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Thesis directed by Prof. Hanspeter Schaub

In recent years there has been a significant increase in interest in smaller satellites as lower

cost alternatives to traditional satellites, particularly with the rise in popularity of the CubeSat.

Due to stringent mass, size, and often budget constraints, these small satellites rely on making

the most of inexpensive hardware components and sensors, such as coarse sun sensors (CSS) and

magnetometers. More expensive high-accuracy sun sensors often combine multiple measurements,

and use specialized electronics, to deterministically solve for the direction of the Sun. Alternatively,

cosine-type CSS output a voltage relative to the input light and are attractive due to their very

low cost, simplicity to manufacture, small size, and minimal power consumption. This research

investigates using coarse sun sensors for performing robust attitude estimation in order to point a

spacecraft at the Sun after deployment from a launch vehicle, or following a system fault.

As an alternative to using a large number of sensors, this thesis explores sun-direction es-

timation techniques with low computational costs that function well with underdetermined sets

of CSS. Single-point estimators are coupled with simultaneous nonlinear control to achieve sun-

pointing within a small percentage of a single orbit despite the partially underdetermined nature of

the sensor suite. Leveraging an extensive analysis of the sensor models involved, sequential filtering

techniques are shown to be capable of estimating the sun-direction to within a few degrees, with no

a priori attitude information and using only CSS, despite the significant noise and biases present in

the system. Detailed numerical simulations are used to compare and contrast the performance of

the five different estimation techniques, with and without rate gyro measurements, their sensitivity

to rate gyro accuracy, and their computation time.



iv

One of the key concerns with reducing the number of CSS is sensor degradation and failure.

In this thesis, a Modified Rodrigues Parameter based CSS calibration filter suitable for autonomous

on-board operation is developed. The sensitivity of this method’s accuracy to the available Earth

albedo data is evaluated and compared to the required computational effort. The calibration filter is

expanded to perform sensor fault detection, and promising results are shown for reduced resolution

albedo models. All of the methods discussed provide alternative attitude, determination, and control

system algorithms for small satellite missions looking to use inexpensive, small sensors due to size,

power, or budget limitations.
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Chapter 1

Introduction

1.1 Background and Motivation

A key function of satellite attitude, determination, and control systems (ADCS) is to provide

a sun-pointing, or safe, mode. This mode is designed to successfully advance the spacecraft to

nominal operation, following separation from a launch vehicle, by maneuvering to a power positive

orientation, and to function as a safe mode to revert to in the event of a fault or failure. The

ADCS must, therefore, be capable of quickly and robustly pointing the solar arrays at the Sun and

maintaining power positiveness from any initial orientation, with no prior knowledge of attitude,

in the presence of potentially large angular rates due to launch vehicle separation or other ADCS

faults.

In recent years there has been a significant increase in interest in smaller satellites as a

lower cost alternative to traditional satellites. From largest to smallest mass, these new classes of

satellites are generally referred to as minisatellites, 500 kg to 100 kg, microsatellites, 100 kg to 10 kg,

nanosatellites, 10 kg to 1 kg, and picosatellites, 1 kg to 0.1 kg. These satellites are commonly used

for educational purposes or as technology demonstrators, but they have been identified as excellent

candidates for distributed sensing and formation flying opportunities. While some systems, such

as command and data handling and electrical power systems, have benefited from advances in

commercial electronics, there has been a lag in the development of attitude control subsystems [1].

One of the reasons for the rise of small satellites is the definition of the CubeSat standard.

CubeSats, or 10 cm cube satellites weighing less than 1.33 kg, were originally proposed by Profes-
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sor Robert Twiggs of Stanford University and Professors Jordi Puig-Suari and Clarke Turner of

California Polytechnic State University as a means of reducing satellite costs to enable academic

participation in space science [2]. These nanosatellites have garnered international interest and ap-

proximately one hundred have been launched by universities, research institutes, and commercial

entities with several demonstrating active ADCS. Due to stringent mass, size, and often budget con-

straints placed on these satellites, they typically rely on simple sensor hardware, such as coarse sun

sensors (CSS) and magnetometers. In addition, with limited size and space for batteries, it is even

more important for actively controlled small satellites to have a reliable method for determining the

sun-direction and achieving sun-pointing following deployment from a launch vehicle.

CubeSats are not alone in their need of improved attitude, determination, and control subsys-

tems. The FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere,

and Climate) mission consists of six low Earth orbiting microsatellites launched jointly by the United

States and Taiwan in 2006 to study the Earth’s atmosphere using radio occultation (RO) measure-

ments from Global Positioning System (GPS) satellites [3]. COSMIC provides data to over 1000

users worldwide for weather prediction and climate modeling. COSMIC has been highly success-

ful, but some of the key spacecraft system lessons learned highlight the difficulties and importance

of a robust sun-pointing mode: the satellites are equipped with no angular rate sensors and the

sun-direction algorithm on board periodically generates poor estimates [4].

Literature on the use of coarse sun sensors for sun-direction estimation, sun acquisition,

attitude control, or the on-orbit calibration of such sensors is sparse with most devoted to the use

of more expensive and complicated digital sun sensors [5,6]. This research aims to investigate the use

of inexpensive cosine-type coarse sun sensors and explores methods for sun-direction estimation,

coupled with simultaneous attitude control, an important aspect of attitude, determination, and

control systems, using partially underdetermined sets of CSS. Ideally, the sun direction can be

uniquely determined at a given time for a spacecraft if three or more CSS measurements are available.

For this research, an underdetermined sensor set is one for which there are spacecraft attitudes

where the sun direction cannot be uniquely determined due to an insufficient number of sensors. In
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addition, methods for performing autonomous calibration and fault detection of coarse sun sensors

are investigated. Emphasis is placed on balancing accuracy with computational costs to improve

autonomy and reduce ground testing and support costs.

1.2 Previous Work

As mentioned earlier, the literature on the use of cosine-type coarse sun sensors for performing

sun-direction estimation, on-orbit calibration, and fault detection is limited. While it is known these

sensors are flown in space, the relative cost savings of using analog sun sensors, as opposed to digital

sensors, is not as important to large corporate satellites as it is to low-budget spacecraft produced

in academia. An overview of previous research in the relevant aspects of sun sensors, based attitude

estimation, on-orbit calibration, and fault detection is presented.

1.2.1 Coarse Sun Sensors

Spacecraft commonly use a number of sun sensors to determine the sun-direction vector in

the body frame. There are two general types of sun sensors used: digital two-axis sensors and coarse

analog cosine-type sensors. Digital two-axis sensors combine two or more image sensors and process-

ing electronics into a single package that provides a complete sun vector. Coarse analog cosine-type

sensors are composed of photodiodes with glass covers for filtering out undesired wavelengths, and

optional baffles used for restricting the sensor’s field of view, and return a scalar measurement.

Digital sun sensors are more expensive and complicated than analog sensors and an area of

research unto themselves. These sensors often use an optical mask to filter incoming light onto

linear-array-charge-couple-devices (linear CCDs) [7] or high-accuracy complementary metal-oxide-

semiconductor (CMOS) active pixel sensors (APS) [8,9]. Using the geometry of the optical mask,

incoming irradiance is confined to a specific area on the CCD and the incidence angle of the incoming

ray is reconstructed. Multiple CCDs are usually incorporated into a single sensor package to provide

a vector sun-direction measurement when the Sun is in view of the spacecraft. These sensors must

often trade between field of view and accuracy due to the resolution available on the detector [10].
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Current research into improving accuracy, while reducing the size of these devices, includes us-

ing miniaturized silicon photodiodes [11], high-accuracy complementary metal-oxide-semiconductors

(CMOS) [8], and N -shaped slit masks [9].

Alternatively, analog cosine-type CSS are simply photodiodes that output a voltage propor-

tional to the input irradiance. Digital sensors are capable of producing much higher accuracy

estimates of the sun-direction than analog sensors, but do have several disadvantages. While re-

search is ongoing to reduce the power consumption of digital sun sensors [12], power is still required

to run their specialized electronics, and they must be coupled with on-board electronics to produce

an estimate of the spacecraft’s attitude. In addition, they are significantly more expensive than

analog devices. This research focuses on using analog sun sensors because of their inexpensiveness,

small size, and minimal power consumption. The algorithms investigated are advantageous for

small satellite platforms because they reduce costs by incorporating the processing of measurements

directly into the attitude estimation algorithms.

Sun sensors are sensitive to any light and in orbit the most significant light source, other

than direct sunlight, is light from the Sun diffusely reflected by the Earth. NASA has published

models for Earth’s albedo [13] and its Total Ozone Mapping Spectrometer (TOMS) mission generated

a wealth of data on Earth’s reflectivity. More recently, Bhanderi looked extensively at modeling

Earth’s albedo with regards to coarse sun sensor observations and validating such models against

flight data [14,15]. Research has been devoted to approximating the reflectivity of the Earth with a

latitude dependent polynomial fit to reduce memory requirements [16].

Digital sun sensors use geometry of incoming light and order of magnitude thresholding to

reject light due to albedo. Because Earth’s albedo can account for significant amount of the input

to analog coarse sun sensors, and accounting for Earth’s albedo requires knowledge of the relative

positions of the Sun, the Earth, and the satellite, analog sensors are often overlooked. This research

shows how coarse sun sensors can be used without an on-board albedo model to achieve sun-direction

accurate to a few degrees and autonomous on-orbit calibration.



5

Because CSS are relatively inexpensive, it is not uncommon for spacecraft to place a multitude

of sensors around the exterior to achieve the coverage required for determining the sun direction

geometrically. For example, RAX-2, a 3U CubeSat, is equipped with 17 coarse sun sensors [5]. The

addition of so many sensors to the spacecraft is not without hazards. The fields of view of the CSS

can become blocked by other instrumentation, the CSS can interfere with other payloads, cabling

must be routed for all sensors, and extra sensors require additional testing time and complexity. The

placement of these sensors is generally an iterative process based on experience and prior designs,

but can be optimized to maximize redundant coverage [17] or minimize the angular uncertainty of the

resulting sun vector estimate when three sensor coverage is available globally [18]. These approaches

include methods to weight the solution to account for mission objectives and payload interference,

but do not address, as this research aims to, what to do when the Sun is only observed by two or

fewer sensors.

1.2.2 Sun Sensor Based Attitude Estimation

When using digital sun sensors, the output sun-direction observation is often combined with

other vector observations, such as magnetometer readings [19], to solve for the true sun direction de-

terministically. Many methods exist for performing attitude estimation through the use of weighted

vector observations. In particular, a large number of methods pose the attitude estimation problem

as a quadratic cost function and use the optimality criteria introduced by Wahba [20]. Examples

of this approach include Davenport’s Q-Method [21], QUEST [22], and FOAM [23]. Alternatively, the

TRIAD method [24] solves for an attitude deterministically using two measurements and reference

vectors and the Optimal Linear Attitude Estimator (OLAE) [25] proposed by Mortari, Markley, and

Singla uses the the Gibbs vector and the Cayley transformation. Satellite missions that use such

methods include the Thrusted Vector Mission [26] and COMPASS-1 [27].

With cosine-type CSS no vector observations are available, only scalar measurements pro-

portional to the angle of incidence of the incoming light. Thus, the sun-direction vector must be

determined through other means such as geometric methods or statistical filtering algorithms. A
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spacecraft’s attitude can generally be determined geometrically at any time if the Sun is simulta-

neously in the field of view of at least three CSS; a more reliable estimate is found if continuous

4π steradian coverage is achieved by a minimum of four sensors. Statistical filtering algorithms

provide an estimate of the spacecraft’s attitude based on a collection of measurements over time.

In particular, sequential filtering algorithms process measurements as soon as they are received and

are commonly derived from the Kalman filter [28] which produces a statistically optimal estimate

for linear systems. The most popular non-linear variant used on spacecraft is the extended Kalman

filter (EKF) which linearizes the nonlinear system about the current estimate.

Small satellite missions that have used an EKF for attitude estimation include HokieSat [29],

CanX-2 [30], and RAX [31]. Both HokieSat and CanX-2 performed attitude estimation in real-time

on-board the spacecraft while RAX reconstructed its attitude using ground software. These mis-

sions, along with COMPASS-1, all performed full attitude estimation; i.e. determining the absolute

attitude of the spacecraft relative to a reference frame. Unfortunately, such estimation requires

knowledge of reference vectors, for example an inertial sun direction or the orientation of the local

Earth magnetic field, and calculation of such reference vectors requires information about the satel-

lite’s orbital position and the current time. While this information can be acquired through GPS

receivers or ground uploaded tracking data, this research investigates methods that do not require

this information.

The use of coarse sun sensors provides interesting challenges. Because of the significant noise

and biases present in cosine-type coarse sun sensor measurements they do not traditionally work

well with linear estimation techniques such as the Kalman filter. However, fully nonlinear filters,

for example the unscented Kalman filter [32] and divided difference filters [33], take significantly more

computational power or time to evaluate [34] and are not well suited for real time operation on low-

budget spacecraft. Alternatively, the Kalman filter can be transformed into a consider filter to better

compensate for the the impact of biases on the state estimate. Initially presented by Schmidt [35],

other derivations of the Consider Kalman Filter have been published by Friedland [36], Jazwinski [37];

Tapley, Shutz, and Born [38]; Woodbury and Junkins [39]; and Zanetti and Bishop [40]. The use of a
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consider Kalman filter estimation strategy is investigated here, and while it does offer more rigorous

treatment of the biases present in the system, it too suffers from increased computational needs as

compared to a traditional EKF.

Sequential estimation algorithms, like the Kalman filter, require an angular rate measurement

to propagate the spacecraft attitude between measurement updates. Most often these measurements

come from a rate gyro, but in the extreme the rate gyro may fail or power critical situations may

require it to be turned off. For HokieSat, a Virginia Tech student built satellite, the rate gyro

consumed 24% of the available system power [29]. When their rate gyro needs to be turned off they

use a method proposed by Bar-Itzhack and Oshman that generates an estimate of the quaternion

of rotation based on pairs of measured vectors [41]. Tsao and Chiang examine gyroless estimation

using only sun sensors, but they require knowledge of the spacecraft’s momentum vector in inertial

space, and in estimating the spacecraft’s inertial attitude they end up with a highly nonlinear

problem that must be estimated using an unscented Kalman filter [42]. Alternatively, deterministic

attitude estimation can be performed using only geomagnetic-field measurements [43]. This research

shows how even a simple rate estimate based on successive sun-direction estimates is sufficient when

performing simultaneous coarse sun-direction estimation and control.

1.2.3 On-Orbit Calibration

Previous spacecraft missions have shown that coarse sun sensors have the potential to signif-

icantly degrade over time [44]. Because the sun-pointing mode of an ADCS is not only used at the

onset of a mission, but in the event of a fault, having the ability to calibrate sensors on-orbit greatly

improves the effectiveness of the ADCS over the lifetime of a satellite. Significant literature is avail-

able on the calibration of attitude sensors and rate gyros [45,46], but little is published specifically

pertaining to the calibration of coarse sun sensors. Ortega, López-Rodríguez, et. al., and Wu and

Steyn both present calibration of two-axis sun sensors specific to an individual model [11,47]. Spring-

mann examines the use of a quaternion-based EKF to calibrate coarse sun sensors, but all analysis

is done through post-processing using ground based assets [5]. This research examines a Modified
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Rodrigues Parameter (MRP) EKF based approach that is general to any cosine-type coarse sun

sensor and presents the trade offs that can be made between accuracy and computational costs.

1.2.4 Fault Detection

A primary concern when using an underdetermined set of coarse sun sensors is the system’s

robustness to sensor failure or fault. Sensor failure in an underdetermined configuration of CSS

can easily lead to the Sun being unobserved by all sensors, and while methods can be developed to

handle these situations, the sensor failure must first be detected. Sensor faults are malfunctions of

the sensor, or its controlling electronics, that lead to unacceptable anomalies in the state estimation.

Fault and failure detection of coarse sun sensors is made difficult because null measurements are

regular and routine, both when a sensor is pointed into deep space and when the spacecraft is in

the shadow of the Earth, and significant noise is present in CSS measurements.

Considerable literature is available on fault detection. Frank [48], and more recently Betta

and Pietrosanto [49], provide surveys of instrument fault detection and isolation, and Isermann pro-

vides overviews of model based fault detection and its application to machine tools [50,51]. Fault

detection is often classified into two main groups: analytical and physical. Analytical fault detec-

tion uses mathematical models to determine if an anomaly has occurred, whereas mechanical or

physical redundancy fault detection uses duplicate sensors to compare and detect malfunctions. As

this research is interested in reducing sensor requirements, as opposed to adding more sensors for

redundancy, analytical detection is considered.

Betta and Pietrodanto further classify analytical redundancy-based fault detection into meth-

ods focused on instruments: parity relations and Kalman filters; and methods focused on system

modeling techniques: artificial neural networks, genetic algorithms, and Bayesian networks [49]. One

system modeling technique, Finite Set Statistics (FISST), has gained popularity in applications

of multi-target tracking and detection, and recent work has shown that FISST can be applied

to Bayesian estimation filters [52] to estimate continuous and discrete random variables simultane-

ously [53]. This approach has promise, particularly due to its ability to estimate continuous and
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discrete variables simultaneously; however, this approach, and those of neural networks and ge-

netic algorithms, require significant computational power and are excessive for this application. A

Kalman filter based instrument fault detection approach is used as it represents a logical expansion

to the sun-direction estimation and CSS calibration filters developed.

Previous ADCS fault detection research has focused on performing statistical tests on the

residuals of one or more sequential filters [54,55]. For nonlinear problems the use of an extended

Kalman filter approach tends to suffer from poor detection or high false alarm rates [56]. Methods

proposed for dealing with nonlinear problems include using the residuals of multiple nonlinear pre-

dictive filters [57], using the residuals of an unscented Kalman filter [58], and using multiple hypothesis

tests using multiple EKFs operating on subsets of the available sensor data [59]. An innovations test

based approach is used here as it is shown through use of detailed measurement models to accurately

detect sensor failure without adding significant computational burden.

1.3 Research Overview

This research investigates using coarse sun sensors, due to budget, power, and size, for per-

forming robust attitude estimation in order to point a spacecraft at the Sun after deployment from

a launch vehicle or following a system fault. As noted earlier, the size and cost requirements of

increasingly popular small satellites are a driving factor for making the most of small inexpensive

sensors, and while there is significant research into improving sun sensors, investigation into max-

imizing the performance of existing sensors is needed. This work looks to address the following

questions regarding the use of coarse sun sensors in attitude determination and control:

(1) How can spacecraft achieve required ADCS performance within the budget and computa-

tional constraints imposed on small satellites?

(2) Is it necessary to have complete coarse sun sensor coverage to perform sun-direction esti-

mation or might it be done using underdetermined sets of sensors?

(3) Can sun-direction estimation be performed using only cosine-type coarse sun sensors?
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(4) What is the minimum amount of information necessary to perform coarse sun sensor cali-

bration and fault detection autonomously on-orbit?

This research will explore using inexpensive, analog, cosine-type CSS and making improvements to

sun-direction estimation, autonomy, and robustness that will reduce satellite life-cycle costs. Work

will be focused in three main tasks: simulation, estimation, and autonomy and robustness. The first

task focuses on creating a simulation framework and sensor models to accurately simulate spacecraft

ADCS operations. The second task applies estimation theory to determining the sun-direction using

underdetermined sets of coarse sun sensors. Finally, the third task seeks to identify ways in which

spacecraft autonomy can be increased to reduce ground support costs. The scope of these three

areas is described below.

1.3.1 Simulation

Due to the high cost of launching and operating satellites, even relatively low-cost CubeSats,

it is important to be able to develop flight algorithms efficiently. To accomplish this numerical simu-

lations are often used; however, the simulations and models must be accurate enough to adequately

simulate reality. This research will examine in detail, and validate through experimental data, the

sensor models of coarse sun sensors and rate gyroscopes. A numerical simulation framework capa-

ble of interfacing with testbed hardware, simulating flight hardware functionality, and performing

Monte Carlo analysis will be developed. The main research tasks include:

(1) Develop a satellite simulation framework suitable for developing and testing spacecraft

ADCS algorithms.

(2) Review and implement detailed coarse sun sensor model complete with Earth albedo effects.

(3) Model any additional significant coarse sun sensor error sources.

(4) Verify sensor models using experimental data.
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1.3.2 Estimation

This research will closely examine situations where full three sensor coverage is partially

unavailable and apply estimation theory to determine the attitude of a spacecraft. This is in contrast

to previous sun sensor attitude estimation research, which has focused on using more expensive

digital sun sensors that incorporate their own electronics, maximizing the steradian coverage by

three or more sensors, or optimizing placement of sensors when using overdetermined sensor sets.

Models for coarse sun sensor and satellite dynamics on-orbit will be implemented into a simulation

framework for studying the performance of all estimation methods developed.

Single-point and sequential filter algorithms for estimating the sun direction will be reviewed,

developed, and tested. Emphasis is placed on developing algorithms that are computationally

efficient enough to run on small satellite hardware and fully understanding measurement errors,

inconsistencies, and noise. The highly nonlinear nature of the system model, and the biases and sig-

nificant noise present in coarse sun sensor measurements, makes this a challenging task because the

algorithms are intended for low cost small satellite missions with strict computational requirements.

These algorithms will use a novel approach that does not calculate a satellite’s inertial attitude

in order to reduce the dependence on ground communication and more complicated sensors. The

methods developed here will be suitable for use as a baseline for lower budget missions or as a

robust safe mode for nominally fully determined configurations that have suffered from multiple

sensor failures. The main research tasks of this focus area include:

(1) Review and develop single-point and sequential sun-direction estimation strategies.

(2) Study performance of all estimation methods using partially underdetermined sensor sets.

(3) Investigate how rate gyroscope accuracy affects the performance of estimation approaches.

(4) Evaluate performance of estimation strategies when no angular rate measurements are avail-

able.
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1.3.3 Autonomy & Robustness

Traditionally satellite’s are designed with continuous coverage by three or more CSS which

inherently provides redundancy. One of the key concerns with reducing the number of sensors is

CSS failure. This research will investigate strategies for compensating for known sensor failures

and methods for autonomously detecting sensor failures so these strategies can be implemented

as needed. As noted earlier, there is significant research into autonomous fault detection in other

industries, and significant ADCS research is devoted to creating more accurate nonlinear fault

detection methods. In contrast, this research will focus on understanding sensor models in order to

apply computationally simpler fault detection methods. The goals of this topic are:

(1) Develop Modified Rodrigues Parameter based coarse sun sensor calibration filter.

(2) Evaluate to what accuracy coarse sun sensor calibration scale factors can be estimated.

(3) Determine what resources are necessary to perform autonomous on-orbit calibration of sun

sensors.

(4) Explore sensitivity of calibration filter to model uncertainties.

(5) Study performance of sun-direction estimation techniques when coarse sun sensors fail.

(6) Investigate methods with low computational costs for performing autonomous fault detec-

tion of coarse sun sensors.

Increasing ADCS autonomy through on-orbit calibration will help reduce operations costs by de-

creasing the ground support needed to perform attitude estimation throughout the lifetime of a

mission in addition to reducing the pre-launch testing required to calibrate sensors.
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Sensor and Simulation Models

The algorithms presented in this work are developed and evaluated using numerical simu-

lations, not flight data. Because of this, care has been taken to develop a numerical simulation

framework that is a sufficiently accurate representation of reality. The simulation code developed

for this work originally started as an attitude dynamics and control analysis tool for the Community

Initiative for Continuous Earth Remote Observation (CICERO) [60] satellite developed by the Lab-

oratory for Atmospheric and Space Physics (LASP) and simulates the dynamics of, and the sensor

inputs received by, a satellite in a low Earth orbit. It also has the ability to simulate flight software

timing, sensor communication and associated fault detection, and perform hardware in the loop

testing. The key simulation models, for the CSS and rate gyro, and the basic simulation framework

are described.

2.1 Coarse Sun Sensors

The low-cost cosine-type CSS used in this study are composed of photodiodes with a glass

cover for filtering out undesired wavelengths and protecting against radiation damage. Optional

baffles are added to the sensors to restrict their field of view. An example of an individual CSS

is shown in Figure 2.1a, and a complete pyramid assembly with associated controlling electronics

is shown in Figure 2.1b. The following sections describe the basic CSS measurement model, the

measurement model modifications necessary to account for Earth’s albedo, and finally a detailed

CSS measurement model that takes into account sensor misalignments, noise, and calibration biases.
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(a) Individual photodiode. (b) Photodiode pyramid assembly.

Figure 2.1: Photodiode and pyramid configuration of photodiodes complete with governing elec-
tronics.

2.1.1 Basic CSS Model

Assuming Lambert’s cosine law, the solar flux Fd that impacts a CSS due to the direct solar

flux of the Sun F� is given by [61]

Fd = F�
(

nTs

‖n‖‖s‖
)

(2.1)

where n is the unit normal of the CSS, and s is the direction vector from the spacecraft to the Sun.

An illustration of this model is shown in Figure 2.2 where θ is the angle between the CSS normal

and the sun direction. It is assumed that that for any sun direction on the cone defined by θ the

input flux is the same.

n

s

θ

Figure 2.2: Illustration of basic CSS model geometry.
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The output voltage of the CSS is assumed proportional to the input flux through the relation

V = C

(
nTs

‖n‖‖s‖
)

(2.2)

where the scale factor

C =
Vmax

Fcal
F� (2.3)

is determined during ground testing using a calibration flux, Fcal and the maximum voltage output

of the CSS is given by Vmax. Ideally, the calibration flux will equal the flux due to direct sunlight on

orbit F�, but any ground-based testing of this calibration parameter for a particular CSS will have

to account for atmospheric reduction of solar irradiance. While estimates are available for how much

stronger the solar irradiance is in space, a sun-direction estimation algorithm that is insensitive to

this calibration parameter will enable significantly simpler, and thus cheaper, CSS calibration and

testing procedures.

2.1.2 Earth Albedo Model

Solar radiation that impacts the Earth is partially absorbed, partially specularly reflected,

and partially diffusely reflected. Cosine-type CSS are sensitive to any light and on orbit the most

significant light source other than direct sunlight is light from the Sun diffusely reflected by the

Earth. Solar radiation that is absorbed by the Earth and later radiated at infrared wavelengths is

easily filtered through mechanical means, while the energy due to specular reflectance is generally

small and ignored [13].

Determining the output voltage of a CSS on a spacecraft due to Earth’s albedo requires first

determining the irradiance due to the diffuse reflectance of a differential area of the Earth. Consider

the situation shown in Figure 2.3, where a spacecraft is located at point B with a CSS with unit

normal n; s is the direction vector from the spacecraft to the Sun; dA is a differential area on the

surface of the Earth; nA is the unit normal of dA; s⊕ is the unit direction vector from the Earth to

the Sun; rAB is a vector from dA to the body of the spacecraft; and α is the albedo, or reflectivity

coefficient, of the differential area. The region of space in the Earth’s shadow is defined as S. The
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A

s⊕

nA

rAB

n

As

dA

B

S

s

Figure 2.3: Illustration of Earth albedo geometry.

sunlit region of the Earth, As, is defined by

As ≡
{
dA : nT

As⊕ > 0
}
. (2.4)

The surface of the Earth visible to a CSS on the spacecraft, Aψ, is defined by

Aψ ≡
{
dA : nT

ArAB > 0 ∧ − nTrAB∥∥n∥∥∥∥rAB

∥∥ > cosψ

}
(2.5)

where ψ is the field of view half angle of the CSS. The surface of the Earth that is both sunlit and

visible to the ith CSS on the spacecraft, A, is defined as the intersection of these two regions

A ≡ As ∩Aψ. (2.6)

The solar flux F in
A at dA due to the solar irradiance in the vicinity of the Earth, assuming a

Lambert’s cosine law, is given by

F in
A = F�

(
nT
As⊕∥∥nA

∥∥∥∥s⊕∥∥
)

(2.7)

and the amount of irradiance that is reflected F out
A is proportional to the albedo giving

F out
A = αF in

A

= αF�
(

nT
As⊕∥∥nA

∥∥∥∥s⊕∥∥
)
. (2.8)
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As the diffusely reflected irradiance F out
A travels outward from dA its energy is distributed over a

2π steradian hemisphere H. The total energy over H can be found using

EH =

2π∫
0

π
2∫

0

(
FHmax

cos θ
) (

r2 sin θ dθ dφ
)
= FHmax

πr2 (2.9)

where FHmax
is the maximum flux seen by the hemisphere due to the reflectance of dA and r is the

radius of H.

