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Coughlin, Devin (Ph.D., Computer Science)

Type-Intertwined Separation Logic

Thesis directed by Prof. Bor-Yuh Evan Chang

Abstract Static program analysis can improve programmer productivity and software reliability

by definitively ruling out entire classes of programmer mistakes. For mainstream imperative

languages such as C, C++, and Java, static analysis about the heap—memory that is dynamically

allocated at run time—is particularly challenging because heap memory acts as global, mutable

state.

This dissertation describes how to soundly combine two static analyses that each take vastly

different approaches to reasoning about the heap: type systems and separation logic. Traditional

type systems take an alias-agnostic, global view of the heap that affords both fast verification and

light-weight annotation of invariants holding over the entire program. Separation logic, in contrast,

provides an alias-aware, local view of the heap in which invariants can vary at each program point.

In this work, I show how type systems and separation logic can be safely and efficiently

combined. The result is type-intertwined separation logic, an analysis that applies traditional

type-based reasoning to some regions of the program and separation logic to others—converting

between analysis representations at region boundaries—and summarizes some portions of the heap

with coarse type invariants and others with precise separation logic invariants.

The key challenge that this dissertation addresses is the communication and preservation

of heap invariants between analyses. I tackle this challenge with two core contributions. The

first is type-consistent summarization and materialization, which enables type-intertwined

separation logic to both leverage and selectively violate the global type invariant. This mechanism

allows the analysis to efficiently and precisely verify invariants that hold almost everywhere. Second, I

describe gated separating conjunction, a non-commutative strengthening of standard separating

conjunction that expresses local “dis-pointing” relationships between sub-heaps. Gated separation
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enables local heap reasoning by permitting the separation logic to frame out portions of memory and

prevent the type system from interfering with its contents—an operation that would be unsound in

type-intertwined analysis with only standard separating conjunction. With these two contributions,

type-intertwined separation logic combines the benefits of both type-like global reasoning and

separation-logic-style local reasoning in a single analysis.
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Chapter 1

Introduction

Programmers make mistakes. In aggregate, such mistakes—bugs—are expensive, costing the

United States tens of billions of dollars per year [78]. Even individually they can be catastrophic.

For example, simple programmer mistakes that permit an invalid write past the end of a memory

buffer can allow remote code execution in C—a serious security vulnerability. Such buffer overruns

have led to the Code Red [26], Slammer [77], and Conficker worms [87], each of which cost billions

of dollars [108]. Even reads past the end of a memory buffer can have terrible consequences: the

Heartbleed [2] vulnerability in OpenSSL allowed remote clients to read portions of a server’s memory,

exposing users’ plain-text passwords to the entire world.

Static program analysis can help eliminate these bugs. Static analysis techniques can defini-

tively rule out entire classes of programmer mistakes by constructing an approximation of the

run-time behavior of a program—without actually running the program . If this approximation

includes all possible behavior of the program (i.e., is a sound overapproximation) and yet does not

include the bug in question then the program cannot manifest the bug. Such overapproximate

techniques serve as a complement to testing (and other underapproximate approaches) and have

the potential to enhance software security, improve reliability, and reduce development cost.

Unfortunately, with overapproximation comes imprecision: if the approximation of a program’s

behavior is so coarse that it includes buggy behavior—even when the program itself has no bugs—

then the static analysis will incorrectly report a bug. Such false alarms inhibit adoption of static

analysis because they force the programmer to either ignore the results of the analysis (defeating
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the purpose of the analysis in the first place) or contort their programming style to work around

imprecision in the analysis.

Reasoning about the heap—memory that is allocated dynamically, at run time, and accessed

indirectly—is particularly important for static analysis of mainstream programming languages (such

as C, C++, and Java), which make heavy use of imperative heap updates. In these languages, the

heap acts as global, mutable state, so the key challenge for analysis is determining the effect of

writes to heap cells on prior reasoning about the contents of the heap. This challenge manifests

in two ways. First, the potential for pointer aliasing—where two pointers point to the same heap

cell—requires an analysis to consider the case where mutation through one pointer may change

storage accessed through another. Second, the global nature of the heap means that any piece of

code can potentially change the contents of any heap cell—and so a sound analysis must account

for the potential of any called function to change the heap. For both manifestations, the crucial

analysis requirement is to tame an “action at a distance” through the heap.

1.1 Types and Separation Logic: Disparate Approaches to Taming the Heap

The goal of this dissertation is to combine two analyses that take vastly different approaches

to taming “action at a distance”: type systems and separation-logic-based static analysis. Type

systems combat action at a distance by acknowledging that the heap is global—that any line of

code could potentially modify any portion of the heap—and enforcing relatively weak invariants

everywhere. If these invariants (i.e., types) are not strong enough to prove the property of interest

(typically freedom from a class of untrapped run-time errors) then the type system emits an alarm.

In contrast, separation-logic–based static analysis (henceforth “separation logic”) assumes that the

heap is local—that it is possible to restrict each line of code to a fixed portion of the heap (its

footprint)—and ensures that strong invariants about other portions of the heap cannot be violated

by the line in question. If this footprint cannot be inferred or is not sufficient, then separation

logic emits an alarm. In the rest of this section, I provide a brief overview of the two very different

approaches that type systems and separation logic take to taming the heap.
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1.1.1 Types are Flow-Insensitive, Alias-Agnostic Heap Invariants

Static type systems [20] ensure that programs are free from a class of relatively shallow

but extremely important safety bugs—in the words of Robin Milner, they guarantee that “well-

typed programs do not go wrong” [74]. Static typing occupies an apparent sweet spot between

developer burden and safety guarantees: type systems are the only form of modular specification and

verification to be widely adopted by mainstream programmers. Types form the first line of defense

against programmer errors—not only in conventional languages (like C, C++, and Java) but also in

emerging settings (such as GPU programming [59]) and even for traditionally dynamically-typed

languages (such as JavaScript). While type systems are particularly well-suited to ruling out

untrapped run-time errors—especially in modular code designed for reuse, such as frameworks and

libraries—type-like reasoning has been applied to a wide variety of other problems, including pointer

analysis [97], and region-based memory memory management [102].

Traditional type checking can be viewed as a form of static analysis in which the type system

enforces a single type invariant at all program points. That is, the type system can assume that

the global type invariant holds before each statement and correspondingly must guarantee that

it holds after. Although imprecise by static analysis standards, this style of reasoning is powerful

because it allows effective reasoning about global data: at any point, the type system can assume

the global type invariant holds, without regard to context. In particular, the type system does not

have to consider control flow to determine whether a given statement is safe. For this reason, type

systems are often called flow-insensitive. It is this flow-insensitivity that affords type systems

their typically-low annotation burden : modular annotations need not specify the effect of a function

because all functions must maintain the global invariant. Such invariants also allow relatively simple,

unification-based inference of types [74].

The inherent imprecision of a single, global invariant has motivated the development of flow-

sensitive type systems [3, 41, 45, 91, 98, 105]. These type systems drop global constraints on mutable

storage locations and instead focus on tracking facts on values as they flow through the program.
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class Circle {

Point center;

int radius;

};

class Point {

int xPos;

int yPos;

};

(a) Global type definition. The global type
invariant holds at all program points and sum-
marizes all instances of a type indistinguishably.

1 void moveRight(Circle c) {

2 c.center.xPos += 5;

3 }

(b) Types assume and guarantee the
global type invariant.

Figure 1.1: Traditional type invariants make weak guarantees about the entire heap.

Such systems typically have more in common with static analysis techniques—such as the need for

specified or inferred loop invariants and function summaries—than with their flow-insensitive cousins.

In this document, I use the term “type system” to mean a traditional, flow-insensitive type system.

Another response to imprecision in type systems has been the development of mixed static-dynamic

typing—including gradual typing [96] and hybrid type checking [42]—in which obligations that

cannot be discharged statically are guaranteed by additional checking at run time. Here, again, I

use “type system” to mean a solely static type system.

Type environments constrain the heap. A type environment maps local variables to

the types of those local variables. While this mapping explicitly describes only locals, it implicitly

constrains the entire heap reachable from those variables. I illustrate this implicit constraint

in Figure 1.1, which defines two classes: Circle and Point, in a Java-like language (Figure 1.1a).

Consider the type environment in the moveRight method in Figure 1.1b: it guarantees that the

local variable (parameter) c contains a reference to (i.e., the address of) a Circle. Now, the type of

Circle says that every instance must have a center field that contains a reference to an instance

of Point and the type of Point requires that its xPos field contain an integer. That is, the type

of c does not constrain just its local storage, but also the entire heap that is reachable from c

by dereferencing pointers stored in fields. Assuming no null pointers (let us say, as is common in

mainstream languages, that null pointer dereferences are not type errors), this constraint is strong

enough to show that the field update at line 2 is free of run-time type errors. The type invariant

guarantees that fields in the path c.center.xPos exist and that the heap cell accessed by that path
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contains an integer before the update—and so it will contain one after the update, as well. The type

environment is sufficient to rule out run-time errors—but is it still a very weak heap constraint.

Types are coarse summaries. From a static analysis perspective, a type is an abstract

summary of a potentially unbounded number of storage locations that coarsely summarizes all

instances of a type indistinguishably. This imprecision is extremely important for light-weight,

modular annotation—in contrast with other flow-insensitive reasoning about memory (i.e., pointer

analysis [6, 37, 97], alias analysis [107])—because annotated abstract locations are type names,

which are already familiar to programmers.

Unfortunately, the coarseness of traditional types makes them agnostic to aliasing: they are

not expressive enough to describe aliasing and dis-aliasing relationships. I show an example of a

program that types are not expressive enough to verify in Figure 1.2a. Here the programmer uses

the assert at line 7 as a request to statically prove that the value stored in the c1.center.xPos

remains unchanged across the call to moveRight(). The key to proving this assertion is showing

that that c1.center.xPos and c2.center.xPos are two different cells on the heap—that is that

c1 and c2 are dis-aliased, as are the fields c1.center and c2.center. Type-based reasoning alone

is not strong enough to prove this assertion: it can determine that c1.center and c2.center both

contain Points—but not whether these points are the different or the same. With type-based

reasoning alone, there are three possible cases. I illustrate these cases in Figures 1.2b–1.2d. The

actual case is Figure 1.2b: c1 and c2 each point to distinct objects, as do their center fields. But

type-based reasoning cannot rule out two other cases: (1) where c1 and c2 each point to distinct

Circles, but their center fields point to the same Point (Figure 1.2c); and (2) where c1 and c2

point to the same circle (Figure 1.2d). In these last two cases, the assertion may not hold—so a

sound type-based analysis must emit a false alarm.

1.1.2 Separation Logic Allows Alias-Aware, Local Heap Reasoning

In contrast with type systems—which traditionally provide flow-insensitive, alias-agnostic

guarantees about the global reachable heap—separation logic [88] performs flow-sensitive, alias-aware
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1 Circle c1 = new Circle();

2 Circle c2 = new Circle();

3 c1.center = new Point();

4 c2.center = new Point();

5 int saved = c1.center.xPos;

6 moveRight(c2);

7 assert(c1.center.xPos == saved);

(a) The assertion cannot be proven with type-
based reasoning alone.

xPos

yPos

center

radius

xPos

yPos

center

radius

c1

c2

(b) Case 1

xPos

yPos

center

radius

center

radius

c1

c2

(c) Case 2

xPos

yPos

center

radius
c1

c2

(d) Case 3

Figure 1.2: Traditional types are alias agnostic and cannot distinguish between Case 1, Case 2, and
Case 3. In contrast, separation logic makes strong dis-aliasing guarantees and thus can determine
that Case 1 is the only one that applies.
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reasoning about local portions of the heap. Historically, separation logic arose as a substructural

extension of Hoare’s program logic [58], designed to treat memory as a resource and thus allow

elegant Hoare-style reasoning about allocation and mutation in the heap. Separation logic has

been applied to reasoning about data structures (shape analysis [9, 22]) and concurrency [80].

At the core of separation logic is the assumption that heap invariants can be separated into

disjoint regions with the strong guarantee that the heap cells represented in one region are not

represented in another. Safely splitting the heap in this way requires potentially costly reasoning

about allocation and dis-aliasing (to determine which addresses and thus storage locations are

distinct) but the payoff is significant: it enables two key analysis capabilities: (1) precise reasoning

about heap mutation with strong updates and (2) local reasoning about data via framing.

Strong updates. Precise reasoning about heap mutation is a challenge, even for flow-

sensitive analyses, because any of loss of precision in determining the identity of the cell being

mutated results in a corresponding imprecision the abstract value stored at that cell. For complicated

heap graphs, such imprecision can quickly cascade, limiting the utility of analysis . Separation logic

sidesteps this concern by tracking allocation precisely enough to guarantee that each abstract cell

corresponds to exactly one concrete cell, allowing the effect of abstract assignment transfer functions

to mirror the destructive nature of their concrete counterparts. With this precision, separation logic

can distinguish between the three aliases cases presented in Figure 1.2 and determine that Case 1

(Figure 1.2b) is the result of executing the code in Figure 1.1—a level of precision not possible with

type-based reasoning.

Framing. Perhaps the most critical capability of separation logic is the ability to split the

heap into two disjoint regions: (1) the footprint, which the operation may read and write from,

and (2) the frame, which the operation is not permitted to touch.

The frame rule is an inference rule of separation logic that allows the logic (and thus an

analysis built upon the logic) to choose a potential footprint for an operation—or even for a called

function—and analyze the operation or function over the footprint alone, dropping the frame from

consideration completely. Then the post-heap derived from considering the effects of the operation
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xPos

yPos

center

radius

xPos

yPos

center

radius

footprint

c1

c2

Figure 1.3: Separation logic makes strong dis-aliasing guarantees, allowing it to analyze the footprint
of an operation in isolation, without consideration of the frame.

on the footprint can be trivially combined with the unchanged frame and analysis can continue.

This combination is sound because separation logic, crucially, ensures that the operation cannot

possibly change any heap cells in the frame. That is, with separation logic the analysis can identify

a local portion of the heap, shear it off, and analyze part of the program as if the local portion

were the entire heap.

This style of analysis can help to tame the heap, making it possible to reason about

non-interference of the kind required to verify the example (previously described) in Figure 1.2.

As described above, the key to verifying that example is reasoning about c1.center.xPos and

c2.center.xPos as distinct heap cells. As I showed in Figure 1.2, traditional type systems are not

precise enough to represent this analysis fact. With separation logic, this is possible.

Figure 1.3 shows an illustration of a view that separation logic could take of the heap when

trying to determine the effect of the call to moveRight() at line 6 in Figure 1.2a. In contrast with

a type-based view of the heap, separation logic can reason precisely enough about allocation (that

new creates fresh cells) and assignment (the analysis can perform strong updates to heap cells) to

determine that (1) locals c1 and c2 contain the addresses of distinct Circles and (2) that the

addresses of the Points stored in the center fields of c1 and c2 are themselves distinct.

With this precise reasoning about aliasing, an analysis based on separation logic can separate

the heap into two definitely distinct regions: that which moveRight() touches (the footprint) and
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that which it does not (the frame). In Figure 1.3, the footprint (surrounded in dotted lines) is the

object pointed-to by c2 and the object pointed to by c2.center; the remaining heap cells are in the

frame. Because separation logic guarantees that a portion of code cannot access memory outside

of its designated footprint, the analysis can be sure that moveRight() does not change the circle

pointed-to by c1—and thus that the assertion at line 7 will definitely pass.

1.2 Thesis Statement

As we have seen, type systems and separation logic take wildly different approaches to taming

the imperative heap—each with its benefits and drawbacks. Types tame the heap by enforcing an

invariant over the entire reachable heap that is the same at all program points. This invariant must

be weak enough that an analysis can ensure it is maintained without strong updates. In contrast,

separation logic enforces more precise invariants over local portions of the heap, framing out the

rest. This framing requires strong dis-aliasing guarantees—guarantees which can also be used to

perform strong updates.

The thesis of this dissertation is that these two styles of reasoning are compatible:

Types systems and separation logic can be safely and efficiently

combined in a manner that preserves the benefits of global

reasoning for type systems and local reasoning for separation logic.

That is, I will describe an analysis that (1) applies traditional type-based reasoning to some portions

of the program and separation logic to others and (2) summarizes some portions of the heap with

type invariants and others with separation logic invariants. By “safely” I mean that the analysis is

sound; by “efficiently” I mean that the analysis can be applied to large, real-world programs and run

fast enough to be incorporated into integrated development environments. By the “benefits of global

reasoning” I mean that the analysis can rely upon a flow-insensitive type invariant in type-checked

portions of the program; while by “benefits of local reasoning” I mean that the portions checked in

separation logic can employ a frame rule.
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The philosophy behind this approach is to keep the type system as simple as possible.

The goal is to employ what is essentially an “off-the-shelf” type system design and thus retain the

well-established benefits of type-based reasoning: fast checking times and ease of annotation. Rather

then complicate the type system to be flow-sensitive, or to reason directly about aliasing, I propose

to confine the inherent complexity of precise reasoning about heap mutation to the separation logic

portion of the analysis.

The end result is an analysis in which each component analysis is true to itself: types act

like types and separation logic acts like separation logic. In contrast with abstraction refinement

schemes [7, 55]—which employ a single analysis that allows varying levels of abstraction—this

approach mixes [64] two distinct analyses, each with their own transfer functions. The key challenge

that this dissertation addresses is the communication and preservation of heap invariants between

the type system and the separation logic.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 motivates the combination of

types and separation logic with an example problem—verifying imperative updates of dependent types

specifying relationships—that benefits from both type-based and separation-logic-style reasoning.

I also present evidence for what I call the “Almost-Everywhere” hypothesis. This hypothesis is

a conjecture about how programmers enforce important safety properties—if it holds for a given

invariant of interest, then type-intertwined separation logic can be successful at verifying it. In

Chapter 3, I give a high-level overview of how these two styles of static reasoning can be safely

combined into type-intertwined separation logic. Chapter 4 formally describes almost-everywhere

heap invariants and demonstrates that type invariants can be soundly and efficiently communicated

between a type analysis and separation logic, on demand. In Chapter 5, I describe how this approach

can admit a type-intertwined frame rule by extending separation logic with a strengthened form of

spatial conjunction that we call “gated separation.” In Chapter 6, I present the inspiration for this

work: a dynamic analysis to determine whether a static analysis is insufficient. Finally, I present
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conclusions and suggest future work in Chapter 7.



Chapter 2

Motivation: Verifying Invariants that Hold Almost Everywhere

Modular verification of just about any interesting property of programs requires the specifica-

tion and inference of invariants. One particularly rich mechanism for specifying such invariants is

dependent refinement types [106], which have been applied extensively to, for example, checking

array bounds [27, 90, 91, 105]. These types are compelling because they permit the specification of

relationships in a type system framework that naturally admits modular checking. For example, a

modular refinement type system can relate an array with an in-bounds index or a memory location

with the lock that serializes access to it.

A less well-studied problem that also falls into a refinement type framework is modularly

verifying the safety of reflective method call in dynamic languages.

2.1 Background: Reflective Method Call

Reflective method call is a language feature that enables programmers to invoke a method via

a run-time string value called a selector rather than specify the name of the method directly in

the source code. This language feature is relied upon heavily in dynamic languages, such as Ruby

and Python, as a means to decouple client and framework code—but is also commonly used in

more static languages, like Java, C#, and Objective-C. Yet while they are powerful and convenient,

reflective method calls introduce a new kind of run-time error: the method named by the selector

may not exist. In contrast with traditional static analysis for reflection—which has focused on the

problem of determining the exact targets of reflective method calls [14, 16, 23, 47, 72, 103] to aid in
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whole-program analysis—we are concerned with reflection safety: ensuring that the target exists.

Our key observation about modularly verifying reflective call safety is that the essential

property to capture and track through the program is the relationship between a responder (the

object on which the method is invoked) and a valid selector. In particular, the verifier does not need

to determine the actual string value as long as it can ensure that the “responds-to” relationship

between the object and the selector holds at the reflective call site. This observation is crucial

because the point where this relationship invariant is established and where the selector is known

(usually in client code) is likely far removed from the point where the reflective call is performed

and at which the invariant is relied upon (usually in framework code).

1 class Callback

2 var sel: String = ...

3 var obj: Object L � respondsTo sel()→void M = ...

4

5 def doCallback()

6 performSelector(self.obj, self.sel)

Figure 2.1: Reflection can be used for decoupled callbacks.

Figure 2.1 gives an example of how programmers use reflection to decouple components (ignore

the shaded portion for now—this is a dependent type annotation, which we discuss below). Here

the programmer has created a Callback class with two fields: sel, which stores a string containing

the name of a method (that is, a selector) and obj, which stores the object (the responder) on

which the selector stored in sel will be called. The call to performSelector() on line 6 performs

a reflective dispatch: it invokes the method indicated by the selector on the object. The key thing

to note about this idiom is that the Callback object is completely oblivious to both the type of

the responder (it can be any object) and the contents of the selector string—and so it is possible

that the required relationship between the responder and the selector (that the value stored in obj

responds to the value stored in sel) may not hold and thus that the call will fail.
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2.2 Specifying Required Relationships with Dependent Refinement Types

The required relationship between obj and sel in Callback can be guaranteed with a

dependent refinement type.

Dependent Refinement Types. Refinement types { v : B | R(v) } consist of two com-

ponents: the base type B, which comes from the underlying type system, and the (optional)

refinement formula R, which add restrictions on the value v beyond those imposed by the base

type. For example, the refinement type { v : Int | v ≥ 0 } expresses not only that the value must

be an Int (a traditional type constraint) but also that it must be greater than or equal to zero (a

richer constraint than expressible in traditional type systems). Refinement types are particularly

useful in two cases. First, when the refinements are restricted to a language in which validity of

formulas involving implication is easily checkable (e.g., the refinements are in a theory supported

by an SMT solver, such as in [11, 90]), then typing and subtyping checks can be discharged by

off-the-shelf solvers. Second, when the built-in (base) type system is too weak to reason about the

property of interest (such as proving memory safety in C [27, 91] or when reasoning about dynamic

languages [24, 25, 43]), then refinement types offer a mechanism for specifying and reasoning about

type-like properties above and beyond the base type system. As a notational convenience, we write

refinements without the bound variable and assume the bound variable is used as the first argument

of all atomic relations. For example, we write Int �≥ 0 instead of { v : Int | v ≥ 0 }.

With dependent refinement types, the refinement formula can refer to program expressions—

and in particular, to local variables and fields. So, for example, the dependent type Int �≥ y

constrains its inhabitants to be greater than or equal to the value stored in local variable y. These

references allow dependent types to express required relationships. For example, ascribing local x to

have type Int �≥ y expresses the requirement that x ≥ y.

Refinement Types for Reflection. For verifying safety of reflective method calls, the

crucial required relationship is the responds-to relationship between responder and selector. The

shaded portion of line 3 in Figure 2.2 shows an example type annotation expressing the required
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relationship between fields obj and sel. This annotation says that object obj should have a method

with the name of the string value stored in field sel and that the method should have the type

signature ()→void (that is, it should take no parameters and return void). If the type system can

ensure that this relationship holds, then the reflective call at line 6 is guaranteed to succeed.

Condit et al.’s Deputy [27] dependent type system demonstrated how such relationships can

be checked in a flow-insensitive manner to ensure memory safety in C. (There, the relationship

of interest is between an array and an in-bounds index.) Deputy checks relationships by applying

Hoare’s backwards-assignment rule for weakest preconditions to a flow-insensitive type environment,

ensuring that the required relationship holds both before and after every assignment—if not, it will

generate an alarm. In essence, Deputy makes the following implicit hypothesis about relationships

between storage locations:

Hypothesis (Deputy). All relationships hold all of the time.

That is, Deputy assumes programmers establish important relationships between storage locations

atomically and never break them.

2.3 Problem: Imperative Updates Violate Relationships

Unfortunately, the Deputy hypothesis is overly optimistic. It ignores the common case where a

programmer updates both ends of a relationship (the referring location and the referred-to location)

in two separate steps. Suppose the developer adds an update() method (Figure 2.2) to the Callback

class introduced in Figure 2.1.

7 def update(val o: Object L � respondsTo s()→void M , val s: String)

8 this.sel = s 8

9 this.obj = o 4

Figure 2.2: Imperative updates may temporarily violate required relationships.

This method takes two parameters as input: an object o and a selector string s. Further, let us

suppose that the developer has specified a refinement type (line 7) that guarantees that o responds
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to s. Then a Deputy-style, flow-insensitive approach will generate an alarm at line 8 (marked by an

8) because after executing the first assignment the this.obj field does not respond to the updated

this.sel. In other words, the assignment violates the flow-insensitive invariant that this.obj

must always respond to this.sel. Note that changing the order of the assignments does not help

here; if the programmer updates the obj field first then the new obj will not respond to the old sel.

The flow-insensitive alarm at line 8 is a false alarm. Even though the programmer has violated

the required relationship, she restores it at line 9 (4) and does not rely on it holding for the

time when the relationship is violated (i.e., there is no reflective call). Deputy’s flow-insensitive

approach cannot tolerate such temporary violations. If the first step breaks the relationship, a

flow-insensitive analysis will always report an error regardless of whether a later step re-establishes

the relationship. While this particular violation could be avoided in languages that have parallel

updates, this language feature is not typically supported in mainstream imperative languages.

Type systems can check required relationships in languages without parallel updates with

flow-sensitive reasoning. Flow-sensitive type systems [3, 41, 45, 91, 98, 105] calculate per-program

point type invariants—in essence, they allow the type of a storage location to change at each program

point. This style of reasoning is much more precise than flow-insensitive reasoning but is also made

more expensive by the need to reason about the effect of mutation on storage locations. Rondon et

al’s Low-Level Liquid Types [89, 91] infers flow-sensitive dependent types to ensure memory safety.

Here, the required relationship is that a pointer is in-bounds for a buffer—and the flow-sensitive

reasoning ensures the relationship holds at each dereference. In essence, Low-Level Liquid Types

makes the following implicit hypothesis about relationships between storage locations:

Hypothesis (Low-Level Liquid Types). A relationship will hold

only at the point it is relied upon; it will vary freely at all other

program points.

That is, the fully flow-sensitive reasoning in Low-Level Liquid Types assumes programmers only

establish important relationships right before they are used and that these relationships will not hold
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(and thus will require precise reasoning) everywhere else. This hypothesis is very pessimistic—it

assumes the worst-scenario about potential relationships and therefore reasons precisely even when

such precision may not be needed.

2.4 Almost-Everywhere Hypothesis

The underlying premise of this work is that there is a class of relationships for which

Deputy’s flow-insensitive approach is almost right. This premise rests on two hypotheses about

how programmers break and maintain important relationships between storage locations.

Hypothesis 1. All relationships hold most of the time.

That is, we hypothesize that the periods of execution during which programmers break relationships

are relatively short. We believe that while programmers can reason flow-sensitively (i.e. by

simulation) about local relationships and flow-insensitively (i.e. at the type-invariant level) about

global relationships, they cannot reason both globally and flow-sensitively—the cognitive load

of reasoning flow-sensitively about the entire program is simply too high. We therefore expect

developers to re-establish broken relationships quickly to convince themselves the program is safe.

Hypothesis 2. Most relationships hold all of the time.

That is, we hypothesize that developers do not violate a large number of relationships simultaneously.

We believe that even when reasoning locally programmers are incapable of keeping track of a large

number of broken relationships at the same time—and so will keep such violations to a minimum.

We call relationships for which the above two hypotheses hold “almost-everywhere relationships’

and claim that an analysis can check them quickly and precisely enough to be practical. We will

describe an analysis that leverages these hypotheses to check relationship invariants in Chapter 3—

but first, we describe our reasoning for proposing these hypotheses.
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2.5 Inspiration for the Almost-Everywhere Hypothesis

The inspiration for the almost-everywhere hypothesis—and for type-intertwined separation

logic—came from a study [29] that we performed to explore the limits of static reasoning about

null pointer dereferences in Java programs. We describe the measurement apparatus for these

experiments fully in Chapter 6—here we focus on two key results from the study, which was designed

to explore the limits of purely operational static reasoning.

Operational vs. Invariant-based Reasoning By operational reasoning, we mean rea-

soning by simulating code to determine the exact effect of a sequence of instructions. For a computer,

this style of reasoning is not particularly difficult to perform—for example, by a precise, separation-

logic-based symbolic execution—but it is expensive in terms of computational resources and, of

course, might not even terminate. For a programmer (i.e., a human being) this style of reasoning is

even more heroic: she must careful simulate each line of code in her head, one-by-one—expensive

in terms of cognitive load. In both cases, the total length of operational reasoning is necessarily

limited: computers by memory and computational time; and programmers by human cognition.

These limits can be overcome by invariant-based reasoning. Rather than precisely simulate

large chunks of code, invariant-based reasoning assumes an invariant—an imprecise abstraction of

the program’s state or operation—for a particular context. From the point of view of static analysis,

an invariant is a fact to be verified or discovered about the program. To a programmer, invariants

are constraints (sometimes unstated, sometimes even only faintly conceived) that the programmer

should conform to so that the program behaves correctly. By assuming and guaranteeing appropriate

invariants, both automated analyses and human programmers can limit the scope of operational

reasoning and yet still reason about the entire behavior of the program. Just as a child can stick

her nose an inch away from her coloring book and scribble with reckless abandon—knowing that

if she stays between the lines then the picture will emerge when she pulls her head back—so can

an analysis or programmer conform to a strong-enough invariant to ensure correct behavior of the

program as a whole.
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Experiment: The Absurdity of Purely Operational Heap Reasoning. As described

in Chapter 1, the key challenge for static heap reasoning is the need for an analysis to definitively

rule out “action at a distance”, in which one part of the program invalidates a heap invariant relied

upon by another. The key inspiration for type-intertwined separation logic was an experiment

to measure how much purely operational reasoning would be necessary to rule out such action

at a distance when verifying null dereference safety, a simple but important safety property in

Java programs. We collected dynamic traces of programs in the DaCapo [13] benchmark suite and

interpreted these traces with a framework that captures various measures of how much context

would be required for operational reasoning to verify these programs. I provide the details of this

analysis in Chapter 6—here I focus on the results for two key measures of context.
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Figure 2.3: Heap mutation requires reasoning about a large amount of context.

Figure 2.3 shows two graphs, each displaying the cumulative fraction of dereference sites where

purely operational reasoning would require at least k levels of inlining (i.e., a k-callstrings [95] level

of context sensitivity) for a perfectly precise interprocedural analysis to prove safe (see Section 6.3.1

for a detailed description of how these measurements were calculated from dynamic traces). Because

we measured k with a dynamic analysis, the observed value is a lower-bound for the actual number

of inlinings—that is, k is necessary but perhaps not sufficient. Figure 2.3a shows the cumulative

distribution for dereference sites that do not require heap reasoning, while Figure 2.3b gives the
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same curve but for all sites—including those which require reasoning about the heap. There are

two salient features of this figure. The first feature is that the amount of context required for

operational reasoning about values that flow through the heap is orders of magnitude greater than

that for non-heap-related reasoning. Consider the bloat benchmark. Figure 2.3a shows that for

dereference sites that do not involve values that flow through the heap, an analysis could reason

about 95% of observed sites with only 3 levels of inlining. In contrast, when sites involving the

heap are included, reasoning about 95% of sites would require almost 100 levels of inlining context.

This results show that mutation through the heap renders operational reasoning about even simple

safety properties much more challenging. The second key feature is that the amount of context

required for heap-based reasoning is too large to be plausible for a typical programmer to keep

in her head. For human beings, purely operational reasoning on the scale required to show that

dereferences succeed would be absurd.

And yet, the incidence of bugs in computer programs is very low. Estimates of the rate of bugs

differ depending on programming language, project, and developer sophistication—but fall within

the range of 0.1–30 bugs per thousand lines of new code [10, 76, 84] for mainstream languages like C,

C++, and Java. That is, at least 97% of newly written lines of code are contain no bugs! It seems

that humans are effective enough at reasoning about the behavior of their programs to prevent most

bugs. Because purely operational human reasoning would be absurd, we expect that programmers

are employing mostly invariant-based reasoning with only short stretches of operational reasoning

mixed in. This conjecture is the basis for our Hypothesis 1: that all relationship invariants hold

most of the time—and suggests that a static analysis that mimics this mixture of reasoning could

be effective.

A second experiment offered inspiration for Hypothesis 2. Figure 2.4 shows the distribution

of sizes of required reasoning scopes for null dereference safety along a data rather than a control

dimension. Here, the data dimension is flow count—the number of distinct fields through which

a value flows from the point at which it can be operationally shown to be be non-null (i.e., an

allocation or a null-comparison) to the dereference site. This distribution shows that for the vast
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Figure 2.4: Reason for hope.

majority of sites (more than 97%), the observed lower bound for precise heap reasoning is two

storage cells or fewer. If this lower bind is tight, then for a given site an analysis need reason precisely

about only 2 or fewer storage cells on the heap. This small number of cells inspired Hypothesis 2:

that developers do not violate a large number of relationships simultaneously.



Chapter 3

Overview: Intertwining Type Checking and Separation Logic

In this chapter, I provide a high-level overview of type-intertwined separation logic, a static

analysis technique designed around the almost-everywhere hypothesis described in Chapter 2. Type-

intertwined separation logic combines type checking and separation logic, applying a flow-insensitive

type analysis to some parts of the program and a path-sensitive, separation-logic-based symbolic

analysis to others.

Type Analysis

Separation Logic

Separation Logic

Type Analysis

Type Analysis

Violation

Restoration

✘

✔

Violation

Restoration

✘

✔

Figure 3.1: Type-intertwined analysis.

The strategy of when to switch between the two forms of analysis can be either user-specified or

heuristic, guided by the violation and restoration of global type invariants. I illustrate this switching

pictorially in Figure 3.1. Recall the update() method from the Callback class in Figure 2.2—there

the programmer updated two related storage locations, temporarily violating and then restoring the

relationship that would be required everywhere by a Deputy-style global type invariant. Our strategy
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for checking such almost-everywhere invariants applies the flow-insensitive type analysis to the

regions where the type invariant holds and switches to the symbolic analysis when the programmer

violates the invariant—that is, when there is a flow-insensitive type error. The symbolic analysis

continues until the programmer restores the invariant, at which point the type analysis resumes.

Sometimes the symbolic analysis may benefit from access to precise invariants (such as aliasing

relationships) involving code before the point of the type error—I discuss our heuristics for when to

switch between analyses in detail in Section 4.6.1.

In this chapter, I provide an overview of three core contributions for intertwining type systems

and separation logic. The first contribution is a type analysis, a novel dependent type system

for reflective method safety, which I present in Section 3.1. The second is type-consistent

materialization and summarization (Section 3.2), a mechanism that allows a type-intertwined

symbolic analysis to both leverage and selectively violate a global type invariant. Finally, in

Section 3.3 I describe how to enrich separation logic with gated separation—a non-commutative

strengthening of separating conjunction that enables local heap reasoning in type-intertwined

separation logic.

Throughout this chapter, I present an example that illustrates the main challenges in permitting

temporary violations of type consistency with respect to heap-allocated objects. This example

is drawn from verifying reflective call safety in real-world Objective-C code, which requires such

temporary violations to be able to use simple, global type invariants.

3.1 Flow-Insensitive Dependent Types for Reflection Safety in Objective-C

In this section, I present an example of how programmers use reflective method call to avoid

boilerplate code and to decouple components in Objective-C, a language that makes pervasive use

of reflection. I then provide an overview of a flow-insensitive dependent type system for verifying

reflection safety in Objective-C that is almost precise enough check this example. I describe this

type system formally in Section 4.2.



24

1 @interface Button

2 - (void)drawState:(String * L � in {‘Up’, ‘Down’} M )state {

3 String *m = ...

4 CustomImage *image = ...

5 m = ["draw" append:state];

6 [image setDelegate:self selector:m];

7 [image draw];

8 }

9 - (void)drawUp { ... }

10 - (void)drawDown { ... }

11 @end

12 @interface CustomImage {

13 Object * L � respondsTo sel()→void M obj;

14 String *sel;

15 }

16 - (void)setDelegate:(Object * L � respondsTo s()→void M )o
17 selector:(String *)s {

18 self->obj = o;

19 self->sel = s;

20 }

21 - (void)draw {

22 [self->obj performSelector:self->sel];

23 }

24 @end

Figure 3.2: Verifying reflective call safety requires knowing responds-to relationships between objects
and selectors.
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A real-world example. Objective-C, like C++, is an object-oriented layer on top of

C that adds classes and methods. We will describe its syntax as needed. Figure 3.2 shows an

example, adapted from the ShortcutRecorder1 library, of typical reflection use in Objective-C.

Ignore the annotations in double parentheses L · M for now—these denote our additions to the

language of types. The Button class (lines 1–11) contains a drawState: method (lines 2–8) that

draws the button as either up or down, according to whether the caller passes the string "Up" or

"Down" as the state argument. A class is defined within @interface...@end blocks; an instance

method definition begins with -. Methods are defined and called using an infix notation inspired

by Smalltalk. For example, the code at line 6 calls the setDelegate:selector: method on the

image object with self as the first argument and m as the second. This call is analogous to

image->setDelegateSelector(self,m) in C++.

Now, a Button object draws itself by using the CustomImage to call either drawUp or drawDown.

The CustomImage sets up a drawing context and reflectively calls the passed-in selector on the

passed-in delegate at line 22—the delegate and selector pair form, in essence, a callback, similar to

the Callback example discussed in Figure 2.2. This syntax [o performSelector:s] for reflective

call in Objective-C is analogous to o.send(s) in Ruby, getattr(o,s)() in Python, and o[s]() in

JavaScript. In this case, the delegate is set to the Button object itself, and the selector is constructed

by appending the passed-in state string to the string constant "draw" (lines 5–6). Constructing

the selector dynamically reduces boilerplate by avoiding, for example, a series of if statements

inspecting the state variable. Using reflection for callbacks also improves decoupling—CustomImage

is agnostic to the identity of the delegate. This delegate idiom is one common way responder-selector

pairs arise in Objective-C and other dynamic languages.

The use of reflection in this example comes at a cost: while the Objective-C type system

statically checks that directly called methods exist, it cannot do so for reflective calls—these are

only checked at run time. In this work, we present an analysis that enables modular static checking

of reflective call safety while still maintaining the benefits of reduced boilerplate. To prove that the

1 https://github.com/shortcutrecorder/shortcutrecorder
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program is reflection-safe, we use refinement types [42, 46, 90] to ensure that the responder does, in

fact, respond to the selector.

To see how these “responds-to” relationships arise, consider the reflective call at line 22. It

will throw a run-time error if the receiver does not have a method with the name specified in the

argument—conversely, to be safe, it is sufficient that self->obj responds to self->sel. There is

an unexpressed invariant requiring that for every instance of CustomImage, the object stored in the

obj field must respond to the selector stored in the sel field. We capture this invariant by applying

the respondsTo selector()→void refinement to the obj field at line 13. This refinement expresses

the desired relationship between the obj field and the sel field. The method signature ()→void

states that the sel field holds the name of a method that takes zero parameters with return type

void. This relationship expresses an intuitive invariant that, unfortunately, does not quite hold

everywhere. Still, our analysis is capable of using this almost-everywhere invariant to check that

the required relationships hold when needed.

Working backward, we see that the setDelegate:selector: method updates the obj and

sel fields with the values passed as parameters—this demonstrates the need, in a modular analysis,

for respondsTo refinements to apply to parameters as well as fields. We annotate parameter o

to require that it responds to s. In order for this relationship to hold on the parameters, any

time the method is called, the first argument must respond to the second. Thus at the call to

setDelegate:selector: at line 6, the analysis must ensure that self responds to m. In the caller

(i.e., the client of CustomImage), we know a precise type, Button, for the first argument (while

from the callee’s point of view it is merely Object). This means we know that, from the caller’s

point of view, the delegate will respond to the selector if the selector is a method on Button—so

if we limit the values m can take on to either "drawUp" or "drawDown" the respondsTo refinement

in the callee will be satisfied. We write in for a refinement that limits strings to one of a set of

string constants (i.e., a union of singletons). For simplicity in presentation, this is our only string

refinement, although more complex string reasoning is possible.

