
Multiagent Planning and Learning Using Random

Decompositions and Adaptive Representations
by ARCHNES

Nazim Kemal Ure MASSACHUSETS INSTITUTE

M.Sc., Defense Technologies OF TECHNOLOLCY

Istanbul Technical University (2010) MAR 0 9 2015
B.Sc., Aeronautical Engineering

Istanbul Technical University (2008) LIBRARIES
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2015
Massachusetts Institute of Technology 2015. All rights reserved.

Signature redacted

A uthor
Department of Aeronautics and Astronautics

Certified by
Signature redacted

January 29, 2015

Jonathan P. How
Richard C. Maclaurin Professor of Aeronautics and Astronautics

Signature redacted Thesis Supervisor

C ertified by ..

Girish Chowdhary
Assistant Professor of Mechanical and Aerospace Engineering

Certified by
Sertac Karaman

Assistant Professor of Aeronautics and Astronautics

Accepted by........ Signature redacted.........................
Paulo C. Lozano

Associate Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Multiagent Planning and Learning Using Random

Decompositions and Adaptive Representations

by

Nazim Kemal Ure

Submitted to the Department of Aeronautics and Astronautics
on January 29, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

Abstract

Multiagent planning problems are ubiquitous in engineering. Applications range from control
of robotic missions and manufacturing processes to resource allocation and traffic monitoring
problems. A common theme in all of these missions is the existence of stochastic dynamics
that stem from the uncertainty in the environment and agent dynamics. The combinatorial
nature of the problem and the exponential dependency of the planning space on the number of
agents render many of the existing algorithms practically infeasible for real-life applications.
A standard approach to improve the scalability of planning algorithms is to take advantage
of the domain knowledge, such as decomposing the problem to a group of sub-problems
and exploiting decouplings among the agents, but such domain knowledge is not always
available. In addition, many existing multiagent planning algorithms rely on the existence
of a model, but in many real-life situations models are often approximated, wrong, or just
unavailable. The convergence rate of the multiagent learning process can be improved by
sharing the learned models across the agents. However, many realistic applications involve
heterogeneous teams, where the agents have dissimilar transition dynamics. Developing
multiagent learning algorithms for such heterogeneous teams is significantly harder, since the
learned models cannot be naively transferred across agents. This thesis develops scalable
multiagent planning and learning algorithms for heterogeneous teams by using embedded
optimization processes to automate the search for decouplings among agents, thus decreasing
the dependency on the domain knowledge.

Motivated by the low computational complexity and theoretical guarantees of the Bayesian
Optimization Algorithm (BOA) as a meta-optimization method for tuning machine learn-
ing applications, the developed multiagent planning algorithm, Randomized Coordination
Discovery (RCD) extends the BOA to automate the search for finding coordination struc-
tures among the agents in Multiagent Markov Decision Processes. The resulting planning
algorithm infers how the problem can be decomposed among agents

based on the sampled trajectories from the model, without needing any prior domain
knowledge or heuristics. In addition, the algorithm is guaranteed to converge under mild
assumptions and outperforms the compared multiagent planning methods across different
large-scale multiagent planning problems.

The multiagent learning algorithms developed in this thesis use adaptive representations

3

and collaborative filtering methods to develop strategies for learning heterogeneous models.

The goal of the multiagent learning algorithm is to accelerate the learning process by discov-

ering the similar parts of agents transition models and enable the sharing of these learned
models across the team. The proposed multiagent learning algorithms Decentralized Incre-

mental Feature Dependency Discovery (Dec-iFDD) and its extension Collaborative Filtering

Dec-iFDD (CF-Dec-iFDD) provide improved scalability and rapid learning for heterogeneous

teams without having to rely on domain knowledge and extensive parameter tuning. Each

agent learns a linear function approximation of the actual model, and the number of fea-

tures is increased incrementally to automatically adjust the model complexity based on the

observed data. These features are compact representations of the key characteristics in the

environment dynamics, so it is these features that are shared between agents, rather than

the models themselves. The agents obtain feedback from other agents on the model error

reduction associated with the communicated features. Although this process increases the

communication cost of exchanging features, it greatly improves the quality/utility of what

is being exchanged, leading to improved convergence rate.
Finally, the developed planning and learning algorithms are implemented on a variety

of hardware flight missions, such as persistent multi-UAV health monitoring and forest fire
management scenarios. The experimental results demonstrate the applicability of the pro-
posed algorithms on complex multiagent planning and learning problems.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics

4

Acknowledgments

First of all, I would like to thank my advisor Jonathan P. How for being an excellent mentor

throughout my years at MIT. His views on how to perform research and write papers had

a huge influence on me. I feel lucky for being a part of his research team. I would also like

to thank my committee members Girish Chowdhary and Sertac Karaman. Girish, whom I

also had the pleasure to co-author a few papers, always pointed me on the right track when

I got lost and has been a very supportive friend. Sertac, whom I had known for years, has

been very helpful and asked a lot of interesting questions that made me think about how

to structure my research. He also has been a role model for me on how to be a successful

young academician. I am very grateful for knowing him. I would also like to thank Jared

Speck, my Mathematics minor advisor, whom provided me with valuable guidance during

my studies. I would also like to thank Boeing Research and Technology for funding my PhD

studies.

Without my wonderful labmates, the time at MIT would have been much more stressful

and overwhelming. I would like to thank Tuna Toksoz for being my closest friend, room mate

and colleague in my first 2 years at MIT. Josh Redding and Mark Cutler have also been great

friends to me. Alborz Geramifard has been more than helpful when I was starting to develop

my own research, I can't thank him enough for the lengthy discussions we had. I would like

to thank Trevor Campbell and Luke Johnson for the challenging technical discussions we

had. I will also remember the meals and chats with Vishnu Deseraju, Sameera Ponda,

Georges Aoude, Buddy Michini and Dan Levine with much joy. Also thanks to Tom Walsh,

Christopher Amato and Ali-agha Mohammadi for sharing their wisdom and experience with

me and providing valuable comments on my research.

I would like to thank my friends at Boston and Istanbul for the amazing time we had and

the support they provided through tough times. I think Pelin Arslan knows me better than

anyone, she is the most amazing friend one can have. Same goes for Fulden Buyukozturk,

who is one of the most interesting persons I have ever met. I am so glad that I shared a flat

in my last 6 months at Boston with Emre Koyuncu, who is a great friend and one of the

funniest and wisest guys I ever met. And of course, I would like to thank Ash Sirman, who

never ceases to amaze me, she is my beacon of happiness and holds a very special place in

my heart. A big thanks also goes to my friends in Turkey, Alper Karahan, Onur Saydam,

Berker Altepe, Ufuk Cetinkaya and Merve Akca, you guys have been very supportive of me

and thanks for all the amazing time we spent during my vacations in Turkey.

While doing my PhD, I have been fortunate enough to pursue an alternative career as a

musician. A huge thanks goes to Your Pain is Endearing and Achroma Rising fans, as well as

5

all the people who viewed and shared my bass guitar videos. You guys are amazing! I would

also like to thank my bandmates, Jason Eick, Matt Philippo, Justin Brink, Anthony Simone

and Rob Robles, traveling with these guys all over the country and playing music was an

unforgettable experience. I would also like to thank Ahmet Saracoglu and Eren Basbug for

all the awesome time we had and the music we wrote/played together.

I also want to mention that my previous advisor at Istanbul Technical University Gokhan

Inalhan has been the single most important person in shaping my academic career. Without

his guidance I don't know where would I be now. I also would like to thank Ibrahim Ozkol

for his valuable advice and wonderful courses he taught.

Finally, I would like to thank my family for their love and support. I am so lucky to have

Cihan Deniz Ure as my brother, I would like to thank him for all the courage and support

he provided over the years. I would like to thank my parents Dilek Ure and Mehmet Celal

Ure for being the most amazing parents ever. They always encouraged me to pursue my

dreams, whether it is academia or music, I am where I am because of them. Words cannot

express how grateful I am to them.

6

Contents

1 Introduction

1.1 Motivation

1.2 Problem Statement . . .

1.3

1.4

1.5

1.6

1.2.1 Multiagent Planning Problem

1.2.2 Multiagent Learning Problem

Challenges .

Literature Review

Overview of The Research and Contributions

Layout of The Thesis

2 Background

2.1 Planning with Markov Decision Processes

2.1.1 Markov Decision Processes

2.1.2 Approximate Planning with MDPs . .

2.2 Bayesian Optimization Algorithm

2.3 Approximate Model Learning

2.3.1 Exact Learning

2.3.2 Learning with Linear Function Approximation ...

2.3.3 Incremental Feature Dependency Discovery (iFDD)

2.4 Matrix Completion

2.5 Summary

3 Multiagent Planning with Randomized Decompositions

3.1 Overview of The Developed Approach

3.2 Multiagent Planning with Coordination Factor Graphs . .

3.3 Randomized Coordination Discovery (RCD)

3.4 Analysis

3.4.1 Computational Analysis

7

21

. 21

. 23

23

23

24

26

29

33

35

35

35

38

39

41

41

42

43

44

44

45

45

47

49

52

52

.

3.4.2 Convergence Analysis . 53

3.5 Simulation Results . 57

3.5.1 D om ains . 57

3.5.2 Compared Approaches . 58

3.5.3 R esults . 58

3.6 Sum m ary . 61

4 Multiagent Learning with Approximate Representations 63

4.1 Single Agent Learning with iFDD 63

4.1.1 State Based Uncertainty Representation 64

4.1.2 Learning State Based Uncertainties 64

4.1.3 Adaptive Function Approximation using iFDD 66

4.1.4 Convergence Analysis 66

4.1.5 Simulation Results 69

4.2 Extension to Multiagent Learning: Decentralized iFDD (Dec-iFDD)75

4.2.1 The Algorithm .. 76

4.2.2 Simulation Results 78

4.3 Closed Loop Multiagent Learning: Collaborative Filtering Decentralized iFDD

(CF-Dec-iFDD) 85

4.3.1 The Algorithm .. 85

4.3.2 Analysis of Closed Loop Learning 88

4.3.3 CF-Dec-iFDD Simulation Results 92

4.4 Summary 94

5 Flight Experiments 97

5.1 Testbed . 97

5.1.1 Quadrotor UAVs 97

5.1.2 Autonomous Recharge Station for Enabling Long Endurance Missions 98

5.1.3 Ceiling Mounted Fans for Wind Emulation 101

5.1.4 Ceiling Mounted Projectors for Belief Space Projection 101

5.2 iFDD Learning Experiments 102

5.3 Dec-iFDD Learning Experiments 104

5.3.1 Experiment I: Single Fan and State-Independent Fuel Burn Rate Learn-

ing . 106

5.3.2 Experiment II: Two Fans and State-Dependent Fuel Burn Rate Learning106

5.4 CF-Dec-iFDD Learning Experiments 110

5.5 Summary 121

8

6 Conclusions and Future Work

Conclusions

Future W ork

6.2.1 Extension to State-Dependent Coordination Graphs

6.2.2 Analysis of Convergence Rate of RCD

6.2.3 Extension to Decentralized Partially Observable MDPs

6.2.4 Non-binary Features for iFDD

6.2.5 Analysis of Convergence Rate of iFDD, Dec-iFDD and CF-Dec-iFDD .

6.2.6 Offline Pattern Classification .

6.2.7 More Complex Experiments with Emulated Communication Networks

A Stochastic Forest Fire Model

9

6.1

6.2

123

123

124

124

125

125

125

126

126

126

127

10

List of Figures

3-1 Diagram representation of the Randomized Coordination Discovery (RCD)

algorithm. Each box in the diagram represents a different subroutine that

works together with others to solve the MMDP problem. 46

3-2 A CFG for a a 3-agent F-MMDP with 2 external variables and 3 factors. . . 48

3-3 Different representations of dependency between edges of factor graph. 51

3-4 Comparison of performance of four planning algorithms on the distributed

sensor network problem with 40 sensors. 59

3-5 Comparison of performance of three planning algorithms on the traffic regu-

lation domain with 40 agents. 60

3-6 Comparison of performance of three planning algorithms on the fire fighting

domain with 40 x 40 grid size and 16 agents. 60

4-1 The gridworld navigation problem: the task is to reach - from .. The robot

has two sensors: a GPS and a camera. Using the GPS is preferred but un-

reliable depending on the location of the robot. Pfai represents the failure

probability of the GPS. 70

4-2 Block building domain: the task is to populate the table with blocks using the

least number of slots. However as the number of blocks on a slot is increased,

the probability of a block falling from the table increases accordingly. Given

the discount factor of 0.9, the bottom figure shows the optimal solution. . . . 71

4-3 Persistent Search and Track Mission. The goal is to maintain surveillance on

two targets on the right, while facilitate a data link with the base by having

a UAV with a functional sensor loitering in the communication area. 72

4-4 Comparison of five estimation methods combined with TBVI for the Grid-

world domain. X-axis: number of iterations of the process shown; Y-axis

represents the performance of the resulting policies. 73

11

4-5 Comparison of five estimation methods combined with TBVI for the Block

Building domain. X-axis: number of iterations of the process shown; Y-axis

represents the performance of the resulting policies. 73

4-6 Comparison of five estimation methods combined with TBVI for the Persistent

Search and Track domain. X-axis: number of iterations of the process shown;

Y-axis represents the performance of the resulting policies. 73

4-7 The integrated planning and learning architecture used in this Chapter em-

ploys decentralized collaborative online learning to learn the models of mission

dynamics. These learned models are fed to a planning algorithm. Arrows in

the figure indicate that the agents communicate with each other their repre-

sentations of the uncertainty. 76

4-8 The diagram representation of Dec-iFDD algorithm 77

4-9 The multiagent blocksworld problem with 4 agents. The baseline probability

model correlates the configuration and the probability of blocks falling 79

4-10 Comparison of centralized approach versus decentralized approaches with dif-

ferent feature sharing caps (FSC) for the multiagent blocksworld scenario

where model perturbation is 5% from the nominal model 81

4-11 Comparison of centralized approach versus decentralized approaches with dif-

ferent feature sharing caps (FSC) for the multiagent blocksworld scenario

where model perturbation is 20% from the nominal model 81

4-12 Comparison of centralized approach versus decentralized approaches with dif-

ferent feature sharing caps (FSC) for the PST scenario where the model per-

turbation is 5% from the nominal model. Results are averaged over 100 runs. 83

4-13 Comparison of centralized approach versus decentralized approaches with dif-

ferent feature sharing caps (FSC) for the PST scenario where the model per-

turbation is 20% from the nominal model. Results are averaged over 100

runs. 83

4-14 Visual representation of the test environment showing Base, Communication

and Tasking areas. The real quadrotor is constrained to operate in the RAVEN

environment (right part of figure), and the rest of the team (9 quadrotors)

operate in the simulated area to the left. The recharge station is shown at the

bottom . 84

12

4-15 Collaborative filtering applied to the model sharing problem. The matrix

entries are the weights OJ of each feature from the perspective of the individual

agent, the empty entries are features yet to be discovered by each agent.

Collaborative filtering techniques generate predictions of these empty entries,

allowing each agent to suggest useful features to other agents. 86

4-16 Comparison of modeling error of the Dec-iFDD and CF-Dec-iFDD algorithm

for a 5 agent fire spread simulations with different feature cap sizes. Cap

represents the number of features allowed to be exchanged at each iteration.

Since agents communicate twice as much in CF-Dec-iFDD the cap is halved

for a fair comparison. 95

4-17 Comparison of average cumulative cost of the Dec-iFDD and CF-Dec-iFDD

algorithm for a 10 agent PST simulations with different feature cap sizes. Cap

represents the number of features allowed to be exchanged at each iteration.

Since agents communicate twice as much in CF-Dec-iFDD the cap is halved

for a fair comparison. 95

4-18 The matrix completion error as a function of number of collected samples for

different feature sharing caps on the forest fire domain. 96

4-19 The matrix completion error as a function of number of collected samples for

different feature sharing caps on the persistent search and track domain. . . . 96

5-1 Quadrotor helicopter developed in-house . 98

5-2 The onboard camera, wireless transmitter and antenna mounted on the quadro-

tor. 99

5-3 The recharge station designed to enable persistent flight of small UAVs. Left:

The operational recharge station and its components. Right: Exploded view

of the CAD diagram of the recharge station Only Left drum is shown for

simplicity, all dimensions are in mm. 100

5-4 Steps in a battery exchange between the recharge station and the quadrotor. 101

5-5 A box fan is hang from the ceiling to simulate the effect of localized wind. . . 101

5-6 Hardware overview for the projection system . 102

5-7 Experiment setup showing the four types of agent platforms used in the flight

experiments: Team UAV (3) Team UGV (blue), Target UGV (green/red), and

a Neutral UGV (white). The three change/recharge stations used to enable

persistent flight operations for the UAVs are shown in the background. 103

13

5-8 The three recharge stations (see Section 5.1.2) shown here were developed at

MIT's Aerospace Control Laboratory and are designed to enable multiple-hour

UAV m issions. 103

5-9 Flight test results for Dec-MMDP planner and iFDD learner. Plot shows the

decrease of average cumulative cost as a result of learning process 105

5-10 Number of battery swaps in recharge stations as a function of time. Decreased

number of swaps indicate more efficiency UAV coordination between the base

and surveillance area . 105

5-11 Results from a large scale persistent mission experiment with 9 simulated

quadrotors and one physical quadrotor. A stochastic model of agent fuel

burning rate is learned using decentralized iFDD learning. It can be seen

that as the fuel burning model is learned better the cumulative mission cost

is reduced. 107

5-12 View of the Task area of the real agent. 109

5-13 View of the Task area of the real agent from Base. 109

5-14 Compares the current drawn from the battery while flying under the fan with

current drawn while flying away from it. 110

5-15 Selected trajectories of the real agent during the wind learning process. Pur-

ple grids, which are learned by the agent, correspond to grids with non-zero

probability of experiencing wind. 111

5-16 Average cost of the mission as the learning and replanning progresses for the

large-scale flight experiment 112

5-17 The background image representing the forest terrain. Brown regions are non-

combustible rocks, dark green is the regular grass, light green is the Borel-

spruce type vegetation and the mid-dark green on the lower left is the matted

grass. 113

5-18 RAVEN testbed with projected fire animation on the ground and hovering

quadrotor with onboard camera. Different shades of green correspond to dif-

ferent type of vegetation, brown textures correspond to rocky regions and

the brightness of the fire represents the amount of fuel left in each cell. The

fire animation is propogated by using the fire spread model provided in the

A ppendix. 114

5-19 Zoomed image of the fire viewed from the onboard camera mounted on quadro-

tor. The images are transmitted through a wireless connection for image pro-

cessing. State of the forest fire (i.e. whether the cell is burning or not and the

amount of fuel left in each cell) is recovered from these images. 114

14

5-20 Average cost of the fire fighting mission as the learning (CF-Dec-iFDD) and

replanning (RCD) progresses. The model was learned uing 4 different schemes

with varying noise level. Lower cost corresponds to less number of burning cells.115

5-21 Comparison of average cost of the fire fighting mission versus number of sam-

ples for the greedy and the planning/learning teams. The wind velocity is

10mph. Lower cost corresponds to less number of burning cells. 118

5-22 Comparison of average cost of the fire fighting mission versus number of sam-

ples for the greedy and the planning/learning teams. The wind velocity is

50mph. Lower cost corresponds to less number of burning cells. 118

5-23 Snapshots from the hardware experiment corresponding to the fire configura-

tion with high wind velocity for the greedy team. 119

5-24 Snapshots from the hardware experiment corresponding to the fire configura-

tion with high wind velocity for the planning/learning team. 120

15

16

List of Algorithms

1 Trajectory Based Policy Iteration Algorithm . 39

2 Bayesian Optimization (BOA) algorithm . 40

3 Optimize Factor Graph . 48

4 Coordinated Trajectory Based Value Iteration Algorithm (C-TBPI) 49

5 Dec-iFDD Model Learning Algorithm . 78

6 Collaborative Filtering Decentralized iFDD Model Learning Algorithm (CF-

Dec-iFDD) 87

17

18

List of Tables

3.1 Iteration complexity of RCD compared to other approaches. 52

4.1 Probability of nominal fuel burn for UAVs across different locations and health

status. 72

4.2 Baseline probability of actuator failure across different locations and fuel levels. 82

4.3 Baseline probability of nominal fuel rate across different locations and health

states. 82

4.4 Evaluation of averaged mission metrics for centralized planner with homo-

geneity assumption and coupled GA-Dec-MMDP Dec-iFDD planner with FSC

= 100. 84

4.5 Comparison of the average model estimation error of different feature sharing

approaches for instantiates of the forest fire domain with different heterogene-

ity levels. The resulst are obtained for 103 samples and averaged over 30 runs.

Feature sharing cap for all algorthims are 200. 93

4.6 Comparison of the average model estimation error of different feature sharing

approaches for instantiates of the persistent search and track domain with

different heterogeneity levels. The resulst are obtained for 103 samples and

averaged over 30 runs. Feature sharing cap for all algorthims are 200. 94

5.1 Probability of sensor failure for UAVs across different locations and fuel levels

as estimated by iFDD learning algorithm. 104

5.2 Comparison of hardware and simulation results. Lower prediction error cor-

responds to making more accurate predictions regarding the direction of the

fire spread. 113

19

20

Chapter 1

Introduction

The design and study of multiagent systems is a widely acknowledged interdisciplinary en-

gineering problem, drawing attention of researchers from distinct fields, such as computer

science [1], electrical engineering [21, aerospace engineering [3] and operations research [4].

The engineering of multiagent systems for cooperative scenarios can be defined as the devel-

opment of methodologies for coordinating multiple entities towards achieving a common goal.

An important subset of the multiagent design problem is addressing planning and learning

problems. The planning problem involves optimizing the behavior of agents in an uncer-

tain environment based on the known model of the mission dynamics. On the other hand,

the learning problem consists of modelling the dynamics of the environment by processing

observations collected by individual agents.

Both of these problems have common and distinct challenges, such as the scalability of the

algorithms with the number of agents, development of the data and model sharing protocols

under communication constraints and the automation of the model selection process. In the

subsequent sections we motivate the study of multiagent systems by focusing on real world

applications (Section 1.1), then we give the technical definitions of the multiagent planning

and learning problems (Section 1.2). The Section 1.3 identifies some of the critical challenges

inherent to these problem formulations. The Section 1.4 presents the literature review of the

related work and emphasizes the existing gaps. Finally, the Section 1.5 presents the outline

of the research conducted for addressing these existing gaps and the contributions of the

thesis.

1.1 Motivation

Many robotic missions involve teams of mobile robots operating in an uncertain environ-

ment with the objective of achieving a common goal or trying to maximize a joint reward.

21

Examples include planetary science missions [5] , cooperative pursuit evasion [6], persistent

surveillance with multiple Unmanned Aerial Vehicles (UAVs) [7], reconnaissance missions [8],

and supply chain event management [9]. Cooperation between agents is a recurring theme in

these missions. For instance, in a multi-robot exploration mission, individual agents should

coordinate their actions based on the actions of other agents to efficiently cover the search

domain. Another example is the cooperative pursuit evasion mission, where agents should

collaboratively decide their positions to limit an evader's maneuvers.

Another line of multiagent system applications involve stationary agents operating in

a highly dynamic environment, where the agents must execute actions that regulate the

environment dynamics. Examples include distributed vehicle monitoring [10], air traffic

control [11], network management [12], electricity distribution management [13] and meeting

scheduling [14]. There are also applications in which the mobile and stationary agents must

work together, such as control of manufacturing processes [15]. Similar to the missions

with mobile agents, cooperation between agents is critical in these applications. Consider a

multiagent traffic flow regulation problem [16], in which each agent controls a traffic light at

an intersection and the objective is to maximize the flow rate of the mobile vehicles while

trying to minimize the traffic jams and the number of collisions. Non-cooperative solutions

are simply unacceptable in a such domain, since collisions are very likely to happen if the

traffic lights are not coordinated.

Technically all these missions can be formulated as stochastic sequential decision making

problems. The uncertain elements of the missions may stem from many different sources,

such as the impact of external disturbances on the dynamical model of the robot [17], the

rate change and amplitude of package requests in a network [18], or the uncertainty in the

target motion model in a cooperative target tracking scenario [19]. Hence planning algo-

rithms require a model of the uncertainty in order to hedge against the stochastic dynamics

of the environment. However, in many real world applications, such models may not be

available a priori and mismatch between the planning model and the actual dynamics of

the environment might lead to catastrophic performance [20]. Hence, models need to be

learned/updated during the mission to mitigate the effects of the model mismatch. Thus in

real word applications, the planning problem cannot be separated from the model learning

problem, these two classes of algorithms should work harmoniously.

To summarize, it can be concluded that both multiagent planning and learning problems

arise in many technological applications and the integrated solutions to such problems should

be investigated to improve the quality of these implementations and to open doors to new

applications.

22

1.2 Problem Statement

This Section gives a brief technical formulation of the planning and learning problems of

interest. A deeper technical discussion of these problems and tools for analyzing them will

be provided in Chapter 2.

1.2.1 Multiagent Planning Problem

Markov Decision Processes (MDPs) [21] are a common framework for analyzing stochastic

decision making problems. We will utilize this framework to study multiagent planning

problems.

An MDP is a tuple (S, A, T, R, -y), where S is the state space, A is the action space,

T : S x A x S -+ [0,1] is the transition model, R : S -+ R is the reward model and -y E [0,1)

is a discount factor. T(s, a, s') denotes the probability of ending up at state s' E S given

that the current state and action is s E S, a E A. Multiagent Markov Decision Processes

(MMDPs) [22] are specific types of MDPs that involve multiple agents, where the action

space is factorized as A = A1 x A2 --- x A, and na is the number of agents. The objective

of the planning problem is to find a policy 7r S - A such that the cumulative discounted

reward is maximized for given initial state so,

EYkrklsoab = ir(sk)], (1.1)
k=O

where k is the discrete time step, E[.] is the expectation operator and the expectation is

taken over the distribution of next states s+1. Further information on the assumptions on

the structure of the MMDP formulation and obtaining a policy that maximize the Eq. 1.1

will be provided in Chapter 2.

1.2.2 Multiagent Learning Problem

In this thesis it is assumed that the reward model R of the MDP is available to the designer.

The multiagent learning problem consists of estimating the unknown transition model T

from the observed state transitions. In many multiagent applications of interest, the agents

cannot directly change the states of the other agents, that is, the transition models are

independent[23]. The coupling between agents usually enters the system through the reward

model. We will assume that the transition dynamics are independent among the agents and

the transition model can be factorized as T = T, x T -.. x T. Each agent maintains and

updates it's own estimate of the individual transition model '1. Let ok = {sk, ak, sk+1} denote

23

the state, action and next state at time k. The learning process consists of two stages; the

estimation step,

where ei is the estimation law that updates the estimation Ic based on the past estimation

k- and the current transition observation ok. The second stage is the communication step,

where each agent broadcasts their estimated models by using a communication function ci,

c ((1.3)

where the output of the ci might be saturated due to the constraints on the throughput

of the communication network [24]. For a variety of different multiagent communication

architectures also see [23].

The objective of the learning problem is to design the estimation laws ei and the commu-

nication laws ci such that the estimates ik -+ 7; as k -+ oo, preferably with an exponential

rate.

