivity for the radiator temperature.

In general, margin can be allocated (e.g., radiator made larger) depending on the risk posture
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of the mission and nature of the risk when certain aspects of a model cannot be validated.

In this case, sensitivity analysis via the Stefan-Boltzmann equation can reduce concern that

the model inadequacy, 6(x) r -%v, is not well characterized with respect to Tp,,ace. The wall

temperatures of the test phases are 80 K versus the 2.73 K temperature of deep space with a

radiator that operates near -60 0C. Equation (3.12) gives the heat flux from an isothermal

radiating surface:

q = ud(T4a - T4,) (3.12)

where T is the variable chamber wall (i.e., sink) temperature and q is a heat flux (i.e., total

heat load per area). Figure 3-15a indicates the sensitivity of the heat flux, q, to changes in

Tw for a radiator at -60 'C. The total flux at Tw = 2.73 K is near T = 80 K because Trad

is raised to the fourth power in Equation (3.12).

Figure 3-15b shows the results of Equation (3.13) to calculate the percent difference

in flux between a radiator with sink temperature of 0 K, qoK, and a radiator with sink

temperature at w, qw:

Aq = (qOK - qw) 0%(.3
qOK

where Aq is the percent difference. Note that there is less than a 2% difference in the

flux from a radiator's surface between a 0 K and 80 K sink temperature when operating at

-60 1C. Increasing the nominal heat load value of Qi, = 10.0 W by 2% (nominal values

shown in Table 3.1) to Q',, = 10.2 W, the radiator temperature, Tad, increases by 1.04 K,

or r0.5%. Thus, the effect of not validating the model with experiments using a thermal

vacuum chamber wall temperature of Tw = 2.73 K is relatively small (i.e., the relationship

between 6(x) and Tpace is weak).

3.1.12 Step 6: Validation Problem Documentation

Step six of BMV includes the three components outlined in Chapter 2: documentation of

steps one through five of BMV, updating requirements if necessary, and recommending small

design changes for flight. For brevity, it will suffice to say that no design changes are necessary
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Figure 3-15: Sensitivity analysis of heat flux for radiator at -60 "C to illustrate the small
increase in flux for a radiator emitting to a 80 K sink versus 2.73 K deep space temperature

to analytically demonstrate that the requirement is met. The posterior radiator coating

emissivity, model discrepancy distributions, and completed experiments are documented.

Important takeaways from the radiator case study include:

" It is not necessary to increase the surface area, A, of the radiator in order to validate

the model and design.

" Initially, the radiator coating emissivity is the most important global sensitivity, and

the probability of meeting the design requirement is unsatisfactorily low.

" An optimally designed parameter inference experiment reduces the uncertainty of the

radiator coating emissivity, resulting in higher probability that the requirement is met.

" The posterior distribution for E is known to be biased. However, by adding the quanti-

fied model discrepancy, 6(x), to the model predictions, the isothermal radiator model

is validated because both parametric and model structure uncertainties are accounted

for in (r1ad(X).

* The radiator requirement is met: the design is predicted to satisfy the -60 "C require-

ment with over 95% probability.

114



3.2 A Conventional Model Validation Approach

A conventional thermal model validation approach adheres to processes and margin policies

typically performed in practice to validate a thermal design and model. Validation processes

for NASA and military programs are discussed in the literature review in Chapter 1. In the

radiator case study, a conventional thermal model validation approach is performed in the

following three sections and is independent from BMV. The three serial steps of the conven-

tional validation approach are analysis, thermal balance testing, and model correlation.

3.2.1 Analysis

A conventional thermal analysis focuses on stacked worst-case hot and cold scenarios. In this

context, stacked means assuming sets of system and environmental parameter values that

are most likely to violate requirements in a given case. For example, maximum expected

power dissipations are assumed for hot cases, and minimum expected power dissipations are

assumed for cold cases. If requirements are satisfied in the stacked worst-case scenarios,

all intermediate sets of system and environmental parameter values are assumed to satisfy

requirements. Because the -60 'C radiator requirement is a maximum temperature require-

ment (the minimum probability part of the requirement is not applicable in this conventional

analysis approach), the analysis case is a hot case scenario. Consequently, the parameter val-

ues assumed for conventional analysis are those that yield maximum radiator temperatures.

Table 3.5 shows the parameter value assumptions for the conventional radiator analysis. The

worst-case parameter assumptions are selected from the range of parameter values given in

Table 3.2. The maximum expected heat load and temperature of deep space and the mini-

mum expected emissivity and surface area are the parameter values that yield the maximum

radiator temperature.

The same radiator model used in BMV (Equation (3.1)) is used to generate predictions for

Trad in this conventional approach. Evaluating the radiator model for the parameter values in

Table 3.5, the temperature of the radiator is predicted to be Tad = -53.8 'C = 219.3 K. The

temperature of the radiator is not predicted to meet the -60 IC requirement. Furthermore,

the design has no margin to the requirement (margin is typically required in practice).
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Table 3.5: Initial model parameters for conventional thermal analysis of radiator yielding
worst-case hot conditions

Parameter/Constant Value Units
Heat load, Qin 10.5 W
Emissivity, e 0.80 -

Temperature of Deep Space, T,,ace 2.727 K
Area, A 0.0998 m2

In a conventional analysis of a general system, many parameters affect the QoIs. In the

absence of a systematic method of identifying critical system parameters, prototype-level

tests might not be performed to learn more about parameters of interest. Consequently,

extra conservatism is applied in conventional analysis to capture uncertain parameter val-

ues. To maintain general applicability and demonstrate how not reducing the conservatism

early can be significant, it is assumed that the coating emissivity is not investigated by a pa-

rameter inference experiment. Instead, the radiator design is changed to lower the radiator

temperature prediction.

Architecturally, there are multiple ways to lower the radiator temperature prediction

(e.g., changing system parameters to lower Qin). However, if temperatures are trending

too warm, radiators are often made larger, particularly early in the design lifecycle. Under

the assumption that the radiator design is subject to a NASA Goddard passive thermal

temperature margin of 5 'C [25], the radiator is re-sized so that its temperature is predicted

to be Tad = -65 0C (i.e., meeting the -60 'C requirement with 5 'C margin). The new

surface area of the radiator, Anew, corresponding to Tad = -65 'C is 0.1235 M2 . The

new surface area is a 24% increase in surface area of the nominal radiator design. (Note:

without the 5 'C margin, the area required for a -60 'C radiator prediction is 0.01122 M2 ,

a 12% increase in radiator area.) With the radiator design predicted to satisfy the -60 *C

requirement with 5 *C of margin, the next step is to validate the model via thermal balance

testing.
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3.2.2 Thermal Balance Test

Thermal balance testing uses dedicated test phases to simulate flight conditions to gather

steady state temperature predictions to verify that the thermal control system meets require-

ments and correlate thermal models [4, 22, 24]. As discussed in the literature review (Chapter

1), recommendations for the design of thermal balance tests are contained in the Goddard

Environmental Verification Standard (GEVS) for many NASA programs and MIL-HDBK-

340 (MIL340) for military programs. Conventional thermal balance test design adheres to

the philosophy of these standards:

" GEVS: "The adequacy of the thermal design and the capability of the thermal control

system shall be verified under simulated on-orbit worst-case hot and worst-case cold

environments, and at least one other condition to be selected by the thermal engineer."

[24]

" MIL340: "As a minimum, two test conditions will be imposed: a worst hot case and

a worst cold case." [22]

In practice, tests occur at the mission hot and mission cold cases. The thermal balance test

cases will correspond to the hot and cold environments for the resized radiator (with surface

area Anew).

The thermal balance test phases are shown in Table 3.3 (the same test cases as those

performed during model validation experiment for BMV). The minimum possible tempera-

ture of the vacuum wall chamber is assumed to be 80 K, and the worst-case hot and cold

scenarios are the maximum and minimum radiator heat loads, respectively. Test Phase 1

has a heat load of 9.5 W, and Test Phase 2 has a heat load of 10.5 W. The high fidelity

Thermal Desktop model of the radiator is used to generate synthetic data for the thermal

balance test. The same truth emissivity of e = 0.92 is assumed, and the radiator area within

the high fidelity model is increased to Anew = 0.1235 m2

Figure 3-16 shows the results of the thermal balance tests, given the conditions in Ta-

ble 3.3. The following are the measured steady state temperatures from the center of the

radiator:
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* Test Phase 1: T, = -75.3 'C = 197.9 K

* Test Phase 2: T 2 = -70.4 'C = 202.8 K

Comparing the results of Figure 3-16 with those from the model validation experiment in

BMV, the radiator temperatures in the thermal balance tests are lower due to the increased

surface area of the radiator. In the worst-case hot scenario (Test Phase 2), there is ~10 'C

margin to the -60 'C temperature requirement. T1 and T 2 are used to update the model

structure and/or model parameters through the model correlation process.

la w N 3 --- ----- ---- ---

191 4ji

T197.3.~ =179K=-0.
9  

228

(a) Test Phase 1: Trad = -75.3 C (b) Test Phase 2: Trad = -70.4 C

Figure 3-16: Synthetic data (generated via Thermal Desktop) results for thermal balance
tests with radiator with Anew = 0.1235 m2

3.2.3 Model Correlation

Model correlation is the process where one gains modeling insight by observing differences

in comparable quantities between model and test [26, 27]. As discussed in the literature

review in Chapter 1, the thermal model correlation process is a systematic, manual process

in practice. The data is used to obtain best fitting values for model parameters.

To correlate the radiator model to the thermal balance test results, the model parameters

are updated to the conditions of the test. Of the four variable radiator model parameters,

only one is significantly uncertain: the radiator coating emissivity, s. The heat load, Qjn,

the new radiator area, Anew, and the thermal vacuum chamber wall temperature, T, are all

assumed to be known parameters of the system or test. Using the radiator model, Figure
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3-17 shows the result of various coating emissivity values on the temperature of the radiation

as a function of radiator heat load. The results from the thermal balance test are shown at

9.5 W and 10.5 W. The two experiments of the thermal balance test fall nearest to the line

of e = 0.92 in Figure 3-17, the known actual emissivity of the radiator.
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Figure 3-17: Model predictions of radiator temperature versus heat load for various coating
emissivities. The thermal balance results are shown where Test Phase 1 is at 9.5 W, and
Test Phase 2 is at 10.5 W. The known truth emissivity from the Thermal Desktop model is

= 0.92.

Unlike in BMV where the emissivity distribution is updated to reduce the variance of the

prior, a scalar value of the emissivity is selected that provides the best fit for the data. An

emissivity value of s = 0.909 ~ 0.91 matches both experimentally measured temperatures to

within 0.1 K. Thus, the value of the emissivity in the radiator model is updated from 0.80

to 0.91.

The final post-correlation step is to regenerate flight predictions for the updated model.

Using the final model parameters shown in Table 3.6, the maximum hot case radiator tem-

perature is found to be Tad = 201.5 K = -71.7 0C. Thus, the radiator design has ~12 "C

margin for flight and the initial radiator model prior to thermal balance is found to be

conservative. At this point, the radiator surface area could be decreased. Compared to

BMV, the surface area penalty for sizing the radiator prior to the validation experiments is
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0.0235 M2 . However, since the hardware from the thermal balance test is built and could be

used for flight, the design is not changed. In practice, removing material from a radiator to

decrease surface area after system-level thermal balance testing changes the mass properties

of the spacecraft. Because the spacecraft design has been qualified with the larger radiator,

it is often less risky and/or costly to either accept a colder radiator or apply MLI blankets

to a portion of the radiators surface than re-qualify the spacecraft with a smaller radiator

structure (e.g., smaller radiator has implications for both structures and attitude control

systems). MLI blankets on the radiator surface are not necessary as long as the colder ra-

diator does not cause other components to exceed lower temperature limits or unacceptably

high power draws from heaters.

Table 3.6: Final, correlated model parameters for a conventional thermal analysis of the
radiator

Parameter/Constant Value Units
Heat load, Qin 10.5 W
Emissivity, e 0.91

Temperature of Deep Space, Tpace 2.727 K

Area, Anew 0.1235 m

3.3 Comparison of BMV vs. A Conventional Model

Validation Approach

BMV and a conventional model validation approach are completed independently in Sec-

tions 3.1 and 3.2. Although the radiator does not match the size and complexity of a real

spacecraft, the primary objective of the radiator case study is to demonstrate the BMV

methodology on a simple system. A secondary objective is to compare the implementation

of BMV to a conventional validation approach and discuss the differences in the validation

processes and in the final form of the radiator. The radiator model is the Stefan-Boltzmann

equation, which contains four parameters. Three of the four parameters, Qin, e, and A, are

design parameters. In BMV, e is identified as being the critical sensitivity for performance
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given the large variance of its initial uncertainty distribution. Since Qi is an arbitrarily

assumed input heat load based on a larger spacecraft system, A is the primary resource

parameter for the radiator. In general, a smaller radiator surface area is preferred because a

larger radiator increases mass, heater power to warm components in cold environments, and

the structure of the spacecraft required to support the radiator.

Figure 3-18 shows the state of the critical system performance parameter, e, and the

critical resource parameter, A, as a function of time during the validation process. The vali-

dation process is shown as an alternating series of analyses and tests. In BMV, an additional

parameter inference experiment is performed prior to the model validation experiment. The

emissivity parameter value is updated earlier in the validation process in BMV, following

the parameter inference experiment. With the updated emissivity distribution (following the

parameter inference experiment), it is not necessary to increase the radiator size. However,

in the conventional approach the radiator area is initially increased in the first analysis phase

to show sufficient design margin prior to the model validation experiment.

In BMV, the updated radiator coating emissivity distribution (following the parameter

inference experiment) is centered on ~0.895 whereas in conventional analysis, a value nearer

the truth emissivity of 0.91 is found after thermal balance testing. BMV converges to a

less accurate value for the coating emissivity because the parameter is calibrated to an

experiment with a larger radiator heat load. While the larger heat load makes Ta highly

sensitive to the emissivity value, the model is inadequate because it does not account for

in-plane temperature gradients. Because the gradients in the radiator are larger at higher

heat loads, the isothermal radiator assumption made by the choice of model structure is

better at smaller heat loads. Thus, the emissivity value found from a smaller heat load in

the conventional analysis is closer to the actual emissivity of 0.92.

That conventional analysis leads to a more accurate value for the coating emissivity is

less a byproduct of the methodology and more a physical implication of performing the

parameter inference experiment in BMV outside the domain of intended application of the

system (i.e., Qi is greater than the maximum expected value of 10.5 W). Although the model

discrepancy, 6(x), accounted for the less accurate e value in BMV, a different experimental

utility for the parameter inference experiment or a second calibration of e following the
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Figure 3-18: Timeline of BMV and a conventional validation approach illustrating the
change in values of critical resource and performance parameters, area and coating emissivity,
respectively.

model validation experiment could result in a more accurate posterior distribution for e, if

desired.

The aim of BMV is to improve the validation processes of a thermal system. Figure

3-19 illustrates that a conventional validation approach can result in a design that consumes

more resources (e.g., mass) because design decisions are based on the early analysis of stacked

worst-case scenarios when less is known about the system. Figure 3-19 is a notional depiction

of knowledge of the system and design freedom versus project lifecycle time to illustrate

qualitative, process-related improvements made by BMV to the model validation process.

For the radiator case study, the green star indicates the design decision to maintain

the same size or increase the radiator's surface area. BMV provides a rigorous, systematic

framework for identifying and reducing the uncertainty of critical system parameters prior to

the system-level model validation experiment. By learning the true values of critical system

sensitivities earlier in the project lifecycle, system knowledge increases. In a conventional
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validation approach, true parameter value estimates are updated after the model validation

experiment when the system is later in the design lifecycle. BMV can provide engineers more

knowledge of the system when making important design decisions in the early phases of a

project's lifecycle.

Critical system parameter is radiator emissivit, e

Increase in system
knowledge at the

time of an important
design decision

Increased probability
of satisfying

requirement from

sensitivity anay s s Knowledge of System
n via parameter inference experimt n weg fSse
reased from 0.80 to approximately 0.89) 4e

BMV

Identify and reduce Conventional
uncertainty in critical
system parameter(s)
earlier through BMV

Design Freedom

--.- .. = design decision

60% to95% Project Lifecycle Time

Figure 3-19: Notional illustration of BMV on general system over project lifecycle with

respect to knowledge of system and design freedom. Plot qualitatively shows that system

knowledge is increased early in the lifecycle due to a systematic, rigorous approach to iden-

tifying and reducing important system uncertainties.

For the radiator problem, implementation of BMV increases the probability of satisfying

the radiator temperature requirement from 58% to 99% because the updated uncertainty dis-

tribution in the radiator coating emissivity-the critical system parameter-has an increased

minimum value of 0.89 over the prior minimum value of 0.80. Thus, it is not necessary to

increase the radiator area to validate the thermal design and model. Conventional analysis

results in a larger radiator that is colder during flight. If the temperature requirement for

the system is such that colder is better, it may not be bad, from a thermal performance

perspective, that the additional margin exists from conventional validation. However, a

large radiator ultimately maps to higher form-related cost. Furthermore, additional surface
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area could be added to the radiator from the BMV process if margin is needed to account

for un-modeled physics of the flight environment. Although conventional validation requires

less computational cost, BMV uses model-based computational approaches to rigorously and

systematically focus analysis and test efforts.
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Chapter 4

REgolith X-ray Imaging Spectrometer

(REXIS) Overview

The second case study in this thesis (Chapter 5) demonstrates BMV on the REgolith X-

ray Imaging Spectrometer (REXIS) instrument solar X-ray monitor (SXM). This chapter

provides a general REXIS instrument overview, a description of the mission thermal envi-

ronments, SXM thermal requirements, and SXM thermal design.

4.1 Instrument Overview

The REXIS instrument is one of five payload instruments on the Origins, Spectral Inter-

pretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid

sample return mission. OSIRIS-REx is a 7-year mission that launches in 2016, arrives at the

asteroid Bennu in 2018 for proximity operations, samples Bennu in 2019, and returns the

sample to Earth by 2023. From the sample that OSIRIS-REx provides, the organic chemistry

and geochemistry of Bennu will be well-characterized, providing knowledge fundamental to

understanding planet formation and the origin of life [127]. REXIS is a Class D payload'

and a student-led project with the primary goal of providing flight hardware experience to

science and engineering students. The REXIS instrument observes the X-ray fluorescence

emitted from Bennu in the 0.5-7.5 keV soft X-ray band. It uses X-ray spectroscopy to char-

'Per the document NPR 8705.4-Risk Classification for NASA payloads
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acterize Bennu among the known meteorite groups and coded aperture imaging to map the

surface elemental distribution [128]. The REXIS science goals complement and enhance the

science data collected by the other instruments on OSIRIS-REx.

REXIS consists of two assemblies: the spectrometer and the solar X-ray monitor (SXM) [129].

The spectrometer is the primary sensor for the REXIS instrument. It observes the X-ray

fluorescence from the asteroid Bennu via four charge-coupled devices (CCDs) and a coded

aperture mask. The SXM is the secondary sensor for REXIS. It observes the highly variable

solar X-ray spectrum via a silicon drift detector (SDD) to provide context to the spectrometer

measurements.

The spectrometer, shown in Figure 4-1 without multi-layer insulation (MLI) blankets,

consists of two subassemblies: the electronics box and the tower. The electronics box has

a footprint of approximately 5.6 x 7.9 in and is mechanically and thermally coupled to

the OSIRIS-REx instrument deck. The electronics box contains three boards: two detector

electronics (DE) boards for driving and reading data from the CCDs and the main electronics

board (MEB). The MEB electrically interfaces with the OSIRIS-REx avionics so that the

spacecraft can power the REXIS instrument, transmit REXIS data to Earth, and send

commands. The tower is connected to the electronics box via four titanium standoffs, houses

the CCDs, and supports the coded aperture mask. The tower consists of the detector

assembly support structure (DASS) and four truss panels. The spectrometer detector plane

is comprised of a 2 x 2 array of back illuminated CCDs within the detector array mount

(DAM). The DAM is connected to the DASS via four Torlon 5030 standoffs. The tower

supports the mask assembly 20 cm above the detector array. The mask assembly consists of

the coded aperture mask, the mask frame, and the radiation cover deployment system. The

radiation cover protects the detectors from radiation exposure during the cruise to Bennu. A

one-time deployable device opens the cover to a 1100 angle (toward +X) upon arrival at the

asteroid. A Frangibolt actuator is used to break a notched bolt that pins the cover closed,

and a spring rotates the door about the hinge-line out of the field of view of the spectrometer

[130]. A single-string heater, powered by OSIRIS-REx, is used to keep the radiation cover

system warm prior to and during deployment.

The SXM, shown in Figure 4-2, is located separately from the spectrometer on a sunward
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Figure 4-1: Spectrometer design overview (shown without MLI)

facing gusset of OSIRIS-REx. Cables extend along the outer surface of the instrument deck

to connect the spectrometer MEB to the local support electronics of the SXM. The bracket is

mechanically and thermally coupled to the spacecraft gusset, and is constructed at an angle

to orient the SDD boresight to the +X axis of OSIRIS-REx, the nominal direction of the

sun during the REXIS science observations. The SXM assembly is attached to the bracket

and consists of the housing, a collimator, the SDD and the SXM electronics board (SEB).

The SXM housing contains the SDD and SEB and protects the SEB from the radiation

environment. The SDD is housed in a commercially available package from Amptek, Inc.

The AXR SDD includes the SDD and a thermoelectric cooler (TEC) to cool the SDD. The

SDD data is readout by custom designed electronics on the SEB and transmitted to the

REXIS MEB for further processing through the intra-instrument harness. The SEB filters

noise from the power input to the Amptek package and amplifies the analog output signal

from the SDD to the spectrometer MEB.

The spectrometer and SXM are mounted externally to OSIRIS-REx but in different

locations, as shown in Figure 4-3. The spectrometer is located near the edge of the instrument

deck to provide the radiator a near full view of deep space (note: the radiator is located on

the +Y side of the spectrometer). Furthermore, it is rotated 100 counterclockwise about the
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Figure 4-2: SXM design overview (shown without MLI)

spacecraft +Z axis in order to minimize the view factor of the radiator to the warm solar

arrays. Nominally, the sun is in the direction of +X during science operations at the asteroid.

Figure 4-3b shows the SXM and instrument deck sunshade behind which the spectrometer

is mounted. Observing the spacecraft from the +X direction, the spectrometer is completely

hidden by a sunshade on the instrument deck when the radiation cover is closed. The

sunshade greatly reduces the total absorbed solar flux of the spectrometer. Figure 4-3b also

illustrates the position of SXM on a sun-facing gusset of OSIRIS-REx. Although the SXM

will be illuminated by the sun for the majority of the mission, all but the SXM collimator is

underneath spacecraft MLI blankets (not pictured in Figure 4-3b). Note that the sunshade

has been removed from the right figure in Figure 4-3b to show a clear view of both REXIS

assemblies.

4.2 Mission Thermal Environments

The OSIRIS-REx mission consists of three periods: Outbound Cruise, Proximity Operations,

and Return Cruise. Each period consists of multiple mission phases. Figure 4-4 shows the

solar distances versus time for the entire 7-year mission. The spacecraft launches in 2016,

and after a brief check-out following launch, is placed on a 2.5-year heliocentric transfer orbit

to Bennu, referred to as Outbound Cruise. Shortly after arrival at the asteroid, OSIRIS-REx
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Figure 4-3: Isometric and side views of REXIS instrument on OSIRIS-REx

is placed in a captured orbit about Bennu for science operations during the Orbit Phase A

and Orbit Phase B. Next, the mission enters Reconnaissance Phase and various sampling

rehearsals leading up to the actual sampling of the asteroid in 2019. Finally, the spacecraft

is once again placed in a heliocentric transfer orbit to Earth to return the sample, referred

to as Return Cruise. The minimum and maximum solar distances for the entire mission are

0.77 AU and 1.39 AU, respectively.
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0.8

0.7
12/2/2015 12/1./2016 12/11/2017 12/1/2018 12/1/2019 /3(V2020 i1/3V2021 11/3WM2022 11/3f2023

Figure 4-4: Solar distance versus mission time for entire 7-year mission consisting of Out-
bound Cruise, Proximity Operations, and Return Cruise periods
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The primary REXIS science mission occurs during the Orbit and Reconnaissance phases

within Proximity Operations. Prior to its science mission and during Outbound Cruise,

REXIS is mostly off and survival is the key concern. Periodically during the 2.5-year Out-

bound Cruise, REXIS is turned on to perform internal calibrations using 55Fe sources that

are built into the instrument. During these calibrations, REXIS must satisfy the thermal

requirements corresponding to its science operation (e.g., cool the CCDs to its prescribed

operating temperature range).