Subtyping with refinement types. Our approach relies on a subtyping judgment Γ `
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T1 <: T2 in the dependent-refinement type system that is a static over-approximation of semantic

inclusion (i.e., under a type environment Γ, the concretization of type T1 is contained in the

concretization of T2). As an example, we consider informally subtyping with the respondsTo and

the in refinements for reflective call safety. For in refinements, this is straightforward: an in-refined

string is a subtype of another string if the possible constant values permitted by the first are a

subset of those required by the second. The situation for subtyping the respondsTo refinement is

complicated by the fact that a relationship refinement can refer to the contents of related storage

locations. Consider the Button * type in the drawState: method. The type environment, Γ, limits

the local variable m to hold either "drawUp" or "drawDown" . Because (1) Button * is a subtype of

Object * in the base Objective-C type system and (2) Button has both a drawUp and a drawDown

method, it is the case that Button * is a subtype of Object * � respondsTo m. This relationship

is specific to the environment. If, for example, Γ(m) instead had refinement in {‘Fred’} the above

subtyping relationship would not hold. Note that for presentation we have elided the method type

on the respondsTo here; we do so whenever it is not relevant to the discussion.

Type checking field assignments. We check field assignments flow-insensitively with a

weakest-preconditions–based approach similar to the Deputy type system [27] (although extended

to handle subtyping). Here, we focus on why flow-insensitive typing raises alarms for the field

assignments self->obj = o at line 18 and self->sel = s at line 19 (see Section 4.2.5 for more

details on how checking proceeds).

To check the first assignment, we first augment the type environment with fresh locals

representing the fields of the assigned-to object and then check the assignment as if it were a local

update. Conceptually, we temporarily bring field storage locations into scope and give them local

names. Let this augmented type environment be:

Γa = Γ[o : Object * � respondsTo s]
[s : String *

[obj : Object * � respondsTo sel]
[sel : String *

for some Γ and where we explicitly show the two respondsTo refinements (for presentation, we use
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the field names obj and sel as the fresh locals). Checking the assignment to obj requires the

traditional subtyping check Γa ` Γa(o) <: Γa(obj)—that is, that:

Γa ` Object * � respondsTo s <: Object * � respondsTo sel

This subtyping constraint—which does not hold—expresses the requirement that the relationship

between obj and sel should be preserved across the assignment.

While this subtyping check is what would be prescribed in a standard, non-dependent type

system, we want a similar check to be required (and thus also cause a flow-insensitive type error)

when checking the next line (line 19) where sel is updated. This update mutates a storage location

that is referred-to in a dependent refinement but does not itself have a dependent type. Our

weakest-preconditions–based approach uses environment subtyping under substitution to ensure

that the referencing type is not invalidated. Because the type environment Γa is a flow-insensitive

invariant, we require it to hold after the assignment. Now, treating type environments as a formula,

the weakest precondition of Γa with respect to the assignment self->sel = s is Γa[sel 7→ s]—that

is, if Γa substituting s for sel holds before the assignment then Γa will definitely hold after (this

is the backwards Hoare rule for assignment applied to a type environment). But, because of

flow-insensitivity, again, we can assume that Γa holds before the assignment. So, conceptually, in

order to show that the assignment is safe, it suffices to show that every state that satisfies Γa also

satisfies Γa[sel 7→ s]. Treating type environments as logical formulas, this is essentially showing

that Γa ⇒ Γa[sel 7→ s]. From a types perspective, we can satisfy this implication with subtyping by

showing that:

Γa(x[sel 7→ s]) <: T [sel 7→ s] for all x : T in Γa

Here we write e[x 7→ y] and T [x 7→ y] for substituting x with y in expression e and type T ,

respectively. When x is obj and T is Object * � respondsTo sel we find a requirement similar to

that for self->obj = o, but with the subtyping relation reversed:

Γa ` Object * � respondsTo sel <: Object * � respondsTo s
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The augmented type environment Γa does not guarantee this requirement, either—so the type

system would generate an alarm at line 19, as well.

The key thing to note about these two assignments is that although each is unsafe in isolation,

considered in combination, they are safe. The first assignment breaks the invariant that obj should

respond to selector, but the second restores it. These temporary violations cannot be tolerated by

a flow-insensitive type analysis because, in imperative languages, flow-insensitive types on storage

locations really perform two duties. First, they express facts about values: any value read from

a variable with type respondsTo m can be assumed to respond to the value stored in location m.

But second, they express constraints on mutable storage: for the fact to universally hold, the type

system must disallow any write to that variable of a value that does not respond to m. These

constraints are fine for standard types but are problematic for relationships that are established or

updated in multiple steps.

3.2 Leveraging Type Invariants During Symbolic Analysis

As we argued in Section 2.3, moving to a flow-sensitive treatment of typing is too pessimistic.

Our work is motivated by the observation that although programmers do sometimes violate refinement

relationships, most of the time these relationships hold—they are almost flow-insensitive (Hypothesis

1). And further, even when some relationship is violated, most other relationships are not (Hypothesis

2). We say such a heap is almost type-consistent. To set up this notion, we first make explicit a

standard notion of type-consistency.

Definition 1 (Type-Consistency). A storage location is type-consistent if the values stored in it

and all locations in its reachable heap conform to the requirements imposed by their flow-insensitive

refinement type annotations.

Thus, a storage location is type-inconsistent if either (1) the value stored in it immediately with-

out pointer dereferences violates a type constraint; or (2) there is a type-inconsistent location tran-

sitively in its reachable heap. We distinguish these two cases of immediately type-inconsistent
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versus only transitively type-inconsistent.

In this work we rely on two premises about how programmers violate refinement relationships

over storage locations on the heap—these are the two almost-everywhere hypotheses from Chapter 2

instantiated for type consistency:

Premise 1 All of the heap is type-consistent most of the time.

Premise 2 Most of the heap is not immediately type-inconsistent all of the time. In other words,

only a few locations are responsible for breaking the global type invariant at any time.

Following Premise 1, we apply type analysis when the heap is type-consistent and switch to

symbolic analysis when the type invariant is violated (this is the approach illustrated in Figure 3.1)

Under this premise, these periods of violation are bounded in execution—and short enough that the

path explosion from precise symbolic analysis is manageable.

Premise 2 is at the core of our approach to soundly handling temporary type violations

on heap locations. The key idea is a view of the heap as being made up of two separate regions:

(a) a small number of individual locations that are allowed to be immediately type-inconsistent

and (b) an almost type-consistent region consisting of (fully) type-consistent or only transitively

type-inconsistent locations, which we illustrate pictorially in Figure 3.3.

heap
immediately

type-inconsistent

Figure 3.3: The heap is split into immediately type-inconsistent and almost type-consistent regions.

Here, the dark node represents one location that is immediately type-inconsistent, while the light

area around it is not immediately type-inconsistent. Note that there may be pointers (shown as

arrows) from the light region to the immediately type-inconsistent region. We call the light region

the “almost type-consistent heap” because the objects in it are only transitively type-inconsistent.
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In the analysis, the locations in the almost type-consistent heap are summarized and represented by

an atomic assertion ok, while the possibly immediately type-inconsistent locations are materialized

and explicitly given in a separation logic symbolic memory (described below). As we will see, the

key analysis operations involve moving objects between these two regions.

Handoff Example. To more concretely illustrate our approach, we now walk though how

the analysis intertwines flow-insensitive and path-sensitive reasoning as well as how it reasons

about the heap. Figure 3.4 describes the verification of the setDelegate:selector: method from

Figure 3.2. The boxed regions indicate analysis invariants at each program point. We also provide

graphical representations of these invariants (we describe these below).

The type analysis will detect that the assignment at line 18 violates the flow-insensitive

invariant, which is described by a type environment Γ mapping local variables to their required

types. It will then back up to a program point where the global type invariant holds (marked

by À) and switch to the symbolic analysis (corresponding to the handoff by 8 in Figure 3.1). At

this point, the analysis symbolizes the type environment (Á), splitting it into a symbolic state. For

this example, we provide representations of symbolic state in both formula and graphical form.

Symbolic static in formula form. As a formula, the symbolic state Ẽ || H̃ || Γ̃ consists of

three components: Ẽ, an environment mapping local variables to the symbolic values stored in them;

H̃, a separation-logic-based representation of the heap; and Γ̃, a value typing mapping symbolic

values to refinement types lifted to symbolic values. As we will see, this value typing describes facts

known about symbolic values—expressing, for example, that s̃ is a string or that õ responds to s̃. As

a notational convenience, we name symbolic values by the storage location they initially came from.

For example, the initially symbolized symbolic environment Ẽ says that the symbolic value õ is

stored in the local variable o at the time of the split. Symbolic separation-logic heaps H̃ can be the

empty heap emp, a single materialized object (e.g., s̃elf 7→ {obj 7→ õbj N sel 7→ s̃el}), the separating

conjunction of two symbolic sub-heaps H̃1 N H̃2, or the (non-standard) formula literal ok, whose

concretization includes all concrete sub-heaps whose fields are not immediately inconsistent with

their declared field types.
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À Global type invariant holds:

Γ = self : CustomImage∗, o : Object∗ � r2 s, s : String

Á Symbolize type environment:

Ẽ = self 7→ s̃elf N o 7→ õ N s 7→ s̃ ||
H̃ = ok ||
Γ̃Á = s̃elf : CustomImage∗, õ : Object∗ � r2 s̃, s̃ : String

heap
self.obj self.sel

s

o

self

Â Type-consistent materialization:

H̃ = ok N s̃elf 7→ {obj 7→ õbj N sel 7→ s̃el} ||
Γ̃Â = s̃elf : CustomImage∗, õ : Object∗ � r2 s̃, s̃ : String, õbj : Object∗ � r2 s̃el, s̃el : String

heap
self.obj self.sel

s

o

self

18 self->obj = o;

Ã Strong update for obj:

H̃ = ok N s̃elf 7→ {obj 7→ õ N sel 7→ s̃el} || Γ̃Â

heap
this.obj this.sel

o

s

self

19 self->sel = s;

Ä Strong update for sel:

H̃ = ok N s̃elf 7→ {obj 7→ õ N sel 7→ s̃} || Γ̃Â

heap
self.obj self.sel

o

s

self

Å Type-consistent summarization:

H̃ = ok || Γ̃Â

heap
self.obj self.sel

s

o

self

Æ Global type invariant restored:

Γ = self : CustomImage∗, o : Object∗ � r2 s, s : String

Figure 3.4: Example: Verifying an almost-everywhere invariant.



33

Symbolic state in graphical form. We also provide graphical representations of these

symbolic state invariants. The square boxes on the left side of these figures represent the stack:

local variables s, o, and self. The right region represents the heap. Black arrows are pointers—so,

for example, the invariant at point Á says that the self local variable contains a pointer to an object

on the heap with fields obj and self. Graphically, we make a distinction between portions of the

heap that are summarized in ok and those that are explicitly materialized: we represent summarized

storage as contiguous with the heap (the oval at point Á, for example) and materialized storage

as cut out (the inset oval at Â, for example). Magenta cells (in Ã, for example) represent storage

that is immediately type-inconsistent, while grey cells represent storage that is at most transitively

type-inconsistent.

Symbolization. Symbolization (Á) enables the symbolic analysis to reason about the

contents of memory locations (i.e., Ẽ and H̃) separately from facts (Γ̃) known about values—and,

crucially, allows the values stored in these locations to be inconsistent with the invariants required

by their declared types. The key soundness criteria for a newly split symbolic state is that (1) it

must have locals storing values that have the same types as specified in the type environment and (2)

it must make no assumptions about aliasing. We describe symbolization formally in Section 4.4.2.

Immediately after the symbolization, the constraints in the global type environment still hold,

so all fields on the heap must be type-consistent. To capture this condition, the symbolic analysis

initially assumes that the entire symbolic heap is represented by ok. In this example, the symbolic

analysis can initially assume that the type environment holds and so the value stored in parameter

o must respond to the value stored in parameter s. We indicate this in the value typing by giving õ

the symbolic type Object∗ � r2 s̃. (For brevity, we represent the respondsTo relation as r2 and omit

the symbolic environment, which does not change in this example). Note that the refinement for õ

is dependent on a symbolic value s̃ and not a local variable.

Materialization. Before the analysis can reason about the field updates, it must perform

type-consistent materialization (Â) from ok. This materialization makes the storage for the

object pointed to by s̃elf explicit on the symbolic heap, which now says that s̃elf.obj contains the
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symbolic value õbj and s̃elf.sel contains the symbolic value s̃el. Because this storage comes from ok,

the analysis can assume the invariant required by the dependent refinement types on the fields of

s̃elf (a CustomImage object) hold. To reflect this, the analysis adds value typings (symbolic facts)

to Γ̃ for the fresh symbolic values stored in those fields: õbj is guaranteed to respond to s̃el with

the value typing Object∗ � r2 s̃el and s̃el is guaranteed to be a string. In essence, this process pulls

information on demand from from the type analysis into the symbolic analysis. We formalize this

materialization in Section 4.4.3. The value typing Γ̃ does not change from this point on, so we do

not repeat its contents in our boxed invariants. With explicit storage materialized in a separation

logic representation of the heap, the symbolic analysis can now perform strong updates as it

interprets the field writes to obj and sel.

Summarization. After the first write (Ã), obj may not respond to sel, and so the object may

be immediately type-inconsistent (magenta, in the graphical representation)—but after the second

write (Ä), the object has returned to a not immediately type-inconsistent state (because the pure

facts say that õ responds to s̃). The analysis can now perform type-consistent summarization

(Å) and safely summarize the storage for s̃elf back into ok. Further, now that the symbolic heap

consists solely of ok and the locals are consistent with their declared types, it must be the case

that the global invariant has been restored. That is, if no part of the heap is immediately

type-inconsistent, then all parts of the heap must be type-consistent. At this point (Æ), the analysis

switches back to flow-insensitively checking the rest of the program.

With this approach, the analysis must reason with expensive symbolic analysis only when

a global invariant is violated. Further, even during symbolic analysis, the analysis must reason

explicitly only about those objects for which an invariant is violated—all others can be summarized

in ok. Given this mechanism, we can easily allow for more than one materialization at a time as

long as we disjunctively account for possible aliasing with already materialized locations—Premise 2

suggests that this explosion is also manageable.
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3.3 Local Heap Reasoning with Gated Separation

As we saw in Section 3.2, the symbolic analysis can switch back to type checking when the

entire heap has been summarized into ok. This approach negotiates the inherent mismatch between

the global, alias-agnostic reasoning in type systems on the one hand and the local, alias-aware

reasoning on the other by granting the type analysis ownership of the entire heap. That is, when

checking a type block, the approach outlined in Section 3.2 initially assumes that the entire heap is

solely constrained by the type environment. Correspondingly, when switching from separation logic

to types, it must guarantee that the entire heap can be fully described by traditional types.

Problem: All-or-nothing handoff is insufficient. Unfortunately, this “all-or-nothing”

approach is not always sufficient—some programs require a more flexible approach that permits

controlled, cross-type-analysis preservation of separation logic invariants.

Vt

1 - (CustomImage *)createWithDelegate:(Object * L � respondsTo s()→void M )o
2 selector:(String *)s

Vs

3 CustomImage *image = [CustomImage alloc];

4 image->obj = o;

Vt

5 [self someMethod];

Ut

6 image->sel = s;

Us

7 return image;

}

Ut

Figure 3.5: Framing out before switching to type checking.

I give an example of such a program in Figure 3.5. The -createWithDelegate:selector:

method creates a new CustomImage object, initializing its obj and sel fields with the passed-in

parameters (ignore the V·U annotations for the moment—I will dicuss them in a moment). The

programmer allocates a new CustomImage object at line 3, updates its obj field at line 4, calls

another method at line 5 and then updates the sel field (line 6) and returns the initialized image.

Let us assume that the modular analysis does not have access to the source code of -someMethod
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but that it does have a type signature (that the method takes no parameter and has no return

value). The type-intertwined approach described in Section 3.2 can handle calls to such methods by

fully switching to type checking to check the call. In the example above, I describe an intertwined

analysis strategy with nested V·U annotations: a Vs·Us block indicates that a region of code should

be checked with separation logic, while Vt·Ut indicates a type-checked block. With this strategy,

the analysis will start with type checking and then switch to separation logic to reason about

the allocation and assignment. It will then switch to nested type checking for the method call,

returning to separation logic afterward. Then, after the image has been fully initialized it will switch

back to type checking before the return.

Unfortunately, this strategy is out of reach for the analysis as described in Section 3.2. The

key complication in this example is that the programmer calls the method when only one of the two

related fields in CustomImage have been initialized—that is, at line 5 the global type invariant

does not hold. The conditions for handoff described in Section 3.2—that the heap consists entirely

of ok—do not apply because the immediately type-inconsistent storage for the newly allocated image

cannot be summarized into ok. Futher, even if that analysis could switch to types at line 5, it would

lose the separation-logic-level must-alias guarantee that the value passed in the parameter o is the

same as the value stored in the field obj, which is crucial to showing that returned CustomImage is

not immediately-type-inconsistent at line 7.

Need: Framing across intertwined type blocks. What is needed, when switching from

separation logic to type analysis, is the ability to “frame out” the portion of the heap for the newly

allocated CustomImage and thus prevent a nested type analysis block from accessing the framed-out

memory. A sound framing out would rule out two unsound behaviors. First, it would prevent the

type analysis from relying upon a type invariant (in this case, the responds-to relationship between

obj and sel) when it it does not really hold; and second, it would ensure that the type-checked

code does not invalidate a separation logic heap invariant behind the back of the symbolic analysis

(in this case, that obj and o contain the same value).

Unfortunately, the traditional frame rule is unsound for type-intertwined analysis.
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This rule, which we described informally in Section 1.1.2, allows separation logic to shear off a

disjoint portion of the heap (the frame) and analyze a command with respect to only the portion of

the heap that it accesses (the footprint). In separation logic alone, this rule is sound because the

analysis can ensure that the command does not access memory that is disjoint from the footprint

(that is, is joined via a separating conjunction N with the footprint.)

Types, however, do not respect the traditional frame rule. This is because type-checking allows

access to the entire reachable heap. Consider a faulty version of the -setDelegate:selector:

method from Figure 3.2 that has been modified to call the -draw method while invariant is violated:

- (void)setDelegate:(Object * L � respondsTo s()→void M )o
selector:(String *)s {

self->obj = o;

[self draw];

self->sel = s;

}

- (void)draw {

[self->obj performSelector:self->sel];

}

Here, the call to the -draw method may cause a reflection safety error because at the time the

method is called, self->obj may not respond to self->sel. Adding the traditional frame rule

to our analysis could, unsoundly, cause this erroneous version to type check. I illustrate this

unsoundness in Figure 3.6.

This unsound verification proceeds similarly to sound one presented in Figure 3.4 (although I

omit the graphical representation of invariants). As before, the global type invariant holds upon

entry to the method (À). The analysis will similarly symbolize a new symbolic state that splits

the type invariant Γ into a symbolic state and materialize storage for s̃elf to be able to perform a

strong update for the assignment to self->obj. The analysis state after this assignment (at Á)

leaves the storage for s̃elf in a type-inconsistent state because õ does not respond to s̃el.

The traditional frame rule would allow the analysis to unsoundly frame out this inconsistent

storage, leaving the symbolic heap (shown shaded at Â) to consist of solely the ok token. This is a

signal to the analysis that the entire heap is type consistent (clearly, it is not) and so the analysis

determines that the global type invariant is restored (Ã) and switches back to type checking without



38

À Global type invariant holds:

Γ = self : CustomImage∗, o : Object∗ � r2 s, s : String

...

self->obj = o;

Á After symbolization, materialization, strong update:

Ẽ = self 7→ s̃elf N o 7→ õ N s 7→ s̃ ||
H̃ = ok N s̃elf 7→ {obj 7→ õ N sel 7→ s̃el} ||
Γ̃ = s̃elf : CustomImage∗, õ : Object∗ � r2 s̃, s̃ : String, õbj : Object∗ � r2 s̃el, s̃el : String

Â Frame out storage for s̃elf:

Ẽ = self 7→ s̃elf N o 7→ õ N s 7→ s̃ ||
H̃ = ok ||

Γ̃ = s̃elf : CustomImage∗, õ : Object∗ � r2 s̃, s̃ : String, õbj : Object∗ � r2 s̃el, s̃el : String

Ã Global type invariant unsoundly appears restored:

Γ = self : CustomImage∗, o : Object∗ � r2 s, s : String

[self draw];

...

self->sel = s;

Figure 3.6: The traditional frame rule with N is unsound in type-intertwined separation logic.

an alarm—an unsound false negative.

The crux of the unsoundness is a fundamental mismatch between how separation logic

invariants and type environments constrain the heap. As I described in Section 1.1, separation

logic memory formulas divide the heap into disjoint regions and make the strong guarantee that

a command will not access memory outside of its allowed region. A key thing to note is that

separation logic formulas allow pointers outside of its region—it just prevents those pointers from

being dereferenced (by generating an alarm). In contrast, a type environment must allow access

to the entire heap reachable from its roots—it cannot shear off a disjoint portion of the heap if

that portion is reachable from some root. Because the storage for s̃elf is reachable from the self

root, it cannot be safely framed from out of view of any typechecked code that has access to the

root. Ultimately, a stronger guarantee than the disjointness provided by traditional separating

conjunction is needed to prevent type-intertwined interference.
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Contribution: Gated Separation. We enrich separation logic with gated separating

conjunction, a non-commutative strengthening of separating conjunction that prevents type-

intertwined interference. Like traditional separating conjunction, gated separating conjunction

constrains two sub-heaps to be disjoint—but it additionally constrains the range of one sub-heap

(what we call the foregate) to be disjoint with the domain of the other (the aftgate). This

strengthening ensures that the foregate does not directly point into the aftgate but freely allows

pointers from aftgate to the foregate. We write the gated separation of a symbolic foregate heap

from a symbolic aftgate heap as H̃fore /∗ H̃aft. The direction of the triangle is mean to convey the

direction in which pointers are allowed: from aftgate to forgate.

As we will see, this disjoint “dis-pointing” relationship is strong enough to enable sound framing

across a type-intertwined block via the application of the type-intertwined frame rule. Consider

again the -createWithDelegate:selector: method from Figure 3.5, in which the programmer

partially initializes a CustomImage object and calls a method, requiring a switch to type checking. In

Figure 3.7, I show a graphical representation of the state of memory immediately before the method

call at line 5. There are four local variables: parameters s and o, the self variable (containing

the current receiver), and image. Both s and o contain a pointer to unknown locations on the

heap, and image contains a pointer to the newly allocated CustomImage object. At this point, the

image’s obj field has been initialized to contain the same value as o—but image’s sel points to some

unknown location on the heap. Because obj may not respond to sel, the object is immediately

type-inconsistent—so we mark it magenta.

The memory locations inside the dashed area have the key property that while they point into

the rest of the heap, there are no pointers from the rest of the heap into the dashed area. In other

words, the dashed area is gate-separated from both the rest of the heap and the storage for self.

With this guarantee, there is no sequence of dereferences starting from self and ending in the

inconsistent memory. For this reason, the immediately type-inconsistent storage for the image can

be safely framed out. Gated separating conjunction ensures that there is no way that a command

given access to the rest of the heap (the foregate) can access the aftgate (the dashed area)—even if
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heap

s

o

image image.obj image.sel

self

Figure 3.7: Gated separation prevents the foregate from pointing into the aftgate.

analysis of the command (or some subcommand) switches to type checking.

In Figure 3.8, I present an example verification that shows how gated separation allows an

analysis to switch to typechecking even when memory in the aftgate is immediately type inconsistent.

This example verifies the -createWithDelegate:selector: method from Figure 3.5. Verification

starts by symbolizing a symbolic state (À) from the type environement. As discussed previously, a

newly symbolized state has a fully type-consistent heap—so the heap consists solely of the ok token.

Allocation creates fresh storage—a new address—so it is guaranteed that any existing pointers on

the heap do not point to it. For this reason, at point Á we mark the newly allocated CustomImage

object as gate separated (shown shaded) from the rest of the heap. We add symbolic values (õbj

and s̃el) for the values in the fields of this storage but do not assume any facts about them. After

the first assignment (Â), the storage for the image object is immediately type-inconsistent; this

state corresponds to the graphical representation in Figure 3.7.

Because the storage for the object is gate-separated from the rest of the heap, the analysis

can soundly frame it out, yielding the invariant at point Ã (shown indented). Note that it also

removes the stack roots o, s, and image. With this storage removed, the heap now consists solely

of ok—and so the analysis determines that it is safe to switch to type checking with a new type

environment (point Ä) containing only the self root. The type checker treats the type environment

as a flow-insensitive invariant and so guarantees that the invariant also holds at point Å after

checking the call to -someMethod . The analysis can then symbolize this type invariant, yielding the
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Γ = self : SomeObject∗, o : Object∗ � r2 s, s : String

À After symbolization:

Ẽ = self 7→ s̃elf N o 7→ õ N s 7→ s̃ ||
H̃ = ok ||
Γ̃ = s̃elf : SomeObject∗, õ : Object∗ � r2 s̃, s̃ : String

3 CustomImage *image = [CustomImage alloc];

Á Freshly allocated memory is gate separated:

Ẽ = self 7→ s̃elf N o 7→ õ N s 7→ s̃ N image 7→ ĩmage ||

H̃ = ok /∗ ĩmage 7→ {obj 7→ õbj N sel 7→ s̃el} ||
Γ̃ = s̃elf : SomeObject∗, õ : Object∗ � r2 s̃, s̃ : String, ĩmage : CustomImage∗

image->obj = o;

Â After strong update:

Ẽ = self 7→ s̃elf N o 7→ õ N s 7→ s̃ N image 7→ ĩmage ||

H̃ = ok /∗ ĩmage 7→ {obj 7→ õ N sel 7→ s̃el} ||
Γ̃ = s̃elf : SomeObject∗, õ : Object∗ � r2 s̃, s̃ : String, ĩmage : CustomImage∗

Ã Frame out storage for ĩmage:

Ẽ = self 7→ s̃elf ||
H̃ = ok ||
Γ̃ = s̃elf : SomeObject∗

Ä Global type invariant for self root holds:

Γ = self : SomeObject∗
7 [self someMethod];

Å Global type invariant for self root still holds:

Γ = self : SomeObject∗
Æ Symbolize type environment for self root:

Ẽ = self 7→ s̃elf
′
||

H̃ = ok ||
Γ̃ = s̃elf

′
: SomeObject∗

Ç Reincorporate frame:

Ẽ = self 7→ s̃elf
′
N o 7→ õ N s 7→ s̃ N image 7→ ĩmage ||

H̃ = ok /∗ ĩmage 7→ {obj 7→ õ N sel 7→ s̃el} ||

Γ̃ = s̃elf
′

: SomeObject∗, õ : Object∗ � r2 s̃, s̃ : String, ĩmage : CustomImage∗

8 image->sel = s;

...

Figure 3.8: The frame rule with gated separation (/∗) is sound in type-intertwined separation logic.
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symbolic state at point Æ. The symbolic environment Ẽ in this state contains only the single self

binding. Note that the symbolized value stored in that local variable is s̃elf
′

and not s̃elf. This is

because, in Objective-C, self acts like a true local variable—unlike this in Java, it can be written

to. Thus, like for any other local variable, the analysis cannot assume that it contains the same

value before and after handoff to type checking. After symbolization, the analysis can now safely

reincorporate the framed-out heap and its roots back into the symbolic memory (point Ç). Gated

separation ensures that this operation is sound: the type checked portion of the program could not

have interfered with its contents.

I provide a formal characterization of gated separation in Chapter 5, including a discussion of

its concretization and axiom schemata (Section 5.1); a description of the challenge of establishing

and maintaining gated separating conjunction in a program logic (Section 5.2); and a derivation of

the type-intertwined frame rule (Section 5.3).



Chapter 4

Leveraging Almost-Everywhere Heap Invariants

As I described in Chapter 3, a successful strategy for tolerating temporary violations of

almost-everywhere invariants is to intertwine a flow-insensitive type analysis with a path-sensitive

symbolic analysis, applying the type analysis when the invariant holds and switching to the symbolic

analysis when it does not. The key to our approach—and the most important contribution described

in this dissertation—is a mechanism in the symbolic analysis to materialize memory from and then

summarize back into the almost type-consistent heap. This mechanism enables the symbolic analysis

to leverage and selectively violate the global type invariant over heap locations.

In this chapter, I describe and characterize Fissile Type Analysis, a type-intertwined analysis

that uses this mechanism to check dependent refinement types in languages with mutable heaps. In

Section 4.1, I describe a core expression language with objects and reflective method call. I present

a novel, flow-insensitive type system for checking safety of reflective method calls in Section 4.2.

Unfortunately, as I showed in Section 2.3, flow-insensitive typing alone is often too imprecise to

check relationships between storage locations that are updated separately. Fissile Type Analysis

tolerates such temporary type violations by switching to a symbolic analysis (Section 4.3) that runs

until the invariant is restored. Crucially, the symbolic analysis can materialize and summarize from

the almost type-consistent heap, a process I describe in Section 4.4. I provide a proof of soundness

for Fissile Type Analysis in Section 4.5 and evaluate the effectiveness of the analysis in a case

study verifying reflection safety in large, real-world Objective-C applications (Section 4.6). Portions

of this chapter appeared in my POPL 2014 [28] paper “FISSILE Type Analysis: Modular Checking
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of Almost Everywhere Invariants”, which was joint work with Bor-Yuh Evan Chang.

4.1 A Language with Mutable Objects and Reflection

In this section, I briefly describe the syntax, concrete state, and semantics of a core expression

language with three features of interest: objects, reflective method call, and mutable fields. The first

two features provide a property to verify: the safety of reflective method calls; the third exposes the

difficulty of reasoning about a mutable heap.

4.1.1 Syntax

We describe Fissile type analysis over a core imperative programming language of expressions

e with objects and reflective method call. We give the syntax and types for this language in

Figure 4.1. For presentation purposes, we have only three types of values: unit, strings, and objects.

We assume disjoint syntactic classes of identifiers for program variables x, y, z, field names f , method

names m, and parameter names p, as well as a distinguished identifier ‘self’ that stands for the

receiver object in methods. Program expressions include literals for unit 〈〉, strings c, objects

{var f : T = e,def m(p : Tp) : Bret = e}. The ‘var’ declarations specify mutable fields f of types

T , and the ‘def’ declarations describe methods m with parameters p of types Tp and with return

type Bret. The return type is a base type, which does not itself have refinements (but could have

refinements on its fields in the case of an object base type). An overline stands for a sequence

of items. Objects are heap allocated. Local variable binding ‘let x : T = e1 in e2’ binds a local

variable x of type T initialized to the value of e1 whose scope is e2. We include one string operation

for illustration: string append x1 @ x2. Then, we have reads of locals x and fields x.f , writes to

fields x.f := y, basic control structures for sequencing e1; e2 and branching e1 8 e2.

For presentation, we use non-deterministic branching, as the guard condition of an ‘if-then-else’

expression has no effect on flow-insensitive type checking. (This condition can be reflected in a

symbolic analysis by strengthening the symbolic state with the guard condition, as is standard.)

Finally, we have two method call forms: one for direct calls z.m(x) and one for reflective calls
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identifiers
x, y, z, p, self local variables
f field names
m method names

expressions
e ::= 〈〉 | c unit, string literals

| {var f : Tf = x, object literals

def m(p : Tp) : Bret = e}
| let x : T = e1 in e2 local allocation

| x1 @ x2 string append

| x local read
| x.f field read
| x.f := y field write
| e1 ; e2 sequencing
| e1 8 e2 branching

| z.m(x) direct method call
| z.[y](x) reflective method call

types
T ι ::= B � Rι1, . . . , R

ι
n refinement types

base types
B ::= Unit | Str unit type, string type

| {var f : Tf , def m(p : Tp)→Bret} object types

refinements
RI ::= in {c1, . . . , cn} constant string value

| respondsTo ι(p : Tp)→Bret object responds-to

Figure 4.1: A core imperative programming language with objects and reflective method call.
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concrete environments E ::= · | E[x : v]

concrete heaps H ::= · | H[a : 〈o,B〉]
concrete objects o ::= · | o[f : v] | o[m : e]

values v ::= a | s | 〈〉
global addresses a

Figure 4.2: Concrete state.

z.[y](x). A call allocates an activation record for the receiver object z and parameters x; it then

dispatches with the direct name m or the reflective selector y. Types T are a base type B for either

unit Unit, strings Str, or objects {var f : Tf , def m(p : Tp)→Bret} with a set of refinements R,

which are interpreted conjunctively.

We present our approach as a framework parameterized by the language of dependent

refinements R needed to specify the invariants of interest. Because these refinements refer to storage

locations, they should be parametric with respect to the syntactic class of identifiers I. We decorate

with a superscript RL, RF, or RS when we want to emphasize or make clear over which syntactic

class of identifiers the refinement ranges: locals x, fields f , or symbolic values ṽ (see Section 4.3),

respectively. We write ι to indicate an identifier when the class of identifier is irrelevent because of

parametricity. Because types include refinements, types are parametrized as well—written TL, TF,

or T S—as are type environments ΓL, ΓF, ΓS. Unadorned types T and environments Γ are implicitly

parameterized over locals.

4.1.2 Concrete State

We describe the concrete state for this core language in Figure 4.2. The concrete state consists

of a pair (E,H) of a local variable environment E and a heap H. Concrete environments are maps

from local variable identifiers x to values v. Heaps are maps from concrete addresses a to a pair

〈o,B〉 of an object o and object base type B—in essence, objects are tagged with their concrete

type. This type tag has no significance for concrete execution; we refer to it in concretization of

type environments (Section 4.2.2) in order to describe type consistency. Objects o are maps from

field identifiers f to field values v and also from method names m to method bodies, which are
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syntactic expressions e. Values v are either object addresses a, strings s, or the unit value 〈〉.

4.1.3 Concrete Semantics

We provide a big-step operational semantics specifying our concrete execution in Figure 4.3.

A judgment of the form E ` [H] e [r] means that in a concrete local environment E and starting

with a heap H, executing expression e results in r. Where r can be either a pair H ′ ↓ v of a heap

H ′ and value v, or an explicit error, err.

We indicate map lookup with parentheses, so, e.g., E(x) in the E-Var rule indicates the result

of looking up the value in E that is bound to the identifier x. We indicate map update with square

brackets, so e.g., o′ = o[f : v] in the rule E-Write-Field indicates that o′ is the result of updating

object o with a binding mapping field f to value v.

Many of the rules are standard; we now the describe the non-standard rules. The E-Object-

Literal describes execution of object literal expressions. It creates a new object o mapping (1)

field names to the result of looking up the initializing variable names in the environment and (2)

method names to the method bodies specified in literal. The rule constructs the type of the object,

B, and adds a mapping from a fresh address a to the object/tag pair 〈o,B〉 to the heap. The result

of executing the rule is the pair of the new heap H ′ and the address a. The string append rule

(E-Str-Append) looks up the values stored in the two variable names and appends them.

The rule for direct method call, E-Call-Direct, looks up the address stored in the receiver

local variable z and then looks up the object o stored at that address and then looks up the

expression e (method body) with name m on that object. It then creates a new local variable

environment E′ mapping the formal parameters p to the actuals. Here, for convenience, we assume

that all methods draw from the same sequence of parameter names, so, e.g., the first parameter

name is always p1, the second (if it exists) is always p2, etc. E′ also includes an entry mapping self

to the value of the receiver. It then executes the method body e in the E′. The result of executing

a direct method call is the resultant heap, H ′ and value v.

Reflective method call (E-Call-Refl) is the same as E-Call-Direct except that the name of
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E ` [H] e [r]

E-Unit

E ` [H] 〈〉 [H ↓ 〈〉]

E-Str-Literal

E ` [H] c [H ↓ c]

E-Object-Literal
o = [f : E(xf )] [m : e]

B = {var f : Tf , def m(p : Tp)→Bret} a 6∈ dom(H) H ′ = H[a : 〈o,B〉]

E ` [H] {var f : Tf = xf , def m(p : Tp) : Bret = e} [H ′ ↓ a]

E-Str-Append

E ` [H]x1 @ x2 [H ′′ ↓ E(x1)E(x2)]

E-Var

E ` [H]x [H ↓ E(x)]

E-Let
E ` [H] e1 [H ′ ↓ v1] E[x : v1] ` [H ′] e2 [r]

E ` [H] let x : T = e1 in e2 [r]

E-Read-Field
〈o,B〉 = H(E(x))

E ` [H]x.f [H ↓ o(f)]

E-Write-Field
a = E(x) v = E(y) 〈o,B〉 = H(a) o′ = o[f : v] H ′ = H[a : 〈o′, B〉]

E ` [H]x.f = y [H ′ ↓ v]

E-Seq
E ` [H] e1 [H ′ ↓ v1] E ` [H ′] e2 [r]

E ` [H] e1 ; e2 [r]

E-Branch-Left
E ` [H] e1 [r]

E ` [H] e1 8 e2 [r]

E-Branch-Right
E ` [H] e2 [r]

E ` [H] e1 8 e2 [r]

E-Call-Direct
〈o,B〉 = H(E(z)) e = o(m) E′ = p : E(x), self : E(z) E′ ` [H] e [r]

E ` [H] z.m(x) [r]

E-Call-Refl
m = E(y) 〈o,B〉 = H(E(z)) e = o(m) E′ = p : E(x), self : E(z) E′ ` [H] e [r]

E ` [H] z.[y](x) [r]

Selected Error Cases

E-Call-Refl-Lookup-Err
m = E(y) 〈o,B〉 = H(E(z)) m 6∈ dom(o)

E ` [H] z.[y](x) [err]

E-Write-Field-Deref-Err
v = E(x) v 6∈ dom(H)

E ` [H]x.f = y [err]

E-Seq-Err-1
E ` [H] e1 [err]

E ` [H] e1 ; e2 [err]

Figure 4.3: Concrete execution
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the method is looked up in environment rather than specified directly in the expression.

In addition to the normal rules shown in Figure 4.3, we also have error rules that produce err

when none of these rules apply. So, for example, we have the E-Call-Refl-Lookup-Err rule for

reflective call. This rule generates an error when the receiver of a reflective call does not have a

method with the name specified in the selector.

4.2 A Flow-Insensitive Dependent Refinement Type System

Errors in reflective method calls (caused by, for example, the E-Call-Refl-Lookup-Err rule

above) can be statically—if imprecisely—ruled out with a flow-insensitive dependent refinement

system, as we described informally in Section 3.1. This section formalizes our flow-insensitive type

analysis for checking dependent refinements, including rules for subtyping (Section 4.2.3) and for

typing expressions (Section 4.2.5).

4.2.1 Refinement Types For Reflection

To verify reflective call safety, we instantiate Fissile Type Analysis with refinements specific

to reflection safety. As we have seen, the key property is the ‘respondsTo ι(p : Tp)→Bret’ refinement

that says an object must respond to the value named by ι with the given method type. As a

dependent type invariant on storage locations, the refinement constrains both the storage location

on which the refinement is applied and the storage location named by ι. That is, the former must

a hold a responder for the selector in the latter. We also need some refinements on string values,

such as the union of singletons: ‘in {c1, . . . , cn}’ which says the value is one of the following (string)

literals c1, . . . , cn.

4.2.2 Concretization of Types

The concretization of a type typically gives a set of values that are in the type. In our case,

however, types also imply constraints on ancillary structures. For example, the concretization of

an object type constrains the heap so that the fields of that object are appropriate. Similarly, the
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concretization of a local type constrains the local variable environment, and the concretization of a

dependent field type constrains the parent object of the field.

Type Environments. The concretization of a type environment is a set of pairs of concrete

environments and concrete heaps for which 1) the values stored in local variables conform to the

requirements of the local types in the type environment and 2) the objects stored at all addresses in

the heap conform to the requirements of the type for that address.