1.3 Challenges

Planning and learning with MMDPs involve a variety of challenges [25]. This thesis addresses

three particular challenges that are critical to the design of multiagent planning and learning

algorithms.

1. Scalability: The "curse of dimensionality" is a widely recognized problem in machine

learning and planning research, which refers to the exponential blow-up in the compu-

tational complexity of the problem with the increased dimensionality [26]. Multiagent

systems inherently suffer from this problem, because the joint size of the state space

is almost always exponential in the number of agents. In the language of Section 1.2,
this refers to the fact that the cardinality of S, A and T being exponential in na.

For instance, consider a mission where the agents operate in a gridworld and let the

state of each agent be represented by it's current location. The size of the state space

is simply Mna, where m is the number of grids. Hence the problem size increases ex-

ponentially in the number of agents. Many existing MDP solvers [27] and transition

model estimators [28] have polynomial complexity in the size of the state-action space,

which corresponds to having exponential complexity in the number of agents, render-

ing these algorithms computationally intractable for large-scale problems. This is a

crucial limitation for the application of multiagent planning and learning algorithms

24

to real world problems.

2. Heterogeneous Teams: Homogeneous teams refer to the multiagent problems where the

agents have the same or similar transition dynamics, hence TR ; T7, i, j = 1, ... , na,1 * J.

This assumption usually simplifies both the planning and the learning problem sig-

nificantly. For instance, the function approximation methods [29] and dimensionality

reduction methods [30] work much more efficiently for the multiagent planning prob-

lems with homogeneous teams. Similarly, solving multiagent learning problems become

significantly easier, since all the agents are trying to estimate the same parameters.

The bulk of the literature in multiagent machine learning examines the problem of

multiple agents with homogeneous transition dynamics trying to infer a single model

[31]. However, many real world applications require the agents to learn different or

agent-dependent models, such as the impact of external disturbances on the agent

health [32] or modelling of the arrival rate of packages in a specific part of the net-

work [33]. In such problems, the learning process might be accelerated substantially by

sharing information/models among agents. Learning with heterogeneous teams is far

more challenging, because it involves the need to assess similarity of the learned models

among agents and transferring the relevant parts of the individual models across the

team to improve the convergence rate of the learning process.

3. Dependency on Domain Knowledge and Manual Tuning: Many planning and learning

algorithms contain parameters that must be tuned to obtain a good performance in

a specific domain. These parameters can be as simple as a scalar learning rate in a

reinforcement learning algorithm [34] and sometimes they can be as complex as a set

of arbitrary basis functions for an approximation algorithm [35]. In many applica-

tions, these parameters are set by domain experts based on the heuristics and domain

knowledge obtained from past experiences. However, many algorithms contain a large

number of parameters that require an extensive tuning process that could be beyond

the capabilities of a domain expert, even if they are available. Furthermore, the number

of required parameters typically increases with the complexity of the problem, so the

simple parameter tuning methods might become time consuming. Thus, it is desirable

to automate the parameter selection process for the planning and learning algorithms

without relying on extensive domain knowledge.

25

1.4 Literature Review

This Section gives a review of the related work on planning and learning for multiagent

systems. Since the literature on the subject is rather large, review will mainly focus on

algorithms that are concerned with addressing challenges described in Section 1.3.

Related Work on Centralized Multiagent Planning with MDPs

Dynamic Programming (DP) [36] is one of the most popular methods for solving an MDP,

which involves computing the value function as a solution to the Bellman equation [37]. Exact

DP methods, such as value iteration and policy iteration [38] work by sweeping through the

planning space by performing Bellman backups and they are guaranteed to converge to the

optimal solution asymptotically [39]. However, for large-scale planning spaces, such as those

associated with multiagent missions, both memory and computational complexity increases

exponentially in the number of dimensions, which renders the exact approaches infeasible for

such domains. In the last 20 years, significant effort has been exerted to develop approximate

algorithms that can yield near-optimal solutions with feasible computation and memory

requirements [29]. For example, Asynchronous Dynamic Programming aims to lower the

computational complexity by performing planning on a subset of the planning space rather

than sweeping the whole space, which can be performed by selecting randomized subsets

[39] of the planning space or sampling trajectories from the model [40]. However, sampling

trajectories from a large-scale planning space is a non-trivial problem, since subsets of the

planning space that are more relevant to the optimal policy are not known a priori. Hence,

the trajectories sampled from the model should explore the state space in an efficient manner,

that is the algorithm should not get stuck to a specific subset of state-space but should take

exploratory actions to move less frequently visited parts, while also taking actions that

exploit the current policy to improve the plan. The problem of finding a balance between

such actions is usually referred to as the exploration-exploitation dilemma [28]. Many different

approaches were developed to handle this dilemma, such as randomized exploration [29] and

incorporation of knownness and memory functions [41]. However, handling exploration in

large-scale planning spaces is still an open problem.

Approximate Dynamic Programming (ADP) [29] methods were developed to address the

issue of scalability by approximating the value/policy function by a finite set of basis func-

tions, so that the approximate problem has fewer unknown parameters compared to the

original problem. Once the basis set is chosen, approximate versions of value and policy it-

eration [39] can be applied to obtain a sub-optimal solution. Linear function approximation

[35] methods received particular attention due to their theoretical guarantees [42]. Non-

26

linear approximators such as radial basis functions [29] and neural networks [43] have also

been studied because of their capabilities to approximate a large class of functions. Note

however that ADP methods mentioned so far require the designer to hand-code the set of

approximation basis, and such information usually relies on domain expertise.

Recently, significant effort has been applied into automating the basis function selection

process based on the observed/simulated data. Examples are, adaptive tile coding [44],

incremental feature dependency discovery [45], orthogonal matching pursuit [46] and kernel

based approximators [47]. Overall, these approximate techniques were shown to improve the

scalability and convergence rate substantially for a wide variety of MDPs and relaxed the

constraints on specifying a fixed set of basis functions a priori. However, in practice these

methods do not scale well to large-scale multiagent missions, because the process of basis

function automation slows down significantly in large-scale planning spaces.

Structural MDP decomposition algorithms take advantage of the structure of the problem

formulation to lower the size and dimension of the planning space to enable faster computa-

tion time [48]. This process usually involves investigating the factorization of the state-action

space and then exploiting the independence between these factors. Factored MDPs [49] rep-

resent the original MDP with a Dynamic Bayesian Network [50] (DBN), where the state

transitions are represented in a more compact manner to avoid exponential blow-up of the

planning space. Both policy iteration [51] and linear programming approaches [52] were

developed for solving factored MDPs efficiently. A highly scalable multiagent planning algo-

rithm with factored MDPs was proposed by Guestrin and Parr [53], where each agent solves

its individual MDP and the joint return optimization is achieved via use of a coordination

graph. The main drawback of the aforementioned approaches is the assumption that the

structure of the DBN and the coordination graph is known to the designer. Recent research

has focused on estimating the structure of factored MDPs, which is still an active area of

research [54]. Ref. [55] demonstrated that statistical tests can be applied to learn structure

of factored MDPs and [56] showed that Dynamical Credal Networks can be used as a tool

to estimate factored MDP structures. Although not studied from multiagent planning point

of view, Doshi [57] applied nonparametric inference techniques to learn structure of DBNs.

Kok and Valassis [58] proposed an algorithm for learning the structure of the coordination

graphs greedily based on statistical tests, however no theoretical analysis was done and the

algorithm was shown to be effective for only a small number of moderately sized problems.

Another popular MDP structure decomposition technique is inducing hierarchies. The

work in [59] shows how a large-scale MDP can be decomposed into a hierarchy of sub-

MDPs, where sub-MDPs at the bottom of the hierarchy can be solved by neglecting states

of MDPs at the top. Several works extended this formulation [60] and developed efficient

27

algorithms than can solve hierarchical MDPs much faster compared to the original flat MDP.

The options framework [61] is closely related to the hierarchical MDPs, where a collection of

actions and state transitions are abstracted to entities that can be executed as macro actions.

Both planning with options [62] and learning options [63, 64] attracted many researchers in

recent years, however automating the discovery of such structures is still an open problem.

It should also be noted that, we are interested in solving centralized multiagent planning

problems in this Thesis. There is a bulk literature on decentralized multiagent planning

(See [23, 65, 66]). These problems come with additional challenges, such as partial ob-

servability of the agent states and enforcing the policy consensus among agents. Although

decentralized planning is a very interesting research direction, these problems are beyond

the scope of this Thesis.

Also, it should be noted that there are methods that can construct a policy without the

knowledge of a model. These methods are usually referred to as model-free reinforcement

learning algorithms [28, 29]. These algorithms process the state transition samples collected

from the interactions with the environment and then compute a policy without explicitly

learning the MDP model. However in practice, compared to the model-based approaches,

these algorithms usually need a lot of samples to converge. In addition, model-based ap-

proaches also end up learning the model of the MDP along with the policy, which can be

used for other purposes. Hence, we favor the model-based approaches over the model-free ap-

proaches. That is, we are interested in developing planning/learning architectures that first

learns a model of the MDP from the transition samples and then use the learned model to

compute a policy. In the next subsection we review the multiagent model learning methods.

Related Work on Multiagent Learning

Fusion of multiagent systems and machine learning methods is an active area of research. A

general survey on these methods can be found in [67]. Classical multiagent learning literature

focuses on the problem of a group of agents trying to learn a single model, which can be for-

mulated as a parameter/model consensus problem [31]. This problem has been investigated

extensively in different settings and efficient algorithms in Bayesian framework for both per-

fect and limited communication have been developed [68, 69]. However, extensions to the

heterogeneous learning setting have not been much investigated. Game Theory is a popular

framework to study multiagent systems [70], flexibility of the game theoretic modeling frame-

work enabled a thorough analysis of both homogeneous and heterogeneous team learning in

cooperative and competitive scenarios [71, 72]. However, studies have mainly focused on the

theoretical aspects, such as convergence to Nash equilibria and practical aspects such as scal-

ability and ability to work under limited communication were largely ignored. Homogeneous

28

learning have been investigated by application of evolutionary computation techniques [67],
important results include applications to team-mate modeling [73], competitive learning [74]

and credit assessment [75]. Overall, algorithms demonstrated good scalability properties.

However, heterogeneous learning and performance under limited communication have not

been much investigated. Multiagent Reinforcement learning (MARL) algorithms solve mul-

tiagent planning problems without the knowledge of the model beforehand. A general survey

on multiagent reinforcement learning can be found on [76]. MARL algorithms typically learn

a joint model across the agents, hence the model heterogeneity challenge is not explicitly

addressed.In addition, many MARL algorithms usually suffer from scalability issues due to

exponential blowup of the learning space in number of agents. Overall, MARL algorithms

suffer from the same scalability issues that comes with curse of dimensionality, and many of

the existing algorithms are strictly dependent on the domain knowledge and manual tuning.

Although they are not directly related to multiagent systems, fields of transfer learning

and multi-task learning also study similar problems in terms of model transfer among dif-

ferent tasks. Transfer learning [77] is the study of how to carry a model learned from a

specific problem to a similar unsolved problem in order to accelerate the learning in the new

problem. Transfer learning is an active area of research and found many applications ranging

from multi-task learning [78] and collaborative filtering [79] to reinforcement learning [80].

Although transfer learning algorithms are not developed specifically for solving heteroge-

neous multiagent learning problems, they can be used as a tool to study similarities between

models learned by different agents and how to handle the sharing of models between agents

in an online manner under communication constraints. To the best of our knowledge, no

prior research exist on establishing the connection between online multiagent learning and

transfer learning/collaborative filtering algorithms.

1.5 Overview of The Research and Contributions

The contributions of this Thesis focuses on addressing the challenges outlined in Section 1.3.

The Thesis aims to develop planning and learning algorithms that are scalable to large-scale

multiagent problems, applicable to teams with heterogeneous transition models and have

embedded meta-optimization layers for self-tuning their parameters, so that the resulting

algorithms have little or no dependency on the domain knowledge.

The first contribution of the thesis is the development of a planning algorithm that

performs coordination structure search for solving large-scale MMDPs. This work devel-

ops a novel MMDP structure decomposition algorithm where the decomposition process is

automated by the use of a probabilistic meta-optimization layer. The algorithm, named

29

Randomized Coordination Discovery (RCD), utilizes the framework of the Bayesian Opti-

mization Algorithm [81], which guides the decomposition search by generating samples from

probabilistic graphical models defined on the planning space. This meta-optimization layer

automatically discovers the coordination structures that would lead to computationally fea-

sible plans with high returns. Regarding the challenges in the multiagent planning, this

thesis makes the following contributions,

" Scalability: It is shown that the RCD algorithm has linear complexity in the number

of agents in the problem and the largest factor in the coordination factor graph per

iteration. This property makes the algorithm scalable to large-scale multiagent mis-

sions, contrary to the many existing MDP solvers, which have exponential complexity

in the number of agents.

" Heterogeneous Teams: The RCD algorithm does not make any symmetry assump-

tions in the coordination structure and performs a randomized search over all possible

structures. Since heterogeneous teams are more likely to have an asymmetric coordi-

nation structure, this property makes the RCD algorithm suitable for working with

heterogeneous teams.

" Asymptotic Convergence: It is proven that the RCD is guaranteed to converge

asymptotically. This property is not always guaranteed for existing representation

search algorithms and it ensures that the coordination search will not end up oscillating

between different coordination structures.

" Dependency on Domain Knowledge: Unlike the existing decomposition based

MMDP solvers, the RCD algorithm does not require the designer to encode a fixed

coordination structure beforehand. The algorithm utilizes a randomized search process

to discover the coordination structure that is most likely to result in a high return

policy.

" Comparative Simulation Results: The simulation results show that, given the

same computational resources, the RCD algorithm outperforms alternative decom-

position based MMDP solvers up to an order of magnitude on several challenging

large-scale multiagent planning problems.

The second contribution of the thesis is the development of a family of distributed learning

algorithms that utilize feature transfer among agents to enable rapid learning under com-

munication constraints. The algorithms decompose the learning problem across the team

and enable agents to exchange partial models with each other to improve the convergence

30

rate of the learning process. The algorithms, named Decentralized Incremental Feature

Dependency Discovery (Dec-iFDD) and Collaborative Filtering Decentralized Incremental

Feature Dependency Discovery (CF-Dec-iFDD), utilize the iFDD algorithm [35] for auto-

mated model complexity adjustment. Each agent learns a linear function approximation

of the actual model, and the number of features is increased incrementally to adjust the

model complexity based on the observed data. These features are compact representations

of the key characteristics in the environment dynamics, so it is these features that are shared

between agents, rather than the models themselves. Regarding addressing the challenges in

multiagent learning, this Thesis makes the following contributions,

" Scalability: The developed algorithms decompose the multiagent learning problem

into a group of single agent learning problems that are executed concurrently. Hence

the algorithm does not have any exponential dependency on the number of agents,
making it applicable to large-scale scenarios.

" Heterogeneous Teams: The CF-Dec-iFDD algorithm makes no assumption on the

homogeneity of the models of the agents. Instead, each agent maintains a partial

estimate of other agent's models, which are built by receiving feedback on from other

agents. The transferred features are selected based on these partial models, which

might be different for every agent. Hence, the algorithm can work with heterogeneous

teams, which contrasts with most other multiagent learning methods that assume that

the agents are solving the same learning problem.

" Dependency on Domain Knowledge: The developed algorithms are built upon the

iFDD algorithm, which starts the learning process with a small set of binary features

and builds up a more complex representation by taking conjunctions of these initial

features. The conjunctions are added only whenever the observed error exceeds a pre-

specified threshold, hence the model complexity is automatically adjusted based on the

gathered observations. Thus, the designer does not need to hand-code a fixed set of

features for each agent's representations; iFDD discovers these features on the fly. This

property of iFDD renders Dec-iFDD and CF-Dec-iFDD less dependent on the domain

knowledge and free of extensive manual parameter tuning. Note that earlier iFDD was

criticized for being dependent on a set of given initial features and the computational

complexity does not scale well with the number of agents. These problems does not

occur in the developed algorithms, since the multiagent learning problem is decomposed

into a collection of single agent learning problems. There exists guidelines for specifying

a set of good initial features for the single agent systems [45]. In addition, iFDD was

shown to be computationally efficient for the single agent learning problems [35].

31

" Asymptotic Convergence: Asymptotic convergence of the iFDD algorithm in the

context of reinforcement learning was proven in previous work. The proofs in this

Thesis extend these guarantees to the approximate model learning and shows that

iFDD model learning will always converge under mild assumptions.

" Comparative Simulations Results: Numerical results on the thesis considers a

variety of large-scale multiagent learning problems and compares the learning rate of

the CF-Dec-iFDD, Dec-iFDD and alternative approaches. Results confirm that when

the team is heterogeneous, CF-Dec-iFDD has the fastest convergence rate among the

compared approaches.

The third and the final contribution of the thesis focuses on the experimental verification

of the proposed planning and learning algorithms on realistic multi-UAV mission scenar-

ios. Experimental verification of these algorithms poses several challenges, such as learning

with measured data, coping with the environmental disturbances, and operating under real

time constraints. This work involves integration of the developed planning and distributed

learning algorithms and the implementation of this framework on multi-UAV missions that

require persistence coverage, health management, communication relay and cooperation.

The contribution is the verification and demonstration of the proposed algorithms on flight

experiments to confirm that the developed framework is able to compute policies in real time

and learn using measured data. Specifically, the thesis makes contributions to the following

experimental subjects,

" Long Endurance Missions: A persistent multi-UAV surveillance mission is con-

ducted. The experiment involves real time policy computation and learning of sen-

sor failure dynamics via iFDD. With the aid of autonomous recharge stations that

recharge/swap UAV batteries, the mission was kept running fully autonomous for 3

hours, enabling collection of sufficient data to learn sensor models.

" Emulating wind Disturbance: Another persistent multi-UAV surveillance mission

with a mixture of real/virtual agents were conducted. Two vertical fans were mounted

on the ceiling, which made an impact on the battery life of the real UAVs. By using the

Dec-iFDD learning algorithm, UAVs were able to learn the coupling between the fuel

dynamics and the fan locations, and modified their policy accordingly. The experiment

demonstrated that the realism of flying outdoors and emulation of external disturbances

can be brought into indoors via the use of vertical fans.

" Emulating sensor noise: A multi-UAV forest fire management experiment was con-

ducted. With the help of ceiling mounted laser projectors, a forest fire animation with

32

stochastic dynamics was animated on the testbed ground. A quadrotor UAV mounted

with an onboard camera collected images of the fire and used the CF-Dec-iFDD algo-

rithm to learn the fire dynamics. This experiment demonstrated that the sensor noise,

such as the noise introduced by the camera, can be emulated in indoor experiments

with the help of projected animations.

1.6 Layout of The Thesis

Technical background associated with the developed work is given in Chapter 2. Next,

Chapter 3 provides the details on the development of the multiagent planning algorithm

RCD, along with the theoretical and simulation results. Chapter 4 studies both single

and multiagent learning with adaptive representations and provides details of the work on

iFDD, Dec-iFDD and CF-Dec-iFDD algorithms, their convergence properties and simulation

results. Chapter 5 gives an overall view of the MIT's RAVEN testbed and then provides

experimental flight results for integrated planning/learning algorithms developed in this

Thesis. Finally, Chapter 6 gives the concluding remarks and associated future work.

33

34

Chapter 2

Background

This Chapter gives a brief background on planning and learning in MMDPs along with

an introduction to the Bayesian Optimization Algorithm (BOA), Incremental Feature De-

pendency Discovery (iFDD) and the Matrix Completion Algorithm. These planning and

learning tools will serve as a basis for the algorithms that are going to be developed in the

later chapters of the thesis.

2.1 Planning with Markov Decision Processes

This section presents the formal definitions of MDPs and MMDPs, as well as the basic

algorithms to perform planning with these models.

2.1.1 Markov Decision Processes

A Markov Decision Process is a framework for formulating sequential stochastic decision

making problems [21],

Definition 1 (Markov Decision Process (MDP)) A Markov Decision Process (MDP)

is a tuple,

< S, A, T,*2,7 >,

where, S is a finite set of state configurations, A is a finite set of actions, T: SxAxS -* [0,1]

is a transition model, T(s,a,s') denotes the probability of ending up in state s' E S, given

that the agent was in state s E S in the previous timestep and took action a, R : S x A -+ R is

a reward model, R(s,a) denotes the reward obtained by the agent at the current time step,

-y E [0, 1) is a discount factor that balances the future rewards versus present rewards. We

35

denote the discrete timestep by k, and let sk E S and ak E A denote the state and action at

time k respectively.

In particular, we will study Multiagent Markov Decision Processes (MMDPs), which are

defined as follows,

Definition 2 (Multiagent Markov Decision Process (MMDP)) A Multiagent Markov

Decision Process (MMDP) is a tuple,

< n., S, A, T, I, Z >

where < S, A, T, R, -> forms an MDP with the factorized action space,

A=A1xA 2 x ... An,

where A, denotes the local action sets of agents and na E Z is the number of agents.

Remark 1 An MMDP is just an MDP where the set of actions are factorized across multiple

agents.

In many real life scenarios, the state space and transition models of the agents are also

factorized, which enables the design of more computationally efficient algorithms. This

thesis focuses on a specific class of MMDPs referred to as factored MMDPs (F-MMDPs),
which admits a such factorization. F-MMDPs are defined as follows.

Definition 3 (Factored Multiagent Markov Decision Process (F-MMDP)) A Fac-

tored Multiagent Markov Decision Process (F-MMDP) is an MMDP that admits the following

factorizations,

Factored State Space: The state space is factorized as follows

S = S1 X ... X S X S' X ... x Se ,

where Si is the individual set of states for the agent i, Se = Se x ... x Se is the set of states

for the external variables and ne is the number of factors for the external variables.

Factored Transition Model: The transition model is factorized as follows,

T = 7 x...xTa.xTe, where,

Te = 7IA x ... X T01,,

Tj : (S x Se) x Ajx Si-+ [0,],i =1,...,na

36

Tie : SxAxS-+[0,1],i=1,...,ne.

Remark 2 In an F-MMDP, the transition model of individual agents states depend only on

the local state, local action and the external states. Whereas the dynamics of the external

states might depend on the both external states and the state of the agents.

Example 2.1.1 Consider a multiagent multi-target tracking problem, where a group of

agents try to minimize the total distance between them and multiple targets with stochas-

tic dynamics. This problem can be cast as an F-MMDP, where Si is the location the agent

i and Sj is the location of the target j. Note that the next state distribution of each agent

depends only on its own position and action, whereas the next state distribution of the each

target might depend on their local states plus states of the tracking agents.

Next we define the trajectory, policy, return and value function,

Definition 4 (Trajectory) A trajectory z sampled from an MDP is a sequence of state-

action pairs < sk, ak >, k = 0,... , nonr, where sk+1 ~ T(sk, ak,.) and nh, is the length (horizon)

of the trajectory.

Definition 5 (Policy) A policy 7r is a mapping from S to A. For an F-MMDP, the policy

can be factorized as follows,

7F = 71 x.. X rna,,

where ,ri : S - A, is the local policy for agent i. We will denote space of all policies by H.

Remark 3 Note that the policy 7ri depends on the joint space S and not only on the individ-

ual state space of the agent Si. The problems of latter form are in the realm of Decentralized

MDPs, which is beyond the scope of this work.

Definition 6 (Return) Infinite horizon discounted return (or simply the return) Rlr(s)

S -+ R of a policy 7r is,

R'(s)= E 1 yksz (8k, ak) ak = 7r (sk) (2.1)

where so = s.

Definition 7 (Value Function) Value function Q" : S x A -+ R associated with the policy

7r is,

Q'(s, a) = R(s, a) + E [R'r(sk+l)]. (2.2)
sk+l-T(sk ak)

37

The optimal planning problem is defined as follows,

Definition 8 (Optimal Policy and Value Function) For a given MDP, the optimal pol-

icy r* is defined as follows,

* = argmax Q',

the corresponding value function QW* is called the optimal value function. A value function

Q is called 6-optimal if

The optimal planning problem is computing the optimal value function QT* and the corre-

sponding optimal policy 7r* for a given F-MMDP. This problem is well studied and there

exists polynomial time algorithms (for instance Value Iteration and Policy Iteration [39]).

However, the iteration complexity of these algorithms scale up exponentially with the in-

creasing na, so it is intractable to solve the optimal planning problem for most cases. As

such, this thesis focuses on the sub-optimal planning problem; that is given the constraints

on computational resources, try to find the tightest S that would yield an 6-optimal value

function.

2.1.2 Approximate Planning with MDPs

As mentioned in the Section 2.1.1, exact planning is infeasible for most large-scale MDPs.

The current research mainly focuses on approximate methods, where either the value func-

tion is represented approximately or the process to update the value of (s, a) pairs are

approximated. A common approach is to sample trajectories from the MDP and estimate

the value function only on the (s, a) pairs observed from these trajectories. This approach

yields significant computational savings and often works well in practice [35].

This subsection presents a generic approximate MDP-solver, which is a variant of the

Real Time Dynamic Programming algorithm [82]. Extension of the algorithm to F-MMDPs

will be treated in the Chapter 3. This algorithm will be the main tool for solving F-MMDPs

in this thesis, due to its convergence properties and low computational complexity. Before

giving the definition of the algorithm, we first define the E-greedy policy.

Definition 9 (E-Greedy Policy) An E-greedy policy 7r" is a random function which re-

turns a = 7r(s) with probability c and a uniformly random action from A with probability

1 - E.

The Trajectory Based Policy Iteration (TBPI) algorithm is presented in the Algorithm 1.

TBPI algorithm samples trajectories from the MDP following an E-greedy policy that is set

38

Algorithm 1: Trajectory Based Policy Iteration Algorithm

Input: MDP M, Number of iterations nrttaj, Initial state s0 ,Trajectory length nh,,
exploration schedule e(k), number of Monte-Carlo samples nm,

Output: Policy 7r
// Optimistic Initialization

1 QG = Rmax
2 1+-0

// Loop over trajectories

3 while 1 ntriaj do
// Loop over state-action pairs in each trajectory

4 while k nho, do
5 Compute ak <- rE(k) (Sk) = arg max Q1 w.p. E(k)

6 Q1+ = Q1 +Enfl (R(sk, ak) + yQ1(sf, wr(s') - Q(sk, ak))).

7 Sample sk (sk, ak,.)
8 Lk - k +1

9 _ l+1

io return 1ri

according to the current estimate of the value function Q', then the algorithm applies Monte-

Carlo Bellman update to each s, a pair in the trajectory. The En5m denotes the Monte-Carlo

expectation with nmc samples.

The TBPI algorithm is guaranteed to converge asymptotically to the optimal value func-

tion, given that every state-action pair is visited infinitely often, which can be ensured

theoretically by picking an appropriate exploration schedule E(k) [29]. Iteration complexity

of the algorithm is E(SAntramnmc) [83].

The main advantage of using TBPI is to avoid sweeping through all the state-action

pairs. By applying a Monte-Carlo Bellman update to only the trajectories sampled from the

model, we construct a policy that performs well on state transitions that are more likely to

occur during the execution of the scenario. Although more advanced exploration algorithms,

such as KWIK [84] can be used to handle the exploration-exploitation dilemma, we use the

E-greedy approach with optimistic initialization to handle this dilemma [28] to save memory

and computation power.