Prior to performing its science mission and during Proximity Operations, REXIS is turned

on and the Frangibolt actuated to deploy the radiation cover during Detailed Survey Phase.

REXIS will operate during Orbit Phase and Reconnaissance Phase for a minimum duration

of 420 hours. During REXIS science operation, OSIRIS-REx is in a 1 km terminator orbit

about Bennu, and the spectrometer boresight is nadir-pointed at Bennu. Once the science

mission of REXIS is complete, the instrument returns to a survival mode for the remainder

of the OSIRIS-REx mission.

During science operation, the thermal environment of REXIS includes both the albedo

and infrared radiation effects of Bennu. Bennu's thermal effects, which are germane only

for operational cases, are important but not design-driving. A conservative asteroid ther-

mal model was provided to the instrument teams to use for instrument modeling efforts

[131]. For the visible spectrum, Bennu's minimum and maximum assumed albedo factors

are ami = 0.03 and a' = 0.06 for cold and hot cases, respectively. For the infrared

spectrum, the effective temperature model of Bennu based on longitude and latitude shown

in Figure 4-5 was used. For analysis at various solar distances, the temperatures in Figure

4-5 are scaled according to the inverse square law. At 1 AU, the maximum temperature

is approximately 100 *C, and the minimum temperature is approximately -70 GC. During

Orbit Phase and Reconnaissance Phase, radiation from Bennu impinges on REXIS from the

+Z direction. The majority of the direct radiation from Bennu impinges on mask, mask

frame, radiation cover, and CCDs (traveling through the coded regions of the mask).

The bounding thermal analysis cases for the REXIS mission through operation are shown

in Table 4.1. During Outbound Cruise (i.e., Cruise Phase) REXIS is primarily off, and

the hot and cold cases are the minimum and maximum solar distances, respectively. The
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Figure 4-5: Temperatures of Bennu plotted versus longitude and latitude at a solar distance

of 1 AU [131]

radiation cover is closed and the heater is on to warm the radiation cover deployment system.

Although the spectrometer is protected from direct sunlight by a sunshade, as shown in

Figure 4-3, shorter solar distances warm the external features of the spacecraft (e.g., solar

arrays). Thus, shorter solar distances marginally warm the spectrometer also because REXIS

has view factors to the spacecraft. Once in Proximity Operations at Bennu, the radiation

cover is deployed during Detailed Survey (DS) Phase and the heater is turned off. In Orbit

Phase B, REXIS is on and taking science data. The hot case is when Bennu is at perihelion,

and the cold case is when Bennu is at aphelion. Bennu's radiation effects are included for

hot case analysis and neglected in cold case analysis for conservatism since the asteroid

is significantly warmer than REXIS during operation. REXIS also operates during the

Reconnaissance phase. However, that phase is not shown separately in Table 4.1 because

the thermal environment in which REXIS will operate is identical to that in Orbit Phase B.

From this point forward, the thermal requirements and design are presented of exclusively

the REXIS SXM. Because the spectrometer is not a case study in this thesis, a detailed

design description, summary of thermal requirements, and analyses can be found in Stout
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Table 4.1: Summary of REXIS thermal analysis cases for each mission environment

Cruise, Hot Perihelion, arrays at 45deg 0.773 2322 0 Off Closed/On

Cus, Aphelion, arrays at 45deg 1.387 700 0 Off Closed/On

Min Bennu range and max
Orb B, Hot temp profile, arrays at . S

+45deg

Min Bennu range and maxOrb B ot temp profile, arrays at
Oth In +45deg, Shr

0.897 1752 20 (+Z) 750 I On

Open/Off

Open/Off

Orb B, IMax Bennu rnge,araysat 11.387 700 IN1 O penOf
cold I +45deg~no Benmu I I 1 0 II 1 -

and Masterson [132].

4.3 Solar X-ray Monitor Thermal Requirements

The SXM thermal system requirements are the steady state component temperature ranges

shown in Table 4.2. The SDD package (i.e., SDD housing) refers to the bulk temperature

of the Amptek AXR SDD package and is thermally equivalent to the base (i.e., hot side) of

the TEC. The temperature limits for the SDD housing are provided by the manufacturer.

For conservatism, the limits of the SEB are driven by the most restrictive electrical compo-

nent. If the SDD housing or SEB requirements are not satisfied, the risk is failure of the

component. During science operation, the maximum SDD temperature is the driving SXM

thermal requirement because the hot side of the TEC must be sufficiently cool so that the

TEC can drive a temperature difference to achieve less than -30 "C. Failure to cool the

SDD below -30 "C broadens the SXM spectral resolution, which degrades the ability to ac-

curately predict the X-ray solar spectrum during post-processing (which provides context to

the measurements of Bennu's fluorescence made by the spectrometer). For more information

regarding the SXM science performance and background on the REXIS science mission, see

Inamdar et al. [133] and Allen et al. [128].
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Table 4.2: SXM steady state component temperature limits

Component Non-Operational (C) Operational (C)
Mm Max Min Max

SDD Housing -65 150 -40 100
SEB -55 100 -40 85
SDD - - -100 -30

The ability of the SXM design to achieve its thermal requirements is driven by the space-

craft interface temperature. The range of allowable interface temperatures was negotiated

between the REXIS instrument team and OSIRIS-REx spacecraft developers prior to the

REXIS Critical Design Review. When the instrument is on or off, the minimum allowable

interface temperature is -30 IC, and the maximum allowable interface temperature is 50 'C.

The 50 'C limit drives the ability of the SXM to achieve the driving -30 'C SDD temperature

requirement during operation.

4.4 Solar X-ray Monitor Thermal Design Description

The thermal control system for the SXM is decoupled from that of the spectrometer because

the two assemblies are not collocated. The thermal design challenge of the SXM is cooling

the SDD during operation. Cooling the SDD is difficult because the detector must face the

sun to observe its X-ray spectrum, but the incident solar flux warms the detector and its

package. Because the SXM structure is exposed to the sun during operation, the entire SXM

except for the collimator is beneath the spacecraft MLI blanket to isolate the structure from

direct sunlight. When the SXM is not operating, all power dissipations are zero and the

entire structure is relatively isothermal. During operation, the power dissipations primarily

come from the SEB and TEC. The maximum expected total dissipation is 2.75 W (estimate

prior to test). Given that approximately 90% of this power comes from the TEC, cooling

the SDD effectively during operation requires that the TEC power dissipation be efficiently

removed from the SXM.

The SDD (i.e., the SXM detector) is located on the cold side of the TEC within the

Amptek AXR SDD package, as shown in Figure 4-6. The mounting stud allows the package
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to be fastened to the SXM housing, and the pins are attached to the SEB. The TEC base

rests on the base of the SDD housing. The TEC itself has two stages and cools the SDD. A

transmissive Beryllium window is brazed to the +X side of the SDD housing. Operationally,

sunlight passes through the Beryllium window and impinges on the SDD. The primary ther-

mal path of the SDD package is through conduction from the package into the SXM housing,

through the SXM housing into the bracket, and through the bracket into the OSIRIS-REx

gusset to which the SXM is mounted. A sensitivity analysis (manual sensitivity analysis

prior to testing) of the SDD temperature to the thermal paths of the SXM revealed that the

contact resistance at the package interface is the critical thermal sensitivity for the SXM. In

order to satisfy the maximum SDD operating temperature of -30 'C, Cho-Therm 1671 gap

filler is applied to the gap between the package and the SXM housing to decrease contact

resistance. The OSIRIS-REx gusset is the primary thermal sink for the SXM, and the space-

craft is responsible for accepting and dissipating the total SXM heat load and maintaining

the interface temperature within its allowable range (from -30 'C to 50 'C).

Amptek AXR SDD Package
TEC Base

+x

Two-stage
TEC

Figure 4-6: Amptek AXR SDD package. The Detector is the SDD, and the
Cooler is the TEC in this figure. Image courtesy of Amptek, Inc. (accessible at
http://www.amptek.com/drift.html).
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4.5 Summary

This chapter provided a REXIS instrument overview, description of the thermal environ-

ments, summary of SXM thermal requirements, and SXM thermal system description. The

REXIS instrument consists of the spectrometer and the SXM assemblies, which are mounted

in different locations on the spacecraft OSIRIS-REx. REXIS must survive a 2.5 yr cruise

period and then perform its science mission during Proximity Operations about the asteroid

Bennu. During operation, the SXM is pointed directly at the sun to provide context to the

measurements made by the spectrometer.

The second case study in this thesis implements BMV on the SXM thermal system model.

The SXM is thermally coupled to the spacecraft deck, and a TEC cools the SDD to its

operating requirement during the REXIS science mission. The driving thermal requirement

during operation is the SDD hot temperature limit, which is driven by the detector spectral

resolution requirement. To verify that the design will satisfy the requirements, analyses

and tests are performed to validate the SXM thermal models in Chapter 5 by implementing

BMV.
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Chapter 5

REXIS Solar X-ray Monitor (SXM)

Case Study

The REXIS SXM thermal system is the second case study in this thesis. Sections 5.1-

5.8 present BMV implemented on the SXM. Section 5.9 reviews the important lessons from

Sections 5.1-5.8 and compares the BMV process to a conventional model validation approach.

5.1 Step 1: Validation Problem Definition

5.1.1 Validation Requirements

The complete list of thermal requirements for the SXM is shown in Table 4.2. The SXM does

not internally dissipate power when off in a survival mode. Because the SXM structure is

beneath the OSIRIS-REx MLI blankets, all components are approximately isothermal with

the spacecraft interface temperature. Consequently, this case study will focus validation

efforts on the operational temperature requirements of the SXM, restated in Table 5.1. The

SXM requirements relevant for validation are stated probabilistically:

There shall be a probability of at least 99% that the component limits in Table 5.1 are satisfied

during REXIS instrument operation.
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The probability associated with satisfying a requirement is a systems engineering decision

that must flow down from the mission's risk posture. In this context, the probability of

satisfying a requirement is analogous to thermal design margin. A probability of 99% for

the REXIS SXM is selected because REXIS is a class D payload'.

Table 5.1: Operational temperature limits for validation requirements

In this case study, the SXM model developed will be validated using the temperature

limits in Table 5.1. As noted in Chapter 4, during operation the SXM electronics board (SEB)

is more thermally restrictive than the SDD housing (i.e., if the SEB limits are satisfied, the

SDD housing limits are satisfied). Analysis will show that the hot operational temperature

limit of the SDD will drive the SXM thermal design.

5.1.2 Physical Problem Documentation

In Chapter 4, the thermal environments and SXM thermal system design are documented.

Because the validation problem requirements consider the thermal response of the SXM only

during operation, the relevant mission phases are Orbit Phase and Reconnaissance Phase,

whose thermal environmental parameters are shown in Table 4.1. Nominally, the sunlight

impinges on the SXM directly from the +X direction (see Figure 4-2), and the spacecraft solar

distance ranges from 0.89 AU to 1.39 AU. The model validation efforts will consider thermal

environment and SXM power modes for Orbit/Reconnaissance Phase only. As mentioned

in Chapter 4, the thermal environments of Orbit Phase B and Reconnaissance Phase, when

REXIS performs science observations, are identical.

'Per the document NPR 8705.4-Risk Classification for NASA payloads
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5.1.3 Model Development and Documentation

This section explains the selection of SXM thermal model structure and parameters. The

SXM thermal model formulation, including its physical assumptions, details of the model

structure, and descriptions of model fidelity axe provided in Appendix C. The final product

of this section is a ready-to-use model that generates mission temperature predictions for

the components of the SXM that can be compared to the Table 5.1 limits.

A lumped parameter (i.e., network) model of the SXM is selected for BMV because it

is physics-based and not computationally expensive. The model formulation for the SXM

lumped parameter model is obtained by re-writing Equation (2.1):

Y = 77SXM(X) (5.1)

where x is the complete set of model parameters including all system parameters (e.g.,

geometries and material properties), initial conditions, and boundary conditions, ?7sxM is

the SXM lumped parameter model, and y is the output vector of node temperatures and

heat flows. For a detailed description of the model underlying Equation (5.1), see Appendix

C. The three QoIs for this case study axe the steady state temperature predictions of the

components shown in Table 5.1 where Th is the temperature of the SDD housing, TSEB

is the temperature of the SEB, and T~dd is the SDD temperature (i.e., Q C y and Q =

[Th, TSEB, T]ddT).

The SXM model parameter values are based on the system design that includes geometry

and material properties, the interface with the spacecraft, and the space thermal environ-

ment. Table 5.2 shows the nominal model parameters for the SXM model; there are 38

total parameters. Depending on the parameter, nominal either refers to the parameter's

default design value, an uncertain parameter's current best estimate, or a median value for

the parameter. Examples of each type of nominal parameter values include:

" Default design value: the number of screws between the SXM housing and the

bracket, N,,b, is fixed because the design is frozen and is equal to four screws.

" Current best estimate: the conductance between the spacecraft and the SXM
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bracket, Gb, is uncertain, but the best estimate of its value comes from empirical

contact conductance data [4, 134] and is 2,000 w.

* Median parameter value: the solar flux, #, depends on the heliocentric radius of

the spacecraft, which varies throughout the mission. A median value is #,=1,367 2,

which corresponds to a radius of 1 AU.

The model output corresponding to the parameters in Table 5.2 is referred to as the nominal

model output.

Table 5.2: SXM model nominal parameter values
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Parameter Name Parameter Value Units P et N Parameter Value Units
I~me Variable I I____________ Varible

TI9C CM" PW n Area between SDD housing and SXM A 1.824e-4 M.housing

TEC Controller Gain Kp 0.05 V "C Conductance between O-REx Gb 2,000 WIm2-oC
_____________ _________ _________and bracket___________

SDD Temperature T, 30 Number of screws between SXM
Control Set Point T_-3_ *C housing and bracket No 4 -
Controller Update Conductance per screw between 042 W/OC

Frequency 0.03 HZ bracket and SXM housing G____2_W/_

Initial Applied V 3.0 V Conductance per screw between SEB G 0.26
TEC Voltage Vc_3._ V_ _ and SXM housing

Node Sped&if Reats Bracket Interface Surface Area Ab 0.0035 m2

Bracket Specific Heat c. 961 J1kg-K Number of screws between SEB and N, 4 -
___SXM housing

SXM Housing c 961 J1kg-K Conductivity of pins on SDD package k 400 W/m-*C
Specific Heat P2 -___________ __M_____________

Specic Heat C 800 J/kg-K Area of pins on SDD package Ap. 1.968e-6 m2

Spei Heating c 4  461 11kg-K Length of pins on SDD package L 0.00762 m

Collimator Conductance between SDD housing 20 WiLOC
Specific Heat P.5 961 1kg-K and SXM housing G 2.___ W/m__

Md Masse. Temperare of TO 40
__________ _______ ______OSIRIS-REx _____________

Bracket Mass in, 0.1082 kg Number of screws between collimator N 3and SXM housing

SXM Housing Mass m, 0.0192 kg l mseawsi

SEB Mass m3 0.0060 kg Solar Flux 1,367 W/m
2

SDD Housing Mass n4  0.0120 Collimator External Surface Area Aow 0.000246 M2

Collimator Mass m5  0.0090 k Teperature of T 2.73 K
___________ ________ _______ ______Deep Spae _____ ________

Power Collimator Absorptivity O 0.5 -
SDD Heat Load I 0.01 W Collimator Emissivity 0.8 -

SEB Heat Load I1 0.20 W SDD Housing Area Exposed to Direct Ah 3.9e-5 M2
_____________ L ___________ ________Sunlight ______

Cd0s110 Paramist SDD Housing Absorptivity ah 0.5 -

Conductance per
screw between G 0-21 W/0C Effective IR Radiation Area of Acas 0.00128 M2

collimator and SXM "xo02 Collimator
housing I I



5.2 Step 2: Uncertainty Propagation and Parameter

Prioritization-First Pass

The SXM case study traverses BMV steps two through five more than once to validate the

SXM thermal model, as shown in Figure 2-1. The following sections present each step of

BMV sequentially and each step pass is denoted (e.g., the second time step two is performed

is referred to as step two, second pass). The goals of UP and parameter prioritization for

the SXM are:

" To determine the probability that the design requirement will be met

" To identify important model parameters that require additional research or experimen-

tation to reduce their uncertainties

First, the SXM model parameter distributions are assigned prior uncertainty distributions.

Next, uncertainty analysis (UA) and global sensitivity analysis (GSA) are performed for the

SXM. Finally, a prioritized list of parameters is provided based on the results of GSA.

Before UA and GSA, the uncertainty for each model parameter is characterized. In to-

tal, the SXM model contains 38 parameters, of which 18 parameters are uncertain or exhibit

natural variability (e.g., solar flux). As an example of a known model parameter value, the

number of the screws between the SXM housing and bracket is known to be four. For the

uncertain parameters, distribution type and ranges must be specified in order to probabilis-

tically propagate the uncertainties through the model. Table 5.3 shows all 18 uncertain or

naturally varying SXM model parameters and their initial probability distribution param-

eters. In all cases, it is possible to conservatively estimate the maximum and minimum

expected values for the parameter, but no shape information for the probability distribu-

tions is known. Consequently, all 18 initial parameter distributions are assigned uniform

distributions. To place a value on the minimum and maximum parameter values, lookup

tables [4, 5, 134, 135] are used for the node specific heats, conduction parameters, and ra-

diation parameters. The lookup tables provide estimates based on a historical data for a

measured value. The minimum and maximum values are consistent with the worst hot and

cold case assumptions used in conventional model validation thermal analysis. Finally, the
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power dissipations are based on power analyses of the SEB circuitry and the Amptek package

thermoelectric cooler (TEC).

Table 5.3: SXM model nominal parameter values and initial parameter distribution values

Parameter Name Variable Units Nominal Value D RbuInP mi 1 (Maram vr I

Conductance between O-REx
and bracket W/m 2-C 2,000

unuorm

Uniform

10 Conductance per screw between G, W/C 0.42 Uniform 0.11 1.32
bracket and SXM housing

Conductance per screw between G W/C 0.26 Uniform 0.07 0.80SEB and SXM housing WIPA604?08

12 Conductivity of pins on SDD k W/m-oC 400 Uniform 350 405
__________ packagce________ ______

13 Conductance between SDD Gh W/m 2-C 2,000 Uniform 100 4,000
__________housing and SXM housing________

14 Conductance per screw between Go W/C 0.21 Uniform 0.03 0.42- ~collimator and SXM housing-

15 Solar Flux W/m2  1,367 U1iftrf 700 1,7$2
16 Collimator Absorptivity - 0.50 UnhifMM 0.31 0.60
17 Collimator Emissivity r - 0.80 Unifbrm 0.78 0.82

18 SDD Housing Absorptivity a - 0.50 Uniform 0.30 0.52

To provide an example of how the minimum and maximum parameter values are derived

for the uniform distributions, Table 5.4 shows the recommended conductance values for an

aluminum bolted interface (with no gap filler). For a given screw size, small stiff surfaces

yield greater conductance across a bolted interface than large thin surfaces. Consider the

conductance, per screw, across the interface between the SXM housing and the bracket, G,,b:

while strictly looking at the screw size 6-32, provides the nominal value, the maximum value

is selected from a small stiff surface two sizes larger (10-32) and the minimum value is selected

from a large thin surfaces two sizes smaller (2-56). Thus, the minimum and maximum values

in Table 5.3 for G,,b from Table 5.4 are 0.105 and 1.32, respectively. The screw sizes two

sizes larger/smaller are used is to increase the likelihood that the true conductance value is
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contained within the bounds of the initial probability distribution.

Table 5.4: Thermal conductance design guidelines from TRW for an aluminum bolted
interface. Table from [4, Table 8.4]

Coadimuctac (W/K)

screw size Small Stiff Surfaces Lane Tin Sufaces

2-56 0.21 0.105
4-40 0.26 0.132
6-32 0.42 0.176
8-32 0.80 0.264
10-32 1.32 0.527
1/4-28 3.51 1.054

The screw conductance example illustrates the philosophy in selecting the initial distri-

bution variances: the minimum and maximum range should be selected so that the true

parameter value is contained, but not so large that the parameter's sensitivity is artificially

inflated. In practice, adjusting the variances may be necessary as the model is run. Fur-

thermore, a sensitivity analysis to a particular parameter's uncertainty distribution can be

performed if there is poor prior knowledge of a parameter's value to determine the influence

of the parameter's uncertainty on the output.

The SXM model is first run for the nominal parameter values in Table 5.2. The nominal

temperature predictions are shown in Figure 5-1, and steady state temperatures are achieved

after approximately 10 minutes. The temperatures of the SEB and SDD housing are 41 'C

and 42 "C, respectively. The temperature of the SDD is -30 "C. All requirements from Table

5.1 are satisfied for the nominal parameter values.

Although the requirements are met in the nominal case, the requirements may not be

satisfied when the parameter uncertainties are considered. As in the radiator case study

in Chapter 3, the model structure uncertainty is temporarily neglected and only parameter

uncertainties are considered for the first uncertainty propagation. A Monte Carlo (MC)

simulation is performed to propagate the parameter uncertainties through the SXM model.

Rewriting Equation (2.3) for this MC analysis, Equation (5.2) shows the MC formulation

for the parameter uncertainty distributions in Table 5.3:
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Figure 5-1: Thermal predictions for SXM using nominal parameters from Table 5.2 where a
hot start is assumed with initial node temperatures of 27 'C. The initial SDD temperature
is -60 'C.

7SXM,N 7SXM(Xi) (5.2)
i=1

where rSXM is the SXM model and xi is the ith randomly sampled set of parameters. The

MC estimator, rSXMN, is the expected output value of the model.

To select a suitable number of random samples, N, the MC standard error is computed.

The minimum allowable probability for satisfying each temperature requirement is 99%.

When the probability of not satisfying the requirements is much greater than p = 0.01 (i.e.,

probability of 1%), fewer MC samples are required because the estimated probability is

larger. Thus, we are interested in the number of samples, N, required to accurately estimate

probabilities of p = 0.01 because it drives the minimum allowable N value. For the SXM,

a MC standard error of 0.001 is sufficient because the error in the probability estimate will

not effect decisions/analyses made later in the case study. The MC standard error is shown

in Equation (5.3):

eMc = ) (5.3)
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where eMc is the MC standard error and p is the specified probability of not satisfying the

temperature requirements (e.g., p = 0.01 for the SXM). For N = 10,000, the MC standard

error is eMc = 0.001. A MC simulation that predicts a probability of p = 0.01 of satisfying

the requirement has a 3a confidence interval of [0.007, 0.013]. The number of MC random

samples used for uncertainty analysis is N = 10,000.

After running the MC analysis, all three component temperatures in Table 5.1

are satisfied with the required 99% probability given the SXM thermal model's

parametric uncertainty. At this stage in BMV, step three (Figure 2-4) dictates that

a model validation experiment be performed to validate the model since all requirements

are predicted to be met. However, this case study will relax the bounds on the interface

temperature with the spacecraft OSIRIS-REx, TO-REX, to determine at what temperature

limits the interface could be set using BMV. The maximum allowable value of TO-REx is

important because:

" The SDD temperature is the driving thermal system requirement for the SXM, and

the upper limit of TO-REX is the most critical parameter in determining whether the

SDD -temperature requirement is achievable.

" The allowable flight temperatures for TO-REx range from [-30,50] 'C and are require-

ments of the spacecraft thermal system. The temperature range was negotiated be-

tween REXIS and the spacecraft during preliminary design (before the Critical Design

Review). The 50 'C limit is driving because the region where the SXM is mounted is

illuminated by the sun during the mission. The 50 *C limit resulted in design changes

and potential operational constraints on the spacecraft that may have not been nec-

essary for a higher upper limit. The design changes to the spacecraft resulted in an

increase to the spacecraft accommodations cost for REXIS.