Using conservation of energy, the energy reflected by dA, F out
A dA, can be related to the total

energy spread out over this hemisphere EH. The quantity FHmax
can then be solved for using

Equation (2.8)

F out
A dA = FHmax

πr2

αF�
(

nT
As⊕∥∥nA

∥∥∥∥s⊕∥∥
)
dA = FHmax

πr2

FHmax
=

F�
π

α

r2

(
nT
As⊕∥∥nA

∥∥∥∥s⊕∥∥
)
dA. (2.10)

The flux at any point B on H is thus given by

F in
B = FHmax

(
nT
ArAB∥∥nA

∥∥∥∥rAB

∥∥
)

=
F�
π

α∥∥rAB

∥∥2
(

nT
As⊕∥∥nA

∥∥∥∥s⊕∥∥
)(

nT
ArAB∥∥nA

∥∥∥∥rAB

∥∥
)
dA. (2.11)

Finally, the irradiance due to the diffuse reflectance of the incremental area of the Earth received

by a CSS located at point B is given by

Fα = F in
B

(
− nTrAB∥∥n∥∥∥∥rAB

∥∥
)

= −F�
π

α∥∥rAB

∥∥2
(

nT
As⊕∥∥nA

∥∥∥∥s⊕∥∥
)(

nT
ArAB∥∥nA

∥∥∥∥rAB

∥∥
)(

nTrAB∥∥n∥∥∥∥rAB

∥∥
)
dA. (2.12)

Integrating over the surface of the Earth both lit by the Sun and visible to the spacecraft results in

Fα = −F�
π

�
A

α∥∥rAB

∥∥2
(

nT
As⊕∥∥nA

∥∥∥∥s⊕∥∥
)(

nT
ArAB∥∥nA

∥∥∥∥rAB

∥∥
)(

nTrAB∥∥n∥∥∥∥rAB

∥∥
)
dA. (2.13)
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Adding this model to the output voltage given in Equation (2.2) results in

V = C

(
nTs

‖n‖‖s‖ − Fα

F�

)
(2.14)

where the scale factor remains as shown in Equation (2.3).

2.1.2.1 Earth Albedo Data

For this work, albedo coefficients for the Earth are taken from NASA Total Ozone Mapping

Spectrometer mission data. The data used in this study were acquired as part of the NASA’s Earth-

Sun System Division and archived and distributed by the Goddard Earth Sciences (GES) Data and

Information Services Center (DISC) Distributed Active Archive Center (DAAC). The value of the

Earth’s albedo varies significantly with position, and due to seasonal, ground cover, and cloud cover

changes.

To account for this significant variability, daily measurements from 2000 to 2005, correspond-

ing to a 1◦×1.25◦ latitude longitude grid, are used to calculate mean and standard deviation values

that are shown in Figure 2.4. These values are used to generate statistically accurate values for

the Earth’s albedo coefficient used in the numerical simulations. Due to the computation time

involved with solving the irradiance computation from each data point, the data set resolution can

be reduced through interpolation or approximated through polynomials [16].

To illustrate the significance of Earth’s albedo, the expected measurements for a satellite

equipped with a dual pyramid CSS configuration, as described in Section 2.2, due to direct sunlight

and Earth’s albedo are shown in Figure 2.5. The spacecraft is simulated in a 400 km circular, polar

orbit and it is actively controlled to point its +z-axis directly at the Sun. As can be seen the

expected measurement due to albedo can be almost 50% of the irradiance due to direct sunlight.

Interestingly, it has been shown that the maximum albedo is not over the poles, but over Greenland

during local summer at noon [14].
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Figure 2.4: Mean and standard deviation of the reflectivity of Earth as measured by TOMS mission
between 2000 and 2005 used in numerical simulations.

2.1.2.2 Simulated Albedo Implementation

Due to the discrete nature of the available albedo data, Equation (2.13) is written as a finite

sum using the position of the spacecraft rB and the position of the differential area rA as

Fα = −F�
π

NA∑
j=0

α∥∥rB − rAj

∥∥4
(
nT
Aj
s⊕
)(

nT
Aj

[
rB − rAj

])(
nT
[
rB − rAj

])
ΔAj (2.15)
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Figure 2.5: CSS expected measurements due to direct sunlight (solid) and Earth’s albedo (dashed).

where NA is the total number of differential areas within A and assuming
∥∥nA

∥∥ = 1,
∥∥s⊕∥∥ = 1,

and
∥∥n∥∥ = 1. The position, area, and surface normal of each differential area are precomputed

for use in the estimation algorithms developed later. The position and normal of a differential

area are calculated using the NASA Navigation and Ancillary Information Facility (NAIF) SPICE

toolkit [62]. The surface area of the differential area is approximated by first calculating the authalic

sphere for the Earth’s ellipsoid. The authalic radius for the Earth is given by [63]

R2 =

√
a2

2

(
1 +

1− e2

2e
ln

(
1 + e

1− e

))
(2.16)

where a is the Earth’s equatorial radius, b is the Earth’s polar radius, and e =
√

1− b2

a2
. Next,

the geodetic latitude φ given in the TOMS data is converted to authalic latitude β using the series

approximation

β = φ−
(
1

3
e2 +

31

180
e4 +

59

560
e6 + . . .

)
sin(2φ) +

(
17

360
e4 +

61

1260
e6 + . . .

)
sin(4φ)

−
(

383

45360
e6 + . . .

)
sin(6φ) + . . . . (2.17)

Finally, the surface area of the differential area is calculated using spherical geometry

ΔA =
∣∣λ1 − λ0

∣∣∣∣sinβ1 − sinβ0
∣∣R2

2 (2.18)

where λ1 and λ0 are the bounding longitudes, and β1 and β0 are the bounding authalic latitudes.
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2.1.3 Unmodeled CSS Disturbances

As noted earlier, cosine-type CSS will report a measurement for any irradiance received. It is

important to note there are two important sources of light on-orbit that are not considered in this

study: lunar albedo and reflections.

The geometric albedo of the Moon has been shown to be between 0.05 and 0.15 [64,65], but is

highly uncertain, non-Lambertian, and dependent on the phase of the Moon [64–67]. In addition, due

to the geometry of the Moon’s orbit, the entire lunar disk will take up a maximum of approximately

0.5◦ of the CSS 120◦ edge-to-edge field of view for a spacecraft in LEO. In contrast, the Earth can

fill the entire field of view of the sensor. Because the expected irradiance from lunar albedo is small

it is neglected in this study.

Additionally, solar irradiance can be reflected into a CSS’s field of view by structural compo-

nents of the spacecraft. However, these disturbances can be minimized through careful placement

of the sensors on the spacecraft. Because of this, these disturbances are also neglected in this work.

2.1.4 CSS Model Validation

To validate the model given in Equation (2.2), four CSS mounted in a pyramid configuration,

as shown in Figure 2.1b, are tested in a heliostat. The results of sweeping the sensors through a

variety of orientations are shown in Figure 2.6. The missing regions of the polar plots are due to

the fields of view of the sensors being restricted by the local horizon of the surface to which the CSS

are mounted.

Figure 2.7 shows the responses of two CSS with respect to the cosine of the angle between the

incoming light and the CSS normal. A linear fit of the data and the associated R-squared values

are shown along with the deviations of the experimental data from the linear fit. Higher order,

sinusoidal, and Fourier fits are not found to improve the goodness of the fit.

From Figures 2.6 and 2.7 it can be seen that there is some variability in the output of a

CSS due corresponding to rotation about the normal of the CSS. However, the magnitude of this
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(b) CSS 2.
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(c) CSS 3.
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(d) CSS 4.

Figure 2.6: Output of CSS in heliostat.

variability is small and within the sensor noise, therefore, it is assumed the true unit direction vector

for a CSS can be spherically expressed in the spacecraft body frame as

Bn =

⎡
⎢⎢⎢⎢⎢⎣
cos
(
φ+ φβ

)
cos
(
θ + θβ

)
cos
(
φ+ φβ

)
sin
(
θ + θβ

)
sin
(
φ+ φβ

)

⎤
⎥⎥⎥⎥⎥⎦ (2.19)

where θ is the azimuth angle, measured positive from the body +x-axis around the +z-axis, and φ

is the elevation angle, measured positive toward the body +z-axis from the x-y plane, of the CSS
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Figure 2.7: Result of fitting Equation (2.2) to data from CSS in heliostat.

unit direction vector; and θβ and φβ are uncorrelated random constants

E
[
θβ
]
= 0, E

[
θ2β
]
= σ2

θβ
, E

[
φβ

]
= 0, E

[
φ2
β

]
= σ2

φβ
, E

[
φβθβ

]
= 0 (2.20)

corresponding to misalignment errors.

A detailed model of the voltage output of a CSS on-board a spacecraft is arrived at by

combining Equations (2.14) and (2.19). In order to simulate the behavior of actual hardware,

discontinuities due to field of view limitations and noise are added to the measurement model
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giving

V = C · Cκ (Vd + Vα + νV )

Vd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nT s
‖n‖‖s‖ if

(
nT s

‖n‖‖s‖ ≥ cosψ
)
∧ (B �∈ S)

0 if
(

nT s
‖n‖‖s‖ < cosψ

)
∨ (B ∈ S)

Vα =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− 1

π

�
A

α∥∥rAB

∥∥2 nT
As⊕∥∥nA

∥∥∥∥s⊕∥∥
nT
ArAB∥∥nA

∥∥∥∥rAB

∥∥ nTrAB∥∥n∥∥∥∥rAB

∥∥ dA if B �∈ S

0 if B ∈ S
(2.21)

where νV is zero-mean Gaussian noise with standard deviation σV , ψ is the half angle of the sensor’s

field of view, and Cκ is a constant random scale factor

E[Cκ] = 1, E
[
C2
κ

]
= σ2

Cκ
(2.22)

included to account for error in the knowledge of the calibration coefficient. Over time, radiation and

other factors may cause the parameter Cκ to change, but it is assumed to be constant over short time

scales [44]. Other hardware limitations, such as obstructions due to solar panels or instrumentation,

must be evaluated on a mission specific basis.

2.2 Coarse Sun Sensor Configurations

Ideally, the sun direction can be uniquely determined at a given time for a spacecraft if three

or more CSS measurements are available. For this research, a partially underdetermined sensor set is

one for which there are spacecraft attitudes where the sun-direction cannot be uniquely determined

due to an insufficient number of sensors. A fully underdetermined CSS set is one for which there are

no attitudes with sufficient sensor coverage to uniquely determine the sun-direction in the absence of

noise. The study of underdetermined CSS sets is important as they are a possibility for low-budget

small satellites, and larger satellites suffering from sensor failure.

Two underdetermined CSS configurations are examined in this study. The first uses eight

sensors arranged in a dual pyramid configuration that includes multiple sensor coverage when in
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the desired sun-pointing orientation. The second is closer to a fully underdetermined configuration

with one sensor on each of the six faces of a cube. The design of where to place these sensors is

not investigated as it is usually an iterative process based on experience and heritage, and there are

methods available in the literature [17,18].

2.2.1 Dual Pyramid Configuration

The first CSS configuration is a partially underdetermined configuration and includes eight

cosine-type CSS in a dual pyramid setup. A basic dual pyramid configuration includes sensors with

120◦ edge-to-edge fields of view arranged on the +z and −z faces of the spacecraft oriented 90◦ apart

and angled 45◦ from the body z axis. An illustration of this configuration is shown in Figure 2.8a

and a list of the azimuth and elevation angles used are shown in Table 2.1. Multiple sensor coverage

is provided along, +z, and opposite, −z, the solar array normal direction with minimal coverage

along the equator of the spacecraft. This configuration leaves the sides of the spacecraft clear for

scientific instrumentation and seeks to minimize both the CSS obstruction due to the solar arrays

and the amount of internal cabling necessary for the sensors.
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(b) CSS coverage map.

Figure 2.8: Illustration of spacecraft, with CSS unit vectors, for a dual pyramid configuration and
the associated coverage map.
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Table 2.1: Azimuth and elevation angles of CSS in dual pyramid configuration.

Sensor φ [deg] θ [deg]

1 0 45
2 90 45
3 180 45
4 270 45
5 0 -45
6 90 -45
7 180 -45
8 270 -45

Figure 2.8b shows the number of CSS to which the Sun is visible for any relation of the Sun

with respect to the spacecraft. Note that the fields of view of the CSS are clipped at the local-

horizontal plane by the spacecraft structure and solar panel arrays. A Lambert cylindrical area

preserving projection [63] is used so as to give a fair relative area comparison of the over, uniquely,

and underdetermined regions of coverage. For this study, the ideal sun-pointing direction for a

power-positive orientation has an elevation angle of 90◦. It is not necessary to have the spacecraft

point directly to the sun; being off by 20◦ to 30◦ is often acceptable for sufficient power generation.
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(b) CSS coverage map.

Figure 2.9: Illustration of spacecraft, with CSS unit vectors, for an offset dual pyramid configuration
and the associated coverage map.
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In practice it is found this configuration can lead to numerical difficulties due to the collinear

nature of the sensor normals. Figure 2.9 shows a slightly modified dual pyramid configuration.

In this configuration the −z facing sensors are rotated by 45◦ about the z axis with respect to

the +z facing sensors, thus adding 45◦ to the azimuth angles for sensors 5 to 8. This modified

alignment prevents any of the sensor normals being collinear without sacrificing coverage and is the

configuration used in this research.

2.2.2 Cube Configuration

The second CSS configuration uses only six sensors arranged on the faces of a cube. Depending

on the field of view of the CSS used, a simple cube configuration with a single sensor on each face can

represent either a partially or fully underdetermined sensor set. An illustration of this configuration

and the associated coverage map are shown in Figure 2.10, and a list of the azimuth and elevation

angles used are shown in Table 2.1.
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Figure 2.10: Illustration of spacecraft for a simple cube configuration and the associated CSS
coverage map.

Sensors with field of view half-angles of at least 55◦ are required in order for at least one

CSS to detect the Sun at all times. Using sensors with smaller field of view half-angles results in
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Table 2.2: Azimuth and elevation angles of CSS in cube configuration.

Sensor φ [deg] θ [deg]

1 0 0
2 0 90
3 0 180
4 0 20
5 90 0
6 270 0

uncovered zones near the corners of the cube and using sensors with larger field of view half-angles

results in triple sensor coverage in these same regions. This configuration only requires six sensors,

but if the solar panels of the spacecraft are aligned along one of the body axes, this configuration

will suffer from minimal coverage in the goal orientation.

2.3 Rate Gyroscopes

The spacecraft simulated in this work is assumed to be equipped with a three axis rate gyro

for measuring the body angular velocity. It is assumed the rate gyro measurements are corrupted by

drive rate and zero mean additive white Gaussian noise according to Farrenkopf’s approximation [68].

Crassidis provides a derivation of the discrete time propagation equations for a rate gyro noise

model for a single-axis gyro model with no scale factor correction [69]. Pittelkau provides a rate gyro

reference model that includes gyro alignment and scale factor error models [70,71].

The rate gyro noise model used here follows the derivation of Crassidis, expanded for vector-

valued variables, with the scale factor and misalignment representations presented by Pittelkau.

The derivation is included to highlight key assumptions made throughout. In addition, reference

values for spacecraft rate gyros are provided. Both the reference values and the noise models are

verified through comparison to data taken from a commercially available microelectromechanical

systems (MEMS) gyro.
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2.3.1 Basic Rate Gyro Model

A basic three-axis rate gyro model can be formed assuming the gyroscope dynamics follow

Farrenkopf’s approximation [68]

ω̃(t) = ω(t) + ωβ(t) + ηω(t) (2.23a)

ω̇β(t) = ηωd
(t) (2.23b)

where ω̃(t) is the sensed angular velocity; ω(t) is the true angular velocity; ωβ(t) is the measurement

bias, modeled as a rate random walk process; and ηω(t) and ηωd
(t) are zero-mean Gaussian rate

and angular acceleration, respectively, white-noise processes with

E
[
ηω(t)η

T
ω (τ)

]
= σ2

ωδ (t− τ) I3×3 (2.24a)

E
[
ηωd

(t)ηT
ωd
(τ)
]
= σ2

ωd
δ (t− τ) I3×3 (2.24b)

were δ(·) is the Dirac delta function.

2.3.2 Detailed Rate Gyro Model

Expanding Equation (2.23) to a more general form results in

Gω̃(t) = (I +K +Υ) (I +Δ) [GB] Bω(t) + Gωd(t) +
Gωr +

Gηω(t) (2.25a)

ω̇d(t) = ηωd
(t) (2.25b)

K̇ = 0, Υ̇ = 0, Δ̇ = 0, ω̇r = 0 (2.25c)

where the left exponent G indicates a quantity expressed in the rate gyro frame, the left exponent

B indicates a quantity expressed in the spacecraft body frame, and the bias term

ωβ ≡ ωr + ωd (2.26)

has been broken down into a “bias repeatability” or “bias stability” term ωr and bias drift term ωd.

The processes given in Equation (2.25c) are constant random variables:

K = diag
(
κx, κy, κz

)
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is a matrix of symmetric scale factor errors,

Υ = diag
(
υx sgn(ωx(t)) , υy sgn

(
ωy(t)

)
, υz sgn(ωz(t))

)
is a matrix of asymmetric scale factor errors, (I +Δ) is a nonorthogonal small angle misalignment

error, and [GB] is an assumed known transformation matrix from the spacecraft’s body frame to

the gyroscope sensing frame. Noting Gω = [GB] Bω, the quantity (I +Δ) Gω can be expressed as

the sum of orthogonal rotations β of the true angular rate about each axis

(I +Δ) Gω =

⎡
⎢⎢⎢⎢⎢⎣

cβxycβxz −cβxysβxz sβxy

sβxz cβxz 0

−cβxzsβxy sβxysβxz cβxy

⎤
⎥⎥⎥⎥⎥⎦

G⎡
⎢⎢⎢⎢⎢⎣
ωx

0

0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

cβyz −sβyz 0

cβyxsβyz cβyxcβyz −sβyx

sβyxsβyz cβyzsβyx cβyx

⎤
⎥⎥⎥⎥⎥⎦

G⎡
⎢⎢⎢⎢⎢⎣
0

ωy

0

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

cβzy 0 sβzy

sβzxsβzy cβzx −cβzysβzx

−cβzxsβzy sβzx cβzxcβzy

⎤
⎥⎥⎥⎥⎥⎦

G⎡
⎢⎢⎢⎢⎢⎣
0

0

ωz

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

cβxycβxz −sβyz sβzy

sβxz cβyxcβyz −cβzysβzx

−cβxzsβxy cβyzsβyx cβzxcβzy

⎤
⎥⎥⎥⎥⎥⎦

G⎡
⎢⎢⎢⎢⎢⎣
ωx

ωy

ωz

⎤
⎥⎥⎥⎥⎥⎦

(2.27)

where cβ is used as shorthand for cos(β) and sβ as shorthand for sin(β). Assuming small angle

misalignments, this can be approximated to first-order as

(I +Δ) Gω ≈

⎡
⎢⎢⎢⎢⎢⎣

1 −βxz βxy

βxz 1 0

−βxy 0 1

⎤
⎥⎥⎥⎥⎥⎦

G⎡
⎢⎢⎢⎢⎢⎣
ωx

0

0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

1 −βyz 0

βyz 1 −βyx

0 βyx 1

⎤
⎥⎥⎥⎥⎥⎦

G⎡
⎢⎢⎢⎢⎢⎣
0

ωy

0

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

1 0 βzy

0 1 −βzx

−βzy βzx 1

⎤
⎥⎥⎥⎥⎥⎦

G⎡
⎢⎢⎢⎢⎢⎣
0

0

ωz

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 −βyz βzy

βxz 1 −βzx

−βxy βyx 1

⎤
⎥⎥⎥⎥⎥⎦

G⎡
⎢⎢⎢⎢⎢⎣
ωx

ωy

ωz

⎤
⎥⎥⎥⎥⎥⎦. (2.28)

Maintaining a first order approximation and taking a QR decomposition of Equation (2.28) results

in

(I +Δ) Gω ≈

⎡
⎢⎢⎢⎢⎢⎣

1 −βz βy

βz 1 −βx

−βy βx 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1 ξz −ξy

0 1 ξx

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎢⎢⎣

1 − (βz − ξz) βy − ξy

βz 1 − (βx − ξx)

−βy βx 1

⎤
⎥⎥⎥⎥⎥⎦ (2.29)
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where

βx = βyx, βy = βxy, βz = βxz

ξx = βyx − βzx, ξy = βxy − βzy, ξz = βxz − βyz (2.30)

are the orthogonal, β, and nonorthogonal, ξ, misalignments. Assuming small scale factor errors,

the matrix Φ is defined as the combination of scale factor and misalignment errors as

Φ =

⎡
⎢⎢⎢⎢⎢⎣
1 + κx + υx sgn(ωx(t)) − (βz − ξz) βy − ξy

βz 1 + κy + υy sgn
(
ωy(t)

) − (βx − ξx)

−βy βx 1 + κz + υz sgn(ωz(t))

⎤
⎥⎥⎥⎥⎥⎦ (2.31)

allowing Equation (2.23) to be written as

Gω̃(t) = Φ [GB] Bω(t) + Gωd(t) +
Gωr +

Gηω(t) (2.32a)

ω̇d(t) = ηωd
(t) . (2.32b)

2.3.2.1 Measured Rate Gyro Bias Drift Model

Integrating Equation (2.32b) gives an expression for the discrete propagation of the bias drift

ωd(t0 +Δt) = ωd(t0) +

∫ t0+Δt

t0

ηωd
(t) dt. (2.33)

The variance of the bias drift is given by

E
[
{ωd(t0 +Δt)− E[ωd(t0 +Δt)]} {ωd(t0 +Δt)− E[ωd(t0 +Δt)]}T

]
=

E

⎡
⎣{∫ t0+Δt

t0

ηωd
(t) dt

}{∫ t0+Δt

t0

ηωd
(τ) dτ

}T
⎤
⎦ . (2.34)

Applying Equation (2.24b) gives

E
[
{ωd(t0 +Δt)− E[ωd(t0 +Δt)]} {ωd(t0 +Δt)− E[ωd(t0 +Δt)]}T

]
= σ2

ωd
ΔtI3×3. (2.35)

The bias drift variance, Equation (2.35), can be satisfied by modeling the bias drift using

ωdm
(t0 +Δt) = ωdm

(t0) + σωd

√
ΔtNωd

(2.36)

where the subscript m indicates a modeled quantity and Nωd
is a 3 × 1 matrix of uncorrelated

zero-mean random variables with unit variance, thus, E
[
Nωd

NT
ωd

]
= I3×3.
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2.3.2.2 Measured Rate Gyro Rate Model

Assuming the measurement and truth are constant over the time interval, integrating Equa-

tion (2.32a), and dividing by Δt gives an expression for the discrete propagation of the rate mea-

surement

Gω̃(t0 +Δt) = Φ [GB] Bω(t0 +Δt) + Gωr +
1

Δt

∫ t0+Δt

t0

{Gωd(t) +
Bηω(t)

}
dt. (2.37)

Generalizing the discrete propagation of the measurement bias, Equation (2.33),

ωd(t) = ωd(t0) +

∫ t

t0

ηωd
(τ) dτ (2.38)

and substituting the result into the discrete propagation of the rate measurement, Equation (2.37),

gives

Gω̃(t0 +Δt) = Φ [GB] Bω(t0 +Δt) + Gωr +
Gωd(t0) +

1

Δt

∫ t0+Δt

t0

∫ t

t0

Gηωd
(τ) dτ dt

+
1

Δt

∫ t0+Δt

t0

Gηω(t) dt. (2.39)

The variance of the rate measurement, Equation (2.39), is given by

E
[{Gω̃(t0 +Δt)− E

[Gω̃(t0 +Δt)
]} {Gω̃(t0 +Δt)− E

[Gω̃(t0 +Δt)
]}T ]

= E

[{
1

Δt

∫ t0+Δt

t0

∫ τ

t0

ηωd
(γ) dγ dτ +

1

Δt

∫ t0+Δt

t0

ηω(τ) dτ

}

×
{

1

Δt

∫ t0+Δt

t0

∫ t

t0

ηωd
(ζ) dζ dt+

1

Δt

∫ t0+Δt

t0

ηω(t) dt

}T
⎤
⎦ . (2.40)

Again noting ηωd
(t) and ηω(t) are uncorrelated, and using Equation (2.24), gives

E
[{Gω̃(t0 +Δt)− E

[Gω̃(t0 +Δt)
]} {Gω̃(t0 +Δt)− E

[Gω̃(t0 +Δt)
]}T ]

=
σ2
ωd

Δt2

(∫ t0+Δt

t0

∫ t0+Δt

t0

∫ t

t0

∫ τ

t0

δ (γ − ζ) dγ dζ dτ dt

)
+

σ2
ω

Δt2

{∫ t0+Δt

t0

∫ t0+Δt

t0

δ (τ − t) dτ dt

}

=
σ2
ωd

Δt2

(
Δt3

3

)
+

σ2
ω

Δt2
{Δt}

=
1

3
σ2
ωd
Δt+

σ2
ω

Δt
. (2.41)
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The covariance between the rate measurement bias, Equation (2.33), and the rate measurement,

Equation (2.39), is given by

E
[{Gωd(t0 +Δt)− E

[Gωd(t0 +Δt)
]} {Gω̃(t0 +Δt)− E

[Gω̃(t0 +Δt)
]}T ]

=

E

[{∫ t0+Δt

t0

Gηωd
(τ) dτ

}{
1

Δt

∫ t0+Δt

t0

∫ t

t0

Gηωd
(ζ) dζ dt+

1

Δt

∫ t0+Δt

t0

Gηω(t) dt

}]
. (2.42)

Noting ηωd
(t) and ηω(t) are uncorrelated, and using Equation (2.24b) gives

E
[{Gωd(t0 +Δt)− E

[Gωd(t0 +Δt)
]} {Gω̃(t0 +Δt)− E

[Gω̃(t0 +Δt)
]}T ]

=
σ2
ωd

Δt

(∫ t0+Δt

t0

∫ t0+Δt

t0

∫ t

t0

δ (τ − ζ) dζ dτ dt

)

=
σ2
ωd

Δt

(
Δt2

2

)

=
1

2
σ2
ωd
Δt. (2.43)

assuming t−t0 < Δt. The covariance between the rate measurement bias and the rate measurement,

Equation (2.43), can be satisfied by modeling the rate measurement as

Gω̃m(t0 +Δt) = Φ [GB] Bωm(t0 +Δt) + Gωrm
+ Gωdm

(t0) +
1

2
σωd

√
ΔtNωd

+ aNω (2.44)

where Nω is a 3 × 1 matrix of uncorrelated zero-mean random variables with unit variance, thus

E
[
NωN

T
ω

]
= I3×3, that are uncorrelated with Nωd

, thus E
[
NωN

T
ωd

]
= 03×3, and a is yet to be

determined.