γ : TypeEnvironments→ P(Environments× Heaps)

γ(Γ) ,

(E,H)

∣∣∣∣∣∣∣∣∣
for all x : TL in Γ exists a v where

(E,H, v) ∈ γ(TL) and E(x) = v

and for all a : 〈o,B〉 in H
(H, a) ∈ γ(B)


Local Types. Local types are adorned with local refinements that may imply a relationship

between a value of that type and the local variables, so the concretization of a local type puts

restrictions on concrete environments in addition to requiring that the value be a member of the

base type. If the base type is an object type, the value is an address which must point to an object

on the heap, so the concretization constrains potential heaps as well.

γ : TypesL → P(Environments× Heaps× Values)

γ(B � RL
1 , · · · , RL

n) ,

(E,H, v)

∣∣∣∣∣∣∣
(H, v) ∈ γ(B) and

for all i where 1 ≤ i ≤ n
(E,H, v) ∈ γ(RL

i )


Local Refinements Local refinements constrain values (as well as the concrete environment

and heap) independently of base types. The concretization of a local ‘in’ refinement is straightforward:

it restricts the values to be one of the explicitly allowed string constants but imposes no constraints

on the environment or heap. The concretization of a local ‘respondsTo’ refinement requires the

values to be addresses with the additional constraint that the object on the heap at that address has

a method with the name of the string value stored in the local variable referred to in the refinement.

It further requires that the method is in the concretization of the method type signature specified

by the refinements for a receiver of type B.
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γ : RefinementsL → P(Environments× Heaps× Values)

γ(in (c1, . . . , cn)) ,
{

(E,H, s)
∣∣ s ∈ {c1, . . . , cn} }

γ(respondsTo x(p : Tp)→Bret) ,

(E,H, a)

∣∣∣∣∣∣∣∣∣∣
exists string m, object o
and base type B where
m = E(x)
H(a) = 〈o,B〉 and
o(m) ∈ γ(B, (p : Tp)→Bret)


Base Types. Base types have no refinements (although if a base type is an object type

its fields may have field refinements). The concretization of a base type is a set of heap-value

pairs where the heap may be constrained for object types. The concretizations of Str and Unit is

straightforward. For object types, the value must be an address that points to an object that has

the required fields and methods. The presence of the required fields is enforced by forcing the object

to be in the concretization of the field environment (the type environment mapping field names to

field types). The concretization also requires the object to have methods that match their declared

type signatures for a receiver of the type B.

γ : BaseTypes→ P(Heaps× Values)

γ(Str) ,
{

(H, v)
∣∣ v is a string

}
γ(Unit) ,

{
(H, v)

∣∣ v is 〈〉
}

The concretization of an object type B = {var f : Tf , def m(p : Tp)→Bret} is:

γ(B) ,

(H, a)

∣∣∣∣∣∣∣∣
exists o where
H(a) = 〈o,B〉 and
o(m) ∈ γ(B, (p : Tp)→Bret) for all methods m and

(H, o) ∈ γ(f : Tf ).


As we will see, the concretization of method signatures does not concretize its arguments, so the

definition is well-founded.

Field Types. Field types, like local types, consist of a base type B and a sequence of

refinements RF
i . However, for field types the refinements refer to field locations on the parent

object rather than local variable locations—that is, field types can restrict the values stored in
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other fields of their containing objects. The concretization of a field type reflects this: it limits the

possible objects o to those permitted by the field refinements.

γ : TypesF → P(Heaps× Objects× Values)

γ(B � RF
1 , · · · , RF

n) ,

(H, o, v)

∣∣∣∣∣∣∣
(H, v) ∈ γ(B) and

for all i where 1 ≤ i ≤ n
(H, o, v) ∈ γ(RF

i )


Field Refinements. Field refinements are analogous to local refinements except that

they impose requirements on the object containing the field rather than the local variables. The

concretization of an ‘in’ refinement is essentially as in the local case. The concretization of

‘respondsTo f(p : Tp)→Bret’ relates two objects: o the object on which the concrete value is stored

as a field and o′ the object whose address is the concrete value. We require o′ to have a method

with the name of whatever string is stored in o(f) and force that method to be in the concretization

of the method type signature specified in the refinement.

γ : RefinementsF → P(Heaps× Objects× Values)

γ(in (c1, . . . , cn)) ,
{

(H, o, s)
∣∣ s ∈ {c1, . . . , cn} }

γ(respondsTo f(p : Tp)→Bret) ,

(H, o, a)

∣∣∣∣∣∣∣∣∣∣
exists string m, object o′

and base type B where
m = o(f)
H(a) = 〈o′, B〉 and
o′(m) ∈ γ(B, (p : Tp)→Bret)


Field Type Environments. Field type environments ΓF are analogous to local type

environments, except that they constrain the values that can be stored into the fields of an object

rather than local variables.

γ : TypeEnvironmentsF → P(Heaps× Objects)

γ(ΓF) ,

{
(H, o)

∣∣∣∣ for all f : TF in ΓF

(H, o, v) ∈ γ(TF) and o(f) = v

}
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ΓI ` T I

1 <: T I
2

Sub-Component
∀i∈1...m[∃S⊆{RI

1,...,R
I
n} ΓI ` B � S <: B � Qi]

ΓI ` B � RI
1, . . . , R

I
n <: B � QI

1, . . . , Q
I
m

Sub-Weaken
{QI

1, . . . , Q
I
m} ⊆ {RI

1, . . . , R
I
n}

ΓI ` B � RI
1, . . . , R

I
n <: B � QI

1, . . . , Q
I
m

Sub-Str-In-Refl
{c1, . . . , cm} ⊆ {k1, . . . , kn}

ΓI ` Str � in {c1, . . . , cm} <: Str � in {k1, . . . , kn}

Sub-Obj-RespondsTo-Refl
ΓI ` ΓI(x) <: Str � in {c1, . . . , cn} ∀i∈1..n B has a method named ci with signature (p : Tp)→Bret

ΓI ` B � · · · <: B � respondsTo ι(p : Tp)→Bret

Sub-Refl

ΓI ` T I <: T I

Sub-Trans
ΓI ` T I

1 <: T I
2 ΓI ` T I

2 <: T I
3

ΓI ` T I
1 <: T I

3

Figure 4.4: Subtyping of refinement types used for verifying reflective call safety.

Method Type Signatures. A method type signature (p : Tp)→Bret consists of a list of

pairs of parameter names p with types Tp (i.e., a local type environment) and a return type Bret �.

The concretization of a method signature in combination with a base type B yields the set of method

bodies (expressions) that type check in a type environment corresponding to the parameters of the

signature extended with a binding for self of base type B lifted to a local type with no refinements.

γ : BaseTypes× TypeEnvironmentsL × TypesL → P(Expressions)

γ(B, (p : Tp)→Bret) ,
{
e
∣∣ p : Tp, self : B � ` e : Bret �

}

4.2.3 Subtyping with Refinements

In Figure 4.4, we give a simple syntactic subtyping for the refinements for our example client:

verifying reflective call safety. As discussed in Section 4.2.1, the language of refinements and the

subtyping procedure are simply parameters to the framework. What is required is these components

are parametrized, in turn, by a class I of identifiers ι and that the subtyping procedure is sound

with respect to concrete inclusion. We emphasize the first point in the above by showing judgment
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forms indexed by the class of identifiers I.

Subtyping of dependent types is always with respect to an environment—the rule to introduce

a refinement may refer to the environment (and thus the types of other variables) in order to establish

a relationship with that variable. The Sub-Component rule permits component-wise refinement

subtyping. It says that a dependent type B1 � RI
1, . . . , R

I
n is a subtype of another dependent type

B2 � QI
1, . . . , Q

I
m if the base types match and for each refinement QI

i on the super type, there

is some set of refinements S from the subtype that are sufficient to derive it. Rule Sub-Weaken

says that a type can always be weakened by dropping refinements. Sub-Str-In-Refl says that

an in refinement constraining a value to be one in a set of string constants can be weakened by

adding additional constants to the set. The Sub-Obj-RespondsTo-Refl introduces the respondsTo

refinement by combining information from base object types and the environment to introduce

respondsTo. This rule says that for any location ι that is one of a set of selector strings c1, . . . , cn,

then any object of base type B with methods of the appropriate signature for all c1, . . . , cn responds

to the method named by ι with that signature. Finally, Sub-Refl and Sub-Trans say that subtyping

is reflexive and transitive. For our purposes, it does not matter how subtyping is checked as long as

it is a sound approximation of semantic subtyping. We could, for example, use an SMT solver as in

Liquid Types [90] and also replace the type rules for string operations with an off-the-shelf string

solver to make the abstract semantics more precise.

Soundness of Subtyping Here we show that subtyping is a sound over-approximation

of inclusion under the appropriate concretization. Note the two different forms: although we can

represent the subtyping judgment for difference classes of types with a single, parametrized system

of inference rules, the meaning of the instantiated systems are different for locals and fields.

Lemma 1 (Soundness of Subtyping):

(1) If ΓL ` TL
1 <: TL

2 and (E,H, v) ∈ γ(TL
1 ) where (E,H) ∈ γ(ΓL) then (E,H, v) ∈ γ(TL

2 );
and

(2) If ΓF ` TF
1 <: TF

2 and (H, o, v) ∈ γ(TF
1 ) where (H, o) ∈ γ(ΓF) then (H, o, v) ∈ γ(TF

2 ),

Proof. In each case, by induction on the derivation of the subtyping relation.
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.

We will need a similar result for the subtyping in the symbolic analysis. (See Lemma 2 in Section 4.3.2

for details.)

4.2.4 Identifier Substitution

Throughout this work we treat various maps as substitutions between classes of identifiers.

Here, we formally describe the effect of these substitutions on dependent refinements. We have

three classes of identifiers: local variable names (denoted with x, y, and z), field names (f , g) and

symbolic variables (x̃, ỹ, ã). (For a description of this latter class, see Section 4.3.1.) As before, we

use I to indicate a definition that is parametric in the identifier class and ι to indicate an indicate

an indentifier in that parametric class.

We denote maps from I to I to with θ. We denote maps from either locals or fields to symbolic

values with θ̃ and rely on context to disambiguate. Abusing notation, we denote maps from symbolic

values to either locals or fields (again, disambiguated by context) as θ̃−1. Note that when we use a

substitution from symbolic values to identifiers, we always require the substitution to be 1-1 and

thus invertible.

We define identifier substitution under a map by:

B � RI
1, · · · , RI

n [θ] , B � RI
1 [θ], · · · , RI

n [θ]

where

in (c1, . . . , cn) [θ] , in (c1, . . . , cn)

and

respondsTo ι(p : Tp)→Bret [θ] , respondsTo θ(ι)(p : Tp)→Bret

We write ΓI
1 <:θ ΓI

2 (Figure 4.5) to mean that a type environment ΓI
1 is a subenvironment

of an environment ΓI
2 under the identifier substitution θ. We define this formally in Sub-Env.

Here T I[θ] means the type T I but with all variable references in T I[θ]’s refinements replaced with

their substitute in θ. We use this style of substitution for both Hoare-style weakest precondition
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ΓI

1 <:θ ΓI
2

Sub-Env
ΓI

1 ` ΓI
1(θ(ι)) <: T I[θ] for all ι : T I ∈ ΓI

2

Γ <:θ Γ′

Figure 4.5: Subenvironments under substitution.

calculations (as described in Section 3.1 and Section 4.2.5) and for conversion of invariants between

type and symbolic domains (Section 4.4).

4.2.5 Expression Typing

Figure 4.6 defines a fairly standard flow-insensitive typing of expressions. A judgment of the

form Γ ` e : T says that an expression e has type T in a typing environment Γ, where Γ is a finite

map from variable identifiers to types, which we view as the types assigned to program variables

(i.e., ΓL ` e : TL for emphasis). The standard typing judgment form demonstrates that Γ is a

flow-insensitive invariant.

Figure 4.6a gives the standard typing rules for control structures, locals, and subsumption.

The usual T-Seq and T-Branch rules show that the type system is completely flow-insensitive. The

T-Read-Local rule is also standard, as is the rule for introducing new let-bound immutable local

variables. For simplicity, we introduce subtyping only in let-bindings and assume our language is an

intermediate form that has made explicit where to apply subsumption. From a soundness point of

view, there is no difficulty with using the standard subsumption rule instead.

In Figure 4.6b, we give rules specific for the ‘in’ refinement used for reflection safety. These

rules simply capture an abstract semantics of the string operations for the ‘in’ refinement. Rule

T-String-Lit-Refl says that a string literal c is the singleton c, and rule T-Append-String-Refl

says if we know that x1 and x2 both correspond to a set of possible string constants, then the

operation yields the append of all pairs. We elide the analogous rule for string append where there

are no refinements, as we assume that is part of the underlying base type system.
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Γ ` e : T

T-Seq
Γ ` e1 : T1 Γ ` e2 : T2

Γ ` e1 ; e2 : T2

T-Branch
Γ ` e1 : T Γ ` e2 : T

Γ ` e1 8 e2 : T

T-Read-Local

Γ, x : T ` x : T

T-Let
Γ ` e1 : T1

Γ ` T1 <: T ′1 Γ, x : T ′1 ` e2 : T2 x 6∈ dom(Γ) x 6∈ fv(T ′1) x 6∈ fv(T2) x 6∈ fv(Γ)

Γ ` let x : T ′1 = e1 in e2 : T2

(a) Standard typing for control structures and locals.

T-String-Lit-Refl

Γ ` c : Str � in {c}

T-Append-String-Refl
Γ(x1) = Str � in {c1 . . . , cn} Γ(x2) = Str � in {k1 . . . , km}

Γ ` x1 @ x2 : Str � in {c1k1, . . . , cnk1, . . . , cnkm}
(b) Refinement typing specific to reflection safety.

T-Write-Field
T = Γ(x) Γ,fieldtypes(T ) <:[f :y] fieldtypes(T )

Γ ` x.f := y : Unit

T-Read-Field
Γ(x) = Tx

Γ ` x.f : Tx.f�

T-Method-Call
Γ(z) = {· · · ,def m(p : Tp)→Bret, · · · } Γ <:[p:x,self:z] p : Tp, self : Γ(z)

Γ ` z.m(x) : Bret �

T-Object-Literal
Γ <:[f :xf ] f : Tf

p : Tp, self : B � ` e : Bret � for all methods B = {var f : Tf , def m(p : Tp)→Bret}

Γ ` {var f : Tf = xf , def m(p : Tp) : Bret = e} : B �

(c) Non-standard rules for flow-insensitive dependent types.

T-Reflective-Method-Call
Γ(z) = {···} � respondsTo y(p : Tp)→Bret Γ <:[p:x,self:z] p : Tp, self : Γ(z)

Γ ` z.[y](x) : Bret �

(d) Reflective method calls.

Figure 4.6: Typing of expressions with refinement relationships between storage locations.
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Dependent refinements complicate flow-insensitive checking of some language features. We

describe checking these features in Figure 4.6c in a way similar to Deputy [27], in which the effect

of an assignment is essentially interpreted using Hoare’s backward rule for assignment—although

we have added subtyping. The T-Write-Field rule checks the refinement relationship preservation

condition for a write to a field. In particular, we need to verify that the write to field f of x

does not invalidate the relationships of the object fields stored in x. To do so, we rearrange the

pre-state by conceptually bringing the fields of x into scope—“locally-naming heap locations.” This

rearrangement yields the check

Γ,fieldtypes(T ) <:[f :y] fieldtypes(T )

where fieldtypes(T ) yields an environment consisting of the field declarations of an object type T :

fieldtypes({var f : Tf , . . .} � . . .)
def
= f : Tf , . . . for each field f .

We walked through an example of applying this rule in Section 3.1.

A field read given by T-Read-Field is relatively straightforward. We essentially yield the type

of the f field of Tx, which we write as Tx.f . However, we drop any relationship refinements with

other fields, as they would be ill-formed in Γ. We write this dropping of relationship refinements as

T �. Direct method call with the T-Method-Call rule is quite similar to write, we check that the

pre-state over the actual arguments x conforms to the types of the formal parameters p. The return

type of a method must be a base type, and we show that it has no refinements when used as a type.

The T-Object-Literal describes type checking object literals and thus modular analysis of methods.

Object literals (or anonymous objects) consist of two components: a set of field declarations and

a set of method declarations. A field declaration var f : Tf = xf declares a field f of type Tf

and sets its initial value to that stored in local variable xf . Our treatment of field initializers is

analogous to T-Write-Field except that all initializers are considered simultaneously. Essentially,

we promote the fields in the object to local variables and check that the values of the initializers in

the local environment meet the requirements of the refinements on the field storage locations. A



59

method declaration def m(p : Tp) : Bret = e specifies a method called m which takes a sequence of

parameters p with types Tp and has return type Bret and body e. Our checking of method bodies is

standard: we check the method body in a type environment with the parameter types and a special

variable self representing the receiver.

The T-Reflective-Method-Call rule (Figure 4.6d) demonstrates checking of reflection safety.

We require that the responder object z has a refinement guaranteeing that it responds to the selector

y with method type signature (p : Tp)→Bret. The arguments to the call are checked against the

specified types of the parameters via Γ <:[p:x,self:z] p : Tp, self : Γ(z). We write Γ <:θ Γ′ as the

lifting of subtyping to type environments under a substitution θ from variables on the right to

variables on the left. The type of the call is then the return base type of the method (as expected)

without any refinements Bret �.

Another Instantiation: Typing for array refinements. Fissile Type Analysis is

applicable to more than just reflection safety, because it is parametrized by the language of

refinements and a decision procedure for over-approximating semantic inclusion. To provide context

for our approach, we sketch another instantiation that checks array-bounds safety—a property

considered by many prior works—with a few refinements and rules. Suppose we augment our

programming language to include array allocation and array access and add two refinements: (1)

hasLength, which indicates that an array has the specified (non-zero) length and (2) indexedBy,

which indicates that the specified index is a valid index for the array—that is, that the index is

in bounds. When analyzing an array access e[x], we check that x is a valid index into the array e

by requiring that e’s type has the refinement indexedBy x. We could introduce this refinement via

subtyping with the following rule, which says that x is a valid index for an array of length y if the

environment Γ restricts x and y such that x ≥ 0 and x < y:

JΓK `SMT x ≥ 0 ∧ x < y

Γ ` B � hasLength y <: B � indexedBy x

We could verify that this condition holds by encoding the environment into a linear arithmetic

formula (written JΓK) and checking entailment with an SMT solver (written as the judgment
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Σ̃ ::= (Γ̃, H̃) symbolic states
Ẽ ::= · | Ẽ[x : ṽ] symbolic environments
H̃ ::= emp | ã : õ | H̃1 N H̃2 | ok symbolic heaps
Γ̃ ::= · | Γ̃[ṽ : T S] symbolic facts
P̃ ::= Σ̃ ↓ ṽ | P̃ 1 ∨ P̃ 2 | false symbolic paths
õ ::= emp | f : ṽ | õ1 N õ2 symbolic objects
ṽ, ã, x̃, ỹ, z̃ symbolic values

Figure 4.7: The symbolic analysis state splits type environments into types lifted to values and the
locations where values are stored.

φ1 `SMT φ2 for formulas φ1 and φ2). Here we map meta-variables x and y in the typing judgment to

logical variables of the same name in the SMT entailment checking judgment. In general, it should be

possible to take any symbolic relational domain (e.g., [33, 34, 63, 75]) and lift it to a refinement, as

long as there both a means for statically overapproximating inclusion and a mechanism to establish

the relationship (either by inspecting the type environment flow-insensitively or as the result of a

sound symbolic analysis, such as abstract interpretation [31]).

4.3 Symbolic Analysis

The type analysis described in the previous section is efficient but coarse. It is flow-insensitive—

constraining all storage locations to be a fixed type and the heap to be always in a consistent state.

When these constraints hold, we get a simple and fast analysis. When they are temporarily violated,

our overall analysis can switch (as described in Chapter 3) to a path-sensitive symbolic analysis.

We now describe this symbolic analysis, including its abstract state (Section 4.3.1), concretization

(Section 4.3.2), and static semantics (Section 4.3.3). This section discusses the symbolic analysis in

isolation; we describe handoff between types and the symbolic analysis, as well as leveraging the

almost type-consistent heap during symbolic analysis, in Section 4.4.

4.3.1 Symbolic State

In the symbolic analysis, we split (hence “Fissile” Type Analysis) a type environment Γ

into a symbolic environment Ẽ and a symbolic state Σ̃ (Figure 4.7). A symbolic environment Ẽ
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provides variable context: it maps variables to symbolic values ṽ that represent their values. A

symbolic state Σ̃ consists of two components: a symbolic fact context Γ̃, mapping symbolic values

to the facts (symbolic types) known about them and a symbolic heap H̃. A symbolic heap H̃

contains a partially-materialized sub-heap that maps addresses (ã) to symbolic objects (õ), which

are themselves maps from field names (f) to symbolic values. We write symbolic objects and heaps

using the separating conjunction N notation borrowed from separation logic [88] to state that we

refer to disjoint storage locations. (As we showed in Section 3.3, type-intertwined symbolic analysis

cannot soundly support framing with N, a key benefit of separating conjunction in traditional

separation logic. We describe gated separating conjunction, a strengthening of N that does allow

type-intertwined framing, in Chapter 5.)

Symbolic values ṽ correspond to existential, logic variables. For clarity, we often use ã

to express a symbolic value that is an address and similarly use x̃, ỹ, z̃ for values stored in the

corresponding program variables x, y, z. Relationship refinements in Γ̃ are expressed in terms of

types lifted to symbolic values (T S)—that is, the refinements state relationship facts between values

and not storage locations (like the refinements in Γ for typing). Our overall analysis state is a

symbolic path set P̃ , which is a disjunctive set of singleton paths Σ̃ ↓ x̃. A singleton path is a pair

of a symbolic state and a symbolic value corresponding to the return state and value, respectively.

The symbolic heap H̃ enables treating heap locations much like stack locations, capturing

relationships in the symbolic context Γ̃, though certainly more care is required with the heap due

to aliasing. A symbolic heap H̃ can be empty emp, a single materialized object ã : õ with base

address ã and fields given by õ, or a separating conjunction of sub-heaps H̃1 N H̃2. Lastly and most

importantly, a sub-heap can be ok, which represents an arbitrary but almost type-consistent

heap. This formula essentially grants permission to materialize from the almost type-consistent

heap and, as discussed in Section 3.2, is the key mechanism for soundly transitioning between the

type and symbolic analyses.
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4.3.2 Concretization of Symbolic State

In this section we formally describe the meaning of symbolic state in terms of a concretization

function to sets of concrete states (recall we described the concrete state in Section 4.1.2). Throughout

this section, as in the concretization in the types domain (Section 4.2.2) we overload γ to mean

concretization of various abstract components. In some cases, however (e.g., for base types B),

the same abstract component will have a different concretization in the types domain than in the

symbolic domain. In these cases we write γ̃ to mean concretization in the symbolic domain.

Symbolic Paths. The concretization of a single symbolic path (Γ̃, H̃) ↓ ṽ given a symbolic

environment yields a set of triples (E, H, v) of a concrete environment E, a concrete heap H, and

a concrete value v. In order for this triple to be in the concretization of the symbolic path, there

must exist a valuation V mapping symbolic values to concrete values (essentially giving meaning to

the concrete values) and a splitting of the heap into two components: the type-consistent heap Hok

and the materialized heap Hmat (here we write H1 N H2 to mean the disjoint combination of two

concrete heaps). The concretization of a symbolic path forces (1) the valuation and the concrete

environment to agree with the concretization of the symbolic environment Ẽ; (2) the valuation and

the two heaps to agree with both the concretization of the symbolic heap and the concretization

of the symbolic fact map; and (3) the valuation of the symbolic result of the path must be the

concrete value in the triple. In many ways, the valuation in the concretization of a symbolic domain

is similar to the environment in the concretization of type environments from the type domain,

since the concretization of the symbolic facts T S in Γ̃ constrains the valuation similarly to how the

concretization of types T constrains an environment E in the types domain.

The concretization of a conjunction of symbolic paths P̃ 1 ∨ P̃ 2 yields the union of the

concretizations of the constituent subpaths. Note that this means that each subpath gets its own

valuation. The concretization of false—a path that is not reachable—is empty.

γ : (SymEnv × SymPath)→ P(Envs× Heaps× Values)
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γ(Ẽ, (Γ̃, H̃) ↓ ṽ) ,


(E,H, v)

∣∣∣∣∣∣∣∣∣∣∣∣

Exists valuation V : SymVal→ Val and
heaps Hok, Hmat where

(V,E) ∈ γ(Ẽ) and
(V,Hok, Hmat) ∈ γ(H̃) ∩ γ(Γ̃) and
H = Hok

N Hmat and
V (ṽ) = v


γ(Ẽ, P̃ 1 ∨ P̃ 2) , γ(Ẽ, P̃ 1) ∪ γ(Ẽ, P̃ 2)

γ(Ẽ, false) , {}

Symbolic States. A symbolic state consists of the state elements of a symbolic path but

does not have a return value, so the concretization of a symbolic state Σ̃ with respect to a symbolic

environment Ẽ is a set of pairs (E,H) of concrete environments and heaps. The concretization of a

disjunction of symbolic states (produced, for example, as the result of materialization) consists of

the union of concretizations of the constituent states.

γ : (SymEnv × SymState)→ P(Env × Heap)

γ(Ẽ, Σ̃) ,
{

(E,H)
∣∣ Exists x̃ where (E,H, v) ∈ γ(Σ̃ ↓ x̃)

}
γ(Ẽ, Σ̃1 ∨ Σ̃2) , γ(Ẽ, Σ̃1) ∪ γ(Ẽ, Σ̃2)

Symbolic Environment. The concretization of a symbolic environment yields a valuation

and a concrete environment where the values stored in the concrete environment must agree with the

valuation of the symbolic values stored in the symbolic environment. γ : SymEnv→ P(Valuation×Env)

γ(Ẽ) ,

{
(V,E)

∣∣∣∣ V (x̃) = E(x) for all x : x̃ in Ẽ

}
Symbolic Heaps. The concretization of a symbolic heap gives structure to the splitting of

a heap into Hok and Hmat and constraints the valuation of the symbolic values (both addresses and

field values) specified on the symbolic heap to match the corresponding concrete values stored in the

concrete heaps. The concretization of emp forces both Hok and Hmat to be the empty concrete heap

(·) and leaves the valuation unspecified. The concretization of ok puts constraints on neither Hok nor
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the valuation, but forces Hmat to be empty. The concretization of an explicitly materialized symbolic

heap mapping pair forces Hok to be empty and Hmat to consist solely of a single-object concrete

heap mapping the valuation of the symbolic address to a concrete object in the concretization of the

symbolic object. It puts no constraints on the tag of the object (although this will be constrained by

the symbolic concretization of base types, as we will see). Finally, the concretization of two symbolic

sub-heaps consists of the component-wise concrete separating conjunction of the type-consistent

and materialized components of concretization of the sub-heaps.

γ : SymHeap→ P(Valuation× Heap× Heap)

γ(emp) ,
{

(V,Hok, Hmat)
∣∣ Hok = · and Hmat = ·

}
γ(ok) ,

{
(V,Hok, Hmat)

∣∣ Hmat = ·
}

γ(ã : õ) ,

(V,Hok, Hmat)

∣∣∣∣∣∣
Hok = · and exists a, o, B, where
Hmat = a : 〈o,B〉 and V (ã) = a and
(V, o) ∈ γ(õ)


γ(H̃1 N H̃2) ,

(V,Hok, Hmat)

∣∣∣∣∣∣∣∣
(V,Hok

1 , Hmat
1 ) ∈ γ(H̃1) and

(V,Hok
2 , Hmat

2 ) ∈ γ(H̃2) and
Hok = Hok

1 N Hok
2 and

Hmat = Hmat
1 N Hmat

2


Symbolic Objects. The concretization of a symbolic object is a set of pairs of a valuation

and a concrete object where the values stored in the fields of the concrete object are the same as

valuation of the symbolic values associated with the fields in the symbolic object.

γ : SymObject→ P(Valuation× Object)

γ(õ) ,
{

(V, o)
∣∣ o(f) = V (x̃) for each f : x̃ in õ

}

Symbolic Fact Map. The concretization of a symbolic fact map in the symbolic domain

is similar to the concretization of a type environment in the type domain, except that here there

are two heaps (Hok and Hmat) and here the symbolic facts (symbolic types) constrain the valuation

rather than an environment. Further, unlike the concretization of a type environment, which forces
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the entire heap to be type-consistent, the concretization of a symbolic fact map only forces those

addresses in Hok to be immediately type consistent. (We will explore this in more detail

when discussing the symbolic concretization γ̃ of base types.)

γ : SymFactMap→ P(Valuation× Heap× Heap)

γ(Γ̃) ,

(V,Hok, Hmat)

∣∣∣∣∣∣∣∣∣
for each x̃ : T S in Γ̃

(V,Hok, Hmat, V (x̃)) ∈ γ(T S)

and for all a : 〈o,B〉 in Hok

(Hok, Hmat, a) ∈ γ̃(B)


Symbolic Facts. The concretization of a symbolic fact (symbolic type) is similar to that of

the concretization of a regular type in the type domain, except, again, that it constrains two heaps

and constrains a valuation rather than a concrete environment. Note that the concretization of the

base type uses the symbolic concretization (γ̃) of base types rather than the type concretization (γ)

of base types. We use two separate symbols here because the standard overloading of γ would be

ambiguous.

γ : TypesS → P(Valuation× Heap× Heap)

γ(B � RS
1 , · · · , RS

n) ,

(V,Hok, Hmat, v)

∣∣∣∣∣∣
(Hok, Hmat, v) ∈ γ̃(B) and
for all i where 1 ≤ i ≤ n

(V,Hok
N Hmat, v) ∈ γ(RS

i )


Symbolic Refinements. The concretization of a symbolic refinement is similar to that of

local refinements except that it constrains the valuation rather then a concrete environment. Note

that unlike many symbolic concretizations, this concretization constrains only a single heap. This is

because symbolic refinements represent relationships between values and thus cannot be violated.

γ : RefinementsS → P(Valuation× Heap× Value)

γ(in (c1, . . . , cn)) ,
{

(V,H, s)
∣∣ s ∈ {c1, . . . , cn} }

γ(respondsTo x̃(p : Tp)→Bret) ,

(V,H, a)

∣∣∣∣∣∣∣∣∣∣
exists string m, object o
and base type B where
m = V (x̃)
H(a) = 〈o,B〉 and
o(m) ∈ γ(B, (p : Tp)→Bret)
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Symbolic Concretization of Base Types. The symbolic concretization of base types

(again, note the use of γ̃ rather than γ) is structurally similar to that of the type domain concretization

of base types, but the differences here are crucial. First, as is typical for the symbolic domain,

there are two heaps, Hok and Hmat. Second, for object types, note that whether the fields are

constrained by the field environment for the type depends on whether the address of the object is in

Hok or not. If the address is in Hok, then the field environment is constrained (with the symbolic

concretization γ̃). But if the address is not in Hok then the fields are asserted to exist (and have

some value stored in them), but the object is not required to be immediately type-consistent. In

essence, the symbolic concretization traverses all reachable addresses and only forces those that are

in Hok to immediately conform to the requirements of the base type’s type environment.

γ̃ : BaseTypes→ P(Heap× Heap× Value)

γ̃(Str) ,
{

(Hok, Hmat, v)
∣∣ v is a string

}
γ̃(Unit) ,

{
(Hok, Hmat, v)

∣∣ v is a 〈〉
}

The symbolic concretization of an object type B = {var f : Tf , def m(p : Tp)→Bret} is:

γ̃(B) ,


(Hok, Hmat, a)

∣∣∣∣∣∣∣∣∣∣∣∣∣

exists o where
Hok

N Hmat(a) = 〈o,B〉 and
f ∈ dom(o) for all fields f
o(m) ∈ γ(B, (p : Tp)→Bret) for all methods m and
if a ∈ dom(Hok) then

(Hok, Hmat, o) ∈ γ̃(f : Tf )


As we will see (Lemma 3 in Section 4.4.2), a key property of the symbolic concretization of base

types is that when Hmat is empty—that is, when the entire heap is almost type-consistent—then

the meaning of a base type in the symbolic domain is that same as the meaning of the type in the

types domain.

Symbolic Concretization of Field Types. The symbolic concretization of a field type

is similar that for the type domain concretization of field types, but again there are two heaps and

the base type is forced to be in the symbolic concretization of base types γ̃, rather than γ.

γ̃ : TypesF → P(Heap× Heap× Object× Value)
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γ̃(B � RF
1 , · · · , RF

n) ,

(Hok, Hmat, o, v)

∣∣∣∣∣∣∣
(Hok, Hmat, v) ∈ γ̃(B) and

for all i where 1 ≤ i ≤ n
(Hok

N Hmat, o, v) ∈ γ(RF
n)


Symbolic Concretization of Field Type Environments. Again, the symbolic con-

cretization of a field type environment is similar to that in the type domain, except for the splitting

of the heap and the recursive call to γ̃ rather than γ.

γ̃ : EnvironmentsF → P(Heap× Heap× Object)

γ̃(ΓF) ,

{
(Hok, Hmat, o)

∣∣∣∣ for all f : TF in ΓF exists v where
(Hok, Hmat, o, v) ∈ γ̃(TF) and o(f) = v

}

Soundness of Subtyping in the Symbolic Domain With concretization of types in

the symbolic domain defined, we can now show that subtyping in this domain is also a sound

over-approximation of including under concretization, similar to Lemma 1.

Lemma 2 (Soundness of Subtyping in the Symbolic Domain):

(1) If ΓS ` T S
1 <: T S

2 and (V,Hok, Hmat, v) ∈ γ(T S
1 ) where

(V,Hok, Hmat) ∈ γ(ΓS) then (V,Hok, Hmat, v) ∈ γ(T S
2 ).

(2) If ΓF ` TF
1 <: TF

2 and (Hok, Hmat, v) ∈ γ̃(TF
1 ) where

(Hok, Hmat) ∈ γ̃(ΓF) then (Hok, Hmat, v) ∈ γ̃(TF
2 ).

Proof. By induction on the derivation of the subtyping relation.

4.3.3 Symbolic Execution

Here, we formalize a symbolic execution [66], which is a disjunctive, path-sensitive analysis.

Thus, our overall analysis state P̃ is a disjunction of states. A single path Σ̃ ↓ x̃ is a pair of a

symbolic environment and a symbolic value corresponding to the state on return and the return

value of the path, respectively. Recall that we give a full description of our symbolic analysis state

in Figure 4.7 in Section 4.3.
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Ẽ ` {Σ̃} e {P̃}

Sym-Branch
Ẽ ` {Σ̃} e1 {P̃ 1} Ẽ ` {Σ̃} e2 {P̃ 2}

Ẽ ` {Σ̃} e1 8 e2 {P̃ 1 ∨ P̃ 2}

Sym-Read-Local

Ẽ ` {Σ̃}x {Σ̃ ↓ Ẽ(x)}

Sym-Let

Ẽ ` {Σ̃} e1 {
∨
i

(Σ̃i ↓ ỹi)} x̃ 6∈ Ẽ Ẽ[x : ỹi] ` {Σ̃i} e2 {P̃ i} for all i

Ẽ ` {Σ̃} let x : T1 = e1 in e2 {
∨
i

P̃ i}

Sym-Read-Field

Ẽ ` {Γ̃, H̃}x.f {Γ̃, H̃ ↓ H̃(Ẽ(x))(f)}

Sym-Write-Field

Ẽ ` {Γ̃, H̃}x.f := y {Γ̃, H̃
[
Ẽ(x) :

(
H̃(Ẽ(x))[f : Ẽ(y)]

)]
↓ Ẽ(y)}

Sym-Seq
Ẽ ` {Σ̃} e1 {P̃ ′} Ẽ ` {P̃ ′} e2 {P̃ ′′}

Ẽ ` {Σ̃} e1 ; e2 {P̃ ′′}

Ẽ ` {P̃} e {P̃ ′}

Sym-Cases
Ẽ ` {Σ̃i} e {P̃ i} for all i

Ẽ ` {
∨
i

Σ̃i ↓ x̃i} e {
∨
i

P̃ i}

Figure 4.8: Non-type-intertwined rules for symbolic analysis.
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In Figure 4.8, we describe a forward symbolic execution. Here we discuss only the “purely”

symbolic rules—we describe rules for handoff with types and materialization from ok in Section 4.4.

The judgment Ẽ ` {Σ̃} e {P̃} says that in the context of a given symbolic local variable environment

Ẽ and with a symbolic state Σ̃ on input, expression e symbolically evaluates to a disjunction of

states P̃ on output. So, for example, the Sym-Branch rule for non-deterministic branches says

that if the left-hand–side e1 of a branch in state Σ̃ with local variable environment Ẽ evaluates

to a disjunction of state-value pairs P̃ 1 and the right-hand–side e2 evaluates to a disjunction P̃ 2

then symbolically executing the branch in Σ̃ with Ẽ results in the disjunction of both of those

disjunctions. That is, symbolically executing a branch evaluates each side of the branch with no

loss of precision at the cost of a doubling of possible states (i.e., a symbolic join).

The Sym-Read-Local rule describes symbolic execution of reading a local variable x. This

evaluation returns a single path with the state unchanged. The resultant value is the result of looking

up the local address for x in the local variable environment Ẽ. The Sym-Let rule describes symbolic

evaluation of let expressions. This rule evaluates the initialization expression e1 to a disjunction of

paths, binds the resultant symbolic value to the (fresh) local variable in the environment Ẽ and

executes the body e2 in the resultant state. Note that in symbolic execution (in contrast with type

checking), the declared type of the newly bound variable does not constrain the value stored into it.

The Sym-Read-Field rule describes symbolic execution of reading a field f of a base address in x.

The base object is required to be materialized, so the analysis just needs to look up the value in the

materialized heap. The Sym-Write-Field rule describes symbolic execution of writing the value of

a local variable y to a field f of a base address x. It requires that the object at the base address

Ẽ(x) already be materialized and updates the appropriate field in the symbolic heap H̃. This is a

strong update—there is no need to lose precision on a heap write.

The Sym-Cases rule derives judgments of a slightly different form than the previous rules: it

takes disjunctions of paths rather than single symbolic states, splits them into those single symbolic

states, executes the expression in each of those, and then disjunctively combines each of the results.

This form is the top-level judgment for symbolic execution. For example, the Sym-Seq rule relies on
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this judgment form to describe symbolically executing one expression after another.

Unlike traditional symbolic analysis, our type-intertwined approach can soundly ensure

termination by falling back to type checking (as we will describe in Section 4.4). In practice, this

allows the analysis to switch types at the end of loop bodies to cut back edges and cut recursion

with method summaries.

4.4 Handoff and Invariant Conversion

We now walk through a modified version of the example from Section 3.2 to describe the

key type-intertwined components of our analysis, including handoff between the type analysis and

symbolic execution (and vice versa) and materialization/summarization from the almost type-

consistent heap.

1 {

2 var obj: {} � respondsTo sel = ...,

3 var sel: Str = ...,

4 def update(o: {} � respondsTo s, s: Str): Unit =

5 self.obj := o;

6 self.sel := s

7 }

Figure 4.9: Formal version of CustomImage callback example.