BMV is used to validate the model of the SXM and re-evaluate the limits of TO-REX to see if

the 50 'C limit is an appropriate upper interface temperature limit. Furthermore, an increase

of the 50 IC limit, if allowable once the model has been validated, represents a cost savings

that could have occurred when the ranges of TO-REx were set. For a more detailed discussion

of the design changes and operational constraints due to the 50 "C limit, see Section 5.9.
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The first step is to repeat the MC analysis in Equation (5.2) for various TO-REx tem-

peratures. In order to find the TO-REx upper limit at which the requirements in Table 5.1

are no longer satisfied. Figure 5-2 shows the joint cumulative distribution function (CDF)

of the SDD temperature, Tdd, and the spacecraft interface temperature, TO-REx. The joint

CDF is created by performing MC analyses at discrete values of TO-REx, and the number of

samples for each MC simulation is N = 10,000. For a given spacecraft interface temperature,

the contour value is the probability that the SDD temperature is equal to or less than the

y-axis value. For example, the probability that the SDD temperature is at or below -28 'C

for an interface temperature of 80 'C is approximately 90%. From Figure 5-2, the thermal

design of the SXM is unable to achieve the -30 0C SDD temperature limit with at least 90%

probability near an interface temperature of TO-REx = 75 0C.

-22 .9
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0
0.7

-24

0.6

0.5
-26

0.4

0.3

-28 ..2

0.1

-30
70 72 74 76 78 80 82 84 86 88

Spacecraft Interface Temperature, T ( C)

Figure 5-2: Joint cumulative distribution function for SDD temperature and the temperature
of the spacecraft deck, TO-REx

MC simulations at discrete TO-REx values are shown in Figure 5-3. The spacecraft

interface temperature, TO-REx, ranges from 75 'C to 90 'C in increments of 5 'C. On the

left, histograms are shown at each temperature to illustrate the number of model evaluations

at or near the -30 'C limit. At 90 GC, no model evaluations yield a temperature prediction

for the SDD of -30 'C (i.e., the probability of meeting the requirement is zero). CDFs
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are shown on the right side of Figure 5-3 using the same data from the histograms. Each

empirical CDF shows the probability that the -30 'C limit is satisfied.
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Figure 5-3: Histograms and CDFs of Tsdd conditioned on TO-REx- MC simulation results
shown for 10,000 samples at each TO-REx value.
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The CDF of the SDD temperature conditioned on TO-REx is found for Tdd = -30 'C by

taking the Tdd = -30 'C section from Figure 5-2 (i.e., selecting the CDF values from Figure

5-3 that intersect at -30 'C). Figure 5-4 shows the conditional CDF at Tdd = -30 'C. The

MC results for the SEB and SDD housing temperatures are included in Figure 5-4 to con-

firm that the SDD temperature is the most restrictive QoI. Because the SDD temperature

is the Qol that has the lowest TO-REX temperature corresponding to a 99% probability, the

SDD temperature is the most thermally restrictive QoL. At 63 'C, the SDD requirement is

no longer satisfied with sufficient probability. At ~75 0C, the probability that the -30 'C

limit is satisfied decreases relatively sharply to zero at approximately 90 'C. If there were no

parameter uncertainties (model structure uncertainties are not yet considered), the distribu-

tions in Figure 5-4 would instead be a single TO-REX value at which the model predicts the

requirements are not met. Reducing the uncertainties in key SXM model parameters will

reduce the uncertainty in the upper limit of TO-REx-

I1 - - - - - - - - - -- - - - - - - --- --- - - - - - - -

0.8 -

0.6 -

-- SDD
-SEB0.4 E

-SDD housing
Nominal T Value

0-02 - 99% Probability

0
40 45 50 55 60 65 70 75 80 85 90 95

Spacecraft Interface Temperature, T O-REx 0 CQ

Figure 5-4: Probability of satisfying the upper limits of the Table 5.1 temperature ranges
versus TO-REX for all three SXM QoIs based on MC simulations with N = 10,000 samples
to propagate parametric uncertainties through the SXM thermal model

GSA is used to identify key SXM model parameter(s) that heavily influence the variability

observed in the QoIs. The GSA method used for the SXM case study is the Sobol' method

[121]. The main effect and total effect sensitivities, shown in Equations (2.8) and (2.9),
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respectively, account for both a parameter's sensitivity and its uncertainty by quantifying

its effect on the model QoIs. The Sobol' method is commonly used for identifying important

model parameters and guiding future research and testing [71]. The main effects and total

effects sensitivities are evaluated using the numerical procedure outlined by Saltelli et al.

[122]. The global sensitivities for the uncertain parameters in Table 5.3 are found for all

three QoIs.

Figure 5-5 shows the main effect global sensitivities for TO-REX = 85 *C. For all three

QoIs, the sensitivity indices of the specific heats, c,,, are zero. That the sensitivities for c,,

are zero is an intuitive result because the QoIs are steady state values and do not functionally

depend on the specific heats, which affect the system's thermal time constant. The largest

sensitivity index for the SDD is the conductance between the SDD housing and the SXM

housing, SfD = 0.96. The SDD housing to SXM housing conductance is also the largest

sensitivity for the SDD housing with a sensitivity of SEB = 0.97. That these sensitivities are

near one indicates that nearly all uncertainty in the two QoIs at TO-REX = 85 'C is due to the

parameter Gh. Furthermore, it is intuitive that Gh dominates because the power dissipation

for the TEC inside the SDD housing is a large portion of the overall SXM power dissipation,

and the conductance between the SDD housing to the SXM housing is the primary thermal

path to remove the heat load.

For the SEB temperature, the second most restrictive QoI, three parameters have the

most influence: the SDD housing to SXM housing conductance, Gh, the conductance between

the housing and SEB (per screw), G8 ,,,, and the conductance between the bracket and SXM

housing, G,,b. For all three QoIs, the sum of the main effects sensitivities is nearly one,

indicating that the effects of the interactions are small. To confirm that the effects of

interactions are small, the total effects indices are found for all three QoIs. All total effects

indices are identical to the main effects indices to the second decimal place, confirming that

the parameter interactions are negligible. While the model has 18 uncertain parameters,

making it initially unclear which parameters to target in a parameter inference experiment,

the GSA results in Figure 5-5 show how the variability in the QoIs can be attributed to only

a few of the 18 parameters, G being the most significant.
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Figure 5-5: Main effects global parameter sensitivities of SXM model for all three QoIs at
TO-REx= 85 "C. The parameter variable names are defined in Table 5.3. The spacecraft
interface parameter, TO-REX, is omitted since it is held constant for this GSA.

5.3 Step 3: Experimental Goal Setting-First Pass

In step two of BMV, UA indicates that the requirements will be met when accounting for

all parameter uncertainties. Thus, the answer to the first gate in Figure 2-4-whether there

is sufficient confidence that the requirements are met-is yes, and the answer to the second

gate-whether the system-level model is validated-is no. However, the upper limit on the

spacecraft interface temperature, TO-REX, is relaxed. The case study validates the model of

the REXIS SXM and looks back in the design lifecycle to find the upper temperature limit

of TO-REX at which the interface could have been set using BMV.

With TO-REX variable, the SDD temperature is found to be the driving QoI as TO-REX

increases. From Figure 5-4, TO-REX = 63 "C is the value at which the SDD requirement is no

longer satisfied with at least 99% probability. From GSA, the uncertainty in the conductance
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between the SDD housing and the SXM housing, Gh, most significantly contributes to the

variability in the SDD temperature. A parameter inference experiment will be performed to

reduce the uncertainty in Gh to reduce uncertainty in T,, (in accordance with Figure 2-4).

In addition to the parameter inference goal, the case study will formulate a system-level

model validation experiment to validate the thermal model of the SXM.

5.4 Step 4: Design and Implementation of Experiments

Step four of BMV is divided into three sections. First, an optimal parameter inference

experiment is designed to reduce the uncertainty in the SXM conductance parameter Gh.

Second, a model validation experiment is formulated to validate the SXM thermal model over

the domain of thermal environments and operational modes expected during the mission.

The parameter inference and model validation experiments are completed during the same

test session to reduce the total time required to complete both experiments. The validation

experiment consists of 45 test phases, and the parameter inference experiment is one of the

45 phases. Third, the experimental results are shown for all test phases. Appendix A shows

the SXM thermal test plan, and Appendix B contains the raw SXM thermal test data.

5.4.1 Parameter Inference Experiment

Development of Experimental Thermal Model

The first component of Design of Experiments (DOE) for the parameter inference experiment

is to modify the model structure to match the conditions of the experiment. Pictures and

detailed descriptions of the test thermal vacuum chamber are provided in the test plan in

Appendix A. The important features of the test environment include a baseplate that can

be temperature controlled to a fixed temperature (emulating the spacecraft interface), an

evacuated chamber below 1x10- 5 torr, and nominally room temperature walls. An MLI

blanket with a hole cut-out for the collimator is draped over the SXM and baseplate to

simulate the spacecraft MLI blanket. Consequently, there are four major changes to the

SXM thermal model:
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1. Addition of observation error term, em, to the temperature predictions to account for

random noise in the temperature sensors.

2. The temperature of deep space, Tpace, in Table 5.2 becomes the temperature of the

thermal vacuum chamber wall, TW.

3. Sunlight is not simulated in the chamber so the solar flux, 4,, and all related SXM

parameters are removed (e.g., ah).

4. For the experiment, the TEC will not be software controlled but instead set to a

constant direct current voltage value. Thus, for the experimental design the TEC

voltage, VTEC, can be manually set to any value.

As in the radiator case study in Chapter 3, em is based on the characteristics of the sen-

sors used. For all temperature measurements except for the SDD, resistance temperature

detectors (RTDs) are used to make temperature measurements. Based on manufacturer

specifications of the RTDs used, Em ~A (0, u2) = .A(0, 0.152) 1C. For the diode on the

cold side of the TEC used to measure the SDD temperature, em = K(O, 0.252) "C based on

specifications from Amptek, Inc. The results of GSA indicated that the sensitivities to the

optical property parameters for all three QoIs are small. Thus, it is acceptable to neglect

the thermal effects of the sun in this test.

OBED Formulation for Parameter Inference Experiment

Bayes' Theorem, stated in the OBED form in Equation (2.10), is used to update the knowl-

edge of parameter(s) of interest in light of experimental data. Model inadequacy is temporar-

ily neglected to design the parameter inference experiment, so the observations are equal to

the model output plus the observation error:

z = r(x, 0, d) + Em (5.4)

where the terms in Equation (5.4) are:

* x: all SXM model parameters, including experimental design conditions and experi-

mental parameters of interest. All SXM model parameters are shown in Table 5.2.
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* '(x, 9, d): model evaluation for a realization of SXM model parameters

* z: experimental result or data

* 9: the parameter of interest (i.e., those parameters in x that are specifically targeted

by the parameter inference experiment). Note: 9 C x and 9 = Gh-

* d: experimental conditions (i.e., parameters in x that can be set to create different

types of experiments). Note: d C x.

The parameter of interest is the conductance between the SDD housing and the SXM housing,

9 = Gh. Through GSA, it is determined that the effects of all other parametric uncertainties

on the QoIs are small. Consequently, all parameters in x, except Gh, are fixed at their

nominal values.

The experimental data, z, are steady state temperatures of the SXM. Practically, a min-

imum of one temperature measurement is necessary to reduce uncertainty in Gh. However,

it is relatively easy to include multiple sensors in this test, so six sensors are assumed when

designing the optimal parameter inference experiment. Later, analysis is performed to find

the sensors that are most important with respect to inferring Gh. An RTD is allocated to

each node in the model (see Figure C-6) to provide a temperature measurement for each

SXM component. For exact RTD locations, see Appendix A. Assuming multiple RTDs for

each node provides no added information in the context of designing this parameter infer-

ence experiment because the model will predict the output of the sensors to have identical

distributions. Including multiple sensors for each model node is beneficial during calibration

to check the assumption that all material within a node's region is isothermal; thus, addi-

tional sensors are included on certain SXM components when feasible (see Appendix A). A

diode within the Amptek package on the cold side of the TEC provides the best possible

temperature measurement of the SDD. Thus, the data vector, z, is a 6x1 vector consisting

of temperature measurements for the bracket, SXM housing, SEB, SDD housing, collimator,

and SDD.

Parameters in x that describe either the thermal environment or SXM configuration are

identified as experimental conditions, d, and their values are selected to find the optimum ex-

periment. Table 5.5 describes the three experimental conditions for the parameter inference
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experiment. The three parameters in d that are used to create different experiments are the

chamber interface plate temperature (simulating the interface temperature with the space-

craft deck, TO-REX), the TEC voltage setting (effectively controlling TEC power), VTEC,

and the temperature of the thermal vacuum wall, T. The experimental conditions are all

contained in a vector d such that d = [di,d 2,d3lT = [TO-RExVTEC, W] T .

Table 5.5: Table of experimental conditions, d, and the range of possible values for each di

DOE Nominal Minimum Maximum
Name Variable Variable UnitsValue Value Value

Temperature of O-REx Deck TO-REx d_ _C 40 -100 75

TEC Voltage VTEC d 2  VDC 3.0 0 4.5

Temperature of Thermal Vacuum T d C 23 23 80
Chamber Wall

By design, the range of values for each experimental condition in Table 5.5 is not neces-

sarily the same as the range expected during the mission because there may be experimental

conditions outside the expected mission range that result in higher parameter inference util-

ity. The chamber baseplate temperature, TO-REX, is regulated by a controller that uses the

baseplate heater and liquid nitrogen plumbing to warm and cool the baseplate, respectively.

The temperature limits for TO-REX are constrained by the component limits on the SEB. To

analytically explore how the utilities change for lower TO-REX values, a minimum of -100 'C

is shown in Table 5.5. However, the minimum allowable lower limit is -30 0C to prevent

failure of SEB components. The upper limit of To-REX = 75 'C for the experiment is 25 'C

higher than the original upper limit of TO-REX = 50 'C. The SDD TEC voltage range shown

is 0-4.5 V to analytically explore a large range of possible voltages. Based on the range

of voltages in the performance estimates provided by the manufacturer in Figure C-3, the

maximum allowable TEC voltage will be constrained to 4.0 V when the final experimental

conditions are selected. Lastly, the temperature of the thermal vacuum chamber wall, T., is

nominally room temperature since the walls of the chamber are externally exposed to ambi-

ent air and are not cooled by liquid nitrogen. However, an IR heater plate can be added to

the chamber with a full view factor to the collimator such that the effective wall temperature

can be up to 80 C, if shown to be important in the experiment's design.

The next component of this BMV step is to implement an OBED method to find the
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optimal parameter inference experiment. Following the approach of Huan and Marzouk [83]

for a parameter inference experiment, the Kullback-Leibler (KL) divergence is chosen as the

utility function, u(d,z,9), in Equation (2.11). The KL divergence is a scalar, non-negative

measure of information difference between two distributions and is commonly used as the

utility function in parameter inference experiments [79, 83]. Huan and Marzouk [83] show

that an estimate for U(d) can be achieved via MC sampling:

1 out

U(d) ~ Z(\ n[p(zi10, d)] - ln[p(zi d)] (5.5)
nout =

where p(zil O, d) is the ith sample of the likelihood, and p(zild) is the ith sample of the

evidence, both terms in Bayes' Theorem in Equation (2.10). In Equation (5.5), the subscript i

denotes a realization of the parameter of interest, Oj, (randomly drawn from the uncertainty

distribution) which results in a single realization for the experimental outcome, zi. The

evidence, p(zild), in Equation (5.5) is approximated using nested MC sampling:

fin

p(zi Id) Ep(zi I Oj, d) (5.6)
j=1

where nout is the number of evaluations in the outer loop and nin is the number of evaluations

in the inner loop. A new set of realizations for the parameter of interest is drawn, and each

realization, 0(-,j), is used to evaluate the conditional probability in Equation (5.6). The

probability is evaluated using the experimental result corresponding to the set of parameter

realizations in Equation (5.5), zi. All quantities in z are conditionally independent of Gh (i.e.,

for a given realization of Gh, the experimental model is deterministic). Thus, the likelihood

terms in Equations (5.5) and (5.6) are equivalent to the product of individual likelihood

terms for each quantity in z:

M=6

p(zi9O, d) = 1 p(zhIj, d) (5.7)
k=1

where the individual likelihood terms come from the fact that there are multiple sensors used

in the experiment. There are six independent component temperature measurements in z, so

M = 6. The superscript k is used to iterate over each component's estimated measurement
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value, z4, given an experiment at d and a realization of the parameter of interest, 9i.

In Equations (5.5) and (5.6), the shape of the conditional distributions are not known in

general because there are additional uncertain parameters in x (e.g., nuisance parameters),

not in d or 9, that contribute to the output variance. However, all uncertain parameters

in this experimental design problem, except Gh, in x are fixed at their nominal values.

Consequently, the shape of the conditional distributions is identical to the shape of the

observation error distributions. The samples in Equation (5.7), z, are evaluated on Gaussian

distributions that are centered on the expected experimental result with variance equal to

the variance of Em (i.e., sampled from K(rq(x, 9i, d),oa)).

With the experimental utility defined by Equation (5.5), the goal is to find the maximum

utility, U*, by selecting a single set of the experimental conditions, d*. To compute U(d) for

a particular d, the computational cost is O(notnin). To reduce the number of model eval-

uations to O(nst), the implementation follows the recommendation of Huan and Marzouk

[83] to constrain the sampling to n.,t = nin and use the same batch of samples of 0 for the

outer loop as the inner loop. Over the domain of possible experimental conditions, d E D

a d* is sought such that:

d* = arg max U(d) (5.8)
dEV

In general, solving Equation (5.8) via grid search can be computationally infeasible (e.g. d

has high dimension or U(d) requires many model evaluations and each model evaluation

is computationally expensive). Several optimization algorithms such as the simultaneous

perturbation stochastic approximation (SPSA) [136, 137] and the Nelder-Mead nonlinear

simplex (NMNS) [138] have been proposed to solve Equation (5.8), allowing for the noisy

objective function, U(d). However, for the SXM parameter inference problem, d has only

three dimensions. While U(d) is computationally expensive to evaluate, it is feasible to solve

Equation (5.8) via grid search .
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Selection of Optimal Parameter Inference Experiment

There are four remaining questions to answer to design the optimum parameter inference

experiment:

1. What is the sample size, ns, and ni, required to accurately evaluate U(d)?

2. What is the nature of the objective space? What is the optimum experiment, d*, to

learn 0 Gh?

3. What experimental design condition(s) is most important?

4. What temperature sensor location(s) is most important?

To answer the first question, the convergence of U(d) is examined for a fixed value of d.

Fixed median experimental design conditions are selected so that d = [TO-REXVTECTW T __

[30 0C, 3 V, 30 oC]T. Figure 5-6 shows the experimental utility versus the number of samples

to evaluate the utility. At approximately n0 ,t = ni7, = 1,000, U(d) converges to within 0.1.

A sample size of nput = 1,000 is sufficient for this parameter inference experiment design

problem because U(d) is convex with one global minimum on the boundary of the domain

of d (as we will later show).
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Figure 5-6: Convergence plot for experimental utility, U(d), versus number of samples

158



To answer questions two and three, a grid search is performed to find the optimum

experiment and determine which experimental conditions are most important. Possible

experiments are evaluated on a coarse grid consisting of 1,050 points (i.e., U(d) evaluations)

where the experimental conditions considered are:

" Chamber baseplate, TO-REX: from -100 0C to 80 Ge in 20 Ge increments

" TEC Voltage, VTEC: from 1 V to 4.5 V in 0.25 V increments

" Chamber wall temperature, T: from 20 0C to 80 'C in 10 'C increments

The grid of experimental conditions is selected to both bound and uniformly investigate the

entire domain of d.

Figure 5-7 shows the results of the experimental design analysis where U(d) is evaluated

on a grid. Figure 5-7a shows the histogram of all 1,050 U(d) evaluations. The maximum

utility is near three and the minimum utility is just greater than zero. Many different

experiments yield utilities greater than two, so if the optimum experiment is infeasible (e.g.,

violation of SEB component temperature limits), a sub-optimal experiment can be performed

with nearly the same utility. Figure 5-7b, Figure 5-7c, and Figure 5-7d are scatter plots of

U(d) versus each experimental design condition. There is a medium strength correlation

between U(d) and chamber baseplate temperature, strong correlation between U(d) and

TEC voltage, and weak correlation between U(d) and chamber wall temperature. The

highest utility experiments correspond to low chamber baseplate temperatures and high

TEC voltage values: The chamber wall temperature is effectively an option to add an IR

heater plate to the chamber if shown through the experimental design to be advantageous.

Because there is a weak correlation between U(d) and the wall temperature in Figure 5-7d,

no IR heater plate is added to the chamber. The chamber wall temperature is kept at room

temperature for the experiment.

Figure 5-8 shows a heatmap of experimental utilities for TO-REX and VTEC for the same

1,050 U(d) evaluations (the dimensionality of d is now two because T" is fixed at room

temperature). Without constraints, the optimum parameter inference experiment is at

TO-REx = -100 GC and VTEC = 4.5 V. The correlations between U(d) and the design
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Figure 5-7: Histogram of experimental utilities and scatter plots of utilities versus each

experimental design condition

conditions first shown in Figure 5-7 are apparent: the TEC voltage is the primary driver of

high utility experiments but the chamber baseplate temperature is also important in max-

imizing utility. The dashed vertical line indicates that the lowest possible value of TO-REx

is at -30 'C to prevent failure of components on the SXM electronics board. Furthermore,

the horizontal dashed line indicates that the largest possible TEC voltage is 4.0 V. The op-

timum experiment within the domain of allowable d is TO-RE. = -30 'C and VTEC = 4.0 V

with an experimental utility of U(d) = U* = 2.4. Although the utility of an experiment at

TO-REx = -100 OC and VTEC = 4.5 V is higher, its utility of U(d) = 2.9 is only slightly

higher than the utility within the domain of allowable d.
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Figure 5-8: Heatmap of experimental utility for chamber baseplate temperature (simulating
OSIRIS-REx temperature, TO-REx) versus TEC voltage, VTEC. Dashed lines indicate lower
temperature limit at -30 'C and upper voltage limit at 4.0 V to indicate the domain of
allowable d.

Sensor Importance Study

Note that all U(d) evaluations assume six temperature measurements on the SXM: one RTD

on each SXM model node and one diode on the SDD. In general, it is useful to evaluate which

sensors are most important with respect to an experiment's utility. Reasons for analytically

investigating the importance of each sensor include:

" It may be difficult or problematic to install a sensor intended for a particular component

" The actual testbed may not support as many sensors as originally intended, resulting

in the need for sensor prioritization

* If a particular measurement is important for achieving the experiment's objective(s),

redundant sensors could be added as a contingency if one or more sensors fails during

the test

To evaluate the importance of each temperature measurement of the SXM with respect to

U*, the experimental conditions are fixed at the optimum conditions, d* = [TO-RExVTEC, W] T
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= [-30 "C, 4.0 V, 20 oC]T. For the fixed design conditions, the experimental utility in Equa-

tion (5.5) is re-evaluated for each sensor set so that there is an experimental utility associated

with each permutation of sensors. Because the original 1,050 U(d) evaluations assumes that

all six sensors are used, no additional model evaluations are required to evaluate Equation

(5.5). The stored model evaluations corresponding to d* are used to recompute the like-

lihoods using Equation (5.7), so the computational cost of the sensor importance analysis

is low. All possible sets of the six temperature sensors are considered. A 64-row matrix of

sensor permutations is constructed:

Bracket SXMHousing SEB SDDHousing Collimator SDD

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

1 1 1 1 1 1

where zero indicates that the sensor measurement is not available, and one indicates that

the sensor is providing a temperature measurement. Each row is a unique sensor set.

The final step of the sensor importance analysis is to correlate the presence of a sensor

with the calculated experimental utility. The Pearson correlation coefficient is used to obtain

an averaged importance rating for each sensor:

RA,B = cov(A, B) (59)

where A and B are arbitrary variables, and RA,B is the correlation coefficient whose magni-

tude ranges from zero to one. Zero indicates no correlation, and a magnitude of one indicates

strong correlation between data A and B. The correlation coefficient is computed between

all the 64 utilities from the sensor permutation matrix and the column of the permutation

matrix corresponding to each sensor location. Figure 5-9 shows a bar graph of each cor-

relation coefficient. Sensor correlation coefficients with large magnitude indicate that the

experimental utility tends to be higher when that sensor is included. The sensor with the
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largest correlation coefficient is the SDD housing at 0.91, and the sensor with the second

largest coefficient is the SDD at 0.26. All other sensor coefficients have a correlation coeffi-

cient magnitude below 0.05, so the SDD housing and SDD temperature measurements are

significantly more important with respect to achieving U*. During integration of the SXM

hardware, it was not possible to include an RTD on the SEB because there is not sufficient

surface area on the board to attach the sensor head. Because it has small correlation with

U(d), no additional hardware modifications are performed and the SEB RTD is omitted.
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Figure 5-9: Correlation coefficients, per Equation (5.9), between experimental utility, U(d),
and each possible temperature sensor location

The summary of the optimal parameter inference experiment design problem is shown

below:

" The thermal model of the SXM is modified to match the testbed environment.