The variance of the proposed rate measurement model, Equation (2.44), is given by

E
[{Gω̃m(t0 +Δt)− E

[Gω̃m(t0 +Δt)
]} {Gω̃m(t0 +Δt)− E

[Gω̃m(t0 +Δt)
]}T ]

= E

[{
1

2
σωd

√
ΔtNωd

+ aNω

}{
1

2
σωd

√
ΔtNωd

+ aNω

}T
]

=
1

4
σ2
ωd
Δt+ a2. (2.45)

Equating Equation (2.41) and Equation (2.45) gives

a2 =
1

12
σ2
ωd
Δt+

σ2
ω

Δt
(2.46)
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and solving Equation (2.36) for Nωd
and substituting into Equation (2.44) results in

Gω̃m(t0 +Δt) = Φ [GB] Bωm(t0 +Δt) + Gωrm
+

1

2

{
Gωdm

(t0) +
Gωdm

(t0 +Δt)
}
+ aNω. (2.47)

Substituting Equation (2.46) into Equation (2.47) gives

Gω̃m(t0 +Δt) = Φ [GB] Bωm(t0 +Δt) + Gωrm
+

1

2

(
Gωdm

(t0) +
Gωdm

(t0 +Δt)
)

+

√
1

12
σ2
ωd
Δt+

σ2
ω

Δt
Nω (2.48)

and, finally, substituting in the bias drift propagation model, Equation (2.36), gives

Gω̃m(t0 +Δt) = Φ [GB] Bωm(t0 +Δt) + Gωrm
+ Gωdm

(t0) +
1

2
σωd

√
ΔtNωd

+

√
1

12
σ2
ωd
Δt+

σ2
ω

Δt
Nω. (2.49)

Generalizing Equation (2.49) and Equation (2.36) for all time gives the following discrete-time

rate measurement and rate bias propagation equations

Gω̃k+1 = Φ [GB] Bωk +
Gωr +

Gωdk
+

1

2
σωd

√
ΔtNωd

+

√
1

12
σ2
ωd
Δt+

σ2
ω

Δt
Nω (2.50a)

ωdk+1
= ωdk

+ σωd

√
ΔtNωd

. (2.50b)

2.3.3 Model Validation and Performance Grades

Table 2.3 lists the values of rate gyro accuracy used in this study. These values are adapted

from a table of generally accepted performance grades listed in References 72 and 73. The angular

acceleration white-noise process variance σ2
ωd

is computed from the bias stability typically quoted

by gyro manufacturers as σ2
ωd

=
(
2/τωr

)
σ2
ωr

, where τωr
is the specified drift stability interval. [71].

In order to validate the values shown in Table 2.3, data from a smartphone equipped with an

InvenSense MPU6515 MEMS gyroscope is analyzed. The rate gyro noise statistics are calculated

using the Allan variance of data recorded while the sensor is at rest. The fully overlapping Allan
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Table 2.3: Rate gyro accuracy levels.

Parameter Units Inertial Intermediate Moderate Low

Rate Noise (σω)
◦/
√
s 10−6 10−4 10−2 10−1

Bias Stability
(
σωr

)
◦/s 10−8 10−6 10−3 10−2

variance σ2
y(τ) at a specific sampling time τ is calculated for a set of rate gyro measurements y

using [74]

σ2
y(τ) =

1

2m2 (M − 2m+ 1)

M−2m∑
j=0

⎡
⎣j+m−1∑

i=j

(
yi+m − yi

)⎤⎦
2

(2.51)

where M is the total number of measurements, and m is the averaging factor equal to the number of

samples taken within a single sampling time. Due to the high computational costs of Equation (2.51)

the rate gyroscope measurements are usually integrated to give phase measurements x at each time.

The Allan variance is then calculated from these phase measurements using

σ2
y(τ) =

1

2m2τ2 (M − 2m)

M−2m−1∑
i=0

(
xi+2m − 2xi+m + xi

)2
. (2.52)
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Figure 2.11: Important rate gyroscope noise statistics noted on sample Allan variance plot.

The IEEE standard for single-axis interferometric fiber optic gyros [75] states that the angle

random walk, denoted here as σω, is obtained from the Allan deviation value by reading the −1
2

slope line at τ = 1 s. The bias instability, σωr
, is given by the minimum point on the Allan deviation
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curve. The rate ramp, or angular acceleration white-noise process variance, σωd
is obtained from

the Allan deviation value by reading the 1
2 slope line at τ = 3 s. These values are illustrated using

the Allan variance of the x-axis measurements of the InvenSense MPU6515 MEMS gyroscope in

Figure 2.11.

σ
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Figure 2.12: Allan variance analysis results for InvenSense MPU6515 gyroscope.

Table 2.4: Calculated rate gyro noise statistics for InvenSense MPU6515 gyroscope.

Axis σω [◦/
√
s] σωr

[◦/s] σωd
[◦/s3/2]

X 0.0051 0.0034 0.00068
Y 0.0059 0.0035 0.00062
Z 0.0052 0.0025 0.00076

Average 0.0054 0.0031 0.00068

The Allan deviations of data from all three axes of the InvenSense MPU6515 MEMS gyroscope

data are shown in Figure 2.12. According to the manufacturer specifications [76] the gyro is expected

to have a rate noise spectral density of 0.01 ◦/(s
√
Hz). The calculated noise statistics for the

gyro are shown in Table 2.4. The measured values are fairly consistent across all three axes and

the measurement rate noise spectral density is lower than the manufacturer specification. The

experimentally obtained values classify this gyro as moderate grade according to Table 2.3.

The raw data for the InvenSense MPU6515 MEMS gyroscope and simulated measurements

generated using Equation (2.50) are shown in Figure 2.13. Due to the randomness involved with

generating the simulated data, and the discretization of the measurements, it is not expected that
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(a) Measured rate gyro data.
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(b) Simulated rate gyro data.

Figure 2.13: Measured and simulated InvenSense MPU6515 gyro data.

the simulated data will exactly match the measured data. However, there is a good match between

the level of noise and the magnitude of the drift after approximately 5.5 h validating the model is a

good approximation of reality.

The values listed in Table 2.3 cover the noise characteristics of a rate gyros, but they do not

address another key aspect of rate gyro performance for space applications: resolution. Most rate

gyros are designed to provide a full scale range of hundreds, if not thousands, of degrees per second.

However, in space applications it is also important to be able to distinguish very slow rotations.

For MEMS gyros the minimum rotation rate that can be detected is a function of mechanical noise

equivalent rotation and electronic noise equivalent rotation [77]. For the InvenSense MPU6515 gyro,

the stated gyro sensitivity is between 131LSB/◦/s and 16.4LSB/◦/s depending on the maximum

range of the sensor. These values correspond to a resolution of approximately 0.0076 ◦/s (27 ◦/h)
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and 0.061 ◦/s (220 ◦/h), respectively. Therefore, care must be taken when selecting rate gyros,

particularly if there are high accuracy requirements with little expected motion.

2.4 ADCS Simulation Tool

The simulation software framework to be used in this research was originally created for the

Community Initiative for Continuous Earth Remote Observation (CICERO) [60] satellite developed

by the Laboratory for Atmospheric and Space Physics (LASP), but continues to be developed for

the specific needs of this study. The framework successfully simulates the dynamics of, and the

sensor inputs received by, a satellite in a low Earth orbit. Written using a combination of C and

C++ programming languages, this framework contains over 250 options changeable via an input

file for altering the simulation to be performed, over half of which are designed to be changed at

any time to simulate the failure or fault of any of the 15 different subcomponents modeled. In

addition, the framework has the ability to run Monte Carlo analyses using any of the 28 different

preprogrammed perturbations and is easily modifiable to include additional perturbations.

Using this tool, a spacecraft is modeled in a 400 km altitude circular orbit with an inclination of

90◦ and a 60◦ longitude of the ascending node starting on 2015 June 1, 00:00 UTC. The accelerations

due to the J2 through J6 Earth zonal gravitational perturbations, atmospheric drag, and solar

radiation pressure (SRP) are modeled. The spacecraft is assumed to have a mass of 100 kg, a

drag area of approximately 0.38m2, a ballistic coefficient of 2.1, and a cross sectional area of

1.3m2 subject to SRP. This orbit has a period of approximately 92.5min and the spacecraft spends

approximately 56.6min in view of the Sun per orbit. The relative positions of the Earth and Sun are

simulated using ephemeris from the NASA Navigation and Ancillary Information Facility (NAIF)

SPICE toolkit [62].

For Monte Carlo analyses, the spacecraft’s initial true anomaly and attitude are uniformly

distributed amongst all possible values and its initial angular velocity is uniformly distributed about

all three axes with a maximum value of 2.0 ◦/s about each axis. Rate gyroscope measurements are

simulated at 10Hz and the rate white noise standard deviation is assumed to be 1× 10−4 ◦/
√
s with
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a drift stability standard deviation of 1× 10−6 ◦/s over 1000 s. The spacecraft inertia is assumed

[I] = diag

[
10.5 8.0 7.5

]
kgm2, and the spacecraft is assumed equipped with four reaction wheels

for control purposes. In the spacecraft body frame the spin, or alignment, axes gs for these reaction

wheels are given by

Gs =

[
gs1 . . . gs4

]
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 cos(45◦) − cos(45◦)

cos(45◦) sin(45◦) − sin(45◦) − sin(45◦)

sin(45◦) − cos(45◦) 0 0

⎤
⎥⎥⎥⎥⎥⎦

Each reaction wheel is assumed to have a spin-axis inertia of Js = 0.001 kgm2 and a maximum

torque of 30mNm.

The alignment azimuth and elevation of each CSS is perturbed by a normally distributed

angle with a standard deviation of 1◦. All CSS are assumed to be affected by a common uniformly

distributed calibration error between 0% to 50%, and normally distributed individual calibration

errors with standard deviation of 2.0%. CSS measurements are processed at 2Hz and white Gaus-

sian noise is added to each sensor with a standard deviation of 0.05. Irradiance due to Earth’s

albedo is modeled as explained in Section 2.1.2.



Chapter 3

Sun-Direction Estimators

Two classes of sun-direction estimators are examined: deterministic single-point methods and

filtering algorithms. Deterministic single-point methods use sensor measurements available at a

specific time while filtering algorithms combine sensor measurements over a continuous range of

time with a dynamic model to estimate the sun direction.

It is important to note that accounting for the effects of Earth albedo in the measurement

model of the CSS requires both orbital position information and a inertial reference sun-direction

vector. For this work, it is assumed such information is not available; an example of such a situation

is immediately after launch vehicle separation before ground communication has been established or

an orbit determination solution has been calculated. Thus, for the estimators that follow the input

due to Earth’s albedo must be treated as a systematic bias Vαβ
and Equation (2.21) is changed to

V = C · Cκ

(
Vd + Vαβ

+ νV

)

Vd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
nT s

‖s‖ if
(
nT s

‖s‖ ≥ cosψ
)
∧ (B �∈ S)

0 if
(
nT s

‖s‖ < cosψ
)
∨ (B ∈ S)

. (3.1)

Despite this significant assumption, the estimation algorithms developed here are shown to perform

coarse sun-direction estimation adequate for satellite health monitoring and safe-mode maneuvering

to power-positive orientations. For the estimators that follow the quantity

d ≡ Cs (3.2)
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is defined as a scaled sun-direction vector where, as noted earlier, it is assumed that all CSS share

a common gross calibration factor C and some individual variation Cκ from this value.

3.1 Deterministic Single-Point Estimators

Three deterministic single-point estimators are reviewed. The first method examined is a

single-point approach derived from the weighted average of all CSS measurements at a given time. A

more mathematically robust, but also more complicated, single-point method follows that combines

a least squares estimate and a minimum norm estimate based on the number of sensor measurements

available. This second method is then expanded to include a weighting matrix to better reject noise.

3.1.1 Weighted Average (WAVG) Method

A simple deterministic estimate for the sun-direction vector is formed by taking a vector

average of all the CSS capable of seeing the Sun at a single time using

ŝ =

N∑
i=1

Ĉκi
Vin̂i [Vi > 0]∥∥∥∥ N∑

i=1
Ĉκi

Vin̂i [Vi > 0]

∥∥∥∥
(3.3)

where Iverson bracket notation [78] is used,

Bn̂i =

⎡
⎢⎢⎢⎢⎢⎣
cos
(
φi + φ̂βi

)
cos
(
θi + θ̂βi

)
cos
(
φi + φ̂βi

)
sin
(
θi + θ̂βi

)
sin
(
φi + φ̂βi

)

⎤
⎥⎥⎥⎥⎥⎦ (3.4)

is the best estimate of the ith CSS normal vector, N is the total number of CSS, Ĉκi
is the best

estimate of the ith CSS individual calibration scale factor nominally set to one, and the direction

vectors of the CSS seeing the Sun are “weighted” by their output voltage. Nominally the bias

parameters are set to Ĉκi
= 1.0, θ̂β = 0.0, and φ̂β = 0.0, but they should be adjusted if better

estimates become available. Because the weighted average method is a deterministic approach, the

noise-free error of this method is easily calculated for any orientation of the Sun relative to the

spacecraft; the resulting error map is shown in Figure 3.1.



42

 

 

W
A
V
G

er
ro
r
[d
eg
]

E
le
va
ti
o
n
[d
eg
]

Azimuth [deg]
−180 −135 −90 −45 0 45 90 135 180

0

10

20

30

40

50

60

−50

0

50

(a) Dual pyramid CSS configuration.
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(b) Cube CSS configuration.

Figure 3.1: Weighted average method error map assuming no noise.

The desired attitude of the spacecraft requires the sun-direction vector be aligned with the

+z axis. For the WAVG method an error of less than 10◦ is maintained for the dual pyramid

configuration when aligned within 19◦ of the reference axis; thus, the estimate becomes more precise

near the goal orientation. However, for the dual pyramid configuration in Figure 3.1a, a large band

near the equator of the spacecraft in which the error is greater than 30◦ is evident. If the Sun

is within this region, near 90◦ from the desired orientation, a large estimation error results. But
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when coupled with a control algorithm, even an approximate sun-direction estimate provides enough

knowledge to apply an appropriate control effort.

This weighted average method is attractive as it is computationally simple, provides an esti-

mate when only one sensor is seeing the Sun, and is ideally capable of estimating the sun-direction

vector to within a few degrees using the configuration described previously. Additionally, if the

individual CSS calibration factor deviations are assumed small, the gross calibration factor falls

out of the formulation, and the WAVG method becomes insensitive to large scale calibration errors

common to all sensors.

3.1.2 Least Squares Minimum Norm (LSMN) Method

A more mathematically robust method is the Least Squares Minimum Norm method that

combines two methods, least squares and minimum norm, based on the number of CSS measure-

ments available. When the number of measurements available is equal to or greater than three the

least squares method is used, and when the system is underdetermined the minimum norm criteria

is used.

Starting with Equation (3.1), and assuming input due to albedo Vαβ
is small1, the measure-

ments for the CSS can be written in matrix form as⎡
⎢⎢⎢⎢⎢⎣
V1

...

VN

⎤
⎥⎥⎥⎥⎥⎦ = C

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
Ĉκ1

n̂1

...

ĈκN
n̂N

⎤
⎥⎥⎥⎥⎥⎦ s+

⎡
⎢⎢⎢⎢⎢⎣
Ĉκ1

νV1

...

ĈκN
νVN

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ . (3.5)

If the calibration constant C is known, it can be substituted in and these equations solved in a least

squares manner for the unit sun-direction vector s. However, if C is not known, the equation can

1Assuming the bias due to albedo is small is a significant assumption, however, this leads to a linear form and

numerical Monte Carlo results show that the resulting coarse pointing performance, when coupled with a control

algorithm, is sufficiently good for coarse sun pointing.
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be rewritten in terms of d instead⎡
⎢⎢⎢⎢⎢⎣
V1

...

VN

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
Ĉκ1

n̂1

...

ĈκN
n̂N

⎤
⎥⎥⎥⎥⎥⎦d+

⎡
⎢⎢⎢⎢⎢⎣
ν1
...

νN

⎤
⎥⎥⎥⎥⎥⎦ , (3.6)

giving an implementation that doesn’t require a priori knowledge of the calibration parameter C,

reducing ground calibration requirements, and the sun-pointing control, presented later in Sec-

tion 3.3.2, operates on d as well. If an estimate of C is desired, then it is simply found through

Ĉ =
∥∥d̂∥∥ and if estimates of the individual biases are available, from ground or on-orbit calibration,

they can be substituted instead of the nominal values.

The measurement equation is now in the traditional least squares form

ỹ = Hx+ ν (3.7)

where ỹ is a vector of measured CSS voltages, H is a mapping matrix, x = d is the state vector,

and ν is a vector of measurement errors. Using the cost function

JLS (x) =
1

2
νTν =

1

2
(ỹ −Hx)T (ỹ −Hx) (3.8)

if there are at least three measurements, the best estimate of the state is given by the least squares

solution [38]

x̂ =
(
HTH

)−1
HT ỹ. (3.9)

If, however, there are only one or two observations, the system is underdetermined and the minimum

norm criterion [38]

x̂ = HT
(
HHT

)−1
ỹ (3.10)

is used to determine a unique solution.

The error of the LSMN method is calculated for any orientation of the Sun relative to the

spacecraft, in the absence of noise, and is shown in Figure 3.2. Comparing Figure 3.1 and Figure 3.2,

it can be seen that the least squares minimum norm estimate has an error that is equal to or less

than the weighted average method for all orientations, and particularly less error, up to 18◦ less,
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(a) Dual pyramid CSS configuration.
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(b) Cube CSS configuration.

Figure 3.2: Least squares minimum norm method error map assuming no noise.

in regions of only two or three sensor coverage for the dual pyramid configuration. The large error

regions are again near 90◦ from the desired orientation. For the cube configuration of CSS, the

LSMN and WAVG methods are identical due to the orthogonality of the CSS normal vectors.

This method is also insensitive to large scale calibration errors, which can reduce costly pre-

flight calibration requirements. As long as all CSS are calibrated to return the same voltage for a

given amount of irradiance, and the common calibration factor is set so that the output doesn’t

saturate, there is no need to know the exact voltage when pointing straight at the Sun while in
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orbit. It is important to remember that several key assumptions have been made, most notably

negligible calibration errors and biases, that are not always true in flight. However, numerical

simulation results, shown later, demonstrate that this method is capable of achieving coarse sun

pointing despite these biases.

3.1.3 Weighted Least Squares Minimum Norm (WLSMN) Method

Least squares estimates are significantly affected by outliers, caused by noise, and in particular

the LSMN method exhibits poor performance when the ratio between the voltage due to direct

sunlight and the voltage due to Earth’s albedo is large. The errors introduced by the inability to

properly model the affect of Earth albedo, due to a lack of information, can be somewhat mitigated

by augmenting the cost function in Equation (3.8) to

JWLS (x) =
1

2
νTW̄ν =

1

2
(ỹ −Hx)T W̄ (ỹ −Hx) . (3.11)

The best estimate of the state is now given by the classic weighted least squares solution [38]

x̂ =
(
HTW̄H

)−1
HTW̄ ỹ (3.12)

where W̄ is a diagonal weighting matrix. The weights of the individual CSS are set equal to their

measurement; thus, the stronger voltage signals from sensors seeing the sun are weighted more than

weaker signals induced by Earth’s albedo. This modified method retains the desirable property of

being robust to gross calibration errors common to all CSS.

Without noise, the WLSMN method has the same error map as the LSMN method shown in

Figure 3.2. However, when noise is applied to the CSS measurements, differences appear. Figure 3.3

shows the difference in errors between the WLSMN and LSMN methods when σV = 0.05. The red

regions indicate where the LSMN error is greater and the blue regions where the WLSMN error is

greater. In particular, between 55◦ to 75◦ elevation, the WLSMN method is on average 5.75◦ more

accurate then the LSMN method.
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Figure 3.3: Difference in WLSMN and LSMN errors with noise for dual pyramid configuration.

3.2 Sequential Estimators

A common attitude estimation problem involves propagating the state dynamics and correct-

ing that estimate using a direct measurement of the body’s attitude. Thus, instead of solving the

geometry of the CSS measurement values at any instant in time, sensor measurements are used to

correct a propagated estimate of the sun-direction vector. While a single CSS measurement cannot

fully determine the sun direction for the partially under-determined CSS configuration used in this

study, a series of measurements coupled with the differential rotation information can determine

the proper sun direction.

Two sequential filter estimators based on an extended Kalman filter approach are presented.

First, a continuous-discrete extended Kalman filter formulated with non-additive noise that es-

timates the scaled sun-direction vector in the spacecraft body frame is presented. Second, a

continuous-discrete extended consider Kalman filter is applied in which information on measure-

ment and process biases are used to more robustly estimate the sun-direction vector. Due to the

significant noise and biases present in the system care must be taken when processing measurements

or measurement inconsistency can lead to filter divergence. Therefore, analysis of the measurement

model inconsistencies and methods for addressing them are provided.
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3.2.1 Extended Kalman Filter (EKF) Method

The Kalman filter [28] produces a statistically optimal estimate for linear systems. For nonlin-

ear systems, such as the one investigated in this work, a linearized version of the Kalman filter, the

extended Kalman filter, is commonly applied. The extended Kalman filter is based on the first-order

Taylor series approximation of the state and observation equations about a reference trajectory and

is a weighted least-squares or minimum l2 norm estimator [38,79].

Because the problem being investigated is nonlinear, with non-Gaussian noise, a class of filters

known as Sigma Point Kalman Filters (SPKF) could be used instead. Similar to the basic Kalman

Filter, SPKFs seek to determine a state estimate which minimizes the l2 norm of the residuals.

In contrast to the EKF, they do so without linearizing the state and observation equations by

propagating a discrete cluster of points that can be used to parameterize the mean and covariance

of the system. One such algorithm is the Unscented Kalman Filter (UKF) proposed by Julier

and Uhlmann [32] and another is the Divided Difference Filter proposed by Nørgaard, Poulsen and

Ravn [33]. The UKF is based on the unscented transformation and uses a discrete set of points chosen

according to a deterministic algorithm propagated through the full nonlinear equations to estimate

the state and state covariance at a later time [32]. The first-order (DD1) and second-order (DD2)

Divided Difference Filters are based on the work of Schei [80] and use a polynomial approximation

of the nonlinear state equations obtained via interpolation [33]. These filters show performance

equivalent to the linear Kalman filter and are 2nd order accurate for all nonlinear systems and 3rd

order accurate for Gaussian error source distributions.

As the estimation algorithms presented will ideally be used autonomously on-board spacecraft,

including small satellites with stringent computer processing restrictions, computational speed is

important. Unfortunately, the UKF and divided difference filters have been shown to take three

times the computation time as the EKF for even basic problems [34]. The EKF approach is used as

it is computationally faster and exhibits promising results. Future work will have to investigate the

implementation of a nonlinear estimation approach.
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3.2.1.1 Continuous-Discrete Extended Kalman Filter

The equations for a continuous-discrete extended Kalman filter with non-additive noise are

presented here as review. Detailed derivations of the extended Kalman filter can be found in

References 38, 79, and 81. Assume the continuous-time state dynamics, for a nonlinear system

with discrete-time measurements, are given by

ẋ(t) = f(x(t) ,u(t) ,η(t) , t) (3.13a)

yk = hk(xk,νk, tk) (3.13b)

where x(t) is the state vector, f represents the system dynamics, u(t) is the control input, and yk

is the discrete-time measurement expression. The process noise η(t) is continuous-time white-noise

with spectral density Q(t)

E[η(t)] = 0 (3.14a)

E
[
η(t)ηT (τ)

]
= Q(t) δ(t− τ) (3.14b)

and the measurement noise νk is discrete-time white-noise with covariance Rk
[79,81]

E[νk] = 0 (3.15a)

E
[
νkν

T
j

]
= Rkδjk ∀ j, k (3.15b)

where δjk is the Kronecker delta. It is assumed that the process and measurement noises are

uncorrelated.

The extended Kalman filter operates as a “predictor-corrector” algorithm where the state

and covariance are first propagated, denoted by a superscript −, using the state dynamics model

and then updated, denoted by a superscript +, when measurements are available. The state and

covariance estimates, x̂(t) and P̂ (t), are initialized using

x̂(t0) = E[x(t0)] (3.16)

P̂ (t0) = E
[
(x̂(t0)− x(t0)) (x̂(t0)− x(t0))

T
]

(3.17)
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where E[·] is the expected value operator. The continuous-time state and covariance propagations

equations are given by

˙̂x(t) = f(x̂(t) ,u(t) ,η0(t) , t) (3.18)

Ṗ (t) = F (t)P (t) + P (t)F T (t) +G(t)Q(t)GT (t) (3.19)

where the nominal process noise η0(t) = 0 and

F (t) ≡ ∂f

∂x

∣∣∣∣
x̂,u

(3.20a)

G(t) ≡ ∂f

∂η

∣∣∣∣
x̂,u

(3.20b)

. Finally, the discrete-time state and covariance measurement update equations are given by

Wk = HkP
−
k HT

k +MkRkM
T
k (3.21)

Kk = P−
k HT

k W
−1
k (3.22)

x̂+
k = x̂−

k +Kk

[
yk − hk

(
x̂−
k ,v0, tk

)]
(3.23)

P̂+
k = (I −KkHk) P̂

−
k (I −KkHk)

T +KkMkRkM
T
k KT

k (3.24)

where Wk is the innovation covariance, the nominal measurement noise v0 = 0, the Joseph form [82]

of the covariance update is used to improve numerical stability, and

Hk ≡ ∂hk

∂xk

∣∣∣∣
x̂−
k

(3.25a)

Mk ≡ ∂hk

∂νk

∣∣∣∣
x̂−
k

(3.25b)

are evaluated using the current best estimate of the state. Note that when Equation (3.22) is used

for the Kalman gain, Equation (3.24) can be reduced to

P̂+
k = P̂−

k −KkWkK
T
k , (3.26)

but may suffer from numerical issues in this form.
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3.2.1.2 EKF Based Sun-Direction Estimator

When using a sequential filter to perform attitude estimation it is common to estimate an

absolute attitude, expressed as a quaternion or Modified Rodrigues Parameter (MRP) set [83]. It has

been shown that one can estimate such an attitude, in addition to scale factor and alignment cal-

ibration factors, for coarse sun sensors [5]. However, this approach requires additional information,

such as measurements from a star tracker or orbit information, to generate a reference sun-direction

vector. An analysis of the posterior Cramér-Rao lower bound for systems with only CSS measure-

ments available shows the rate gyro bias to be unobservable. More information on the calculation

of the Cramér-Rao Lower Bound and the Fisher information matrix can be found in Appendix C.

Estimation approaches for when additional measurement information is available are discussed in

detail in Chapter 4, whereas here the estimation of the sun-direction vector using only CSS and a

rate gyro is investigated.

The state vector is chosen to be the scaled sun-direction vector, defined in Equation (3.2), in

the body frame

x(t) =

[
Bd(t)

]
. (3.27)

While it would be more optimal to enforce the unit-norm constraint on the unit sun-direction and

estimate the common calibration coefficient separately, for a system with only CSS and rate gyro

measurements the common calibration coefficient is unobservable; and the measurement equation

requires an estimate of the common calibration scale factor. However, combining the common scale

factor and the unit sun-direction vector into a single vector value results in a quantity that can be

estimated with the added benefit that the estimator is insensitive to uncertainty in the common

CSS scale factor.

It is assumed that angular velocity measurements are provided via a rate gyro and that

the rate gyro measurements follow Farrenkopf’s approximation [68] modified to account for angular

velocity measurements taken in a frame G local to the rate gyro, as opposed to the body frame B,

Gω̃(t) = [GB] Bω(t) + Gωβ(t) +
Gηω(t) (3.28a)
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Gω̇β(t) =
Gηωd

(t) (3.28b)

where Bω is the true body angular velocity in the body frame, Gω̃ is the measured body angular

velocity in the frame of the rate gyro, [GB] maps vectors written in the body frame B into vectors

written in the gyroscope frame G, Gωβ is the measurement bias, and Gηω and Gηωd
are zero-mean

Gaussian white-noise processes with spectral densities given by σ2
ωI3×3 and σ2

ωd
I3×3, respectively.