Figure 4.9 shows a formal version of the CustomImage callback example. Here the update

method updates the obj and sel fields in sequence. Recall that the first assignment breaks the

type invariant and the second assignment restores it. We illustrate the core operations behind

type-intertwined analysis by walking through this example. When checking this method, the type

analysis will produce a flow-insensitive type error for the assignment at line 5 and so will switch

(handoff) to symbolic execution. As we saw in the overview example in Figure 3.4, the analysis will

(1) “symbolize” a suitable symbolic analysis state from the type environment (Section 4.4.2), (2)

materialize storage from the almost type-consistent heap (Section 4.4.3), (4) symbolically execute

the two field writes, (5) summarize storage for the fields back into the almost type-consistent heap
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Γ ` e : T

T-Symbolic-Handoff

Γ
−−−−−−→
symbolize Γ̃, Ẽ

Ẽ ` {Γ̃, ok} e {
∨
i

(Γ̃i, ok) ↓ x̃i} Γ̃i, Ẽ
−−−−→
typeify Γ Γ̃i ` Γ̃i(x̃i) <: T [Ẽ] for all i

Γ ` e : T

Ẽ ` {Σ̃} e {P̃}

Sym-Type-Handoff

Γ̃, Ẽ
−−−−→
typeify Γ Γ ` e : T Γ

−−−−−−→
symbolize Γ̃′, Ẽ z̃ /∈ dom(Γ̃′)

Ẽ ` {Γ̃, ok} e {Γ̃′[z̃ : T [Ẽ]], ok ↓ z̃}

Figure 4.10: Analysis handoff via environment typeification and symbolization.

(Section 4.4.4), and (5) attempt to “typeify” the resultant symbolic analysis state back to the

original type environment (Section 4.4.2). In the rest of this section I describe these operations in

detail and demonstrate their soundness.

4.4.1 Handoff Between Analyses

In Figure 4.10, we describe the handoff process that determines when and how to switch from

type checking to symbolic execution and from symbolic The T-Sym-Handoff rule formalizes handoff

between type checking and symbolic analysis. Roughly speaking, this rule says the type checker

can switch to the symbolic analysis to check an expression e in a type environment Γ by creating

(“symbolizing”) a symbolic state representing Γ, symbolically executing e in that state. and then

ensuring that the resultant symbolic states conform to (“typeify to”) the global type invariant. (We

will describe symbolization and typeification judgments in detail later (Section 4.4.2)—here we

discuss the handoff rules themselves.)

More precisely, the T-Sym-Handoff rule says that the type analysis can check an expression

e in a type environment Γ if it can split the type environment (via symbolization) into a pair of a

symbolic fact map Γ̃ and symbolic environment Ẽ. It can then symbolically execute the expression

in that environment with a symbolic heap originally consisting solely of ok. (The symbolic execution
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can assume the entire heap is initially not immediately type-inconsistent because it just switched

from type checking.) After symbolic execution, the resultant symbolic environments and fact

maps must be consistent with (“typeify to”) the original Γ, and the symbolic facts about the

resulting symbolic values must be consistent with the inferred type T of the expression. Here T [θ̃]

converts the standard type T to a symbolic type (fact) T S with a substitution θ̃ that replaces

all variable references in T ’s refinements with symbolic values, as described in Section 4.2.4. We

lift the subtyping judgment · ` · <: · to symbolic types in the expected way—this judgment

over-approximates concrete inclusion in the symbolic domain (Lemma 2).

The key aspect of this handoff is that although the symbolic execution is free to violate any

of the flow-insensitive constraints imposed by Γ, it must restore them to return to type checking.

Both the initially symbolized heap and the finally typeified heap must consist solely of ok—the

symbolic analysis can safely assume the entire heap is consistent on entry; but it must guarantee

the consistency is restored on exit.

We describe the analogous handoff from symbolic execution to type analysis in the Sym-

Type-Handoff rule. This rule says that the symbolic execution can switch to type checking for an

expression e if the heap consists solely of ok and it can typeify the symbolic environment Ẽ and

fact map Γ̃ to a type environment Γ. Then, if the expression is well-typed in Γ and has type T then

symbolic execution can continue in a symbolic state such that type environment symbolizes to a

new fact map Γ̃′ extended with a fact binding for the result of the expression. Again, the symbolic

heap must be fully type-consistent (consist solely of ok) both before and after handoff. (We describe

how this requirement can be soundly relaxed in Chapter 5.)

4.4.2 From Type Environments to Symbolic States and Back Again.

Symbolization splits a type environment Γ (which expresses type constraints on local variables)

into a symbolic fact map Γ̃ (expressing facts about symbolic values) and a symbolic local variable

state Ẽ (expressing where those values are stored). For example, consider the type environment
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Γ̃, Ẽ
−−−−→
typeify Γ

Γ
−−−−−−→
symbolize Γ̃, Ẽ

C-Stack-Symbolize
Ẽ is 1-1 Γ <:Ẽ−1 Γ̃

Γ
−−−−−−→
symbolize Γ̃, Ẽ

C-Stack-Typeify
Γ̃ <:Ẽ Γ

Γ̃, Ẽ
−−−−→
typeify Γ

Γ <:θ̃−1 Γ̃ Γ̃ <:θ̃ Γ

Sub-Types-Facts
Γ ` Γ(θ̃−1(x̃)) <: T S[θ̃−1] for all x̃ : T S ∈ Γ̃

Γ <:θ̃−1 Γ̃

Sub-Facts-Types
Γ̃ ` Γ̃(θ̃(x)) <: T [θ̃] for all x : T ∈ Γ

Γ̃ <:θ̃ Γ

Figure 4.11: Symbolization and typeification of the stack.

above at line 5 in Figure 4.9, immediately before the first write:

Γ = [o : {} � respondsTo s][s : Str][self : TImage]

where TImage = {var obj : {} � respondsTo sel, var sel : Str}. We can symbolize this environment

to create a symbolic environment where Ẽ = [o : õ][s : s̃][self : s̃elf]. Here we have created fresh

symbolic names to represent the values stored on the stack: õ is the name of the value stored in

local o, s̃ in local s, etc. These symbolic values represent concrete values from a type environment

in which the storage location refinement relationships hold, so we can safely assume that values

initially stored in those locations have the equivalent relationships, expressed as lifted types:

Γ̃ = [õ : {} � respondsTo s̃][̃s : Str][s̃elf : TImage]

Note that the refinement on õ refers to symbolic value s̃ and not storage location s, but that the

refinements on the types of the fields of the base type of s̃elf’s fact TImage still refer to (field)

storage locations. These field refinements on the base object type are, in essence, a “promise” that

if any explicit storage for those fields is later materialized, it must be consistent with TImage when

summarized back into ok.

We formalize type environment symbolization in rule C-Stack-Symbolize (Figure 4.11),

which captures the requirement that the symbolized state must over-approximate the original type
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environment. We note that Ẽ−1 forms a substitution map from symbolic values to local variable

names and require that the symbolized fact map Γ̃ under that substitution be an over-approximate

environment of the original type environment Γ (rule Sub-Types-Facts). In essence, any assumptions

that the symbolic analysis initially makes about the symbolic facts must also hold in original type

environment. That Ẽ is one-to-one ensures that the inverse exists but more importantly encodes the

requirement that the newly symbolized environment makes no assumptions about aliasing between

values stored on the stack in local variables. Note that when symbolizing a local variable with type

B � RL in a type environment, we do not lift the base type B to the symbolic domain nor do we

create storage for any of B’s fields. That is, refinements on the fields of an object base type remain

refinements over fields, expressing both facts about the field contents and constraints on those

storage locations. This interpretation is what permits materialized, immediately type-inconsistent

objects to point back into ok (i.e., the almost type-consistent region). As we detail in Section 4.4.3,

with this interpretation our analysis materializes storage for objects from ok on demand, which

is not only more efficient but is required in the presence of recursion.

Soundness of Handoff An important concern for our intertwined approach is whether

information is transferred soundly between the type analysis and the symbolic analysis (i.e., we have

a sound reduced product [32]). In particular, symbolization and materialization (Section 4.4.3) “pull”

information from the type invariant on demand during symbolic execution and then permit temporary

violations of the global heap invariant in some locations. We take an abstract interpretation-based

approach [31] to soundness, which is critical for expressing almost type-consistent heaps and

connecting the soundness of type checking with the soundness of symbolic analysis. In this section,

we connect, via concretization, the different meanings of object types and their associated reachable

heaps in the two analyses.

At handoff, the analysis requires that the explicitly materialized heap be empty. The following

lemma states that under those conditions (i.e., when the entire heap is not immediately type-

inconsistent), the meaning of base types in the symbolic domain (γ̃) is the same as the meaning of

base types in the type (γ) domain:
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Lemma 3 (Equivalence of Typed and Symbolic Base Types):

γ(B) =

{
(H, v)

∣∣∣∣ (H, ·, v) ∈ γ̃(B)

}
Proof. By induction on the structure of B.

This property is crucial for reasoning about the relationship between types and the symbolic domain.

While standard subtyping relates the concretizations of types within the same domain,

subtyping under substitution relates concretizations in different domains. Here the soundness

property essentially states that the syntactic transformation between types over identifiers of

different classes over-approximates the analogous semantic transformation between concretizations.

With these lemmas for type substitution, we can now prove the soundness of subtyping

under substitution. Here the soundness property essentially states that the syntactic transforma-

tion between types over identifiers of different classes over-approximates the analogous semantic

transformation between concretizations.

Lemma 4 (Soundness of Subtyping Under Substitution):

(1) If ΓL
1 <:θ ΓL

2 then

γ(ΓL
1 ) ⊆

{
(E,H)

∣∣ (E ◦ θ,H) ∈ γ(ΓL
2 )

}
(2) If ΓL <:θ̃−1 ΓS then

γ(ΓL) ⊆
{

(E,H)
∣∣ (E ◦ θ̃−1, H, ·) ∈ γ(ΓS)

}
(3) If ΓS <:θ̃ ΓL then{

(V,Hok, Hmat) ∈ γ(ΓS)
∣∣ Hmat = ·

}
⊆{

(V,Hok, Hmat)
∣∣ (V ◦ θ̃, Hok) ∈ γ(ΓL)

}
(4) If ΓS <:θ̃ ΓF then

γ(ΓS) ⊆
{

(V,Hok, Hmat)
∣∣ (Hok, Hmat, V ◦ θ̃) ∈ γ̃(ΓF)

}
(5) If ΓF <:θ̃−1 ΓS then

γ̃(ΓF) ⊆
{

(Hok, Hmat, o)
∣∣ (o ◦ θ̃−1, Hok, Hmat) ∈ γ(ΓS)

}
Proof. Straightforward application of a technical lemma (Lemma 11) giving semantic meaning to

transformations between the concretizations, the soundness of subtyping (Lemma 1), the equivalence

of type domain base types and symbolic domain base types when the materialized heap is empty

(Lemma 3), and a technical lemma on weakening of environments (Lemma 12).



76

We rely on on this over-approximation under transformation to prove soundness of handoff

(Lemma 5, below) as well as ensure the safety of method calls and field initialization (Theorem 1),

and to prove the soundness materialization (Lemma 7) and summarization (Lemma 9).

In the case of handoff, the T-Sym-Handoff and Sym-Type-Handoff rules (Figure 4.10)

describe the conditions under which the type analysis can switch to the symbolic analysis and vice

versa in terms of typeification and symbolization. The following lemma shows that these judgments,

combined with the constraint that the symbolic heap consist of only ok at the time of handoff, is

sufficient to guarantee that no potential concrete states are dropped when switching between the

two analyses.

Lemma 5 (Soundness of Handoff):

(1) If ΓL −−−−−−→symbolize Γ̃, Ẽ then γ(ΓL) ⊆ γ(Ẽ, (Γ̃, ok)) and

(2) If Γ̃, Ẽ
−−−−→
typeify ΓL then γ(Ẽ, (Γ̃, ok)) ⊆ γ(ΓL)

Proof. By application of Lemma 4 and the definitions of concretization of type environments and
symbolic states.

We rely on this lemma in our proof of soundness of Fissile type analysis (see, e.g., the T-Sym-

Handoff sub-case of the E-Branch-Left case in Theorem 1).

While symbolization and typeification of states govern the handoff between type analysis

and symbolic analysis, symbolization and typeification of objects constrain the materialization

and summarization of storage during symbolic analysis—which we now discuss.

4.4.3 Materialization from Type-Consistent Heaps

Returning to the callback example, recall that the analysis has symbolized a state corresponding

to the type environment immediately before line 5. A symbolic heap H̃ consists of two separate

regions: (1) the materialized heap, a precise region with explicit storage that supports strong

updates and allows field values to differ from their declared types (i.e., permits immediate type-

inconsistency) and (2) the ok, a summarized region in which all locations are either type-consistent
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or only transitively type-inconsistent. In a newly symbolized analysis state, H̃ consists of solely

ok. Before the field write at line 5 can proceed, the analysis must first materialize storage for the

TImage object pointed to by s̃elf to get:

H̃ = ok N s̃elf 7→ {obj : õbj, sel : s̃el}

and a new fact map Γ̃ that contains the additional facts: õbj : {} � respondsTo s̃el and s̃el : Str.

Ẽ ` {Σ̃} e {P̃}

Sym-Materialize

Σ̃
−−−−−−−→
materialize

∨
i

Σ̃′i Ẽ ` {Σ̃′i} e {P̃ i} for all i

Ẽ ` {Σ̃} e {
∨
i

P̃ i}

Sym-Summarize
Σ̃
−−−−−−−→
summarize Σ̃′ Ẽ ` {Σ̃′} e {P̃}

Ẽ ` {Σ̃} e {P̃}

Σ̃
−−−−−−−→
materialize

∨
i

Σ̃′i Σ̃
−−−−−−−→
summarize Σ̃′

M-Materialize

Σ̃ = Γ̃, H̃ ok ∈ H̃ ã /∈ dom(H̃) Γ̃(ã) = B � · · · B
−−−−−−→
symbolize Γ̃fields, õ Γ̃′ = Γ̃, Γ̃fields

Σ̃
−−−−−−−→
materialize

(Γ̃′, (H̃ N ã : õ)) ∨
∨

ỹ∈mayaliasΣ̃(ã)

Σ̃|ã=ỹ


M-Summarize

ok ∈ H̃ Γ̃(ã) = B � · · · Γ̃, õ
−−−−→
typeify B

Γ̃, (H̃ N ã : õ)
−−−−−−−→
summarize Γ̃, H̃

Γ̃, õ
−−−−→
typeify B

B
−−−−−−→
symbolize Γ̃, õ

C-Object-Typeify
Γ̃ <:õ fieldtypes(B)

Γ̃, õ
−−−−→
typeify B

C-Object-Symbolize
Γ = fieldtypes(B) õ is 1-1 Γ <:õ−1 Γ̃

B
−−−−−−→
symbolize Γ̃, õ

Figure 4.12: Materialization and summarization.

We formalize materialization and summarization in Figure 4.12, which extends our symbolic

execution with these operations. The Sym-Materialize rule says that our symbolic executor is

allowed to non-deterministically materialize any symbolic address from ok into the materialized

heap. This materialization may require considering multiple possible aliasing relationships with the

already materialized addresses, so it produces a disjunction of possible materialized states all of
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which must be symbolically executed. In practice, we limit materialization to the base object of

field reads and writes. Rule Sym-Summarize covers the opposite operation: the symbolic executor

can non-deterministically summarize a materialized object back into ok. We describe the details of

materialization here and summarization in Section 4.4.4.

The C-Object-Symbolize and M-Materialize rules describe type-consistent materialization

of object storage. Creating symbolic storage for an object type is very similar to symbolizing a

type environment. As rule C-Object-Symbolize defines, the analysis can symbolize a type B to a

symbolic object õ (mapping field names to fresh symbolic values) and a fact map Γ̃ (facts about

those values) if the assumed facts about the values are no stronger than those guaranteed by the

object’s field types. Once the analysis has symbolized an object, it adds the new object storage to

the explicit heap and facts about the fresh symbolic values to the fact map in rule M-Materialize.

For the symbolic analysis to perform strong updates, it must maintain the key invariant that

any two objects’ storage locations in the explicit heap are definitely separate. When materializing an

arbitrary object, the evaluator must consider whether any of the already materialized objects aliases

with the newly materialized object and case split on these possibilities. The split is required because

any two distinct symbolic values may in fact represent the same concrete value. In M-Materialize,

for any input state Σ̃ in which the heap contains ok, the symbolic analysis is free to materialize

the object stored at a symbolic address ã from the type-consistent heap. For the case where the

materialized symbolic address does not alias any address already on the explicit heap, we symbolize

a new symbolic object õ with fresh symbolic values as described above from the base type of ã. In

the case where the address may alias some address ỹ on the materialized heap, we must assert that

ã = ỹ. We write Σ̃|ã=ỹ for any sound constraining of Σ̃ with the equality (in practice, we implement

it by substituting one name for the other and applying a meet u in the symbolic facts Γ̃). We also

leave unspecified the mayaliasΣ̃(ã) that should soundly yield the set of addresses that may-alias ã;

our implementation uses a type-based check to rule out simple non-aliases.

This rule is quite general. It permits an arbitrary number of locations to be immediately

type-inconsistent without any constraints on connectivity, ownership, or non-aliasing. To simplify
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the formalization of type-consistent materialization, we restrict relations expressed by refinements

in the heap to be among fields within objects. Relations between fields are captured because all of

fields of the object are symbolized at the same time (see C-Object-Symbolize). Supporting cross-

object relations would merely require materializing multiple objects while disjunctively considering

all possible aliasing relationships and then symbolizing their fields simultaneously within each

configuration. It would also be possible to just materialize the fields corresponding to the specific

relationships that we wish to violate by using a field-split model [69, 81] of objects.

Soundness of Materialization Before we can characterize the effect of materialization

on symbolic states, we must describe the effect of materialization on the symbolic concretization of

base types.

Lemma 6 (Type-Consistent Materialization for Types): If (Hok
N a : 〈oa, Ba〉, Hmat, v) ∈

γ̃(B) then (Hok, Hmat
N a : 〈oa, Ba〉, v) ∈ γ̃(B).

Proof. By induction on the structure of B.

This lemma says that if a given value v is in the symbolic concretization of a base type B and that

concretization has an object of type Ba stored in the type-consistent heap at address a, then moving

the storage for a from the type-consistent heap to the materialized heap will not cause the type of v

to change from the perspective of the symbolic analysis.

We will use this lemma to prove soundness of materialization, but first we must discuss the

soundness criteria for two operations relied upon in the M-Materialize rule: may-alias analysis and

constraint of a symbolic state for equality of symbolic values.

Condition 1 (Soundness of mayalias).

For all (V,Hok, Hmat) ∈ γ(H̃):

if y ∈ dom(H̃) and V (ỹ) = V (ã) then ỹ ∈ mayaliasΓ̃,H̃(ã)

Condition 1 says that the may-alias analysis employed during materialization must be sound—that

is, if the concretization of a state Γ̃, H̃ yields a valuation V in which the values associated with ỹ
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and ã are the same, then the alias analysis must report this possibility.

Condition 2 (Soundness of State Equality Constraint).{
(V,Hok, Hmat) ∈ γ(Σ̃)

∣∣∣∣ V (x̃) = V (ỹ)

}
⊆ γ(Σ̃|x̃=ỹ).

Condition 2 says that constraint of the symbolic state such that two symbolic values are equal must

be sound—that is, the constraint must not erroneously throw out a state in which the concrete

values represented by the symbolic values are equal.

With these conditions in place, we can now prove the soundness of materialization from the

type consistent heap:

Lemma 7 (Soundness of Type-Consistent Materialization):

If ok ∈ H̃ and ã /∈ dom(H̃) and Γ̃(ã) = B � · · · and B
−−−−−−→
symbolize Γ̃fields, õ and Γ̃′ = Γ̃, Γ̃fields

then for all Ẽ where rng(Ẽ) ⊆ dom(Γ̃):

γ(Ẽ, (Γ̃, H̃)) ⊆ γ

(
Ẽ, (Γ̃′, (H̃ N ã : õ)) ∨

∨
ỹ∈mayaliasΣ̃(ã)

Σ̃|ã=ỹ

)
.

Proof. By Lemma 6, Lemma 12, Lemma 4, and Conditions 1 and 2.

This lemma proves the soundness of the M-Materialize rule; it says that if the required preconditions

hold, the operation of materializing storage from ok will not erroneously throw out potential concrete

states. We use this lemma in the overall proof of soundness of Fissile type analysis (see the

Sym-Materialize sub-case of the E-Branch-Left case in Theorem 1).

4.4.4 Summarizing Symbolic Objects Back Into Types.

Continuing our running example, with the symbolization and materialization complete, the

analysis now executes the field writes at lines 5 and 6. At this point, the symbolic heap at line 6 is:

H̃ = ok N s̃elf 7→ {obj : õ, sel : s̃}.

That is, the fields now contain the values passed in as parameters. But recall that Γ̃(õ) = {} �

respondsTo s̃ and Γ̃(s̃elf) = TImage. In this state, the value stored in field obj again responds to
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the value stored in field sel—the flow-insensitive type invariant (TImage) promised by Γ̃(s̃elf) again

holds—and thus the object can be safely summarized back into the ok.

We describe this process in rule M-Summarize (Figure 4.12), which says that a symbolic

address ã pointing to a materialized object õ can be summarized (i.e., removed from the explicit

heap) if the object is consistent with (i.e., can be “typeified” to) the base type required of the address

in the fact map. Typeifying a symbolic object õ to an object type B (rule C-Object-Typeify) is

analogous to symbolization except that it goes in the other direction. We require that the symbolic

fact map be over-approximated by the field types of B, nicely converting it to the symbolic domain

using õ as the substitution. Note that õ does not need to be one-to-one; the observation that this

constraint is irrelevant for typeification captures that types are agnostic to aliasing.

Once all materialized objects have been summarized (and thus H̃ = ok), the checker can

end the handoff to symbolic analysis and resume type checking (back to rule T-Sym-Handoff in

Figure 4.10) as long as the symbolic locals are consistent with the original Γ for all symbolic paths

(rule C-Stack-Typeify in Figure 4.11) and the returned symbolic values have facts consistent with

the return type of the expression.

Soundness of Summarization As we did for materialization, for soundness of sum-

marization we will first characterize the effect of summarization on the concretization of a base

type:

Lemma 8 (Soundness of Type-Consistent Summarization for Types): If (Hok, Hmat
N

a : 〈oa, Ba〉, v) ∈ γ̃(B) and V (ã) = a and Γ̃(ã) = Ba � · · · and (V,Hok, Hmat
N a : 〈oa, Ba〉) ∈ γ̃(Γ̃)

and (V, oa) ∈ γ(õ) and Γ̃, õ
−−−−→
typeify Ba then (Hok

N a : 〈oa, Ba〉, Hmat, v) ∈ γ̃(B).

Proof. By induction on the structure of B and with Lemma 4.

This lemma says that if a given value v is in the symbolic concretization of a base type B and that

concretization has an object oa of type Ba stored in the materialized heap at address a and the

preconditions for summarization hold (i.e., that the object is not immediately type-inconsistent),

then moving moving the storage for a from the materialized heap to the type-consistent heap will
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not cause the type of v to change. With this helper lemma in place, we can then prove the soundness

of summarization for states:

Lemma 9 (Soundness of Type-Consistent Summarization for States):

If Γ̃, õ
−−−−→
typeify B and ok ∈ H̃ and Γ̃(ã) = B � · · · then for all Ẽ:

γ(Ẽ, (Γ̃, H̃ N ã : õ)) ⊆ γ(Ẽ, (Γ̃, H̃)) .

Proof. By Lemma 8 and the definition of the concretization of symbolic states.

This lemma proves the soundness of the M-Summarize rule. It says that if the symbolic execution

determines that a materialized symbolic object is not immediately type inconsistent, then the

symbolic storage for that object can be summarized back into ok without erroneously dropping

potential concrete states. We rely on this lemma in the Sym-Summarize sub-case of the E-Branch-

Left case in Theorem 1.

4.5 Soundness of Intertwined Analysis

We can now present our main theorem: the proof of soundness of combined type analysis

and symbolic execution with almost type-consistent heaps. The theorem states soundness of all

three forms of static judgments: type checking, state-to-path symbolic execution, and path-to-path

symbolic execution. Note that we prove that the result of execution is a heap-value pair; that is, it

is not an error state err.

Theorem 1 (Soundness of Fissile Type Analysis).
If E ` [H] e [r] then

(1) If ΓL ` e : TL and (E,H) ∈ γ(ΓL) then r = H ′ ↓ v′ where (E,H ′) ∈ γ(ΓL) and
(E,H ′, v′) ∈ γ(TL); and

(2) If Ẽ ` {Σ̃} e {P̃} and (E,H) ∈ γ(Ẽ, Σ̃) then r = H ′ ↓ v′ where (E,H ′, v′) ∈ γ(Ẽ, P̃ ); and

(3) If Ẽ ` {P̃} e {P̃ ′} and (E,H, v) ∈ γ(Ẽ, P̃ ) then r = H ′ ↓ v′ where (E,H ′, v′) ∈ γ(Ẽ, P̃ ′).

Proof. By induction on the derivation of E ` [H] e [r].
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I provide the interesting cases, as well additional required technical lemmas in Chapter A. The key

feature of the proof is a nested simultaneous induction on each of the static judgment forms to account

for the non-syntax-directed nature of the T-Sym-Handoff, Sym-Types-Handoff, Sym-Materialize,

and Sym-Handoff rules.

4.6 Case Study: Checking Reflective Call Safety

We implemented our Fissile type analysis approach to checking almost flow-insensitive

invariants in a prototype method reflection safety checker for Objective-C. We evaluate our prototype,

a plugin to the clang static analyzer, by investigating the following questions: What is the increased

type annotation cost for checking reflection safety? How much does the mixed Fissile approach

improve precision? Do our premises about how programmers violate relationships hold in practice?

Is our intertwined “almost type” analysis as fast as we hope? We also discuss a bug found by

our tool—surprising in a mature application. The bug fix that we proposed was accepted by the

application developer. Finally, we show that our tool is capable of alerting inexperienced Objective-C

developers to a common source of beginner bugs, typos in selector names, by applying it to snippets

culled from postings by confused developers on online forums.

4.6.1 Prototype Tool

We have implemented our approach in a tool, Missile, that verifies dependent refinement types

in C and Objective-C. This tool supports a rich specification language that enables programmers to

extend their existing type declarations with dependent refinements expressing almost-everywhere

invariants. Missile is implemented as a plugin for the clang [1] static analyzer and integrates with

the Xcode [61] development environment to provide feedback to the programmer, including graphical

abstract counterexamples when reporting alarms.

Specification Language. Missile enables developers to specify almost-everywhere in-

variants on storage locations alongside the storage declaration. I show such a specification in the

shaded region of Figure 4.13. Here, the programmer has annotated the obj field of the Objective-C
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Callback class with the refinement {respondsTo sel} (specifying that the object stored in obj

should have a method with the name stored in sel). The attribute annotation mechanism

ensures that source code extended with Missile specifications remains compatible with other

compilers and thus will not interfere with the developer’s existing build system.

@interface Callback {

Object *obj attribute ((missile("{respondsTo sel}"))) ;

SEL sel;

}

@end

Figure 4.13: Missile enables programmers to specify almost-everywhere invariants in C and
Objective-C with dependent refinement type annotations (shaded region).

Missile supports refinements specifying a variety of relationship requirements. For example,

the refinement

{valueIn (‘didClick’, ‘didDoubleClick’)}

refines string types to ensure that the value is one of those specified; this refinement is useful for

verifying reflective method call. The formula refinement embeds quantifier-free linear arithmetic

into types, so the annotation

{formula (and (gte v 0) (lt v len))}

could express the specification that a value in this type (represented by the bound variable v )

should be an in-bounds index for an array of length len. Because Missile builds on the parametric

Fissile Type Analysis framework, it can be easily extended to support any refinement with a

procedure for statically over-approximating semantic inclusion (e.g., subtyping, implication with an

SMT solver, string solvers, etc.).

In addition to field refinements—useful for expressing data structure invariants—Missile also

supports refinements among locals as well as refinements relating parameters, the method receiver,

and the return value. The tool also provides a traditional assert mechanism to specify invariants

at individual program points.
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Figure 4.14: Missile integrates with the Xcode development environment to visualize mixed
flow-insensitive and path-sensitive alarms.

Visual Abstract Counterexamples The intertwined approach Missile takes to veri-

fication poses a challenge when presenting alarms to the user: how should the tool explain the

combination of global flow-insensitive and local path-sensitive reasoning that lead to the alarm?

Missile integrates with the Xcode development environment to visually display these abstract

counterexamples. Figure 4.14 provides an example of this visualization, which shows the explanation

for an alarm in a modified version of the method verified in Section 3.2.

In this version, the programmer has added an additional def parameter, providing a default

selector to be stored if o does not respond to s. Unfortunately, the new version has a bug: if o

does not respond to def then the Callback object may be left in an inconsistent state if the else

branch executes. Missile visually displays this reasoning with a sequence of arrows rendered above

the path in question. The arrows in this figure are all displayed by the tool in the development

environment—we have not added them after the fact. The tool shows the flow-insensitive invariant

violation (the small arrow marked 1) and indicates the location where the symbolic analysis took

over and assumed the global invariant held (marked here with 2). We use the thin arrows to

indicate the path taken by the analysis on which it could not guarantee invariant restoration. The
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programmer can quiet this alarm by supplying a parameter annotation (checked at method call

sites) on o, attribute ((reflection("{respondsTo def}"))) specifying that it must respond

to def.

Handoff Heuristics. When Missile detects a flow-insensitive type error, it can switch

to path-sensitive reasoning to determine that the type error is a false alarm as described in the

handoff rules from Section 4.4. These rules characterize when it is sound to switch between analysis

styles—but not when it is effective to do so. Here, we describe the key heuristics that Missile

employs to switch between type checking and symbolic execution in practice.

Missile’s heuristics are driven by the lexical structure of the source code location at which

the type error occurred. Upon a type error, the tool first starts symbolically executing immediately

prior to the statement containing the type error. It will symbolically execute until it passes the

location of the type error and either (1) it can safely return to type checking or (2) it attempts to

retry symbolic execution of a larger chunk of code in the hope that more context will allow it to

determine that it is safe to to return to type checking. The tool can safely return to type checking

when one of two criteria are met:

• The global type invariant is restored on all paths. In this case, the symbolic execution

has demonstrated that the type error is a false alarm and so the analysis switches back to

type checking at the point of restoration. In an effort to limit the path explosion during

symbolic execution, Missile returns back to type checking optimistically, as soon as it is

sound to do so.

• All symbolic paths to the type error are found to be unreachable. Again, in this

case the type error is a false alarm and so the the analysis returns back to type checking.

In some cases, the symbolic execution cannot safely return to type checking, but it also cannot

continue symbolic execution:

• Unhandled language constructs. Missile’s symbolic executor is limited in the language

constructs that it can handle. For example, it does not attempt to unroll while loops nor
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does it symbolically execute switch statements. Further, because it does not have access

to the whole program, it cannot symbolically execute dynamically-dispatched Objective-C

method calls without a summary of the method.

• Summary preconditions not met. Even if a method is annotated with a summary,

the symbolic execution will not be able to apply the summary if it cannot show that the

summary preconditions hold.

• End of lexical scope. An implementation limitation of Missile’s symbolic executor is

that it operates over lexical portions of the program’s abstract syntax tree (this makes it

easier to switch back and forth with the type system). If the symbolic executor reaches the

end of the entire lexical syntax over which it has access (for example, the body of a while

loop, or the else branch of an if statement) and the type invariant is not restored then it

will report that it could not determine whether the type error was a false alarm—even if

symbolically executing out of the scope could show the type invariant was restored.

In these cases, the tool attempts to back up and retry symbolic execution of a larger chunk of code.

Missile heuristically retries symbolic execution with increasingly larger portions of the

abstract syntax tree containing the original type error. It starts by symbolically executing from the

initial type error up to (potentially) the end of the brace statement containing the type error. If the

symbolic execution cannot show that the type invariant is restored before the end of this statement,

it retries from the beginning of the brace statement. This extra scope may allow the symbolic

execution to establish additional aliasing relationships to show the type invariant is restored. If this

does not succeed, it retries from beginning of any containing if statement. This retry allows the

symbolic execution to take advantage of the if statement’s guard condition—as it does, for example,

to determine that o responds to s in Figure 4.14. If this extra scope is not enough, it continues

with increasingly larger containing brace and if statements, until it tries symbolically executing the

entire method body. If symbolically executing the entire method does not succeed, it reports the

original flow-insensitive type error to the user.
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1 - (void) performCallback {

2 [this callSomeMethod];

3
4 Obj *o = self->obj;

5 SEL s = self->sel;

6 [o performSelector:s];

7 }

Figure 4.15: Missile’s retry heuristics cannot show that this example is safe.

While these retries can mitigate some of the shortcomings of the lexically-based symbolic

executor, the approach has its limitations. Suppose the Callback class has a performCallback

method as shown in Figure 4.15. The reflective call at line 6 is safe. But the heuristics above will

result in a false alarm. After the initial type error, the analysis will attempt execute the statement

at line 6. This symbolic execution will fail because, starting from line 6 it cannot show that the

preconditions for performSelector: (that o always responds s) hold. The retry heuristics will then

retry symbolic execution from the beginning of the method—but the call at line 2 will force the

symbolic execution to return to type checking. The analysis will then continue in type checking

mode until it reaches line 6, at which point it will hit the type error again and give up. In this case,

a successful approach would be to retry symbolic execution starting from line 4—but our heuristics

are not intelligent enough to attempt to do this. In general, our heuristic approach relies on being

able to successfully symbolic execute from the beginning of a scope to the triggering type error—if

this is not possible, Missile will not be able to show it is a false alarm.

4.6.2 Benchmarks

We evaluate our approach to checking reflection safety on a suite of real-world benchmarks in

Objective-C that we collected from the open-source community. This suite consists of 6 libraries and

3 large applications. Table 4.1 provides the size of these benchmarks. The “Lines of Code” count

includes project headers but excludes comments and whitespace. The “Methods” column indicates

the total number of methods, and the “Reflective Call Sites” column gives the number of calls to
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Benchmark Lines of Code Reflective Call Sites Methods

OAuth 1248 7 92
SCRecorder 2716 12 200
ZipKit 3301 28 165
Sparkle 5290 40 320
ASIHTTP 13565 68 707
OmniFrwks 160769 192 7611

Vienna 37348 186 2261
Skim 60211 207 3010
Adium 176632 587 8723

Combined 461080 1327 23089

Table 4.1: A suite of reflection benchmarks in Objective-C.

system library methods that perform reflection, either directly or as part of some other operation.

I first describe our library benchmarks. OAuth performs OAuth Consumer authentication

and uses reflective calls to inform clients when the authentication succeeds or fails. Sparkle is a

very widely-used automatic update library that uses reflection to communicate across threads, to

avoid boilerplate, and to interact with the client application. ZipKit is a library that reads and

writes compressed archives—it also uses reflection to communicate across threads. SCRecorder is a

library that developers embed to allow their users to record custom keyboard shortcuts; it is the

source of our motivating example from Chapter 2. ASIHTTP is a library that performs web services

calls; it uses reflection to interact with the client application and also to communicate between

threads. Finally, the OmniFrwks are a very large collection of base libraries providing common

functionality to OmniGroup applications—including the widely used OmniGraffle application. Our

three application benchmarks are Vienna, an RSS newsreader; Skim, a PDF reader; and Adium,

an instant message chat client. The OmniFrwks are noteworthy because they are very large and

have been in continuous development since 1997. The fact that our tool can run on them provides

evidence for the kind of real-world Objective-C that we can handle—a codebase that would be

challenging for a purely symbolic analysis.
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Benchmark Total Symbolic

Annotations / Annotations /
Per Reflective Site Per Reflective Site

OAuth 5 / 0.71 0 / 0.00
SCRecorder 9 / 0.75 4 / 0.33
ZipKit 0 / 0.00 0 / 0.00
Sparkle 0 / 0.00 0 / 0.00
ASIHTTP 2 / 0.03 2 / 0.03
OmniFrwks 49 / 0.26 2 / 0.01

Vienna 24 / 0.13 4 / 0.02
Skim 7 / 0.03 0 / 0.00
Adium 40 / 0.07 0 / 0.00

Combined 136 / 0.10 12 / 0.01

Table 4.2: Annotation Burden.

4.6.3 Prototype Performance

In this section, we describe our prototype’s performance on a benchmark suite in terms of

(1) the developer cost to add annotations for modular reflection checking; (2) the improvement in

precision over Deputy-style flow-insensitive checking; (3) whether our key conjectured premises

about almost-everywhere invariants hold; and (4) the cost in running time of the analysis.

The developer cost to add modular reflection checking. To measure the developer

cost of adding modular reflection checking, we seeded potential type errors by first annotating the

reflection requirements on 76 system library functions (i.e., with respondsTo refinements). These

are requirements imposed by the system API enriched to check for method reflection errors.

Then, we added annotations to quiet as many alarms as possible. We characterize these

annotations in Table 4.2. The ‘Total Annotations” column lists the total number of annotations and

the average number of annotations required per reflective callsite, while the “Symbolic Annotations”

column lists gives the number of symbolic summaries required, in total and per reflective call site.

These summaries expose the storage for getters and setters without exposing their implementation

with abstract predicates [82]. The annotation column values give an indication of how much work it

would be for developers to modularly check their use of reflection. We do not include annotations

on the system library in these numbers. All annotations are checked—they emit a static type error
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if their requirements are not met.

We observe that our benchmarks fall into three categories, depending on how they use

reflection. Clients of reflective APIs, such as Sparkle and ZipKit, have a very low (essentially zero)

annotation burden. In contrast, benchmarks that expose reflective interfaces, such as SCRecorder

and OAuth have a higher annotation burden. This is perhaps not surprising, since annotations are

the mechanism through which interfaces expose requirements to clients. In the middle are those

that use reflection in both ways: parts of OmniFrwks do expose a reflective API, but they also use

internal reflection quite significantly. Our application benchmarks also fall in this category: they

are structured into modular application frameworks and a core application client.

Over our entire benchmark suite we find that we need 0.10 annotations and 0.01 symbolic

summaries per reflective callsite (row “Combined,” columns “Total Annotations” and “Symbolic

Annotations”). In other words, on average, the programmer should expect to write one annotation

for every 10 uses of reflection and a single symbolic heap effect summary for every 100 uses of

reflection. Importantly, note that almost all of our annotations are extremely lightweight refinement

annotations, like respondsTo—only 0.05% of methods required a symbolic summary. Even there,

the summaries were very simple because they were on leaf methods, such as setters. This overall

low annotation burden highlights a key benefit of our optimistic mostly flow-insensitive approach:

whenever the reflection relationship is preserved flow-insensitively, no method summary is needed.

Contrast this to a modular flow-sensitive approach where a summary is needed on all methods to

describe their potential effects on reflection-related fields.

Improved precision. We verified reflection safety on our benchmarks using two config-

urations: a completely flow-insensitive analysis (no switching) and our mixed Fissile approach.

Table 4.3 compares the number of static type errors reported by each. “Check Sites” gives the

number of program sites where some annotation was checked; “FI Type Errors” indicates the number

of check sites where a flow-insensitive type analysis produces a type error; “Fissile Type Errors”

indicates the number of check sites where we emit a static type error and the corresponding percent

reduction from the flow-insensitive approach. Fissile type analysis sometimes significantly reduces
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Benchmark Check FI Fissile Successful Max. Analysis Time

Sites Type Type Errors Symbolic Mats. (Rate)
Errors (% Reduced) Sections

OAuth 11 7 2 (- 71%) 7 1 0.24s ( 5.3 kloc/s)
SCRecorder 15 2 0 (-100%) 2 2 0.28s (10.8 kloc/s)
ZipKit 28 0 0 (–) 0 0 0.10s (33.0 kloc/s)
Sparkle 40 4 1 (- 75%) 3 1 0.67s ( 7.9 kloc/s)
ASIHTTP 68 50 10 (- 80%) 59 2 0.50s (27.2 kloc/s)
OmniFrwks 259 82 74 (- 10%) 9 1 4.25s (37.8 kloc/s)

Vienna 207 59 38 (- 36%) 28 2 2.79s (13.4 kloc/s)
Skim 212 43 43 (- 0%) 0 0 2.49s (24.1 kloc/s)
Adium 648 87 70 (- 20%) 17 1 8.79s (20.1 kloc/s)

Combined 1488 334 238 (- 29%) 125 2 20.09s (23.0 kloc/s)

Table 4.3: Precision, Premises, and Performance.

the number of static type alarms (e.g., ASIHTTP)—and by 29% in our combined benchmark suite.