* The Kullback-Leibler (KL) divergence is selected as the utility function for the exper-

imental design problem.

" The experimental utility, U(d), is maximized using a grid search. The optimum ex-

periment consists of a chamber baseplate at -30 GC, an applied TEC voltage of 4.0 V,

and a thermal vacuum chamber wall temperature of 20 IC.
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* The optimum experiment lies on the boundary of the domain of possible experimental

conditions.

* Although all temperature sensor locations provide utility, the sensors for the SDD and

SDD housing are the most important with respect to achieving high U(d)

The SXM thermal test plan includes additional details for the parameter inference experi-

ment and is given in Appendix A.

5.4.2 Model Validation Experiment

A full factorial experimental design approach, in-line with classical DOE, is adopted for

the model validation experiment. The model validation experiment takes place in the SSL

thermal vacuum chamber (same as parameter inference experiment, see Appendix A for

chamber description) and explores the largest feasible number of combinations of TO-REX and

VTEC over the domain of intended application of the SXM. The experiment does not simulate

the thermal effects of the sun and deep space, but analysis shows that these parameters are

insignificant for the SXM thermal system QoIs. Figure 5-10 shows the 45 planned test phases

for the SXM model validation experiment; 45 test phases is feasible due to the relatively small

time constant of the SXM thermal response. Each cross represents a single steady state test

phase of the model validation experiment. Five different chamber baseplate temperatures

at nine different TEC voltages are tested. All crosses are model validation experiment tests;

the red cross indicates that T36 also corresponds to the parameter inference experiment to

reduce uncertainty in Gh.

5.4.3 Experimental Results

The parameter inference and model validation experiments are executed per the test plan

in Appendix A. Appendix B shows the raw data from each test phase. The data from

the parameter inference and model validation experiments are used in step five of BMV to

calibrate the SXM experimental thermal model, quantify the calibrated model's inadequacy,

and update the flight model. In this section, plots are shown to provide a high-level summary
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Figure 5-10: Grid of all SXM thermal test phases, including parameter inference experiment

(red cross) and model validation experiment (all crosses, both blue and red). Model vali-
dation experiment coarsely grids the domain of expected TEC voltages and SXM interface
temperatures.

of SXM thermal performance during the tests. First, plots are shown to illustrate how the

SDD temperature changes with the SXM interface temperature and applied TEC voltage.

Next, the experimental data are overlaid with the Amptek TEC performance data to show

how close the initial TEC model was to reality. Finally, temperature plots for the SXM

structure are shown to indicate where the largest temperature differentials occur as heat

flows from the Amptek package to the SXM interface.

From Figure 5-10, test phases T1 through T43 were successfully executed to steady state

conditions (typical stabilization is +0.1 'C/hr for at least 30 min). Test phases T44 and

T45 were not accomplished because an electrical short caused a failure in the SDD package.

The failure of the SDD package is not a problem associated with the SXM thermal system,

experimental temperatures, or the thermal system requirements. Consequently, the only

impact to the overall model validation problem is that data is not available for the final two

test phases. Calibration in step five of BMV continues as planned with data from phases T1

through T43.

The relationship between SDD temperature and voltage/current at various chamber base-
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plate temperatures is shown in Figure 5-11 and Figure 5-12. The black dotted line on each

plot indicates the SDD requirement. An important takeaway from Figure 5-11 is that for

a maximum spacecraft interface temperature of 50 'C, the TEC is capable of achieving the

-30 'C SDD temperature requirement. At an interface temperature of 50 'C, Figure 5-12

shows that the current draw for VTEC = 4 V is approximately 0.5 A. Thus, the maximum

expected power dissipation of the TEC is approximately 2 W. When the interface tempera-

ture is below 50 'C, the applied TEC voltage is lower than 4 V because the TEC requires

less power to achieve its set point.
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Figure 5-11: SDD temperature, Td, versus TEC voltage, VTEC, for various SXM interface
temperatures ranging from 70 "C to -30 "C. There is a zero-mean Gaussian observation
error associated with each data point that is not shown for the data in this figure.
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Figure 5-12: SDD temperature, Tdd, versus TEC current draw, iTEC, for various SXM inter-
face temperatures ranging from 70 GC to -30 GC. There is a zero-mean Gaussian observation
error associated with each data point that is not shown for the data in this figure.

The experimental data are compared to the original TEC performance estimates to see

if the original performance curves are conservative or optimistic. Figure 5-13 shows the

50 0C and 70 0C performance curves from Figure C-3 overlaid on a contour plot of the

experimental data. A surface fit of the data is required for a direct comparison because

during the experiment, the SXM bracket interface, not the TEC hot side temperature, was

controlled. For a given SXM bracket interface temperature, the TEC hot side temperature

changes with the TEC voltage value, so the data need to be interpolated to show lines

of constant hot side temperature. Figure 5-13 shows that for less than 3 V, the data,

represented by the contour lines, match the 50 'C and 70 GC performance curves well. For

voltages greater than 3 V, the differences between the data and the initial estimates are

significant and greater than 5 'C in some areas. The original TEC performance estimates

are a good representation of the actual TEC performance for <3 V and are optimistic for

>3 V.

To find the TEC heat load flight envelope, Figure 5-11 and Figure 5-12 are combined

to plot the SDD temperature versus TEC heat load (i.e., power dissipation) in Figure 5-14.

As discussed earlier, at 50 'C the maximum heat load is nearly 2 W. The SXM thermal

system has approximately 10 GC margin to the SDD requirement in the hottest possible
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Figure 5-13: Comparison of Amptek, Inc. performance estimates from Figure C-3 to SXM
thermal test TEC data. Plot shows contour plot of TEC hot side temperatures versus SDD
temperature and applied TEC voltage. The contour lines are a third-order surface fit to
the data obtained during the experiment; RMS error between fit and data is approximately
IC.

operating case for the SXM. Operating the TEC below 1.5 W is more efficient for interface

temperatures below 50 "C because the SDD temperature decreases very little for increasing

heat loads. In fact, increasing the power to the TEC can increase the SDD temperature for

various hot side temperatures and heat load values (e.g., the slope of the -30 "C curve is

positive at 1.5 W).

The primary method of heat rejection for the SXM is conduction to the bracket inter-

face. In addition to providing the TEC more power, another way to achieve lower SDD

temperatures is to decrease the TEC hot side temperature (i.e., SDD housing temperature)

by decreasing the overall temperature difference between the interface and SDD housing.

Figure 5-15 shows the temperature difference between the SDD housing and SXM interface

plate as measured during the experiment. The temperature difference is larger for decreasing
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Figure 5-14: SDD temperature, Tsdd, versus TEC power dissipation for various SXM inter-
face temperatures ranging from 70 'C to -30 'C. There is a zero-mean Gaussian observation
error associated with each data point that is not shown for the data in this figure.

chamber baseplate temperatures and increasing TEC power. With 0 V applied to the TEC,

the temperature difference is approximately zero, but with 4 V applied to the TEC, the

temperature differences range from 6-12 "C. Figure 5-16 shows the temperature difference

between the SDD housing and the SXM housing. As in Figure 5-15, the larger temperature

differences occur for colder chamber baseplate temperatures. However, the magnitude of the

temperature differences is smaller than in Figure 5-15. Because the SDD housing to SXM

housing thermal path is an intermediate thermal path of the SDD housing to SXM interface

thermal path, Figure 5-16 reveals that the majority of the temperature difference in Figure

5-15 is due to thermal resistance between the SXM housing and the interface.
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Figure 5-15: Temperature difference between the SDD housing, Th, and SXM interface,
TO-REX, versus TEC voltages, VTEC, for various SXM interface temperatures. There is a
zero-mean Gaussian observation error associated with each data point that is not shown for
the data in this figure.

Figure 5-16 confirms the intuition that the optimal parameter inference experiment con-

ditions, d*, for inferring Gh are a chamber baseplate temperature of -30 'C and a TEC

voltage of 4 V. Heat transfer across Gh, between the SDD housing and SXM housing, is

approximately one dimensional. For one dimensional conduction, Equation (C.8) shows that

the temperature difference between the two components is proportional to the conductance,

AT oc Gh. Because the observations are noisy, maximizing the temperature difference be-

tween the SDD housing and SXM housing is important to reduce the variance in the Gh

posterior as much as possible (i.e., making observables highly sensitive to the quantities we

want to infer, Gh).
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Figure 5-16: Temperature difference between the SDD housing, Th, and the SXM housing
versus TEC voltages, VTEC, for various SXM interface temperatures. There is a zero-mean
Gaussian observation error associated with each data point that is not shown for the data
in this figure.

5.5 Step 5: Experimental Model Calibration and Flight

Model Update

With the parameter inference and model validation experiments complete, the next step is

to calibrate the model parameters and quantify the calibrated model's inadequacy. First, the

TEC model is updated. Second, the SXM thermal model parameters are calibrated to match

all experimental data. Next, the thermal model discrepancy is quantified by examining the

differences between the calibrated model predictions and the experimental data. Lastly, the

flight model is updated based upon changes that are made during the calibration of the

experimental thermal model.

5.5.1 TEC Model Update

Prior to thermal testing, the TEC model is based on interpolating the performance curves

(Figure C-3 and Figure C-4) provided by the SDD package manufacturer. Because the

prior model does not contain performance estimates for TEC hot side temperatures below

50 'C (thus, requiring large extrapolations for performance estimates down to -30 'C) and

171



is shown experimentally to inaccurately estimate the TEC's performance above 3 V (see

Figure 5-13), it is replaced by a new TEC model based on the experimental data from test

phases TI through T43.

A TEC model is needed that relates TEC voltage, VTEC, and hot side temperature, Th,

to the cold side temperature (i.e., temperature of detector), Tdd, and current draw, iTEC, as

shown in Equation (5.10):

[TsdiTEC f (VTEC ,Th) (5.10)

A first step in developing the new TEC model is to examine the analytical relationships

between the physical quantities in Equation (5.10). Goldsmid [139] provides the basic voltage

and cooling capacity equations for a one-layer thermoelectric module. The model assumes

no electrical resistance between the thermo-elements and metal links and that the links

themselves have zero resistance. Thermal resistance between the couple and the heat source

and sink is neglected, so that the heat transferred between the source and sink is only through

the couples. Given these assumptions, the voltage equation shown in Equation (5.11) and

the cooling capacity equation in Equation (5.12) for a one-layer thermoelectric module are:

V = S(Th- Tc)+iR (5.11)

12
QC = iSTc - -i2 R - k(Th - Tc) (5.12)2

where V is voltage, i is current, Qc is the TEC cooling capacity, and Th and T, are the TEC

hot and cold side temperatures, respectively. Note that the Seebeck coefficient, S, electrical

resistance, R, and thermal conductivity, k, are temperature independent. In Equation (5.11),

the first term captures the Peltier effect and the second term is Ohm's law. In Equation

(5.12), the first term is the Peltier effect, the second term describes the Joule heating, and

the third term is conducted heat through the TEC. Rearranging Equation (5.12) to solve for

the cold side temperature:
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TC = 2ks k (5.13)

In Equation (5.11) with constant current, the hot side temperature is linearly related to

voltage. At constant hot and cold side temperatures, current is linearly related to voltage.

In Equation (5.12), the TEC cold side is linearly dependent on the hot side and quadratically

dependent on current (and thus, voltage also from Ohm's law). However, Huang et al. [140]

found that for a one-layer TEC module over a wide range of hot side temperatures, Th, and

TEC power values, Equation (5.12) does not fit empirical data well due to the inaccuracy of

the simplifying assumptions. Instead, Huang et al. [140] established an empirical relationship

for T, that is 3 rd order with respect to TEC current draw, i.

Following the framework of Huang et al. [140], an empirical TEC model is constructed

using polynomial regression for the two-layer TEC inside the SDD package. Many other

physical or empirical TEC model options are possible (e.g., alternative regression models,

Gaussian process models, or finite elements models of the TEC). Although alternative meth-

ods offer potentially higher accuracy and/or model structure more suited for probabilistic

analysis, the TEC polynomial model structure is selected for its simplicity and accuracy.

The model is structured so that the output quantities in Equation (5.10) are generated via

two independent polynomial functions:

Tsdd = f1(VTEC, Th) (5.14)

iTEC = f2 (VTEC, Th)

where each function, fi and f2, returns a scalar value. Before regression can be performed,

a polynomial order must be selected to match the experimental data well but not overfit

the data. Overfitting the data can result in a TEC model that does not well match the

underlying physical processes and has poor predictive performance.

Polynomial regression is performed for polynomials of increasing order using the exper-

imental data. The RMS error between the polynomial functions, fi and f2, and the TEC

data is calculated. For T,&, the RMS error is 1.27 'C for a polynomial of order three and the
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maximum residual is below 3.5 'C. A third order polynomial, as shown by Equation (5.15),

is selected for fi:

Tadd = fl(VTEC, Th) = a1 + i2VTEC + 3Th + a4VTEC + ce5VTECTh+ a 6 Th +

e7VTEC + s8VECTh + 9VTECTh + o 10 Th (5.15)

where a1-a1o are the ten polynomial coefficients whose values and associated confidence

intervals axe obtained via polynomial regression. For iTEC, the RMS error is 0.008 A for a

polynomial of order two and the maximum residual is 0.015 A. A second order polynomial

consisting of six additional coefficients 01-036, as shown by Equation (5.16), is selected for f2:

iTEC = 2(VTEC, Th) = 1 + /32VTEC + /3h + 04VTEC + /35VTECTh + 0 6 Th2 (5.16)

The final polynomials from Equation (5.15) and Equation (5.16) are plotted as surfaces

against the experimental data in Figure 5-17 and Figure 5-18. The polynomial models can

be used to predict T8ad and iTEC given values for VTEC and Th. The TEC model is now

updated, and the coefficients are fixed at their regressed values.
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Figure 5-17: Surface fit for the SDD temperature, Tdd, for various TEC voltages and SDD
housing temperatures. The experimental data are marked with red points and the surface is
constructed via Equation (5.15). There is a zero-mean Gaussian observation error associated
with each data point that is not shown for the data in this figure.
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Figure 5-18: Surface fit for the TEC current draw, iTEC, for various TEC voltages and SDD
housing temperatures. The experimental data are marked with red points and the surface is
constructed via Equation (5.16). There is a zero-mean Gaussian observation error associated
with each data point that is not shown for the data in this figure.
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5.5.2 Parameter Calibration Overview

With the TEC model updated, the next step is to calibrate the parameters of the SXM

thermal model. The SXM thermal model is calibrated to match all of the experimental data

from the parameter inference and model validation experiments. Figure 5-19 illustrates the

process used to calibrate the SXM thermal model parameters. The calibration process is

iterative: the model is calibrated, then checked against the experimental data, and then

updated if the model predictions do not match the data well (goodness of fit judged with

respect to probability measure on temperature requirements).

Test data

Uncalibrated Candidate

TART Calibrate calibration Prior/Posterior
Model Predictive Check

Modified, Model prediction versus

uncalibrated model data comparison

Modify NoAcceptable Ys ,Quantify Model
Model - Reject calibration fit? Calibrated model Discrepancy

-Use evidence (e.g., Kmodel-c afbae oe

data discrepancy) to modify parameters Calibrated model with

model discrepancy quantified

Requirements

Figure 5-19: Model calibration process overview

First, the uncalibrated model is calibrated using Bayesian inference techniques (e.g.,

Markov chain Monte Carlo (MCMC) methods). The resulting candidate model is used in a

prior or posterior predictive check where the model predictions and data are overlaid. Based

on the predictive check, a decision is made as to whether the fit is acceptable. An acceptable

fit must be judged while considering the thermal system requirements. For example, if the

model is accurate to +0.1 'C, but the requirement is to control a component's temperature

to a particular set point 0.01 'C, the fit is unacceptable. If the model predicts accurately to

0.1 C and shows 10 'C margin in a worst-case scenario, the fit is acceptable. If unaccept-

able, the candidate calibration is rejected. The model modification step is an engineering

decision that uses evidence in the experimental data or the prior/posterior predictive check
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to update the model in a physically accurate manner (e.g., increase parameter distribution

limits, include the effects of additional parameter uncertainty, or change the model struc-

ture). Once the parameter calibration produces an acceptable fit, the model discrepancy

is quantified using the calibrated model predictions and the experimental data. Strictly

following the K-O approach [42], the parameter values and model discrepancy are inferred

simultaneously. For this case study, the model discrepancy is quantified after the parameter

calibration because there is no prior information regarding the magnitude of the discprep-

ancy. With the calibrated SXM model and quantified model discrepancy, the calibration

process is complete and the flight model can be updated.

To illustrate the concept of a prior or posterior predictive check, Figure 5-20 notionally

shows a distribution for a single model output, y, plotted with a single, steady state data

point. A prior predictive check is valuable in determining whether the prior model uncer-

tainty is sufficient to explain the experimental data prior to updating the model. A posterior

predictive check is useful for determining how well the updated model describes the data.

Figure 5-20a shows a predictive check where the data is plausible under the model output

distribution; in Figure 5-20b, the data is implausible under the model output distribution.

In Figure 5-20b, if the distance between the distribution and data point is large, there is

evidence of significant model inadequacy. If the distance between the distribution and data

point is small, the calibration may still be acceptable.

- = model prediction - = model prediction
0 = data point 0 = data point

y

(a) Plausible data (b) Implausible data

Figure 5-20: Notional prior or posterior predictive check for a single model output and a

single data point demonstrating plausible and implausible data under a single model output

distribution
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5.5.3 Calibration Parameter Selection: Gh Only

Calibration parameter(s) are selected before the model is calibrated. Prior predictive check-

ing (observing the differences between the model predictions and data using the prior param-

eter uncertainty distributions) is utilized in Sections 5.5.3-5.5.6 to systematically determine

the SXM thermal model parameters that require calibration. In step two of BMV, the

conductance between the SDD housing and SXM housing, Gh, is identified as the most

significant parameter in creating variance in the driving QoL: the SDD temperature, Td.

Consequently, the first parameter calibration of the SXM thermal model considers only the

parametric uncertainty in Gh-all other SXM thermal model and TEC model parameter

values are fixed.

Before calculating the posterior distribution for Gh, the prior uncertainty distribution

(see Table 5.3 for distribution parameters) is propagated through the SXM experimental

model to perform a prior predictive check. For simplicity, test phase T36, corresponding to

the optimal parameter inference experiment for inferring Gh with conditions VTEC = 4.0 V

and TO-REX = -30 'C, is the only test phase considered for the prior predictive check. Once

the data for T36 are plausible during the prior predictive check, more test phases will be

added to the model check.

Figure 5-21 shows the results of the prior predictive check with Gh as the only uncertain

parameter. Because the observation error variance is small, the prior predictive check in

Figure 5-21 (and those that follow) show the data as single points instead of a Gaussian dis-

tribution centered on the data point; later in the calibration procedure, the observation error

variance is captured when computing the posterior parameter distributions. As expected,

the SDD (Figure 5-21e) and SDD housing (Figure 5-21c) are well covered (i.e., are plausible)

by the prior predictive distribution. Because GSA indicates that both components are highly

sensitive to the uncertainty in Gh and because the optimal parameter inference experiment

is designed to make the temperature of the SDD and SDD housing highly observable to Gh

values, it is intuitive that the data are plausible and that the variances of the distributions

about the data points are large. However, the uncertainty in Gh is not enough to describe

the data for bracket (Figure 5-21a), SXM housing (Figure 5-21b), and collimator (Figure
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5-21d). The data for these three components are implausible under the model output distri-

butions, and the SXM housing and collimator distributions are cold-biased by approximately

8 0C. The final, validated SXM model must not only be able to accurately predict the SDD

and SDD housing temperatures but also the SXM electronics board (SEB) since it too is a

QoI. Because SXM housing is the direct thermal sink for the SEB, validating the predictive

capabilities of the thermal model with respect to the SXM housing is imperative. The 8 'C

cold-bias is unsatisfactory. Additional model uncertainty must be introduced to account for

the inadequacy before the posterior parameter distribution(s) can be calculated.
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Figure 5-21: Prior predictive distribution check for each SXM component for test phase

T36. Results are based on the propagation of prior parametric uncertainty in Gh only.

Model output histograms are generated via Monte Carlo sampling (5,000 samples) of the

calibration parameter's prior distribution. There is a zero-mean Gaussian observation error

associated with each data point that is not shown for the data in this figure.
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5.5.4 Calibration Parameter Selection: Gh and G,,b

The uncertainty in Gh alone is insufficient to explain the experimental data in T36, so

additional uncertainty (e.g., parametric, model structure, or observational error) must be

introduced to match the data. There are two pieces of evidence that suggest that the

unacceptable fit is due to parametric uncertainty in the conductance, per screw, between the

SXM housing and bracket, G,,b. First, the sensitivity analysis from step two of BMV (see

Figure 5-5) shows that the most sensitive parameter for the SEB is G,,b. Since the SEB's

only thermal connection is conduction to the SXM housing, G,,b is also a large sensitivity for

the SXM housing and collimator. Second, the SXM housing and collimator prior predictive

distributions in Figure 5-21 are significantly biased. Because the primary mode of heat

transfer for the SXM is conduction to the bracket baseplate, the single parameter that

controls the efficiency of the heat transfer between the SXM housing and bracket, G,,b, is a

likely cause of the persisting bias. Based on these two pieces of evidence, the conductance,

per screw, between the SXM housing and bracket, G,,b, is assigned the uniform uncertainty

distribution to which it was initially assigned in step two of BMV ranging from 0.11-1.32 1.C.

Propagating parametric uncertainties in both Gh and G,,b through the model, Figure 5-22

shows an updated prior predictive check for T36. As before, the SDD housing (Figure 5-22c)

and SDD (Figure 5-22e) data points are plausible under the model output distributions. The

approximate 8 'C model bias for the SXM housing (Figure 5-22b) and collimator (Figure

5-22d) from Figure 5-21 is reduced, but the data points are not covered by the model output

distributions. Furthermore, the 0.3 *C bias in the predictive distribution for the bracket

(Figure 5-22a) persists. Introducing the uncertainty in G,,b decreased the discrepancy be-

tween model and data for T36, but the uncertainty in the current Gh and G,,b distributions

alone is not enough to make the data for all five components plausible.
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Figure 5-22: Prior predictive distribution check for each SXM component for test phase T36.
Results are based on the propagation of prior parametric uncertainty in Gh and G,,b. Model
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parameters' prior distributions. There is a zero-mean Gaussian observation error associated
with each data point that is not shown for the data in this figure.
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5.5.5 Calibration Parameter Selection: Gh and G,,b, Relaxed G,,b

Lower Bound

As before, additional uncertainty (e.g., parametric, model structure, or observational error)

must be introduced to explain the data. Introducing the prior uncertainty of G,,b reduced

the cold-biased model predictions from approximately 8 IC to a minimum of 3 "C. There is

evidence in the experimental data and in the design of the SXM housing itself to suggest

that the initial lower bound of the G,,b distribution does not bound the true value of the

conductance. From Figure 5-15 and Figure 5-16, the experimental temperature difference

from the SXM housing to the bracket interface is approximately 10 'C, which is larger than

the temperature difference predicted by the model with G,,b at its lower limit of 0.11 C.

That G,,b, at its minimum value, does not yield the correct temperature difference between

the SXM housing and bracket suggests that the true value is below the 0.11 1 lower limitC

(since the conduction is approximately 1D).

Furthermore, a bottom-view inspection of the SXM housing, shown in Figure 5-23, re-

veals a small surface area near the fastener holes that connect the housing to the bracket.

For conduction across an aluminum-to-aluminum bolted interface, the majority of the heat

transfer occurs between the contacting material near the fastener [4]. Because there is very

little material near the fastener holes, the lower limit of G,,b may not conservatively bound

the true value of the conductance per screw. The lower bound of G,,b is relaxed to zero so

that the true value is contained in the uniform distribution ranging from 0-1.32 1. Although

not considered in this case study, the temperature difference between the SXM housing and

bracket could be reduced by increasing the surface area along the bottom of the housing.