Assuming for time scales of interest the inertial sun vector is constant, the dynamics of the scaled

sun-direction vector are written as

Bd
dt

[
Bd(t)

]
= Bd(t)× [BG]

(
Gω̃(t)− Gω̂β(t)− Gηω(t)

)
− Bηs(t) (3.29)

where Gω̂β(t) is the best estimate of the rate gyro bias, determined a priori, and ηs is a zero-mean

Gaussian white-noise process with E
[
ηs (t)ηs (τ)

T
]
= σ2

sδ (t− τ) I3×3. Equation (3.1) is modified

V = ‖dk‖ · Ĉκ (Vd + νV )

Vd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
nT d

‖d‖ if
(
nT d

‖d‖ ≥ cosψ
)
∧ (B �∈ S)

0 if
(
nT d

‖d‖ < cosψ
)
∨ (B ∈ S)

and used for the measurement model.

It is important to note that the rate gyro bias is not estimated, but neither is it random

Gaussian noise. Similarly, the calibration coefficients Cκi
, θβi

, and φβi
, also represent systematic

biases. One common method, and the method used here, of dealing with such biases is suitably

inflating the state and measurement process noise through numerical Monte Carlo simulation to

ensure the covariance of the system encompasses the expected statistical error due to this bias [39].

It is acknowledged that this method is not optimal, due to the significant nature of the biases,

but it does provide a bounded estimate for this system when no other information is available.

More rigorous methods for dealing with these biases include: estimating the biases; however, an

analysis of the posterior Cramér-Rao lower bound [84,85] for this system shows the rate gyro bias is

unobservable given only CSS and rate gyro measurements; and considering them, as will be explored

in Section 3.2.2.
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Defining the noise vectors as

η(t) =

⎡
⎢⎣Bηs(t)

Gηω(t)

⎤
⎥⎦ , νk = νVk

(3.30)

the key values for the implementation of this EKF are given by

F (t) =

[
− [[BG] Gω̃(t)

]
×

]
(3.31a)

G(t) =

[
−I3×3 −

[B
d̂(t)
]
×
[BG]

]
(3.31b)

Hk =

[
H1,k · · · HN,k

]T

Hi,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ĉκi

Bn̂i if n̂T
i

d̂k

‖d̂k‖
≥ cosψi

0 if n̂T
i

d̂k

‖d̂k‖
< cosψi

(3.31c)

Mk =
∥∥∥d̂k

∥∥∥ diag(Ĉκ

)
(3.31d)

where [·]× represents the skew-symmetric cross product matrix given by

a =

⎡
⎢⎢⎢⎢⎢⎣
a1

a2

a3

⎤
⎥⎥⎥⎥⎥⎦ , [a]× =

⎡
⎢⎢⎢⎢⎢⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎥⎥⎥⎥⎥⎦ .

The measurement model given by Equation (3.1) does a good job of approximating the physi-

cal response of the CSS, but if the current estimate of the sun direction is not within the field of view

of the sensor the corresponding row of the Kalman gain is equal to zero and the measurement does

not impact the current state estimate. This results in strong measurements due to direct sunlight

being ignored if the current estimate of the sun direction is in significant error, which can signifi-

cantly impact performance when starting with no knowledge of the spacecraft attitude. Therefore,

the measurement model is modified to include observations, albeit with increased measurement un-

certainty, that are above 50% of the expected maximum output. This improves the performance

when initially lost in space, but does not impact steady state performance2.
2Care should be taken when including strong measurements that don’t align with the current estimate. While

this can significantly improve performance for a lost in space scenario, it can also result in albedo measurements
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This EKF estimation method offers a novel attitude estimation solution when faced with

minimal sensor input due to sensor failure or power restrictions. While not optimal, numerical

simulation shows this approach does provide significant improvement over the estimates given by

the single-point estimation techniques described previously. Similar to those single-point techniques,

the EKF-based approach is also insensitive to gross calibration errors common to all CSS.

3.2.2 Continuous-Discrete Extended Consider Kalman Filter (ECKF) Method

As noted previously, the measurement model for the CSS, Equation (2.21), and the dynamics

model for the rate gyro, Equation (2.23a), have several biases. These parameters have a known a pri-

ori distribution, but remain unknown throughout the estimation procedure. Such bias errors can be

treated in four ways: neglected, compensated for with process noise, estimated, or considered [38,39].

Neglecting the impact of the biases is a reasonable solution when the parameters have low

impact on the dynamics. Compensation via process noise usually involves Monte Carlo analysis

to numerically bound the uncertainty that is unaccounted for mathematically, and can be time

consuming and tedious. Expanding the state vector of the system to estimate such biases is an

excellent way to account for their effects, if doing so doesn’t overly increase the computational

burden and the system is sufficiently observable. The final option is to “consider” the effect of the

biases; in this case the biases are not estimated directly, but their uncertainty is included in the

calculation of the system covariance. Consider analysis provides an excellent middle ground between

ignoring and estimating the biases when the biases themselves have low observability.

3.2.2.1 Continuous-Discrete Extended Consider Kalman Filter

Initially presented by Schmidt [35], more recent derivations of the Consider Kalman Filter

have been published by Jazwinski [37]; Tapley, Shutz, and Born [38]; Woodbury and Junkins [39]; and

Zanetti and Bishop [40]. The continuous-discrete extended consider Kalman filter presented here is

being considered if the calibration scale factors of the CSS are significantly uncertain. The erroneous inclusion of

strong albedo measurements can subsequently cause the filter to become inconsistent.
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adapted from the work of Zanetti and Bishop with modifications for continuous-time propagation

and non-constant biases.

Consider a system with the augmented state vector given by

z(t) =

⎡
⎢⎢⎢⎢⎢⎣
x(t)

βη(t)

βν(t)

⎤
⎥⎥⎥⎥⎥⎦ (3.32)

where x is the vector of states to be estimated, βη is a dynamic model bias with

E
[(

β̂η(t)− βη(t)
)]

= 0

E
[(

β̂η(t)− βη(t)
)(

β̂η(τ)− βη(τ)
)T]

= Bη(t) δ (t− τ)

E
[
(x̂(t)− x(t))

(
β̂η(τ)− βη(τ)

)T]
= L(t) δ (t− τ)

E
[(

β̂η(t)− βη(t)
)
(x̂(τ)− x(τ))T

]
= LT (t) δ (t− τ) (3.33)

and βν is a measurement equation bias with

E
[(

β̂ν(t)− βν(t)
)]

= 0

E
[(

β̂ν(t)− βν(t)
)(

β̂ν(τ)− βν(τ)
)T]

= Bν(t) δ (t− τ)

E
[
(x̂(t)− x(t))

(
β̂ν(τ)− βν(τ)

)T]
= Λ(t) δ (t− τ)

E
[(

β̂ν(t)− βν(t)
)
(x̂(τ)− x(τ))T

]
= ΛT (t) δ (t− τ) . (3.34)

Similar to the augmented state vector, the covariance matrix can be written in block form as

Pz(t) = E
[
(ẑ(t)− z(t)) (ẑ(t)− z(t))T

]
=

⎡
⎢⎢⎢⎢⎢⎣
Px(t) L(t) Λ(t)

LT (t) Bη(t) 0

ΛT (t) 0 Bν(t)

⎤
⎥⎥⎥⎥⎥⎦ (3.35)

where it is assumed the bias vectors are uncorrelated with either the measurement or dynamic

process noise. The process noise is written as

η(t) =

⎡
⎢⎣ ηx(t)

ηβη
(t)

⎤
⎥⎦ (3.36)
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with

E
[
η(t)ηT (τ)

]
= Qzδ(t− τ) =

⎡
⎢⎣Qx(t) 0

0 Qβη
(t)

⎤
⎥⎦ (3.37)

to allow for time varying process noise values, for example rate gyroscopes biases exhibiting random

walk.

The continuous-time state dynamics are assumed to be of the form⎡
⎢⎢⎢⎢⎢⎣
ẋ(t)

β̇η(t)

β̇ν(t)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
fx
(
x(t) ,βη(t) ,u(t) ,ηx(t) , t

)
fβη

(
ηβη

(t) , t
)

0.0

⎤
⎥⎥⎥⎥⎥⎦ (3.38)

assuming the measurement biases are constant and the dynamic model biases are functions of time.

It can be shown that the propagation of the state covariance for this system is given by

Ṗz(t) = Θ(t)Pz(t) + Pz(t)Θ
T (t) +Υ(t)Qz(t)Υ

T (t) (3.39)

where

Θ(t) =

⎡
⎢⎢⎢⎢⎢⎣
F (t) S(t) 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , Υk =

⎡
⎢⎢⎢⎢⎢⎣
G(t) 0

0 Gβη
(t)

0 0

⎤
⎥⎥⎥⎥⎥⎦ , (3.40)

and

F (t) =
∂fx
∂x

∣∣∣∣
ẑ,β̂η ,u

(3.41a)

S(t) =
∂fx
∂βη

∣∣∣∣
ẑ,β̂η ,u

(3.41b)

G(t) =
∂fx
∂ηx

∣∣∣∣
ẑ,β̂η ,u

(3.41c)

Gβη
(t) =

∂fβη

∂ηβη

∣∣∣∣∣
ẑ,β̂η ,u

. (3.41d)

Alternatively, using Equation (3.35) this can be written in terms of the block matrices as

Ṗx(t) = F (t)Px(t) + Px(t)F
T (t) + S(t)LT (t) +L(t)ST (t) +G(t)Qx(t)G

T (t) (3.42a)
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L̇(t) = F (t)L(t) + S(t)Bη(t) (3.42b)

Λ̇(t) = F (t)Λ(t) (3.42c)

Ḃη(t) = Gβη
(t)Qβη

(t)GT
βη
(t) (3.42d)

Ḃν(t) = 0. (3.42e)

The discrete-time measurements are assumed to be of the form

yk = h(zk,uk,νk, tk) (3.43)

where the measurement noise νk is as defined in Section 3.2.1.1. The state update due to a mea-

surement is given by

ẑ+
k = ẑ−

k +Kk (yk − ŷk) (3.44)

where the Kalman gain, written in block matrix form,

Kk =

⎡
⎢⎢⎢⎢⎢⎣
Kx,k

Kbη ,k

Kbν ,k

⎤
⎥⎥⎥⎥⎥⎦ (3.45)

is not yet specified. The state covariance update equations are given by

P+
z,k = P−

z,k − P−
z,kY

T
k Kk −KkYkP

−
z,k +KkWkK

T
k (3.46)

where

Wk = YkP
−
z,kY

T
k +MkRkM

T
k

= HkP
−
x,kH

T
k + Jk

(
Λ−

k

)T
HT

k +HkΛ
−
k J

T
k + JkBνJ

T
k +MkRkM

T
k (3.47)

Yk =

[
Hk 0 Jk

]
(3.48)

and

Hk =
∂hk

∂xk

∣∣∣∣
x̂−
k ,β̂−

ν,k

(3.49a)

Jk =
∂hk

∂βν

∣∣∣∣
x̂−
k ,β̂−

ν,k

(3.49b)
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Mk =
∂hk

∂νk

∣∣∣∣
x̂−
k ,β̂−

ν,k

. (3.49c)

Alternatively, using Equation (3.35), Equation (3.46) can be written in terms of the block matrices

as

P+
x,k = P−

x,k −Kx,k

(
HkP

−
x,k + Jk

(
Λ−

k

)T)− (P−
x,kH

T
k +Λ−

k J
T
k

)
KT

x,k +Kx,kWkK
T
x,k (3.50a)

L+
k =

(
I −Kx,kHk

)
L−

k −
(
P−
x,kH

T
k +Λ−

k J
T
k

)
KT

bη ,k
+Kx,kWkK

T
bη ,k

(3.50b)

Λ+
k =

(
I −Kx,kHk

)
Λ−

k −Kx,kJkBν −
(
P−
x,kH

T
k +Λ−

k J
T
k

)
KT

bν ,k
+Kx,kWkK

T
bν ,k

(3.50c)

B+
η = B−

η −Kbη ,k
HkL

−
k − (L−

k

)T
HT

k K
T
bη ,k

+Kbη ,k
WkK

T
bη ,k

(3.50d)

B+
ν = B−

ν −Kbν ,k

(
HkΛ

−
k + JkBν

)− ((Λ−
k

)
HT

k +BνJ
T
k

)
KT

bν
+Kbν

WkK
T
bν
. (3.50e)

A consider filter is one in which the bias parameters are not updated. Examining Equa-

tion (3.44) shows this can be achieved by setting Kbη ,k
= Kbν ,k

= 0. Similar to an EKF, the

Kalman gain is found by minimizing the trace of the measurement updated covariance matrix giv-

ing

Kk =

⎡
⎢⎢⎢⎢⎢⎣
P−
x,kH

T
k +Λ−

k J
T
k

0

0

⎤
⎥⎥⎥⎥⎥⎦W

−1
k (3.51)

Substituting this into Equation (3.50) gives the measurement update for a consider Kalman filter

P+
x,k = P−

x,k −Kx,kWkK
T
x,k (3.52a)

L+
k =

(
I −Kx,kHk

)
L−

k (3.52b)

Λ+
k =

(
I −Kx,kHk

)
Λ−

k −Kx,kJkB
−
ν (3.52c)

B+
η = B−

η (3.52d)

B+
ν = B−

ν . (3.52e)
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As noted by Bierman [86] and Zanetti and D’Souza [87] the consider filter applied recursively

results in a suboptimal estimate because all measurements are not processed simultaneously. The

globally optimal Kalman gain K∗
k is that for which all parameters of the state are estimated and is

given by

K∗
k = P−

z,kY
T
k W−1

k

=

⎡
⎢⎢⎢⎢⎢⎣

P−
x,kH

T
k +Λ−

k J
T
k(

L−
k

)T
HT

k(
Λ−

k

)T
HT

k +B−
ν J

T
k

⎤
⎥⎥⎥⎥⎥⎦W

−1
k (3.53)

Substituting the values for the optimal Kalman gain into Equation (3.50) gives

P+
x,k = P−

x,k −K∗
x,kWkK

∗T
x,k (3.54a)

L+
k =

(
I −K∗

x,kHk

)
L−

k (3.54b)

Λ+
k =

(
I −K∗

x,kHk

)
Λ−

k −K∗
x,kJkB

−
ν (3.54c)

B+
η = B−

η −K∗
bη ,k

WkK
∗T
bη ,k

(3.54d)

B+
ν = B−

ν −K∗
bν ,k

WkK
∗T
bν ,k

. (3.54e)

By comparing Equations (3.52) and (3.54) it can be seen that the optimal equations will result in

a smaller update due to the differences in B+
η and B+

ν and so incremental updates, as applied in a

sequential filter, will result in a different state covariance. Zanetti and D’Souza propose a method

for obtaining an optimal estimate when using a consider filter [87]. Equation (3.54) is used instead

of Equation (3.52) with the understanding that the calculated bias covariances Bη and Bν are not

the true bias covariances, but the bias covariances if the biases were being optimally estimated; the

actual bias covariances are given by Bη(t0) and Bν(t0).
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3.2.2.2 ECKF Based Sun-Direction Estimator

Similar to Section 3.2.1.2, the state vector is chosen to be the scaled sun-direction vector in

the body frame

x(t) =

[
Bd(t)

]
.

As before, the dynamics of the scaled sun-direction vector are written as in Equation (3.29). How-

ever, instead of assuming the inertial sun vector is constant, the time derivative of the inertial sun

vector is retained as a consider parameter because statistics about this bias can be obtained from

ephemeris data. While this bias is not constant, and definitely not Gaussian, this method will allow

for the estimate uncertainty to be conservatively bounded. The state dynamics are, thus, given by

Bd
dt

[
Bd(t)

]
= Bd(t)× [BG]

(Gω̃(t)− Gωβ(t)− Gηω(t)
)
+

B
ḋ(t)− Bηs(t) . (3.55)

Equation (3.1), repeated here, is used for the measurement equation.

V = ‖d‖ · Cκ

(
Vd + Vαβ

+ νV

)

Vd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
nT d

‖d‖ if nT d
‖d‖ ≥ cosψ

0 if nT d
‖d‖ < cosψ

and the noises and biases are set to

ηx(t) =

⎡
⎢⎣Bηs(t)

Gηω(t)

⎤
⎥⎦ , ηβη

(t) =

[
Gηωβ

(t)

]
, νk =

[
νVk

]
, βη =

⎡
⎢⎣
B
ḋ(t)

Gωβ

⎤
⎥⎦ , βν =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cκ

θβ

φβ

Vαβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.56)

The estimator is initialized using L(t0) = Λ(t0) = 0, and the pertinent Jacobians are given by

F (t) =

[
− [[BG] Gω̃(t)

]
×

]
(3.57a)

G(t) =

[
−I3×3 −

[B
d̂(t)
]
×
[BG]

]
(3.57b)

S(t) =

[
I3×3 −

[B
d̂(t)
]
×
[BG]

]
(3.57c)
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Hk =

[
H1,k · · · HN,k

]T

Hi,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ĉκi

Bn̂i if n̂T
i

d̂k

‖d̂k‖
≥ cosψi

0 if n̂T
i

d̂k

‖d̂k‖
< cosψi

(3.57d)

Mk =
∥∥∥d̂k

∥∥∥ diag(Ĉκ

)
(3.57e)

Jk =

[
diag

(
a1,k, . . . , aN,k

)
diag

(
b1,k, . . . , bN,k

)
diag

(
c1,k, . . . , cN,k

) ∥∥∥Bd̂k

∥∥∥ diag(Ĉκ

)]

(·)i,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(̄·)i,k if n̂T

i
d̂k∥∥d̂k

∥∥ ≥ cosψi

0 if n̂T
i

d̂k∥∥d̂k

∥∥ < cosψi

āi,k = n̂T
i d̂k

b̄i,k = Ĉκi
cos
(
φi + φ̂βi

){
−B

d̂xk
sin
(
θi + θ̂βi

)
+

B
d̂yk

cos
(
θi + θ̂βi

)}
c̄i,k = Ĉκi

[
−
{B

d̂xk
cos
(
θi + θ̂βi

)
+

B
d̂yk

sin
(
θi + θ̂βi

)}
sin
(
φi + φ̂βi

)
+

B
d̂zk

cos
(
φi + φ̂βi

)]
. (3.57f)

In contrast to the EKF method of Section 3.2.1.2, the ECKF measurement update for sensors

without the Sun in their field of view is non-zero. According to the measurement model, any

sensor pointed away from the Sun should register zero; however, noise and albedo input will almost

always create a non-zero observation, and negative measurements are not possible. Over time

the presence of these positive measurements can cause the filter to develop a bias exceeding the

calculated covariance bounds. Similar to the EKF, only those sensors expected to have direct

sunlight measurements and those with measurements above some threshold are processed to alleviate

this problem.

It is found in practice that the optimal consider filter, presented in Section 3.2.2.1, works well

for relatively small biases. In the case of significant biases, for example due to albedo or rate gyro

bias, the optimal consider Kalman gain can cause the filter to become overconfident and diverge.
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Because of the omnipresent and significant nature of the biases being considered, the traditional,

non-optimal, version of the ECKF is implemented to retain robustness.

Note that both this approach, and the EKF, only increase the uncertainty of the state to

account for biases, they do not estimate the actual bias values. Nominally, it is assumed Ĉκi
= 1.0,

θ̂β = 0.0, and φ̂β = 0.0, and if additional information is available the solution is improved by

substituting in better estimates for these values. In order to properly estimate these biases requires

additional measurement information. A method for calibrating CSS on orbit is discussed in detail

in Chapter 4 and examines what is necessary to estimate these model parameters.

3.2.3 Measurement Consistency

Both sequential filters derived previously can suffer from divergence due to inconsistencies in

the measurement model caused by the discontinuity in Equation (3.1). A filter is consistent if the

estimated state and measurement innovations are zero-mean and have covariances within the filter

predicted covariance [55,88]. Applying this to Equation (3.1) requires that

E[yk − ŷk] = 0 (3.58a)

E
[
(yk − ŷk) (yk − ŷk)

T
]
= Wk (3.58b)

where ŷk is the computed measurement at time tk based on the best estimate of the state, and Wk

is the expected covariance of the measurement innovation as defined in Equation (3.47).

Consider a single CSS with the true CSS normal vector given by

n =

⎡
⎢⎢⎢⎢⎢⎣
cos
(
φ+ φβ

)
cos
(
θ + θβ

)
cos
(
φ+ φβ

)
sin
(
θ + θβ

)
sin
(
φ+ φβ

)

⎤
⎥⎥⎥⎥⎥⎦ (3.59)

whereas the CSS normal vector is modeled as

n̂ =

⎡
⎢⎢⎢⎢⎢⎣
cos(φ) cos(θ)

cos(φ) sin(θ)

sin(φ)

⎤
⎥⎥⎥⎥⎥⎦ (3.60)
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and θβ and φβ are normally distributed biases with standard deviations of 10.0◦; note these uncer-

tainties are exaggerated for illustrative purposes.
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(a) Calculated uncertainty, no FOV restriction.
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(b) Calculated error, no FOV restriction.
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(c) Calculated uncertainty, FOV = 60◦.
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(d) Calculated error, FOV = 60◦.

Figure 3.4: Calculated uncertainty and measured error for 1σ CSS misalignment.

Assuming no other errors results in the profiles shown in Figure 3.4, where the hemisphere

visible to the CSS has been projected onto a 2D plane. Figures 3.4a and 3.4c show the calculated

1σ uncertainties, and Figures 3.4b and 3.4d show the associated possible σ errors with and without

field of restrictions. Without any field of view restriction the errors from a 1σ misalignment are, as

expected, within the predicted uncertainty bounds. However, when the field of view for the sensor is

set to 60◦, and all measurements outside are assumed zero, errors due to a 1σ misalignment are much
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greater than the predicted uncertainty bounds. Due to this discontinuity, even small misalignments

can lead to measurement innovations that are inconsistent and subsequent filter divergence.

Uncertainty in the sun-direction vector has a similar effect. Consider now a single CSS

modeled using Equation (3.1). The misalignment biases θβ and φβ are normally distributed with

standard deviations of 1.0◦, σV = 0.05, σVα
= 0.1, and the scale factor bias is assumed to have

a mean of 1.0 and a standard deviation of 0.02. It is assumed the state uncertainty matrix is

diagonal with equal variances about each axis, as when the filter is initialized, and sun-direction

uncertainties up to 60◦ are considered, as beyond this angle the maximum error saturates. The

range of possible measurement errors for these 1σ noises and biases, and the predicted covariance

bounds, are shown in Figure 3.5 without a field of view discontinuity, and in Figure 3.6 with a 60◦

field of view restriction.
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(a) 0◦ sun-direction uncertainty.
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(b) 20◦ sun-direction uncertainty.
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(c) 60◦ sun-direction uncertainty.

Figure 3.5: 2D slices, through 135◦ azimuth, of measurement 1σ uncertainty and possible errors
without field of view restriction.

Without field of view restrictions, the calculated measurement uncertainty does not exactly

match the possible errors, due to linearization, but it does bound the errors. In contrast, when a

discontinuous cutoff is applied at the edge of a 60◦ field of view, several regions of possible errors

appear outside the calculated covariance bounds. These regions are small for perfect sun-direction

knowledge, but increase as the sun-direction uncertainty is increased.
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Angle between CSS and Sun [deg]
−90 −60 −30 0 30 60 90

−1.5

−1

−0.5

0

0.5

1

1.5

(b) 20◦ sun-direction uncertainty.
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(c) 60◦ sun-direction uncertainty.

Figure 3.6: 2D slices, through 135◦ azimuth, of measurement 1σ uncertainty and possible errors for
60◦ FOV.

To counteract this measurement inconsistency, additional measurement uncertainty is added

to the measurement model [89]. While inflating the measurement uncertainty will decrease the in-

formation content of the result, for a spacecraft orienting itself at the Sun the goal orientation will

result in the actual offset angle being near zero. Thus, the added measurement noise will improve

robustness while not impacting the steady state performance of the estimator when combined with

simultaneous control effort. Alternatively, all inconsistent measurements could be rejected. How-

ever, with a sufficiently uncertain initial guess this results in all measurements being rejected and

the filter never converges. This is particularly important for a spacecraft attempting to orient itself

from a lost in space scenario in which it has no sun-direction knowledge.

The maximum angle from the field of view boundary at which inconsistent errors occur γ is

modeled by adding the offset angle a 1σ misalignment can impose

γm = arccos
(
nT n̂

)
= arccos

(
cos
(
σθβ

)
cos(φ) cos

(
φ+ σφβ

)
+ sin(φ) sin

(
φ+ σφβ

))
(3.61)

to the angular uncertainty of the current scaled sun-direction estimate, where the variance of the

angular offset of the sun-direction estimate from a reference unit-vector in the body frame c is given
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Figure 3.7: Maximum angle from FOV boundary inconsistent measurement errors extend and max-
imum 1σ error.

to first order by

Σ
(
γ
d̂

)
= JγPJT

γ

Jγ =

⎡
⎢⎢⎣ 1√

1−
(
cT d̂

‖d̂‖

)2
(

d̂T

‖d̂‖

(
cT

d̂

‖d̂‖

)
− cT

)⎤⎥⎥⎦ (3.62)

as shown in Appendix D. The maximum measurement error is calculated using

max(yk − ŷk) = σCσCκ

{
cos(ψ −min(ψ, γ)) + σVα

+ σνV

}
(3.63)

Figure 3.7 shows the maximum angle from the field of view boundary that the inconsistent errors

extend along with the maximum value of the error assuming only errors in sun-direction knowledge.

In practice, the implementation of increased innovation variance is done through logic statements

and a bound larger than 1σ, such as 3σ, must be used to ensure measurement inconsistencies do

not drive the filter to divergence.

The dual pyramid CSS configuration, discussed in Section 2.2, has a second measurement

discontinuity imparted by the local horizon of the face of the spacecraft to which each pyramid is

mounted. For example, even though CSS 1 in Figure 2.8 has a 60◦ field of view, it view is blocked by

the +z face of the spacecraft resulting in a measurement profile similar to those shown in Figure 2.6.

The discontinuity on one side now occurs at an angle between 45◦ to 60◦ depending on the azimuth
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(b) 20◦ sun-direction uncertainty.
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(c) 60◦ sun-direction uncertainty.

Figure 3.8: 2D slices, through 180◦ azimuth, of measurement 1σ uncertainty and possible errors for
CSS 1 with 60◦ FOV and horizon cutoff.

of the slice. The calculation of the maximum uncertainty and angle at which is occurs are very

similar to the field of view restriction with the exception that the minimum angle between the CSS

normal and the local horizon is used instead of the field of view half angle in Equation (3.63).

3.3 Numerical Simulation Results

The results of several numerical Monte Carlo simulations are shown to illustrate and compare

the performance of the sun-direction estimation methods presented. First the sun-direction esti-

mators’ performances are compared without attitude control to establish a performance baseline.

Next the estimators are run with simultaneous nonlinear control and compared with and without

rate gyro measurements. Finally, the sensitivity of the estimators to rate gyro accuracy is explored.

The single-point estimators use all available sensor input to calculate the sun-direction vector.