2.2 Bayesian Optimization Algorithm

The Bayesian Optimization Algorithm (BOA) [81] is a probabilistic framework for solving

black-box optimization problems by guiding the search for the global optima using proba-

bilistic graphical models [85], built by performing inference on the samples obtained from the

39

Algorithm 2: Bayesian Optimization (BOA) algorithm

Input: The evaluation function f, Probabilistic Graphical Model p(x; 9), Initial
estimate for the model parameter 90, number of iterations niter, number of
generated samples nsampie.

Output: Solution x
i Generate uniformly random x0 E X, where 1xO1 = nsample
2 Evaluate yo <- f(X 0)
3 for i = 0 to niter-1 do
4 Sample xi from the model p(9i), where Ixil= nsample
5 Evaluate yi <- f(Xi)
6 L Build Model p(x, Oi+1) using samples (Xi+ 1, yi+1)

objective function. Let X be the search space and let the objective function be f : X + R.

The problem is to find the global maxima

max f(x) (2.3)

s.t. X E X

The pseudocode for the generic BOA is given at the Algorithm 2. The BOA can be

described by the following steps,

* Initialization (Lines 1-2): The algorithm is initialized with selecting uniform random

points xO from the search space X and computing the corresponding values yO. Note

that although uniform random selection is used in practice, any alternative method is

valid as long as nsample points are generated, such as sampling from the distribution

p(X; 90).

* Sampling and Evaluation (Lines 4-5): At this step, the model p(x; Oi) is sampled to

generate nsample number of new points. Then these samples are evaluated with the

objective function to generate yi+l.

* Model Building (Line 6): The new parametric probabilistic model p(x; 0i+1) is built

using the samples x+ and their evaluated values yi+l. Any probabilistic inference

method is applicable at this step. One of the most common approaches is to truncate

the set xi+1 based on their evaluations, such as keeping the first K-values with highest

score and discarding the rest [81]. After the number of samples is truncated, inference

methods such as maximum-likelihood estimation can be used to build p(x;Oi+1). If

one defines a prior distribution p() over the model parameters, Bayesian inference

methods such as MAP estimation [26] can also be used. Alternatively, instead of

40

discarding samples, we prefer a weighted-maximum-likelihood approach to involve all

of the samples in the estimation process. Let,

nsample

1(0) = 171 p(xj+1;)f(X+')m (2.4)
j=1

represent the weighted likelihood, where m is a normalization constant. Setting 0i+1=

arg max 1(0) ensures that the new distribution will have more probability mass on the

points x with higher score.

The main objective of the algorithm is to converge to a probabilistic model that generates

points x with higher values of f(x) with high probability. This objective is achieved via the

coupled processes of iteratively down-weighting points x with lower values from the sampled

set. The BOA algorithm is shown to have better scalability properties in practice, compared

to a lot of alternative black-box optimization methods (for a detailed analysis of BOA and

comparisons to the other algorithms see [81]).

BOA belongs to a family of probabilistic search algorithms called Estimation of Distri-

bution algorithms (EDA). Although any parametric distribution can be used as the model

p(x; 0), for multivariate discrete variables, graphical models [85] are the most popular choice,

because graphical models can embed the independences between random variables, which

might result in computational savings during the inference step. In the Chapter 3, we will use

a class of graphical models called factor graphs for representing the sampling distribution.

2.3 Approximate Model Learning

As mentioned in the Chapter 1, many existing planners including, the MDP solver described

in the Subsection 2.1.2, need the transition model T to solve the planning problem. When

the transition model is not available, it can be estimated from the sampled trajectories z

(See Def. 4 by an estimation/learning algorithm. This Section provides the background on

the exact and approximate transition model estimation.

2.3.1 Exact Learning

Let T : S -+ R, i = 1,...,na be a group of unknown functions that need to be estimated

from samples, where S is a finite dimensional discrete state space and na is the number of

agents. The multiagent learning problem consists of estimating the unknown functions '7

from the noisy samples (si, , tij), j = 1,.. . , nTd, where nd is the number of samples, sij E S,

tij = R(sj) + w and w is a random noise with bounded variance and zero mean. Each agent

41

maintains and updates it's own estimate i. The learning process consists of two stages; the

learning step,
Tk -e(ik-1,i (Si,k 7 ti,k)), (2.5)

where k is the step number, e is the estimation law that updates the current estimate 7 k

based on the past estimate i-1 and the observed noisy sample (si,k, ti,k). The second

stage is the communication step, where agents broadcast their estimated models/features

(the concept of feature will be explained in the subsection 2.3.2) by using a communication

function c,

C(Tk), (2.6)

where the output of the c might be saturated due to the constraints on the throughput of

the communication network [24]. We will use N(i) to denote the set of agents that agent

i can exchange information with. We will use fap to represent the upper limit on model

parameters that can be exchanged at each communication step.

The objective of the multiagent learning problem is to design estimation law e and com-

munication law c such that estimates 7k -+ T, as k -+ oo, preferably with an exponential

rate.

2.3.2 Learning with Linear Function Approximation

In many practical scenarios, S is high dimensional, and since ISI goes up exponentially with

the number of dimensions, it is computationally intractable to store i exactly. Thus learn-

ing algorithms usually employ a lower dimensional approximation i ; . Linear function

approximation is a popular choice due to its theoretical guarantees [28],

ff

7;= E Oj5 4j,(s), (2.7)
j=1

where i, E]R are weights, ij : S -+ R are basis functions (which are commonly referred to

as features) and nf is the number of features. Note that i is a linear approximation to 7;
in the subspace spanned by #j. We denote 9i = [01,1,... ,1,] and /i = [#1,... ,,f] as the

weight vector and feature vector correspondingly, so that we can write T; = 9[-#i in vector

notation.

The standard approach to update i online from noisy samples (Si,k, ti,k) is to use the

stochastic gradient approach [86],

Oi+1 = 6f + a kAk(sik, ti,k)#Oi(Si,k), (2.8)

42

where ak E [0,1] is the learning rate used for mitigating with the noise at iteration k, and

A (si,k, ti,k) is the estimation error at step k,

= ti,k - OzT(sik). (2.9)

It can be shown that under mild assumptions on ak and the richness of the obtained samples

[87], Ti -+ 110, as k -+ oo, where H, is the projector operator that projects 7; to the subspace

spanned by #i.

2.3.3 Incremental Feature Dependency Discovery (iFDD)

Stochastic Gradient Descent algorithms usually employ a fixed set of features. However,

the quality of the approximation depends heavily on the choice of these features, which are

usually not known beforehand. Incremental Feature Dependency Discovery (iFDD) is an

online algorithm that expands the set of features /i based on the estimation error Ak at

each step. The algorithm was initially developed to estimate value functions in the context

of reinforcement learning [35] and was later adapted to estimate transition models [87].

iFDD works as follows: the algorithm is initialized with a set of binary features (that is

5j : S -* {0, 1}). The basic idea is to expand the feature set by taking conjunctions of the

existing features where the estimation error persists. Let 0+ be the set of features that are

formed by taking conjunctions of the existing features at the state Si,k,

0+ = {#,j A #,ij * O,4 j,, i, E #} (2.10)

This set is referred to as the list of potential features. The estimation error associated with

the potential feature f E #+ is given as

Ak(f) = tik - [O,, [O;i4,j(si,k), #i,/(si)], (2.11)

where f = #ijA #i,,. The relevance of each potential feature qk (f), f E 0+ is their absolute

accumulated estimation error,
k

#(f) - IANMf)I. (2.12)
m=O

iFDD adds f to the set of existing features whenever its relevance (Eq. 2.12)passes a prede-

termined threshold (> 0. The weight of the new feature f is set as Oij = Oi, + 4, .

43

2.4 Matrix Completion

Collaborative Filtering (CF) studies the problem of estimating multiple models by fusing

information across different input sets. One of the biggest applications of CF is the web

recommendation systems used by the companies such as Amazon and Netflix [88]. These

systems frequently estimate which items are likely to be bought by which users based on

the analysis of similarity of item ratings provided by the users. Matrix completion is one of

the popular approaches in CF due to the existence of computationally efficient algorithms.

Define the total number of users in the database as n. and the total number of items as np.

Let Mij E [0, 1] denote the rating of the product i provided by user j. Usually IMiI < np xnd

and the missing entries are estimated by solving the following optimization problem [89],

min|IXII, (2.13)

SAt, Xij = Mij,

where |j -|| is the nuclear norm. This optimization problem is convex and can be solved

in real time for reasonably sized matrices. We will refer to the matrix with missing entries

M as the rating matrix and the solution of the optimization problem X as the prediction

matrix.

2.5 Summary

This Chapter provided the background on mathematical tools, which are going to provide

a basis for the algorithms developed later in the thesis. The TBPI algorithm (Algorithm 1)

will be used in conjunction with the BOA (Algorithm 2) in the novel multiagent planning

algorithm developed in the Chapter 3. The iFDD algorithm (Subsection 2.3.3) and Ma-

trix Completion (Section 2.4) will serve as the building blocks for the multiagent learning

algorithms developed in the Chapter 4.

44

Chapter 3

Multiagent Planning with

Randomized Decompositions

This Chapter provides the development of the novel multiagent planning algorithm, Ran-

domized Coordination Discovery (RCD). As discussed in the Sections 2.1.2 and 1.4, many

existing approximate MDP solvers fail to scale up with the number of agents in multia-

gent scenarios. The coordination structure decomposition based methods [53, 90] yield the

best scalability but require the existence of a fixed coordination graph structure beforehand.

The main premise of the RCD is the discovery of useful coordination structures through a

randomized search process.

The Chapter is organized as follows, Section 3.1 provides a general overview of the RCD

algorithm. Next, Section 3.2 provides the definition of the Coordination Factor Graphs and

how to perform planning with them on F-MMDPs. The Section 3.3 describes the RCD

algorithm. The Section 3.4 proves the asymptotic convergence of the RCD algorithm and

draws some links to the theory of linear function approximations. Finally, the Section 3.5

compares the empirical performance of the RCD with other alternative approximation search

algorithms on 3 different multiagent planing domains.

3.1 Overview of The Developed Approach

Fig. 3-1 provides an outline of the Randomized Coordination Discovery (RCD) algorithm

developed in this thesis, which builds upon the framework of Coordination Graphs (CGs) [53,

90]. In a nutshell, the algorithm performs a randomized search over the space of coordination

graphs in order to discover graphs that yield high return policies.

The standard decomposition based MMDP solvers assume a fixed coordination graph

structure beforehand. This structure is usually obtained from domain knowledge or param-

45

Policies 7r

Average Return
Sampled CGs E[n ~~krk]

Distribu on DvistEtbutaton

Parameters
0

Figure 3-1: Diagram representation of the Randomized Coordination Discovery (RCD) algo-
rithm. Each box in the diagram represents a different subroutine that works together with
others to solve the MMDP problem.

eter tuning. The planning algorithm uses this pre-specified coordination graph to compute

a multiagent policy. In contrast, RCD doesn't assume a fixed coordination graph struc-

ture, and keeps generating new coordination graphs based on the planning performance.

RCD (Fig. 3-1) defines a parametric probability distribution over the space of Coordination

Graphs. At the start of each iteration, a number of CGs are sampled from this distribu-

tion. Next, these sampled CGs are sent to the planning algorithm, which computes a policy

corresponding to each CG. Then these policies are evaluated by computing the correspond-

ing discounted returns, and the return-CG pairs are sent to the estimation algorithm. The

estimation algorithm updates the sampling distribution by using the return-CG pairs. The

updated distribution puts more probability weight to the CGs with higher returns. As a

result, CGs with higher returns are sampled with higher probability in the next step.

The main contribution of this work is the randomized coordination graph search archi-

tecture displayed in the Fig. 3-1 and the use of Bayesian Optimization Algorithm (BOA)

to efficiently search over the space of coordination graphs. By automating the Coordina-

tion Graph search with RCD, we obtain good suboptimal solutions to large-scale multiagent

planning problems without the need for domain expert inputs. This is an improvement over

the majority of the works mentioned in the Section 1.4, which assumed a fixed structure of

Coordination Graphs. We also show in simulations that the developed algorithm is supe-

rior to the existing adaptive approximation techniques in terms of convergence speed and

solution quality.

46

3.2 Multiagent Planning with Coordination Factor Graphs

We first discuss the Coordination Graphs (CFGs), which serves as the main building block

of the RCD algorithm. Instead of formalizing coordination graphs as Markov Random

Fields(MRF)s with each node acting as the local value function of the individual agents

as in Parr's [53] and Kok's [90] work, we define CFGs as factor graphs where the state-action

variables are shared across different factors. The number of factors are not necessarily equal

to the number of agents, hence a more flexible decomposition can be obtained compared to

the previous work on coordination graphs. The formal definitions are as follows,

Definition 10 (Factor Graph) Let X = ® 1 Xj be a collection of variables. A factor graph

is a tuple (F, V, E), where F: X -> R, (V, E) is an bipartite graph with vertices decomposed as

V = X u f, f = {f, .. , f m }. A sum factor graph represents F from (V, E) as,F = E', fj(zt),
where as a product factor graph recovers F as, F = H~TX fj(tj), where j = {xj E XIej,i E E}.

Now we can define Factor Graphs in the context of F-MMDPs.

Definition 11 (Coordination Factor Graph) Let M be an F-MMDP and let Q ; Q
represent an approximation of the value function of M. A coordination Factor Graph (CFG)

is a sum factor graph where F = Q, X = S x A, fi = Qi(, , di).

Example 3.2.1 An example CFG is displayed at Fig. 3-2. The global Q function is decom-

posed into a sum of 3 factors,

Q = Q1 (S1 , Ai, Si)+ Q 2 (S2 , A 2 , S 3, A3) + Q 3 (A3 , Se) (3.1)

There are two evident advantages of using an CFG to approximate the Q function. First,

the number of parameters are greatly reduced. For instance if we set n = |S| and m = A|,

the CFG in Fig. 3-2 needs only n2m + 2n2m 2 + nm = 0(n2m 2) parameters, whereas the exact

Q function needs 0(n5m 3) parameters. The second advantage comes in when we want to

compute maxae A Q, which is discussed next.

The following maximization problem occurs frequently in the design of MDP solving

algorithms,

maxQ,
aeA

since the A can be high dimensional, this optimization problem is usually intractable for

large-scale F-MMDPs. If the approximate value function Q is represented via an CFG,

max Qj (9, di). (3.2)
aEA EA

47

Figure 3-2: A CFG for a a 3-agent F-MMDP with 2 external variables and 3 factors.

Algorithm 3: Optimize Tree Factor Graph via Max-Sum

Input: Tree Factor Graph (F, V, E), vertices are labelled from leaves to the root

Output: Maximizing variables x* E Xi

// Initialize
1 forall the Xi, fj E leaf nodes do

: Pf i = fj (X)
3 Pxi-,fj =1I

Pass messages from leaves to the root

4 forall the xi, fj leaf nodes do

5 [lfji = maxX, ... maxX3 f3 (x,x1,. . . ,x M) Z '1 Ax,-fj(xk)

6 LtXji-fj = EfEne(x)\fj pfj-xi(Xi)

7 return xi

The structure in CFG enables the use of techniques from the Machine Learning community

to solve the optimization problem in Eq. 3.2 [91]. It can be shown that solving Eq. 3.2

is equivalent to performing inference on a probabilistic model using belief propagation al-

gorithms. In particular, the algorithm is exact when the CFG has a tree structure [85].

Algorithm 3 presents the max-sum algorithm, which can be used to maximize a factor graph

with a tree structure. Note that when we have a fixed state s E S and if we pass E', Qj(7 i)

to the Algorithm 3, it will return the a* e A, that is the solution to Eq. 3.2.

The TBPI algorithm (Algorithm 1) can be extended to the case where Q is represented

by a CFG. The key step is to re-define the the Bellman update per factor as follows,

i<- Q + E + YQj(s', irT(s') - Qj(si, aj))SS/~T(5,^.)

48

Algorithm 4: Coordinated Trajectory Based Value Iteration Algorithm

Input: F-MMDP M, Coordination Factor Graph (Q, V, E), number of iterations

ntra3, Initial state s0 ,Trajectory length nh,
Output: Policy 7r
// Optimistic Initialization

1 0 = Rmax
2 l<-0

// Loop over trajectories

3 while 1 ntraj do
// Loop over state-action pairs in each trajectory

4 while k nho, do
5 Compute ak = (sk) = arg max Q1 using Algorithm 3
6 forall the i E [1,...,m] do

L 1+ = Q' 4~n., ((sk~ak) + XQ(s, r(s,) -Q(Sk, ak)))

8 Sample sk ~ T(sk, ak,.)

9 L k <- k +1

10 +-- +1

ii return 7r

where w(s') = argmax Q(s, a). Combining Algorithm 3 with the Bellman update in Eq. 3,

recovers the Coordinated Trajectory Based Policy Iteration (C-TBPI) algorithm, presented

in Algorithm 4.

3.3 Randomized Coordination Discovery (RCD)

The Algorithm 4's performance relies heavily on the specified CFG. If the CFG is sparse

and the approximation error is low, Algorithm 4 will return a policy with low optimality

gap with little computation. However, specifying a good CFG beforehand usually requires

domain expertise, which is not available in many practical situations. Hence it is reasonable

to develop an algorithm that can efficiently search over possible CFG structures to meet

the computation and performance demands. Randomized Coordination Discovery (RCD)

Algorithm performs this task by combining BOA and C-TBPI. The main idea behind the

RCD algorithm is to apply Algorithm 2 to automate the selection of CFG for the Algorithm 4.

We define the distribution over CFGs as a distribution over the edges eij on the graph.

Since an edge ei, takes values {0, 1}, this renders each ei, a Bernoulli random variable. Thus

the sampling distribution is of the form,

P(eij; 0), i = 1, ..., In, = 1, ..., 7M, eij E {0, 1}. (3.3)

49

Example 3.3.1 Depending on how we define the coupling between the variables eij, we have

a family of different probabilistic models to choose from. The Fig. 3-3 represents different

forms of couplings between eij and the corresponding graphical models. Forcing each edge to

be probabilistically independent from others (see Fig. 3-3b) results in a simple model, where

the joint probability distribution is decomposed as,

P(ej; 9) = P(ei,1; 9)P(ei,2; 0) ... P(e4 ,2 ; 9).

This model has only 8 parameters, hence updating the distribution is computationally very

cheap. However due to negligence of dependency between the variables, this model does not

capture the true distribution. On the other extreme, we have the fully connected model (See

Fig. 3-3b), where there is no conditional independencies. This model captures all the possible

dependencies between the edges, but it requires a lot of samples to update the parameters. This

model has 8 x 27 parameters. We can also specify a model that captures some dependencies,

as in Fig. 3-3d. This model is more expressive compared to the model in Fig. 3-3b whereas

more sample efficient compared to the model in Fig. 3-3c.

Since the model structure has a huge impact on the approximation error and sample

complexity of the BOA algorithm [81], we also learn the structure of the model from the data.

Structure learning for graphical models is a common practice in Machine Learning research

and there are already well-established algorithms for learning the structure of Bernoulli

graphical models, like the models displayed in Fig. 3-3.

We use the l regularized logistic regression algorithm developed by Wainwright et al. [92]

to learn the structure of the Markov Network P(e,j; 9). This algorithm converts the structure

learning problem to a convex optimization problem and the regularization parameter can be

tuned to obtain the desired sparsity on the graph.

The algorithm assumes that the P(x; 9), x E {0, 1} has an underlying pairwise Markov

network and a set of edges (V, E) with a joint Ising distribution,

p(x; 9) = exp E 98xs + Y 9,,tzxxt - 'I'(O) , (3.4)
(sEV (S,t)eE

where T(9) is the log partition function. The optimization problem is cast as the mini-

mization of the negative weighted log-likelihood. Let x i = 1,..., n,mp1e be the observed

samples,
1 sample

= argmin- E R(xi)log[p(xi;9)]+ A119111, (3.5)
OERIVI nsample i=1

where A is a regularization parameter and R(xi) is the discounted return of the policy of

50

(e-3;1

e-4,1)
-1'

e,1)

41/

e41

(a) A factor graph with 4 nodes and 2 factors.
Edge eij represents the edge that connects the
node Xi with the factor Fj.

t 4,1 - e1,21

e2 9 63,21

le4,21

(c) Edges on Fig. 3-3a represented as joint
Bernoulli variables via a fully connected graph.

'e2,2) t3,2)
,e4 2)

(b) Edges on Fig. 3-3a represented as indepen-

dent Bernoulli variables.

'e-4,1,

(62 2e-3,2)

(e4,2

/e,

"j172)

(d) Edges on Fig. 3-3a represented as joint
Bernoulli variables via a sparse graph.

Figure 3-3: Different representations of dependency between edges of factor graph.

C-TBPI Algorithm (Algorithm 4) computed using the CFG with the edge structure x.

Returning to Fig. 3-1, RCD algorithm can be summarized as the C-TBPI (Algorithm 4)

as the planning algorithm, the distribution over the coordination graphs is given by Eq. 3.4

and the Estimation algorithm is BOA (Algorithm 2). We will refer the complete algorithm

as RCD-TBPI from now on.

51

1,2)

"e2,1)
I-.-

Table 3.1: Iteration complexity of RCD compared to other approaches.

Algorithm Iteration Complexity

TBPI e (ISllAlntrajnhor)

C-TBPI e (maxi Ic;kAiAfntrajnhor)

RCD-TBPI E (maxi I-SiIA-Intrajnhor(nagent + next)nfactor)

3.4 Analysis

This Section investigates the iteration complexity and convergence properties of the RCD-

TBPI algorithm.

3.4.1 Computational Analysis

The iteration complexity of the algorithms presented in this Chapter are given in the Table

1. The complexity difference between TBPI and C-TBPI highlights the usefulness of CFGs.

For large-scale multiagent systems, ISIIA is usually exponential in the number of agents

and hence TBPI becomes computationally intractable. On the other hand, the complexity

of C-TBPI depends only on the size of the largest factor IS9IIAit. Provided that the largest

factor grows with polynomial rate in the number of agents, C-TBPI will also have polynomial

complexity in the number of agents, as opposed to the exponential complexity of TBPI. In

many practical scenarios, the maximal number of coordinating agents does not need to grow

with the number of total agents, hence it is possible to obtain good planning performance

with sparse coordination graphs with this property [53, 90].

However, as mentioned in the Section 3.3, the optimality gap of the policy returned by C-

TBPI relies heavily pre-specified CFG. The Table 5.2 also shows that using RCD algorithm

to automate the CFG search adds to the complexity, but it is only a linear factor in the

number of agents. This low growth is due to fact that the 11 logistic regression is a convex

optimization problem that can be solved in linear time in the number of edges and because

sampling from a sparse graphical model can be done with low computation. Hence the RCD-

TBPI still has polynomial complexity in the number of agents, but relaxes the constraint of

having to use a pre-specified CFG.

52

3.4.2 Convergence Analysis

This Section investigates the convergence properties of the RCD algorithm. First, the con-

vergence of the stand-alone BOA algorithm with weighted maximum likelihood estimation is

shown (Lemma 3.4.1). Then the convergence of the RCD algorithm follows (Theorem 3.4.2).

We also show that there is a corresponding linear function approximation for every CFG

(Lemma 3.4.3), which links our results to the well-known results in approximate dynamic

programming with linear approximations.

The convergence of the classical BOA algorithm was established in [81] for a family

of cost functions with a specific structure. Pelikan proved finite time convergence guar-

antees for these classes of problems. The following proof extends the work of Zhang and

Muhlenbein [93], by considering the weighted likelihood estimation for discrete probability

distributions.

Lemma 3.4.1 (Asymptotic Convergence of BOA) Let f : A -* [0,1], A c Zn be a posi-

tive multivariable discrete function. Define A* c A as the set of global optima, that is if x E A*

then f(x) > f(y),y E A \ A* and f(x) = f(y),y E A*. Let BOA algorithm (Algorithm 2)

be initialized with f and the sampling distribution p(x; 0). Let the model building step per-

formed with weighted maximum likelihood approach (Eq. 2.4). Then as nsample, niter -> 00,

ok -+. * and p(x; 9*) generates samples from the set A* with probability one.

Proof First we show that the weighted maximum likelihood estimation (Eq. 2.4) ensures

that the probability of sampling a point x E A is proportional to its score. At the kth iteration,

nsample

6k+1 = argmax H p 1 -9)(x 7)k+1 ~ x;9k)
0 j=1

Hence, as nsample -+ 00,

= x; O(f(x)p~xGk~) =Ek[f (X)] 36

where Ek[f(x)] is the mean score, computed by summing the objective function over the

probability mass at kth iteration,

Ek[f(x)] = p(x;ok)f(X), (3.7)
XEA

note that Ek[f(x)] > 0 since f is a positive function. Hence we can show that,

E [f(x)] = p(x;k+f(X)p= p(X Ok)f (X) 2

XEA xeA Ek[f(x)]

53

Thus combining Eq. 3.7 and Eq. 3.8,

Ek+1[f(x)] - Ek[f(x) = - x ;A
xeA Ek[f(x)

-zp(X; Ok)f (X) 2
_(E.XEA P(X; k)f (X)) 2

XEA Ekf(x)] Ek[f(x]

_ EXEA f (x) 2p(X; Ok) - Ek[(X)2

Ek [f(x]

_ Ek [(f(x) 2 - Ek [f(x)] 2

Ek[f(x]

By using the definition of the variance [94], we can see that nominator is Ek[f(x) 2] -

E[f(X)]2 = Ek[(f(x) - Ek[f(x)])2)], which is the variance of f(x) with respect to the

probability distribution p(x; 0k). Since the variance is always non-negative, it is seen that

Ek+[f(x)] - Ek[f(x)] > 0. Hence the sequence Ek[f(x)] in the Eq.3.7 is monotonically

increasing with respect to the step k.

Since f is bounded on A, by the monotone convergence theorem [95], Ek[f(x)] converges

to a limit Ek[f(x)] -+ g*. Next, we need to show that g* = f* = f(x), x E A*. We will proceed

with using proof by contradiction. Assume that g* f*. Then, since Ek[f(x)] -+ g* is a

monotonically increasing sequence and g* < f* = supXEA f ,

lim = -- >_
k-+oo Ek[f(X] g*

Also,

p(x;k) 00)f(X)k
Ekl[f(x)]Ek-2[f(x)] ... E[f(x)]

Thus, as k -+ oo,
-k

lim p(x; Ok) > p(X 0) f
k-+oo k-oo E k [f Rx

>1

which is impossible, since p(x; 0k) is a probability distribution and thus supXEAp(x; Ok) 1

for all k. Hence, f* = g*, which ensures that the limit p(x; 0*) generates solutions from the

set of optimal points A* with probability one in the limit.

The convergence of RCD-TBPI builds upon the convergence properties of BOA, TBPI

and sample complexity of 11 logistic regression.