The increase in area near the fastener holes could result in a lower, final SDD temperature

(i.e., a higher allowable interface temperature, TO-REX, for a given SDD temperature and

TEC power dissipation).
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Fastener holes that connect
the SXM housing to the
SXM bracket

Figure 5-23: Bottom view of SXM housing illustrating the small surface area around the

fasteners that connect the housing to the bracket

With the prior uncertainty of Gh and the uncertainty of G,,b with a relaxed lower bound,

the results of the prior predictive check are updated for T36 as shown in Figure 5-24. As

before, the data points for the SDD housing (Figure 5-24c) and SDD (Figure 5-24e) are

covered by the prior predictive distributions. Relaxing the lower limit of G,,b based upon

the observed temperature gradients in the data and physical inspection of the design had

the desired effect of making the data plausible under the distributions for the SXM housing

(Figure 5-24b) and collimator (Figure 5-24d). The predictions for the bracket (Figure 5-24a)

are again cold-biased by approximately 0.3 'C. Although an additional change to the model

is needed to obtain a plausible prior predictive check for the bracket, the results of Figure

5-24 suggest that the calibrated model for T36 has a small model discrepancy for the four

other components.
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Figure 5-24: Prior predictive distribution check for each SXM component for test phase T36.
Results are based on the propagation of prior parametric uncertainty in Gh and G,,b with

relaxed lower bound. Model output histograms are generated via Monte Carlo sampling

(5,000 samples) of the calibration parameters' prior distributions. There is a zero-mean

Gaussian observation error associated with each data point that is not shown for the data

in this figure.
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5.5.6 Calibration Parameter Selection: Gh, G,,b and Gb, Relaxed

Gs,b Lower Bound

There is one remaining conductance parameter between the SXM housing and the bracket

(whose uncertainty is not yet accounted for) that was previously fixed at its nominal value:

the conductance per area between the bracket and the chamber interface plate, Gb. The

prior predictive distributions in Figure 5-21, Figure 5-22, and Figure 5-24 are cold-biased by

approximately 0.3 'C, suggesting that the nominal value of Gb = 2,000 -w is higher than

the true value. The parameter Gb is now unfixed from its nominal value and assigned its

prior uncertainty distribution from step two of BMV, a uniform distribution ranging from

100-4,000 m2 -C-

The prior predictive check is updated for T36 once more by considering the uncertainty

in Gh, G,,b with relaxed lower bound, and Gb, as shown in Figure 5-25. As in Figure 5-24, the

data for the SXM housing (Figure 5-25b), SDD housing (Figure 5-25c), collimator (Figure

5-25d), and SDD (Figure 5-25e) are plausible under the prior predictive distributions. In

Figure 5-25, the bracket data point is also plausible under the prior predictive distribution

now that there is uncertainty in Gb. For test phase T36, the test phase corresponding to the

optimal parameter inference experiment in terms of information gain for Gh, the data for all

five components are now plausible for the parametric uncertainty considered.
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Figure 5-25: Prior predictive distribution check for each SXM component for test phase

T36. Results are based on the propagation of prior parametric uncertainty in Gh, G,,b with

relaxed lower bound, and Gb. Model output histograms are generated via Monte Carlo

sampling (5,000 samples) of the calibration parameters' prior distributions. There is a zero-

mean Gaussian observation error associated with each data point that is not shown for the

data in this figure.
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5.5.7 Parameter Calibration (MCMC): Gh, G,,b and Gb, Relaxed

G,,b Lower Bound

From Figure 5-19, the next steps in the calibration procedure are to obtain posterior dis-

tributions for Gh, G,,b and Gb by calibrating to multiple test phases and perform posterior

predictive checks to determine if the fit is acceptable. To sample the posterior distributions

for the calibration parameters, Iy = [Gh, Gs,b, Gb]T, the Metropolis-Hastings [141, 142] al-

gorithm for Markov chain Monte Carlo (MCMC) method is used. A summary of the prior

uncertainty distributions (resulting from the prior predictive checks in previous sections) for

each parameter in -y is shown in Table 5.6. For more information on implementing MCMC

algorithms in practice, see Andrieu et al. [143]. Once the posterior distributions are obtained,

a posterior predictive check is performed.

Table 5.6: Calibration parameter prior uncertainty distributions for MCMC. All three
parameters have uniform prior uncertainty distributions.

Parameter Units Min Value Max Value

Gh M W 100 4,000

G,b 0 1.32

Gb W 100 4,000

It is important to begin MCMC with a good starting point, -yo, that lies on the support

of the posterior distributions of the calibration parameters to reduce the number of samples

for burn-in and for proper operation of the algorithm. To find the MCMC starting point,

optimization is performed to find the set of calibration parameter values that minimizes the

sum square of residuals:

P M

yo = Y* = arg max Z(zi,j - yij) 2  (5.17)
=1j=1

where the starting point of the MCMC algorithm, -yo, is the solution to the optimization

problem, -y*. The search space, F, is the domain covered by the prior distributions for the

calibration parameters, shown in Table 5.6. Equation (5.17) shows a double summation
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of residuals squared over P total test phases and M total components where zij are the

experimental data and yij are the model evaluations achieved for discrete values of the

calibration parameters. In Equation (5.17), the subscript i iterates over the test phases, and

the subscript j iterates over the components of the SXM. For the SXM test, there are five

total components from which measurements were made, and up to 43 total test cases are

available for calibration (i.e., M = 5 and P can be 1 to 43 based on how many test phases,

T1 to T43, are chosen for calibration).

Once the starting point, -yo, is obtained, MCMC is performed to find the posterior

distributions for the calibration parameters. The algorithm below outlines the adaptive

Metropolis-Hastings algorithm implemented for the SXM calibration:

1. Draw proposal, , from q(ynewJoii)

2. Calculate acceptance ratio:

a(Yold, Yne.) = [1, (n,.)eq(%odIynew)1
7r(-Yot)q(oynewl-Y.1d)

3. Set the next value in the chain:

ynew with probability a(YoId, yne.)

Yold with probability 1 - ac(yod, Ynew)

In the MCMC algorithm, a(Yo0 d, yne,) is the acceptance ratio and 7r(y) is short-hand no-

tation for the posterior distribution (i.e., ir(7) = p(yIz, d) oc p(zIy, d)p(-y)). Each new pro-

posal, ynw, is drawn from the Gaussian proposal distribution y ~ q(ynewlyo ) = .A(yold, C),

where C = Sd COV(Y:n) = 2 cv('Y1:n). The covariance, C, is a function of the calibration

parameters dimension, d. In this case study, d = 3. The approach is adaptive because the

proposal is drawn from a multivariate Gaussian whose covariance is updated periodically by

using the previous samples in the chain. Because the proposal distribution is symmetric,
q('YoldInew) = 1 so the calculation of the acceptance ratio simplifies to a('yac, Ynew) = [1,( ]

The MCMC algorithm above is implemented to sample p(ylz, d) for measurements on the

five major SXM components (bracket, SXM housing, SDD housing, collimator, and SDD)

and any combination of test phases, TI to T43.
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Before implementing MCMC on the SXM thermal model, calibration test cases are se-

lected. Calibrating to all 43 test cases is not computationally infeasible, but is burdensome.

From inspection of Figure 5-14, Figure 5-15, and Figure 5-16, the experimental data are

smooth. Smoothness in the data over many points indicates that there is redundant in-

formation in the data and suggests that not all the data are critical for calibrating the

parameters in 7. To mitigate the computational burden of calibrating to all 43 test phases,

a subset of the test phases is selected for calibration. Although not considered here, a more

rigorous, model-based test phase selection would be to implement OBED methods. Now that

there are more calibration parameters than just Gh, step four of BMW could be repeated

to select the optimal experiment(s) for information gain in -y. While the OBED framework

would be similar to before (using the KL divergence as a measure of expected information

gain for a given experiment), the selection of multiple test phases could be extended to a

dynamic programming problem to select the optimal set of test phases for inferring y.

The down-select procedure to choose the calibration test phases follows the classical DOE

central composite (CC) designs for response surface methodology [144]. The selection of test

phases for calibration is patterned after a CC experimental design because CC designs are

used to empirically model relationships, of moderate dimensionality, between experimental

design variables and output variables, requiring significantly fewer points than full factorial

approaches. Based on a two-factor CC design pattern overlay onto the model validation

experiment grid in Figure 5-10, the following nine test phases are used for calibration:

" Center point: T5

* Factorial points: T12, T16, T21, T25

" Axial points: T1, T9, T32, T41

In addition to the nine test phases corresponding to the CC design, T36 is included because

it is the optimal experiment in terms of information gain for Gh (shown in step four of BMV),

one of the three calibration parameters. Thus, ten total test phases, of the possible 43 test

phases, are used when implementing MCMC to calibrate -y.

The adaptive MCMC algorithm is implemented for the ten calibration test phases using

the measured steady state temperatures on the five major SXM components. The observation

190



error of each sensor is included when computing the likelihood term, p(zl y), in the MCMC

acceptance ratio. Figure 5-26 shows the mixing of the MCMC chain for Gh, and Figure

5-27 shows the posterior histograms and scatterplots for the three conductance parameters

contained within -y. Although the mixing of Gh appears good, the samples versus iteration

of the MCMC chain in Figure 5-26 are asymmetric, appearing to hit a "wall" at 4,000 m-C-

Figure 5-27 confirms that Gh is pushing against the boundary of the prior uncertainty dis-

tribution. Due to the moderate correlation between the parameters, the scatterplots also

appear asymmetric.
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Figure 5-26: Plot of adaptive MCMC chain showing good mixing after initial burn-in period

but pushing up against the boundary of the prior uncertainty distribution for Gh

The results in both Figure 5-26 and Figure 5-27 are evidence of either inaccurate prior

bounds on Gh or significant model structure error. That the posterior samples for Gh are

pushing up against the 4,000 m-C upper limit of the prior uncertainty distribution is because

the upper limit is not large enough. Although originally thought to be an optimistic value

for the upper limit of the conductance between the SDD housing and SXM housing, Glasgow

and Kittredge [145] showed through gap filler performance testing that Cho-Therm 1671 has

a conductance near its vendor-specified conductance of 6,700 mw-C. In step two of BMV, the

upper limit of the uncertainty distribution for Gh is incorrectly set. Evidence [145] suggests

that the prior upper limit does not capture the true value of Gh, the error in the results from
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Figure 5-27: Posterior histograms and scatterplots for the three SXM calibration parameters

Figure 5-26 and Figure 5-27 is associated with the Gh parameter of the SXM thermal model,

not the model structure. Therefore, the upper bound of Gh is relaxed to 10,000 mw-, and

the posterior distributions for the calibration parameters, -y, are re-sampled via MCMC.

5.5.8 Parameter Calibration (MCMC): Gh, G,,b and Gb, Relaxed

Gh Upper Bound and G,,b Lower Bound

Once again, the adaptive MCMC algorithm discussed in Section 5.5.7 is implemented for

the 10 calibration test phases and all five major SXM components. The prior uncertainty

distributions for the calibration parameters are shown in Table 5.6, except the upper limit

of Gh is increased to 10,000 w i. The updated MCMC mixing plot for Gh is shown in

Figure 5-28. After an initial burn-in requiring approximately 1,000 samples, Figure 5-28

shows good mixing for Gh. Although not shown here, the mixing for G,,b and Gb is similar

to Gh: good mixing after an initial 1,000 sample burn-in period. For conservatism, the first
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2,000 samples of the posterior distributions are discarded when using samples or computing

posterior statistics to be sure that the burn-in period is removed.
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Figure 5-28: Plot of adaptive MCMC chain showing good mixing after initial burn-in period

The updated posterior histograms and scatterplots are shown in Figure 5-29. By in-

spection, the posterior distributions for Gh and G.,b are approximately Gaussian, whereas

Gb has a non-Gaussian shape. The posterior mean for Gh is 7,900 wC, which is slightly

higher than the value measured by Glasgow and Kittredge [145]-an intuitive result because

the applied torque across the Gh joint, and thus the contact pressure, is larger than that

measured by Glasgow and Kittredge experimentally. The posterior mean for G,,b is 0.079 -C,

just below the initial 0.11 - lower limit for the prior distribution. The posterior mean for
C

Gb is 1,376 m C, which is 623 w less than where Gb was fixed prior to calibration (before

the uncertainty in Gb was considered during calibration, it was fixed at 2,000 w ). Using

Equation (5.9), the correlation coefficients for the three calibration parameter posteriors are

RGh,GSb = -0.54, RGh,Gb = 0.0009, RGs,b,Gb = -0.64. The correlation between Gh and G,,b

and between G,,b and Gb is moderate, and the correlation between Gh and Gb is small. The

correlation is intuitive because the SDD housing temperature can be increased by decreasing

the value of either Gh, G,,b, of Gb. Thus, for the SDD housing temperature, the parameters

are correlated because the value of one affects the range of possible values for the other

parameters. The next step in the calibration process is to determine how well the calibrated
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model fits the data.
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Figure 5-29: Posterior histograms and scatterplots for the three SXM calibration parameters

Following Figure 5-19, the next step is to perform a posterior predictive check with the

candidate calibration. First, a posterior predictive check for T36, shown in Figure 5-30, is

completed to show how the calibrated parameters fit a single test phase. Under the posterior

predictive distributions, the data point for the bracket (Figure 5-30a) in T36 is plausible,

and the data for the SXM housing (Figure 5-30b), SDD housing (Figure 5-30c), collimator

(Figure 5-30d), and SDD (Figure 5-30e) are implausible (i.e., the data are not covered by the

distributions, as shown notionally in Figure 5-20b). Although the model is overconfident and

yields distributions that are centered on the incorrect temperatures, the distance between

the distribution and the data is small-less than 1.5 'C. Although the implausibility of the

data in T36 for the SXM housing, SDD housing, collimator, and SDD suggests that the

model is inadequate, the magnitude of the inadequacy for all four components is small and

acceptable. The inadequacy of the model is accounted for via an additive model discrepancy

term, 6(x), in the next step of the calibration process.
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Figure 5-30: Posterior predictive distribution check for each SXM component for test phase
T36. Results are based on the propagation of the posterior parametric uncertainty in Gh,
G8s,b and Gb. Model output histograms are generated via MCMC (18,000 samples of the
parameters' posterior distributions). There is a zero-mean Gaussian observation error asso-
ciated with each data point that is not shown for the data in this figure.

Unlike the previous prior predictive checks where the model is calibrated and checked

against a single test phase (T36), the posterior distributions in Figure 5-29 are obtained by
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calibrating to 10 test phases. Ideally, we would perform a posterior predictive check to all

43 test phases. To obtain an averaged sense for how well the calibrated model fits the data

for all 43 test phases, Equation (5.18) shows the calculation for the magnitude of an average

temperature difference for a single component and P test cases:

IA Tavg| = JE[r7sxm(x, di)] - zil (5.18)

where E[r/sxm(x, di)] is the expected value of the model output for experimental conditions

given by di, and zi is the data point for the ith test phase. Equation (5.18) is implemented

for all five components of the SXM for P = 43 test phases, and the results are shown in

Figure 5-31. The largest IATavgl value is the SDD, and the smallest ZATavgl is the bracket.

Thus, on average, the predictive capabilities for the calibrated model are the worst for the

SDD and the best for the bracket. On average, the mean of the posterior and the data agree

to less than 1 "C for all five SXM components. The fit is acceptable for the SXM and based

on Figure 5-19, the next step is to quantify the model discrepancy.

I -

0.8-

C
4 0.6 -

w, 064

0.2

010
Bracket SXM Housing SDD Housing Collimator SDD

SXM Component

Figure 5-31: Absolute value of temperature difference between experimental data and mean
of posterior predictive distribution (see Equation (5.18)) for all 43 test cases

5.5.9 Quantify Model Discrepancy

The final step in the SXM thermal model calibration procedure is to quantify the model

discrepancy. The model discrepancy function, J(x), is additive, as shown in Equation (2.13).

Rearranging Equation (2.13) to solve for the discrepancy:
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6(x) = z - sxM(x) - Em (5.19)

As before, z is the experimental data for each of the five major SXM components, x are all

of the model parameters, qSXM is the SXM thermal model and Em is the observation error.

The only parametric uncertainty considered in ?7sxM is the uncertainty of the posterior

distributions of the calibration parameters, -y, because the non-calibration parameters in x

have such low sensitivities with respect to the QoIs that their uncertainties are not significant.

All calibration parameters, y, are contained in x (i.e., y C x). The dimension of each

term in Equation (5.19) is 5x1 because there are five SXM components from which direct

measurements were made during the model validation experiment.

The discrepancy function is a function of the experimental conditions, d, (which are

a subset of x) because the magnitude and sign of the discrepancy function depends on

the conditions of a particular test phase. Furthermore, the discrepancy function for each

component is assumed to be independent of the other components' discrepancy functions.

Consequently, the discrepancy function in Equation (5.19) can be written as:

6 sxm,h

6(d) = 6 add,h (5.20)

6coll

6 sdd

where 6 b, 6 sxm,h, 6 ,dd,h, 6 coll, and 6 ,dd are the discrepancies of the bracket, SXM housing,

SDD housing, collimator, and SDD, respectively. Using Equation (5.19) to solve for samples

of 6(d) for each of the 43 test phases, the means of the discrepancy distributions are plotted

against VTEC and TO-REX for each component, as shown in Figure 5-32 (a, c, e, g). By

inspection, there is a smooth dependence on d for the discrepancy of each component. For

the SDD discrepancy, there is no observable dependence on d so it is addressed separately.

A Gaussian Process (GP) model, as shown in Equation (5.21), is selected for the discrep-

ancy functions for the bracket, SXM housing, SDD housing, and collimator. Advantages of
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GPs include that they are nonparametric in that they do not assume a form for 5(d), are

computationally tractable for moderate to some high dimensional problems, and probabilis-

tically interpolate between observation values [146]. The GP model formulation is:

6(d) ~ gP(m(d), k(d, d')) = gP(O, k(d, d')) (5.21)

where the mean function, m(d), is assumed to be zero for all four discrepancies, 6b, 5,xm,h,

Jsdd,h, and 6o. GP models are highly flexible models often used to fit a wide range of smooth

surfaces. The covariance kernel, k(d, d'), completely governs the behavior of the GP because

the mean is zero. A squared-exponential Automatic Relevance Determination (ARD) kernel

is used for the GP for each SXM component discrepancy:

k(d,d') = a2 exp VTEC -VEc)2 (ToREx - AREx 2 (5.22)

where u0 is the output variance, and A, and A2 are the characteristic lengths. The c- and A

variables are referred to as hyperparameters for the GP. The characteristic lengths control

how rapidly values of 6(d) change for different values of d. If A is large in a particular direc-

tion, that parameter in d is less influential to the value of the GP. The squared-exponential

ARD kernel is one of several options. For example, an empirical kernel based on the covari-

ance of the discrepancy samples or the Matern covariance function are alternative choices

for a GP kernel.

GP regression is performed using the Gaussian Processes for Machine Learning (GPML)

Toolbox [147] to find the value for the hyperparameters in Equation (5.22) so that the

discrepancy functions can be used for prediction. For regression, discrepancy samples are

generated using Equation (5.20), and the mean and variance of the samples are used for each

set of experimental conditions, d. For more information on GP regression, see [148]. Table

5.7 shows the resulting hyperparameter values for the GP associated with the discrepancy

function for each component. The characteristic lengths for voltage are approximately two

or three times larger than those of the SXM interface temperature. The magnitude of the

output variance for the bracket is much smaller than the other three components because the
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model matches the data more closely (i.e., the magnitudes of the discrepancy are smaller);

an intuitive result given that the bracket data point for T36 (and other test phases as

well) is plausible under the posterior predictive in Figure 5-30. With the values for the

hyperparameter values in Table 5.7, Equation (5.21) can now be used for prediction.

Table 5.7: GP model hyperparameter regressed values where the o's are the output standard
deviations, and the A's are the characteristic lengths. For regression, all values of TO-REx

on the training point grid are normalized by 50 "C.

Component 0-0 A (VTEC) A2 (TO-REx)

Bracket, 6b 0.032 2.792 1.220

SXM Housing, 6sxm,h 0.728 2.433 0.794

SDD Housing, 6 ,Ma,h 0.602 2.272 0.714

Collimator, 6coll 0.460 2.435 0.675

To compare the resulting GP models to the training points for 6b, 6 8xm,h, 6 sdd,h, and coll,

the plots on the right side of Figure 5-32 show the mean of the GP models for a fine grid.

By inspection, the mean of each of the four discrepancy functions are well represented by

the GP mean. The GP model discrepancy function values and topologies appear to match

the coarse training point heatmaps well over the entire domain of VTEC and TO-REx, even

extrapolating for test phases T44 and T45 (3.5-4.0 V, 70 'C) where no data is available.

The discrepancy values for the bracket are strongly correlated with the TEC voltage, and at

higher voltage values and lower chamber baseplate temperatures, the discrepancy values for

the SXM housing, SDD housing, and collimator are strongly correlated with the baseplate

temperature.
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resulting GP model discrepancy mean values for four SXM components over various TEC
voltages, VTEC, and chamber baseplate temperatures, TO-REx. GP training points found
using Equation (5.19) with the experimental data. All heatmap values are in units of 'C.
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Sample sections of the GP random fields in Figure 5-32 are considered to determine

how the GP model is matching the variance of the discrepancy samples. Figure 5-33 and

Figure 5-34 show sections from the GP models for the bracket and the SDD housing, re-

spectively. Figure 5-33a and Figure 5-34a show the model discrepancy for increasing voltage

and constant TO-REX = 25 'C. Figure 5-33b and Figure 5-34b show the model discrepancy

for increasing TO-REX and constant VTEC = 3 V. In all four plots, the GP model 95% con-

fidence interval lies inside of the 95% confidence interval for the discrepancy samples. The

variance reduction in the GP is expected because the model uses not only the discrepancy

training points at the same VTEC, TO-REx locations but also at other experimental condition

locations to improve information gain. In both Figure 5-33 and Figure 5-34, the mean of the

GP models well approximate the trends in the discrepancy samples. For example, Figure

5-33a shows both the discrepancy values increasing and the discrepancy sample variance

increasing; the GP model captures both of these trends. In summary, the GP models with

the hyperparameter values in Table 5.7 provide model discrepancy estimates for 6 b, J5sxm,h,

6 .dd,h, and 6co. for any set of VTEC, TOREx over the entire domain of intended application

of the SXM thermal model.
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Figure 5-33: GP model section for bracket model discrepancy, 6 b. The GP model is plotted
with 50 discrepancy samples, per Equation (5.19), at each location.
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Figure 5-34: GP model section for SDD housing model discrepancy, 5ssi,h. The GP model
is plotted with 50 discrepancy samples, per Equation (5.19), at each location.

The final discrepancy function in 6(d) that must be addressed is 6 sdd. As shown by

Figure 5-35a, there is not a clear relationship between the d and the experimental con-

ditions, VTEC and TO-REX. Furthermore, 6,dd does not appear to be smooth. The SDD

discrepancy values are different from the other SXM components because the TEC model,

which is a polynomial regression model, is used to estimate the SDD temperature. For some
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experimental conditions, the TEC model underestimates the actual TEC cold side temper-

ature, and for other experimental conditions, the TEC model overestimates the actual TEC

cold side temperature. There is no apparent physical tie between the experimental condi-

tions and the under/overestimation of the TEC model cold side temperature. The values of

the discrepancy samples at each experimental condition are plotted in a single histogram,

shown in Figure 5-35b. The mean of the data is y = 0.12 'C, and the standard deviation

is o- = 1.10 'C. The Gaussian distribution in Figure 5-35b is used as the SDD discrepancy

function (i.e., cdd ~ M(0.12, 1.102) 'C) because it is smooth, conservative over the entire

domain of possible VTEC and TO-RE values, and computationally cheap to generate samples.
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Figure 5-35: SXM SDD discrepancy samples and histogram. Because there is no clear
correlation between Jsdd and the experimental conditions, VTEC and TO-REX, a Gaussian
distribution, fit to the discrepancy samples, is used for predictions of 6 ,dd.

The model discrepancy functions are added to the predictions made by the SXM thermal

model to account for model inadequacies remaining after calibrating the model parameters.

To demonstrate how the model discrepancy functions are used for prediction, Figure 5-36

shows the same posterior predictive check as in Figure 5-30, but a histogram including the

additive model discrepancy is also shown. Samples of the model discrepancy functions, 6(x),

are generated by sampling the GP models for 6 b, 6 sxm,h, 6 sdd,h, and 6 cou for the experimental

conditions of test phase T36. Samples of Jsdd are generated by sampling the Gaussian

distribution for sdd from Figure 5-35b (18,000 samples total for Figure 5-36). The red

histograms in Figure 5-36 are the same as the histograms in Figure 5-30. Without the

additive discrepancy, only the data point for the bracket is plausible under the predictive
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posterior distribution. However, with the model discrepancy functions included, the blue

histograms in Figure 5-36 cover the data for all five SXM components, highlighting the

importance of including a model discrepancy term when making final model predictions.