Theoretically, the performance of these methods could be improved by implementing a form of noise

rejection logic where the expected ratio of direct Sun measurements to albedo measurements is used

to reject measurements below some threshold. Such logic will necessarily be governed by the specific

mission of a spacecraft, the a priori knowledge of irradiance levels, and sensor calibration, therefore,

the performance of the single-point estimators is evaluated without any such logic as a worst case.
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The numerical simulation parameters are the same as outlined in Section 2.4. For the EKF

estimator, the measurement noise standard deviation σV is very conservatively inflated to 1.84 to

encompass all possible 1σ errors. The rate gyro noise value is set equal to the value specified for the

appropriate level of gyro performance and σs is set to 5× 10−4 rad/
√
s for inertial and intermediate

gyros, 4× 10−3 rad/
√
s, and 4× 10−2 rad/

√
s for low gyros. For the ECKF estimator, the process

noise σs is set to 1× 10−15 rad/
√
s, and the standard deviations of the inertial rate of change of the

sun-direction vector
B
ḋ are set to

[
2.4× 10−7, 2.4× 10−7, 1.3× 10−7

]
rad/s.

3.3.1 Sun-Direction Estimation Without Attitude Control

An initially uncontrolled tumbling spacecraft is simulated to investigate the baseline per-

formance of the various sun-direction estimation methods described if they are not assisted with a

simultaneously active attitude control. The resulting statistics for a 1000 case, 100min, Monte Carlo

analysis, run using the parameters listed in Section 2.4, and assuming the spacecraft is equipped

with a dual-pyramid CSS configuration, are shown in Figure 3.9. The statistics are calculated for

the time the spacecraft has at least one CSS with a valid direct Sun measurement; the time spent

in the shadow of the Earth has been removed.

While the estimators output a solution for the scaled sun-direction vector, what is of interest

is the total angular error of the estimate shown in Figure 3.9d. As can be seen, the single-point

estimation algorithms, WAVG, LSMN, and WLSMN, all show significant error in the resulting

scaled sun-direction vector estimation; the 99th percentile bounds for the estimated angular errors

for all three methods are above 45◦. This is expected due to the underdetermined nature of the CSS

configuration. This is also evident in the non-zero mean of the sun-direction angular error. The

EKF based methods, however, are capable of quickly achieving estimation accuracy below 5◦. The

EKF method performs the best, reducing the attitude estimation error to 1.75◦ within a few minutes

and maintaining that level of accuracy throughout the trajectory. The ECKF is, as expected, more

conservative, but still maintains a 99th percentile accuracy of approximately 3.1◦. Both the EKF

and ECKF exhibit a mean error just below 1◦ that corresponds well with the control deadband.
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Figure 3.9: Calculated statistics for 1000 case Monte Carlo run without control using a dual pyramid
CSS configuration.

Figure 3.10 shows similar results for a spacecraft equipped with a cube CSS configuration.

The angular errors of the steady state solutions for the sequential estimators are nearly the same

as when using the dual pyramid configuration; the ECKF achieves 5◦ and the EKF achieves 2◦

accuracy at the 99th percentile. As noted previously, the angular error in the three single-point

methods are all the same due to the orthogonality of the measurements.
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Figure 3.10: Calculated statistics for 1000 case Monte Carlo run without control using a cube CSS
configuration.

3.3.2 Sun-Direction Estimation & Control With Rate Gyro Measurements

A nonlinear three-axis attitude control is used in the numerical simulation to reorient the

spacecraft using redundant reaction wheels [90,91]. This control law is designed for detumbling with

the goal of orienting the spacecraft body frame B with a reference frame R where the attitude error

between the body and reference frames is described using the Modified Rodrigues Parameter (MRP)
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set σBR. The control law is given by

Gsus =− [I]
(
ω̇R − [ω]×ωR

)
+KσBR + PΔω + PKIz

− ([ωR]× − [KIz]×
) (

[I]ω +Gs

{
Js ◦

(
Ω+GT

s ω
)})

+L (3.64)

where Δω = ω − ωR, ωR is a time-varying reference angular velocity, K is a scalar gain, P is a

positive definite gain matrix, KI is a gain matrix, z is the integral term, Js is a vector of wheel

spin-axis inertias, the ◦ operator indicates a Hadamard, or Schur, product [92], Ω is a vector of

wheel speeds, and L are the known external torques acting on the vehicle. The control is proven

to be asymptotically stabilizing and guarantees if σ converges to zero, so will Δω. For further

discussion of this control law, and its development, the reader is referred to Reference 90. In this

analysis, the control gains K = 0.041Nm, P = 0.5I3×3Nms, and KI = 0.001I3×3/(Ns2) are used,

ωr = ω̇r =

[
0 0 0

]T
, and a control deadband of 1◦ is used.

The estimation algorithms compute a sun-direction vector in the body frame, not an attitude

error. The error MRP σBR is formed by finding the principal rotation vector necessary to rotate

the sun-direction vector to align with the solar panel unit normal vector c expressed in the body

frame. This vector is used in the definition of the MRP vector

σ = ê tan

(
Φ

4

)
(3.65)

to create an error MRP given by

σBR =
d̂× c∥∥d̂× c

∥∥ tan
(
1

4
arccos

(
cT d̂∥∥c∥∥∥∥d̂∥∥

))
. (3.66)

Because of the normalization included in the error MRP, this control approach is able to operate on

the current scaled sun-direction estimate d̂, not just the unit sun-direction vector s. Equation (3.66)

has a singularity when the denominator approaches zero, or the sun-direction vector approaches

alignment with the goal orientation. However, at the same time the trigonometric function in the

numerator will also approach zero. This issue is avoided by simply setting the control to zero when

the dot product inside the inverse cosine function falls below a threshold.
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Figure 3.11: Calculated statistics for 1000 case Monte Carlo run with control using a dual pyramid
CSS configuration.
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Figure 3.12: Total time spent with estimate in error of more than 15◦ for 1000 case Monte Carlo
run with control using a dual pyramid CSS configuration.
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Figures 3.11 and 3.12 show the statistics for a 1000 case Monte Carlo analysis with a dual

pyramid CSS configuration and nonlinear control turned on; these results emphasize the positive

impact of simultaneously estimating and controlling when using the single-point estimators with a

partially underdetermined CSS configuration. As noted earlier, the control attempts to orient the

spacecraft’s z-axis to be pointed at the Sun while simultaneously estimating the sun direction. Due

to the configuration of CSS used, this increases the number of CSS observations available, which

is reflected in the significant decrease in estimation error as compared to the uncontrolled cases.

Figure 3.12 shows the sorted total time above 15◦ for all the Monte Carlo runs on a log scale where

the 15◦ threshold is an arbitrary limit used for comparison purposes. The discretized nature of the

lines in Figure 3.12 are a result of the frequency of data output from the simulation.

All of the estimators are found to spend less than 17min, of the approximately 56.5min in

view of the Sun for a single orbit, with angular accuracy greater than 15◦. The EKF and ECKF

methods spend the least amount of time above the threshold, 2min, and achieve much higher

estimate accuracy than the single-point estimators. Interestingly, of the single-point estimators the

WAVG shows the least angular error and least total time, 14min, above the threshold.

All of the single point estimators exhibit increased 3σ bounds for dx and dy and an increase

in the mean angular error bias between 40min and 50min. This time corresponds to the region of

the orbit where the spacecraft’s sensors are most affected by Earth’s albedo. Despite this, all three

methods are able to maintain less than 15◦ angular error for 87% of the time spent in view of the

Sun.

Several biases are assumed small in the formulation of the estimation methods and the impact

of that assumption can be seen in Figure 3.11c, particularly for the WAVG and LSMN methods.

The results show a significant bias in the estimate of dz, the axis desired to be pointing directly at

the Sun, due to the biases present in the system dynamics and measurement models. Despite the

significant biases and noise, all methods are shown capable of achieving a power positive orientation

using only CSS, a rate gyro, and reaction wheels. The EKF method is able to achieve approximately

4◦ accuracy, and the ECKF method achieves 6◦ accuracy, at the 99th percentile. These results are
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slightly less accurate that the results achieved without the control because the control eliminates

all angular motion within a few minutes, thus reducing the number of new distinct measurements.

If more accurate results are required while using a simultaneous control, a maneuver as benign

as maintaining nadir pointing is capable of providing enough new information. Similarly, control

dithering could be used to increase the information content of the CSS measurements.
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(d) Angular error of sun-direction vector estimate.

Figure 3.13: Calculated statistics for 1000 case Monte Carlo run with control using a cube CSS
configuration.

Figures 3.13 and 3.14 show the statistics for a 1000 case Monte Carlo analysis with a cube CSS

configuration and the nonlinear control turned on. As expected, all of the estimation approaches

perform poorly due to the lack of measurement information available when in the goal orientation.
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Figure 3.14: Total time spent with estimate in error of more than 30◦ for 1000 case Monte Carlo
run with control using a cube CSS configuration.

Similar to the no control case, all three single point estimators have identical angular error statistics.

Because there is only one sensor in view of the Sun for the goal orientation, the control actuates on

a constantly changing sun-direction estimate, due to noise, and the spacecraft is unable to maintain

sun pointing. In comparison, the sequential filtering algorithms perform quite well. The biased

average angular error for these estimators is a result of the unestimated biases in the system, but

the estimators are able to maintain pointing within 25◦ at the 99th percentile in a single orbit.

3.3.3 Sun-Direction Estimation & Control Without Rate Gyro Measurements

The control used to reorient the spacecraft to a power positive state requires a measure of

the spacecraft’s angular velocity ω in order to arrest any rotational rates. In addition, the EKF

method requires the spacecraft’s angular velocity for state propagation. It is assumed the angular

velocity of the spacecraft is nominally provided by a rate gyro, but it may be necessary to turn

off the rate gyro in a power critical situation, or in a worst case scenario the rate gyro might fail.

For these situations, the estimation approaches outlined previously are modified to use a simple

estimate of the vehicle’s angular velocity vector, a scaling of the cross product of the current and

previous estimates of the sun-direction vector, given by

ω̄k =
d̂k × d̂k−1∥∥∥d̂k × d̂k−1

∥∥∥ arccos
⎛
⎝ d̂T

k d̂k−1∥∥∥d̂k

∥∥∥∥∥∥d̂k−1

∥∥∥
⎞
⎠ 1

tk − tk−1

(3.67)
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where d̂k is the best estimate of the scaled sun-direction unit vector at time tk. This value is used in

place of rate gyro measurements in the control to arrest vehicle rates. To counteract the additional

error introduced by numerical differencing, the estimate is conservatively bounded about each axis

and run through a first order low-pass filter. Since the numerical simulation assumes maximum

initial angular rates of 2.0 ◦/s about each axis, the rates are conservatively constrained to 10 ◦/s

about each axis before applying a 10Hz low pass filter. Additionally, the single-point estimators

are found to suffer significantly due to the noise in the angular rate measurements, but applying a

10Hz low pass filter to the commanded reaction wheel torques and CSS measurements alleviates

this issue. Because the rate gyro model is no longer valid, for the EKF and ECKF the values of σω

and σωβ
are set to zero and the sun-direction rate spectral density is increased to 1.0 rad/

√
s.

Results show that even though this simple backward-difference method does not provide new

information, it does provide an adequate estimate for achieving a power positive orientation. More

complicated methods for estimating the angular rate of a satellite exist; for example Azor, Bar-

Itzhack, and Harman propose using an extended interlaced Kalman filter composed of three separate

Kalman filters [93] and Mortari and Akela propose two filtering techniques that use quaternions to

estimate the angular velocity [94]. Because the EKF and ECKF based methods are shown to perform

quite well using the simple method proposed here, the investigation of these more complicated

methods is left to future work.

Statistics are shown in Figures 3.15 and 3.16 for a 1000 case Monte Carlo analysis where the

control is operating, but no rate gyro measurements are available. It is important to remember this

represents a worst case safe-mode scenario in which only CSS and reaction wheels are available, and

is presented here as a preliminary look into the robustness of the estimation algorithms examined.

Nominally with rate gyro measurements, the sequential estimators propagate the spacecraft’s orien-

tation while in the shadow of the Earth. However, because the rate estimate is entirely dependent

on having a sun-direction estimate, the sequential estimator propagation and all control effort are

suspended when the spacecraft is in the shadow of the Earth if no rate gyro measurements are

available.
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Figure 3.15: Calculated statistics for 1000 case Monte Carlo run with control, but no rate gyro
measurements.
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Figure 3.16: Total time spent with estimate in error of more than 15◦ for 1000 case Monte Carlo
run with control, but no rate gyro measurements.
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As a result of the numerical differentiation, the single-point estimators perform approximately

the same, albeit with much greater variability in the estimate, as when using an intermediate level

gyro as long as the low pass filtering mentioned is implemented. This is expected as the rate gyro

measurement is only used by the control algorithm to damp out the spacecraft angular velocity. It

is interesting that the EKF and ECKF still perform quite well despite the significant noise of the

rate gyro measurements. All EKF cases spend less than approximately 5min of the 56min in view

of the Sun per orbit with estimation error greater than 15◦. The ECKF is more conservative in its

estimate, and as a result, spends slightly more time with greater than 15◦ angular error than the

EKF.

3.3.4 Sun-Direction Estimation & Control Sensitivity to Rate Gyro Accuracy

The results of 1000 case Monte Carlo analyses, in which the level of gyroscope accuracy is

varied, are shown in Figures 3.17 to 3.20. The rate gyro accuracy levels correspond to those listed

in Table 2.3. Results are shown for the EKF and ECKF methods and the single point estimators

are omitted, as the estimators themselves do not use the angular rate measurements and the fidelity

of angular rate measurements will only impact the control system’s ability to arrest all rates.

Figures 3.17 and 3.18 show the results of using the EKF estimator with varying levels of rate

gyro performance. Interestingly, the inertial and intermediate level gyro levels have nearly identical

results, and examining the total time above 15◦ error they provide almost no improvement over

the moderate gyro. This is because for those levels of rate gyro performance the noise levels are

below the uncertainty in the inertial sun-direction rate of change and, thus, the increased rate gyro

performance does not improve the estimate. Also of interest is that the use of low level gyro results

in estimation error that is very close to the error when not using gyro measurements. The use of

a gyro does help to increase the smoothness of the estimate, but for low level gyros, the noise level

and bias uncertainty are so large that the estimation accuracy is on par with the accuracy attained

without using a gyro.
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Figure 3.17: Calculated statistics for 1000 case Monte Carlo run with control and EKF estimator
using varying levels of rate gyro measurements.
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Figure 3.18: Total time spent with estimate in error of more than 15◦ for 1000 case Monte Carlo
run with control and EKF method using varying levels of rate gyro measurements.
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Figure 3.19: Calculated statistics for 1000 case Monte Carlo run with control and ECKF estimator
using varying levels of rate gyro measurements.
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Figure 3.20: Total time spent with estimate in error of more than 15◦ for 1000 case Monte Carlo
run with control and ECKF method using varying levels of rate gyro measurements.
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Figures 3.19 and 3.20 show the results of using the ECKF estimator with varying levels of

rate gyro performance. The angular error plot highlights a key point between the EKF and ECKF

estimators. The EKF method uses a set value for the process noise in the system, that because of

the unmodeled bias must be adjusted based on the estimated longest period of estimation, whereas

the ECKF estimator includes a term to inflate the process noise over time. Thus, the uncertainty

in the angular error of the ECKF grows to a value at which the information from the CSS balances

the increasing uncertainty in the propagation. Also as a result of this, when the spacecraft is in the

shadow of the Earth, the uncertainty in the ECKF estimate grows extremely large and the estimator

spends several minutes of the next pass in view of the Sun recovering. Because of the dispersion

in the initial true anomaly of the spacecraft in the Monte Carlo analysis, this manifests as a large

dispersion, caused by an accumulation of short duration large sun-direction angular errors across

the many Monte Carlo runs, in the sun-direction angle as seen in Figure 3.19d between 10min and

30min.

It is important to note that the gyro and the no gyro cases assume slightly different control

algorithms. The with gyro cases attempt to propagate the attitude of the spacecraft through the

shadow of the Earth using the rate gyro measurements. Because of the large biases present in the

low performance gyro, the control spends the entire 36min in the shadow of the Earth driving the

spacecraft away from the true sun-direction. In contrast, the no gyro case turns off all control

effort while in the shadow of the Earth and resumes active control when new CSS measurements

become available. Despite using a noisy numerical backward difference rate estimate, the sun-

direction estimator without rate gyro measurements is able to quickly achieve sun-pointing. The

99th percentile bounds for the low performance gyro case can be reduced by adopting a similar

control approach.

Also, it is worth reiterating that the EKF and ECKF estimation filters are not optimal filters.

As a result of the significant noise and biases present in the system, the EKF and ECKF are

extremely conservative. Because of this, the Monte Carlo calculated 3σ bounds are much tighter

than the estimator predicted bounds. Figure 3.21 shows the scaled sun-direction estimate error
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Figure 3.21: EKF and ECKF estimator performance for a single case.

and predicted covariance bounds for a single case using the EKF and ECKF estimators and an

intermediate level gyro. As these estimators are designed to be used in a safe mode, conservatism

is chosen over possible divergence.

3.3.5 Computation Time

An important factor when determining what algorithm to use is the available computation

power. The total calculation time of the propagation and measurement updates are computed for

the various estimation methods over an entire 100min simulation. None of the algorithms have been

optimized and they use the same routines to compute matrix algebra. The average and standard
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deviations of the computation times, for C code compiled on a Windows i7 2.5GHz machine,

are shown in Table 3.1. The EKF and ECKF propagation updates are computed using an RK4

integrator. While this is not flight hardware, the relative difference is used to evaluate the relative

computational costs of the these algorithms.

Table 3.1: Averages and standard deviations for computation times of various filters.

Method Propagation Update [μs] Measurement Update [μs]

WAVG - 0.95± 0.54
LSMN - 1.25± 0.69

WLSMN - 1.26± 0.80
EKF 1.83± 0.81 1.32± 0.96

ECKF 3.86± 1.40 13.4± 10.8

All of the single point algorithms benefit from a lack of propagation update. The WAVG

algorithm is the simplest and executes the fastest as expected. The LSMN and WLSMN methods

are slightly slower due to the logic necessary to determine whether to use the least squares or

minimum norm algorithm, but execute in nearly the same amount of time. The EKF measurement

update evaluates in nearly the same amount of time as the WLSMN and LSMN algorithms, but

requires a propagation update that takes longer than the measurement update. The ECKF is the

slowest, by far, of the algorithms. This is due to the additional matrix math required to propagate

and update the expanded state. This method provides a more robust mathematical modeling of the

biases in the system, but it does come with increased computational costs.



Chapter 4

On-Orbit CSS Calibration

Expanding the estimation method developed in Section 3.2.1.2 to use an extended consider

Kalman filter approach provides a method for accounting for the uncertainty associated with several

systematic biases. A better approach is to estimate these biases directly. As noted by Springmann,

literature on the on-orbit calibration of sun sensors is sparse [5]. Ortega, López-Rodríguez, et.

al., and Wu and Steyn both present calibration of two-axis sun sensors specific to an individual

model [11,47] and Springmann presents a CSS calibration filter capable of calculating CSS scale

factor and misalignment [5]. The filter is a quaternion based EKF approach that assumes the albedo

contributions to the EKF Jacobians are small, and the filter performance is shown for flight data.

Presented here are two CSS calibration filters, formulated using Modified Rodrigues Parame-

ters (MRPs) and based on an ECKF approach. A MRP based filter is chosen because MRP based

attitude estimation filters have been shown to have equal accuracy to and faster initial convergence

than quaternion filters with slightly faster numerical evaluation and vastly simpler coding imple-

mentation [95]. An extended consider Kalman filter is used, instead of a traditional EKF, in order

to account for known biases in the measurement model. In addition, the impact of the irradiance

due to albedo is included to first order in the system Jacobians. The first filter uses an Earth

albedo model to estimate the irradiance received by a CSS due to Earth’s albedo, whereas the

second treats the irradiance due to albedo as an unmodeled bias that is considered. The goal is to

compare the relative accuracy and computation time of the two methods in order that the amount

of ground-based support required by small satellites may be reduced and autonomy increased.
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4.1 MRP Attitude Estimator

In order to estimate several of the systematic biases present in both the rate gyro and CSS

models, an approach similar to a traditional MRP attitude estimation EKF formulation is used.

The properties of MRPs and an MRP based attitude filter are presented here as review. For

more detailed information regarding MRPs and MRP attitude estimation the reader is referred to

References 83, 95, 96, and 97.

4.1.1 Modified Rodrigues Parameters

The MRP vector σ is defined in terms of the principal rotation elements as

σ = ê tan

(
Φ

4

)
(4.1)

where ê is the principal rotation axis, and Φ is the principal rotation angle [83,96]. The MRP shadow

set is defined as

σS = − σ

σTσ
(4.2)

and both MRPs satisfy the differential equation

σ̇ =
1

4

[(
1− σTσ

) [
I3×3

]
+ 2 [σ]× + 2σσT

]
ω =

1

4
[B(σ)]ω (4.3)

where [·]× represents the skew-symmetric cross product matrix given by

[σ]× =

⎡
⎢⎢⎢⎢⎢⎣

0 −σ3 σ2

σ3 0 −σ1

−σ2 σ1 0

⎤
⎥⎥⎥⎥⎥⎦ .

The inverse MRP is given by σ−1 ≡ −σ and the successive rotation of two MRPs is computed using

the MRP product

¯̄σ = σ̄ ⊗ σ =

(
1− σTσ

)
σ̄ +

(
1− σ̄T σ̄

)
σ − 2 [σ̄]× σ

1 + (σTσ) (σ̄T σ̄)− 2σ̄Tσ
. (4.4)
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4.1.2 Extended Kalman Filter Based MRP Attitude Estimator

A MRP attitude estimator uses an extended Kalman filter approach with the state vector

x(t) =

⎡
⎢⎣ σ(t)

Gωβ(t)

⎤
⎥⎦ (4.5)

The state dynamics are found by combining Equation (4.3) and Equation (3.28b)⎡
⎢⎣ σ̇(t)

Gω̇β(t)

⎤
⎥⎦ =

⎡
⎢⎣1

4 [B (σ(t))] Bω(t)

Gηωd
(t)

⎤
⎥⎦ =

⎡
⎢⎣1

4 [B (σ(t))] [BG]
{
Gω̃(t)− Gωβ(t)− Gηω(t)

}
Gηωd

(t)

⎤
⎥⎦ (4.6)

Defining the process noise as

η =

⎡
⎢⎣ Gηω(t)

Gηωd
(t)

⎤
⎥⎦ (4.7)

the quantities given in Equation (3.20) are

F =

⎡
⎢⎢⎣
1

2

(
σ̂(t) Bω̂T (t)− Bω̂(t) σ̂T (t)−

[
Bω̂(t)

]
×
+ σ̂T (t) Bω̂(t) I3×3

)
−1

4
[B (σ̂(t))] [BG]

03×3 03×3

⎤
⎥⎥⎦
(4.8a)

G =

⎡
⎢⎣−

1

4
[B (σ̂(t))] [BG] 03×3

03×3 I3×3

⎤
⎥⎦ (4.8b)

where σ̂ is the current best estimate of the attitude MRP, Gω̂b is the best estimate of the total rate

gyro bias in the rate gyro frame, and

Bω̂ = [BG]
[
Gω̃ − Gω̂b

]
(4.9)

is the current best estimate of the angular velocity in the body frame.

Assuming measurements are taken of the body’s attitude, via a star tracker or other generic

attitude sensor, the measurement model is given by

yk = σk + νk (4.10)

where νk is discrete-time white-noise with covariance Rk. Thus, the EKF measurement Jacobians

in Equation (3.25) are

H =

[
I3×3 03×3

]
(4.11a)
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M = I3×3. (4.11b)

4.2 Full CSS Calibration Filter

The full CSS calibration filter assumes the spacecraft has CSS, inertial attitude, and angular

rate measurements available, as well as an orbit solution and an estimate of the reference Earth-Sun

vector, which requires the current Julian date. A continuous-discrete extended consider Kalman

filter, as outlined in Section 3.2.2.1 is used as some of the measurement errors are better modeled

as biases than white noise. The state vector is chosen to be

x(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ(t)

Gωβ(t)

C(t)

θ

φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.12)

where σ(t) is the MRP attitude description of the spacecraft. The MRP dynamics, assuming the

rate gyro dynamics are modeled as shown in Section 2.3, are given by

σ̇(t) =
1

4
[B(σ(t))] [BG]

(Gω̃(t)− Gωβ(t)− Gηω(t)
)

(4.13)

and the individual sensor calibration factors are assumed to be governed by

Ċ(t) = ηC(t) . (4.14)

As mentioned in Section 2.1.4, it is expected C will be affected by changes in solar irradiance

and over time the values of C will slowly decrease as CSS degrade due to radiation damage. For

short time scales the individual sensor calibration factors are expected to remain constant and are

modeled as having a random walk as a worst case analysis. Defining the best estimate of the true

spacecraft angular velocity in the body frame as

Bω̂(t) = [BG]
(
Gω̃(t)− Gω̂b(t)

)
, (4.15)
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and the process noise vector as

η(t) =

⎡
⎢⎢⎢⎢⎢⎣

Gηω(t)

Gηωd
(t)

ηC(t)

⎤
⎥⎥⎥⎥⎥⎦ , (4.16)

the pertinent propagation Jacobians are given by

F (t) =

⎡
⎢⎢⎣

1
2

(
σ̂Bω̂T + Bω̂σ̂T −

[
Bω̂
]
×
+ σ̂T Bω̂I3×3

)
−1

4 [B(σ)] [BG] 03×3N

0(3+3N)×3 0(3+3N)×3 0(3+3N)×3N

⎤
⎥⎥⎦ (4.17a)

G(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
4 [B(σ)] [BG] 03×3 03×N

03×3 I3×3 03×N

0N×3 0N×3 IN×N

02N×3 02N×3 02N×N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.17b)

where σ̂ is the current best estimate of the attitude MRP. The block structure of the Jacobians,

particularly the sections equal to zero, should be considered when implementing the state update

in order to reduce the total computations necessary.

As noted previously, it is assumed direct measurements of the body’s attitude, via a star

tracker or other generic attitude sensor, are available in addition to CSS measurements. Because

these measurements may be sampled at different frequencies, and their noise values are uncorrelated,

they are presented here as separate measurement updates.

Attitude measurements, for example from a star tracker, are modeled by

yk = σk + νσ,k (4.18)

where νσ,k is discrete-time white noise with covariance Rσ,k. The measurement update Jacobians

are given by

Hk =

[
I3×3 03×(3+3N)

]
(4.19a)

Mk = I3×3 (4.19b)

Jk = 0 (4.19c)
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because there are no measurement biases modeled.

The CSS measurement model is based on Equation (3.1), however, it is modified so that it

is written in terms of the state parameters given in Equation (4.12). It is initially assumed that

the spacecraft has some estimate of the Earth-Sun vector s⊕, obtained via ephemeris or a periodic

model like those examined in Section 4.4.4, and its own position relative to the Earth rB, obtained

from GPS or a ground generated orbit solution. The actual sun-direction vector can be written as

Bs = [BN ]
N(

s⊕ − rB
)

(4.20)

where rB is the actual position of the spacecraft relative to the Earth, s⊕ is the actual direction

vector from the Earth to the Sun, and the direction cosine matrix [BN ] is written in terms of the

attitude MRP as

[BN ] =
[
I3×3

]
+

8 [σ]2× − 4
(
1− σ2

)
[σ]×

(1 + σ2)2
(4.21)

where σ2n =
(
σTσ

)n. Because the estimation algorithm is assumed to only have estimates of the

spacecraft position and Earth-Sun reference vector, the best estimate of the sun-direction vector is

given by

Bŝ = [BN ]
N(

ŝ⊕ − r̂B
)

(4.22)

with rB = r̂B − rBβ
where rBβ

is a bias in the uncertainty in the spacecraft position

E
[(

r̂Bβ
− rBβ

)]
= 0,

E
[(

r̂Bβ
− rBβ

)(
r̂Bβ

− rBβ

)T]
= BrB ,kδjk ∀ j, k (4.23)

and s⊕ = ŝ⊕−s⊕β
where s⊕β

is a measurement bias due to model errors in the reference Earth-Sun

vector with

E
[(

ŝ⊕β ,k
− s⊕β ,k

)]
= 0,

E
[(

ŝ⊕β ,k
− s⊕β ,k

)(
ŝ⊕β ,k

− s⊕β ,k

)T]
= Bs⊕,kδjk ∀ j, k. (4.24)

The error in a properly post-processed orbit solution should resemble white noise. However, the error

in a real time estimate of the spacecraft position will more likely exhibit bias-like characteristics.
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Similarly, as shown in Figure 4.11, the error in the sun-direction reference vector is treated as a

bias. The vector from the differential area on the surface of the Earth to the spacecraft is written

as

NrAB = NrB − NrA (4.25)

and the best estimate of this vector is given by

Nr̂AB = Nr̂B − NrA (4.26)

using the definitions given previously.