The number of Fissile static type alarms ranges from 0 (for SCRecorder and ZipKit) to

74 (for OmniFrwks, our most challenging benchmark). Pessimistically viewing our tool as a post-

development analysis, we manually triaged all the reported static type errors to determine if they

could manifest at run-time as true bugs (see discussion on bugs below) or otherwise are false alarms

due to static over-approximation. The single biggest source of false alarms were reflection calls

on objects pulled from collection classes. Retrofitting Objective-C’s underlying type system for

parametric polymorphism (such has been done for Java with generics) would directly improve

precision for this case. At the same time, as discussed below, the efficiency of Fissile makes it

feasible to instead consider it as a development-time type checker where a small number of code

rewritings or cast insertions are not unreasonable (especially if most casts would go away altogether

with generic types).

Premises. We designed Fissile type analysis around two core premises (Section 3.2): (1)

that most of the program can be checked flow-insensitively and (2) that even when a flow-insensitive

relationship between heap storage locations is violated, most other relationships on the heap remain

intact. Table 4.3 shows the result of our investigation into these premises on our benchmark suite.

“Successful Symbolic Sections” gives the number of times our analysis successfully switched from type
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checking to symbolic execution and back again, while “Max. Mats.” gives the maximum number of

materialized objects ever present in the explicit heap (this includes unsuccessful symbolic sections).

These results indicate that the number of times the analysis switches to symbolic execution and

back is quite low, even for large programs—Premise 1 appears to hold empirically. The maximum

number of simultaneous materializations is also low—Premise 2 holds as well empirically. Note

that we need more than the single materialization that would be possible with a non-disjunctive

flow-sensitive analysis.

Modular reflection checking at interactive speeds. Our two core premises hold,

enabling Fissile type analysis to soundly verify “almost everywhere” invariants quickly. The

“Analysis Time” column in Table 4.3 indicates the speed of our analysis on each benchmark, in both

absolute terms and in lines of code per second. Analysis times range from less than a second for our

smaller (around 1,000 lines of code) benchmarks to around 9 seconds (for our largest, about 180,000

lines of code). These results include only the time to run our analysis: they do not include parsing

or clang’s base type checker. Our goal with these measurements is to determine the additional

compile-time penalty a developer would incur when adding our analysis to her existing work-flow.

Expressed as a rate (thousands of lines of code per second), our analysis ranges from about 5 kloc/s

to around 38 kloc/s, with a weighted average of 23.0 kloc/s. In general, the larger benchmarks show

a faster rate because they amortize the high cost of checking system headers (which are typically

more than 100 kloc) over larger compilation units. The “Combined” row treats all of the benchmarks

together as a combined workload. Experiments were performed on a 4-core 2.6 GHz Intel Core i7

laptop with 16GB of RAM running OS X 10.8.2. We used clang 3.2 (trunk 165236) compiled in

“Release+Asserts” mode to perform the analysis and xcodebuild 4.6/4H127 to drive the build.

4.6.4 Alarms

Finding bugs. When running our tool on the Vienna benchmark, we found a real reflection

bug in a mature application:
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NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];

[nc addObserver:self selector:"autoCollapseFolder"

name:"MA_Notify_AutoCollapseFolder" object:nil];

Here an object registers interest in being notified whenever any code in the project auto-collapses a

folder. This notification takes the form of a reflective callback: the autoCollapseFolder method of

self will be called. Unfortunately, self has no such method. Our analysis detects this error and issues

an alarm. We reported the bug to the developers; they acknowledged it as a bug and fixed it1 .

Our tool was also useful in finding bugs in beginner Objective-C code. We used it to statically

detect run-time errors in 12 code snippets culled from mailing lists and discussion forums. These

novice reflective errors fell into three different categories: (1) typos in selector names, (2) intending

to reflectively call a method with a selector stored in a variable but instead passing in a constant

selector with the name of the variable, and (3) passing the wrong responder into a reflective call,

typically a field of self instead of self itself (even experts are susceptible this last kind of bug).

These results show that our tool can statically detect a common class of novice errors; they provide

evidence in favor of including reflective call checking with Fissile type analysis in the compiler.

False Alarms. The false alarm rate of our analysis ranges from 0% (for SCRecorder and

ZipKit) to as high as 30% (for OmniFrwks), shown in Table 4.3. We characterize the major sources

of these false alarms in Table 4.4. The two largest sources of false alarms are the tool’s handling

of library collections classes (the “Collections” column) and the inability to express dependent

type constraints that cross class boundaries (“Cross-Kind”). We will discuss these two sources

in more detail below. The other specific sources of false alarms are language constructs, such as

switch statements, that our prototype tool cannot handle (“Unhandled Construct”) and a missing

annotation on a reflective library class. The “Uncategorized” column gives the number of alarms

that we did not specifically categorize—typically because doing so would have required determining

all the targets of dynamically dispatched methods. It is possible that many of these uncategorized

alarms could be eliminated by extending the tool to either (1) make a whole-program assumption

or (2) support much richer method summaries and summary verification. Both of these extensions

1 https://github.com/ViennaRSS/vienna-rss/pull/85
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Benchmark Collections Cross-Kind Unhandled Missing Uncategorized

Construct Annotation

OAuth 2 (100%) - - - -
Sparkle - - - - 1 (100%)
ASIHTTP 1 (10%) - - - 9 (90%)
OmniFrwks 52 (70%) 4 (5%) 2 (3%) 1 (1%) 15 (20%)

Vienna 8 (21%) 4 (12%) - 0 26 (76%)
Skim 23 (53%) 14 (33%) 2 (5%) - 4 (9%)
Adium 41 (59%) - - - 29 (41%)

Combined 127 (53%) 22 (9%) 4 (2%) 1 (0%) 84 (35%)

Table 4.4: Characterization of false alarms under Fissile type analysis.

are possible—but not without losing the key benefits of our approach: modular analysis and

easy-to-write annotations.

Collections-Related False Alarms. The single biggest source of false alarms (53% on our

combined workload) are reflective calls over collections classes, in which collections reflectively call a

passed-in selector over all of the objects they contain:

[array makeObjectsPerformSelector:selector]

In this case, ideally, we would allow the user to refine the types of objects stored in the collection to

restrict them so that they respond to selector. Unfortunately, our implementation strategy of

building on Objective-C’s base type system is a hindrance in this case because Objective-C does not

support parametric polymorphism or generics. In order to take this approach we would first have to

implement generics for Objective-C—a large undertaking. We believe this would be a relatively

straight-forward (although labor intensive) process and would remove most of the collections-related

false alarms. (Clearly, we would have to implement it to be sure.)

Cross-Kind–Related Alarms. Another major source of false alarms (9%) comes from a

limitation of our approach to keeping types as simple as possible: we only permit checking of

relationships between storage locations “of the same kind”: that is, parameters refinements can only

refer to other parameters, locals refinements to other locals, and field refinements to other fields of

the same object. This means that we cannot express that, e.g., o->field responds to sel in the

following example drawn from ASIHTTP:



96

- (void)performSelector:(String *)sel onTarget:(Foo *)o {

[o->field performSelector:sel];

}

We similarly do not allow refinement relationships involving local variables whose address is taken

(as these are, effectively, on the the global heap). We believe that investigating these “cross-kind”

relationships—perhaps with some kind of ownership types—could be a fruitful area of future

research.

4.7 Related Work

Refinement Types. Dependent refinement types [46, 106] enable programmers to restrict

types based on the value of program expressions and thus rule out certain classes of run-time errors,

such as out-of-bounds array accesses. Extending dependent types to imperative languages [21, 99, 105]

has generally led to flow-sensitive type systems because mutation may change the value of a variable

referred to in a type. The high burden that flow-sensitive type annotations impose on the programmer

motivates sophisticated inference schemes [90], of which CSolve [91] is perhaps the closest work to

ours. In contrast to CSolve, which performs flow-sensitive checking of inferred flow-sensitive types

with at most one materialization, we use path-sensitive checking of flow-insensitive annotations [27]

and support arbitrary materialization with a disjunctive symbolic analysis, as opposed to proving

non-aliasing for one materialization (e.g., [3, 5, 41]). DJS [24] checks dependent refinements in

JavaScript, including the safety of dynamic field accesses—a problem similar to reflective method

call safety—but supports only single materialization and employs a flow-sensitive heap.

Symbolic Execution. Symbolic execution [66] is a precise path-by-path program explo-

ration technique that is primarily used in the context of bug finding. Because of today’s fast

SMT solving technology, there has been a recent explosion in techniques (e.g., [17, 48, 50, 93])

that have significantly improved the effectiveness of symbolic execution. The SMPP approach [54]

leverages SMT technology combined with abstract interpretation on path programs to lift a symbolic-

execution–based technique to exhaustive verification. This technique can be seen as applying a fixed
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one level of analysis switching between a top-level symbolic executor and an abstract interpreter

for loops. In contrast, our technique alternates between symbolic execution and type analysis on

demand (starting with a top-level type analysis). Our approach of switching between type checking

and symbolic execution is similar to the Mix system [64] for simple types. A significant difference is

that our approach enables the symbolic executor to leverage the heap-consistency invariant enforced

by the type analysis through a type-consistent materialization operation, which is critical for our

rich refinement relationship invariants, whereas the symbolic and type analyses in Mix interact

minimally with respect to the heap.

Object Invariants. The notion of temporary violations of an invariant is also reminiscent

of the large body of work on object invariants (see [39] for an overview). We remark on two

perspective differences that make Fissile complementary to this work. First, the points where the

invariant is assumed and where they may be violated is not based on the program structure (e.g.,

inside a method or not) but instead is based on the analysis being applied (i.e., type or symbolic).

Second, the symbolic analysis takes a more global view of the heap and decides specifically which

objects may violate the global type invariant. Issues like reentrancy and multi-object invariants

are not as salient in Fissile, but are possible at the cost of separate symbolic summaries or more

expensive, disjunctive analysis in certain complex situations.

Separation Logic. On materialized heap locations, our symbolic analysis works over

separation logic [9, 88] formulas. We define an on-demand materialization [92] that is universal in

separation-logic–based analyzers [8, 22, 38, 52, 73]. However, our materialization operator pulls out

heap cells that are summarized and validated independently using a refinement type analysis.

Bi-abductive shape analyses [19, 51] are modular analyses that try to infer a symbolic summary for

each method. Our analysis is modular using a fast, flow-insensitive type analysis with few uses of

symbolic summaries. Bi-abduction and our technique could complement each other nicely in that

(1) we do not require symbolic summaries on all methods—only those that violate type consistency

across method boundaries—and (2) bi-abduction could be applied to generate candidate symbolic

summaries.
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Reflection. Most prior work on reflection analysis has focused on whole-program reso-

lution: determining, at a reflective site, what method is called (either statically [16, 23, 103] or

dynamically [14, 47]). We address the problem of modular static checking of reflective call safety:

ensuring that the receiver responds to the selector, in languages with imperative update. Politz

et al. [86] describe a type system that modularly checks reflection safety by combining occurrence

typing [101] with first-class member names specified by string patterns. In contrast, we treat the

“responds-to” relationship as first-class (i.e., we permit the user to specify it with a dependent

refinement), allowing us to (1) check relationships between mutable fields and (2) express that

an object responds to two completely unknown (i.e. potentially identical) selectors. Livshits et

al. [72] assume reflection safety and leverage this assumption to improve precision of callgraph

construction.



Chapter 5

Type-Intertwined Framing with Gated Separation

In the previous chapter, I presented a type-intertwined symbolic analysis that could both

leverage and selectively violate a global type invariant by materializing and summarizing from what

we called the almost type-consistent heap. Even though this symbolic analysis reasoned about

the heap with separation-logic-style heap invariants, it could not soundly apply a key benefit of

separation logic: local reasoning about the heap via the frame rule. Unfortunately—as I described

in Section 3.3—the traditional frame rule is not sound for type-intertwined analyses.

In this chapter, I describe an extension of separation logic with a new form of spatial

conjunction—gated separating conjunction—that allows sound type-intertwined framing. In

Section 5.1, I formally characterize gated separating conjunction by defining its concretization and

providing key axiom schemata, with a particular focus on how it interacts with traditional separating

conjunction. In Section 5.2, I show how gated separation can be incorporated into a standard

separation-logic-based program logic (i.e., one without type-intertwining)—including how gated

separation interacts with heap allocation and mutation—and demonstrate that it obeys its own,

gate-separated version of the frame rule. Finally, in Section 5.3, I present a fully type-intertwined

separation logic, including a version of the gated frame rule that is sound for almost type-consistent

heaps.
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M ::= emp | â1 7� â2 | true | M1 NM2 | M1 /∗ M2 â ∈ SymbolicAddrs

(a) Memory formulas

stores σ ∈ Stores = Addrs ⇀fin Addrs
valuations V ∈ Valuations = SymbolicAddrs→ Addrs

(b) Concrete memory

σ �V M

[ ] �V emp [V (â1) 7→ V (â2)] �V â1 7� â2 σ �V true

σ �V M1 NM2 iff σ = σ1 ∪ σ2 for some σ1, σ2

where σ1 �V M1 and σ2 �V M2

and dom(σ1) ∩ dom(σ2) = ∅

σ �V M1 /∗ M2 iff σ = σ1 ∪ σ2 for some σ1, σ2

where σ1 �V M1 and σ2 �V M2

and dom(σ1) ∩ dom(σ2) = ∅
and rng(σ1) ∩ dom(σ2) = ∅

(c) Memory concretization (via model relation)

aftgateforegate

context
(d) Graphical representation of gated separation

Figure 5.1: Gated separating conjunction (/∗) is a non-commutative strengthening of separating
conjunction that additionally constrains the range of one sub-heap to be disjoint from the domain
of the other. Shaded regions indicate differences with standard separating conjunction (N).
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5.1 Gated Separation

Gated separating conjunction is a non-commutative strengthening of traditional separating

conjunction that separates a heap into two disjoint sub-heaps: a foregate and an aftgate. The

additional, crucial constraint is that that the foregate sub-heap must not directly point into the

aftgate sub-heap—although the aftgate may point back into the foregate. As we described in

Section 3.3, this stronger separation between foregate and aftgate enables a type-intertwined frame

rule to grant the type analysis access to the foregate portion of the heap and guarantee that the

aftgate remains untouched. In this section, we focus on gated separation itself—we will formally

describe the details of the type-intertwined frame rule in Section 5.3.3. Here, we define the syntax

and concretization of gated separating conjunction (Section 5.1.1) for a simpler formula language.

We describe key axioms for this operator, showing both its similarities and differences with standard

separating conjunction, as well as how the two conjunctive operators interact, in Section 5.1.2.

5.1.1 Memory Formulas and Concretization

Figure 5.1 describes the syntax and concretization of gated separation for a simple separation

logic in which addresses point only to single values. We employ this simple model of memory for

explanatory purposes—as we will show in Section 5.1.2, gated separation is also applicable to more

complex memory representations. Figure 5.1a gives the syntax of memory formulas: a formula can

be empty emp; a single heap cell â1 7� â2 with (symbolic) address â1 storing address â2; an arbitrary

heap true (which we include as the simplest memory formula that is not precise; or a separating

conjunction of sub-heaps M1 N M2. Lastly and most importantly, it can be a gated separating

conjunction M1 /∗ M2 (shown shaded, for emphasis), which separates a foregate M1 from an aftgate

M2. We use the symbol /∗ to connote that the aftgate sub-heap can directly point into the foregate

but not the other way around.

We define concretization for gated separation (Figures 5.1b and 5.1c) in terms of a model

relation. For our explanatory model of memory, a concrete store σ is a finite map from addresses to



102

addresses (which in this model are the only form of values) and a valuation (or interpretation) V

maps symbolic addresses to concrete addresses. Here a relation of the form σ �V M says that a

store σ is a model for the formula M under valuation V—so the empty formula emp is modeled by

the empty store; a singleton formula â1 7� â2 is modeled by a store with exactly one cell, mapping

the valuation of â1 to the valuation of â2; and true is modeled by any store. Our concretization of

separating conjunction is entirely standard: a store σ is a model for M1 NM2 iff σ is the union of two

stores σ1 and σ2 that are models of M1 and M2 respectively and that have disjoint domains—that

is, the addresses of the stores in σ1 and σ2 are distinct.

The concretization of gated separating conjunction (/∗) is a non-commutative strengthening of

that for normal separating conjunction: in addition to the usual disjoint domain restriction on the

store, we require that the range of the left sub-heap (the foregate) be disjoint from the domain

of the right sub-heap (the aftgate). In other words, the foregate must not directly point into the

aftgate (but pointers in the other direction are allowed). This “gate” between the foregate sub-heap

and aftgate sub-heap enables the type-intertwined frame rule—it protects the aftgate sub-heap

from type-intertwined interference (Section 5.3.3). Also crucially for local reasoning, the gated

separation constraint is not too strong: it does not restrict the foregate from reaching the aftgate

via a third disjoint sub-heap (which we sometimes call the context). We graphically illustrate the

gated separation constraint in Figure 5.1d. There, the normal arrows show allowed pointers, while

the crossed-out arrow indicates the dis-pointing relationship between foregate and aftgate.

5.1.2 Axioms of Gated Separation

Gated separating conjunction is similar in many ways to standard separating conjunction,

but it also differs in key respects. We give the key axiom schemata characterizing gated separating

conjunction—and in particular describing how it interacts with normal separating conjunction—in

Figure 5.2. Here we write M1 ⇒ M2 to mean that for all stores σ and valuations V , σ �V M1

implies σ �V M2.

Gated separating conjunction shares many properties with standard separating conjunction.
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(1) Neutral and Absorbing Elements

emp /∗ M ⇔M M /∗ emp⇔M

true /∗ M ⇒ true M /∗ true⇒ true

(2) Associativity

(M1 /∗ M2) /∗ M3 ⇔M1 /∗ (M2 /∗ M3)

(3) /∗ Weakening

M1 /∗ M2 ⇒M1 NM2

(4) Foregate Shrinking

(M1 NM2) /∗ M3 ⇒M1 N (M2 /∗ M3)

(5) Aftgate Shrinking

M1 /∗ (M2 NM3)⇒ (M1 /∗ M2) NM3

(6) Gate Partitioning

(M1 NM2) /∗ (M3 NM4)⇒ (M1 /∗ M3) N (M2 /∗ M4)

(7) N Strengthening

K[M1 NM2]⇒ K[M1 /∗ M2] if outptrs(M1) v domaddrs(K)

(8) Aftgate Strengthening

M /∗ (K[M1 NM2])⇒M /∗ (K[M1 /∗ M2]) if outptrs(M1) v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= N | /∗ separating conjunctions

outptrs : Formulas→ Pfin(SymbolicAddrs)> outptrs(â1 7� â2) , {â2}
domaddrs : Formulas→ Pfin(SymbolicAddrs)> domaddrs(â1 7� â2) , {â1}

addrs : Formulas→ Pfin(SymbolicAddrs)> addrs(â1 7� â2) , {â1, â2}

Figure 5.2: Axiom Schemata of Gated Separation
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Like N, the gated separation operator /∗ has emp and true as neutral and absorbing elements,

respectively (Schema 1). Also, like separating conjunction, the gated version is associative (Schema

2). Gated separation is similarly monotone with respect to implication. That is, it supports the

inference rule:

M1 ⇒M ′1 M2 ⇒M ′2

M1 /∗ M2 ⇒M ′1 /∗ M ′2
Unlike normal separating conjunction, however, the restriction gated separating conjunction

imposes on the left sub-heap differs from that imposed on the right—gated separation is not

commutative:

M1 /∗ M2 6⇒M2 /∗ M1

Extending separation logic with gated separating conjunction yields an ordered logic, in which the

exchange rule (for gate-separated conjuncts) is inadmissible. Note that rearranging N-separated

conjuncts within a given branch of a gated separating conjunction is allowed, by the monotone

property of /∗ and the commutativity of N.

Weakening Gated Separation. Gated separating conjunction can always be weakened

to normal standard conjunction (Schema 3). This property is evident from the definition given

in Figure 5.1c: the concretization of gated separating conjunction is identical to that for standard

separating conjunction, except that it adds the additional range restriction on the context. When

gated separating conjunction interacts with traditional separating conjunction, we can also always

selectively loosen the gated separation constraint. That is, it is safe push in /∗ over N to shrink

the foregate (Schema 4), shrink the aftgate (Axiom 5), or partition the gate (Schema 6) to create

two separate foregates and aftgates (the analogous pushing-out is not always safe).

Strengthening Standard Separation. Ordinary separating conjunction can sometimes

be strengthened to gated separating conjunction—but doing so requires additional auxiliary infor-

mation. Following the concretization, we can strengthen M1 N M2 to M1 /∗ M2 if we can prove

that the range in any concretization of M1 is disjoint from the domain of any concretization of M2.

Let us define an out-pointer of a memory M as an address in the range of (a concretization of)
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M that is not also in the domain of (that concretization of) M . Then to strengthen M1 NM2 to

M1 /∗ M2, it is sufficient to show that any out-pointer in M1 is not in the domain of M2 because

the domains of M1 and M2 are known to be disjoint by N. But from an abstraction perspective,

reasoning directly about address disequality is expensive and negates a key benefit of separation

logic.

Instead, Schema 7 shows an indirect way of deriving this condition. Conceptually, we can

strengthen N with /∗ if we can show that every out-pointer of the potential foregate must point

somewhere other than into the aftgate. We write outptrs(M) for an over-approximation of the

out-pointers of M in terms of symbolic addresses and domaddrs(M) for an under-approximation of

the domain addresses of M . For the moment, let us ignore over- and under-approximations, we will

explain the need for approximation in more detail a bit later. We define K to be a memory context

(i.e., a memory formula with a hole), write K[M ] for the syntactic plugging of M for the hole • in

K, and lift domaddrs(K) , domaddrs(K[emp]). So the side-condition of Schema 7 says that we can

strengthen N to /∗ if we can show that the out-pointers of the potential foregate M1 are addresses of

cells in the surrounding context K (and thus not addresses of cells in the potential aftgate M2).

Schema 8 shows the analogous way of deriving the gated condition to strengthen a N to a

/∗ by leveraging the stronger constraint of a gated separation in the surrounding context: if an

over-approximation of the out-pointers of M1 is fully contained in an under-approximation of the

addresses in either the domain or range of the outer foregate M (written addrs(M)), then M1 can

be made into the foregate for M2. This axiom is sound because any concrete address in either the

domain or the range of the outer foregate M is guaranteed not to be in the domain of M2 (which is

part of the outer aftgate).

As we will see in Section 5.2, it is often useful to allocate fresh storage in the aft of a top-level

gate (this is safe because fresh memory, by definition, cannot be pointed-to by any other memory),

initialize that storage, and then “evict” that storage into the foregate. Because the evicted storage

may point to un-evicted locations still in the aftgate, this eviction is not safe in general. In terms

of formulas, eviction is the replacing of M /∗ (M1 N M2) with (M N M1) /∗ M2, which is safe
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when outptrs(M1) v addrs(M). Note that eviction is derivable from Aftgate Strengthening (8),

Associativity (2), and /∗ Weakening (3).

Soundness. Unfortunately, we have to consider over- and under-approximations in the

above because of the presence of summaries in formulas. As a simple example of a summary, the

formula true represents any heap, so neither the outside symbolic addresses that the formula points

to nor the symbolic addresses of its domain can be syntactically determined. In this case, the

worst-case–scenario must be considered. That is, in Schemas 7 and 8, we should over-approximate

the set of out-pointers of the potential foregate M1 and under-approximate the set of addresses in

the surrounding context (respectively, K and M).

These address approximation functions return either a finite set of symbolic variables or >,

written Pfin(SymbolicAddrs)>. We can view this set Pfin(SymbolicAddrs)> as a join semi-lattice with

the usual lattice operations t and v defined as union and inclusion for finite subsets lifted with >.

We give meaning to the address approximation functions in the following soundness criteria:

Condition 3 (Soundness of Address Approximation Functions). The address approximation

functions outptrs, addrs, and domaddrs are sound if for all memory formulas M we have σ �V M

implies:

(1) rng(σ) \ dom(σ) ⊆ Joutptrs(M)KV ; and

(2) Jaddrs(M)KV ⊆ dom(σ) ∪ rng(σ); and

(3) Jdomaddrs(M)KV ⊆ dom(σ)

where J·KV : Pfin(SymbolicAddrs)> → P(SymbolicAddrs) is a concretization function for approxima-

tions of addresses defined as follows:

J>KV , SymbolicAddrs

J{â1, . . . , ân}KV , {V (â1), . . . , V (ân)}

Theorem 2 (The Axioms of Gated Separation are Sound). If outptrs, domaddrs, and addrs meet

Condition 3, then Axioms 1-7 of gated separation are sound.
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Proof. Straight-forward application of definition of concretization. By cases on K for axioms 7 and

8.

Logic Extensions. The form of these axioms are general enough that they are useful both

for more complicated concrete models of memory and for more expressive formulas abstracting

memory. We show in Section 5.3 how to extend them to operate over memory formulas that

summarize portions of the heap with types.

We note that our axioms do not require precise reasoning about the domain or range addresses

of a summary formula, which would be in conflict with the premise of summarization. Instead,

for the strengthening axioms (Schemas 7 and 8), we use approximations that are not difficult

to define for many commonly-used summary forms, in combination with what can derived from

separation and gated separation, respectively. These address approximation functions must simply

satisfy the soundness conditions (Condition 3). In the case of inductive summaries widely used in

separation-logic–based inductive shape analysis [9, 22], these address approximation functions can

be defined to be precise. For example, for the standard inductive predicate defining a singly-linked

list starting at â—list(â), we can define outptrs(list(â)) , ∅, as there is no out-pointer from the

summary. Similarly, for the standard singly-linked list segment from â1 to â2—ls(â1, â2)—we can

define precisely outptrs(ls(â1, â2)) , {â2}, as the only out-pointer of the list segment is the endpoint

â2.

5.2 Gated Separation in a Traditional Separation Logic

As we saw in the previous section, gated separation is a strengthening of separating conjunction

that can be used to show a local “dis-pointing” relationship between a foregate an aftgate. Ultimately,

we will show (Section 5.3.3) that the stronger constraint of gated separation allows us to recover

framing with type-intertwined analysis. In this section, we demonstrate the challenges of maintaining

gated separation in the context of a traditional (i.e., not type-intertwined) separation-logic-based

program logic that has been extended with gated separating conjunction. As we will see, the main
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identifiers
x, y, z global variables

commands
c ::= x = alloc y heap allocation

| x = 〈〉 write unit to global

| x = ∗y heap read
| ∗x = y heap write

| c1 ; c2 sequencing

Figure 5.3: A core imperative command language with globals and a mutable heap.

challenge is positively ensuring that heap mutation does not violate a gated separation constraint.

In particular, if the memory cell being updated is in any foregate, then we must make sure that

the value being written is not an address of a cell in the corresponding aftgates. At the same time,

gated separation enables a stronger form of local reasoning: it affords its own gated version of the

frame rule, which we discuss in Section 5.2.2.

5.2.1 Syntax

In Figure 5.3, I describe a core command language with a C-like mutable heap. For simplicity

of presentation, the only values are the unit value 〈〉 and pointers. We use this simpler language,

rather the reflection language from Chapter 4, because the core problem—reasoning about type

consistency—requires neither object types nor dependent types.

The language has global variables (x, y, z) only—there are no local variables. A command c

can be ‘x = alloc y’, which allocates a fresh cell on the heap, initializes it with the contents of y and

stores its address in x. The ‘x = 〈〉’ command writes the unit value to the global variable x, while

‘x = ∗y’ performs a heap read: it dereferences the address contained in y and stores the resultant

value into the global variable x. The ‘∗x = y’ writes to the heap: it updates the cell pointed-to by

the address in x to contain the value in y. The only control operator is sequencing ‘c1 ; c2’, which

performs c1 followed by c2. We assume additional control-flow statements can be defined in terms

of these atomic commands in the standard way.
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5.2.2 Purely Symbolic Static Semantics

We describe a static semantics for this core language in Figure 5.4. We write ` {M} c {M ′}

for the judgment form defining a standard partial-correctness Hoare triple. This judgement states “If

a concrete store σ satisfies M and an execution of command c from σ terminates, then the resulting

store satisfies M ′.” Here the key challenge is ensuring that heap writes of address do not cause the

written-to cell to point into a region that gated separation constrains it to not point into. Even

writes to global variables can invalidate gated separation because in our model of memory global

variables are cells on the heap (that is, global variable names act as addresses).

Heap Writes. A write ∗x = y involves explicitly accessing three cells: reading the cell for

y to get the value to write (the value cell y 7� v̂), reading the cell for x to find the cell to write

to (the pointer-read cell x 7� â), and writing to the cell pointed to by x (the write cell â 7� −); for

clarity, we highlight the value being written in bold v̂—although not italic, this symbol is still a

meta-variable. With gated separation, there is an implicit constraint on a conceptual fourth cell

if v̂ is an address: the cell whose address is the value being written (the constrained cell v̂ 7� −).

In particular, the constraint is that it cannot be in an aftgate behind the write cell. But proving

directly that the constrained cell is not any aftgate behind the write cell is at best a very expensive

global case analysis, negating a key benefit of separation logic. Instead, we follow the perspective

of the strengthening axioms (Schemas 7 and 8) from Section 5.1.2 in proving positively that the

constrained cell is in some other sub-heap.

The S-Heap-Write-FoundCellElsewhere-Com heap write rule is similar to Schema 7. In

order to write the value v̂, the rule requires that cells for the two global variables are on the heap

(i.e., x 7� â, y 7� v̂ ∈ M). Then, we can perform the write if we can decompose M to find two

sub-heaps M1 and K2[â 7� −] where (1) the cell pointed-to by the value being written (the potentially

constrained cell) is definitely in M1 (via checking v̂ ∈ domaddrs(M1)) and (2) constrained cell is

either in a foregate /∗ of or disjoint N from the write cell (â 7� −). This is sound because it ensures

that there is no way the constrained cell can be in a foregate with respect to the write cell. Note
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Heap writes ` {M} c {M}

S-Heap-Write-FoundCellElsewhere-Com
M = K1[M1 <K2[â 7� −]] y 7� v̂ ∈M x 7� â ∈M v̂ ∈ domaddrs(M1)

` {M} ∗ x = y {K1[M1 <K2[â 7� v̂]]}

S-Heap-Write-FoundValueInForegate-Com
M = K1[M1 /∗ K2[â 7� −]] y 7� v̂ ∈M x 7� â ∈M v̂ ∈ addrs(M1)

` {M} ∗ x = y {K1[M1 /∗ K2[â 7� v̂]]}

S-Heap-Write-InSame
M = K[â 7� − N y 7� v̂] x 7� â ∈M
` {M} ∗ x = y {K[â 7� v̂ N y 7� v̂]}

Heap reads

S-Heap-Read-FoundCellElsewhere-Com
M = K1[M1 <K2[x 7� −]] y 7� â ∈M â 7� v̂ ∈M v̂ ∈ domaddrs(M1)

` {M}x = ∗y {K1[M1 <K2[x 7� v̂]]}

S-Heap-Read-FoundValueInForegate-Com
M = K1[M1 /∗ K2[x 7� −]] y 7� â ∈M â 7� v̂ ∈M v̂ ∈ addrs(M1)

` {M}x = ∗y {K1[M1 /∗ K2[x 7� v̂]]}

S-Heap-Read-InSame
M = K[x 7� − N â 7� v̂] y 7� â ∈M
` {M}x = ∗y {K[x 7� v̂ N â 7� v̂]}

Allocation

S-Alloc-Com
M = K[x 7� −] y 7� v̂ ∈M â 6∈M
` {M}x = alloc y {K[emp] /∗ â 7� v̂ /∗ x 7� â}

Miscellaneous rules

S-WriteUnit-Com
M = K[x 7� −] v̂ 6∈M
` {M}x = 〈〉 {K[x 7� v̂]}

S-Seq-Com

` {M} c1 {M ′} ` {M ′} c2 {M ′′}
` {M} c1 ; c2 {M ′′}

Gated framing

S-GatedFrame-Com
` {Mfore} c {M ′fore}

` {K[Mfore /∗ Maft]} c {K[M ′fore /∗ Maft]}

Figure 5.4: The key challenge is ensuring writes do not violate gated separation.
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that it is unsound to permit the write in the remaining case where the constrained cell is in a

foregate with respect to the write cell (for then, the post-heap would look like K1[K2[x 7� v̂] /∗ M1]

and thus would explicitly violate gated separation). This rule can be read as global rule where M

encompasses the entire analysis state, though it also does not preclude framing out some context

(with only a loss of precision). At the same, it is unsatisfactory from a local reasoning perspective

because it would never apply if M contained only the three access cells. In essence, like Schema 7,

this rule never directly leverages gated separation.

The S-Heap-Write-FoundValueInForegate-Com heap write rule does leverage gated sep-

aration, in a manner analogous to Schema 8. This rule requires a similar decomposition to that

in S-Heap-Write-FoundCellElsewhere-Com. The key difference is that if M1 is gate separated

from the write cell we can safely write the value if it is any address in M1. Writing such a value is

safe because if the value is in the range of M1 then there is no way the constrained cell can be in

K2—otherwise, the gated separation constraint on the pre-state would not hold. If the value is in

the domain of M1 then the same argument as S-Heap-Write-FoundCellElsewhere-Com holds.

Similarly to that rule, the constraint in the other direction (where the value-to-write v̂ appears in

the aftgate with respect to the write cell) is not sound.

Finally, the S-Heap-Write-InSame rule says that a heap write is safe if the read-cell (cell

from which the value will be read) and the write cell (to the cell to which the value will be written)

are “adjacent” within the same “gate region”. Here the fact that the read-cell and write-cell are

adjacent means that it is allowable to perform the write regardless of the gating constraints in the

context K—otherwise, the gated constraint would be violated in the prestate.

Heap Reads. The rules for heap reads x = ∗y are very similar to those for heap writes—this

reflects the fact that in this core language, global variables act like addresses on the heap and thus

we can establish gate-separation-style dis-pointing relationships between global variable cells and

other portions of the heap. The S-Heap-Read-FoundCellElsewhere-Com rule is very similar to

S-Heap-Write-FoundCellElsewhere-Com except that for the read case, we must (1) have global

y pointing to an address that can be dereferenced and (2) ensure that updating the global variable
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cell for x with the read value v̂ does not violate a gated constraint. Each of the other two rules for

heap reads, S-Heap-Read-FoundValueInForegate-Com and S-Heap-Read-InSame take the same

for form as their heap write counterparts, except that the write-cells are now global variables and

the read-cells are addresses on the heap.

Allocation. Even though an allocation ‘x = alloc y’ writes to a global variable, it does

not require explicit reasoning to avoid violating gated separation because newly allocated cells are

always fresh. The S-Alloc-Com rule describes the effect of an allocation. This rule requires that

the heap can be broken up into a context K and a global variable cell for x where, anywhere on

the heap, the global variable y contains value v̂. Under these conditions, allocation creates a new

cell â 7� v̂ with fresh address â that is gate-separated from the rest of heap. Because this address is

fresh, there is no way that the rest of the heap in K can violate a gated separation constraint by

pointing into â 7� v̂ (K cannot point into x 7� â because local variable addresses cannot be stored on

the heap). There is also no way that a pointer (v̂) out of â 7� v̂ /∗ x 7� â can violate any existing

gated separation constraint inside K because the former is conjoined with K at the top level. The

fact that freshly allocated allocated storage cannot be pointed into by any pre-existing memory is a

useful invariant, as we discussed in Section 3.3.

Miscellaneous Rules. Like allocation, the ‘x = 〈〉’ command does not require reasoning

about gated separation. As the S-WriteUnit-Com shows, we can assign the unit value to a global

variable without regard to any other cell. In this case, we (somewhat imprecisely) treat the unit

value a fresh symbolic variable. Sequencing (S-Seq-Com) is entirely standard.

Gated Framing. For standard separating conjunction, the frame rule enables local rea-

soning about the heap by allowing an analysis or program logic to “frame out” a portion memory

that is irrelevant to the command of interest. The analysis can then analyze the command on the

command’s footprint and be guaranteed that (1) the framed-out portion of memory could not have

been accessed by the command and (2) that the portion of the heap represented by the post-state

footprint is disjoint from the frame.

For modular reasoning with gated separation, it would be similarly advantageous to frame
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out the aftgate, analyze a command with respect to the foregate alone, and be guaranteed that (1)

command has not altered the contents of the aftgate and (2) that the new foregate is prevented

from directly pointing into the aftgate. Ultimately, the goal is to support a global type summary in

the foregate such that for a memory gate-split into Mfore /∗ Maft we know that the global summary

cannot “reach” cells in Maft through cells in Mfore. Then, we can analyze a command with respect

to the foregate footprint Mfore—even permitting arbitrary materialization and reduction from the

global summary in Mfore—with type-intertwined framing. We discuss gated separating with global

summaries in Section 5.3.3—here we show that gated separation supports its own version of the

frame rule in a standard separation logic.

The S-GatedFrame-Com rule in Figure 5.4 describes the frame rule for gated separation in

separation logic. This rule requires that the analysis can decompose the heap into three components:

a context K, a foregate Mfore, and an aftgate Maft. Then, the analysis can determine the result of

executing a command c in Mfore alone and be guaranteed that it can replace Mfore with M ′fore in

the pre-state to obtain a valid post-state over the entire heap—and in particular, that the doing

so will not violate a gated separation constraint. This rule shows that, like standard separating

conjunction, gated separating conjunction admits local heap reasoning.

Example 1 (Applying the Gated Frame Rule). Consider the read command x = ∗x (like following

a link of a linked list). As above, we highlight the value being written in bold. In the pre-state,

we have that the memory from variable y cannot be reached via the memory from variable x:

for example, the gated separation /∗ implies that â2 6= â3 (in addition to â1 6= â3 from ordinary

separation). We frame out the memory from variable y (shown shaded).

` {x 7� â1 N â1 7� â2} x = ∗x {x 7� â2 N â1 7� â2}

` {(x 7� â1 N â1 7� â2) /∗ (y 7� â3 N â3 7� â4) } x = ∗x {(x 7� â2 N â1 7� â2) /∗ (y 7� â3 N â3 7� â4) }

By the gating constraint in the pre-state, no value obtained by dereferencing in the memory from

variable x can ever alias â3, for instance, and thus the gating constraint holds in the post-state.

Note that if we are not concerned about type-intertwined framing (Section 5.3), we can recover the
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standard frame rule by replacing /∗ with N in the above.

5.2.3 Language Requirements for Gated Framing.

Like with the frame rule for ordinary separation, gated framing cannot be applied to arbitrary

commands. A command that havocs the entire heap, for example, cannot be supported with either

the ordinary frame rule or the gated frame rule. For the ordinary frame rule, the command must

not dereference the framed out portion of the heap. In other words, it must be able to “do the same

thing” when evaluated on the footprint alone as when evaluated on the footprint and the frame. For

the gated frame rule, the additional constraint is that the command must not be able to fabricate

pointers “out of nothing” that happen to be addresses in the framed-out aftgate. In essence, the

gate-frameable condition is that the command must be “oblivious” to the existence of the framed

out portion of the heap, which is entirely reasonable in the context of well-behaved languages, such

as Java and JavaScript (either statically or dynamically typed). For languages where fabrication

of pointers is possible, such as C, one would have to ensure these properties for a given command

statically as part of the analysis.

Concrete Semantics. I give the semantics for the core command language from Sec-

tion 5.2.1 as a big-step semantics in Figure 5.5 and show (Lemma 10) that the language meets the

requirements for gated framing. For simplicity in presentation, we consider global program variables

to also be addresses (i.e., Vars ⊆ Addrs), that is, program variables in memory formulas conceptually

stand for their respective allocation addresses. Here, a judgment of the form ` 〈σ〉 c 〈σ′〉 says that

in pre-state σ command c big-step evaluates to post-state r where r is either a concrete post-state

σ′ or an error state err.