Now, all five data points for test phase T36 (and all other test phases, although not shown)

are plausible under the predictive posterior distribution with additive model discrepancy.

The SXM thermal model discrepancy is quantified and the calibration procedure, per Figure

5-19, is complete.
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5.5.10 Flight Model Update

The final component of step five of BMV is to update the flight model based on changes

made to the experimental thermal model during the calibration process. Prior to calibration,

the only uncertain parameter in the SXM thermal model is Gh because GSA indicates that

most of the uncertainty in the SDD temperature is due to Gh. However, the parameter

calibration process reveals that uncertainty in Gh alone is not enough to accurately fit all of

the experimental data for all three QoIs. During the model calibration process, the changes

made to the SXM thermal model included three parametric changes and an additive model

discrepancy:

* Uncertainty distribution for conductance, per area, between SDD housing and SXM

housing, Gh, changes from uniform distribution ranging from 100-4,000 -w to dis-

tribution shown in Figure 5-29

* Uncertainty distribution for conductance, per screw, between SXM housing and bracket,

Gs,b, changes from uniform distribution ranging from 0.11-1.32 - to distribution

shown in Figure 5-29

" Uncertainty distribution for conductance, per area, between bracket and spacecraft

interface, Gb, changes from uniform distribution ranging from 100-4,000 - to dis-

tribution shown in Figure 5-29

" An additive model discrepancy term, J(x), is included with the model predictions to

account for thermal model inadequacies over the entire domain of expected mission

TEC voltages, VTEC, and spacecraft interface temperature, TO-REX.

Each of the four changes above are made to the flight model, so the remaining uncertainty in

the flight thermal model is due uncertainty in the three calibration parameters and the model

discrepancy functions. All parameters, except Gh, G,,b, and Gb, remain fixed at their nominal

values. The model discrepancy values are added to the model output. With the changes

to the flight SXM thermal model complete, the next BMV step is to perform uncertainty

propagation again to determine if requirements are met. Furthermore, the final uncertainty

propagation indicates the final, maximum allowable temperature of the interface, TO-REX-
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5.6 Step 2: Uncertainty Propagation and Parameter

Prioritization-Second Pass

The final analysis step of BMV is to propagate the calibrated model uncertainties (para-

metric and model discrepancy) through the model to ensure that all thermal requirements

are satisfied. Furthermore, the final uncertainty propagation will indicate the maximum

allowable spacecraft interface temperature, TO-REX, at which the SXM can meet require-

ments with 99% probability. First, MC simulations using Equation (5.2), as in the first pass,

are performed to update the results of Figure 5-4, excluding the model discrepancy, 3(d).

This time, only the uncertainty in the posterior distributions of the calibration parameters

is propagated through the model. The updated uncertainty analysis results are shown in

Figure 5-37a. Each point in Figure 5-37a is found by performing a full MC simulation with

N = 10,000 samples for a fixed interface temperature, TO-REx. Compared to Figure 5-4 the

curves are significantly sharper, indicating that the parametric uncertainty is significantly

reduced. Because the range of temperatures over which the probability falls from 100% to

0% is small, there is less uncertainty in the QoIs as the interface temperature increases.

The SDD maximum allowable operational temperature of -30 'C is still the driving thermal

requirement for the SXM. Based on Figure 5-37a, the maximum allowable temperature for

TO-REx is 63.5 "C, which is the temperature at which the probability of satisfying the SDD

requirement drops below 99%.

The uncertainty analysis results in Figure 5-37a are incomplete because they do not

include the effects of the model's inadequacy in predicting the QoIs. The additive model

discrepancy functions from step five are included with the model predictions to capture the

inadequacy:

(sxM(x) = ?7sxM(x) + 6(d) =?SXM(X) + J(VTEC, TO-REx) (5.23)

where (SxM is the prediction of the true physical process. For the second uncertainty anal-

ysis, the prediction of the true physical process is used in the MC simulations:
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N

(SXM,N = N (SXM(Xi) (5.24)

where ZSXM,N is the MC estimator for the true physical process and N is the number of

MC samples. The model discrepancy functions for the bracket, Jb, and the collimator, JcoU,

are not needed for the uncertainty analysis because they do not correspond to a QoL. The

discrepancy function for the SXM housing, 6 8xm,h, is used for the SEB because it was not

possible to measure the SEB temperature directly during the experiment (thus, not easy to

construct an explicit discrepancy function). Because the only thermal path from the SEB is

to the SXM housing, Jsxm,h is a good proxy for the discrepancy of the SEB.

The revised uncertainty analysis results, which include the effects of the model discrep-

ancy, 6(d), are shown in Figure 5-37b. The additive discrepancy increases the domain of

TO-REX values over which the probability decreased from 100% to 0% (i.e., make the curves

slightly less sharp), particularly for the SDD curve. With the model discrepancy included

with the model predictions, the maximum allowable temperature for TO-REx corresponding

to a 99% probability of meeting all requirements is 60.8 GC, which is 2.7 'C less than in Figure

5-37a. The maximum allowable interface temperature decreases when the model discrepancy

is included because the SDD discrepancy distribution has a mean of approximately zero but

standard deviation of 1.1 C, as shown in Figure 5-35b. Therefore, at interface temperatures

of slightly warmer than 60.8 *C, a slightly positive Je value could result in not satisfying

the -30 'C requirement. By inspection, the effect of the model discrepancy for the SEB

and SDD housing is small. That the SEB and SDD housing discrepancy effects are small is

intuitive because the mean values of both discrepancy functions have magnitudes that are

less than 0.5 'C (for TO-REx greater than 50 *C and VTEC greater than 2.0 V). Over the

range of allowable interface temperatures, TO-REx E [-30, 60.8] *C, uncertainty analysis

with the calibrated model (additive discrepancy included) shows that all SXM operational

thermal requirements will be satisfied.
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Figure 5-37: Probability of satisfying the upper limits of the Table 5.1 temperature ranges
versus TO-REx for all three SXM QoIs based on MC simulations to propagate parametric
uncertainties through the SXM thermal model (with and without additive model discrep-
ancy)

Although not completed in this thesis, a second GSA on the SXM could be performed to

update the list of prioritized, high sensitivity parameters. Following model calibration (BMV

step five), only three SXM parameters are uncertain. For a general system (not necessarily

the SXM), there could be a large number of uncertain parameters following model calibration.

Furthermore, design changes or additional model validation efforts could be required to
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validate the design and/or models. In such a scenario, a second GSA will indicate the updated

high sensitivity parameters, allowing for a second parameter prioritization. For example, a

second GSA will indicate if the original parameter(s) targeted for variance reduction from

the first uncertainty propagation are still the highest sensitivity, or if another parameter or

set of parameters have the highest sensitivity. For the SXM, uncertainty analysis in Figure

5-37 shows that all SXM operational thermal requirements will be satisfied, and GSA is not

required.

5.7 Step 3: Experimental Goal Setting-Second Pass

Uncertainty analysis indicates that the requirements will be met when accounting for all

remaining parametric uncertainty in the calibrated SXM thermal model and the model's

inadequacy. The maximum allowable interface temperature of the spacecraft is found to

be TO-REX = 60.8 'C. Thus, the answer to the first gate in Figure 2-4-whether there is

sufficient confidence that the requirements are met-is yes.

In Section 5.4, a model validation experiment is performed by coarsely and uniformly

gridding applied TEC voltages and spacecraft interface temperatures so that test phases

in the model validation experiment cover the entire domain of intended application for the

SXM. All 43 test phases in the model validation experiment are used to calibrate the model

and quantify the model discrepancy functions. Posterior predictive checks of the model

against the test data show that the model is an accurate representation of the SXM thermal

system over the entire domain of intended application. Thus, the answer to the second gate

in Figure 2-4-whether the system-level model is validated-is yes.

5.8 Step 6: Validation Problem Documentation

Step six of BMV consists of three components, as outlined in Chapter 2: documentation of

steps one through five of BMV, updating requirements if necessary, and recommending small

design changes for flight. For brevity, it will suffice to say that no design changes are necessary

to meet requirements. The experimental results, posterior uncertainty distributions for the

211



three calibration parameters, and model discrepancy functions for the QoIs are documented.

Important takeaways from the SXM case study include:

" A lumped parameter thermal model is constructed to estimate temperatures of the

QoIs for the SXM thermal system

" A preliminary propagation of model uncertainties indicates that all requirements for

the SXM are met for spacecraft interface temperatures ranging from -30 'C to 50 0C

and that the conductance between the SDD housing to SXM housing, Gh, is the critical

thermal system sensitivity

" The interface temperature, TO-REx, upper limit of 50 'C is relaxed and BMV is used

to find the maximum temperature at which the interface could have been set (while

still meeting the driving -30 'C operational SDD requirement)

" An optimal parameter inference experiment to learn Gh and a model validation exper-

iment are implemented and the data are used to calibrate the parameters of the SXM

thermal model and quantify the calibrated model's inadequacy

* The calibrated model and model discrepancy function are used in a final uncertainty

analysis to show that all requirements are satisfied for a maximum spacecraft interface

temperature of 60.8 'C, which is over 10 *C warmer than the original upper limit for

TO-REx

5.9 Comparison of BMV vs. A Conventional Model

Validation Approach

In the SXM case study, BMV differs from a conventional validation approach in both process

and potentially, the resource consumption of the system. First, the BMV validation process

in Sections 5.1-5.8 is compared to a conventional validation approach. Then, the impact to

resource consumption is discussed, including the implications of the 50 'C interface limit on

the spacecraft design and operation.
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In the SXM case study, there are several major differences between the BMV valida-

tion process and a conventional approach. Prior to testing and during step two of BMV,

all model parameter uncertainties (including system and environmental parameters) are es-

timated via probability distributions and propagated through the model. The model is

sampled many thousands of times, spanning both bounding and intermediate thermal envi-

ronments and system power modes. It is shown that for a spacecraft interface temperature

of TO-REx C [-30,50] 'C, the three SXM operational requirements are always satisfied.

In a conventional approach, there would likely be only two analysis cases-the worst-case

hot and cold cases. For some systems, it can be unclear which sets of parameters yield the

true worst-case hot and cold scenarios. For example, in cooling the SXM SDD, it is not

immediately clear whether it is more efficient to decrease TEC power and hot side temper-

ature or increase TEC power and accept a warmer interface temperature. The uncertainty

analysis approach in BMV can indicate which parameter sets yield the true bounding (i.e.,

worst-case) thermal scenarios. Once the upper limit of TO-REX is relaxed, BMV indicates

that at TO-REx= 63 *C, the probability of satisfying the SDD requirement is below the re-

quired 99% probability. Furthermore, the uncertainty in the SDD temperature prediction is

found via GSA to be primarily due to the uncertainty in the conductance between the SDD

housing and SXM housing, Gh. In a conventional approach, there is no systematic approach

for finding the high sensitivity parameter(s). Although an experienced engineer could find

Gh manually, BMV uses all of the information within the model to systematically identify

the important parameters, even those that are intuitively not obvious.

The results of the uncertainty propagation in step two are used in step four, design and

implementation of experiments, to optimally reduce uncertainty in Gh and validate the SXM

model. Unlike in a conventional approach, the parameter of interest, Gh, is targeted by

an experiment whose conditions are set so that information gain is maximized. Whereas

in a conventional approach a thermal engineer might test at the hot case conditions (i.e.,

maximum TO-REx and maximum power dissipations), the KL divergence experimental util-

ity function is maximized at minimum TO-REx and maximum power dissipations. For the

model validation experiment, the focus of conventional approaches is often bounding the en-

vironments in a worst-case sense. However, the focus of BMV is spanning the entire domain

213



of operational modes and conditions. For example, while a maximum TO-REX and minimum

power dissipations case might be of little interest with respect to qualifying the SXM thermal

design, it is useful for model calibration because it ensures that the validated model is not

extrapolating for relatively high TO-REX values and relatively low power dissipations. Be-

cause the time constant of the SXM is small, the BMV model validation experiment follows

a full factorial experimental design approach (which did contain the conventional worst-case

hot and cold test phases).

In BMV, the experimental results from step four are used in step five to calibrate the

model parameters and quantify the model discrepancy. Instead of following the thermal

system convention for model correlation, which often heavily relies on manual model ad-

justments from an experienced engineer, the SXM model parameters are updated using a

MCMC method, a method for Bayesian inference. The calibration parameters are selected

based on the results of GSA in step two and are systematically updated through a Bayesian

calibration process. MCMC methods are advantageous because they are highly automated,

reveal correlations between calibration parameters, and can indicate when unrealistic values

of the calibration parameters are needed to fit the data. Unlike in a conventional approach

where parameter values are replaced by new values that yield a better fit to the data, the

prior parameter distributions are updated based on information in the data in BMV. Af-

ter the model parameters are updated, the remaining model inadequacy is quantified using

Gaussian Process (GP) Models. The GPs are probabilistic estimates of the model discrep-

ancy and are added to the model output. Using BMV, the quantified model discrepancy

allows the engineer to probabilistically estimate, based on a given environment and system

power mode, how well the calibrated SXM thermal model approximates the actual temper-

atures. In contrast, a conventional approach typically requires a model correlated to some

threshold value (e.g., 3 *C)-the model is then deemed an adequate representation of the

true thermal system and the inadequacy is not quantified.

In the SXM case study, BMV led to additional information being available to the engineer

at each major step of the validation process. BMV provides a more rigorous quantification

of model uncertainties before and after testing. The output information of one validation

step is the input to the next, and validation efforts target the most important uncertainties
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in the SXM thermal system.

Although the primary innovation of BMV is to the model validation process, the imple-

mentation of BMV early in the project lifecycle could have led to system resource savings.

Because the SXM has small mass and volume, the primary "resource" parameter is the

spacecraft interface temperature, TO-REx (SXM is thermally coupled to spacecraft). The

spacecraft interface temperature upper limit of TO-REx = 50 0C has spacecraft design impli-

cations and possibly introduces additional operational constraints. Following a conservative,

conventional approach, the interface temperature maximum limit was set based on the sim-

ulation results of a worst-case hot operational scenario using a preliminary SXM Thermal

Desktop model. Given the uncertainty in the maximum power dissipation of the TEC, ther-

mal performance of the TEC, and SXM conductances, the interface limits were set so that

the SDD requirement had greater than 10 'C margin. Because the SXM is nominally facing

the sun, cooling the SXM interface to 50 'C with the GEVS [24] standard thermal design

margin of 5 *C (i.e., predictions must show a maximum interface temperature of 45 'C or

less) is the driving thermal system accommodation for the REXIS SXM. Due to the 50 *C

upper limit, design changes to the spacecraft near the SXM interface included:

" Heat spreader and RTV added to interface to decrease thermal resistance across inter-

face

" Changes in surface coatings near the SXM to help cool the mounting structure

" Redesign of MLI blankets near the interface to increase heat rejection from structure

to cooler parts of spacecraft

If the upper limit were relaxed to a warmer temperature, some or all of the above design

changes to the spacecraft may have not been necessary, thus decreasing accommodations

costs for REXIS. Furthermore, the operational mission plan has changed since the 50 "C

upper limit was set. Although current predictions indicate that the interface temperature will

be satisfied, analysis by the spacecraft indicates that power cycling of the REXIS SXM could

be necessary if temperatures are slightly warmer than expected. If the interface temperature

upper limit were higher, there is a higher probability that the SXM would remain on and

ready for observations.
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As shown in Figure 5-38, BMV increases knowledge of the system early in the project

lifecycle when important design decisions are made. For the SXM, the critical system pa-

rameter, Gh, is identified, and the uncertainties in the parameter distributions for Gh, G,,b,

and Gb are reduced during calibration. Furthermore, the calibrated model discrepancy is

quantified. After the implementation of BMV, it is shown in the SXM case study that the

maximum allowable interface temperature could be up to TO-REX = 60.8 0 C, which is 10 0C

warmer than the original limit. Instead of implementing a standardized thermal design

margin, thermal margin, if needed, could be applied to the SXM to address specific SXM

uncertainties (e.g., degradation of SDD performance due to radiation damage during the

interplanetary mission). As discussed above, the maximum TO-REX value has implications

for the spacecraft thermal design and potentially, the operation of the SXM. If implemented,

BMV could have potentially saved REXIS accommodations cost to the spacecraft by allowing

for a larger TO-REX upper limit.

Increase in system
knowledge at the

time of an
important design

decision

Knowledge of System

BMV

Identify and reduce Conventional
uncertainty in critical
system parameter(s)
earlier trugh BMV

Design Freedom

*...decision to set TO-REx

Project Lifecycle Time
Figure 5-38: Illustration of BMV on REXIS SXM over project lifecycle with respect to
knowledge of system and design freedom
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Chapter 6

Conclusion

6.1 Thesis Summary and Conclusions

Over the last several decades of space flight, spacecraft thermal system modeling software

has significantly advanced, but the model validation process, in general, has changed very

little. Although most thermal systems flown are successful, there is evidence of some model

inaccuracy and thermal system overdesign due to the conservatism of the current (i.e., con-

ventional) validation process. A significant improvement to the model validation process can

result in the reduction of resource-related (e.g., mass, volume, or power) or process-related

(e.g., design, verification and validation, operations) mission costs. This thesis proposes a

Bayesian-based Model Validation (BMV) methodology as a tailored framework that combines

the state of the art model validation methods within the fields of Uncertainty Quantification

(UQ) and Design of Experiments (DOE) to improve the thermal model validation process.

In Chapter 2, each of the six BMV steps are described for a general system: (1) valida-

tion problem definition, (2) uncertainty propagation (UP) and parameter prioritization, (3)

experimental goal setting, (4) design and implementation of experiments, (5) experimental

model calibration and flight model update, and (6) validation problem documentation. In

BMV, model uncertainties are rigorously quantified upstream of the model and propagated

through the model to determine their influence on the quantities of interest (QoIs). Critical

system parameters that most significantly create variance in the QoIs are identified. Optimal

parameter inference experiments, implemented prior to system-level model validation exper-
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iments, target the critical system parameters to learn more about the system earlier in the

project lifecycle. Finally, Bayesian inference methods are utilized to systematically update

the model given experimental data. BMV is model-based and takes advantages of system-

specific information. Furthermore, the validation process is iterative, and the outcome of

each step informs the validation procedures for the subsequent step.

Chapter 3 presents the first of two case studies and the system under study is a passive

spacecraft radiator. The radiator is a simple, notional system, and the primary objective of

the case study is to demonstrate the basic aspects BMV methodology. After a preliminary

uncertainty propagation, it is shown that the -60 'C radiator temperature requirement is not

satisfied when considering the model's parametric uncertainties. Furthermore, the radiator's

emissivity is identified as primary global sensitivity in creating uncertainty in the radiator's

temperature. A parameter inference experiment is simulated, generating synthetic data, to

reduce the uncertainty in the radiator emissivity. With the reduced emissivity uncertainty,

the radiator requirement is satisfied. A model validation experiment is implemented to val-

idate the radiator thermal model over the domain of intended application of the radiator.

The final, validated radiator model predicts that the -60 'C requirement is satisfied with

sufficient probability. For comparison, a conventional model validation approach is also im-

plemented on the radiator. It is shown that through BMV that analyses, test conditions,

and decision-making during the validation process can differ from a conventional validation

approach because more information is available to the engineer. By identifying and reducing

uncertainty in the critical system parameter (the radiator's emissivity) early in the lifecy-

cle, the case study shows that the final radiator's mass and volume could be lower than a

conventional approach.

The second case study of the thesis is the REgolith X-ray Imaging Spectrometer (REXIS)

Solar X-ray monitor (SXM). Chapter 4 provides an overview of the REXIS instrument and

a description of the thermal mission environments. Furthermore, the REXIS SXM thermal

system requirements and design are discussed as background information for the SXM case

study.

Chapter 5 presents the second case study where BMV is implemented on the REXIS

SXM. In the SXM case study, the driving thermal system parameter, the maximum inter-
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face temperature with the spacecraft, TO-REX, is relaxed to determine the maximum value

that TO-REX could have been set to using BMV. Of the three operational SXM requirements,

uncertainty analysis reveals that the detector temperature is the driving QoI as TO-REX in-

creases. Global sensitivity analysis reveals that the uncertainty in a conductance within the

SXM thermal system (i.e., G) most significantly contributes to uncertainty in the detector

temperature. Both an optimum parameter inference experiment to reduce the conductance's

uncertainty and a model validation experiment are implemented in a thermal vacuum cham-

ber. A model calibration procedure utilizing prior predictive checking and a Markov Chain

Monte Carlo (MCMC) method is used to systematically update the model parameters. Fi-

nally, once the model parameters are updated, a discrepancy term, modeled via Gaussian

Process models, is added to the model output to account for the persisting model inadequacy.

The validated SXM model is used predictively to show that the maximum value of TO-REX

could have been set up to 10 'C warmer than the original upper limit. Chapter 5 concludes

by contrasting the implementation of BMV on the SXM with a conventional thermal model

validation approach.

The primary innovation of BMV is the model validation process. BMV is a rigorous, sys-

tematic validation methodology that can identify and reduce important model uncertainties

in a spacecraft thermal system. BMV can increase knowledge of the system early in the

project lifecycle when important design decisions are made by focusing research and testing

efforts on critical system sensitivities. Because how model uncertainties affect the QoIs is

better understood, margin, if needed, can be applied in a system-specific manner to address

particular system or environmental uncertainties.

6.2 Contributions

The primary contribution of this thesis is the development of the BMV methodology which

integrates methods of UQ and DOE to improve the spacecraft thermal model validation pro-

cess. First, this thesis introduces a new way of thinking for how thermal model uncertainties

and experimental uncertainties are addressed in an integrated way throughout validation.

The focus is on quantifying the model uncertainty at its source and exploring its effects
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on the model output. Information from previous model validation steps enhances efforts in

current/subsequent steps. Second, model uncertainty is rigorously and systematically man-

aged throughout the validation process. BMV enhances engineering intuition by providing

additional information to the engineer and increases the rigor of uncertainty quantification

throughout the validation process. Third, the new methodology is implemented on a real,

industry-relevant thermal system to demonstrate potential system form and validation pro-

cess improvements. BMV is practical for real systems under realistic project constraints.

The contributions of the thesis, with respect to each thesis objective outlined in Chapter

1, are discussed below each thesis objective:

1. Quantify thermal model uncertainty associated with both the parameters and model

structure to investigate effects on thermal model predictions and identify the model

parameters that require uncertainty reduction.

Contribution: Development of methodology to probabilistically characterize thermal

model parameter and model structure uncertainties upstream of the model. Uncer-

tainty analysis and global sensitivity analysis are applied to evaluate the effects of

the model uncertainties on the QoIs. For thermal systems, the methodology enables

thermal engineers to systematically identify:

" The true worst-case thermal mission scenarios that tend to drive sizing of the

thermal system

" The frequency and/or likelihood of the worst-case thermal mission scenarios

" High sensitivity model parameter(s) and prioritize parameter(s) that require un-

certainty reduction

2. Reduce important model parameter uncertainties and validate the system-level ther-

mal design and model using optimally designed experiments.

Contribution: Application of Optimal Bayesian Experimental Design (OBED) meth-

ods to design parameter inference experiments that yield maximum information gain
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in high sensitivity parameter(s). OBED thermal experiments have system-specific de-

signs with utility functions that are formulated in accordance with the experimental

objective. OBED methods enable thermal engineers to:

" Identify experimental conditions (e.g., input power) that best accomplish specific

thermal test objectives

" Trade the difficulty of implementing particular experimental conditions with the

expected utility

* Determine the placement location and required accuracy of sensors based on the

experimental utility measure

3. Update thermal model parameters based on experimental data while accounting for

both model and experiment uncertainties.