Removing the biases from Equation (2.19), because the angles are being estimated directly,

results in a modified measurement model

V = C (Vd + Vα + νV )

Vd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B[
cosφ cos θ cosφ sin θ sinφ

]
[BN ]

Ns⊕−NrB∥∥Ns⊕−NrB

∥∥ if nT s
‖n‖‖s‖ ≥ cosψ

0 if nT s
‖n‖‖s‖ < cosψ

Vα =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
π

�
A

(α+ να)
NnT

A
Ns⊕∥∥NrAB

∥∥2∥∥Ns⊕∥∥
(

NnT
A

NrAB∥∥NrAB

∥∥
)

∗
(B[

cosφ cos θ cosφ sin θ sinφ

]
[BN ]

NrAB∥∥NrAB

∥∥
)
dA if B �∈ S

0 if B ∈ S

(4.27)

where να is zero-mean Gaussian noise representing the uncertainty in the albedo coefficient of dA

calculated from the NASA TOMS data, and it is assumed
∥∥nA

∥∥ = 1. Defining the measurement

noise and bias vectors as

νk =

⎡
⎢⎣νV,k
να,k

⎤
⎥⎦ , βν =

⎡
⎢⎣Ns⊕β ,k

NrBβ ,k

⎤
⎥⎦ (4.28)

where να,k is vector, of length Nα, of all the albedo coefficient uncertainty terms in A, the mea-

surement update Jacobians are given by

Hk = Hd,k +Hα,k (4.29a)
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Hd,k =

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣
a1,k

...

aN,k

⎤
⎥⎥⎥⎥⎥⎦ 0N×3 diag

(
b1,k, . . . , bN,k

)
diag

(
c1,k, . . . , cN,k

)
diag

(
d1,k, . . . , dN,k

)
⎤
⎥⎥⎥⎥⎥⎦

(·)i,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(̄·)i,k if nT

i ŝk∥∥ni

∥∥∥∥ŝk∥∥ ≥ cosψi

0 if nT
i ŝk∥∥ni

∥∥∥∥ŝk∥∥ < cosψi

āi,k = Ĉi,k

B[
cosφi cos θi cosφi sin θi sinφi

]
∂

∂σ

(
[BN ]

Nŝk∥∥Nŝk∥∥
)∣∣∣∣∣

σ̂k

b̄i,k =
B[
cosφi cos θi cosφi sin θi sinφi

]
[BN ]

Nŝk∥∥Nŝk∥∥
c̄i,k = Ĉi,k

B[
− cosφi sin θi cosφi cos θi 0

]
[BN ]

Nŝk∥∥Nŝk∥∥
d̄i,k = Ĉi,k

B[
− sinφi cos θi − sinφi sin θi cosφi

]
[BN ]

Nŝk∥∥Nŝk∥∥ (4.29b)

Hα,k =

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣
a1,k

...

aN,k

⎤
⎥⎥⎥⎥⎥⎦ 0N×3 diag

(
b1,k, . . . , bN,k

)
diag

(
c1,k, . . . , cN,k

)
diag

(
d1,k, . . . , dN,k

)
⎤
⎥⎥⎥⎥⎥⎦

(·)i,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(̄·)i,k if B �∈ S

0 if B ∈ S
, � =

αNnT
A
Nŝ⊕∥∥Nr̂AB,k

∥∥2∥∥Nŝ⊕∥∥
(

NnT
A

Nr̂AB,k∥∥Nr̂AB,k

∥∥
)

āi,k ≈ − Ĉi,k

π

�
A

�

⎛
⎝B[

cosφi cos θi cosφi sin θi sinφi

]
∂

∂σ

(
[BN ]

Nr̂AB,k∥∥Nr̂AB,k

∥∥
)∣∣∣∣∣

σ̂k

⎞
⎠ dA

b̄i,k = − 1

π

�
A

�

(B[
cosφi cos θi cosφi sin θi sinφi

]
[BN ]

Nr̂AB,k∥∥Nr̂AB,k

∥∥
)
dA

c̄i,k ≈ − Ĉi,k

π

�
A

�

(B[
− cosφi sin θi cosφi cos θi 0

]
[BN ]

Nr̂AB,k∥∥Nr̂AB,k

∥∥
)
dA

d̄i,k ≈ − Ĉi,k

π

�
A

�

(B[
− sinφi cos θi − sinφi sin θi cosφi

]
[BN ]

Nr̂AB,k∥∥Nr̂AB,k

∥∥
)
dA (4.29c)

Mk = Mαk
+

[
diag

(
ĈT

k

)
0N×Nα

]
(4.30a)
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Mα,k =

[
0N×N Lk

]

Lij,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Ĉi,k

π

NnT
A
j

Nŝ⊕,k∥∥Nr̂A
j
B

∥∥2∥∥Ns⊕,k

∥∥
(

NnT
Aj

Nr̂A
j
B∥∥Nr̂A

j
B

∥∥
)

(
NnT

i

Nr̂A
j
B∥∥Nr̂A

j
B

∥∥
)
ΔAj if dA ∈ A

0 if dA �∈ A

(4.30b)

and

Jk = Jdk
+ Jαk

(4.31a)

Jdk
=

⎡
⎢⎢⎢⎢⎢⎣
a1,k −a1,k

...
...

aN,k −aN,k

⎤
⎥⎥⎥⎥⎥⎦

ai,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Ĉi,k

B[
cosφi cos θi cosφi sin θi sinφi

]
[BN ]

∗ 1∥∥Nŝk

∥∥
(
I3×3 −

Nŝk
NŝTk∥∥Nŝk

∥∥∥∥Nŝk

∥∥
)

if nT
i ŝk∥∥ni

∥∥∥∥ŝk∥∥ ≥ cosψi

0 if nT
i ŝk∥∥ni

∥∥∥∥ŝk∥∥ < cosψi

(4.31b)
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Jα,k =

⎡
⎢⎢⎢⎢⎢⎣
a1,k b1,k

...
...

aN,k bN,k

⎤
⎥⎥⎥⎥⎥⎦ , (·)i,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(̄·)i,k if B �∈ S

0 if B ∈ S

āi,k ≈ Ĉi,k

π

�
A

α∥∥Nr̂AB,k

∥∥2∥∥Nŝ⊕,k

∥∥NnT
A

(
I3×3 −

Nŝ⊕,k
NŝT⊕,k∥∥Nŝ⊕,k

∥∥∥∥Nŝ⊕,k

∥∥
)

(
NnT

A

Nr̂AB,k∥∥Nr̂AB,k

∥∥
)(

NnT
i

Nr̂AB,k∥∥Nr̂AB,k

∥∥
)
dA

b̄i,k ≈ − Ĉi,k

π

�
A

α
NnT

A
Nŝ⊕,k∥∥Nr̂AB,k

∥∥3∥∥Nŝ⊕,k

∥∥
[
2

N
r̂TAB,k∥∥Nr̂AB,k

∥∥
(

NnT
A

Nr̂AB,k∥∥Nr̂AB,k

∥∥
)(

NnT
i

Nr̂AB,k∥∥Nr̂AB,k

∥∥
)

−NnT
A

(
I3×3 −

Nr̂AB,k
Nr̂TAB,k∥∥Nr̂AB,k

∥∥2
)(

NnT
i

Nr̂AB,k∥∥Nr̂AB,k

∥∥
)

−
(

NnT
A

Nr̂AB,k∥∥Nr̂AB,k

∥∥
)

NnT
i

(
I3×3 −

Nr̂AB,k
Nr̂TAB,k∥∥Nr̂AB,k

∥∥2
)]

dA (4.31c)

where the partial derivative of the DCM [BN ] multiplied by some 3 × 1 vector a with respect to

the MRP attitude σ is given by

∂

∂σ
([BN ]a)

∣∣∣∣
σ̂

=
8

(1 + σ̂2)3

[(
1 + σ̂2

){(− [σ̂]× +
1

2

(
1− σ̂2

)
I3×3

)
[a]× − [σ̂ × a]×

+(σ̂ × a) σ̂T
}
+ 4

(
− [σ̂]× +

1

2

(
1− σ̂2

)
I3×3

)
(σ̂ × a) σ̂T

]
. (4.32)

While these partial derivatives may appear intense, several quantities are repeated throughout.

Taking advantage of this can greatly simplify coding of these equations.

It is important to note that several of the Jacobians associated with Vα are approximate. This

is because Vα involves an area integral of the form

Vα =
�
A

f dA (4.33)

for which the partial derivatives are found using Leibniz’s rule [98]

∂Vα

∂x
=

�
A

∂f

∂x
dA+

[
f
∂A

∂x

]
CA

(4.34)

where CA is the bounding contour of the area A. The Jacobians given above include the variations

of f with respect to the state vector, but not the variations of the area being integrated with respect
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Figure 4.1: Illustration of complexities induced by gridded nature of albedo data.

to the state evaluated along the bounding contour. This is due to the uncertainty in the albedo

model and numerical issues associated with evaluating Equation (4.34) using gridded data.

Consider the situation illustrated in Figure 4.1. The area A that is visible to a CSS for a nadir

pointing spacecraft in a low-Earth orbit, along with a 5◦ × 5◦ albedo grid are shown. Figure 4.1b

provides an illustration of the two terms that make up Equation (4.34). As can be seen the ideal

bounding contour of A is a complex shape; the calculation of which involves solving the intersection
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of several cones and spheroids. The calculation of the second term also requires evaluating the

partials of A with respect to σ, θ, φ, s⊕β
, and rBβ

. Finally, it is important to note the albedo data

is only available in gridded form and the albedo contributions for each grid square are calculated

using the data point for the center of the grid square. To complete this calculation on board a

spacecraft would involve either significant time or approximations. Coupled with the discrete and

highly uncertain nature of the albedo data, this would result in a computationally expensive, or

inherently imprecise calculation, for what is nominally a small value. Therefore, the measurement

noise is inflated to account for this inconsistency.

While the full calibration filter will theoretically work for the full range of CSS measurement

values, in practice CSS measurements near zero present additional challenges. In this region the

signal to noise ratio is particularly low and the noise distribution is no longer Gaussian, as negative

measurements are not possible. To address these issues a minimum CSS measurement value, or

noise floor, is set, to twice the value of the CSS measurement noise, below which measurements are

not considered.

4.3 Reduced CSS Calibration Filter Without Albedo Model

The reduced CSS calibration filter assumes the spacecraft has CSS, inertial attitude, angu-

lar rate measurements, and an estimate of the current time for calculating a reference Earth-Sun

vector. In contrast to the full CSS calibration filter, it is assumed the received irradiance due to

Earth’s albedo is treated as an unmodeled measurement bias. This method aims to reduce the total

computation time, at the cost of estimation accuracy, by eliminating the costly evaluation of the

irradiance contributions caused by the Earth’s albedo1. A continuous-discrete extended consider

Kalman filter is used again and the state and process noise vectors are unchanged, along with the

attitude measurement update, from the full CSS calibration filter.

1Evaluating the full NASA TOMS albedo model involves looping through 51 840 elements, for each of the CSS,

every measurement update, and evaluating several equations at each element; a process which can take significant

time as shown later in the results.
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Because the input irradiance due to Earth’s albedo is treated as a bias, Equation (4.27) is

simplified to

V = C (Vd + Vα + νV )

Vd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B[
cosφ cos θ cosφ sin θ sinφ

]
[BN ]

Ns⊕−NrB∥∥Ns⊕−NrB

∥∥ if nT s
‖s‖ ≥ cosψ

0 if nT s
‖s‖ < cosψ

(4.35)

and the measurement noise and bias vectors are changed to

νk =

[
νV,k

]
, βν =

⎡
⎢⎢⎢⎢⎢⎣
Ns⊕β ,k

NrBβ ,k

Vαβ ,k

⎤
⎥⎥⎥⎥⎥⎦ (4.36)

where, without an orbit solution, the spacecraft position relative to the Earth is treated as a sys-

tematic bias. It is expected that this bias will have minimal impact on the estimate, especially when

compared to the effect of Earth’s albedo.

The measurement update Jacobians are given by Equation (4.29), where now Hα,k = 0,

Mk = diag
(
ĈT

k

)
(4.37)

and

Jk =

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣
a1,k

...

aN,k

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
a1,k

...

aN,k

⎤
⎥⎥⎥⎥⎥⎦ diag

(
ĈT

k

)
⎤
⎥⎥⎥⎥⎥⎦

ai,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Ĉi,k

B[
cosφi cos θi cosφi sin θi sinφi

]
[BN ]

∗ 1∥∥Nŝk

∥∥
(
I3×3 −

Nŝk
NŝTk∥∥Nŝk

∥∥∥∥Nŝk

∥∥
)

if nT
i

ŝk∥∥ŝk∥∥ ≥ cosψi

0 if nT
i

ŝk∥∥ŝk∥∥ < cosψi

(4.38)

where, because the nominal value for the bias estimate Nr̂Bβ ,k
is a zero vector, Nŝk ≈ Nŝ⊕,k.
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4.4 Numerical Simulation Results

Numerical simulations, with significant noise and biases as outlined in Section 2.4, are used

to demonstrate the performance of the two calibration filters. For these cases the spacecraft is

assumed to have no active control. If the spacecraft is under active control, it must be made sure

that during calibration all CSS have sufficient time with the Sun in their field of view. Even a

slow maneuver that exposes all CSS to direct sunlight is sufficient, for example maintaining nadir

pointing when equipped with a dual pyramid configuration, but may take more time to reduce the

estimation uncertainty to the desired levels.

Chapter 3 shows that simultaneous sun-direction estimation and pointing can be performed

when scale factor uncertainties are normally distributed with a standard deviation of 2%. Here

those scale factors are distributed by 30%, an order of magnitude larger. For comparison, the

total solar irradiance changes by 0.1% between minimum and maximum solar activity and has only

changed by 0.09% over the last 400 years [99], but photodiode calibration is typically on the order

of a few percent for visible light.

The performance of the full and reduced calibration filters are compared for a a tumbling

spacecraft equipped with a dual pyramid CSS configuration and separately for a cube CSS config-

uration. Next, the accuracy and computation time of the full calibration filter run with reduced

albedo resolution are compared. Finally, the sensitivity of the calibration filter to other error sources

is examined.

4.4.1 Dual Pyramid CSS Configuration

A single orbit is simulated with the truth albedo model, and the full calibration filter albedo

model, set to the full 1◦ × 1.25◦ data set. The spacecraft is assumed uncontrolled and equipped

with a dual pyramid CSS configuration. Figure 4.2 shows the error in the MRP and rate gyro bias

estimates and their calculated covariance bounds. Both estimators give nearly identical estimates

and covariance bounds because the attitude and rate bias estimates are dominated by the star
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tracker measurements. While the MRP estimates quickly converge, the rate gyro bias estimate

uncertainty grows as time progresses. This is because the initial rate gyro uncertainty is more

accurate than the system can produce during one orbit; using a lower fidelity gyro results in the

expected initial drop in uncertainty. Because the CSS have little impact on the attitude estimate

for a sufficiently accurate attitude observation computation can be saved by combining this filter

with an existing attitude estimator.
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Figure 4.2: Error in estimated (solid) MRP and rate gyro bias values, and estimated 3σ bounds
(dashed), for nominal full and reduced calibration filters using dual pyramid CSS configuration.

Figure 4.3 shows the calibration results for the CSS with the greatest and least time receiving

direct sunlight; and Table 4.1 lists the maximum and minimum estimated 3σ covariance bounds of

the calibration coefficient and misalignment angles for the eight CSS after one orbit. As expected,

the full calibration filter far outperforms the reduced calibration filter. The reduced filter is only

able to make minimal reduction in the uncertainty in the calibration parameters, and needs far
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Figure 4.3: Error in estimated (solid) CSS 2 and 6 calibration values, and estimated 3σ bounds
(dashed), for nominal full and reduced calibration filters using dual pyramid CSS configuration.

more than one orbit to reduce the uncertainty significantly. In contrast, the full calibration filter is

able to reduce the uncertainty in the calibration coefficient by an order of magnitude, and reduce

the uncertainty in the misalignment angles by a factor of two, in a single orbit.

Because the level of calibration accuracy for the CSS is a function of the measurements

received, and the single case presented may not represent average results, a Monte Carlo analysis is

run to statistically bound the performance of the calibration filters. The statistics of the calibration
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Table 4.1: Estimated covariance values after one orbit for full and reduced calibration filters assum-
ing a dual pyramid CSS configuration.

Parameter Initial Full Filter Reduced Filter

3σC
max 0.9 0.018 0.61
min 0.0036 0.21

3σθ
max

3.0◦ 0.97◦ 2.9◦

min 0.59◦ 2.7◦

3σφ
max

3.0◦ 1.6◦ 3◦

min 0.47◦ 2.6◦
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Figure 4.4: Monte Carlo generated statistics of CSS calibration parameter uncertainties for space-
craft using a dual pyramid CSS configuration after one orbit.

parameter uncertainties, for all CSS combined, after one orbit, for a 300 case Monte Carlo analysis,

are shown in Figure 4.4. In some of the cases one or more CSS never experience direct irradiance from

the Sun as a result of the particular random tumble of the spacecraft; the statistics are calculated

with the data for these sensors omitted. The error bars represent one standard deviation from the

mean of the estimated 3σ bounds. The results correlate well with the individual run; the results of

which fall within or very near the one standard deviation bounds shown in Figure 4.4. The most

significant difference between the full and reduced filter is in the estimate of the individual scale

factors.
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4.4.2 Cube CSS Configuration

A single orbit is again simulated with the truth albedo model, and the full calibration filter

albedo model, set to the full 1◦×1.25◦ data set. The spacecraft is assumed uncontrolled, but is now

equipped with a cube CSS configuration. Similar to the dual pyramid configuration, the attitude

and rate gyro bias errors, shown in Figure 4.5, are driven by the star tracker accuracy and are,

therefore, indistinguishable at the scale shown.
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(b) Error in rate gyro bias.

Figure 4.5: Error in estimated (solid) MRP and rate gyro bias values, and estimated 3σ bounds
(dashed), for nominal full and reduced calibration filters using cube CSS configuration.

Figure 4.6 shows the calibration results for the CSS with the greatest and least time receiving

direct sunlight; and Table 4.2 lists the maximum and minimum estimated 3σ covariance bounds

of the calibration coefficient and misalignment angles for the six CSS after one orbit. CSS 5 has

almost zero time during which it receives direct sunlight. The filter does initialize for CSS 5 at
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(b) CSS 5.

Figure 4.6: Error in estimated (solid) CSS 1 and 5 calibration values, and estimated 3σ bounds
(dashed), for nominal full and reduced calibration filters using cube CSS configuration.

550 s, and although the misalignment uncertainties are only minimally improved, the 3σ scale factor

uncertainty is reduced from 0.9 to 0.016 demonstrating the superior performance when accurately

accounting for the Earth’s albedo in the measurement model.

The statistics of the CSS calibration parameter uncertainties after one orbit for a 300 case

Monte Carlo analysis are shown in Figure 4.7. Similar to thee results of the previous section, the

results correlate well with the individual runs. The scale factor uncertainties are very close to the
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Table 4.2: Estimated covariance values after one orbit for full and reduced calibration filters assum-
ing a cube CSS configuration.

Parameter Initial Full Filter Reduced Filter

3σC
max 0.9 0.016 0.66
min 0.0022 0.22

3σθ
max

3.0◦ 3◦ 3◦

min 0.43◦ 2.4◦

3σφ
max

3.0◦ 2.5◦ 3◦

min 0.33◦ 2.4◦
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Figure 4.7: Monte Carlo generated statistics of CSS calibration parameter uncertainties for space-
craft using a cube CSS configuration after one orbit.

dual pyramid CSS configuration results. The misalignment angle uncertainties show slightly higher

averages, 1.66◦ and 0.93◦ compared to 1.05◦ and 0.9◦, but considering the spread of values the

results are comparable.

4.4.3 Sensitivity to Albedo Model

The previous section illustrates the significant difference between using the full albedo data

set and treating the input due to albedo as a bias. To bridge between these two extremes, the

previous results are compared with the full calibration filter run using lower resolution albedo data

sets. In particular, the full calibration filter is run using 1◦×1.25◦, 5◦×5◦, and 10◦×10◦ resolution
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albedo data sets, which are compared in Figure 4.8, where the lower resolution grids are interpolated

from the 1◦ × 1.25◦ data. It is found through Monte Carlo analysis that the measurement noise νV

needs to be increased from 0.05, as dictated by the CSS noise, by 0.01 for the 1◦ × 1.25◦ albedo

grid, 0.1 for the 5◦ × 5◦ albedo grid, and 0.4 for the 10◦ × 10◦ albedo grid in order to account for

the approximations made in the Jacobians2.
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Figure 4.8: Visualization of various albedo resolutions for which calibration filter performance is
compared.

The estimation errors and 3σ uncertainty bounds are shown in Figure 4.9. All of the estimates

remain bounded by the predicted 3σ uncertainty bounds. Similar to the results of the previous

section, the errors in the MRP attitude set and the rate gyro bias estimates are indistinguishable,

therefore, these plots are omitted. For brevity, only the calibration estimates for CSS 6 and 2 are

shown in Figure 4.9. These sensors are the sensors with the most and least information content

based on the particular tumble of the spacecraft; they are in view of the Sun the most and least. The

3σ uncertainty values for all the CSS parameters for the different models are presented in Table 4.3

Using even a very coarse albedo data set in the full estimator provides significant improvement

over treating the irradiance due to albedo as a bias. The full filter with 10◦×10◦ albedo data provides

only slightly lower uncertainty in the alignment angles than the reduced filter, but, for some sensors,
2To arrive at these values, Monte Carlo analyses are run and values are iterated until the normalized mean

estimation error test results, explained in Section 5.1, are satisfactory.
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Figure 4.9: Calculated mean (solid) and 3σ (dashed) CSS calibration values for full and reduced
estimation techniques for CSS 2 and 6.

a full order of magnitude lower uncertainty in the calibration coefficient. In Chapter 3 it is shown

that simultaneous coarse sun-direction estimation and control is quickly attainable with calibration

coefficient uncertainty of 0.06 3σ, and the full filter is nearly able to attain this accuracy in just one

orbit using the 10◦ × 10◦ albedo data.

The statistics of the CSS calibration parameter uncertainties after one orbit for a 300 case

Monte Carlo are shown in Figure 4.10. The Monte Carlo results confirm the trends seen in the single
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Table 4.3: Estimated covariance values after one orbit for various albedo models.

Parameter Initial Full Filter Reduced Filter
1◦ × 1.25◦ 5◦ × 5◦ 10◦ × 10◦

3σC
max 0.9 0.018 0.043 0.11 0.61
min 0.0036 0.011 0.029 0.21

3σθ
max

3.0◦ 0.97◦ 2.2◦ 2.8◦ 2.9◦

min 0.59◦ 1.6◦ 2.6◦ 2.7◦

3σφ
max

3.0◦ 1.6◦ 2.7◦ 3◦ 3◦

min 0.47◦ 1.4◦ 2.4◦ 2.6◦
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Figure 4.10: Monte Carlo generated statistics of CSS calibration parameter uncertainties for space-
craft using a dual CSS configuration after one orbit for various levels of albedo data resolution.

case, and a steady degradation of accuracy is seen as the albedo resolution is decreased. While the

10◦ × 10◦ cases show only slightly better misalignment angle accuracy compared to the reduced

filter, there is a significant improvement in the scale factor estimate.

It is important to consider computation time in addition to estimation accuracy. For a

3460 s simulation the computation time for the propagation and measurement update algorithms

are timed and recorded; the propagation update is called 34 601 times and the estimation update
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6921 times. The averages and standard deviations of the required computation times are shown in

Table 4.4. Because no control effort is applied, the simulations follow exactly the same trajectory

and experience identical simulated sensor measurements. The propagation algorithms are coded

exactly the same except for the size of the bias covariance matrices. The measurement update

equations are coded exactly the same with two exceptions: the full calibration filter includes a

loop over the albedo data to calculate the expected irradiance due to albedo and the associated

uncertainties; and the matrix sizes of the bias covariance matrices have different dimensions. All

code is written in C and compiled and run on a Windows i7 2.5GHz computer. While this is not

flight hardware, the relative computation times provide insight into the expected trends.

Table 4.4: Averages and standard deviations of computation times for various filters.

ECKF Albedo Data Propagation Update [μs] Measurement Update [μs]

Full 1◦ × 1.25◦ 15.4± 2.7 6141± 1470
Full 5◦ × 5◦ 15.1± 2.9 506± 101
Full 10◦ × 10◦ 15.0± 2.9 180± 19.7

Reduced - 18.3± 3.8 183± 24.5

As expected, the full calibration filter takes significantly more time than the reduced filter,

but reducing the density of the albedo grid greatly increases the computation speed. Interestingly,

the computation time for the 10 × 10 albedo grid is lower than that of the reduced calibration

filter. This is a result of the total mathematical operations performed. Comparing Equations (4.28)

and (4.36) it can be seen that the reduced calibration filter trades the computation of the albedo,

and its associated uncertainty, for an increased number of bias parameters, whose uncertainty and

correlation with the state must be propagated and updated. For a low resolution albedo data set

the number of computations necessary to loop through the albedo data eventually drops below the

number of calculations added by accounting for the albedo as a measurement bias in the ECKF

formulation. For the current state vector this point occurs near an albedo resolution of 10◦ × 10◦.
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4.4.4 Sensitivity to Sun-Direction Model

There are several methods available for computing the direction vector from the Earth to

the Sun, as required in the full calibration filter, based on only a reference time depending on the

computational power available and accuracy desired. When calculating a normalized sun-direction

vector, in the body frame of a spacecraft in low Earth orbit, these methods provide a relatively small

level of error. Vallado gives an analytic method valid from 1950 to 2050 [100]. Variations Séculaires

des Orbites Planétaires (VSOP) provides a series of periodic terms that can be used to determine

the position of the planets [101]. Meeus provides an abbreviated set of VSOP87 tables and associated

algorithm [102]. Finally, the NASA Navigation and Ancillary Information Facility (NAIF) SPICE

toolkit provides full planetary ephemerids [62].