Theorem 3.4.2 (Asymptotic Convergence of RCD) Let M be an F-MMDP and let

54

RCD algorithm (see Fig. 3-1) be set-up with the coordinated TBPI algorithm (Algorithm 4) as

the planner and the 1' logistic regression algorithm (Eq. 3.5) for updating the CFG structure.

Let nfact, > 1 be the number of factors in the CFG and let nagent and next denote the number

of agents and the external variables. Assume the following,

A1) The number of samples nsamples per iteration are greater than

6d6 log d + 4d 5 log(nfa,,.(nagent + next)),

where d is the maximum neighborhood size in the graph.

A2) Exploration schedule E(k) of TBPI satisfies the infinite exploration conditions [29].

Under the assumptions above, RCD algorithm converges to a distribution p(x; 0*).

Proof The convergence of BOA was established in the Lemma 3.4.1. In order to extend

this result to the convergence of RCD-TBPI, we need to prove two statements. First, we

need to ensure that the 11 logistic regression algorithm consistently estimates the new model

p(x; ok+1) from the sampled CFGs, that is, the Eq. 3.6 is satisfied. Second, we need to ensure

that C-TBPI algorithm converges.

Wainwright proved the consistency of graphical model selection with l logistic regression

in [92], assuming that the number of samples are greater than, d6 log d + 2d5 logp, where p

is the number of nodes in the graph. The number of nodes in the RCD are the number of

edges in the CFG, which is upper bounded by (nfacto,(2nagent + next). Thus as long as the

Assumption Al is satisfied, the solution to the optimization problem in Eq. 3.5 will satisfy

Eq. 3.6.

As noted in the Section 2.1.2, the TBPI algorithm is guaranteed to converge under the

assumption A2, so the returns R(xi) associated with the sampled CFG with edges xi will

be consistent. 0

The result above asserts that RCD-TBPI will converge to a solution. However, this result

does not give any upper bounds on the sub-optimality gap. It is possible to recover a bound

by linking this result to the theory of linear function approximations.

Lemma 3.4.3 (CFG is a Linear function Approximation) Let (F, V, E) be a coordi-

nation factor graph that is used for approximating the value function Q N Q : S x A -+ R.

Then there exists a set of binary basis functions pi : S x A -+ [0, 1],i = 1,... ,n and a set of

weights 0i ER, i = 1,..., no such that Q = 0i1i.

55

Proof Let 1Sil = ni and tAil = mi. Hence, Qi(gi, di) is a tabular function that can take ni xmi

different values. Define the following projection functions,

V) : S -+Si ,VV : A A,

such that Oz/(s) = si and 4'a(a) = ai. For each factor Qi(9i, di), we can define the following

basis functions,

~kj~~k(I a) = {):(s) = j, ?'(a) =k

0, else

for i = 1,...,ni and j =1,...,mi. Hence,

i 6i,jk4ij,k(s, a).
j,k

Thus we can write the global value function approximation Q as,

Q = ZQi = Z O6,,ki,k(s, a).
i i,j,k

Since projections ?g, are linear functions, so are the basis functions #i,,. Hence it is

shown that Q m Q can be represented as a linear function approximation.

Linear function approximations are well studied in the Dynamic Programming/Reinforcement

Learning literature (e.g., see [28, 29, 39]). By representing the CFG as a linear function ap-

proximation via Lemma 3.4.3, it is possible to use the results of existing theorems built upon

the framework of linear function approximations.

Remark Assume that the distribution that BOA converges has a probability mass of 1.0

on a single CFG. Then, combining Theorem 3.4.2 with the Lemma 3.4.3 shows that the rep-

resentation used by RCD-TBPI will converge to a fixed linear value function approximation

Q = 'i 9iqi asymptotically. The well-known result from [96] puts an upper bound on the

approximation error introduced by a linear function approximation, when the basis functions

#4 are fixed. Since the representation used by RCD-TBPI converges to a fixed representation

asymptotically, we can use the result from [96], to show the following upper-bound on the

approximation error introduced by RCD-TPBI in the limit,

Z iA(s,a) -Q*(s,a)I 1 llrlQ*(s, a) -Q*(s,a)ll,

where Q* is the optimal value function, Hl is the projection operator that projects the

56

function to the space spanned by q>, and the norm 11.11 is the norm weighted with respect to

the stationary distribution of the MDP.

3.5 Simulation Results

This Section provides the simulation results for the RCD-TBPI algorithm across three dif-

ferent multiagent planning problems and compares its performance against three alternative

planning approaches.

3.5.1 Domains

The selected test domains are as follows.

" Distributed Sensor Network [90]: In this problem a group of static agents coor-

dinate to detect the movements of two targets that have stochastic dynamics. The

simulations include 40 agents. Each agent is responsible for a set of overlapping cells

on a grid. The state space consists of locations of two targets x, y positions on the

grid - the agents themselves do not have any states. The action space for each agent

consists of the binary decision variable "attempt to detect" or "do nothing", agents

can also select which cell they are attempting to detect. The targets start at a fixed

location on the grid and at each steps move to one of the neighboring cells with uniform

probability. Every time an agent chooses the "attempt to detect" action and a target

is located on that cell, the team gets a positive reward, with probability 0.25. This

probability goes up by a factor of +0.25 if another agent responsible for that cell also

chooses the action "detect". If the agent chooses the "attempt to detect" action and

the target is not present in that cell, team gets a negative reward. The size of the

planning space for this problem is approximately 1012 state-action pairs.

" Urban Traffic Control [16]: In this problem each agent controls a traffic light at an

intersection, and the objective is to maximize the traffic flow while preventing conflicts.

We considered a scenario with 40 traffic lights (agents) and 100 vehicles. Each vehicle

enters and leaves the network randomly and follows a semi-random driving policy while

in the network. The driving policy involves stopping at red lights, where the red and

green lights are controlled by the agents. Agents get an award based on the time each

vehicle spends in the network. Hence the traffic jams leads to diminished rewards. The

size of the planning space for this problem is approximately 1022 state-action pairs.

57

* Forest Fire Management [97]: This mission involves a group of UAVs managing

a forest fire. The stochastic forest fire spread model is from Boychuk [98]. The fire

spread dynamics are affected by a number of factors, such as the wind direction, fuel

left in the location and the vegetation. A total of 16 UAVs are present in the mission.

Actions are traveling within a fixed distance in the forest or dropping water to kill

the fire at the current location. The team receives a negative reward every time the

fire spreads into a new location. The size of the planning space for this problem is

approximately 1042 state-action pairs.

3.5.2 Compared Approaches

The following approaches were compared with RCD:

" iFDD+ [99]: iFDD+ applies linear function approximation directly to the value

function. The method is adaptive in the sense that it starts with a fixed number

of binary basis functions and grows the representation by adding new basis functions

formed by taking conjunctions of the basis functions from the initial set. This algorithm

was included in the comparisons because it is a the state-of-the-art adaptive function

approximation technique in approximate DP/RL.

" Fixed CG [100]: In order to emphasize the value of automating the coordination

graph search, an approach that involves a fixed Coordination Graph is also included

in the results. We use intuition/domain knowledge to fix a CG beforehand, and use

the same structure at every planning step.

" Sparse Greedy Discovery: [90]: This method is the most similar algorithm to the

RCD, in the sense that it does not assume a fixed CG beforehand and adjusts the

CG structure on the fly. The algorithm is initialized with the graph structure used in

the Fixed CG approach. Then the algorithm applies X2 -independence tests to greedily

add/remove new edges to the coordination graph based on the rewards received at

each step. Although this approach is also computationally cheap, it is not guaranteed

to converge, and greedily adding/removing edges does not always improve the overall

performance.

3.5.3 Results

For all domains, the algorithms were evaluated 30 times, and the average cumulative cost

(negative reward) were computed per iteration. Each algorithm was allocated the same CPU

58

40 ~ FDD+

35 -

30-

9 25 -Fixed CG

025-

RCD

Cl)

10-
Greedy CG

5- Discovery

0 0.5 1 1.5 2 2.5 3
steps x 104

Figure 3-4: Comparison of performance of four planning algorithms on the distributed sensor
network problem with 40 sensors.

time per iteration to ensure a fair comparison. Results are given in Figs. 3-4, 3-5 and 3-6.

It can be seen that, across all domains the RCD algorithm outperformed the competing

algorithms by a fair margin.

Specifically, in the sensor network domain (See Fig. 3-4), iFFD+ did not converge at all,

however the other approaches yielded results with varying success. Fixed CG approach con-

verged to a policy that yields consistent target detections, while the Sparse Greedy Discovery

approach improved upon the fixed CG and eventually converged to a policy with lesser cost.

RCD algorithm outperformed the Sparse Greedy Approach by converging to a policy with

a much lower cost in approximately same number of iterations.

In the traffic regulation domain (See Fig. 3-5), the Sparse Greedy Discovery did not

converge, and was discarded from the plot for a clearer presentation. iFDD+ performed

much better in this domain compared to the sensor network and outperformed the fixed CG

approach. This is most likely due to fact that it is more difficult to intuitively find a useful

CG in complex domains. RCD converged to a structure/policy that has significantly lower

cumulative cost.

In the forest fire management domain (See Fig. 3-6, Sparse Greedy Discovery again did

not converge, while iFDD+ resulted in a poorly performing policy. Although the fixed CG

approach yielded in a passable performance, RCD once again outperformed the competing

approaches, in terms of both the convergence rate and the cost.

59

7 0 0 r
Fixed CG (local coordination heuristic)

600

500-

0400

300- iFDD+ --..................
CZ

200- Randomized
Coordination

100- Discovery

0 I I I
O 0.5 1 1.5 2 2.5 3

steps x 104

Figure 3-5: Comparison of performance of three planning algorithms on the traffic regulation
domain with 40 agents.

150 -

iFDD+

Fixed CG (local coordination heuristic)

- 100 - -------..
0

0)

Randomized g
Coordination

Discovery

I I I I 1

0 0.5 1 1.5 2 2.5 3
steps Xl10

Figure 3-6: Comparison of performance of three planning algorithms on the fire fighting
domain with 40 x 40 grid size and 16 agents.

60

Note that across all domains, RCD converged to a better solution compared to the fixed

CG approach. This shows that for the considered problems, it was not easy to handcode a

fixed CG that yields good performance. Hence, even for the case where domain expertise is

available, a more efficient solution can be obtained through utilization of the RCD algorithm.

Finally, we would like to note that although the RCD algorithm removes the constraint

on fixing the CG structure, it is not completely parameter free. The designer still needs

to tune the number of factors and the sparsity penalty A for 11 logistic regression. For the

complex multiagent planning problems considered in this Section, the effort required to tune

these parameters were much less compared to tuning the CG structure directly.

3.6 Summary

This Chapter presented the development of the novel multiagent planning algorithm, RCD.

A detailed discussion of the algorithm along with the convergence guarantees were provided.

The simulation results reinforced the idea that automating the coordination structure search

is useful and results in policies with significantly higher returns than the alternative ap-

proaches. Note that the RCD assumes the full knowledge of the transition model of the

F-MMDP. In the next Chapter we are going to develop algorithms that can estimate tran-

sition models online by processing observations.

61

62

Chapter 4

Multiagent Learning with

Approximate Representations

The previous Chapter developed algorithms for solving F-MMDPs with known transition

and reward models. However, as discussed in Chapter 1, in many scenarios these models are

not available. This thesis assumes that the reward model is available or can be estimated

via another algorithm (such as using inverse reinforcement learning [101]) and focuses on

estimation/learning of transition models using multiple measurements/observations obtained

by the agents. Since the exact representation of the transition model is intractable for large-

scale missions, the developed methods focus on learning with approximate representations.

Layout of the Chapter is as follows. Section 4.1 provides the development, analysis

and simulation results for single agent learning with iFDD, which provides a basis for the

multiagent learning algorithms developed in the later sections. Section 4.2 discusses the

development of the extension of iFDD to multiagent problems and provides the Dec-iFDD

algorithm. Finally, the Section 4.3 provides the analysis and simulation results for the CF-

Dec-iFDD algorithm, which enables closed loop learning for highly heterogeneous teams.

4.1 Single Agent Learning with iFDD

The developed multiagent learning algorithms in this thesis decomposes the global learning

problem as a collection of single agent learning problems that can be executed concurrently.

Hence, before starting to attack the multiagent learning problem, it is necessary to develop

an efficient single agent learning algorithm.

This section utilizes the iFDD algorithm (Section 2.3.3) to learn the transition model

of a single agent. The motivation for using iFDD comes from not being constrained by

a fixed representation, since the iFDD adjusts the representation complexity based on the

63

observed estimation error. First, the problem statement and the estimation law is discussed

and next the asymptotic convergence guarantees are proven. The Section concludes with the

comparative simulation results across three different domains.

4.1.1 State Based Uncertainty Representation

In many scenarios it is unnecessary to estimate the full transition model T. Usually, un-

certainty in the missions is centered around the probability of occurrence of a single event,

which forms a subset of elements of the transition model T. We will denote this probability

of the unknown event as p, which usually depends on the state of the MDP s E S.

If the mapping p is constant over all states, it corresponds to the MDP with an unknown

parameter framework, which has been extensively studied in [20]. In a more general setting,

p does not necessarily map each state to the same probability value, resulting in the MDP

with state-correlated uncertainty framework. Solving such MDPs is the central theme of this

Section.

From a practical point of view, p usually denotes occurrence probability of some event

E. Here an event E refers to a set of state transitions (s, a, s'), s'~ P,, that satisfy a certain

condition. For instance, in the context of the robot navigation problem, an event may be

defined as all state transitions where GPS signal was not received. Since the probability of

the event occurrence depends on the state (i.e., robot's location), then the problem needs

to be formulated as an MDP with a state correlated uncertainty. In this setting, p(s) can

be written as the following set:

p(s) = P((s, a, s') E Els). (4.1)

For brevity, we only consider a single event that is action independent. For example in

the robot navigation problem, the event is the GPS signal failure and it is assumed to be

independent of the immediate action taken by the robot. Consequently we have removed

the dependence of p on E and a in Eq 4.1. The extension is straight forward.

4.1.2 Learning State Based Uncertainties

An approximate representation of the uncertainty can be formed using linear function ap-

proximation with binary features [29] as follows

p(s)~ P'(s) = 0'Wok, (4.2)

64

where pY (s) is the approximate representation at kth step and # (s) is the vector of features

1. Each component 5j is a binary feature characterized by a mapping from state to a binary

value; #5 (s) : s - {0, 1} 1j = 1, ... ,m, where m is the total number of features and 9 k E Rn is

the weight vector at step k. A feature #j is called active at state s if #j(s) = 1. Set of active

features at state s is given by A (s) = {j qj (s) = 1}. Hence, Eq. 4.2 can be written as:

Pk#(s) Z o
jEA(s)

where O denotes the jth component of 0 k.

New estimates are formed by updating the weight vector at each step. For that purpose,
define a Bernoulli random variable IF (s) with parameter p(s). That is, IT(s) is equal to

1 with probability p(s) and zero otherwise. Let zk be the kth experienced trajectory with

length Nexec, obtained from interacting with the environment. Define sk,1 as the state at the
1th time-step of the kth trajectory where 1 = 1, ... , Nexec. Let 0k,1 denote the corresponding

weight vector. Define ((skl) to be the value that random variable J(sk'i) takes. This value

can be gathered from zk based on the occurrence of the event that is defined in Eq. 4.1. The

weight vector can be updated applying a gradient descend type update as follows

0kI+1 = 0k, - 2 a k,1 p(sk') - k'1(sk'l)]2

= 9 kl + a kI [P(sk4) - pk'i(skl)]#(sk'L)

where akI is a scalar step-size parameter. Since p is unavailable to the algorithm, it is

replaced by its estimate ((sk,1). Define the sampled estimation error at state s as Apkhl(s)=

((s) -pk(s) = ((s) - #(s)T~kl. Then, the final form of the parameter update law is

9k,1+1 =-k, + a ,~ki(k10S,) (4-3)

Eq. 4.3 is a variant of the well studied stochastic gradient descent (SGD) algorithm [102].

Since the structure of p is not known beforehand, quality of the resulting approximation

found by SGD depends strongly on the selected set of features.

'Our methodology can be extended to state-action correlated uncertainties by introducing feature vectors
<0(s, a).

65

4.1.3 Adaptive Function Approximation using iFDD

Adaptive function approximators also modify the set of features based on the observed data

based on the following general update rule:

,l (S) = 0 kL(S)Tok~l, (4.4)

Ok,1'*1 (s) = h(zk k'i k'l),

where h is the representation expansion function that adds new features to the feature

vector based on sampled trajectories, weight vector, and previous set of features. Based

on the successful results in representing high dimensional value functions, we employ iFDD

[35, 45] (also see Section 2.3.3) as the adaptive function approximator for our framework to

represent the uncertainty. The basic idea of iFDD is to expand the representation by adding

conjunctions of the initial features based on an error metric, thus reducing the error in parts

of the state space where the feedback error persists. The general outline of the algorithm is

as follows: given a set of initial binary features, when performing the update for state s E zk,

a conjunction set Oc (s) = {q$ (s) A gk (s)Ij, k E A (s)} is formed. These features are referred

as candidate features. If the sum of sampled estimation error Ap (s) over active candidate

features exceeds some pre-determined threshold , these conjunctions are added to set of

features. The evaluation function learner (ELF) algorithm [103], expands the representation

akin to iFDD that we use, yet candidate features are selected based on a limited set of

heuristically selected features.

4.1.4 Convergence Analysis

This Section investigates the asymptotic properties of iFDD combined with the SGD al-

gorithm presented in the previous section (iFDD-SGD). For the analysis, we consider the

estimation part, assuming that the iteration number k is fixed and that each state sk'l and

its corresponding random variable i(sk,1) is sampled by following an exploratory policy that

turns the underlying MDP into an ergodic Markov chain.2 For brevity, superscript k will

be dropped from notation since it is fixed. We provide a theoretical proof showing that

iFDD-SGD asymptotically converges to a solution with probability one using existing re-

sults on stochastic gradient descent theory [102, 104]. Moreover, we show that if p can be

captured through the representation class, iFDD-SGD converges to this point. Throughout

the section we assume the standard diminishing step-size parameter for Eq. 4.3.

2 Here we are restricting ourselves to the class of MDPs that can be turned into an ergodic Markov Chain.

66

Preliminaries

Define V as space of all functions of the form v : S -+ R. Define tabular representation

as a set of features of the form 4# (si) = 6Jj, where JS2 is the Kronecker delta function and

Si E S, i = 1,2, ... ,ISI. Note that tabular representation forms a basis for this space, since

any v E V can be represented as v = E=1,2,...,sJ V (s) 0j. It can be easily shown that #j are

orthogonal to each other, hence the dim(V) = SI. Let f = {# j E V, j = 1, --- , n} be a set of

n linearly independent features. Define 4 f E RISI n to be the feature matrix with elements

(ij) = q5(si), i = 1, 2,...,ISIj = 1, 2, ... , n. It can be shown that span(1f) is a subspace of

V [35], hence the orthogonal projection operator IIR : V -+ F is well defined, where F is

the subspace span(4f). The weight matrix used for the projection operator is a diagonal

matrix with the steady state distribution of states as its non-zero elements. More details

about the matrix description of the projection operator can be found in [35]. Moreover,

define 7(f) as the set of all possible conjunctions of the elements of #j E f and let Q(F) be

the corresponding subspace. Define C(s) as the total number of non-zero features at state s.

Finally define DO, as the set of features constituting feature /4. For instance if #i = #j A qk A q5

then Do, = {5, #k, #1}. If #i belongs to set of initial features then, DO, = {#}.

Convergence of iFDD-SGD

Lemma 4.1.1 Under the ergodicity and diminishing step-size assumptions, using SGD with

fixed feature representation f, Pi defined in Eq. 4.4 converges to Il-p as 1 -> oo, with proba-

bility one.

Proof Ergodicity assumption simply turns the problem into a least-squares parameter es-

timation problem for p, with infinite amount of data. With the diminishing step-size as-

sumption, it is sufficient to invoke the results of Thm 5.3.1 in [102] showing that stochastic

approximation algorithm SGD will converge to least-squares solution asymptotically. That

is P, = Ip as 1 -- oo.

The following lemma states that, when a new feature, which is constructed by taking

conjunctions of existing features is added to the feature set, it will only be activated at the

parts of the state space with more than one active feature. This conclusion will simplify the

development of the convergence theorem.

Lemma 4.1.2 Let g E 0(f) be added to the set of existing features by iFDD. Then Vs E S

where C(s) 1 before adding g, then Og(s) = 0.

67

Proof If C(s) = 0, proof is trivial since no feature is active at state s including ,g. Let

C(s) = 1, and let #b be the corresponding active feature. if Dog c D4,, then #,(s) = 0 due to

sparse activation property of iFDD explained in subsection 4.1.3. Assume that Dog 9 Do,,

then there exists a #i E f such that 0i E Dog and Oi / Do,. Since only #j is active at s,

#i(s) = 0, which in turn implies that 0,(s) = 0.

Theorem 4.1.3 Under the ergodicity and diminishing step-size assumptions, fY, using SGD

(Eq. 4.3) with iFDD representation with an initial set of features f and discovery threshold

> 0, converges to 110(f)p as 1 -+ oo with probability one.

Proof Since the number of conjunctions are finite, there exists a point at time, after which

the set of features is unchanged. Let us call this terminal fixed set of features ft and the

corresponding subspace Ft. We show that the claim holds for all possible Ft:

" (flVtp = p): This means the representation is rich enough to capture the exact p vector.

Lemma 4.1.1 shows that in this case Y converges to IFlp as 1 -* oo, with probability

one.

* (FIVp * p): This means p f Ft. Define S- c S as the set of states for which Ap(s) =

p(s) -u(s) * 0. We argue that VS E S-, C(s) 1. Assume this is not true and let e(s)

denote the cumulative sampled estimation error at state s. Due to ergodicity of the

underlying Markov chain, state s will be visited infinitely many times, hence after some

time e(s) will exceed any pre-defined threshold , and since C(s) > 1 iFDD algorithm

would expand ft with the active features at state s. This contradicts that ft is the

terminal fixed representation.

Now, it is sufficient to show that Hrip = fl(Y)p. We prove this part by showing that

the projection of the asymptotic residual (i.e., 6p = p - I'V'p), on any unexpanded

feature vector (i.e., #q E (f) \ ft) is null. To do so, it is sufficient to show that
6pTOq = ES P(S)q (s) = 0. Since Vs S =:> 6p = 0, we can write the summation as:

ESES- Jp(s)#q(s). On the other hand, Lemma 4.1.2 showed that V0. E Q(F) \ Ft, Vs E

S-, if feature q is added to the representation, then #q(s) = 0. Hence V#q E Q(f) \

ft, JpToq = 0. Therefore adding any of the remaining features to ft does not help the

representation to reduce the residual error further down. So as 1 -> oo,fi -+ HYp -

Theorem 4.1.3 proves that given an initial set of features f, iFDD-SGD asymptotically

converges to the best possible approximation with probability one. The analysis also provides

guidance on how to select the set of initial features. If f is chosen such that dim(Q(F)) > IS1,

68

iFDD-SGD's approximation will be exact asymptotically with probability one. For instance,

consider the following process for selecting an initial set of features for an MDP with finite

state space. Let s be represented by a d dimensional vector, where si corresponds to the ith

component. Hence s = (si, S2, --- , Sd). Let {v, vi?, ... , v,"} denote the distinct values that si

can take. Then initial features can be selected selected as follows:

f = 1 ... --- # 021 ... 0-2n2 .-- Odnd

f 1 si=o (4.5)
ij (S) = S i = 1 ,i .. , dA = 1 , . .n i ,(4 5

0 otherwise

d
amounting to a total of m = ' ni features. Geramifard et al. [35] demonstrated that, for

i=1
such an initialization, Q(f) satisfies dim(Q(F)) > SI.

4.1.5 Simulation Results

In order to assess the algorithm's applicability to planning problems, the performance of

iFDD learning is tested within a model based planning framework. At the kth iteration, the

simulator model has an estimate 13k of the the parameter from the iFDD learning algorithm.

The planner interacts with the simulator for N,,an steps in order to design a policy rk.

This policy is executed in the actual environment for Nexec steps, where it is expected

that Nexec << Npan because collecting samples is much more expensive from the real world

compared to the simulation. The resulting trajectory zk, which is of length Ne.ec, is used by

the parameter estimator to obtain the new estimate f+l with which the simulator model is

updated. In the next iteration, the planner computes an improved policy irk+l, and the loop

continues. The TBPI algorithm (See Section 2.1.2) was used as the planner.

The first two domains are classical RL problems: 1) gridworld and 2) block building

problems motivated by [105]. Both domain descriptions are extended to include state cor-

related uncertainty. The third domain is a PST mission with state-correlated uncertainty

in fuel dynamics. Structure of this domain is more complex and is included to validate our

approach on a large-scale stochastic UAV mission planning problem. In all domains, y was

set to 0.9 and the threshold for iFDD () was set to 1.

Domain Descriptions

Gridworld Navigation with Sensor Management This domain consists of a robot

navigating in a 10 x 10 gridworld shown in Fig. 4-1. The task for the robot is to reach the

goal (.) from the starting position (e). Possible actions are {-, -+, t, 1}. There is 20% chance

69

Pfail = 0.00
Pfaii = 0.25

Pf'aji = 0.50

UiPfaii = 0.75

Figure 4-1: The gridworld navigation problem: the task is to reach , from.. The robot has

two sensors: a GPS and a camera. Using the GPS is preferred but unreliable depending on

the location of the robot. Pfail represents the failure probability of the GPS.

that the robot moves to one of the adjacent grids that was not intended. Reward is +10

for reaching the goal and zero for all movement actions. In addition, the robot carries two

sensors for navigation: a camera and a GPS. The GPS is the preferred tool for navigation

with no additional cost, although the probability of receiving the GPS signal is location

dependent shown in Figure 4-1 as pfail highlighted with four colors. If the GPS signal is

not received, the robot uses the camera, incurring an additional -1 reward, while receiving

the exact position. The goal of the adaptive planner is to estimate the structure of the pfail

through interactions and modify the plan accordingly. The size of the state-action space of

the domain is about 800.

Block Building In this domain, the objective is to distribute 5 blocks to 5 empty slots

on a table shown in Figure 4-2. Initially all blocks are located under the table. The set

of possible actions is defined by picking any of the blocks on or under the table and put

it in any of the 5 slots. The episode is finished when there is no blocks under the table.

The reward at the end of an episode is equal to the hight of the tallest tower minus one.

However, placing a block on the top of the others involves pfall probability of dropping the

block under the table, which is increased by the size of the tower (i.e., the longer the tower

is, the harder is to place another block on top of it) and decreased by the number of blocks

in adjacent slots. Let nzott be the number of blocks in the destination slot, and nedj be the

maximum number of blocks in adjacent towers. Define pfall = 0.1 x (niot - ndj)2 + 0.1. Then

Pfall is calculated as:

0 pfall 0 or unot = 0

Pfa a 0 < hfall < 1

1 Pfall " 1

70

Pf all increases with height
reduces with width

11217 4 5

Figure 4-2: Block building domain: the task is to populate the table with blocks using the

least number of slots. However as the number of blocks on a slot is increased, the probability

of a block falling from the table increases accordingly. Given the discount factor of 0.9, the

bottom figure shows the optimal solution.