These rules are quite standard. The notation σ[a : v] indicates the result of updating a store

σ with a binding from address a to value v. The C-WriteUnit-Com rule, for example, says that the

effect of command writing the unit value 〈〉 to a global variable x should be to update the binding

for x in the prestate store with the unit value (recall that we treat global variables as a special class

of addresses on the heap). The C-Alloc-Com rule describes allocation: it says that an allocation ‘x
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` 〈σ〉 c 〈r〉

C-WriteUnit-Com
x ∈ dom(σ) σ′ = σ[x : 〈〉]

` 〈σ〉x = 〈〉 〈σ′〉

C-Alloc-Com
x ∈ dom(σ) a 6∈ σ σ′ = σ[a : σ(y)][x : a]

` 〈σ〉x = alloc y 〈σ′〉

C-Heap-Read-Com
x ∈ dom(σ) σ′ = σ[x : σ(σ(y))]

` 〈σ〉x = ∗y 〈σ′〉

C-Heap-Write-Com
σ′ = σ[σ(x) : σ(y))]

` 〈σ〉 ∗ x = y 〈σ′〉

C-Seq-Com

` 〈σ〉 c1 〈σ′〉 ` 〈σ′〉 c2 〈σ′′〉
` 〈σ〉 c1 ; c2 〈σ′′〉

Error Cases

C-WriteUnit-Err-Com
x 6∈ dom(σ)

` 〈σ〉x = 〈〉 〈err〉

C-Alloc-Err-Com
x 6∈ dom(σ) or y 6∈ dom(σ)

` 〈σ〉x = alloc y 〈err〉

C-Heap-Read-Err-Com
x 6∈ dom(σ) or y 6∈ dom(σ) or σ(y) 6∈ dom(σ)

` 〈σ〉x = ∗y 〈err〉

C-Heap-Write-Err-Com
x 6∈ dom(σ) or σ(x) 6∈ dom(σ) or y 6∈ dom(σ)

` 〈σ〉 ∗ x = y 〈err〉

C-Seq-Err1-Com

` 〈σ〉 c1 〈err〉
` 〈σ〉 c1 ; c2 〈err〉

C-Seq-Err2-Com

` 〈σ〉 c1 〈σ′〉 ` 〈σ′〉 c2 〈err〉
` 〈σ〉 c1 ; c2 〈err〉

Figure 5.5: Concrete Semantics.

= alloc y‘ should add a fresh address a to the store, binding it to whatever value is contained in

global variable y, and update x’s binding to contain the new address. We describe heap reads ‘x =

*y’ in rule C-Heap-Read-Com. This rule looks up the address stored in global variable y and then

writes the value stored at that address into global variable x. Heap writes ‘*x = y’ analogously

look up the value stored in global y and store it in the the cell for the address stored in global

x. Finally, C-Seq-Com shows the standard sequence rule. We also—as is standard for a big-step

semantics—have explicit error cases. These cases cover ways in which a non-error rule could fail to

apply. The C-Alloc-Err-Com rule, for example, applies both when x is not in the domain of the

store σ and also when σ(y) does not exist. The rest of the error rules cover the analogous error

versions of the success cases.

The following lemma shows that the concrete semantics given in Figure 5.5 are gate-frameable:
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Lemma 10 (Gate-Frameable Concrete Semantics.): If C :: ` 〈σfore /∗ σaft〉 c 〈r〉 then
` 〈σfore〉 c 〈rfore〉 and

(1) If r 6= err then either

(a) rfore = err or

(b) rfore = σ′fore where r = σ′fore /∗ σaft;

and
(2) if r = err then rfore = err.

Proof. By induction on the derivation of C.

Here we overload /∗ so that σ1 /∗ σ2 means that the domains of σ1 and σ2 are disjoint, as are the

range of σ1 and the domain of σ2. This lemma is crucial to showing that the gated frame rule

(Figure 5.4) is sound.

5.3 Type-Intertwined Separation Logic

As illustrated in Section 3.3, framing with standard separation is unsound with materialization

from a global summary. In our case, we wish to materialize from a global type invariant but also

apply framing for modular reasoning during symbolic analysis. In this section, we show how gated

separation enables a combination of global materialization and framing by, in essence, constraining

the “globalness” of the global summary. The result is a truly type-intertwined separation logic,

including both a global summary of an almost type-consistent heap and local type-intertwined

reasoning via a frame rule for gated separating conjunction. We describe the global type invariant—

a constraint on reachability from a set of program variable roots—and type checking rules in

Section 5.3.1. In Section 5.3.2, we describe the type-intertwined symbolic state and show the

relationship between the global almost type-consistent summary and the types of values. Finally,

in Section 5.3.3, we provide a static semantics for type-intertwined separation logic and show how

its treatment of allocation and gated framing differ from the rules for traditional separation logic

extended with gated separation.
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types
T ::= unit | ref T types

Γ ::= · | Γ[x : T ] type environments

Figure 5.6: Types for the command language.

5.3.1 Type Checking the Command Language

We designed the command language from Section 5.2 to be typed with a very simple type

system.

Types. We describe the types for this simple system in Figure 5.6. A type T can be either

the unit type ‘unit’ (whose single value is 〈〉) or a type ‘ref T1’, which is the type of a mutable

pointer to a value of type T1. These types are simple but still rich enough to express an inductively

defined constraint on the reachable heap. As is standard, a type environment Γ is a finite mapping

from global variable identifiers x to types T .

The concretization of a type yields a set of pairs of a constrained store and value (in a similar

fashion to the concretization of base types in the reflection language described in Section 4.2.2).

γ : Types→ P(Stores× Values)

γ(unit) ,
{

(σ, v)
∣∣ v is 〈〉

}
γ(ref T ) ,

{
(σ, a)

∣∣ (σ, σ(a)) ∈ γ(T )
}

The concretization of a type environment constrains yields a set of stores where each binding the

type environment constrains the heap and the of value stored in the global variable (address) with

the binding name.

γ : TypeEnvironments→ P(Stores)

γ(Γ) ,

{
σ

∣∣∣∣ (σ, σ(x)) ∈ γ(T ) for all x : T in Γ; and
rng(σ) ∩ Vars = ∅.

}
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T-Write-Unit-Com
Γ(x) = unit

Γ ` x = 〈〉

T-Alloc-Com
Γ(x) = ref T Γ(y) = T

Γ ` x = alloc y

T-Heap-Read-Com
Γ(x) = T Γ(y) = ref T

Γ ` x = ∗y

T-Heap-Write-Com
Γ(x) = ref T Γ(y) = T

Γ ` ∗x = y

T-Seq-Com

Γ ` c1 Γ ` c2

Γ ` c1 ; c2

Figure 5.7: Type checking rules for the command language.

We also enforce the constraint that even though global variables act as addresses, the addresses

themselves can never be stored on the heap. This is a reasonable constraint: the command language

does not have an addressof (&) operator.

Type checking rules. We give rules for typechecking the command language in Figure 5.7.

These rules are quite standard. The key property of this type system is that it flow-insensitively

constrains the reachable heap (and only the reachable heap) from a given typed storage location

(either a global variable or a dynamically allocated cell on the heap) to consistent with the location’s

declared type.

The T-Write-Unit-Com rule says that the unit literal 〈〉 can be written to a global variable x

if x has type ‘unit’ in the type environment Γ. Note that even though global variable locations are

mutable and concretize to heap cells, we do not give them a ref type—such types are reserved for

addresses of dynamically allocated memory. We type allocation with the T-Alloc-Com rule, which

says that the address of a newly allocated cell that has been initialized with a value of type T can be

stored in a global variable of type ‘ref T ’. The T-Heap-Read-Com and T-Heap-Write-Com describe

typing of heap reads and writes, respectively. The value read from a dynamically allocated address

of type ‘ref T ’ can be safely placed in a global variable of type T , while the a value read from a

global variable of type T can be written to an address of type ‘ref T ’. Finally, the T-Seq-Com shows

that type environments are flow-insensitive: two sequenced sub-commands must be well-typed with

respect the same type environment Γ.



119
symbolic state
M ::= · · · gated memories

| ok global type invariant summary

Γ̂ ::= · | Γ̂[v̂ : T ] value typing

Σ ::= M ¦ Γ̂ state
Π ::= Σ | Π ∨ Π | false symbolic paths

Figure 5.8: Type-intertwined symbolic state.

5.3.2 Type-Intertwined State

Type-intertwined separation logic requires a richer abstract state (presented in Figure 5.8)

than that for the traditional separation logic (Section 5.2). For type-intertwined separation, we

extend memory formulas M with the ok atomic assertion, which represents a portion of the heap that

is not immediately type-inconsistent: that is, the values contained in storage locations summarized

in ok are at worst transitively type-inconsistent (Section 3.2) with their location’s declared types.

In contrast with the standard separation logic presented in Section 5.2—where the abstract

state consisted solely of a symbolic memory M—in type-intertwined separation logic a symbolic

state Σ consists of a pair M ¦ Γ̂ of a memory M and a value typing Γ̂. As we saw in the reflection

symbolic analysis presented in Section 4.3.1, a value typing maps symbolic values v̂ to the promised

type T of a value—the type that the value will have when its entire reachable heap is type-consistent.

Unlike the reflection analysis, here the promised types do not have refinements so they do not

express relationships with other symbolic values. We also allow disjunctive symbolic paths Π,

similar to the reflection analysis. Here, however, these disjunctions result not from branching in

the command language (there is none) but—as we will see—arise from the potential for multiple

aliasing relationships when materializing from ok.

Concretization. Like concretization in the reflection analysis—and unlike concretization

for traditional separation logic—a concretization in type-intertwined separation logic yields a

valuation V mapping symbolic value to concrete values and two disjoint stores, one for the almost

type-consistent ok portion of the heap and one for the explicitly materialized portion.
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γ : SymbolicMemory→ P(Valuation× Store× Store)

γ(emp) ,
{

(V, σok, σmat)
∣∣ σok = · and σmat = ·

}
γ(ok) ,

{
(V, σok, σmat)

∣∣ σmat = ·
}

γ(â 7� v̂) ,
{

(V, σok, σmat)
∣∣ σok = · and σmat = [V (â) 7→ V (v̂)]

}

γ(M1 NM2) ,

(V, σok
1 N σok

2 , σmat
1 N σmat

2 )

∣∣∣∣∣∣
(V, σok

1 , σmat
1 ) ∈ γ(M1) and

(V, σok
2 , σmat

2 ) ∈ γ(M2) and
exists σ where σ = σok

1 N σok
2 N σmat

1 N σmat
2



γ(M1 /∗ M2) ,

(V, σok
1 /∗ σok

2 , σmat
1 /∗ σmat

2 )

∣∣∣∣∣∣
(V, σok

1 , σmat
1 ) ∈ γ(M1) and

(V, σok
2 , σmat

2 ) ∈ γ(M2) and
exists σ where σ = (σok

1 N σmat
1 ) /∗ (σok

2 N σmat
2 )



Here, the concretizations of emp and ok are as in the reflection analysis: emp constrains both

the almost type-consistent portion of the store and the materialized store to be empty, while ok

allows any almost type-consistent store but requires no storage be materialized. The concretization

of a single cell â 7� v̂ requires that storage for that cell exist in materialized store and requires the

almost type-consistent store to be empty. The concretization of the standard separating conjunction

of memories M1 NM2 is as in the reflection analysis: each of the components in the concretizations

of the sub-heaps must be disjoint, as must their combination. Finally, and most importantly, the

concretization of a gated separation of memories M1 /∗ M2 constrains the almost type-consistent

portions of the concrete heaps to be gated separated, the materialized portions of the concrete

heaps to be gate separated, and the standard conjunction of the heaps concretized from M1 to be

gated separated from that for those from M2. That is, we require that all memory represented by

M1 is gate separated from the memory represented by M2, regardless of whether it is in the almost

type-consistent store or the materialized store.

The concretization of a value typing Γ̂ constrains both stores (almost type-consistent and

materialized) and the valuation—again, this is analogous to value typings in the reflection analysis.

γ : ValueTyping→ P(Valuation× Store× Store)
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γ(Γ̂) ,

(V, σok, σmat)

∣∣∣∣∣∣
for each v̂ : T in Γ̂

(σok, σmat, V (v̂)) ∈ γ̂(T )


For each binding in the value typing, concrete value for the binding and the stores must be in the

concretization (̂γ) of the bound type. Note the decorated γ̂—this is the symbolic concretization

of types (described below) rather than the concretization of types in the types domain given in

Section 5.3.1.

The symbolic concretization γ̂ of a type in type-intertwined separation logic differs from the

concretization of a types in the type domain in a similar fashion to base types in the reflective

intertwined analysis: in the symbolic domain, the concretization yields both an almost type-

inconsistent store and an materialized store:

γ̂ : Types→ P(Store× Store× Value)

γ̂(unit) ,
{

(σok, σmat, v)
∣∣ v is 〈〉

}
γ̂(ref T ) ,

{
(σok, σmat, a)

∣∣∣∣ σok
N σmat(a) = v and

if a ∈ dom(σok) then (σok, σmat, v) ∈ γ̂(T )

}

The concretization of the unit type yields the unit value 〈〉 and makes no constraint on

either the almost type-inconsistent or the materialized heap. It is in the symbolic concretization of

reference types that the difference between the materialized heap and the almost type-inconsistent

ok heap is relevant. The concretization of a reference type ‘ref T ’ yields an address that is the store

(in either σok or σmat) and, more importantly, if the storage for a is in σok then the value and the

two heaps are constrained by the concretization of the type T .

The concretization of a symbolic state Σ yields a set of stores:

γ : (SymbolicState)→ P(Store)

γ(M ¦ Γ̂) ,
{
σok

N σmat)
∣∣∣ Exists V where (V, σok, σmat) ∈ γ(M) ∩ γ(Γ̂)

}
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Here, the resultant concretized stores each consist of the combination of the almost type-consistent

and materialized heaps, each of which are constrained by the state’s symbolic memory and the value

typing.

The concretization of a symbolic path is the union of its constituent paths:

γ : (SymbolicPath)→ P(Store)

γ(Σ) ,
{
σ
∣∣ σ ∈ γ(Σ)

}
γ(Π1 ∨Π2) , γ(Π1) ∪ γ(Π2)

γ(false) , ∅

Here, the concretization of a symbolic path consisting of a symbolic state is the concretization of

that state. The concretization of the disjunction of two paths is the union of the concretizations of

those paths, and the concretization of the false path is empty.

5.3.3 Static Semantics of Type-Intertwined Separation Logic

As we have seen, the key difference between traditional separation logic and type-intertwined

separation logic is the presence of (1) the atomic formula ok representing the almost type-consistent

heap and (2) the Γ̂, which determines what it means for a value to be consistent with its type.

We provide a system of inference rules for type-intertwined separation logic in Figure 5.9.

Most of the inference rules of traditional separation logic (given in Figure 5.4)) can be mechanically

converted to type-intertwined rules by extending the abstract state to consist of a pair M ¦ Γ̂ of a

memory M and a value typing Γ̂ rather than just a memory. Rather than provide those again here,

we note that all but S-GatedFrame-Com can be modified to thread the additional state component

in the usual way. Here, we focus on the additional complications required for type-intertwined

reasoning: (1) ascribing types to newly-allocated storage, (2) the gated frame rule in the presence

of a global ok summary; (3) materializing from and summarizing to ok with the possibility of gated

separation; and (4) handoff to types.
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` {Σ} c {Π}

TI-Sep-Ascribe

` {K[ok /∗ â 7� v̂] ¦ Γ̂[â : ref T ]} c {Π}
` {K[ok /∗ â 7� v̂] ¦ Γ̂} c {Π}

TI-Sep-GatedFrame

` {Mfore ¦ Γ̂} c {M ′fore ¦ Γ̂′}
` {Mfore /∗ Maft ¦ Γ̂} c {M ′fore /∗ Maft ¦ Γ̂′}

TI-Sep-Materialize

Σ = K[ok NM1] ¦ Γ̂ â ∈ addrs(M1) Γ̂(â) = ref T

Π =

K[ok NM1 N â 7� v̂] ¦ Γ̂′ ∨
∨

ŷ∈mayaliasΣ(â)

Σ|â=ŷ

 Γ̂′ = Γ̂[v̂ : T ] v̂ 6∈ Σ ` {Π} c {Π′}

` {Σ} c {Π′}

TI-Sep-Summarize

Γ̂(â) = ref T Γ̂(v̂) = T ` {K[ok NM1] ¦ Γ̂} c {Π}
` {K[ok NM1 N â 7� v̂] ¦ Γ̂} c {Π}

TI-Sep-Types-Handoff

Γ = Γ̂ ◦M Γ ` c Γ̂′ ◦M ′ = Γ where M ′ is 1-1

` {ok NM ¦ Γ̂} c {ok NM ′ ¦ Γ̂′}

` {Π} c {Π′}

TI-Sep-Cases
` {Σi} c {Πi} for all i

` {
∨
i

Σi} c {
∨
i

Πi}

Figure 5.9: Type-Intertwined Separation Logic.

Allocating and ascribing types to storage. The S-Alloc-Com for traditional separation

logic allocates new gate-separated storage, but it does not provide a value typing for the fresh

address. We allow a type-intertwined separation logic to ascribe any referenced type ‘ref T ’ to an

address that is gated-separated from the ok global summary, as described in TI-Sep-Ascribe. This

rule could potentially apply more generally than to just newly-allocated storage—it says that if

the analysis can determine that there are no direct pointers from the almost type-consistent heap

summarized by ok into materialized storage, then the type of that storage can be safely changed

without violating the expectations of storage in ok. Note that T does not have to be the type of
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the value v̂ currently stored at address â; the value typing merely expresses the promise that to be

summarized (see below) into ok the cell must eventually contain a value of type T .

The gated frame rule with ok. The gated frame rule for type-intertwined separation

logic (TI-Sep-GatedFrame) differs crucially from the gated version of the frame rule we described

for non-type-intertwined separation logic (Section 5.2.2) in that it requires the gate separating the

foregate Mfore from the framed-out aftgate Maft to be at the top level of the spatial formula. This

restriction is required because the value typing Γ̂ allows access (via materialization and handoff,

described below) to the entire heap reachable from the almost type-consistent summary ok—which

may be present in the foregate Mfore. For a gate at the top level, the local “dis-pointing” relationship

between the foregate and aftgate implies global unreachability, which prevents type-intertwined

interference in languages satisfying requirements of gate-frameability (Section 5.2.3). In practice,

this limits framing out to newly allocated (rather than materialized) memory, although there may

be mechanisms other than allocation to introduce gated separation.

Materializing and summarizing with gated framing. As we saw in Section 3.2 and

Section 4.4, a type-intertwined analysis can materialize and summarize storage from the almost

type-consistent summary ok to selectively violate and restore global type invariants and enable

local, alias-aware reasoning. In the reflection symbolic analysis—which did not support framing out

memory—we had to consider the possibility that the newly materialized storage could in fact alias

with any existing already materialized storage. This possibility arose because type summaries of

storage do not prevent accessing the same storage via different access paths. Framing out memory

complicates materialization because we must consider potential aliasing with not just memory on

the explicit, already-materialized heap but also memory that has been framed out. Fortunately,

framing with gated separation—and a small tweak to the rule for materialization—can rule out this

potential aliasing. We give this updated materialization rule in TI-Sep-Materialize. It says that we

can materialize explicit storage for a symbolic address â with type ‘ref T ’ if we disjunctively account

for all possible aliasing relations between â and other addresses ŷ in the state Σ. In the disjunct

where we add storage for â to the memory, we also update the value typing Γ̂ to indicate that the
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fresh symbolic value v̂ has promised type T . With these disjuncts constructed, abstract execution

can continue on a path-by-path basis (rule TI-Sep-Cases). Materialization in type-intertwined

separation logic closely follows the M-Materialize auxiliary rule described for the reflective analysis

presented in Section 4.4.3, although it is simpler here because the command language has neither

objects nor dependent types. The crucial difference required for safe framing is the constraint

(shown highlighted) that the materialized address must be somewhere in either the domain or range

of M1. This restriction ensures that the address â could not possibly alias with memory that has

already been framed out—otherwise the gated separation required for type-intertwined framing

would not have held. Summarizing proceeds in the opposite direction (rule TI-Sep-Materialize). It

requires that the summarized address â be of reference type ‘ref T ’ and that the value v̂ stored have

promised type T . This is completely analogous to M-Summarize in Section 4.4.4.

Handoff The TI-Sep-Types-Handoff rule describes handoff to the type checker. This rule

is analogous to the Sym-Type-Handoff from Section 4.4 except that here we consider a command

language (rather than expressions) and we do not have dependent types. To switch to type checking,

we require that the memory contain ok and that the non ok portions form a N-separated map from

addresses to symbolic values. Then, we can type check the command in a type environment Γ

constructed by composing the value typing Γ̂ with the memory. If the command type checks in

that environment, then the resultant post-state can be described by a symbolic state consistent

with the type environment and where the memory mapping is 1-1 (to make no assumptions about

aliasing). The key thing to note about this rule is that it allows a switch to typechecking if the

parts of the heap that are immediately type inconsistent have already been gate-framed out. This

combination of framing and handoff enables checking of examples like that presented in Section 3.3,

which requires a switch to types before the global type invariant has been restored for the entire

heap.
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5.4 Related Work

Perhaps the closest work related to gated separation is that by Petersen et al. [83] on a type

theory for data layout and memory allocation. This approach employs an ordered type theory,

based on ordered logic [85], in which bindings in a typing context can be neither dropped nor

reordered—that is, like gated separating conjunction, their type system does not admit the arbitrary

exchange rule. With this approach, they can reason about safe allocation and initialization of

memory in the presence of a copying garbage collector. The key to this process is reasoning about

newly allocated memory, which is initialized in an ephemeral region of memory called the frontier

and then conceptually moved (by bumping of an allocation pointer) into the main heap. This

reasoning is reminiscent of our approach to treating fresh memory as initially gate-separated from

the rest of memory and then summarizing it into the almost-consistent ok heap—although we do

not need to consider adjacency of storage, as they do.

Ahmed and Walker extend Hoare logic for a typed assembly language with an ordered logic

for reasoning about typed stack allocation [4] that reasons about adjacency as well as separation and

aliasing. Like our type-intertwined separation logic with gated separation, their logic contexts are

trees (bunches [62, 79]) rather than lists. Their contexts allow nested alternation between ordered

(non-commutative) and un-ordered (commutative) separators—similarly to our gated and traditional

separating conjunction, respectively. They manage this tree structure with a similar decomposition

into a context with a hole as we do in Section 5.1.2, but do not have to reason about whether an

imperative update can violate tree-structured constraints (like we do with gated separation). Walker

gives a broad introduction to the properties of substructural type systems in [104].



Chapter 6

Measuring Enforcement Windows with Symbolic Trace Interpretation

As described in Chapter 2, the motivation for type-intertwined separation logic came from

the results of a series of experiments that I performed to investigate how developers ensure that

their programs are free from null pointer exceptions. This chapter describes the measurement

framework used in those experiments—symbolic trace interpretation—and proposes the philosophy

of data-driven static analysis design that inspired our work on type-intertwined separation logic. The

contents of this chapter originally appeared in my ISSTA 2012 paper [29] “Measuring Enforcement

Windows with Symbolic Trace Interpretation: What Well-Behaved Programs Say”, which was joint

work with Bor-Yuh Evan Chang, Amer Diwan, and Jeremy G. Siek. It has has been lightly edited

and reformatted.

6.1 Introduction

In the 1990s, a large program had hundreds of thousands of lines of code. By today’s standards,

such a program is tiny! For example, Windows Vista has a code base of 60 million lines of code

created by ∼3,000 developers [12]. It is clear that no programmer can fully understand every line

of code and how they relate to each other in such a large system. Rather, programmers rely on

“isolation boundaries” following from modular design to reason about their code. These isolation

boundaries do not always follow explicit modularization (e.g., methods, classes, and packages) but

can be implicit (e.g., around groups of tightly coupled methods).

Static analysis tools, which help find bugs in software, can take advantage of isolation
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1 o = new O(); . . .
2 if (o != null) { . . . } . . .
3 if (o != null) {

4 . . .
5 x = o.f;

6 . . .
7 }

Figure 6.1: A potential validation scope.

boundaries to scale to real-world programs. Can we find and leverage the implicit isolation

boundaries created by software developers to improve static analysis? To attack this question, we

define the concepts of a validation scope and an enforcement window in this paper. We then

create a framework for measuring enforcement windows with dynamic analyses. At a high level, a

validation scope captures a property-based isolation boundary implied by the code itself, and an

enforcement window is a dynamic approximation of a validation scope. We define these concepts in

detail in the remainder of this introduction.

One of our key insights is that proving a property about a particular operation does not

always require the entire program. In particular, we define a validation scope as a part of the

code where if we reason operationally (e.g., directly by analyzing the code precisely), then we can

prove a property of interest without any assumptions about its context. As an example, consider the

Java fragment in Figure 6.1 and what it takes to validate that the read of o.f cannot dereference

null. The highlighted code fragment between the null check on line 3 and the dereference o.f on

line 5 (shaded and marked with vertical lines) may be a sufficient validation scope to prove that

o.f does not dereference null (depending on what is on line 4).

Intuitively, a validation scope captures an implied isolation boundary with respect to a

potential fault based on the enforcements inserted in the code. We use the term enforcement

to refer generically to an operation that establishes or checks the property of interest (e.g.,

o != null). Validation scopes get at an important aspect of static analysis design and program

reasoning: on one hand, a static analysis can leverage validation scopes to limit the precision use



129

outside validation scopes, while on the other hand, a static analysis must be able to reason precisely

enough inside the scope to capture the property of interest. In this paper, we propose techniques

to identify potential validation scopes and ways to measure their “size” or “complexity” before

designing a static analysis.

To do so, another key insight is that analyzing well-behaved executions can provide evidence

for validation scopes. In particular, given a safety property and a non-faulting trace (i.e., one that

does not violate the property of interest), there is an event that establishes the property, potentially

followed by (redundant) checks that confirm that the property continues to hold, and finally ending

with a non-faulting use as diagrammed below:

establish

property

o = new O()

check

property

o != null

check

property

o != null

non-faulting

use

o.f

For example, a non-faulting object dereference (i.e., does not dereference null) is established by the

object allocation and may be validated by any number of null checks before reaching the dereference

site. We call such a sequence of establish, check, and use events an enforcement window. An

enforcement window is a dynamic approximation in that we can begin to search for candidate

validation scopes by mapping enforcement events back to source code locations. Our definition of

an enforcement window is property independent—-all that needs to be defined for each property is

what events count as an ”establish,” a ”check,” or a ”use.”

In this paper, we describe a measurement framework for enforcement windows and then

measure enforcement windows for an example property—specifically, non-null dereference. One

measurement of interest is the distance between a use (e.g., a dereference) and its closest enforcement

(e.g., a null check or an allocation) for several different notions of “distance.” Intuitively, such a

measure captures the “complexity” of the candidate validation scope from the closest enforcement

to the use. As a simple example, consider the three-line Java fragment in Figure 6.2 where the

methods corresponding to the called methods are shown inline, that is, path projected [65] (in grey
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backgrounds).

1 id = new Id(); x = new X();

2 x.setId(id);

void setId(Id id) {

2.1 assert id != null; this.id = id;

}

3 return x.getIdAsInt();

int getIdAsInt() {

3.1 if (this.id == null) { this.id = new Id(); }

3.2 return this.getRawId();

int getRawId() {

3.2.1 return this.id.raw;
}

}

Figure 6.2: Inlining depth as a metric for complexity.

Focusing on the .raw dereference at line 3.2.1, the enforcement window is as follows: (a)

establish with the allocation of an Id at line 1 in the global context, (b) check at line 2.1 in setId

(i.e., id != null), (c) check at line 3.1 in getIdAsInt, and (d) use at line 3.2.1 in getRawId. One

interesting distance metric that we consider is the inlining depth needed to bring the path between

the check and the use into the same method scope. In this case, there is an inlining depth of 1

between the last null check at line 3.1 in getIdAsInt and the dereference at line 3.2.1 in getRawId.

From the point of view of static analysis design, these dynamic measurements are interesting

because they rule out insufficient designs. In the Java fragment and successful execution trace above,

an inlining depth of 1 witnesses that a simple, conservative, intraprocedural null deference analysis

is insufficient and would necessarily result in a false alarm at the dereference site at line 3.2.1. We

mean specifically that this analysis when analyzing getRawId has no precondition that it can assume

about its context. Note that with these dynamic measurements, we get necessary conditions

but not sufficient ones in that even after inlining getRawId into getIdAsInt a null dereference

analysis may not be able to prove that the dereference site at line 3.2.1 is safe (perhaps because
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it is imprecise on aspects not captured by this particular measurement or because the dynamic

analysis did not measure all program paths). We discuss why we chose dynamic over static analysis

in Section 6.2.2 and consider this potential insufficiency further in Section 6.3.3.

From a software engineering perspective, our measurement framework also enables us to

empirically support or refute widely-held intuitions about how programmers use enforcements in

their code.

Overall, this work makes the following contributions:

• We introduce the notion of enforcement windows that enables us to rule out insufficient

static analysis designs. We systematically examine choices in deciding, where, what, and how

to measure enforcement windows, and we describe distance metrics that capture reasoning

about both control and data (Section 6.2.2).

• We present a flexible framework for measuring enforcement windows dynamically (Sec-

tion 6.3). A challenging requirement for these measurements is a way to get at static,

source code notions with dynamic analysis. We address this challenge by applying symbolic

reasoning techniques and propose symbolic trace interpretation, whose essence is an

intertwined concrete-symbolic analysis state (Section 6.3.1). Taking these measurements

dynamically rather than statically enables us to measure one aspect of analysis precision

(e.g., context sensitivity) while factoring out others, such as imprecise heap reasoning

(Section 6.2.2).

Measuring enforcement windows in the presence of heap objects requires careful design and

special mechanisms to scale to even modestly-sized benchmarks. We describe piggybacked

garbage collection, which collects a “shadow heap” by instrumenting the collector of the

concrete heap, and we propose measurement update partitions that capture ways to

update groups of symbolic heap values simultaneously (Section 6.3.2).

• We study the extent to which our dynamic measurements of enforcement windows are

sufficient from a static analysis perspective by measuring whether the check sites in our
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observed enforcement windows are static bottlenecks in the control-flow graph for their

use sites (Section 6.3.3). We find that a significant portion (30% to 80%) of use sites are

statically protected by their observed closest check sites, suggesting that these measured

enforcement window distances are quite likely to indicate useful validation scopes.

• We apply our trace interpretation framework to study the evolution and distribution of

enforcement windows for dereferences using metrics from four broad categories (Section 6.4).

In particular, we measure how enforcement windows for dereferences change across bug fixes

for NullPointerExceptions in Java. We find that (1) enforcement windows get shorter

after bug fixes and (2) that longer enforcement windows are more likely to result in bugs.

These findings provide empirical evidence supporting the commonly held but difficult to

verify belief that programmers find it easier to reason locally than non-locally. We also

find that (3) enforcement window sizes are remarkably stable over project lifetimes, even as

code bases nearly double in size, and that (4) while measured enforcement windows are in

general small, in some cases they are large along certain dimensions.

6.2 Overview and Metrics

In this section, we give an overview of our enforcement window measurement framework

by following an example symbolic trace interpretation. Recall that our goal is to measure the

“complexity” of candidate validation scopes that can potentially inform static analysis design or

simply provide insights into how enforcements appear in code. We argue why symbolic reasoning

on dynamic analysis is needed to get useful information by systematically laying out the various

choices in deciding where, what, and how to measure. This discussion leads to metrics that we

apply to get the measurement data presented in Section 6.4.

6.2.1 Preliminaries: Trace Instructions

Our measurement framework consists of two main components. The trace collector instru-

ments Java bytecode to obtain a log of interesting events upon execution, a technique that is is fairly
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standard in dynamic analysis (e.g., [44]). The trace interpreter performs a symbolic interpretation

of this log to obtain measurements of enforcement distance. We define an enforcement distance

as some measurement between two events in an enforcement window (e.g., between establish, check,

or use events). The log is essentially a sequence of instructions that records a “path slice” that

we can symbolically reinterpret to obtain enforcement distances and consequently a view of how

enforcements appear in the program. Crucially this symbolic interpretation enables us to extract a

static, source-code view of enforcement from dynamic traces without introducing imprecision from

a purely static approach (Choice 4 in Section 6.2.2).

Figure 6.3b shows the sequence of trace instructions that the trace collector emits during

execution of the example source in Figure 6.3a. Ignore the boxed items for now. The purpose of

separating the collector from the interpreter is to handle most of the complexity of Java’s semantics

in the collector. We can write a mostly generic collector that is customized to filter (and perhaps

simplify) instructions for the properties of interest. Here, we show a trace language specialized

to null-dereference analysis. For exposition, we use an operand-stack–based language like Java

bytecode; that is, the local store is a stack of activation records where each activation record is a

stack of values. There are no integer or numeric operations here because they can be filtered out for

this example analysis.

Simply to explain the semantics of this trace language, we show a concrete (re)interpretation

of trace instructions that (re)creates the states of interest that would be observed in the original

execution (shown in the left column of boxed items). Ignore the right column of boxed items for

now, we describe them in Section 6.2.2. Concrete states consist of a concrete stack of activation

records on the left side of the q and a concrete heap on the right (i.e., stack q heap). An activation

record (i.e., a value stack) is represented by a sequence of values separated by commas, while the /

symbol is used to separate activation records. Stacks grow to the right (i.e., the rightmost element is

the top of the stack). For example from point 3 to 4, we have pushed o′′ onto the top of the current

activation after executing an allocation instruction (alloc), while from point 4 to point 5, we have

pushed a new activation record onto the activation stack after executing method call and method
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x = new X(); x.c = new C(); d = new D();

c = x.getCIfOk(d); return c.f;

C getCIfOk(C ow) { return this.c !=null ? this.c : ow; }

(a) source code

1 · q · · q · q ·

alloc o′X; dup;

†alloc oC;

2 o′, o′, o q · β, β, α q · q β :〈1, 1〉, α :〈1, 1〉

putfield o′X.c;

3 o′ q (o′, X.c) :o β q (o′, X.c) :α q β :〈1, 1〉, α :〈1, 1〉

alloc o′′D;

4 o′, o′′ q (o′, X.c) :o
β, γ q (o′, X.c) :α q
β :〈1, 1〉, α :〈1, 1〉, γ :〈1, 1〉

call o′X.n; enter o′X.n; swap; dupx;

5 · / o′, o′′, o′ q (o′, X.c) :o
· / β′, γ′, β′ q (o′, X.c) :α q
α :〈1, 2〉, β′ :〈2, 2〉, γ′ :〈1, 2〉

getfield o′X.c; dup;

6 · / o′, o′′, o, o q (o′, X.c) :o
· / β′, γ′, α, α q (o′, X.c) :α q
α :〈1, 2〉, β′ :〈2, 2〉, γ′ :〈1, 2〉

†nullcheck o;

7 · / o′, o′′, o q (o′, X.c) :o
· / β′, γ′, α q (o′, X.c) :α q
α :〈2, 2〉, β′ :〈2, 2〉, γ′ :〈1, 2〉

exit X.n; returnfrom X.n;

8 o q (o′, X.c) :o α q (o′, X.c) :α q α :〈1, 2〉

†getfield oC.f;

(b) trace instructions

Figure 6.3: Concrete and symbolic trace interpretation of a short example. The left-hand–side of
the figure is explained in Section 6.2.1, the right in Section 6.2.2.
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enter instructions (call and enter). There are a few basic instructions that manipulate the value

stack: dup duplicates the top value, dupx duplicates the top value while placing it under the top

two values, and swap swaps the top two values. We write · for an empty state element (stack or

heap). A heap is a map from object-field pairs to objects. For example, at point 3, we have the

mapping (o′, X.c) : o in the heap, which means “field X.c of object o′ contains the value o.” The

other instructions note a check for null (nullcheck), method exit and return (exit, returnfrom),

and uses of fields (getfield, putfield).

Some instructions contain elements of the original execution state when the instruction was

generated. For example, alloc o′X at point 1 has as usual a type X but also an object identifier o′

(e.g., address) of the allocated object. These pieces of the original concrete state serve to include

concrete information for combined concrete-symbolic reasoning (e.g., somewhat similar to [49, 94]).

6.2.2 Measuring: Where, What, and How

Recall that an enforcement window is an establish-check-use sequence. Depending on the

property of interest, particular trace instructions will correspond to establish, check, and use events.

In the case of dereference reasoning, the establish is an alloc, followed by some number of

nullcheck checks, and finally a getfield, putfield, or call use on the same object reference.

For example, we have the establish-check-use sequence highlighted and marked by †s in Figure 6.3b

(i.e., the sequence for the value dereferenced with c.f at the source-level).

The central question is given such a dynamic trace, where, what, and how can we measure to

find candidate validation scopes with a static, source code notion of complexity. We devote the rest

of this section to this question. Finding candidate validation scopes corresponds closely to where

we measure (Choice 1). The measure of complexity is determined primarily by what we measure.

We consider complexity in different dimensions (Choice 2) and what makes something more or

less complex (Choice 3). One particularly interesting distance metric that we define is inlining

depth alluded to earlier. A static, source code view is one that considers (all) other possible

executions than the one observed, which typically requires some over-approximation of possible
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behavior. A key observation in this paper is that by controlling how we measure, we can model

“loss of information” due to over approximation (Choices 5, 6, and 7). Such modeling necessitates

intertwined concrete-symbolic reasoning and motivates symbolic trace interpretation.

Where to Measure: Defining the measurement points in an enforcement window.

Choice 1 (Measurement Points): In an enforcement window, which pairs of points are

of interest?

There are several potentially interesting points, any of which can be measured with our framework. In

Section 6.4, we focus on uses and their closest check (or establish if there is no check). This distance

captures the smallest validation scope needed to show that the use in this trace is non-faulting.

What to Measure: Defining the metric.

Choice 2 (Measurement Dimensions): What kinds of events contribute to the complexity

of a validation scope?

We consider two orthogonal dimensions that we hypothesize affect validation complexity: control

versus data reasoning. First, control reasoning is what code or statements would a developer have

to reason about to make sure that a dereferenced value is not null. The events that we record for

control reasoning are the methods that a value is exposed to as it travels from an enforcement to a

use (i.e., an enforcement and a use in the same method has the minimum measurement). We use

the term expose to refer generically to observing an event that updates a measurement. We chose

methods as our atomic unit of distance because they capture a source code view of the program that

is always preserved by compilation to bytecode, unlike control structures or statements. Second,

data reasoning is the memory locations that the programmer must reason about to ensure that

a dereference will not fault. For this dimension, we record the fields that a value flows through

between an enforcement and a use. Discovering validation scopes with respect to data reasoning

might help determine where coarse heap abstractions are sufficient and where they need to be more

precise.
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add C.f to set of fields.
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Method Set Inlining Depth
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(o, C.f),

increment count by 1.

measurement: set of methods

distance: |set of methods|
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C.m(),

add C.m() to set of methods.

measurement: (hmin, hmax)

distance:  hmax - hmin
increment: on exposure to

stack height h, update to

(min(hmin,h), max(hmax,h))

Figure 6.4: Distance metrics capturing combinations of control versus data reasoning and static
versus dynamic reasoning.

Choice 3 (Increments of Measure): How do interesting events (e.g. calls or field writes)

increase measured distance?

For the data and control reasoning dimensions identified in Choice 2, what events capture an increase

in complexity?

In Section 6.4, we take measurements using four different distance metrics: Field Set, Flow

Count, Method Set, and Inlining Depth. Inlining Depth is particularly interesting from a static

analysis design perspective because it captures needed context-sensitivity—a standard concept.

Thus, in Figure 6.3b, we use Inlining Depth as the example distance metric to illustrate symbolic

trace interpretation.