Vallado provides a simple technique from the Astronomical Almanac. The algorithm gives a

mean-equator of date vector in astronomical units with an accuracy of 0.01◦ that is valid from 1950

to 2050 [100]. Starting with the Julian date JD, the normalized sun-direction vector is given by

TUT1 =
JD − 2 451 545.0

36 525
(4.39a)

λM� = 280.460◦ + 36 000.771TUT1 (4.39b)

M� = 357.527 723 3◦ + 35 999.050 34TUT1 (4.39c)

λecliptic = λM� + 1.914 666 471◦ sin
(
M�

)
+ 0.019 994 643◦ sin

(
2M�

)
(4.39d)

ε = 23.439 291◦ − 0.013 004 2TUT1 (4.39e)

r� = 1.000 140 612− 0.016 708 617 cos
(
M�

)− 0.000 139 589 cos
(
2M�

)
(4.39f)

s⊕ = r�

⎡
⎢⎢⎢⎢⎢⎣

cosλecliptic

cos ε sinλecliptic

sin ε sinλecliptic

⎤
⎥⎥⎥⎥⎥⎦ (4.39g)

where universal time TUT1 is used instead of barycentric dynamical time TTDB because of the low

fidelity of the model.
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The planetary theory VSOP87 uses tables of periodic terms to calculate the positions of the

planets. The position of the Sun relative to the Earth in astronomical units can be found using

s⊕ =

⎡
⎢⎢⎢⎢⎢⎣

x+ 0.000 000 440 360y − 0.000 000 190 919z

−0.000 000 479 966x+ 0.917 482 137 087y − 0.397 776 982 902z

0.397 776 982 902y + 0.917 482 137 087z

⎤
⎥⎥⎥⎥⎥⎦ (4.40)

where

x = − cosB cosL, y = − cosB sinL, z = − sinB. (4.41)

The terms L and B are calculated using

τ =
JD − 2 451 545.0

365 250.0

X(i) =

Nj∑
j=0

Aj cos
(
Bj + Cjτ

)
X = X0 +X1τ +X2τ2 +X3τ3 +X4τ4 +X5τ5 (4.42)

where Aj , Bj , and Cj correspond to the jth row, of Nj rows, of the A, B, and C columns of the

VSOP87 table section X(i). Meeus provides an abbreviated set of tables in Appendix II of Reference

102 that can be used with these same equations. Meeus’ solution reduces the total number of row

summations necessary from 1586 to 444.

The relative computation times and angular errors for these sun-direction reference models

are presented in Table 4.5 where, for this study, the output of the SPICE toolkit is assumed to be

truth. The component and total angular errors in the Vallado, Meeus, and VSOP87B methods are

shown in Figure 4.11. Also included in Figure 4.11d are the errors resulting from using Vallado and

Meeus’ methods with an error in the current time of 6 h. The VSOP87 method shows the closest

match to the SPICE ephemerids and Vallado’s method shows the most difference. All methods

exhibit a periodic error with a period equal to half the orbital period of Earth.

The angle error in the sun-direction reference vector can be significantly reduced by moving

from Vallado’s method to the methods given by SPICE, or Meeus, at the cost of computation time.

However, using the SPICE implementation requires the inclusion of a significant library of code,

whereas the Meeus algorithm can be implemented with a single function containing several tables.



110

Time since 2015 June 1, 00:00 [d]

s ⊕
x
er
ro
r

Vallado

VSOP87B

Meeus

0 200 400 600
10−10

10−8

10−6

10−4

10−2

(a) Error in x-component of reference sun-
direction vector.

Time since 2015 June 1, 00:00 [d]

s ⊕
y
er
ro
r

Vallado

VSOP87B

Meeus

0 200 400 600
10−10

10−8

10−6

10−4

10−2

(b) Error in y-component of reference sun-
direction vector.

Time since 2015 June 1, 00:00 [d]

s ⊕
z
er
ro
r

Vallado

VSOP87B

Meeus

0 200 400 600
10−10

10−8

10−6

10−4

10−2

(c) Error in z-component of reference sun-direction
vector.

Time since 2015 June 1, 00:00 [d]

A
n
g
u
la
r
s
⊕

er
ro
r,

d
eg

Meeus +6hr

Vallado

VSOP87B

Vallado +6hr

Meeus

0 200 400 600
10−6

10−4

10−2

100

(d) Angular error of sun-direction reference vector.

Figure 4.11: Accuracy of Vallado, Meeus, and VSOP87B methods for calculating reference sun-
direction vector relative to SPICE toolkit solution.

Table 4.5: Sun direction approximation methods and their error relative to SPICE.

Method Normalized mean Angular error
computation time Mean [deg] Max [deg]

SPICE 19 – –
Vallado 1 0.23 0.24

Vallado +6h 0.47 0.49
Meeus 24 5.2× 10−5 1.2× 10−4

Meeus +6h 0.25 0.25
VSOP87B 360 5.4× 10−6 7.2× 10−6

Interestingly, the angular error in Vallado’s method is nearly equal to the angular error incurred

from using Meeus’ method with a 6 h time error.
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Figure 4.12: Rate of change of inertial sun-direction vector for spacecraft in 400 km polar orbit.

Also of interest is the rate of change of the inertial vector from the spacecraft to the Sun

because it is included as a bias term in the ECKF sun-direction estimator developed in Chapter 3.

The rate of change of the inertial sun vector, for a spacecraft in a 400 km low Earth polar orbit, is

shown in Figure 4.12. The banding seen is a result of the time scales plotted, as the higher frequency

movement of the spacecraft around the Earth induces small variations about the lower frequency

movement of the Earth around the Sun.

When evaluating these models in the full calibration filter, it is found that there is almost no

difference in the estimated state or covariance bounds. Neither is the computation time significantly

impacted. The propagation update computation time is unchanged when switching from Meeus’ to

Vallado’s sun-direction model, and the measurement update is only sped up by 10 μs on average,

which is small compared to the several hundred microsecond total measurement update time. The

minimal impact on the state estimate is in large part due to the discretization of the albedo data.

Table 4.5 shows that the maximum angular error in the Earth-Sun vector; even the least accurate

Vallado method is below the smallest albedo resolution of 1◦×1.25◦. Thus, the amount of additional

uncertainty in the state estimate for a 0.24◦ error in the sun-direction vector is dwarfed by the

measurement noise added to account for the inaccuracies of the full calibration Jacobians. In

fact, the full calibration filter is more likely to develop a bias in the estimated state, due to the

Jacobian approximations, before significant differences in the estimated covariance begin to appear.
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Therefore, because the fidelity of the albedo model impacts the results most significantly, Monte

Carlo analyses must be used prior to flight to characterize the noise necessary to account for albedo

model limitations.



Chapter 5

CSS Failure Detection

While CSS have significant flight heritage and are robust sensors, when using an underdeter-

mined configuration, as shown in Figure 2.9, sensor failure is a key concern as it can leave areas

without any sensor coverage. Figure 5.1 shows a coverage map for the dual pyramid CSS config-

uration when CSS 1 fails. Compared to Figure 2.8, a single sensor failure results in a significant

area with zero sensor coverage and reduced coverage by three or more sensors. While a single-point

estimation scheme will fail when the Sun is this region of zero coverage, a sequential filter based

approach is capable of propagating through such dead zones given sufficient prior measurements.
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(a) Schematic of spacecraft, θ = 45◦.
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Figure 5.1: Illustration of spacecraft with CSS unit vectors ni for a dual pyramid configuration with
a single sensor failure and the associated CSS coverage map shown on a cylindrical projection.
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There is significant existing research in the field of fault detection [48,49] and a popular approach

used to detect sensor failures is to perform statistical tests on the residuals of one or more sequential

filters [54,55]. When using a Kalman filter approach on nonlinear problems the linearization can lead

to poor detection or high false alarm rates, and, thus, there is much ongoing research into more

accurate methods of precise fault detection for nonlinear systems [57–59]. This research focuses on

demonstrating how even a simple fault detection scheme, that may be often overlooked, can be

used to gain insight with minimal computational overhead. Despite the fact that the problem

of detecting failures of coarse sun sensors is highly nonlinear with significant noise, a normalized

innovation squared test performed on the output of a calibration filter, as detailed in Chapter 4, is

shown to produce acceptable results because of the detailed sensor modeling of Sections 2.1 and 3.2.3.

Unfortunately, fault detection using the sun-direction estimators of Chapter 3 is infeasible using this

method due to the high level of conservatism used to ensure filter convergence.

5.1 Autonomous Failure Detection Approach

Tests used to tune the noise parameters of statistical filters include the normalized estimate

error squared (NEES) test, the normalized mean estimation error (NMEE) test, the normalized

innovation error squared (NIS) test, and the averaged NIS test [55]. In addition, autocorrelation

tests can be used to test for whiteness. The NEES and NMEE test require the true state to be

known and are used during filter development, leveraging Monte Carlo analyses, to tune a filter

based on the expected noise values. In contrast, the NIS, and averaged NIS, tests use only the

measurement residuals and are suitable for use in real-time applications. The NEES and NMEE

tests are reviewed as they are important for filter development, but it is the NIS test that is used

for fault detection.

Defining the state error, where the true state x is known from the simulation, as

x̃(t) ≡ x(t)− x̂(t) (5.1)
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the normalized state estimation error squared is given by

ε(t) ≡ x̃T (t)P−1(t) x̃(t) . (5.2)

Assuming the system is linear with Gaussian noise, if the null hypothesis H0, that the filter is

consistent, is true then ε(t) is χ2 distributed, and

E[ε(t)] = nx (5.3)

where nx is the dimension of the state vector. If εi(t) is the NEES of the ith case in a N case Monte

Carlo analysis then

ε̄(t) =
1

N

N∑
i=1

εi(t) (5.4)

and Nε̄(t) will have a χ2 density with Nnx degrees of freedom [55]. The null hypothesis is accepted

if

ε̄(t) ∈ [r1, r2] (5.5)

where the acceptance interval [r1, r2] is based on chosen significance level α such that

p {ε̄(t) ∈ [r1, r2] |H0} = 1− α. (5.6)

For a two-sided interval the values of r1 and r2 are calculated using inverse χ2 tables, such as those

found in Reference 103, or a software package, such as Reference 104, for α/2 and 1.0− α/2.

For NEES values outside the acceptance region the null hypothesis is rejected and it is con-

cluded that the estimation errors are not Gaussian with uncertainties equal to the predicted co-

variance. Unacceptably large values for ε and ε̄ indicate a bias in the state estimates. In addition,

significant simulations show that, for the conservative filters presented here, values consistently

below the lower bound indicate a filter with estimate errors that may not be Gaussian, but are

bounded by the predicted covariance.

The NEES and averaged NEES results are shown in Figure 5.2 for the full calibration filter

using 1◦ × 1.25◦ albedo data as an example. The averaged NEES acceptance bounds are calculated

using a 1% significance level for a χ2 distribution with 30 (states)× 300 (runs) degrees of freedom,

[
χ2
9000(0.005) , χ

2
9000(0.995)

]
= [8658.17, 9349.34] −→ [r1, r2] = [28.9, 31.2] .
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Figure 5.2: NEES and averaged NEES for full calibration filter, run with 1◦ × 1.25◦ albedo data,
results from Section 4.4.3 at the 1% significance level.

There are some values of ε that fall outside the acceptance bounds, as expected statistically, but

the averaged NEES satisfies Equation (5.5) for the entire simulation.

If the NEES test is not satisfied, the normalized mean estimation error (NMEE) test for

each component of the state is used to verify if the estimate is zero-mean. The NMEE for the jth

component of the state for N Monte Carlo runs is defined as [55]

μ̄j(t) ≡
1

N

N∑
i=1

x̃j,i√
Pjj,i(t)

(5.7)

and ideally will be normally distributed with zero mean and a 1/N standard deviation. The null

hypothesis, that the estimate is zero-mean, is accepted if

μ̄j(t) ∈ [−r, r] (5.8)

where the acceptance interval is based on a level of significance α such that

p {ε̄(t) ∈ [−r, r] |H0} = 1− α. (5.9)

For a two-sided interval the value of r = r1/
√
N where r1 is calculated using an inverse normal

distribution for 1.0− α/2.
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While these methods work well for simulated trajectories, the true trajectory is not known in

real-time applications. For real-time situations the state estimation error cannot be used to check

the consistency of the filter, but the measurement innovations can be used in a similar manner. The

normalized innovation squared (NIS) is defined as

εy,k ≡ (yk − ŷk)
T W−1

k

(
yk − ŷk

)
(5.10)

where Wk is the innovation covariance from Equation (3.47). Similar to Equation (5.4) an averaged

NIS is calculated for a time history of N measurements using

ε̄y =
1

N

N∑
i=1

εy,i. (5.11)

The null hypothesis for the NIS is tested in a similar manner to the NEES.
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Figure 5.3: NIS and 100 sample averaged NIS for full calibration filter.

Figure 5.3 shows the NIS test for all eight CSS on a simulated dual pyramid equipped space-

craft running the full calibration filter. The acceptance region bounds1 are shown assuming the

1The nominal acceptance region for a χ2 test is traditionally based on a 5% or 1% significance level. This results

in an upper bound of 5.02 and 7.88, respectively, for a single value and 1.3 and 1.4, respectively, for a 100 sample

averaged value.
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sensors begin receiving measurements at the start of the simulation and initially decrease as enough

samples are recorded to fill the running average. This is not true for all sensors, for example CSS

2 does not receive a direct sunlight measurement until after 1000 s, but the transient acceptance

regions are not shown for all sensors as the focus is on the steady state. After one orbit the averaged

NIS, for all eight sensors, is clustered near the low end of the acceptance region. This is because of

the additional noise added, as described in Section 4.2, making the filter conservative.

5.2 Numerical Simulation Results

The most expected mode of CSS failure is a slow degradation due to ultraviolet radiation

over time, resulting in a darkening of the sensor casing [44]. This failure mode is gradual and is

easily identified and quantified through on-orbit calibration, for example with the calibration filters

discussed in Chapter 4. Of more interest for failure detection are sudden failures. Three different

acute failure modes are simulated to demonstrate the possibility of autonomous failure detection:

a) a complete loss of signal, resulting in a zero measurement for all subsequent time (off failure);

b) a stuck fault in which the CSS returns the same measurement from the time of failure for all

subsequent time (stuck failure); and c) a fault in which the CSS returns random noise for all

subsequent time (random failure).

Figure 5.4 illustrates the sensor output of a CSS suffering from each of the three failure

modes. A single case with the simulation parameters from Section 2.4 is shown with the sensor

failure occurring at 1950 s, during the region of the orbit when the CSS are most affected by Earth’s

albedo. It is important to note the stuck failure can be varied significantly, with the value at which

the CSS remains stuck being set to the current measurement value, the max measurement value, or

any random measurement value between.

For a consistent filter, it is expected that the NIS values will fall between the χ2 acceptance

bounds, r1 and r2, as shown in Figure 5.3, and they do for the filter using the 1◦ × 1.25◦ albedo

data set. However, because additional measurement noise is added to the filters using the 5◦ × 5◦

and 10◦ × 10◦ albedo data sets, their averaged NIS values fall below the lower bound of the χ2
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Figure 5.4: CSS measurements under each of the failure scenarios studied.

acceptance region. Because of this, different thresholds, determined using numerical Monte Carlo

simulations, are used for determining sensor failure.

Figure 5.5 shows the averaged NIS results for a 100 case Monte Carlo analyses run assuming

the spacecraft is running a full calibration filter equipped with a 1◦ × 1.25◦ and 10◦ × 10◦ albedo

data set. As can be seen, there is a clear distinction between the nominally operating and failed

CSS for a filter using the 1◦× 1.25◦ albedo data set. For a filter using the 10◦× 10◦ albedo data set

there is not a clear distinction between nominal operation and failure. Due to the high measurement

noise added to account for the system modeling and linearization errors, as discussed in Section 4.2,

biases can be seen in the NIS values corresponding to measurements due to Earth’s albedo. For this

case, choosing a threshold too low leads to high false alarm rates, whereas a value too high leads to

poor detection, as traditionally seen when using an EKF approach on a nonlinear problem [56]. In

order to avoid false detection, thresholds of 3.0, 1.2, and 1.2 are used for the 1◦ × 1.25◦, 5◦ × 5◦,

and 10◦×10◦ albedo data sets, respectively. The threshold used for the high resolution albedo grid,
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Figure 5.5: Comparison of nominal and failed CSS averaged NIS values for different albedo resolu-
tions.

while determined empirically, should hold generally because of the accuracy of the albedo model.

However, the threshold used for the 10◦ × 10◦ albedo grid is more likely to require adjustment

for individual missions based on how the albedo grid is evaluated, the maximum albedo expected

throughout the orbit, and the desired balance of false detections and missed detections.

Numerical simulations, using the parameters described in Section 2.4, are used to demonstrate

the viability of using a NIS test to detect CSS failures. The magnitude of the resulting NIS test

results are shown for the off, stuck, and random failure modes of a CSS on-board both a tumbling

and controlled spacecraft. It is shown that reliable fault detection can be performed using 1◦×1.25◦

and 5◦ × 5◦ albedo data sets, but using a 10◦ × 10◦ results in poor detection.

5.2.1 Fault Detection on Uncontrolled Spacecraft

A single orbit of an uncontrolled spacecraft equipped with a dual pyramid CSS configuration

is simulated with CSS 1 experiencing a fault at 1950 s. The spacecraft is assumed to be equipped

with a full calibration filter, as described in Section 4.2, with a 1◦ × 1.25◦, 5◦ × 5◦, or 10◦ × 10◦
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on-board albedo data set. The expected NIS values, without a failure occurring, are shown as

reference.
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Figure 5.6: NIS and 100 sample averaged NIS for uncontrolled spacecraft running full calibration
filter with CSS 1 random failure at 1950 s.
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Figure 5.7: NIS and 100 sample averaged NIS for uncontrolled spacecraft running full calibration
filter with CSS 1 off failure at 1950 s.
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Figure 5.8: NIS and 100 sample averaged NIS for uncontrolled spacecraft running full calibration
filter with CSS 1 stuck at max failure at 1950 s.

Figures 5.6 to 5.8 show the NIS, and 100 sample averaged NIS, for random, off, and stuck

failures of CSS 1, respectively. The individual timestep NIS values fluctuate significantly, and can be

seen to fall outside the χ2 acceptance bounds even during nominal operation, and within those same

bounds after failure. This again illustrates why averaged NIS values are used for fault detection.

For the random and stuck failures there is a distinct increase in the averaged NIS value at the time

of failure for all three on-board albedo models, with the filters running higher resolution albedo data

sets taking less time to increase above the detection threshold. However, the difference between

nominal and failure is less distinct for an off failure when using the 10◦ × 10◦ albedo data set, and

the NIS value of the failed sensor does not increase above the detection threshold for the case shown.

As mentioned previously, a stuck fault may result in a sensor returning any value between

its maximum and minimum possible measurements for all subsequent time. Consequently, the

NIS value for a stuck sensor returning measurements near the expected nominal measurement may

fall within the detection threshold, making it difficult to distinguish between nominal and faulty

operation. This is shown in Figures 5.9 and 5.10, where the resulting averaged NIS values are

shown for stuck faults in 10% increments between 0% to 100%. For the case shown, CSS 1 does
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Figure 5.9: 100 sample averaged NIS for uncontrolled spacecraft running full calibration filter with
1◦ × 1.25◦ albedo data experiencing a stuck failure of CSS 1 at 1950 s.
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Figure 5.10: 100 sample averaged NIS for uncontrolled spacecraft running full calibration filter with
10◦ × 10◦ albedo data experiencing a stuck failure of CSS 1 at 1950 s.

not receive any direct sunlight measurements, but the averaged NIS value for the full albedo data

set filter clearly increases above the detection threshold for all values of stuck failures. However, for

the low resolution data set it takes an erroneous signal greater than 50% of the maximum for the

averaged NIS to rise above the detection threshold. As expected, decreasing the accuracy of the

on-board albedo model increases the conservatism of the filter and trades accuracy for computation

time.

Table 5.1 lists the fault detection statistics for a 500 case Monte Carlo analysis, run using

the parameters in Section 4.4.3, in which a failure of CSS 1 occurs at 1950 s for an uncontrolled

spacecraft attempting calibration. For these results, the cases in which the CSS never registers a
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Table 5.1: Fault detection statistics for 500 case Monte Carlo assuming an uncontrolled spacecraft.

Albedo Data Failure Mode False Correct
Detections Detections

1◦ × 1.25◦
Off 6/3686 (0.16%) 428/428 (100.00%)

Random 6/3687 (0.16%) 428/428 (100.00%)
Stuck 6/3686 (0.16%) 428/428 (100.00%)

5◦ × 5◦
Off 0/3689 (0.00%) 431/431 (100.00%)

Random 0/3690 (0.00%) 431/431 (100.00%)
Stuck 0/3689 (0.00%) 427/431 (99.07%)

10◦ × 10◦
Off 2/3689 (0.05%) 406/431 (94.20%)

Random 2/3690 (0.05%) 431/431 (100.00%)
Stuck 2/3689 (0.05%) 391/431 (90.72%)

measurement above the direct sunlight threshold of 0.4, thus becoming initialized in the calibration

filter, are removed. False detections are the total number of reported failures amongst CSS 2 through

8, and reported failures of CSS 1 before the time of failure. In all cases, the calibration filters exhibit

less than 0.15% false detection rate. The higher resolution on-board albedo data set filters correctly

detect the sensor failure nearly 100% of the time and the 10◦×10◦ albedo data set correctly detects

the failure greater than 90% of the time.
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Figure 5.11: Time from failure to detection using 1◦ × 1.25◦ albedo data.

Also of importance is how fast the calibration filter is able to identify a sensor failure. Fig-

ures 5.11 to 5.13 show the time from failure to detection for each of the albedo data set resolutions
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Figure 5.12: Time from failure to detection using 5◦ × 5◦ albedo data.
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Figure 5.13: Time from failure to detection using 10◦ × 10◦ albedo data.

tested. As reference, the time from the first measurement above the specified noise floor, denoted

“from meas”, and the time from the first direct sunlight measurement, denoted “from direct”, to

failure detection are also shown. These results illustrate that while some cases may take significant

time to detect the sensor failure, the majority of that time is spent without any measurements

from the sensor. Once the expected observations for the failed sensor rise above the noise floor the

calibration filter is able to quickly identify the faulty sensor. The random failure is the most quickly

identified failure, while the stuck failure is, as expected, the most difficult to distinguish. These
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results show how even a simple fault detection scheme can be used to identify faulty sensors with

minimal computation costs above that of the full calibration filter.

5.2.2 Fault Detection on Controlled Spacecraft

A single orbit of a controlled spacecraft equipped with a dual pyramid CSS configuration is

simulated with a fault in CSS 1 occurring at 1950 s. Similar to the previous section, the spacecraft is

assumed to be equipped with a full calibration filter, as described in Section 4.2, using a 1◦× 1.25◦,

5◦ × 5◦, or 10◦ × 10◦ on-board albedo data set. In contrast to the previous section, the spacecraft

is actively controlled and maintains the z-axis of the spacecraft pointed at the Sun for the duration

of the simulation. This results in sensor measurements that do not change significantly throughout

the trajectory, similar to those shown in Figure 2.5.
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Figure 5.14: NIS and 100 sample averaged NIS for controlled spacecraft running full calibration
filter with CSS 1 random failure at 1950 s.

Figures 5.14 to 5.16 show the NIS, and 100 sample averaged NIS, for random, off, and stuck

failures of CSS 1, respectively. For the stuck faults, because the spacecraft is actively controlled,

the averaged NIS values reach a nearly constant value after a time period equal to the sampling

interval. The averaged NIS values for the filters using the 1◦×1.25◦ and 5◦×5◦ data set show clear
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Figure 5.15: NIS and 100 sample averaged NIS for controlled spacecraft running full calibration
filter with CSS 1 off failure at 1950 s.
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Figure 5.16: NIS and 100 sample averaged NIS for controlled spacecraft running full calibration
filter with CSS 1 stuck at max failure at 1950 s.

deviations above the detection threshold for all three failure modes, whereas the 10◦× 10◦ is shown

to be too conservative to distinguish random and stuck at max sensor failures.
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Figure 5.17: 100 sample averaged NIS for controlled spacecraft running full calibration filter with
1◦ × 1.25◦ albedo data experiencing a stuck failure of CSS 1 at 1950 s.

The output of the full calibration filter using a 1◦× 1.25◦ albedo resolution, and experiencing

different values of stuck faults, is shown in Figure 5.17. All stuck failures, except the ones that

return 70% to 80% of the maximum output the failure, are clearly marked by an increase of the

averaged NIS above the detection threshold. For the time region shown, the expected measurement

of CSS 1 is approximately 72% of the maximum output and the difference between nominal sensor

output and that of a stuck sensor is too small to distinguish.

Table 5.2: Fault detection statistics for 500 case Monte Carlo assuming a controlled spacecraft.

Albedo Data Failure Mode False Detections Correct Detections

1◦ × 1.25◦
Off 1/2427 (0.04%) 489/489 (100.00%)

Random 1/2428 (0.04%) 490/490 (100.00%)
Stuck 1/2427 (0.04%) 49/489 (10.02%)

5◦ × 5◦
Off 0/2427 (0.00%) 489/489 (100.00%)

Random 0/2428 (0.00%) 490/490 (100.00%)
Stuck 0/2427 (0.00%) 0/489 (0.00%)

10◦ × 10◦
Off 6/2427 (0.25%) 489/489 (100.00%)

Random 5/2428 (0.21%) 57/490 (11.63%)
Stuck 6/2427 (0.25%) 0/489 (0.00%)

Table 5.2 shows the fault detection statistics for a 500 case Monte Carlo run using the pa-

rameters in Section 4.4.3, in which a failure of CSS 1 occurs at 1950 s for a controlled spacecraft

attempting calibration. For these results, the cases in which the CSS never registers a measurement
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above the direct sunlight threshold of 0.4, thus becoming initialized in the calibration filter, are

removed. Because of how the random numbers are generated, the random failure mode alters the

sequence of random numbers used to generate measurements due to Earth’s albedo. There is one

additional case for the random failure as a result; CSS 1 is randomly assigned a calibration scale

factor of 0.43 in the case in question, and without a random faulty measurement of 93% or higher

the CSS is never initialized in the filter. However, with that random measurement the filter is able

to identify that something is wrong and flag the sensor as faulty.

As expected, all of the filters have trouble identifying a failure in which the CSS becomes

stuck, returning the same measurement from the time of failure for all subsequent time. Both

of the filters using higher resolution albedo data sets are reliably able to identify off and random

failures, but the calibration filter using a 10◦ × 10◦ albedo grid has a very poor detection rate. For

a sun-pointing spacecraft, off failures are detected within one measurement update, 0.5 s, using the

1◦ × 1.25◦ albedo data set, within 2.5 s using the 5◦ × 5◦ albedo grid, and within 20 s using the

10◦× 10◦ albedo data set. For cases suffering a random failure the filter using the 1◦× 1.25◦ albedo

data set takes an average of 2.2 s to detect sensor failure and the filter using the 5◦× 5◦ albedo grid

takes an average of 11 s. The decreased time to detection is a result of the spacecraft maintaining

an orientation with the faulty sensor receiving direct sunlight measurements, but the detection rate

of stuck failures suffers as a result of this static attitude.



Chapter 6

Conclusions & Future Work

6.1 Summary of Dissertation

The use of partially underdetermined coarse sun sensor configurations in autonomous satel-

lite attitude, determination, and control systems is examined. A numerical simulation framework

is developed and used to test algorithms for sun-direction estimation, on-orbit calibration, and au-

tonomous fault detection. The problems of estimating highly nonlinear systems with significant

noise are addressed with emphasis placed on achieving sufficient performance for safe-mode opera-

tions while maintaining low sensor and computational requirements.

A simulation framework for testing satellite ADCS algorithms using realistic sensor models is

developed. This framework has the ability to perform hardware in the loop tests using actual space-

craft components and visualize the results in real-time. An in depth analysis of cosine-type coarse

sun sensor and rate gyroscope models is presented and these models are validated against hard-

ware measurements. Two coarse sun sensor configurations that do not provide sufficient coverage

to uniquely determine the sun-direction at any time are presented and analyzed.

Several methods for estimating and controlling a spacecraft’s orientation relative to the Sun

using only coarse sun sensor and rate gyro measurements are reviewed and compared. Of interest is

how to achieve a power positive orientation when little information is available, such as immediately

post launch vehicle separation or in a power critical safe-mode situation. All methods perform

simultaneous sun-direction estimation and attitude control to achieve a power-positive orientation.