The optimal solution is shown in the bottom of Figure 4-2. The state-action size for this

domain is approximately 15 x 103.

Persistent Search and Track Mission The persistent search and track is a multi-agent

UAV mission planning problem, where a group of UAVs perform surveillance on a group

of targets, while maintaining communication and health constraints [106]. Outline of the

mission is displayed in Figure 4-3. It should be emphasized that, although this is a multi-

agent domain, decision making process is completely centralized and the state-action space

consists of combination of all possible states-action pairs of each UAV. Each UAV's individual

state is given by its location, fuel, and health. The health is defined by two bits indicating the

functionality of the sensor and the actuator. There are three available actions for each UAV:

{ Advance, Retreat, Loiter}. The objective of the mission is to travel to the surveillance node

and put surveillance on two targets, while one UAV stays at communication to provide the

data link with the base. Each UAV starts with 10 units of fuel and burns one unit for all

actions with probability p, 0 m and 2 units with probability 1 - Pnom. Since UAVs are subject

to more aggressive maneuvers in the surveillance area, pnom should decrease in that region.

Similarly when a UAVs health is degraded, maneuverability and fuel consumption degrade

accordingly. Therefore Pnom is a state correlated uncertainty shown in the Table 4.1. If a UAV

runs out of fuel, it crashes and can no longer continue the mission. UAVs are also subject to

71

"W&EMENNOW _ 65 - - 001010011

UAVs

fuel = 10

fuel = 10

*-

- Advance
------- * Retreat
--------- >Loiter

Figure 4-3: Persistent Search and Track Mission. The goal is to maintain surveillance on

two targets on the right, while facilitate a data link with the base by having a UAV with a

functional sensor loitering in the communication area.

Table 4.1: Probability of nominal fuel burn for UAVs across different locations and health

status.

Health Status

Location No Failure Sensor Failed Actuator Failed

Base 1.0 1.0 1.0
Communication 0.95 0.92 0.86
Surveillance 0.88 0.80 0.75

sensor and actuator failures at each transition step with probability pfail E [0, 1]. A UAV with

failed sensor cannot perform surveillance whereas a UAV with failed actuator cannot perform

neither surveillance nor communication. When a UAV returns to the base, it is refueled and

its failures are repaired. Hence the objective of the planner is to maximize the number of

time steps that two UAVs with working sensors are located in the surveillance region and

having one UAV with a working actuator in the communication region. The complete MDP

description of the mission can be found in [107]. This domain has approximately 19 x 106

state-action pairs.

Results

Figures 4-4, 4-5 and 4-6 plot the results. The X-axis is the number of iterations. Each

iteration is a complete cycle of the learning-planning process. Each algorithm was executed

30 times and for each execution, after completion of each iteration the resulting policy was

evaluated on the actual domain over 30 runs amounting to 900 samples per data point. The

mean of the cumulated reward and standard deviation is plotted accordingly on the Y-axis.

Five different representation was used to compare various model estimation methods. In

72

Targets

4--

CO

a)

a)

iFDD10-

10 Initial Tabular

P, T T T T T T T T T T 1

3Z
Uniform, Pessimistic,Optimistic
2 4 6 8 10 1

Number of Iterations
Figure 4-4: Comparison of five estimation methods combined with TBVI for the Gridworld
domain. X-axis: number of iterations of the process shown; Y-axis represents the perfor-
mance of the resulting policies.

Tabular

iFDD

Initial

0:
II

-1 Optimistic Pessimistic Uniform
4 6

Number of Iterations
1U

Figure 4-5: Comparison of five estimation methods combined with

Building domain. X-axis: number of iterations of the process shown;

performance of the resulting policies.

400

300

200

100

_0

a)
Cc
a)

E
0

-100

TBVI for the Block
Y-axis represents the

Tabular

Initial Uniform

L~kL iOF I

OL :v /I I I * IITIIdj
K , Peh*i4ic' I OAibtc Ij

2 4 6 8
Number of Iterations

10 12

Figure 4-6: Comparison of five estimation methods combined with TBVI for the Persis-
tent Search and Track domain. X-axis: number of iterations of the process shown; Y-axis
represents the performance of the resulting policies.

73

4-

3-

2[Cz

0)

0
1L

2

2z 80

-

-

-

order to emphasize the value of adaptation, fixed model estimators were also included in

the evaluation. Fixed Model Optimistic and Fixed Model Pessimistic approaches assumed

that the unknown parameter is fixed to 0 and 0.6 correspondingly across all states and did

not update this value. Uniform representation ignored the state-correlation in the problem

by utilizing a single fixed feature which was active at all times and was adapted based on

observations. Tabular representation stored a distinct feature for each state, resulting in a

number of of parameters equivalent to the size of the state space. Initial features for iFDD

were selected using Eq. 4.5. To emphasize the value of discovering new features, results with

the fixed initial features were also included in the plots.

Gridworld For adaptive planning experiment, planning and execution horizons were set

to Npian = 8000 and Nec = 100. Performance of various estimation schemes using TBVI

planner are displayed in Figure 4-4. In this case uniform estimation converged to the same

policy obtained by any fixed model planners. This is due to fact that with a uniform

uncertainty the optimal policy is to move directly towards the goal. This explains the poor

performance of optimistic, pessimistic, and uniform estimators. Both tabular and iFDD

estimators had the capability to capture the Pfail accurately. We conjecture that the dip

on the performance of the tabular estimator is due to policy switching. Initially the agent

followed the shortest route to the goal. As more samples were obtained, the agent explored

the safe route from the right side, yet it required many samples to master the new route. The

iFDD estimator performed substantially better early on compared to tabular estimator due

to generalization of the features mentioned in Section 2.3.3. In this experiment iFDD started

with 22 features and expanded on average a total of 150 features. iFDD representation also

performed better than representation that uses only initial features, which emphasizes the

importance of expanding the representation.

Block Building In this domain Npian = 6000 and Nexec = 30. Trajectories were capped at

200 steps. Results are given in Figure 4-5. The optimistic model achieved 0 performance,

because it assumed that Pfall = 0. Hence it kept trying to build a single tower which resulted

in frequent collapses. The pessimistic approach placed 4 blocks into 4 slots and placed the

final block on one of the placed blocks, achieving performance of 1. Uniform estimation

eventually converged to the same policy as the pessimistic model. Both Tabular and iFDD

estimators had the capability to capture the model exactly. While tabular estimator outper-

forms previous methods, iFDD estimator learned the task substantially faster and reached

very close to the optimal policy shown in bottom part of Figure 4-2, using on average ~ 103

features.

74

Persistent Search and Track In this domain Nptan = 105 and Nexec = 1000. Results are

shown in Figure 4-6. Both fixed model approaches perform poorly. The optimistic model

assumed no uncertainty in the fuel dynamics, which resulted in an overly aggressive policy

with frequent crashes. The pessimistic model assumed high uncertainty in the fuel dynamics,

which resulted in a conservative policy that called UAVs back to the base early, resulting in

a poor performance. Even though uniform estimation outperformed both fixed estimators,

its performance did not improve after a number of trajectories due to its inability to capture

the state-correleated uncertainty. Representation with initial features outperformed uniform,

optimistic and pessimistic approaches, yet was not competitive. A similar trend to results

presented before was observed between Tabular and iFDD estimators - the iFDD estimator

settled around the best found accumulated reward among all methods much faster then the

tabular estimator due to its capability to represent the uncertainty with fewer parameters.

In particular, iFDD was ~ 2.5 times more sample efficient than tabular estimation according

to Figure 4-6. In this experiment, iFDD expanded a total of ~ 104 features on average. The

size of the parameter for the tabular representation was equivalent to the size of the state

space which was larger by about 70 times.

4.2 Extension to Multiagent Learning: Decentralized

iFDD (Dec-iFDD)

Although the iFDD model learning algorithm from the previous Section was shown to be

an effective method for solving a variety of learning problems, the algorithms convergence

rate slows down considerably for large-scale multiagent planning scenarios. One possible

solution to this challenge is to decompose the learning to be per agent rather than operating

in the joint state space of all agents, by using methods from distributed learning[31] and

transfer learning[77]. Such methods accelerate the speed of the learning process by sharing

model parameters. However these techniques have their own set of challenges, such as

how to share learned model parameters under limited communication. In particular, in the

heterogeneous learning setting[67], where the agents are learning different models, sharing

model information may actually harm the overall system performance. Such heterogeneous

team settings are common in UAV missions, where the dynamics or the operational space of

each agent is different from each other.

This Section introduces the Dec-iFDD algorithm[108], which decomposes the problem to

per agent to relax the computational complexity, and allows agents to share features with

each other to improve their corresponding models.

75

Agent n

Agent 1

actions

World

interactions

Figure 4-7: The integrated planning and learning architecture used in this Chapter employs

decentralized collaborative online learning to learn the models of mission dynamics. These

learned models are fed to a planning algorithm. Arrows in the figure indicate that the agents

communicate with each other their representations of the uncertainty.

To address the problem of planning with learned models in large-scale heterogeneous

teams, an integrated planning-learning approach was employed, displayed in Figure 4-7.

The basic idea of the framework is enabling each agent to have its own decentralized learn-

ing algorithm (The Dec-iFDD algorithm) and communicate these learned models across each

other and to a planning algorithm. The planning algorithm can be also decentralized de-

pending on the mission formulation and requirement. Here the term decentralized is used to

describe that each agent obtains and processes samples independently. Only during commu-

nication steps agents start interacting with each other to communicate model parameters.

There is no single centralized processing unit for learning the models.

The Dec-iFDD algorithm sorts the features Oi for each agent based on their correspond-

ing weights Oi and allows each agent to only share their most heavily weighted features. The

maximum number of shared features can be tuned based on the communication constraints.

This sharing methodology addresses the problem of model sharing with communication con-

straints and improves the convergence speed of the planning performance. The next Section

presents the formal presentation of the algorithm.

4.2.1 The Algorithm

In many realistic scenarios the model of the uncertainty is not only state dependent, but

is also agent dependent. Let n represent the number of agents and let pi(s) represent the

76

Communication Step

Learning Step

@0 @0
Pi-T1 P3 j Oj Oi, Oi - Sort (0i, 00) 0j,4 Oj Sort(oj,,0j)

Samples iFDD iFDD amples Capped Oi

Capped #j

(a) Each agent maintains and updates an inde- (b) Each agent ranks their features based on the
pendent iFDD representation during individual corresponding weight and broadcast a capped
learning steps number of top ranked features. Weight updates

are handled individually for transferred features

Figure 4-8: The diagram representation of Dec-iFDD algorithm.

state dependent uncertainty functions that needs to be learned to model the uncertainty in

the MDP of the ith agent. A naive generalization of SGD-iFDD to the decentralized setting

can be obtained by running a separate SGD-iFDD for each UAV. In this setting, each

UAV updates its own representation based on the individual observations. This approach

does not leverage the ability of the agents to collaborate. In particular, even though the

environment may affect each agent in a different way the underlying features used to represent

the environment should be common, as the agents all operate in the same environment. The

main idea behind the Decentralized iFDD (Dec-iFDD) algorithm presented in this subsection

is increasing the efficiency in learning by allowing agents to share the iFDD discovered

features with each other under communication constraints. The pseudocode of the Dec-

iFDD algorithm is provided in Algorithm 5.

The line by line description of the Algorithm 5 is as follows, the algorithm takes number

of agents n, the set of binary features for each agent #init and the cap on shared features 0cap

as the input. At each step, agents interact with the environment to receive observations (line

10), and then each agent applies the standard iFDD algorithm independent of each other to

update it's current set of features #i as well as the corresponding weights Oi (line 11). When

the current step is a sharing step, each agent sorts it's feature based on the weights (line 5),

and then the first #cap/n number of features with the largest weights are broadcast in the

network (line 6 and 7). Then all the agents update their feature set with the broadcasted

features and then set the weights for their new features (line 8). A diagram representation

of the algorithm is shown in Fig. 4-8.

There are two striking properties of the algorithm. First, note that the algorithm only

allows agents to share features and not the weights each other. This is especially important

for the heterogeneous teams, where the agents may share common features due to operating

77

Algorithm 5: Dec-iFDD Model Learning Algorithm
Input: Number of Agents n, Set Initial Binary Features init, Shared Feature Cap #ca,
Output: Estimated model 5 for each agent i = 1,., n

1 Initialize ' = #init Initialize 0' = 0
2 foreach Step do
3 foreach Agent do
4 if Step = Sharing Step then

5f#' - Sort Features(', 0a,, 0')
6 Broadcast(#')
7 # + Listen(
8 _ 0i<- ' u #', 0' +- Update Theta(q#)

9 else
10 s, a, s' +- Observe Transition

11 L , 0' -- Expand Representation(s, a, s')

in the same environment, but each feature is weighted differently due to heterogeneity of

the team. Secondly, the algorithm takes the communication limits into consideration with

capping the total number of shared features in the network by the parameter <0cap, and

forces agents to only share the more heavily weighed features in their representations at each

sharing step. The implications of these two properties are shown in the following simulations.

4.2.2 Simulation Results

For each multiagent MDP, we consider the learning of a single state-correlated uncertainty

pi(s) per agent, where i = 1,..,n indexes the agents. For all missions it is assumed that a

nominal model pnom(s) and the underlying ps(s) for each agent was generated by randomly

perturbing this nominal model. A team is called homogeneous, when the underlying pi(s)

for each agent is within 5% limits of the nominal model. A team is called heterogeneous,

when the underlying pi(s) for each agent is within 20% limits of the nominal model.

For both heterogeneous and homogeneous teams, we compare 4 different learning ap-

proaches. The centralized learner with homogeneity assumption assumes that pi(s) are the

same for all agents, and therefore concatenates observations from all agents and processes

these by the iFDD algorithm to generate a single model. Then all agents plan using this

single model. Alternative to the centralized learner, the Dec-iFDD algorithm (Algorithm 5)

with 3 different feature sharing caps (FSC), {0, 10, 100}, was compared. Note that FSC= 0

corresponds to the case where each agent learns completely independently and shares nothing

with each other.

Two domains are inspected, the multi-agent block building problem, which is the multi-

78

Figure 4-9: The multiagent blocksworld problem with 4 agents. The baseline probability

model correlates the configuration and the probability of blocks falling

agent extension of a classical Al problem and the PST mission, which was previous used in

the simulation results of the Section 4.1. The main objective of these simulation results is

to show that, if the team is heterogeneous, the centralized learning can actually hurt the

performance and it is outperformed by distributed learning approach.

Multiagent Block Building Problem

This problem formulation is motivated by classical blocksworld problem that appears as

a benchmark in many different Al applications [105]. Problem consists of picking up the

blocks on a table and arranging them into a specific configuration, usually a tower. The

stochastic dynamics are introduced to the system though pfall, which denotes the state-

independent probability that a block may fall from the top of the tower back to the table.

This formulation of the problem have been solved by many different planning algorithms

in the past [45]. The authors have formulated an alternate version of the problem[87] with

state-dependent Pfanl. In this formulation, probability of the block falling down increases as

the tower gets higher and decreases with the presence of adjacent blocks. The objective

of the planning/learning problem is to learn the structure of Pfall(s) and build the optimal

block configuration.

This Chapter presents a decoupled multi-agent version of the blocksword problem with

state dependent uncertainty. As shown in Fig. 4-9, the problem consists of coordinating

n = 4 robotic arms for building the blocks. The dynamic of each block building problem is

completely decoupled from each other, thus the planning can be performed independently.

For this mission learning is executed at every 300 steps for each robot, and the MDP that

79

corresponds to the learned models were solved by using the value iteration algorithm[39].

All results are averaged over 30 runs.

The nominal model is given as follows. Let ntit be the number of blocks in the destination

slot, and nadj be the maximum number of blocks in adjacent towers. Define pfall = 0.1 x

(nlot - nad) 2+ 0.1. Then pfanl is calculated as:

0 pa11 0 or nlot = 0

M = Pfall 0 < Pf"an <1

1 Pfa1 ' 1

The results for the homogeneous team is given in Fig. 4-10. Results show that the

centralized algorithm required ~ 30% less number of steps to converge compared to the

Dec-iFDD algorithm with the largest FSC. It can be concluded that for this homogeneous

scenario, using the same weights 0 and features # for all the agents resulted in a good

approximation.

The results for the heterogeneous team are given in Fig. 4-11. The results show that cen-

tralized learning algorithm is unable to converge in this case because the algorithm generates

a single model by processing all the observations, but the underlying samples are generated

by substantially different models. The Dec-iFDD algorithm on the other hand, learns in-

dividual models for each agent and hence the agents can adapt their plans to their specific

models. In addition, as the FSC increases, agents are able to share more relevant features

with each other and the convergence rate of the overall performance increases significantly.

Persistent Search and Track with UAVs

For simulations, a large scale PST simulation with 10 collaborating UAVs was considered. It

was assumed that the state-correlated actuator failure probability Pa(s)i and state-correlated

nominal fuel burn rate for each agent i is unknown at the beginning of the mission, and must

be learned through interactions with the environment. The baseline probability of actuator

failure model that is used in the simulations is given at Table 4.2 and the baseline nominal fuel

burning rate is given at Table 4.3. State-dependency of the fuel burning rate was motivated

from the possibility of having non-uniform wind in the mission environment and thus each

region induces a different fuel burning rate. Table 4.3 shows the probability of incurring

nominal fuel burn in the respective states. Non-nominal fuel burn rate is set as twice the

nominal fuel burn rate.

The Group Aggregate Dec-MMDP (GA-Dec-MMDP) algorithm [7] was used to replan

after every model update. Similar to how the Dec-iFDD algorithm decomposes the learning

80

e A

w
entr a ze ..-

/Homogeneity-.,
Assumption

Dec-iFDD
,-' FSC:10

Dec-iFDD |
FSC:100

Dec-iFDD
FSC:0

1W w 1000 1500
steps

2000 2500 3000

Figure 4-10: Comparison of centralized approach versus decentralized approaches with dif-

ferent feature sharing caps (FSC) for the multiagent blocksworld scenario where model per-

turbation is 5% from the nominal model

6F

De

F

1i

Dec-F-LuD -----
FSC:1 00""*

;-iFDD
:SC:10

Dec-iFDD '
FSC: 100 ,

Centralized
w/ Homogeneity

Assumption

7

500 1000 1500
steps

2000 2500 3000

Figure 4-11: Comparison of centralized approach versus decentralized approaches with dif-

ferent feature sharing caps (FSC) for the multiagent blocksworld scenario where model per-

turbation is 20% from the nominal model

81

8

7F

E
0
ai)
CD
CO

0)

6-

5-

4-

3-

2.

1

5a>)
a)

E
833
a)
0)

C2

. . . .

C l i d; A

I

7,

Table 4.2: Baseline probability of actuator failure across different locations and fuel levels.

Fuel Level

Location High Fuel Level Low Fuel Level
Base 0.0 0.0
Communication 0.05 0.1
Surveillance 0.2 0.3

Table 4.3: Baseline probability of nominal fuel rate across different locations and health

states.

Health

Location Healthy Sensor Fail Actuator Fail

Base 0.0 0.0 0.0
Communication 0.95 0.92 0.86
Surveillance 0.95 0.92 0.86
Surveillance (Windy) 0.90 0.80 0.75

problem to per agent, the Ga-Dec-MMDP planner decomposes the planning problem per

agent to enable online planning in large-scale multiagent missions. The development, and

additional simulation and flight results for the GA-Dec-MMDP algorithm are available[7,

108].

Figure 4-12 compares the cumulative cost performance of several instances of the Dec-

iFDD algorithm with different feature sharing caps for almost homogeneous UAV team. In

this case, it can be seen that as the cap on features to be shared is increased, the performance

of the algorithm approaches that of the centralized algorithm. This result reinforces the

intuition that the decentralized algorithm can do no better than a centralized one when the

agent models of uncertainty are homogeneous. Figure 4-13 on the other hand, shows the

performance of the Dec-iFDD algorithm for the same set of feature caps but in a network

of collaborating UAVs with more heterogeneity (20% perturbation from a nominal model).

In this case, it can be seen that planning using the output of the decentralized algorithm

results in much less cumulative cost, because the planner is able to adjust the plan to suite

the capability of each individual agent.

In order to demonstrate the proactive behavior of the resulting policy, two different

mission metrics were averaged over 100 simulation runs and results are displayed on Table

4.4. It is seen that the proposed planning-learning approach leads to policies with less number

of total failures in the expense of commanding vehicles to return to base more frequently.

This behavior is due to ability of Dec-iFDD to learn a specific model for each agent, opposed

to centralized planner.

82

300 1

Dec-iFDD FSC:0

U)
0 Dec-iFDD FSC:10

E

a) Dec-iFDD FSC:100
%0150 - '

100-

Centralized w/ Homogenuity Assumption

II I I I

0 10 20 30 40 50 60 70
Time (min)

Figure 4-12: Comparison of centralized approach versus decentralized approaches with dif-

ferent feature sharing caps (FSC) for the PST scenario where the model perturbation is 5%

from the nominal model. Results are averaged over 100 runs.

300

Centralized w/ Homogenuity Assumption

25d

0
0
(D
= 200 -

E

--- Dec-iFDD FSC:O

150-

Dec-iFDD FSC:1

100-Dec-iFDD FSC:100 -

100

0 10 20 30 40 50 60 70
Time (min)

Figure 4-13: Comparison of centralized appr ch versus decentralized approaches with dif-

ferent feature sharing caps (FSC) for the PST scenario where the model perturbation is 20%

from the nominal model. Results are averaged over 100 runs.

Table 4.4: Evaluation of averaged mission metrics for centralized planner with homogeneity

assumption and coupled GA-Dec-MMDP Dec-iFDD planner with FSC = 100.

BasePlanner Failures Visits

Centralized Homogeneous 90.2 81.2
GA-Dec-MMDP with Dec-iFDD 55.1 125.4

Figure 4-14: Visual representation of the test environment showing Base, Communication

and Tasking areas. The real quadrotor is constrained to operate in the RAVEN environment

(right part of figure), and the rest of the team (9 quadrotors) operate in the simulated area

to the left. The recharge station is shown at the bottom.

Finally, it is possible to compare feature sharing to an alternative approach in which

all observations are shared by estimating the average number of shared features, in terms

of communication cost. Let K be the size of a message that can be passed in the network,

which corresponds to an single integer. Thus, each initial feature and a component of the

state vector corresponds to messages of size n. The average number of features shared

in the simulations were computed to be ~ 4.2r. Hence the total load on the network is

4 .2 &capK, since he maximum amount of features shared in the network is limited to qca,, by

Algorithm 5. In the considered scenario, each observed state transition corresponds to 84r

sized messages. Hence if n agents share observations instead of features, they would need to

send 84Kn messages. For the simulation results presented above, number of agents n = 10,

thus the load on network for passing observations instead of features is around 840K. Hence,

even with a feature sharing cap of 100, sharing features require less load on network in terms

of communication cost, compared to sharing observations. In addition, it is seen that size

of observations scale linearly with number of agents, while the number of shared features is

fixed for a constant #capf. Hence the designer can tune 0cap solely based on the limits of the

communication network, while direct sharing of measurements is limited by the size of the

84

observations and the number of agents in the scenario.

4.3 Closed Loop Multiagent Learning: Collaborative

Filtering Decentralized iFDD (CF-Dec-iFDD)

In the previous Sections, we have utilized the iFDD algorithm for solving learning problems

in both single agent (Section 4.1) and multiagent domains (Section 4.2). Particularly, in the

Dec-iFDD algorithm agents learn their individual models by using the stochastic gradient

descent (Eq. 2.9) while iFDD (see Section 2.3.3) updates the set of features #5 at every

learning step. The communication (Eq. 2.6) is handled by letting each agent sort their most

relevant features #/,j based on their weights 9i, and send a fraction of these top ranking

features to other agents. Note that the number of features that can be shared at each step

is limited by f,. The inherent problem with Dec-iFDD is the fact that communication is

handled in a completely open loop manner, i.e., sending agents do not receive any feedback

on if the transferred features actually have reduced the model error of the receiving agents.

This Section presents a novel multiagent learning algorithm, referred to as Collaborative

Filtering Decentralized Incremental Feature Dependency Discovery (CF-Dec-iFDD) which

alleviates this issue by allowing agents send feedback to each other on model error reduction

after the feature transfer. These feedback signals are maintained in a matrix format by each

agent and matrix completion techniques borrowed from Collaborative Filtering research is

applied to predict which agents are likely to benefit from other features. Hence, the overall

feature sharing scheme becomes closed loop, which results in even faster convergence rate

due to elimination of transfer of irrelevant features.

Along with the formal description of the algorithms, this Section also includes the theoret-

ical analysis of closed loop versus open loop feature sharing, as well as the simulation results

comparing these two approaches in two different large-scale multiagent planning/learning

problems.

4.3.1 The Algorithm

The basic idea behind the new algorithm, Collaborative Filtering Decentralized iFDD (CF-

Dec-iFDD), is to allow receiving agents to send feedback to sending agents on the model

error reduction rate of the shared features, so that the sending agents can make better

predictions on which features should be shared in the next communication step. This idea

is realized through the use of matrix completion algorithm described in Section 2.4 (also see

Fig. 4-15). At every communication step, agents update a sparse matrix with entries consist

85

AI
Features Oi

I

Agents

Figure 4-15: Collaborative filtering applied to the model sharing problem. The matrix entries
are the weights Oi, of each feature from the perspective of the individual agent, the empty
entries are features yet to be discovered by each agent. Collaborative filtering techniques

generate predictions of these empty entries, allowing each agent to suggest useful features to

other agents.

of weights of features of each agent. Then in the communication step, each agent solves the

optimization problem in Eq. 2.13 to predict the missing entries in the matrix. This allows

agents to send features that are possibly more relevant to the receiving agents, since the

shared features are selected based on the feedback history provided by the receiving agents.

The psuedocode is given in Algorithm 6.

The algorithm is initialized by setting the same set of initial features q#int for each agent.

Agent i's rating matrix Mi and the prediction matrix Xi are initialized with zero matrices.

Next, the algorithm goes through the following steps at every iteration;

1. (Lines 5-9): If the current step is a communication step, agent i sends and receives

features from its neighbors N(i) in the network. For each receiving agent j E N(i),

agent i takes the j-th column of the prediction matrix (which is denoted as X,), and

sorts the corresponding features according to their weights. More precisely,

1fcap
{#}j <- argmax 1 0j5,i1, Xij E

where {#}j denotes the features agent i is sending to agent j. After sending {#5}j to

agent j, agent i receives features {#}' from agent j likewise (Line 8) After that, agent

i adds the received features {qo} to its feature set (Line 9).