To describe what is Inlining Depth and why we measure it, consider the source code of our

running example in Figure 6.3a. The last enforcement for the use of c.f is the null check in the call to

x.getCIfOk(d). Thus, a validation scope for c.f must also include getCIfOk. We want to capture

the additional power needed to reason across a method call. In particular, we want to measure the

inlining depth that is needed to bring the path that the value takes from the enforcement to the use

all into the same method (i.e., into the unit scope). Note that this measurement is different and more

nuanced than simply counting the number of method calls in the dynamic trace between the enforce-

ment and the use. Consider the fragment: assert this.o != null; this.m1().m2(); this.o.f = 0;

where m1 and m2 are leaf methods (i.e., they do not make further calls), then the needed level of
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context is to check that o is not null is 1, not 2. In contrast to counting method calls in a trace,

measuring Inlining Depth requires symbolic trace interpretation.

To see what needs to be measured for the inlining depth metric, consider the call tree shown

in Figure 6.5. Each node represents a method, and each edge indicates a call from the source to the

target node. The simple case is when the use is downwards along a call path (e.g., the enforcement

is in m0 and the use is in m2), then the inlining depth is the length of the path between them (e.g.,

2). The general case is that an enforcement happens in a previously called and returned method

(e.g., the enforcement is in m2 while the use is in m4). The inlining depth is then the difference

between the height of the shallowest method that the value has traveled through and that of the

deepest method (e.g., m0 and m2, respectively, leading to a depth of 2). Thus, we measure a pair of

integers 〈hmin, hmax〉 summarizing the lowest and highest activation stack height to which a value

has been exposed since its last enforcement.

m0

m1 m4

m2 m3

Figure 6.5: Call tree for inlining depth.

In Figure 6.3b, the right column of boxed items shows a symbolic interpretation with Inlining

Depth. Consider the symbolic state at point 3. The state consists of three components, separated

by q. On the left is the symbolic stack. We use letters α, β, . . . for symbolic values (i.e., symbolic

object identities), which represent concrete values (i.e., concrete object identities). For the moment,

however, we can view β and α as simply the names of o′ and o, respectively, in the symbolic world.

In the middle, we have the symbolic heap; ignore this component for now, as we detail it under

Choice 6. Finally, the rightmost component of the symbolic state associates measurements with

symbolic object identities (e.g., β : 〈1, 1〉); that is, it tracks an event history summary with each

value individually and independently. The domain of measurements is what would vary from metric

to metric.
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At point 2 in Figure 6.3b, both objects β and α have just been established as non-null (by an

allocation), so we have that both β : 〈1, 1〉 and α : 〈1, 1〉 since the height of the current activation

stack is 1. At points 3 and 4, these facts do not change. The putfield o′X.c instruction pops

arguments from the value stack and writes to the heap, and alloc o′′D creates a new symbolic value

γ with fact 〈1, 1〉. On a call, we set hmax to the new height if that height is greater than hmax, as

the value has now been exposed to a height one more call step away. So, for example, at point 5,

hmax is incremented for α (i.e., α :〈1, 2〉).

The measurements for β′ and γ′ are discussed in the next choice (Choice 5). The measurement

for α is the same until encountering the nullcheck o instruction, which is a null-check on α, and

thus resets its measurement to the current stack height (i.e., α :〈2, 2〉 at point 7). The action for a

return is analogous to the call, except that hmin is updated, as from point 7 to point 8 for α. The

inlining depth (i.e., the distance measure of interest) is then given by hmax − hmin. If, for example,

α were to be dereferenced at point 5 where α :〈1, 2〉, then the check-use distance for this inlining

depth metric would be 1, as expected; if it were dereferenced at point 7 after the check, the distance

would be 0.

The symbolic interpretation for our other metrics is analogous, but uses a different domain

of measurements. We summarize these in Figure 6.4 where we classify the metrics along the data

versus control dimension and also along a spectrum from more static to more dynamic. For example,

the Flow Count metric is a rather dynamic, execution-based view that counts the number of copies

from field to field from the check until the use. This metric counts all copies, even those between

the same fields of different objects (e.g., between o1.f and o2.f). The Field Set metric instead

counts only the number of distinct fields through which a value flows. Method Set is the control

reasoning analogue that counts the number of distinct methods to which a value is exposed.

How to Measure: Defining measurements so that they relate to source code views.

Choice 4 (Static vs. Dynamic Analysis): Should we measure enforcements windows

with a static or a dynamic analysis?
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We use dynamic analysis to measure enforcement windows. An initially attractive alternative

would be to do so statically because validation scopes are inherently a static, source code notion.

But upon further inspection, we see that this approach is quite problematic. For one, a “fully

precise” pointer analysis, which remains a difficult problem [57], is required to statically tie together

establish-check-use sequences on an object. In particular, any imprecision in the static analysis

could cloud what we find—which is especially problematic when the goal was to find validation

scopes to rule out insufficient static analysis designs.

Dynamic analysis is attractive because, fundamentally, it is easier to lose precision than to

get it in the first place. In Choices 5 and 6, we show how we use symbolic trace interpretation to

selectively forget concrete information from a dynamic trace in order to selectively emulate how a

static analysis would reason about a program. However, a potential disadvantage of any dynamic

analysis is that its quality depends on how well the collected traces generalize to cover all possible

executions (we evaluate this in Section 6.3.3).

Choice 5 (Applying Measurements to Objects): How do we connect measurements to

the object that they measure?

The two most obvious choices seem wrong. Just keeping a measurement map from concrete

object identities o to measurements corresponds to the questionable assumption that perfect aliasing

information is available statically. Alternatively, keeping an abstract stack and heap of measurements

like in a standard type system corresponds to assuming the static analysis is incapable of resolving

any aliasing.

Instead, we measure over symbolic object identities that allow us to “lose” or “forget” aliasing

information known dynamically in a controlled and selective manner. Specifically, two different

symbolic object identities may represent the same concrete object (modeling lost aliasing information).

At point 5 in Figure 6.3b, we use a fresh symbolic object β′ for the receiver in the callee as opposed

to reusing the value β from the caller. While both β′ and β correspond to same concrete object

o′, we have chosen to forget this information in the symbolic state. In this case, we make this
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split to capture: (1) in any method, the receiver object this is known to be non-null, so from

the prospective of the callee, the call instruction is a check on the receiver; but (2) from the

prospective of the caller, the call is simply a use/dereference of the receiver. Thus, in our example,

β′, the receiver in the callee after the call, is summarized by 〈2, 2〉 (i.e., checked in the callee). The

parameter in the callee, γ′, is also a fresh symbolic object identity where both γ and γ′ correspond

to the concrete object o′′. The measurement on γ′ (i.e., 〈1, 2〉) is derived from γ’s, but the cloning

means any check in the callee on o′′ is not seen by the caller, unless it is passed back in the return

value or through the heap. This approach respects the implicit modularization implied by function

boundaries—checks on a value escape a function only if the value itself does.

Choice 6 (Memory Model): How is the memory modeled symbolically?

In symbolic interpretation, the symbolic state is a model of the concrete state. In Figure 6.3b, we use

an exact model of the activation stack except that the values are symbolic rather than concrete: that

is, the identity of a called method is exactly known, but the receiver and parameters are interpreted

symbolically. Similarly, each cell in our symbolic heap is identified exactly (by a concrete object

identity and a field) but the contents of those cells are symbolic values. So, for example, at point 3

the symbolic heap maps field X.c of object o′ to symbolic value α. Heap accessing instructions

operate on combined symbolic and concrete values; the symbolic values come from the symbolic

value stack, while the concrete values are explicitly incorporated into select trace instructions.

The symbolic interpretation of getfield o′X.c from point 5 to 6 pops the symbolic value

β′ for the field owner from the value stack but then uses the concrete annotation o′ to look up

the symbolic value stored in the symbolic heap at field X.c of o′, which is α, that is then pushed

onto the stack. The interpretation of putfield is similar. Analogous to the modeling of copying

actuals to formals discussed above under Choice 5, there is a choice in whether (a) to copy the

symbolic value α from the heap to the stack or (b) to create a fresh symbolic value with a copy

of the measurement. The former means a measurement update via the stack is reflected in the

heap value and vice versa, while the latter “forgets” this aliasing relationship. In this case, we have
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chosen (a) to capture that enforcements on stack values obtained from instance variables (i.e., fields

of this) (or vice versa) should seemingly apply in both places. Another reasonable option could

choose (a) in some cases (e.g., only dereferences of fields of this) and (b) in other cases. There is no

clear best choice regarding aliasing “remembering” and “forgetting,” so importantly, our framework

supports experimenting with different modeling decisions by switching between (a) and (b).

In essence, we record measurements on symbolic values but use concrete values to determine

storage locations on the heap. Without the latter use of concrete values, the symbolic trace

interpretation would itself need a precise static points-to analysis. Critically, this intertwining of

concrete and symbolic modeling enables us to model source code reasoning in some respects while

avoiding unrealistic static analysis imprecisions in other ways.

A significant implementation challenge is updating measurements for all heap-stored values

(see Section 6.3.2). With Inlining Depth, for example, on every entry to and return from a method,

we need to expose every value on the heap to the new activation stack height using the scheme

laid out in Choice 3. So, for example, the measurements for α for the call between point 2 and

point 5 change to reflect α’s exposure to an activation stack with height 2. Similarly, the return

from point 7 to point 8 exposes α to height 1.

Choice 7 (Measuring the Unknown): How do values from uninstrumented library code

contribute to check-use measurements?

Some values will necessarily come from uninstrumentable code (e.g., libraries). We assign these

values the measurement lib. In interpreting our measurements, we take the conservative viewpoint

that a value returned from unknown code adds an unknown distance that must be viewed over-

approximately as “infinite.” Informally stated, unvalidated assumptions are made about the

code outside of the validation scope, but unbounded inlining would be sufficient to validate those

assumptions once the code is brought in. An alternative, optimistic approach would assign library

values 0 distance indicating that libraries are understood through documentation of invariants and

thus do not require reasoning about code at all.
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6.3 Measurement Framework

In this section, we describe our symbolic trace interpretation framework (Section 6.3.1), discuss

techniques for scaling our implementation of the symbolic heap (Section 6.3.2), and investigate the

extent to which our dynamic measurements of enforcement windows are sufficient from a static

analysis perspective (Section 6.3.3).

6.3.1 Symbolic Trace Interpretation

The key challenges addressed by this framework are (1) how to extract a more static view of

an execution by forgetting run-time information in a principled way (see Section 6.2.2, Choice 5)

and (2) how to meaningfully interact with uninstrumented library code. We accomplish (1) by

using an intertwined concrete and symbolic state, associating information with symbolic values, and

instantiating new symbolic values when we want to forget. With this approach, a single concrete

value can be represented by multiple symbolic values. We address (2) by splitting method call and

returns into separate instructions that captures the call or return event from the caller’s and the

callee’s perspectives individually.

We first focus on describing our generic framework instantiated for measuring control reasoning

using the inline depth metric as an example. An activation record A ::= · | A,α consists of an

operand stack with symbolic object identities; the symbol · indicates an empty stack. Then, we

have a stack of activations S ::= · | S / A | S / unins, which consist of normal activations A but

also uninstrumented activations unins. Informally, unins models some number of activations for

uninstrumented methods. A heap H ::= · | H, (o, f) :α is a finite map from a concrete object,

field pair to the symbolic value stored in the field for that object. Observe that the heap is a mixed

concrete-symbolic entity. A measurement map Γ ::= · | Γ, α : t is a finite map from symbolic identities

to the recorded measurement for that symbolic value, and a symbolic state Σ ::= S q H q Γ is a triple

of a stack of activations, a heap, and a measurement map. A measurement t ::= 〈hmin, hmax〉 | lib

can be either a known measurement or lib, indicating that the value came from uninstrumented
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alloc
α /∈ dom(Γ) t = enf(S /A q H q Γ)

S /A q H q Γ ` alloc oC ⇓ S /A,α q H q Γ, α : t

call-ins
β′, α′ /∈ dom(Γ)

S′ = S /A / β′, α′ Σ = S′ q H q Γ Γ′ = Γ, expose(Γ|rng(H),Σ), β′ : enf(Σ), expose(α′ :Γ(α),Σ)

S /A, β, α q H q Γ ` callins o
C .m ⇓ S′ q H q Γ′

returnfrom-ins
S′ = S /A1, α Γ′ = Γ, expose(Γ|rng(H)∪{α}, S

′ q H q Γ)

S /A1 /A2, α q H q Γ ` returnfromins C.m ⇓ S′ q H q Γ′

getfield-ins
(o, C.f) ∈ dom(H) β = H(o, C.f)

S /A,α q H q Γ ` getfield oC .f ⇓ S /A, β q H q Γ

Figure 6.6: Symbolic trace interpretation for inlining depth.

code. When instantiated for the inlining depth metric, known measurements consist of a pair of

integers 〈hmin, hmax〉 representing the minimum and maximum stack height to which the value has

been exposed. The measurements are the only portion of the symbolic state that change from

metric to metric. We write Γ(α) for looking up the measurement associated with symbolic object

α in Γ and Γ, α : t for a map that either extends Γ with a binding for α or updates the binding of

α to t if it exists. Similarly, H(o, C.f) looks up a value at field C.f of concrete object o in H and

H, (o, C.f) :α extends it.

We define an interpretation judgment Σ ` I ⇓ Σ′ in Figure 6.6 that states, “In state Σ,

instruction I symbolically evaluates to Σ′.” The trace instruction language is the same as in the

example from Figure 6.3, except that we explicitly annotate call and returnfrom instructions with

whether the called or returned-from method is instrumented (ins) or uninstrumented library code

(unins). For completeness, we give the full trace language supplementally [30].

For non-null dereference analysis, an allocation is an establish event. Rule alloc pushes a

fresh value α onto the stack with a measurement for an enforcement event (i.e., an establish or a

check) in the current state. Under the inlining depth metric, this measurement has both hmin and

hmax set to the current stack height. That is, we define enf(Σ)
def
= 〈heightof(S(Σ)), heightof(S(Σ))〉
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where the function heightof(S) gives the number of activations in stack S and S(Σ) gives the stack

component of the symbolic state Σ. Recall that the inlining depth for a measured exposure is given

by hmax − hmin, so a use right after the allocation yields a 0 distance as intended. A nullcheck is

essentially the same except that it updates the measurement for the object on the top of the stack

(nullcheck rule elided here), as it is just another enforcement. For other properties, other instruction

kinds may be identified as the enforcement events, but they have the same form: interpreting the

semantics of the instruction along with asserting an enforcement in the measurements.

At a call to an instrumented method (rule call-ins), we create a fresh symbolic value to

represent the receiver β′ and assign it the enforcement measurement in current state. This constraint

captures that the receiver is null-checked at this point from the callee’s perspective (since this

cannot be null) but it is not from the caller’s viewpoint. Contrast this modeling with that for

the parameter value α. It is assigned a new symbolic value in the callee α′ so that checks in the

callee do not automatically count in the caller. The measurements for that value are copied between

the caller and the callee before exposing it to the new state in the callee. The expose(α : t,Σ)

function updates the measurement for object α to reflect exposure to a state Σ. Under the inlining

depth metric, we define this as: expose(α : 〈hmin, hmax〉,Σ)
def
= α : 〈min(hmin, h),max(hmax, h)〉 and

expose(α : lib,Σ)
def
= α : lib where h = heightof(S(Σ)). We lift expose to also apply to maps (i.e.,

expose(Γ,Σ)). For control reasoning metrics, all measurements for values on the heap are also

updated to reflect their exposure to a state on each call and return (i.e., expose(Γ|rng(H),Σ)). We

write Γ|rng(H) for the restriction of map Γ to mappings from symbolic values in the range of the

heap H. Observe that this operation is prohibitively expensive to implement directly and motivates

techniques described Section 6.3.2. On return (rule returnfrom-ins), the top activation is popped

and the return value and the heap are exposed to the state.

The complexity of handling uninstrumented methods lies in transitions between instrumented

and uninstrumented code. To detect transitions, we split a method call into two events: a call

instruction, which is the event from the caller’s perspective, and an enter, which is the event from

the callee’s perspective. When an instrumented method calls another instrumented method, then we
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see a call immediately followed by an enter as in Figure 6.3b. However, critically, this redundancy

allows us to detect transitions between instrumented and uninstrumented code robustly. Specifically,

we mark a call from instrumented code to an uninstrumented method by pushing an unins marker

on to the stack. A call from uninstrumented code to an instrumented method is detected by an

enter instruction while an unins marker is active. The interpretation of enter in this situation is to

compensate for the lack of a call instruction right before it (and thus is analogous to rule call-ins).

Method returns are similarly split into exit from the callee’s perspective and returnfrom from the

caller’s perspective. The interpretation of returnfrom must make a similar compensation when it

observes a return from uninstrumented code.

For control reasoning, getting and putting a field simply need to reflect the concrete semantics

symbolically. Getting a field from an object pops the symbolic field owner off the stack and uses the

concrete object identifier to look up the symbolic value stored for in that object’s field in the heap

(if it exists) and pushes it on the stack (getfield-ins). Using concrete heap lookups enables us to

factor out a potential source of unrealistic static analysis imprecisions. If the field has not been

initialized, it pushes lib instead (as the assumption is that it was initialized in uninstrumented code).

A putfield updates the symbolic heap to store a symbolic value from the stack in the field for the

concrete object (rules are straightforward). For data reasoning, we would update measurements

(i.e., apply exposures) on getfields and putfields instead of on calls and returnfroms.

In this section, we have instantiated our measurement framework using the Inlining Depth

metric. Using our Method Set metric is similar, except that the measurements are sets of method

identities and exposing a value to a new state adds the method on the top of the stack to a

measurement. How specifically our four metrics are instantiated in this framework is summarized in

Figure 6.4.

6.3.2 Implementation: Dynamic Symbolic Heap

Two key challenges hide in the description of symbolic trace interpretation above. First, in

defining the symbolic trace interpretation judgment (Figure 6.6), heaps H and measurement maps
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Γ only grow. In essence, we assume that garbage is automatically collected from the symbolic heap

(i.e., that objects on the heap disappear when they are no longer needed) and the measurement map.

However, since the symbolic heap has no knowledge of heap operations in uninstrumented library

code, there is no way the interpreter could ever safely garbage collect mappings in the symbolic

heap. In our framework, we instrument the garbage collector running in the observed program

to “piggyback” collecting an object in the symbolic heap when the object in the concrete heap is

collected. Whenever the garbage collector frees a concrete object, the trace collector is signaled to

emit a trace instruction telling the trace interpreter to remove that object from the symbolic heap.

This “piggybacking” efficiently ensures that objects are only collected from the symbolic heap after

they can no longer be used.

The second challenge to scalable symbolic trace interpretation involves updating the mea-

surements for heap values on method calls and returns. In the call-ins and returnfrom-ins

rules, we update every symbolic value on the heap to reflect exposure to a new control scope (i.e.,

expose(Γ|rng(H),Σ)). Näıvely iterating over the entire symbolic heap on each call and return is far

too slow to be practical, even for relatively short programs.

To address this problem, we divide the symbolic values on the heap into measurement

update partitions that help us update heap exposures more efficiently. We have two partition

strategies: one that leverages a property of particular kinds of measurement metrics and one that is

metric agnostic but more expensive.

For the Inlining Depth metric, we partition the symbolic values based on their hmin and hmax

measurements. Then, on a method call, we only need to update those values whose hmax is the stack

height before the call. Similarly, on a return, we need only update those symbolic values whose hmin

measurements match the stack height before the return. These partitions are prescriptive in that

using the measurements tells us exactly which symbolic values need to be updated, and fortunately,

they are small enough to speed up interpretation of calls and returns drastically.

We also have a more general, heuristic approach to partition symbolic values on the heap

based on how recently they were used (added to the heap, read from the heap, or dereferenced).
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For example, in our implementation of the Method Set metric we keep a collection of up to 1000

“hot” symbolic values and update their measurements individually whenever they are exposed to a

new state. The remainder of symbolic values on the heap are not updated individually on every call

and return. Instead, we keep a single set summarizing the recent methods that all of these cold

values have been exposed to. The key invariant that we maintain is that (1) the measurements (i.e.,

method exposure sets) for hot values are exactly what they would have been if we had traversed the

entire heap on calls and returns and (2) the measurements for the cold values, unioned with the

current summary set, are what they would have been in the näıve system. With this approach, if

the program dereferences a hot value, it can record the measurement directly associated with the

value. If it is cold, however, we have to first apply a lazy fixup and expose the value to each of the

methods in the summarized sets. The direct measurements for that value now completely reflect

what its measurements should be, so we safely move it to the hot collection. If the hot collection is

full, we apply the summary set to all non-hot values in the heap (so that their measurements are

now complete), reset the cold summary to be the empty method set, and mark all values as cold.

At this point, again, the invariant holds. The essence is that we keep a fixup transformer that can

be applied when a cold value gets used.

Both of these approaches make field accesses more expensive, but the savings from avoiding

traversing the entire heap on calls and returns more than makes up for them.

6.3.3 Sufficiency for Static Analysis Design

One intended use of our enforcement window measurement framework is to help determine

necessary conditions for static analysis design and, in particular, help designers decide at least how

much scope their analysis needs to prove a property of interest. Our combined concrete-symbolic

approach is well-suited to this task because it permits us to tease apart required scope from over-

approximation in any abstract analysis domain. In essence it allows us to measure, for example,

the window of code an analysis would need to examine if it was using exactly the right analysis

abstraction. Even assuming such perfect reasoning, this measurement is an under-approximation
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Table 6.1: Framework Sufficiency for Analysis Design.

“Full” “Recommended”

Program Interesting False Dead Bottle- False Dead Bottle-
necked necked

antlr 1812 0 36% 330 35%

bloat 4424 0 32% 0 32%

chart 1219 34 48% 88 50%

fop 10164 0 78% 10044 43%

luindex 873 0 40% 290 51%

lusearch 661 0 56% 0 56%

pmd 830 0 66% 63 69%

for the validation scope that the hypothetical analysis would need because, as a dynamic analysis,

our approach cannot measure the required scope for all possible paths in a given program. In this

section, we investigate whether this under-approximation is sufficient in this sense: that is, to what

extent a single execution discovers enough enforcement sites to determine a useful validation scope.

To do this, we first instantiated our measurement framework for the non-null dereference

property to record the location of the closest enforcement (i.e., allocation or comparison to null)

for each dereference. A dereference may have multiple such closest enforcements if it is called

from different contexts. We then used the WALA framework1 to run an interprocedural static

analysis that examines each dynamically observed dereference site and verifies that all static paths

in the control-flow graph to that site pass through at least one of the closest dynamically observed

enforcements: if so, our approach is sufficient for that site.

The results of these experiments for a subset of the DaCapo benchmarks are shown in

Table 6.1. Here we consider a dereference site “Interesting” if (1) it is executed in our dynamically

observed run, (2) it does not dereference values from uninstrumented library code (i.e., a static

analysis looking at only application code would have some hope of proving the dereference safe), and

(3) it is not a dereference of this (which in Java cannot be null). WALA has some unsoundness in

its handling of reflection, leading it to claim that some executed dereferences are not reachable. We

ran WALA with two different reflection policies. “Full” makes a best effort to determine reflective

1 T. J. Watson Libraries for Analysis (WALA), http://wala.sf.net/
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method targets while “Recommended” (which was recommended to us by a WALA developer)

optimistically assumes programmers’ casts after reflective instantiations are correct and uses these

casts to determine the type of allocated objects. Because these policies are heuristic, they may

falsely claim that some dynamically observed dereference sites are dead code. We give the number

of these sites in the “False Dead” column.

The “Bottlenecked” column gives the percentage of interesting, statically reachable dereference

sites for which all static paths to that site pass through a dynamically observed closest enforcement;

that is, the closest enforcements are a bottleneck to reaching the use. The observation that a large

percentage (30%–70%) of dereference sites are statically shown to flow through the dynamically

observed enforcement sites gives us evidence that our approach finds candidate validation scopes

that are likely to be useful: that is, that inferences gleaned from these these enforcement sites in

one run (e.g., their typical enforcement distances) are likely to be representative for all possible

runs of the program. Note that the non-minuscule bottlenecked percentages in Table 6.1 are

significant: even under the very pessimistic assumptions that (1) we are allowed only one dynamic

execution, and (2) we count only the last enforcement along that execution, our dynamic analysis

frequently finds useful validation scopes. Our benchmarks range in size from ∼3,000 (antlr) to

∼25,000 (fop) methods. The bottlenecked percentage does not change much between the “Full” and

“Recommended” configurations (except for fop), perhaps indicating an invariance property about

enforcements across dereference sites.

6.4 Measurements

In this section, we apply our measurement framework to gain insights into how enforcements

actually appear in code. We have two sets of experiments that both measure the distance between a

use and its closest enforcement. The first evaluates distance metrics from Sections 6.2.2 and 6.3 with

a case study of null pointer exception bugs that tests three hypotheses: (1) that programmers find

it easier to reason across short enforcement distances than long ones, (2) that fixing bugs shortens

these distances, and (3) that as code bases mature, programmers respond to increasing complexity
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with more defensive programming. The main challenge here was the laborious process of sifting

through project issue queues and software repositories to find suitable bugs and then generating

inputs that both exercise the buggy sites and remain valid across multiple versions of the projects.

Our second set of experiments measures the distribution of enforcement distances over the DaCapo

benchmark suite to characterize the size of potential validation scopes in typical programs.

6.4.1 Case Study: Bugs and Program Evolution

This case study covers two programs in depth: PMD, a “programming mistake detector” that

analyzes source code to find style violations, and Lucene, a document indexing and search tool. We

perform three experiments to test a hypothesis that programmers find it easier to reason across short

distances than long ones. First, we investigate how enforcement distances change after programmers

fix bugs. We hypothesize that fixed bugs are likely to exhibit shorter distances since the programmer

must convince herself that the bug is, in fact, fixed. Second, we look at how buggy dereference

sites differ from normal sites—if longer distances are harder to reason about, we would expect to

see more bugs at longer sites. Finally, we hypothesize that as programs mature and grow more

complicated, programmers will need to adopt more defensive strategies and thus enforce shorter

distances, so we examine how these distances change over the lifetime of projects.

Benchmark Selection. To find buggy dereference benchmarks, we were constrained by

the following requirements: (1) Projects must have source repositories to get versions of the

code before and after a bug fix. (2) They must have a bug database with at least 20 reported

NullPointerException bugs so that we had a reasonable chance of triggering a buggy dereference

site. (3) We limited our search for benchmarks to non-GUI programs since instrumentation slows

down execution enough to make analysis of interactive programs impractical. (4) We require

representative inputs over which to run our benchmarks. These constraints led us to the DaCapo

suite, though we looked broadly at several open source repositories. Based on the DaCapo small

inputs, for PMD our inputs check a file from its own source base for a variety of style violations,

while for Lucene we index short portions of Shakespeare poems and then search them for the term
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Table 6.2: Distances get shorter after bug fixes.

Data Metric Control Metric

Issue Flow Field Inlining Method
Count Set Depth Set

Lucene-825 lib → 0 lib → 0 lib → 0 lib → 1
Lucene-449 lib → 0 lib → 0 lib → 0 lib → 1
Lucene-174 lib → 0 lib → 0 lib → 0 lib → 1
Lucene-317 1 → 0 1 → 0 16 → 0 lib → lib

PMD-1425772 0 → 0 0 → 0 1 → 1 2 → 2
PMD-1529805 0 → 0 0 → 0 1 → 0 2 → 1
PMD-1552820 lib → 0 lib → 0 lib → 0 lib → 1
PMD-1728716 lib → lib lib → lib lib → lib lib → lib

“death.”

Bug Selection. We searched each project’s bug report database for instances of the word

“NullPointerException.” After filtering out unfixed bugs, we examined the reports to determine

if they truly represented null pointer errors. For these candidates, we used the backtrace, patch

date, patch author, mailing list comments, and repository logs to find the failing dereference and

the source control revision numbers immediately before and after the fix. If the fix was applied

across multiple commits, we used the latest revision. If the bug report spurred discovery of multiple

related bugs, we only considered the original site. We removed the bugs where either revision did

not exercise the buggy dereference site on the representative input. Although the site is exercised in

all the remaining revisions, the bugs themselves do not manifest on the representative inputs and in

some cases not all of the added code in the fixes is exercised. Overall, we obtained eight bug reports

with before and after revisions on which to measure check-use distances.

Do Enforcement Distances Get Shorter After Bug Fixes? To determine whether

enforcement distances get shorter after bug fixes, we annotated the buggy dereference sites for each

of the bugs collected and interpreted them to collect the maximum distance at those sites before

and after the fix. Table 6.2 shows how these distances changed after the programmer fixed the bug.

Treating unknown values (e.g., from library code) as “infinite” distances, we make the following

observations: (1) None of the distances get longer after a bug is fixed. The majority (five) get
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shorter, while three stay the same. (2) Of the distances that get shorter, most (four out of five)

are “infinite” before the fix. (3) All of the distances that do get shorter go to the minimum possible

distance under each metric; that is, the use and check are in the same method. For these buggy

sites, the Flow Set and Flow Count distances are identical, although, as we show in Section 6.4.2,

this is not always the case.

File dir = ...;

String[] fs = dir.list();

for (i = 0; i < fs.length; i++) {}

Figure 6.8: Misuse of the java.io.File API.

The nature of the bugs themselves are also quite interesting. Three of the Lucene bugs (825,

449, and 174) arise from related misuses of the java.io.File API to iterate through a directory

(as shown in Figure 6.8). The developer fails to realize that dir.list() can return a null array if

the program lacks privileges to read the directory, leading the dereference fs.length to raise a null

pointer exception (similar to Figure 6.3a but with a mistaken assumption). The fixes for the three

different bugs caused by this misunderstanding were also similar: the developer checks files for null

and throws a more meaningful exception. In the fourth Lucene bug (317), a lock instance variable

is set to null when threading is disabled, but the code calls lock.unlock() without checking to see

if it is non-null.

ClassOrInterface p = node.getFirstParentOfType(ClassOrInterface.class);
if (p.isInterface()) {

...

}

Figure 6.9: Program evolution violates programmer expectation about a tree invariant.

For PMD, two of the bugs result from misuse of a utility function to query a node in the

abstract syntax tree about its first ancestor of a given class (1425772, 1529805). In both cases,

the programmer did not realize that such a parent may not exist and that the returned ancestor

might be null (shown in Figure 6.9). Here the introduction of enum types in Java 5.0 broke the
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programmer’s assumption that all nodes must have a containing class or interface. When the query

returns null, the call to p.isInterface() throws a null pointer exception. A third PMD bug

(1552820) arose from a similar query about a potentially missing child of a node. The final PMD

bug (1728716) involved erroneously passing null to a string escape utility method. Although the

bug was fixed, our analysis does not see any shortened distance because our inputs do not exercise

the new check in the fix.

Overall in our case study we found that enforcement distances tend to get smaller after bug

fixes. This shortening helps to validate our choice of distance metrics, since we would expect a

high-quality metric to show shorter enforcement windows after a bug fix. Further, the fact that

most bugs involve reasoning about larger (greater than minimum) distances and most bug fixes

reduce the distance to the minimum indicates that programmers are comfortable reasoning locally

(within a method) but are less capable of reasoning about non-local computation. Again, this is

what we would expect, but now we have empirical evidence supporting this belief, gathered by

examination of software artifacts.

Do Bugs Tend to Have Long Enforcement Distances? We investigate whether buggy

dereferences have longer enforcement distances by comparing the distribution of distances for all

dereference sites to that for buggy sites. Figure 6.7a shows the distribution of all dereference sites

for Lucene under the Inlining Depth control metric and for PMD under the Flow Count data metric.

Buggy sites are marked with stars. For these graphs the “all sites” distribution comes from the

latest before-fix revision that we analyzed—since the “all sites” distribution does not change much

over time (discussed below), these graphs are representative of how buggy sites compare to all

sites. We give plots of the other metrics for both benchmarks supplementally [30]—they are visibly

consistent with these representative graphs.

For the control-based metrics (Inlining Depth and Method Set), the fraction of of all dereference

sites that require only local reasoning (i.e., minimum distance) is significant and remarkably consistent

across benchmarks—about 40% of the total 4821 dereference sites measured. Yet none of the

buggy dereference sites involve only local reasoning. This observation further contributes empirical
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evidence that programmers are more comfortable reasoning locally than non-locally. The situation

is not as clear-cut for data reasoning—half of the buggy sites for PMD involve a flow distance of 0

(that is, they do not involve the heap at all). These buggy sites have non-minimum measurements

for both control-based metrics, possibly suggesting that these particular bugs resulted from faulty

control reasoning alone. The key message from this study is that while a significant fraction of

all dereference sites require only local control reasoning, buggy sites appear to be drawn from a

different distribution tending towards non-local control reasoning.

How Do Enforcement Distances Change Over Time? To explore how enforcement

distances change over time, we compare the distribution of distances for the first revision we analyzed

to a more recent one, spanning five years for PMD and 18 months for Lucene. Figure 6.7b shows

the fraction of dereference sites with a given maximum distance for PMD under the Field Set metric

at the beginning and end of the span. The distribution barely shifts to slightly longer distances.

This finding is quite surprising, as the sheer increase in code size (going from 1882 to 3205 executed

dereference sites and from 361 to 693 executed methods) should bias towards longer distances.

The results for Lucene, and for our other metrics, are exceedingly similar. For reference, they are

available supplementally [30]. For Lucene, the growth in number of measured dereferences is even

larger (going from 1389 to 4176). Perhaps our metrics are capturing properties not of programs but

of programmers and we should expect to see similar results for more benchmarks.

6.4.2 Distribution of Enforcement Distances

To understand the distribution of enforcement distances across a set of real programs, we

interpreted traces over the DaCapo benchmark suite’s small inputs. We omit jython, hysqldb, and

xalan because of limitations in how our instrumentation handles exceptions caught in uninstrumented

code and eclipse because our instrumentation causes it to deadlock. Figure 6.10 shows the cumulative

distribution of maximum dereference distances for the Flow Count, Field Set, and Inlining Depth

metrics. The y-axis shows the fraction of dereference sites with a distance less than or equal to

the value on the x-axis, so for example, for luindex under the Field Set metric, 60% of sites have a
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maximum dereference distance of 0, while around 97% have maximum distances of 2 or less. We

omit the sites with unknown distances (i.e., from library code). Interestingly for antlr on the Flow

Count metric, the cumulative fraction for antlr does not reach 1.0 until a distance of 97 (so the

x-axis has been cut off prematurely to elide this outlier and expose the behavior at small distances).

The graphs for Flow Count (i.e., dynamic data distance) and Field Set (i.e., static data distance) are

identical for distance 0, reflecting the fact that that between 55% and 85% of sites do not require

reasoning about the heap. Both go to nearly 100% by a distance of 4, although the dynamic metric,

as we have seen, has a very long tail. This indicates that the number of data locations about which

a programmer needs to reason to ensure that a dereference will succeed is generally small but may

in rare cases be large.

saveField = o.field;

. . . // complicated recursive code

. . . // that may modify o.field

o.field = saveField;

Figure 6.11: Trading off data distance to reduce control distance.

The small (5) number of sites in antlr that have extremely long Flow Count (97) are very

interesting. The values at these sites arise from repeated execution of the pattern shown in

Figure 6.11. These sites also exhibit the highest Inlining Depth distance observed (153) over all of

our benchmarks. It appears that the developer has made a deliberate decision to trade off extra

data distance in order to avoid having to consider a large amount of control distance.

The situation for dynamic control (Inlining Depth metric) distances is markedly different

than that for dynamic data. Although a large fraction of sites (70% to 95%) involve distances of

less than 10, a significant fraction of sites show much higher distances. In the antlr benchmark, for

example, around 12% of sites have distances greater than 45 and 8% have distances greater than

150. It is hard to imagine that programmers could reason operationally over such an inline depth.

Recall that inlining depth speaks about an observed enforcement and its use along a call path;

specifically an enforcement and a use in the same method separated by a long execution tree would
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still have distance 0. Instead, these large distances perhaps reflect the modeling in this metric that

methods can modify any heap location. To examine this hypothesis further, we ran this inlining

depth experiment except with heap modeling turned off (i.e., all reads from the heap are treated as

unknowns and all writes to the heap are ignored), which in essence focuses the measurement to

control distances of parameters. The result was that 95% of all sites had a distance of 3 or less,

although both antlr and bloat had sites with maximum distances of 24 and 82 respectively. This

provides some evidence for the somewhat unrealistic heap modeling hypothesis. For completeness,

this plot is given supplementally [30]. In languages such as Java, type safety and encapsulation

severely limit the heap locations that a given class or package can modify. An improved metric

would perhaps take these features into account.

6.4.3 Threats to Validity

We have identified three principle threats to the validity to our conclusions: (1) Benchmark

selection: We have chosen benchmarks that are easy to run under instrumentation and that have

relatively stable interfaces (so as to allow us to use the same input over different versions of the

program). This choice has led to a bias towards text processing tools. (2) Bug selection: We

examine bugs reported in project databases, biasing our analysis towards bugs that are easier to

report, which may have shorter enforcement distances. (3) Metrics: We have examined four of

many possible different distance metrics. We discuss our reasons for choosing these metrics in

Section 6.2, and the insights that we have obtained from the results discussed in this section has

perhaps lessened this concern.

6.5 Related Work

The closest related work is perhaps Liang et al. [70], which measures dynamically whether

particular heap abstractions would have been sufficient for race and deadlock detection analyses.

They focus on evaluating the abstraction function and do not perform symbolic interpretation (i.e.,

they instead associate facts with concrete object identities). In contrast, our approach is abstraction-
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agnostic and is instead concerned with creating a framework to (a) rule out static analysis designs

and (b) guess a scope (e.g., a code fragment) that may be sufficient to prove a property of interest.

Livshits et al. [71] assume that bottlenecks in code enforce taint sanitization—in our work, we look

to show that enforcements are bottlenecks. In contrast to work on augmenting symbolic execution

with concrete information to perform directed testing or test case generation [18, 49, 94], we perform

a symbolic analysis to understand source properties on a given concrete trace with an intertwined

concrete-symbolic state. Dynamic invariant inference [40, 53] generalizes over observed dynamic

executions to produce invariants and has been enriched with symbolic execution in DySy [35].

D’Ambros et al. [36] provide a comprehensive survey of artifact-based bug prediction metrics.

Our work differs from these approaches in that we are not focused on predicting bugs per se but

in understanding how enforcements are inserted to guard against faults. A large area of research

studies programmers directly to see how they reason about programs (e.g., [67, 68]). With our

measurements, we are not studying programmers but rather explaining empirical observations

about enforcements with hypotheses about possible programmer behavior. These behaviors may be

interesting to validate ethnographically.

Many have worked on null pointer error detection, both statically and dynamically. We are

not specifically concerned in null pointer detection but see it as a property that naturally lends

itself to the study of enforcement windows. Here, we mention a few pieces of work that make some

relevant observations. Hovemeyer et al. [60] report that many null dereference bugs do not rely on

heap invariants, but instead can be discovered with straightforward static data-flow analyses. Bond

et al. [15] present origin tracking, an efficient run-time mechanism for tracing a null dereference

back to the place where the null value was created.

6.6 Summary of Symbolic Trace Interpretation

We have identified two related concepts: validation scopes that are the code fragments

needed to prove the absence of a fault and enforcement windows that are observed as establish-

check-use sequences in non-faulting executions. The focus of this chapter has been on creating a
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framework and implementation for measuring enforcement windows that enable us to inform static

analysis design and to gain insights into how enforcements appear in code. A novel aspect of this

framework is the application of symbolic trace interpretation to selectively model limitations

of static reasoning in a dynamic analysis. We have given an indication that finding enforcement

windows can lead to useful validation scopes. Furthermore, we have provided empirical evidence to

support some widely-held beliefs about software engineering.

We chose non-null dereference enforcement windows for a case study because (a) null derefer-

ences faults are widely-known with many techniques targeted at eliminating them, and (b) there

are clear syntactic constructs that indicate establish-check-use sequences for dereferences. Our

framework and techniques should be more broadly applicable to other enforcements, for example,

downcasts, where allocation is establish, instanceof is check and the downcast itself is use. We

believe our approach holds promise to help analysis designers chose effective validation scopes for a

variety of interesting safety properties.