Contribution: Development of methodology that utilizes prior/posterior predictive

checking and Bayesian inference methods to systematically calibrate thermal model

parameters. The persisting model inadequacy in the calibrated model is quantified us-

ing the experimental data. The methodology enhances thermal engineering judgment

and experience during the calibration process by:

" Utilizing information from global sensitivity analysis to determine which param-

eters to calibrate

" Updating, not replacing, prior parameter value estimates based on the information

available in the data

" Providing evidence of either unrealistic parameter bounds or model structural

errors

" Quantifying persisting model inadequacy following calibration to improve accu-

racy of predictions

4. Implement the methodology in industry-relevant case studies and demonstrate im-

provement to thermal model validation process.
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Contribution: Application of BMV on a real system, the REXIS SXM, during the

project lifecycle. Using BMV, the critical thermal system parameter of the SXM, Gh,

is systematically identified via global sensitivity analysis and reduced via an optimum

parameter inference experiment and Bayesian calibration. Under a conventional ap-

proach, the identification and reduction of uncertainty in Gh relies on the judgment,

experience, and manual analysis of the thermal engineer. Using the validated SXM

thermal model, it is shown that through BMV the maximum value of the spacecraft

interface temperature, TO-RE.--an important spacecraft thermal system design pa-

rameter-could have been set up to 10 *C warmer than the original upper limit (which

was set using a conservative conventional approach). As discussed in Chapter 5, a

warmer TO-REX upper limit could result in fewer spacecraft thermal design changes or

potential operational constraints.

6.3 Future Work

The recommendations for future work focus on three main areas: (1) broadening the applica-

bility of BMV, (2) enhancing the capability of BMV, and (3) scaling of BMV to address the

complexity of large systems seen in industry. An itemized list of specific recommendations

are provided below:

1. Broadening the applicability of BMV

" Demonstration of BMV on larger, complex thermal system (i.e., a thermal system

with many component interactions, high dimensional parameter and QoI vectors,

and global emergent dynamics) to show how BMV enhances engineering intuition

and can be tailored to models with moderate or expensive computational cost

" Implementation of BMV on a thermal system with:

- Prior parameter uncertainty distributions with large variances

- Many mission thermal environments

- Time-dependent temperature and/or heat flux requirements
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- Large thermal mass, limiting the number of test phases during experimenta-

tion

e Application of BMV on other spacecraft systems (e.g., structures)

2. Enhancing the capability of BMV

" Create prior uncertainty distributions for thermal system parameters (e.g., ab-

sorptivity and emissivity of coated surface) based on historical and/or test data

for use in preliminary thermal analysis

" Create and implement variance-based parameter prioritization procedure on sys-

tem with many high-sensitivity parameters

* Extend OBED methods to design optimal, system-specific model validation ex-

periments

" Quantify the model discrepancy, 6(x), during parameter calibration

3. Scaling of BMV to address large, complex thermal systems

" Identify methods of Uncertainty Quantification (UQ) and Design of Experiments

(DOE) utilized by BMV that require fewer model evaluations and allow for high

dimensional parameter and model output vectors

" Create procedure for reducing size/complexity of thermal model using surrogate

model approaches to improve the computational cost of the model and the effi-

ciency of reduced model construction

" Modify the way thermal engineers interface with the inputs/outputs of a Thermal

Desktop model so that BMV methods can be applied using industry standard

modeling tools
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A.1 Introduction

The REXIS Solar X-ray Monitor (SXM), shown in Figure A-1, provides context to the
measurements made by the spectrometer by measuring the X-ray solar spectrum during in-
strument operation. The driving SXM thermal design challenge is to cool the sun-facing
detector below -30 'C operationally while keeping the support electronics at warmer tem-
peratures. The SXM is thermally coupled to the spacecraft deck via an aluminum bracket.
Spacecraft MLI blankets to radiatively isolate the SXM from the flight thermal environment
cover all components but the detector aperture collimator. A two-stage thermoelectric cooler
(TEC) is located directly beneath the detector to provide active cooling.

SDD and TEC
(inside housing)

\ A
SDD

package
pins

SDD
housing

Pre-amp
board

Cho-Therm 1671

0.5 mil Be window

Coaxial Cable
Connecter

2.1in

2.2in 2.5in

RTV

Figure A-1: SXM structure and component overview. MLI not shown.

Figure A-1 shows the SXM structure, whose bracket mechanically interfaces with the
spacecraft. There are five primary components of the SXM:

" Bracket

" Collimator

" SXM housing

" SXM electronics board (SEB) (i.e., pre-amp board)
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. Amptek package

The Amptek package includes the silicon drift detector (SDD), the SDD housing, the pins

that are soldered to the SEB, and the mounting stud that mounts the package to the SXM

housing. The primary thermal path for the SXM is from the Amptek package to the space-

craft via conduction. Thus, thermal gap filler is applied between the bracket and the space-

craft and between the Amptek package and the SXM housing to minimize thermal resistance.

A.2 Engineering Model SXM Hardware Pictures

Figure A-2: Top view of interface plate with heaters and the SXM bracket. Labels on the
interface plate indicate the "Front" and "Back" sides of the plate. MLI not shown.
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Figure A-3: SXM structure showing resistive temperature detector on SDD housing. MLI
and collimator not shown.

Figure A-4: SXM structure
MLI not shown.

with all SXM resistive temperature detectors applied externally.
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Figure A-5: Final view of SXM test article with MLI blanket in SSL thermal vacuum

chamber

A.3 Test Objectives and Success Criteria

Objective 1: To validate the SXM thermal model

Success Criterion: If the thermal balance test temperatures agree to within 5 'C of the

predictions, correlation should be considered to have been achieved. If differences of greater

than 5 'C exist, then correlation should not be considered to have been achieved until further

analysis can satisfactorily explain the differences.

Objective 2: To assure that the instrument thermal design satisfies the temperature re-

quirements of the instrument in the flight thermal environments.

Success Criterion: Satisfy all component requirements with 5 "C margin as defined in

Table A.1.
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Table A.1: SXM component temperature limits

Component Survival (*C) Operational (*C)

Min Max Min Max

TEC (base) -65 150 -40 100

SEB -55 100 -40 85

SDD - -- -100 -30

Objective 3: Characterize the performance of the TEC over the entire domain of applied

voltage and hot side temperatures expected during the mission.

Success Criterion: Obtain a functional relationship between the TEC power draw and

SDD temperature given a TEC applied voltage, VTEC, and hot side temperature, Th, using

calibration data on the domain VTEC E [0,4] V and Th E [-30,75] *C. Quantify the uncertainty

in the calibrated estimates of TEC power draw and SDD temperature.

A.4 Personnel and Schedule

A.4.1 Personnel

Test Lead: Kevin Stout

Emergency Contacts:

" Kevin Stout

" Rebecca Masterson

Test Members:

* Kevin Stout
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* Mike Jones

" James Rivera

" Joseph Schwemmer

A.4.2 Schedule

Table A.2 shows the personnel schedule for test chamber monitoring. If a problem/discrepancy

is uncovered during testing, the test lead should be contacted immediately and the problem

should be documented by the monitor.

Table A.2: Personnel schedule for monitoring test chamber
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Number Test Phase
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A.5 Test Program

A.5.1 Test Description

The thermal balance (T/B) test will be performed at a pressure of 5x10- 5 torr or less.

After the chamber is pumped down and the pressure has reached 5x10- 5 torr, the T/B

test begins. The test will consist of 45 test phases, TI through T45, as shown in Figure

A-6. The stabilization requirement is 0.25 'C/hr for 30 min. The test cases in Figure A-

6 are a coarse grid of the entire domain of expected TEC voltages, VTEC, and spacecraft

interface temperatures, TO-REx. Because the SXM thermal capacitance is very small, the

time required to execute each test phase is expected to be <2 hr. There will be no bakeout

in the SXM T/B test.

T37 T38 T39 T40 T41 T42 T43 T44 T45

T1O T11 T12 T13 T14 T15 T16 T17 T18
Y 50 K K K

TI T2 T3 T4 T5 T6 T7 T8 T9

T19 T20 T21 T22 T23 T24 T25 T26 T27

0 -- #-

T28 T29 T30 T31 T32 T33 T34 T35 T36

-3 0 - - -- -----

0 1 2 3 4

TEC Voltage, VTEC MV

Figure A-6: SXM test grid. Blue crosses indicate test phases for exclusively model validation
(all phases are considered as part of the model validation experiment), orange crosses indicate
thermal balance test phases per a conventional thermal balance testing approach, and the
red cross indicates the experimental conditions corresponding to the optimal experimental
design to find the SXM conductance parameter, Gh.

In Figure A-6, there are 45 phases corresponding to three types of experiments discussed

in the thesis:
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" Parameter inference experiment (BMV): red cross (T36) in Figure A-6. The

experimental conditions are selected to create data to optimally reduce uncertainties

in the conductance parameter Gh.

* Model validation experiment (BMV): all crosses in Figure A-6. Test phases are

meant to coarsely grid all possible experiments over the domain of expected VTEC and

TO-REX during the mission.

* Thermal balance (a conventional model validation approach): orange crosses

in Figure A-6. T18 is the hottest operational case, T21 is the coldest operational case,

and T28 is the coldest survival case. T6 was selected as an additional operational data

point.

A.5.2 Test Configuration

The SXM bracket will be mounted with gap filler (Cho-Therm 1671) to an interface plate

to ensure good thermal conduction between the two surfaces. Good thermal conduction at

the interface is similar to the flight interface because room temperature vulcanization (RTV)

silicone will be used. The interface plate allows the SXM bracket to be mechanically and

thermally coupled to the chamber baseplate, which is directly temperature controlled. The

interface plate represents OSIRIS-REx and corresponds to TO-REX in Figure A-6. Kapton

heaters will be mounted to the interface plate to supplement the heating of the interface, if

necessary (will be driven by external power supplies). An MLI blanket will be draped over

the entire SXM with a single hole cut-out for the collimator. The MLI radiatively decouples

the SXM from the chamber thermal environment, which largely is the room-temperature

chamber walls.

A.5.3 Materials

Test Article

The test article includes:

* Bracket
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* SXM housing

* Collimator

" Multi-layering insulation blanket

" Amptek package

" SEB

Instrumentation and Fixturing

* Resistance temperature detectors (RTDs) (11)

" Data acquisition system

* Power supplies (6)

* SXM engineering test unit (ETU) electronics

" Interface plate

" Liquid nitrogen

" Chamber baseplate controller

" Oscilloscope

A.5.4 Facility Requirements

The SSL thermal vacuum chamber, shown in Figure A-7, will be used for this test. This

chamber has ambient temperature walls and a temperature-controlled baseplate. The SXM

is mounted to the baseplate via an interface plate.
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Figure A-7: SSL thermal vacuum chamber

A.5.5 Instrumentation

The instrumentation configuration for the test is shown in Figure A-8. The SXM is me-

chanically mounted to an interface plate, which is mechanically mounted to the chamber

baseplate. The chamber baseplate has a heater and plumbing for liquid nitrogen; its tem-

perature is regulated by a controller. Two sets of heaters on the interface plate are powered

directly by power supplies outside the chamber to supplement the chamber baseplate in

warming the SXM interface. Four additional power supplies are needed to control the SXM

TEC and measure the SDD temperature via the ETU SXM electronics. Finally, a data ac-

quisition (DAQ) system records the RTD readings on the SXM, interface plate, and chamber

baseplate.
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SSL Thermal Vacuum Chamber

ETU SXM Electronics -Scope

Interface
RTD Plate
cabling Chamber

Basepi Iate .4 Controller

(RTDs + heater) cabling iControls flow

Plumbing LN2

+ DAtaAcquisition

Figure A-8: Notional SXM thermal balance test electronics/control configuration

Chamber Baseplate

The chamber baseplate is temperature controllable: it is LN2 cooled and has heaters if the

baseplate must be warmer than room temperature. The SXM bracket mechanically interfaces

with the interface plate, and the interface plate mechanically interfaces with the chamber

baseplate. For the T/B test, the chamber baseplate is expected to operate on the interval

[-30,75] 0 C.

Temperature Sensor Description and Placement

Temperature measurements will be made using 2-lead RTDs. RTDs are adhered to the

surface of the component using aluminum tape and an additional regular Kapton overtape,

if necessary.

This T/B test utilizes 11 RTDs. The RTD placement for the SXM is shown in Figure

A-9. Furthermore, the locations and sensor numbers are listed in Table A.3. Two RTDs are

placed on the SXM housing, one on the SDD housing, one on the collimator, and three on

the bracket. Two RTDs are placed on the interface plate, and one RTD is on the chamber

baseplate. One RTD is placed on the inner surface of the MLI blanket. All SXM sensor
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placement locations satisfy two conditions:

* Coincide with nodes in the thermal model

" Representative of an isothermal component/region of SXM

The above conditions ensure that measurements can be directly compared to nodes within the

model for correlation. Furthermore, important temperature gradients between components

are captured since at least one RTD is placed on each structural component.

= RTDs

Figure A-9: SXM RTD placement
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Table A.3: List of RTDs for
functioning properly and could
"Back" designations.

T/B test. Sensor 10 is omitted because the RTD is not
not be repaired/replaced. See Figure A-2 for "Front" and

Silicon Drift Detector (SDD)

During flight, the SDD temperature is measured via the SXM ETU electronics on the MEB.

There is no RTD measurement of the SDD. For the thermal balance test, the temperature

signal (a voltage measurement from a diode on the cold side of the TEC near the SDD)

for the SDD is routed through the SEB, through the chamber wall, and into the SXM

ETU electronics, as shown in Figure A-8. The temperature diode signal is measured via

an oscilloscope which returns both a root-mean-squared (RMS) and a peak-to-peak voltage

value.

The SDD temperature diode calibration was performed by the package manufacturer
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Category Component Sensor

Number

Chamber Baseplate Bottom Controller

Chamber Baseplate Back 11

Interface Plate Front 2

Interface Plate Back 3

SXM Bracket Base 4

SXM Bracket Brace 5

SXM Bracket Top 6

SXM Housing Front 7

SXM Housing Back 8

SXM Collimator 9

SXM MLI 1

SXM SDD housing 12



Amptek, Inc. Equation (A.1) shows how the SDD diode voltage relates to temperature.

T(Vdd) = -432.9Vdd + 239.7 (A.1)

where Vdd is the final RMS diode voltage measured via an oscilloscope and T(V&) is in

units of Celsius. Equation (A. 1) is used to generate all SDD temperature predictions for the

thermal balance test.

Thermoelectric Cooler (TEC)

The TEC is powered directly via a single power supply channel. Feedthrough cables into the

chamber interface with the SEB connectors. The power signal is routed through the SEB

directly to the Amptek package TEC.

Power Dissipations

Six total power supplies (6 independent channels) are needed for the SXM T/B test:

1. Interface Plate Kapton heaters (0-20 V)

2. Interface Plate power resistors (0-20 V)

3. Amptek TEC power (0-4 V)

4. +3.3 V to SXM ETU electronics to read SDD temperature

5. +5.0 V to SXM ETU electronics to read SDD temperature

6. -5.0 V to SXM ETU electronics to read SDD temperature

A.5.6 Data Requirement

Data will be collected by an Agilent data logger connected to a SSL computer. The computer

uses Benchlink software to collect data every 10 s. Data shall be recorded and saved as *.csv

files at the end of each test phase, T1-T45 (i.e., there will be 45 individual data files). All

SDD temperature data, final RTD temperatures, and other miscellaneous test information

252



will be recorded on "EM SXM Thermal Balance Data Log.xlsx." The thermal test lead is

responsible for ensuring all data is stored on the REXIS SVN file repository.

A.6 Thermal Model Predictions

The Thermal Desktop model predictions for the mission Cruise Phase cold case and for

test phase T28 are shown in Figure A-10. Because the SXM is off, the entire structure is

isothermal and approximately -30 'C. The temperature predictions for the flight and test

simulations agree well with each other.

FLIGHT Collimator Removed

Twindow = -270C

TSDDhousing -28 OC

Tcoimator = 28 C Tbracket = -30 oC

TsMhousing = -29 OC

Figure A-10:
T28

Collimator Removed

I

Model predictions for the mission

EM TEST

Twindow = -290C

TSDDhousing = -290C

Tbracket = -300C

Tcoimmator = -280C TsxMhousing = -290C

Cruise Phase cold case and for test phase

The Thermal Desktop model predictions for the mission operational hot case and for

test phase T18 are shown in Figure A-11. The temperature difference between the SXM

housing and the SDD housing is ~~10 0C. The temperature predictions for the flight and test

simulations agree well with each other.
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FLIGHT

Twindow = 620C

TSDDhousing = 61 0

Tbracket = 520C

TCoiiimator = 56 OC Tsxmhousing = 540C

Figure A-11: Model predictions for the

v gimlmn r nWMWVWU
EM TEST

Tvindow = 590C

TSDD,housing = 590C

* =Taket 510C

Toolimator 52 OC TsxMhousing = 530C

mission operational hot case and for test phase T18

A.7 Red/Yellow Limits

The red limits are set so that a component will never exceed its temperature limit in test.

The yellow limits are set to 10 "C inside the component limits, and the red limits are set

5 'C inside the component limits. The yellow and red limits are shown for the survival and

operation modes of the SXM in Table A.4 and A.5, respectively.

Note: the failure mode of the SDD in-flight at the hot limit is failure to meet spectral

resolution requirement. No red limit is shown because the component will not break. The

yellow limit is set to warn the monitors that the science requirement is not met at current

temperature.
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Table A.4: SXM survival temperature limits

Component Yellow (C) Red (*C)

Min Max Min Max

TEC -55 140 -60 145

SEB -45 95 -50 100

Table A.5: SXM operational temperature limits

Component Yellow ("C) Red (*C)

Min Max Min Max

TEC -30 90 -35 95

SEB -30 75 -35 80

SDD -60 -30 -65 -

A.8 Test Procedure

The test procedure includes phases for pre-test inspection, pump-down, the 45 thermal tests

in Figure A-6, and the vent-back/pump-up procedures. Because the 45 thermal tests follow

the same process, a procedure is scripted below for the ith test and a log called "EM SXM

Thermal Balance Data Log.xlsx" was created to table all information for each phase.
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Initials Step Action

Number

0.1 Table-top inspection: visually inspect the SXM and inter-

face plate to ensure no damage occurred during assembly or

transport. Take clear pictures of:

* Top and side view MLI

* SXM and interface plate before MLI is applied

* Harness/sensor locations and tie-down

0.2 Applied Cho-Therm 1671 gap filler to chamber baseplate and

secure interface plate to chamber baseplate.

0.3 Install chamber temperature sensors and record placement of

sensors with both diagram and pictures

0.4 Install feedthrough heater cable and temperature sensor

cables

0.5 Arrange all harnesses neatly with tie-down

0.6 Confirm that all temperature sensors are reading room tem-

perature on the data logger to within 1 'C. Save 5 min of

room temperature data as "RoomTemps.csv."

0.7 Measure all resistances individually using feed-through ca-

bling and record the resistances on "Reference" sheet of EM

SXM Thermal Balance Data Log.xlsx.
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0.8 Apply heat load to each heater individually to verify operation

and check neighboring temperature sensors to confirm tem-

perature increase. Record voltage, current, and total power

applied to each heater on "Reference" sheet of EM SXM Ther-

mal Balance Data Log.xlsx.

0.9 Perform final visual inspection of chamber identical to step

0.1. Close chamber door.

0.10 Set all red and yellow limits in data logger for entire test.

i. 1 Record time of beginning ith phase on "Time" sheet of EM

SXM Thermal Balance Data Log.xlsx.

i.2 Set chamber baseplate temperature per Figure A-6. Record

final chamber baseplate temperature on "SDD" sheet of EM

SXM Thermal Balance Data Log.xlsx. If necessary, apply

interface plate heaters and manually tune voltages. Record

interface plate heater parameters on "Reference" sheet of EM

SXM Thermal Balance Data Log.xlsx once temperatures have

stabilized.

i.3 Set TEC voltage per Figure A-6. Record final voltage and

current draw on "SDD" sheet of EM SXM Thermal Balance

Data Log.xlsx.

i.4 Set ETU SXM Electronics voltages to +5.0 V, -5.0 V, and

+3.3 V. Record final voltage and current draw on "Reference"

sheet of EM SXM Thermal Balance Data Log.xlsx.

i.5 Stabilization has occurred when the temperatures rates for

all sensors are less than 0.25 *C/hr for 30 min. Record tem-

peratures of RTDs on "SXM Structure" sheet of EM SXM

Thermal Balance Data Log.xlsx.
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A.9 Documentation

Storage of the documentation of the test materials, both hard/soft copies and data, is the

responsibility of the test lead. All soft copies of documentation and data will be stored on

the REXIS SVN. All hard copies are to be placed in the EM documentation binder.

All procedural documentation, completed by following the test plan, should be initialed

and dated in the procedure section. However, the table below is also included to keep

additional notes of discrepancies that arise during testing.
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i.6 Record final voltages and temperatures of SDD on "SDD"

sheet of EM SXM Thermal Balance Data Log.xlsx.

i.7 Record time of end of ith test phase on "Time" sheet of EM

SXM Thermal Balance Data Log.xlsx.

i.8 Save data file to data directory as "Ti.csv".

35.1 Record time of beginning warm-up:

35.2 Turn chamber baseplate off, allowing baseplate and test arti-

cle to warm to ambient temperatures. Ensure liquid nitrogen

is disengaged.

36.1 Vent back chamber to ambient pressure using SSL chamber

procedures once the baseplate is at ambient temperature.

37.1 Table-top inspection: visually inspect the SXM and inter-

face plate to ensure no damage occurred during test. Take

clear pictures of:

" Top and side view MLI

" SXM and interface plate before MLI is applied

" Harness/sensor locations and tie-down



Test Time Name Issue Action Taken

Phase
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A.10 Safety

The test lead shall assess the test set-up and continuing performance from a safety aspect

to assure that safety concerns are being considered.

A.10.1 Handling of SXM

All lifting and mounting operations of the SXM shall be performed by the thermal test lead

or personnel with the permission of the thermal test lead. Where possible, all handling of

the SXM should be done via the bracket. In particular, the Amptek package, SEB, RTDs,

and MLI should be handled as little as possible. In transport (if applicable), the RTD wire

should be supported to ensure proper adherence to the surface.

A.10.2 General Safety Practices

If any of the SXM temperatures reaches the yellow limits, the test lead (or test members)

must take caution by having the thermal environment adjusted to maintain the SXM within

the red limits. The yellow and red limits will be set by the test lead on the data acquisition

software prior to testing.

A.10.3 Emergency Procedure

In the event of equipment failure or building evacuation, the following emergency procedures

shall be followed:

" Momentary Power Outage: all chamber and systems will be restarted; testing

resumes.

" Extended Power Outage: all chamber and systems will be restarted; testing re-

sumes.

" Building Evacuation: the chamber will be closed and the vacuum system will be

left on. The liquid nitrogen system will be turned off. Baseplate controller will be off,

and the baseplate temperature will drift toward room temperature.
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Appendix B

Solar X-ray Monitor (SXM) Thermal

Test Data

The raw data from the SXM thermal test are provided in Table B.1 and Table B.2. The

temperatures in Table B.1 are the stabilized temperatures from the 11 RTDs used in the

thermal balance test. RTDs were placed on the chamber baseplate, interface plate, MLI,

and SXM structure (as shown in appendix A). The temperature versus time data for each

test phase was recorded through a data acquisition system and was stored on the REXIS file

repository system. The data in Table B.2 are the final TEC and SDD parameters for each

test phase. For each TEC voltage, both the current draw of the TEC and SDD temperature

were recorded to characterize the thermal performance of the TEC.
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Table B.1: Stabilized RTD readings for test phases TI through T43 of SXM thermal balance
test in Celsius.