2. (Lines 10-12:) After receiving new features {0}4, agent i updates its weights Oh accord-

86

9.78

3.27

1.06

Algorithm 6: Collaborative Filtering Decentralized iFDD Model Learning Algorithm

(CF-Dec-iFDD)
Input: Number of Agents na, Initial Binary Features #init, Shared Feature Cap fcap
Output: Estimated model Ti for each agent i = 1,...,na

i Initialize #i = qisit, Oi = 0, Mi = 0, Xi = 0
2 foreach Step do
3 foreach Agent i do
4 if Step == Communication Step then
5 foreach Agent j E N(i) do
6 {q5}i <- Top fa, features from Xj

7 Send {0} to agent j
8 {}+- Listen()

9 #i <- 0i U {#}

10 Set weights 9i according to {#}{

11 Send Mj to agent j, receive MN

12 Solve Eq. 2.13 with Mi to update Xi

13 else
14 s t,t <- Observe Data
15 G , 0i <- Run Eq. 2.9 with iFDD(sj, ti)

ing to the new features,

Otp = 9i,q, Aq Oi,q = i,p, #ip E {}j,
q

where Aq~i,q = , represents that the feature #i,p is generated by taking conjunctions

of features 4i,q. After the weights are set, the new weights populate the column MAI,

which are sent to agent j as a feedback on how much the transferred features # have

reduced the estimation error. Similarly, agent j sends its own rating column M4 (Line

10).

Finally, after receiving Mq from all its neighbors, agent i solves the optimization prob-

lem in Eq. 2.13 to update the prediction matrix Xi.

3. After the communication step, agents receive new samples (sj, tt) and use the iFDD

algorithm (Section 2.3.3) along with stochastic gradient descent (Eq. 2.9) to update

both the features qi and weights 6i. The algorithm continues to run until convergence

or manual termination.

Lines 9-11 are the points where CF-Dec-iFDD departs significantly from its predecessor

87

Dec-iFDD. In the Dec-iFDD algorithm, agents send and receive features from each other

only once in each communication step, whereas in the CF-Dec-iFDD algorithim, an extra

two-way communication is established to update matrices Mi through matrix completion.

These matrices are the main elements that enable improved quality (in terms of model

error reduction rate) in the feature sharing, since they represent an estimation of which

features other agents are likely to benefit from. Note that the algorithm makes a delicate

trade-off between the communication cost and the model quality. Basically, CF-Dec-iFDD

enables learning better models by allowing more communication between agents. Section

4.3.3 represents simulation results on how well the CF-Dec-iFDD captures the matrices M

for varying communication bandwidth and the number of samples.

4.3.2 Analysis of Closed Loop Learning

This Section compares the closed loop (CF-Dec-iFDD) and open loop learning (Dec-iFDD)

in a theoretical manner. The main aim is to show that the closed loop learning is more likely

to accelerate the overall learning process under certain heterogeneity assumptions.

In order to make the analysis cleaner, we will study a simplified 2-agent scenario with

a single round of learning and exchanging features across agents. Note that this simplified

learning scenario is the basic building block for the both CF-Dec-iFDD and Dec-iFDD al-

gorithms, hence before extending the analysis to more than 2 agents and multiple rounds of

learning, it is necessary to analyze this case.

Formally, define the 4D as the pool of all possible features. Since only binary features and

their conjunctions are considered in the iFDD framework, it is possible to break down 1 into

union of these two sets,

(I(init U coni i

where (Jinit = [fi, f2, - --, fnf] is a finite set of features and Iconj is the set of all their con-

junctions. In other words, let 4conj,2 be the set of all 2-conjunctions,

(conj,2 = [fi^ fj : fi, f E initl,

hence o = U2Y2 (conj,i-

It is assumed that the Agents 1's and Agent 2's true representations are formed from this

pool and both their representations share the same set of initial features 'Ii-nit and a subset

of the 'conj. That is,

T = 01'1 , and 72 =62 ' 2 , (4.6)

88

where

V= 5it u V g, and -(D c @,2,, i = 1, 2, (4.7)

in which Tij = 1, 2 are the true representations of Agents 1 and 2, 91 E Rni, 92 E Rn2 are the

weight vectors, n, = |IQV I and n2 = | denotes the number of conjunction features in

the actual representations.

Let Ti, i = 1, 2 represent the current estimate of agents representations. Accordingly, let

j1 c (1 and 412 c (2 be the features discovered so far.

We analyze the step where the Agent 1 sends a feature to the Agent 2. The main objective

of the analysis is to examine how much error reduction the transferred feature induces on

the estimated model of the Agent 2. Assume that the communication is limited; Agent 1

can pass only one feature f1,2 E -i to Agent 2. Note that the transferred feature always

comes from the conjunction set, since both agents have the same set of initial features.

We look at three different methods of how Agent 1 can choose f1,2:

* Random Approach: Agent 1 selects f1,2 from the elements of the set ID' with

equal probability. That is,

Prob(f1,2 = f, f E (4.8)

" Open Loop Approach (Dec-iFDD): Agent 1 selects fl,2 as the feature that is most

heavily weighted in its representation,

f1,2 = fj, i = argmaxlel (4.9)
j=1,...,n1

" Closed Loop Approach (CF-Dec-iFDD): Agent 1 maintains an estimate of the

Agent 2's weights, which are denoted as 91,2. Closed Loop feature transfer consists

of two separate stages. In stage 1, Agent 1 performs matrix completion (See Section

2.4) to update the estimate 91,2 and selects fA,2 that corresponds to the most heavily

weighted feature in the representation,

fl,2 = fi, j = argmax9 ,2I (4.10)
j=1,..

In the second stage, Agent 2 sends back its weight ,2 that corresponds to the trans-

ferred feature f1,2. Then Agent 1 updates #1,2 using the matrix completion algorithm

(See Section 2.4). In the subsequent iterations, Agent 1 uses the updated representa-

tion. Note that this approach requires twice as much communication at every iteration

89

compared to the previous approaches, since the communication is performed both ways.

It is evident that if fl,2 E 42, then the representation of Agent 2 will improve. Hence in

order to compare the three approaches above, we need to compute the probability Prob(fl,2 E

4>2). The computation of this probability depends on how much the feature sets V and

are similar to each other. We will define two similarity metrics, one based on the

number of common features and another one based on the sorting of initial weights.

The first similarity metric q4 simply counts the number of common features in the con-

junction set and divides by the cardinality of the smallest set for normalization.

Icof= " co"j (4.11)
min(ni, n2)

Hence, if qo = 1 then two representations have exactly the same set of features(D1 = (D2). On

the other hand, if qo = 0 then their conjunction sets have no common features.

To compare the weights between two representations T1 and 7-, it is sufficient to look

at the weights for the initial features 6 . This is because iFDD weights the conjunction

features proportionally to the weights of the conjunction features. In other words,

0 flAf2 oc I fI + 2[I. (4.12)

Let the function Sort : Rnii -> {1,2, ... , nit} return the indices of the elements of 0 in

descending order with respect to their absolute values. The second similarity metric qo

checks
c-ec" 1(Sort(t), = Sort(2))Ei= =ntnii (4.13)

ninit

where 1 is the indicator function that returns 1 if (Sort(Oilnt)i = Sort(t) j) and zero

otherwise.

The following Theorem computes the Prob(fl,2 E 42) for the three approaches mentioned

above, depending on the magnitude of qo and q4.

Theorem 4.3.1 Let two agents true representations be given as in Eq. 4.6 and Eq. 4.7. Let

Agent 1 pass the feature fl,2 E jD1 to Agent 2 to after 1 round of communication. Then the

following holds depending on how fl,2 is selected,

" Random Approach:

Prob(f1 ,2 E 4D2) = (4.14)

" Open Loop Approach:

Prob(f1 ,2 E 42) = qo (4.15)

90

* Closed Loop Approach:

Prob(fl,2 E4)2) = 1- (4.16)
nprev+ 1

where npe, is the number of previous communications prior to this round.

Proof The probability that a random feature from the set V will also be contained in

V4~ is equal to the i7. Hence Eq. 4.14 follows from the definition of qo, which is given in

Eq. 4.11.

From the Eq. 4.15, it is seen that the open loop approach will choose the feature fl,2

that is most heavily weighted in V .. According to Eq. 4.12, this also corresponds to the

feature that is most heavily weighted in the initial representation. Hence the probability

that fl,2 E 4)2 is simply the same as probability that the absolutely maximal weights of two

representations are the same; i.e. arg maxi 101 1 = arg maxi 102. This is exactly what 770 (See

Eq. 4.13) computes, hence Eq. 4.15 follows.

In the closed loop approach, first consider the case where np,ve = 0, i.e. the current round

is the first round of communication. The only case fl,2 42 could happen is when Agent

2 reports back 91,2 = 0. This is the only case where the matrix completion algorithm will
A1,2-

not return any useful suggestions due to incomplete data. 01,2 = 0 simply means that thef1,2 - ymasta h
feature fl,2 is absent from Agent 2's representation, which can only happen with probability

1 - 77. Hence, Eq. 4.16 follows.

Theorem 4.3.1 hints which approach will be useful depending on the team heterogeneity

assumptions. Based on the results of this theorem, we can classify the missions into 3

categories depending on which feature sharing approach is going to be useful.

Highly Homogeneous Scenarios: This is the case where teammates actual repre-

sentations have a high number of similar features. This case corresponds to the missions

where agents are trying to learn the same distribution and/or they have highly similar

transition dynamics. Hence q4 ; 1 between any two teammates. In such scenarios,

the random approach (Eq. 4.8) might be the best, since it is computationally very

cheap and the probability that a randomly shared feature is going to belong to one of

the teammates representation is significantly high. On the other hand, if the initial

weights are also homogeneous (i.e. yo is close to 1) open loop approach will also work

in the expense of performing more computation. Closed loop approach might not be

preferable for these scenarios, because it is difficult to justify the extra computation

and communication effort required for CF-Dec-iFDD, when the random approach just

works as well.

91

" Scenarios with Homogeneous Weights and Heterogeneous Features: In this

case 77 >> qo, hence sharing features randomly is not likely to succeed. This is the

kind of scenarios where agents have dissimilar features due to their dynamics and

operational conditions, but the features that are in common have similar weights. In

this case the open loop approach (Dec-iFDD) might be the best option, due to high

iq. The closed loop approach (CF-Dec-iFDD) also works, however it requires more

computational resources and communication bandwidth.

" Highly Heterogeneous Scenarios: In this case both qo, 71 << 1. These are the

scenarios where the agents are learning highly dissimilar distributions, hence sharing

features randomly or in an open loop manner is not likely to succeed. CF-Dec-iFDD

(closed loop approach) is the best option in this case, since it is the only approach that

figures out the common features between agents and the probability of success goes to

1.0 as more communications rounds are completed (See Eq. 4.16).

4.3.3 CF-Dec-iFDD Simulation Results

This Section compares the performance of CF-Dec-iFDD and Dec-iFDD algorithms on two

large-scale multiagent problems.

Forest Fire Management Domain

This section applies the CF-Dec-iFDD algorithm to learn forest fire spread patterns. The

stochastic forest fire model is from Boychuk [98], which is provided in the Appendix A. The

domain was described previously in Section 3.5.

Fig. 4-16 shows the results for distributed learning of fire spread dynamics for 5 agents.

Each agent learns on a distinct 20 x 20 grid. The average i7 (See Eq. 4.11) for this scenario

is 0.2, which corresponds heterogeneous team as described in Section 4.3.2.Agents first learn

independently and then exchange features with each other using the CF-Dec-iFDD and

Dec-iFDD[109] algorithms. Results show that allowing more features to be shared at each

iteration eventually slows down the learning with Dec-iFDD, since processing more features

with SGD takes more iterations. On the other hand, CF-Dec-iFDD has the best convergence

rate among compared approaches, even tough it has the same fcap as the best performing

Dec-iFDD instantiate. This is due to fact that CF-Dec-iFDD shares features that are more

relevant to each other due to utilization of the rating matrix completion performed by agents.

Results also show that the distributed learning framework enables fire-spread model learning

in large-scale environments, since the fire model in 20 x 20 grid corresponds to approximately

7.2 x 1016 parameters in the transition model.

92

Table 4.5: Comparison of the average model estimation error of different feature sharing
approaches for instantiates of the forest fire domain with different heterogeneity levels. The
resulst are obtained for 103 samples and averaged over 30 runs. Feature sharing cap for all
algorthims are 200.

Learning Algorithm

re Random Sharing Dec-iFDD CF-Dec-iFDD
0.9 15.18 6.3% 22.82+5.1% 25.11 5.6%
0.5 25.17 9.2% 14.27 4.6% 10.11 3.4%
0.2 45.27 10.2% 18.24 3.2% 7.56 2.1%

The Table 4.5 represents the model estimation error of random sharing, Dec-iFDD (open-

loop sharing) and CF-Dec-iFDD (closed-loop sharing) for different instantiates of the forest

fire domain with different heterogeneity levels. These results agree with conclusions of the

analysis performed in the Section 4.3.2. For homogeneous scenarios (71, = .9), random ap-

proach yields the best results, since all the shared features are likely to be included in the true

representations of the other agents. However, as the heterogeneity among the team increases,

CF-Dec-iFDD yields the best model estimation error among the compared approaches.

Fig. 4-18 displays the matrix completion error as a function of the number of collected

samples for different feature sharing caps. These results show that with increasing number

of samples and the number of shared features, CF-Dec-iFDD estimates the matrices Mi (See

Section 4.3.1) with higher precision, which in turn results in better learning performance.

Persistent Search and Track Domain

Fig. 4-17 shows the planning/learning performance of CF-Dec-iFDD for a 10 agent PST

mission with uncertain actuator dynamics. GA-Dec-MMDP was used as the planner, and

cumulative cost was averaged over 30 runs. The results are similar to the fire spread learn-

ing results. Dec-iFDD learning slows down as number of shared features increases, which

leads to inferior performance. Whereas CF-Dec-iFDD yields better planning performance

compared to open loop sharing with same comm constraints. The Table 4.6 represents the

model estimation error of random sharing, Dec-iFDD (open-loop sharing) and CF-Dec-iFDD

(closed-loop sharing) for different instantiates of the persistent search and track domain with

different heterogeneity levels. Fig. 4-19 displays the matrix completion error as a function

of number of collected samples for different feature sharing caps. These results reinforces

the idea that the closed loop sharing (CF-Dec-iFDD) is especially useful for scenarios with

heterogeneous teams, which is due to the precise estimation of Mi matrices with increasing

number of samples.

93

Table 4.6: Comparison of the average model estimation error of different feature sharing

approaches for instantiates of the persistent search and track domain with different hetero-
geneity levels. The resulst are obtained for 103 samples and averaged over 30 runs. Feature
sharing cap for all algorthims are 200.

Learning Algorithm

ro Random Sharing Dec-iFDD CF-Dec-iFDD
0.9 10.23 3.2% 15.33 5.1% 19.22 3.2%
0.5 12.43 7.2% 8.62 4.6% 8.22 2.2%
0.2 36.78 9.1% 20.12 3.2% 3.44 1.1%

4.4 Summary

This Chapter provided a family of single and multiagent model learning methods built upon

the iFDD algorithm. First, the convergence guarantees of iFDD were proven and the algo-

rithm was shown to be an efficient single agent approximate learning algorithm for moder-

ately sized domains. Dec-iFDD algorithm enabled learning in large-scale multiagent scenar-

ios, and its applicability was demonstrated through simulation results for both robotics and

UAV domains. Finally, CF-Dec-iFDD algorithm was introduced, which enables planning for

highly heterogeneous teams, in the expense of performing more communication and com-

putation. Both theoretical results and simulation results were provided for CF-Dec-iFDD.

Results showed that CF-Dec-iFDD yields better performance than Dec-iFDD for highly het-

erogeneous scenarios. The next Chapter extends the results to real flight experiments in

order to demonstrate the applicability of the developed learning algorithms in real-world

scenarios.

94

80
Dec-iFDD

70--- Cap:500

0-50--

W 40- Dec-iFDD
.: Cap:50
3 30 Dec-iFDD
o Cap:100

20 -
CF-Dec-iFDD

10- Cap: 50x2

0 2000 4000 6000 8000 10000
number of samples

Figure 4-16: Comparison of modeling error of the Dec-iFDD and CF-Dec-iFDD algorithm

for a 5 agent fire spread simulations with different feature cap sizes. Cap represents the

number of features allowed to be exchanged at each iteration. Since agents communicate

twice as much in CF-Dec-iFDD the cap is halved for a fair comparison.

220 I I
Dec-IFDD

200" -Cap:1000

0180 --

-75160 -\
E Dec-iFDD
0 140- Cap:200

Dec-IFDD

120 - -- '~~Cap: 100-
> CF-Dec-iFDD

100- Cap:2x100

I 10 20 30 40 50 60 70
time(min)

Figure 4-17: Comparison of average cumulative cost of the Dec-iFDD and CF-Dec-iFDD

algorithm for a 10 agent PST simulations with different feature cap sizes. Cap represents

the number of features allowed to be exchanged at each iteration. Since agents communicate

twice as much in CF-Dec-iFDD the cap is halved for a fair comparison.

95

ap: 50x2

Cap:1 00x2

Cap:200x2

0 2000 4000 6000
number of samples

8000 10000

Figure 4-18: The matrix completion error as a function of number of collected samples for

different feature sharing caps on the forest fire domain.

1 Or

-2 00

--- Cap:50x2

Cap: 1 00x2

Cap:200x2

I I I I I

8000 100000 2000 4000 6000
number of samples

12000

Figure 4-19: The matrix completion error as a function of number of collected samples for

different feature sharing caps on the persistent search and track domain.

96

100-

80-

60-

40-

20-

0

0

w
0
0

E
0

CO

12000

10

0

0L

x

0

0
X

80-

60-

40-

20

(

0-2$

Chapter 5

Flight Experiments

This Chapter provides the results of the integrated planning/learning indoor flight experi-

ments conducted in MIT's RAVEN facilities. The main objective of these experiments is to

demonstrate that the developed learning algorithms are able to work in real-time and toler-

ate uncertain elements such as wind gusts and sensor noise. The Chapter also gives details

on a number of novel experimental devices developed in order to conduct these experiments.

These devices include an autonomous battery recharge station for enabling long endurance

missions and ceiling mounted laser projectors for displaying the belief space of the agents.

The Chapter is organized as follows. Section 5.1 describes the testbed and its components.

Sections 5.2 and 5.3 provides the experimental results for iFDD and Dec-iFDD respectively.

Finally, Section 5.4 presents the results for the integrated planning/learning using RCD/CF-

Dec-iFDD algorithms.

5.1 Testbed

The flight experiments were conduced in the Aerospace Controls Lab indoor facility RAVEN

[110, 111, 112] (see Figure 5-7). RAVEN uses realistic small-scale air and ground vehicles

operating indoors with a motion capture system to emulate GPS. This Section gives the

details on some of the key components of the testbed.

5.1.1 Quadrotor UAVs

To address the need for inexpensive aerial mobile robots, an in-house quadrotor UAV is

developed to be used in flight experiments. The UAV, shown in Fig. 5-1, is built using a

carbon-fiber and foam sandwich plate frame (approximately length of 30 cm across) with

brushless motors, electronic speed controllers manufactured by AscTec capable of measuring

97

Figure 5-1: Quadrotor built in-house for flight experiments

temperature and current, and an off-the-shelf autopilot board with accelerometers, gyros and

a pic-based microcontroller known as UAVDevBoard sold by Sparkfun Inc. The firmware

for the autopilot was also developed in-house to close the attitude loop onboard for flight

control [113]. An ADC circuit was used on UAVs to acquire the battery residue and and

broadcast it via wireless modem.

The quadrotor is also mounted with an onboard camera (SONY 700 TVL FPV Ultra

Low Light Mini Camera), a wireless transmitter (Boscam TS350 5.8G 10mW 8 Channel

AV Transmitter FPV) and a 5.8GHz Circular Polarized Antenna antenna (see Fig. 5-2).

This onboard camera allows us to gather data for image processing and emulate the camera

sensing noise.

5.1.2 Autonomous Recharge Station for Enabling Long Endurance

Missions

Given their relative safety and cost-effectiveness, the quadrotors described in the previous

section are being used extensively in indoor flight facilities [111, 114, 115, 116]. However, the

current battery technology only enables flights of 8-15 minutes (depending on vehicle, pay-

load, and wind conditions) for a typical quadrotor [111, 117], which constrains the mission

and experimental capabilities of these small-scale UAVs. To enable the capability of sus-

taining persistent missions, and, in the process, enable research concerned with developing

autonomous planning and learning algorithms that depend on data obtained from long-term

operations, there is a need to develop a system that can sustain long duration flight. This

98

Figure 5-2: The onboard camera, wireless transmitter and antenna mounted on the quadro-

tor.

Section presents a such system for small-scale UAVs, consisting of an autonomous battery

change/recharge station that is equivalent to a refueling station. The device integrates nu-

merous mechanical and electronic components orchestrated through supporting software.

Fig. 5-3 shows the complete platform for the automated battery recharge system. The

station has a central stack (behind the circuit board) that houses the motors to turn the two

battery drums and supports the top-mounted landing pad. The two drums on both sides

of the stack rotate in either direction about a horizontal axis. Each drum consists of four

battery bays, each of which can carry and recharge a single battery. The chargers for the

batteries are located at the front - one for each drum.

In operation, a UAV modified with a battery receiver and carriage lands on the landing

pad and is locked down securely with two arms that carry shore power to the UAV. The

drums are rotated to align the appropriate battery bays around the shaft (as shown in

Fig. 5-3) using a stepper motor. The battery on the UAV is then swapped out with a freshly

charged battery using a linear swapping motion. The old battery is placed into an empty

bay on the opposite drum. The charging for that battery then starts until that battery is

needed (approximately 1 hour later given the current system). Since all steps are automated,

the platform provides the capability to automatically change and charge batteries without

requiring intervention of a human operator.

The carriage and receiver design is an integral part of the swapping mechanism. Note

that the basic idea behind the entire design was to create a battery swapping process in which

one linear motion performs the steps of removing the old battery and replacing it with a new

99

Battery Re-

ceiver attached

the UAV

rvo
Wireless Mo-

dem
ore

Onboard Con-

trollers

ope ,
ate

Two rot
Chargers drums each

four batteries

Figure 5-3: The recharge station designed to enable persistent flight of small UAVs. Left:

The operational recharge station and its components. Right: Exploded view of the CAD

diagram of the recharge station Only Left drum is shown for simplicity, all dimensions are

in mm.

one. This is in contrast to other options that might have involved multiple steps, such as

removing the old battery into an empty bay, aligning a new bay with fully charged battery,

and then inserting the new battery. This may be how a human might replace a battery in a

typical device, but it involves multiple dexterous steps that complicate the overall process.

The alternative approach taken here was to align three bays (e.g, an empty bay on the right,

the vehicle in the middle, and a bay holding a charged battery on the left, see Fig. 5-4).

The aligned bays now provide a nearly continuous T-rail support from the far left to the far

right on the device, with small gaps in between. Note that the two ends of the T-rail are

beveled to ease the transition across the gaps from one rail support to another - it simplifies

insertion into the new rail support, and then the T-rail can force the proper alignment as it

moves across.

The battery swapping process in displayed step by step on Fig. 5-4. Videos of the recharge

station and the experiment presented in Section 5.2 are available at [118].

More details on the design process of the recharge station can be found in [119, 120].

100

(a) After landing, (b) The depleted (c) The fresh battery (d) Locking arms re-
quadrotor is locked battery in quadrotor is pulled into the bat- leased, the quadro-
to the landing pad is pushed into the tery carriage under tor is ready to take
and provided with empty spot. the quadrotor off. Drums rotating
shore power. to align next battery

Figure 5-4: Steps in a battery exchange between the recharge station and the quadrotor.

Figure 5-5: A box fan is hang from the ceiling to simulate the effect of localized wind.

5.1.3 Ceiling Mounted Fans for Wind Emulation

To implement the effect of localized wind, a 20-inch diameter box fan was hung from the

ceiling in the RAVEN environment, as illustrated in Figure 5-5. On high power setting, the

box fan can produce a downward wind flow of approximately 5 m/s over a 0.25 m 2 area.

From combined on-board voltage and current reading, the system can reliably distinguish

between windy and non-windy region.

5.1.4 Ceiling Mounted Projectors for Belief Space Projection

During execution of planning and learning algorithms, numerous latent variables such as

probability distributions over system states, predicted agent trajectories, and transition

probabilities are manipulated. Though hardware experiments allow spectators to observe

101

Ceiling-mounted
projection system

Motion capture system

Robotics platform

Figure 5-6: Hardware overview for the projection system

performance of such algorithms in the real world, it is difficult to simultaneously convey

latent information alongside physical platforms. Apparent performance of algorithms rely-

ing on complex background processes can, therefore, suffer due to this complexity not being

appropriately conveyed to spectators. In certain scenarios, once experimental data is gath-

ered, latent information can be visualized through simulation software. However, it may

be difficult for spectators to synchronously monitor behavior in the simulator and on the

physical platform, especially in the case of real-time algorithms. It is much more beneficial

to augment the experiment area with real-time visualization of this data, allowing direct per-

ception of the progress of the planning/learning algorithm. The RAVEN is equipped with

ceiling mounted projectors (See Fig. 5-6), which allows projection of belief space of plan-

ning/learning algorithms as well as animated dynamics of the environment. The benefit of

the projection system is two-fold, it enables a more efficient monitoring of the experimental

process and it also provides raw data to emulate camera sensing noise on quadrotors.

5.2 iFDD Learning Experiments

This Section presents fight test results for the PST mission in presence state-correlated sensor

failure uncertainty with Dec-MMDP planning algorithm [7] integrated with iFDD learning

algorithm (Section 4.1). The view of the experiment can be seen in Figs. 5-7 and 5-8.

The setting and the state-correlated uncertainty representation is the same as discussed in

Section 4.1.5. The autonomous flight test lasted for three hours, during which about 120

total autonomous battery swaps were performed by the the three recharge stations (Section

5.1.2). The parameters of the state correlated sensor failure model, as learned through

102

Figure 5-7: Experiment setup showing the four types of agent platforms used in the flight

experiments: Team UAV (3) Team UGV (blue), Target UGV (green/red), and a Neutral

UGV (white). The three change/recharge stations used to enable persistent flight operations

for the UAVs are shown in the background.

Figure 5-8: The three recharge stations (see Section 5.1.2) shown here were developed at

MIT's Aerospace Control Laboratory and are designed to enable multiple-hour UAV mis-

sions.

103

Table 5.1: Probability of sensor failure for UAVs across different locations and fuel levels as
estimated by iFDD learning algorithm.

Fuel Level
Location High Fuel Level Low Fuel Level

Base 0.0 0.0
Communication 0.067 0.132
Surveillance 0.123 0.351

iFDD is displayed in Table 5.1. Comparison of the estimated values to actual values in

Table 4.1, shows that iFDD was able to estimate the parameters within 2 - 3% accuracy on

average. After every iFDD update of the uncertain parameters, the Dec-MMDP policy was

recomputed using the new estimates. Model of the integrated learning planning framework

was initialized 30% sensor failure probability across all states. This amounts to a pessimistic

initialization of sensor failure probability. Figure 5-9 displays the performance of the updated

policy after each learning cycle in terms of average cumulative cost. It is seen that, due to

pessimistic initialization, initial policy has a high cost, because it calls UAVs back to base

frequently for sensor repair. Note that, sensor status is a part of the state and UAVs with

failed sensors/actuators do not return to base unless they are commanded to do so by the

policy. As the iFDD learning algorithm estimates the parameters of the state dependent

uncertainty, average accumulated cost decreases and the policy stabilizes around halfway

through the mission.