Chapter 7

Conclusions and Future Work

In this dissertation, I describe type-intertwined separation logic, a static analysis that soundly

combines two disparate approaches to reasoning about the mutable heap: types systems and

separation logic. Each of these approaches is powerful in isolation. Traditional type systems take an

alias-agnostic, global view of the heap that affords both fast verification and easy annotation of

invariants holding over the entire program. Separation logic, in contrast, provides an alias-aware,

local view of the heap in which invariants can vary at each program point. This work shows that

these two approaches can be safely and efficiently combined in a manner that preserves the benefits

of global reasoning for types systems and local reasoning for separation logic for invariants that

hold almost everywhere.

The key contributions that make type-intertwined separation logic possible involve the

communication and preservation of heap invariants across analysis boundaries. Type-consistent

materialization communicates type invariants from the type system to the separation logic, allowing

the analysis to both leverage and selectively violate global heap invariants derived by the type system.

Type-consistent summarization ensures that these violations are restored before the separation

logic switches to the type system, preserving the global type invariant. Similarly, gated separation

strengthens separating conjunction to permit sound framing, preserving gate-separated invariants

from type-intertwined interference—but there is no corresponding mechanism to communicate

separation logic invariants to the type system.

An exciting possibility for future work would be to communicate these invariants by lifting
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separation logic spatial formulas into the type system—analogous to the lifting of types to the

symbolic value typing in type-intertwined separation logic. This approach would allowing flow-

insensitive, alias-aware types that could be materialized and summarized like any other. Combining

these lifted-separation-logic types with type-intertwined analysis may be particularly fruitful for

checking types in dynamic languages, such as JavaScript, in which programmers apply a global,

type-like invariant that can only be precisely inferred with with local, alias-aware reasoning.
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Appendix A

Additional Proofs for Fissile Type Analysis

A.1 Lemmas Concerning Abstract State

While standard subtyping relates the concretizations of types within the same domain,

subtyping under substitution relates concretizations in different domains. But before we can

formally describe the soundness conditions for subtyping under subsitution, we must give semantic

meaning to transformations between the concretizations (and thus describe soundess for types under

substitution).

Lemma 11 (Meaning of Types Under Substitution):

(a) γ(TL [θ]) =

{
(E,H, v)

∣∣∣∣ (E ◦ θ,H, v) ∈ γ(TL)

}
(b) If fv(T S) ⊆ dom(θ̃−1) then

γ(T S [θ̃−1]) ⊆
{

(E,H, v)

∣∣∣∣ (E ◦ θ̃−1, H, ·, v) ∈ γ(T S)

}
(c) If fv(TL) ⊆ dom(θ̃) then

(i)

{
(V,Hok, Hmat, v) ∈ γ(TL [θ̃])

∣∣∣∣ Hmat = ·
}
⊆{

(V,Hok, Hmat, v)

∣∣∣∣ (V ◦ θ̃, Hok, v) ∈ γ(TL)

}

(ii)

(V,Hok, Hmat, v)

∣∣∣∣∣∣∣
Hmat = · and exists E ⊇ V ◦ θ̃

such that (E,Hok, v) ∈ γ(TL)

 ⊆ γ(TL [θ̃])

Proof. By definitions and Lemma 3.
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We rely on this lemma to show the soundness of subtyping under substitution (Lemma 4) in

Section 4.4.2.

We also note some structural properties of environments and valuations: (1) the concretization

of type environments permits weakening in local environments and (2) the concretization of symbolic

states permits weakening in valuations.

Lemma 12 (Weakening):

(1) If (E,H) ∈ γ(ΓL) and E′ ⊇ E then (E′, H) ∈ γ(ΓL).

(2) If (V,Hok, Hmat) ∈ γ(Ẽ, Σ̃) and V ′ ⊇ V then (V ′, Hok, Hmat) ∈ γ(Ẽ, Σ̃).

Proof. Straight-forward unrolling and re-rolling of definitions.

In essence, this property says that refinements must behave in a local manner; that is, they constrain

only the parts of the environment or valuation that they refer to. We rely on this property throughout

the proof.

A.2 Lemmas Concerning Concrete Execution

Before we can prove full type-intertwined soundness for Fissile, we first need several small

lemmas concerning single concrete execution rules. Essentially, these are factored out arguments

that we rely on in the body of the main proof (Theorem 1).

Lemma 13 (The Concrete Heap Only Grows): If E ` [H] e [H ′ ↓ v] then for all

a : 〈o,B〉 in H there exists an o′ such that H ′(a) = 〈o′, B〉.

Proof. By induction on the derivation of E ` [H] e [H ′ ↓ v]. The only interesting cases are

E-Object-Literal and E-Write-Field.

This lemma is a trivial property of concrete execution; it says that as the program executes, addresses

are only added to the concrete heap and never removed. This lemma is required to prove the

soundness of type checking of method calls.
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Lemma 14 (Evolving Type-Consistent Heaps): If (E,H, v) ∈ γ(TL
1 ) and

(i) for all a : 〈o,Ba〉 in H we have (H ′, a) ∈ γ(Ba) and also there exists an o′ such that

H ′(a) = 〈o′, Ba〉 and

(ii) for all a : 〈o,Ba〉 in H ′ it is the case that (H ′, a) ∈ γ(Ba)

then (E,H ′, v) ∈ γ(TL
1 ).

Proof. Follows from definition of concretization of type environments.

This lemma essentially says that if a concrete environment is in the concretization of a type

environment and the heap changes in such a way that (i) it does not remove any addresses and (ii)

any added or mutated objects are type consistent, then pair of the concrete environment heap and

the new heap will still be in the concretization of the type environment. We use this lemma in the

E-Reflective-Call case of Theorem 1 to show the heap that results from executing the body of a

method is still compatible with the type environment of the caller.

We now consider another special-purpose lemma, covering the effect of field writes in the

concretization of symbolic types.

Lemma 15 (Mutation of Materialized Heap):

If o′ = o[f : v] and (V,Hok, Hmat
N a : 〈o,Ba〉, v) ∈ γ(T S) then

(V,Hok, Hmat
N a : 〈o′, Ba〉, v) ∈ γ(T S).

Proof. By cases for refinements and by induction on the structure of base types for base types.

This lemma says that field writes to materialized storage will not cause the type of a value to change.

We use this lemma in the E-Write-Field case of Theorem 1.

Our final special-purpose lemma is used in the E-Object-Literal case of Theorem 1. It says

that adding a newly allocated object to the heap will not change the type of any values.

Lemma 16 (Field Type Allocation Lemma):
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If Bo = {var f : Tf , def m(p : Tp)→Bret} and (H, o) ∈ γ(f : Tf ) and o(m) ∈ γ(Bo, (p : Tp)→Bret)

for all methods m and a 6∈ dom(H) and H ′ = H[a : 〈o,Bo〉 then

(1) If (H, o, v) ∈ γ(TF) then (H ′, o, v) ∈ γ(TF)

(2) If (E,H, v) ∈ γ(TL) then (E,H ′, v) ∈ γ(TL)

Proof. By cases for refinements and by induction on the structure of base types for base types.

A.3 Details of the Proof of Intertwined Soundness Fissile Type Analysis

In this section, I give the details of the main proof of soundness for Fissile type analysis.

Theorem 1 (Soundness of Fissile Type Analysis).
If E ` [H] e [r] then

(1) If ΓL ` e : TL and (E,H) ∈ γ(ΓL) then r = H ′ ↓ v′ where (E,H ′) ∈ γ(ΓL) and
(E,H ′, v′) ∈ γ(TL); and

(2) If Ẽ ` {Σ̃} e {P̃} and (E,H) ∈ γ(Ẽ, Σ̃) then r = H ′ ↓ v′ where (E,H ′, v′) ∈ γ(Ẽ, P̃ ); and

(3) If Ẽ ` {P̃} e {P̃ ′} and (E,H, v) ∈ γ(Ẽ, P̃ ) then r = H ′ ↓ v′ where (E,H ′, v′) ∈ γ(Ẽ, P̃ ′).

Proof. By induction on the derivation of E ` [H] e [r].

Here we give details only for concrete execution rules that exercise the core, non-standard, parts

of our analysis. We present the cases for branching (to illustrate soundness of disjunctive symbolic

execution), sequencing (to demonstrate sound threading of state), field writes (for imperative

updates), reflective method call (to illustrate reflection call safety and modular checking), and object

literal creation (modular checking).

Case E-Branch-Left By assumption, we have that

E-Branch-Left

E :: E ` [H] e1 [r]

E ` [H] e1 8 e2 [r]

For this case, it suffices to show that:
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(a) If ΓL ` e1 8 e2 : TL and (E,H) ∈ γ(ΓL) then r = H ′ ↓ v1 where (E,H ′) ∈ γ(ΓL) and

(E,H ′, v1) ∈ γ(TL); and

(b) If Ẽ ` {Σ̃} e1 8 e2 {P̃} and (E,H) ∈ γ(Ẽ, Σ̃) then r = H ′ ↓ v1 where (E,H ′, v1) ∈ γ(Ẽ, P̃ );

and

(c) If Ẽ ` {P̃} e1 8 e2 {P̃ ′} and exists v where (E,H, v) ∈ γ(Ẽ, P̃ ) then r = H ′ ↓ v1 where

(E,H ′, v1) ∈ γ(Ẽ, P̃ ′).

We will show these properties by an inner simultaneous induction on the derivation of ΓL ` e1 8 e2 :

TL, the derivation of Ẽ ` {Σ̃} e1 8 e2 {P̃}, and the derivation of Ẽ ` {P̃} e1 8 e2 {P̃}. For this inner

induction, there are seven potential cases for the last rule applied to an expression of the form e1 8e2:

T-Branch, Sym-Branch, Sym-Materialize, Sym-Summarize, T-Sym-Handoff, Sym-Type-Handoff,

and Sym-Cases.

Case T-Branch By assumption, we have

T-Branch

ΓL ` e1 : TL ΓL ` e2 : TL

ΓL ` e1 8 e2 : TL

Suppose (E,H) ∈ γ(ΓL). Since Γ ` e1 : TL, we can apply the (outer) induction hypothesis for E ,

yielding r = H ′ ↓ v1 where (E,H ′) ∈ γ(ΓL) and (E,H ′, v1) ∈ γ(TL), as desired.

Case Sym-Branch By assumption, we have

Sym-Branch

Ẽ ` {Σ̃} e1 {P̃ 1} Ẽ ` {Σ̃} e2 {P̃ 2}

Ẽ ` {Σ̃} e1 8 e2 {P̃ 1 ∨ P̃ 2}

Suppose (E,H) ∈ γ(Ẽ, Σ̃). Since Ẽ ` {Σ̃} e1 {P̃ 1}, we can apply the (outer) induction hypothesis

for E , yielding r = H ′ ↓ v1 where (E,H ′, v1) ∈ γ(Ẽ, P̃ 1) and thus (E,H ′, v1) ∈ γ(Ẽ, P̃ 1 ∨ P̃ 2), as

desired.
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Case Sym-Materialize By assumption, we have

Sym-Materialize

Σ̃
−−−−−−−→
materialize

∨
i

Σ̃′i Si :: Ẽ ` {Σ̃′i} e1 8 e2 {P̃ i} for all i

Ẽ ` {Σ̃} e1 8 e2 {
∨
i

P̃ i}

Suppose (E,H) ∈ γ(Ẽ, Σ̃). Then by the soundness of materialization (Lemma 7), (E,H) ∈

γ(Ẽ,
∨
i

Σ̃′i) and thus (E,H) ∈ γ(Ẽ, Σ̃′i) for some i. Applying the (inner) induction hypothesis for Si

yields r = H ′ ↓ v1 where (E,H ′, v1) ∈ γ(Ẽ, P̃ i) and thus (E,H ′, v1) ∈ γ(Ẽ,
∨
i
P̃ i), as desired.

Case Sym-Summarize By assumption, we have

Sym-Summarize

Σ̃
−−−−−−−→
summarize Σ̃′ S :: Ẽ ` {Σ̃′} e1 8 e2 {P̃}

Ẽ ` {Σ̃} e1 8 e2 {P̃}

Suppose (E,H) ∈ γ(Ẽ, Σ̃). Then by the soundness of summarization (Lemma 9), (E,H) ∈ γ(Ẽ, Σ̃′)

Applying the (inner) induction hypothesis for S yields r = H ′ ↓ v1 where (E,H ′, v1) ∈ γ(Ẽ, P̃ ), as

desired.

Case T-Sym-Handoff By assumption, we have

T-Symbolic-Handoff

ΓL −−−−−−→symbolize Γ̃, Ẽ S :: Ẽ ` {Γ̃, ok} e1 8 e2 {
∨
i

(Γ̃i, ok) ↓ x̃i}

Γ̃i, Ẽ
−−−−→
typeify ΓL Γ̃i ` Γ̃i(x̃i) <: TL[Ẽ] for all i

ΓL ` e1 8 e2 : TL

Suppose (E,H) ∈ γ(ΓL). We have ΓL −−−−−−→symbolize Γ̃, Ẽ and thus by the soundness of local

environment symbolization (Lemma 5) (E,H) ∈ γ(Ẽ, (Γ̃, ok)). Then, applying the (inner) induction

hypothesis for S yields r = H ′ ↓ v1 where (E,H ′, v1) ∈ γ(Ẽ,
∨
i

(Γ̃i, ok) ↓ x̃i). From this, there exists

some i such that (E,H ′, v1) ∈ γ(Ẽ, (Γ̃i, ok) ↓ x̃i).

We wish to show that (i) (E,H ′) ∈ γ(ΓL) and (ii) (E,H ′, v) ∈ γ(TL).

For (i), since (E,H ′, v1) ∈ γ(Ẽ, (Γ̃i, ok) ↓ x̃i) we have (E,H ′) ∈ γ(Ẽ, (Γ̃i, ok)) by the definition

of concretization of symbolic state. But Γ̃i, Ẽ
−−−−→
typeify ΓL, so by the soundness of local environment

typeification (Lemma 5), (E,H ′) ∈ γ(ΓL), as desired.
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To show (ii), since (again) we have (E,H ′, v1) ∈ γ(Ẽ, (Γ̃i, ok) ↓ x̃i), there exists valuation V

where V (x̃i) = v1 and (V,E) ∈ γ(Ẽ) and (V,H ′, ·) ∈ γ(Γ̃i). So (H ′, ·, v1) ∈ γ(Γ̃i(x̃i)). Further, since

Γ̃i ` Γ̃i(x̃i) <: TL[Ẽ], by the soundness of symbolic subtyping (Lemma 1), we have (H ′, ·, v1) ∈

γ(TL[Ẽ]). Then, by Lemma 11 (V ◦ Ẽ,H ′, v1) ∈ γ(TL). But E ⊇ V ◦ Ẽ, so by weakening of local

environments (Lemma 12), (E,H ′, v1) ∈ γ(TL), as desired.

Case Sym-Type-Handoff By assumption, we have

Sym-Type-Handoff

Γ̃, Ẽ
−−−−→
typeify ΓL T :: ΓL ` e1 8 e2 : TL ΓL −−−−−−→symbolize Γ̃′, Ẽ z̃ /∈ dom(Γ̃′)

Ẽ ` {Γ̃, ok} e1 8 e2 {Γ̃′[z̃ : TL[Ẽ]], ok ↓ z̃}

Suppose (E,H) ∈ γ(Ẽ, (Γ̃, ok). Then, since Γ̃, Ẽ
−−−−→
typeify ΓL, we have (E,H) ∈ γ(ΓL) by the

soundness of local environment typeification (Lemma 5). Applying the (inner) inductive hypothesis

for T yields r = H ′ ↓ v1 where (E,H ′, v1) ∈ γ(TL) and (E,H ′) ∈ γ(ΓL). Then, by the soundness

of local environment symbolization (Lemma 5), we have (E,H ′) ∈ γ(Ẽ, (Γ̃′, ok)). Therefore, there

exists a valuation V where (V,E) ∈ γ(Ẽ) and (V,H ′, ·) ∈ γ(Γ̃′) and (V,H ′, ·) ∈ γ(ok).

Now, since (E,H ′, v1) ∈ γ(TL) and (E ⊇ V ◦Ẽ), we can apply Lemma 4, yielding (V,H ′, ·, v1) ∈

γ(TL[Ẽ]).

Let V ′(x̃) =


v1 if x̃ = z̃

V (x̃) otherwise

By weakening of valuations (Lemma 12), we have (V ′, E) ∈ γ(Ẽ) and (V ′, H ′, ·) ∈ γ(Γ̃′)

and (V ′, H ′, ·) ∈ γ(ok). It remains to show that (V ′, H ′, ·) ∈ γ(Γ̃′[z̃ : TL[Ẽ]]). Fix x̃ : T S in

Γ̃′[z̃ : TL[Ẽ]]. There are two cases: if x̃ = z̃ then (V ′, H ′, ·, V (x̃)) ∈ γ(Γ̃′[z̃ : TL[Ẽ]](x̃)) since

V (x̃) = V (z̃) = v1 and Γ̃′[z̃ : TL[Ẽ]](x̃) = TL[Ẽ]. In the second case, x̃ 6= z̃ and thus x̃ ∈ dom(Γ̃′).

But (V ′, H ′, ·) ∈ γ(Γ̃′), so (V ′, H ′, ·, V (x̃) ∈ γ(Γ̃′[z̃ : TL[Ẽ]](x̃)). Since x̃ : T S was chosen arbitrarily,

(V ′, H ′, ·) ∈ γ(Γ̃′[z̃ : TL[Ẽ]]) and thus (E,H ′, v1) ∈ γ(Ẽ, Γ̃′[z̃ : TL[Ẽ]], ok ↓ z̃), as desired.
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Case Sym-Cases By assumption, we have

Sym-Cases

Si :: Ẽ ` {Σ̃i} e1 8 e2 {P̃ i} for all i

Ẽ ` {
∨
i

Σ̃i ↓ x̃i} e1 8 e2 {
∨
i

P̃ i}

Suppose exists v where (E,H, v) ∈ γ(
∨
i

Σ̃i ↓ x̃i). Then for some i, (E,H, v) ∈ γ(Σ̃i ↓ x̃i) and thus

(E,H) ∈ γ(Σ̃i). We can then apply the (inner) inductive hypothesis for Si, yielding r = H ′ ↓ v1

where (E,H ′, v1) ∈ γ(P̃ i) and thus (E,H ′, v1) ∈ γ(
∨
i
P̃ i), as desired.

Case E-Branch-Right Resuming the outer induction, this is nearly identical to Case E-Branch-

Right.

Case E-Seq

By assumption, we have

E-Seq

E1 :: E ` [H] e1 [H ′ ↓ v1] E2 :: E ` [H ′] e2 [r]

E ` [H] e1 ; e2 [r]

For this case, it suffices to show that:

(a) If ΓL ` e1 ; e2 : TL and (E,H) ∈ γ(ΓL) then r = H ′′ ↓ v2 where (E,H ′′) ∈ γ(ΓL) and

(E,H ′′, v2) ∈ γ(TL); and

(b) If Ẽ ` {Σ̃} e1 ; e2 {P̃} and (E,H) ∈ γ(Ẽ, Σ̃) then r = H ′′ ↓ v2 where (E,H ′′, v2) ∈ γ(Ẽ, P̃ );

and

(c) If Ẽ ` {P̃} e1 ; e2 {P̃ ′} and exists v where (E,H ′, v) ∈ γ(Ẽ, P̃ ) then r = H ′′ ↓ v2 where

(E,H ′′, v2) ∈ γ(Ẽ, P̃ ′).

Similar to Case E-Branch-Left, we will show this by an inner simultaneous induction on

the derivation of ΓL ` e1 ; e2 : TL, the derivation of Ẽ ` {Σ̃} e1 ; e2 {P̃}, and the derivation of

Ẽ ` {P̃} e1 ; e2 {P̃}.

For this inner induction, there are seven potential cases for the last rule applied to an expression

of the form e1 8 e2: T-Seq, Sym-Seq, Sym-Materialize, Sym-Summarize, T-Sym-Handoff, Sym-

Type-Handoff, and Sym-Cases.
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The arguments for Sym-Materialize, Sym-Summarize, T-Sym-Handoff, Sym-Type-Handoff,

and Sym-Cases are identical to those given in Case E-Branch-Left (note that those arguments do

not refer to the outer induction hypothesis and also do not refer to the rule-specific sub-structure of

the expression or the state components). Here, we give only the two syntax-directed cases (T-Seq,

Sym-Seq).

Case T-Seq By assumption, we have

T-Seq

ΓL ` e1 : TL
1 ΓL ` e2 : TL

2

ΓL ` e1 ; e2 : TL
2

Suppose (E,H) ∈ γ(ΓL). Since Γ ` e1 : TL, we can apply the outer induction hypothesis for E1,

yielding (E,H ′) ∈ γ(ΓL). With this, the outer induction hypothesis for E2 yields r = H ′′ ↓ v2 with

(E,H ′′) ∈ γ(ΓL) and (E,H ′′, v2) ∈ γ(TL
1 ), as desired.

Case Sym-Seq By assumption, we have

Sym-Seq

S :: Ẽ ` {Σ̃} e1 {P̃ ′} P :: Ẽ ` {P̃ ′} e2 {P̃ ′′}

Ẽ ` {Σ̃} e1 ; e2 {P̃ ′′}

Suppose (E,H) ∈ γ(Ẽ, Σ̃). Then by the outer inductive hypothesis for S, we have (E,H ′, v1) ∈ γ(P̃ ′).

Then by the inner inductive hypothesis for P, we have r = H ′′ ↓ v2 with (E,H ′′, v2) ∈ γ(Ẽ, P̃ ′), as

desired.

Case E-Write-Field

By assumption, we have

E-Write-Field

a = E(x) v = E(y) 〈o,B〉 = H(a) o′ = o[f : v] H ′ = H[a : 〈o′, B〉]

E ` [H]x.f = y [r]

where r = H ′ ↓ v.

For this case, it suffices to show that:

(a) If ΓL ` x.f = y : TL and (E,H) ∈ γ(ΓL) then r = H ′ ↓ v where (E,H ′) ∈ γ(ΓL) and

(E,H ′, v) ∈ γ(TL); and
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(b) If Ẽ ` {Σ̃}x.f = y {P̃} and (E,H) ∈ γ(Ẽ, Σ̃) then r = H ′ ↓ v where (E,H ′, v) ∈ γ(Ẽ, P̃ );

and

(c) If Ẽ ` {P̃}x.f = y {P̃ ′} and exists v where (E,H, v) ∈ γ(Ẽ, P̃ ) then r = H ′ ↓ v where

(E,H ′, v) ∈ γ(Ẽ, P̃ ′).

Again, we will show this by a simultaneous inner induction. For this inner induction, the only

interesting new case is Sym-Field-Write. We skip T-Field-Write since this is essentially the same

as that from the Deputy type system [27].

Case Sym-Write-Field By assumption, we have

Sym-Write-Field

Ẽ ` {Γ̃, H̃}x.f := y {Γ̃, H̃
[
Ẽ(x) :

(
H̃(Ẽ(x))[f : Ẽ(y)]

)]
↓ Ẽ(y)}

Suppose (E,H) ∈ γ(Ẽ, (Γ̃, H̃)). Without loss of generality, let ã = Ẽ(x), ỹ = Ẽ(y), õ = H̃(ã),

H̃rest
N ã : õ. Let õ′ = õ[f : ỹ] and H̃ ′ = H̃rest

N ã : õ′.

Then, there exists a valuation V , and heaps Hok and Hmat such that:

(A1) (V,E) ∈ γ(Ẽ)

(A2) (V,Hok, Hmat) ∈ γ(H̃rest
N ã : õ),

(A3) (V,Hok, Hmat) ∈ γ(Γ̃), and

(A4) H = Hok
N Hmat.

Because a = E(x) and v = E(y), by (A1) we have V (ã) = a and V (ỹ) = v. By (A2) we

have Hmat = Hmat
rest N a : 〈o,B〉 where o ∈ γ(õ). But H = Hok

N Hmat
rest N a : 〈o,B〉 (A4), so

H ′ = Hok
N Hmat

rest N a : 〈o′, B〉.

We wish to show that (E,H ′, v) ∈ γ(Ẽ, (Γ̃, H̃ ′) ↓ ỹ), so we must show:

(W1) (V,E) ∈ γ(Ẽ)

(W2) (V,Hok, Hmat
rest N a : 〈o′, B〉) ∈ γ(H̃rest

N ã : õ′),
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(W3) (V,Hok, Hmat
rest N a : 〈o′, B〉) ∈ γ(Γ̃), and

(W4) H ′ = Hok
N Hmat

rest N a : 〈o′, B〉.

We have (W1) by (A1) and have already shown (W4). For (W2), since o′ = o[f : v], V (ỹ) = v,

and õ′ = õ[f : ỹ], we have o′ ∈ γ(õ′) and thus (V,Hok, Hmat
rest N a : 〈o′, B〉) ∈ γ(H̃rest

N ã : õ′)

For (W3), choose x̃ : T S in Γ̃. By (A3) we have (V,Hok, Hmat
rest N a : 〈o,B〉, V (x̃) ∈ γ(Γ̃).

Then by Lemma 15 and the definition of concretization of symbolic types we have (V,Hok, Hmat
rest N

a : 〈o′, B〉, V (x̃) ∈ γ(Γ̃) So we have (W4): (V,Hok, Hmat
rest N a : 〈o′, B〉) ∈ γ(Γ̃) and thus

(E,H ′, v) ∈ γ(Ẽ, (Γ̃, H̃ ′) ↓ ỹ), as desired.

Case E-Call-Refl

By assumption, we have

E-Call-Refl

m = E(y)

〈o,B〉 = H(E(z)) e = o(m) E′ = p : E(x), self : E(z) E :: E′ ` [H] e [H ′ ↓ v]

E ` [H] z.[y](x) [r]

For this case, it suffices to show that:

(a) If ΓL ` z.[y](x) : TL and (E,H) ∈ γ(ΓL) then r = H ′ ↓ v where (E,H ′) ∈ γ(ΓL) and

(E,H ′, v) ∈ γ(TL); and

(b) If Ẽ ` {Σ̃} z.[y](x) {P̃} and (E,H) ∈ γ(Ẽ, Σ̃) then r = H ′ ↓ v where (E,H ′, v) ∈ γ(Ẽ, P̃ );

and

(c) If Ẽ ` {P̃} z.[y](x) {P̃ ′} and exists v where (E,H, v) ∈ γ(Ẽ, P̃ ) then r = H ′ ↓ v where

(E,H ′, v) ∈ γ(Ẽ, P̃ ′).

Again, we will show this by a simultaneous inner induction. For this inner induction, the only

new case is T-Reflective-Method-Call.
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Case T-Reflective-Method-Call By assumption, we have

T-Reflective-Method-Call

Γ <:[p7→x,self:z] p : Tp, self : Γ(z) Γ(z) = {· · · } � respondsTo y(p : Tp)→Bret

Γ ` z.[y](x) : Bret �

Assume (E,H) ∈ γ(Γ). Since Γ <:[p 7→x,self:z] p : Tp, self : Γ(z), by Lemma 4 we have (E ◦

(p 7→ x, self : z), H) ∈ γ(p : Tp, self : Γ(z)). But E ◦ (p 7→ x, self : z) = p : E(x), self : E(z) = E′, so

(E′, H) ∈ γ(p : Tp, self : Γ(z)).

But since (E,H) ∈ γ(Γ), (E,H,E(z)) ∈ γ(Γ(z)) and so

(a) the base type of Γ(z) is B; and

(b) (E,H,E(z)) ∈ γ(respondsTo y(p : Tp)→Bret).

From (a) we have (E′, H) ∈ γ(p : Tp, self : B �).

From (b), by the definition of concretization for respondsTo refinements, o(E(y)) ∈ γ(B, (p : Tp)→Bret).

Since E(y) = m, and e = o(m), e ∈ γ(B, (p : Tp)→Bret). By the definition of concretization for

method type signatures, p : Tp, self : B � ` e : Bret �.

We can thus apply the outer inductive hypothesis for E , yielding r = H ′ ↓ v where (E′, H ′) ∈

γ(p : Tp, self : B �) and (E′, H ′, v) ∈ γ(Bret �)

We want to show that (1) (E,H ′) ∈ γ(Γ) and (2) (E,H ′, v) ∈ γ(Bret �)

For (1), choose u : T in Γ. Since (E,H) ∈ γ(Γ), we have (E,H,E(v)) ∈ γ(T ). We want

(E,H ′, E(v)) ∈ γ(T ). Since (E′, H ′) ∈ γ(p : Tp, self : B �), by the definition of concretization of

type environments, we have (H ′, a) ∈ γ(Ba) for all a : 〈oa, Ba〉 in H ′. And since E′ ` [H] e [H ′ ↓ v],

by Lemma 13, we have for all a : 〈oa, Ba〉 in H there exists an object o′a such that H ′(a) = 〈o′a, Ba〉.

With these two conditions, we can apply Lemma 14, yielding (E,H ′, E(v)) ∈ γ(T ). Since u : T was

chosen arbitrarily, we have (E,H ′) ∈ γ(Γ)

For (2), we note that (E′, H ′, v) ∈ γ(Bret �). But Bret � has no refinements, so it cannot

constrain a concrete environment and thus (E,H ′, v) ∈ γ(Bret �), as desired.

Case E-Object-Literal



185

By assumption, we have

E-Object-Literal

o = [f : E(xf )] [m : e]

B = {var f : Tf , def m(p : Tp)→Bret} a 6∈ dom(H) H ′ = H[a : 〈o,B〉]

E ` [H] {var f : Tf = xf , def m(p : Tp) : Bret = e} [r]

where r = H ′ ↓ a.

For this case, it suffices to show that:

(a) If ΓL ` {var f : Tf = xf , def m(p : Tp) : Bret = e} : TL and (E,H) ∈ γ(ΓL) then

r = H ′ ↓ a where (E,H ′) ∈ γ(ΓL) and (E,H ′, a) ∈ γ(TL); and

(b) If Ẽ ` {Σ̃} {var f : Tf = xf , def m(p : Tp) : Bret = e} {P̃} and (E,H) ∈ γ(Ẽ, Σ̃) then

r = H ′ ↓ a where (E,H ′, a) ∈ γ(Ẽ, P̃ ); and

(c) If Ẽ ` {P̃} {var f : Tf = xf , def m(p : Tp) : Bret = e} {P̃ ′} and exists v where (E,H, v) ∈

γ(Ẽ, P̃ ) then r = H ′ ↓ a where (E,H ′, a) ∈ γ(Ẽ, P̃ ′).

Again, we will show this by a simultaneous inner induction. For this inner induction, the only

new case is T-Object-Literal.

Case T-Object-Literal By assumption, we have

T-Object-Literal

Γ <:[f :xf ] f : Tf

p : Tp, self : B � ` e : Bret � for all methods B = {var f : Tf , def m(p : Tp)→Bret}

Γ ` {var f : Tf = xf , def m(p : Tp) : Bret = e} : B �

Assume (E,H) ∈ γ(Γ). We wish to show that (1) (E,H ′) ∈ γ(Γ) and (2) (E,H ′, a) ∈ γ(B �).

The key property to show is that (H ′, a) ∈ γ(B). There requires showing that there exists o′

where

(W1) H ′(a) = 〈o′, B〉 and

(W2) o′(m) ∈ γ(B, (p : Tp)→Bret) for all methods m
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(W3) (H ′, o′) ∈ γ(f : Tf ).

Let o′ = o. We have H ′ = H N H[a : 〈o,B〉], so (W1) holds. Since p : Tp, self : B � ` e : Bret �

for all method m in B, (W2) holds. For (W3), since (E,H) and Γ <:[f :xf ] f : Tf , by Lemma 4 we

have (H,E ◦ f : xf ) ∈ γ̃(f : Tf ). But E ◦ f : xf = [f : E(xf )], which are exactly the fields of o, so

(H, o) ∈ γ(f : Tf ).

We want to show (H ′, o) ∈ γ(f : Tf ). So choose f : γ(TF
f ) in f : Tf . Since (H, o) ∈ γ(f : Tf ),

we have (H, o, o(f) ∈ γ(Tf ). Then by Lemma 16, (H ′, o, o(f) ∈ γ(Tf ). Since f : γ(TF
f ) was chosen

arbitrarily, we have (H ′, o) ∈ γ(f : Tf ). and so (W3) holds and thus (H ′, a) ∈ γ(B).

To show (1) we must must show that (H ′, a) ∈ γ(B) (which we just showed) and (E,H ′) ∈

γ(Γ). Fix x : γ(TL
x ) in Γ. Then, since (E,H) ∈ γ(Γ) we have (E,H,E(x)) ∈ γ(TL

x ). Then by

Lemma 16 we have (E,H ′, E(x)) ∈ γ(TL
x ). Since x : γ(TL

x ) was chosen arbitrarily, (E,H ′) ∈ γ(Γ),

as desired.

For (2), we have (H ′, a) ∈ γ(B). Since Since B � has no refinements, (E,H ′, a) ∈ γ(B �), as

desired.

Case E-Call-Refl-Lookup-Err

By assumption, we have

E-Call-Refl-Lookup-Err

m = E(y) 〈o,B〉 = H(E(z)) m 6∈ dom(o)

E ` [H] z.[y](x) [r]

where r = err.

For this case, it suffices to show that:

(a) If ΓL ` z.[y](x) : TL and (E,H) ∈ γ(ΓL) then r = H ′ ↓ a where (E,H ′) ∈ γ(ΓL) and

(E,H ′, v′ ∈ γ(TL); and

(b) If Ẽ ` {Σ̃} z.[y](x) {P̃} and (E,H) ∈ γ(Ẽ, Σ̃) then r = H ′ ↓ a where (E,H ′, v′) ∈ γ(Ẽ, P̃ );

and
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(c) If Ẽ ` {P̃} z.[y](x) {P̃ ′} and exists v where (E,H, v′) ∈ γ(Ẽ, P̃ ) then r = H ′ ↓ a where

(E,H ′, v′) ∈ γ(Ẽ, P̃ ′).

That is, we will show that r cannot be err, and thus derive a contradiction. We will (as usual),

prove this with a simultaneous inner induction. Note that the conditions (a), (b), and (c) above are

structural the same (except for the identity of the command) as those we have used in the other

evaluation cases. The only different case is

Case T-Reflective-Method-Call By assumption, we have

T-Reflective-Method-Call

Γ <:[p7→x,self:z] p : Tp, self : Γ(z) Γ(z) = {· · · } � respondsTo y(p : Tp)→Bret

Γ ` z.[y](x) : Bret �

Assume (E,H) ∈ γ(Γ). Then (E,H,E(z)) ∈ γ(Γ(z)). But γ(Γ(z)) has refinement respondsTo y(p : Tp)→Bret,

so (E,H,E(z)) ∈ γ(respondsTo y(p : Tp)→Bret). So, by the definition of concretization for respond-

sTo refinements, o(E(y)) ∈ γ(B, (p : Tp)→Bret). Since E(y) = m we have e = o(m). But this

violates the assumption that m 6∈ dom(o), so we can assert (E,H ′) ∈ γ(ΓL) and (E,H ′, v′) ∈ γ(TL),

as desired.

Case E-Write-Field-Deref-Err

By assumption, we have
E-Write-Field-Deref-Err

v = E(x) v 6∈ dom(H)

E ` [H]x.f = y [r]

where r = err.

For this case, it suffices to show that:

(a) If ΓL ` x.f = y : TL and (E,H) ∈ γ(ΓL) then r = H ′ ↓ a where (E,H ′) ∈ γ(ΓL) and

(E,H ′, v′) ∈ γ(TL); and

(b) If Ẽ ` {Σ̃}x.f = y {P̃} and (E,H) ∈ γ(Ẽ, Σ̃) then r = H ′ ↓ a where (E,H ′, v′) ∈ γ(Ẽ, P̃ );

and
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(c) If Ẽ ` {P̃}x.f = y {P̃ ′} and exists v where (E,H, v) ∈ γ(Ẽ, P̃ ) then r = H ′ ↓ a where

(E,H ′, v′) ∈ γ(Ẽ, P̃ ′).

We show this by simultaneous induction on the typing and symbolic execution judgments.

Again, we consider only the symbolic field write, since the type field write is similar to Deputy.

Case Sym-Write-Field By assumption, we have

Sym-Write-Field

Ẽ ` {Γ̃, H̃}x.f := y {Γ̃, H̃
[
Ẽ(x) :

(
H̃(Ẽ(x))[f : Ẽ(y)]

)]
↓ Ẽ(y)}

Suppose (E,H) ∈ γ(Ẽ, (Γ̃, H̃)). Without loss of generality, let ṽ = Ẽ(x) and note that the

application of Sym-Write-Field requires that ṽ ∈ dom(H̃).

By the definition of concretization of symbolic state, Then, there exists a valuation V , and

heaps Hok and Hmat such that:

(A1) (V,E) ∈ γ(Ẽ)

(A2) (V,Hok, Hmat) ∈ γ(H̃),

(A3) H = Hok
N Hmat.

Because v = E(x), by (A1) we have V (ṽ) = v. Since ṽ ∈ dom(H̃), by (A2) we have

v ∈ dom(Hmat). But H = Hok
N Hmat, so v ∈ dom(H). But the application of E-Write-Field-

Deref-Err requires that v 6∈ dom(H). This is a contradiction, so we can assert r = H ′ ↓ v′ where

(E,H ′, v′) ∈ γ(Ẽ, P̃ ), as desired.

Case E-Seq-Err-1 By assumption, we have

E-Seq-Err-1

E ` [H] e1 [r1]

E ` [H] e1 ; e2 [r]

where r1 = err and r = err.

For this case, it suffices to show that:
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(a) If ΓL ` e1 ; e2 : TL and (E,H) ∈ γ(ΓL) then r = H ′′ ↓ v2 where (E,H ′′) ∈ γ(ΓL) and

(E,H ′′, v2) ∈ γ(TL); and

(b) If Ẽ ` {Σ̃} e1 ; e2 {P̃} and (E,H) ∈ γ(Ẽ, Σ̃) then r = H ′′ ↓ v2 where (E,H ′′, v2) ∈ γ(Ẽ, P̃ );

and

(c) If Ẽ ` {P̃} e1 ; e2 {P̃ ′} and exists v where (E,H ′, v) ∈ γ(Ẽ, P̃ ) then r = H ′′ ↓ v2 where

(E,H ′′, v2) ∈ γ(Ẽ, P̃ ′).

The two interesting cases are: T-Seq and Sym-Seq.

Case T-Seq By assumption, we have

T-Seq

ΓL ` e1 : TL
1 ΓL ` e2 : TL

2

ΓL ` e1 ; e2 : TL
2

Suppose (E,H) ∈ γ(ΓL). Since Γ ` e1 : TL, we can apply the outer induction hypothesis for

E1, yielding r1 = (E,H ′, v1) where (E,H ′) ∈ γ(ΓL). But, by assumption, r1 = err. This is a

contradiction, so we can vacuously assert r = H ′′ ↓ v2 where (E,H ′′) ∈ γ(ΓL) and (E,H ′′, v2) ∈

γ(TL), as required.

Case Sym-Seq By assumption, we have

Sym-Seq

S :: Ẽ ` {Σ̃} e1 {P̃ ′} P :: Ẽ ` {P̃ ′} e2 {P̃ ′′}

Ẽ ` {Σ̃} e1 ; e2 {P̃ ′′}

Suppose (E,H) ∈ γ(Ẽ, Σ̃). Then by the outer inductive hypothesis for S, we have r1 = (E,H ′, v1)

where (E,H ′) where (E,H ′, v1) ∈ γ(P̃ ′). But, by assumption, r1 = err. This is a contradiction, so

we can vacuously assert r = H ′′ ↓ v2 where (E,H ′′, v2) ∈ γ(Ẽ, P̃ ).