Three single-point estimators are presented; the first method uses a simple vector average calculation
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and the second and third involve variations on a combination of least squares and minimum norm

criteria. Two sequential filter approaches are also presented; the first uses an extended Kalman

filter with measurement and process noise inflated to account for measurement inconsistencies, and

the second addresses these inconsistencies and the biases present in the system using a consider

filter approach. Special attention is given to the nonlinearities of the measurement models that can

lead to filter divergence and all methods are evaluated using both a dual pyramid and cube CSS

configuration. All of the estimators are shown to provide suitable estimates of the sun-direction

vector in the body frame without any knowledge of a spacecraft’s inertial position despite significant

measurement noise and model biases. Numerical simulations show that sun pointing, to less than

15◦ accuracy, is quickly achieved even with rate gyroscope performance lower than what is available

in mass market commercial electronics MEMS gyroscopes.

Nominally, with rate gyro measurements available, the EKF-based sun-direction estimation

method provides the most accurate estimate despite significant dynamic and measurement biases,

reducing the 3σ pointing error of the sun-direction estimate below 5◦. However, the EKF method’s

performance is found to be highly sensitive to the process and measurement noise values used, the

tuning of which is a highly iterative and time consuming process. A consider Kalman filter approach

provides estimation accuracy slightly more conservative than the EKF without the need to adjust

measurement and process noise using numerical analysis. Even though the EKF and ECKF methods

are non-optimal, by making modifications to how observations are processed, it is shown that these

approaches can be made to work even without rate gyro information, thus providing promising

performance for safe-mode operation in a situation with few measurement observations.

For underdetermined sensor configurations the positive benefits of simultaneously estimating

the sun-direction and controlling the spacecraft are most notable in the single point-estimators. As

long as multiple sensor coverage is available in the goal orientation of the control, the spacecraft

is able to quickly achieve and maintain sun-direction accuracy on the order of 10◦ to 15◦. This

accuracy is sufficient for safe-mode operations in which the aim is to achieve and maintain power
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positiveness. Of the single-point estimators, the simple weighted average method provides the best

performance.

A MRP-based CSS calibration filter, based on an extended consider Kalman filter, is pre-

sented for estimating the calibration coefficient and alignment misalignment angles of CSS on-board

a spacecraft in low Earth orbit. The full filter uses orbit knowledge to compute the irradiance con-

tributions to each CSS due to Earth’s albedo. A reduced filter is also presented that does not

require orbit knowledge and, as a consequence, treats the irradiance due to Earth’s albedo as an

unmodeled bias. The relative accuracies and computation times of these two methods are computed

using numerical simulations. It is shown that estimation using even a very coarse albedo data set

is superior, in both accuracy and computation time, to treating the albedo as a bias. CSS cali-

bration scale factors can be estimated to less than 1% and alignment angles to approximately 1◦.

Computation time reductions by a factor of 25 can be achieved with only an increase of calibration

coefficient accuracies to 2%, and alignment accuracies to approximately 2◦, by reducing the albedo

data resolution in the calibration filter. Such a calibration filter could be used on-board a small

satellite in order to reduce necessary ground support and increase autonomy.

Finally, the ability to autonomously detect coarse sun sensor failures is investigated. Kalman

filters are traditionally not used for fault detection in nonlinear systems due to poor detection or high

false alarm rates. However, it is shown that because of the effort placed into accurately modeling

the measurement models, a simple method using an averaged normalized innovation squared test

can be used to detect sensor failures at little additional computational cost beyond the calibration

filters presented earlier. While a calibration filter using a 10◦ × 10◦ albedo data set is shown to be

incapable of reliably detecting sensor failure, a filter using a higher than 5◦ × 5◦ albedo data set

resolution is shown to be able to detect sensor failure with above 98% accuracy and less than 0.2%

false alarms.

All of these areas of investigation provide alternative ADCS algorithms for small satellite mis-

sions looking to use inexpensive, small sensors due to size, power, or budget limitations. Throughout

this work, emphasis is placed on undetermined sensor configurations that reduce the number of nec-
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essary sensors, but might also arise late in the life of larger satellites as sensors fail. In addition,

accuracy is balanced against computational costs in an effort to improve spacecraft autonomy and

reduce ground testing and support costs.

6.2 Suggestions for Future Work

Throughout this research, emphasis is placed in balancing accuracy with computational costs.

To this end, extended Kalman filter approaches are used due to their computational speed to address

nonlinearities in the problems examined. Future work should investigate fully nonlinear approaches,

such as an unscented Kalman filter or divided difference filter. A comparison of the accuracy gains

weighed against the computational increase would be beneficial.

A graduate team at the University of Colorado is currently building a CubeSat for the QB50

mission [105]. The spacecraft is currently planning to fly with magnetometers, but no star tracker.

Magnetometer based attitude estimation has been demonstrated, using only magnetometers [106]

and in combination with CSS [16]; however, it would be interesting to compare the accuracy of the

calibration filter when run using magnetometer, instead of star tracker, measurements.

Throughout this research significant effort is made to make the numerical simulations as

real as possible, and sensor models are validated using sensor measurements taken on the ground.

However, there is no substitute for actual flight data. There are currently several projects ongoing

at the University of Colorado to launch small satellites that will fly coarse sun sensors, and there is

interest in incorporating the algorithms developed here into the attitude, determination, and control

systems of these vehicles. Future work should continue to investigate the algorithms presented here

using actual flight data.

Alternatively, future work could look into terrestrial applications of sun-pointing algorithms.

It has been hypothesized that animals, such as the sandhopper, Manx shearwater [107], and Savan-

nah sparrow [108], rely on the position of the Sun for navigation. Because CSS represent a small,

inexpensive sensor, through which sun-direction estimation can be calculated quickly, it would be

interesting to incorporate them into solar based navigation, such as that explored in Reference 109,
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for small robotic platforms. Such a technique could prove useful in environments without access to

GPS and, by using solar panels as sensors, could have the added benefit of power generation for

small robots.

To improve the accuracy and robustness of the calibration filter, future research could explore

more realistic albedo modeling. Currently for the albedo data set, the albedo value for a specific

area of the Earth’s surface is calculated based on the center of the differential area. Similar to

approximations made in numerical integration schemes, examining Figure 4.1a illustrates how this

can lead to an under or over representation of the actual albedo input. Different methods for

calculating the irradiance due to Earth’s albedo could reduce the measurement noise necessary to

account for modeling errors. In addition, the values for the Earth’s albedo are based on averages and

standard deviations of a 5 yr period with each point in the albedo grid being dispersed independently

of its neighbors. Global weather patterns tend to result in neighboring regions of the Earth’s surface

having similar albedo due to cloud cover. Future work could look into these effects significantly

impact the accuracy of the calibration filter.

Finally, future work should investigate nonlinear fault detection methods. The fault detection

method presented only works with the full calibration filter not the sun-direction estimators. If the

accuracy of the sun-direction estimators can be improved through the use of nonlinear filters it may

lead to opportunities to perform fault detection and sun-direction estimation simultaneously.
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Appendix A

MRP Attitude Filter Shadow Set Considerations

Rigid body attitude estimation algorithms have been previously formulated using Modified

Rodrigues Parameter (MRP) attitude sets. These MRP-based attitude estimation algorithms are

attractive because they have been shown to have equal accuracy to and faster initial convergence

than similar quaternion based filters and they avoid the quaternion constraint problem [95]. These

algorithms make use of the fact that two MRP sets describe a particular orientation and singularity

avoidance is performed by switching between the original MRP set and the alternate set, known

as the shadow set. Unfortunately, the non-uniqueness of MRPs can lead to significant attitude

estimation errors through improper calculation of the measurement residual.

Of particular interest for MRP attitude filters is the computation of the measurement residual

yk, the difference between the measured σ̃k and estimated attitude σ̂k at time tk, which has not

previously been discussed in detail. For the additive MRP EKF the measurement residual is given

by the numerical difference

yk = σ̃k − σ̂k. (A.1)

Due to the non-uniqueness of MRPs, there are always two MRP sets to describe the same

orientation. This can become an issue if the magnitude of the discrete MRP measurement ‖σ̃k‖

or estimate ‖σ̂k‖ is near 1. For example, if σ̃k = [1, 0, 0] and σ̂k = [−1, 0, 0], which represents the

same physical orientation as σ̃S
k , both values describe the same attitude and thus the measurement

residual should be [0, 0, 0]. However, Equation (A.1) will result in a measurement residual of [2, 0, 0]
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and the update equations will apply a correction when none is needed, thus degrading the estimate

of the attitude.

To avoid this issue, a new approach is proposed where the measurement residual is calculated

a second time using

y′
k = σ̃S

k − σ̂k (A.2)

where σ̃S
k is evaluated using Equation (4.2). The quantity yk or y′

k with the smaller magnitude

is then used in the state update and estimation continues. Figure A.1 illustrates graphically the

situation where ‖y′
k‖ < ‖yk‖ and Algorithm 1 provides pseudocode for the proposed algorithm.

Note that while the measurements σ̃ are assumed to be noisy, the measurement at tk is a discrete

value and ‖σ̃k‖ is the magnitude of this discrete value.

Algorithm 1 Proposed measurement residual algorithm for additive MRP EKF.
1: yk = σ̃k − σ̂k

2: if ‖σ̃k‖ > 1
3 then

3: y′
k = σ̃S

k − σ̂k

4: if ‖y′
k‖ < ‖yk‖ then

5: yk = y′
k

6: end if
7: end if

‖σk‖ = 1 Surface

Region where y′
k must

be considered

1 2 3

‖σ̃S
k ‖ > 3

σ̃k

σ̂k

σ̃S
k ‖σ̃k‖ < 1

3

y′
k

yk

Figure A.1: Illustration of possible measurement residual at a specific time and region where y′
k

must be considered.

Performing this additional calculation at every time step does not represent a significant

computational burden, however, an issue does develop when a measurement has a magnitude near
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zero. When ‖σ̃k‖ → 0 the shadow set ‖σ̃S
k ‖ → ∞ and is ill-defined. In this scenario the magnitude

of the original measured MRP ‖σ̃k‖ is always less than the magnitude of the shadow MRP set of

the measurement ‖σ̃S
k ‖ and there is no need to evaluate Equation (A.2). For this reason a bound

is placed on when to evaluate Equation (A.2). As noted earlier, both σ̃k and σ̂k are assumed to be

constrained with a magnitude less than or equal to 1, which implies at any time tk

‖yk‖ ≤ 2.

Therefore, conservatively if the magnitude of the measured MRP’s shadow set σ̃S
k at time tk is

greater than 3 the magnitude of y′
k must be greater than yk

‖σ̃S
k ‖ > 3 =⇒ ‖yk‖ < ‖y′

k‖

and y′
k need not be calculated. By applying Equation (4.2) it is evident that

‖σ̃S
k ‖ > 3 =⇒ ‖σ̃k‖ < 1/3.

Thus, a conservative bound on when the calculation of y′
k can be ignored is when ‖σ̃k‖ < 1/3.

Therefore, when 1/3 < ‖σ̃k‖ < 1, as illustrated in Figure A.1, the check described above should be

computed.

For a multiplicative MRP EKF, the measurement residual at time tk is given by the relative

orientation difference

yk = σ̃k ⊗ σ̂−1
k . (A.3)

Using the example provided earlier where σ̃ = [1, 0, 0] and σ̂ = [−1, 0, 0], evaluating Equation (A.3)

results in a division by zero and in other cases can lead to an erroneously large residual when the

resulting MRP describes a rotation with a principal rotation angle greater than 180◦. To avoid this,

a similar approach is proposed where the measurement residual is calculated a second time using

the shadow set of the measurement

y′
k = σ̃S

k ⊗ σ̂−1
k (A.4)
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and the quantity yk or y′
k with the smaller magnitude is used in the update equations. Algorithm 2

provides pseudocode for a multiplicative MRP EKF. In this case ‖σ̃k‖ is compared to a sufficiently

small number ε to prevent division by zero.

Algorithm 2 Proposed measurement residual algorithm for multiplicative MRP EKF.

1: yk = σ̃k ⊗ σ̂−1
k

2: if ‖σ̃k‖ > ε then
3: y′

k = σ̃S
k ⊗ σ̂−1

k

4: if ‖y′
k‖ < ‖yk‖ then

5: yk = y′
k

6: end if
7: end if

As an alternative, Equation (A.3) could be calculated using direction cosine matrices

[C (yk)] = [C (σ̃k)] [C (−σ̂k)]

and extracting the resultant MRP set with the smaller principal rotation angle, but this is found in

practice to be significantly more computationally demanding than the proposed algorithm.

A simple numerical simulation is presented to illustrate the performance of the non-singular

additive MRP EKF and highlight certain implementation details. The uncontrolled tumbling

motion of a small spacecraft is modeled assuming the spacecraft has principle inertia values of

I1 = 4kgm2, I2 = 4kgm2, and I3 = 3kgm2. The initial attitude of the spacecraft is given by

σ(t0) = [0.3, 0.1,−0.5]T . The initial angular velocity is given by ω(t0) = [−0.2, 0.2,−0.1]T ◦/s.

Attitude measurements are simulated at 0.2Hz with a attitude measurement error covariance

of 20 arcsecond. The measurement covariance for the additive filter is set to R = 0.0004I3×3. The

angular rate measurements are simulated at 2.0Hz, assuming bias stability ωr = [−1.0, 2.0,−3.0]T ◦/h

and σω =
√
10× 10−7 rad/s1/2 and σωd

=
√
10× 10−10 rad/s3/2. The initial attitude estimate is

σ̂ = 03×1 and the initial angular rate bias estimate is ω̂b = 03×1. The initial covariance matrix is

given by P̂0 = diag
[
Pσ, Pσ, Pσ, Pωβ

, Pωβ
, Pωβ

]
where Pσ = 0.175 rad2 and Pωβ

= 0.005 rad2/s2.

The time history of the true attitude and the principal rotation error of the estimate for a

60min simulation are shown in Figure A.2. It can be seen that not all instances of MRP switching
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Figure A.2: Results of simulation using additive MRP EKF with and without proposed algorithm
illustrating importance.

require the proposed algorithm, for instance the estimator handles the switching at 11.2min quite

well. An example of when ‖y′
k‖ < ‖yk‖ is seen at 38.2min. At that time simply calculating the

vector difference between σ̃k and σ̂k results in

yk =

[
0.85821 −0.13322 −1.80039

]

whereas using the shadow MRP set of the measurement results in

y′
k =

[
−0.00048 −0.00001 0.00097

]
.

Clearly, yk represents spuriously large error in the attitude estimate and the original additive

estimator diverges, whereas by using the shadow MRP set of the measured attitude the magnitude

of the measurement residual is very close to zero.

It is important when using an additive filter to use a numerical difference for the measure-

ment residual and when using a multiplicative filter to use a multiplicative residual. Included in

Figure A.2b are the results for an additive filter using a multiplicative residual illustrating the poor

performance resulting from such an incorrect mixture of methods.
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Figure A.3: Results of numerical simulation using proposed method showing convergence of all
states. Dotted lines indicate 1σ covariance bounds.

The state estimates and their associated covariance bounds for the proposed algorithm are

shown in Figure A.3. Both the attitude MRP and rate gyro bias estimates can be seen to quickly

converge to the noise level while remaining within the 1σ covariance bounds despite the relatively

slow attitude measurement update rate.



Appendix B

MRP Attitude Filter High-Accuracy Considerations

It is assumed in the MRP EKF derivation that the angular velocity is piecewise constant

between rate gyro measurements. This assumption is usually good if the spacecraft has near zero

angular rates, otherwise, the effect of this assumption manifests itself as a time varying bias in the

system dynamics. Therefore, precise attitude determination requires the proper propagation of the

angular velocity, using Euler’s rotation equations of motion, and accounting for any active control

torques.

In this situation, the rotational equations of motion for a spacecraft with several reaction

wheels given by [110]

ω̇ = [I]−1 [−ω × ([I]ω +Gs

{
Js ◦

(
Ω+GT

s ω
)})−Gsus +L

]
(B.1)

are incorporated into the propagation calculations. For maximum benefit, the rate gyro measure-

ment from the previous time step is integrated forward incorporating the rotation equations of

motion to arrive at the best estimate of both the state at the current time.

Figure B.1 shows the difference in the MRP estimate for a MRP EKF estimator with and

without using Equation (B.1). In this case a spacecraft is simulated in a 400 km circular, polar orbit.

The spacecraft is initialized with zero rates and an initial attitude of σ =

[
0, 0, 0

]
and commanded

to achieve and maintain Sun pointing. The spacecraft is assumed to be equipped with an inertial

grade rate gyro and a star tracker with 1σ noise of 20 arcsecond.

The maximum angular velocity of the spacecraft is 0.95 ◦/s, but it is enough to cause a bias to

appear in the estimated attitude. The total bias seen is small, at its maximum the bias equates to a
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Figure B.1: Comparison of MRP EKF results with and without including rotational equations of
motion in propagation.

total angular error of 0.05◦, but is important to be aware of, especially if high accuracy estimation

is required. Incorporating the rotational equations of motion into the state propagation alleviates

this issue. For lower rate gyro performance grades, without incorporating Equation (B.1) the bias

seen is still evident, but only persists as long as the spacecraft’s angular rates are non-zero.



Appendix C

Cramér-Rao Lower Bound

The Cramér-Rao lower bound gives a lower bound on the expected errors between an estimated

quantity and its true value based on the statistical properties of the given measurements. Methods

of calculating the Cramér-Rao lower bound for nonlinear estimation problems are gathered here as

a reference.

The Cramér-Rao inequality [111] gives a mean square error (MSE) lower bound, the Cramér-

Rao Lower Bound (CRLB), on the variance of an unbiased estimator x̂ of an unknown deterministic

vector parameter x given measurements y with probability density function p

P ≡ E
{
(x̂− x) (x̂− x)T

}
≥ J−1 (C.1)

where the J is the Fisher information matrix [112] given by

J = E

{[
∂

∂x
ln p (y;x)

] [
∂

∂x
ln p (y;x)

]T}

= −E

{
∂2

∂x∂xT
ln p (y;x)

}
. (C.2)

A singular Fisher information matrix indicates an system that is not fully observable, and in such

a case the rank deficiency of the Fisher information matrix indicates the number of unobservable

parameters.

C.1 Cramér-Rao Lower Bound for Deterministic Systems

One nonlinear estimation bounding technique based on the CRLB is suggested by Taylor [113].

Consider a deterministic system with continuous-time state dynamics and discrete-time measure-
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ments given by

ẋ = f(x,u, t) (C.3a)

yk = hk(xk,νk) (C.3b)

where x is the state vector, f represents the system dynamics, u is the control input, and yk is the

discrete-time measurement expression. The measurement noise νk is discrete-time white-noise with

covariance Rk

E[νk] = 0 (C.4a)

E
[
νjν

T
k

]
= Rjkδjk ∀ j, k. (C.4b)

Taylor shows that the Fisher information matrix for this system propagates recursively according

to

J
(
xk+1

)
=
(
Φ−1

)T
J(xk)Φ

−1 + H̄T
k+1R

−1
k+1H̄k+1 (C.5)

where

H̄k ≡ ∂hk

∂xk

∣∣∣∣
xk

(C.6)

and assuming the Jacobian matrix [113]1

F̄ ≡ ∂f

∂x

∣∣∣∣
x,u

(C.7)

is continuous in x and t, allowing the state transition matrix Φ to be found by integrating

Φ̇ = F̄Φ (C.8)

subject to the initial condition Φ(k, k) = I. While this approach provides a simple method for

calculating the CRLB, unfortunately, it assumes that the system is deterministic, whereas most real

systems are modeled with process noise.

1Note the Jacobian matrix is evaluated along the true trajectory, not the best estimate of the trajectory.
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C.2 Posterior Cramér-Rao Lower Bound for Discrete Time Systems

For a system with process noise, the unknown vector parameter x is treated as a random

variable. Van Trees gives the lower bound for an unbiased estimator of an unknown random vector

parameter, commonly known as the Posterior Cramér-Rao Bound (PCRB) [85], as [84]

Pk ≡ E
{
(x̂k − xk) (x̂k − xk)

T
}
≥ J−1 (C.9)

where

J = E

{[
∂

∂x
ln p (Yk;Xk)

] [
∂

∂x
ln p (Yk;Xk)

]T}

= −E

{
∂2

∂x∂xT
ln p (Yk;Xk)

}
(C.10)

and

Xk =

[
x0 x1 · · · xk

]
(C.11a)

Yk =

[
y0 y1 · · · yk

]
. (C.11b)

The PCRB differs from the CRLB, and Taylor’s implementation, in that the expectation in Equa-

tion (C.10) is taken over both the random parameter Xk and measurements Yk, as opposed to just

over the measurements. Thus, instead of the bound being a function of a single deterministic path,

the PCRB averages over all possible paths [114].

Consider a system with discrete-time state dynamics and measurements given by

xk+1 = f(xk,uk,wk) (C.12a)

yk = hk(xk,νk) (C.12b)

where w is discrete-time white-noise with covariance Q̃k

E[wk] = 0 (C.13a)

E
[
wjw

T
k

]
= Q̃jkδjk ∀ j, k (C.13b)
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and the measurement noise νk is discrete-time white-noise with covariance Rk

E[νk] = 0 (C.14a)

E
[
νjν

T
k

]
= Rjkδjk ∀ j, k. (C.14b)

Tichavský et al. show the Fisher information matrix for this system propagates recursively according

to [115]

Jk+1 = D22
k −D21

k

(
Jk +D11

k

)−1
D12

k (C.15)

where

D11
k = E

[
− ∂2

∂xk∂x
T
k

ln p
(
xk+1|xk

)]
(C.16)

D12
k = E

[
− ∂2

∂xk∂x
T
k+1

ln p
(
xk+1|xk

)]
(C.17)

D21
k = E

[
− ∂2

∂xk+1∂x
T
k

ln p
(
xk+1|xk

)]
=
[
D12

k

]T (C.18)

D22
k = E

[
− ∂2

∂xk+1∂x
T
k+1

ln p
(
xk+1|xk

)]
+ E

[
− ∂2

∂xk+1∂x
T
k+1

ln p
(
zk+1|xk+1

)]
(C.19)

initialized with

J0 = E
[
− ∂2

∂x0∂x
T
0

ln p (x0)

]
. (C.20)

A special form of Equation (C.15) can be found for a linearized system model with additive

Gaussian noise. Linearizing Equation (C.12) and assuming wk and νk are additive white Gaussian

noise gives

xk+1 = Φkxk + Γkwk (C.21)

yk = H̄kxk + M̄kνk (C.22)

Plugging this into Equation (C.15) gives

Jk+1 =
(
ΦkJ

−1
k ΦT

k + ΓkQ̃kΓ
T
k

)−1
+ H̄T

k+1M̄kR
−1
k+1M̄

T
k H̄k+1. (C.23)

Initializing with Equation (C.20) gives a method for computing the Fisher information matrix, and

subsequently the PCRB, for all time.
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C.3 Posterior Cramér-Rao Lower Bound for Hybrid Systems

The propagation of the Fisher information matrix given in Equation (C.23) can be broken

down into a propagation step

J−
k+1 =

(
ΦkJ

−1
k ΦT

k + ΓkQ̃kΓ
T
k

)−1
(C.24)

and a measurement update step

J+
k+1 = J−

k+1 + H̄T
k+1M̄kR

−1
k+1M̄

T
k H̄k+1. (C.25)

Through some rearranging it can be shown that the propagation step for the inverse of the Fisher

information matrix is of the same form as the traditional propagation update of the Kalman filter

state covariance. Thus, for systems with continuous-time dynamics it can be shown that the Fisher

information matrix can be propagated using

J̇(t)−1 = F̄ (t)J(t)−1 + J(t)−1 F̄ (t)T + Ḡ(t)Q(t) Ḡ(t)T (C.26)

where the partials

F̄ ≡ ∂f

∂x

∣∣∣∣
x,u

, Ḡ ≡ ∂f

∂η

∣∣∣∣
x,u

(C.27)

are evaluated along the true trajectory instead of the best estimate of the trajectory.



Appendix D

Propagation of Uncertainty

In many cases the parameters being estimated by an estimator are not the only values of

interest. For these secondary parameters it is valuable to estimate an associated uncertainty bound.

For example, the sun-direction estimators of Chapter 3 estimate a sun-direction vector, but of

particular importance is the angle between this vector and the true sun-direction. If these secondary

parameters can be formulated as a function of the estimator states, a first-order estimate of the

secondary parameter covariance can be calculated using the properties of the covariance matrix.

The covariance matrix Σ for a random vector x is given by

Σ(x) = E
[
(x− E[x])2

]
= E
[
(x− E[x]) (x− E[x])T

]
(D.1)

and the covariance matrix of some constant matrix A multiplied by a random vector x plus a

constant vector β is given by

Σ(Ax+ β) = E
[
(Ax+ β − E[Ax+ β])2

]
= E

[
(A (x− E[x])) (A (x− E[x]))T

]
= AE

[
(x− E[x]) (x− E[x])T

]
AT

= AΣ(x)AT . (D.2)
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Taking the Taylor series expansion of some function f(x) about the current instantiation x

gives

f(x) ≈ f(E[x]) + J(E[x]) (x− E[x]) +
1

2
(x− E[x])H(E[x]) (x− E[x])T + . . . (D.3)

where J is the Jacobian matrix and H is the Hessian matrix. Noting that f(E[x]) is a constant,

the covariance of the function f(x) to first order is given by

Σ(f(x)) ≈ E
[
{f(E[x]) + J(E[x]) (x− E[x])− E[f(E[x]) + J(E[x]) (x− E[x])]}2

]
≈ E
[
{J(E[x])x− E[J(E[x])x]}2

]
≈ J(E[x])Σ(x)J(E[x])T . (D.4)

D.1 CSS Sun-Direction Angular Uncertainty

Several of the CSS estimators developed in Chapter 3 give an estimate of the scaled sun-

direction vector and associated covariance. Of interest for a control algorithm, and for pointing

accuracy considerations, is the angle α between the current scaled sun-direction vector d and a

desired unit direction vector c.

α = arccos

(
cT

d

‖d‖
)

(D.5)

The uncertainty of such an angle can be calculated from the covariance of the sun-direction estimate

using

Σ(α) ≈ J(α)Σ(d)J(α)T (D.6)

where

J(α) =
1√

1−
(
cT d

‖d‖
)2
[
dT

‖d‖
(
cT

d

‖d‖
)
− cT

]
. (D.7)

D.2 MRP Angular Uncertainty

A MRP-based attitude estimator gives an estimate of the spacecraft’s attitude expressed as

a MRP set. Of interest is the principle rotation angle Φ between the current attitude and the true
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attitude as it represents the total angular error of the estimate. The principle rotation angle can be

found from an MRP using

Φ = 4arctan(‖σ‖) (D.8)

and the uncertainty of this angle can be calculated from the covariance of the MRP estimate using

Σ(Φ) ≈ J(Φ)Σ(σ)J(Φ)T (D.9)

where

J(Φ) =
4σT√

σTσ (1 + σTσ)
. (D.10)

D.3 Total Angular Rate Uncertainty

A MRP-based attitude estimation gives an estimate of the spacecraft’s rate gyro’s bias compo-

nents in the body frame. In order to condense the information, a total angular rate bias uncertainty

is calculated using the vector norm of the rate gyro bias using

‖ωβ‖ =
√

ω2
βx

+ ω2
βy

+ ω2
βz
. (D.11)

The uncertainty in this quantity can be calculated from the covariance of the rate gyro bias estimate

using

Σ
(‖ωβ‖

) ≈ J
(‖ωβ‖

)
Σ
(
ωβ

)
J
(‖ωβ‖

)T (D.12)

where

J
(‖ωβ‖

)
=

ωT
β

‖ωβ‖
. (D.13)