Fig. 5-10 displays the average number of battery swaps every half an hour. The results

show that initially UAVs are called back to base frequently, as reflected by high number of

battery swaps. This is a result of pessimistic estimate of the probability of sensor failure.

As the uncertainty parameters estimates are improved through iFDD learning, the planning

algorithm becomes more confident in the UAVs' ability to operate without failures and

assigns the UAVs more efficiently between the base and tasking areas. This is visible through

relatively lower number of average battery swaps per half hour in the second half of the

mission.

5.3 Dec-iFDD Learning Experiments

This Section presents the results of an hour long indoor flight test on a large-scale PST

mission with 10 UAV agents, 10 recharge stations [7, 120], and several other ground agents.

Of the 10 UAV agents, 9 are simulated (referred to as virtual agents) using physics based

simulations, and 1 agent is physically present in the experiment area (referred to as real

104

I I I I
2.5 3 3.5

Figure 5-9: Flight test results for Dec-MMDP planner and iFDD

decrease of average cumulative cost as a result of learning process

251 1 1 1 1

CO

20
C
E
C,

15
a.
CL)
CO
(CL

0 10

0
E
z

010 1.5 2
Time (hours)

learner. Plot shows the

2.5 3 3.5

Figure 5-10: Number of battery swaps in recharge stations as a function of time. Decreased

number of swaps indicate more efficiency UAV coordination between the base and surveil-

lance area

105

260

250-

0

0

E
0

C

240-

230-

220-

210-

200r

190

in

_O0 0.5 1 1.5 2
Time (hours)

.

,

agent). The GA-Dec-MMDP algorithm was used as the planner while the Dec-iFDD algo-

rithm (Section 4.2) was used as the learner.

5.3.1 Experiment I: Single Fan and State-Independent Fuel Burn

Rate Learning

In order to verify the applicability of the decentralized learning and planning approach devel-

oped in this thesis, an additional scenario where each UAV has a different state-dependent

fuel burning rate was considered in experimental setting. State-dependency of the fuel

burning rate was motivated from the possibility of having non-uniform wind in the mission

environment and thus each region induces a different fuel burning rate. Table 4.3 shows

the probability of incurring nominal fuel burn in the respective states. Else, the vehicle

experiences twice the nominal fuel burn.

Note that the existence of a windy environment is not known to the planning-learning

algorithm a priori, learning the existence of the wind and its impact on the fuel burning rate

is the objective of the learning algorithm. The wind was emulated using ceiling mounted

fans (Section 5.1.3).

Results of the experiment averaged over 4 different runs is displayed in Figure 5-11. As

the learning algorithm learns a better model for the fuel burning rate, the performance of

the policy produced by the planner for allocating UAVs between the base and surveillance

locations improves. It can be seen that the planner computes a more efficient policy using

the continually improving model. In particular, UAVs in windy areas are returned back to

base more frequently to ensure that they do not run out of fuel and UAVs in non-windy

areas are allowed to spend more time in the surveillance area to accomplish more tasks.

5.3.2 Experiment II: Two Fans and State-Dependent Fuel Burn

Rate Learning

The test environment is depicted in Fig. 4-14. The mission environment is separated such

that real and virtual agents do not cross each other's operational spaces. The actuator failure

probabilities are set to the values used for the heterogeneous team model described in the

Section 4.2.2, and the nominal fuel burn rate probabilities for all the virtual agents are set

according to the heterogeneous team model described in the Section 4.2.2. The nominal

fuel burn probability of the real agent is influenced by the custom setup of vertical fans

implemented in the experiment area (see Figs. 5-12 and 5-13), which is explained later in

this section. The GA-Dec-MMDP planner [7] is used to coordinate the 10 agents across

106

250

C) 200 -

:3 150 -a>
0

100-

0 10 20 30 40 50 60
Time (min)

Figure 5-11: Results from a large scale persistent mission experiment with 9 simulated
quadrotors and one physical quadrotor. A stochastic model of agent fuel burning rate is
learned using decentralized iFDD learning. It can be seen that as the fuel burning model is
learned better the cumulative mission cost is reduced.

the base, communication and tasking areas, however the health models are not known to

the planner, and must be estimated during the experiment. Objective of the experiment is

to show that the Dec-iFDD algorithm succeeds in learning these models and the GA-Dec-

MMDP planner can lower the mission cost progressively.

The tasking area for the virtual agents is populated with randomly generated tasks, which

are represented by the colored dots in Fig. 4-14. Allocation of these tasks among virtual

agents are handled by the CBBA task allocation algorithm [121].

The tasking environment for the real agent is shown in Figs. 5-12 and 5-13. As depicted

in these figures, the real agent has two static target observation tasks (task 1 has a higher

reward than task 2) and the agent must fly through a region with localized wind disturbances,

created using two vertically aligned fans, in order to perform the tasks. However the locations

and the magnitude of the localized wind disturbances are unknown to the agent a priori.

The wind disturbances generated by the fans significantly impact the battery life of the

quadrotor, as can be inferred from Fig. 5-14. The figure shows that flying under the wind

(blue line) results in approximately 17% more current drawn from the battery compared

to not flying under the wind (red line), thus it can be stated that flying under the wind

corresponds to higher battery discharge rate, which results in shorter flight times before

returning to base for battery swap. We would like to emphasize that impact of the wind on

107

the battery life of the agent is not known to the planner in the beginning of the mission.

The tasking space of the real agent is separated into several grids, with each grid inducing

a different unknown fuel burn rate based on whether the fan above the grid is active or

not. Since the wind can appear and disappear during the mission, it is more appropriate

to model their effect probabilistically rather than having a binary wind or no wind value

for each grid. Hence, the probability of nominal fuel burn rate pfrel is a function of the

agent's grid location. Therefore, pfuel can be treated as a state-dependent uncertainty (see

Section 4.2) and is learned here using the iFDD algorithm. In the actual experiment, during

the period where the real agent is in the tasking area, the agent collects observations of

battery usage at each grid it had traveled to. When the agent returns to the base, the iFDD

algorithm processes this batch of observations to generate an estimate of pfuel(grid). This

process is referred to as one iteration of wind learning. After each wind learning iteration, a

dynamic programming algorithm is used to re-plan a trajectory that minimizes the based on

the current estimate of Pfue (grid). The actual policy that the agent implements is randomly

chosen from the optimal policy obtained from the DP algorithm or from a random policy,

with the probability of choosing random actions reducing over time. This is an E-greedy

approach (see [28]), with e = 0.2, designed to encourage exploration.

In the beginning of the mission, only the Fan 1 is on and the fan on the the top of

task 1 (Fan 2) is turned off. Fig. 5-15 displays a sequence of selected trajectories for the real

agent during different stages of the learning process. At the first wind learning iteration, the

planner routes the agent towards the task with the higher reward (Fig. 5-15a), during agents

3 rd visit to the tasking area The Fan 2 is manually turned on unknown to the agent. It can

be seen that the learning algorithm identifies the non-zero probability of experiencing wind

for this grid (Fig. 5-15b). After taking more observations of the environment, the planner

discovers that doing task 1 corresponds to higher probability of non-nominal fuel burn rates

and starts to route the agent towards task 2 (Fig. 5-15c). After 10 wind learning iterations,

planner converges to a trajectory that has the least probability of burning non-nominal

fuels (Fig. 5-15d). The overall planning performance of the whole team is presented in the

average cumulative cost versus time plot on Fig. 5-16. These results are consistent with their

simulation counterparts in Section 4.2.2, in the sense that the Dec-iFDD algorithm learns

the actuator failure and fuel burn models across the team and the GA-Dec-MMDP planner is

then able to provide improved (lower) average cost. These flight experiment and simulation

results verify the applicability of the GA-Dec-MMDP planner and the Dec-iFDD learner for

large-scale UAV missions with unknown health models and heterogeneous team structure.

108

Figure 5-12: View of the Task area of the real agent.

Figure 5-13: View of the Task area of the real agent from Base.

109

Sum of Average Current and Battery Voltage
45

high vertical wind
----high vertical wind

no wind

25 ..------- ----- --- -- -

..

15
0 50 100 150 200 250 30

time(s)

Figure 5-14: Compares the current drawn from the battery while flying under the fan with
current drawn while flying away from it.

5.4 CF-Dec-iFDD Learning Experiments

In this Section we use the real sensor data obtained from onboard cameras mounted on

quadrotor UAVs to estimate the fire spread model on a forest covered with different types

of vegetation. Note that the results in the previous sections used the exact state transition

samples to estimate the model. The main objective of this Section is to show that the

developed learning algorithm can build useful models using noisy measurements (in the form

of images taken by the camera) of state transition samples. The CF-Dec-iFDD algorithm

(Section 4.3) is utilized as the multiagent learning algorithm in the experiments and the

RCD algorithm (Section 3.3) is utilized as the multiagent planning algorithm.

The forest fire spread model is projected on the ground as seen in Figure 5-18, using the

ceiling mounted projectors (Section 5.1.4). The layout of the forest is static and different

types of vegetation, trees and rocks are represented with different textures. The textures of

110

(b) After 3 wind learning iterations

(c) After 7 wind learning iterations

Figure 5-15:
grids, which
experiencing

(d) After 10 wind learning iterations

Selected trajectories of the real agent during the wind learning process. Purple

are learned by the agent, correspond to grids with non-zero probability of

wind.

111

(a) After 1 wind learning iteration

0 250 -

4 200-

Fo 150-

100 -
0 10 20 30 40 50 60

Minutes

Figure 5-16: Average cost of the mission as the learning and replanning progresses for the
large-scale flight experiment

combustible regions (trees, bushes etc.) are mixture of different shades of green and the color

of non-combustible regions (rocks) are mainly in brown. The dynamic fire spread animation

is projected upon the static image of the forest. The brightness of the fire in each region is

varied according to the amount of fuel left in that particular region. The brightness of the

fire at each region is propagated using the model provided in the Appendix A.

The map used for the experiments is discretized on a 12 x 30 grid, which is displayed

in Fig. 5-17. At each step of the experiment, the quadrotor flies autonomously following a

sweeping pattern across the room to collect images of the forest fire. Fig. 5-19 shows a sample

image collected by the onboard camera. The collected images are then transmitted to the

image processing computer. There images are stitched together to recover the full picture

of the forest, which is then converted to a multidimensional array with hue-saturation-value

values. Next, a simple classification algorithm is ran on these values to estimate a-) whether

the region of interest is on fire or not, b-) if the regions is on fire, what is the amount of fuel

left in that region.

The quadrotor was flown through 3 different fire spread patterns and collected 140 image

samples in total. These 3 different runs were treated as samples obtained by different agents

and CF-Dec-iFDD algorithm (Alg. 6) was used to generate model of the fire spread.

Table 5.2 provides the comparison of the results obtained form simulations and hardware

112

Figure 5-17: The background image representing the forest terrain. Brown regions are

non-combustible rocks, dark green is the regular grass, light green is the Borel-spruce type

vegetation and the mid-dark green on the lower left is the matted grass.

Table 5.2: Comparison of hardware and simulation results. Lower prediction error corre-

sponds to making more accurate predictions regarding the direction of the fire spread.

With Noisy State Transitions Using Exact State Tran-
From Onboard Camera sitions

Model Error 32.2% 17.8%
Prediction Error 16.2% 10.9%

tests. The simulation results uses the exact state transitions (i.e. the exact amount of fuel

on each cell) whereas the samples obtained from the experiments are prone to noise from the

camera and classification errors that come from image processing. The first row of the table

5.2 compares the average model error and we see that using exact state transitions yield

a significantly more accurate model as expected. However, the gap between the compared

approaches is much smaller in the prediction error, which is displayed on the second row.

Here the prediction error refers to the maximum likelihood estimate of which cell is going to

catch fire in the next time step. As explained in the introduction, making such predictions is

the main motivation for performing model learning. Hence we conclude that the developed

multiagent algorithm is able to build models that yield accurate prediction of critical events

(such as fire spread) using noisy state transition measurements.

After the model learning process, the learned model at each step was used by the multi-

agent planning algorithm RCD (Chapter 3) in a 6 quadrotor experiment (3 real and 3 sim-

ulated) and the planning performance was evaluated by computing the average cumulative

cost, which corresponds to the weighted cumulative number of burning cells per evaluation.

113

Figure 5-18: RAVEN testbed with projected fire animation on the ground and hovering

quadrotor with onboard camera. Different shades of green correspond to different type

of vegetation, brown textures correspond to rocky regions and the brightness of the fire

represents the amount of fuel left in each cell. The fire animation is propogated by using the

fire spread model provided in the Appendix.

Figure 5-19: Zoomed image of the fire viewed from the onboard camera mounted on quadro-

tor. The images are transmitted through a wireless connection for image processing. State

of the forest fire (i.e. whether the cell is burning or not and the amount of fuel left in each

cell) is recovered from these images.

114

80-

0

60

40-

-Q-Exact
Ce 2 Camera20 -

- Camera+15% Noise
- Camera+30% Noise

0 20 40 60 80 100 120 140
Number of Samples

Figure 5-20: Average cost of the fire fighting mission as the learning (CF-Dec-iFDD) and
replanning (RCD) progresses. The model was learned uing 4 different schemes with varying
noise level. Lower cost corresponds to less number of burning cells.

The results are displayed in Fig. 5-20. Results show that as the number of samples increases

the planning performance gets better, since the planning algorithm is able to make more

accurate predictions regarding the fire spread. In order to assess the impact of the sensor

noise on the planning performance, the planner/learner that uses the noisy camera images

were compared against 3 different planners that use different models with varying levels of

noise. In the Fig. 5-20, "Exact" refers to the model built from actual state transition sam-

ples. " Camera" refers to the model built from noise state transitions obtained by the camera.

"Camera+15% Noise" refers to the model built from processing noisy images obtained by

adding Gaussian noise with the mean of 15% of HSV values of the original image obtained

from the on-board camera. "Camera+30% Noise" refers to the model built from processing

noisy images obtained by adding Gaussian noise with the mean of 30% of HSV values of the

original image obtained from the on-board camera. The results show that as the intensity of

the noise level on the state transition samples increases, the planning performance degrades

significantly due to the decreased model quality.

Finally, a 12 quadrotor (3 real, 9 simulated) hardware experiment was conducted for

assessing the value of using a model under different fire spread conditions. Two different

team configurations were considered. The first configuration, called the "greedy" team, does

115

not utilize any model learning and implements a simple greedy planner to kill the fire. At

each step, quadrotors move to the fire cell closest to them and kill the fire at that cell. On

the other hand, the other team, called the "planning/learning" team, employs 4 quadrotors

(1 in the real team and 3 in the virtual team) with on-board cameras for processing the

images that are necessary to learn the fire spread model. These quadrotors are incapable of

killing the fire, their only ability is to collect images required for model building. The model

learning is achieved by running the CF-Dec-iFDD algorithm on the 4 learning quadrotors.

Next, the RCD algorithm is used for planning based on the learned model. Note that

the planning/learning team has only 8 quadrotors for killing the fire (2 real, 6 virtual), as

opposed to the greedy team which utilizes all 12 quadrotors for firefighting. Two different

fire conditions were considered, a scenario with low wind velocity (10 mph), and another

scenario with high wind velocity (50 mph). As indicated in Appendix A, high wind velocity

increases the probability of fire spreading to the neighboring cells.

Results for the low wind velocity fire configuration is given in Fig. 5-21. It is seen that

in this scenario learning the model isn't very useful, the greedy team performs significantly

better than the planning/learning team. After 50 samples, the greedy team accumulated

~ 25% less cost than the planning/learning team. Due to the low wind speed the fire also

spreads very slowly, hence having a quadrotor to perform firefighting is more advantageous

than allocating it to the model learning. Even tough the planning/learning team possess a

better model of the environment dynamics, the greedy team performs better because it is

superior in the number of firefighting quadrotors.

Results for the high wind velocity fire configuration is given in Fig. 5-22. It is seen

the planning/learning team accumulated s 24% less cost than the greedy planner, despite

having less number of firefighting quadrotors. Due to the high wind velocity the fire spreads

more rapidly, hence it is useful to learn to model so that the direction of the fire spread can

be predicted with high accuracy. This is the main reason why the planning/learning team

performs better in the long term.

This result can also be observed by visual inspection of the experiment. Fig. 5-23 shows

two screenshots of the experiment of the high wind velocity scenario for the greedy team,

which correspond to time steps k = 35 and k = 40. Quadrotors ignore the fire cell at the

top of the map and move to the burning cells that are closest to them. Due to the high

wind velocity, the fire at the top of the map spreads to the highly combustible Borel-Spruce

type vegetation and then the fire spreads out quickly, as displayed on the bottom image in

Fig. 5-23. On the other hand, Fig. 5-24 shows two screenshots of the experiment of the high

wind velocity scenario for the planning/learning team for the same time steps. Since the

planning/learning team possesses the model of the fire spread dynamics, the planner predicts

116

that the fire at the top of the map is likely to spread quickly to the Borel-Spruce vegetation,

and immediately sends quadrotors to kill the fire at that point. As the bottom image of the

Fig. 5-16 shows, the fire is prevented from spreading to Borel-Spruce vegetation. Hence, it

can be said that having a model for the fire spread prediction could provide very useful for

scenarios where the fire grows quickly due to the high wind velocity.

117

Ct2
0o

120

100 F

80 F

60

0 10 20 30 40
Number of Samples

50 60

Figure 5-21: Comparison of average cost of the fire fighting mission versus number of samples
for the greedy and the planning/learning teams. The wind velocity is 10mph. Lower cost
corresponds to less number of burning cells.

Cl)
0
U
a)

'S
S

0
a)
bIJ

a)

120

110

100

90 1

0 10 20 30 40
Number of Samples

50 60

Figure 5-22: Comparison of average cost of the fire fighting mission versus number of samples
for the greedy and the planning/learning teams. The wind velocity is 50mph. Lower cost
corresponds to less number of burning cells.

118

8+4 Learning Quad

12 Quads Gre y

8+4 Learning Quad

12 Quads Gree y

I I II

Figure 5-23: Snapshots from the hardware experiment corresponding to the fire configuration

with high wind velocity for the greedy team.

119

Figure 5-24: Snapshots from the hardware experiment corresponding to the fire configuration

with high wind velocity for the planning/learning team.

120

5.5 Summary

This Chapter provided the details of the experimental results for the multiagent learning

algorithms developed in the Chapter 4. The results demonstrated the applicability of these

algorithms in the presence of real flight hardware, long duration missions, sensor noise and

wind disturbance. In particular, the developed multiagent learning algorithm CF-Dec-iFDD

and the multiagent planning algorithm RCD was verified on a large scale firefighting mission

that involves ceiling mounted projectors and on-board cameras.

121

122

Chapter 6

Conclusions and Future Work

This Chapter provides an overall summary of the work done in this Thesis, its contributions

and some suggestions for the future work.

6.1 Conclusions

The main focus of this thesis was to address three particular challenges in the field of plan-

ning/learning in multiagent systems. Chapter 1 laid out these challenges along with the

problem formulations. The first challenge was the scalability, which is concerned with the

issue of algorithms becoming computationally intractable as the number of agents in the

problem increases. The second challenge was the heterogeneity, which is concerned with the

issue that transferring learned transition models across the agents becomes difficult when

the agents have dissimilar transition dynamics. The final challenge was the lack of domain

knowledge, which is concerned with the issue that existing algorithms rely on domain exper-

tise to handle parameter tuning for complex applications, whereas such knowledge may not

exist in many problems.

The Chapter 3 focused on the development of the RCD algorithm. The main premise

of the algorithm was being scalable to large-scale scenarios, while not being strongly de-

pendent on the domain knowledge. This property was achieved through replacement of the

manual tuning with an embedded randomized search process. This Chapter presented the

development of the algorithm, showed that the algorithms iteration complexity was linear in

the number of agents, proved that the algorithm is asymptotically convergent and compared

the algorithms planning performance with alternative approaches across multiple multiagent

planing domains. Results showed that RCD yields multiagent policies with significantly

lower costs.

The Chapter 4 focused on the development of the iFDD, Dec-iFDD and CF-Dec-iFDD

123

learning algorithms. iFDD learning algorithm was developed for single agent model learning

applications. The main premise of the iFDD learning is not fixing the model structure before-

hand and allowing the model complexity grow based on the observed estimation error. The

Chapter presented the algorithm development, proved the asymptotic convergence of iFDD

and provided comparative simulation results showing the superiority of the algorithm over

alternative approaches. The Dec-iFDD and CF-Dec-iFDD were developed as the multiagent

extensions of the iFDD learning algorithm. Both algorithms operate by allowing agents to

exchange learned features under limited communication. The simulation results and the-

oretical analysis highlighted the scenarios where these algorithms are superior to learning

independently or randomly sharing features across agents. In particular, it was shown that

CF-Dec-iFDD enables faster learning in heterogeneous teams.

Finally, the Chapter 5 presented the hardware implementations of the iFDD, Dec-iFDD

and CF-Dec-iFDD algorithms in hardware flight tests. The results demonstrated that the

algorithms were able to work in scenarios that involve, real autonomous vehicles, real-time

computation constraints, external disturbances and sensor noise. A number of novel ex-

perimental devices were also developed to accommodate the experiments, which involves a

recharge station for enabling fully autonomous long endurance missions, ceiling mounted fans

for emulating wind disturbances and ceiling mounted projectors for animating environmental

dynamics and projecting the planner's belief space onto the testbed for visual monitoring.

6.2 Future Work

The following future work is suggested.

6.2.1 Extension to State-Dependent Coordination Graphs

The Coordination Factor Graphs introduced in the Section 3.2 assumes that the struc-

ture is fixed throughout the state-space. This might be a limiting assumption in some

multiagent planning scenarios. For instance, in a multiagent pursuit evasion scenario, cou-

pling/decoupling agents based on their proximity to the targets might result in better plan-

ning performance. Hence instead of assuming a single graph structure, utilizing a family of

coordination graphs that switches based on the current state might be more efficient. Such

graphical structures were studied previously in [122, 123]. However, these works assume that

the state-dependent coordination graphs are hard-coded beforehand. The RCD algorithm

can be extended to discover such state-dependent coordination graphs. The main challenge

is developing an efficient parametrization of these graphs, and defining the probability dis-

124

tributions for sampling from the space of these graphs.

6.2.2 Analysis of Convergence Rate of RCD

The theoretical results provided in the Section 3.4 proved the asymptotic convergence of the

RCD algorithm. However, these results do not provide any bounds/guarantees on the finite

sample performance, which is of great practical interest. Methods such as PAC-analysis

[124] can be used to investigate the convergence rate of the RCD-TBPI algorithm. The

main challenge is analyzing the stochastic dynamics induced by the Bayesian Optimization

Algorithm.

6.2.3 Extension to Decentralized Partially Observable MDPs

This Thesis focused on centralized multiagent planning problems and assumed that the full

state information was available. However, there exists applications where the full state in-

formation may not be available and a centralized planning architecture might not be feasible

due to communication constraints. Such scenarios can be modelled as Decentralized Par-

tially Observable MDPs (Dec-POMDPs) [65, 66]. Although the development of planning

algorithms for Dec-POMDPs is significantly more difficult, there has been a significant re-

cent effort in this area with promising results [23]. Automating the coordination structure is

also a relevant problem for Dec-POMDPs [125, 126, 127], however the existing methods have

been focusing on greedy search algorithms so far. The coordination search for Dec-POMPDs

can benefit from a randomized search algorithm such as RCD. However the extension is

non-trivial, since RCD might need many planning iterations to converge, whereas the most

Dec-POMDP solvers are computationally expensive.

6.2.4 Non-binary Features for iFDD

iFDD uses a linear combination of binary features to reduce computational complexity.

However learning the health dynamics of agents may demand models with more powerful

representational features for scenarios with stronger couplings between the vehicle health

and the mission (e.g., with more complex environments and task definitions). Also, in the

context of control of manufacturing and maintenance process, modeling aging and break-

down dynamics usually demand complicated continuous models. Future work might involve

investigating new model representations for decentralized learning, such as parametric and

non-parametric Bayesian representations [19] and generalization of iFDD from binary fea-

tures to continuous representations, such as radial basis functions. The issues here will be

125

to retain the sparsity (inherent to iFDD) in the representations and mechanics of growing

the representation based on the observed data to reduce computational complexity.

6.2.5 Analysis of Convergence Rate of iFDD, Dec-iFDD and CF-

Dec-iFDD

The Section 4.1 proved the asymptotic convergence of the iFDD algorithm. The work in [99]

gave results on the convergence rate of the iFDD in the context of value function approxi-

mation. The same guarantees can be extended to the transition model learning framework

of the Section 4.1. A particularly interesting future work is extending the same convergence

results to the Dec-iFDD and CF-Dec-iFDD algorithms. This is a challenging task, since the

analysis should take into consideration convergence of multiple models and dynamics of the

feature sharing process.

6.2.6 Offline Pattern Classification

The algorithms developed in Chapter 4 are designed to handle single run scenarios. These

methods can be extended to transfer learned models across different missions. A library of

learned models can be built using probabilistic clustering algorithms [128, 129], and in the

new scenario the learned models can be checked if they are a member of existing clusters to

accelerate the overall learning process.

6.2.7 More Complex Experiments with Emulated Communication

Networks

Establishing a reliable information flow between the agents is a complex task in real missions

with terrain and lossy communication networks, since many of the packets sent are lost or

corrupted. This has become a dominant issue in DoD research, especially with the focus on

contested environments in which external factors (intentional or not) limit the ability of a

UAV team to communicate between themselves and the base. In order to create the same

effect in an indoor environment, a network emulator can be embedded into the testbed to in-

duce communication and data loss on the experiment. These emulators can demonstrate the

robustness of the developed algorithms in face of lossy communication networks. Since the

probability of achieving a successful communication link strongly depends on the separation

between the agents and the location in the environment [130], these models can also serve as

an opportunity to demonstrate the state-dependent uncertainty learning in our work [32].

126

Appendix A

Stochastic Forest Fire Model

The model was obtained from Boychuk [98]. Let the environment be discretized into an n x n

grid. Each cell is labeled with their coordinates (i, j), i, j = 1, .. , n. The state s(i,) represents

if the cell is burning or not and the amount of fuel contained within the cell. s(ij) takes values

from the set {0, ... , f ,NB}, where NB denotes that the cell is currently not burning,

E Z is the maximum amount of fuel the cell can hold and s(iX) = X, E {0, ..., f J}

denotes that the cell is burning and the remaining amount of fuel is x.

Setting different f' among the cells corresponds to having a heterogeneous terrain and

vegetation in the environment. For instance, for a cell full of vegetation fm can be set to

10, whereas for a non-combustible cell (such as a cell full of rocks), fma can be set to 0. Let

k represent the discrete time and s(i 3)(k) denote the state of the cell at time k.