Numer 11 2 3 4 5 6 7 8 9 1 12

RTD Chamber Interface Interface Bracket Bracket Bracket Housing Housing SDD
Name Baseplate Front Bact Base Brace Top Front Back ollimao Housing

TI 25.81 26.63 26.05 26.21 26.14 26.12 25.64 26.2 26.5 26.78 26.21
T2 25.74 26.57 25.99 26.16 26.1 26.1 25.64 26.24 26.52 26.81 26.21
T3 25.83 26.68 26.09 26.27 26.22 26.23 26.03 26.6 26.88 26.86 26.63
T4 25.84 26.73 26.14 26.34 26.32 26.37 26.56 27.14 27.42 26.97 27.26
T5 25.87 26.8 26.2 26.43 26.45 26.57 27.33 27.92 28.2 27.1 28.18
T6 25.89 26.9 26.31 26.56 26.65 26.85 28.39 28.99 29.25 27.29 29.44
T7 25.93 27.02 26.42 26.72 26.88 27.19 29.67 30.28 30.52 27.53 30.98
T8 25.95 27.15 26.55 26.9 27.15 27.57 31.13 31.76 31.98 27.79 32.75
T9 25.99 27.31 26.7 27.1 27.45 28 32.74 33.39 33.59 28.09 34.7
TIO 50.38 51.26 50.59 50.8 50.75 50.73 49.99 50.6 50.64 50 50.5
Til 50.37 51.24 50.59 50.8 50.74 50.74 50.05 50.66 50.71 50.06 50.55
T12 50.38 51.28 50.61 50.84 50.79 50.8 50.29 50.9 50.94 50.13 50.82
T13 50.39 51.32 50.65 50.9 50.89 50.93 50.7 51.32 51.37 50.23 51.31
T14 50.43 51.4 50.74 51 51.02 51.11 51.34 51.97 52 50.37 52.08
TIS 50.46 51.49 50.82 51.12 51.18 51.35 52.17 52.81 52.84 50.54 53.09
T16 50.5 51.61 50.95 51.28 51.41 51.67 53.23 53.87 53.88 50.75 54.36
TV7 50.56 51.76 51.08 51.47 51.67 52.02 54.46 55.13 55.12 50.99 55.87
TI8 50.62 51.91 51.24 51.66 51.95 52.44 55.84 56.53 56.5 51.25 57.55
T19 0.36 1.17 0.68 0.8 0.72 0.73 0.48 1.03 1.55 3.29 1.08
T20 0.31 1.2 0.71 0.83 0.76 0.79 0.64 1.19 1.7 3.32 1.24
T21 0.53 1.31 0.82 0.95 0.89 0.94 1 1.55 2.06 3.36 1.66
T22 0.5 1.39 0.9 1.05 1.03 1.13 1.67 2.23 2.73 3.49 2.45
T23 0.44 1.46 0.97 1.14 1.19 1.36 2.63 3.2 3.69 3.66 3.58
T24 0.64 1.6 1.1 1.32 1.42 1.68 3.84 4.41 4.89 3.89 5.03
T25 0.62 1.69 1.18 1.46 1.65 2.03 5.3 5.89 6.36 4.13 6.78
T26 0.62 1.93 1.43 1.76 2.06 2.57 7.17 7.78 8.22 4.53 8.98
T27 0.64 2.09 1.58 1.97 2.38 3.04 9.07 9.69 10.11 4.93 11.23
T28 -29.95 -29.11 -29.5 -29.45 -29.54 -29.51 -29.38 -28.88 -28.09 -23.52 -28.74
T29 -29.85 -29.09 -29.47 -29.42 -29.5 -29.47 -29.26 -28.75 -27.96 -23.74 -28.59
T30 -29.93 -29.06 -29.44 -29.37 -29.43 -29.35 -28.75 -28.24 -27.46 -23.76 -28.01
T31 -29.88 -28.96 -29.35 -29.26 -29.27 -29.13 -27.85 -27.33 -26.56 -23.65 -26.95
T32 -29.76 -28.85 -29.24 -29.1 -29.04 -28.82 -26.59 -26.06 -25.31 -23.44 -25.46
T33 -29.71 -28.67 -29.07 -28.89 -28.74 -28.41 -24.96 -24.42 23.69 -23.16 -23.53
T34 -29.75 -28.54 -28.95 -28.71 -28.45 -27.98 -23.07 -22.52 -21.81 -22.84 -21.31
T35 -29.69 -28.34 -28.75 -28.44 -28.08 -27.46 -20.85 -20.29 -19.6 -22.43 -18.71
T36 -29.6 -28.11 -28.53 -28.15 -27.67 -26.89 -18.47 -17.88 -17.22 -29.61 -15.93
T37 69.91 70.87 70.15 70.41 70.35 70.31 69.36 70.07 69.86 68.89 69.88
T38 69.91 70.87 70.16 70.42 70.37 70.32 69.43 70.14 69.93 68.92 69.94
T39 69.91 70.88 70.18 70.44 70.4 70.38 69.61 70.32 70.11 68.95 70.14
T40 69.92 70.91 70.22 70.49 70.47 70.48 69.95 70.65 70.44 69.01 70.55
T41 69.94 70.97 70.27 70.56 70.58 70.63 70.46 71.16 70.96 69.12 71.17
T42 69.98 71.06 70.35 70.66 70.74 70.84 71.15 71.85 71.66 69.26 72.01
T43 70.01 71.15 70.45 70.8 70.92 71.11 72.04 7273 72.54 69.45 73.1
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Table B.2:
voltage and
test

Temperature of chamber baseplate, final TEC parameters, and final SDD raw
temperature estimates for test phases TI through T43 of SXM thermal balance

Final Baseplate Final TEC Final TEC Power Final TEC Final SDD RMS SDD
Test Phase Temperature ("C) Voltage (V) Dissipation (W) urrent Draw Voltage (V) a

Votae)V Estimate (0C)

TI 25 0 0 0 0.493 26.2803
T2 25 0.5 0.026 0.052 0.536 7.6656
T3 25 1 0.112 0.112 0.595 -17.8755
T4 25 1.5 0.27 0.18 0.63 -33.027
T5 25 2 0.506 0.253 0.655 -43.8495

T6 25 2.5 0.825 0.33 0.674 -52.0746
T7 25 3 1.218 0.406 0.684 -56.4036
T8 25 3.5 1.673 0.478 0.688 -58.1352
T9 25 4 2.18 0.545 0.684 -56.4036
T10 50 0 0 0 0.429 53.9859
TlI 50 0.5 0.0225 0.045 0.485 29.7435
T12 50 1 0.097 0.097 0.532 9.3972
T13 50 1.5 0.2325 0.155 0.571 -7.4859
T14 50 2 0.438 0.219 0.603 -21.3387
T15 50 2.5 0.715 0.286 0.622 -29.5638
T16 50 3 1.062 0.354 0.638 -36.4902
T17 50 3.5 1.4735 0.421 0.645 -39.5205
T18 50 4 1.94 0.485 0.647 -40.3863
T19 0.2 0 0 0 0.54 5.934
T20 0 0.5 0.031 0.062 0.596 -18.3084
T21 -0.2 1 0.134 0.134 0.642 -38.2218
T22 -0.7 1.5 0.318 0.212 0.676 -52.9404
T23 -0.3 2 0.596 0.298 0.698 -62.4642
T24 -0.7 2.5 0.96 0.384 0.711 -68.0919
T25 0.5 3 1.404 0.468 0.713 -68.9577
T26 -0.4 3.5 1.9075 0.545 0.712 -68.5248
T27 -0.1 4 2.456 0.614 0.704 -65.0616
T28 -29.7 0 0 0 0.614 -26.1006
T29 -30.5 0.5 0.038 0.076 0.668 -49.4772
T30 -29.9 1 0.166 0.166 0.707 -66.3603
T31 -29.9 1.5 0.396 0.264 0.733 -77.6157
T32 -30.4 2 0.728 0.364 0.747 -83.6763
T33 -30.3 2.5 1.155 0.462 0.751 -85.4079
T34 -30.1 3 1.656 0.552 0.748 -84.1092
T35 -30.2 3.5 2.2155 0.633 0.739 -80.2131
T36 -29.9 4 2.804 0.701 0.724 -73.7196
T37 70 0 0 0 0.373 78.2283
T38 70 0.5 0.0205 0.041 0.429 53.9859
T39 70 1 0.087 0.087 0.477 33.2067
T40 70 1.5 0.2085 0.139 0.52 14.592
T41 70 2 0.392 0.196 0.553 0.3063
T42 70 2.5 0.64 0.256 0.58 -11.382
T43 70 3 0.957 0.319 0.599 -19.6071
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Appendix C

Solar X-ray Monitor (SXM) Thermal

Model Formulation

This appendix provides details of the SXM lumped parameter thermal model, Y7sxM, utilized

by BMV in Chapter 5. Below, the general lumped parameter formulation (including the

physical relationships of conduction, radiation, and the SXM thermoelectric cooler) and

model fidelity and assumptions are discussed.

C.1 Lumped Parameter Formulation

The lumped parameter modeling concept, illustrated in Figure C-1, is commonly used to

model thermal systems [11, 12]. Solid, heterogeneous materials are discretized into homo-

geneous regions where material properties are isotropic. Each region of material is assigned

a node, and temperature is assumed to be isothermal within the region. The lumped pa-

rameter approach is effective when nodes are assigned to volumes that are approximately

isothermal.

The governing equation for the SXM lumped parameter model with n nodes is a differ-

ential equation of the form of Equation (C.1):

dT
= f(T, t) (C.1)
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6

T1, C, (Nodl)

T21 C2 (Nodc2)

T3 , C3 (Nods3)

Figure C-1: Lumped parameter concept. Figure modified from [4, Fig. 15.11.

where T=[T1 T2 ... T,]T is the vector of node temperatures. An expression for f(T,t) can

be found by reducing the heat transfer equation. Using the above assumptions a lumped

parameter model, multiplying by the volume of each node, and writing for each node, the

heat transfer equation in Equation 1.1 becomes:

dT
C = GT + Q(T, t) (C.2)

dt

where C is the heat capacity matrix, G is the nodal matrix, and Q captures the total effect

of radiation and internal power dissipations. When radiation between nodes is neglected (as

is the case for the SXM), Q reduces to a vector, Q=[Qi Q2 .. Q]T, where each Qj is the

net effect of thermal radiation and internal power dissipations for the ith node. C and G are

given by:

m1,1cp,1 0 ... 0

C 0 M2,2Cp2,2 ... 0 (C.3)

0 0 ... mn,ncp3,3

G1,1  G1,2 ... Gi,n

G = G2 ,1 G2,2 - - 2, (C.4)

Gn, Gn,2 - Gn,n

where mnj is the nodal mass, cpi,i is the nodal specific heat and Gsj is the conductance

between two nodes. Thus, f(T,t) in Equation (C.1) is given by Equation (C.5):
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f(T, t) = C-1 [GT + Q(T, t)]

To solve Equation (C.1) (and thus evaluating ?7sxM(x) in Equation (5.1) for a given x), a

Forward Euler procedure is implemented to solve the ordinary differential equations for each

node. The Forward Euler method, shown in Equation (C.6), is a simple, easy to implement

method that is conditionally stable:

dT
Ti(tk+1) = AtdT +Ti(tk) (C.6)

dtT,tk

where T is the temperature of the ith node, and tk is the kth time step. The time step

increment, At, is constant in ?7sxM and must be selected to be small enough so that the

solver is stable and errors in the QoIs are small.

To select a suitable time step so that the solver is stable and the error in the temperature

predictions is small, the time step, At, is incrementally increased to observe the QoI pre-

dictions for the nominal parameter values (discussed later, shown in Table 5.2). The error

is very small for time steps less than 0(100). At approximately At = 6 s, the solution is

unstable and "blows up." Consequently, a conservative time step of At = 0.5 s is selected.

By selecting a time step value that is an order of magnitude lower than the critical time step

for the nominal parameters, the solver is stable for all possible parameter sets in this case

study. Furthermore, the solve time at At = 0.5 s is less than 0.5 s and is acceptably low.

C.2 Conduction

To develop the expression for Gjj in Equation (C.4), consider a ID mesh with uniform

spacing and n nodes, as shown in Figure C-2. The distance between nodes is Ax, the

conductivity of the material is homogenous with value k, and the cross-sectional area is a

constant area, A. Equation (C.7) shows the conservation of energy written for the ith node

in the x-direction:

Qi-1 + Qi+1 = 0 (C.7)
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where Qj-1 and Qj+1 are the heat flows to the ith node from the i - 1 and i + 1 nodes,

respectively. For ID conduction, the heat flows are given by Fourier's Law (analogous to

Ohm's Law when discretized). For Qi+1, the heat flow is given by Equation (C.8):

Qi+1 = - - (C.8)
Rt Rt

where Rt is the thermal resistance equal to yf. By plugging Equation (C.8) into Equation

(C.7):

T 1 - T T -T T- k A
0*= + i+1 R = (T+1 - 2T + T_ 1 ) = G(T+ 1 - 2T + T_ 1) (C.9)

Rt Rt Ax

The conductance, G = R'-1, is a scalar that is factored out. Equation (C.9) gives G for

the 1D uniform mesh in Figure C-2. If written for all n nodes of the 1D mesh, Equation

(C.9) will result in a linear system, Ax = b, where A is a tridiagonal matrix.

AX
FX

Ti- Tj Tjo

Figure C-2: ID mesh with uniform discretization

For a general system, the mesh is not ID, and all nodes in a system are not necessarily

coupled to neighboring nodes. For the SXM, each nodal region is isothermal, but the con-

duction between nodes is assumed to be linear, per Equation (C.8). Thus, the form of G

in Equation (C.9) holds for the conductance between nodes. For the G matrix in Equation

(C.4), each Gjj term is given by Equation (C.10):

G -)3 = kjjAj' (C.10)

where between the ith and jt' node: kij is the conductivity of the material, Aij is the
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cross-sectional area of the material, and Axij is the length of the material in the direction

of heat transfer. For example, consider a gap filler inserted between two components that

are physically connected via fasteners: kij is the conductivity of the gap filler, Aij is the

contact area between the two components, and Axij is the gap filler thickness. For nodes

that do not conduct to each other, Gi, = 0.

C.3 Radiation

The heat loads due to external thermal radiation are kept in the Q(T,t) term of Equation

(C.5). For the SXM, external radiation consists of both direct radiation from the sun and

radiation to deep space. The total heat load absorbed by a surface due to direct solar

impingement is given by Equation (C.11):

Qoar = aA#,cos(9) (C.11)

where a is the material absorptivity, A is the surface area, #, is the solar heat flux, and 0

is the angle of incidence. If the sunlight is perpendicular to the surface, cos(0)=1. As the

surface area or absorptivity are increased, the heat load absorbed increases.

Heat transfer via radiation to deep space occurs mostly in the infrared (IR) spectrum

and is modeled via the Stefan-Boltzmann Equation. Equation (C.12) gives the total heat

rejected from a single surface to another surface, which acts as a thermal sink:

QIR = oEA(T - t) (C.12)

where E is the material emissivity, A is the surface area, T is the temperature of the surface,

and Txt is the temperature of the external sink. Because Equation (C.12) is nonlinear with

respect to temperature, inclusion of IR radiation means that Equation (C.5) is nonlinear.

Although the nonlinear form is used for /SXM, the Stefan-Boltzmann Equation can be lin-

earized [4, 9]. The Q(T,t) term in Equation (C.5) for the ith node, Qi, is the sum of internal

power dissipation(s), the direct sunlight radiation component from Equation (C.11), and the

IR component to deep space from Equation (C.12) for that node.
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C.4 Thermoelectric Cooler (TEC)

A TEC is an active thermal control component that operates based on the Peltier effect

to create a heat flux between two different materials. A two-stage TEC is used to cool

the SDD for the SXM. Within the SXM thermal model, performance estimates of the TEC

are used to predict the SDD temperature, Tdd, based on a voltage setting and its hot side

temperature. The hot side temperature is the same as the SDD housing temperature, Th.

The SDD housing manufacturer Amptek, Inc. provided estimates of the TEC's performance

based on in-house analysis and testing. Figure C-3 shows Tsdd versus voltage, and Figure

C-4 shows Tsdd versus current. The curves in Figure C-3 and Figure C-4 are fit to produce a

direct relationship between applied TEC voltage and current, as shown in Figure C-5. The

resistance of the TEC is constant with respect to voltage but increases as the TEC hot side

temperature decreases.

SDD Temperature vs TEC Voltage
270

265 -------- - O

260 - - - --- - --- _ - +65C

255 - -- -- ~~- _-_~_~ -

-&+50C
245 _

240

235 .

2 30 ---- ---- ------

2 2.5 3 3.5 4 4.5 5

TEC Vokage

Figure C-3: SDD temperature versus voltage for SXM TEC at various hot side, Th, values.

TEC performance curves in plot provided by Amptek, Inc.

For flight, the TEC will be controlled by REXIS software to a temperature set point, T.

Although currently the control software is not written, the capability of the TEC to achieve

T, is of more interest for thermal design than the performance of the controller because all

requirements are steady state temperature limits. For simplicity, a proportional controller
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SDD Temperature vs TEC Current
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Figure C-4: SDD temperature versus current for SXM TEC at various hot side, Th, values.

TEC performance curves in plot provided by Amptek, Inc.

is used in the lumped parameter model, given by Equation (C.13):

V(tk+1) =Kpe(t) =Kp(Tsdd - Ts) (C.13)

where e(t) is the process error, Kp is the proportional gain in units of volts per temperature,

and V(tk+1) is the voltage at the next time step. A gain of K, = 0.05 is selected via manual

tuning. For each time step of the thermal model solver:

1. The voltage and TEC hot side temperature are used to predict the SDD temperature

using Figure C-3

2. The voltage and the TEC hot side temperature are used in Figure C-5 to estimate the

current draw, providing the TEC power dissipation

3. If it is time to update the TEC voltage (per the prescribed control frequency), Equation

(C.13) is applied to correct the voltage for the next time step.

Item 1 provides the temperature prediction for the SDD, Tddp, for the current time step.

Item 2 estimates the current draw so that the TEC power dissipation is available for the

next time step as a heat load input for the thermal system.
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Figure C-5: Applied voltage versus current draw for SXM TEC at various TEC hot side

temperatures

The curves in Figure C-3 and Figure C-4 are all that is known of the TEC's performance

prior to testing. Because the range of possible TEC hot side temperatures for the mission is

well outside the temperature range provided by Amptek, Inc., extrapolation of the polyno-

mial parameters in Figure C-3 and Figure C-5 is necessary. The polynomial parameters used

to estimate the TEC's performance are treated as deterministic quantities prior to testing

due to the poor prior information (the only non-probabilistic SXM model parameters prior

to testing).

C.5 Model Fidelity and Important Assumptions

Nodes are assigned to the SXM components within rqsxm that both capture the physical

structure of the assembly and represent SXM material that is relatively isothermal by design.

In total, there are five nodes (not including the SDD), labeled in Figure C-6, and thermally

connected as shown in Figure C-7. Above the matrix diagonal in Figure C-7, heat transfers

from the upper left to the lower right nodes. Below the matrix diagonal, heat transfers
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from the lower right to upper left nodes. Each C entry represents a conductance term, Gj,
in Equation (C.4) of the lumped parameter model. Radiation occurs from the sun to the
SDD housing and collimator because they are not covered by the MLI blankets and receive
sunlight. Furthermore, the collimator is the only SXM component with a significant view
factor and area exposed to deep space so IR heat rejection of the collimator is included.

Node 5: Collimator 
Node 4: SDD Hou

ode 2: SXM Housing
Node 3: SEB

Node 1: Bracket

(b) SXM nodes 3 and 4 (collimator and SXM
(a) SXM nodes 1,2, and 5 housing removed)

Figure C-6: SXM node assignments for the lumped parameter model

In Figure C-7, the decision not include the effects of solar radiation on the other SXM
components is shown (an X is drawn over radiation from the sun to the bracket and SXM
housing). Although the MLI greatly reduces the total absorbed heat, a sensitivity analysis
is performed to justify the exclusion of solar radiation on the bracket and SXM housing.
Figure C-8a notionally depicts the nominal thermal scenario during operation. The entire
SXM, except the collimator and a portion of the SXM housing visible through the collimator,
is beneath the MLI blanket and does not receive direct sunlight. Figure C-8b reduces the
scenario in Figure C-8a to a single node representing the MLI blanket. Treating the entire
blanket as a node, the heat load, QMLI, that travels through the MLI will directly affect the
SXM temperatures. As long as the heat load is small, the effects of solar radiation can be
neglected.

To estimate QMLI, first the outer cover temperature, Tc, is found. Once T is known,
Q MI is approximated via the Stefan-Boltzmann equation. The first step is to sum the heat
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Figure C-7: Connectivity matrix for SXM model. Blue boxes with C indicate conductive
heat transfer, and red boxes with R indicate heat transfer through radiation. Blank boxes
indicate no thermal connection (e.g., Gj = 0). Above the matrix diagonal, heat transfers
from the upper left to the lower right nodes. Below the matrix diagonal, heat transfers
from the lower right to upper left nodes. An X is drawn over radiation from the sun to the
structural components beneath MLI blankets to explicitly show the assumption to neglect
solar radiation to these components.

flows in Figure C-8b according to the law of conservation of energy:

(C.14)Qsolar - QIR - QMLI = 0

where Qsoia, and QIR are Equations (C. 11) and (C. 12), respectively, rewritten in terms of

the MLI sensitivity analysis variables. Qolar, QIR, and QMLI are given by:

Qsolar = acAeff Os

QIR = oEcAeff(T| - Tpace)

QMLI = aF*Aeff(Tc4 - TB)

(C.15)

(C.16)

(C.17)

All parameters in Equations (C.15), (C.16), and (C.17) are given in Table C.1. The
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Deep Space, Tspace

Outer cover, ac, T Collimator

MLI, 9

Effective
temperature
boundary, TB

OSIRIS-REx
Effective frontal
area of SXM, Aeff

(a) Notional diagram of MLI applied to minimize the solar flux absorbed by the SXM

Qsolar QIR

MLI Blanket

QMLI

(b) Heat flows for MLI blanket idealized as a single node

Figure C-8: Notional SXM MLI heat flow diagrams to solve for the temperature of the MLI
outer cover

boundary temperature, TB, is the temperature of the SXM and spacecraft deck. The solar

flux, #, is based on a heliocentric radius of 1 AU, the median distance from the sun during

the mission. The effective emissivity, 6*, is a single parameter representing the transmission

of heat through all the layers of ML. The effective emissivity of large, 12-layer MLI blan-

kets depends heavily on the blanket design and can range from e*=0.001 to 6*=0.03 [4]. A

conservative value of e*=0.03 is chosen (a "leaky" blanket) for this sensitivity analysis to

allow for the maximum possible value of QMLI. The MLI cover emissivity, E, and absorp-

tivity, c, have values associated with black Kapton [4]. Finally, the effective area, Aeff, is
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the projected area of the SXM (i.e., the area seen by the sun if the blankets are not used,

including the SXM housing and bracket).

Table C.1: Parameter values for SXM MLI sensitivity analysis

Parameter/Constant Value Units

Solar flux, #, 1,367 7 2

Stefan-Boltzmann constant, a 5.67x10-8

MLI effective emissivity, e* 0.03 -

MLI cover emissivity, e, 0.70 -

MLI cover absorptivity, ac 0.80 -

Temperature of Deep Space, Tpace 2.73 K

Effective area, Aeff 0.002

To find Tc, Equations (C.15), (C.16), and (C.17) are plugged into Equation (C.14). The

effective area drops out, leaving Equation (C.18):

#bc - o-EC(T, - T:,,) - oe*(T4 - Tj) = 0 (C.18)

Rearranging and solving for Tc:

Os#ac + OrE*TB + sTpace
Tc = f(TB) = 'F Orjc8+ ace (C-19)

Equation (C.19) is functionally dependent on the SXM and spacecraft temperature. The

SXM is designed to be as close as possible to the spacecraft deck temperature so for simplicity,

the boundary temperature, TB, is a single temperature representing the SXM/deck beneath

the MLI blankets. TB is controlled by the spacecraft and is variable throughout the mission

on the interval [-30,50] OC. Thus, a range of Tc values is possible.

Figure C-9a shows the MLI cover temperature versus the effective boundary temperature

by plotting Equation (C.19). The takeaway is that over the large range of TB values, the

MLI cover temperatures varies very little and is approximately 131 "C. Figure C-9b uses

the results of Figure C-9a with Equation (C.17) to plot heat load passing through the MLI,

QMLI, versus the effective boundary temperature. At the coldest possible TB value, the

maximum QMLI value occurs and is approximately 0.08 W distributed across the entire
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SXM structure. Because the total, maximum expected SXM power dissipation is 2.8 W,

QMLI=0.08 W represents only ~3% of the total heat load. Thus, the effect of the sun on the

SXM housing and bracket is assumed to be small and is neglected from the thermal model

prior to validation.

At this point in the documentation of the model, the structure is fixed: a five-node lumped

parameter model is constructed with conduction and radiation between nodes according

Figure C-7. For each time step, the SDD temperature is approximated within the lumped

parameter model using performance estimates of the TEC. Based on a prescribed parameter

vector, X, r7SXM outputs temperature and heat flows versus time for all five nodes and the

SDD.
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(a) MLI outer cover temperature for various effective boundary temperatures
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Figure C-9: Examination of the absorbed heat from the sun through the layers of ML. The
effective boundary temperature is an idealization of the radiation sink for the MLI inner
cover with a projected area of the SXM structure.
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