The cell (i, j)'s neighborhood Mj(3) is the set of cells that surrounds it,

.A(idj) = {(i - 1, j), (i + 1, j), (i, j - 1), (i,j + 1)}. (A.1)

The probability that the cell (i, j) will transition from NB state to burning state depends on

three different factors; the state of its neighboring cells K(ij), the wind w and the vegetation

type of the cell v(j,). This dependence is given as,

Pr (s(i)(k + 1) = f(.s(ij)(k) = NB= f(s(k,l), W> 1(ij)), (A.2)
(k,l)eA4g,)

where f(s(k,l), w, V(ij,)) = 0 if 8 (k,l) = NB or s(k,l) = 0. Otherwise,

b

f(s(k,l), W, (()) ((, (A.3)

I - COS(O(k,l) -- bm
(idj)

127

where v b , and Va are dimensionless parameters that depend on the vegetation type of

cell (ij) and the maximum speed of the wind w, 0m is the direction of the wind and 6 (k,l)

is the angle between the cell (i,j) and (k, l),

ri (if)(k, l) = (ij - 1)

10.51 (if)(k, l) = (i +1,j) (A.4)
O(k,l) =(A4

1.57 (if)(k, 1) = (i - 1, j)

0 (if)(k,7l) = (i, j +1)

When the cell starts burning, the fuel decreases in a deterministic manner with each time

step,

Pr (s(i,j)(k + 1) = x - 1Is(,)(k) = x) = 1, x * 0, (A.5)

and when the amount of fuel in the cell reaches zero, the cell is burnt out and will stay in

this state for all future times,

Pr (s(i,j)(k + 1) = 0|s(i,j)(k) = 0) = 1. (A.6)

Examining Eqs. A.2 and A.3, shows that the probability the fire will spread to the cell (ij)

strongly depends on the state of its neighbors. If all the neighbors are in NB state or burnt-

out, then the cell will not be affected by fire. Eq. A.3 shows that if the cell (ij) has a

burning neighbor in the direction of the wind flow, the probability that the fire will spread

to the cell (ij) increases. Also as seen in Eq. A.2 the probability of fire spread increases

linearly with the number of burning neighboring cells. Once the fire spreads to the cell, the

transition dynamics become deterministic and cell burns until it runs out of fuel. For the

experiments in the Section 3.5 and Section 5.4, the parameters were set as follows:

1. For Borel Spruce type cells, vb = 30, vm = 6 6 .5 , fm= 10 ,

2. For matted grass type cells, vb = 1.5, rm = 8.5, fmax 7.

3. For regular grass type cells, vb = 1.0, VM = 8.5, fmax = 3.

4. The wind direction is Om = 7/6 [98], and the wind speed was set as 50 mph.

128

Bibliography

[1] P. Stone and M. Veloso. Multiagent systems: A survey from a machine learning

perspective. Autonomous Robots, 8(3):345-383, 2000.

[2] Nicholas R Jennings. Controlling cooperative problem solving in industrial multi-agent

systems using joint intentions. Artificial intelligence, 75(2):195-240, 1995.

[3] Claire Tomlin, George J Pappas, and Shankar Sastry. Conflict resolution for air traf-

fic management: A study in multiagent hybrid systems. Automatic Control, IEEE

Transactions on, 43(4):509-521, 1998.

[4] Jayashankar M Swaminathan, Stephen F Smith, and Norman M Sadeh. Modeling

supply chain dynamics: A multiagent approach*. Decision sciences, 29(3):607-632,

1998.

[5] Julian De Hoog, Stephen Cameron, and Arnoud Visser. Role-based autonomous multi-

robot exploration. In Future Computing, Service Computation, Cognitive, Adaptive,

Content, Patterns, 2009. COMPUTATIONWORLD'09. Computation World:, pages

482-487. IEEE, 2009.

[6] Andreas Kolling and Stefano Carpin. Pursuit-evasion on trees by robot teams.

Robotics, IEEE Transactions on, 26(1):32-47, 2010.

[7] N. K. Ure, G. Chowdhary, J. Redding, T. Toksoz, J. P. How, M. Vavrina, and J. Vian.

Experimental demonstration of efficient multi-agent learning and planning for persis-

tent missions in uncertain environments. In Conference on Guidance Navigation and

Control, Minneapolis, MN, August 2012. AIAA.

[8] Hongru Tang, Xiaosong Cao, Aiguo Song, Yan Guo, and Jiatong Bao. Human-

robot collaborative teleoperation system for semi-autonomous reconnaissance robot.

In Mechatronics and Automation, 2009. ICMA 2009. International Conference on,

pages 1934-1939. IEEE, 2009.

[9] Lorena A Bearzotti, Enrique Salomone, and Omar J Chiotti. An autonomous multi-

agent approach to supply chain event management. International Journal of Produc-

tion Economics, 135(1):468-478, 2012.

129

[10] Dave McKenney and Tony White. Distributed and adaptive traffic signal control

within a realistic traffic simulation. Engineering Applications of Artificial Intelligence,

26(1):574-583, 2013.

[11] Tadashi Koga and Xiaodong Lu. Autonomous decentralized surveillance system and

continuous target tracking technology for air traffic control applications. In Au-

tonomous Decentralized Systems (ISADS), 2013 IEEE Eleventh International Sym-

posium on, pages 1-8. IEEE, 2013.

[12] Takaya Miyazawa, Hideaki Furukawa, Kenji Fujikawa, Naoya Wada, and Hiroaki Harai.

Development of an autonomous distributed control system for optical packet and circuit

integrated networks. Optical Communications and Networking, IEEE/OSA Journal of,

4(1):25-37, 2012.

[13] Alex Rogers, Sarvapali D Ramchurn, and Nicholas R Jennings. Delivering the smart

grid: Challenges for autonomous agents and multi-agent systems research. In AAAI,

2012.

[14] Gilson Yukio Sato, Hilton Jose Azevedo, and Jean-Paul A Barthes. Agent and multi-

agent applications to support distributed communities of practice: a short review.

Autonomous Agents and Multi-Agent Systems, 25(1):87-129, 2012.

[15] Paulo Leitdo, Jos6 Barbosa, and Damien Trentesaux. Bio-inspired multi-agent sys-

tems for reconfigurable manufacturing systems. Engineering Applications of Artificial

Intelligence, 25(5):934-944, 2012.

[16] Lior Kuyer, Shimon Whiteson, Bram Bakker, and Nikos Vlassis. Multiagent reinforce-

ment learning for urban traffic control using coordination graphs. In Machine Learning

and Knowledge Discovery in Databases, pages 656-671. Springer, 2008.

[17] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and

Autonomous Agents). The MIT Press, 2005.

[18] David H Wolpert, Kagan Tumer, and Jeremy Frank. Using collective intelligence to

route internet traffic. arXiv preprint cs/9905004, 1999.

[19] Trevor Campbell, Sameera S. Ponda, Girish Chowdhary, and Jonathan P. How. Plan-

ning under uncertainty using nonparametric bayesian models. In AIAA Guidance,

Navigation, and Control Conference (GNC), August 2012.

[20] Luca F. Bertuccelli. Robust Decision-Making with Model Uncertainty in Aerospace Sys-

tems. PhD thesis, Massachusetts Institute of Technology, Department of Aeronautics

and Astronautics, Cambridge MA, September 2008.

[21] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, 1994.

130

[22] Craig Boutilier. Sequential optimality and coordination in multiagent systems. In

IJCAI, 1999.

[23] C. Amato, G. Chowdhary, A. Geramifard, and N. K. Ure. Decentralized Control of

Partially Observable Markov Decision Processes. In The 52nd IEEE Conference on

Decision and Control (CDC), 2013.

[24] Andrew N. Kopeikin. Dynamic Mission Planning for Communication Control in Multi-

ple Unmanned Aircraft Teams. Master's thesis, Massachusetts Institute of Technology,

June 2012.

[25] Michael Wooldridge. An introduction to multiagent systems. Wiley, 2002.

[26] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and

Statistics). Springer, 1st edition, 2007.

[27] W.B. Powell. Approximate Dynamic Programming: Solving the curses of dimension-

ality. Wiley-Interscience, 2007. pp. 225-262.

[28] R. Sutton and A. Barto. Reinforcement Learning, an Introduction. MIT Press, Cam-

bridge, MA, 1998.

[29] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforcement

Learning and Dynamic Programming Using Function Approximators. CRC Press, 2010.

[30] Sridhar Mahadevan, Mauro Maggioni, and Carlos Guestrin. Proto-value functions:

A Laplacian framework for learning representation and control in Markov decision

processes. Journal of Machine Learning Research (JMLR), 8:2007, 2006.

[31] P.M. Djuric and Yunlong Wang. Distributed Bayesian learning in multiagent systems:

Improving our understanding of its capabilities and limitations. Signal Processing

Magazine, IEEE, 29(2):65 -76, march 2012.

[32] Nazim Kemal Ure, Girish Chowdhary, Yu Fan Chen, Jonathan P. How, and John Vian.

Health-aware decentralized planning and learning for large-scale multiagent missions.

In Conference on Guidance Navigation and Control, Washington DC, August 2013.

AIAA.

[33] Justin A Boyan and Michael L Littman. Packet routing in dynamically changing net-

works: A reinforcement learning approach. Advances in neural information processing

systems, pages 671-671, 1994.

[34] M. Bowling and M. Veloso. Scalable learning in stochastic games, 2002.

[35] Alborz Geramifard. Practical Reinforcement Learning Using Representation Learn-

ing and Safe Exploration for Large Scale Markov Decision Processes. PhD thesis,

Massachusetts Institute of Technology, Department of Aeronautics and Astronautics,

February 2012.

131

[36] Richard Bellman. Dynamic programming and stochastic control processes. Information

and Control, 1(3):228-239, 1958.

[37] R. Bellman. The theory of dynamic programming. Bull. Amer. Math. Soc., 60:503-515,

1954.

[38] Richard Ernest Bellman. Adaptive Control Processes: A Guided Tour. Princeton

University Press, 1961.

[39] D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 2005.

[40] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. Learning to act using

real-time dynamic programming. Artificial Intelligence, 72(1):81-138, 1995.

[41] Ronen I. Brafman and Moshe Tennenholtz. R-MAX - a general polynomial time algo-

rithm for near-optimal reinforcement learning. Journal of Machine Learning Research

(JMLR), 3:213-231, 2002.

[42] J. N. Tsitsiklis and B. V. Roy. An analysis of temporal difference learning with function

approximation. IEEE Transactions on Automatic Control, 42(5):674-690, May 1997.

[43] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview.

In Decision and Control, 1995., Proceedings of the 34th IEEE Conference on, volume 1,

pages 560-564. IEEE, 1995.

[44] Shimon Whiteson, Matthew E. Taylor, and Peter Stone. Adaptive tile coding for

value function approximation. Technical Report AI-TR-07-339, University of Texas at

Austin, 2007.

[45] Alborz Geramifard, Finale Doshi, Joshua Redding, Nicholas Roy, and Jonathan How.

Online discovery of feature dependencies. In Lise Getoor and Tobias Scheffer, editors,

International Conference on Machine Learning (ICML), pages 881-888. ACM, June

2011.

[46] C. Painter-Wakefield and R. Parr. Greedy algorithms for sparse reinforcement learning.

arXiv preprint arXiv:1206.6485, 2012.

[47] Dirk Ormoneit and Saunak Sen. Kernel-based reinforcement learning. Machine learn-

ing, 49(2):161-178, 2002.

[48] Thomas Dean and Robert Givan. Model minimization in markov decision processes.

In Proceedings of the National Conference on Artificial Intelligence, pages 106-111.

JOHN WILEY & SONS LTD, 1997.

[49] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient

solution algorithms for factored mdps. J. Artif. Intell. Res. (JAIR), 19:399-468, 2003.

[50] Kevin Patrick Murphy. Dynamic Bayesian networks: representation, inference and

learning. PhD thesis, University of California, 2002.

132

[51] Daphne Koller and Ronald Parr. Policy iteration for factored mdps. In Proceedings

of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pages 326-334.

Morgan Kaufmann Publishers Inc., 2000.

[52] Daniela Pucci de Farias and Benjamin Van Roy. The linear programming approach to

approximate dynamic programming. Operations Research, 51(6):850-865, 2003.

[53] Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated reinforcement

learning. In ICML, 2002.

[54] Alexander L Strehl, Carlos Diuk, and Michael L Littman. Efficient structure learning

in factored-state mdps. In Proceedings of the National Conference on Artificial Intelli-

gence, volume 22, page 645. Menlo Park, CA; Cambridge, MA; London; AAAI Press;

MIT Press; 1999, 2007.

[55] Thomas Degris, Olivier Sigaud, and Pierre-Henri Wuillemin. Chi-square tests driven

method for learning the structure of factored mdps. arXiv preprint arXiv:1206.6842,

2012.

[56] Karina Valdivia Delgado, Scott Sanner, and Leliane Nunes De Barros. Efficient solu-

tions to factored mdps with imprecise transition probabilities. Artificial Intelligence,

175(9):1498-1527, 2011.

[57] Finale Doshi-Velez, David Wingate, Joshua Tenenbaum, and Nicholas Roy. Infinite

dynamic Bayesian networks. 2011.

[58] Jelle R Kok, Pieter Jan't Hoen, Bram Bakker, and Nikos A Vlassis. Utile coordination:

Learning interdependencies among cooperative agents. In CIG, 2005.

[59] Thomas G Dietterich et al. The maxq method for hierarchical reinforcement learning.

In Proceedings of the fifteenth international conference on machine learning, volume 8.

Citeseer, 1998.

[60] Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas Dean, and Craig

Boutilier. Hierarchical solution of markov decision processes using macro-actions. In

Proceedings of the fourteenth conference on Uncertainty in Artificial Intelligence, 1998.

[61] Richard S Sutton, Doina Precup, Satinder Singh, et al. Between mdps and semi-mdps:

A framework for temporal abstraction in reinforcement learning. Artificial intelligence,

112(1):181-211, 1999.

[62] Timothy Mann and Shie Mannor. Scaling up approximate value iteration with op-

tions: Better policies with fewer iterations. In Proceedings of The 31st International

Conference on Machine Learning, pages 127-135, 2014.

[63] Marc Toussaint, Laurent Charlin, and Pascal Poupart. Hierarchical pomdp controller

optimization by likelihood maximization. In UAI, volume 24, pages 562-570, 2008.

133

[64] George Konidaris and Andrew G Barto. Efficient skill learning using abstraction se-

lection. In IJCAI, volume 9, pages 1107-1112, 2009.

[65] Daniel S Bernstein, Shlomo Zilberstein, and Neil Immerman. The complexity of decen-

tralized control of markov decision processes. In Proceedings of the Sixteenth conference

on Uncertainty in artificial intelligence, pages 32-37. Morgan Kaufmann Publishers

Inc., 2000.

[66] Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate

q-value functions for decentralized pomdps. Journal of Artificial Intelligence Research,

32(1):289-353, 2008.

[67] L. Panait and S. Luke. Cooperative multi-agent learning: The state of the art. Au-

tonomous Agents and Multi-Agent Systems, 11(3):387-434, 2005.

[68] Douglas Gale and Shachar Kariv. Bayesian learning in social networks. Games and

Economic Behavior, 45(2):329-346, 2003.

[69] Cameron S.R. Fraser, Luca F. Bertuccelli, Han-Lim Choi, and Jonathan P. How.

A hyperparameter consensus method for agreement under uncertainty. Automatica,
48(2):374-380, February 2012.

[70] J6rgen W Weibull. Evolutionary game theory. MIT press, 1997.

[71] Vikram Krishnamurthy. Quickest time herding and detection for optimal social learn-

ing. arXiv preprint arXiv:1003.4972, 2010.

[72] Michael L Littman. Markov games as a framework for multi-agent reinforcement learn-

ing. In Proceedings of the eleventh international conference on machine learning, vol-

ume 157, page 163, 1994.

[73] Jose M Vidal and Edmund H Durfee. Agents learning about agents: A framework and

analysis. In Working Notes of the AAAI-97 workshop on Multiagent Learning, volume

7176, 1997.

[74] Mitchell A Potter. The design and analysis of a computational model of cooperative

coevolution. PhD thesis, Citeseer, 1997.

[75] Sean Luke et al. Genetic programming produced competitive soccer softbot teams for

robocup97. Genetic Programming, 1998:214-222, 1998.

[76] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of

multiagent reinforcement learning. Systems, Man, and Cybernetics, Part C: Applica-

tions and Reviews, IEEE Transactions on, 38(2):156-172, 2008.

[77] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. Knowledge and Data

Engineering, IEEE Transactions on, 22(10):1345-1359, 2010.

[78] A Evgeniou and Massimiliano Pontil. Multi-task feature learning. In Advances in

134

neural information processing systems: Proceedings of the 2006 conference, volume 19,

page 41. The MIT Press, 2007.

[79] Weike Pan, Evan Wei Xiang, and Qiang Yang. Transfer learning in collaborative

filtering with uncertain ratings. In AAAI, 2012.

[80] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning do-

mains: A survey. The Journal of Machine Learning Research, 10:1633-1685, 2009.

[81] Martin Pelikan. Bayesian optimization algorithm. In Hierarchical Bayesian Optimiza-

tion Algorithm, pages 31-48. Springer, 2005.

[82] A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic program-

ming. Artificial Intelligence, 72:81-138, 1995.

[83] Alborz Geramifard, Thomas J. Walsh, Stefanie Tellex, Girish Chowdhary, Nicholas

Roy, and Jonathan P. How. A tutorial on linear function approximators for dynamic

programming and reinforcement learning. Foundations and Trends in Machine Learn-

ing, 6(4):375-451, 2013.

[84] L. Li, M.L. Littman, and T.J. Walsh. Knows what it knows: a framework for self-aware

learning. In Proceedings of the 25th international conference on Machine learning,

pages 568-575. ACM New York, NY, USA, 2008.

[85] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.

MIT Press, 2009.

[86] HJ Kushner and DS Clark. Stochastic approximation methods for constrained and

unconstrained systems (series: applied mathematical sciences). 1978.

[87] N. Kemal Ure, Alborz Geramifard, Girish Chowdhary, and Jonathan P. How. Adaptive

Planning for Markov Decision Processes with Uncertain Transition Models via Incre-

mental Feature Dependency Discovery. In European Conference on Machine Learning

(ECML), 2012.

[88] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering techniques.

Advances in Artificial Intelligence, 2009:4, 2009.

[89] Emmanuel J Candes and Benjamin Recht. Exact matrix completion via convex opti-

mization. Foundations of Computational mathematics, 9(6):717-772, 2009.

[90] Jelle R Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by

payoff propagation. The Journal of Machine Learning Research, 7:1789-1828, 2006.

[91] David Barber. Bayesian reasoning and machine learning. Cambridge University Press,

2012.

[92] Martin J Wainwright, John D Lafferty, and Pradeep K Ravikumar. High-dimensional

graphical model selection using 11-regularized logistic regression. In Advances in neural

135

information processing systems, pages 1465-1472, 2006.

[93] Qingfu Zhang and Heinz Muhlenbein. On the convergence of a class of estimation of

distribution algorithms. Evolutionary Computation, IEEE Transactions on, 8(2):127-

136, 2004.

[94] D.P. Bertsekas and J.N. Tsitsiklis. Introduction to probability. Athena Scientific Bel-

mont, Massachusetts, 2008.

[95] Malcolm Ritchie Adams and Victor Guillemin. Measure theory and probability.

Springer, 1996.

[96] John N Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning

with function approximation. Automatic Control, IEEE Transactions on, 42(5):674-

690, 1997.

[97] N. Kemal Ure, Shayegan Omidshafiei, Thomas Brett Lopez, Ali akbar Agha-

mohammadi, Jonathan P. How, and john Vian. Heterogeneous Multiagent Learning

with Applications to Forest Fire Management. In IEEE International Conference on

Robotics and Automation (ICRA), 2015 (Submitted).

[98] Den Boychuk, W John Braun, Reg J Kulperger, Zinovi L Krougly, and David A Stan-

ford. A stochastic forest fire growth model. Environmental and Ecological Statistics,

16(2):133-151, 2009.

[99] Alborz Geramifard, Thomas J. Walsh, Nicholas Roy, and Jonathan How. Batch iFDD:

A Scalable Matching Pursuit Algorithm for Solving MDPs. In Proceedings of the 29th

Annual Conference on Uncertainty in Artificial Intelligence (UAI), Bellevue, Wash-

ington, USA, 2013. AUAI Press.

[100] Jelle R Kok, Matthijs TJ Spaan, and Nikos Vlassis. Multi-robot decision making using

coordination graphs. In Proceedings of the 11th International Conference on Advanced

Robotics, ICAR, volume 3, pages 1124-1129, 2003.

[101] B. Michini and J. P. How. Bayesian Nonparametric Inverse Reinforcement Learning.

In European Conference on Machine Learning (ECML), Bristol, UK, Sept. 2012.

[102] Harold J. Kushner and G. George Yin. Convergence of indirect adaptive asynchronous

value iteration algorithms. Springer, 2003.

[103] Paul E. Utgoff and Doina Precup. Feature extraction, construction, and selection: A

data-mining perspective, chapter Constructive function approximation. 1998.

[104] A. Shapiro and Y. Wardi. Convergence analysis of gradient descent stochastic algo-

rithms. Journal of Optimization Theory and Applications, 91(2):439-454, 1996.

[105] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, 2nd Edition.

Prentice-Hall, Englewood Cliffs, NJ, 2003.

136

[106] B. Bethke, J. P. How, and J. Vian. Multi-UAV Persistent Surveillance With Commu-

nication Constraints and Health Management. In AIAA Guidance, Navigation, and

Control Conference (GNC), August 2009. (AIAA-2009-5654).

[107] J. D. Redding, T. Toksoz, N. Kemal Ure, A. Geramifard, J. P. How, M. Vavrina, and

J. Vian. Persistent distributed multi-agent missions with automated battery manage-

ment. In AIAA Guidance, Navigation, and Control Conference (GNC), August 2011.

(AIAA-2011-6480).

[108] Nazim Kemal Ure, Girish Chowdhary, Yu Fan Chen, Mark Cutler, Jonathan P. How,

and John Vian. Decentralized learning based planning multiagent missions in pres-

ence of actuator failures. In International Conference on Unmanned Aircraft Systems,
Atlanta GA, August 2013. IEEE.

[109] N. Kemal Ure, Girish Chowdhary, Yu Fan Chen, Jonathan P. How, and John Vian. Dis-

tributed learning for planning under uncertainty problems with heterogeneous teams.

Journal of Intelligent and Robotic Systems, pages 1-16, 2013.

[110] M. Valenti, B. Bethke, G. Fiore, J. P. How, and E. Feron. Indoor Multi-Vehicle Flight

Testbed for Fault Detection, Isolation, and Recovery. In AIAA Guidance, Navigation,
and Control Conference (GNC), Keystone, CO, August 2006 (AIAA-2006-6200).

[111] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian. Real-time indoor autonomous

vehicle test environment. IEEE Control Systems Magazine, 28(2):51-64, April 2008.

[112] J. P. How, C. Fraser, K. C. Kulling, L. F. Bertuccelli, 0. Toupet, L. Brunet,
A. Bachrach, and N. Roy. Increasing autonomy of UAVs. Robotics and Automation

Magazine, IEEE, 16(2):43-51, June 2009.

[113] Mark Cutler. Design and Control of an Autonomous Variable-Pitch Quadrotor Heli-

copter. Master's thesis, Massachusetts Institute of Technology, Department of Aero-

nautics and Astronautics, August 2012.

[114] N. Michael, J. Fink, and V. Kumar. Cooperative manipulation and transportation

with aerial robots. Autonomous Robots, 30(1):73-86, January 2011.

[115] S. Lupashin, A. Schollig, M. Hehn, and R. D'Andrea. The flying machine arena as of

2010. In IEEE International Conference on Robotics and Automation (ICRA), pages

2970-2971. IEEE, 2011.

[116] G Chowdhary, D. M. Sobers, C. Pravitra, C. Christmann, A. Wu, H. Hashimoto,
R. Kalghatgi, C. Ong, and E. Johnson. Self-contained autonomous indoor flight

with ranging sensor navigation. AIAA Journal of Guidance Control and Dynamics,

35(6):1843-1854, November-December 2012.

[117] S. S. Ponda, L. B. Johnson, A. N. Kopeikin, H. Choi, and J. P. How. Distributed

137

planning strategies to ensure network connectivity for dynamic heterogeneous teams.

IEEE Journal on Selected Areas in Communications, 30(5):861 -869, June 2012.

[118] T. Toksoz and N. K. Ure and G. Chowdhary and A. Geramifard and J. P. How. 3

hours persistent search and track mission with autonomous recharge station. Available

at http://acl.mit.edu/projects/recharge.htm, 2012.

[119] N. K. Ure, G. Chowdhary, T. Toksoz, J. P. How, M. Vavrina, and J. Vian. Auto-

mated battery management system for enabling multi-agent persistent missions. IEEE

Transactions of Mechatronics, 2012 (submitted).

[120] Tuna Toksoz. Design and Implementation of an Automated Battery Management

Platform. Master's thesis, Massachusetts Institute of Technology, August 2012.

[121] H.-L. Choi, L. Brunet, and J. P. How. Consensus-based decentralized auctions for

robust task allocation. IEEE Transactions on Robotics, 25(4):912-926, August 2009.

[122] Carlos Guestrin, Shobha Venkataraman, and Daphne Koller. Context-specific multia-

gent coordination and planning with factored mdps. In AAAI/IAAI, pages 253-259,

2002.

[123] Jelle R Kok and Nikos Vlassis. Sparse cooperative q-learning. In Proceedings of the

twenty-first international conference on Machine learning, page 61. ACM, 2004.

[124] Alexander L. Strehl, Lihong Li, and Michael L. Littman. Reinforcement learning in

finite mdps: Pac analysis. Journal of Machine Learning Research (JMLR), 10:2413-

2444, 2009.

[125] M.T.J. Spaan, F.A. Oliehoek, and C. Amato. Scaling up optimal heuristic search in

dec-pomdps via incremental expansion. In Proceedings of the Twenty-Second inter-

national joint conference on Artificial Intelligence- Volume Volume Three, pages 2027-

2032. AAAI Press, 2011.

[126] Pradeep Varakantham, Jun-young Kwak, Matthew E Taylor, Janusz Marecki, Paul

Scerri, and Milind Tambe. Exploiting coordination locales in distributed pomdps via

social model shaping. In ICAPS, 2009.

[127] Stefan J Witwicki and Edmund H Durfee. Towards a unifying characterization for

quantifying weak coupling in dec-pomdps. In The 10th International Conference on

Autonomous Agents and Multiagent Systems-Volume 1, pages 29-36. International

Foundation for Autonomous Agents and Multiagent Systems, 2011.

[128] Miao Liu, Girish Chowdhary, Jonathan P. How, and Lawrence Carin. Transfer learning

for reinforcement learning with dependent dirichlet process and gaussian process. In

Neural Information and Processing Systems, Lake Tahoe, NV, December 2012. work-

shop on Bayesian Nonparametric Models For Reliable Planning And Decision-Making

138

Under Uncertainty.

[129] Trevor Campbell, Miao Liu, Brian Kulis, Jonathan P. How, and Lawrence Carin.

Dynamic clustering via asymptotics of the dependent dirichlet process. In Advances

in Neural Information Processing Systems (NIPS), 2013.

[130] Andrew N. Kopeikin, Sameera S. Ponda, and Jonathan P. How. Handbook of Un-

manned Aerial Vehicles, chapter Control of Communication Networks for Teams of

UAVs. Springer, 2012.

139

